


CodeWell	Academy()	and	R.M.Z.
present:

	
Java	Programming	

Box	Set

Master’s	Handbook
&

Artificial	Intelligence	Made	Easy

	



1st	Edition
	

w/	Code,	Data	Science,	Automation,	
problem	solving,	Data	Structures	&	Algorithms

	

CodeWell	Box	Set	Series
©	Copyright	2015	-	All	rights	reserved.
In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	or	in	printed	
format.	Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed	unless	with	
written	permission	from	the	publisher.	All	rights	reserved.	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,	in	terms	of	inattention	or	
otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions	contained	within	is	the	solitary	and	utter	
responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the	
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.	

Legal	Notice:

This	ebook	is	copyright	protected.	This	is	only	for	personal	use.	You	cannot	amend,	distribute,	sell,	use,	quote	or	
paraphrase	any	part	or	the	content	within	this	ebook	without	the	consent	of	the	author	or	copyright	owner.	Legal	action	
will	be	pursued	if	this	is	breached.	

Disclaimer	Notice:

Please	note	the	information	contained	within	this	document	is	for	educational	and	entertainment	purposes	only.	Every	
attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	warranties	of	any	kind	are	
expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,	medical	
or	professional	advice.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we	responsible	for	any	losses,	direct	or	
indirect,	which	are	incurred	as	a	result	of	the	use	of	information	contained	within	this	document,	including,	but	not	
limited	to,	—errors,	omissions,	or	inaccuracies.

	



Table	of	Contents
Introduction

Editor’s	Note

JAVA	Introduction	

JAVA-00:	Quick	Important	notes	about	Java	code

Prelude:	Atomic	Data	Types

Prelude:	Data	Sequences	&	Combinations

Prelude:	Your	Coding	Environment

NOTE:	Comments

PART	I:	Your	Code	Structure	and	Foundations

Chapter	1:	Defining	&	Designing	your	Data	

JAVA-01:	Defining	&	Designing	your	Data

Chapter	2:	Compound/Composite	Data	

JAVA-02:	Compound/Composite	Data	

JAVA	Workshop	#1

Chapter	3:	Data	Initialization

Chapter	4:	Data	Changes	&	Mutable	States

JAVA-03:	Data	Changes	&	Mutable	State

JAVA	Workshop	#2

Chapter	5a:	Defining	&	Designing	your	Functions

Chapter	5b:	Matching	Data	with	Functions

JAVA-04:	Function	Structure

JAVA	Workshop	#3

Chapter	6:	Intro	to	Designing	Worlds	&	Simple	Apps,	PT1

JAVA	BIG	Workshop	A

Preface:	JAVA	as	Artificial	Intelligence	

Introduction

Chapter	1:	Algorithms:	The	Essentials

Chapter	2:	How	to	Create	a	Problem-Solving	AI

JAVA	02a:	Fundamental	Frontier	Search	Algorithm

JAVA	02b:	Using	Frontier	Search



Chapter	3:	Search	Strategies

Chapter	3.1:	Depth-First	Search

Chapter	3.2:	Breadth-First	Search

JAVA	03:	Frontier	Search	as	DFS	and	BFS	

Chapter	3.3:	Lowest-Cost	First	Search	

Chapter	3.4:	Heuristic	Search	

ARCHIVE	A01:	Frontier	Search	Algorithm	

ARCHIVE	A02:	Bigger	Search	Graph
	





CodeWell	Academy()	and		R.M.Z.
present:

	
Programming	Java,	



Master’s	Handbook	Edition	
	

3rd	Edition
	

Code	like	a	PRO	in	24	hrs	or	less!
Proven	Strategies	&	Process!	

A	Beginner’s	TRUE	guide	to	Code,	
with	Data	Structures	&	Algorithms

	
	



Master’s	Handbook	Series
©	Copyright	2015	-	All	rights	reserved.
In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	or	in	printed	
format.	Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed	unless	with	
written	permission	from	the	publisher.	All	rights	reserved.	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,	in	terms	of	inattention	or	
otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions	contained	within	is	the	solitary	and	utter	
responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the	
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.	

Legal	Notice:

This	ebook	is	copyright	protected.	This	is	only	for	personal	use.	You	cannot	amend,	distribute,	sell,	use,	quote	or	
paraphrase	any	part	or	the	content	within	this	ebook	without	the	consent	of	the	author	or	copyright	owner.	Legal	action	
will	be	pursued	if	this	is	breached.	

Disclaimer	Notice:

Please	note	the	information	contained	within	this	document	is	for	educational	and	entertainment	purposes	only.	Every	
attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	warranties	of	any	kind	are	
expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,	medical	
or	professional	advice.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we	responsible	for	any	losses,	direct	or	
indirect,	which	are	incurred	as	a	result	of	the	use	of	information	contained	within	this	document,	including,	but	not	
limited	to,	—errors,	omissions,	or	inaccuracies.

	





Introduction
=========================	======

Welcome	to	the	Path	of	Mastery

We	thank	you	for	purchasing	&	downloading	our	work,	the	Master’s	Handbook.	By	doing
so,	 we	 can	 tell	 you	 have	 a	 curiosity	 to	 learn	 Programming	 in	 a	 deeper,	 more
comprehensive	way.

We	notice	that	you	don’t	just	want	to	learn	a	few	tricks	here	and	there,	but	you	want	the
confidence	to	take	on	any	programming	challenge	with	ease.

Hence,	you’ve	come	to	the	right	place…

	



The	Master’s	Circle

You	aren’t	alone.

Behind	this	book	are	programmers	hailing	from	some	of	the	most	Best	Computer	Science
Programs	taught	by	some	of	the	most	Advanced	Universities	in	the	World	Today.

Foundations

There	are	two	major	things	that	you	need	to	do	in	order	to	be	a	good	programmer.	One	is
to	get	a	good	amount	of	practice.	The	other	is	to	get	a	really	good	education.

But	how	can	you	tell	what	source	of	education	is	good	or	not?

You	see,	we	can	tell	you	that	90%	of	programming	learning	sources	out	there	will	show
you	WHAT	the	code	 is	and	HOW	it	works,	 for	any	amount	of	Programming	 languages.
But	that’s	not	necessarily	a	bad	thing	-	and	plenty	of	those	sources	are	really	good	too.



However,	they	might	not	teach	you	WHY	or	WHEN	you	would	use	any	particular	code.
NOR	would	they	show	you	WHAT	ELSE	you	might	need	with	that	code.

If	you	needed	to	program	something,	you	don’t	want	to	be	someone	that	knows	a	bunch	of
code	but	does	not	know	how	to	use	them,	right?

As	you	 read	on,	you’ll	quickly	 learn	not	 just	 the	HOW	and	WHAT	 the	code	 is,	but	 the
WHERE,	 WHEN,	 WHY	 to	 use	 it,	 WHAT	 ELSE	 you’ll	 need	 with	 it-	 and	 more
importantly,	HOW	to	really	use	it.

The	Master	Structure

We	start	by	observing	the	world	and	defining	the	code	to	represent	things	(data)	or	actions
(functions).	As	you	progress	 through	 the	book,	you’ll	 find	more	advanced	concepts	and
ways	to	combine	them	all	together.

You’re	also	accommodated	with	the	Main	Programming	Language	this	book	comes	with,
as	well	 as	 general	 PseudoCode	 to	 help	 understand	 coding	 concepts.	Often	 times,	 you’ll
find	that	our	PseudoCode	bridges



you	from	learning	this	Book’s	Main	Language	to	learning	your	Next	Language!

Whether	you	haven’t	coded	a	single	line	before,	or	you’ve	already	build	serious	projects,
you	WILL	find	great	value	in	this	book.	Often	times,	you’ll	run	into	a	coding	challenge	in
your	programming	journey.	This	book	will	help	you	identify	how	to	progress	through	it!

=========================	======

	





Editor’s	Note
=========================	======

Reality

If	 you	 ever	 wonder	 why	 Computer	 Scientists	 make	 so	 much	 money	 (including	 junior
programmers,	developers,	software	engineers,	 IT	folks,	and	just	about	any	job	 involving
programming),	there	are	plenty	of	good	reasons.

One,	 is	 that	 in	 today’s	world,	 just	 about	 EVERY	 industry	 out	 there	 requires	 a	 level	 of
technological	sophistication.	So	you	can	imagine	the	level	of	demand	for	hiring	a	qualified
programmer.

But	the	truth	about	Computer	Science	is	that	it	can	be	very	intellectually	challenging	most
of	the	time.	Thus,	only	a	certain	number	of	people	will	be	good	enough	to	get	a	real	career
in	programming.

So	there	you	have	it.	High	Demand	+	Few	Good	Programmers	=	GOOD	Salary.



However,	you	may	not	need	a	university	degree	to	be	a	good	programmer…

In-Depth

The	true	point	of	this	book,	along	with	others	in	this	series,	is	to	go	deeper	than	the	lines
of	code	you	see.	You’ll	learn	how	to	use	every	bit	of	data	and	code	to	any	situation	you
encounter	-	and	at	one	point,	intuitively.

A	real	programmer’s	job	is	to	create	tools	that	improve	life	in	one	way	or	another.	Almost
all	of	the	time,	it	will	involve	having	to	come	up	with	ways	to	represent	things	in	life	as
data	-	as	well	as	getting	a	computer	to	process	the	data	properly	and	turn	into	something
useful.

So	if	you	want	to	become	a	better	programmer,	read	on…

	





JAVA	Introduction	
=========================	======

JAVA:	Universal	Remote	Control

Java	is	one	of	the	most	widely	used,	popular	programming	languages	in	the	world	today.
And	 it’s	 not	 difficult	 to	 see	 why.	 Endless	 apps	 across	 many	 platforms	 -	 including
Windows,	Linux,	Android	&	Windows	phones,	 and	even	 servers	 -	 are	powered	by	 Java
code.	 In	 most	 schools	 and	 colleges	 that	 teach	 programming,	 Java	 is	 often	 the	 first
language	 taught.	With	 many	 Java	 programmers	 available,	 massive	 app	 projects	 can	 be
crafted	more	easily.

However,	the	Java	language	does	have	its	challenges.	Many	programmers	may	find	Java’s
syntax	strict	and	inflexible.	Also,	programmers	may	find	that	Java	is	quite	verbose.	For	the
exact	 same	 program	 functionality,	 Java	 often	 requires	 more	 code	 written	 than	 other
languages.	Furthermore,	programmers	need	to	be	careful	with	Java	app	memory	usage	-	as
Java-based	apps	often	use	more	memory	to	run.



Nevertheless,	learning	to	code	in	Java	can	be	very	rewarding	-	in	terms	of	skill	and	salary.

	

JAVA	Advantages:

- universal;	popular

- massive	array	of	java	libraries	&	API’s

- code	runs	on	many	platforms

JAVA	Disadvantages:

- inflexible,	complex

- verbose

- higher	memory	usage

	



JAVA	Workshops:

These	workshops	 are	yours	 to	 complete	 in	whichever	way	you	 like	 (However,	 the	 code
MUST	work!).

They’re	designed	to	put	the	most	recent	concepts	into	real-life	practice,	yet	giving	you	the
flexibility	and	critical	thinking	along	the	way.

And	of	course,	flexibility	and	deep	critical	thinking	are	key	programmer	traits!

Find	them	throughout	the	book!

=========================	======

	





JAVA-00:	Quick	Important	notes	about	Java	code
A	Java	Class	File

Classes	will	 be	 explained	more	 in	detail	 later	 in	 JAVA-02.	But	 for	 now,	 start	 your	 Java
code	with	these	next	few	lines	of	code:

//	—————————————

import	java.util.*;

import	java.lang.*;

import	java.io.*;

	

class	___{

public	static	void	main(String	args[])	{

//	CODE	HERE

}

}

//	—————————————

	

By	default,	online	compilers	will	have	a	similar	code	structure	to	the	above.	For	now,	just
make	sure	you	ONLY	add	code	within	the	brackets	by	‘public	static	void	main’	(where	the
comments	tell	you	to)



Also,	make	sure	all	three	import	lines	above	are	in	your	code.	Plenty	of	Java	functionality
is	from	these	Java	libraries.

NOTE:

if	you	use	an	online	compiler	we	mentioned,	fill	in	the	blank	line	beside	class	into	one	of
the	below,	depending	on	which	site	you’ve	used:

Rextester	(rextester.com):	fill	with	‘Rextester’

CodeChef	(www.codechef.com/ide):	fill	with	‘Codechef’

Codepad:	(doesn’t	support	Java)

Ideone	(https://ideone.com/):	fill	with	‘Ideone’

http://rextester.com
http://www.codechef.com/ide
https://ideone.com/




Prelude:	Atomic	Data	Types
First	off,	we’ll	briefly	start	with	primitive	data	types.	It’s	important	to	know	what	they	are,
because	you’ll	be	identifying	real-life	information	with	them	later.

Booleans

Booleans,	often	called	bools,	are	either	TRUE	or	FALSE.	This	is	the	simplest	data	type,
but	often	one	of	the	most	important.	A	LOT	of	functionality	depends	on	Booleans,	as	you
will	find	out	later

A	Boolean	will	always	be	a	two-state	situation.	For	example,	the	lights	in	your	living	room
are	either	on	(TRUE)	or	off	(FALSE).

Integers

These	are	all	 the	standard	whole	numbers,	both	positive	and	negative.	Higher	and	lower
(negative)	integers	depend	on	the	number	of	bits	to	represent	them	(i.e.	8-bit	integers,	16-
bit,	etc.).	Mathematic	and	boolean	operators	often	use	Integers.



For	example:

10	+	50	==	60,

-4	-	12,	!=	-10,

and	so	on.

Characters

These	are	all	 letters	and	symbols	 that	can	be	 represented	by	ASCII	characters.	Think	of
one	 character	 as	 a	 single	 symbol	 or	 letter,	 such	 as	 upper	 or	 lower	 case	 letters,	 symbols
(!,@,#,$	and	so	on),	and	even	numbers.	However,	take	note:	you	cannot	do	any	arithmetic
with	number	characters.	(i.e.	if	you	have	characters	12	and	9,	you	can’t	add	them,	subtract,
and	so	on.)

Floats

Formally	called	floating-point	numbers,	these	represent	decimals	-	including	the	decimal
point	and	decimal	numbers	beyond.

	



Examples:

2.3

0.75

	





Prelude:	Data	Sequences	&	Combinations
Strings

These	 are	 merely	 a	 collection	 of	 Characters	 in	 sequence.	 Think	 of	 these	 as	 words	 or
phrases.

In	 most	 programming	 languages,	 Strings	 are	 represented	 by	 a	 sequence	 of	 characters
between	quotation	marks:	“Hi	there”,	or	“Hello.”,	for	example.

How	these	would	look	like	as	a	sequence	of	characters	is	as	follows:

“Hi	There”	is	represented	as	characters	H,i,	space,	T,	h,e	,	r,	and	e

“Hello.”	is	represented	as	characters	H,	e,	l,	l,	o,	and	the	period.

	



Lists

These	 are	 a	 sequence	 of	 individual	 elements	 put	 together	 as	 a	 list.	Often	 times,	 all	 the
elements	within	that	list	are	the	same	data	type

Examples	would	be:

a	List	of	Integers:	[3,	1,	4,	9,	2]

a	List	of	Strings:	[“Apple”,	“Banana”,	“Caramel”]

a	List	of	Booleans:	[true,	false,	true,	true]

Enumerations

These	are	fixed	sets	of	data	values.	The	data	within	these	sets	are	the	same	data	type.	You
would	have	to	choose	between	one	of	the	data	elements	within	that	set.

For	example,	traffic	lights	are	either	red,	orange,	or	green.

As	an	enumeration,	traffic	lights	would	be:	[“Red,	“Green”,	“Yellow”]



What	differs	Enumerations	from	lists	is	that	Enumerations	are	supposed	to	have	a	FIXED
set	 of	 values.	You	wont	 be	 able	 to	 add	 or	 delete	 the	 elements	 unless	 you	 edit	 the	 code
directly.

Itemizations

Itemizations	combine	different	data	types	together	to	form	a	finite	set.	Depending	on	the
data	type	of	a	single	element,	you’ll	have	to	process	that	data	in	a	certain	way	(you’ll	learn
about	this	later	in	function	templates).

Enumerations	have	 the	same	data	 type,	but	 Itemizations	have	different	data	 types	 in	 the
set.	You	also	won’t	be	able	to	add	or	delete	any	of	the	elements	as	well.

For	example,	a	Space	Rocket	launch	would	be	a	set	of	integers	10	to	1,	then	the	booleans
true	or	false,	to	signifiy	whether	or	not	it	has	launched	yet.

As	an	itemization,	a	Space	Rocket	Launch	would	be:	[	false,	10,	9,	…	1,	true]





Prelude:	Your	Coding	Environment
Simple	Online	IDE

For	now,	 it’s	all	about	understanding	all	 the	Programming	Concepts,	 from	 the	simple	 to
the	downright	advanced.

To	test	out	these	concepts,	you’ll	only	need	a	simple	online	Compiler	to	run	your	code	and
make	sure	it	works	the	way	you	planned	it	to.

Here’s	a	 few	ones	online.	They’re	FREE	and	 they	don’t	 require	any	membership	 to	 test
out	your	code:

www.codechef.com/ide

codepad.org

rextester.com

https://ideone.com/

	

http://www.codechef.com/ide
http://codepad.org
http://rextester.com
https://ideone.com/


Full	Development	Kits

You	may	also	set	up	your	computer	for	app	development,	if	you	wish.

First,	 identify	what	Programming	Language(s)	and	Framework(s)	you	wish	 to	use.	Then
choose	 and	 set	 up	 the	 ideal	 Integrated	 Development	 Environment	 (IDE)	 for	 your
language-framework	combinations.

Popular	IDE’s	include	IntelliJ,	Eclipse,	Netbeans,	CodeLite,	XCode	(for	Mac	Users)	and
more.	But	 remember:	make	sure	your	 IDE	supports	 the	programming	 languages	of	your
choice.





NOTE:	Comments
For	newcomers	just	learning	how	to	program,	it’s	important	to	describe	what	your	lines	of
code	are	and	why	they	exist	in	your	code.

For	programming	teams,	comments	are	essential.	Even	seasoned	programmers	who	work
in	teams	need	to	explain	what	their	code	does	and	why	they	have	it.	Also,	programming
teams	find	that	they	save	time	analyzing	and	figuring	out	other	people’s	code.	They	will
also	have	less	errors	along	the	way	-	knowing	that	they’re	coding	what	they	mean	to	code,
or	editing	code	to	be	the	way	they	originally	want	it	to	be.

	





PART	I:	Your	Code	Structure	and	Foundations

	





Chapter	1:	Defining	&	Designing	your	Data	
Anything	 in	 this	universe	can	be	 represented	by	data.	Your	name,	age,	gender,	what	car
you	drive,	what	city	you	live	in,	country,	planet,	galaxy,	and	so	on.

To	design	great	apps,	games,	and	any	other	digital	 tool	you	can	 think	of,	you’ll	have	 to
identify	what	type	of	data	you’re	dealing	with.

Identify	your	Data	Type

There	 are	 two	 questions	 to	 ask	 yourself	 when	 you’re	 designing	 data	 to	 represent
something.

First,	 identify	whether	or	not	you	can	define	that	‘thing’	as	an	Integer,	Number,	Boolean
(yes/no	type	things),	or	String.	For	example,	your	name	is	a	String	(a	sequence	of	letters),
your	Age	 is	a	Number,	and	you	 live	 in	a	City	or	Town.	Your	city	of	 town	has	a	name	-
another	String.



Second,	identify	whether	or	not	that	thing	is	a	part	of	a	whole;	included	in	a	larger	thing.
For	example,	you	may	have	a	friend	named	Jamie.	She’s	included	in	a	list	of	your	friends.

Representing	your	information	as	a	Data	Type

In	most	 programming	 languages,	 you	 can	 define	 your	 data	 in	 a	 line	 of	 code.	 Here	 we
define	 your	 data	 as	 a	 Global	 Variable	 -	 meaning	 this	 editable	 line	 of	 data	 is	 available
throughout	your	program.

In	most	languages,	you’ll	very	likely	declare	the	Type	of	data	you	represent,	as	well	as	the
Name	of	your	data.

Let’s	start	with	your	name,	using	pseudocode	for	now:

String	NAME;

In	 the	above	 line	of	code,	you	defined	your	data	as	a	String	of	characters,	 labelled	as	a
NAME.

	



An	Explanation	for	your	Data

A	good	practice	 in	defining	your	data	 is	 to	make	comments	 above	 the	 line	of	 code	 that
explains	why	you	have	your	data	 the	way	 it	 is.	One	of	 the	 lines	can	be	 in	 the	format	of
“____	is	a	(Data	Type)”.

In	most	 programming	 languages,	 comments	 usually	 start	 with	 two	 slashes	 (//).	 For	 the
pseudocode	we	use	here,	we’ll	do	the	same

For	the	above	line,	here’s	the	example:

//	My	Name	is	a	String

String	NAME;

	

Here	are	some	more	examples:

//	My	Age	is	a	Number

Number	AGE;

//	I	live	in	a	City	or	Town,	with	a	Name

//	My	city’s	name	is	a	String

String	CITY;

//	I	am	either	hungry	or	not

//	My	hunger	status	is	a	Boolean

Boolean	HUNGRY?;

//	I	either	have	a	pet	or	I	don’t

//	Whether	or	not	I	have	a	pet	is	a	Boolean

Boolean	HASPET?;

	





JAVA-01:	Defining	&	Designing	your	Data
JAVA	Comments

In	Java,	comments	are	 just	 the	same	as	other	common	languages	 like	C,	C++,	PHP,	and
even	our	own	pseudocode.

Single-line	comments	start	with	two	slashes	(//)	and	end	when	the	line	breaks	to	the	next
line	of	code.

Multiple	comment	lines	start	with	a	slash	and	a	star	(/*)	and	end	with	the	reverse:	a	star
and	a	slash	(*/).	Often,	multiple	comment	lines	also	start	with	stars	(*)	on	each	line.

Here’s	an	example:

/*	This	is	a

* multi-line

* comment	*/

	

	



Essential	Java	Syntax

Out	 of	 most	 programming	 languages	 out	 there,	 Java	 has	 one	 of	 the	 more	 strict	 code
syntax.

Similar	to	other	code	such	as	C,	C++,	and	PHP,	lines	of	code	in	Java	end	with	a	semicolon
(;).	 This	 is	 very	 important;	 Java	 programmers	 commonly	 have	 errors	 in	 their	 code	 just
because	their	lines	don’t	end	with	a	semicolon.

Atomic	Data	in	Java

Atomic	data	in	Java	is	defined	VERY	strictly.

Booleans	 in	Java	are	strictly	 lower	case.	 If	your	booleans	are	all	upper-case	(TRUE),	or
first-letter	 uppercase	 (True),	 most	 Java	 compilers	 will	 report	 these	 as	 errors.	 So	 for
booleans,	stick	with	all	lower-case	letters.	So	either	(true)	or	(false).

Strings	 in	 Java	 can	 only	 start	 and	 end	 with	 double	 parentheses	 (“).	 Do	 not	 use	 single
parentheses	 (‘)	 to	 start	 and	end	strings.	For	example,	“String”	 is	a	 string,	but	 ’String’	 is
not.



Instead,	single	characters	 in	Java	start	and	end	with	single	parentheses	(‘).	For	example,
‘a’	is	a	single	character.

Floats	in	Java	always	end	with	the	letter	f.	For	example,	some	Floating	Point	Integers	in
Java	can	be	1.2f	and	0.75f.

On	the	other	hand,	Java	uses	the	data	type	Double	to	also	represent	decimal	numbers.	For
example,	1.2	and	0.75	can	be	Doubles.

	

Java	Data	Definitions

Let’s	define	some	data	in	Java.

Luckily,	the	pseudocode	we’ve	used	earlier	follows	a	very	similar	syntax	to	what	we	use
here	with	Java.	You	will	have	to	define	your	data	type	once	you	code	the	data	you	want	to
store.	However,	Java	uses	distinct,	case-sensitive	words	to	define	your	data	variables.

	



For	Strings,	define	with	this	data	type:	String	(note	the	capital	S!)

For	Integers,	define	with	this	data	type:	int

For	Booleans,	define	with	this	data	type:	boolean

For	Floats	(decimal	numbers),	define	with	this	data	type:	float

For	Doubles	(decimal	numbers),	define	with	this	data	type:	double

Overall,	your	data	definitions	in	Java	will	look	like	our	pseudocode:

(data	type)	(variable	name);

So,	let’s	practice.	Let’s	start	with	defining	the	data	for	your	friend’s	name.	Let’s	call	her
Haley.	First,	let’s	add	a	comment	line	to	note	what	data	type	we	want	to	deal	with:

//	Haley’s	name	is	a	String

	

	



Now	we	define	the	data	for	her	name.	Remember	Java’s	the	end-of-line	semicolon:

//	Haley’s	name	is	a	String

String	NAME;

	

The	Java	compiler	knows	 that	NAME	is	going	 to	be	a	String,	since	you’ve	defined	 that
variable	as	that	data	type.

PRACTICE:

Let’s	start	by	declaring	things	that	follow	into	each	of:	Strings,	Integers,	and	Booleans.

First,	go	to	an	IDE	of	your	choice.	You	may	also	use	online	IDE’s	such	as	rextester.com,
ideone.com,	or	www.codechef.com/ide.	 (if	 you	 do,	make	 sure	 to	 set	 your	 Programming
Language	to	Java)

	

http://rextester.com
http://ideone.com
http://www.codechef.com/ide


You	should	see	something	similar	to	this:

//	—————————————

import	java.util.*;

import	java.lang.*;

import	java.io.*;

	

class	(whatever	class	name)

{

public	static	void	main(String	args[])

{

//	INSERT	CODE	HERE

}

}

//	—————————————

	

	

	



Now,	 copy-paste	 the	 below	 code	 to	 where	 you	 would	 INSERT	 your	 code	 above.
Afterwards,	fill	in	the	blanks.

//	######

//	Katie’s	name	is	what	Java	data	type?

____	NAME	=	“Katie”;

//	Katie’s	age	is	what	Java	data	type?

___	AGE	=	21;

//	Katie	is	EITHER	married	OR	not.

//	Katie’s	marriage	status	is	what	Java	data	type?

___	ISMARRIED	=	true;

	

System.out.println(NAME);

System.out.println(AGE);

System.out.println(“Is	”	+	NAME	+	”	married?	”	+	ISMARRIED);

//	######

	

	



If	you	try	to	run	your	code	-	and	it	runs	correctly	-	you	should	see	the	following:

Katie

21

Is	Katie	Married?	true

	

	





Chapter	2:	Compound/Composite	Data	
From	the	last	chapter’s	example,	you	can	start	to	wonder	that	there	just	has	to	be	a	way	to
group	all	that	data:	your	name,	age,	location,	whether	or	not	you	have	pets,	etc.

Also,	notice	that	a	person	can	neither	be	a	String,	Number,	Integer,	nor	Boolean.	A	person
just	holds	too	much	data	to	be	defined	as	either	one	of	the	above.

So	what	do	we	do?

What	a	Composite	Data	Structure	is

From	the	previous	example,	you	can	think	of	all	the	data	you’ve	defined	as	small	parts	of
a	whole.	But	what	is	this	“whole”?

Enter	Composite	Data.

A	Composite	Data	structure	includes	many	parts	of	data	within	it.



Those	parts	 of	 the	Composite	 could	be	whatever	 you	wish	 to	declare.	Strings,	 Integers,
Booleans,	Lists,	and	even	Other	Composite	Data.

Identify	&	Defining	a	Composite	Data	Structure

When	you	were	asked	earlier	to	define	what	type	of	data	are	you	dealing	with,	what	if	you
designed	&	defined	data	for	an	object	that	you	couldn’t	identify	as	atomic	data?	What	if	it
had	plenty	of	Characteristics?	What	if	there	was	more	depth	in	that	object?

The	key	thing	to	remember	in	identifying	composite	data	is	depth.	There	are	more	parts	to
that	‘thing’	you	were	trying	to	define	as	data.	If	there’s	more	to	anything	than	just	a	name,
number,	or	true/false	switch,	then	it’s	probably	going	to	be	a	composite	data	structure.

Representing	information	as	Composite	Data

Let’s	take	YOU	as	an	example.	You	are	a	Person.	As	a	person,	you’re	not	JUST	a	name	or
number;	you	are	comprised	of	a	lot	of	data.	An	endless	amount	of	data,	rather.

	



The	Elements	that	Comprise	your	Data

As	an	example	of	Composite	Data,	let’s	define	you.

For	now,	let’s	start	with	the	basics.

Remember:	you	are	a	Person.	Using	simple	pseudocode,	let’s	define	that:

//	I	am	a	PERSON

CompositeStructure	PERSON;

	

An	Explanation	for	your	Composite	Data’s	Parts

Similar	to	what	you	did	earlier	for	defining	data,	it’s	also	best	that	you	identify	what	your
composite	data	structure	is	comprised	of.

For	practice,	use	comments	to	describe	what	your	data	structure	has.

Following	the	example	above,	You	have	a	Name	and	an	Age	as	well.	Let’s	include	that:

//	I	am	a	PERSON

//	A	person	has:

//	-	a	name	(string)



//	-	an	age	(number)

CompositeStructure	Person	{

String	NAME;

Number	AGE;

{

	

You	live	in	a	City.	Oh	but	wait,	a	City	isn’t	just	a	name	is	it?	It’s	comprised	of	plenty	of
data	as	well!

//	This	is	a	CITY

//	A	City	has:

//	-	a	name	(string)

//	-	a	Latitude	and	Longitude	(2	numbers)

//	-	a	Population	count	(an	integer,	above	0)

CompositeStructure	City	{

String	NAME;

Number	LATITUDE;

Number	LONGITUDE;

Integer	POPULATION;

{

	

Let’s	not	forget	about	YOU	now.	You	live	in	a	City,	remember?

//	I	am	a	PERSON

//	A	person	has:



//	-	a	name	(string)

//	-	an	age	(number)

//	-	a	City	they	live	in	(Composite	data	City)

CompositeStructure	PERSON	{

String	NAME;

Number	AGE;

City	LOCATION;

}

	

Notice	what	 happened	 here.	 A	 compound	 data	 structure	within	 another	 compound	 data
structure!





JAVA-02:	Compound/Composite	Data	
In	designing	Java	classes,	the	syntax	is	again	very	similar	to	the	pseudocode	we’ve	used
earlier.	However,	we	define	our	composite	data	structure	as	a	Data	Class.

Think	of	classes	as	“blueprints”	 for	 representing	&	creating	your	objects	as	data.	 If	you
were	to	create	a	data	object,	you	would	simply	define	that	data	object	by	stating	that	it’s
using	the	same	“blueprints”	you’ve	defined	earlier	-	your	Data	Class

Java:	an	Object-Oriented	Programming	Language	Only

As	you	can	see,	data	structures	classes	form	the	foundation	of	Java	code.

A	java	class	file	will	always	have	its	EXACT	case-sensitive	filename	as	one	of	its	classes.
At	the	very	minimum,	a	java	class	file	will	have	at	least	one	class.	For	example,	a	java	file
named	ClassOne.java	will	have	a	class	named	ClassOne.

	



ClassOne.java:

class	ClassOne	{

//	code	here

}

	

Here’s	how	a	data	structure	with	two	attributes	would	look	like,	including	the	Explanation
Comments:

	

//	Our	class	has:

//	-	an	attribute	variable	(String)

//	-	another	attribute	variable	(Integer)

class	className	{

String	attribute1;

int	attribute2;

}

	

	

	



Initializing	a	Java	Object

To	create	an	Object	based	on	your	Java	class,	it	would	be	just	like	setting	a	Java	variable’s
initial	 data	 value.	However,	 you’ll	 be	 setting	 that	 variable	 as	 a	 new	Object.	This	 object
will	have	the	same	data	structure	as	the	class	you	set	it	as.

For	 Java	 classes,	 there	 are	 a	 few	 special	 lines	 of	 code	 you’ll	 need	 to	 create	 called	 a
Constructor.

A	defined	constructor	within	a	class	will	have	the	following	structure:

public	ExactClassName(datatype	input)	{

//	insert	any	code	here

}

	

Often	times,	the	class	constructor	will	be	right	below	all	of	the	attributes	of	that	class.

Overall,	initializing	a	Java	object	would	look	like	the	following	notation:

ClassName	OBJECTNAME	=	new	ClassName();

The	word	‘new’,	along	with	the	constructor	for	that	class,	initializes	your	object.

You’ve	 already	 defined	 that	 your	 object	 will	 have	 the	 data	 structure	 of	 whatever	 class
you’ve	assigned	it	to.

Accessing	Class	Attributes

This	follows	a	similar	structure	to	our	PseudoCode.

To	access	 a	Class	Attribute,	you	 first	have	a	variable	object	 that	has	been	assigned	 that
Class	 structure.	Then	 follow	 it	up	with	a	period	 (.),	 then	 the	class	attribute	you	want	 to
access.

	

	

Let’s	say	we	have	a	class	with	two	attributes	in	it:

class	Class	{

String	attribute1;

int	attribute2;

}

	



Next,	let’s	recall	setting	object1	into	a	class:

Class	object1	=	new	Class();

Then	accessing	object1’s	attributes	would	look	like	the	following	notation:

object1.attribute1

object1.attribute2

Can	you	guess	what	data	type	you	end	up	with	when	you	access	these	two	class	attributes?
If	you	 look	at	your	data	definition	 for	your	Class,	you’ve	defined	 the	attributes	 for	 that
class	with	specific	data	types.	Therefore:

object1.attribute1	(this	returns	a	String)

object1.attribute2	(this	returns	an	Integer)

EXAMPLE:

Think	about	a	book.	A	physical	book	that	probably	sits	near	your	shelf.	Let’s	start	defining
the	Composite	Data	Structure	for	it.

First,	let’s	use	comments	to	describe	what	our	our	data	will	look	like.



//	A	Book	Has:

	

Now	 think	 of	 the	 little	 attributes	 a	 book	 has.	 Is	 the	 cover	 a	 Hardcover,	 Paperback,	 or
something	else?	How	many	pages	does	 it	have?	 Is	 it	 a	Fiction	book	or	not?	What’s	 the
title?	Who’s	the	Author?	How	much	did	that	Book	cost?

//	A	Book	Has:

//	-	a	Cover	Type	(String)

//	-	a	Page	Count	(Integer)

//	-	a	Title	(String)

//	-	an	Author	Name	(String)

//	-	a	price	(Number)

	

In	Java,	numbers	with	decimals	can	have	either	data	type	float	or	double.	For	now,	let’s	go
with	double.

Now,	let’s	design	the	Book	Class	in	Java.

	



class	Book	{

String	coverType;

int	pageCount;

String	title;

String	authorName;

double	price;

}

	

For	fun,	let’s	also	create	a	Harry	Potter	book	object.

Book	harryPotter	=	new	Book();

	





JAVA	Workshop	#1
Go	 to	 an	 IDE	 of	 your	 choice.	 You	 may	 also	 use	 online	 IDE’s	 such	 as	 rextester.com,
ideone.com,	or	www.codechef.com/ide.	 (if	 you	 do,	make	 sure	 to	 set	 your	 Programming
Language	to	Java).

If	you	use	one	of	the	online	IDE’s,	you	should	see	something	similar	to	this:

//	—————————————

import	java.util.*;

import	java.lang.*;

import	java.io.*;

//	INSERT	MORE	IMPORTS	HERE

//	INSERT	MORE	CLASSES	HERE

	

class	(whatever	class	name)

{

public	static	void	main(String	args[])

{

//	INSERT	CODE	HERE

}

}

//	—————————————

http://rextester.com
http://ideone.com
http://www.codechef.com/ide


Classy	Kids

Design	 a	 data	 class	 definition	 for	 a	 car.	Think	 carefully.	What	 attributes	would	 that	 car
have?

First,	use	comments	to	describe	what	attributes	you	want	the	car	to	have.	Then	figure	out
what	Data	Types	those	attributes	are.	This	is	totally	up	to	you.	Make	it	up	as	you	go	along!

Then,	code	your	data	class	to	include	those	attributes.

Then,	create	a	data	object,	which	can	be	a	car	you	really	like	(or	hate).	
Afterwards,	test	and	run	your	code	in	an	IDE	of	your	choice.

You	can	also	use	a	free	IDE	such	as	http://rextester.com/runcode

	

http://rextester.com/runcode




Chapter	3:	Data	Initialization
Let’s	recall	the	Composite	Data	Structure	of	a	Person:

//	A	person	has:

//	-	a	name	(string)

//	-	an	age	(number)

//	-	a	City	they	live	in	(Composite	data	City)

CompositeStructure	PERSON	{

String	NAME;

Number	AGE;

City	LOCATION;

}

	

We’ll	also	create	two	Atomic	Data	pieces	as	the	Time:	two	integers.

	

Integer	HOUR;

Integer	MINUTE;

	

You	have	have	noticed	one	thing:	You’ve	defined	what	types	of	data	you’re	dealing	with	-
but	we	don’t	know	any	people	yet.	Nor	do	we	know	what	time	it	is!

	

Now	we	INITIALIZE	our	data.	Now	that	we’ve	defined	what	types	of	data	we	have,	we
then	set	our	data	for	the	first	time.

	



Initializing	Atomic	Data

	

First,	we’ll	set	the	time.

Let’s	say	it’s	8:30	PM.	We’ll	set	up	our	time	as	is.

	

To	set	data,	most	programming	languages	use	the	Equals	(=)	operator.	Here,	we’ll	do	the
same.

	

HOUR	=	20;

MINUTE	=	30;

	

DON’T	make	this	mistake…

	

But	what	if	we	tried	to	set	HOUR	and	MINUTE	to	another	data	type?

	

HOUR	=	aaaa;

MINUTE	=	Composite{Integer;	String;	Boolean}	;

	

Notice	earlier	that	you’ve	set	both	HOUR	and	MINUTE	as	Integers.	Here,	we’re	trying	to
set	up	those	data	as	different	data	types.	In	some	programming	languages,	it’s	not	going	to
work.	And	in	most	cases,	your	code	might	not	work	because	of	this.

	

Here,	you’ve	set	up	your	data	as	Integers	-	therefore,	you	need	to	initialize	&	change	them
as	Integers.

	



Lesson	learned:	if	you	set	up	your	data	as	a	certain	data	type,	unless	you	really	know	what
you’re	doing,	DO	NOT	try	to	set	up	that	data	as	another	data	type!

	

Initializing	Composite	Data	Structures

	

Now,	let’s	define	an	actual	Person	using	our	data	structure.

There	are	FOUR	KEY	steps	to	do	this:

	

STEP	ONE:

Identify	&	describe	a	data	object	you’re	trying	to	create.

For	practice,	use	comments	to	describe	what	that	object	is	&	what	it’s	like.

We’ll	use	a	friend	of	yours	called	Jamie,	for	example.	We	use	comments	to	describe	her:

	

//	Jamie	Denise	is	a	person

//	She	has:

//	-	a	name:	Jamie	Denise

//	-	an	age:	19

//	-	a	City	she	lives	in:	New	York

	

STEP	TWO:

Declare	what	type	of	composite	data	your	object	is.

In	this	example,	we	declare	Jamie	as	a	person:

	

//	Jamie	Denise	is	a	person

Person	Jamie;



STEP	THREE:

You	INITIALIZE	your	object’s	data	structure,	so	that	your	object	actually	IS	represented
by	the	Composite	Data	in	your	program.	In	most	languages,	you	declare	that	you	have	a
new	‘case’	or	instance	of	this	object.	Think	of	this	step	as	“registering”	your	new	object
into	your	data	program.

	

In	this	example,	we	INITIALIZE	Jamie	as	a	data	object	that	HAS	the	Person	Composite
Data	Structure

	

	

//	Jamie	Denise	is	a	person

Person	Jamie	=	new	Person;

Again,	just	like	Atomic	Data,	we	use	the	Equals	(=)	operator	to	set	data.

	

STEP	FOUR:

Identify	your	object.	Then,	 for	 each	data	part	 that	 your	Composite	Data	 is	made	of,	 set
those	initial	values.

	

Remember	Jamie’s	Attributes?

	

//	Jamie	Denise	is	a	person

//	She	has:

//	-	a	name:	Jamie	Denise

//	-	an	age:	19

//	-	a	City	she	lives	in:	New	York

	



Now	let’s	 initialize	each	attribute	onto	our	Data	Object	Jamie.	You	first	need	to	 identify
the	data	object	you’re	trying	to	reach.	In	this	case,	it’s	Jamie.

Next	(and	this	is	important!),	identify	which	attribute	you’re	planning	to	reach.	Here’s	it’s
best	to	reference	the	Data	Structure	you’ve	defined	earlier:

	

CompositeStructure	PERSON	{

String	NAME;

Number	AGE;

City	LOCATION;

}

	

Let’s	set	all	three	of	Jamie’s	Attributes:

	

//	Jamie	Denise	is	a	person

//	She	has:

//	-	a	name:	Jamie	Denise

//	-	an	age:	19

//	-	a	City	she	lives	in:	New	York

Person	Jamie	=	new	Person;

Jamie-NAME	=	“Jamie”;	//	<—	a	“String”:	Remember?

Jamie-AGE	=	Nineteen;

CITY	=	NewYork;

	

Okay,	we’re	done.	
Hold	on.	This	code	is	wrong.	Why?

	



DON’T	make	these	mistakes…

	

This	line:	Jamie-AGE	=	Nineteen;	won’t	work.	Why?

Just	a	friendly	reminder.	Make	sure	the	data	type	you’re	trying	to	set	MATCHES	the	data
type	 you’ve	 defined.	 In	most	 programming	 languages,	 this	 is	 one	 of	 the	most	 common
mistakes	 programmers	make.	Nineteen	 is	 definitely	 not	 a	Number	 data	 type,	 nor	 is	 it	 a
String	(where’s	the	“Quotation	marks?”).	However,	19	works.

	

Jamie-AGE	=	19;

	

Also,	This	line:	CITY	=	NewYork;	won’t	work.	Why?

What’s	CITY?	Did	we	mean	Jamie’s	current	CITY?

Remember	 to	 first	 identify	 the	 DATA	 OBJECT	 you’re	 accessing.	 AND	 THEN	 that
object’s	attributes.

Well,	let’s	try	that.

	

Jamie-CITY	=	NewYork;

	

This	line:	Jamie-CITY	=	NewYork;	won’t	work	either.	Why?

Because	Jamie	is	a	data	object	that	follows	the	Person	Composite	Data	Structure	you’ve
defined.	And	note	how	that	Structure	does	NOT	have	any	attributes	named	CITY	in	it.

Again,	 Remember	 to	 first	 identify	 the	 DATA	 OBJECT	 you’re	 accessing.	 AND	 THEN
access	that	object’s	correct	attributes.

The	Person	Structure	 includes	a	 separate	City	data	 structure,	but	 it	 certainly	 isn’t	 called
CITY.

	



CompositeStructure	PERSON	{

String	NAME;

Number	AGE;

City	LOCATION;

}

	

Oh,	so	it	should	be	Jamie-LOCATION=	NewYork;

	

But	you’re	missing	one	more	thing.	Where	in	your	program	is	NewYork	defined?

	

Well,	 that	 can	be	arranged.	Let’s	 recall	 the	City	data	Structure	 and	define	 the	NewYork
data	object	as	well:

	

//	This	is	a	CITY

//	A	City	has:

//	-	a	name	(string)

//	-	a	Latitude	and	Longitude	(2	numbers)

//	-	a	Population	count	(an	integer,	above	0)

CompositeStructure	City	{

String	NAME;

Number	LATITUDE;

Number	LONGITUDE;

Integer	POPULATION;

{

	



//	NewYork	is	a	CITY

//	NewYork	has:

//	-	a	name:	“New	York”

//	-	a	Latitude	and	Longitude:	40.7127	and	74.0059

//	-	a	Population	count:	8406000

City	NewYork	=	new	City;

NewYork-NAME	=	“New	York”;

NewYork-LATITUDE	=	40.7127;

NewYork-LONGITUDE	=	74.0059;

NewYork-POPULATION	=	8406000;

	

and	now,	we	fully	complete	Jamie’s	data	entry:

//	Jamie	Denise	is	a	person

//	She	has:

//	-	a	name:	Jamie	Denise

//	-	an	age:	19

//	-	a	City	she	lives	in:	New	York

Person	Jamie	=	new	Person;

Jamie-NAME	=	“Jamie”;

Jamie-AGE	=	19;

Jamie-LOCATION=	NewYork

	





Chapter	4:	Data	Changes	&	Mutable	States
In	 the	 previous	 chapters,	 you’ve	 defined	 some	 facts	 as	 data	 structures	 and	 even
represented	people	and	cities	as	data.

However,	nothing	ever	stays	the	same	in	data.

Data	changes	over	time	-	and	it’s	important	to	keep	track	of	how	data	values	change	and
what	they	currently	are.

Modifying	your	Defined	Data	Over	Time

In	 reality,	modifying	 the	 data	 values	 you’ve	 set	 in	 place	 is	 nearly	 similar	 to	 initializing
them	 in	 the	 first	 place.	 In	 most	 programming	 languages,	 the	 same	 principles	 between
initializing	and	updating	data	apply:	identify	the	data	you	want	to	access,	use	the	Equals
Operator	 (=),	 and	 set	 the	 new	 data	 to	 another	 value,	 but	 usually	 the	 SAME	 data	 type
you’ve	 originally	 set.	 So	 change	 data	 defined	 as	 Strings	 to	 other	 Strings,	 Integers	 to
Integers,	and	so	on.



For	example,	let’s	take	a	look	at	Jamie	and	New	York	from	the	past	chapter:

//	NewYork	is	a	CITY

//	NewYork	has:

//	-	a	name:	“New	York”

//	-	a	Latitude	and	Longitude:	40.7127	and	74.0059

//	-	a	Population	count:	8406000

City	NewYork	=	new	City;

NewYork-NAME	=	“New	York”;

NewYork-LATITUDE	=	40.7127;

NewYork-LONGITUDE	=	74.0059;

NewYork-POPULATION	=	8406000;

	

//	Jamie	Denise	is	a	person

//	She	has:

//	-	a	name:	Jamie	Denise

//	-	an	age:	19

//	-	a	City	she	lives	in:	New	York

Person	Jamie	=	new	Person;

Jamie-NAME	=	“Jamie	Denise”;

Jamie-AGE	=	19;

Jamie-LOCATION=	NewYork

	

So	let’s	say	10	years	have	passed	since	we	defined	Jamie’s	data	object	onto	our	program.
Since	then,	Jamie	got	married	and	changed	her	last



name.	She	also	moved	to	Los	Angeles.	So	how	would	her	new	Data	Object	look	like?

	

You’re	 essentially	 setting	 up	 all	 your	 changed	 data	 values	 to	 their	 new	 values.	 If	 you
wanted	to	know	what	these	values	are,	they	would	give	you	their	current	values.

	

//	Jamie	Walker	is	a	person

//	She	has:

//	-	a	name:	Jamie	Walker	(changed	from	Jamie	Denise)

//	-	an	age:	29	(was	19)

//	-	a	City	she	lives	in:	LosAngeles	(was	NewYork)

Jamie-NAME	=	“Jamie	Walker”;

Jamie-AGE	=	29;

Jamie-LOCATION=	LosAngeles;

	

and	yes,	make	sure	even	LosAngeles	is	defined.

	

//	LosAngeles	is	a	CITY

//	LosAngeles	has:

//	-	a	name:	“Los	Angeles”

//	-	a	Latitude	and	Longitude:	34.0500	and	118.2500

//	-	a	Population	count:	3884000

City	LosAngeles	=	new	City;

LosAngeles-NAME	=	“New	York”;

LosAngeles-LATITUDE	=	34.0500;

LosAngeles-LONGITUDE	=	118.2500;

LosAngeles-POPULATION	=	3884000;



Keeping	Track	of	your	Defined	Data

let’s	recall	the	Clock	from	the	previous	chapter:

Integer	HOUR	=	20;

Integer	MINUTE	=	30;

	

At	the	moment,	it’s	definitely	not	8:30	PM	anymore;	let’s	say	it’s	10	AM	now.

How	would	the	clock	change?	Easy:

HOUR	=	10;

MINUTE	=	0;

	

	

Then	three	and	a	half	hours	pass.	How	would	the	clock	change?	Again,	easy.

	

HOUR	=	13;

MINUTE	=	30;

	

If	you	wanted	the	time	afterwards,	what	would	it	be?

Not	8:30	PM,	not	10	AM	either.	But	1:30	PM.

	



Here,	you’ve	been	essentially	setting	up	both	your	integers	named	HOUR	and	MINUTE
to	new	values.	 If	you	wanted	 to	know	what	 these	values	are,	 they	would	give	you	 their
current	values.

	

However,	it’s	Important	that	you	keep	track	of	your	changes.	You	MUST	understand
what	the	changes	to	your	data	have	been	-	and	you	MUST	determine	whether	or	not
those	changes	are	what	you	want.

	

We	stress	this	because	one	of	the	many	traits	a	programmer	needs	to	have	(and	be	good	at)
is	managing	what	happens	to	your	data.

	

If	 you	 don’t	 believe	 us,	 wait	 until	 you	 have	 your	 tech	 interviews	 for	 a	 programming
position	you’re	applying	for…

	

	





JAVA-03:	Data	Changes	&	Mutable	State
Changing	your	Variables’	Data	Types	in	Java

You	can’t.	Once	you’ve	set	your	variable’s	data	type,	DO	NOT	assign	a	different	data	type
to	it.	Otherwise,	you’ll	get	an	error	when	you	try	to	compile	or	run	your	code.

On	the	other	hand,	there	are	ways	in	Java	that	let	you	turn	one	data	type	into	another.	But
even	then,	variables	will	still	expect	to	have	the	same	data	types	you’ve	defined	them	to
have.

Changing	Data	in	Java

Just	like	our	pseudocode,	you	can	set	and	reset	most	of	your	variables	using	the	Equals	(=)
sign.

Keeping	Track	of	your	Data

It’s	important.	Very	important.	You’ll	see	why	in	this	example…

	



EXAMPLE:

(get	your	IDE	ready…)

Let’s	 say	 there’s	 a	 square	 playground	 in	 a	 park	 within	 your	 neighbourhood.	 The
playground	is	20	feet	long	and	wide.

You’re	 babysitting	 your	 best	 friend’s	 5-year	 old	 son.	Let’s	 call	 him	 James.	Kids	 in	 this
playground	has	X-Y	coordinates	 that	 tell	 you	how	 far	 away	 they	 are	 from	 the	Top-Left
Corner	of	the	playground	(and	there	happens	to	be	a	bench	that	you’re	sitting	in)

//	James	is	a	5-year	old	kid.

//	Kids	have:

//	-	an	X	(sideways)	Coordinate	(Integer,	between	0	and	20)

//	-	a	Y	(up-down)	Coordinate	(Integer,	between	0	and	20)

class	Kid{

int	x;

int	y;

}

	

James	is	running	around	the	playground.	Since	you’re	babysitting,	James	is	NOT	allowed
to	set	foot	outside	the	playground.



You	can’t	see	James	(because	you’re	probably	reading	this	instead)	but	you	know	what	his
X-Y	coordinates	are.	Therefore,	either	X	or	Y	coordinate	cannot	go	below	0	or	past	20.

First,	let’s	initialize	James	as	a	Kid,	then	give	him	a	location.	He’s	at	(12,3)

//	James	is	a	5-year	old	kid	with	coordinates	(12,3)

Kid	James	=	new	Kid();

James.x	=	12;

James.y	=	3;

	

And	 clearly,	 James	 is	 going	 to	move	 around	 the	 playground	 randomly.	 In	 the	 past	 few
seconds,	James	moved	around	like	so:

- 5	feet	to	left

- 10	feet	to	right

- 2	feet	to	up

- 3	feet	to	right

- 4	feet	down



- 12	feet	left

- 5	feet	up

- 2	feet	down

- 5	feet	right

- 3	feet	up

- 5	feet	right

- 2	feet	down

- 4	feet	right

Question:	Did	James	leave	the	playground?	(did	either	X	or	Y	go	below	0	or	above	20?)

Let’s	 put	 James’	 movements	 on	 Java	 code.	 Before	 that,	 recall	 James’	 initial	 X-Y
coordinates.	 We’ll	 also	 comment	 James’	 current	 coordinates	 after	 his	 every	 move.
Remember:	moving	left	&	up	goes	CLOSER	to	0.



//	James	is	a	5-year	old	kid	with	coordinates	(12,3)

Kid	James	=	new	Kid();

James.x	=	12;

James.y	=	3;

	

//	5	feet	to	left

James.x	-=	5;	//	James	is	at	(7,3)

//	10	feet	to	right

James.x	+=	10;	//	James	is	at	(17,3)

//	2	feet	to	up

James.y	-=	2;	//	James	is	at	(17,1)

//	3	feet	to	right

James.x	+=	3;	//	James	is	at	(20,1)

//	4	feet	down

James.y	+=	4;	//	James	is	at	(20,5)

//	12	feet	left

James.x	-=	12;	//	James	is	at	(8,1)

//	5	feet	up

James.y	-=	5;	//	James	is	at	(8,-4):	James	is	outside	the	Playground!!!

//	2	feet	down

James.y	+=	2;	//	James	is	at	(8,-2):	James	is	still	outside	the	Playground!!!

//	5	feet	right

James.x	+=	5;	//	James	is	at	(13,-2):	James	is	still	outside	the	Playground!!!

	



//	3	feet	up

James.y	-=	3;	//	James	is	at	(13,-5):	James	is	still	outside	the	Playground!!!

//	5	feet	right

James.x	+=	5;	//	James	is	at	(18,-5):	James	is	still	outside	the	Playground!!!

//	2	feet	down

James.y	+=	2;	//	James	is	at	(18,-3):	James	is	still	outside	the	Playground!!!

//	4	feet	right

James.x	+=	4;	//	James	is	at	(22,-3):	James	is	still	outside	the	Playground!!!

	

So	 James	 has	 been	 outside	 the	 playground	 for	 quite	 a	 long	 time.	 He	 just	 ran	 past	 the
closest	edge	and	past	your	bench.	If	you	were	babysitting	James,	you’d	be	in	big	trouble…

In	cases	where	you	set	clear	boundaries	for	your	data,	yet	you	have	some	code	that	sets
your	 data	 to	 go	 past	 those	 boundaries	 (and	 nothing	 is	 done	 about	 it),	 it	 might	 create
problems	for	your	code	later	on.

Now	you	understand	how	crucial	it	is	to	keep	track	of	your	data.	There	are	many	aspects
of	coding	that	depend	on	it,	such	as	Debugging	and	making	sure	your	code	works	the	way
you	intend	it	to.



On	another	example,	if	you	designed	a	video	game	and	your	characters	go	out	of	bounds,
your	video	game	wouldn’t	be	as	good,	won’t	it?

	





JAVA	Workshop	#2
Go	 to	 an	 IDE	 of	 your	 choice.	 You	 may	 also	 use	 online	 IDE’s	 such	 as	 rextester.com,
ideone.com,	or	www.codechef.com/ide.	 (if	 you	 do,	make	 sure	 to	 set	 your	 Programming
Language	to	Java).

If	you	use	one	of	the	online	IDE’s,	you	should	see	something	similar	to	this:

//	—————————————

import	java.util.*;

import	java.lang.*;

import	java.io.*;

//	INSERT	MORE	IMPORTS	HERE

//	INSERT	MORE	CLASSES	HERE

	

class	(whatever	class	name)

{

public	static	void	main(String	args[])

{

//	INSERT	CODE	HERE

}

}

//	—————————————

http://rextester.com
http://ideone.com
http://www.codechef.com/ide


World	Cup	of	Football	(or	Soccer)

Let’s	 say	 there’s	 a	 Football	 (Soccer)	 game	 between	 All-Star	 National	 Teams	 of	 Two
Countries.

Add	this	import	on	the	top	of	your	Java	file:

import	java.util.Random;

	

Then,	insert	this	class	into	your	Java	Code:

//	a	Team	has:

//	-	a	Score	(Integer,	minimum	0)

class	Team{

int	score;

}

	

Afterwards,	look	in	your	code	for	a	line	named	‘public	static	void	main’	(there	should	only
be	one	line	in	your	code	with	this)

Within	the	curly	brackets	of	that	‘public	static	void	main’	line,	insert	this	following	code:

	



//	—————

//	The	game	Begins:

Team	Country1	=	new	Team();

Country1.score	=	0;

Team	Country2	=	new	Team();

Country2.score	=	0;

	

//	It	is	now	halftime,

//	Each	Team	scores	a	random	amount	of	points	between	2	and	8

//	FIRST	HALF:

Country1.score	+=	2	+	(int)(Math.random()*8);

Country2.score	+=	2	+	(int)(Math.random()*8);

//	—————

	

Which	team	is	winning?	How	would	you	know?	And	how	would	you	show	it?

How	would	you	edit	the	above	code	to	PRINT	the	scores	for	each	team?

Also,	how	would	you	edit	the	code	to	add	the	SECOND	half	of	the	game?

Test	and	run	your	code	in	your	IDE	of	choice.

	





Chapter	5a:	Defining	&	Designing	your	Functions
Now	we’ll	move	on	to	the	parts	of	programming	where	the	magic	happens.

Functions.

Where	data	structures	are	used	to	represent	“things”	in	this	universe,	you	define	functions
as	the	“actions”	or	verbs	in	this	universe.

And	 you	 can	make	 your	 functions	 do	whatever	 you	want/need	 it	 to	 do,	 as	 long	 as	 you
know	 what	 you’re	 doing.	 You	 can	 calculate	 math,	 write	 sentences	 for	 you,	 change	 or
update	 data,	 sort	 out	 lists	 with	 tens	 of	 thousands	 of	 items,	 make	 websites	 for	 you,
whatever	you	like.	In	reality,	the	possibilities	can	be	endless.

But	 first	 let’s	 understand	 the	 core	 parts	 of	 function	 design:	 its	 inputs,	 its	 output,	 its
signature,	its	effects,	and	its	functionality.



A	Function’s	Inputs

You	can	set	your	function	to	accept	whatever	data	you	need	it	to.

These	 are	 called	 a	 function’s	 arguments	 or	 parameters.	 Your	 function	 will	 use	 this
incoming	data	to	perform	what	you	intend	it	to.

Or,	on	the	other	hand,	you	can	also	have	a	function	NOT	require	any	inputs.	Your	function
will	then	perform	what	you’ve	programmed	it	to,	but	it	won’t	need	any	incoming	data.

For	 practice,	 let’s	 use	 comments	 to	 declare	what	 inputs	 we	want	 our	 function	 to	 have.
Let’s	say	we	want	a	name	(a	string)	as	an	input

//	INPUT:	-	a	name	(String)

	

A	Function’s	Output

Your	function	can	also	return	a	data	value	-	based	on	whatever	you	want	to	set	it	to.	You
can	then	program	your	function	to	output	that	same	data	type.



Or,	 you	 can	 also	 have	 a	 function	 NOT	 return	 anything.	 You	 can	 then	 program	 your
function	to	do	what	you	intend	it	to	do,	but	it	won’t	return	any	data	after	it	executes.

In	most	programming	languages,	functions	only	return	ONE	thing	-	whether	it	be	a	data
value,	an	entire	list,	compound	data,	or	more.

However,	you	must	make	sure	your	function	outputs	whatever	you	have	set	it	 to.	Say,	 if
you	want	your	function	to	output	a	String,	the	very	last	line	of	that	function	MUST	return
a	String	data	type.	If	you	set	your	function	to	have	no	outputs,	your	function	MUST	NOT
return	any	data	types	after	it	executes.

For	practice,	 let’s	 use	 comments	 to	declare	what	outputs	we	want	our	 function	 to	have.
We’ll	continue	designing	our	 function.	We	now	have	an	 input,	now	we	want	 to	have	an
output.

//	INPUT:	-	a	name	(String)

//	OUTPUT:	-	an	ID	(Number)

	

	



Defining	what	your	Function	will	Do

Now	we	figure	out	what	EFFECT	our	function	will	have	once	we	run	it.

This	is	your	function’s	main	purpose	-	it’s	the	reason	why	you’re	going	to	write	these	lines
of	code!

Your	function’s	effect	will	be	whatever	you	intend	it	to	do.	Change	data,	create	new	data,
calculate	a	few	values	together,	whatever	you	want.

But	isn’t	an	Output	and	Effect	the	same	thing?	Well,	no.

There	is	a	difference	between	a	function’s	OUTPUT	and	EFFECT.	A	function’s	output	is
the	data	it	returns,	while	a	function’s	effect	is	anything	that	the	function	does	or	anything
the	function’s	action	has	affected.

For	 practice,	 let’s	 use	 comments	 to	 declare	what	 effects	we	want	 our	 function	 to	 have.
We’ll	continue	designing	our	function.	We	now	have	an	input	and	output.	Now	we	figure
out	what	it	does	when	we	run	it.



Let’s	say	we	want	it	to	come	up	with	a	random	number.	We	first	put	in	the	comments	of
what	we	intend	it	to	do

//	INPUT:	-	a	name	(String)

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	generates	a	random	number	for	a	given	name

	

Key	Function	Rule-of-Thumb:

Make	sure	your	function	only	does	the	only	one	thing	you	want	it	to	do.	A	function	that
does	too	many	things	will	not	only	complicate	your	code	and	make	it	look	bad,	but	it	will
cause	headaches	and	frustration	for	programming	teammates.

However,	 your	 function	 can	 include	 and	 call	 on	 many	 other	 functions	 to	 help	 process
something.	These	are	called	Helper	Functions	(we’ll	cover	this	later!)

A	Function’s	Signature

Here	is	when	we	start	writing	our	function’s	lines	of	code.



In	most	programming	languages,	a	function’s	signature	defines	a	function’s	name,	inputs,
outputs,	and	even	particular	traits	it	has.

Remember	when	we	declared	our	Composite	data?	We	first	started	out	designing	the	name
of	our	whole	data	structure,	then	we	started	designing	what	it	consisted	of.

For	function	signatures,	we	first	code	what	its	name	is	-	as	well	as	any	inputs	and	outputs
it	has.

Now,	let’s	look	back	at	the	function	we	were	designing	for	practice.	We	now	know	what	it
does,	what	it	requires	and	what	it	returns.

For	 now,	 we’ll	 use	 Pseudocode	 to	 design	 our	 function’s	 Signature.	 Our	 signatures	 will
then	be	structured	in	this	form:

(OutputType)	functionName(InputType	inputName)

	



So	our	function’s	signature	will	look	like	this:

//	INPUT:	-	a	name	(String)

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	generates	a	random	number	for	a	given	name

number	createID(string	name)

	

Implementing	your	Function

This	can	be	the	tricky	part	-	unless	you	know	exactly	what	you’re	doing.

In	 designing	 functions,	 the	 last	 thing	 you	 do	 is	 to	 program	 your	 function’s	 actual
functionality.	 You	would	 now	 know	what	 inputs	&	 outputs	 it	 has,	 as	 well	 as	 what	 it’s
trying	to	do.	You’ve	essentially	planned	what	your	function	will	do.

Now	you’ll	have	your	function	do	what	you	planned	it	to.

You	program	the	functionality	in	the	next	few	lines	after	your	function’s	signature.



In	 pseudocode,	 we’ll	 use	 curly	 brackets	 (	 {	 }	 )	 right	 after	 the	 function’s	 signature	 to
include	its	functionality	code.	Our	functions	will	then	be	structured	in	this	form:

(OutputType)	functionName(InputType	inputName)	{

(your	function’s	code)

return	OutputType	if	any

}

Finally,	 let’s	 look	back	 at	 the	 function	we	were	designing	 for	 practice.	We	are	 ready	 to
finish	it.

Let’s	say	there’s	such	thing	as	a	function	named	randomNumber()	 that	creates	a	random
number	for	us.

//	INPUT:	-	a	name	(String)

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	generates	a	random	number	for	a	given	name

number	createID(string	name)	{

randomNumber()

}



A	Common	Error	in	Function	Design

But	wait.	The	above	code	isn’t	going	to	work.	Can	you	guess	why?

Oh	right.

In	 our	 signature,	 our	 function	 is	 supposed	 to	 RETURN	 a	 number.	 So	 in	 order	 for	 this
function	to	work,	it	needs	to	actually	return	a	number.

So	we	make	the	function	RETURN	whatever	random	number	 is	generated	by	the	inside
function	randomNumber()

//	INPUT:	-	a	name	(String)

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	generates	a	random	number	for	a	given	name

number	createID(string	name)	{

return	randomNumber()

}

	

and	now,	we	finally	complete	our	function	-	from	design	to	code.

	



Calling	your	Function	Procedure

To	have	your	code	execute	whatever	effect	or	procedure	you’ve	defined	in	your	functions,
you	simply	put	your	function	name	in	your	code	-	but	in	a	particular	way

Keep	 in	 mind	 that	 you	 can	 only	 place	 your	 function	 wherever	 its	 output	 data	 type	 is
expected	 to	 be.	The	 exception	 is	when	 your	 function	 has	 no	 data	 output	 (returns	 void).
You	can	place	this	function	on	lines	by	itself.

For	example,	take	these	two	functions:

//	INPUT:	-	none

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	?????

number	procedureA()	{…}

	

//	INPUT:	-	none

//	OUTPUT:	-	none

//	EFFECT:	?????

void	procedureB()	{…}

	

Procedure	A	outputs	a	number.

Place	the	function	wherever	the	data	type	Number	is	expected:



Number	x	=	procedureA();

Number	y	=	10.213	*	procedureA();

	

Procedure	A	outputs	nothing.	Place	the	function	on	its	own	line	of	code.

procedureB();

	

If	a	function	belongs	to	a	data	class,	make	sure	to	access	that	function	from	an	instance	of
that	data	class:

ClassC	instanceC	=	new	ClassC;

instanceC.procedureC();

	





Chapter	5b:	Matching	Data	with	Functions
Here’s	an	inevitable	truth	when	it	comes	to	functions:	they	will	almost	always	involve	data
in	any	way.

Later	on,	you’ll	 find	 that	 all	 sorts	of	different	data	 structures	will	 have	at	 least	one	key
function	associated	with	it.

Also,	 some	 data	 structures,	 by	 default,	 will	 have	 associated	 go-to	 templates	 to	 use	 in
programming.	Remember	this	well;	if	you’re	given	a	certain	data	structure	to	work	with,
you	should	already	have	the	function	structure	you’ll	need	in	mind.

Functions	using	Atomic	Data

There’s	usually	no	structure	or	template	involved	when	dealing	with	Atomic	Data.

Functions	may	have	atomic	data	as	inputs	or	outputs	when	necessary.

	



Here	are	some	pseudocode	to	demonstrate:

//	INPUT:	-	a	Name	(String)

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	?????

number	procedureA(String	name)	{…	return	ID}

	

//	INPUT:	-	none

//	OUTPUT:	-	none

//	EFFECT:	?????

void	procedureB()	{…}

	

Also,	Functions	can	even	modify	existing	variables.

//	Player1	Score,	as	an	Integer

Integer	Score	=	0

	

//	INPUT:	-	none

//	OUTPUT:	-	none

//	EFFECT:	increments	the	score	by	one

void	score1()	{	Score	+=	1}

	

	



Functions	using	Composite	Data

The	key	thing	to	remember	here	is	 that,	for	every	component	a	composite	data	structure
has,	 its	 associated	 function	 will	 have	 a	 template	 that	 accesses	 and	 deals	 with	 each
component	(regardless	of	what	data	type	each	component	is).	Also,	each	component	will
be	 treated	 as	 whatever	 data	 type	 it	 is;	 a	 String	 treated	 as	 a	 String,	 composite	 data	 as
composite	data,	and	so	on.

We	demonstrate	this	in	pseudocode:

//	Structure	of	a	Book:

CompositeStructure	Book	{

String	AUTHOR

String	TITLE

Integer	PAGECOUNT

}

	

//	INPUT:	-	a	Book

//	OUTPUT:	-	none

//	EFFECT:	?????

void	bookTemplateFunc(Book	b)	{

b.AUTHOR	//do	something

b.TITLE	//	do	something



b.PAGECOUNT	//	do	something

}

	

Here’s	an	example	of	a	printing	function,	based	on	the	above	template:

//	INPUT:	-	a	Book

//	OUTPUT:	-	none

//	EFFECT:	prints	book	details

void	printDetails(Book	b)	{

printString(b.AUTHOR)

printString(b.TITLE)

printInteger(b.PAGECOUNT	)

}

	

Methods:	Functions	for	Object-Oriented	Programming

In	Object-oriented	programming,	data	and	procedures	are	bundled	in	data	structures	called
classes.

Functions	are	called	Methods	and	class	variables	are	called	Fields.

You	can	think	of	Methods	within	a	class	as	‘behaviours’	-	or	what	actions	an	instance	of
that	class	can	do.



To	describe	Class	Methods	in	comments,	simply	list	the	behaviours	it	can	do:

//	A	Space	Invaders	Tank	Class	can:

//	-	move	left

//	-	move	right

//	-	shoot	a	missile

	

//	A	Dog	Class	can:

//	-	walk

//	-	bark

//	-	sit

//	-	eat

	

Functions	for	Sequences

(You’ll	cover	this	in	later	chapters…)

Basically,	 data	 elements	 of	 the	 same	 type	 can	 be	 grouped	 together	 into	 sequenced
collections.	Examples	can	be	lists	and	strings.

For	these,	functions	process	each	element	one	by	one	until	all	data	elements	are	covered.

Functions	for	more	Sophisticated	Data	Structures

(You’ll	cover	this	in	later	chapters…)



	





JAVA-04:	Function	Structure
Functions	in	JAVA

The	syntax	structure	in	Java	looks	very	similar	to	our	pseudo	code.

Java	function	structure	looks	like	so:

<output’s	data	type>	functionName(	<input	data	type>	input1Name)	{

//	any	code	here,

return	<data	or	variable	with	output’s	data	type>;

}

	

Here	are	a	few	key	notes	in	Java	functions:

- Since	Java	is	purely	Object-Oriented	Programming,	Functions	in	Java	are	mainly	called
Methods.	They	belong	within	classes	and	they	describe	behaviors	that	the	class	does.

- You	place	your	function	code	within	the	curly	brackets	of	your	function.



- If	your	Java	function	returns	data,	you	put	 the	word	‘return’,	 then	a	variable	name	or
some	data	value	you	want	to	return.	Once	the	function	reaches	the	‘return’	line,	it	will
output	whatever	data	you’ve	set	it	to,	then	the	function	will	finish	running.

- If	your	Java	function	returns	nothing	(the	output	value	is	called	“void”)	you	don’t	have
to	put	a	return	line.

Function	Example

Here’s	what	the	createID()	function	looks	like	in	Java.	We’ll	also	consider	numbers	as	data
type	Double:

//	INPUT:	-	a	name	(String)

//	OUTPUT:	-	an	ID	(Number)

//	EFFECT:	generates	a	random	number	for	a	given	name

double	createID(String	input)	{

return	rand();

}





JAVA	Workshop	#3
Designing	&	Calling	Functions

First,	 go	 to	 an	 IDE	 of	 your	 choice.	 Online	 IDE’s	 include	 Rextester	 (rextester.com),
CodeChef	(www.codechef.com/ide),	and	Ideone	(https://ideone.com/).

On	your	Main	Function,	replace	ALL	code	within	it,	then	copy-paste	all	the	code	within
the	dotted	lines	below.	Make	sure	it’s	between	the	curly	brackets	of	the	main()	function.

public	static	void	main(String	args[])	{

//	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

class	calculator{

//	INPUT:	-	two	Integers

//	OUTPUT:	-	a	result(Integer)

//	EFFECT:	add	two	integers	together	&	give	result

__	add(__	a,	__	b){

return	a	+	b;

}

http://rextester.com
http://www.codechef.com/ide
https://ideone.com/


//	INPUT:	-	two	Integers

//	OUTPUT:	-	a	result(Integer)

//	EFFECT:	subtract	1st	integer	from	2nd	&	give	result

__	subtract(__	a,	__	b){

return	____;

}

};

	

//	Your	Bank	Account	is	an	Integer

int	BANKACCOUNT;

	

//	Create	a	Calculator	Object	named	‘c’

calculator	c	=	new	calculator();

//	Income	&	Expenses,	as	Integers

int	PAYCHEQUE	=	6000;

int	LIVINGEXP	=	3000;

int	FUNSTUFF	=	1000;

int	TRAVEL	=	3000;

	

//	How	much	would	fun	stuff	and	travel	be	together?

int	FUNTRAVEL	=	c.add(___,	___);



System.out.println(“Fun	Stuff	&	Travel	Together:	”	+	FUNTRAVEL);

//	Your	Paycheque,	after	paying	your	living	expenses?

//	(HINT:	call	the	calculator	object	c,	then	access	one	of	its	methods…)

BANKACCOUNT	=	c.________(______,	_____);

System.out.println(“Bank	Account	Balance,	normal:”	+	BANKACCOUNT);

	

	

//	Your	Paycheque,	after	paying	your	living	expenses	AND	fun	stuff?

//	(HINT:	call	the	calculator	object	c,	then	access	one	of	its	methods…)

BANKACCOUNT	=	________

BANKACCOUNT	=	________

System.out.println(“Bank	Account	Balance,	w/	Fun	Stuff:	”	+	BANKACCOUNT);

//	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

}

	

Before	you	begin,	your	code’s	main	function	should	look	exactly	to	the	code	above.



Now,	fill	in	the	blanks.	If	you	filled	in	the	blanks	with	proper	code,	you	should	have	the
printed	lines	below:

Fun	Stuff	&	Travel	Together:	4000

Bank	Account	Balance,	normal:	3000

Bank	Account	Balance,	w/	Fun	Stuff:	2000

	

Good	luck!





Chapter	6:	Intro	to	Designing	Worlds	&	Simple	Apps,	PT1
At	this	point,	you	know	how	to	interpret	real-life	objects	as	computer	data	representations,
as	well	as	interpreting	actions	&	procedures	as	programming	functions.

Now,	you’ll	begin	the	design	process.	You	start	to	describe	virtual	worlds	and	apps,	almost
always	visually.	You	prepare	to	translate	your	ideas	into	code	and	data.

Just	 as	 if	 you	were	 a	 carpenter	 thinking	 of	 how	 to	 build	 your	 house,	 you	 use	 the	 same
approach	 towards	 developing	 apps	 and	 game	 worlds.	 You	 identify	 all	 the	 components
required	to	build	your	project.

Simple	App	Design	Process

There	are	three	key	things	about	your	idea	that	you	need	to	identify:	the	facts	behind	your
idea,	what	remains	constant,	and	what	will	change/vary.



The	 reason	 for	 this	 is	 to	give	you	and	other	programmers	as	much	control	 and	 stability
over	your	data	as	possible.	You	would	know	what	type	of	data	you	would	be	working	with
and	 if/how	 that	 data	 would	 or	 would	 not	 change.	 Experienced	 programmers	 can	 then
check	if	a	particular	data	structure	or	function	is	designed	the	way	it	was	intended	to	be.

To	guide	you	 through	 this	process,	we’ll	describe	 the	classic	Snake	game	-	and	 identify
plenty	of	details	 about	 the	game	 from	a	programmer’s	 standpoint.	 It	will	be	 as	 if	we’re
designing	the	game	for	the	first	time.	As	if	we’re	in	the	70’s.

Identifying	the	FACTS

First,	you	need	the	facts.	You	need	to	describe	what	your	idea	is	about,	what’s	involved,
etc.	Describe	as	much	detail	as	you	can,	 including	 the	environment	and	key	figures	you
provide.

Example:

In	a	single	game	of	Snake,	there	exists	a	snake	with	a	head	and	body,	as	well	as	food	items
that	appear	randomly.	The	snake’s	head,	all	segments



of	its	body,	and	the	food	pieces	have	an	X-Y	coordinate	and	a	visual	representation	(since
they	 have	 similar	 traits,	 they	 can	 be	 grouped	 together	 as	 a	 game	 sprite).	 An	 X-Y
coordinate	represents	a	location	within	the	playable	zone:	a	rectangular	area	with	a	height
and	width.	A	score	keeps	track	of	how	many	food	items	have	been	eaten.

The	player	changes	which	direction	the	snake	will	travel	to:	up,	down,	left,	and	right.	The
game	ends	when	the	snake	either	hits	a	wall	or	runs	into	one	of	its	body	segments.

The	snake	grows	by	one	body	segment	after	the	snake	head	“eats	a	food	item”	(appears	on
the	same	coordinate	as	a	food	item).

[food]	+	[head]	[body]	[body]

=

[head]	[body]	[body]	[body]

	



Identifying	what’s	CONSTANT

Second,	 you	 need	 to	 identify	 what	 elements	 in	 your	 world	 or	 app	 remain	 consistent
throughout	the	programming.	Also,	identify	what	will	exist	in	your	idea	unconditionally.

Example:

The	food	items,	snake	head,	and	body	segments	have	consistent	images.

The	playing	board	has	a	fixed	width	and	height.

Identifying	what	CHANGES/VARIES

Third,	identify	what	will	change	or	vary	when	the	program	runs.

Example:

The	 food	 items,	 snake	 head,	 and	 body	 segments	 all	 have	 varying	 X-Y	 coordinates
throughout	the	game.	The	number	of	body	segments	vary,	from	the	initial	number	of	2,	all
the	way	to	as	much	as	possible.

	



Turning	your	ideas	into	code

Now,	you	take	note	of	all	the	facts,	descriptions,	and	ideas	you’ve	come	up	with.	You’ll	be
making	data	representations	of	them.

Early	 in	 the	book,	 there	 is	a	great	 reason	why	we’ve	used	comments	 to	describe	all	 the
information	we	 are	 going	 to	 create.	 It’s	 because	 they	 help	 select	 the	 best	 possible	 data
representation	 for	 each	 pint	 of	 information	 you	 have.	And	 after	 you’ve	 described	what
your	app	or	world	will	be	about,	you’ll	start	developing	 that	digital	world	first	by	using
comments.

Example:

For	 each	 fact	 and	 idea	 about	 the	 Snake	 game	 that	 we’ve	 come	 up	 with,	 we’ll	 use
comments	to	hint	how	they	should	be	represented	by	data.

//	A	Game	Sprite	has:

//	-	an	X-coordinate	(Integer)

//	-	a	Y-coordinate	(Integer)

//	-	an	image	to	represent	itself	(choose	your	visual	representation)

	

//	Snake	Heads,	Snake	Body	Segments,	and	Food	Pieces

//	are	each	represented	by	Game	Sprites

	



//	An	EntireSnake	contains:

//	-	a	Snake	Head	(GameSprite)

//	-	a	list	of	Snake	Body	Segments	(list	of	GameSprites)

//	A	FullSnake	can:

//	-	eat	food

//	-	grow

//	-	move	on	the	board

	

//	The	Playable	Board	has:

//	-	a	fixed	length	(Integer)

//	-	a	fixed	width	(Integer)

	

//	A	Game	of	Snake	has:

//	-	a	playable	board	(Playable	Board	Class)

//	-	food	items	(list	of	Food)

//	-	the	Snake	(EntireSnake)

//	-	a	Score	Count	(Integer)

//	A	Game	of	Snake	can:

//	-	start	a	new	game

//	-	end	the	game	(as	a	loss	or	win)

//	-	update	a	game	in	progress

//	-	update	the	score

//	-	move	the	snake	on	keypresses

//	-	create	or	delete	food	items

	

Notice	how	there	is	no	actual	code	written	yet;	only	comments.



The	 beauty	 of	 this	 process	 is	 that,	 given	 the	 facts	 and	 ideas	 (as	 well	 as	 their	 data
representations),	we	can	start	creating	the	code	in	any	language	we	want.	We	now	know
what	will	be	data	structures,	classes,	integers,	and	so	on.

We	do	need	to	go	over	more	tools,	so	we	will	continue	with	design	later	on.

Meanwhile,	 in	the	next	big	workshop,	you	will	be	converting	idea	comments	into	actual
code.	Good	luck	and	have	fun!

	





JAVA	BIG	Workshop	A
Game	Design:	the	Data	&	Functions

First,	 go	 to	 an	 IDE	 of	 your	 choice.	 Online	 IDE’s	 include	 Rextester	 (rextester.com),
CodeChef	(www.codechef.com/ide),	and	Ideone	(https://ideone.com/).

You’re	 going	 to	 practice	 designing	 Data	 Structures	 and	 Functions	 -	 as	 if	 you	 were
designing	an	app	yourself.

All	you’ll	be	given	 is	a	 set	of	comments	describing	 the	data	objects	within	a	very,	very
simple	video	game.	If	you	can,	you	may	continue	developing	it	into	a	full-blown	game.

Copy	 and	 paste	 all	 the	 comment	 code	 below,	 then	 start	 writing	 code	 for	 the	 data
definitions.

As	you	improve	your	programming	and	learn	more	tricks	over	time,	you	can	revisit	 this
workshop	and	re-create	it	using	your	new	skills.

http://rextester.com
http://www.codechef.com/ide
https://ideone.com/


For	 example:	 for	 the	 functions	 and	 class	 methods,	 they	 might	 need	 more	 intermediate
functionality.	 So	 you	 can	 come	 back	 to	 them	 later	 -	 after	 going	 through	 the	 necessary
chapters.

If	you	feel	like	you	want	to	create	or	remove	new	Fields,	Classes,	or	Methods,	feel	free	to
do	so.

Now,	let’s	move	forward.

The	game	we’ll	be	designing	is…

PONG!

Good	luck!

	



//	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	

//	A	Game	Sprite	Class	has:

//	-	a	Width	(Integer)

//	-	a	Height	(Integer)

//	-	an	X-coordinate	(Integer)

//	-	a	Y-coordinate	(Integer)

	

	

//	A	Ball	Class	has:

//	-	all	properties	of	a	Game	Sprite

//	-	either	an	UP	or	DOWN	direction	(String)

//	-	either	a	LEFT	or	RIGHT	direction	(String)

//	A	Ball	Class	can:

//	-	move	in	all	4	diagonal	directions

//	-	bounce	off	Paddles	or	the	Game	Board	Up/Down	Walls

	

//	A	Paddle	Class	has:

//	-	all	properties	of	a	Game	Sprite

//	A	Paddle	Class	can:

//	-	move	up	&	move	down

	

	



//	A	Player	Class	has:

//	-	a	Paddle

//	-	a	Score	(Integer)

//	A	Player	Class	Can:

//	-	Score	a	Goal

	

//	a	Game	Board	has:

//	-	a	Width	(Integer)

//	-	a	Height	(Integer)

//	-	two	X-Coordinates	for	Player-side	Edges	(Integers,	set	to	0	and	Width)

//	-	two	Y-Coordinates	for	Up-Down	Walls	(Integers,	set	to	0	and	Height)

	

//	A	Game	Class	has:

//	-	two	Paddles

//	-	a	Ball

//	-	a	Game	Board

//	-	a	Player	on	the	Left

//	-	a	Player	on	the	Right

//	-	a	Game	Speed	(Strings:	“SLOW”	“MEDIUM”,	or	“FAST”)

//	-	a	Timer	(a	Number,	Integer,	or	any	other	Data	Type	you	like)

//	When	Created,	A	Game	Instance	also	creates:

//	-	a	Paddle	for	the	Left	Player

//	-	a	Left	Player

//	-	a	Right	Player



//	-	a	Paddle

for	the	Right	Player

//	-	a	Ball,	moving	at	a	given	random	direction

//	A	Game	Class	can:

//	-	manage	a	goal	scored	by	either	player

//	-	end	the	game

//	-	declare	a	winning	player

	

//	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-



	



	



CodeWell	Academy()	and		R.M.Z.
present:

	
Artificial	Intelligence	in	Java	

Made	Easy
w/	Essential	Java	Programming

	
1st	Edition

	
Learn	to	Create	your	*	Problem	Solving	*	Algorithms!

TODAY!	w/	Algorithms	&	Data	Structures
	

Artificial	Intelligence	Series
	

INCLUDES	BONUS:	Easiest	Way	to	Learn	Java

©	Copyright	2015	-	All	rights	reserved.
In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	or	in	printed	
format.	Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed	unless	with	
written	permission	from	the	publisher.	All	rights	reserved.	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,	in	terms	of	inattention	or	
otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions	contained	within	is	the	solitary	and	utter	
responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the	
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.	

Legal	Notice:

This	ebook	is	copyright	protected.	This	is	only	for	personal	use.	You	cannot	amend,	distribute,	sell,	use,	quote	or	
paraphrase	any	part	or	the	content	within	this	ebook	without	the	consent	of	the	author	or	copyright	owner.	Legal	action	
will	be	pursued	if	this	is	breached.	

Disclaimer	Notice:

Please	note	the	information	contained	within	this	document	is	for	educational	and	entertainment	purposes	only.	Every	
attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	warranties	of	any	kind	are	
expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,	medical	
or	professional	advice.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we	responsible	for	any	losses,	direct	or	
indirect,	which	are	incurred	as	a	result	of	the	use	of	information	contained	within	this	document,	including,	but	not	
limited	to,	—errors,	omissions,	or	inaccuracies.

	





Preface:	JAVA	as	Artificial	Intelligence	
=========================	======

There’s	 no	doubt	 in	 our	minds	 that	Artificial	 Intelligence	 is	 perhaps	one	of	 the	greatest
tools	 created	by	Humans	 today.	From	drones	 to	 smartphone	 apps,	 from	video	games	 to
robotics,	the	extent	of	their	applicability	will	be	endless	for	the	years	to	come.

Thus,	 it’s	 best	 to	 start	 learning	 about	 them	 and,	 as	 programmers,	 start	 applying	 their
functionality	to	our	projects.

How	you’ll	progress	through	this	book

We’ll	start	by	going	through	the	fundamental	Search	Algorithm.	This	 is	one	of	 the	most
important	 tools	 in	Artificial	 Intelligence;	 as	 it	gives	 the	computing	 system	 the	ability	 to
think	and	generate	a	solution.	Then,	we	start	to	analyze	its	variants	-	including	how	they
work,	as	well	as	their	strengths	and	weakness.	We	examine	the	best	scenarios	to	apply	the
variants,	and	even	implement	some	of	them	in	Java	code.



A	Quick	Start

Included	is	a	quick	kit	to	cover	Basic	Java	Programming.	You’ll	find	what	you	need	to	get
a	 good	 start	 in	 programming	 Java.	 Then,	 you’ll	 be	 prepared	 to	 use	 the	many	 tools	 and
components	of	AI	throughout	the	book.

=========================	======

	

	



	





Introduction
====	====	====	====	====

Logic.	Rationality.	Reasoning.	Thought.	Analysis.	Calculation.	Decision-making.

All	this	is	within	the	mind	of	a	human	being,	correct?	Humanity	has	been	blessed	with	the
ability	to	think	and	act	so	intelligently.

Then	came	Machine.	Humanity	has	also	blessed	it	the	gift	of	intelligence.

And	in	today’s	world,	you	can	see	firsthand	what	an	intelligent	mind	can	do	for	you;	carry
a	 conversation,	 give	 you	 directions	 to	 a	 certain	 location,	 play	 a	 video	 game	 as	 an
opponent,	and	so	on.

In	essence,	only	our	imaginations	will	limit	us	from	what’s	truly	possible

	



An	Artificial	Intelligence	Agent

In	terms	of	Artificial	Intelligence,	an	agent	can	be	anything	that,	given	an	environment	to
focus	 on,	 can	 think	 intelligently	 and	 act	 independently.	 It	 can	 continue	 observing	 and
learning	through	experience.	It	can	calculate	and	independently	decide	the	best	course	of
action,	whether	it	has	perfect	knowledge	of	the	situation	or	just	a	part	of	it.	It	can	also	take
note	and	adapt	to	a	changing	environment.

So	you	might	wonder,	how	has	mankind	ever	developed	something	so	complex?

Well,	it’s	not	as	complex	as	you	think.

If	 you	 understand	 the	 process	 of	 how	 a	 computer	 can	 observe,	 learn,	 and	 expand	 its
knowledge	-	and	how	it	can	take	all	this	information	and	come	up	with	an	ideal	solution	or
decision	-	then	an	artificially	created	mind	won’t	be	as	complex	as	you	think.

Sometimes,	 it	can	take	as	 little	as	a	few	lines	of	code	to	have	a	computer	come	up	with
solutions	for	you.	Sometimes	it	can	take	hundreds.	Sometimes,	thousands.





Chapter	1:	Algorithms:	The	Essentials
====	====	====	====	====

In	 essence,	 how	 an	 AI	 agent	 will	 contemplate,	 process,	 rationalize,	 apply	 logic,	 &
ultimately	generate	solutions	will	mainly	be	through	the	use	of	algorithms.

If	 you’re	 new	 to	 programming,	 don’t	 be	 intimidated.	 An	 algorithm	 is	 essentially	 a
procedure	to	handle	data.	As	long	as	you	understand	how	a	certain	algorithm	processes	its
data,	you’ll	be	fine.

Algorithm	Traits

First,	you’ll	want	your	algorithms	to	satisfy	four	key	factors:

-	Completeness

-	Optimization

-	Time	Complexity

-	Space	Complexity



Now	we’ll	go	through	each	of	these	and	explain	them	all.	Afterwards,	you’ll	explore	some
algorithm	ideas	and	determine	how	they	fit	in	to	each	of	these	factors.

Completeness

If	an	algorithm	is	guaranteed	to	find	at	least	one	existing	solution	or	conclusion	within	a
certain	time	frame,	we	can	say	that	an	algorithm	is	complete.

Optimization

If	 an	 algorithm	 finds	 a	 solution	 and	 guarantees	 that	 it	 is	 the	 optimal	 one,	 then	 that
algorithm	is	considered	optimal.

Time	Complexity

For	 an	 algorithm,	 this	 is	 an	 expression	 for	 the	 longest	 possible	 time	 it	 will	 take	 to
complete.	 In	 other	 words,	 the	 worst-case	 scenario	 when	 it	 runs	 and	 finds	 a	 suitable
solution.

	



Space	Complexity

This	 expression	 is	 similar	 to	 Time	 Complexity,	 but	 instead	 it	 represents	 the	 maximum
amount	 of	 memory	 the	 algorithm	 may	 use	 in	 order	 to	 find	 a	 solution.	 This	 is	 also
considered	the	worst-case	scenario.

Your	Ideal	Algorithm

After	discussing	the	traits	your	algorithm	can	have,	you’ll	get	an	idea	in	what	to	look	for
when	 creating	 an	AI	 algorithm.	You	want	 to	 design	 yours	 to	 find	 at	 least	 one	 solution
(completeness),	and	 the	best	solution	 it	can	create	given	data	 it	has	(optimization)	while
using	up	as	little	computational	effort	as	you	can	(Time	&	Space	Complexity)





Chapter	2:	How	to	Create	a	Problem-Solving	AI
====	====	====	====	====

Let’s	 start	 developing	 our	Search	 algorithm:	 an	 automatic	 problem	 solver.	We’ll	 have	 a
general	overview	of	it	in	Pseudocode.	Then	you’ll	get	to	code	and	run	it	on	your	own,	with
this	book’s	primary	programming	language.

Abstract	Search	Algorithm

In	 its	most	basic	procedure,	a	 search	algorithm	will	have	a	default	 condition	and	a	goal
condition.	It	will	then	evaluate	each	option	it	can	take,	starting	from	the	default	condition,
step-by-step,	until	it	eventually	finds	a	full	set	of	options	to	achieve	the	goal	condition.

The	General	Frontier	Search	Algorithm:

The	Frontier	Search	algorithm	follows	the	same	procedure	as	above.	Given	a	start	node,
goal	nodes,	and	an	entire	network,	it	will	incrementally	assess	and	explore	pathways	from
the	start	node	until	it	reaches	the	goal	node.



The	Frontier	 is	 simply	a	 list	of	paths	 to	be	checked.	The	Frontier	Search	algorithm	will
keep	adding	paths	to	the	Frontier	until	it	either	finds	a	solution	or	has	explored	the	entire
network

For	 example,	 this	 is	 just	 like	 giving	 a	Search	Algorithm	 a	map	of	 your	 local	 city,	 your
current	 location,	and	a	 restaurant	you’re	about	 to	go	 to.	That	 search	algorithm	will	give
you	directions	to	get	there.

The	standard	data	structure	to	use	a	Search	Algorithm	with	is	a	Network	of	interconnected
Nodes.	Each	node	contains	an	amount	of	data	and	a	list	of	connected	nodes:

//	A	Node	has:

//	-	its	data	(any	data	type	you	want)

//	-	a	set	of	connected	nodes

class	Node

<some	data	type>:	contents

Array	of	Nodes:	connected

	

	



The	Frontier	Search	 algorithm	also	uses	Paths:	 a	 list	 of	 connected	Nodes,	with	 the	 first
node	as	the	starting	point:

//	A	Path	has:

//	-	a	List	of	Nodes

class	Path

Array	of	Paths:	contents

	

And	finally,	here	is	a	generalized	algorithm	for	Frontier	Search:

INPUT:

-	a	Start	Node	(can	be	a	class	method	in	OOP)

-	a	graph	network	(only	requires	start	node	to	have	a	network)

-	a	goal-checking	procedure	OR	a	solution	query

OUTPUT:

-	a	Path	from	start	to	Goal	(a	List	of	Nodes)

-	return	FALSE	or	NULL	if	no	paths	found	(wherever	applicable)

EFFECT:

Frontier	 Search	 Algorithm:	 Returns	 a	 set	 of	 nodes	 that	 lead	 from	 the	 input	 Node	 to	 a
solution	node	if	found

PROCEDURE:

-	frontier:=	{new	array	of	Nodes}

-	create	a	new	Path	and	put	the	Start	node	in	it

-	put	the	new	Path	into	the	frontier

	

While	frontier	is	not	empty	{

-	select	and	remove	a	Path	<s0,	s1,….,sk>	from	frontier;

If	node	(sk)	is	a	goal,	return	selected	Path	<s0,	s1,	….,sk>;

Else:

For	every	connected	node	of	end	node	sk:

-	Make	a	copy	of	the	selected	Path

-	Add	connected	node	of	sk	onto	path	copy

-	add	copied	Path	<s0,	s1,….,sk,	s>	to	frontier;

}



-	indicate	‘NO	SOLUTION’	if	frontier	empties

	

Further	Search	Strategies

This	will	be	covered	later	on,	but	how	the	algorithm	picks	a	Path	from	the	Frontier	will
determine	how	the	Search	Algorithm	works.

For	now,	let’s	apply	the	Frontier	Search	Algorithm.



	





JAVA	02a:	Fundamental	Frontier	Search	Algorithm
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Below	are	the	fundamental	parts	to	a	Frontier	Search	algorithm:	the	major	algorithm	and
its	data	structures.

First,	 we	 start	 with	 the	 Data	 Structures.	 We	 only	 need	 to	 use	 two	 essential	 classes:	 a
network	node	and	a	path.	A	Path	contains	is	what	the	algorithm	uses	to	store	connected,
sequenced	nodes.	It	will	also	be	the	output	type	for	the	algorithm.

//	A	Path	has:

//	-	A	List	of	Nodes

//	(can	be	modified	to	include	more	Methods/Fields)

class	Path	{

ArrayList<Node>	contents	=	new	ArrayList<Node>();

}

	

http://rextester.com
http://ideone.com
http://codepad.org


Nodes	will	be	 the	main	data	structure	 the	Algorithm	will	operate	 through;	 the	algorithm
will	search	through	the	node	and	its	connected	nodes	for	a	solution:

	

//	A	Node	has:

//	-	Some	Contents	(Data	type	of	your	choice)

//	-	A	List	of	other	connected	Nodes

//	It	can:

//	-	Search	all	its	descendant	nodes	to	find	a	solution

//	(Our	Search	Algorithm	as	a	Class	Method)

class	Node	{

<choose	a	data	type>	contents;

ArrayList<Node>	children;

	

//	CONSTRUCTOR:

public	Node(String	c)	{

this.contents	=	c;

this.children	=	new	ArrayList<Node>();

}

}

	

	



Next	are	two	Helper	Functions	you’ll	need.	This	first	function	helps	the	algorithm	pick	a
path	to	check	from	a	list:

	

/*

//	HELPER	FUNCTION	#1:

//	INPUT:	a	List	of	Paths

//	OUTPUT:	a	Single	Path

//	EFFECT:	based	on	positioning	of	your	choice:

//	-	Select	&	remove	a	path

//	-	return	that	path

//	NOTE:	you	can	modify	the	position	assignment	to	change	the	Search	Strategy

*/

private	Path	pickPath(ArrayList<Path>	f)	{

int	position	=	0;

Path	ret	=	f.get(position);

f.remove(position);

return	ret;

}

	

	



This	second	function	checks	if	the	last	node	in	the	path	is	a	solution.	One	of	the	function
inputs	supplies	the	solution:

/*

//	HELPER	FUNCTION	#2:

//	INPUTs:

//	-	a	Path

//	-	Node	contents	that	have	a	solution

//	<same	data	type	as	Node’s	container>

//	OUTPUT:	boolean

//	EFFECT:	outputs	True	if	path	contains	a	Goal

*/

private	boolean	hasGoal(<data	type>	s,	Path	p)	{

for	(Node	n:	p.contents)	{

if	(n.contents	==	s)	return	true;

}

return	false;

}

	



And	finally,	the	Search	Algorithm.	The	pseudocode	is	attached	to	the	lines	as	comments
so	you	can	see	how	the	procedure	works.	The	algorithm	also	uses	both	helper	functions
described	earlier.

/*

//	MAIN	ALGORITHM:

//	INPUT:

//	-	a	goal	query

//	<has	same	data	type	as	node	contents>

//	-	a	Starting	Node

//	OUTPUT:

//	-	a	Path	from	start	to	Goal	(a	List	of	Nodes)

//	(multiple	output	types	not	acceptable	in	Java;

//	empty	Path	as	output	if	no	solution	found)

//	EFFECT:

//	Frontier	Search	Algorithm:	Returns	a	set	of

//	nodes	that	lead	from	the	input	Node	to	a	solution	node	if	found

*/

public	Path	search(<data	type>	query,	Node	n1)	{

//	-	frontier:=	{new	array	of	Paths}

ArrayList<Path>	frontier	=	new	ArrayList<Path>();

	

//	-	create	a	new	Path	and	put	the	Start	node	in	it

Path	p	=	new	Path();

p.contents.add(n1);

//	-	put	the	new	Path	into	the	frontier

frontier.add(p);

while	(!frontier.isEmpty())	{

//	-	select	and	remove	a	Path	<s0,	s1,….,sk>	from	frontier;

//	(use	helper	function	pickPath()	)

Path	pick	=	pickPath(frontier);

//	If	node	(sk)	is	a	goal,	return	selected	Path

if	(hasGoal(query,	pick))	{



return	pick;

}

else	{

//	Otherwise,	for	every	connected	node	of	end	node	sk:

//	1.	Make	a	copy	of	the	selected	Path

//	2.	Add	connected	node	of	sk	onto	path	copy

//	3.	add	copied	Path	<s0,	s1,….,sk,	s>	to	frontier;

int	size	=	pick.contents.size();

Node	last	=	pick.contents.get(size	-	1);

for	(Node	n:	last.children)	{

	

Path	toAdd	=	new	Path();

toAdd.contents.addAll(pick.contents);

toAdd.contents.add(n);

frontier.add(toAdd);

}

	

}

}

//	-	indicate	‘NO	SOLUTION’	if	frontier	empties

//	(empty	path	as	‘NO	SOLUTION’	here)

return	new	Path();

}

	

	





JAVA	02b:	Using	Frontier	Search
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Here,	 we	 implement	 the	 Frontier	 Search	 Algorithm	 step-by-step	 onto	 a	 simple	 node
network:​

	

	

	

	

	

Each	circle	 a,	b,	 c,	 and	d	each	 represent	 interconnected
nodes,	 which	 will	 only	 have	 their	 respective	 letters	 as

contents.

http://rextester.com
http://ideone.com
http://codepad.org


We	ask	the	algorithm	if	there	is	a	path	to	a	particular	letter	from	a	starting	point.

The	Search	Algorithm	would	have	a	letter	as	an	input.	It	would	then	check	the	nodes	row-
by-row	until	it	either	finds	a	suitable	path	from	the	input	node	to	that	letter	-	or	notify	you
that	a	path	couldn’t	be	found.

So	 we	 now	 know	 what	 to	 expect.	 If	 we	 have,	 say	 ,’d’	 as	 the	 input,	 the	 algorithm	 is
supposed	 to	 find	 it,	 and	 output	 the	 node	 path	 a->c->d.	 If	 we	 have	 ‘g’	 or	 some	 other
irrelevant	letter	as	an	input,	the	algorithm	will	say	that	it’s	not	found.

Artificial	 Intelligence	will	heavily	 rely	on	Search	Algorithms	 to	come	up	with	solutions
and	best	decisions	for	its	given	situations.	We	will	explore	more	about	this	later	on.

Meanwhile,	let’s	start	building	our	algorithm.

Step	1:	Understand	&	Create	the	Node	Structure

First,	we	have	to	build	the	underlying	data	structure	for	our	Network.	Our	Nodes	contain
the	data	 type	we	want	 to	use,	 as	well	 as	a	 list	of	 its	 connected	nodes.	Since	we’re	only
using	letters,	our	Node	data	type	can	be	String.



	

Copy	the	class	code	below	to	your	IDE.	We’ll	build	on	from	here.

//	A	Node	has:

//	-	Some	Contents	(Data	type	of	your	choice)

//	-	A	List	of	other	connected	Nodes

//	It	can:

//	-	Search	all	its	descendant	nodes	to	find	a	solution

//	(Our	Search	Algorithm	as	a	Class	Method)

class	Node	{

String	contents;

ArrayList<Node>	children;

	

//	CONSTRUCTOR:

public	Node(String	c)	{

this.contents	=	c;

this.children	=	new	ArrayList<Node>();

}

}

	



Afterwards,	we	need​	the	node	network.

	

	

	

	

	

So	it	looks	like	‘d’	is	a	connected	to	‘c’,	while	‘b’	and	‘c’	are
connected	to	‘a’.	We’ll	be	re-creating	this	network	in	code.

Copy	the	code	below	and	place	it	within	the	main()	method:

//	Creates	&	connects	nodes	a,	b,	c,	d

Node	a	=	new	Node(“a”);

Node	b	=	new	Node(“b”);

Node	c	=	new	Node(“c”);

Node	d	=	new	Node(“d”);

a.children.add(b);

a.children.add(c);

c.children.add(d);

	



Next,	we	need	to	design	the	Path.

Step	2:	Create	the	Path	Structure

The	Path	will	contain	an	ordered	list	of	Nodes.	Each	node	will	be	connected	to	the	ones
next	to	it,	while	the	first	node	in	the	Path	is	the	Start	node.

Copy	the	class	code	below	to	your	IDE,	just	before	where	you	put	the	Node	class.

//	A	Path	has:

//	-	A	List	of	Nodes

//	(can	be	modified	to	include	more	Methods/Fields)

class	Path	{

ArrayList<Node>	contents	=	new	ArrayList<Node>();

}

	

Step	3:	Start	coding	the	Algorithm

(Before	we	move	forward,	it’s	highly	recommended	to	review	the	Algorithm	procedure	in
the	past	few	chapters.)



Here,	our	search	algorithm	will	be	a	method	from	the	Node	class.	We	can	simply	access	it
from	one	of	the	nodes	created.	And	since	we’re	doing	it	this	way,	we	won’t	have	to	use	a
Node	object	as	an	input.

Since	we	are	checking	for	letters,	the	search	query	will	be	a	String	-	the	same	data	type	for
the	Node	containers.

Place	 the	Main	 Algorithm	 below	 within	 the	 Node	 Class	 you’ve	 created.	 Remember	 to
have	it	within	the	curly	brackets	‘{	}’.

/*

//	MAIN	ALGORITHM:

//	INPUT:

//	-	a	goal	query

//	<has	same	data	type	as	node	contents>

//

//	(Start	Node	&	its	graph	network	accessed	thru	this	method)

//	OUTPUT:

//	-	a	Path	from	start	to	Goal	(a	List	of	Nodes)

//	(multiple	output	types	not	acceptable	in	Java;

//	empty	Path	as	output	if	no	solution	found)

	



//	EFFECT:

//	Frontier	Search	Algorithm:	Returns	a	set	of

//	nodes	that	lead	from	the	input	Node	to	a	solution	node	if	found

*/

public	Path	search(String	query)	{

//	-	frontier:=	{new	array	of	Nodes}

ArrayList<Path>	frontier	=	new	ArrayList<Path>();

	

//	-	create	a	new	Path	and	put	the	Start	node	in	it

Path	p	=	new	Path();

p.contents.add(this);

//	-	put	the	new	Path	into	the	frontier

frontier.add(p);

while	(!frontier.isEmpty())	{

//	-	select	and	remove	a	Path	<s0,	s1,….,sk>	from	frontier;

//	(use	helper	function	pickPath()	)

Path	pick	=	pickPath(frontier);

//	If	node	(sk)	is	a	goal,	return	selected	Path

if	(hasGoal(query,	pick))	{

return	pick;

}

else	{

//	For	every	connected	node	of	end	node	sk:

//	-	Make	a	copy	of	the	selected	Path

//	-	Add	connected	node	of	sk	onto	path	copy

//	-	add	copied	Path	<s0,	s1,….,sk,	s>	to	frontier;

int	size	=	pick.contents.size();

Node	last	=	pick.contents.get(size	-	1);

for	(Node	n:	last.children)	{

Path	toAdd	=	new	Path();

toAdd.contents.addAll(pick.contents);



toAdd.contents.add(n);

frontier.add(toAdd);

}

}

}

//	-	indicate	‘NO	SOLUTION’	if	frontier	empties

//	(empty	path	as	‘NO	SOLUTION’	here)

return	new	Path();

}

	



It’s	considered	a	good	programming	practice	to	simplify	what	a	function	does.	So	instead
of	 our	 algorithm	 function	 doing	 a	 lot	 of	 different	 things,	 it	 will	 call	 specialized	 helper
functions	 to	simplify	 the	workload.	This	also	makes	 it	easier	 for	programmers	 to	check,
edit,	debug,	and	modify	the	code.

Step	4:	Add	the	Frontier	Path	Picker	Function

The	 path	 picking	 function	 for	 the	Frontier	 Search	 algorithm	 is	 a	 customizable	 one	 in	 it
own	right,	as	modifying	this	function	will	affect	 the	search	strategy.	We’ll	go	over	more
search	 strategies	 later	 on.	 For	 now,	 just	 ensure	 that	 the	 function	 selects,	 removes,	 and
outputs	the	path	correctly.

Place	this	helper	function	within	the	same	Node	class	you	placed	the	Search	Algorithm.

/*

//	HELPER	FUNCTION	#1:

//	INPUT:	a	List	of	Paths

//	OUTPUT:	a	Single	Path

//	EFFECT:	based	on	positioning	of	your	choice:

//	-	Select	&	remove	a	path

//	-	return	that	path

//	NOTE:	you	can	modify	the	position	assignment	to	change	the	Search	Strategy

*/

private	Path	pickPath(ArrayList<Path>	f)	{

int	position	=	0;

Path	ret	=	f.get(position);

f.remove(position);

return	ret;

}

	

Step	5:	Add	the	Goal-checking	Function

This	function	helps	the	algorithm	check	a	path	for	solutions.	It	will	check	all	the	nodes	in
a	path	to	see	if	one	of	them	has	the	contents	the	algorithm	is	looking	for.

Since	both	our	node	contents	and	search	query	are	Strings,	we’ll	use	 that	data	 type	as	a
function	input.

Like	the	other	helper	function,	place	this	one	within	the	same	Node	class	you	placed	the
Search	Algorithm.

	



/*

//	HELPER	FUNCTION	#2:

//	INPUTs:

//	-	a	Path

//	-	Node	contents	that	have	a	solution

//	<same	data	type	as	Node’s	container>

//	OUTPUT:	boolean

//	EFFECT:	outputs	True	if	path	contains	a	Goal

*/

private	boolean	hasGoal(String	s,	Path	p)	{

for	(Node	n:	p.contents)	{

if	(n.contents	==	s)	return	true;

}

return	false;

}

	

Algorithm	Testing

And	 finally,	 we	 test	 our	 algorithm.	 There’s	 at	 least	 three	 major	 scenarios	 to	 think	 of:
searching	for	the	starting	node’s	letter;	searching	for	a	letter	further	down	the	network;	and
searching	 for	 a	 letter	 that’s	 not	 in	 the	 network.	 For	 each	 of	 these	 times,	 we	 want	 the
algorithm	to	run	through	the	scenario	properly.



Within	your	Main	Class,	and	just	above	your	main()	method,	insert	this	testing	method:

static	String	printer(Path	p)	{

if	(p.contents.isEmpty())	return	“NOTE:	No	Solution	Found”;

else	{

//	System.out.println(“FOUND	A	SOLUTION!”);

String	s	=	“Solution	Found!	Path:	“;

for	(int	i	=	0;	i<p.contents.size();	i++)	{

s	+=	p.contents.get(i).contents	+	“,	“;

}

return	s;

}

}

	

Afterwards,	we’ll	create	a	few	paths	generated	from	our	Search	Algorithm.	Place	the	code
below	just	after	your	node	network	from	Step	1.	They	should	be	inside	the	main()	method.

	



//	test	search()

Path	pa	=	a.search(“a”);

Path	pc	=	a.search(“c”);

Path	pd	=	a.search(“d”);

Path	pg	=	a.search(“g”);

	

A	search	for	the	starting	node’s	letter	should	output	a	Path	with	just	the	starting	node.	So
Path	‘pa’	should	have	a	path	with	only	node	‘a’	in	it.	If	everything	was	done	right,	the	code
below	should	print	out,	“Solution	Found!	Path:	a,	”.

System.out.println(printer(pa));

	

A	search	for	a	letter	somewhere	down	the	network	should	output	a	Path	with	a	sequenced
list	of	Nodes.	Paths	‘pc’	and	‘pd’	should	have	nodes	‘a,	c’	and	‘a,	c,	d’	respectfully.	If	the
codes	below	run,	then	they	should	print	out	their	respective	paths:

System.out.println(printer(pc));

System.out.println(printer(pd));

	

A	search	for	a	letter	that	isn’t	in	the	network	should	output	an	empty	path,	according	to	our
current	Search	algorithm.	So	‘pg’	should	be	an	empty	path.



If	 you	 run	 the	 line	 of	 code	 below,	 it	 should	 notify	 you	 that	 a	 solution	 isn’t	 found	 (‘g’
currently	isn’t	in	the	network)

System.out.println(printer(pg));

	

And	there	we	have	it.	A	successfully	operating	Frontier	Search	algorithm.	

	





Chapter	3:	Search	Strategies
====	====	====	====	====

As	mentioned	 earlier,	 the	way	 the	 search	 algorithm	 picks	 a	 path	 from	 the	 frontier	 will
determine	the	overall	algorithm	search	strategy.

Now	 that	 we’ve	 developed	 our	 search	 algorithm,	 we	 can	 now	 modify	 it	 to	 suit	 any
situation	that	arises.

Below	are	the	four	main	ways	that	 the	search	algorithm	will	pick	a	path	to	explore.	The
path	picked	from	the	frontier	is	either:

-	the	most	recently	added	(Stack)

-	the	least	recently	added	(Queue)

-	the	one	with	the	least	cost	(Priority	Queue)

-	the	one	with	the	most	value	(Priority	Queue)

We’ll	explore	and	analyze	each	strategy	and	implement	them	with	our	search	algorithm.





Chapter	3.1:	Depth-First	Search
====	====	====	====	====

In	Depth-First	Search,	 the	algorithm	treats	 the	Frontier	Options	as	a	Stack.	Therefore,	 if
the	 algorithm	has	 a	 list	 of	 unexplored	 options	 it	 has	 yet	 to	 examine,	 it	will	 explore	 the
options	and	sub-options	first.

Use	Depth-First	Search	When:

You	 expect	 long	 path	 lengths;	 in	 other	 words,	 the	 solutions	 will	 have	 long	 sets	 of
options	to	get	there

You	don’t	expect	any	nodes	that	are	subnodes	to	each	other)

You	don’t	have	much	space	available

Don’t	use	Depth-First	Search	When:

•	The	three	looks	fairly	shallow.	In	other	words,	there	aren’t	many	levels	of	Option	nodes
in	the	tree

•	If	having	the	best	possible	solution	is	very	important



Example:	The	Depth-First	Search	Algorithm

Consider	the	graph	below.	If	all	 these	nodes	are	placed	on	a	to-do	list	for	the	algorithm,
the	last	node	added	to	the	frontier	would	be	processed	first.

Node	#1’s	options	are	added	to	the	frontier:	#2,	#7,	and	#8.	If	Node	#2	was	added	last,	it
would	be	processed	first.	So	Nodes	#3	and	#6	would	be	added.	If	#3	was	added	last,	then
it	would	 be	 processed	 first	 -	 so	 that	means	 adding	 #4	 and	 #5	 to	 the	 frontier.	 The	 node
depths	are	explored	first	-	hence,	why	it’s	called​	DEPTH-FIRST	search.

	

	

	

	

	

	



Algorithm	Analysis:	Depth-First	Search

Is	it	Complete?

Sort	of.	Why?	If	there	are	any	loops	or	cycles	in	the	graph	(meaning	one	of	the	end	nodes
link	up	to	the	beginning	nodes,	thus	creating	a	loop)	the	algorithm	might	be	stuck.	It	will
keep	 exploring	 the	 end	node,	 the	beginning	node,	 the	path	between	 them,	 the	 end	node
again,	and	so	on	and	so	on	-	probably	in	a	sort	of	infinite	loop.

On	the	other	hand,	 if	 there	are	no	loops	or	cycles	 in	 the	node	network,	 this	algorithm	is
complete.

Is	it	Optimal?

No.	If	 it	gives	off	 the	first	solution	it	encounters,	 it	may	not	necessarily	be	the	best	one.
There	may	be	better	solutions	that	have	yet	to	be	encountered	before	the	algorithm	gets	to
it.



What	is	its	Time	Complexity?

O(b^m)

Meaning,	at	the	worst-case	scenario,	the	algorithm	will	explore	every	node	and	reach	the
furthest	tree	depth.	For	example,	if	a	node	in	a	tree	has	up	to	2	options	and	the	entire	tree
can	be	up	to	4	levels	deep,	the	worst-case	complexity	will	be	2x2x2x2	=	16	nodes	possibly
explored.

What	is	its	Space	Complexity?

O(b*m)

Meaning,	at	the	worst-case	scenario,	a	path	for	unexplored	nodes	will	be	stored	in	memory
for	every	node	explored.

The	 longest	 path	 possible	 is	 the	 furthest	 tree	 depth.	 Also,	 every	 node	 has	 a	 maximum
amount	of	nodes	it	can	explore.

For	example,	if	a	tree	will	have	up	to	2	options	per	node	and	the	tree	can	be	4	levels	deep,
then	the	algorithm	will	store	2x4	=	8	units	of	memory

	





Chapter	3.2:	Breadth-First	Search
====	====	====	====	====

While	Depth-first	search	has	a	Stack	for	the	frontier,	Breadth-first	search	has	a	Queue.	In
other	 words,	 if	 the	 algorithm	 has	 a	 list	 of	 options	 to	 explore,	 it	 will	 select	 the	 earliest
added	options	and	sub-options.

Use	Breadth-First	Search	When:

•	you	don’t	have	to	worry	about	memory	space

•	you	NEED	a	solution	with	the	least	amount	of	options	chosen

•	there	are	some	options	that	can	be	explored	that	don’t	need	depth

Don’t	use	Breadth-First	Search	When:

•	solutions	tend	to	need	a	lot	of	options	chosen	(i.e.	they’re	deep	into	the	tree)

•	you	have	a	limited	amount	of	space

•	There’s	a	high	branching	factor	(nodes	with	many	subnodes/options)



Example:	The	Breadth-First	Search	Algorithm

Consider	the	graph	below.	If	all	 these	nodes	are	placed	on	a	to-do	list	for	the	algorithm,
Node	#1	would	be	processed	first,	 then	 it’s	sub-nodes	#8,	#7,	#2	would	be	added	 to	 the
frontier	in	that	order.	Since	Node	#8	was	entered	first,	it	will	be	processed	first.	So	Nodes
#9	and	#12	are	added	 to	 the	frontier.	Then	Node	#7	 is	processed.	Then	Node	#2,	which
adds	Nodes	#6	and	#3	to	the	frontier.	Then	node	#12	is	processed,	and	so	on.	Overall,	the
algorithm	will	explore	all	nodes	per	level	first	-	hence	why	it’s	called	BREADTH-FIRST

search.​

	

	

	

	

	

	



Algorithm	Analysis:	Breadth-First	Search

Is	it	Complete?

Yes,	 as	 long	 as	 there’s	 a	 limited	 number	 of	 subnodes.	 When	 there	 are	 nodes	 that	 are
children	to	each	other	(for	example:	Node	X	is	a	sub-node	to	Node	Y,	and	vice-versa),	this
would	 normally	 create	 a	 loop	 for	 Depth-first	 search.	 Node	 X	 would	 be	 added	 to	 the
frontier,	processed,	 then	Node	Y	would	be	added	and	processed,	 then	Node	X	 is	added,
and	so	on	-	in	an	infinite	loop.	This	won’t	happen	in	BFS.	If	Node	X	was	added,	all	other
nodes	in	the	frontier	would	have	been	processed	first.

However,	 if	a	 tree	has	 infinite	subnodes	per	node,	 then	BFS	certainly	won’t	 stop.	There
will	be	just	too	many	nodes	to	explore.

Hence,	 as	 long	as	 there’s	 a	 finite	number	of	 subnodes	per	node,	you	can	guarantee	 that
BFS	will	not	loop	indefinitely.

Is	it	Optimal?

Possibly.	 Because	 BFS	 is	 likely	 to	 find	 the	 solutions	 with	 the	 least	 number	 of
options/steps,	there	is	a	chance	the	solution	will	be	optimal.



What	is	its	Time	Complexity?

O(b^m)

Just	 like	 DFS,	 BFS	will,	 at	 the	 worst-case	 scenario,	 explore	 every	 node	 and	 reach	 the
furthest	tree	depth.	For	example,	if	a	node	in	a	tree	has	up	to	3	options	and	the	entire	tree
can	be	up	to	4	levels	deep,	the	worst-case	complexity	will	be	3x3x3x3	=	81	nodes	possibly
explored.

What	is	its	Space	Complexity?

O(b^m)

At	the	worst-case	scenario,	BFS	will	explore	every	single	node	in	the	tree.

For	example,	if	a	tree	will	have	up	to	4	options	per	node	and	the	tree	can	be	4	levels	deep,
then	the	algorithm	will	store	4^4	=	256	units	of	memory	if	it	explores	every	node	in	that
tree.

	





JAVA	03:	Frontier	Search	as	DFS	and	BFS	
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

When	 implementing	 Frontier	 Search,	 the	 algorithm	 will	 actually,	 by	 default,	 either	 be
Depth-First	Search	or	Breadth-First	Search.	This	will	depend	on	one	key	factor,	as	we	will
demonstrate	below.

First,	let’s	recall	the	path	picker	from	earlier:

/*

//	HELPER	FUNCTION	#1:

//	INPUT:	a	List	of	Paths

//	OUTPUT:	a	Single	Path

//	EFFECT:	based	on	positioning	of	your	choice:

//	-	Select	&	remove	a	path

//	-	return	that	path

//	NOTE:	you	can	modify	the	position	assignment	to	change	the	Search	Strategy

*/

	

http://rextester.com
http://ideone.com
http://codepad.org


private	Path	pickPath(ArrayList<Path>	f)	{

int	position	=	0;

Path	ret	=	f.get(position);

f.remove(position);

return	ret;

}

	

Note	 how	 the	 path	 picker	 works.	 The	 output	 path,	 chosen	 from	 the	 input	 array	 (the
frontier),	is	based	on	an	index	position.	That	index	is	set	on	the	first	line	of	the	procedure:

int	position	=	0;

	

When	items	are	entered	into	an	array,	they	are	sent	to	the	end	of	the	array	like	so:

[0:	a][1:	b][2:	c]	<-	inserting	[d]

[0:	a][1:	b][2:	c][3:	d]

So	setting	the	position	to	0	means	that	the	front	(earliest)	path	on	the	frontier	is	selected.
In	other	words,	the	path	picker	will	treat	the	frontier	as	a	queue.	Therefore	it	will	be	BFS.



int	position	=	0;

	

Before	path	picker	call:	[0:	a][1:	b][2:	c][3:	d]

After	path	picker	call:	[0:	a][1:	b][2:	c]	Selected	For	Processing:	[d]

Otherwise,	setting	the	position	to	the	back	(latest)	path	will	need	this	line	instead:

int	position	=	f.size()-1;

	

The	line	above	will	set	the	position	to	the	latest	path	added	to	the	frontier.	In	other	words,
the	path	picker	will	treat	the	frontier	as	a	stack.	Therefore,	it	will	be	DFS.

int	position	=	f.size()-1;

	

Before	path	picker	call:	[0:	a][1:	b][2:	c][3:	d]

After	path	picker	call:	[0:	b][1:	c][2:	d]	Selected	For	Processing:	[a]

	



Now,	let’s	test	everything	we	know	so	far	on	the	below	graph.

Bigger	Search	Graph:​

	

	

	

	

	

	

(The	 code	 for	 the	graph
above	 is	 found	 on
ARCHIVE	A02)

Place	 the	 code	 above
into	your	Main()	method

to	create	the	graph.

We	start	with	the	completed	Node	and	Path	classes	from	the	previous	chapter.	If	you	need
to	copy	the	Search	Algorithm,	Nodes,	and	Paths,	see	ARCHIVE	A01.

We	will	then	modify	the	pickPath()	method	to	be	either	DFS	and	BFS.



Step	1:

We’ll	modify	our	pickPath()	in	the	code	below:

/*

//	HELPER	FUNCTION	#1:	(Modified)

*/

private	Path	pickPath(ArrayList<Path>	f)	{

int	position;

//	Breadth-First:	uncomment	line	below	to	use

//	position	=	0;

//	Depth-First:	uncomment	line	below	to	use

//	position	=	f.size()-1;

Path	ret	=	f.get(position);

f.remove(position);

return	ret;

}

	

Uncomment	either	of	the	lines	above	to	set	the	position.

	



Step	2:

Next,	we’ll	run	and	test	the	algorithm.

Before	we	do	this,	make	sure	you	have	the	printer()	method	in	your	Main()	method.	You
can	find	this	from	either	JAVA-02	or	ARCHIVE	A-01.

Moving	on,	simply	add	these	two	lines	within	your	Main()	method,	just	after	the	code	for
creating	the	search	graph:

Path	pg	=	a.search(“g”);

System.out.println(printer(pg));

	

There	are	two	nodes	that	have	“g”	as	their	content.	The	algorithm	will	output	either	one	as
the	solution	depending	on	which	search	strategy	you	use.

If	you	set	your	pickPath()	to	DFS,	the	output	lines	should	be:

Solution	Found!	Path:	a,	d,	j,	g,

Here’s	what	happened	after	the	algorithm	processed	Node	a:

-	the	algorithm	added	Nodes	b,	c,	and	d	into	the	frontier

-	Node	d	was	added	most	recently;	so	it’ll	be	processed	first

-	Its	subnode	j	is	added

-	Node	j	is	added	most	recently;	it’ll	be	processed	first

-	Nodes	k	and	g2	are	added

-	Node	g2	is	added	most	recently;	it’ll	be	processed	first

-	Node	g2	is	a	goal.	So	a	path	with	it	and	all	its	ancestor	nodes	is	the	solution	path.

And	if	you	look	at	the	nodes	carefully,	you’ll	notice	that	the	algorithm	went​	“Depth-First”:

	



Otherwise,	if	you	set	it	to	BFS,	the	output	lines	should	be:

Solution	Found!	Path:	a,	c,	g,

Here’s	what	happens	after	the	algorithm	processes	Node	a:

-	the	algorithm	added	Nodes	b,	c,	and	d	into	the	frontier

-	Node	b	is	added	first,	so	it’s	processed	first

-	So	Nodes	e	and	f	are	added	to	the	frontier

-	Now	the	earliest	node	is	c,	so	it’s	then	processed

-	Nodes	g1,	h,	and	i	are	added

-	Then	Node	d	is	processed,	so	Node	j	is	added.

-	Nodes	e,	f,	and	g1	are	processed	in	that	order,	since	they’re	now	the	oldest	nodes	in	the
frontier

-	Node	g1	is	a	goal,	so	a	path	including	it	and	its	ancestors	is	the	solution	path.

	



And	 if	 you	 look	 at	 the	 nodes	 carefully,	 you’ll	 notice	 that	 the	 algorithm	went​	 “Breadth-
First”:

	

	

	

	

	

	

where	 the	 green-circled	 nodes
have	 been	 processed	 already	 and
the	yellow-circled	ones	are	 in	 the

frontier.	They	were	supposed	to	be	processed	as	well	but	 the	algorithm	found	a	solution
and	finished	instead.

	





Chapter	3.3:	Lowest-Cost	First	Search	
====	====	====	====	====

Sometimes,	 there	can	be	costs	between	nodes	and	subnodes.	For	example,	 if	a	node	had
three	subnodes,	one	of	them	would	cost	10	to	reach	and	the	other	two	would	cost	15.

So	if	the	algorithm	finds	a	solution,	the	path	will	have	a	total	sum	of	all	the	costs	required
to	reach	the	solution.

In	this	case,	we	want	the	solution	that	takes	least	overall	cost	to	reach.

How	it	works:

The	link	between	nodes	and	subnodes	are	called	arcs.	They	can	contain	information	vital
for	 the	 algorithm	 to	 produce	 a	 viable,	 legal	 solution.	 For	 cost-based	 search	 algorithms,
arcs	will	need	costs	between	a	node	and	a	subnode.

[Node	A]	-	-	-	->	arc	A-B:	cost=10	-	-	-	->[Node	b]



Example:	The	Lowest-Cost-First	Search	Algorithm

Take	note	of	the	tree	below.	The	red	numbers	indicate	the	cost	to	travel	between	nodes.​

	

	

	

	

	

	

The	algorithm	will	add	Nodes	B,	C,	and	D	to
the	 frontier,	 as	well	 as	 their	 respective	 costs,
5,	7,	and	10.	Which	node	will	require	the	least

cost	 to	 travel	 to?	Node	B.	 So	Node	B	will	 be	 processed	 first,	 then	Nodes	E	 and	 F	 are
added	to	the	frontier,	along	with	their	respective	total	costs	(Node	E:	11	=	5+6,	Node	F:
8=3+5).	Node	C	will	be	processed	next,	because	it	now	has	the	lowest	cost	at	7.	As	you
can	see,	the	node	that	requires	the	least	cost	to	reach	is	processed	first.



Hence,	why	the	algorithm	is	called	LOWEST-COST	FIRST.

Algorithm	Analysis:	Lowest-Cost-First	Search

Is	it	Complete?

Yes,	but	there	are	certain	conditions	that	need	to	be	met.	You	can’t	have	arc	costs	be	zero
or	 any	 negative	 numbers.	 If	 this	 happens,	 you	 risk	 having	 the	 algorithm	 loop	 and	 run
forever.

So	as	long	as	the	arc	costs	have	real,	non-negative	values,	you	can	expect	the	algorithm	to
either	deliver	a	solution	or	tell	you	that	there	isn’t	any.

Is	it	Optimal?

Yes,	and	this	is	the	algorithm	variant’s	main	strength.	You	can	guarantee	that	LCFS	will
give	you	a	solution	and	a	path	that	took	the	lowest	cost	to	reach,	as	long	as	the	arc	costs
are,	again,	real	and	non-negative	values.

Otherwise,	 the	 path	 costs	will	 be	 distorted	 and	 the	 solution	 produced	might	 not	 be	 the
optimal	one.

	



What	is	its	Time	Complexity?

O(b^m)

At	the	worst-case,	the	LCFS	algorithm	will	process	all	nodes	in	the	tree.	For	example,	if	a
tree	 had	up	 to	 5	 subnodes	 per	 node	 and	4	 levels	 down,	 you’re	 looking	 at	 625	nodes	 to
explore.

What	is	its	Space	Complexity?

O(b^m)

At	 the	 worst	 case,	 the	 LCFS	 algorithm	 will	 have	 every	 node	 in	 the	 tree	 stored	 into
memory.	So	if	you	have	a	tree	with	3	subnodes	per	node	and	3	levels	down,	then	you	may
have	up	to	27	nodes	stored	into	memory.

	





Chapter	3.4:	Heuristic	Search	
====	====	====	====	====

Another	way	 to	determine	how	 to	get	 the	best	path	 is	 to	add	heuristics	 to	 the	arcs.	The
heuristic	values	can	represent	two	things:

-	A	very	low	estimate	of	the	total	cost	to	reach	a	solution

-	A	value	to	maximize:	the	solution	should	have	the	highest	value	possible

In	 the	 first	case,	you	can	estimate	 the	 total	cost	 to	 reach	 the	nearest	goal	node	 from	 the
start.	It	will	be	admissible	as	long	as	the	cost	isn’t	overestimated.

In	the	second	case,	it	will	be	the	opposite	of	LCFS	-	each	node-to-subnode	arc	will	then
have	a	value	and	the	algorithm	will	find	a	solution	with	the	highest	value	possible.

	



How	it	works:

The	link	between	nodes	and	subnodes	are	called	arcs.	They	can	contain	information	vital
for	 the	 algorithm	 to	 produce	 a	 viable,	 legal	 solution.	 For	 cost-based	 search	 algorithms,
arcs	will	need	costs	between	a	node	and	a	subnode.

[Node	A]	-	-	-	->	arc	A-B:	cost=10	-	-	-	->[Node	b]	Example:	Heuristic	Search	Algorithm

The	tree	below	is	the	same	one	from	LCFS,	but	now	with	added	values	to	the​	arcs.

	

	

	

	

	

	



The	Heuristic	search	algorithm	will	choose	its	nodes	based	on	either	the	closest	cost	to	the
estimate	or	a	maximum	value.	First,	it	adds	Nodes	b,	c,	and	d	to	the	frontier.

If,	say,	we	estimate	that	the	cost	to	get	to	Node	g	is	7,	the	algorithm	will	process	Node	c
first	 because	 its	 cost	 is	 7.	 So	 Nodes	 g,	 h,	 and	 i	 are	 added	 to	 the	 frontier,	 each	 with
respective	total	costs	11	for	g	(4+7),	13	for	h	(6+7)	and	10	for	i	(7+3).	So	Node	b	will	then
be	processed	next,	because	its	cost	(5)	is	currently	closest	to	7.	Then	its	subnodes	e	(11	=
6+5)	and	f	(8=5+3)	are	added.	Node	f	is	then	processed,	so	a	second	Node	g	is	added	to
the	frontier,	with	a	cost	of	(9=1+3+5).	The	recently	added	Node	g	has	the	closes	cost	to	7,
so	it’s	then	processed.	It	is	a	viable	optimal	solution,	since	the	other	g-nodes	have	costs	of
11	and	15	respectively.

On	the	other	hand,	we	can	also	have	the	algorithm	pick	a	solution	that	creates	the	highest
value.	If	we	want	to	pick	the	path	to	Node	g	with	the	highest	value,	here’s	what	happens.
Node	c	is	processed	first,	because	of	its	value	(4).	This	adds	Nodes	g,	h,	and	i	with	values
12,	13	and	10,	respectively.	Node	h	will	then	be	processed	next,	but	with	no	subnodes	to
add	to	the	frontier.	And	once	Node	g	is	processed,	i	would	be	a	viable	solution,	at	a	value
of	12.

Algorithm	Analysis:	Heuristic	Search

Is	it	Complete?

No,	because	there	is	a	chance	that	the	algorithm	will	be	in	an	infinite	loop	once	it	cycles
between	two	high-value	nodes	or	two	nodes	closest	to	the	estimate.

Is	it	Optimal?

Unfortunately	 no,	 but	 this	 is	 because	 the	 value-based	 or	 cost-based	 algorithms	 can	 be
“greedy”	at	times.	Meaning,	the	algorithm	will	only	prefer	the	best	possible	node	it	has	at
the	moment,	 but	 ignoring	 all	 other	 options.	 If	 deeper	 nodes	have	higher	 values,	 but	 the
algorithm	can’t	get	 to	 them	because	 it	processes	other	nodes	 instead,	 then	 the	algorithm
might	produce	less	optimal	solutions	instead.

What	is	its	Time	&	Space	Complexity?

O(b^m)

At	the	worst	case,	a	heuristic	search	will	explore	every	node	in	a	tree	and	have	each	node
stored	in	memory.





ARCHIVE	A01:	Frontier	Search	Algorithm	
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

This	is	the	default	Frontier	Search	Algorithm	used	by	most	chapters	throughout	the	book.

It	is	strongly	recommended	to	view	this	only	after	you’ve	finished	building	&	successfully
testing	the	algorithm	already.

class	Node	{

String	contents;

ArrayList<Node>	children;

	

//	CONSTRUCTOR:

public	Node(String	c)	{

this.contents	=	c;

this.children	=	new	ArrayList<Node>();

}

	

http://rextester.com
http://ideone.com
http://codepad.org


/*

//	MAIN	FRONTIER	SEARCH	ALGORITHM:

*/

public	Path	search(String	query)	{

//	-	frontier:=	{new	array	of	Nodes}

ArrayList<Path>	frontier	=	new	ArrayList<Path>();

	

//	-	create	a	new	Path	and	put	the	Start	node	in	it

Path	p	=	new	Path();

p.contents.add(this);

//	-	put	the	new	Path	into	the	frontier

frontier.add(p);

while	(!frontier.isEmpty())	{

//	-	select	and	remove	a	Path	<s0,	s1,….,sk>	from	frontier;

//	(use	helper	function	pickPath()	)

Path	pick	=	pickPath(frontier);

//	If	node	(sk)	is	a	goal,	return	selected	Path

if	(hasGoal(query,	pick))	{

return	pick;

}

else	{

//	For	every	connected	node	of	end	node	sk:

//	-	Make	a	copy	of	the	selected	Path

//	-	Add	connected	node	of	sk	onto	path	copy

//	-	add	copied	Path	<s0,	s1,….,sk,	s>	to	frontier;

int	size	=	pick.contents.size();

Node	last	=	pick.contents.get(size	-	1);

for	(Node	n:	last.children)	{

Path	toAdd	=	new	Path();

toAdd.contents.addAll(pick.contents);

toAdd.contents.add(n);



frontier.add(toAdd);

}

}

}

//	-	indicate	‘NO	SOLUTION’	if	frontier	empties

//	(empty	path	as	‘NO	SOLUTION’	here)

return	new	Path();

}

	



	

/*

//	HELPER	FUNCTION	#1:

//	NOTE:	you	can	modify	the	position	assignment	to	change	the	Search	Strategy

*/

private	Path	pickPath(ArrayList<Path>	f)	{

//	int	position	=	0;

int	position	=	f.size()-1;

Path	ret	=	f.get(position);

f.remove(position);

return	ret;

}

	

/*

//	HELPER	FUNCTION	#2:

*/

private	boolean	hasGoal(String	s,	Path	p)	{

for	(Node	n:	p.contents)	{

if	(n.contents	==	s)	return	true;

}

return	false;

}

}

	

//	The	Path	Class:

class	Path	{

ArrayList<Node>	contents	=	new	ArrayList<Node>();

}

	

Printer	Method:

Make	sure	to	place	this	inside	your	Main	Java	Class.



static	String	printer(Path	p)	{

if	(p.contents.isEmpty())	return	“NOTE:	No	Solution	Found”;

else	{

//	System.out.println(“FOUND	A	SOLUTION!”);

String	s	=	“Solution	Found!	Path:	“;

for	(int	i	=	0;	i<p.contents.size();	i++)	{

s	+=	p.contents.get(i).contents	+	“,	“;

}

return	s;

}

}

	





ARCHIVE	A02:	Bigger	Search	Graph
For	DFS	&	BFS,	Chapter	JAVA-03

For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======​

Reference	Image:

	

	

	

	

	

The	 code	 below	 is	 based	 on	 the
default	 Node	 structure	 throughout
the	book.

	

	

http://rextester.com
http://ideone.com
http://codepad.org


Node	a	=	new	Node(“a”);

Node	b	=	new	Node(“b”);

Node	c	=	new	Node(“c”);

Node	d	=	new	Node(“d”);

Node	e	=	new	Node(“e”);

Node	f	=	new	Node(“f”);

Node	g1	=	new	Node(“g”);

Node	h	=	new	Node(“h”);

Node	i	=	new	Node(“i”);

Node	j	=	new	Node(“j”);

Node	k	=	new	Node(“k”);

Node	g2	=	new	Node(“g”);

a.children.add(b);

a.children.add(c);

a.children.add(d);

b.children.add(e);

b.children.add(f);

c.children.add(g1);

c.children.add(h);

c.children.add(i);

d.children.add(j);

j.children.add(k);

j.children.add(g2);


	Introduction
	Editor’s Note
	JAVA Introduction
	JAVA-00: Quick Important notes about Java code
	Prelude: Atomic Data Types
	Prelude: Data Sequences & Combinations
	Prelude: Your Coding Environment
	NOTE: Comments
	PART I: Your Code Structure and Foundations
	Chapter 1: Defining & Designing your Data
	JAVA-01: Defining & Designing your Data
	Chapter 2: Compound/Composite Data
	JAVA-02: Compound/Composite Data
	JAVA Workshop #1
	Chapter 3: Data Initialization
	Chapter 4: Data Changes & Mutable States
	JAVA-03: Data Changes & Mutable State
	JAVA Workshop #2
	Chapter 5a: Defining & Designing your Functions
	Chapter 5b: Matching Data with Functions
	JAVA-04: Function Structure
	JAVA Workshop #3
	Chapter 6: Intro to Designing Worlds & Simple Apps, PT1
	JAVA BIG Workshop A
	Preface: JAVA as Artificial Intelligence
	Introduction
	Chapter 1: Algorithms: The Essentials
	Chapter 2: How to Create a Problem-Solving AI
	JAVA 02a: Fundamental Frontier Search Algorithm
	JAVA 02b: Using Frontier Search
	Chapter 3: Search Strategies
	Chapter 3.1: Depth-First Search
	Chapter 3.2: Breadth-First Search
	JAVA 03: Frontier Search as DFS and BFS
	Chapter 3.3: Lowest-Cost First Search
	Chapter 3.4: Heuristic Search
	ARCHIVE A01: Frontier Search Algorithm
	ARCHIVE A02: Bigger Search Graph

