

CodeWell	Academy()
presents:

	
Artificial	Intelligence

Made	Easy,	w/	Javascript	Programming

	

Learn	to	Create	your		Problem	Solving		Algorithms!
	

TODAY!	w/	Machine	Learning	&	Data	Structures
	

	
	

Artificial	Intelligence	Series
	
©	Copyright	2016	-	All	rights	reserved.

	
In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	
or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	
not	allowed	unless	with	written	permission	from	the	publisher.	All	rights	reserved.	

	
The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,	in	terms	of	
inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions	contained	within	is	
the	solitary	and	utter	responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal	
responsibility	or	blame	be	held	against	the	publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	
the	information	herein,	either	directly	or	indirectly.	

	
Respective	authors	own	all	copyrights	not	held	by	the	publisher.	

	
Legal	Notice:

	
This	ebook	is	copyright	protected.	This	is	only	for	personal	use.	You	cannot	amend,	distribute,	sell,	use,	
quote	or	paraphrase	any	part	or	the	content	within	this	ebook	without	the	consent	of	the	author	or	copyright	
owner.	Legal	action	will	be	pursued	if	this	is	breached.	

	
Disclaimer	Notice:

	
Please	note	the	information	contained	within	this	document	is	for	educational	and	entertainment	purposes	
only.	Every	attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	
warranties	of	any	kind	are	expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	

rendering	of	legal,	financial,	medical	or	professional	advice.

	
By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we	responsible	for	any	losses,	
direct	or	indirect,	which	are	incurred	as	a	result	of	the	use	of	information	contained	within	this	document,	
including,	but	not	limited	to,	—errors,	omissions,	or	inaccuracies.

	
	

	

	
Table	of	Contents

	
Preface:	JAVASCRIPT	as	Artificial	Intelligence	

	
Introduction

	
Chapter	1:	Algorithms:	The	Essentials

	
Javascript	01a:	using	AI	to	Solve	Complex	Time	Scheduling

	
Javascript	01b:	The	Generate-And-Test	General	Algorithm

	
Javascript	01c:	The	Procedure:	Schedule	Solvers

	
Javascript	01d:	Schedule	Solvers,	Faster	Version

	
Chapter	2:	Logic	&	Reasoning

	
Javascript	02a:	Using	Logic-Based	AI

	
Chapter	3:	Environment	Representation	for	AI

	
Javascript	03a:	Environment	Models	with	Javascript

	
Javascript	03b:	Creating	a	Model	Environment

	

	
Chapter	4:	Your	AI	Knowledge	&	Abilities

	
Chapter	5:	How	to	Create	a	Problem-Solving	AI

	
Javascript	05a:	Fundamental	Frontier	Search	Algorithm

	
Javascript	05b:	Using	Frontier	Search

	
Chapter	6:	Search	Strategies

	
Chapter	6.1:	Depth-First	Search

	
Chapter	6.2:	Breadth-First	Search

	
Javascript	06:	Frontier	Search	as	DFS	and	BFS	

	
Chapter	6.3:	Lowest-Cost	First	Search	

	
Chapter	6.4:	Heuristic	Search	

	
EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	1

	
EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	2

	
EASIEST	WAY	TO	LEARN	OBJECT-ORIENTED

	
Archive	Javascript-A1a:	Solving	Schedule	Problems

	
Archive	Javascript-A1b:	Solving	Schedule	Problems

	
Archive	Javascript-A2a:	Top	Down	Diagnosis

	
Archive	Javascript-A2b:	Bottom	Up	Diagnosis

	
Archive	Javascript	A3.1:	Frontier	Search	Algorithm	

	
Archive	Javascript	A3.2:	Bigger	Search	Graph

	
	

	

Preface:	JAVASCRIPT	as	Artificial	Intelligence	

	

=========================	======

	
Javascript	has	been	making	waves	lately	as	one	of	the	main	Web	Technologies
(HTML,	CSS,	and	Javascript).	Some	websites	and	web	apps	are	fully	embracing
Javascript	 technology	 to	 carry	 out	most	web	 tasks.	The	 best	 part	 of	 all	 is	 that
Javascript	 is	 a	 client-side	 language,	 meaning	 that	 your	 computer	 or	 mobile
device	 does	 the	 computation	 -	 and	 not	 the	Server	 itself.	 So	 this	 gives	 apps	 an
opportunity	stay	usable	even	when	servers	aren’t.

	
In	the	future,	Javascript	may	be	a	first	choice	for	multi-platform	apps	due	to	its
universality	and	flexibility.	Therefore,	it	will	be	worth	your	while	to	learn	more
advanced	concepts	using	Javascript	code.

	
How	you’ll	progress	through	this	book

	
The	goal	of	this	book	is	to	expand	your	programming	skills	onto	a	new	paradigm
-	namely,	the	realm	of	artificial	intelligence.	You	may	be	a	skilled	programmer
hoping	to	learn	new	skills,	or	someone	new	to	programming,	or	even	both.

	

	
No	 matter	 what	 your	 programming	 skill	 level	 is,	 we	 hope	 you	 find	 some
intriguing	information	within	these	pages.

	
You’ll	 see	 first-hand	how	algorithm	procedures	within	AI	make	 decisions	 and
generate	answers,	given	sets	of	data.

	
First,	we’ll	go	over	Constraint	Satisfaction.	Ever	had	schedule	a	night	out	with
friends,	but	had	to	consider	their	availability	throughout	a	day?	Of	course,	you’d
ask	what	times	they’re	available.	Now,	try	scheduling	a	meeting	with	thousands
of	people.	That’ll	be	quite	hard	to	do	alone,	wouldn’t	it?

	
Next,	we’ll	go	over	Logic-Based	Systems.	Here,	we	make	an	entire	logic-based
system	with	 interconnected	 statements,	where	 one	 logical	 fact	 affects	 another.
Once	we	 have	 the	 system	 in	 place,	we	 can	 create	 procedures	 -	which	AI	will
eventually	use	-	 to	check,	analyze,	and	diagnose	 the	system	to	see	 if	 it	 runs	as
intended.

	
Then,	we’ll	 go	over	 perhaps	one	of	 the	most	 important	 algorithms	 in	 artificial
intelligence	-	the	Search	Algorithm.	We’ll	analyze	its	procedure	carefully,	giving
you	 a	 great	 opportunity	 to	 apply	 it	 step-by-step.	 Afterwards,	 we’ll	 discuss	 its
variants,	 including	 their	 strengths,	 weaknesses,	 and	 best	 applications.	 You’ll
discover	 the	 subtle	 little	 variances	 in	 the	 algorithm	 that	 make	 a	 tremendous
impact	on	its	procedure	-	and	results.

	
In	essence,	Search	Algorithms	can	be	an	artificial	intelligence	agent’s	model	of
thought,	 generating	 a	 process	 to	 achieve	 a	 goal	 given	 the	 resources	 it	 has.	 To
give	you	an	 idea	of	how	powerful	search	algorithms	can	be,	you	can	use	 them
not	just	to	search	your	records,	but	to	to	solve	puzzles	and	riddles	for	you.

	
A	Quick	Start

	
If	all	this	sounds	intimidating	to	you,	don’t	worry.

	
Included	is	a	quick	kit	to	cover	Basic	Javascript	Programming.	You’ll	find	what
you	need	to	get	a	good	start	in	programming	Javascript.	Then,	you’ll	be	prepared
to	use	the	many	tools	and	components	of	AI	throughout	the	book.

	

Introduction

	

====	====	====	====	====

	
Logic.	 Rationality.	 Reasoning.	 Thought.	 Analysis.	 Calculation.	 Decision-
making.

	
All	 this	 is	 within	 the	 mind	 of	 a	 human	 being,	 correct?	 Humanity	 has	 been
blessed	with	the	ability	to	think	and	act	so	intelligently.

	
Then	came	Machine.	Humanity	has	also	blessed	it	the	gift	of	intelligence.

	
And	in	today’s	world,	you	can	see	firsthand	what	an	intelligent	mind	can	do	for
you;	carry	a	conversation,	give	you	directions	to	a	certain	location,	play	a	video
game	as	an	opponent,	and	so	on.

	
In	essence,	only	our	imaginations	will	limit	us	from	what’s	truly	possible

	

	
An	Artificial	Intelligence	Agent

	
In	 terms	 of	 Artificial	 Intelligence,	 an	 agent	 can	 be	 anything	 that,	 given	 an
environment	 to	 focus	 on,	 can	 think	 intelligently	 and	 act	 independently.	 It	 can
continue	 observing	 and	 learning	 through	 experience.	 It	 can	 calculate	 and
independently	decide	the	best	course	of	action,	whether	it	has	perfect	knowledge
of	the	situation	or	just	a	part	of	it.	It	can	also	take	note	and	adapt	to	a	changing
environment.

	
So	you	might	wonder,	how	has	mankind	ever	developed	something	so	complex?

	
Well,	it’s	not	as	complex	as	you	think.

	
If	you	understand	the	process	of	how	a	computer	can	observe,	learn,	and	expand
its	 knowledge	 -	 and	how	 it	 can	 take	 all	 this	 information	 and	 come	up	with	 an
ideal	solution	or	decision	-	then	an	artificially	created	mind	won’t	be	as	complex
as	you	think.

	
Sometimes,	it	can	take	as	little	as	a	few	lines	of	code	to	have	a	computer	come
up	 with	 solutions	 for	 you.	 Sometimes	 it	 can	 take	 hundreds.	 Sometimes,
thousands.

	

Chapter	1:	Algorithms:	The	Essentials

	

====	====	====	====	====

	
In	essence,	how	an	AI	agent	will	contemplate,	process,	rationalize,	apply	logic,
&	ultimately	generate	solutions	will	mainly	be	through	the	use	of	algorithms.

	
If	you’re	new	to	programming,	don’t	be	intimidated.	An	algorithm	is	essentially
a	procedure	to	handle	data.	As	long	as	you	understand	how	a	certain	algorithm
processes	its	data,	you’ll	be	fine.

	
Algorithm	 Traits	 First,	 you’ll	 want	 your	 algorithms	 to	 satisfy	 four	 key
factors:	-	Completeness

	
-	Optimization

	
-	Time	Complexity	-	Space	Complexity

	

	
Now	we’ll	 go	 through	 each	 of	 these	 and	 explain	 them	 all.	 Afterwards,	 you’ll
explore	 some	 algorithm	 ideas	 and	 determine	 how	 they	 fit	 in	 to	 each	 of	 these
factors.

	

	
Completeness

	
If	an	algorithm	is	guaranteed	to	find	at	least	one	existing	solution	or	conclusion
within	a	certain	time	frame,	we	can	say	that	an	algorithm	is	complete.

	

	
Optimization

	
If	 an	 algorithm	 finds	 a	 solution	 and	guarantees	 that	 it	 is	 the	optimal	one,	 then
that	algorithm	is	considered	optimal.

	
Time	 Complexity	 For	 an	 algorithm,	 this	 is	 an	 expression	 for	 the	 longest
possible	 time	 it	 will	 take	 to	 complete.	 In	 other	 words,	 the	 worst-case
scenario	when	it	runs	and	finds	a	suitable	solution.

	
	

	

	
Space	 Complexity	 This	 expression	 is	 similar	 to	 Time	 Complexity,	 but
instead	 it	 represents	 the	maximum	amount	of	memory	 the	algorithm	may
use	 in	 order	 to	 find	 a	 solution.	 This	 is	 also	 considered	 the	 worst-case
scenario.

	
Your	Ideal	Algorithm	After	discussing	the	traits	your	algorithm	can	have,
you’ll	get	an	 idea	 in	what	to	 look	for	when	creating	an	AI	algorithm.	You
want	 to	 design	 yours	 to	 find	 at	 least	 one	 solution	 (completeness),	 and	 the
best	solution	it	can	create	given	data	it	has	(optimization)	while	using	up	as
little	computational	effort	as	you	can	(Time	&	Space	Complexity)

	

Javascript	01a:	using	AI	to	Solve	Complex	Time	
Scheduling

	

=========================	======

	
Imagine	5	of	your	friends	trying	to	get	together	and	have	fun	somewhere.

	
It	might	sound	simple	at	first,	but	it	can	become	far	more	complicated	than	you
think.

	
What	if	one	of	your	friends	has	work	at	certain	times?	What	if	another	friend	has
school?	What	if	he/she	has	a	prior	engagement?	Soccer	practice?	Dance	classes?
Study	time?	Sure,	you	can	all	get	together	and	have	fun.	However,	it	has	to	be	at
a	time	when	EVERYONE	is	available.

	
So,	given	each	 friend	you	have,	you	need	 to	 lay	out	 their	 time	schedules,	 then
cross	out	times	that	they’re	busy.	Afterwards,	if	there	is	some	common	available
time	among	all	your	friends,	everyone	says	they’re	available,	then	you	and	your
friends	have	fun.

	

	
Let’s	have	another	example.

	
How	do	you	 think	a	32-team	Sports	League	will	 schedule	games	 throughout	a
year?	For	all	32	teams,	they	each	need	to	match	up	with	up	to	one	other	team	to
schedule	 a	 game.	 Each	 team	 needs	 a	 certain	 amount	 of	 games	 scheduled	 in	 a
season	 of,	 say,	 6	months.	 There	 can	 only	 be	 a	 certain	 number	 of	 games	 in	 a
single	week	and	there	needs	to	be	enough	time	to	travel	between	cities	to	have	a
game.

	
These	are	times	when	a	Scheduling	Algorithm	can	help.	It	will	take	all	members’
availabilities	 and	 time	 constraints,	 then	 generate	 a	 viable	 solution.	 For
scheduling,	it	can	tell	you	what	times	of	the	day	is	everyone	available.	For	large-
scale	 implementations,	 it	 can	 be	 used	 to	 schedule	 sports	 league	 match-ups,
schedule	exams	for	tens	of	thousands	of	college	students,	and	more.

	
A	 very	 simple	 and	 easy	 algorithm	 to	 start	 with	 is	 the	 Generate-and-Test
algorithm.

	
The	 next	 chapters	 will	 show	 you	 the	 Algorithm	 and	 guide	 you	 through	 its
procedure…

	

	
Javascript	01b:	The	Generate-And-Test	General	
Algorithm

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
This	 is	 the	 generalized	 algorithm.	 It	 will	 assess	 every	 combination	 of	 values
from	each	of	its	lists.	The	constraints	check	each	combination	if	they’re	valid.	A
goal	 function	 also	 checks	 whether	 or	 not	 a	 certain	 combination	 provides	 a
solution.

	
For	this	algorithm,	you	can	have	as	many	number	of	lists,	constraints,	and	goal
checks	as	you	need.

	
//	INPUT:

	
//	-	any	number	of	Lists

	
//	 -	 at	 least	 one	 Goal	 Function	 (must	 return	 a	 Boolean)	 //	 -	 any	 number	 of
Constraint	 Functions	 (each	 must	 return	 a	 Boolean)	 //	 OUTPUT:	 -	 (optional;
select	any	output	type)	//	EFFECT:	-	For	all	possible	combinations	of	each	list,
//	 check	 to	 see	 if	 it’s	 the	 goal	 combination,	 //	while	 checking	 if	 it	 satisfies	 the
constraints.

	

http://rextester.com
http://ideone.com
http://codepad.org

function	 generateAndTest(list1,	 list2,	 …	 listN,	 goal1(),	 ..	 goalN(),	 cons1(),	 …
consN())

	

{

	
for	(a	=	0;	v	<	list1.length;	a++)	{

	
for	(b	=	0;	b	<	list2.length;	b++)	{

	
…

	
for	(i	=	0;	i	<	listN.length;	i++){

	
if	(goal1(a,b,	…,	n)

	
&&

	
…	goalN(a,b,	…,	n)

	
&&	cons1(a,b,	…,	n)	&&…	consN(a,b,	…,	n))	{

	
//	===	Solution	Results	are	Here	//	Post	Code	with	what	you	want	to	do	//	===

	

}

	

}

}

	
…

	

}

	

}

	
The	next	chapters	will	show	you,	step-by-step,	how	to	build	this	algorithm.

	
	

Javascript	01c:	The	Procedure:	Schedule	Solvers

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
Step	1:	Your	Friends,	and	their	Hours	For	each	one	of	your	friends,	create	a
Global	Variable	 and	 set	 it	 to	 an	Array.	Within	 the	 array,	 set	 your	 values
from	0	to	23.	We’ll	use	integers	to	represent	all	24	hours	of	a	24-hour	clock.
For	simplicity’s	sake,	we’ll	only	use	a	single	day	of	 the	week.	If	you	want,
you	 also	 have	 the	 option	 to	 set	 your	 integer	 hours	 using	 four	 digits	 to
include	minutes,	such	as	1330	(1:30	pm)	or	1745	(5:45	pm).

	
For	our	example,	let’s	say	your	friends	are	Anna,	Betty,	Cara,	and	Donna.	We’ll
include	the	integers	to	represent	the	24-hour	clock.	However,	we	skip	hours	0-8
because,	clearly,	everyone	needs	some	good	sleeping	hours.

	
	

	

http://rextester.com
http://ideone.com
http://codepad.org

	
var	Anna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Betty	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Cara	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Donna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
	

	
Step	 2:	 The	 Goal	 Function	 Your	 goal	 is	 to	 determine	 which	 hours	 are
everyone	available.

	
Represent	 this	 with	 a	 function.	 There	 are	 as	many	 integer	 inputs	 as	 there	 are
friends	to	schedule.	The	function	outputs	True	if	all	the	input	hours	are	equal.

	
//	Goal	 1:	Have	 an	 hour	 of	 the	 day	when	 EVERYONE	 is	 available	 to	meet	 //
INPUT:	Four	 Integers,	 representing	Hours	 //	OUTPUT:	Boolean	 //	 EFFECT:
return	True	if	all	input	hours	are	equal	function	g1(a,	b,	c,	d)	{

	
return	(a	==	b	&&	b	==	c	&&	c	==	d)	}

	
	

	
	

	

	
Step	 3:	 Time	 Constraints	 For	 each	 of	 your	 friends	 to	 schedule,	 create	 a
function	to	represent	which	hours	are	unavailable.	A	friend’s	hours	aren’t
available	if	he/she	is	preoccupied	by	something	at	that	time.

	
//	 Constraint	 Functions	 //	 INPUT:	 an	 Integer,	 representing	 a	 friend's	 Hour	 //
OUTPUT:	Boolean

	
//	EFFECT:	return	True	if	the	hour	satisfies	the	time	constraints

	
In	our	example,	we’re	going	to	create	a	bunch	of	time	constraints	for	each	friend.
Some	have	school,	work,	and	other	stuff.

	
//	Constraint	1:	Anna	has	classes	11am	-	1:50pm	function	c1(a)	{

	
return	(a	<	11	||	a	>13)	}

	
	

	
//	Constraint	2:	Betty	has	classes	noon	 -	3pm,	 //	 then	has	dance	practice	until
4pm	function	c2(b)	{

	
return	(b	<	12	||	b	>=	16)	}

	

	
//	Constraint	3:	Cara	has	work	7pm	to	11pm	function	c3(c)	{

	
return	(c	<	19	||	c	>	23)	}

	
	

	
//	Constraint	4:	Diana	has	volunteer	hours	from	6pm	to	8pm,	//	and	work	8pm	to
11pm	function	c4(d)	{

	
return	(d	<	6	||	d	>	22)	}

	
	

	
Step	 4:	 The	 Main	 Algorithm	 We	 will	 be	 using	 a	 simple	 Generate-and-
Search	Algorithm	to	solve	the	Scheduling	Problem.

	
How	it	works	is,	for	each	Hour	of	Each	Friend,	 the	algorithm	will	check	if	 the
combination	of	hours	are	valid	-	based	on	the	Goal	and	Constraint	Functions	we
made	in	Step	2	and	3.

	
To	make	this	Algorithm,	create	a	series	of	iteration	loops	within	iteration	loops,
as	shown	below,	for	all	your	friends	to	schedule.

	

	
At	 the	very	centre	of	your	procedure,	make	an	IF	statement	 that	 includes	ALL
your	goal	functions	and	constraints.

	
If	they	all	return	true,	you	have	a	solution!

	
//	Main	Algorithm:	Generate	and	Search	for	(v	=	0;	v	<	Anna.length;	v++)	{

	
for	(w	=	0;	w	<	Betty.length;	w++)	{

	
for	(x	=	0;	x	<	Cara.length;	x++)	{

	
for	(y	=	0;	y	<	Donna.length;	y++)	{

	
if	 (g1(Anna[v],	 Betty[w],	 Cara[x],	 Donna[y])	 &&	 c1(Anna[v])	 &&
c2(Betty[w])	&&	c3(Cara[x])	&&	c4(Donna[y]))	{

	
//	===	Solution	Results	are	Here	print("Anna,	Betty,	Cara,	and	Diana	can	hang
out	at:	"	+	Anna[v]	+	":00")	//	===

	

}

	

}

	

}

}

	

}

	

}

	

	
If	 you	 use	ALL	 the	 example	 code	 in	 the	 steps	 above	 and	 compile/run,	 here’s
what	it	should	say:	Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	9:00

	
Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	10:00

	
Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	16:00

	
Anna,	Betty,	Cara,	and	Diana	can	hang	out	at:	17:00

	
Computing	Effort:	Generate-and-Test	This	procedure	will	create	a	LOT	of
hour	combinations	to	check.	Roughly,	 it’s	the	number	of	hours	per	friend,
to	the	power	of	how	many	friends	to	schedule:	(#	of	hours)	^	(#	of	friends)

	
In	our	example,	we	have	hours	9	to	23,	so	that’s	15	hours	per	friend.	We	have
four	friends.	So	that’s	15^4	=	50625	possible	hour	combinations	to	check.	Don’t
worry;	we’re	just	very	lucky	that	a	computer	can	solve	this	for	us.

	

Javascript	01d:	Schedule	Solvers,	Faster	Version

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
If	you	think	50625	combinations	is	a	lot	to	process,	it	really	is.	Sometimes,	even
for	the	computer	systems	themselves.

	
But	what	if	I	told	you	that	there’s	probably	another	way?

	
And	what	if	there’s	a	chance	it	can	solve	the	schedule	with	less	effort?

	
In	 this	 alternate	 version,	we	 remove	 each	 friend’s	 unavailable	 hours	 first,	 and
then	we	generate	a	solution.

	
Steps	1	&	2:

	
These	steps	don’t	change.	They	follow	the	same	code	from	the	original	version.

	
Step	3:	Time	Constraints

	
Here,	we’ve	modified	the	Constraint	Functionality.

	

http://rextester.com
http://ideone.com
http://codepad.org

	

	
Notice	how	they’re	no	longer	functions,	but	direct	procedural	code	to	be	carried
out.	Each	friend’s	unavailable	hours	are	pushed	into	an	array,	which	is	used	to
purge	that	friend’s	hours	until	only	the	available	hours	are	there.

	
We	use	this	function	to	help	us	out:	//	INPUT:	Two	arrays,	1	&	2

	
//	OUTPUT:	none

	
//	EFFECT:	deletes	any	elements	from	2nd	array	that's	within	1st	array	function
searchDelete(array1,	array2)	{

	
for	(i=0;i<array1.length;i++)	{

	
for	(j=0;j<array2.length;j++)	{

	
if	(array2[j]	==	array1[i])	{

	
array2.splice(j,	1)	}

	

}

	

}

	

}

}

	
	

	
But	 you	may	 be	 thinking,	 why	 don’t	 we	 just	 delete	 the	 item	 right	 away?	 It’s
because	 once	 the	 number	 has	 been	 deleted,	 the	 items	 in	 the	 array	 after	 it	 are
shifted	over.	Once	the	iteration	moves	on	to	the	next	item,	it	skips	an	item.

	

	
//	 Constraint	 Procedures	 //	 Constraint	 1:	 Anna	 has	 classes	 11am	 -	 1:50pm
delList	=	[]

	
for	(a=0;a<Anna.length;a++)	{//	$Anna.each	do	|a|

	
x	=	Anna[a]

	
if	(x	>=	11	&&	x	<	14)	{

	
delList.push(x)

	
//Anna.splice(a,	1)

	
//delete	Anna[a]

	

}

	

}

	
	

	
//	(Delete	ALL	of	Anna's	unavailable	hours)	searchDelete(delList,	Anna)

	
//	Constraint	2:	Betty	has	classes	noon	 -	3pm,	 //	 then	has	dance	practice	until
4pm	delList	=	[]

	

	
for	(b=0;b<Betty.length;b++)	{

	
x	=	Betty[b]

	
if	(x	>=	12	&&	x	<	16)	{

	
delList.push(x)

	

}

	

}

	
	

	
//	(Delete	ALL	of	Betty's	unavailable	hours)	searchDelete(delList,	Betty)

	
	

	
//	Constraint	3:	Cara	has	work	7pm	to	11pm	delList	=	[]

	
for	(c=0;c<Cara.length;c++)	{

	
x	=	Cara[c]

	
if	(x	>=	19	&&	x	<=	23)	{

	

	
delList.push(x)

	

}

	

}

	
	

	
//	(Delete	ALL	of	Cara's	unavailable	hours)	searchDelete(delList,	Cara)

	
//	Constraint	4:	Donna	has	volunteer	hours	from	6pm	to	8pm,	//	and	work	8pm	to
11pm	delList	=	[]

	
for	(d=0;d<Donna.length;d++)	{

	
x	=	Donna[d]

	
if	(x	>=	18	&&	x	<=	22)	{

	
delList.push(x)

	

}

	

	

}

	
	

	
//	(Delete	ALL	of	Donna's	unavailable	hours)	searchDelete(delList,	Donna)

	
Just	to	check	if	it	works,	these	lines	print	each	friend’s	hours:	print("Hours	Free
(after	Unavailable	Hours	Removed):")	aa	=	"Anna's	Hours:	"

	
for	(a=0;a<Anna.length;a++)	{

	
aa	+=	Anna[a]	+	",	"

	

}

	
print(aa)

	
	

	
bb	=	"Betty's	Hours:	"

	
for	(b=0;b<Betty.length;b++)	{

	
bb	+=	Betty[b]	+	",	"

	

}

	
print(bb)

	
	

	
cc	=	"Cara's	Hours:	"

	
for	(c=0;c<Cara.length;c++)	{

	
cc	+=	Cara[c]	+	",	"

	

}

	
print(cc)

	
	

	
dd	=	"Donna's	Hours:	"

	
for	(d=0;d<Donna.length;d++)	{

	
dd	+=	Donna[d]	+	",	"

	

}

	
print(dd)

	
	

	
After	running	the	code,	this	should	be	the	output:	Hours	Free	(after	Unavailable
Hours	Removed):	Anna:	9,	10,	14,	15,	16,	17,	18,	19,	20,	21,	22,	23,	Betty:	9,
10,	11,	16,	17,	18,	19,	20,	21,	22,	23,	Cara:	9,	10,	11,	12,	13,	14,	15,	16,	17,	18,
Donna:	9,	10,	11,	12,	13,	14,	15,	16,	17,	23,

	
	

	

	
Step	 4:	 The	 Main	 Algorithm	 What’s	 different	 between	 this	 alternate
algorithm	and	the	original	one	is	the	IF	statement	in	the	middle.	Since	the
constraints	 aren’t	 functions	 anymore	 and	 your	 friends’	 hours	 had	 their
unavailable	hours	removed,	you	only	need	to	have	the	goal	function:	//	Main
Algorithm:	Generate	and	Search	for	(v	=	0;	v	<	Anna.length;	v++)	{

	
for	(w	=	0;	w	<	Betty.length;	w++)	{

	
for	(x	=	0;	x	<	Cara.length;	x++)	{

	
for	(y	=	0;	y	<	Donna.length;	y++)	{

	
if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y]))	{

	
//	===	Solution	Results	are	Here	print("Anna,	Betty,	Cara,	and	Diana	can	hang
out	at:	"	+	Anna[v]	+	":00")	//	===

	

}

	

}

	

}

	

}

}

	
	

	

	
If	 you	 run	 the	 code	overall,	 they’ll	 generate	 the	 same	hours	 available:	 9	&	10
am;	and	4	&	5	pm	(16:00	and	17:00,	respectively).

	
Computing	Effort:	Generate-and-Test

	
The	original	list	had	50625	hour	combinations	to	check.

	
In	this	alternate	version	-	after	all	unavailable	hours	were	removed	-	we	have	a
total	of	12	x	11	x	10	x	10	=	13200	versions	to	check.

	
The	Constraint	procedures	didn’t	take	much	effort	either.	Each	friend’s	array	of
hours	were	 only	 iterated	 through	 at	 least	 twice;	 once	 to	 check	 for	 unavailable
hours,	and	twice	or	more	to	remove	them.

	
Between	both	versions,	the	difference	was	tens	of	thousands	of	combinations.

	
If	it	doesn’t	seem	like	much	now,	if	this	procedure	were	to	check	HUNDREDS
or	THOUSANDS	of	people	-	and	their	available	hours	-	then	different	versions
of	the	procedure	can	have	HUGE	differences	in	their	efforts	spent.

	
So	always	remember:	when	you	design	algorithms	of	any	sort,	you	have	to	take
the	procedure	times	and	memory	space	into	account.	If	there’s	a	more	efficient
procedure,	use	it.

	

Chapter	2:	Logic	&	Reasoning

	

====	====	====	====	====

	
Logic	and	AI?

	
Boolean,	 or	 “True/False”	 logic	 is	 widely	 used	 in	 the	 field	 of	 Artificial
Intelligence.	 It	 is	 essentially	working	with	 a	 collection	 of	 facts	 and	 statements
that	are	either	true	or	false.

	
Think	of	the	implementations	for	AI.	You	can	use	logic-based	programming	to
have	an	AI	agent	make	better	decisions	based	on	certain	conditions.	Further,	you
can	have	an	AI	agent	diagnose	technical	problems,	and	even	have	AI	agents	take
actions	for	you	-	such	as	fetch	coffee	(if	the	robot	meets	certain	conditions,	that
is).

	
Why	use	Logic?

	
Perhaps	 the	 most	 compelling	 reason	 is	 how	 simple,	 easy,	 and	 natural	 it	 is	 to
express	facts	and	statements	as	true	or	false.	You	can	have	a	statement	such	as
“We’re	 having	 steak	 dinner	 tonight”,	 yet	 it	 clearly	 can’t	 be	 represented	 by
numbers.	You	can	also	try	assigning	variables	as	strings	or	objects	as	such,	but
that	will	require	more	time	and	effort.

	

	
But	as	a	boolean,	the	statement	“We’re	having	steak	dinner	tonight”	will	either
be	 True	 or	 False.	 It’s	 that	 simple;	 either	 it’s	 true	 (we	 really	 are	 having	 steak
dinner	tonight)	or	it’s	false.

	
An	AI	agent	can	use	several	true/false	statements	and	combine	them	in	complex
ways.	And	even	so,	the	AI	agent	will	manage	the	information	much	more	easily.
This	is	because	one	true	statement	can	lead	to	another,	then	another,	resulting	in
a	conclusion,	decision,	or	even	a	course	of	action	for	the	agent.

	

	
Adding	more	Logic

	
We	can	even	add	more	facts	and	knowledge	easily,	if	needed.	There	can	be	one
true	fact	or	two.	Then	two	true	or	false	facts	lead	to	another	truth.	Then	another.
For	 example,	 we	 can	 say	 a	 true	 statement	 such	 as,	 “it’s	 sunny	 outside”,	 then
another	such	as	“it’s	warm	outside”.	These	statements	can	lead	to	another	truth:
“It’s	sunny	AND	warm	outside.	Therefore,	I	will	be	running	for	a	mile”.

	
If	you	put	the	above	together	into	a	proposition	statement,	it	would	look	like	so:

	
“I	will	be	running	for	a	mile”	<—	“it’s	sunny	outside”	AND	“it’s	sunny	outside”

	
	

	

	
And	if	you	use	variable	labels	 to	represent	 the	above	statements,	 it	would	look
like	so:	c	<—	b	AND	a

	

	
Debugging	with	Logic

	
Conversely,	you	can	use	logic	to	explain	the	root	causes	of	a	certain	fact.	If	one
statement	 is	 true,	 it	 can	 be	 explained	 and	 justified	 by	 another	 fact,	 then	 those
facts	are	justified	by	more	facts,	and	so	on.	Here’s	an	example:	you	realize	that
“the	remote	control	is	not	turning	on	the	TV.”	You	carefully	look	at	the	remote
and	realize	“its	batteries	are	dead”.	You	change	the	batteries	on	the	remote,	try	to
turn	on	the	TV,	and	realize	that	it’s	still	not	turning	on.	You	check	the	TV	power
cord	 and	 realize	 “it’s	 not	 plugged	 in.”	 Okay,	 you	 plug	 it	 in,	 try	 to	 turn	 it	 on
again.	And	this	time,	it	works.

	
You	 can	 have	 the	 above	 as	 step-by-step	 logic	 statements	 as	 so:	 1)	True:	 “The
remote	control	is	NOT	turning	on	the	TV.”

	
2)	True:	“TV	power	cord	is	NOT	plugged	in”

	
3)	True:	“Remote	batteries	are	NOT	charged”

	
AND	“TV	power	cord	is	NOT	plugged	in”

	
This	procedure	 is	often	used	for	debugging;	 if	you	find	something	 that	doesn’t
work,	 you	must	 go	 back	 and	 examine	 the	 inner	workings	 to	 figure	 out	what’s
causing	it.

	
How	AI	analyzes	a	Logic-Based	System

	
An	 AI	 agent	 can	 analyze	 a	 given	 system	 based	 on	 whether	 or	 not	 certain
conditions	are	true.	Those	conditions	will	lead	to	other	conditions	being	true	or

not,	then	other	conditions,	and	so	on.

	
There	are	two	general	procedures	to	do	this.	First	is	a	top-down	diagnosis,	where
the	procedure	will	check	certain	key	conditions	(most	likely	topmost	statements
that	affect	other	conditions),	then	go	through	the	system	to	see	what	results.

	
The	 other	 is	 a	 bottom-up	 diagnosis,	 where	 the	 procedure	 will	 check	 why	 a
certain	end	condition	is	or	isn’t	what	it	should	be.	This	is	done	by	checking	what
other	conditions	lead	it	to	be	the	way	it	is.

	

Javascript	02a:	Using	Logic-Based	AI

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
There	 are	 plenty	 of	 designs	 and	 systems	 out	 there.	Almost	 all	 of	 them	 can	 be
represented	 as	 logic-based	 systems	 -	which	 can	 be	managed	 by	AI	 systems	 to
diagnose,	 repair,	 and	analyze.	However,	 in	order	 to	have	 the	AI	agent	manage
the	 system	 well,	 its	 programmer	 must	 understand	 the	 system	 very	 well.	 The
programmer	then	has	to	represent	the	system	as	a	logical	code	very	well.

	
For	example,	the	electric	wiring	system	in	your	house	can	be	built	using	a	series
of	true/false	systems.	The	plugs	in	the	wall,	as	well	as	the	lights	in	your	room,
are	all	true/false	switches	that	receive	their	feed	from	circuit	breakers	and	wiring
panels	-	more	sets	of	true/false	switches.	This	design	benefits	home	developers,
as	they	can	trace	the	main	power	coming	from	outside	and	figure	out	whether	or
not	electrical	power	flows	to	all	plugs,	lights,	and	generally	anything	that	needs
electricity	 in	 the	 house.	 This	 design	 also	 benefits	 house	 residents;	 if	 a	 certain
light	or	plug	 isn’t	working,	 the	wiring	can	be	 traced	all	 the	way	 to	 the	outside
source	to	see	where	is	the	electricity	getting	cut	off.

	

http://rextester.com
http://ideone.com
http://codepad.org

	
Water	Flow	In	a	House	Example:

Below	 is	 a	 diagram	 for	 water	 flow	 for	 a	 1-bedroom	 suite:

	

	
There	are	taps	for	the	bath	tub,	washroom	sink,	and	kitchen.	The	laundry	washer
can	activate	for	a	short	time,	using	some	combination	of	hot	and	cold	water.	The
toilet	has	a	switch	that	directs	flow	to	it.	The	toilet	is	either	flushing	or	not.	Also,
there	is	a	switch	that	either	feeds	water	onto	the	boiler	system	or	not.	There	are
also	 taps	 labelled	A	 to	H	 that	 stop	 or	 allow	water	 flow.	And	 lastly,	 the	Main
Water	Switch	either	allows	or	stops	overall	water	flow	into	the	suite.

	
Whether	or	not	water	will	flow	from	a	certain	water	source	will	depend	on	the
connections,	taps,	and	switches	in	the	house.

	
Where	are	the	Switches	&	Taps?

	
The	 first	 thing	you’ll	want	 to	 do	 is	 identify	which	points	 of	water	 flow	 in	 the
system	above	can	be	toggled	on	and	off.

	
If	 you	 look	 at	 the	 diagram,	 the	 switches:	 -	 the	 pair	 of	 hot/cold	 taps	 for	 the
bathtub,	washroom,	and	kitchen	-	A	pair	of	hot/cold	switches	laundry	washer

	

	
-	taps	labelled	A	-	H

	
-	The	Boiler	Switch	 -	The	Main	Water	Switch	These	will	be	boolean	 taps	 that
are	 either	 TRUE,	 FALSE,	 or	 dependent	 on	 the	 true/false	 state	 of	 another
switch/tap.

	
Representing	the	System	as	Logical	Statements	At	this	stage,	it’s	best	not	to
code	yet.	We	need	to	determine	how	each	of	the	switches	feeds	water	to	the
next	switch	-	all	the	way	to	the	end	taps	that	give	water	to	the	residents.

	
We	can	start	with	the	toilet.	House	residents	use	the	water	by	flushing	the	toilet.
We	 can	 have	 a	 statement	 such	 as,	 “The	 Toilet	 can	 Flush.	 Therefore,	 it	 is
connected	 to	 the	 water	 supply”	 ;	 The	 logic	 notation	 is	 shown	 below:	 //
ToiletFlushable	<-	ToiletConnected

	

	
We	can	see	that	taps	A,	B,	C,	and	D	affect	its	water	flow,	as	well	as	the	Toilet
Connector	and	the	Main	Water	Switch:	//	ToiletConnected	<-	D	and	C

	
//	C	<-	B	and	A

	
//	A	<-	MainWaterSwitch

	
Now	we	can	move	on	to	 the	rest	of	 the	house.	For	one,	both	 the	Kitchen	Taps
and	 the	Laundry	washer	depend	on	 taps	E	and	C,	which	depend	on	 taps	B,	A,
and	ultimately,	the	Main	Water	Switch.	Since	both	the	Kitchen	and	Laundry	use
hot	water,	both	of	them	also	depend	on	tap	H.

	
//	KitchenTap_Hot	<-	H

	
//	KitchenTap_Cold	<-	E	and	C

	
//	LaundryWasher_Hot	<-	H

	
//	LaundryWasher_Cold	<-	E	and	C

	
//	F	and	H	<-	BoilerSwitch

	
The	Washroom	and	Bathtub	 taps	each	have	a	hot	and	cold	 tap.	The	washroom
cold	tap	depends	on	switch	C	while	the	hot	tap	depends	on	taps	F	and	G.

	
//	WashroomTap_Hot	<-	F	and	G

	
//	WashroomTap_Cold	<-	C

	

	

	
And	lastly,	 the	bathtub	cold	water	 tap	depends	on	 tap	B	releasing	water,	while
the	hot	water	tap	depends	on	tap	F	to	release	water.

	
//	BathTubTap_Hot	<-	F

	
//	BathTubTap_Cold	<-	B

	
	

	
If	 you	 have	 everything	 together,	 it	 will	 look	 like	 this:	 //	 ToiletFlushable	 <-
ToiletConnected	//	ToiletConnected	<-	D	and	C

	
//	C	<-	B

	
//	B	<-	A

	
//	A	<-	MainWaterSwitch	//	KitchenTap_Hot	<-	H

	
//	KitchenTap_Cold	<-	E	and	C

	
//	LaundryWasher_Hot	<-	H

	
//	LaundryWasher_Cold	<-	E	and	C

	
//	BathTubTap_Hot	<-	F

	
//	BathTubTap_Cold	<-	B

	

//	WashroomTap_Hot	<-	F	and	G

	
//	WashroomTap_Cold	<-	C

	
//	F	and	H	<-	BoilerSwitch

	

	
Using	AI	 to	Analyze	a	 system	Because	we’ve	mapped	out	 the	 logical	 links
between	 facts	 (namely,	we	 now	know	which	 taps	 and	 switches	 feed	water
into	 what)	 we	 can	 start	 creating	 procedure	 to	 analyze	 and	 diagnose	 the
system.

	
We’ll	create	both	top-down	and	bottom-up	diagnoses	for	this	system,	explaining
what	happens	for	each	one.

	
The	Top-Down	Procedure:	Based	on	how	the	system	was	mapped	out	using
boolean	logic,	we’ve	found	five	root	taps	and	switches	that	affect	the	rest	of
the	water	system	-	the	Main	Water	Switch,	the	Boiler	Switch,	and	taps	D,	E,
and	 G.	 Therefore,	 a	 Top-down	 procedure	 can	 determine	 which	 water
sources	within	the	house	are	affected.

	
You	can	find	the	Procedure	Code	in	the	Archive	section

	

	
The	Bottom-Up	Procedure:	Here,	the	same	five	root	taps	and	switches	are
global	variables	you	can	toggle	true/false.	Then	you	can	run	the	procedure
for	 one	 of	 the	 water	 sources	 in	 the	 house	 to	 check	whether	 or	 not	 water
flows	through	it.

	
You	can	also	find	the	Procedure	Code	in	the	Archive	section

	
	

	
Chapter	3:	Environment	Representation	for	AI

	
====	====	====	====	====

	
Representation	Scheme

	
For	 an	Artificial	 Intelligence	unit	 to	be	 able	 to	generate	data	 and	 solutions	 for
you,	it	will	usually	need	some	sort	of	data	source.

	
And	sometimes,	this	data	source	depends	on	the	environment:	the	AI	agent	will
need	to	determine	and	observe	the	environment	that	it’s	focused	on.

	
Therefore,	 the	 AI	 agent	 will	 need	 to	 represent	 its	 environment	 in	 data.
Afterwards,	 it	 can	 process	 that	 data	 with	 its	 own	 algorithms	 and	 generate
solutions.

	
	
	

	

Javascript	03a:	Environment	Models	with	Javascript

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
Modelling	the	Environment

	
A	 very	 crucial	 element	 in	 artificial	 intelligence	 is	 having	 a	 code	model	 of	 its
focused	environment.	For	your	AI	agent	to	be	able	to	create	solutions,	it	needs	to
know	about	its	environment	and	surroundings.

	
So	to	model	the	AI	agent’s	environment,	there	are	two	main	ways	to	do	so.

	
First,	you	can	either	use	the	“Traffic	Light”	principle	-	have	enumerations	of	the
possible	 states	 or	 conditions	 of	 the	 AI	 agent’s	 focus.	 This	 is	 a	 very	 simple
representation	of	an	environment.

	

http://rextester.com
http://ideone.com
http://codepad.org

	
For	 example,	 an	 AI	 agent	 can	 monitor	 the	 traffic	 lights	 in	 your	 closest
intersection	and	determine	which	colour	the	light	will	be	(either	Red,	Yellow,	or
Green).

	
Use	this	for	making	very	simple	interpretations	of	whatever	the	AI	agent	focuses
on.

	
var	trafficLights	=	["Red",	"Yellow",	"Green"]

	
	

	
Second,	 you	 can	 describe	 the	 environment	 features	 into	 detailed	 data
representations.	With	Object-Oriented	Programming,	you	can	simply	create	class
objects	 about	 your	 AI’s	 environment	 observations	 -	 including	 the	 many	 little
details	 as	 class	 fields.	 Use	 this	 for	 more	 natural,	 detailed	 environment
observations.

	
function	BeachVisit	(loc,	tide,	crowd,	temp)	{

	
this.location	=	loc	this.tide	=	tide

	
this.crowdSize	=	crowd	this.temperature	=	temp	}

	
	

	

	
var	b1	=	new	BeachVisit("Santa	Monica	Beach",	"high",	"large",	"81f")

	
	

	
var	b2	=	new	BeachVisit("Santa	Monica	Beach",	"medium",	"medium",	"78f")

	
	

	
Environment	Models	using	Data	Combinations	If	you	choose	your	AI	agent
to	describe	 environments	via	Object-Oriented	Programming,	 you	 can	also
link	 two	 objects	 from	different	 classes.	You	 create	 a	 relationship	 between
them,	taking	note	of	how	they	are	linked	together.

	
For	 example,	we	 can	 take	 our	 beach	 visit	 objects	 and	 link	 them	 together	with
photos:	//	(assume	instances	b1	-	b25	have	been	created)	//	all	beach	visits	into
an	array:	var	allBeachVisits	=	[b1,	b2,	b3,	b4,	b5]

	
	

	

	
	

	
//	(assume	instances	ph1	-	ph7	have	been	created)	//	all	photos	into	an	array:

	
var	allPhotos	=	[ph1,	ph2,	ph3,	ph4,	ph5,	ph6,	ph7]

	
	

	
//	Possible	Relation	Propositions:	//	#1:	PhotosTaken

	
//	proposition:	return	TRUE	if	photo	has	been	taken	during	Beach	Visit	function
photoTakenAtVisit(ph1,	b3)

	
//	#2:	PhotosTaken

	
//	 proposition:	 return	 TRUE	 if	 photo	 has	 been	 taken	 at	 Beach	 Visit	 location
function	photoTakenHere(ph3,	b5)

	

Javascript	03b:	Creating	a	Model	Environment

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
Now	 let’s	 practice	 creating	 environments	 for	 our	AI	 to	 examine.	 This	will	 all
come	 together	 later	 on,	 as	 an	 AI	 agent	 will	 have	 a	 chance	 to	 explore	 its
environment	with	its	given	knowledge	and	abilities.

	
Modelling	A	House

	
The	 most	 simple	 way	 you	 can	 model	 an	 environment	 is	 the	 Traffic	 Light
principle	mentioned	earlier.

	
If	you	model	your	house	in	a	simple	enumeration-type	data	collection,	you	might
have	something	similar	below:

	
var	 myHouse	 =	 ["livingRoom",	 "diningRoom",	 "den",	 "bathroom1",
"bathroom2",	"hallway",	"bedroom1",	"bedroom2",	"patio"]

	
	

	

http://rextester.com
http://ideone.com
http://codepad.org

	
You	may	also	model	your	house	using	Object-Oriented	Programming.	You	can
represent	every	room	in	the	house	as	a	Room	object.

//	A	Room	has:
//	-	a	name
//	-	adjacent,	connected	rooms
function	Room(name)	{
this.name	=	name
this.connected	=	[]
this.addRoom	=	function(room)	{
this.connected.push(room)
}
	
}

	

	
To	keep	things	very	simple	for	now,	you	can	model	a	simple	condo	in	the	heart
of	a	thriving	downtown	core.

	
	

	
//	 Create	 5	 rooms	 in	 a	 simple	 condo	 in	 the	 City	 var	 kitchen	 =	 new
Room("kitchen")	 var	 livRM	 =	 new	 Room("livingRoom")	 var	 dineRM	 =	 new
Room("diningRoom")	 var	 bd	 =	 new	 Room("bedroom")	 var	 wr	 =	 new
Room("washroom")

	

/*

	
//	Connect	all	rooms	as	so:	//	<->	Washroom	<->	Bedroom	<->	livingRoom	<-
>	Kitchen	<->	DiningRoom	<->	*/

	
kitchen.connected.push(livRM,	 dineRM)	 livRM.connected.push(bd,	 kitchen)
bd.connected.push(wr,	 livRM)	 wr.connected.push(dineRM,	 bd)
dineRM.connected.push(kitchen,	wr)

	
	

	

	
Whichever	way	you	would	like	to	model	your	environment	is	up	to	you.

	
Just	 keep	 in	 mind	 that	 you	 will	 eventually	 design	 the	 AI	 agent	 that	 will
correspond	to	your	model	environment.

	

	
Your	Turn

	
In	 Javascript	 (or	 whichever	 programming	 language	 you	 want),	 create	 a	 code
model	 of	 your	 home	based	on	 the	 to	modelling	directions	 above.	First,	 do	 the
“traffic	light	method”	by	creating	a	simple	enumeration	or	array	of	the	rooms	in
your	house.

	
Then,	as	Object-Oriented	Programming,	model	your	home	by	having	each	room
represented	by	Room	instances.	Then,	connect	each	room	accordingly.

	

Chapter	4:	Your	AI	Knowledge	&	Abilities

	

====	====	====	====	====

	
Here,	we	go	much	more	in-depth	with	an	AI	agent’s	knowledge	and	abilities.

	
You	will	 have	 to	 determine	 how	 your	 AI	 agent	 will	 receive	 its	 information	 -
including	what	abilities	it	can	do.

	
There	are	two	solutions	to	this:	your	AI	agent	either	has	all	its	knowledge	given
by	 default;	 or	 it	will	 scout/observe/learn	 its	 environment	 and	 gain	 information
this	way.	Also,	you	can	choose	a	combination	of	both.
For	now,	we	focus	on	Default	Knowledge	and	abilities.

	
AI	Knowledge	by	Default

	
Your	AI	agent	can	receive,	by	default,	a	fixed	set	of	all	information	it	will	ever
need.	If	you	believe	some	part	of	your	AI	agent’s	information	won’t	change,	you
may	model	your	AI	agent’s	information	this	way.

	
For	example,	your	AI	agent	may	be	a	self-driving	vehicle.	The	rules	of	the	road
will	 stay	 consistent	 in	 the	 long	 term.	Also,	 its	 driving	 patterns	 and	 techniques
will	stay	consistent	too.	The	road	maps	will	also	stay	consistent.

	

	
Therefore,	 your	 self-driving	 vehicle	 can	 navigate	 its	 way	 through	 a	 city	 and
make	its	way	from	two	points.

	

	
AI	Knowledge	by	Learning

	
Your	 AI	 agent	 can	 learn	 and	 acquire	 information	 about	 the	 environment	 it’s
focused	 on.	 Its	 algorithms	 and	 processes	 can	 also	 use	 this	 new	 information	 to
create	 up-to-date	 results	 and	 solutions.	 However,	 your	 AI	 agent	 will	 need	 a
default	set	of	knowledge	-	so	it	will	be	able	to	compute	even	if	it	doesn’t	acquire
any	new	information.	Overall,	if	you	find	that	your	AI	agent’s	environment	will
change	and	vary	over	time	(therefore	affecting	its	processes),	you	may	have	your
AI	agent	continuously	learn	about	its	environment	and	update	its	knowledge.

	
For	example,	your	AI	agent	-	as	a	self-driving	vehicle	-	may	be	based	on	your
local	 area.	 You	 know	 that	 residences	 may	 change	 owners	 over	 time	 and
business/shops	will	 be	 created	 or	 shut	 down.	Also,	 traffic	 patterns	 can	 change
throughout	 the	day;	 there	could	be	an	accident	 at	 this	 street,	or	 that	 street	will
have	heavy	gridlock	during	 rush	hour.	Your	AI	 agent	 can	 take	note	of	 all	 this
information	in	order	to	get	from	place	to	place	consistently	and	efficiently	-	by
taking	the	better	routes	and	even	knowing	where	to	go	(or	if	a	place	for	it	to	go
to	even	exists).

	

Chapter	5:	How	to	Create	a	Problem-Solving	AI

	

====	====	====	====	====

	
Let’s	start	developing	our	Search	algorithm:	an	automatic	problem	solver.	We’ll
have	a	general	overview	of	it	in	Pseudocode.	Then	you’ll	get	to	code	and	run	it
on	your	own,	with	this	book’s	primary	programming	language.

	
Abstract	Search	Algorithm	In	its	most	basic	procedure,	a	search	algorithm
will	have	a	default	condition	and	a	goal	condition.	It	will	then	evaluate	each
option	it	can	take,	starting	from	the	default	condition,	step-by-step,	until	it
eventually	finds	a	full	set	of	options	to	achieve	the	goal	condition.

	
The	 General	 Frontier	 Search	 Algorithm:	 The	 Frontier	 Search	 algorithm
follows	the	same	procedure	as	above.	Given	a	start	node,	goal	nodes,	and	an
entire	network,	it	will	 incrementally	assess	and	explore	pathways	from	the
start	node	until	it	reaches	the	goal	node.

	

	
The	 Frontier	 is	 simply	 a	 list	 of	 paths	 to	 be	 checked.	 The	 Frontier	 Search
algorithm	will	keep	adding	paths	to	the	Frontier	until	it	either	finds	a	solution	or
has	 explored	 the	 entire	 network	 For	 example,	 this	 is	 just	 like	 giving	 a	 Search
Algorithm	 a	 map	 of	 your	 local	 city,	 your	 current	 location,	 and	 a	 restaurant
you’re	about	to	go	to.	That	search	algorithm	will	give	you	directions	to	get	there.

	
The	 standard	 data	 structure	 to	 use	 a	 Search	 Algorithm	 with	 is	 a	 Network	 of
interconnected	 Nodes.	 Each	 node	 contains	 an	 amount	 of	 data	 and	 a	 list	 of
connected	nodes:	//	A	Node	has:	//	-	its	data	(any	data	type	you	want)	//	-	a	set	of
connected	nodes	class	Node

	
<some	data	type>:	contents	Array	of	Nodes:	connected

	
	

	

	
The	Frontier	Search	algorithm	also	uses	Paths:	a	 list	of	connected	Nodes,	with
the	first	node	as	the	starting	point:	//	A	Path	has:

	
//	-	a	List	of	Nodes

	
class	Path

	
Array	of	Paths:	contents

	
	

	
And	finally,	here	is	a	generalized	algorithm	for	Frontier	Search:	INPUT:

	
-	a	Start	Node	(can	be	a	class	method	in	OOP)	-	a	graph	network	(only	requires
start	node	to	have	a	network)	-	a	goal-checking	procedure	OR	a	solution	query
OUTPUT:

	
-	a	Path	from	start	to	Goal	(a	List	of	Nodes)	-	return	FALSE	or	NULL	if	no	paths
found	(wherever	applicable)	EFFECT:

	
Frontier	Search	Algorithm:	Returns	a	set	of	nodes	that	lead	from	the	input	Node
to	a	solution	node	if	found	PROCEDURE:

	
-	frontier:=	{new	array	of	Nodes}

	
-	 create	 a	 new	 Path	 and	 put	 the	 Start	 node	 in	 it	 -	 put	 the	 new	 Path	 into	 the
frontier

	
While	frontier	is	not	empty	{

	

	
-	select	and	remove	a	Path	<s0,	s1,….,sk>	from	frontier;	If	node	(sk)	is	a	goal,
return	selected	Path	<s0,	s1,	….,sk>;	Else:

	
For	every	connected	node	of	end	node	sk:	-	Make	a	copy	of	the	selected	Path	-
Add	connected	node	of	sk	onto	path	copy	-	add	copied	Path	<s0,	s1,….,sk,	s>	to
frontier;	}

	
-	indicate	‘NO	SOLUTION’	if	frontier	empties

	
Further	Search	Strategies

	
This	 will	 be	 covered	 later	 on,	 but	 how	 the	 algorithm	 picks	 a	 Path	 from	 the
Frontier	will	determine	how	the	Search	Algorithm	works.

	
For	now,	let’s	apply	the	Frontier	Search	Algorithm.

	
	

Javascript	05a:	Fundamental	Frontier	Search	
Algorithm

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
Below	 are	 the	 fundamental	 parts	 to	 a	 Frontier	 Search	 algorithm:	 the	 major
algorithm	and	its	data	structures.

	
First,	 we	 start	 with	 the	 Data	 Structures.	 We	 only	 need	 to	 use	 two	 essential
classes:	a	network	node	and	a	path.	A	Path	contains	is	what	the	algorithm	uses	to
store	 connected,	 sequenced	 nodes.	 It	 will	 also	 be	 the	 output	 type	 for	 the
algorithm.

	
//	A	Path	has:

	
//	-	A	List	of	Nodes	//	(can	be	modified	to	include	more	Methods/Fields)	function
Path()	{

	
this.contents	=	[]}

	

http://rextester.com
http://ideone.com
http://codepad.org

	
Nodes	will	 be	 the	main	 data	 structure	 the	Algorithm	will	 operate	 through;	 the
algorithm	will	search	through	the	node	and	its	connected	nodes	for	a	solution:

	
//	A	Node	has:

	
//	 -	 Some	 Contents	 (Data	 type	 of	 your	 choice)	 //	 -	 A	 List	 of	 other	 connected
Nodes	//	It	can:

	
//	-	Search	all	its	descendant	nodes	to	find	a	solution	//	(Our	Search	Algorithm
as	a	Class	Method)	function	Node(c)	{

	
this.contents	=	c	this.children	=	[]

	

}

	
	

	

	
Next	 are	 two	 Helper	 Functions	 you’ll	 need.	 This	 first	 function	 helps	 the
algorithm	pick	a	path	to	check	from	a	list:

	

/*

	
//	 HELPER	 FUNCTION	 #1:	 //	 INPUT:	 a	 List	 of	 Paths	 //	 OUTPUT:	 a	 Single
Path	 //	EFFECT:	based	on	positioning	of	 your	 choice:	 //	 -	 Select	&	 remove	a
path	 //	 -	 return	 that	 path	 //	NOTE:	 you	 can	modify	 the	position	assignment	 to
change	the	Search	Strategy	*/

	
function	pickPath(f)	{

	
var	position	=	0;	var	ret	=	f[position];	f.splice(position,	1);	return	ret;

	

}

	
	

	
	

	

	
This	second	function	checks	if	the	last	node	in	the	path	is	a	solution.	One	of	the
function	inputs	supplies	the	solution:	/*

	
//	HELPER	FUNCTION	#2:	//	INPUTs:

	
//	-	a	Path

	
//	-	Node	contents	that	have	a	solution	//	<same	data	type	as	Node’s	container>
//	OUTPUT:	boolean	//	EFFECT:	outputs	True	if	path	contains	a	Goal	*/

	
function	hasGoal(s,	p)	{

	
for	(i	in	p.contents)	{

	
if	(p.contents[i].contents	==	s)	return	true;	}

	
return	false;	}

	

	

	
	

	

	
And	 finally,	 the	Search	Algorithm.	The	 pseudocode	 is	 attached	 to	 the	 lines	 as
comments	 so	 you	 can	 see	 how	 the	 procedure	 works.	 The	 algorithm	 also	 uses
both	helper	functions	described	earlier.

	

/*

	
//	MAIN	ALGORITHM:

	
//	INPUT:

	
//	-	a	goal	query

	
//	<has	same	data	type	as	node	contents>	//	-	a	Start	Node

	
//	(Start	Node	&	its	graph	network	accessed	thru	this	method)	//	OUTPUT:

	
//	 -	 a	 Path	 from	 start	 to	 Goal	 (a	 List	 of	 Nodes)	 //	 (multiple	 output	 types	 not
acceptable	in	Ruby;	//	empty	Path	as	output	if	no	solution	found)	//	EFFECT:

	
//	Frontier	Search	Algorithm:	Returns	a	set	of	//	nodes	that	lead	from	the	input
Node	to	a	solution	node	if	found	*/

	
function	search(query,	start)	{

	
//	-	frontier:=	{new	array	of	Nodes}

	
var	frontier	=	[];

	

	
	

	
//	-	create	a	new	Path	and	put	the	Start	node	in	it	p	=	new	Path();

	
p.contents.push(start);

	
//	-	put	the	new	Path	into	the	frontier	frontier.push(p)

	

	

	
while	(frontier.length	>	0)	{

	
//	 -	 select	 and	 remove	 a	 Path	 <s0,	 s1,….,sk>	 from	 frontier;	 //	 (use	 helper
function	pickPath())	pick	=	pickPath(frontier);

	

	

	
//	If	node	(sk)	is	a	goal,	return	selected	Path	if	(hasGoal(query,	pick))	{

	
return	pick;

	

}

else	{

	

//	For	every	connected	node	of	end	node	sk:	//	-	Make	a	copy	of	the	selected	Path
//	-	Add	connected	node	of	sk	onto	path	copy	//	-	add	copied	Path	<s0,	s1,….,sk,
s>	to	frontier;	size	=	pick.contents.length;	last	=	pick.contents[size	-	1];

	
for	(n	in	last.children)	{

	
toAdd	=	new	Path();

	
for	(x	in	pick.contents)	{

	
toAdd.contents.push(pick.contents[x])	}

	
toAdd.contents.push(last.children[n]);	frontier.push(toAdd);	}

	

}

	

}

	
//	 -	 indicate	‘NO	SOLUTION’	if	 frontier	empties	 //	 (we'll	output	 false	 if	 there's
no	solution)	return	false;

	

}

	
	

	

	

Javascript	05b:	Using	Frontier	Search

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
Here,	we	 implement	 the	Frontier	Search	Algorithm	 step-by-step	 onto	 a	 simple

node	network:

	

	

	

	
	

	
	

	
	

	
Each	circle	a,	b,	c,	and	d	each	represent	 interconnected	nodes,	which	will	only
have	their	respective	letters	as	contents.

	

http://rextester.com
http://ideone.com
http://codepad.org

	

	
We	ask	the	algorithm	if	there	is	a	path	to	a	particular	letter	from	a	starting	point.

	
The	Search	Algorithm	would	have	a	letter	as	an	input.	It	would	then	check	the
nodes	row-by-row	until	it	either	finds	a	suitable	path	from	the	input	node	to	that
letter	-	or	notify	you	that	a	path	couldn’t	be	found.

	
So	we	now	know	what	to	expect.	If	we	have,	say	,’d’	as	the	input,	the	algorithm
is	supposed	to	find	it,	and	output	the	node	path	a->c->d.	If	we	have	‘g’	or	some
other	irrelevant	letter	as	an	input,	the	algorithm	will	say	that	it’s	not	found.

	
Artificial	 Intelligence	will	 heavily	 rely	on	Search	Algorithms	 to	 come	up	with
solutions	and	best	decisions	for	its	given	situations.	We	will	explore	more	about
this	later	on.

	
Meanwhile,	let’s	start	building	our	algorithm.

	
Step	1:	Understand	&	Create	the	Node	Structure

	
First,	we	have	to	build	the	underlying	data	structure	for	our	Network.	Our	Nodes
contain	 the	 data	 type	we	want	 to	 use,	 as	well	 as	 a	 list	 of	 its	 connected	nodes.
Since	we’re	only	using	letters,	our	Node	data	type	can	be	String.

	

	
Copy	the	class	code	below	to	your	IDE.	We’ll	build	on	from	here.

	
//	A	Node	has:

	
//	 -	 Some	 Contents	 (Data	 type	 of	 your	 choice)	 //	 -	 A	 List	 of	 other	 connected
Nodes	//	It	can:

	
//	-	Search	all	its	descendant	nodes	to	find	a	solution	//	(Our	Search	Algorithm
as	a	Class	Method)	function	Node(c)	{

	
this.contents	=	c	this.children	=	[]

	

}

	
	

	
	

	

	
Afterwards,	we	need	the	node	network.

	

	

	

	
	

	
	

	
So	it	looks	like	‘d’	is	a	connected	to	‘c’,	while	‘b’	and	‘c’	are	connected	to	‘a’.
We’ll	be	re-creating	this	network	in	code.

	
Copy	the	code	below	and	place	it	at	the	very	bottom	of	your	code:	//	Creates	&
connects	nodes	a,	b,	c,	d	var	a	=	new	Node("a");	var	b	=	new	Node("b");	var	c	=
new	Node("c");	 var	 d	=	new	Node("d");	 a.children.push(b);	 a.children.push(c);
c.children.push(d);

	

	
Next,	we	need	to	design	the	Path.

	
Step	2:	Create	the	Path	Structure	The	Path	will	contain	an	ordered	list	of
Nodes.	 Each	 node	will	 be	 connected	 to	 the	 ones	 next	 to	 it,	 while	 the	 first
node	in	the	Path	is	the	Start	node.

	
Copy	 the	 class	 code	 below	 to	 your	 IDE,	 just	 before	where	 you	 put	 the	Node
class.

	
//	A	Path	has:

	
//	-	A	List	of	Nodes	//	(can	be	modified	to	include	more	Methods/Fields)	function
Path()	{

	
this.contents	=	[]

	

}

	
	

	
Step	 3:	 Start	 coding	 the	 Algorithm	 (Before	 we	move	 forward,	 it’s	 highly
recommended	to	review	the	Algorithm	procedure	in	the	past	few	chapters.)

	

	
Here,	our	search	algorithm	will	be	a	standalone	function.	We	can	simply	access
it	as	a	normal	function,	with	a.	a	Node	object	as	an	input.

	
Since	we	are	checking	 for	 letters,	 the	 search	query	will	be	a	String	 -	 the	 same
data	type	for	the	Node	containers.

	
Place	 the	 Main	 Algorithm	 onto	 your	 code	 below,	 just	 after	 the	 Node	 Class
you’ve	created.

	

/*

	
//	MAIN	ALGORITHM:	//	INPUT:

	
//	-	a	goal	query	//	<has	same	data	type	as	node	contents>	//	-	a	Start	Node	//
(Start	Node	&	its	graph	network	accessed	thru	this	method)	//	OUTPUT:

	
//	 -	 a	 Path	 from	 start	 to	 Goal	 (a	 List	 of	 Nodes)	 //	 (multiple	 output	 types	 not
acceptable	in	Ruby;	//	empty	Path	as	output	if	no	solution	found)	//	EFFECT:

	
//	Frontier	Search	Algorithm:	Returns	a	set	of	//	nodes	that	lead	from	the	input
Node	to	a	solution	node	if	found	*/

	
function	search(query,	start)	{

	
//	-	frontier:=	{new	array	of	Nodes}

	

var	frontier	=	[];

	
//	-	create	a	new	Path	and	put	the	Start	node	in	it	p	=	new	Path();

	
p.contents.push(start);

	
//	-	put	the	new	Path	into	the	frontier	frontier.push(p)

	

	

	
while	(frontier.length	>	0)	{

	
//	 -	 select	 and	 remove	 a	 Path	 <s0,	 s1,….,sk>	 from	 frontier;	 //	 (use	 helper
function	pickPath())	pick	=	pickPath(frontier);

	

	

	
//	If	node	(sk)	is	a	goal,	return	selected	Path	if	(hasGoal(query,	pick))	{

	
return	pick;

	

}

	

	

	
else	{

	
//	For	every	connected	node	of	end	node	sk:	//	-	Make	a	copy	of	the	selected	Path
//	-	Add	connected	node	of	sk	onto	path	copy	//	-	add	copied	Path	<s0,	s1,….,sk,
s>	to	frontier;	size	=	pick.contents.length;	last	=	pick.contents[size	-	1];

	
for	(n	in	last.children)	{

	
toAdd	=	new	Path();

	
for	(x	in	pick.contents)	{

	
toAdd.contents.push(pick.contents[x])	}

	
toAdd.contents.push(last.children[n]);	frontier.push(toAdd);	}

	

}

	

}

	
//	 -	 indicate	‘NO	SOLUTION’	if	 frontier	empties	 //	 (we'll	output	 false	 if	 there's
no	solution)	return	false;

	

}

	

	
It’s	considered	a	good	programming	practice	 to	simplify	what	a	 function	does.
So	 instead	of	our	algorithm	function	doing	a	 lot	of	different	 things,	 it	will	call
specialized	helper	functions	to	simplify	the	workload.	This	also	makes	it	easier
for	programmers	to	check,	edit,	debug,	and	modify	the	code.

	
Step	4:	Add	 the	Frontier	Path	Picker	Function	The	path	picking	 function
for	the	Frontier	Search	algorithm	is	a	customizable	one	in	it	own	right,	as
modifying	this	 function	will	affect	 the	search	strategy.	We’ll	go	over	more
search	 strategies	 later	 on.	 For	 now,	 just	 ensure	 that	 the	 function	 selects,
removes,	and	outputs	the	path	correctly.

	
Place	 this	 helper	 function	 somewhere	 in	 your	 code	 just	 before	 your	 Search
Algorithm.

	

/*

	
//	 HELPER	 FUNCTION	 #1:	 //	 INPUT:	 a	 List	 of	 Paths	 //	 OUTPUT:	 a	 Single
Path	 //	EFFECT:	based	on	positioning	of	 your	 choice:	 //	 -	 Select	&	 remove	a
path	 //	 -	 return	 that	 path	 //	NOTE:	 you	 can	modify	 the	position	assignment	 to
change	the	Search	Strategy	*/

	
function	pickPath(f)	{

	
var	position	=	0;

	
var	ret	=	f[position];	f.splice(position,	1);	return	ret;

	

}

	
	

	
Step	5:	Add	the	Goal-checking	Function	This	function	helps	the	algorithm
check	a	path	for	solutions.	It	will	check	all	the	nodes	in	a	path	to	see	if	one
of	them	has	the	contents	the	algorithm	is	looking	for.

	
Since	our	query	 is	a	String,	we’ll	use	 that	data	 type	as	a	 function	 input.	We’ll
also	 have	 a	 Path	 of	 Nodes	 as	 an	 input;	 we’ll	 check	 whether	 or	 not	 there’s	 a
solution	within	these	nodes.

	
Like	 the	 other	 helper	 function,	 place	 this	 one	 in	 your	 code	 just	 after	 where
placed	the	Search	Algorithm.

	

	

/*

	
//	HELPER	FUNCTION	#2:	//	INPUTs:

	
//	-	a	Path

	
//	-	Node	contents	that	have	a	solution	//	<same	data	type	as	Node’s	container>
//	OUTPUT:	boolean	//	EFFECT:	outputs	True	if	path	contains	a	Goal	*/

	
function	hasGoal(s,	p)	{

	
for	(i	in	p.contents)	{

	
if	(p.contents[i].contents	==	s)	return	true;	}

	
return	false;	}

	
	

	
Algorithm	Testing	And	finally,	we	test	our	algorithm.	There’s	at	least	three
major	 scenarios	 to	 think	 of:	 searching	 for	 the	 starting	 node’s	 letter;
searching	for	a	letter	further	down	the	network;	and	searching	for	a	letter
that’s	not	in	the	network.	For	each	of	these	times,	we	want	the	algorithm	to
run	through	the	scenario	properly.

	

	
Insert	 this	 testing	 function	 in	 your	 code	 just	 after	 your	 Search	Algorithm	 and
Helper	Functions:	function	printer(p)	{

	
if	(p	==	false)	return	"NOTE:	No	Solution	Found";	else	{

	
var	s	=	"Solution	Found!	Path:	";	for	(i	=	0;	i<p.contents.length;	i++)	{

	
s	+=	p.contents[i].contents	+	",	";	}

	
return	s;	}

	

}

	
	

	
Afterwards,	we’ll	create	a	few	paths	generated	from	our	Search	Algorithm.	Place
the	 code	 at	 the	 very	 bottom	 of	 your	 code,	 just	 after	 the	 node	 network	 you’ve
created.

	
	

	

	
//	test	search()	pa	=	search("a",	a);	pc	=	search("c",	a);	pd	=	search("d",	a);	pg
=	search("g",	a);

	
A	search	for	the	starting	node’s	letter	should	output	a	Path	with	just	the	starting
node.	So	Path	‘pa’	should	have	a	path	with	only	node	‘a’	in	it.	If	everything	was
done	right,	the	code	below	should	print	out,	“Solution	Found!	Path:	a,	”.

	
print(printer(pa))

	
A	search	for	a	letter	somewhere	down	the	network	should	output	a	Path	with	a
sequenced	list	of	Nodes.	Paths	‘pc’	and	‘pd’	should	have	nodes	‘a,	c’	and	‘a,	c,
d’	respectfully.	If	the	codes	below	run,	then	they	should	print	out	their	respective
paths:	print(printer(pc))	print(printer(pd))

	
A	search	for	a	 letter	 that	 isn’t	 in	 the	network	should	output	 false,	according	 to
our	current	Search	algorithm.	So	if	‘pg’	is	an	argument	for	the	printer	function,	it
should	output	false.	If	you	run	the	line	of	code	below,	it	should	notify	you	that	a
solution	isn’t	found	(‘g’	currently	isn’t	in	the	network)	print(printer(pg))

	
And	there	we	have	it.	A	successfully	operating	Frontier	Search	algorithm.	

	

	
Chapter	6:	Search	Strategies

	

====	====	====	====	====

	
As	mentioned	earlier,	the	way	the	search	algorithm	picks	a	path	from	the	frontier
will	determine	the	overall	algorithm	search	strategy.

	
Now	that	we’ve	developed	our	search	algorithm,	we	can	now	modify	 it	 to	suit
any	situation	that	arises.

	
Below	 are	 the	 four	 main	 ways	 that	 the	 search	 algorithm	 will	 pick	 a	 path	 to
explore.	The	path	picked	 from	 the	 frontier	 is	 either:	 -	 the	most	 recently	 added
(Stack)	-	the	least	recently	added	(Queue)	-	the	one	with	the	least	cost	(Priority
Queue)	-	the	one	with	the	most	value	(Priority	Queue)	We’ll	explore	and	analyze
each	strategy	and	implement	them	with	our	search	algorithm.

	
	

Chapter	6.1:	Depth-First	Search

	

====	====	====	====	====

	
In	 Depth-First	 Search,	 the	 algorithm	 treats	 the	 Frontier	 Options	 as	 a	 Stack.
Therefore,	if	the	algorithm	has	a	list	of	unexplored	options	it	has	yet	to	examine,
it	will	explore	the	options	and	sub-options	first.

	
Use	Depth-First	Search	When:

	
You	expect	long	path	lengths;	in	other	words,	the	solutions	will	have	long
sets	of	options	to	get	there

You	don’t	expect	any	nodes	that	are	subnodes	to	each	other)

You	don’t	have	much	space	available

	
Don’t	 use	 Depth-First	 Search	When:	 •	 The	 three	 looks	 fairly	 shallow.	 In
other	words,	there	aren’t	many	levels	of	Option	nodes	in	the	tree	•	If	having
the	best	possible	solution	is	very	important

	

	
Example:	The	Depth-First	Search	Algorithm

	
Consider	 the	 graph	below.	 If	 all	 these	 nodes	 are	 placed	on	 a	 to-do	 list	 for	 the
algorithm,	the	last	node	added	to	the	frontier	would	be	processed	first.

	
Node	 #1’s	 options	 are	 added	 to	 the	 frontier:	 #2,	 #7,	 and	 #8.	 If	 Node	 #2	 was
added	last,	it	would	be	processed	first.	So	Nodes	#3	and	#6	would	be	added.	If
#3	was	added	last,	then	it	would	be	processed	first	-	so	that	means	adding	#4	and
#5	 to	 the	 frontier.	 The	 node	 depths	 are	 explored	 first	 -	 hence,	why	 it’s	 called

DEPTH-FIRST
search.

	

	

	

	

	
	

	
	

	

	
Algorithm	Analysis:	Depth-First	Search	Is	it	Complete?

	
Sort	of.	Why?	If	there	are	any	loops	or	cycles	in	the	graph	(meaning	one	of	the
end	 nodes	 link	 up	 to	 the	 beginning	 nodes,	 thus	 creating	 a	 loop)	 the	 algorithm
might	be	stuck.	It	will	keep	exploring	the	end	node,	the	beginning	node,	the	path
between	them,	the	end	node	again,	and	so	on	and	so	on	-	probably	in	a	sort	of
infinite	loop.

	
On	 the	 other	 hand,	 if	 there	 are	 no	 loops	 or	 cycles	 in	 the	 node	 network,	 this
algorithm	is	complete.

	
Is	it	Optimal?

	
No.	If	 it	gives	off	 the	first	solution	 it	encounters,	 it	may	not	necessarily	be	 the
best	one.	There	may	be	better	solutions	 that	have	yet	 to	be	encountered	before
the	algorithm	gets	to	it.

	

	
What	is	its	Time	Complexity?

	
O(b^m)

	
Meaning,	at	the	worst-case	scenario,	the	algorithm	will	explore	every	node	and
reach	the	furthest	tree	depth.	For	example,	if	a	node	in	a	tree	has	up	to	2	options
and	the	entire	tree	can	be	up	to	4	levels	deep,	the	worst-case	complexity	will	be
2x2x2x2	=	16	nodes	possibly	explored.

	
What	is	its	Space	Complexity?

	
O(b*m)

	
Meaning,	at	the	worst-case	scenario,	a	path	for	unexplored	nodes	will	be	stored
in	memory	for	every	node	explored.

	
The	 longest	 path	 possible	 is	 the	 furthest	 tree	 depth.	 Also,	 every	 node	 has	 a
maximum	amount	of	nodes	it	can	explore.

	
For	example,	if	a	tree	will	have	up	to	2	options	per	node	and	the	tree	can	be	4
levels	deep,	then	the	algorithm	will	store	2x4	=	8	units	of	memory

	
	

	

Chapter	6.2:	Breadth-First	Search

	

====	====	====	====	====

	
While	Depth-first	search	has	a	Stack	for	the	frontier,	Breadth-first	search	has	a
Queue.	 In	other	words,	 if	 the	algorithm	has	a	 list	of	options	 to	explore,	 it	will
select	the	earliest	added	options	and	sub-options.

	
Use	Breadth-First	Search	When:

	
•	you	don’t	have	to	worry	about	memory	space	•	you	NEED	a	solution	with	the
least	amount	of	options	chosen	•	there	are	some	options	that	can	be	explored	that
don’t	need	depth	Don’t	use	Breadth-First	Search	When:	•	solutions	tend	to	need
a	 lot	 of	 options	 chosen	 (i.e.	 they’re	 deep	 into	 the	 tree)	 •	 you	 have	 a	 limited
amount	 of	 space	 •	 There’s	 a	 high	 branching	 factor	 (nodes	 with	 many
subnodes/options)

	

	
Example:	The	Breadth-First	Search	Algorithm

	
Consider	 the	 graph	below.	 If	 all	 these	 nodes	 are	 placed	on	 a	 to-do	 list	 for	 the
algorithm,	 Node	 #1	 would	 be	 processed	 first,	 then	 it’s	 sub-nodes	 #8,	 #7,	 #2
would	be	added	to	the	frontier	in	that	order.	Since	Node	#8	was	entered	first,	it
will	 be	 processed	 first.	 So	Nodes	 #9	 and	 #12	 are	 added	 to	 the	 frontier.	 Then
Node	 #7	 is	 processed.	 Then	 Node	 #2,	 which	 adds	 Nodes	 #6	 and	 #3	 to	 the
frontier.	 Then	 node	 #12	 is	 processed,	 and	 so	 on.	 Overall,	 the	 algorithm	 will
explore	 all	 nodes	 per	 level	 first	 -	 hence	 why	 it’s	 called	 BREADTH-FIRST

search.

	

	

	

	

	

	
	

	

	
Algorithm	Analysis:	Breadth-First	Search

	
Is	it	Complete?

	
Yes,	as	long	as	there’s	a	limited	number	of	subnodes.	When	there	are	nodes	that
are	children	 to	each	other	 (for	 example:	Node	X	 is	 a	 subnode	 to	Node	Y,	 and
vice-versa),	 this	would	 normally	 create	 a	 loop	 for	Depth-first	 search.	Node	X
would	 be	 added	 to	 the	 frontier,	 processed,	 then	 Node	Y	would	 be	 added	 and
processed,	 then	Node	X	 is	 added,	 and	 so	 on	 -	 in	 an	 infinite	 loop.	 This	won’t
happen	in	BFS.	If	Node	X	was	added,	all	other	nodes	in	the	frontier	would	have
been	processed	first.

	
However,	if	a	tree	has	infinite	subnodes	per	node,	then	BFS	certainly	won’t	stop.
There	will	be	just	too	many	nodes	to	explore.

	
Hence,	 as	 long	 as	 there’s	 a	 finite	 number	 of	 subnodes	 per	 node,	 you	 can
guarantee	that	BFS	will	not	loop	indefinitely.

	
Is	it	Optimal?

	
Possibly.	Because	BFS	 is	 likely	 to	 find	 the	 solutions	with	 the	 least	 number	of
options/steps,	there	is	a	chance	the	solution	will	be	optimal.

	

	
What	is	its	Time	Complexity?

	
O(b^m)

	
Just	 like	 DFS,	 BFS	 will,	 at	 the	 worst-case	 scenario,	 explore	 every	 node	 and
reach	the	furthest	tree	depth.	For	example,	if	a	node	in	a	tree	has	up	to	3	options
and	the	entire	tree	can	be	up	to	4	levels	deep,	the	worst-case	complexity	will	be
3x3x3x3	=	81	nodes	possibly	explored.

	
What	is	its	Space	Complexity?

	
O(b^m)

	
At	the	worst-case	scenario,	BFS	will	explore	every	single	node	in	the	tree.

	
For	example,	if	a	tree	will	have	up	to	4	options	per	node	and	the	tree	can	be	4
levels	 deep,	 then	 the	 algorithm	 will	 store	 4^4	 =	 256	 units	 of	 memory	 if	 it
explores	every	node	in	that	tree.

	
	

Javascript	06:	Frontier	Search	as	DFS	and	BFS	

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
When	 implementing	 Frontier	 Search,	 the	 algorithm	 will	 actually,	 by	 default,
either	 be	Depth-First	 Search	 or	Breadth-First	 Search.	This	will	 depend	on	 one
key	factor,	as	we	will	demonstrate	below.

	
First,	let’s	recall	the	path	picker	from	earlier:	/*

	
//	 HELPER	 FUNCTION	 #1:	 //	 INPUT:	 a	 List	 of	 Paths	 //	 OUTPUT:	 a	 Single
Path	 //	EFFECT:	based	on	positioning	of	 your	 choice:	 //	 -	 Select	&	 remove	a
path	 //	 -	 return	 that	 path	 //	NOTE:	 you	 can	modify	 the	position	assignment	 to
change	the	Search	Strategy	*/

	
	

	

http://rextester.com
http://ideone.com
http://codepad.org

	
function	pickPath(f)	{

	
var	position	=	0;	var	ret	=	f[position];	f.splice(position,	1);	return	ret;	}

	
	

	
Note	how	the	path	picker	works.	The	output	path,	chosen	from	the	 input	array
(the	frontier),	is	based	on	an	index	position.	That	index	is	set	on	the	first	line	of
the	procedure:	var	position	=	0;

	
When	items	are	entered	into	an	array,	 they	are	sent	to	the	end	of	the	array	like
so:	[0:	a][1:	b][2:	c]	<-	inserting	[d]

	
[0:	a][1:	b][2:	c][3:	d]

	
So	setting	the	position	to	0	means	that	the	front	(earliest)	path	on	the	frontier	is
selected.	 In	 other	 words,	 the	 path	 picker	 will	 treat	 the	 frontier	 as	 a	 queue.
Therefore	it	will	be	BFS.

	

	
var	position	=	0;

	
Before	path	picker	call:	[0:	a][1:	b][2:	c][3:	d]

	
After	path	picker	call:	[0:	a][1:	b][2:	c]	Selected	For	Processing:	[d]

	
Otherwise,	 setting	 the	 position	 to	 the	 back	 (latest)	 path	 will	 need	 this	 line
instead:	var	position	=	f.length-1;

	
The	 line	 above	will	 set	 the	 position	 to	 the	 latest	 path	 added	 to	 the	 frontier.	 In
other	words,	the	path	picker	will	treat	the	frontier	as	a	stack.	Therefore,	it	will	be
DFS.

	
var	position	=	f.length-1;

	
Before	path	picker	call:	[0:	a][1:	b][2:	c][3:	d]

	
After	path	picker	call:	[0:	b][1:	c][2:	d]	Selected	For	Processing:	[a]

	
	

	

	
Now,	let’s	test	everything	we	know	so	far	on	the	below	graph.

	
Bigger	Search	Graph:

	

	

	

	

	

	
	

	
(The	code	for	the	graph	above	is	found	on	Archive	A3.2)

	
Place	the	code	above	into	the	bottom	end	of	your	code	to	create	the	graph.

	
We	start	with	the	completed	Node	and	Path	classes	from	the	previous	chapter.	If
you	need	to	copy	the	Search	Algorithm,	Nodes,	and	Paths,	see	Archive	A3.1.

	
We	will	then	modify	the	pickPath()	method	to	be	either	DFS	and	BFS.

	

	

	
Step	1:

	
We’ll	modify	our	pickPath()	in	the	code	below:	/*

	
//	HELPER	FUNCTION	#1:	(Modified)	*/

	
function	pickPath(f)	{

	
//	Breadth-First:	uncomment	line	below	to	use	//	var	position	=	0

	
//	Depth-First:	uncomment	line	below	to	use	//	var	position	=	f.length-1;	var	ret
=	f[position];	f.splice(position,	1);	return	ret;	}

	
	

	
Uncomment	either	of	the	lines	above	to	set	the	position.

	
	

	

	
Step	2:

	
Next,	we’ll	run	and	test	the	algorithm.

	
Before	we	do	this,	make	sure	you	have	the	printer()	function	in	your	code.	You
can	find	this	from	either	Javascript-02	or	ARCHIVE	A-01.

	
Moving	on,	simply	add	these	two	lines	within	your	code,	just	after	the	code	for
creating	the	bigger	graph:	pg	=	search("g",	a);	print(printer(pg))

	
	

	
There	 are	 two	nodes	 that	 have	 “g”	 as	 their	 content.	The	 algorithm	will	 output
either	one	as	the	solution	depending	on	which	search	strategy	you	use.

	
If	you	set	your	pickPath()	 to	DFS,	 the	output	 lines	should	be:	Solution	Found!
Path:	a,	d,	j,	g,	Here’s	what	happened	after	the	algorithm	processed	Node	a:	-	the
algorithm	added	Nodes	b,	c,	and	d	into	the	frontier

	

	
-	Node	d	was	added	most	 recently;	 so	 it’ll	be	processed	 first	 -	 Its	 subnode	 j	 is
added	-	Node	j	is	added	most	recently;	it’ll	be	processed	first	-	Nodes	k	and	g2
are	added	-	Node	g2	is	added	most	recently;	it’ll	be	processed	first	-	Node	g2	is	a
goal.	So	a	path	with	it	and	all	its	ancestor	nodes	is	the	solution	path.

	
	

	

	
And	 if	 you	 look	 at	 the	 nodes	 carefully,	 you’ll	 notice	 that	 the	 algorithm	went
“Depth-First”:

	

	

	

	

	

	

	

	

	

	

	
Otherwise,	if	you	set	it	to	BFS,	the	output	lines	should	be:	Solution	Found!	Path:
a,	c,	g,

	
Here’s	what	happens	after	the	algorithm	processes	Node	a:	-	the	algorithm	added
Nodes	b,	c,	and	d	into	the	frontier	-	Node	b	is	added	first,	so	it’s	processed	first	-
So	Nodes	e	and	f	are	added	to	 the	frontier	-	Now	the	earliest	node	 is	c,	so	 it’s
then	processed	-	Nodes	g1,	h,	and	i	are	added

	
-	Then	Node	d	is	processed,	so	Node	j	is	added.

	
-	Nodes	 e,	 f,	 and	 g1	 are	 processed	 in	 that	 order,	 since	 they’re	 now	 the	 oldest
nodes	in	the	frontier	-	Node	g1	is	a	goal,	so	a	path	including	it	and	its	ancestors
is	the	solution	path.

	
	

	

	
And	 if	 you	 look	 at	 the	 nodes	 carefully,	 you’ll	 notice	 that	 the	 algorithm	went
“Breadth-First”:

	

	

	

	

	

	

	

	

where	 the
green-

circled	nodes	have	been	processed	already	and	the	yellow-circled	ones	are	in	the
frontier.	They	were	supposed	to	be	processed	as	well	but	the	algorithm	found	a
solution	and	finished	instead.

	

	

Chapter	6.3:	Lowest-Cost	First	Search

	

====	====	====	====	====

	
Sometimes,	 there	can	be	costs	between	nodes	and	subnodes.	For	example,	 if	 a
node	had	three	subnodes,	one	of	them	would	cost	10	to	reach	and	the	other	two
would	cost	15.

	
So	if	the	algorithm	finds	a	solution,	the	path	will	have	a	total	sum	of	all	the	costs
required	to	reach	the	solution.

	
In	this	case,	we	want	the	solution	that	takes	least	overall	cost	to	reach.

	
How	it	works:

	
The	 link	 between	 nodes	 and	 subnodes	 are	 called	 arcs.	 They	 can	 contain
information	vital	for	the	algorithm	to	produce	a	viable,	legal	solution.	For	cost-
based	search	algorithms,	arcs	will	need	costs	between	a	node	and	a	subnode.

	
[Node	A]	-	-	-	->	arc	A-B:	cost=10	-	-	-	->[Node	b]

	

	
Example:	The	Lowest-Cost-First	Search	Algorithm

	
Take	note	of	the	tree	below.	The	red	numbers	indicate	the	cost	to	travel	between

nodes.

	

	

	

	

	
	

	
	

	
The	 algorithm	 will	 add	 Nodes	 B,	 C,	 and	 D	 to	 the	 frontier,	 as	 well	 as	 their
respective	costs,	5,	7,	and	10.	Which	node	will	require	the	least	cost	to	travel	to?
Node	B.	So	Node	B	will	be	processed	first,	then	Nodes	E	and	F	are	added	to	the
frontier,	 along	 with	 their	 respective	 total	 costs	 (Node	 E:	 11	 =	 5+6,	 Node	 F:
8=3+5).	Node	C	will	be	processed	next,	because	it	now	has	the	lowest	cost	at	7.
As	you	can	see,	the	node	that	requires	the	least	cost	to	reach	is	processed	first.

	

	
Hence,	why	the	algorithm	is	called	LOWEST-COST	FIRST.

	
Algorithm	Analysis:	Lowest-Cost-First	Search	Is	it	Complete?

	
Yes,	 but	 there	 are	 certain	 conditions	 that	 need	 to	 be	met.	 You	 can’t	 have	 arc
costs	 be	 zero	 or	 any	 negative	 numbers.	 If	 this	 happens,	 you	 risk	 having	 the
algorithm	loop	and	run	forever.

	
So	as	 long	as	 the	 arc	 costs	have	 real,	 non-negative	values,	 you	can	 expect	 the
algorithm	to	either	deliver	a	solution	or	tell	you	that	there	isn’t	any.

	
Is	it	Optimal?

	
Yes,	 and	 this	 is	 the	 algorithm	variant’s	main	 strength.	You	 can	 guarantee	 that
LCFS	will	give	you	a	solution	and	a	path	that	took	the	lowest	cost	to	reach,	as
long	as	the	arc	costs	are,	again,	real	and	non-negative	values.

	
Otherwise,	the	path	costs	will	be	distorted	and	the	solution	produced	might	not
be	the	optimal	one.

	
	

	

	
What	is	its	Time	Complexity?

	
O(b^m)

	
At	 the	worst-case,	 the	 LCFS	 algorithm	will	 process	 all	 nodes	 in	 the	 tree.	 For
example,	 if	 a	 tree	 had	 up	 to	 5	 subnodes	 per	 node	 and	 4	 levels	 down,	 you’re
looking	at	625	nodes	to	explore.

	
What	is	its	Space	Complexity?

	
O(b^m)

	
At	 the	worst	case,	 the	LCFS	algorithm	will	have	every	node	 in	 the	 tree	 stored
into	memory.	So	if	you	have	a	tree	with	3	subnodes	per	node	and	3	levels	down,
then	you	may	have	up	to	27	nodes	stored	into	memory.

	
	

	

Chapter	6.4:	Heuristic	Search

	

====	====	====	====	====

	
Another	way	 to	 determine	 how	 to	 get	 the	 best	 path	 is	 to	 add	 heuristics	 to	 the
arcs.	The	heuristic	values	can	represent	two	things:	-	A	very	low	estimate	of	the
total	cost	to	reach	a	solution	-	A	value	to	maximize:	the	solution	should	have	the
highest	value	possible	In	the	first	case,	you	can	estimate	the	total	cost	 to	reach
the	nearest	goal	node	from	the	start.	It	will	be	admissible	as	long	as	the	cost	isn’t
overestimated.

	
In	the	second	case,	 it	will	be	the	opposite	of	LCFS	-	each	node-to-subnode	arc
will	 then	 have	 a	 value	 and	 the	 algorithm	will	 find	 a	 solution	with	 the	 highest
value	possible.

	
	

	

	
How	it	works:

	
The	 link	 between	 nodes	 and	 subnodes	 are	 called	 arcs.	 They	 can	 contain
information	vital	for	the	algorithm	to	produce	a	viable,	legal	solution.	For	cost-
based	search	algorithms,	arcs	will	need	costs	between	a	node	and	a	subnode.

	
[Node	A]	-	-	-	->	arc	A-B:	cost=10	-	-	-	->[Node	b]	Example:	Heuristic	Search
Algorithm

	
The	 tree	below	 is	 the	same	one	 from	LCFS,	but	now	with	added	values	 to	 the

arcs.

	

	

	

	

	
	

	
	

	

	
The	Heuristic	search	algorithm	will	choose	its	nodes	based	on	either	the	closest
cost	to	the	estimate	or	a	maximum	value.	First,	it	adds	Nodes	b,	c,	and	d	to	the
frontier.

	
If,	say,	we	estimate	that	the	cost	to	get	to	Node	g	is	7,	the	algorithm	will	process
Node	c	first	because	its	cost	is	7.	So	Nodes	g,	h,	and	i	are	added	to	the	frontier,
each	with	respective	total	costs	11	for	g	(4+7),	13	for	h	(6+7)	and	10	for	i	(7+3).
So	Node	b	will	then	be	processed	next,	because	its	cost	(5)	is	currently	closest	to
7.	 Then	 its	 subnodes	 e	 (11	 =	 6+5)	 and	 f	 (8=5+3)	 are	 added.	 Node	 f	 is	 then
processed,	so	a	second	Node	g	is	added	to	the	frontier,	with	a	cost	of	(9=1+3+5).
The	recently	added	Node	g	has	the	closes	cost	to	7,	so	it’s	then	processed.	It	is	a
viable	 optimal	 solution,	 since	 the	 other	 g-nodes	 have	 costs	 of	 11	 and	 15
respectively.

	
On	the	other	hand,	we	can	also	have	the	algorithm	pick	a	solution	that	creates	the
highest	 value.	 If	 we	 want	 to	 pick	 the	 path	 to	 Node	 g	 with	 the	 highest	 value,
here’s	what	 happens.	Node	 c	 is	 processed	 first,	 because	 of	 its	 value	 (4).	 This
adds	Nodes	g,	h,	and	i	with	values	12,	13	and	10,	respectively.	Node	h	will	then
be	processed	next,	but	with	no	subnodes	to	add	to	the	frontier.	And	once	Node	g
is	processed,	i	would	be	a	viable	solution,	at	a	value	of	12.

	
Algorithm	Analysis:	Heuristic	Search

	
Is	it	Complete?

	
No,	because	there	is	a	chance	that	the	algorithm	will	be	in	an	infinite	loop	once	it
cycles	between	two	high-value	nodes	or	two	nodes	closest	to	the	estimate.

	
Is	it	Optimal?

	

	
Unfortunately	 no,	 but	 this	 is	 because	 the	 value-based	or	 cost-based	 algorithms
can	 be	 “greedy”	 at	 times.	 Meaning,	 the	 algorithm	 will	 only	 prefer	 the	 best
possible	 node	 it	 has	 at	 the	 moment,	 but	 ignoring	 all	 other	 options.	 If	 deeper
nodes	 have	 higher	 values,	 but	 the	 algorithm	 can’t	 get	 to	 them	 because	 it
processes	 other	 nodes	 instead,	 then	 the	 algorithm	might	 produce	 less	 optimal
solutions	instead.

	
What	is	its	Time	&	Space	Complexity?

	
O(b^m)

	
At	the	worst	case,	a	heuristic	search	will	explore	every	node	in	a	tree	and	have
each	node	stored	in	memory.

	

EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	1

	
We’ve	included	a	complementary	guide	to	learning	programming	essentials	and
to	help	you	become	a	better	programmer.

	
As	a	way	to	help	you	understand	it	much	more	easily,	we’ve	set	it	up	as	simple
as	possible.

	
To	 easily	 run	 code,	 select	 an	 IDE	 (Integrated	 Development	 Environment:
essentially	 somewhere	 that	 you	write	 and	 run	 code)	 of	 your	 choice.	You	may
also	use	online	IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
1)	The	Basic	Data	Types.

	
Booleans:

	
These	are	essentially	on-off	switch	values.	In	code,	boolean	values	are	going	to
be	either	TRUE	or	FALSE.

	
In	 Javascript,	 booleans	 can	 only	 be	 in	 lower-case	 (i.e.	 true,	 false).	 Booleans
cannot	have	any	upper-case	letters	in	them	(i.e.	TRUE,	True)	Examples:

	
true,	false

	

http://rextester.com
http://ideone.com
http://codepad.org

	
	

	
Strings:

	
These	 are	 sets	 of	 keyboard	 characters	 -	 including	 letters,	 numbers,	 and	 other
symbols	-	arranged	in	some	order	to	make	a	text	phrase.	They	start	and	end	with
double	quotation	marks.

	
Examples:

	
"	This	is	a	String.	"

	
"	This	15	4	&^%$!	5tring	t00.	"

	
	

	
Numbers:

	
Javascript	treats	all	numbers	the	same.	They’re	all	64-bit	floating	points	(you	can
look	it	up	if	you	don’t	know	what	it	means).

	
But	 in	general,	 there	are	 two	main	 types	of	numbers	 in	programming:	 Integers
(whole	numbers)	and	Floats	(decimal-point	numbers).

	
Integers:

	
They’re	 exactly	 as	 they’re	 defined	 -	 whole	 numbers	 without	 any	 fractions	 or

decimals.	Here	are	some	examples:	12

	
143

	
19999932

	
	

	
Floats:	also	called	floating-point	numbers,	they	represent	the	opposite	of	Integers
-	they	are	numbers	beyond	the	decimal	point.

	
Example:

	
0.12

	
.12

	
	

	
2)	Variables

	
Remember	 in	 grade	 school	 math	 where	 you	 used	 letters	 such	 as	 X	 and	 Y	 to
represent	numbers?	Textbooks	had	phrases	such	as	‘let	x	=	4’	and	‘let	y	=	19’.
These	were	called	variables.

	
Variables	prevalently	 exist	 in	 programming	 too.	But	 in	 programming,	 you	 can
give	your	variables	a	name.	And	instead	of	numbers,	variables	can	be	whatever
data	you	assign	them	as.	They	can	be	strings,	booleans,	integers,	and	more.

	

	
In	 Javascript,	 you	 can	 create	 variables	 in	 the	 following	 syntax:	 var	 (Variable
Name)	=	(Initial	Value)	Or,	alternatively:

	
(Variable	Name)	=	(Initial	Value)	Examples:

	
var	a	=	"	This	is	a	String.	"

	
var	b	=	122

	
c	=	true

	
d	=	0.1234

	
	

	
Think	of	variables	as	one-sentence	statements	in	the	form	of	“(name)	is	a	____”	.
Use	variables	to	tell	the	computer	certain	facts	about	your	code.	The	concept	is
just	as	simple	as	telling	me	that	a	fire	hydrant	is	red	or	the	sky	is	blue.

	
3a)	 Making	 Functions	 If	 Variables	 are	 sentences,	 Functions	 are	 merely
actions	or	verbs.

	
In	essence,	functions	are	outlined	set	of	instructions.	They	are	carried	out	by	the
computer	once	a	 line	of	code	calls	 their	names.	For	example,	 if	 a	 line	of	code
told	a	computer	to	walk,	the	computer	would	follow	the	instructions	to	walk	(i.e.
one	step	forward,	lean	forward,	step	with	other	foot,	etc.)	To	create	a	function	in
Javascript,	follow	this	syntax:	func	<Function	Name>(input1,	input2,	etc…)	{

	

//	write	code	here

	
//	use	the	next	line	if	the	function	outputs	any	data:	//	return	(variable	name	with
data	type,	or	any	data)	}

	
	

	
	

	
	

	
3b)	Using	Functions

	
To	call	a	function,	you	just	write	its	name,	along	with	any	inputs	(if	necessary)
However,	there	are	generally	two	places	where	you	place	a	function.

	
On	a	line	of	its	own:	<Function	Name>(any	required	inputs)

	
Or	wherever	 its	output	data	 type	 is	 expected:	var	 (variable	name)	=	<Function
Name>(any	required	inputs)

	
Examples:

	
//	No	Output:

	
functionABC(a,	b,	c)

	

//	Outputs	an	Integer:	var	integer1	=	functionABC(a,	b,	c)

	
Just	keep	in	mind;	while	Javascript	is	a	far	more	lenient	programming	language
than	 most	 others,	 you	 should	 place	 your	 function	 where	 its	 output	 data	 is
expected.	For	example,	 if	functions	n1()	and	n2()	each	output	a	single	number,
place	them	somewhere	in	your	code	that	expects	those	numbers:	var	sum	=	n1()
+	n2()

	
If	 you	 place	 functions	 where	 they	 don’t	 make	 sense,	 you	 can	 get	 errors	 and
headaches	along	the	way!

	
	

	

	
4)	Composite	Data

	
This	concept	means	that	a	set	of	individual,	lesser	data	are	comprised	together	to
form	 a	 whole,	 singular	 chunk	 of	 data.	 Put	 in	 the	 simplest	 way	 possible,	 if
Variables	are	sentences,	Composite	Data	are	entire	paragraphs	that	can	be	made
of	sentences.

	
In	 Javascript,	 variables	 can	 be	 used	 to	 create	 simple	 composite	 data.	You	 can
create	them	in	the	following	syntax:

	
var	(CompositeName)	=	{

	
part1name:	value1,

	
part2name:	value2,

	
part3name:	value3,

	

}

	
	

	
These	are	called	associative	arrays.	We’ll	get	to	arrays	later	on.	But	for	now,	just
take	note	of	the	syntax.

	

Example:

	
var	c	=	{

	
c1:	“String	Sample",

	
c2:	234,

	

c3:	true

	

}

	
	

	
	

	
	

	
	

	
	

	
	

	

	

	
EASIEST	WAY	TO	LEARN	JAVASCRIPT,	Part	2

	
To	 easily	 run	 code,	 select	 an	 IDE	 (Integrated	 Development	 Environment:
essentially	 somewhere	 that	 you	write	 and	 run	 code)	 of	 your	 choice.	You	may
also	use	online	IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
Part	5a:	Arrays	in	Javascript	Arrays	are	a	sequenced	list	of	a	certain	data
type.	Those	data	types	can	be	simple	or	compound	data.

	
To	set	up	an	array,	follow	this	syntax:	var	(variable	name)	=	[]

	
	

	
Or:

	
(variable	name)	=	[]

	
	

	
	

	
You	 can	 also	 access	 individual	 items	 based	 on	 that	 item’s	 position	within	 the
array.	0	is	the	first	item;	the	array	size	minus	one	is	the	last	item.

http://rextester.com
http://ideone.com
http://codepad.org

	
(In	programming,	the	very	1st	number	is	often	0.	Remember	this!)	For	example,
you	would	get	the	first	item	of	an	array	like	so:	someArray[0]

	
	

	
And	you	would	get	the	last	item	of	an	array	like	so:	//	an	Array	with	room	for	10
items:	someArray[9]

	
	

	
Part	5b:	Iteration

	
To	process	each	item	in	an	array,	use	these	lines:	for	(var	x	in	<arrayName>)	{

	
//	 every	 time	 you	 mention	 ‘x’	 in	 this	 code,	 //	 it	 will	 be	 applied	 to	 every	 item
within	the	array	}

	
	

	
For	example,	this	would	print	out	1	to	5:	var	a	=	[1,2,3,4,5]

	
for	(var	x	in	a)	{

	
print(a[x])

	

}

	
Alternatively,	 you	 can	 also	 iterate	 them	 the	 traditional	 way.	 Many	 other
programming	languages	for	(var	x=0;	x	<	arrayName.length;x++)	{

	
//	 every	 time	 you	 mention	 ‘x’	 in	 this	 code,	 //	 it	 will	 be	 applied	 to	 every	 item
within	the	array	}

	
	

	
Again,	this	would	print	out	1	to	5:	var	a	=	[1,2,3,4,5]

	
for	(var	x=0;	x	<	a.length;x++)	{

	
print(a[x])

	

}

	
	

	
	

	
Part	 6:	Logic	&	Operators	There	 are	 three	Basic	Logic	Operators:	AND,
OR.	and	NOT.

	
AND	and	OR	are	used	to	compare	two	or	more	statements	that	are	either	True	or
False.	They	are	used	in	 the	form	of	(x	AND	y)	or	(x	OR	y)	AND	is	 true	 if	all
items	between	it	is	true.	OR	is	true	if	either	one	of	its	items	is	true.

	

	
NOT	returns	the	opposite	of	a	single	statement	it’s	set	to;	so	‘NOT	true’	would
be	false	and	‘NOT	False’	would	be	true.

	
In	Javascript,	here	are	how	the	operators	are:	AND	operator:	&&

	
OR	operator:	||

	
NOT	operator:	!<boolean>	Examples:

	
//	print	false:

	
print(true	&&	false)	//	print	true:

	
print(true	||	false)

	
//	print	false:

	
print(!true)

	
	

	
Part	 7:	 IF-ELSE	 Statements	 The	 concept	 is	 simple:	 There’s	 a	 boolean
statement	 to	 check.	 If	 it’s	 true,	 do	 the	 procedure	 after	 the	 IF	 line.	 If	 it’s
false,	do	the	procedure	after	the	ELSE	line.

	
if	(<insert	something	that	would	output	a	boolean>)	{

	

//	code	that	happens	if	true	}

	
else	{

	
//	code	that	happens	if	false	}

	
	

	
Note	that	the	conditional	procedures	are	in	between	the	curly	brackets	‘{	}’.

	
an	 IF	 statement	 also	 doesn’t	 need	 an	 ELSE	 statement;	 it	 can	 be	 by	 itself:	 if
(<insert	something	that	would	output	a	boolean>)	{

	
//	code	that	happens	if	true	}

	
	

	
Examples:

	
//	IF-ELSE	together:

	
if	(age	>	20)	{

	
drinkingAge	=	true

	

}

	

	
else	{

	
drinkingAge	=	false

	

}

//	IF-statement	alone:

	
if	happy()	and	knowIt()	{

	
hands.clap()

	

}

	
EASIEST	WAY	TO	LEARN	OBJECT-ORIENTED

	
We’ve	 also	 included	 a	 complementary	 guide	 to	 learning	 Object-Oriented
programming	-one	of	the	most	popular	types	of	programming	in	use	today.

	
To	 easily	 run	 code,	 select	 an	 IDE	 (Integrated	 Development	 Environment:
essentially	 somewhere	 that	 you	write	 and	 run	 code)	 of	 your	 choice.	You	may
also	use	online	IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
1a)	Object	Oriented	Programming	In	 the	world	of	programming,	you	will
hear	this	term	very	very	often.

	
This	 is	 because	 Object-Oriented	 Programming	 (OOP	 for	 short)	 is	 one	 of	 the
most	widely-used	programming	styles	out	there.

	
In	other	programming	languages,	Classes,	a	form	of	composite	data,	are	used	to
group	up	smaller	data	into	a	larger	whole.

	
The	 main	 point	 of	 Object-Oriented	 Programming	 is	 this:	 In	 object-oriented
programming,	 you	 create	 ‘copies’	 of	 those	 classes	 you’ve	 designed.	 In	 even
simpler	 terms,	 A	 Class	 is	 a	 data	 structure	 that	 acts	 as	 “blueprints”.	 Those
“created	 copies”	 you’ve	 made,	 based	 on	 that	 class	 ‘blueprints’,	 are	 called
Objects.

	

http://rextester.com
http://ideone.com
http://codepad.org

	
But	why?	Because	 as	 you	 learn	more	 and	more	 about	 programming,	 you	will
encounter	 the	 notion	 of	 Abstraction	 -	 applying	 a	 general	 idea	 across	 multiple
times	and	 scenarios	 -	ultimately	 saving	 time	and	effort,	while	greatly	 reducing
confusion	and	frustration.

	
Re-coding	the	same	composite	data	over	and	over	would	lead	to	more	effort	and
frustration,	whereas	re-using	the	same	idea	leads	to	efficiency	and	consistency.

	
2)	Classes	&	Constructors	Constructors	are	special	class	methods.	Based	on
the	classes	they	belong	to,	they	create	Objects	for	you.

	
In	 Javascript,	 functions	 are	 used	 as	 a	 combined	 class	 and	 constructor.	 When
defining	a	class,	you	define	its	constructor	function	at	the	same	time.

	
To	define	 a	 class	 -	 as	well	 as	 its	 constructor	 -	 in	 Javascript,	 use	 the	 following
syntax:	var	ClassName	=	function(<any	inputs>)	{

	
//	insert	methods,	fields,	and	other	code	here	}

	
	

	
Also,	 the	constructor	 is	simply	your	class	name	as	a	function.	To	create	a	data
object	based	on	a	certain	class,	 follow	this	syntax:	var	<variable	name>	=	new
Classname()

	
You’re	essentially	setting	some	other	variable	as	a	data	object.

	
Example:

	
var	House	=	function()	{

	
//	insert	code	here

	

}

	
	

	
var	h	=	new	House()

	
	

	
To	call	a	class	object,	simply	refer	to	it:	Example:

	
let	h	=	House()

	
var	MyHouse	=	h

	
	

	
3)	OOP	Terminology

	
Variables	 and	 Functions	 can	 take	 on	 new	 roles	 in	 OOP.	 They	 can	 be	 called
Fields	and	Methods,	respectively.	They	can	also	be	called	Members	functions	or
Member	Variables.	In	some	cases,	it’s	really	up	to	you	to	use	which	names	you

want,	 just	as	 long	as	you	understand	what	other	programmers	mean	when	they
use	these	terms.

	
Fields	represent	variables	in	OOP	because,	just	like	fields	in	any	entry	form,	data
objects	can	have	fields	with	as	many	different	values	as	you	can	think	of.

	
Think	 of	 fields	 as	 a	 certain	 attribute	 for	 an	 object.	 Each	 object	 might	 have
different	attributes	from	each	other:	var	Cat	=	function()	{

	
var	color	=	"green"

	

}

	
	

	
//	these	cats	are	objects	based	on	Cat	class:	catA.color	=	"white"

	
catB.color	=	"grey"

	
catC.color	=	"orange"

	
	

	
Methods	 represent	 the	 functions	 that	 Objects	 have.	 Think	 of	 Methods	 as
‘actions’	and	‘behaviours’	that	objects	do.

	
To	 create	 a	 class	 Method	 for	 a	 particular	 Class,	 follow	 this	 syntax:	 <Class

Name>.prototype.<Method	Name>	=	function()	{

	
//	some	code

	

}

	
Example:

	
Cat.prototype.meow	=	function()	{

	
//	some	code

	

}

	
	

	
Moving	onwards,	 in	OOP	you	need	to	access	the	method	from	an	object	 itself.
For	example,	if	we	create	a	few	Cat	objects	based	on	some	Cat	Class,	each	Cat
object	would	have	all	the	methods	defined	on	the	Cat	Class:	class	Cat{

	
//	some	code

	

}

	
	

	
Cat.prototype.meow	=	function()	{

	
//	some	code

	

}

	
	

	
//	these	cats	are	objects	based	on	Cat	class:	catA.meow()

	
catB.meow()

	
catC.meow()

	
	

	
Lastly,	remember	that	Methods	are	still	functions	at	heart.	You	still	place	them
in	code	where	you	expect	a	function	output’s	data	type	to	be.

	
Example:

	
//	Outputs	a	String

	
Fox.prototype.say	=	function()	{

	

	
return	"ringdingdingding"

	

}

	
	

	
var	whatDoesTheFoxSay	=	someFox.say()	print(whatDoesTheFoxSay)

	
	

	
	

	
Archive	Javascript-A1a:	Solving	Schedule	Problems

	
AI	to	Solve	Scheduling	Problems	Using	Generate-and-test	Algorithm	Copy
and	 paste	 the	 code	 below	 to	 an	 IDE	 of	 your	 choice:	 //	 =======	 ======
========

	

/*

	
//	Archive	Javascript-A1

	
//	Artificial	Intelligence	for	solving	Schedule	Problems	//

	
//	There's	Four	people:	Anna,	Betty,	Cara,	&	Donna	//	1st	Goal:	Find	out	what
times	everyone	is	available	to	meet	together	for	Coffee	//

	
//	 Constraint	 1:	 Anna	 has	 classes	 11am	 -	 1:50pm	 //	 Constraint	 2:	 Betty	 has
classes	noon	-	3:50pm	//	Constraint	3:	Cara	has	work	7pm	to	11pm	//	Constraint
4:	Donna	has	work	6pm	to	10pm	*/

	
	

	
var	Anna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Betty	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Cara	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	

	
var	Donna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
	

	
//	Goal	 1:	Have	 an	 hour	 of	 the	 day	when	 EVERYONE	 is	 available	 to	meet	 //
INPUT:	Four	Integers,	representing	Hours	//	OUTPUT:	Boolean

	
//	EFFECT:	return	True	if	all	input	hours	are	equal	function	g1(a,	b,	c,	d)	{

	
return	(a	==	b	&&	b	==	c	&&	c	==	d)	}

	
	

	
	

	
//	Constraint	Functions

	
//	INPUT:	an	Integer,	representing	a	friend's	Hour	//	OUTPUT:	Boolean

	
//	EFFECT:	return	True	if	the	hour	satisfies	the	time	constraints

	
//	Constraint	1:	Anna	has	classes	11am	-	1:50pm	function	c1(a)	{

	
return	(a	<	11	||	a	>	13)	}

	
	

	
	

	
//	Constraint	2:	Betty	has	classes	noon	 -	3pm,	 //	 then	has	dance	practice	until

4pm	function	c2(b)	{

	
return	(b	<	12	||	b	>=	16)	}

	
	

	
//	Constraint	3:	Cara	has	work	7pm	to	11pm	function	c3(c)	{

	
return	(c	<	19	||	c	>	23)	}

	
	

	
//	Constraint	4:	Diana	has	volunteer	hours	from	6pm	to	8pm,	//	and	work	8pm	to
11pm

	
function	c4(d)	{

	
return	(d	<	18	||	d	>	22)	}

	
	

	
	

	
//	Main	Algorithm:	Generate	and	Search	for	(v	=	0;	v	<	Anna.length;	v++)	{

	
for	(w	=	0;	w	<	Betty.length;	w++)	{

	
for	(x	=	0;	x	<	Cara.length;	x++)	{

	
for	(y	=	0;	y	<	Donna.length;	y++)	{

	

	
if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y])	&&	c1(Anna[v])

	
&&	c2(Betty[w])

	
&&	c3(Cara[x])

	
&&	c4(Donna[y])

	

)	{

	
//	===	Solution	Results	are	Here	print("Anna,	Betty,	Cara,	and	Diana	can	hang
out	at:	"	+	Anna[v]	+	":00")	//	===

	

}

	

}

	

}

	

}

}

	

//	=======	======	========

	
Archive	Javascript-A1b:	Solving	Schedule	Problems

	
AI	 to	 Solve	 Scheduling	 Problems	 Using	 Generate-and-test	 Algorithm
Alternate	 Version:	 For	 Each	 Friend	 to	 schedule,	 Remove	 Unavailable
Hours	Copy	and	paste	the	code	below	to	an	IDE	of	your	choice:	//	=======
======	========

	

/*

	
//	Archive	Javascript-A1

	
//	Artificial	Intelligence	for	solving	Schedule	Problems	//

	
//	There's	Four	people:	Anna,	Betty,	Cara,	&	Donna	//	1st	Goal:	Find	out	what
times	everyone	is	available	to	meet	together	for	Coffee	//

	
//	 Constraint	 1:	 Anna	 has	 classes	 11am	 -	 1:50pm	 //	 Constraint	 2:	 Betty	 has
classes	noon	-	3:50pm	//	Constraint	3:	Cara	has	work	7pm	to	11pm	//	Constraint
4:	Donna	has	work	6pm	to	10pm	*/

	
	

	
//	 Each	 person's	 waking	 hours,	 as	 a	 24-hr	 clock,	 are	 represented	 by	 Integers
//For	example:	15	would	equate	to	15:00,	or	3am	//	Everyone	is	generally	free
after	11am	and	before	Midnight.

	
var	Anna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	

	
var	Betty	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Cara	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
var	Donna	=	[9,	10,	11,12,13,14,15,16,17,18,	19,	20,	21,	22,	23]

	
	

	
//	Goal	 1:	Have	 an	 hour	 of	 the	 day	when	 EVERYONE	 is	 available	 to	meet	 //
INPUT:	Four	Integers,	representing	Hours	//	OUTPUT:	Boolean

	
//	EFFECT:	return	True	if	all	input	hours	are	equal	function	g1(a,	b,	c,	d)	{

	
return	(a	==	b	&&	b	==	c	&&	c	==	d)	}

	
//	INPUT:	Two	arrays,	1	&	2

	
//	OUTPUT:	none

	
//	EFFECT:	deletes	any	elements	from	2nd	array	that's	within	1st	array	function
searchDelete(array1,	array2)	{

	
for	(i=0;i<array1.length;i++)	{

	
for	(j=0;j<array2.length;j++)	{

	
if	(array2[j]	==	array1[i])	{

	
array2.splice(j,	1)

	

	

}

	

}

	

}

	

}

	
	

	
//	Constraint	Procedures

	
//	Constraint	1:	Anna	has	classes	11am	-	1:50pm	delList	=	[]

	
for	(a=0;a<Anna.length;a++)	{//	$Anna.each	do	|a|

	
x	=	Anna[a]

	
if	(x	>=	11	&&	x	<	14)	{

	
delList.push(x)

	

	
//Anna.splice(a,	1)

	
//delete	Anna[a]

	

}

	

}

	
	

	
//	(Delete	ALL	of	Anna's	unavailable	hours)	searchDelete(delList,	Anna)

	
	

	
	

	
	

	
//	Constraint	2:	Betty	has	classes	noon	 -	3pm,	 //	 then	has	dance	practice	until
4pm	delList	=	[]

	
for	(b=0;b<Betty.length;b++)	{

	
x	=	Betty[b]

	

if	(x	>=	12	&&	x	<	16)	{

	
delList.push(x)

	

}

	

}

	
	

	
//	(Delete	ALL	of	Betty's	unavailable	hours)	searchDelete(delList,	Betty)

	
	

	
	

	
//	Constraint	3:	Cara	has	work	7pm	to	11pm	delList	=	[]

	
for	(c=0;c<Cara.length;c++)	{

	
x	=	Cara[c]

	
if	(x	>=	19	&&	x	<=	23)	{

	
delList.push(x)

	

	

}

	

}

	
	

	
//	(Delete	ALL	of	Cara's	unavailable	hours)	searchDelete(delList,	Cara)

	
	

	
//	Constraint	4:	Donna	has	volunteer	hours	from	6pm	to	8pm,	//	and	work	8pm	to
11pm

	
delList	=	[]

	
for	(d=0;d<Donna.length;d++)	{

	
x	=	Donna[d]

	
if	(x	>=	18	&&	x	<=	22)	{

	
delList.push(x)

	

}

	

}

	
	

	
//	(Delete	ALL	of	Donna's	unavailable	hours)	searchDelete(delList,	Donna)

	
	

	
	

	
	

	
//	Main	Algorithm:	Generate	and	Search	for	(v	=	0;	v	<	Anna.length;	v++)	{

	
for	(w	=	0;	w	<	Betty.length;	w++)	{

	
for	(x	=	0;	x	<	Cara.length;	x++)	{

	
for	(y	=	0;	y	<	Donna.length;	y++)	{

	
if	(g1(Anna[v],	Betty[w],	Cara[x],	Donna[y]))	{

	
//	===	Solution	Results	are	Here	print("Anna,	Betty,	Cara,	and	Diana	can	hang
out	at:	"	+	Anna[v]	+	":00")	//	===

	

}

}

	

}

	

}

	

}

}

	

//	=======	======	========

Archive	Javascript-A2a:	Top	Down	Diagnosis

	
Top-Down	Diagnosis	of	a	Logic-Based	System	Example	code	for	the	Water
Flow	System.

	
Note:	In	the	code	comments,	you	can	find	the	original	logic	statements	from	the
system.

	
Copy	and	paste	the	code	below	to	an	IDE	of	your	choice.

	
Afterwards,	call	the	Function	topDownDiagnostic()	and	see	what	happens!

	

//	=======	======	========

	

/*

	
//	INPUTS:

	
//	-	a	Boolean,	for	the	Main	Water	Switch	//	-	a	Boolean,	for	the	Boiler	Switch	//	-
three	more	Booleans,	for	each	of	taps	D,	E,	and	G

	
//	OUTPUTS:	none

	
//	 EFFECT:	 Run	 the	 Diagnostics	 to	 check	 if	 water	 can	 flow	 through	 //	 the

washrooms,	kitchen,	and	laundry	washer	*/

	

	
function	 topDownDiagnostic	 (mainwaterStatus,	 boilerStatus,	 dStatus,	 eStatus,
gStatus){

	

	
var	tapA

	

	
var	tapB

	

	
var	tapC

	

	
var	tapF

	

	
var	tapH

	
var	 toiletConnected	 var	 toiletFlushable	 var	 kitchenTap_Hot	 //	 A	 <-
MainWaterSwitch	if	(mainwaterStatus)	{	tapA	=	true	}

	

	

	
//	B	<-	A	if	(tapA)	{

	
tapB	=	true	print("Tap	A	is	on.	")	}

	
//	C	<-	B

	
if	(tapB)	{	tapC	=	true	print("Tap	B	is	on.	")	}

	

	

	
	

	

	
//	ToiletConnected	<-	D	and	C

	
if	(dStatus	&&	tapC)	{

	
toiletConnected	=	true	print("Taps	D	and	C	are	on.	")	}

	
//	ToiletFlushable	<-	ToiletConnected	if	(toiletConnected)	{

	
toiletFlushable	=	true	print("Toilet	is	Flushable.")	}

	
else	{

	
print("Toilet	Won't	Flush.")	}

	
	

	
//	F	and	H	<-	BoilerSwitch	if	(boilerStatus)	{

	
tapF	=	true

	
tapH	=	true

	

}

	

	

	
//	KitchenTap_Hot	<-	H

	
if	 (tapH)	 {	 kitchenTap_Hot	=	 true	 print("Tap	H	 is	 on.")	 print("Hot	water	 can
flow	through	Kitchen	Tap.")	}

	
else	{

	
print("There's	no	hot	water	from	the	Kitchen	Tap.")	}

	
//	KitchenTap_Cold	<-	E	and	C

	
if	(eStatus	&&	tapC)	{

	
print("Cold	water	can	flow	through	Kitchen	Tap.")	}

	
else	{

	
print("There's	no	cold	water	from	the	Kitchen	Tap.")	}

	
//	WashroomTap_Hot	<-	F	and	G

	
if	(gStatus	&&	tapF)	{

	
print("Tap	F	is	on.")	print("Hot	water	can	flow	through	Washroom	Tap.")	}

	
else	{

	
print("There's	no	hot	water	from	the	Washroom	Tap.")	}

	

	

	

	
//	WashroomTap_Cold	<-	C

	
if	(tapC)	{

	
print("Cold	water	can	flow	through	Washroom	Tap.")	}

	
else	{

	
print("There's	no	cold	water	from	the	Washroom	Tap.")	}

	
//	LaundryWasher_Hot	<-	H

	
if	(tapH)	{

	
print("The	Laundry	washer	has	hot	water.")	}

	
else	{

	
print("There's	no	hot	water	going	into	the	Laundry	Washer.")	}

	
//	LaundryWasher_Cold	<-	E	and	C

	
if	(eStatus	&&	tapC)	{

	
print("The	Laundry	washer	has	cold	water.")	}

	
else	{

	
print("There's	no	cold	water	going	into	the	Laundry	Washer.")	}

	

	

	
	

	

	
//	BathTubTap_Hot	<-	F

	
if	(tapF){

	
print("Hot	water	can	flow	through	the	Bath	Tub	Tap.")	}

	
else	{

	
print("There's	no	hot	water	from	the	Bath	Tub	Tap.")	}

	
	

	
//	BathTubTap_Cold	<-	B

	
if	(tapB){

	
print("Cold	water	can	flow	through	the	Bath	Tub	Tap.")	}

	
else	{

	
print("There's	no	cold	water	from	the	Bath	Tub	Tap.")	}

	

}

	
	

	

	

	

	
Archive	Javascript-A2b:	Bottom	Up	Diagnosis

	
BottomUp	Diagnosis	of	a	Logic-Based	System	Example	code	for	the	Water
Flow	System.

	
Note:	In	the	code	comments,	you	can	find	the	original	logic	statements	from	the
system.

	
Copy	and	paste	the	code	below	to	an	IDE	of	your	choice.

	
Afterwards,	toggle	any	global	variable	between	true/false,	then	call	the	Function
BottomUpDiagnostic()	and	see	what	happens!

	
	

	

//	=======	======	========

	

/*

	
//	Global	variables	for	independent	switches/taps	below.

	
//	 Switch	 them	 around	 between	 true/false,	 //	 then	 run	 the	 Diagnostic	 on	 any
water	source.

	

	

*/

	
var	mainWaterSwitch	=	true	var	boilerSwitch	=	true

	
var	tapD	=	true

	
var	tapE	=	true

	
var	tapG	=	true

	
	

	

/*

	
//	INPUTS:	Integers	1-5:	//	This	determines	which	water	source	in	the	house	the
Diagnostic	will	check:	//	1:	Toilet

	
//	2:	Washroom	Taps

	
//	3:	Bath	Tub	Taps

	
//	4:	Kitchen	Taps

	
//	5:	Washing	Machine	Water	Feed	//	OUTPUTS:	none

	

//	 EFFECT:	 Run	 the	 Diagnostics	 to	 check	 if	 water	 can	 feed	 to	 the	 //	 Chosen
water	source	in	the	house	*/

	
function	botUpDiagnostic	(mode)	{

	
var	tapA

	
var	tapB

	
var	tapC

	
var	tapF

	
var	tapH

	
var	kitchenTap_Hot

	

	

	
//	A	<-	MainWaterSwitch	if	(mainWaterSwitch)	{

	
tapA	=	true

	
print("Main	Water	Switch	is	On.")	}

	

//	B	<-	A

	
if	(tapA)	{

	
tapB	=	true

	
print("Tap	A	is	on.	")	}

	
//	C	<-	B

	
if	(tapB)	{

	
tapC	=	true

	
print("Tap	B	is	on.	")	}

	
	

	
if	(mode	==	1)	{

	
//	ToiletConnected	<-	D	and	C

	
if	(tapD	&&	tapC)	{	toiletConnected	=	true	print("Tap	C	is	on.	")

	
print("Tap	D	is	on.	")

	

}

//	ToiletFlushable	<-	ToiletConnected	if	(toiletConnected)	{

	
toiletFlushable	=	true

	
print("Toilet	is	Flushable.")	}

	
	

	
else	{

	
print("Toilet	Won't	Flush.")	}

	
return

	

}

//	F	and	H	<-	BoilerSwitch	if	(boilerSwitch)	{

	
tapF	=	true

	
tapH	=	true

	
print("Boiler	Switch	is	On.")	}

	
	

	
	

	

if	(mode	==	2)	{

	
//	WashroomTap_Hot	<-	F	and	G

	
if	(tapG	&&	tapF)	{

	
print("Tap	F	is	on.")

	
print("Hot	water	can	flow	through	Washroom	Tap.")	}

	
else	{

	
print("There's	no	hot	water	from	the	Washroom	Tap.")	}

	
	

	
//	WashroomTap_Cold	<-	C

	
if	(tapC)	{

	
print("Tap	C	is	on.	")

	
print("Cold	water	can	flow	through	Washroom	Tap.")	}

	
else	{

	
print("There's	no	cold	water	from	the	Washroom	Tap.")	}

	
return

	

	

}

	
	

	
if	(mode	==	3)	{

	
//	BathTubTap_Hot	<-	F

	
if	(tapF)	{

	
print("Tap	F	is	on.")

	
print("Hot	water	can	flow	through	the	Bath	Tub	Tap.")	}

	
else	{

	
print("There's	no	hot	water	from	the	Bath	Tub	Tap.")	}

	
//	BathTubTap_Cold	<-	B

	
if	(tapB)	{

	
print("Cold	water	can	flow	through	the	Bath	Tub	Tap.")	}

	
else	{

	
print("There's	no	cold	water	from	the	Bath	Tub	Tap.")	}

	

	
	

	
return

	

}

if	(mode	==	4)	{

	
//	KitchenTap_Hot	<-	H

	
if	(tapH)	{

	
kitchenTap_Hot	=	true

	
print("Tap	H	is	on.")

	
print("Hot	water	can	flow	through	Kitchen	Tap.")	}

	
else	{

	
print("There's	no	hot	water	from	the	Kitchen	Tap.")	}

	
//	KitchenTap_Cold	<-	E	and	C

	
if	(tapE	&&	tapC)	{

	
print("Tap	C	is	on.")

	

print("Tap	E	is	on.")

	
print("Cold	water	can	flow	through	Kitchen	Tap.")	}

	
else	{

	
print("There's	no	cold	water	from	the	Kitchen	Tap.")	}

	
	

	
return

	

}

if	(mode	==	5){

	
//	LaundryWasher_Hot	<-	H

	
if	(tapH){

	
print("Tap	H	is	on.")

	
print("The	Laundry	washer	has	hot	water.")	}

	
else	{

	
print("There's	no	hot	water	going	into	the	Laundry	Washer.")	}

	

//	LaundryWasher_Cold	<-	E	and	C

	
if	(tapE	&&	tapC)	{

	
print("Tap	C	is	on.")

	
print("Tap	E	is	on.")

	
print("The	Laundry	washer	has	cold	water.")	}

	
else	{

	
print("There's	no	cold	water	going	into	the	Laundry	Washer.")	}

	
	

	
return

	

}

}

	
	

	

//	=======	======	========

Archive	Javascript	A3.1:	Frontier	Search	Algorithm	

	
For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

	

=========================	======

	
This	is	the	default	Frontier	Search	Algorithm	used	by	most	chapters	throughout
the	book.

	
It	 is	 strongly	 recommended	 to	view	 this	only	after	you’ve	 finished	building	&
successfully	testing	the	algorithm	already.

	
function	Node(c)	{

	
this.contents	=	c	this.children	=	[]

	

	

	
this.getContents	=	function()	{

	
return	this.contents	}

	
this.getChildren	=	function()	{

	

http://rextester.com
http://ideone.com
http://codepad.org

	
return	this.children	}

	

}

	

	

/*

	
//	MAIN	FRONTIER	SEARCH	ALGORITHM:	*/

	
function	search(query,	start)	{

	
//	-	frontier:=	{new	array	of	Nodes}

	
var	frontier	=	[];

	
	

	
//	-	create	a	new	Path	and	put	the	Start	node	in	it	p	=	new	Path();

	
p.contents.push(start);

	
//	-	put	the	new	Path	into	the	frontier	frontier.push(p)

	

	

	
while	(frontier.length	>	0)	{

	
//	 -	 select	 and	 remove	 a	 Path	 <s0,	 s1,….,sk>	 from	 frontier;	 //	 (use	 helper
function	pickPath())	pick	=	pickPath(frontier);

	

	

	
//	If	node	(sk)	is	a	goal,	return	selected	Path	if	(hasGoal(query,	pick))	{

	
return	pick;

	

}

else	{

	
//	For	every	connected	node	of	end	node	sk:	//	-	Make	a	copy	of	the	selected	Path
//	-	Add	connected	node	of	sk	onto	path	copy	//	-	add	copied	Path	<s0,	s1,….,sk,
s>	to	frontier;	size	=	pick.contents.length;	last	=	pick.contents[size	-	1];

	
for	(n	in	last.children)	{

	
toAdd	=	new	Path();

	
for	(x	in	pick.contents)	{

	
toAdd.contents.push(pick.contents[x])	}

	
toAdd.contents.push(last.children[n]);	frontier.push(toAdd);

	

}

	

}

	

}

	
//	 -	 indicate	‘NO	SOLUTION’	if	 frontier	empties	 //	 (we'll	output	 false	 if	 there's
no	solution)	return	false;

	

}

	
	

	

	
	

	

/*

	
//	HELPER	FUNCTION	#1:	//	NOTE:	you	can	modify	the	position	assignment	to
change	the	Search	Strategy	*/

	
function	pickPath(f)	{

	
var	position	=	0;	var	ret	=	f[position];	f.splice(position,	1);	return	ret;

	

}

	
	

	

/*

	
//	HELPER	FUNCTION	#2:	*/

	
function	hasGoal(s,	p)	{

	
for	(i	in	p.contents)	{

	

	
if	(p.contents[i].contents	==	s)	return	true;	}

	
return	false;	}

	
	

	

	
//	The	Path	Class:	function	Path()	{

	
this.contents	=	[]

	

}

	
	

	
Printer	Function:	function	printer(p)	{

	
if	(p	==	false)	return	"NOTE:	No	Solution	Found";	else	{

	
var	s	=	"Solution	Found!	Path:	";	for	(i	=	0;	i<p.contents.length;	i++)	{

	
s	+=	p.contents[i].contents	+	",	";	}

	
return	s;

	

}

	

}

	

	
Archive	Javascript	A3.2:	Bigger	Search	Graph
For	DFS	&	BFS,	Chapter	Javascript-06

For	the	procedure	below,	select	an	IDE	of	your	choice.	You	may	also	use	online
IDE’s	such	as	rextester.com,	ideone.com,	or	codepad.org.

=========================	======

Reference	Image:

	

	

	

	

	

The	 code	 below	 is	 based
on	 the	 default	 Node

structure	throughout	the	book.

	

	

	

http://rextester.com
http://ideone.com
http://codepad.org

	
var	a	=	new	Node("a");	var	b	=	new	Node("b");	var	c	=	new	Node("c");	var	d	=
new	Node("d");	var	e	=	new	Node("e");	var	 f	=	new	Node("f");	var	g1	=	new
Node("g");	 var	 h	 =	 new	 Node("h");	 var	 i	 =	 new	 Node("i");	 var	 j	 =	 new
Node("j");	var	k	=	new	Node("k");	var	g2	=	new	Node("g");	a.children.push(b);
a.children.push(c);	 a.children.push(d);	 b.children.push(e);	 b.children.push(f);
c.children.push(g1);	 c.children.push(h);	 c.children.push(i);	 d.children.push(j);
j.children.push(k);	j.children.push(g2);

	

	Preface: JAVASCRIPT as Artificial Intelligence
	Introduction
	Chapter 1: Algorithms: The Essentials
	Javascript 01a: using AI to Solve Complex Time Scheduling
	Javascript 01b: The Generate-And-Test General Algorithm
	Javascript 01c: The Procedure: Schedule Solvers
	Javascript 01d: Schedule Solvers, Faster Version
	Chapter 2: Logic & Reasoning
	Javascript 02a: Using Logic-Based AI
	Chapter 3: Environment Representation for AI
	Javascript 03a: Environment Models with Javascript
	Javascript 03b: Creating a Model Environment
	Chapter 4: Your AI Knowledge & Abilities
	Chapter 5: How to Create a Problem-Solving AI
	Javascript 05a: Fundamental Frontier Search Algorithm
	Javascript 05b: Using Frontier Search
	Chapter 6: Search Strategies
	Chapter 6.1: Depth-First Search
	Chapter 6.2: Breadth-First Search
	Javascript 06: Frontier Search as DFS and BFS
	Chapter 6.3: Lowest-Cost First Search
	Chapter 6.4: Heuristic Search
	EASIEST WAY TO LEARN JAVASCRIPT, Part 1
	EASIEST WAY TO LEARN JAVASCRIPT, Part 2
	EASIEST WAY TO LEARN OBJECT-ORIENTED
	Archive Javascript-A1a: Solving Schedule Problems
	Archive Javascript-A1b: Solving Schedule Problems
	Archive Javascript-A2a: Top Down Diagnosis
	Archive Javascript-A2b: Bottom Up Diagnosis
	Archive Javascript A3.1: Frontier Search Algorithm
	Archive Javascript A3.2: Bigger Search Graph

