

CodeWell	Academy()
presents:

	
Artificial	Intelligence	

Made	Easy,	w/	Javascript	Programming

	

Learn	to	Create	your	*	Problem	Solving	*	Algorithms!
TODAY!	w/	Machine	Learning	&	Data	Structures

	
	

Artificial	Intelligence	Series
©	Copyright	2016	-	All	rights	reserved.
In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	or	in	printed	
format.	Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed	unless	with	
written	permission	from	the	publisher.	All	rights	reserved.	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,	in	terms	of	inattention	or	
otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions	contained	within	is	the	solitary	and	utter	
responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the	
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.	

Legal	Notice:

This	ebook	is	copyright	protected.	This	is	only	for	personal	use.	You	cannot	amend,	distribute,	sell,	use,	quote	or	
paraphrase	any	part	or	the	content	within	this	ebook	without	the	consent	of	the	author	or	copyright	owner.	Legal	action	
will	be	pursued	if	this	is	breached.	

Disclaimer	Notice:

Please	note	the	information	contained	within	this	document	is	for	educational	and	entertainment	purposes	only.	Every	
attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	warranties	of	any	kind	are	
expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,	medical	
or	professional	advice.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we	responsible	for	any	losses,	direct	or	
indirect,	which	are	incurred	as	a	result	of	the	use	of	information	contained	within	this	document,	including,	but	not	
limited	to,	—errors,	omissions,	or	inaccuracies.

	

Table	of	Contents
Preface:	JAVASCRIPT	as	Artificial	Intelligence	

Introduction

Chapter	1:	Algorithms:	The	Essentials

Javascript	01a:	using	AI	to	Solve	Complex	Time	Scheduling

Javascript	01b:	The	Generate-And-Test	General	Algorithm

Javascript	01c:	The	Procedure:	Schedule	Solvers

Javascript	01d:	Schedule	Solvers,	Faster	Version

Chapter	2:	Logic	&	Reasoning

Javascript	02a:	Using	Logic-Based	AI

Chapter	3:	Environment	Representation	for	AI

Javascript	03a:	Environment	Models	with	Javascript

Javascript	03b:	Creating	a	Model	Environment

Chapter	4:	Your	AI	Knowledge	&	Abilities

EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	1

EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	2

EASIEST	WAY	TO	LEARN	OBJECT-ORIENTED

Archive	Javascript-A1a:	Solving	Schedule	Problems

Archive	Javascript-A1b:	Solving	Schedule	Problems

Archive	Javascript-A2a:	Top	Down	Diagnosis

Archive	Javascript-A2b:	Bottom	Up	Diagnosis

	

Preface:	JAVASCRIPT	as	Artificial	Intelligence	
=========================	======

Javascript	has	been	making	waves	 lately	as	one	of	 the	main	Web	Technologies	 (HTML,
CSS,	 and	 Javascript).	 Some	 websites	 and	 web	 apps	 are	 fully	 embracing	 Javascript
technology	to	carry	out	most	web	tasks.	The	best	part	of	all	is	that	Javascript	is	a	client-
side	language,	meaning	that	your	computer	or	mobile	device	does	the	computation	-	and
not	 the	 Server	 itself.	 So	 this	 gives	 apps	 an	 opportunity	 stay	 usable	 even	 when	 servers
aren’t.

In	 the	 future,	 Javascript	 may	 be	 a	 first	 choice	 for	 multi-platform	 apps	 due	 to	 its
universality	and	flexibility.	Therefore,	it	will	be	worth	your	while	to	learn	more	advanced
concepts	using	Javascript	code.

How	you’ll	progress	through	this	book

The	 goal	 of	 this	 book	 is	 to	 expand	 your	 programming	 skills	 onto	 a	 new	 paradigm	 -
namely,	 the	 realm	of	artificial	 intelligence.	You	may	be	a	 skilled	programmer	hoping	 to
learn	new	skills,	or	someone	new	to	programming,	or	even	both.

No	 matter	 what	 your	 programming	 skill	 level	 is,	 we	 hope	 you	 find	 some	 intriguing
information	within	these	pages.

You’ll	 see	 first-hand	 how	 algorithm	 procedures	within	AI	make	 decisions	 and	 generate
answers,	given	sets	of	data.

First,	we’ll	go	over	Constraint	Satisfaction.	Ever	had	schedule	a	night	out	with	friends,	but
had	 to	 consider	 their	 availability	 throughout	 a	 day?	 Of	 course,	 you’d	 ask	 what	 times
they’re	 available.	 Now,	 try	 scheduling	 a	 meeting	 with	 thousands	 of	 people.	 That’ll	 be
quire	hard	to	do	alone,	wouldn’t	it?

A	Quick	Start

Included	is	a	quick	kit	to	cover	Basic	Javascript	Programming.	You’ll	find	what	you	need
to	get	a	good	start	in	programming	Javascript.	Then,	you’ll	be	prepared	to	use	the	many
tools	and	components	of	AI	throughout	the	book.

Introduction
====	====	====	====	====

Logic.	Rationality.	Reasoning.	Thought.	Analysis.	Calculation.	Decision-making.

All	this	is	within	the	mind	of	a	human	being,	correct?	Humanity	has	been	blessed	with	the
ability	to	think	and	act	so	intelligently.

Then	came	Machine.	Humanity	has	also	blessed	it	the	gift	of	intelligence.

And	in	today’s	world,	you	can	see	firsthand	what	an	intelligent	mind	can	do	for	you;	carry
a	 conversation,	 give	 you	 directions	 to	 a	 certain	 location,	 play	 a	 video	 game	 as	 an
opponent,	and	so	on.

In	essence,	only	our	imaginations	will	limit	us	from	what’s	truly	possible

	

An	Artificial	Intelligence	Agent

In	terms	of	Artificial	Intelligence,	an	agent	can	be	anything	that,	given	an	environment	to
focus	 on,	 can	 think	 intelligently	 and	 act	 independently.	 It	 can	 continue	 observing	 and
learning	through	experience.	It	can	calculate	and	independently	decide	the	best	course	of
action,	whether	it	has	perfect	knowledge	of	the	situation	or	just	a	part	of	it.	It	can	also	take
note	and	adapt	to	a	changing	environment.

So	you	might	wonder,	how	has	mankind	ever	developed	something	so	complex?

Well,	it’s	not	as	complex	as	you	think.

If	 you	 understand	 the	 process	 of	 how	 a	 computer	 can	 observe,	 learn,	 and	 expand	 its
knowledge	-	and	how	it	can	take	all	this	information	and	come	up	with	an	ideal	solution	or
decision	-	then	an	artificially	created	mind	won’t	be	as	complex	as	you	think.

Sometimes,	 it	can	take	as	 little	as	a	few	lines	of	code	to	have	a	computer	come	up	with
solutions	for	you.	Sometimes	it	can	take	hundreds.	Sometimes,	thousands.

Chapter	1:	Algorithms:	The	Essentials
====	====	====	====	====

In	 essence,	 how	 an	 AI	 agent	 will	 contemplate,	 process,	 rationalize,	 apply	 logic,	 &
ultimately	generate	solutions	will	mainly	be	through	the	use	of	algorithms.

If	 you’re	 new	 to	 programming,	 don’t	 be	 intimidated.	 An	 algorithm	 is	 essentially	 a
procedure	to	handle	data.	As	long	as	you	understand	how	a	certain	algorithm	processes	its
data,	you’ll	be	fine.

Algorithm	Traits

First,	you’ll	want	your	algorithms	to	satisfy	four	key	factors:

-	Completeness

-	Optimization

-	Time	Complexity

-	Space	Complexity

Now	we’ll	go	through	each	of	these	and	explain	them	all.	Afterwards,	you’ll	explore	some
algorithm	ideas	and	determine	how	they	fit	in	to	each	of	these	factors.

Completeness

If	an	algorithm	is	guaranteed	to	find	at	least	one	existing	solution	or	conclusion	within	a
certain	time	frame,	we	can	say	that	an	algorithm	is	complete.

Optimization

If	 an	 algorithm	 finds	 a	 solution	 and	 guarantees	 that	 it	 is	 the	 optimal	 one,	 then	 that
algorithm	is	considered	optimal.

Time	Complexity

For	 an	 algorithm,	 this	 is	 an	 expression	 for	 the	 longest	 possible	 time	 it	 will	 take	 to
complete.	 In	 other	 words,	 the	 worst-case	 scenario	 when	 it	 runs	 and	 finds	 a	 suitable
solution.

	

Space	Complexity

This	 expression	 is	 similar	 to	 Time	 Complexity,	 but	 instead	 it	 represents	 the	 maximum
amount	 of	 memory	 the	 algorithm	 may	 use	 in	 order	 to	 find	 a	 solution.	 This	 is	 also
considered	the	worst-case	scenario.

Your	Ideal	Algorithm

After	discussing	the	traits	your	algorithm	can	have,	you’ll	get	an	idea	in	what	to	look	for
when	 creating	 an	AI	 algorithm.	You	want	 to	 design	 yours	 to	 find	 at	 least	 one	 solution
(completeness),	and	 the	best	solution	 it	can	create	given	data	 it	has	(optimization)	while
using	up	as	little	computational	effort	as	you	can	(Time	&	Space	Complexity)

Javascript	01a:	using	AI	to	Solve	Complex	Time	Scheduling
=========================	======

Imagine	5	of	your	friends	trying	to	get	together	and	have	fun	somewhere.

It	might	sound	simple	at	first,	but	it	can	become	far	more	complicated	than	you	think.

What	if	one	of	your	friends	has	work	at	certain	times?	What	if	another	friend	has	school?
What	if	he/she	has	a	prior	engagement?	Soccer	practice?	Dance	classes?	Study	time?	Sure,
you	can	all	get	together	and	have	fun.	However,	it	has	to	be	at	a	time	when	EVERYONE
is	available.

So,	given	each	friend	you	have,	you	need	to	 lay	out	 their	 time	schedules,	 then	cross	out
times	 that	 they’re	 busy.	Afterwards,	 if	 there	 is	 some	 common	 available	 time	 among	 all
your	friends,	everyone	says	they’re	available,	then	you	and	your	friends	have	fun.

Let’s	have	another	example.

How	do	you	think	a	32-team	Sports	League	will	schedule	games	throughout	a	year?	For
all	32	teams,	they	each	need	to	match	up	with	up	to	one	other	team	to	schedule	a	game.
Each	team	needs	a	certain	amount	of	games	scheduled	in	a	season	of,	say,	6	months.	There
can	only	be	a	certain	number	of	games	in	a	single	week	and	there	needs	to	be	enough	time
to	travel	between	cities	to	have	a	game.

These	 are	 times	 when	 a	 Scheduling	 Algorithm	 can	 help.	 It	 will	 take	 all	 members’
availabilities	and	time	constraints,	 then	generate	a	viable	solution.	For	scheduling,	 it	can
tell	you	what	 times	of	 the	day	 is	everyone	available.	For	 large-scale	 implementations,	 it
can	be	used	to	schedule	sports	league	match-ups,	schedule	exams	for	tens	of	thousands	of
college	students,	and	more.

A	very	simple	and	easy	algorithm	to	start	with	is	the	Generate-and-Test	algorithm.

The	next	chapters	will	show	you	the	Algorithm	and	guide	you	through	its	procedure…

Javascript	01b:	The	Generate-And-Test	General	Algorithm
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

This	is	the	generalized	algorithm.	It	will	assess	every	combination	of	values	from	each	of
its	 lists.	 The	 constraints	 check	 each	 combination	 if	 they’re	 valid.	 A	 goal	 function	 also
checks	whether	or	not	a	certain	combination	provides	a	solution.

For	this	algorithm,	you	can	have	as	many	number	of	lists,	constraints,	and	goal	checks	as
you	need.

//	INPUT:

//	-	any	number	of	Lists

//	-	at	least	one	Goal	Function	(must	return	a	Boolean)

//	-	any	number	of	Constraint	Functions	(each	must	return	a	Boolean)

//	OUTPUT:	-	(optional;	select	any	output	type)

//	EFFECT:	-	For	all	possible	combinations	of	each	list,

//	check	to	see	if	it’s	the	goal	combination,

//	while	checking	if	it	satisfies	the	constraints.

function	generateAndTest(list1,	list2,	…	listN,	goal1(),	..	goalN(),	cons1(),	…	consN())

	

{

for	(a	=	0;	v	<	list1.length;	a++)	{

for	(b	=	0;	b	<	list2.length;	b++)	{

…

for	(i	=	0;	i	<	listN.length;	i++){

if	(goal1(a,b,	…,	n)

&&

…	goalN(a,b,	…,	n)

&&	cons1(a,b,	…,	n)

&&…	consN(a,b,	…,	n))	{

//	===	Solution	Results	are	Here

//	Post	Code	with	what	you	want	to	do

//	===

http://rextester.com
http://ideone.com
http://codepad.org

}

}

…

}

}

The	next	chapters	will	show	you,	step-by-step,	how	to	build	this	algorithm.

Javascript	01c:	The	Procedure:	Schedule	Solvers
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Step	1:	Your	Friends,	and	their	Hours

For	each	one	of	your	friends,	create	a	Global	Variable	and	set	 it	 to	an	Array.	Within	the
array,	set	your	values	from	0	to	23.	We’ll	use	integers	 to	represent	all	24	hours	of	a	24-
hour	clock.	For	simplicity’s	sake,	we’ll	only	use	a	single	day	of	the	week.	If	you	want,	you
also	have	the	option	to	set	your	integer	hours	using	four	digits	to	include	minutes,	such	as
1330	(1:30	pm)	or	1745	(5:45	pm).

For	our	example,	 let’s	say	your	friends	are	Anna,	Betty,	Cara,	and	Donna.	We’ll	 include
the	integers	to	represent	the	24-hour	clock.	However,	we	skip	hours	0-8	because,	clearly,
everyone	needs	some	good	sleeping	hours.

	

http://rextester.com
http://ideone.com
http://codepad.org

var	Anna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Betty	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Cara	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Donna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	

Step	2:	The	Goal	Function

Your	goal	is	to	determine	which	hours	are	everyone	available.

Represent	 this	with	 a	 function.	There	 are	 as	many	 integer	 inputs	 as	 there	 are	 friends	 to
schedule.	The	function	outputs	True	if	all	the	input	hours	are	equal.

//	Goal	1:	Have	an	hour	of	the	day	when	EVERYONE	is	available	to	meet

//	INPUT:	Four	Integers,	representing	Hours

//	OUTPUT:	Boolean

//	EFFECT:	return	True	if	all	input	hours	are	equal

function	g1(a,	b,	c,	d)	{

return	(a	==	b	&&	b	==	c	&&	c	==	d)

}

	

	

Step	3:	Time	Constraints

For	 each	 of	 your	 friends	 to	 schedule,	 create	 a	 function	 to	 represent	 which	 hours	 are
unavailable.	A	friend’s	hours	aren’t	available	if	he/she	is	preoccupied	by	something	at	that
time.

//	Constraint	Functions

//	INPUT:	an	Integer,	representing	a	friend’s	Hour

//	OUTPUT:	Boolean

//	EFFECT:	return	True	if	the	hour	satisfies	the	time	constraints

	

In	our	example,	we’re	going	to	create	a	bunch	of	time	constraints	for	each	friend.	Some
have	school,	work,	and	other	stuff.

//	Constraint	1:	Anna	has	classes	11am	-	1:50pm

function	c1(a)	{

return	(a	<	11	||	a	>13)

}

	

//	Constraint	2:	Betty	has	classes	noon	-	3pm,

//	then	has	dance	practice	until	4pm

function	c2(b)	{

return	(b	<	12	||	b	>=	16)

}

//	Constraint	3:	Cara	has	work	7pm	to	11pm

function	c3(c)	{

return	(c	<	19	||	c	>	23)

}

	

//	Constraint	4:	Diana	has	volunteer	hours	from	6pm	to	8pm,

//	and	work	8pm	to	11pm

function	c4(d)	{

return	(d	<	6	||	d	>	22)

}

	

Step	4:	The	Main	Algorithm

We	 will	 be	 using	 a	 simple	 Generate-and-Search	 Algorithm	 to	 solve	 the	 Scheduling
Problem.

How	 it	 works	 is,	 for	 each	 Hour	 of	 Each	 Friend,	 the	 algorithm	 will	 check	 if	 the
combination	of	hours	are	valid	-	based	on	the	Goal	and	Constraint	Functions	we	made	in
Step	2	and	3.

To	make	this	Algorithm,	create	a	series	of	iteration	loops	within	iteration	loops,	as	shown
below,	for	all	your	friends	to	schedule.

At	the	very	centre	of	your	procedure,	make	an	IF	statement	that	includes	ALL	your	goal
functions	and	constraints.

If	they	all	return	true,	you	have	a	solution!

//	Main	Algorithm:	Generate	and	Search

for	(v	=	0;	v	<	Anna.length;	v++)	{

for	(w	=	0;	w	<	Betty.length;	w++)	{

for	(x	=	0;	x	<	Cara.length;	x++)	{

for	(y	=	0;	y	<	Donna.length;	y++)	{

if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y])

&&	c1(Anna[v])

&&	c2(Betty[w])

&&	c3(Cara[x])

&&	c4(Donna[y])

)	{

//	===	Solution	Results	are	Here

print(“Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	”	+	Anna[v]	+	“:00”)

//	===

}

}

}

}

}

If	 you	 use	 ALL	 the	 example	 code	 in	 the	 steps	 above	 and	 compile/run,	 here’s	 what	 it
should	say:

Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	9:00

Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	10:00

Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	16:00

Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	17:00

Computing	Effort:	Generate-and-Test

This	procedure	will	create	a	LOT	of	hour	combinations	to	check.	Roughly,	it’s	the	number
of	hours	per	friend,	to	the	power	of	how	many	friends	to	schedule:

(#	of	hours)	^	(#	of	friends)

In	our	example,	we	have	hours	9	to	23,	so	that’s	15	hours	per	friend.	We	have	four	friends.
So	that’s	15^4	=	50625	possible	hour	combinations	to	check.	Don’t	worry;	we’re	just	very
lucky	that	a	computer	can	solve	this	for	us.

Javascript	01d:	Schedule	Solvers,	Faster	Version
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

If	you	think	50625	combinations	is	a	lot	to	process,	it	really	is.	Sometimes,	even	for	the
computer	systems	themselves.

But	what	if	I	told	you	that	there’s	probably	another	way?

And	what	if	there’s	a	chance	it	can	solve	the	schedule	with	less	effort?

In	 this	 alternate	 version,	 we	 remove	 each	 friend’s	 unavailable	 hours	 first,	 and	 then	we
generate	a	solution.

Steps	1	&	2:

These	steps	don’t	change.	They	follow	the	same	code	from	the	original	version.

Step	3:	Time	Constraints

Here,	we’ve	modified	the	Constraint	Functionality.

http://rextester.com
http://ideone.com
http://codepad.org

Notice	how	they’re	no	longer	functions,	but	direct	procedural	code	to	be	carried	out.	Each
friend’s	unavailable	hours	are	pushed	 into	an	array,	which	 is	used	 to	purge	 that	 friend’s
hours	until	only	the	available	hours	are	there.

We	use	this	function	to	help	us	out:

//	INPUT:	Two	arrays,	1	&	2

//	OUTPUT:	none

//	EFFECT:	deletes	any	elements	from	2nd	array	that’s	within	1st	array

function	searchDelete(array1,	array2)	{

for	(i=0;i<array1.length;i++)	{

for	(j=0;j<array2.length;j++)	{

if	(array2[j]	==	array1[i])	{

array2.splice(j,	1)

}

}

}

}

	

But	you	may	be	thinking,	why	don’t	we	just	delete	the	item	right	away?	It’s	because	once
the	 number	 has	 been	 deleted,	 the	 items	 in	 the	 array	 after	 it	 are	 shifted	 over.	 Once	 the
iteration	moves	on	to	the	next	item,	it	skips	an	item.

//	Constraint	Procedures

//	Constraint	1:	Anna	has	classes	11am	-	1:50pm

delList	=	[]

for	(a=0;a<Anna.length;a++)	{//	$Anna.each	do	|a|

x	=	Anna[a]

if	(x	>=	11	&&	x	<	14)	{

delList.push(x)

//Anna.splice(a,	1)

//delete	Anna[a]

}

}

	

//	(Delete	ALL	of	Anna’s	unavailable	hours)

searchDelete(delList,	Anna)

	

//	Constraint	2:	Betty	has	classes	noon	-	3pm,

//	then	has	dance	practice	until	4pm

delList	=	[]

for	(b=0;b<Betty.length;b++)	{

x	=	Betty[b]

if	(x	>=	12	&&	x	<	16)	{

delList.push(x)

}

}

	

//	(Delete	ALL	of	Betty’s	unavailable	hours)

searchDelete(delList,	Betty)

	

	

//	Constraint	3:	Cara	has	work	7pm	to	11pm

delList	=	[]

for	(c=0;c<Cara.length;c++)	{

x	=	Cara[c]

if	(x	>=	19	&&	x	<=	23)	{

delList.push(x)

}

}

	

//	(Delete	ALL	of	Cara’s	unavailable	hours)

searchDelete(delList,	Cara)

	

//	Constraint	4:	Donna	has	volunteer	hours	from	6pm	to	8pm,

//	and	work	8pm	to	11pm

delList	=	[]

for	(d=0;d<Donna.length;d++)	{

x	=	Donna[d]

if	(x	>=	18	&&	x	<=	22)	{

delList.push(x)

}

}

	

//	(Delete	ALL	of	Donna’s	unavailable	hours)

searchDelete(delList,	Donna)

	

Just	to	check	if	it	works,	these	lines	print	each	friend’s	hours:

print(“Hours	Free	(after	Unavailable	Hours	Removed):”)

aa	=	“Anna’s	Hours:	“

for	(a=0;a<Anna.length;a++)	{

aa	+=	Anna[a]	+	“,	“

}

print(aa)

	

bb	=	“Betty’s	Hours:	“

for	(b=0;b<Betty.length;b++)	{

bb	+=	Betty[b]	+	“,	“

}

print(bb)

	

cc	=	“Cara’s	Hours:	“

for	(c=0;c<Cara.length;c++)	{

cc	+=	Cara[c]	+	“,	“

}

print(cc)

	

dd	=	“Donna’s	Hours:	“

for	(d=0;d<Donna.length;d++)	{

dd	+=	Donna[d]	+	“,	“

}

print(dd)

	

After	running	the	code,	this	should	be	the	output:

Hours	Free	(after	Unavailable	Hours	Removed):

Anna:	9,	10,	14,	15,	16,	17,	18,	19,	20,	21,	22,	23,

Betty:	9,	10,	11,	16,	17,	18,	19,	20,	21,	22,	23,

Cara:	9,	10,	11,	12,	13,	14,	15,	16,	17,	18,

Donna:	9,	10,	11,	12,	13,	14,	15,	16,	17,	23,

	

	

Step	4:	The	Main	Algorithm

What’s	different	between	this	alternate	algorithm	and	the	original	one	is	the	IF	statement
in	the	middle.	Since	the	constraints	aren’t	functions	anymore	and	your	friends’	hours	had
their	unavailable	hours	removed,	you	only	need	to	have	the	goal	function:

//	Main	Algorithm:	Generate	and	Search

for	(v	=	0;	v	<	Anna.length;	v++)	{

for	(w	=	0;	w	<	Betty.length;	w++)	{

for	(x	=	0;	x	<	Cara.length;	x++)	{

for	(y	=	0;	y	<	Donna.length;	y++)	{

if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y]))	{

//	===	Solution	Results	are	Here

print(“Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	”	+	Anna[v]	+	“:00”)

//	===

}

}

}

}

}

	

If	you	run	the	code	overall,	they’ll	generate	the	same	hours	available:	9	&	10	am;	and	4	&
5	pm	(16:00	and	17:00,	respectively).

Computing	Effort:	Generate-and-Test

The	original	list	had	50625	hour	combinations	to	check.

In	this	alternate	version	-	after	all	unavailable	hours	were	removed	-	we	have	a	total	of	12
x	11	x	10	x	10	=	13200	versions	to	check.

The	 Constraint	 procedures	 didn’t	 take	 much	 effort	 either.	 Each	 friend’s	 array	 of	 hours
were	only	iterated	through	at	least	twice;	once	to	check	for	unavailable	hours,	and	twice	or
more	to	remove	them.

Between	both	versions,	the	difference	was	tens	of	thousands	of	combinations.

If	 it	 doesn’t	 seem	 like	 much	 now,	 if	 this	 procedure	 were	 to	 check	 HUNDREDS	 or
THOUSANDS	 of	 people	 -	 and	 their	 available	 hours	 -	 then	 different	 versions	 of	 the
procedure	can	have	HUGE	differences	in	their	efforts	spent.

So	 always	 remember:	 when	 you	 design	 algorithms	 of	 any	 sort,	 you	 have	 to	 take	 the
procedure	times	and	memory	space	into	account.	If	there’s	a	more	efficient	procedure,	use
it.

Chapter	2:	Logic	&	Reasoning
	

====	====	====	====	====

Logic	and	AI?

Boolean,	or	“True/False”	 logic	 is	widely	used	 in	 the	 field	of	Artificial	 Intelligence.	 It	 is
essentially	working	with	a	collection	of	facts	and	statements	that	are	either	true	or	false.

Think	of	the	implementations	for	AI.	You	can	use	logic-based	programming	to	have	an	AI
agent	make	better	decisions	based	on	certain	conditions.	Further,	you	can	have	an	AI	agent
diagnose	technical	problems,	and	even	have	AI	agents	take	actions	for	you	-	such	as	fetch
coffee	(if	the	robot	meets	certain	conditions,	that	is).

Why	use	Logic?

Perhaps	the	most	compelling	reason	is	how	simple,	easy,	and	natural	it	is	to	express	facts
and	 statements	 as	 true	 or	 false.	You	 can	 have	 a	 statement	 such	 as	 “We’re	 having	 steak
dinner	tonight”,	yet	it	clearly	can’t	be	represented	by	numbers.	You	can	also	try	assigning
variables	as	strings	or	objects	as	such,	but	that	will	require	more	time	and	effort.

But	as	a	boolean,	the	statement	“We’re	having	steak	dinner	tonight”	will	either	be	True	or
False.	 It’s	 that	 simple;	 either	 it’s	 true	 (we	 really	 are	 having	 steak	dinner	 tonight)	 or	 it’s
false.

An	AI	 agent	 can	 use	 several	 true/false	 statements	 and	 combine	 them	 in	 complex	ways.
And	even	so,	the	AI	agent	will	manage	the	information	much	more	easily.	This	is	because
one	true	statement	can	lead	to	another,	then	another,	resulting	in	a	conclusion,	decision,	or
even	a	course	of	action	for	the	agent.

Adding	more	Logic

We	can	even	add	more	facts	and	knowledge	easily,	if	needed.	There	can	be	one	true	fact	or
two.	Then	two	true	or	false	facts	lead	to	another	truth.	Then	another.	For	example,	we	can
say	 a	 true	 statement	 such	 as,	 “it’s	 sunny	 outside”,	 then	 another	 such	 as	 “it’s	 warm
outside”.	 These	 statements	 can	 lead	 to	 another	 truth:	 “It’s	 sunny	 AND	 warm	 outside.
Therefore,	I	will	be	running	for	a	mile”.

If	you	put	the	above	together	into	a	proposition	statement,	it	would	look	like	so:

“I	will	be	running	for	a	mile”	<—	“it’s	sunny	outside”	AND	“it’s	sunny	outside”

	

And	if	you	use	variable	labels	to	represent	the	above	statements,	it	would	look	like	so:

c	<—	b	AND	a

Debugging	with	Logic

Conversely,	you	can	use	logic	to	explain	the	root	causes	of	a	certain	fact.	If	one	statement
is	true,	 it	can	be	explained	and	justified	by	another	fact,	 then	those	facts	are	justified	by
more	 facts,	 and	 so	 on.	 Here’s	 an	 example:	 you	 realize	 that	 “the	 remote	 control	 is	 not
turning	on	the	TV.”	You	carefully	look	at	the	remote	and	realize	“its	batteries	are	dead”.
You	change	the	batteries	on	the	remote,	try	to	turn	on	the	TV,	and	realize	that	it’s	still	not
turning	on.	You	check	the	TV	power	cord	and	realize	“it’s	not	plugged	in.”	Okay,	you	plug
it	in,	try	to	turn	it	on	again.	And	this	time,	it	works.

You	can	have	the	above	as	step-by-step	logic	statements	as	so:

1)	True:	“The	remote	control	is	NOT	turning	on	the	TV.”

2)	True:	“TV	power	cord	is	NOT	plugged	in”

3)	True:	“Remote	batteries	are	NOT	charged”

AND	“TV	power	cord	is	NOT	plugged	in”

This	procedure	is	often	used	for	debugging;	if	you	find	something	that	doesn’t	work,	you
must	go	back	and	examine	the	inner	workings	to	figure	out	what’s	causing	it.

How	AI	analyzes	a	Logic-Based	System

An	AI	agent	can	analyze	a	given	system	based	on	whether	or	not	certain	conditions	are
true.	 Those	 conditions	 will	 lead	 to	 other	 conditions	 being	 true	 or	 not,	 then	 other
conditions,	and	so	on.

There	 are	 two	 general	 procedures	 to	 do	 this.	 First	 is	 a	 top-down	 diagnosis,	 where	 the
procedure	will	 check	 certain	 key	 conditions	 (most	 likely	 topmost	 statements	 that	 affect
other	conditions),	then	go	through	the	system	to	see	what	results.

The	 other	 is	 a	 bottom-up	 diagnosis,	where	 the	 procedure	will	 check	why	 a	 certain	 end
condition	is	or	isn’t	what	it	should	be.	This	is	done	by	checking	what	other	conditions	lead
it	to	be	the	way	it	is.

Javascript	02a:	Using	Logic-Based	AI
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

There	are	plenty	of	designs	and	systems	out	there.	Almost	all	of	them	can	be	represented
as	 logic-based	 systems	 -	which	 can	be	managed	by	AI	 systems	 to	diagnose,	 repair,	 and
analyze.	However,	in	order	to	have	the	AI	agent	manage	the	system	well,	its	programmer
must	understand	the	system	very	well.	The	programmer	then	has	to	represent	the	system
as	a	logical	code	very	well.

For	 example,	 the	 electric	 wiring	 system	 in	 your	 house	 can	 be	 built	 using	 a	 series	 of
true/false	 systems.	 The	 plugs	 in	 the	 wall,	 as	 well	 as	 the	 lights	 in	 your	 room,	 are	 all
true/false	switches	that	receive	their	feed	from	circuit	breakers	and	wiring	panels	-	more
sets	 of	 true/false	 switches.	 This	 design	 benefits	 home	 developers,	 as	 they	 can	 trace	 the
main	power	coming	from	outside	and	figure	out	whether	or	not	electrical	power	flows	to
all	 plugs,	 lights,	 and	 generally	 anything	 that	 needs	 electricity	 in	 the	 house.	 This	 design
also	benefits	 house	 residents;	 if	 a	 certain	 light	 or	 plug	 isn’t	working,	 the	wiring	 can	be
traced	all	the	way	to	the	outside	source	to	see	where	is	the	electricity	getting	cut	off.

http://rextester.com
http://ideone.com
http://codepad.org

Water	Flow	In	a	House	Example:

Below	 is	 a	 diagram	 for	 water	 flow	 for	 a	 1-bedroom	 suite:

There	 are	 taps	 for	 the	 bath	 tub,	 washroom	 sink,	 and	 kitchen.	 The	 laundry	 washer	 can
activate	for	a	short	time,	using	some	combination	of	hot	and	cold	water.	The	toilet	has	a
switch	that	directs	flow	to	it.	The	toilet	is	either	flushing	or	not.	Also,	there	is	a	switch	that
either	feeds	water	onto	the	boiler	system	or	not.	There	are	also	taps	labelled	A	to	H	that
stop	or	allow	water	flow.	And	lastly,	the	Main	Water	Switch	either	allows	or	stops	overall
water	flow	into	the	suite.

Whether	 or	 not	 water	 will	 flow	 from	 a	 certain	 water	 source	 will	 depend	 on	 the
connections,	taps,	and	switches	in	the	house.

Where	are	the	Switches	&	Taps?

The	first	thing	you’ll	want	to	do	is	identify	which	points	of	water	flow	in	the	system	above
can	be	toggled	on	and	off.

If	you	look	at	the	diagram,	the	switches:

-	the	pair	of	hot/cold	taps	for	the	bathtub,	washroom,	and	kitchen

-	A	pair	of	hot/cold	switches	laundry	washer

-	taps	labelled	A	-	H

-	The	Boiler	Switch

-	The	Main	Water	Switch

These	will	be	boolean	taps	that	are	either	TRUE,	FALSE,	or	dependent	on	the	true/false
state	of	another	switch/tap.

Representing	the	System	as	Logical	Statements

At	 this	 stage,	 it’s	 best	 not	 to	 code	yet.	We	need	 to	determine	how	each	of	 the	 switches
feeds	water	to	the	next	switch	-	all	the	way	to	the	end	taps	that	give	water	to	the	residents.

We	can	start	with	the	toilet.	House	residents	use	the	water	by	flushing	the	toilet.	We	can
have	a	 statement	 such	as,	“The	Toilet	can	Flush.	Therefore,	 it	 is	 connected	 to	 the	water
supply”	;	The	logic	notation	is	shown	below:

//	ToiletFlushable	<-	ToiletConnected

	

We	can	see	that	taps	A,	B,	C,	and	D	affect	its	water	flow,	as	well	as	the	Toilet	Connector
and	the	Main	Water	Switch:

//	ToiletConnected	<-	D	and	C

//	C	<-	B	and	A

//	A	<-	MainWaterSwitch

	

Now	we	 can	move	on	 to	 the	 rest	 of	 the	house.	For	 one,	 both	 the	Kitchen	Taps	 and	 the
Laundry	washer	depend	on	taps	E	and	C,	which	depend	on	taps	B,	A,	and	ultimately,	the
Main	Water	Switch.	Since	both	the	Kitchen	and	Laundry	use	hot	water,	both	of	them	also
depend	on	tap	H.

//	KitchenTap_Hot	<-	H

//	KitchenTap_Cold	<-	E	and	C

//	LaundryWasher_Hot	<-	H

//	LaundryWasher_Cold	<-	E	and	C

//	F	and	H	<-	BoilerSwitch

	

The	Washroom	and	Bathtub	 taps	each	have	a	hot	 and	cold	 tap.	The	washroom	cold	 tap
depends	on	switch	C	while	the	hot	tap	depends	on	taps	F	and	G.

//	WashroomTap_Hot	<-	F	and	G

//	WashroomTap_Cold	<-	C

And	 lastly,	 the	 bathtub	 cold	water	 tap	 depends	 on	 tap	B	 releasing	water,	while	 the	 hot
water	tap	depends	on	tap	F	to	release	water.

//	BathTubTap_Hot	<-	F

//	BathTubTap_Cold	<-	B

	

If	you	have	everything	together,	it	will	look	like	this:

//	ToiletFlushable	<-	ToiletConnected

//	ToiletConnected	<-	D	and	C

//	C	<-	B

//	B	<-	A

//	A	<-	MainWaterSwitch

//	KitchenTap_Hot	<-	H

//	KitchenTap_Cold	<-	E	and	C

//	LaundryWasher_Hot	<-	H

//	LaundryWasher_Cold	<-	E	and	C

//	BathTubTap_Hot	<-	F

//	BathTubTap_Cold	<-	B

//	WashroomTap_Hot	<-	F	and	G

//	WashroomTap_Cold	<-	C

//	F	and	H	<-	BoilerSwitch

	

Using	AI	to	Analyze	a	system

Because	we’ve	mapped	out	the	logical	links	between	facts	(namely,	we	now	know	which
taps	 and	 switches	 feed	water	 into	what)	we	 can	 start	 creating	 procedure	 to	 analyze	 and
diagnose	the	system.

We’ll	 create	 both	 top-down	 and	 bottom-up	 diagnoses	 for	 this	 system,	 explaining	 what
happens	for	each	one.

The	Top-Down	Procedure:

Based	on	how	the	system	was	mapped	out	using	boolean	logic,	we’ve	found	five	root	taps
and	switches	that	affect	the	rest	of	the	water	system	-	the	Main	Water	Switch,	the	Boiler
Switch,	 and	 taps	 D,	 E,	 and	 G.	 Therefore,	 a	 Top-down	 procedure	 can	 determine	 which
water	sources	within	the	house	are	affected.

You	can	find	the	Procedure	Code	in	the	Archive	section

	

The	Bottom-Up	Procedure:

Here,	the	same	five	root	taps	and	switches	are	global	variables	you	can	toggle	true/false.
Then	you	can	run	the	procedure	for	one	of	the	water	sources	in	the	house	to	check	whether
or	not	water	flows	through	it.

You	can	also	find	the	Procedure	Code	in	the	Archive	section

	

Chapter	3:	Environment	Representation	for	AI
====	====	====	====	====

Representation	Scheme

For	an	Artificial	Intelligence	unit	to	be	able	to	generate	data	and	solutions	for	you,	it	will
usually	need	some	sort	of	data	source.

And	sometimes,	 this	data	source	depends	on	 the	environment:	 the	AI	agent	will	need	 to
determine	and	observe	the	environment	that	it’s	focused	on.

Therefore,	the	AI	agent	will	need	to	represent	its	environment	in	data.	Afterwards,	it	can
process	that	data	with	its	own	algorithms	and	generate	solutions.

	

Javascript	03a:	Environment	Models	with	Javascript
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Modelling	the	Environment

A	 very	 crucial	 element	 in	 artificial	 intelligence	 is	 having	 a	 code	 model	 of	 its	 focused
environment.	For	your	AI	agent	to	be	able	to	create	solutions,	it	needs	to	know	about	its
environment	and	surroundings.

So	to	model	the	AI	agent’s	environment,	there	are	two	main	ways	to	do	so.

First,	you	can	either	use	the	“Traffic	Light”	principle	-	have	enumerations	of	the	possible
states	 or	 conditions	 of	 the	AI	 agent’s	 focus.	 This	 is	 a	 very	 simple	 representation	 of	 an
environment.

http://rextester.com
http://ideone.com
http://codepad.org

For	 example,	 an	AI	 agent	 can	monitor	 the	 traffic	 lights	 in	 your	 closest	 intersection	 and
determine	which	colour	the	light	will	be	(either	Red,	Yellow,	or	Green).

Use	this	for	making	very	simple	interpretations	of	whatever	the	AI	agent	focuses	on.

var	trafficLights	=	[“Red”,	“Yellow”,	“Green”]

	

Second,	you	can	describe	the	environment	features	into	detailed	data	representations.	With
Object-Oriented	 Programming,	 you	 can	 simply	 create	 class	 objects	 about	 your	 AI’s
environment	observations	 -	 including	 the	many	 little	details	 as	 class	 fields.	Use	 this	 for
more	natural,	detailed	environment	observations.

function	BeachVisit	(loc,	tide,	crowd,	temp)	{

this.location	=	loc

this.tide	=	tide

this.crowdSize	=	crowd

this.temperature	=	temp

}

	

var	b1	=	new	BeachVisit(“Santa	Monica	Beach”,

“high”,

“large”,

“81f”)

	

var	b2	=	new	BeachVisit(“Santa	Monica	Beach”,

“medium”,

“medium”,

“78f”)

	

Environment	Models	using	Data	Combinations

If	you	choose	your	AI	agent	to	describe	environments	via	Object-Oriented	Programming,
you	 can	 also	 link	 two	 objects	 from	 different	 classes.	You	 create	 a	 relationship	 between
them,	taking	note	of	how	they	are	linked	together.

For	example,	we	can	take	our	beach	visit	objects	and	link	them	together	with	photos:

//	(assume	instances	b1	-	b25	have	been	created)

//	all	beach	visits	into	an	array:

var	allBeachVisits	=	[b1,	b2,	b3,	b4,	b5]

	

	

//	(assume	instances	ph1	-	ph7	have	been	created)

//	all	photos	into	an	array:

var	allPhotos	=	[ph1,	ph2,	ph3,	ph4,	ph5,	ph6,	ph7]

	

//	Possible	Relation	Propositions:

//	#1:	PhotosTaken

//	proposition:	return	TRUE	if	photo	has	been	taken	during	Beach	Visit

function	photoTakenAtVisit(ph1,	b3)

	

//	#2:	PhotosTaken

//	proposition:	return	TRUE	if	photo	has	been	taken	at	Beach	Visit	location

function	photoTakenHere(ph3,	b5)

Javascript	03b:	Creating	a	Model	Environment
For	 the	procedure	below,	 select	 an	 IDE	of	your	 choice.	You	may	also	use	online	 IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Now	 let’s	 practice	 creating	 environments	 for	 our	 AI	 to	 examine.	 This	 will	 all	 come
together	 later	on,	 as	 an	AI	 agent	will	 have	a	 chance	 to	 explore	 its	 environment	with	 its
given	knowledge	and	abilities.

Modelling	A	House

The	 most	 simple	 way	 you	 can	 model	 an	 environment	 is	 the	 Traffic	 Light	 principle
mentioned	earlier.

If	 you	model	 your	 house	 in	 a	 simple	 enumeration-type	 data	 collection,	 you	might	 have
something	similar	below:

var	 myHouse	 =	 [“livingRoom”,	 “diningRoom”,	 “den”,	 “bathroom1”,	 “bathroom2”,
“hallway”,	“bedroom1”,	“bedroom2”,	“patio”]

	

http://rextester.com
http://ideone.com
http://codepad.org

You	may	also	model	your	house	using	Object-Oriented	Programming.	You	can	represent
every	room	in	the	house	as	a	Room	object.

//	A	Room	has:

//	-	a	name

//	-	adjacent,	connected	rooms

function	Room(name)	{

this.name	=	name

this.connected	=	[]

this.addRoom	=	function(room)	{

this.connected.push(room)

}

	

}

To	 keep	 things	 very	 simple	 for	 now,	 you	 can	 model	 a	 simple	 condo	 in	 the	 heart	 of	 a
thriving	downtown	core.

	

//	Create	5	rooms	in	a	simple	condo	in	the	City

var	kitchen	=	new	Room(“kitchen”)

var	livRM	=	new	Room(“livingRoom”)

var	dineRM	=	new	Room(“diningRoom”)

var	bd	=	new	Room(“bedroom”)

var	wr	=	new	Room(“washroom”)

	

/*

//	Connect	all	rooms	as	so:

//	<->	Washroom	<->	Bedroom	<->	livingRoom	<->	Kitchen	<->	DiningRoom	<->

*/

kitchen.connected.push(livRM,	dineRM)

livRM.connected.push(bd,	kitchen)

bd.connected.push(wr,	livRM)

wr.connected.push(dineRM,	bd)

dineRM.connected.push(kitchen,	wr)

	

	

Whichever	way	you	would	like	to	model	your	environment	is	up	to	you.

Just	keep	in	mind	that	you	will	eventually	design	the	AI	agent	that	will	correspond	to	your
model	environment.

Your	Turn

In	 Javascript	 (or	 whichever	 programming	 language	 you	 want),	 create	 a	 code	 model	 of
your	home	based	on	the	to	modelling	directions	above.	First,	do	the	“traffic	light	method”
by	creating	a	simple	enumeration	or	array	of	the	rooms	in	your	house.

Then,	 as	 Object-Oriented	 Programming,	 model	 your	 home	 by	 having	 each	 room
represented	by	Room	instances.	Then,	connect	each	room	accordingly.

Chapter	4:	Your	AI	Knowledge	&	Abilities
====	====	====	====	====

Here,	we	go	much	more	in-depth	with	an	AI	agent’s	knowledge	and	abilities.

You	will	 have	 to	 determine	 how	 your	AI	 agent	will	 receive	 its	 information	 -	 including
what	abilities	it	can	do.

There	 are	 two	 solutions	 to	 this:	 your	 AI	 agent	 either	 has	 all	 its	 knowledge	 given	 by
default;	or	it	will	scout/observe/learn	its	environment	and	gain	information	this	way.	Also,
you	can	choose	a	combination	of	both.
For	now,	we	focus	on	Default	Knowledge	and	abilities.

AI	Knowledge	by	Default

Your	AI	agent	can	receive,	by	default,	a	fixed	set	of	all	 information	it	will	ever	need.	If
you	believe	some	part	of	your	AI	agent’s	information	won’t	change,	you	may	model	your
AI	agent’s	information	this	way.

For	example,	your	AI	agent	may	be	a	self-driving	vehicle.	The	rules	of	the	road	will	stay
consistent	 in	 the	 long	term.	Also,	 its	driving	patterns	and	techniques	will	stay	consistent
too.	 The	 road	 maps	 will	 also	 stay	 consistent.	 Therefore,	 your	 self-driving	 vehicle	 can
navigate	its	way	through	a	city	and	make	its	way	from	two	points.

AI	Knowledge	by	Learning

Your	AI	agent	can	learn	and	acquire	information	about	the	environment	it’s	focused	on.	Its
algorithms	and	processes	can	also	use	this	new	information	to	create	up-to-date	results	and
solutions.	However,	your	AI	agent	will	need	a	default	set	of	knowledge	-	so	it	will	be	able
to	compute	even	if	it	doesn’t	acquire	any	new	information.	Overall,	if	you	find	that	your
AI	agent’s	environment	will	change	and	vary	over	time	(therefore	affecting	its	processes),
you	 may	 have	 your	 AI	 agent	 continuously	 learn	 about	 its	 environment	 and	 update	 its
knowledge.

For	example,	your	AI	agent	-	as	a	self-driving	vehicle	-	may	be	based	on	your	local	area.
You	 know	 that	 residences	 may	 change	 owners	 over	 time	 and	 business/shops	 will	 be
created	or	shut	down.	Also,	traffic	patterns	can	change	throughout	the	day;	there	could	be
an	accident	at	this	street,	or	that	street	will	have	heavy	gridlock	during	rush	hour.	Your	AI
agent	can	take	note	of	all	this	information	in	order	to	get	from	place	to	place	consistently
and	efficiently	-	by	taking	the	better	routes	and	even	knowing	where	to	go	(or	if	a	place	for
it	to	go	to	even	exists).

EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	1
We’ve	 included	 a	 complementary	 guide	 to	 learning	programming	 essentials	 and	 to	 help
you	become	a	better	programmer.

As	 a	 way	 to	 help	 you	 understand	 it	 much	 more	 easily,	 we’ve	 set	 it	 up	 as	 simple	 as
possible.

To	 easily	 run	 code,	 select	 an	 IDE	 (Integrated	 Development	 Environment:	 essentially
somewhere	that	you	write	and	run	code)	of	your	choice.	You	may	also	use	online	IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

1)	The	Basic	Data	Types.

Booleans:

These	are	essentially	on-off	switch	values.	In	code,	boolean	values	are	going	to	be	either
TRUE	or	FALSE.

In	Javascript,	booleans	can	only	be	in	lower-case	(i.e.	 true,	false).	Booleans	cannot	have
any	upper-case	letters	in	them	(i.e.	TRUE,	True)

Examples:

true,	false

	

Strings:

These	 are	 sets	 of	 keyboard	 characters	 -	 including	 letters,	 numbers,	 and	 other	 symbols	 -
arranged	in	some	order	 to	make	a	 text	phrase.	They	start	and	end	with	double	quotation
marks.

Examples:

”	This	is	a	String.	“

”	This	15	4	&^%$!	5tring	t00.	”

	

Numbers:

Javascript	treats	all	numbers	the	same.	They’re	all	64-bit	floating	points	(you	can	look	it
up	if	you	don’t	know	what	it	means).

But	 in	 general,	 there	 are	 two	main	 types	 of	 numbers	 in	 programming:	 Integers	 (whole
numbers)	and	Floats	(decimal-point	numbers).

Integers:

They’re	 exactly	 as	 they’re	 defined	 -	whole	 numbers	without	 any	 fractions	 or	 decimals.
Here	are	some	examples:

http://rextester.com
http://ideone.com
http://codepad.org

12

143

19999932

	

Floats:	also	called	 floating-point	numbers,	 they	 represent	 the	opposite	of	 Integers	 -	 they
are	numbers	beyond	the	decimal	point.

Example:

0.12

.12

	

2)	Variables

Remember	 in	 grade	 school	math	where	 you	 used	 letters	 such	 as	 X	 and	Y	 to	 represent
numbers?	Textbooks	had	phrases	such	as	‘let	x	=	4’	and	‘let	y	=	19’.	These	were	called
variables.

Variables	prevalently	exist	 in	programming	too.	But	 in	programming,	you	can	give	your
variables	a	name.	And	instead	of	numbers,	variables	can	be	whatever	data	you	assign	them
as.	They	can	be	strings,	booleans,	integers,	and	more.

In	Javascript,	you	can	create	variables	in	the	following	syntax:

var	(Variable	Name)	=	(Initial	Value)

Or,	alternatively:

(Variable	Name)	=	(Initial	Value)

Examples:

var	a	=	”	This	is	a	String.	“

var	b	=	122

c	=	true

d	=	0.1234

	

Think	 of	 variables	 as	 one-sentence	 statements	 in	 the	 form	of	 “(name)	 is	 a	 ____”	 .	Use
variables	to	tell	the	computer	certain	facts	about	your	code.	The	concept	is	just	as	simple
as	telling	me	that	a	fire	hydrant	is	red	or	the	sky	is	blue.

3a)	Making	Functions

If	Variables	are	sentences,	Functions	are	merely	actions	or	verbs.

In	essence,	functions	are	outlined	set	of	instructions.	They	are	carried	out	by	the	computer
once	a	 line	of	code	calls	 their	names.	For	example,	 if	 a	 line	of	code	 told	a	computer	 to

walk,	 the	 computer	 would	 follow	 the	 instructions	 to	 walk	 (i.e.	 one	 step	 forward,	 lean
forward,	step	with	other	foot,	etc.)

To	create	a	function	in	Javascript,	follow	this	syntax:

func	<Function	Name>(input1,	input2,	etc…)	{

//	write	code	here

//	use	the	next	line	if	the	function	outputs	any	data:

//	return	(variable	name	with	data	type,	or	any	data)

}

	

	

	

3b)	Using	Functions

To	call	a	function,	you	just	write	its	name,	along	with	any	inputs	(if	necessary)

However,	there	are	generally	two	places	where	you	place	a	function.

On	a	line	of	its	own:

<Function	Name>(any	required	inputs)

	

Or	wherever	its	output	data	type	is	expected:

var	(variable	name)	=	<Function	Name>(any	required	inputs)

	

Examples:

//	No	Output:

functionABC(a,	b,	c)

	

//	Outputs	an	Integer:

var	integer1	=	functionABC(a,	b,	c)

	

Just	keep	in	mind;	while	Javascript	is	a	far	more	lenient	programming	language	than	most
others,	you	should	place	your	function	where	its	output	data	is	expected.	For	example,	if
functions	n1()	and	n2()	each	output	a	single	number,	place	them	somewhere	in	your	code
that	expects	those	numbers:

var	sum	=	n1()	+	n2()

	

If	 you	 place	 functions	where	 they	 don’t	make	 sense,	 you	 can	 get	 errors	 and	 headaches
along	the	way!

	

4)	Composite	Data

This	concept	means	that	a	set	of	individual,	lesser	data	are	comprised	together	to	form	a
whole,	singular	chunk	of	data.	Put	in	the	simplest	way	possible,	if	Variables	are	sentences,
Composite	Data	are	entire	paragraphs	that	can	be	made	of	sentences.

In	Javascript,	variables	can	be	used	to	create	simple	composite	data.	You	can	create	them
in	the	following	syntax:

var	(CompositeName)	=	{

part1name:	value1,

part2name:	value2,

part3name:	value3,

}

	

These	are	called	associative	arrays.	We’ll	get	to	arrays	later	on.	But	for	now,	just	take	note
of	the	syntax.

Example:

var	c	=	{

c1:	“String	Sample”,

c2:	234,

c3:	true

}

	

	

	

	

	

	

EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	2
To	 easily	 run	 code,	 select	 an	 IDE	 (Integrated	 Development	 Environment:	 essentially
somewhere	that	you	write	and	run	code)	of	your	choice.	You	may	also	use	online	IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Part	5a:	Arrays	in	Javascript

Arrays	 are	 a	 sequenced	 list	 of	 a	 certain	 data	 type.	 Those	 data	 types	 can	 be	 simple	 or
compound	data.

To	set	up	an	array,	follow	this	syntax:

var	(variable	name)	=	[]

	

Or:

(variable	name)	=	[]

	

	

You	can	also	access	individual	items	based	on	that	item’s	position	within	the	array.	0	is	the
first	item;	the	array	size	minus	one	is	the	last	item.

(In	programming,	the	very	1st	number	is	often	0.	Remember	this!)

For	example,	you	would	get	the	first	item	of	an	array	like	so:

someArray[0]

	

And	you	would	get	the	last	item	of	an	array	like	so:

//	an	Array	with	room	for	10	items:

someArray[9]

	

Part	5b:	Iteration

To	process	each	item	in	an	array,	use	these	lines:

for	(var	x	in	<arrayName>)	{

//	every	time	you	mention	‘x’	in	this	code,

//	it	will	be	applied	to	every	item	within	the	array

}

	

http://rextester.com
http://ideone.com
http://codepad.org

For	example,	this	would	print	out	1	to	5:

var	a	=	[1,2,3,4,5]

for	(var	x	in	a)	{

print(a[x])

}

Alternatively,	 you	 can	 also	 iterate	 them	 the	 traditional	 way.	 Many	 other	 programming
languages

for	(var	x=0;	x	<	arrayName.length;x++)	{

//	every	time	you	mention	‘x’	in	this	code,

//	it	will	be	applied	to	every	item	within	the	array

}

	

Again,	this	would	print	out	1	to	5:

var	a	=	[1,2,3,4,5]

for	(var	x=0;	x	<	a.length;x++)	{

print(a[x])

}

	

	

Part	6:	Logic	&	Operators

There	are	three	Basic	Logic	Operators:	AND,	OR.	and	NOT.

AND	and	OR	are	used	to	compare	two	or	more	statements	that	are	either	True	or	False.
They	are	used	in	the	form	of	(x	AND	y)	or	(x	OR	y)

AND	is	true	if	all	items	between	it	is	true.	OR	is	true	if	either	one	of	its	items	is	true.

NOT	returns	 the	opposite	of	a	single	statement	 it’s	set	 to;	 so	 ‘NOT	true’	would	be	 false
and	‘NOT	False’	would	be	true.

In	Javascript,	here	are	how	the	operators	are:

AND	operator:	&&

OR	operator:	||

NOT	operator:	!<boolean>

Examples:

//	print	false:

print(true	&&	false)

//	print	true:

print(true	||	false)

//	print	false:

print(!true)

	

Part	7:	IF-ELSE	Statements

The	concept	is	simple:	There’s	a	boolean	statement	to	check.	If	it’s	true,	do	the	procedure
after	the	IF	line.	If	it’s	false,	do	the	procedure	after	the	ELSE	line.

if	(<insert	something	that	would	output	a	boolean>)	{

//	code	that	happens	if	true

}

else	{

//	code	that	happens	if	false

}

	

Note	that	the	conditional	procedures	are	in	between	the	curly	brackets	‘{	}’.

an	IF	statement	also	doesn’t	need	an	ELSE	statement;	it	can	be	by	itself:

if	(<insert	something	that	would	output	a	boolean>)	{

//	code	that	happens	if	true

}

	

Examples:

//	IF-ELSE	together:

if	(age	>	20)	{

drinkingAge	=	true

}

else	{

drinkingAge	=	false

}

//	IF-statement	alone:

if	happy()	and	knowIt()	{

hands.clap()

}

EASIEST	WAY	TO	LEARN	OBJECT-ORIENTED
We’ve	also	 included	a	complementary	guide	 to	 learning	Object-Oriented	programming	-
one	of	the	most	popular	types	of	programming	in	use	today.

To	 easily	 run	 code,	 select	 an	 IDE	 (Integrated	 Development	 Environment:	 essentially
somewhere	that	you	write	and	run	code)	of	your	choice.	You	may	also	use	online	IDE’s
such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

1a)	Object	Oriented	Programming

In	the	world	of	programming,	you	will	hear	this	term	very	very	often.

This	is	because	Object-Oriented	Programming	(OOP	for	short)	is	one	of	the	most	widely-
used	programming	styles	out	there.

In	other	programming	languages,	Classes,	a	form	of	composite	data,	are	used	to	group	up
smaller	data	into	a	larger	whole.

The	main	point	of	Object-Oriented	Programming	is	this:

In	object-oriented	programming,	you	create	‘copies’	of	those	classes	you’ve	designed.	In
even	simpler	 terms,	A	Class	 is	a	data	 structure	 that	acts	as	“blueprints”.	Those	“created
copies”	you’ve	made,	based	on	that	class	‘blueprints’,	are	called	Objects.

But	why?	Because	as	you	 learn	more	and	more	about	programming,	you	will	encounter
the	notion	of	Abstraction	-	applying	a	general	idea	across	multiple	times	and	scenarios	-
ultimately	saving	time	and	effort,	while	greatly	reducing	confusion	and	frustration.

Re-coding	 the	 same	 composite	 data	 over	 and	 over	 would	 lead	 to	 more	 effort	 and
frustration,	whereas	re-using	the	same	idea	leads	to	efficiency	and	consistency.

2)	Classes	&	Constructors

Constructors	are	 special	class	methods.	Based	on	 the	classes	 they	belong	 to,	 they	create
Objects	for	you.

In	 Javascript,	 functions	 are	 used	 as	 a	 combined	 class	 and	 constructor.	When	 defining	 a
class,	you	define	its	constructor	function	at	the	same	time.

To	define	a	class	-	as	well	as	its	constructor	-	in	Javascript,	use	the	following	syntax:

var	ClassName	=	function(<any	inputs>)	{

//	insert	methods,	fields,	and	other	code	here

}

	

Also,	the	constructor	is	simply	your	class	name	as	a	function.	To	create	a	data	object	based
on	a	certain	class,	follow	this	syntax:

var	<variable	name>	=	new	Classname()

http://rextester.com
http://ideone.com
http://codepad.org

You’re	essentially	setting	some	other	variable	as	a	data	object.

Example:

var	House	=	function()	{

//	insert	code	here

}

	

var	h	=	new	House()

	

To	call	a	class	object,	simply	refer	to	it:

Example:

let	h	=	House()

var	MyHouse	=	h

	

3)	OOP	Terminology

Variables	 and	 Functions	 can	 take	 on	 new	 roles	 in	OOP.	 They	 can	 be	 called	 Fields	 and
Methods,	respectively.	They	can	also	be	called	Members	functions	or	Member	Variables.
In	 some	 cases,	 it’s	 really	 up	 to	 you	 to	 use	which	 names	 you	want,	 just	 as	 long	 as	 you
understand	what	other	programmers	mean	when	they	use	these	terms.

Fields	represent	variables	in	OOP	because,	just	like	fields	in	any	entry	form,	data	objects
can	have	fields	with	as	many	different	values	as	you	can	think	of.

Think	 of	 fields	 as	 a	 certain	 attribute	 for	 an	 object.	 Each	 object	 might	 have	 different
attributes	from	each	other:

var	Cat	=	function()	{

var	color	=	“green”

}

	

//	these	cats	are	objects	based	on	Cat	class:

catA.color	=	“white”

catB.color	=	“grey”

catC.color	=	“orange”

	

Methods	 represent	 the	 functions	 that	 Objects	 have.	 Think	 of	Methods	 as	 ‘actions’	 and
‘behaviours’	that	objects	do.

To	create	a	class	Method	for	a	particular	Class,	follow	this	syntax:

<Class	Name>.prototype.<Method	Name>	=	function()	{

//	some	code

}

Example:

Cat.prototype.meow	=	function()	{

//	some	code

}

	

Moving	 onwards,	 in	 OOP	 you	 need	 to	 access	 the	 method	 from	 an	 object	 itself.	 For
example,	if	we	create	a	few	Cat	objects	based	on	some	Cat	Class,	each	Cat	object	would
have	all	the	methods	defined	on	the	Cat	Class:

class	Cat{

//	some	code

}

	

Cat.prototype.meow	=	function()	{

//	some	code

}

	

//	these	cats	are	objects	based	on	Cat	class:

catA.meow()

catB.meow()

catC.meow()

	

Lastly,	 remember	 that	Methods	 are	 still	 functions	 at	 heart.	You	 still	 place	 them	 in	 code
where	you	expect	a	function	output’s	data	type	to	be.

Example:

//	Outputs	a	String

Fox.prototype.say	=	function()	{

return	“ringdingdingding”

}

	

var	whatDoesTheFoxSay	=	someFox.say()

print(whatDoesTheFoxSay)

	

Archive	Javascript-A1a:	Solving	Schedule	Problems
AI	to	Solve	Scheduling	Problems

Using	Generate-and-test	Algorithm

Copy	and	paste	the	code	below	to	an	IDE	of	your	choice:

//	=======	======	========

/*

//	Archive	Javascript-A1

//	Artificial	Intelligence	for	solving	Schedule	Problems

//

//	There’s	Four	people:	Anna,	Betty,	Cara,	&	Donna

//	1st	Goal:	Find	out	what	times	everyone	is	available	to	meet	together	for	Coffee

//

//	Constraint	1:	Anna	has	classes	11am	-	1:50pm

//	Constraint	2:	Betty	has	classes	noon	-	3:50pm

//	Constraint	3:	Cara	has	work	7pm	to	11pm

//	Constraint	4:	Donna	has	work	6pm	to	10pm

*/

	

var	Anna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Betty	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Cara	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Donna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	

//	Goal	1:	Have	an	hour	of	the	day	when	EVERYONE	is	available	to	meet

//	INPUT:	Four	Integers,	representing	Hours

//	OUTPUT:	Boolean

//	EFFECT:	return	True	if	all	input	hours	are	equal

function	g1(a,	b,	c,	d)	{

return	(a	==	b	&&	b	==	c	&&	c	==	d)

}

	

	

//	Constraint	Functions

//	INPUT:	an	Integer,	representing	a	friend’s	Hour

//	OUTPUT:	Boolean

//	EFFECT:	return	True	if	the	hour	satisfies	the	time	constraints

	

//	Constraint	1:	Anna	has	classes	11am	-	1:50pm

function	c1(a)	{

return	(a	<	11	||	a	>	13)

}

	

	

//	Constraint	2:	Betty	has	classes	noon	-	3pm,

//	then	has	dance	practice	until	4pm

function	c2(b)	{

return	(b	<	12	||	b	>=	16)

}

	

//	Constraint	3:	Cara	has	work	7pm	to	11pm

function	c3(c)	{

return	(c	<	19	||	c	>	23)

}

	

//	Constraint	4:	Diana	has	volunteer	hours	from	6pm	to	8pm,

//	and	work	8pm	to	11pm

function	c4(d)	{

return	(d	<	18	||	d	>	22)

}

	

	

//	Main	Algorithm:	Generate	and	Search

for	(v	=	0;	v	<	Anna.length;	v++)	{

for	(w	=	0;	w	<	Betty.length;	w++)	{

for	(x	=	0;	x	<	Cara.length;	x++)	{

for	(y	=	0;	y	<	Donna.length;	y++)	{

if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y])

&&	c1(Anna[v])

&&	c2(Betty[w])

&&	c3(Cara[x])

&&	c4(Donna[y])

)	{

//	===	Solution	Results	are	Here

print(“Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	”	+	Anna[v]	+	“:00”)

//	===

}

}

}

}

}

//	=======	======	========

Archive	Javascript-A1b:	Solving	Schedule	Problems
AI	to	Solve	Scheduling	Problems

Using	Generate-and-test	Algorithm

Alternate	Version:	For	Each	Friend	to	schedule,	Remove	Unavailable	Hours

Copy	and	paste	the	code	below	to	an	IDE	of	your	choice:

//	=======	======	========

/*

//	Archive	Javascript-A1

//	Artificial	Intelligence	for	solving	Schedule	Problems

//

//	There’s	Four	people:	Anna,	Betty,	Cara,	&	Donna

//	1st	Goal:	Find	out	what	times	everyone	is	available	to	meet	together	for	Coffee

//

//	Constraint	1:	Anna	has	classes	11am	-	1:50pm

//	Constraint	2:	Betty	has	classes	noon	-	3:50pm

//	Constraint	3:	Cara	has	work	7pm	to	11pm

//	Constraint	4:	Donna	has	work	6pm	to	10pm

*/

	

//	Each	person’s	waking	hours,	as	a	24-hr	clock,	are	represented	by	Integers

//For	example:	15	would	equate	to	15:00,	or	3am

//	Everyone	is	generally	free	after	11am	and	before	Midnight.

var	Anna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Betty	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Cara	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

var	Donna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	

//	Goal	1:	Have	an	hour	of	the	day	when	EVERYONE	is	available	to	meet

//	INPUT:	Four	Integers,	representing	Hours

//	OUTPUT:	Boolean

//	EFFECT:	return	True	if	all	input	hours	are	equal

function	g1(a,	b,	c,	d)	{

return	(a	==	b	&&	b	==	c	&&	c	==	d)

}

//	INPUT:	Two	arrays,	1	&	2

//	OUTPUT:	none

//	EFFECT:	deletes	any	elements	from	2nd	array	that’s	within	1st	array

function	searchDelete(array1,	array2)	{

for	(i=0;i<array1.length;i++)	{

for	(j=0;j<array2.length;j++)	{

if	(array2[j]	==	array1[i])	{

array2.splice(j,	1)

}

}

}

}

	

//	Constraint	Procedures

//	Constraint	1:	Anna	has	classes	11am	-	1:50pm

delList	=	[]

for	(a=0;a<Anna.length;a++)	{//	$Anna.each	do	|a|

x	=	Anna[a]

if	(x	>=	11	&&	x	<	14)	{

delList.push(x)

//Anna.splice(a,	1)

//delete	Anna[a]

}

}

	

//	(Delete	ALL	of	Anna’s	unavailable	hours)

searchDelete(delList,	Anna)

	

	

	

//	Constraint	2:	Betty	has	classes	noon	-	3pm,

//	then	has	dance	practice	until	4pm

delList	=	[]

for	(b=0;b<Betty.length;b++)	{

x	=	Betty[b]

if	(x	>=	12	&&	x	<	16)	{

delList.push(x)

}

}

	

//	(Delete	ALL	of	Betty’s	unavailable	hours)

searchDelete(delList,	Betty)

	

	

//	Constraint	3:	Cara	has	work	7pm	to	11pm

delList	=	[]

for	(c=0;c<Cara.length;c++)	{

x	=	Cara[c]

if	(x	>=	19	&&	x	<=	23)	{

delList.push(x)

}

}

	

//	(Delete	ALL	of	Cara’s	unavailable	hours)

searchDelete(delList,	Cara)

	

//	Constraint	4:	Donna	has	volunteer	hours	from	6pm	to	8pm,

//	and	work	8pm	to	11pm

delList	=	[]

for	(d=0;d<Donna.length;d++)	{

x	=	Donna[d]

if	(x	>=	18	&&	x	<=	22)	{

delList.push(x)

}

}

	

//	(Delete	ALL	of	Donna’s	unavailable	hours)

searchDelete(delList,	Donna)

	

	

	

//	Main	Algorithm:	Generate	and	Search

for	(v	=	0;	v	<	Anna.length;	v++)	{

for	(w	=	0;	w	<	Betty.length;	w++)	{

for	(x	=	0;	x	<	Cara.length;	x++)	{

for	(y	=	0;	y	<	Donna.length;	y++)	{

if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y]))	{

//	===	Solution	Results	are	Here

print(“Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	”	+	Anna[v]	+	“:00”)

//	===

}

}

}

}

}

//	=======	======	========

Archive	Javascript-A2a:	Top	Down	Diagnosis
Top-Down	Diagnosis	of	a	Logic-Based	System

Example	code	for	the	Water	Flow	System.

Note:	In	the	code	comments,	you	can	find	the	original	logic	statements	from	the	system.

Copy	and	paste	the	code	below	to	an	IDE	of	your	choice.

Afterwards,	call	the	Function	topDownDiagnostic()	and	see	what	happens!

//	=======	======	========

/*

//	INPUTS:

//	-	a	Boolean,	for	the	Main	Water	Switch

//	-	a	Boolean,	for	the	Boiler	Switch

//	-	three	more	Booleans,	for	each	of	taps	D,	E,	and	G

//	OUTPUTS:	none

//	EFFECT:	Run	the	Diagnostics	to	check	if	water	can	flow	through

//	the	washrooms,	kitchen,	and	laundry	washer

*/

function	topDownDiagnostic	(mainwaterStatus,	boilerStatus,	dStatus,	eStatus,	gStatus){

var	tapA

var	tapB

var	tapC

var	tapF

var	tapH

var	toiletConnected

var	toiletFlushable

var	kitchenTap_Hot

//	A	<-	MainWaterSwitch

if	(mainwaterStatus)	{	tapA	=	true	}

//	B	<-	A

if	(tapA)	{

tapB	=	true

print(“Tap	A	is	on.	“)

}

//	C	<-	B

if	(tapB)	{	tapC	=	true

print(“Tap	B	is	on.	“)

}

	

//	ToiletConnected	<-	D	and	C

if	(dStatus	&&	tapC)	{

toiletConnected	=	true

print(“Taps	D	and	C	are	on.	“)

}

//	ToiletFlushable	<-	ToiletConnected

if	(toiletConnected)	{

toiletFlushable	=	true

print(“Toilet	is	Flushable.”)

}

else	{

print(“Toilet	Won’t	Flush.”)

}

//	F	and	H	<-	BoilerSwitch

if	(boilerStatus)	{

tapF	=	true

tapH	=	true

}

	

//	KitchenTap_Hot	<-	H

if	(tapH)	{	kitchenTap_Hot	=	true

print(“Tap	H	is	on.”)

print(“Hot	water	can	flow	through	Kitchen	Tap.”)

}

else	{

print(“There’s	no	hot	water	from	the	Kitchen	Tap.”)

}

//	KitchenTap_Cold	<-	E	and	C

if	(eStatus	&&	tapC)	{

print(“Cold	water	can	flow	through	Kitchen	Tap.”)

}

else	{

print(“There’s	no	cold	water	from	the	Kitchen	Tap.”)

}

//	WashroomTap_Hot	<-	F	and	G

if	(gStatus	&&	tapF)	{

print(“Tap	F	is	on.”)

print(“Hot	water	can	flow	through	Washroom	Tap.”)

}

else	{

print(“There’s	no	hot	water	from	the	Washroom	Tap.”)

}

	

//	WashroomTap_Cold	<-	C

if	(tapC)	{

print(“Cold	water	can	flow	through	Washroom	Tap.”)

}

else	{

print(“There’s	no	cold	water	from	the	Washroom	Tap.”)

}

//	LaundryWasher_Hot	<-	H

if	(tapH)	{

print(“The	Laundry	washer	has	hot	water.”)

}

else	{

print(“There’s	no	hot	water	going	into	the	Laundry	Washer.”)

}

//	LaundryWasher_Cold	<-	E	and	C

if	(eStatus	&&	tapC)	{

print(“The	Laundry	washer	has	cold	water.”)

}

else	{

print(“There’s	no	cold	water	going	into	the	Laundry	Washer.”)	}

	

//	BathTubTap_Hot	<-	F

if	(tapF){

print(“Hot	water	can	flow	through	the	Bath	Tub	Tap.”)	}

else	{

print(“There’s	no	hot	water	from	the	Bath	Tub	Tap.”)	}

//	BathTubTap_Cold	<-	B

if	(tapB){

print(“Cold	water	can	flow	through	the	Bath	Tub	Tap.”)	}

else	{

print(“There’s	no	cold	water	from	the	Bath	Tub	Tap.”)	}

}

	

	

Archive	Javascript-A2b:	Bottom	Up	Diagnosis
Bottom-Up	Diagnosis	of	a	Logic-Based	System

Example	code	for	the	Water	Flow	System.

Note:	In	the	code	comments,	you	can	find	the	original	logic	statements	from	the	system.

Copy	and	paste	the	code	below	to	an	IDE	of	your	choice.

Afterwards,	 toggle	 any	 global	 variable	 between	 true/false,	 then	 call	 the	 Function
BottomUpDiagnostic()	and	see	what	happens!

	

//	=======	======	========

/*

//	Global	variables	for	independent	switches/taps	below.

//	Switch	them	around	between	true/false,

//	then	run	the	Diagnostic	on	any	water	source.

*/

var	mainWaterSwitch	=	true

var	boilerSwitch	=	true

var	tapD	=	true

var	tapE	=	true

var	tapG	=	true

	

/*

//	INPUTS:	Integers	1-5:

//	This	determines	which	water	source	in	the	house	the	Diagnostic	will	check:

//	1:	Toilet

//	2:	Washroom	Taps

//	3:	Bath	Tub	Taps

//	4:	Kitchen	Taps

//	5:	Washing	Machine	Water	Feed

//	OUTPUTS:	none

//	EFFECT:	Run	the	Diagnostics	to	check	if	water	can	feed	to	the

//	Chosen	water	source	in	the	house

*/

function	botUpDiagnostic	(mode)	{

var	tapA

var	tapB

var	tapC

var	tapF

var	tapH

var	kitchenTap_Hot

//	A	<-	MainWaterSwitch

if	(mainWaterSwitch)	{

tapA	=	true

print(“Main	Water	Switch	is	On.”)	}

//	B	<-	A

if	(tapA)	{

tapB	=	true

print(“Tap	A	is	on.	“)	}

//	C	<-	B

if	(tapB)	{

tapC	=	true

print(“Tap	B	is	on.	“)	}

if	(mode	==	1)	{

//	ToiletConnected	<-	D	and	C

if	(tapD	&&	tapC)	{	toiletConnected	=	true

print(“Tap	C	is	on.	“)

print(“Tap	D	is	on.	“)

}

//	ToiletFlushable	<-	ToiletConnected

if	(toiletConnected)	{

toiletFlushable	=	true

print(“Toilet	is	Flushable.”)

}

else	{

print(“Toilet	Won’t	Flush.”)

}

return

}

//	F	and	H	<-	BoilerSwitch

if	(boilerSwitch)	{

tapF	=	true

tapH	=	true

print(“Boiler	Switch	is	On.”)	}

	

if	(mode	==	2)	{

//	WashroomTap_Hot	<-	F	and	G

if	(tapG	&&	tapF)	{

print(“Tap	F	is	on.”)

print(“Hot	water	can	flow	through	Washroom	Tap.”)

}

else	{

print(“There’s	no	hot	water	from	the	Washroom	Tap.”)

}

//	WashroomTap_Cold	<-	C

if	(tapC)	{

print(“Tap	C	is	on.	“)

print(“Cold	water	can	flow	through	Washroom	Tap.”)

}

else	{

print(“There’s	no	cold	water	from	the	Washroom	Tap.”)

}

return

}

	

if	(mode	==	3)	{

//	BathTubTap_Hot	<-	F

if	(tapF)	{

print(“Tap	F	is	on.”)

print(“Hot	water	can	flow	through	the	Bath	Tub	Tap.”)

}

else	{

print(“There’s	no	hot	water	from	the	Bath	Tub	Tap.”)

}

//	BathTubTap_Cold	<-	B

if	(tapB)	{

print(“Cold	water	can	flow	through	the	Bath	Tub	Tap.”)

}

else	{

print(“There’s	no	cold	water	from	the	Bath	Tub	Tap.”)

}

return

}

if	(mode	==	4)	{

//	KitchenTap_Hot	<-	H

if	(tapH)	{

kitchenTap_Hot	=	true

print(“Tap	H	is	on.”)

print(“Hot	water	can	flow	through	Kitchen	Tap.”)

}

else	{

print(“There’s	no	hot	water	from	the	Kitchen	Tap.”)

}

//	KitchenTap_Cold	<-	E	and	C

if	(tapE	&&	tapC)	{

print(“Tap	C	is	on.”)

print(“Tap	E	is	on.”)

print(“Cold	water	can	flow	through	Kitchen	Tap.”)

}

else	{

print(“There’s	no	cold	water	from	the	Kitchen	Tap.”)

}

return

}

if	(mode	==	5){

//	LaundryWasher_Hot	<-	H

if	(tapH){

print(“Tap	H	is	on.”)

print(“The	Laundry	washer	has	hot	water.”)

}

else	{

print(“There’s	no	hot	water	going	into	the	Laundry	Washer.”)

}

//	LaundryWasher_Cold	<-	E	and	C

if	(tapE	&&	tapC)	{

print(“Tap	C	is	on.”)

print(“Tap	E	is	on.”)

print(“The	Laundry	washer	has	cold	water.”)

}

else	{

print(“There’s	no	cold	water	going	into	the	Laundry	Washer.”)

}

return

}

}

	

//	=======	======	========

	Preface: JAVASCRIPT as Artificial Intelligence
	Introduction
	Chapter 1: Algorithms: The Essentials
	Javascript 01a: using AI to Solve Complex Time Scheduling
	Javascript 01b: The Generate-And-Test General Algorithm
	Javascript 01c: The Procedure: Schedule Solvers
	Javascript 01d: Schedule Solvers, Faster Version
	Chapter 2: Logic & Reasoning
	Javascript 02a: Using Logic-Based AI
	Chapter 3: Environment Representation for AI
	Javascript 03a: Environment Models with Javascript
	Javascript 03b: Creating a Model Environment
	Chapter 4: Your AI Knowledge & Abilities
	EASIEST WAY TO LEARN JAVASCRIPT, Part 1
	EASIEST WAY TO LEARN JAVASCRIPT, Part 2
	EASIEST WAY TO LEARN OBJECT-ORIENTED
	Archive Javascript-A1a: Solving Schedule Problems
	Archive Javascript-A1b: Solving Schedule Problems
	Archive Javascript-A2a: Top Down Diagnosis
	Archive Javascript-A2b: Bottom Up Diagnosis

