

Title AIFH,	Volume	3:	Deep	Learning	and	Neural	Networks
Author Jeff	Heaton
Published December	31,	2015
Copyright Copyright	2015	by	Heaton	Research,	Inc.,	All	Rights	Reserved.
File	Created Sun	Nov	08	15:28:13	CST	2015
ISBN 978-1505714340
Price 9.99	USD

Do	not	make	illegal	copies	of	this	ebook

This	eBook	is	copyrighted	material,	and	public	distribution	is	prohibited.	If	you	did
not	receive	this	ebook	from	Heaton	Research	(http://www.heatonresearch.com),	or	an
authorized	bookseller,	please	contact	Heaton	Research,	Inc.	to	purchase	a	licensed	copy.
DRM	free	copies	of	our	books	can	be	purchased	from:

http://www.heatonresearch.com/book

If	you	purchased	this	book,	thankyou!	Your	purchase	of	this	books	supports	the	Encog
Machine	Learning	Framework.	http://www.encog.org

http://www.heatonresearch.com/book
http://www.encog.org

Publisher:	Heaton	Research,	Inc.
Artificial	Intelligence	for	Humans,	Volume	3:	Neural	Networks	and	Deep	Learning
December,	2015
Author:	Jeff	Heaton
Editor:	Tracy	Heaton
ISBN:	978-1505714340
Edition:	1.0

Copyright	©	2015	by	Heaton	Research	Inc.,	1734	Clarkson	Rd.	#107,	Chesterfield,
MO	63017-4976.	World	rights	reserved.	The	author(s)	created	reusable	code	in	this
publication	expressly	for	reuse	by	readers.	Heaton	Research,	Inc.	grants	readers
permission	to	reuse	the	code	found	in	this	publication	or	downloaded	from	our	website	so
long	as	(author(s))	are	attributed	in	any	application	containing	the	reusable	code	and	the
source	code	itself	is	never	redistributed,	posted	online	by	electronic	transmission,	sold	or
commercially	exploited	as	a	stand-alone	product.	Aside	from	this	specific	exception
concerning	reusable	code,	no	part	of	this	publication	may	be	stored	in	a	retrieval	system,
transmitted,	or	reproduced	in	any	way,	including,	but	not	limited	to	photo	copy,
photograph,	magnetic,	or	other	record,	without	prior	agreement	and	written	permission	of
the	publisher.

Heaton	Research,	Encog,	the	Encog	Logo	and	the	Heaton	Research	logo	are	all
trademarks	of	Heaton	Research,	Inc.,	in	the	United	States	and/or	other	countries.

TRADEMARKS:	Heaton	Research	has	attempted	throughout	this	book	to	distinguish
proprietary	trademarks	from	descriptive	terms	by	following	the	capitalization	style	used
by	the	manufacturer.

The	author	and	publisher	have	made	their	best	efforts	to	prepare	this	book,	so	the
content	is	based	upon	the	final	release	of	software	whenever	possible.	Portions	of	the
manuscript	may	be	based	upon	pre-release	versions	supplied	by	software	manufacturer(s).
The	author	and	the	publisher	make	no	representation	or	warranties	of	any	kind	with	regard
to	the	completeness	or	accuracy	of	the	contents	herein	and	accept	no	liability	of	any	kind
including	but	not	limited	to	performance,	merchantability,	fitness	for	any	particular
purpose,	or	any	losses	or	damages	of	any	kind	caused	or	alleged	to	be	caused	directly	or
indirectly	from	this	book.

SOFTWARE	LICENSE	AGREEMENT:	TERMS	AND	CONDITIONS	

The	media	and/or	any	online	materials	accompanying	this	book	that	are	available	now
or	in	the	future	contain	programs	and/or	text	files	(the	“Software”)	to	be	used	in
connection	with	the	book.	Heaton	Research,	Inc.	hereby	grants	to	you	a	license	to	use	and
distribute	software	programs	that	make	use	of	the	compiled	binary	form	of	this	book’s
source	code.	You	may	not	redistribute	the	source	code	contained	in	this	book,	without	the
written	permission	of	Heaton	Research,	Inc.	Your	purchase,	acceptance,	or	use	of	the
Software	will	constitute	your	acceptance	of	such	terms.

The	Software	compilation	is	the	property	of	Heaton	Research,	Inc.	unless	otherwise
indicated	and	is	protected	by	copyright	to	Heaton	Research,	Inc.	or	other	copyright
owner(s)	as	indicated	in	the	media	files	(the	“Owner(s)”).	You	are	hereby	granted	a	license
to	use	and	distribute	the	Software	for	your	personal,	noncommercial	use	only.	You	may

not	reproduce,	sell,	distribute,	publish,	circulate,	or	commercially	exploit	the	Software,	or
any	portion	thereof,	without	the	written	consent	of	Heaton	Research,	Inc.	and	the	specific
copyright	owner(s)	of	any	component	software	included	on	this	media.

In	the	event	that	the	Software	or	components	include	specific	license	requirements	or
end-user	agreements,	statements	of	condition,	disclaimers,	limitations	or	warranties
(“End-User	License”),	those	End-User	Licenses	supersede	the	terms	and	conditions	herein
as	to	that	particular	Software	component.	Your	purchase,	acceptance,	or	use	of	the
Software	will	constitute	your	acceptance	of	such	End-User	Licenses.

By	purchase,	use	or	acceptance	of	the	Software	you	further	agree	to	comply	with	all
export	laws	and	regulations	of	the	United	States	as	such	laws	and	regulations	may	exist
from	time	to	time.

SOFTWARE	SUPPORT	

Components	of	the	supplemental	Software	and	any	offers	associated	with	them	may	be
supported	by	the	specific	Owner(s)	of	that	material	but	they	are	not	supported	by	Heaton
Research,	Inc..	Information	regarding	any	available	support	may	be	obtained	from	the
Owner(s)	using	the	information	provided	in	the	appropriate	README	files	or	listed
elsewhere	on	the	media.

Should	the	manufacturer(s)	or	other	Owner(s)	cease	to	offer	support	or	decline	to
honor	any	offer,	Heaton	Research,	Inc.	bears	no	responsibility.	This	notice	concerning
support	for	the	Software	is	provided	for	your	information	only.	Heaton	Research,	Inc.	is
not	the	agent	or	principal	of	the	Owner(s),	and	Heaton	Research,	Inc.	is	in	no	way
responsible	for	providing	any	support	for	the	Software,	nor	is	it	liable	or	responsible	for
any	support	provided,	or	not	provided,	by	the	Owner(s).

WARRANTY	

Heaton	Research,	Inc.	warrants	the	enclosed	media	to	be	free	of	physical	defects	for	a
period	of	ninety	(90)	days	after	purchase.	The	Software	is	not	available	from	Heaton
Research,	Inc.	in	any	other	form	or	media	than	that	enclosed	herein	or	posted	to
www.heatonresearch.com.	If	you	discover	a	defect	in	the	media	during	this	warranty
period,	you	may	obtain	a	replacement	of	identical	format	at	no	charge	by	sending	the
defective	media,	postage	prepaid,	with	proof	of	purchase	to:

Heaton	Research,	Inc.
Customer	Support	Department
1734	Clarkson	Rd	#107
Chesterfield,	MO	63017-4976
Web:	www.heatonresearch.com
E-Mail:	support@heatonresearch.com

DISCLAIMER	

Heaton	Research,	Inc.	makes	no	warranty	or	representation,	either	expressed	or
implied,	with	respect	to	the	Software	or	its	contents,	quality,	performance,	merchantability,
or	fitness	for	a	particular	purpose.	In	no	event	will	Heaton	Research,	Inc.,	its	distributors,
or	dealers	be	liable	to	you	or	any	other	party	for	direct,	indirect,	special,	incidental,
consequential,	or	other	damages	arising	out	of	the	use	of	or	inability	to	use	the	Software	or

its	contents	even	if	advised	of	the	possibility	of	such	damage.	In	the	event	that	the
Software	includes	an	online	update	feature,	Heaton	Research,	Inc.	further	disclaims	any
obligation	to	provide	this	feature	for	any	specific	duration	other	than	the	initial	posting.

The	exclusion	of	implied	warranties	is	not	permitted	by	some	states.	Therefore,	the
above	exclusion	may	not	apply	to	you.	This	warranty	provides	you	with	specific	legal
rights;	there	may	be	other	rights	that	you	may	have	that	vary	from	state	to	state.	The
pricing	of	the	book	with	the	Software	by	Heaton	Research,	Inc.	reflects	the	allocation	of
risk	and	limitations	on	liability	contained	in	this	agreement	of	Terms	and	Conditions.

SHAREWARE	DISTRIBUTION	

This	Software	may	use	various	programs	and	libraries	that	are	distributed	as
shareware.	Copyright	laws	apply	to	both	shareware	and	ordinary	commercial	software,
and	the	copyright	Owner(s)	retains	all	rights.	If	you	try	a	shareware	program	and	continue
using	it,	you	are	expected	to	register	it.	Individual	programs	differ	on	details	of	trial
periods,	registration,	and	payment.	Please	observe	the	requirements	stated	in	appropriate
files.

This	book	is	dedicated	to	my	mom	Mary,

thank	you	for	all	the	love

and	encouragement	over	the	years.

.

Introduction
Series	Introduction
Example	Computer	Languages
Prerequisite	Knowledge
Fundamental	Algorithms
Other	Resources
Structure	of	this	Book

This	book	is	the	third	in	a	series	covering	select	topics	in	artificial	intelligence	(AI),	a
large	field	of	study	that	encompasses	many	sub-disciplines.	In	this	introduction,	we	will
provide	some	background	information	for	readers	who	might	not	have	read	Volume	1	or	2.
It	is	not	necessary	to	read	Volume	1	or	2	before	this	book.	We	introduce	needed
information	from	both	volumes	in	the	following	sections.

Series	Introduction

This	series	of	books	introduces	the	reader	to	a	variety	of	popular	topics	in	artificial
intelligence.	By	no	means	are	these	volumes	intended	to	be	an	exhaustive	AI	resource.
However,	each	book	presents	a	specific	area	of	AI	to	familiarize	the	reader	with	some	of
the	latest	techniques	in	this	field	of	computer	science.

In	this	series,	we	teach	artificial	intelligence	concepts	in	a	mathematically	gentle
manner,	which	is	why	we	named	the	series	Artificial	Intelligence	for	Humans.	As	a	result,
we	always	follow	the	theories	with	real-world	programming	examples	and	pseudocode
instead	of	relying	solely	on	mathematical	formulas.	Still,	we	make	these	assumptions:

The	reader	is	proficient	in	at	least	one	programming	language.
The	reader	has	a	basic	understanding	of	college	algebra.
The	reader	does	not	necessarily	have	much	experience	with	formulas	from	calculus,
linear	algebra,	differential	equations,	and	statistics.	We	will	introduce	these	formulas
when	necessary.

Finally,	the	book’s	examples	have	been	ported	to	a	number	of	programming	languages.
Readers	can	adapt	the	examples	to	the	language	that	fits	their	particular	programming
needs.

Programming	Languages

Although	the	book’s	text	stays	at	the	pseudocode	level,	we	provide	example	packs	for
Java,	C#	and	Python.	The	Scala	programming	language	has	a	community-supplied	port,
and	readers	are	also	working	on	porting	the	examples	to	additional	languages.	So,	your
favorite	language	might	have	been	ported	since	this	printing.	Check	the	book’s	GitHub
repository	for	more	information.	We	highly	encourage	readers	of	the	books	to	help	port	to
other	languages.	If	you	would	like	to	get	involved,	Appendix	A	has	more	information	to
get	you	started.

Online	Labs

Many	of	the	examples	from	this	series	use	JavaScript	and	are	available	to	run	online,
using	HTML5.	Mobile	devices	must	also	have	HTML5	capability	to	run	the	programs.
You	can	find	all	online	lab	materials	at	the	following	web	site:

http://www.aifh.org

These	online	labs	allow	you	to	experiment	with	the	examples	even	as	you	read	the	e-
book	from	a	mobile	device.

Code	Repositories

All	of	the	code	for	this	project	is	released	under	the	Apache	Open	Source	License	v2
and	can	be	found	at	the	following	GitHub	repository:

https://github.com/jeffheaton/aifh

If	you	find	something	broken,	misspelled,	or	otherwise	botched	as	you	work	with	the
examples,	you	can	fork	the	project	and	push	a	commit	revision	to	GitHub.	You	will	also
receive	credit	among	the	growing	number	of	contributors.	Refer	to	Appendix	A	for	more
information	on	contributing	code.

Books	Planned	for	the	Series

The	following	volumes	are	planned	for	this	series:

Volume	0:	Introduction	to	the	Math	of	AI
Volume	1:	Fundamental	Algorithms
Volume	2:	Nature-Inspired	Algorithms
Volume	3:	Deep	Learning	and	Neural	Networks

http://www.aifh.org
https://github.com/jeffheaton/aifh

We	will	produce	Volumes	1,	2,	and	3	in	order.	Volume	0	is	a	planned	prequel	that	we
will	create	near	the	end	of	the	series.	While	all	the	books	will	include	the	required
mathematical	formulas	to	implement	the	programs,	the	prequel	will	recap	and	expand	on
all	the	concepts	from	the	earlier	volumes.	We	also	intend	to	produce	more	books	on	AI
after	the	publication	of	Volume	3.

In	general,	you	can	read	the	books	in	any	order.	Each	book’s	introduction	will	provide
some	background	material	from	previous	volumes.	This	organization	allows	you	to	jump
quickly	to	the	volume	that	contains	your	area	of	interest.	If	you	want	to	supplement	your
knowledge	at	a	later	point,	you	can	read	the	previous	volume.

Other	Resources

Many	other	resources	on	the	Internet	will	be	very	useful	as	you	read	through	this	series
of	books.

The	first	resource	is	Khan	Academy,	a	nonprofit,	educational	website	that	provides
videos	to	demonstrate	many	areas	of	mathematics.	If	you	need	additional	review	on	any
mathematical	concept	in	this	book,	Khan	Academy	probably	has	a	video	on	that
information.

http://www.khanacademy.org/

The	second	resource	is	the	Neural	Network	FAQ.	This	text-only	resource	has	a	great
deal	of	information	on	neural	networks	and	other	AI	topics.

http://www.faqs.org/faqs/ai-faq/neural-nets/

Although	the	information	in	this	book	is	not	necessarily	tied	to	Encog,	the	Encog
home	page	has	a	fair	amount	of	general	information	on	machine	learning.

http://www.encog.org

Neural	Networks	Introduction

Neural	networks	have	been	around	since	the	1940s,	and,	as	a	result,	they	have	quite	a
bit	of	history.	This	book	will	cover	the	historic	aspects	of	neural	networks	because	you
need	to	know	some	of	the	terminology.	A	good	example	of	this	historic	progress	is	the
activation	function,	which	scales	values	passing	through	neurons	in	the	neural	network.
Along	with	threshold	activation	functions,	researchers	introduced	neural	networks,	and
this	advancement	gave	way	to	sigmoidal	activation	functions,	then	to	hyperbolic	tangent
functions	and	now	to	the	rectified	linear	unit	(ReLU).	While	most	current	literature
suggests	using	the	ReLU	activation	function	exclusively,	you	need	to	understand
sigmoidal	and	hyperbolic	tangent	to	see	the	benefits	of	ReLU.

http://www.khanacademy.org/
http://www.faqs.org/faqs/ai-faq/neural-nets/
http://www.encog.org

Whenever	possible,	we	will	indicate	which	architectural	component	of	a	neural
network	to	use.	We	will	always	identify	the	architectural	components	now	accepted	as	the
recommended	choice	over	older	classical	components.	We	will	bring	many	of	these
architectural	elements	together	and	provide	you	with	some	concrete	recommendations	for
structuring	your	neural	networks	in	Chapter	14,	“Architecting	Neural	Networks.”

Neural	networks	have	risen	from	the	ashes	of	discredit	several	times	in	their	history.
McCulloch,	W.	and	Pitts,	W.	(1943)	first	introduced	the	idea	of	a	neural	network.
However,	they	had	no	method	to	train	these	neural	networks.	Programmers	had	to	craft	by
hand	the	weight	matrices	of	these	early	networks.	Because	this	process	was	tedious,	neural
networks	fell	into	disuse	for	the	first	time.

Rosenblatt,	F.	(1958)	provided	a	much-needed	training	algorithm	called
backpropagation,	which	automatically	creates	the	weight	matrices	of	neural	networks.	It
fact,	backpropagation	has	many	layers	of	neurons	that	simulate	the	architecture	of	animal
brains.	However,	backpropagation	is	slow,	and,	as	the	layers	increase,	it	becomes	even
slower.	It	appeared	as	if	the	addition	of	computational	power	in	the	1980s	and	early	1990s
helped	neural	networks	perform	tasks,	but	the	hardware	and	training	algorithms	of	this	era
could	not	effectively	train	neural	networks	with	many	layers,	and,	for	the	second	time,
neural	networks	fell	into	disuse.

The	third	rise	of	neural	networks	occurred	when	Hinton	(2006)	provided	a	radical	new
way	to	train	deep	neural	networks.	The	recent	advances	in	high-speed	graphics	processing
units	(GPU)	allowed	programmers	to	train	neural	networks	with	three	or	more	layers	and
led	to	a	resurgence	in	this	technology	as	programmers	realized	the	benefits	of	deep	neural
networks.

In	order	to	establish	the	foundation	for	the	rest	of	the	book,	we	begin	with	an	analysis
of	classic	neural	networks,	which	are	still	useful	for	a	variety	of	tasks.	Our	analysis
includes	concepts,	such	as	self-organizing	maps	(SOMs),	Hopfield	neural	networks,	and
Boltzmann	machines.	We	also	introduce	the	feedforward	neural	network	and	show	several
ways	to	train	it.

A	feedforward	neural	network	with	many	layers	becomes	a	deep	neural	network.	The
book	contains	methods,	such	as	GPU	support,	to	train	deep	networks.	We	also	explore
technologies	related	to	deep	learning,	such	as	dropout,	regularization,	and	convolution.
Finally,	we	demonstrate	these	techniques	through	several	real-world	examples	of	deep
learning,	such	as	predictive	modeling	and	image	recognition.

If	you	would	like	to	read	in	greater	detail	about	the	three	phases	of	neural	network
technology,	the	following	article	presents	a	great	overview:

http://chronicle.com/article/The-Believers/190147/

http://chronicle.com/article/The-Believers/190147/

The	Kickstarter	Campaign

In	2013,	we	launched	this	series	of	books	after	a	successful	Kickstarter	campaign.
Figure	1	shows	the	home	page	of	the	Kickstarter	project	for	Volume	3:

Figure	1:	The	Kickstarter	Campaign

You	can	visit	the	original	Kickstarter	at	the	following	link:

https://goo.gl/zW4dht

We	would	like	to	thank	all	of	the	Kickstarter	backers	of	the	project.	Without	your
support,	this	series	might	not	exist.	We	would	like	to	extend	a	huge	thank	you	to	those
who	backed	at	the	$250	and	beyond	level:

Figure	2:	Gold	Level	Backers

It	will	be	great	discussing	your	projects	with	you.	Thank	you	again	for	your	support.

We	would	also	like	to	extend	a	special	thanks	to	those	backers	who	supported	the	book
at	the	$100	and	higher	levels.	They	are	listed	here	in	the	order	that	they	backed:

https://goo.gl/zW4dht

Figure	3:	Silver	Level	Backers

A	special	thank	you	to	my	wife,	Tracy	Heaton,	who	edited	the	previous	two	volumes.

There	have	been	three	volumes	so	far;	the	repeat	backers	have	been	very	valuable	to
this	campaign!	It	is	amazing	to	me	how	many	repeat	backers	there	are!

Thank	you,	everyone—you	are	the	best!

http://www.heatonresearch.com/ThankYou/

Figure	4:	Repeat	Backers	1/4

http://www.heatonresearch.com/ThankYou/

Figure	5:	Repeat	Backers	2/4

	

Figure	6:	Repeat	Backers	3/4

	

Figure	7:	Repeat	Backers	4/4

	

Background	Information

You	can	read	Artificial	Intelligence	for	Humans	in	any	order.	However,	this	book	does
expand	on	some	topics	introduced	in	Volumes	1	and	2.	The	goal	of	this	section	is	to	help
you	understand	what	a	neural	network	is	and	how	to	use	it.	Most	people,	even	non-
programmers,	have	heard	of	neural	networks.	Many	science	fiction	stories	have	plots	that
are	based	on	ideas	related	to	neural	networks.	As	a	result,	sci-fi	writers	have	created	an
influential	but	somewhat	inaccurate	view	of	the	neural	network.

Most	laypeople	consider	neural	networks	to	be	a	type	of	artificial	brain.	According	to
this	view,	neural	networks	could	power	robots	or	carry	on	intelligent	conversations	with
human	beings.	However,	this	notion	is	a	closer	definition	of	artificial	intelligence	(AI)
than	of	neural	networks.	Although	AI	seeks	to	create	truly	intelligent	machines,	the
current	state	of	computers	is	far	below	this	goal.	Human	intelligence	still	trumps	computer
intelligence.

Neural	networks	are	a	small	part	of	AI.	As	they	currently	exist,	neural	networks	carry
out	miniscule,	highly	specific	tasks.	Unlike	the	human	brain,	computer-based	neural
networks	are	not	general-purpose	computational	devices.	Furthermore,	the	term	neural
network	can	create	confusion	because	the	brain	is	a	network	of	neurons	just	as	AI	uses
neural	networks.	To	avoid	this	problem,	we	must	make	an	important	distinction.

We	should	really	call	the	human	brain	a	biological	neural	network	(BNN).	Most	texts
do	not	bother	to	make	the	distinction	between	a	BNN	and	artificial	neural	networks
(ANNs).	Our	book	follows	this	pattern.	When	we	refer	to	neural	networks,	we’re	dealing
with	ANNs.	We	are	not	talking	about	BNNs	when	we	use	the	term	neural	network.

Biological	neural	networks	and	artificial	neural	networks	share	some	very	basic
similarities.	For	instance,	biological	neural	networks	have	inspired	the	mathematical
constructs	of	artificial	neural	networks.	Biological	plausibility	describes	various	artificial
neural	network	algorithms.	This	term	defines	how	close	an	artificial	neural	network
algorithm	is	to	a	biological	neural	network.

As	previously	mentioned,	programmers	design	neural	networks	to	execute	one	small
task.	A	full	application	will	likely	use	neural	networks	to	accomplish	certain	parts	of	the
application.	However,	the	entire	application	will	not	be	implemented	as	a	neural	network.
It	may	consist	of	several	neural	networks	of	which	each	has	a	specific	task.

Pattern	recognition	is	a	task	that	neural	networks	can	easily	accomplish.	For	this	task,
you	can	communicate	a	pattern	to	a	neural	network,	and	it	communicates	a	pattern	back	to
you.	At	the	highest	level,	a	typical	neural	network	can	perform	only	this	function.
Although	some	network	architectures	might	achieve	more,	the	vast	majority	of	neural
networks	work	this	way.	Figure	8	illustrates	a	neural	network	at	this	level:

Figure	8:	A	Typical	Neural	Network

As	you	can	see,	the	above	neural	network	accepts	a	pattern	and	returns	a	pattern.
Neural	networks	operate	synchronously	and	will	only	output	when	it	has	input.	This
behavior	is	not	like	that	of	a	human	brain,	which	does	not	operate	synchronously.	The
human	brain	responds	to	input,	but	it	will	produce	output	anytime	it	feels	like	it!

Neural	Network	Structure

Neural	networks	consist	of	layers	of	similar	neurons.	Most	have	at	least	an	input	layer
and	an	output	layer.	The	program	presents	the	input	pattern	to	the	input	layer.	Then	the
output	pattern	is	returned	from	the	output	layer.	What	happens	between	the	input	and	an
output	layer	is	a	black	box.	By	black	box,	we	mean	that	you	do	not	know	exactly	why	a
neural	network	outputs	what	it	does.	At	this	point,	we	are	not	yet	concerned	with	the
internal	structure	of	the	neural	network,	or	the	black	box.	Many	different	architectures
define	the	interaction	between	the	input	and	output	layer.	Later,	we	will	examine	some	of
these	architectures.

The	input	and	output	patterns	are	both	arrays	of	floating-point	numbers.	Consider	the
arrays	in	the	following	ways:

Neural	Network	Input:	[-0.245,	.283,	0.0]

Neural	Network	Output:	[0.782,	0.543]

The	above	neural	network	has	three	neurons	in	the	input	layer,	and	two	neurons	are	in
the	output	layer.	The	number	of	neurons	in	the	input	and	output	layers	does	not	change,
even	if	you	restructure	the	interior	of	the	neural	network.

To	utilize	the	neural	network,	you	must	express	your	problem	so	that	the	input	of	the
problem	is	an	array	of	floating-point	numbers.	Likewise,	the	solution	to	the	problem	must
be	an	array	of	floating-point	numbers.	Ultimately,	this	expression	is	the	only	process	that
that	neural	networks	can	perform.	In	other	words,	they	take	one	array	and	transform	it	into
a	second.	Neural	networks	do	not	loop,	call	subroutines,	or	perform	any	of	the	other	tasks
you	might	think	of	with	traditional	programming.	Neural	networks	simply	recognize
patterns.

You	might	think	of	a	neural	network	as	a	hash	table	in	traditional	programming	that
maps	keys	to	values.	It	acts	somewhat	like	a	dictionary.	You	can	consider	the	following	as
a	type	of	hash	table:

“hear”	->	“to	perceive	or	apprehend	by	the	ear”

“run”	->	“to	go	faster	than	a	walk”
“write”	->	“to	form	(as	characters	or	symbols)	on	a	surface	with	an	instrument	(as	a
pen)”

This	table	creates	a	mapping	between	words	and	provides	their	definitions.
Programming	languages	usually	call	this	a	hash	map	or	a	dictionary.	This	hash	table	uses	a
key	of	type	string	to	reference	another	value	that	is	also	of	the	same	type	string.	If	you’ve
not	worked	with	hash	tables	before,	they	simply	map	one	value	to	another,	and	they	are	a
form	of	indexing.	In	other	words,	the	dictionary	returns	a	value	when	you	provide	it	with	a
key.	Most	neural	networks	function	in	this	manner.	One	neural	network	called
bidirectional	associative	memory	(BAM)	allows	you	to	provide	the	value	and	receive	the
key.

Programming	hash	tables	contain	keys	and	values.	Think	of	the	pattern	sent	to	the
input	layer	of	the	neural	network	as	the	key	to	the	hash	table.	Likewise,	think	of	the	value
returned	from	the	hash	table	as	the	pattern	that	is	returned	from	the	output	layer	of	the
neural	network.	Although	the	comparison	between	a	hash	table	and	a	neural	network	is
appropriate	to	help	you	understand	the	concept,	you	need	to	realize	that	the	neural	network
is	much	more	than	a	hash	table.

What	would	happen	with	the	previous	hash	table	if	you	were	to	provide	a	word	that	is
not	a	key	in	the	map?	To	answer	the	question,	we	will	pass	in	the	key	of	“wrote.”	For	this
example,	a	hash	table	would	return	null.	It	would	indicate	in	some	way	that	it	could	not
find	the	specified	key.	However,	neural	networks	do	not	return	null;	they	find	the	closest
match.	Not	only	do	they	find	the	closest	match,	they	will	modify	the	output	to	estimate	the
missing	value.	So	if	you	passed	in	“wrote”	to	the	above	neural	network,	you	would	likely
receive	what	you	would	have	expected	for	“write.”	You	would	likely	get	the	output	from
one	of	the	other	keys	because	not	enough	data	exist	for	the	neural	network	to	modify	the
response.	The	limited	number	of	samples	(in	this	case,	there	are	three)	causes	this	result.

The	above	mapping	raises	an	important	point	about	neural	networks.	As	previously
stated,	neural	networks	accept	an	array	of	floating-point	numbers	and	return	another	array.
This	behavior	provokes	the	question	about	how	to	put	string,	or	textual,	values	into	the
above	neural	network.	Although	a	solution	exists,	dealing	with	numeric	data	rather	than
strings	is	much	easier	for	the	neural	network.

In	fact,	this	question	reveals	one	of	the	most	difficult	aspects	of	neural	network
programming.	How	do	you	translate	your	problem	into	a	fixed-length	array	of	floating-
point	numbers?	In	the	examples	that	follow,	you	will	see	the	complexity	of	neural
networks.

A	Simple	Example

In	computer	programming,	it	is	customary	to	provide	a	“Hello	World”	application	that
simply	displays	the	text	“Hello	World.”	If	you	have	previously	read	about	neural
networks,	you	have	no	doubt	seen	examples	with	the	exclusive	or	(XOR)	operator,	which
is	one	of	the	“Hello	World”	applications	of	neural	network	programming.	Later	in	this
section,	we	will	describe	more	complex	scenarios	than	XOR,	but	it	is	a	great	introduction.
We	shall	begin	by	looking	at	the	XOR	operator	as	though	it	were	a	hash	table.	If	you	are
not	familiar	with	the	XOR	operator,	it	works	similarly	to	the	AND	/	OR	operators.	For	an
AND	to	be	true,	both	sides	must	be	true.	For	an	OR	to	be	true,	either	side	must	be	true.
For	an	XOR	to	be	true,	both	of	the	sides	must	be	different	from	each	other.	The	following
truth	table	represents	an	XOR:

False	XOR	False	=	False

True	XOR	False	=	True

False	XOR	True	=	True

True	XOR	True	=	False

To	continue	the	hash	table	example,	you	would	represent	the	above	truth	table	as
follows:

[0.0	,	0.0]	->	[0.0]

[1.0	,	0.0]	->	[1.0]

[0.0	,	1.0]	->	[1.0]

[1.0	,	1.0]	->	[0.0]

These	mappings	show	input	and	the	ideal	expected	output	for	the	neural	network.

Training:	Supervised	and	Unsupervised

When	you	specify	the	ideal	output,	you	are	using	supervised	training.	If	you	did	not
provide	ideal	outputs,	you	would	be	using	unsupervised	training.	Supervised	training
teaches	the	neural	network	to	produce	the	ideal	output.	Unsupervised	training	usually
teaches	the	neural	network	to	place	the	input	data	into	a	number	of	groups	defined	by	the
output	neuron	count.

Both	supervised	and	unsupervised	training	are	iterative	processes.	For	supervised
training,	each	training	iteration	calculates	how	close	the	actual	output	is	to	the	ideal	output
and	expresses	this	closeness	as	an	error	percent.	Each	iteration	modifies	the	internal
weight	matrices	of	the	neural	network	to	decrease	the	error	rate	to	an	acceptably	low	level.

Unsupervised	training	is	also	an	iterative	process.	However,	calculating	the	error	is	not
as	easy.	Because	you	have	no	expected	output,	you	cannot	measure	how	far	the
unsupervised	neural	network	is	from	your	ideal	output.	Thus,	you	have	no	ideal	output.	As

a	result,	you	will	just	iterate	for	a	fixed	number	of	iterations	and	try	to	use	the	network.	If
the	neural	network	needs	more	training,	the	program	provides	it.

Another	important	aspect	to	the	above	training	data	is	that	you	can	take	it	in	any	order.
The	result	of	two	zeros,	with	XOR	applied	(0	XOR	0)	is	going	to	be	0,	regardless	of	which
case	that	you	used.	This	characteristic	is	not	true	of	all	neural	networks.	For	the	XOR
operator,	we	would	probably	use	a	type	of	neural	network	called	a	feedforward	neural
network	in	which	the	order	of	the	training	set	does	not	matter.	Later	in	this	book,	we	will
examine	recurrent	neural	networks	that	do	consider	the	order	of	the	training	data.	Order	is
an	essential	component	of	a	simple	recurrent	neural	network.

Previously,	you	saw	that	the	simple	XOR	operator	utilized	training	data.	Now	we	will
analyze	a	situation	with	more	complex	training	data.

Miles	per	Gallon

In	general,	neural	network	problems	involve	a	set	of	data	that	you	use	to	predict	values
for	later	sets	of	data.	These	later	sets	of	data	result	after	you’ve	already	trained	your	neural
network.	The	power	of	a	neural	network	is	to	predict	outcomes	for	entirely	new	data	sets
based	on	knowledge	learned	from	past	data	sets.	Consider	a	car	database	that	contains	the
following	fields:

Car	Weight
Engine	Displacement
Cylinder	Count
Horse	Power
Hybrid	or	Gasoline
Miles	per	Gallon

Although	we	are	oversimplifying	the	data,	this	example	demonstrates	how	to	format
data.	Assuming	you	have	collected	some	data	for	these	fields,	you	should	be	able	to
construct	a	neural	network	that	can	predict	one	field	value,	based	on	the	other	field	values.
For	this	example,	we	will	try	to	predict	miles	per	gallon.

As	previously	demonstrated,	we	will	need	to	define	this	problem	in	terms	of	an	input
array	of	floating-point	numbers	mapped	to	an	output	array	of	floating-point	numbers.
However,	the	problem	has	one	additional	requirement.	The	numeric	range	on	each	of	these
array	elements	should	be	between	0	and	1	or	-1	and	1.	This	range	is	called	normalization.
It	takes	real-world	data	and	turns	it	into	a	form	that	the	neural	network	can	process.

First,	we	determine	how	to	normalize	the	above	data.	Consider	the	neural	network
format.	We	have	six	total	fields.	We	want	to	use	five	of	these	fields	to	predict	the	sixth.
Consequently,	the	neural	network	would	have	five	input	neurons	and	one	output	neuron.

Your	network	would	resemble	the	following:

Input	Neuron	1:	Car	Weight

Input	Neuron	2:	Engine	Displacement
Input	Neuron	3:	Cylinder	Count
Input	Neuron	4:	Horse	Power
Input	Neuron	5:	Hybrid	or	Gasoline
Output	Neuron	1:	Miles	per	Gallon

We	also	need	to	normalize	the	data.	To	accomplish	this	normalization,	we	must	think
of	reasonable	ranges	for	each	of	these	values.	We	will	then	transform	input	data	into	a
number	between	0	and	1	that	represents	an	actual	value’s	position	within	that	range.
Consider	this	example	with	the	reasonable	ranges	for	the	following	values:

Car	Weight:	100-5000	lbs.
Engine	Displacement:	0.1	to	10	liters
Cylinder	Count:	2-12
Horse	Power:	1-1000
Hybrid	or	Gasoline:	true	or	false
Miles	per	Gallon:	1-500

Given	today’s	cars,	these	ranges	may	be	on	the	large	end.	However,	this	characteristic
will	allow	minimal	restructuring	to	the	neural	network	in	the	future.	We	also	want	to	avoid
having	too	much	data	at	the	extreme	ends	of	the	range.

To	illustrate	this	range,	we	will	consider	the	problem	of	normalizing	a	weight	of	2,000
pounds.	This	weight	is	1,900	into	the	range	(2000	–	100).	The	size	of	the	range	is	4,900
pounds	(5000-100).	The	percent	of	the	range	size	is	0.38	(1,900	/	4,900).	Therefore,	we
would	feed	the	value	of	0.38	to	the	input	neuron	in	order	to	represent	this	value.	This
process	satisfies	the	range	requirement	of	0	to	1	for	an	input	neuron.

The	hybrid	or	regular	value	is	a	true/false.	To	represent	this	value,	we	will	use	1	for
hybrid	and	0	for	regular.	We	simply	normalize	a	true/false	into	two	values.

Now	that	you’ve	seen	some	of	the	uses	for	neural	networks,	it	is	time	to	determine
how	to	select	the	appropriate	neural	network	for	your	specific	problem.	In	the	succeeding
section,	we	provide	a	roadmap	for	the	various	neural	networks	that	are	available.

A	Neural	Network	Roadmap

This	volume	contains	a	wide	array	of	neural	network	types.	We	will	present	these
neural	networks	along	with	examples	that	will	showcase	each	neural	network	in	a	specific
problem	domain.	Not	all	neural	networks	are	designed	to	tackle	every	problem	domain.	As
a	neural	network	programmer,	you	need	to	know	which	neural	network	to	use	for	a
specific	problem.

This	section	provides	a	high-level	roadmap	to	the	rest	of	the	book	that	will	guide	your
reading	to	areas	of	the	book	that	align	with	your	interests.	Figure	9	shows	a	grid	of	the

neural	network	types	in	this	volume	and	their	applicable	problem	domains:

Figure	9:	Neural	Network	Types	&	Problem	Domains

The	problem	domains	listed	above	are	the	following:

Clust	–	Unsupervised	clustering	problems
Regis	–	Regression	problems,	the	network	must	output	a	number	based	on	input.
Classif	–	Classification	problems,	the	network	must	classify	data	points	into
predefined	classes.
Predict	–	The	network	must	predict	events	in	time,	such	as	signals	for	finance
applications.
Robot	–	Robotics,	using	sensors	and	motor	control
Vision	–	Computer	Vision	(CV)	problems	require	the	computer	to	understand	images.
Optim	–	Optimization	problems	require	that	the	network	find	the	best	ordering	or	set
of	values	to	achieve	an	objective.

The	number	of	checkmarks	gives	the	applicability	of	each	of	the	neural	network	types
to	that	particular	problem.	If	there	are	no	checks,	you	cannot	apply	that	network	type	to
that	problem	domain.

All	neural	networks	share	some	common	characteristics.	Neurons,	weights,	activation
functions,	and	layers	are	the	building	blocks	of	neural	networks.	In	the	first	chapter	of	this
book,	we	will	introduce	these	concepts	and	present	the	basic	characteristics	that	most
neural	networks	share.

Data	Sets	Used	in	this	Book

This	book	contains	several	data	sets	that	allow	us	to	show	application	of	the	neural
networks	to	real	data.	We	chose	several	data	sets	in	order	to	cover	topics	such	as
regression,	classification,	time-series,	and	computer	vision.

MNIST	Handwritten	Digits

Several	examples	use	the	MNIST	handwritten	digits	data	set.	The	MNIST	database
(Mixed	National	Institute	of	Standards	and	Technology	database)	is	a	large	database	of
handwritten	digits	that	programmers	use	for	training	various	image	processing	systems.
This	classic	data	set	is	often	presented	in	conjunction	with	neural	networks.	This	data	set
is	essentially	the	“Hello	World”	program	of	neural	networks.	You	can	obtain	it	from	the
following	URL:

http://yann.lecun.com/exdb/mnist/

The	data	set	in	the	above	listing	is	stored	in	a	special	binary	format.	You	can	also	find
this	format	at	the	above	URL.	The	example	programs	provided	for	this	chapter	are	capable
of	reading	this	format.

This	data	set	contains	many	handwritten	digits.	It	also	includes	a	training	set	of	60,000
examples	and	a	test	set	of	10,000	examples.	We	provide	labels	on	both	sets	to	indicate
what	each	digit	is	supposed	to	be.	MNIST	is	a	highly	studied	data	set	that	programmers
frequently	use	as	a	benchmark	for	new	machine	learning	algorithms	and	techniques.
Furthermore,	researchers	have	published	many	scientific	papers	about	their	attempts	to
achieve	the	lowest	error	rate.	In	one	study,	the	researcher	managed	to	achieve	an	error	rate
on	the	MNIST	database	of	0.23	percent	while	using	a	hierarchical	system	of	convolutional
neural	networks	(Schmidhuber,	2012).

We	show	a	small	sampling	of	the	data	set	in	Figure	10:

http://yann.lecun.com/exdb/mnist/

Figure	10:	MNIST	Digits

We	can	use	this	data	set	for	classification	neural	networks.	The	networks	learn	to	look
at	an	image	and	classify	it	into	the	appropriate	place	among	the	ten	digits.	Even	though
this	data	set	is	an	image-based	neural	network,	you	can	think	of	it	as	a	traditional	data	set.
These	images	are	28	pixels	by	28	pixels,	resulting	in	a	total	of	784	pixels.	Despite	the
impressive	images,	we	begin	the	book	by	using	regular	neural	networks	that	treat	the
images	as	a	784-input-neuron	neural	network.	You	would	use	exactly	the	same	type	of
neural	network	to	handle	any	classification	problem	that	has	a	large	number	of	inputs.
Such	problems	are	high	dimensional.	Later	in	the	book,	we	will	see	how	to	use	neural
networks	that	were	specifically	designed	for	image	recognition.	These	neural	networks
will	perform	considerably	better	on	the	MNIST	digits	than	the	more	traditional	neural
networks.

The	MNIST	data	set	is	stored	in	a	propriety	binary	format	that	is	described	at	the
above	URL.	We	provide	a	decoder	in	the	book’s	examples.

Iris	Data	Set

Because	AI	frequently	uses	the	iris	data	set	(Fisher,	1936),	you	will	see	it	several	times
in	this	book.	Sir	Ronald	Fisher	(1936)	collected	these	data	as	an	example	of	discriminant
analysis.	This	data	set	has	become	very	popular	in	machine	learning	even	today.	The
following	URL	contains	the	iris	data	set:

https://archive.ics.uci.edu/ml/datasets/Iris

The	iris	data	set	contains	measurements	and	species	information	for	150	iris	flowers,
and	the	data	are	essentially	represented	as	a	spreadsheet	with	the	following	columns	or
features:

Sepal	length

https://archive.ics.uci.edu/ml/datasets/Iris

Sepal	width
Petal	length
Petal	width
Iris	species

Petals	refer	to	the	innermost	petals	of	the	iris,	and	sepal	refers	to	the	outermost	petals
of	the	iris	flower.	Even	though	the	data	set	seems	to	have	a	vector	of	length	5,	the	species
feature	must	be	handled	differently	than	the	other	four.	In	other	words,	vectors	typically
contain	only	numbers.	So,	the	first	four	features	are	inherently	numerical.	The	species
feature	is	not.

One	of	the	primary	applications	of	this	data	set	is	to	create	a	program	that	will	act	as	a
classifier.	That	is,	it	will	consider	the	flower’s	features	as	inputs	(sepal	length,	petal	width,
etc.)	and	ultimately	determine	the	species.	This	classification	would	be	trivial	for	a
complete	and	known	data	set,	but	our	goal	is	to	see	whether	the	model	can	correctly
identify	the	species	using	data	from	unknown	irises.

Only	simple	numeric	encoding	translates	the	iris	species	to	a	single	dimension.	We
must	use	additional	dimensional	encodings,	such	as	one-of-n	or	equilateral,	so	that	the
species	encodings	are	equidistant	from	each	other.	If	we	are	classifying	irises,	we	do	not
want	our	encoding	process	to	create	any	biases.

Thinking	of	the	iris	features	as	dimensions	in	a	higher-dimensional	space	makes	a
great	deal	of	sense.	Consider	the	individual	samples	(the	rows	in	the	iris	data	set)	as	points
in	this	search	space.	Points	closer	together	likely	share	similarities.	Let’s	take	a	look	at
these	similarities	by	studying	the	following	three	rows	from	the	iris	data	set:

5.1,	3.5,	1.4,	0.2,	Iris-setosa

7.0,	3.2,	4.7,	1.4,	Iris-versicolour

6.3,	3.3,	6.0,	2.5,	Iris-virginica

The	first	line	has	5.1	as	the	sepal	length,	3.5	as	the	sepal	width,	1.4	as	the	petal	length,
and	0.2	as	the	petal	width.	If	we	use	one-of-n	encoding	to	the	range	0	to	1,	the	above	three
rows	would	encode	to	the	following	three	vectors:

[5.1,	3.5,	1.4,	0.2,	1,	0,	0]

[7.0,	3.2,	4.7,	1.4,	0,	1,	0]

[6.3,	3.3,	6.0,	2.5,	0,	0,	1]

Chapter	4,	“Feedforward	Neural	Networks,”	will	cover	one-of-n	encoding.

Auto	MPG	Data	Set

The	auto	miles	per	gallon	(MPG)	data	set	is	commonly	used	for	regression	problems.
The	data	set	contains	attributes	of	several	cars.	Using	these	attributes,	we	can	train	neural
networks	to	predict	the	fuel	efficiency	of	the	car.	The	UCI	Machine	Learning	Repository
provides	this	data	set,	and	you	can	download	it	from	the	following	URL:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

We	took	these	data	from	the	StatLib	library,	which	is	maintained	at	Carnegie	Mellon
University.	In	the	exposition	for	the	American	Statistical	Association,	programmers	used
the	data	in	1983,	and	no	values	are	missing.	Quinlan	(1993),	the	author	of	the	study,	used
this	data	set	to	describe	fuel	consumption.	“The	data	concern	city-cycle	fuel	consumption
in	miles	per	gallon,	to	be	projected	in	terms	of	three	multi-valued	discrete	and	five
continuous	attributes”	(Quinlan,	1993).

The	data	set	contains	the	following	attributes:

1.	mpg:	continuous

2.	cylinders:	multi-valued	discrete

3.	displacement:	continuous

4.	horsepower:	continuous

5.	weight:	continuous

6.	acceleration:	continuous

7.	model	year:	multi-valued	discrete

8.	origin:	multi-valued	discrete

9.	car	name:	string	(unique	for	each	instance)

Sunspots	Data	Set

Sunspots	are	temporary	phenomena	on	the	surface	of	the	sun	that	appear	visibly	as
dark	spots	compared	to	surrounding	regions.	Intense	magnetic	activity	causes	sunspots.
Although	they	occur	at	temperatures	of	roughly	3,000–4,500	K	(2,727–4,227	°C),	the
contrast	with	the	surrounding	material	at	about	5,780	K	leaves	them	clearly	visible	as	dark
spots.	Sunspots	appear	and	disappear	with	regularity,	making	them	a	good	data	set	for
time	series	prediction.

Figure	11	shows	sunspot	activity	over	time:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Figure	11:	Sunspots	Activity

The	sunspot	data	file	contains	information	similar	to	the	following:

YEAR	MON		SSN			DEV

1749		1		58.0		24.1

1749		2		62.6		25.1

1749		3		70.0		26.6

1749		4		55.7		23.6

1749		5		85.0		29.4

1749		6		83.5		29.2

1749		7		94.8		31.1

1749		8		66.3		25.9

1749		9		75.9		27.7

The	above	data	provide	the	year,	month,	sunspot	count,	and	standard	deviation	of
sunspots	observed.	Many	world	organizations	track	sunspots.	The	following	URL	contains
a	table	of	sunspot	readings:

http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt

http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt

XOR	Operator

The	exclusive	or	(XOR)	operator	is	a	Boolean	operator.	Programmers	frequently	use
the	truth	table	for	the	XOR	as	an	ultra-simple	sort	of	“Hello	World”	training	set	for
machine	learning.	We	refer	to	the	table	as	the	XOR	data	set.	This	operator	is	related	to	the
XOR	parity	operator,	which	accepts	three	inputs	and	has	the	following	truth	table:

0	XOR	0	=	0

1	XOR	0	=	1

0	XOR	1	=	1

1	XOR	1	=	0

We	utilize	the	XOR	operator	for	cases	in	which	we	would	like	to	train	or	evaluate	the
neural	network	by	hand.

Kaggle	Otto	Group	Challenge

In	this	book,	we	will	also	utilize	the	Kaggle	Otto	Group	Challenge	data	set.	Kaggle	is
a	platform	that	fosters	competition	among	data	scientists	on	new	data	sets.	We	use	this
data	set	to	classify	products	into	several	groups	based	on	unknown	attributes.
Additionally,	we	will	employ	a	deep	neural	network	to	tackle	this	problem.	We	will	also
discuss	advanced	ensemble	techniques	in	this	chapter	that	you	can	use	to	compete	in
Kaggle.	We	will	describe	this	data	set	in	greater	detail	in	Chapter	16.

We	will	begin	this	book	with	an	overview	of	features	that	are	common	to	most	neural
networks.	These	features	include	neurons,	layers,	activation	functions,	and	connections.
For	the	remainder	of	the	book,	we	will	expand	on	these	topics	as	we	introduce	more	neural
network	architectures.

Chapter	1:	Neural	Network	Basics
Neurons	and	Layers
Neuron	Types
Activation	Functions
Logic	Gates

This	book	is	about	neural	networks	and	how	to	train,	query,	structure,	and	interpret
them.	We	present	many	neural	network	architectures	as	well	as	the	plethora	of	algorithms
that	can	train	these	neural	networks.	Training	is	the	process	in	which	a	neural	network	is
adapted	to	make	predictions	from	data.	In	this	chapter,	we	will	introduce	the	basic
concepts	that	are	most	relevant	to	the	neural	network	types	featured	in	the	book.

Deep	learning,	a	relatively	new	set	of	training	techniques	for	multilayered	neural
networks,	is	also	a	primary	topic.	It	encompasses	several	algorithms	that	can	train
complex	types	of	neural	networks.	With	the	development	of	deep	learning,	we	now	have
effective	methods	to	train	neural	networks	with	many	layers.

This	chapter	will	include	a	discussion	of	the	commonalities	among	the	different	neural
networks.	Additionally,	you	will	learn	how	neurons	form	weighted	connections,	how	these
neurons	create	layers,	and	how	activation	functions	affect	the	output	of	a	layer.	We	begin
with	neurons	and	layers.

Neurons	and	Layers

Most	neural	network	structures	use	some	type	of	neuron.	Many	different	kinds	of
neural	networks	exist,	and	programmers	introduce	experimental	neural	network	structures
all	the	time.	Consequently,	it	is	not	possible	to	cover	every	neural	network	architecture.
However,	there	are	some	commonalities	among	neural	network	implementations.	An
algorithm	that	is	called	a	neural	network	will	typically	be	composed	of	individual,
interconnected	units	even	though	these	units	may	or	may	not	be	called	neurons.	In	fact,	the
name	for	a	neural	network	processing	unit	varies	among	the	literature	sources.	It	could	be
called	a	node,	neuron,	or	unit.

Figure	1.1	shows	the	abstract	structure	of	a	single	artificial	neuron:

Figure	1.1:	An	Artificial	Neuron

The	artificial	neuron	receives	input	from	one	or	more	sources	that	may	be	other
neurons	or	data	fed	into	the	network	from	a	computer	program.	This	input	is	usually
floating-point	or	binary.	Often	binary	input	is	encoded	to	floating-point	by	representing
true	or	false	as	1	or	0.	Sometimes	the	program	also	depicts	the	binary	input	as	using	a
bipolar	system	with	true	as	1	and	false	as	-1.

An	artificial	neuron	multiplies	each	of	these	inputs	by	a	weight.	Then	it	adds	these
multiplications	and	passes	this	sum	to	an	activation	function.	Some	neural	networks	do	not
use	an	activation	function.	Equation	1.1	summarizes	the	calculated	output	of	a	neuron:

Equation	1.1:	Neuron	Output

In	the	above	equation,	the	variables	x	and	w	represent	the	input	and	weights	of	the
neuron.	The	variable	i	corresponds	to	the	number	of	weights	and	inputs.	You	must	always
have	the	same	number	of	weights	as	inputs.	Each	weight	is	multiplied	by	its	respective
input,	and	the	products	of	these	multiplications	are	fed	into	an	activation	function	that	is
denoted	by	the	Greek	letter	φ	(phi).	This	process	results	in	a	single	output	from	the
neuron.

Figure	1.1	shows	the	structure	with	just	one	building	block.	You	can	chain	together
many	artificial	neurons	to	build	an	artificial	neural	network	(ANN).	Think	of	the	artificial
neurons	as	building	blocks	for	which	the	input	and	output	circles	are	the	connectors.
Figure	1.2	shows	an	artificial	neural	network	composed	of	three	neurons:

Figure	1.2:	Simple	Artificial	Neural	Network	(ANN)

The	above	diagram	shows	three	interconnected	neurons.	This	representation	is
essentially	Figure	1.1,	minus	a	few	inputs,	repeated	three	times	and	then	connected.	It	also
has	a	total	of	four	inputs	and	a	single	output.	The	output	of	neurons	N1	and	N2	feed	N3	to
produce	the	output	O.	To	calculate	the	output	for	Figure	1.2,	we	perform	Equation	1.1
three	times.	The	first	two	times	calculate	N1	and	N2,	and	the	third	calculation	uses	the
output	of	N1	and	N2	to	calculate	N3.

Neural	network	diagrams	do	not	typically	show	the	level	of	detail	seen	in	Figure	1.2.
To	simplify	the	diagram,	we	can	omit	the	activation	functions	and	intermediate	outputs,
and	this	process	results	in	Figure	1.3:

Figure	1.3:	Simplified	View	of	ANN

Looking	at	Figure	1.3,	you	can	see	two	additional	components	of	neural	networks.
First,	consider	the	inputs	and	outputs	that	are	shown	as	abstract	dotted	line	circles.	The
input	and	output	could	be	parts	of	a	larger	neural	network.	However,	the	input	and	output
are	often	a	special	type	of	neuron	that	accepts	data	from	the	computer	program	using	the
neural	network,	and	the	output	neurons	return	a	result	back	to	the	program.	This	type	of
neuron	is	called	an	input	neuron.	We	will	discuss	these	neurons	in	the	next	section.

Figure	1.3	also	shows	the	neurons	arranged	in	layers.	The	input	neurons	are	the	first
layer,	the	N1	and	N2	neurons	create	the	second	layer,	the	third	layer	contains	N3,	and	the
fourth	layer	has	O.	While	most	neural	networks	arrange	neurons	into	layers,	this	is	not

always	the	case.	Stanley	(2002)	introduced	a	neural	network	architecture	called
Neuroevolution	of	Augmenting	Topologies	(NEAT).	NEAT	neural	networks	can	have	a
very	jumbled,	non-layered	architecture.

The	neurons	that	form	a	layer	share	several	characteristics.	First,	every	neuron	in	a
layer	has	the	same	activation	function.	However,	the	layers	themselves	might	have
different	activation	functions.	Second,	layers	are	fully	connected	to	the	next	layer.	In	other
words,	every	neuron	in	one	layer	has	a	connection	to	neurons	in	the	previous	layer.	Figure
1.3	is	not	fully	connected.	Several	layers	are	missing	connections.	For	example,	I1	and	N2
do	not	connect.	Figure	1.4	is	a	new	version	of	Figure	1.3	that	is	fully	connected	and	has	an
additional	layer.

Figure	1.4:	Fully	Connected	Network

In	Figure	1.4,	you	see	a	fully	connected,	multilayered	neural	network.	Networks,	such
as	this	one,	will	always	have	an	input	and	output	layer.	The	number	of	hidden	layers
determines	the	name	of	the	network	architecture.	The	network	in	Figure	1.4	is	a	two-
hidden-layer	network.	Most	networks	will	have	between	zero	and	two	hidden	layers.
Unless	you	have	implemented	deep	learning	strategies,	networks	with	more	than	two
hidden	layers	are	rare.

You	might	also	notice	that	the	arrows	always	point	downward	or	forward	from	the
input	to	the	output.	This	type	of	neural	network	is	called	a	feedforward	neural	network.

Later	in	this	book,	we	will	see	recurrent	neural	networks	that	form	inverted	loops	among
the	neurons.

Types	of	Neurons

In	the	last	section,	we	briefly	introduced	the	idea	that	different	types	of	neurons	exist.
Now	we	will	explain	all	the	neuron	types	described	in	the	book.	Not	every	neural	network
will	use	every	type	of	neuron.	It	is	also	possible	for	a	single	neuron	to	fill	the	role	of
several	different	neuron	types.

Input	and	Output	Neurons

Nearly	every	neural	network	has	input	and	output	neurons.	The	input	neurons	accept
data	from	the	program	for	the	network.	The	output	neuron	provides	processed	data	from
the	network	back	to	the	program.	These	input	and	output	neurons	will	be	grouped	by	the
program	into	separate	layers	called	the	input	and	output	layer.	However,	for	some	network
structures,	the	neurons	can	act	as	both	input	and	output.	The	Hopfield	neural	network,
which	we	will	discuss	in	Chapter	3,	“Hopfield	&	Boltzmann	Machines,”	is	an	example	of
a	neural	network	architecture	in	which	neurons	are	both	input	and	output.

The	program	normally	represents	the	input	to	a	neural	network	as	an	array	or	vector.
The	number	of	elements	contained	in	the	vector	must	be	equal	to	the	number	of	input
neurons.	For	example,	a	neural	network	with	three	input	neurons	might	accept	the
following	input	vector:

[0.5,	0.75,	0.2]

Neural	networks	typically	accept	floating-point	vectors	as	their	input.	Likewise,	neural
networks	will	output	a	vector	with	length	equal	to	the	number	of	output	neurons.	The
output	will	often	be	a	single	value	from	a	single	output	neuron.	To	be	consistent,	we	will
represent	the	output	of	a	single	output	neuron	network	as	a	single-element	vector.

Notice	that	input	neurons	do	not	have	activation	functions.	As	demonstrated	by	Figure
1.1,	input	neurons	are	little	more	than	placeholders.	The	input	is	simply	weighted	and
summed.	Furthermore,	the	size	of	the	input	and	output	vectors	for	the	neural	network	will
be	the	same	if	the	neural	network	has	neurons	that	are	both	input	and	output.

Hidden	Neurons

Hidden	neurons	have	two	important	characteristics.	First,	hidden	neurons	only	receive
input	from	other	neurons,	such	as	input	or	other	hidden	neurons.	Second,	hidden	neurons
only	output	to	other	neurons,	such	as	output	or	other	hidden	neurons.	Hidden	neurons	help
the	neural	network	understand	the	input,	and	they	form	the	output.	However,	they	are	not
directly	connected	to	the	incoming	data	or	to	the	eventual	output.	Hidden	neurons	are
often	grouped	into	fully	connected	hidden	layers.

A	common	question	for	programmers	concerns	the	number	of	hidden	neurons	in	a
network.	Since	the	answer	to	this	question	is	complex,	more	than	one	section	of	the	book
will	include	a	relevant	discussion	of	the	number	of	hidden	neurons.	Prior	to	deep	learning,
it	was	generally	suggested	that	anything	more	than	a	single-hidden	layer	is	excessive
(Hornik,	1991).	Researchers	have	proven	that	a	single-hidden-layer	neural	network	can
function	as	a	universal	approximator.	In	other	words,	this	network	should	be	able	to	learn
to	produce	(or	approximate)	any	output	from	any	input	as	long	as	it	has	enough	hidden
neurons	in	a	single	layer.

Another	reason	why	researchers	used	to	scoff	at	the	idea	of	additional	hidden	layers	is
that	these	layers	would	impede	the	training	of	the	neural	network.	Training	refers	to	the
process	that	determines	good	weight	values.	Before	researchers	introduced	deep	learning
techniques,	we	simply	did	not	have	an	efficient	way	to	train	a	deep	network,	which	are
neural	networks	with	a	large	number	of	hidden	layers.	Although	a	single-hidden-layer
neural	network	can	theoretically	learn	anything,	deep	learning	facilitates	a	more	complex
representation	of	patterns	in	the	data.

Bias	Neurons

Programmers	add	bias	neurons	to	neural	networks	to	help	them	learn	patterns.	Bias
neurons	function	like	an	input	neuron	that	always	produces	the	value	of	1.	Because	the
bias	neurons	have	a	constant	output	of	1,	they	are	not	connected	to	the	previous	layer.	The
value	of	1,	which	is	called	the	bias	activation,	can	be	set	to	values	other	than	1.	However,
1	is	the	most	common	bias	activation.	Not	all	neural	networks	have	bias	neurons.	Figure
1.5	shows	a	single-hidden-layer	neural	network	with	bias	neurons:

Figure	1.5:	Network	with	Bias	Neurons

The	above	network	contains	three	bias	neurons.	Every	level,	except	for	the	output
layer,	contains	a	single	bias	neuron.	Bias	neurons	allow	the	output	of	an	activation
function	to	be	shifted.	We	will	see	exactly	how	this	shifting	occurs	later	in	the	chapter
when	activation	functions	are	discussed.

Context	Neurons

Context	neurons	are	used	in	recurrent	neural	networks.	This	type	of	neuron	allows	the
neural	network	to	maintain	state.	As	a	result,	a	given	input	may	not	always	produce
exactly	the	same	output.	This	inconsistency	is	similar	to	the	workings	of	biological	brains.
Consider	how	context	factors	in	your	response	when	you	hear	a	loud	horn.	If	you	hear	the
noise	while	you	are	crossing	the	street,	you	might	startle,	stop	walking,	and	look	in	the
direction	of	the	horn.	If	you	hear	the	horn	while	you	are	watching	an	action	adventure	film
in	a	movie	theatre,	you	don’t	respond	in	the	same	way.	Therefore,	prior	inputs	give	you
the	context	for	processing	the	audio	input	of	a	horn.

Time	series	is	one	application	of	context	neurons.	You	might	need	to	train	a	neural
network	to	learn	input	signals	to	perform	speech	recognition	or	to	predict	trends	in
security	prices.	Context	neurons	are	one	way	for	neural	networks	to	deal	with	time	series
data.	Figure	1.6	shows	how	context	neurons	might	be	arranged	in	a	neural	network:

Figure	1.6:	Context	Neurons

This	neural	network	has	a	single	input	and	output	neuron.	Between	the	input	and
output	layers	are	two	hidden	neurons	and	two	context	neurons.	Other	than	the	two	context
neurons,	this	network	is	the	same	as	previous	networks	in	the	chapter.

Each	context	neuron	holds	a	value	that	starts	at	0	and	always	receives	a	copy	of	either
hidden	1	or	hidden	2	from	the	previous	use	of	the	network.	The	two	dashed	lines	in	Figure
1.6	mean	that	the	context	neuron	is	a	direct	copy	with	no	other	weighting.	The	other	lines
indicate	that	the	output	is	weighted	by	one	of	the	six	weight	values	listed	above.	Equation
1.1	still	calculates	the	output	in	the	same	way.	The	value	of	the	output	neuron	would	be
the	sum	of	all	four	inputs,	multiplied	by	their	weights,	and	applied	to	the	activation
function.

A	type	of	neural	network	called	a	simple	recurrent	neural	network	(SRN)	uses	context
neurons.	Jordan	and	Elman	networks	are	the	two	most	common	types	of	SRN.	Figure	1.6
shows	an	Elman	SRN.	Chapter	13,	“Time	Series	and	Recurrent	Networks,”	includes	a
discussion	of	both	types	of	SRN.

Other	Neuron	Types

The	individual	units	that	comprise	a	neural	network	are	not	always	called	neurons.
Researchers	will	sometimes	refer	to	these	neurons	as	nodes,	units	or	summations.	In	later
chapters	of	the	book,	we	will	explore	deep	learning	that	utilizes	Boltzmann	machines	to
fill	the	role	of	neurons.	Regardless	of	the	type	of	unit,	neural	networks	are	almost	always
constructed	of	weighted	connections	between	these	units.

Activation	Functions

In	neural	network	programming,	activation	or	transfer	functions	establish	bounds	for
the	output	of	neurons.	Neural	networks	can	use	many	different	activation	functions.	We
will	discuss	the	most	common	activation	functions	in	this	section.

Choosing	an	activation	function	for	your	neural	network	is	an	important	consideration
because	it	can	affect	how	you	must	format	input	data.	In	this	chapter,	we	will	guide	you	on
the	selection	of	an	activation	function.	Chapter	14,	“Architecting	Neural	Networks,”	will
also	contain	additional	details	on	the	selection	process.

Linear	Activation	Function

The	most	basic	activation	function	is	the	linear	function	because	it	does	not	change	the
neuron	output	at	all.	Equation	1.2	shows	how	the	program	typically	implements	a	linear
activation	function:

Equation	1.2:	Linear	Activation	Function

As	you	can	observe,	this	activation	function	simply	returns	the	value	that	the	neuron
inputs	passed	to	it.	Figure	1.7	shows	the	graph	for	a	linear	activation	function:

Figure	1.7:	Linear	Activation	Function

Regression	neural	networks,	those	that	learn	to	provide	numeric	values,	will	usually
use	a	linear	activation	function	on	their	output	layer.	Classification	neural	networks,	those
that	determine	an	appropriate	class	for	their	input,	will	usually	utilize	a	softmax	activation
function	for	their	output	layer.

Step	Activation	Function

The	step	or	threshold	activation	function	is	another	simple	activation	function.	Neural
networks	were	originally	called	perceptrons.	McCulloch	&	Pitts	(1943)	introduced	the
original	perceptron	and	used	a	step	activation	function	like	Equation	1.3:

Equation	1.3:	Step	Activation	Function

Equation	1.3	outputs	a	value	of	1.0	for	incoming	values	of	0.5	or	higher	and	0	for	all
other	values.	Step	functions	are	often	called	threshold	functions	because	they	only	return	1
(true)	for	values	that	are	above	the	specified	threshold,	as	seen	in	Figure	1.8:

Figure	1.8:	Step	Activation	Function

	

Sigmoid	Activation	Function

The	sigmoid	or	logistic	activation	function	is	a	very	common	choice	for	feedforward
neural	networks	that	need	to	output	only	positive	numbers.	Despite	its	widespread	use,	the
hyperbolic	tangent	or	the	rectified	linear	unit	(ReLU)	activation	function	is	usually	a	more
suitable	choice.	We	introduce	the	ReLU	activation	function	later	in	this	chapter.	Equation
1.4	shows	the	sigmoid	activation	function:

Equation	1.4:	Sigmoid	Activation	Function

Use	the	sigmoid	function	to	ensure	that	values	stay	within	a	relatively	small	range,	as
seen	in	Figure	1.9:

Figure	1.9:	Sigmoid	Activation	Function

As	you	can	see	from	the	above	graph,	values	above	or	below	0	are	compressed	to	the
approximate	range	between	0	and	1.

Hyperbolic	Tangent	Activation	Function

The	hyperbolic	tangent	function	is	also	a	very	common	activation	function	for	neural
networks	that	must	output	values	in	the	range	between	-1	and	1.	This	activation	function	is
simply	the	hyperbolic	tangent	(tanh)	function,	as	shown	in	Equation	1.5:

Equation	1.5:	Hyperbolic	Tangent	Activation	Function

The	graph	of	the	hyperbolic	tangent	function	has	a	similar	shape	to	the	sigmoid
activation	function,	as	seen	in	Figure	1.10:

Figure	1.10:	Hyperbolic	Tangent	Activation	Function

The	hyperbolic	tangent	function	has	several	advantages	over	the	sigmoid	activation
function.	These	involve	the	derivatives	used	in	the	training	of	the	neural	network,	and	they
will	be	covered	in	Chapter	6,	“Backpropagation	Training.”

Rectified	Linear	Units	(ReLU)

Introduced	in	2000	by	Teh	&	Hinton,	the	rectified	linear	unit	(ReLU)	has	seen	very
rapid	adoption	over	the	past	few	years.	Prior	to	the	ReLU	activation	function,	the
hyperbolic	tangent	was	generally	accepted	as	the	activation	function	of	choice.	Most
current	research	now	recommends	the	ReLU	due	to	superior	training	results.	As	a	result,
most	neural	networks	should	utilize	the	ReLU	on	hidden	layers	and	either	softmax	or
linear	on	the	output	layer.	Equation	1.6	shows	the	very	simple	ReLU	function:

Equation	1.6:	Rectified	Linear	Unit	(ReLU)

We	will	now	examine	why	ReLU	typically	performs	better	than	other	activation
functions	for	hidden	layers.	Part	of	the	increased	performance	is	due	to	the	fact	that	the
ReLU	activation	function	is	a	linear,	non-saturating	function.	Unlike	the	sigmoid/logistic
or	the	hyperbolic	tangent	activation	functions,	the	ReLU	does	not	saturate	to	-1,	0,	or	1.	A
saturating	activation	function	moves	towards	and	eventually	attains	a	value.	The
hyperbolic	tangent	function,	for	example,	saturates	to	-1	as	x	decreases	and	to	1	as	x
increases.	Figure	1.11	shows	the	graph	of	the	ReLU	activation	function:

Figure	1.11:	ReLU	Activation	Function

Most	current	research	states	that	the	hidden	layers	of	your	neural	network	should	use

the	ReLU	activation.	The	reasons	for	the	superiority	of	the	ReLU	over	hyperbolic	tangent
and	sigmoid	will	be	demonstrated	in	Chapter	6,	“Backpropagation	Training.”

Softmax	Activation	Function

The	final	activation	function	that	we	will	examine	is	the	softmax	activation	function.
Along	with	the	linear	activation	function,	softmax	is	usually	found	in	the	output	layer	of	a
neural	network.	The	softmax	function	is	used	on	a	classification	neural	network.	The
neuron	that	has	the	highest	value	claims	the	input	as	a	member	of	its	class.	Because	it	is	a
preferable	method,	the	softmax	activation	function	forces	the	output	of	the	neural	network
to	represent	the	probability	that	the	input	falls	into	each	of	the	classes.	Without	the
softmax,	the	neuron’s	outputs	are	simply	numeric	values,	with	the	highest	indicating	the
winning	class.

To	see	how	the	softmax	activation	function	is	used,	we	will	look	at	a	common	neural
network	classification	problem.	The	iris	data	set	contains	four	measurements	for	150
different	iris	flowers.	Each	of	these	flowers	belongs	to	one	of	three	species	of	iris.	When
you	provide	the	measurements	of	a	flower,	the	softmax	function	allows	the	neural	network
to	give	you	the	probability	that	these	measurements	belong	to	each	of	the	three	species.
For	example,	the	neural	network	might	tell	you	that	there	is	an	80%	chance	that	the	iris	is
setosa,	a	15%	probability	that	it	is	virginica	and	only	a	5%	probability	of	versicolour.
Because	these	are	probabilities,	they	must	add	up	to	100%.	There	could	not	be	an	80%
probability	of	setosa,	a	75%	probability	of	virginica	and	a	20%	probability	of	versicolour
—this	type	of	a	result	would	be	nonsensical.

To	classify	input	data	into	one	of	three	iris	species,	you	will	need	one	output	neuron
for	each	of	the	three	species.	The	output	neurons	do	not	inherently	specify	the	probability
of	each	of	the	three	species.	Therefore,	it	is	desirable	to	provide	probabilities	that	sum	to
100%.	The	neural	network	will	tell	you	the	probability	of	a	flower	being	each	of	the	three
species.	To	get	the	probability,	use	the	softmax	function	in	Equation	1.7:

Equation	1.7:	The	Softmax	Function

In	the	above	equation,	i	represents	the	index	of	the	output	neuron	(o)	being	calculated,
and	j	represents	the	indexes	of	all	neurons	in	the	group/level.	The	variable	z	designates	the
array	of	output	neurons.	It’s	important	to	note	that	the	softmax	activation	is	calculated
differently	than	the	other	activation	functions	in	this	chapter.	When	softmax	is	the
activation	function,	the	output	of	a	single	neuron	is	dependent	on	the	other	output	neurons.

In	Equation	1.7,	you	can	observe	that	the	output	of	the	other	output	neurons	is	contained
in	the	variable	z,	as	none	of	the	other	activation	functions	in	this	chapter	utilize	z.	Listing
1.1	implements	softmax	in	pseudocode:

Listing	1.1:	The	Softmax	Function

def	softmax(neuron_output):

		sum	=	0

		for	v	in	neuron_output:

				sum	=	sum	+	v

		

		sum	=	math.exp(sum)

		proba	=	[]

		for	i	in	range(len(neuron_output))

proba[i]	=	math.exp(neuron_output[i])/sum

		return	proba	

To	see	the	softmax	function	in	operation,	refer	to	the	following	URL:

http://www.heatonresearch.com/aifh/vol3/softmax.html

Consider	a	trained	neural	network	that	classifies	data	into	three	categories,	such	as	the
three	iris	species.	In	this	case,	you	would	use	one	output	neuron	for	each	of	the	target
classes.	Consider	if	the	neural	network	were	to	output	the	following:

Neuron	1:	setosa:	0.9

Neuron	2:	versicolour:	0.2

Neuron	3:	virginica:	0.4

From	the	above	output,	we	can	clearly	see	that	the	neural	network	considers	the	data	to
represent	a	setosa	iris.	However,	these	numbers	are	not	probabilities.	The	0.9	value	does
not	represent	a	90%	likelihood	of	the	data	representing	a	setosa.	These	values	sum	to	1.5.
In	order	for	them	to	be	treated	as	probabilities,	they	must	sum	to	1.0.	The	output	vector	for
this	neural	network	is	the	following:

[0.9,0.2,0.4]

If	this	vector	is	provided	to	the	softmax	function,	the	following	vector	is	returned:

[0.47548495534876745	,	0.2361188410001125	,	0.28839620365112]

The	above	three	values	do	sum	to	1.0	and	can	be	treated	as	probabilities.	The
likelihood	of	the	data	representing	a	setosa	iris	is	48%	because	the	first	value	in	the	vector
rounds	to	0.48	(48%).	You	can	calculate	this	value	in	the	following	manner:

sum=exp(0.9)+exp(0.2)+exp(0.4)=5.17283056695839

j0=	exp(0.9)/sum	=	0.47548495534876745

j1=	exp(0.2)/sum	=	0.2361188410001125

j2=	exp(0.4)/sum	=	0.28839620365112

http://www.heatonresearch.com/aifh/vol3/softmax.html

What	Role	does	Bias	Play?

The	activation	functions	seen	in	the	previous	section	specify	the	output	of	a	single
neuron.	Together,	the	weight	and	bias	of	a	neuron	shape	the	output	of	the	activation	to
produce	the	desired	output.	To	see	how	this	process	occurs,	consider	Equation	1.8.	It
represents	a	single-input	sigmoid	activation	neural	network.

Equation	1.8:	Single-Input	Neural	Network

The	x	variable	represents	the	single	input	to	the	neural	network.	The	w	and	b	variables
specify	the	weight	and	bias	of	the	neural	network.	The	above	equation	is	a	combination	of
the	Equation	1.1	that	specifies	a	neural	network	and	Equation	1.4	that	designates	the
sigmoid	activation	function.

The	weights	of	the	neuron	allow	you	to	adjust	the	slope	or	shape	of	the	activation
function.	Figure	1.12	shows	the	effect	on	the	output	of	the	sigmoid	activation	function	if
the	weight	is	varied:

Figure	1.12:	Adjusting	Neuron	Weight

The	above	diagram	shows	several	sigmoid	curves	using	the	following	parameters:

f(x,0.5,0.0)

f(x,1.0,0.0)

f(x,1.5,0.0)

f(x,2.0,0.0)

To	produce	the	curves,	we	did	not	use	bias,	which	is	evident	in	the	third	parameter	of	0
in	each	case.	Using	four	weight	values	yields	four	different	sigmoid	curves	in	Figure	1.11.
No	matter	the	weight,	we	always	get	the	same	value	of	0.5	when	x	is	0	because	all	of	the
curves	hit	the	same	point	when	x	is	0.	We	might	need	the	neural	network	to	produce	other
values	when	the	input	is	near	0.5.

Bias	does	shift	the	sigmoid	curve,	which	allows	values	other	than	0.5	when	x	is	near	0.
Figure	1.13	shows	the	effect	of	using	a	weight	of	1.0	with	several	different	biases:

Figure	1.13:	Adjusting	Neuron	Bias

The	above	diagram	shows	several	sigmoid	curves	with	the	following	parameters:

f(x,1.0,1.0)

f(x,1.0,0.5)

f(x,1.0,1.5)

f(x,1.0,2.0)

We	used	a	weight	of	1.0	for	these	curves	in	all	cases.	When	we	utilized	several
different	biases,	sigmoid	curves	shifted	to	the	left	or	right.	Because	all	the	curves	merge
together	at	the	top	right	or	bottom	left,	it	is	not	a	complete	shift.

When	we	put	bias	and	weights	together,	they	produced	a	curve	that	created	the
necessary	output	from	a	neuron.	The	above	curves	are	the	output	from	only	one	neuron.	In
a	complete	network,	the	output	from	many	different	neurons	will	combine	to	produce
complex	output	patterns.

Logic	with	Neural	Networks

As	a	computer	programmer,	you	are	probably	familiar	with	logical	programming.	You
can	use	the	programming	operators	AND,	OR,	and	NOT	to	govern	how	a	program	makes
decisions.	These	logical	operators	often	define	the	actual	meaning	of	the	weights	and
biases	in	a	neural	network.	Consider	the	following	truth	table:

0	AND	0	=	0

1	AND	0	=	0

0	AND	1	=	0

1	AND	1	=	1

0	OR	0	=	0

1	OR	0	=	1

0	OR	1	=	1

1	OR	1	=	1

NOT	0	=	1

NOT	1	=	0

The	truth	table	specifies	that	if	both	sides	of	the	AND	operator	are	true,	the	final
output	is	also	true.	In	all	other	cases,	the	result	of	the	AND	is	false.	This	definition	fits
with	the	English	word	“and”	quite	well.	If	you	want	a	house	with	a	nice	view	AND	a	large
backyard,	then	both	requirements	must	be	fulfilled	for	you	to	choose	a	house.	If	you	want
a	house	that	has	a	nice	view	or	a	large	backyard,	then	only	one	needs	to	be	present.

These	logical	statements	can	become	more	complex.	Consider	if	you	want	a	house	that
has	a	nice	view	and	a	large	backyard.	However,	you	would	also	be	satisfied	with	a	house
that	has	a	small	backyard	yet	is	near	a	park.	You	can	express	this	idea	in	the	following
way:

([nice	view]	AND	[large	yard])	OR	((NOT	[large	yard])	and	[park])

You	can	express	the	previous	statement	with	the	following	logical	operators:

In	the	above	statement,	the	OR	looks	like	a	letter	“v,”	the	AND	looks	like	an	upside
down	“v,”	and	the	NOT	looks	like	half	of	a	box.

We	can	use	neural	networks	to	represent	the	basic	logical	operators	of	AND,	OR,	and
NOT,	as	seen	in	Figure	1.14:

Figure	1.14:	Basic	Logic	Operators

The	above	diagram	shows	the	weights	and	bias	weight	for	each	of	the	three
fundamental	logical	operators.	You	can	easily	calculate	the	output	for	any	of	these
operators	using	Equation	1.1.	Consider	the	AND	operator	with	two	true	(1)	inputs:

(1*1)	+	(1*1)	+	(-1.5)	=	0.5

We	are	using	a	step	activation	function.	Because	0.5	is	greater	than	or	equal	to	0.5,	the
output	is	1	or	true.	We	can	evaluate	the	expression	where	the	first	input	is	false:

(1*1)	+	(0*1)	+	(-1.5)	=	-0.5

Because	of	the	step	activation	function,	this	output	is	0	or	false.

We	can	build	more	complex	logical	structures	from	these	neurons.	Consider	the
exclusive	or	(XOR)	operator	that	has	the	following	truth	table:

0	XOR	0	=	0

1	XOR	0	=	1

0	XOR	1	=	1

1	XOR	1	=	0

The	XOR	operator	specifies	that	one,	but	not	both,	of	the	inputs	can	be	true.	For
example,	one	of	the	two	cars	will	win	the	race,	but	not	both	of	them	will	win.	The	XOR
operator	can	be	written	with	the	basic	AND,	OR,	and	NOT	operators	as	follows:

Equation	1.9:	The	Exclusive	Or	Operator

The	plus	with	a	circle	is	the	symbol	for	the	XOR	operator,	and	p	and	q	are	the	two

inputs	to	evaluate.	The	above	expression	makes	sense	if	you	think	of	the	XOR	operator
meaning	p	or	q,	but	not	both	p	and	q.	Figure	1.15	shows	a	neural	network	that	can
represent	an	XOR	operator:

Figure	1.15:	XOR	Neural	Network

Calculating	the	above	neural	network	would	require	several	steps.	First,	you	must
calculate	the	values	for	every	node	that	is	directly	connected	to	the	inputs.	In	the	case	of
the	above	neural	network,	there	are	two	nodes.	We	will	show	an	example	of	calculating
the	XOR	with	the	inputs	[0,1].	We	begin	by	calculating	the	two	topmost,	unlabeled
(hidden)	nodes:

(0*1)	+	(1*1)	-	0.5	=	0.5	=	True

(0*1)	+	(1*1)	-	1.5	=	-0.5	=	False

Next	we	calculate	the	lower,	unlabeled	(hidden)	node:

(0*-1)+0.5	=	0.5	=	True

Finally,	we	calculate	O1:

(1*1)+(1*1)-1.5	=	0.5	=	True

As	you	can	see,	you	can	manually	wire	the	connections	in	a	neural	network	to	produce
the	desired	output.	However,	manually	creating	neural	networks	is	very	tedious.	The	rest
of	the	book	will	include	several	algorithms	that	can	automatically	determine	the	weight
and	bias	values.

Chapter	Summary

In	this	chapter,	we	showed	that	a	neural	network	is	comprised	of	neurons,	layers,	and
activation	functions.	Fundamentally,	the	neurons	in	a	neural	network	might	be	input,
hidden,	or	output	in	nature.	Input	and	output	neurons	pass	information	into	and	out	of	the
neural	network.	Hidden	neurons	occur	between	the	input	and	output	neurons	and	help
process	information.

Activation	functions	scale	the	output	of	a	neuron.	We	also	introduced	several
activation	functions.	The	two	most	common	activation	functions	are	the	sigmoid	and
hyperbolic	tangent.	The	sigmoid	function	is	appropriate	for	networks	in	which	only
positive	output	is	needed.	The	hyperbolic	tangent	function	supports	both	positive	and
negative	output.

A	neural	network	can	build	logical	statements,	and	we	demonstrated	the	weights	to

generate	AND,	OR,	and	NOT	operators.	Using	these	three	basic	operators,	you	can	build
more	complex,	logical	expressions.	We	presented	an	example	of	building	an	XOR
operator.

Now	that	we’ve	seen	the	basic	structure	of	a	neural	network,	we	will	explore	in	the
next	two	chapters	several	classic	neural	networks	so	that	you	can	use	this	abstract
structure.	Classic	neural	network	structures	include	the	self-organizing	map,	the	Hopfield
neural	network,	and	the	Boltzmann	machine.	These	classical	neural	networks	form	the
foundation	of	other	architectures	that	we	present	in	the	book.

Chapter	2:	Self-Organizing	Maps
Self-Organizing	Maps
Neighborhood	Functions
Unsupervised	Training
Dimensionality

Now	that	you	have	explored	the	abstract	nature	of	a	neural	network	introduced	in	the
previous	chapter,	you	will	learn	about	several	classic	neural	network	types.	This	chapter
covers	one	of	the	earliest	types	of	neural	networks	that	are	still	useful	today.	Because
neurons	can	be	connected	in	various	ways,	many	different	neural	network	architectures
exist	and	build	on	the	fundamental	ideas	from	Chapter	1,	“Neural	Network	Basics.”	We
begin	our	examination	of	classic	neural	networks	with	the	self-organizing	map	(SOM).

The	SOM	is	used	to	classify	neural	input	data	into	one	of	several	groups.	Training	data
is	provided	to	the	SOM,	as	well	as	the	number	of	groups	into	which	you	wish	to	classify
these	data.	While	training,	the	SOM	will	group	these	data	into	groups.	Data	that	have	the
most	similar	characteristics	will	be	grouped	together.	This	process	is	very	similar	to
clustering	algorithms,	such	as	k-means.	However,	unlike	k-means,	which	only	groups	an
initial	set	of	data,	the	SOM	can	continue	classifying	new	data	beyond	the	initial	data	set
that	was	used	for	training.	Unlike	most	of	the	neural	networks	in	this	book,	SOM	is
unsupervised—you	do	not	tell	it	what	groups	you	expect	the	training	data	to	fall	into.	The
SOM	simply	figures	out	the	groups	itself,	based	on	your	training	data,	and	then	it
classifies	any	future	data	into	similar	groups.	Future	classification	is	performed	using	what
the	SOM	learned	from	the	training	data.

Self-Organizing	Maps

Kohonen	(1988)	introduced	the	self-organizing	map	(SOM),	a	neural	network
consisting	of	an	input	layer	and	an	output	layer.	The	two-layer	SOM	is	also	known	as	the
Kohonen	neural	network	and	functions	when	the	input	layer	maps	data	to	the	output	layer.
As	the	program	presents	patterns	to	the	input	layer,	the	output	neuron	is	considered	the
winner	when	it	contains	the	weights	most	similar	to	the	input.	This	similarity	is	calculated
by	comparing	the	Euclidean	distance	between	the	set	of	weights	from	each	output	neuron.
The	shortest	Euclidean	distance	wins.	Calculating	Euclidean	distance	is	the	focus	of	the
next	section.

Unlike	the	feedforward	neural	network	discussed	in	Chapter	1,	there	are	no	bias	values
in	the	SOM.	It	just	has	weights	from	the	input	layer	to	the	output	layer.	Additionally,	it
uses	only	a	linear	activation	function.	Figure	2.1	shows	the	SOM:

Figure	2.1:	Self-Organizing	Map

The	SOM	pictured	above	shows	how	the	program	maps	three	input	neurons	to	nine
output	neurons	arranged	in	a	three-by-three	grid.	The	output	neurons	of	the	SOM	are	often
arranged	into	a	grid,	cube,	or	other	higher-dimensional	construct.	Because	the	ordering	of
the	output	neurons	in	most	neural	networks	typically	conveys	no	meaning	at	all,	this
arrangement	is	very	different.	For	example,	the	close	proximity	of	the	output	neurons	#1
and	#2	in	most	neural	networks	is	not	significant.	However,	for	the	SOM,	the	closeness	of
one	output	neuron	to	another	is	important.	Computer	vision	applications	make	use	of	the
closeness	of	neurons	to	identify	images	more	accurately.	Convolutional	neural	networks
(CNNs),	which	will	be	examined	in	Chapter	10,	“Convolutional	Neural	Networks,”	group
neurons	into	overlapping	regions	based	on	how	close	these	input	neurons	are	to	each	other.
When	recognizing	images,	it	is	very	important	to	consider	which	pixels	are	near	each
other.	The	program	recognizes	patterns	such	as	edges,	solid	regions,	and	lines	by	looking
at	pixels	near	each	other.

Common	structures	for	the	output	neurons	of	SOMs	include	the	following:

One-Dimensional:	Output	neurons	are	arranged	in	a	line.
Two-Dimensional:	Output	neurons	are	arranged	in	a	grid.
Three-Dimensional:	Output	neurons	are	arranged	in	a	cube.

We	will	now	see	how	to	structure	a	simple	SOM	that	learns	to	recognize	colors	that	are
given	as	RGB	vectors.	The	individual	red,	green,	and	blue	values	can	range	between	-1
and	+1.	Black	or	the	absence	of	color	designates	-1,	and	+1	expresses	the	full	intensity	of
red,	green	or	blue.	These	three-color	components	comprise	the	neural	network	input.

The	output	will	be	a	2,500-neuron	grid	arranged	into	50	rows	by	50	columns.	This
SOM	will	organize	similar	colors	near	each	other	in	this	output	grid.	Figure	2.2	shows	this

output:

Figure	2.2:	The	Output	Grid

Although	the	above	figure	may	not	be	as	clear	in	the	black	and	white	editions	of	this
book	as	it	is	in	the	color	e-book	editions,	you	can	see	similar	colors	grouped	near	each
other.	A	single,	color-based	SOM	is	a	very	simple	example	that	allows	you	to	visualize	the
grouping	capabilities	of	the	SOM.

How	are	SOMs	trained?	The	training	process	will	update	the	weight	matrix,	which	is	3
by	2,500.	To	start,	the	program	initializes	the	weight	matrix	to	random	values.	Then	it
randomly	chooses	15	training	colors.

The	training	will	progress	through	a	series	of	iterations.	Unlike	other	neural	network
types,	the	training	for	SOM	networks	involves	a	fixed	number	of	iterations.	To	train	the
color-based	SOM,	we	will	use	1,000	iterations.

Each	iteration	will	choose	one	random	color	sample	from	the	training	set,	a	collection
of	RGB	color	vectors	that	each	consist	of	three	numbers.	Likewise,	the	weights	between
each	of	the	2,500	output	neurons	and	the	three	input	neurons	are	a	vector	of	three
numbers.	As	training	progresses,	the	program	will	calculate	the	Euclidean	distance
between	each	weight	vector	and	the	current	training	pattern.	A	Euclidean	distance
determines	the	difference	between	two	vectors	of	the	same	size.	In	this	case,	both	vectors
are	three	numbers	that	represent	an	RGB	color.	We	compare	the	color	from	the	training
data	to	the	three	weights	of	each	neuron.	Equation	2.1	shows	the	Euclidean	distance
calculation:

Equation	2.1:	The	Euclidean	Distance	between	Training	Data	and	Output	Neuron

In	the	above	equation,	the	variable	p	represents	the	training	pattern.	The	variable	w
corresponds	to	the	weight	vector.	By	squaring	the	differences	between	each	vector
component	and	taking	the	square	root	of	the	resulting	sum,	we	calculate	the	Euclidean
distance.	This	calculation	measures	the	difference	between	each	weight	vector	and	the
input	training	pattern.

The	program	calculates	the	Euclidean	distance	for	every	output	neuron,	and	the	one
with	the	shortest	distance	is	called	the	best	matching	unit	(BMU).	This	neuron	will	learn
the	most	from	the	current	training	pattern.	The	neighbors	of	the	BMU	will	learn	less.	To
perform	this	training,	the	program	loops	over	every	neuron	and	determines	the	extent	to
which	it	should	be	trained.	Neurons	that	are	closer	to	the	BMU	will	receive	more	training.
Equation	2.2	can	make	this	determination:

Equation	2.2:	SOM	Learning	Function

In	the	above	equation,	the	variable	t,	also	known	as	the	iteration	number,	represents
time.	The	purpose	of	the	equation	is	to	calculate	the	resulting	weight	vector	Wv(t+1).	You
will	determine	the	next	weight	by	adding	to	the	current	weight,	which	is	Wv(t).	The	end
goal	is	to	calculate	how	different	the	current	weight	is	from	the	input	vector,	and	it	is	done
by	the	clause	D(T)-Wv(t).	Training	the	SOM	is	the	process	of	making	a	neuron’s	weights
more	similar	to	the	training	element.	We	do	not	want	to	simply	assign	the	training	element
to	the	output	neurons	weights,	making	them	identical.	Rather,	we	calculate	the	difference
between	the	training	element	and	the	neurons	weights	and	scale	this	difference	by
multiplying	it	by	two	ratios.	The	first	ratio,	represented	by	θ	(theta),	is	the	neighborhood
function.	The	second	ratio,	represented	by	α	(alpha),	is	a	monotonically	decreasing
learning	rate.	In	other	words,	as	the	training	progresses,	the	learning	rate	falls	and	never
rises.

The	neighborhood	function	considers	how	close	each	output	neuron	is	to	the	BMU.
For	neurons	that	are	nearer,	the	neighborhood	function	will	return	a	value	that	approaches
1.	For	distant	neighbors,	the	neighborhood	function	will	approach	0.	This	range	between	0
and	1	controls	how	near	and	far	neighbors	are	trained.	Nearer	neighbors	will	receive	more
of	the	training	adjustment	to	their	weights.	In	the	next	section,	we	will	analyze	how	the
neighborhood	function	determines	the	training	adjustments.	In	addition	to	the
neighborhood	function,	the	learning	rate	also	scales	how	much	the	program	will	adjust	the
output	neuron.

Understanding	Neighborhood	Functions

The	neighborhood	function	determines	the	degree	to	which	each	output	neuron	should
receive	a	training	adjustment	from	the	current	training	pattern.	The	function	usually
returns	a	value	of	1	for	the	BMU.	This	value	indicates	that	the	BMU	should	receive	the
most	training.	Those	neurons	farther	from	the	BMU	will	receive	less	training.	The
neighborhood	function	determines	this	weighting.

If	the	output	neurons	are	arranged	in	only	one	dimension,	you	should	use	a	simple
one-dimensional	neighborhood	function,	which	will	treat	the	output	as	one	long	array	of
numbers.	For	instance,	a	one-dimensional	network	might	have	100	output	neurons	that
form	a	long,	single-dimensional	array	of	100	values.

A	two-dimensional	SOM	might	take	these	same	100	values	and	represent	them	as	a
grid,	perhaps	of	10	rows	and	10	columns.	The	actual	structure	remains	the	same;	the
neural	network	has	100	output	neurons.	The	only	difference	is	the	neighborhood	function.
The	first	would	utilize	a	one-dimensional	neighborhood	function;	the	second	would	use	a
two-dimensional	neighborhood	function.	The	function	must	consider	this	additional
dimension	and	factor	it	into	the	distance	returned.

It	is	also	possible	to	have	three,	four,	and	even	more	dimensional	functions	for	the
neighborhood	function.	Typically,	neighborhood	functions	are	expressed	in	vector	form	so
that	the	number	of	dimensions	does	not	matter.	To	represent	the	dimensions,	the	Euclidian
norm	(represented	by	two	vertical	bars)	of	all	inputs	is	taken,	as	seen	in	Equation	2.3:

Equation	2.3:	Euclidean	Norm

For	the	above	equation,	the	variable	p	represents	the	dimensional	inputs.	The	variable
w	represents	the	weights.	A	single	dimension	has	only	a	single	value	for	p.	Calculating	the
Euclidian	norm	for	[2-0]	would	simply	be	the	following:

Calculating	the	Euclidean	norm	for	[2-0,	3-0]	is	only	slightly	more	complex:

The	most	popular	choice	for	SOMs	is	the	two-dimensional	neighborhood	function.
One-dimensional	neighborhood	functions	are	also	common.	However,	neighborhood
functions	with	three	or	more	dimensions	are	more	unusual.	Choosing	the	number	of
dimensions	really	comes	down	to	the	programmer	deciding	how	many	ways	an	output
neuron	can	be	close	to	another.	This	decision	should	not	be	taken	lightly	because	each
additional	dimension	significantly	affects	the	amount	of	memory	and	processing	power
needed.	This	additional	processing	is	why	most	programmers	choose	two	or	three
dimensions	for	the	SOM	application.

It	can	be	difficult	to	understand	why	you	might	have	more	than	three	dimensions.	The
following	analogy	illustrates	the	limitations	of	three	dimensions.	While	at	the	grocery
store,	John	noticed	a	package	of	dried	apples.	As	he	turned	his	head	to	the	left	or	right,
traveling	in	the	first	dimension,	he	saw	other	brands	of	dried	apples.	If	he	looked	up	or
down,	traveling	in	the	second	dimension,	he	saw	other	types	of	dried	fruit.	The	third
dimension,	depth,	simply	gives	him	more	of	exactly	the	same	dried	apples.	He	reached
behind	the	front	item	and	found	additional	stock.	However,	there	is	no	fourth	dimension,
which	could	have	been	useful	to	allow	fresh	apples	to	be	located	near	to	the	dried	apples.
Because	the	supermarket	only	had	three	dimensions,	this	type	of	link	is	not	possible.
Programmers	do	not	have	this	limitation,	and	they	must	decide	if	the	extra	processing	time
is	necessary	for	the	benefits	of	additional	dimensions.

The	Gaussian	function	is	a	popular	choice	for	a	neighborhood	function.	Equation	2.4
uses	the	Euclidean	norm	to	calculate	the	Gaussian	function	for	any	number	of	dimensions:

Equation	2.4:	The	Vector	Form	of	the	Gaussian	Function

The	variable	x	represents	the	input	to	the	Gaussian	function,	c	represents	the	center	of
the	Gaussian	function,	and	w	represents	the	widths.	The	variables	x,	w	and	c	all	are
vectors	with	multiple	dimensions.	Figure	2.3	shows	the	graph	of	the	two-dimensional
Gaussian	function:

Figure	2.3:	A	Single-Dimensional	Gaussian	Function

This	figure	illustrates	why	the	Gaussian	function	is	a	popular	choice	for	a
neighborhood	function.	Programmers	frequently	use	the	Gaussian	function	to	show	the
normal	distribution,	or	bell	curve.	If	the	current	output	neuron	is	the	BMU,	then	its
distance	(x-axis)	will	be	0.	As	a	result,	the	training	percent	(y-axis)	is	1.0	(100%).	As	the
distance	increases	either	positively	or	negatively,	the	training	percentage	decreases.	Once
the	distance	is	large	enough,	the	training	percent	approaches	0.

If	the	input	vector	to	the	Gaussian	function	has	two	dimensions,	the	graph	appears	as
Figure	2.4:

Figure	2.4:	A	Two-Dimensional	Gaussian	Function

How	does	the	algorithm	use	Gaussian	constants	with	a	neural	network?	The	center	(c)
of	a	neighborhood	function	is	always	0,	which	centers	the	function	on	the	origin.	If	the
algorithm	moves	the	center	from	the	origin,	a	neuron	other	than	the	BMU	would	receive
the	full	learning.	It	is	unlikely	you	would	ever	want	to	move	the	center	from	the	origin.
For	a	multi-dimensional	Gaussian,	set	all	centers	to	0	in	order	to	position	the	curve	at	the
origin.

The	only	remaining	Gaussian	parameter	is	the	width.	You	should	set	this	parameter	to
something	slightly	less	than	the	entire	width	of	the	grid	or	array.	As	training	progresses,
the	width	gradually	decreases.	Just	like	the	learning	rate,	the	width	should	decrease
monotonically.

Mexican	Hat	Neighborhood	Function

Though	it	is	the	most	popular,	the	Gaussian	function	is	not	the	only	neighborhood
function	available.	The	Ricker	wave,	or	Mexican	hat	function,	is	another	popular
neighborhood	function.	Just	like	the	Gaussian	neighborhood	function,	the	vector	length	of
the	x	dimensions	is	the	basis	for	the	Mexican	hat	function,	as	seen	in	Equation	2.5:

Equation	2.5:	Vector	Form	of	Mexican	Hat	Function

Much	the	same	as	the	Gaussian,	the	programmer	can	use	the	Mexican	hat	function	in
one	or	more	dimensions.	Figure	2.5	shows	the	Mexican	hat	function	with	one	dimension:

Figure	2.5:	A	One-Dimensional	Mexican	Hat	Function

You	must	be	aware	that	the	Mexican	hat	function	penalizes	neighbors	that	are	between
2	and	4,	or	-2	and	-4	units	from	the	center.	If	your	model	seeks	to	penalize	near	misses,	the
Mexican	hat	function	is	a	good	choice.

You	can	also	use	the	Mexican	hat	function	in	two	or	more	dimensions.	Figure	2.6
shows	a	two-dimensional	Mexican	hat	function:

Figure	2.6:	A	Two-Dimensional	Mexican	Hat	Function

Just	like	the	one-dimensional	version,	the	above	Mexican	hat	penalizes	near	misses.
The	only	difference	is	that	the	two-dimensional	Mexican	hat	function	utilizes	a	two-
dimensional	vector,	which	looks	more	like	a	Mexican	sombrero	than	the	one-dimensional
variant.	Although	it	is	possible	to	use	more	than	two	dimensions,	these	variants	are	hard	to
visualize	because	we	perceive	space	in	three	dimensions.

Calculating	SOM	Error

Supervised	training	typically	reports	an	error	measurement	that	decreases	as	training
progresses.	Unsupervised	models,	such	as	the	SOM	network,	cannot	directly	calculate	an
error	because	there	is	no	expected	output.	However,	an	estimation	of	the	error	can	be
calculated	for	the	SOM	(Masters,	1993).

We	define	the	error	as	the	longest	Euclidean	distance	of	all	BMUs	in	a	training
iteration.	Each	training	set	element	has	its	own	BMU.	As	learning	progresses,	the	longest
distance	should	decrease.	The	results	also	indicate	the	success	of	the	SOM	training	since
the	values	will	tend	to	decrease	as	the	training	continues.

Chapter	Summary

In	the	first	two	chapters,	we	explained	several	classic	neural	network	types.	Since	Pitts
(1943)	introduced	the	neural	network,	many	different	neural	network	types	have	been
invented.	We	have	focused	primarily	on	the	classic	neural	network	types	that	still	have
relevance	and	that	establish	the	foundation	for	other	architectures	that	we	will	cover	in
later	chapters	of	the	book.

This	chapter	focused	on	the	self-organizing	map	(SOM)	that	is	an	unsupervised	neural
network	type	that	can	cluster	data.	The	SOM	has	an	input	neuron	count	equal	to	the
number	of	attributes	for	the	data	to	be	clustered.	An	output	neuron	count	specifies	the
number	of	groups	into	which	the	data	should	be	clustered.	The	SOM	neural	network	is
trained	in	an	unsupervised	manner.	In	other	words,	only	the	data	points	are	provided	to	the
neural	network;	the	expected	outputs	are	not	provided.	The	SOM	network	learns	to	cluster
the	data	points,	especially	the	data	points	similar	to	the	ones	with	which	it	trained.

In	the	next	chapter,	we	will	examine	two	more	classic	neural	network	types:	the
Hopfield	neural	network	and	the	Boltzmann	machine.	These	neural	network	types	are
similar	in	that	they	both	use	an	energy	function	during	their	training	process.	The	energy
function	measures	the	amount	of	energy	in	the	network.	As	training	progresses,	the	energy
should	decrease	as	the	network	learns.

Chapter	3:	Hopfield	&	Boltzmann
Machines

Hopfield	Networks
Energy	Functions
Hebbian	Learning
Associative	Memory
Optimization
Boltzmann	Machines

This	chapter	will	introduce	the	Hopfield	network	as	well	as	the	Boltzmann	machine.
Though	neither	of	these	classic	neural	networks	is	used	extensively	in	modern	AI
applications,	both	are	foundational	to	more	modern	algorithms.	The	Boltzmann	machine
forms	the	foundation	of	the	deep	belief	neural	network	(DBNN),	which	is	one	of	the
fundamental	algorithms	of	deep	learning.	Hopfield	networks	are	a	very	simple	type	of
neural	network	that	utilizes	many	of	the	same	features	that	the	more	complex	feedforward
neural	networks	employ.

Hopfield	Neural	Networks

The	Hopfield	neural	network	(Hopfield,	1982)	is	perhaps	the	simplest	type	of	neural
network	because	it	is	a	fully	connected	single	layer,	auto-associative	network.	In	other
words,	it	has	a	single	layer	in	which	each	neuron	is	connected	to	every	other	neuron.
Additionally,	the	term	auto-associative	means	that	the	neural	network	will	return	the	entire
pattern	if	it	recognizes	a	pattern.	As	a	result,	the	network	will	fill	in	the	gaps	of	incomplete
or	distorted	patterns.

Figure	3.1	shows	a	Hopfield	neural	network	with	just	four	neurons.	While	a	four-
neuron	network	is	handy	because	it	is	small	enough	to	visualize,	it	can	recognize	a	few
patterns.

Figure	3.1:	A	Hopfield	Neural	Network	with	12	Connections

Because	every	neuron	in	a	Hopfield	neural	network	is	connected	to	every	other
neuron,	you	might	assume	that	a	four-neuron	network	would	contain	a	four-by-four
matrix,	or	16	connections.	However,	16	connections	would	require	that	every	neuron	be
connected	to	itself	as	well	as	to	every	other	neuron.	In	a	Hopfield	neural	network,	16
connections	do	not	occur;	the	actual	number	of	connections	is	12.

These	connections	are	weighted	and	stored	in	a	matrix.	A	four-by-four	matrix	would
store	the	network	pictured	above.	In	fact,	the	diagonal	of	this	matrix	would	contain	0’s
because	there	are	no	self-connections.	All	neural	network	examples	in	this	book	will	use
some	form	of	matrix	to	store	their	weights.

Each	neuron	in	a	Hopfield	network	has	a	state	of	either	true	(1)	or	false	(-1).	These
states	are	initially	the	input	to	the	Hopfield	network	and	ultimately	become	the	output	of
the	network.	To	determine	whether	a	Hopfield	neuron’s	state	is	-1	or	1,	use	Equation	3.1:

Equation	3.1:	Hopfield	Neuron	State

The	above	equation	calculates	the	state	(s)	of	neuron	i.	The	state	of	a	given	neuron
greatly	depends	on	the	states	of	the	other	neurons.	The	equation	multiplies	and	sums	the
weight	(w)	and	state	(s)	of	the	other	neurons	(j).	Essentially,	the	state	of	the	current	neuron
(i)	is	+1	if	this	sum	is	greater	than	the	threshold	(θ,	theta).	Otherwise	it	is	-1.	The	threshold
value	is	usually	0.

Because	the	state	of	a	single	neuron	depends	on	the	states	of	the	remaining	neurons,
the	order	in	which	the	equation	calculates	the	neurons	is	very	important.	Programmers
frequently	employ	the	following	two	strategies	to	calculate	the	states	for	all	neurons	in	a
Hopfield	network:

Asynchronous:	This	strategy	updates	only	one	neuron	at	a	time.	It	picks	this	neuron
at	random.
Synchronous:	It	updates	all	neurons	at	the	same	time.	This	method	is	less	realistic
since	biological	organisms	lack	a	global	clock	that	synchronizes	the	neurons.

You	should	typically	run	a	Hopfield	network	until	the	values	of	all	neurons	stabilize.
Despite	the	fact	that	each	neuron	is	dependent	on	the	states	of	the	others,	the	network	will
usually	converge	to	a	stable	state.

It	is	important	to	have	some	indication	of	how	close	the	network	is	to	converging	to	a
stable	state.	You	can	calculate	an	energy	value	for	Hopfield	networks.	This	value
decreases	as	the	Hopfield	network	moves	to	a	more	stable	state.	To	evaluate	the	stability
of	the	network,	you	can	use	the	energy	function.	Equation	3.2	shows	the	energy
calculation	function:

Equation	3.2:	Hopfield	Energy	Function

Boltzmann	machines,	discussed	later	in	the	chapter,	also	utilize	this	energy	function.
Boltzmann	machines	share	many	similarities	with	Hopfield	neural	networks.	When	the
threshold	is	0,	the	second	term	of	Equation	3.2	drops	out.	Listing	3.1	contains	the	code	to
implement	Equation	3.1:

Listing	3.1:	Hopfield	Energy

def	energy(weights,state,threshold):

		#	First	term

		a	=	0

		for	i	in	range(neuron_count):

				for	j	in	range(neuron_count):

						a	=	a	+	weight[i][j]	*	state[i]	*	state[j]

						

		a	=	a	*	-0.5

		#	Second	term

		b	=	0

		for	i	in	range(neuron_count):

				b	=	b	+	state[i]	*	threshold[i]

				

		#	Result

		return	a	+	b

Training	a	Hopfield	Network

You	can	train	Hopfield	networks	to	arrange	their	weights	in	a	way	that	allows	the
network	to	converge	to	desired	patterns,	also	known	as	the	training	set.

These	desired	training	patterns	are	a	list	of	patterns	with	a	Boolean	value	for	each	of
the	neurons	that	comprise	the	Boltzmann	machine.	The	following	data	might	represent	a
four-pattern	training	set	for	a	Hopfield	network	with	eight	neurons:

1	1	0	0	0	0	0	0

0	0	0	0	1	1	0	0

1	0	0	0	0	0	0	1

0	0	0	1	1	0	0	0	

The	above	data	are	completely	arbitrary;	however,	they	do	represent	actual	patterns	to
train	the	Hopfield	network.	Once	trained,	a	pattern	similar	to	the	one	listed	below	should
find	equilibrium	with	a	pattern	close	to	the	training	set:

1	1	1	0	0	0	0	0	

Therefore,	the	state	of	the	Hopfield	machine	should	change	to	the	following	pattern:

1	1	0	0	0	0	0	0

You	can	train	Hopfield	networks	with	either	Hebbian	(Hopfield,	1982)	or	Storkey
(Storkey,	1999)	learning.	The	Hebbian	process	for	learning	is	biologically	plausible,	and	it
is	often	expressed	as,	“cells	that	fire	together,	wire	together.”	In	other	words,	two	neurons
will	become	connected	if	they	frequently	react	to	the	same	input	stimulus.	Equation	3.3
summarizes	this	behavior	mathematically:

Equation	3.3:	Hopfield	Hebbian	Learning

The	constant	n	represents	the	number	of	training	set	elements	(ε,	epsilon).	The	weight
matrix	will	be	square	and	will	contain	rows	and	columns	equal	to	the	number	of	neurons.
The	diagonal	will	always	be	0	because	a	neuron	is	not	connected	to	itself.	The	other
locations	in	the	matrix	will	contain	values	specifying	how	often	two	values	in	the	training
pattern	are	either	+1	or	-1.	Listing	3.2	contains	the	code	to	implement	Equation	3.3:

Listing	3.2:	Hopfield	Hebbian	Training

def	add_pattern(weights,pattern,n):

		for	i	in	range(neuron_count):

				for	j	in	range(neuron_count):

						if	i==j:

								weights[i][j]	=	0

						else:

								weights[i][j]	=	weights[i][j]	

											+	((pattern[i]	*	pattern[j])/n)

We	apply	the	add_pattern	method	to	add	each	of	the	training	elements.	The	parameter
weights	specifies	the	weight	matrix,	and	the	parameter	pattern	specifies	each	individual
training	element.	The	variable	n	designates	the	number	of	elements	in	the	training	set.

It	is	possible	that	the	equation	and	the	code	are	not	sufficient	to	show	how	the	weights
are	generated	from	input	patterns.	To	help	you	visualize	this	process,	we	provide	an	online
Javascript	application	at	the	following	URL:

http://www.heatonresearch.com/aifh/vol3/hopfield.html

Consider	the	following	data	to	train	a	Hopfield	network:

[1,0,0,1]

[0,1,1,0]

The	previous	data	should	produce	a	weight	matrix	like	Figure	3.2:

http://www.heatonresearch.com/aifh/vol3/hopfield.html

Figure	3.2:	Hopfield	Matrix

To	calculate	the	above	matrix,	divide	1	by	the	number	of	training	set	elements.	The
result	is	1/2,	or	0.5.	The	value	0.5	is	placed	into	every	row	and	column	that	has	a	1	in	the
training	set.	For	example,	the	first	training	element	has	a	1	in	neurons	#0	and	#3,	resulting
in	a	0.5	being	added	to	row	0,	column	3	and	row	3,	column	0.	The	same	process	continues
for	the	other	training	set	element.

Another	common	training	technique	for	Hopfield	neural	networks	is	the	Storkey
training	algorithm.	Hopfield	neural	networks	trained	with	Storkey	have	a	greater	capacity
of	patterns	than	the	Hebbian	method	just	described.	The	Storkey	algorithm	is	more
complex	than	the	Hebbian	algorithm.

The	first	step	in	the	Storkey	algorithm	is	to	calculate	a	value	called	the	local	field.
Equation	3.4	calculates	this	value:

Equation	3.4:	Hopfield	Storkey	Local	Field

We	calculate	the	local	field	value	(h)	for	each	weight	element	(i	&	j).	Just	as	before,
we	use	the	weights	(w)	and	training	set	elements	(ε,	epsilon).	Listing	3.3	provides	the	code
to	calculate	the	local	field:

Listing	3.3:	Calculate	Storkey	Local	Field

def	calculate_local_field(weights,	i,	j,	pattern):

		sum	=	0

		for	k	in	range(len(pattern)):

				if	k	!=	i:

						sum	=	sum	+	weights[i][k]	*	pattern[k]

		return	sum

Equation	3.5	has	the	local	field	value	that	calculates	the	needed	change	(ΔW):	

Equation	3.5:	Hopfield	Storkey	Learning

Listing	3.4	calculates	the	values	of	the	weight	deltas:

Listing	3.4:	Storkey	Learning

def	add_pattern(weights,	pattern):

		sum_matrix	=	matrix(len(pattern),len(pattern))

		n	=	len(pattern)

		for	i	in	range(n):

				for	j	in	range(n):

						t1	=	(pattern[i]	*	pattern[j])/n

						t2	=	(pattern[i]	*	

									calculate_local_field(weights,j,i,pattern))/n

						t3	=	(pattern[j]	*	

									calculate_local_field(weights,i,j,pattern))/n

						d	=	t1-t2-t3;

						sum_matrix[i][j]	=	sum_matrix[i][j]	+	d

		return	sum_matrix

Once	you	calculate	the	weight	deltas,	you	can	add	them	to	the	existing	weight	matrix.
If	there	is	no	existing	weight	matrix,	simply	allow	the	delta	weight	matrix	to	become	the
weight	matrix.

Hopfield-Tank	Networks

In	the	last	section,	you	learned	that	Hopfield	networks	can	recall	patterns.	They	can
also	optimize	problems	such	as	the	traveling	salesman	problem	(TSP).	Hopfield	and	Tank
(1984)	introduced	a	special	variant,	the	Hopfield-Tank	network,	to	find	solutions	to
optimization	problems.

The	structure	of	a	Hopfield-Tank	network	is	somewhat	different	than	a	standard
Hopfield	network.	The	neurons	in	a	regular	Hopfield	neural	network	can	hold	only	the	two
discrete	values	of	0	or	1.	However,	a	Hopfield-Tank	neuron	can	have	any	number	in	the
range	0	to	1.	Standard	Hopfield	networks	possess	discrete	values;	Hopfield-Tank	networks
keep	continuous	values	over	a	range.	Another	important	difference	is	that	Hopfield-Tank
networks	use	sigmoid	activation	functions.

To	utilize	a	Hopfield-Tank	network,	you	must	create	a	specialized	energy	function	to
express	the	parameters	of	each	problem	to	solve.	However,	producing	such	an	energy
function	can	be	a	time-consuming	task.	Hopfield	&	Tank	(2008)	demonstrated	how	to
construct	an	energy	function	for	the	traveling	salesman	problem	(TSP).	Other	optimization
functions,	such	as	simulated	annealing	and	Nelder-Mead,	do	not	require	the	creation	of	a
complex	energy	function.	These	general-purpose	optimization	algorithms	typically
perform	better	than	the	older	Hopfield-Tank	optimization	algorithms.

Because	other	algorithms	are	typically	better	choices	for	optimizations,	this	book	does
not	cover	the	optimization	Hopfield-Tank	network.	Nelder-Mead	and	simulated	annealing
were	demonstrated	in	Artificial	Intelligence	for	Humans,	Volume	1:	Fundamental
Algorithms.	Chapter	6,	“Backpropagation	Training,”	will	have	a	review	of	stochastic
gradient	descent	(SGD),	which	is	one	of	the	best	training	algorithms	for	feedforward
neural	networks.

Boltzmann	Machines

Hinton	&	Sejnowski	(1985)	first	introduced	Boltzmann	machines,	but	this	neural
network	type	has	not	enjoyed	widespread	use	until	recently.	A	special	type	of	Boltzmann
machine,	the	restricted	Boltzmann	machine	(RBM),	is	one	of	the	foundational
technologies	of	deep	learning	and	the	deep	belief	neural	network	(DBNN).	In	this	chapter,
we	will	introduce	classic	Boltzmann	machines.	Chapter	9,	“Deep	Learning,”	will	include
deep	learning	and	the	restricted	Boltzmann	machine.

A	Boltzmann	machine	is	essentially	a	fully	connected,	two-layer	neural	network.	We
refer	to	these	layers	as	the	visual	and	hidden	layers.	The	visual	layer	is	analogous	to	the
input	layer	in	feedforward	neural	networks.	Despite	the	fact	that	a	Boltzmann	machine	has

a	hidden	layer,	it	functions	more	as	an	output	layer.	This	difference	in	the	meaning	of
hidden	layer	is	often	a	source	of	confusion	between	Boltzmann	machines	and	feedforward
neural	networks.	The	Boltzmann	machine	has	no	hidden	layer	between	the	input	and
output	layers.	Figure	3.3	shows	the	very	simple	structure	of	a	Boltzmann	machine:

Figure	3.3:	Boltzmann	Machine

The	above	Boltzmann	machine	has	three	hidden	neurons	and	four	visible	neurons.	A
Boltzmann	machine	is	fully	connected	because	every	neuron	has	a	connection	to	every
other	neuron.	However,	no	neuron	is	connected	to	itself.	This	connectivity	is	what
differentiates	a	Boltzmann	machine	from	a	restricted	Boltzmann	machine	(RBM),	as	seen
in	Figure	3.4:

Figure	3.4:	Restricted	Boltzmann	Machine	(RBM)

The	above	RBM	is	not	fully	connected.	All	hidden	neurons	are	connected	to	each
visible	neuron.	However,	there	are	no	connections	among	the	hidden	neurons	nor	are	there
connections	among	the	visible	neurons.

Like	the	Hopfield	neural	network,	a	Boltzmann	machine’s	neurons	acquire	only	binary
states,	either	0	or	1.	While	there	is	some	research	on	continuous	Boltzmann	machines
capable	of	assigning	decimal	numbers	to	the	neurons,	nearly	all	research	on	the
Boltzmann	machine	centers	on	binary	units.	Therefore,	this	book	will	not	include
information	on	continuous	Boltzmann	machines.

Boltzmann	machines	are	also	called	a	generative	model.	In	other	words,	a	Boltzmann
machine	does	not	generate	constant	output.	The	values	presented	to	the	visible	neurons	of
a	Boltzmann	machine,	when	considered	with	the	weights,	specify	a	probability	that	the
hidden	neurons	will	assume	a	value	of	1,	as	opposed	to	0.

Although	a	Boltzmann	machine	and	Hopfield	neural	networks	have	some
characteristics	in	common,	there	are	several	important	differences:

Hopfield	networks	suffer	from	recognizing	certain	false	patterns.
Boltzmann	machines	can	store	a	greater	capacity	of	patterns	than	Hopfield	networks.
Hopfield	networks	require	the	input	patterns	to	be	uncorrelated.
Boltzmann	machines	can	be	stacked	to	form	layers.

Boltzmann	Machine	Probability

When	the	program	queries	the	value	of	1	of	the	Boltzmann	machine’s	hidden	neurons,
it	will	randomly	produce	a	0	or	1.	Equation	3.6	obtains	the	calculated	probability	for	that
neuron	with	a	value	of	1:

Equation	3.6:	Probability	of	Neuron	Being	One	(on)

The	above	equation	will	calculate	a	number	between	0	and	1	that	represents	a
probability.	For	example,	if	the	value	0.75	were	generated,	the	neuron	would	return	a	1	in
75%	of	the	cases.	Once	it	calculates	the	probability,	it	can	produce	the	output	by
generating	a	random	number	between	0	and	1	and	returning	1	if	the	random	number	is
below	the	probability.

The	above	equation	returns	the	probability	for	neuron	i	being	on	and	is	calculated	with
the	delta	energy	(ΔE)	at	i.	The	equation	also	uses	the	value	T,	which	represents	the
temperature	of	the	system.	Equation	3.2,	from	earlier	in	the	chapter,	can	calculate	T.	The
value	θ	(theta)	is	the	neuron’s	bias	value.

The	change	in	energy	is	calculated	using	Equation	3.7:

Equation	3.7:	Calculating	the	Energy	Change	for	a	Neuron

This	value	is	the	energy	difference	between	1	(on)	and	0	(off)	for	neuron	i.	It	is
calculated	using	the	θ	(theta),	which	represents	the	bias.

Although	the	values	of	the	individual	neurons	are	stochastic	(random),	they	will
typically	fall	into	equilibrium.	To	reach	this	equilibrium,	you	can	repeatedly	calculate	the
network.	Each	time,	a	unit	is	chosen	while	Equation	3.6	sets	its	state.	After	running	for	an
adequate	period	of	time	at	a	certain	temperature,	the	probability	of	a	global	state	of	the
network	will	depend	only	upon	that	global	state’s	energy.

In	other	words,	the	log	probabilities	of	global	states	become	linear	in	their	energies.
This	relationship	is	true	when	the	machine	is	at	thermal	equilibrium,	which	means	that	the

probability	distribution	of	global	states	has	converged.	If	we	start	running	the	network
from	a	high	temperature	and	gradually	decrease	it	until	we	reach	a	thermal	equilibrium	at
a	low	temperature,	then	we	may	converge	to	a	distribution	where	the	energy	level
fluctuates	around	the	global	minimum.	We	call	this	process	simulated	annealing.

Applying	the	Boltzmann	Machine

Most	research	around	Boltzmann	machines	has	moved	to	the	restricted	Boltzmann
machine	(RBM)	that	we	will	explain	in	Chapter	9,	“Deep	Learning.”	In	this	section,	we
will	focus	on	the	older,	unrestricted	form	of	the	Boltzmann,	which	has	been	applied	to
both	optimization	and	recognition	problems.	We	will	demonstrate	an	example	of	each
type,	beginning	with	an	optimization	problem.

Traveling	Salesman	Problem

The	traveling	salesman	problem	(TSP)	is	a	classic	computer	science	problem	that	is
difficult	to	solve	with	traditional	programming	techniques.	Artificial	intelligence	can	be
applied	to	find	potential	solutions	to	the	TSP.	The	program	must	determine	the	order	of	a
fixed	set	of	cities	that	minimizes	the	total	distance	covered.	The	traveling	salesman	is
called	a	combinational	problem.	If	you	are	already	familiar	with	TSP	or	you	have	read
about	it	in	a	previous	volume	in	this	series,	you	can	skip	this	section.

TSP	involves	determining	the	shortest	route	for	a	traveling	salesman	who	must	visit	a
certain	number	of	cities.	Although	he	can	begin	and	end	in	any	city,	he	may	visit	each	city
only	once.	The	TSP	has	several	variants,	some	of	which	allow	multiple	visits	to	cities	or
assign	different	values	to	cities.	The	TSP	in	this	chapter	simply	seeks	the	shortest	possible
route	to	visit	each	city	one	time.	Figure	3.5	shows	the	TSP	problem	used	here,	as	well	as	a
potential	shortest	route:

Figure	3.5:	The	Traveling	Salesman

Finding	the	shortest	route	may	seem	like	an	easy	task	for	a	normal	iterative	program.
However,	as	the	number	of	cities	increases,	the	number	of	possible	combinations	increases
drastically.	If	the	problem	has	one	or	two	cities,	only	one	or	two	routes	are	possible.	If	it
includes	three	cities,	the	possible	routes	increase	to	six.	The	following	list	shows	how
quickly	the	number	of	paths	grows:

1	city	has	1	path

2	cities	have	2	paths

3	cities	have	6	paths

4	cities	have	24	paths

5	cities	have	120	paths

6	cities	have	720	paths

7	cities	have	5,040	paths

8	cities	have	40,320	paths

9	cities	have	362,880	paths

10	cities	have	3,628,800	paths

11	cities	have	39,916,800	paths

12	cities	have	479,001,600	paths

13	cities	have	6,227,020,800	paths

...

50	cities	have	3.041	*	10^64	paths

In	the	above	table,	the	formula	to	calculate	total	paths	is	the	factorial.	The	number	of
cities,	n,	is	calculated	using	the	factorial	operator	(!).	The	factorial	of	some	arbitrary	value
n	is	given	by	n	*	(n	–	1)	*	(n	–	2)	*	…	*	3	*	2	*	1.	These	values	become	incredibly	large
when	a	program	must	do	a	brute-force	search.	The	traveling	salesman	problem	is	an
example	of	a	non-deterministic	polynomial	time	(NP)	hard	problem.	Informally,	NP-hard
is	defined	as	any	problem	that	lacks	an	efficient	way	to	verify	a	correct	solution.	The	TSP
fits	this	definition	for	more	than	10	cities.	You	can	find	a	formal	definition	of	NP-hard	in
Computers	and	Intractability:	A	Guide	to	the	Theory	of	NP-Completeness	(Garey,	1979).

Dynamic	programming	is	another	common	approach	to	the	traveling	salesman
problem,	as	seen	in	xkcd.com	comic	in	Figure	3.6:

Figure	3.6:	The	Traveling	Salesman	(from	xkcd.com)

Although	this	book	does	not	include	a	full	discussion	of	dynamic	programming,
understanding	its	essential	function	is	valuable.	Dynamic	programming	breaks	a	large
problem,	such	as	the	TSP,	into	smaller	problems.	You	can	reuse	work	for	many	of	the
smaller	programs,	thereby	decreasing	the	amount	of	iterations	required	by	a	brute-force
solution.

Unlike	brute-force	solutions	and	dynamic	programming,	a	genetic	algorithm	is	not
guaranteed	to	find	the	best	solution.	Although	it	will	find	a	good	solution,	the	score	might
not	be	the	best.	The	sample	program	examined	in	the	next	section	shows	how	a	genetic
algorithm	produced	an	acceptable	solution	for	the	50-city	problem	in	a	matter	of	minutes.

Optimization	Problems

To	use	the	Boltzmann	machine	for	an	optimization	problem,	it	is	necessary	to
represent	a	TSP	solution	in	such	a	way	that	it	fits	onto	the	binary	neurons	of	the
Boltzmann	machine.	Hopfield	(1984)	devised	an	encoding	for	the	TSP	that	both
Boltzmann	and	Hopfield	neural	networks	commonly	use	to	represent	this	combinational
problem.

The	algorithm	arranges	the	neurons	of	the	Hopfield	or	Boltzmann	machine	on	a	square
grid	with	the	number	of	rows	and	columns	equal	to	the	number	of	cities.	Each	column
represents	a	city,	and	each	row	corresponds	to	a	segment	in	the	journey.	The	number	of
segments	in	the	journey	is	equal	to	the	number	of	cities,	resulting	in	a	square	grid.	Each
row	in	the	matrix	should	have	exactly	one	column	with	a	value	of	1.	This	value	designates
the	destination	city	for	each	of	the	trip	segments.	Consider	the	city	path	shown	in	Figure
3.7:

Figure	3.7:	Four	Cities	to	Visit

Because	the	problem	includes	four	cities,	the	solution	requires	a	four-by-four	grid.	The
first	city	visited	is	City	#0.	Therefore,	the	program	marks	1	in	the	first	column	of	the	first
row.	Likewise,	visiting	City	#3	second	produces	a	1	in	the	final	column	of	the	second	row.
Figure	3.8	shows	the	complete	path:

Figure	3.8:	Encoding	of	Four	Cities

Of	course,	the	Boltzmann	machines	do	not	arrange	neurons	in	a	grid.	To	represent	the
above	path	as	a	vector	of	values	for	the	neuron,	the	rows	are	simply	placed	sequentially.
That	is,	the	matrix	is	flattened	in	a	row-wise	manner,	resulting	in	the	following	vector:

[1,0,0,0,		0,0,0,1,		0,1,0,0,		0,0,1,0]

To	create	a	Boltzmann	machine	that	can	provide	a	solution	to	the	TSP,	the	program
must	align	the	weights	and	biases	in	such	a	way	that	allows	the	states	of	the	Boltzmann
machine	neurons	to	stabilize	at	a	point	that	minimizes	the	total	distance	between	cities.
Keep	in	mind	that	the	above	grid	can	also	find	itself	in	many	invalid	states.	Therefore,	a
valid	grid	must	have	the	following:

A	single	1	value	per	row.
A	single	1	value	per	column.

As	a	result,	the	program	needs	to	construct	the	weights	so	that	the	Boltzmann	machine

will	not	reach	equilibrium	in	an	invalid	state.	Listing	3.5	shows	the	pseudocode	that	will
generate	this	weight	matrix:

Listing	3.5:	Boltzmann	Weights	for	TSP

gamma	=	7

#	Source

for	source_tour	in	range(NUM_CITIES):

		for	source_city	in	range(NUM_CITIES):

				source_index	=	source_tour	*	NUM_CITIES	+	source_city

#	Target

				for	targetTour	in	range(NUM_CITIES):

						for	(int	target_city	in	range(NUM_CITIES):

								target_index	=	target_tour	*	NUM_CITIES	+	target_city

#	Calculate	the	weight

								weight	=	0

#	Diagonal	weight	is	0

								if	source_index	!=	target_index:

#	Determine	the	next	and	previous	element	in	the	tour.

#	Wrap	between	0	and	last	element.

										prev_target_tour	=	wrapped	next	target	tour

										next_target_tour	=	wrapped	previous	target	tour

#	If	same	tour	element	or	city,	then	-gama

										if	(source_tour	==	target_tour)	

													or	(source_city	==	target_city):

												weight	=	-gamma

#	If	next	or	previous	city,	-gamma

										elif	((source_tour	==	prev_target_tour)	

												or	(source_tour	==	next_target_tour))

												weight	=	-distance(source_city,target_city)

#	Otherwise	0

								set_weight(source_index,	target_index,	weight)

#	All	biases	are	-gamma/2

				set_bias(source_index,	-gamma	/	2)

Figure	3.9	displays	part	of	the	created	weight	matrix	for	four	cities:

Figure	3.9:	Boltzmann	Machine	Weights	for	TSP	(4	cities)

Depending	on	your	viewing	device,	you	might	have	difficulty	reading	the	above	grid.
Therefore,	you	can	generate	it	for	any	number	of	cities	with	the	Javascript	utility	at	the
following	URL:

http://www.heatonresearch.com/aifh/vol3/boltzmann_tsp_grid.html

Essentially,	the	weights	have	the	following	specifications:

Matrix	diagonal	is	assigned	to	0.	Shown	as	“\”	in	Figure	3.9.
Same	source	and	target	position,	set	to	–γ	(gamma).	Shown	as	-g	in	Figure	3.9.
Same	source	and	target	city,	set	to	–γ	(gamma).	Shown	as	-g	in	Figure	3.9.
Source	and	target	next/previous	cities,	set	to	–distance.	Shown	as	d(x,y)	in	Figure
3.9.
Otherwise,	set	to	0.

The	matrix	is	symmetrical	between	the	rows	and	columns.

http://www.heatonresearch.com/aifh/vol3/boltzmann_tsp_grid.html

Boltzmann	Machine	Training

The	previous	section	showed	the	use	of	hard-coded	weights	to	construct	a	Boltzmann
machine	that	was	capable	of	finding	solutions	to	the	TSP.	The	program	constructed	these
weights	through	its	knowledge	of	the	problem.	Manually	setting	the	weights	is	a	necessary
and	difficult	step	for	applying	Boltzmann	machines	to	optimization	problems.	However,
this	book	will	not	include	information	about	constructing	weight	matrices	for	general
optimization	problems	because	Nelder-Mead	and	simulated	annealing	are	more	often	used
for	general-purpose	algorithms.

Chapter	Summary

In	this	chapter,	we	explained	several	classic	neural	network	types.	Since	Pitts	(1943)
introduced	the	neural	network,	many	different	neural	network	types	have	been	invented.
We	have	focused	primarily	on	the	classic	neural	network	types	that	still	have	relevance
and	that	establish	the	foundation	for	other	architectures	that	we	will	cover	in	later	chapters
of	the	book.

The	self-organizing	map	(SOM)	is	an	unsupervised	neural	network	type	that	can
cluster	data.	The	SOM	has	an	input	neuron	count	equal	to	the	number	of	attributes	for	the
data	to	be	clustered.	An	output	neuron	count	specifies	the	number	of	groups	into	which	the
data	should	be	clustered.

The	Hopfield	neural	network	is	a	simple	neural	network	type	that	can	recognize
patterns	and	optimize	problems.	You	must	create	a	special	energy	function	for	each	type	of
optimization	problem	that	requires	the	Hopfield	neural	network.	Because	of	this	quality,
programmers	choose	algorithms	like	Nelder-Mead	or	simulated	annealing	instead	of	the
optimized	version	of	the	Hopfield	neural	network.

The	Boltzmann	machine	is	a	neural	network	architecture	that	shares	many
characteristics	with	the	Hopfield	neural	network.	However,	unlike	the	Hopfield	network,
you	can	stack	the	deep	belief	neural	network	(DBNN).	This	stacking	ability	allows	the
Boltzmann	machine	to	play	a	central	role	in	the	implementation	of	the	deep	belief	neural
network	(DBNN),	the	basis	of	deep	learning.

In	the	next	chapter,	we	will	examine	the	feedforward	neural	network,	which	remains
one	of	the	most	popular	neural	network	types.	This	chapter	will	focus	on	classic
feedforward	neural	networks	that	use	sigmoid	and	hyperbolic	tangent	activation	functions.
New	training	algorithms,	layer	types,	activation	functions	and	other	innovations	allow	the
classic	feedforward	neural	network	to	be	used	with	deep	learning.

Chapter	4:	Feedforward	Neural	Networks
Classification
Regression
Network	Layers
Normalization

In	this	chapter,	we	shall	examine	one	of	the	most	common	neural	network
architectures,	the	feedforword	neural	network.	Because	of	its	versatility,	the	feedforward
neural	network	architecture	is	very	popular.	Therefore,	we	will	explore	how	to	train	it	and
how	it	processes	a	pattern.

The	term	feedforward	describes	how	this	neural	network	processes	and	recalls
patterns.	In	a	feedforward	neural	network,	each	layer	of	the	neural	network	contains
connections	to	the	next	layer.	For	example,	these	connections	extend	forward	from	the
input	to	the	hidden	layer,	but	no	connections	move	backward.	This	arrangement	differs
from	the	Hopfield	neural	network	featured	in	the	previous	chapter.	The	Hopfield	neural
network	was	fully	connected,	and	its	connections	were	both	forward	and	backward.	We
will	analyze	the	structure	of	a	feedforward	neural	network	and	the	way	it	recalls	a	pattern
later	in	the	chapter.

We	can	train	feedforward	neural	networks	with	a	variety	of	techniques	from	the	broad
category	of	backpropagation	algorithms,	a	form	of	supervised	training	that	we	will	discuss
in	greater	detail	in	the	next	chapter.	We	will	focus	on	applying	optimization	algorithms	to
train	the	weights	of	a	neural	network	in	this	chapter.	If	you	need	more	information	about
optimization	algorithms,	Volumes	1	and	2	of	Artificial	Intelligence	for	Humans	contain
sections	on	this	subject.	Although	we	can	employ	several	optimization	algorithms	to	train
the	weights,	we	will	primarily	direct	our	attention	to	simulated	annealing.

Optimization	algorithms	adjust	a	vector	of	numbers	to	achieve	a	good	score	from	an
objective	function.	The	objective	function	gives	the	neural	network	a	score	based	closely
on	the	neural	network’s	output	that	matches	the	expected	output.	This	score	allows	any
optimization	algorithm	to	train	neural	networks.

A	feedforward	neural	network	is	similar	to	the	types	of	neural	networks	that	we	have
already	examined.	Just	like	other	types	of	neural	networks,	the	feedforward	neural
network	begins	with	an	input	layer	that	may	connect	to	a	hidden	layer	or	to	the	output
layer.	If	it	connects	to	a	hidden	layer,	the	hidden	layer	can	subsequently	connect	to	another
hidden	layer	or	to	the	output	layer.	Any	number	of	hidden	layers	can	exist.

Feedforward	Neural	Network	Structure

In	Chapter	1,	“Neural	Network	Basics,”	we	discussed	that	neural	networks	could	have
multiple	hidden	layers	and	analyzed	the	purposes	of	these	layers.	In	this	chapter,	we	will
focus	more	on	the	structure	of	the	input	and	output	neurons,	beginning	with	the	structure
of	the	output	layer.	The	type	of	problem	dictates	the	structure	of	the	output	layer.	A
classification	neural	network	will	have	an	output	neuron	for	each	class,	whereas	a
regression	neural	network	will	have	one	output	neuron.

Single-Output	Neural	Networks	for	Regression

Though	feedforward	neural	networks	can	have	more	than	one	output	neuron,	we	will
begin	by	looking	at	a	single-output	neuron	network	in	a	regression	problem.	A	regression
network	is	capable	of	predicting	a	single	numeric	value.	Figure	4.1	illustrates	a	single-
output	feedforward	neural	network:

Figure	4.1:	Single-Output	Feedforward	Network

This	neural	network	will	output	a	single	numeric	value.	We	can	use	this	type	of	neural
network	in	the	following	ways:

Regression	–	Compute	a	number	based	on	the	inputs.	(e.g.,	How	many	miles	per
gallon	(MPG)	will	a	specific	type	of	car	achieve?)
Binary	Classification	–	Decide	between	two	options,	based	on	the	inputs.	(e.g.,	Of	the
given	characteristics,	which	is	a	cancerous	tumor?)

We	provide	a	regression	example	for	this	chapter	that	utilizes	data	about	various	car
models	and	predicts	the	miles	per	gallon	that	the	car	will	achieve.	You	can	find	this	data

set	at	the	following	URL:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

A	small	sampling	of	this	data	is	shown	here:

mpg,cylinders,displacement,horsepower,weight,acceleration,model_year,origin,car_name

18,8,307,130,3504,12,70,1,"chevrolet	chevelle	malibu"

15,8,350,165,3693,11,70,1,"buick	skylark	320"

18,8,318,150,3436,11,70,1,"plymouth	satellite"

16,8,304,150,3433,12,70,1,"amc	rebel	sst"

For	a	regression	problem,	the	neural	network	would	create	columns	such	as	cylinders,
displacement,	horsepower,	and	weight	to	predict	the	MPG.	These	values	are	all	fields	used
in	the	above	listing	that	specify	qualities	of	each	car.	In	this	case,	the	target	is	MPG;
however,	we	could	also	utilize	MPG,	cylinders,	horsepower,	weight,	and	acceleration	to
predict	displacement.

To	make	the	neural	network	perform	regression	on	multiple	values,	you	might	apply
multiple	output	neurons.	For	example,	cylinders,	displacement,	and	horsepower	can
predict	both	MPG	and	weight.	Although	a	multi-output	neural	network	is	capable	of
performing	regression	on	two	variables,	we	don’t	recommend	this	technique.	You	will
usually	achieve	better	results	with	separate	neural	networks	for	each	regression	outcome
that	you	are	trying	to	predict.

Calculating	the	Output

In	Chapter	1,	“Neural	Network	Basics,”	we	explored	how	to	calculate	the	individual
neurons	that	comprise	a	neural	network.	As	a	brief	review,	the	output	of	an	individual
neuron	is	simply	the	weighted	sum	of	its	inputs	and	a	bias.	This	summation	is	passed	to	an
activation	function.	Equation	4.1	summarizes	the	calculated	output	of	a	neural	network:

Equation	4.1:	Neuron	Output

The	neuron	multiplies	the	input	vector	(x)	by	the	weights	(w)	and	passes	the	result	into
an	activation	function	(φ,	phi).	The	bias	value	is	the	last	value	in	the	weight	vector	(w),
and	it	is	added	by	concatenating	a	1	value	to	the	input.	For	example,	consider	a	neuron
that	has	two	inputs	and	a	bias.	If	the	inputs	were	0.1	and	0.2,	the	input	vector	would
appear	as	follows:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

[0.1,	0.2,	1.0]

In	this	example,	add	the	value	1.0	to	support	the	bias	weight.	We	can	also	calculate	the
value	with	the	following	weight	vector:

[0.01,	0.02,	0.3]

The	values	0.01	and	0.02	are	the	weights	for	the	two	inputs	to	the	neuron.	The	value
0.3	is	the	bias.	The	weighted	sum	is	calculated	as	follows:

(0.1*0.01)	+	(0.2*0.02)	+	(1.0*0.3)	=	0.305

The	value	0.305	is	then	passed	to	an	activation	function.

Calculating	an	entire	neural	network	is	essentially	a	matter	of	following	this	same
procedure	for	each	neuron	in	the	network.	This	process	allows	you	to	work	your	way	from
the	input	neurons	to	the	output.	You	can	implement	this	process	by	creating	objects	for
each	connection	in	the	network	or	by	aligning	these	connection	values	into	matrices.

Object-oriented	programming	allows	you	to	define	an	object	for	each	neuron	and	its
weights.	This	approach	can	produce	very	readable	code,	but	it	has	two	significant
problems:

The	weights	are	stored	across	many	objects.
Performance	suffers	because	it	takes	many	function	calls	and	memory	accesses	to
piece	all	the	weights	together.

It	is	valuable	to	create	weights	in	the	neural	network	as	a	single	vector.	A	variety	of
different	optimization	algorithms	can	adjust	a	vector	to	perfect	a	scoring	function.
Artificial	Intelligence	for	Humans,	Volumes	1	&	2	include	a	discussion	of	these
optimization	functions.	Later	in	this	chapter,	we	will	see	how	simulated	annealing
optimizes	the	weight	vector	for	the	neural	network.

To	construct	a	weight	vector,	we	will	first	look	at	a	network	that	has	the	following
attributes:

Input	Layer:	2	neurons,	1	bias
Hidden	Layer:	2	neurons,	1	bias
Output	Layer:	1	neuron

These	characteristics	give	this	network	a	total	of	7	neurons.

You	can	number	these	neurons	for	the	vector	in	the	following	manner:

Neuron	0:	Output	1

Neuron	1:	Hidden	1

Neuron	2:	Hidden	2

Neuron	3:	Bias	2	(set	to	1,	usually)

Neuron	4:	Input	1

Neuron	5:	Input	2

Neuron	6:	Bias	1	(set	to	1,	usually)

Graphically,	you	can	see	the	network	as	Figure	4.2:

Figure	4.2:	Simple	Neural	Network

You	can	create	several	additional	vectors	to	define	the	structure	of	the	network.	These
vectors	hold	index	values	to	allow	the	quick	navigation	of	the	weight	vector.	These	vectors
are	listed	here:

layerFeedCounts:	[1,	2,	2]

layerCounts:	[1,	3,	3]

layerIndex:	[0,	1,	4]

layerOutput:	[0.0,	0.0,	0.0,	1.0,	0.0,	0.0,	1.0]

weightIndex:	[0,	3,	9]

Each	vector	stores	the	values	for	the	output	layer	first	and	works	its	way	to	the	input

layer.	The	layerFeedCounts	vector	holds	the	count	of	non-bias	neurons	in	each	layer.	This
characteristic	is	essentially	the	count	of	non-bias	neurons.	The	layerOutput	vector	holds
the	current	value	of	each	neuron.	Initially,	all	neurons	start	with	0.0	except	for	the	bias
neurons,	which	start	at	1.0.	The	layerIndex	vector	holds	indexes	to	where	each	layer
begins	in	the	layerOuput	vector.	The	weightIndex	holds	indexes	to	the	location	of	each
layer	in	the	weight	vector.

The	weights	are	stored	in	their	own	vector	and	structured	as	follows:

Weight	0:	H1->O1

Weight	1:	H2->O1

Weight	2:	B2->O1

Weight	3:	I1->H1

Weight	4:	I2->H1

Weight	5:	B1->H1

Weight	6:	I1->H2

Weight	7:	I2->H2

Weight	8:	B1->H2

Once	the	vectors	have	been	arranged,	calculating	the	output	of	the	neural	network	is
relatively	easy.	Listing	4.1	can	accomplish	this	calculation:

Listing	4.1:	Calculate	Feedforward	Output

def	compute(net,	input):

		sourceIndex	=	len(net.layerOutput)

				-	net.layerCounts[len(net.layerCounts)	-	1]

		#	Copy	the	input	into	the	layerOutput	vector

		array_copy(input,	0,	net.layerOutput,	sourceIndex,	net.inputCount)

		#	Calculate	each	layer

		for	i	in	reversed(range(0,len(layerIndex))):

				compute_layer(i)

		#	update	context	values

		offset	=	net.contextTargetOffset[0]

		#	Create	result

		result	=	vector(net.outputCount)

		array_copy(net.layerOutput,	0,	result,	0,	net.outputCount)

		return	result

		

		

def	compute_layer(net,currentLayer):

		inputIndex	=	net.layerIndex[currentLayer]

		outputIndex	=	net.layerIndex[currentLayer	-	1]

		inputSize	=	net.layerCounts[currentLayer]

		outputSize	=	net.layerFeedCounts[currentLayer	-	1]

		index	=	this.weightIndex[currentLayer	-	1]

		limit_x	=	outputIndex	+	outputSize

		limit_y	=	inputIndex	+	inputSize

		#	weight	values

		for	x	in	range(outputIndex,limit_x):

				sum	=	0;

				for	y	in	range(inputIndex,limit_y):

						sum	+=	net.weights[index]	*	net.layerOutput[y]

								net.layerSums[x]	=	sum

								net.layerOutput[x]	=	sum

								index	=	index	+	1

								

		net.activationFunctions[currentLayer	-	1]

					.activation_function(

	net.layerOutput,	outputIndex,	outputSize)

Initializing	Weights

The	weights	of	a	neural	network	determine	the	output	for	the	neural	network.	The
process	of	training	can	adjust	these	weights	so	the	neural	network	produces	useful	output.
Most	neural	network	training	algorithms	begin	by	initializing	the	weights	to	a	random
state.	Training	then	progresses	through	a	series	of	iterations	that	continuously	improve	the
weights	to	produce	better	output.

The	random	weights	of	a	neural	network	impact	how	well	that	neural	network	can	be
trained.	If	a	neural	network	fails	to	train,	you	can	remedy	the	problem	by	simply	restarting

with	a	new	set	of	random	weights.	However,	this	solution	can	be	frustrating	when	you	are
experimenting	with	the	architecture	of	a	neural	network	and	trying	different	combinations
of	hidden	layers	and	neurons.	If	you	add	a	new	layer,	and	the	network’s	performance
improves,	you	must	ask	yourself	if	this	improvement	resulted	from	the	new	layer	or	from
a	new	set	of	weights.	Because	of	this	uncertainty,	we	look	for	two	key	attributes	in	a
weight	initialization	algorithm:

How	consistently	does	this	algorithm	provide	good	weights?
How	much	of	an	advantage	do	the	weights	of	the	algorithm	provide?

One	of	the	most	common,	yet	least	effective,	approaches	to	weight	initialization	is	to
set	the	weights	to	random	values	within	a	specific	range.	Numbers	between	-1	and	+1	or
-5	and	+5	are	often	the	choice.	If	you	want	to	ensure	that	you	get	the	same	set	of	random
weights	each	time,	you	should	use	a	seed.	The	seed	specifies	a	set	of	predefined	random
weights	to	use.	For	example,	a	seed	of	1000	might	produce	random	weights	of	0.5,	0.75,
and	0.2.	These	values	are	still	random;	you	cannot	predict	them,	yet	you	will	always	get
these	values	when	you	choose	a	seed	of	1000.

Not	all	seeds	are	created	equal.	One	problem	with	random	weight	initialization	is	that
the	random	weights	created	by	some	seeds	are	much	more	difficult	to	train	than	others.	In
fact,	the	weights	can	be	so	bad	that	training	is	impossible.	If	you	find	that	you	cannot	train
a	neural	network	with	a	particular	weight	set,	you	should	generate	a	new	set	of	weights
using	a	different	seed.

Because	weight	initialization	is	a	problem,	there	has	been	considerable	research
around	it.	Over	the	years	we	have	studied	this	research	and	added	six	different	weight
initialization	routines	to	the	Encog	project.	From	our	research,	the	Xavier	weight
initialization	algorithm,	introduced	in	2006	by	Glorot	&	Bengio,	produces	good	weights
with	reasonable	consistency.	This	relatively	simple	algorithm	uses	normally	distributed
random	numbers.

To	use	the	Xavier	weight	initialization,	it	is	necessary	to	understand	that	normally
distributed	random	numbers	are	not	the	typical	random	numbers	between	0	and	1	that
most	programming	languages	generate.	In	fact,	normally	distributed	random	numbers	are
centered	on	a	mean	(μ,	mu)	that	is	typically	0.	If	0	is	the	center	(mean),	then	you	will	get
an	equal	number	of	random	numbers	above	and	below	0.	The	next	question	is	how	far
these	random	numbers	will	venture	from	0.	In	theory,	you	could	end	up	with	both	positive
and	negative	numbers	close	to	the	maximum	positive	and	negative	ranges	supported	by
your	computer.	However,	the	reality	is	that	you	will	more	likely	see	random	numbers	that
are	between	0	and	three	standard	deviations	from	the	center.

The	standard	deviation	σ	(sigma)	parameter	specifies	the	size	of	this	standard
deviation.	For	example,	if	you	specified	a	standard	deviation	of	10,	then	you	would	mainly
see	random	numbers	between	-30	and	+30,	and	the	numbers	nearer	to	0	have	a	much
higher	probability	of	being	selected.	Figure	4.3	shows	the	normal	distribution:

Figure	4.3:	The	Normal	Distribution

The	above	figure	illustrates	that	the	center,	which	in	this	case	is	0,	will	be	generated
with	a	0.4	(40%)	probability.	Additionally,	the	probability	decreases	very	quickly	beyond
-2	or	+2	standard	deviations.	By	defining	the	center	and	how	large	the	standard	deviations
are,	you	are	able	to	control	the	range	of	random	numbers	that	you	will	receive.

Most	programming	languages	have	the	capability	of	generating	normally	distributed
random	numbers.	In	general,	the	Box-Muller	algorithm	is	the	basis	for	this	functionality.
The	examples	in	this	volume	will	either	use	the	built-in	normal	random	number	generator
or	the	Box-Muller	algorithm	to	transform	regular,	uniformly	distributed	random	numbers
into	a	normal	distribution.	Artificial	Intelligence	for	Humans,	Volume	1:	Fundamental
Algorithms	contains	an	explanation	of	the	Box-Muller	algorithm,	but	you	do	not
necessarily	need	to	understand	it	in	order	to	grasp	the	ideas	in	this	book.

The	Xavier	weight	initialization	sets	all	of	the	weights	to	normally	distributed	random
numbers.	These	weights	are	always	centered	at	0;	however,	their	standard	deviation	varies
depending	on	how	many	connections	are	present	for	the	current	layer	of	weights.
Specifically,	Equation	4.2	can	determine	the	standard	deviation:

Equation	4.2:	Standard	Deviation	for	Xavier	Algorithm

The	above	equation	shows	how	to	obtain	the	variance	for	all	of	the	weights.	The
square	root	of	the	variance	is	the	standard	deviation.	Most	random	number	generators

accept	a	standard	deviation	rather	than	a	variance.	As	a	result,	you	usually	need	to	take	the
square	root	of	the	above	equation.	Figure	4.4	shows	how	one	layer	might	be	initialized:

Figure	4.4:	Xavier	Initialization	of	a	Layer

This	process	is	completed	for	each	layer	in	the	neural	network.

Radial-Basis	Function	Networks

Radial-basis	function	(RBF)	networks	are	a	type	of	feedforward	neural	network
introduced	by	Broomhead	and	Lowe	(1988).	These	networks	can	be	used	for	both
classification	and	regression.	Though	they	can	solve	a	variety	of	problems,	RBF	networks
seem	to	losing	popularity.	By	their	very	definition,	RBF	networks	cannot	be	used	in
conjunction	with	deep	learning.

The	RBF	network	utilizes	a	parameter	vector,	a	model	that	specifies	weights	and
coefficients,	in	order	to	allow	the	input	to	generate	the	correct	output.	By	adjusting	a
random	parameter	vector,	the	RBF	network	produces	output	consistent	with	the	iris	data
set.	The	process	of	adjusting	the	parameter	vector	to	produce	the	desired	output	is	called
training.	Many	different	methods	exist	for	training	an	RBF	network.	The	parameter
vectors	also	represent	its	long-term	memory.

In	the	next	section,	we	will	briefly	review	RBFs	and	describe	the	exact	makeup	of
these	vectors.

Radial-Basis	Functions

Because	many	AI	algorithms	utilize	radial-basis	functions,	they	are	a	very	important
concept	to	understand.	A	radial-basis	function	is	symmetric	with	respect	to	its	center,
which	is	usually	somewhere	along	the	x-axis.	The	RBF	will	reach	its	maximum	value	or
peak	at	the	center.	Whereas	a	typical	setting	for	the	peak	in	RBF	networks	is	1,	the	center
varies	accordingly.

RBFs	can	have	many	dimensions.	Regardless	of	the	number	of	dimensions	in	the
vector	passed	to	the	RBF,	its	output	will	always	be	a	single	scalar	value.

RBFs	are	quite	common	in	AI.	We	will	start	with	the	most	prevalent,	the	Gaussian
function.	Figure	4.5	shows	a	graph	of	a	1D	Gaussian	function	centered	at	0:

Figure	4.5:	Gaussian	Function

You	might	recognize	the	above	curve	as	a	normal	distribution	or	a	bell	curve,	which	is
a	radial-basis	function.	The	RBFs,	such	as	a	Gaussian	function,	can	selectively	scale
numeric	values.	Consider	Figure	4.5	above.	If	you	applied	this	function	to	scale	numeric
values,	the	result	would	have	maximum	intensity	at	the	center.	As	you	moved	from	the
center,	the	intensity	would	diminish	in	either	the	positive	or	negative	directions.

Before	we	can	look	at	the	equation	for	the	Gaussian	RBF,	we	must	consider	how	to
process	the	multiple	dimensions.	RBFs	accept	multi-dimensional	input	and	return	a	single
value	by	calculating	the	distance	between	the	input	and	the	center	vector.	This	distance	is
called	r.	The	RBF	center	and	input	to	the	RBF	must	always	have	the	same	number	of
dimensions	for	the	calculation	to	occur.	Once	we	calculate	r,	we	can	determine	the
individual	RBF.	All	of	the	RBFs	use	this	calculated	r.

Equation	4.3	shows	how	to	calculate	r:

Equation	4.3:	Calculating	r

The	double	vertical	bars	that	you	see	in	the	above	equation	signify	that	the	function
describes	a	distance	or	a	norm.	In	certain	cases,	these	distances	can	vary;	however,	RBFs
typically	utilize	Euclidean	distance.	As	a	result,	the	examples	that	we	provide	in	this	book
always	apply	the	Euclidean	distance.	Therefore,	r	is	simply	the	Euclidean	distance
between	the	center	and	the	x	vector.	In	each	of	the	RBFs	in	this	section,	we	will	use	this
value	r.	Equation	4.4	shows	the	equation	for	a	Gaussian	RBF:

Equation	4.4:	Gaussian	RBF

Once	you’ve	calculated	r,	determining	the	RBF	is	fairly	easy.	The	Greek	letter	φ,
which	you	see	at	the	left	of	the	equation,	always	represents	the	RBF.	The	constant	e	in
Equation	4.4	represents	Euler’s	number,	or	the	natural	base,	and	is	approximately	2.71828.

Radial-Basis	Function	Networks

RBF	networks	provide	a	weighted	summation	of	one	or	more	radial-basis	functions;
each	of	these	functions	receives	the	weighted	input	attributes	in	order	to	predict	the	output.
Consider	the	RBF	network	as	a	long	equation	that	contains	the	parameter	vector.	Equation
4.5	shows	the	equation	needed	to	calculate	the	output	of	this	network:

Equation	4.5:	The	RBF	Network

Note	that	the	double	vertical	bars	in	the	above	equation	signify	that	you	must	calculate
the	distance.	Because	these	symbols	do	not	specify	which	distance	algorithm	to	use,	you
can	select	the	algorithm.	In	the	above	equation,	X	is	the	input	vector	of	attributes;	c	is	the
vector	center	of	the	RBF;	p	is	the	chosen	RBF	(Gaussian,	for	example);	a	is	the	vector
coefficient	(or	weight)	for	each	RBF;	and	b	specifies	the	vector	coefficient	to	weight	the
input	attributes.

In	our	example,	we	will	apply	an	RBF	network	to	the	iris	data	set.	Figure	4.6	provides
a	graphic	representation	of	this	application:

Figure	4.6:	The	RBF	Network	for	the	Iris	Data

The	above	network	contains	four	inputs	(the	length	and	width	of	petals	and	sepals)	that
indicate	the	features	that	describe	each	iris	species.	The	above	diagram	assumes	that	we
are	using	one-of-n	encoding	for	the	three	different	iris	species.	Using	equilateral	encoding
for	only	two	outputs	is	also	possible.	To	keep	things	simple,	we	will	use	one-of-n	and
arbitrarily	choose	three	RBFs.	Even	though	additional	RBFs	allow	the	model	to	learn
more	complex	data	sets,	they	require	more	time	to	process.

Arrows	represent	all	coefficients	from	the	equation.	In	Equation	4.5,	b	represents	the
arrows	between	the	input	attributes	and	the	RBFs.	Similarly,	a	represents	the	arrows
between	the	RBFs	and	the	summation.	Notice	also	the	bias	box,	which	is	a	synthetic
function	that	always	returns	a	value	of	1.	Because	the	bias	function’s	output	is	constant,
the	program	does	not	require	inputs.	The	weights	from	the	bias	to	the	summation	specify
the	y-intercept	for	the	equation.	In	short,	bias	is	not	always	bad.	This	case	demonstrates
that	bias	is	an	important	component	to	the	RBF	network.	Bias	nodes	are	also	very
common	in	neural	networks.

Because	multiple	summations	exist,	you	can	see	the	development	of	a	classification
problem.	The	highest	summation	specifies	the	predicted	class.	A	regression	problem
indicates	that	the	model	will	output	a	single	numeric	value.

You	will	also	notice	that	Figure	4.4	contains	a	bias	node	in	the	place	of	an	additional

RBF.	Unlike	the	RBF,	the	bias	node	does	not	accept	any	input.	It	always	outputs	a	constant
value	of	1.	Of	course,	this	constant	value	of	1	is	multiplied	by	a	coefficient	value,	which
always	causes	the	coefficient	to	be	directly	added	to	the	output,	regardless	of	the	input.
When	the	input	is	0,	bias	nodes	are	very	useful	because	they	allow	the	RBF	layer	to	output
values	despite	the	low	value	of	the	input.

The	long-term	memory	vector	for	the	RBF	network	has	several	different	components:

Input	coefficients
Output/Summation	coefficients
RBF	width	scalars	(same	width	in	all	dimensions)
RBF	center	vectors

The	RBF	network	will	store	all	of	these	components	as	a	single	vector	that	will
become	its	long-term	memory.	Then	an	optimization	algorithm	can	set	the	vector	to	values
that	will	produce	the	correct	iris	species	for	the	features	presented.	This	book	contains
several	optimization	algorithms	that	can	train	an	RBF	network.

In	conclusion,	this	introduction	provided	a	basic	overview	of	vectors,	distance,	and
RBF	networks.	Since	this	discussion	included	only	the	prerequisite	material	to	understand
Volume	3,	refer	to	Volumes	1	and	2	for	a	more	thorough	explanation	of	these	topics.

Normalizing	Data

Normalization	was	briefly	mentioned	previously	in	this	book.	In	this	section,	we	will
see	exactly	how	it	is	performed.	Data	are	not	usually	presented	to	the	neural	network	in
exactly	the	same	raw	form	as	you	found	it.	Usually	data	are	scaled	to	a	specific	range	in	a
process	called	normalization.	There	are	many	different	ways	to	normalize	data.	For	a	full
summary,	refer	to	Artificial	Intelligence	for	Humans,	Volume	1:	Fundamental	Algorithms.
This	chapter	will	present	a	few	normalization	methods	most	useful	for	neural	networks.

One-of-N	Encoding

If	you	have	a	categorical	value,	such	as	the	species	of	an	iris,	the	make	of	an
automobile,	or	the	digit	label	in	the	MNIST	data	set,	you	should	use	one-of-n	encoding.
This	type	of	encoding	is	sometimes	referred	to	as	one-hot	encoding.	To	encode	in	this
way,	you	would	use	one	output	neuron	for	each	class	in	the	problem.	Recall	the	MNSIT
data	set	from	the	book’s	introduction,	where	you	have	images	for	digits	between	0	and	9.
This	problem	is	most	commonly	encoded	as	ten	output	neurons	with	a	softmax	activation
function	that	gives	the	probability	of	the	input	being	one	of	these	digits.	Using	one-of-n
encoding,	the	ten	digits	might	be	encoded	as	follows:

0	->	[1,0,0,0,0,0,0,0,0,0]

1	->	[0,1,0,0,0,0,0,0,0,0]

2	->	[0,0,1,0,0,0,0,0,0,0]

3	->	[0,0,0,1,0,0,0,0,0,0]

4	->	[0,0,0,0,1,0,0,0,0,0]

5	->	[0,0,0,0,0,1,0,0,0,0]

6	->	[0,0,0,0,0,0,1,0,0,0]

7	->	[0,0,0,0,0,0,0,1,0,0]

8	->	[0,0,0,0,0,0,0,0,1,0]

0	->	[0,0,0,0,0,0,0,0,0,1]

One-of-n	encoding	should	always	be	used	when	the	classes	have	no	ordering.	Another
example	of	this	type	of	encoding	is	the	make	of	an	automobile.	Usually	the	list	of
automakers	is	unordered	unless	there	is	some	meaning	you	wish	to	convey	by	this
ordering.	For	example,	you	might	order	the	automakers	by	the	number	of	years	in
business.	However,	this	classification	should	only	be	done	if	the	number	of	years	in
business	has	meaning	to	your	problem.	If	there	is	truly	no	order,	then	one-of-n	should
always	be	used.

Because	you	can	easily	order	the	digits,	you	might	wonder	why	we	use	one-of-n
encoding	for	them.	However,	the	order	of	the	digits	does	not	mean	the	program	can
recognize	them.	The	fact	that	“1”	and	“2”	are	numerically	next	to	each	other	does	nothing
to	help	the	program	recognize	the	image.	Therefore,	we	should	not	use	a	single-output
neuron	that	simply	outputs	the	digit	recognized.	The	digits	0-9	are	categories,	not	actual
numeric	values.	Encoding	categories	with	a	single	numeric	value	is	detrimental	to	the
neural	network’s	decisions	process.

Both	the	input	and	output	can	use	one-of-n	encoding.	The	above	listing	used	0’s	and
1’s.	Normally	you	will	use	the	rectified	linear	unit	(ReLU)	and	softmax	activation,	and
this	type	of	encoding	is	normal.	However,	if	you	are	working	with	a	hyperbolic	tangent
activation	function,	you	should	utilize	a	value	of	-1	for	the	0’s	to	match	the	hyperbolic
tangent’s	range	of	-1	to	1.

If	you	have	an	extremely	large	number	of	classes,	one-of-n	encoding	can	become
cumbersome	because	you	must	have	a	neuron	for	every	class.	In	such	cases,	you	have
several	options.	First,	you	might	find	a	way	to	order	your	categories.	With	this	ordering,
your	categories	can	now	be	encoded	as	a	numeric	value,	which	would	be	the	current
category’s	position	within	the	ordered	list.

Another	approach	to	dealing	with	an	extremely	large	number	of	categories	is
frequency-inverse	document	frequency	(TF-IDF)	encoding	because	each	class	essentially
becomes	the	probability	of	that	class’s	occurrence	relative	to	the	others.	In	this	way,	TF-
IDF	allows	the	program	to	map	a	large	number	of	classes	to	a	single	neuron.	A	complete
discussion	of	TF-IDF	is	beyond	the	scope	of	this	book;	however,	it	is	built	into	many
machine	learning	frameworks	for	languages	such	as	R,	Python,	and	some	others.

Range	Normalization

If	you	have	a	real	number	or	an	ordered	list	of	categories,	you	might	choose	range
normalization	because	it	simply	maps	the	input	data’s	range	into	the	range	of	your
activation	function.	Sigmoid,	ReLU	and	softmax	use	a	range	between	0	and	1,	whereas
hyperbolic	tangent	uses	a	range	between	-1	and	1.

You	can	normalize	a	number	with	Equation	4.6:

Equation	4.6:	Normalize	to	a	Range

To	perform	the	normalization,	you	need	the	high	and	low	values	of	the	data	to	be
normalized,	given	by	dl	and	dh	in	the	equation	above.	Similarly,	you	need	the	high	and
low	values	to	normalize	into	(usually	0	and	1),	given	by	nl	and	nh.

Sometimes	you	will	need	to	undo	the	normalization	performed	on	a	number	and	return
it	to	a	denormalized	state.	Equation	4.7	performs	this	operation:

Equation	4.7:	Denormalize	from	a	Range

A	very	simple	way	to	think	of	range	normalization	is	percentages.	Consider	the
following	analogy.	You	see	an	advertisement	stating	that	you	will	receive	a	$10	(USD)
reduction	on	a	product,	and	you	have	to	decide	if	this	deal	is	worthwhile.	If	you	are	buying
a	t-shirt,	this	offer	is	probably	a	good	deal;	however,	if	you	are	buying	a	car,	$10	does	not
really	matter.	Furthermore,	you	need	to	be	familiar	with	the	current	value	of	US	dollars	in
order	to	make	your	decision.	The	situation	changes	if	you	learn	that	the	merchant	had
offered	a	10%	discount.	Thus,	the	value	is	now	more	meaningful.	No	matter	if	you	are
buying	a	t-shirt,	car	or	even	a	house,	the	10%	discount	has	clear	ramifications	on	the
problem	because	it	transcends	currencies.	In	other	words,	the	percentage	is	a	type	of
normalization.	Just	like	in	the	analogy,	normalizing	to	a	range	helps	the	neural	network
evaluate	all	inputs	with	equal	significance.

Z-Score	Normalization

Z-score	normalization	is	the	most	common	normalization	for	either	a	real	number	or
an	ordered	list.	For	nearly	all	applications,	z-score	normalization	should	be	used	in	place
of	range	normalization.	This	normalization	type	is	based	on	the	statistical	concept	of	z-
scores,	the	same	technique	for	grading	exams	on	a	curve.	Z-scores	provide	even	more
information	than	percentages.

Consider	the	following	example.	Student	A	scored	85%	of	the	points	on	her	exam.
Student	B	scored	75%	of	the	points	on	his	exam.	Which	student	earned	the	better	grade?	If
the	professor	is	simply	reporting	the	percentage	of	correct	points,	then	student	A	earned	a
better	score.	However,	you	might	change	your	answer	if	you	learned	that	the	average
(mean)	score	for	student	A’s	very	easy	exam	was	95%.	Similarly,	you	might	reconsider
your	position	if	you	discovered	that	student	B’s	class	had	an	average	score	of	65%.
Student	B	performed	above	average	on	his	exam.	Even	though	student	A	earned	a	better
score,	she	performed	below	average.	To	truly	report	a	curved	score	(a	z-score)	you	must
have	the	mean	score	and	the	standard	deviation.	Equation	4.8	shows	the	calculation	of	a
mean:

Equation	4.8:	Calculate	the	Arithmetic	Mean

You	can	calculate	the	mean	(μ,	mu)	by	adding	all	of	the	scores	and	dividing	by	the
number	of	scores.	This	process	is	the	same	as	taking	an	average.	Now	that	you	have	the
average,	you	need	the	standard	deviation.	If	you	had	a	mean	score	of	50	points,	then
everyone	taking	the	exam	varied	from	the	mean	by	some	amount.	The	average	amount
that	students	varied	from	the	mean	is	essentially	the	standard	deviation.	Equation	4.9
shows	the	calculation	of	the	standard	deviation	(σ,	sigma):

Equation	4.9:	Standard	Deviation

Essentially,	the	process	of	taking	a	standard	deviation	is	squaring	and	summing	each
score’s	difference	from	the	mean.	These	values	are	added	together	and	the	square	root	is
taken	of	this	total.	Now	that	you	have	the	standard	deviation,	you	can	calculate	the	z-score
with	Equation	4.10:

Equation	4.10:	Z-Score

Listing	4.2	shows	the	pseudocode	needed	to	calculate	a	z-score:

Listing	4.2:	Calculate	a	Z-Score

#	Data	to	score:

data	=	[5,	10,	3,	20,	4]

#	Sum	the	values

sum	=	0

for	d	in	data:

				sum	=	sum	+	d

#	Calculate	mean

mean	=	float(sum)	/	len(data)

print("Mean:	"	+	mean)

#	Calculate	the	variance

variance	=	0

for	d	in	data:

				variance	=	variance	+	((mean-d)**2)

variance	=	variance	/	len(data)

print("Variance:	"	+	variance)

#	Calculate	the	standard	deviation

sdev	=	sqrt(variance)

print("Standard	Deviation:	"	+	sdev)

#	Calculate	zscore

zscore	=	[]

for	d	in	data:

				zscore.append((d-mean)/sdev)

print("Z-Scores:	"	+	str(zscore))

The	above	code	will	result	in	the	following	output:

Mean:	8.4

Variance:	39.440000000000005

Standard	Deviation:	6.280127387243033

Z-Scores:	[-0.5413902920037097,	0.2547719021193927,	-0.8598551696529507,	

1.8470962903655976,	-0.7006227308283302]

The	z-score	is	a	numeric	value	where	0	represents	a	score	that	is	exactly	the	mean.	A
positive	z-score	is	above	average;	a	negative	z-score	is	below	average.	To	help	visualize	z-
scores,	consider	the	following	mapping	between	z-scores	and	letter	grades:

<-2.0	=	D+	

-2.0		=	C-

-1.5		=	C

-1.0		=	C+

-0.5		=	B-

0.0			=	B

+0.5		=	B+

+1.0		=	A-

+1.5		=	A

+2.0		=	A+

We	took	the	mapping	listed	above	from	an	undergraduate	syllabus.	There	is	a	great
deal	of	variation	on	z-score	to	letter	grade	mapping.	Most	professors	will	set	the	0.0	z-
score	to	either	a	C	or	a	B,	depending	on	if	the	professor/university	considers	C	or	B	to
represent	an	average	grade.	The	above	professor	considered	B	to	be	average.	The	z-score
works	well	for	neural	network	input	as	it	is	centered	at	0	and	will	very	rarely	go	above	+3
and	below	-3.

Complex	Normalization

The	input	to	a	neural	network	is	commonly	called	its	feature	vector.	The	process	of
creating	a	feature	vector	is	critical	to	mapping	your	raw	data	to	a	form	that	the	neural
network	can	comprehend.	The	process	of	mapping	the	raw	data	to	a	feature	vector	is
called	encoding.	To	see	this	mapping	at	work,	consider	the	auto	MPG	data	set:

1.	mpg:											numeric

2.	cylinders:					numeric,	3	unique

3.	displacement:		numeric

4.	horsepower:				numeric

5.	weight:								numeric

6.	acceleration:		numeric

7.	model	year:				numeric,	3	unique

8.	origin:								numeric,	7	unique

9.	car	name:						string	(unique	for	each	instance)

To	encode	the	above	data,	we	will	use	MPG	as	the	output	and	treat	the	data	set	as
regression.	The	MPG	feature	will	be	z-score	encoded,	and	it	falls	within	the	range	of	the

linear	activation	function	that	we	will	use	on	the	output.

We	will	discard	the	car	name.	Cylinders	and	model-year	are	both	one-of-n	encoded,
the	remaining	fields	will	be	z-score	encoded.	The	following	feature	vector	results:

Input	Feature	Vector:

Feature	1:	cylinders-2,	-1	no,	+1	yes

Feature	2:	cylinders-4,	-1	no,	+1	yes

Feature	3:	cylinders-8,	-1	no,	+1	yes

Feature	4:	displacement	z-score

Feature	5:	horsepower	z-score

Feature	6:	weight	z-score

Feature	7:	acceleration	z-score

Feature	8:	model	year-1977,	-1	no,	+1	yes

Feature	9:	model	year-1978,	-1	no,	+1	yes

Feature	10:	model	year-1979,	-1	no,	+1	yes

Feature	11:	origin-1

Feature	12:	origin-2

Feature	13:	origin-3

Output:

mpg	z-score

As	you	can	see,	the	feature	vector	has	grown	from	the	nine	raw	fields	to	thirteen
features	plus	an	output.	A	neural	network	for	these	data	would	have	thirteen	input	neurons
and	a	single	output.	Assuming	a	single-hidden	layer	of	twenty	neurons	with	the	ReLU
activation,	this	network	would	look	like	Figure	4.7:

Figure	4.7:	Simple	Regression	Neural	Network

	

Chapter	Summary

Feedforward	neural	networks	are	one	of	the	most	common	algorithms	in	artificial
intelligence.	In	this	chapter,	we	introduced	the	multilayer	feedforward	neural	network	and
the	radial-basis	function	(RBF)	neural	network.	Classification	and	regression	apply	both
of	these	types	of	neural	network.

Feedforward	networks	have	well-defined	layers.	The	input	layer	accepts	the	input
from	the	computer	program.	The	output	layer	returns	the	processing	result	of	the	neural
network	to	the	calling	program.	Between	these	layers	are	hidden	neurons	that	help	the
neural	network	to	recognize	a	pattern	presented	at	the	input	layer	and	produce	the	correct
result	on	the	output	layer.

RBF	neural	networks	use	a	series	of	radial-basis	functions	for	their	hidden	layer.	In
addition	to	the	weights,	it	is	also	possible	to	change	the	widths	and	centers	of	these	RBFs.
Though	an	RBF	and	feedforward	network	can	approximate	any	function,	they	go	about
the	process	in	different	ways.

So	far,	we’ve	seen	only	how	to	calculate	the	values	for	neural	networks.	Training	is	the
process	by	which	we	adjust	the	weights	of	neural	networks	so	that	the	neural	network
outputs	the	values	that	we	desire.	To	train	neural	networks,	we	also	need	to	have	a	way	to
evaluate	it.	The	next	chapter	introduces	both	training	and	validation	of	neural	networks.

Chapter	5:	Training	&	Evaluation
Mean	Squared	Error
Sensitivity	&	Specificity
ROC	Curve
Simulated	Annealing

So	far	we’ve	seen	how	to	calculate	a	neural	network	based	on	its	weights;	however,	we
have	not	seen	where	these	weight	values	actually	come	from.	Training	is	the	process
where	a	neural	network’s	weights	are	adjusted	to	produce	the	desired	output.	Training	uses
evaluation,	which	is	the	process	where	the	output	of	the	neural	network	is	evaluated
against	the	expected	output.

This	chapter	will	cover	evaluation	and	introduce	training.	Because	neural	networks
can	be	trained	and	evaluated	in	many	different	ways,	we	need	a	consistent	method	to	judge
them.	An	objective	function	evaluates	a	neural	network	and	returns	a	score.	Training
adjusts	the	neural	network	in	ways	that	might	achieve	better	results.	Typically,	the
objective	function	wants	lower	scores.	The	process	of	attempting	to	achieve	lower	scores
is	called	minimization.	You	might	establish	maximization	problems,	in	which	the
objective	function	wants	higher	scores.	Therefore,	you	can	use	most	training	algorithms
for	either	minimization	or	maximization	problems.

You	can	optimize	weights	of	a	neural	network	with	any	continuous	optimization
algorithm,	such	as	simulated	annealing,	particle	swarm	optimization,	genetic	algorithms,
hill	climbing,	Nelder-Mead,	or	random	walk.	In	this	chapter,	we	will	introduce	simulated
annealing	as	a	simple	training	algorithm.	However,	in	addition	to	optimization	algorithms,
you	can	train	neural	networks	with	backpropagation.	Chapter	6,	“Backpropagation
Training,”	and	Chapter	7,	“Other	Propagation	Training,”	will	introduce	several	algorithms
that	were	based	on	the	backpropagation	training	algorithms	introduced	in	Chapter	6.

Evaluating	Classification

Classification	is	the	process	by	which	a	neural	network	attempts	to	classify	the	input
into	one	or	more	classes.	The	simplest	way	of	evaluating	a	classification	network	is	to
track	the	percentage	of	training	set	items	that	were	classified	incorrectly.	We	typically
score	human	examples	in	this	manner.	For	example,	you	might	have	taken	multiple-choice
exams	in	school	in	which	you	had	to	shade	in	a	bubble	for	choices	A,	B,	C,	or	D.	If	you
chose	the	wrong	letter	on	a	10-question	exam,	you	would	earn	a	90%.	In	the	same	way,	we
can	grade	computers;	however,	most	classification	algorithms	do	not	simply	choose	A,	B,
C,	or	D.	Computers	typically	report	a	classification	as	their	percent	confidence	in	each
class.	Figure	5.1	shows	how	a	computer	and	a	human	might	both	respond	to	question	#1
on	an	exam:

Figure	5.1:	Human	Exam	versus	Computer	Classification

As	you	can	see,	the	human	test	taker	marked	the	first	question	as	“B.”	However,	the
computer	test	taker	had	an	80%	(0.8)	confidence	in	“B”	and	was	also	somewhat	sure	with
10%	(0.1)	on	“A.”	The	computer	then	distributed	the	remaining	points	on	the	other	two.	In
the	simplest	sense,	the	machine	would	get	80%	of	the	score	for	this	question	if	the	correct
answer	were	“B.”	The	machine	would	get	only	5%	(0.05)	of	the	points	if	the	correct
answer	were	“D.”

Binary	Classification

Binary	classification	occurs	when	a	neural	network	must	choose	between	two	options,
which	might	be	true/false,	yes/no,	correct/incorrect,	or	buy/sell.	To	see	how	to	use	binary
classification,	we	will	consider	a	classification	system	for	a	credit	card	company.	This
classification	system	must	decide	how	to	respond	to	a	new	potential	customer.	This	system
will	either	“issue	a	credit	card”	or	“decline	a	credit	card.”

When	you	have	only	two	classes	that	you	can	consider,	the	objective	function’s	score
is	the	number	of	false	positive	predictions	versus	the	number	of	false	negatives.	False
negatives	and	false	positives	are	both	types	of	errors,	and	it	is	important	to	understand	the
difference.	For	the	previous	example,	issuing	a	credit	card	would	be	the	positive.	A	false
positive	occurs	when	a	credit	card	is	issued	to	someone	who	will	become	a	bad	credit	risk.
A	false	negative	happens	when	a	credit	card	is	declined	to	someone	who	would	have	been
a	good	risk.

Because	only	two	options	exist,	we	can	choose	the	mistake	that	is	the	more	serious
type	of	error,	a	false	positive	or	a	false	negative.	For	most	banks	issuing	credit	cards,	a
false	positive	is	worse	than	a	false	negative.	Declining	a	potentially	good	credit	card
holder	is	better	than	accepting	a	credit	card	holder	who	would	cause	the	bank	to	undertake
expensive	collection	activities.

A	classification	problem	seeks	to	assign	the	input	into	one	or	more	categories.	A
binary	classification	employs	a	single-output	neural	network	to	classify	into	two
categories.	Consider	the	auto	MPG	data	set	that	is	available	from	the	University	of
California	at	Irvine	(UCI)	machine	learning	repository	at	the	following	URL:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

For	the	auto	MPG	data	set,	we	might	create	classifications	for	cars	built	inside	of	the
United	States.	The	field	named	origin	provides	information	on	the	location	of	the	car
assembly.	Thus,	the	single-output	neuron	would	give	a	number	that	indicates	the

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

probability	that	the	car	was	built	in	the	USA.

To	perform	this	prediction,	you	need	to	change	the	origin	field	to	hold	values	between
1	and	the	low-end	range	of	the	activation	function.	For	example,	the	low	end	of	the	range
for	the	sigmoid	function	is	0;	for	the	hyperbolic	tangent,	it	is	-1.	The	neural	network	will
output	a	value	that	indicates	the	probability	of	a	car	being	made	in	the	USA	or	elsewhere.
Values	closer	to	1	indicate	a	higher	probability	of	the	car	originating	in	the	USA;	values
closer	to	0	or	-1	indicate	a	car	originating	from	outside	the	USA.

You	must	choose	a	cutoff	value	that	differentiates	these	predictions	into	either	USA	or
non-USA.	If	USA	is	1.0	and	non-USA	is	0.0,	we	could	just	choose	0.5	as	the	cutoff	value.
Consequently,	a	car	with	an	output	of	0.6	would	be	USA,	and	0.4	would	be	non-USA.

Invariably,	this	neural	network	will	produce	errors	as	it	classifies	cars.	A	USA-made
car	might	yield	an	output	of	0.45;	however,	because	the	neural	network	is	below	the	cutoff
value,	it	would	not	put	the	car	in	the	correct	category.	Because	we	designed	this	neural
network	to	classify	USA-made	cars,	this	error	would	be	called	a	false	negative.	In	other
words,	the	neural	network	indicated	that	the	car	was	non-USA,	creating	a	negative	result
because	the	car	was	actually	from	the	USA.	Thus,	the	negative	classification	was	false.
This	error	is	also	known	as	a	type-2	error.

Similarly,	the	network	might	falsely	classify	a	non-USA	car	as	USA.	This	error	is	a
false	positive,	or	a	type-1.	Neural	networks	prone	to	produce	false	positives	are
characterized	as	more	specific.	Similarly,	neural	networks	that	produce	more	false
negatives	are	labeled	as	more	sensitive.	Figure	5.2	summarizes	these	relationships
between	true/false,	positives/negatives,	type-1	&	type-2	errors,	and	sensitivity/specificity:

Figure	5.2:	Types	of	Errors

Setting	the	cutoff	for	the	output	neuron	selects	whether	sensitivity	or	specificity	is
more	important.	It	is	possible	to	make	a	neural	network	more	sensitive	or	specific	by
adjusting	this	cutoff,	as	illustrated	in	Figure	5.3:

Figure	5.3:	Sensitivity	vs.	Specificity

As	the	limit	line	moves	left,	the	network	becomes	more	specific.	The	decrease	in	the
size	of	the	true	negative	(TN)	area	makes	this	specificity	evident.	Conversely,	as	the	limit
line	moves	right,	the	network	becomes	more	sensitive.	This	sensitivity	is	evident	in	the
decrease	in	size	of	the	true	positive	(TP)	area.

Increases	in	sensitivity	will	usually	result	in	a	decrease	of	specificity.	Figure	5.4	shows
a	neural	limit	designed	to	make	the	neural	network	very	sensitive:

Figure	5.4:	Sensitive	Cutoff

The	neural	network	can	also	be	calibrated	for	greater	sensitivity,	as	shown	in	Figure
5.5:

Figure	5.5:	Specific	Cutoff

Attaining	100%	specificity	or	sensitivity	is	not	necessarily	good.	A	medical	test	can
reach	100%	specificity	by	simply	predicting	that	everyone	does	not	have	the	disease.	This
test	will	never	commit	a	false	positive	error	because	it	never	gave	a	positive	answer.
Obviously,	this	test	is	not	useful.	Highly	specific	or	sensitive	neural	networks	produce	the
same	meaningless	result.	We	need	a	way	to	evaluate	the	total	effectiveness	of	the	neural
network	that	is	independent	of	the	cutoff	point.	The	total	prediction	rate	combines	the
percentage	of	true	positives	and	true	negatives.	Equation	5.1	can	calculate	the	total
prediction	rate:

Equation	5.1:	Total	Prediction	Rate

Additionally,	you	can	visualize	the	total	prediction	rate	(TPR)	with	a	receiver	operator
characteristic	(ROC)	chart,	as	seen	in	Figure	5.6:

Figure	5.6:	Receiver	Operator	Characteristic	(ROC)	Chart

The	above	chart	shows	three	different	ROC	curves.	The	dashed	line	shows	an	ROC
with	zero	predictive	power.	The	dotted	line	shows	a	better	neural	network,	and	the	solid
line	shows	a	nearly	perfect	neural	network.	To	understand	how	to	read	an	ROC	chart,	look
first	at	the	origin,	which	is	marked	by	0%.	All	ROC	lines	always	start	at	the	origin	and
move	to	the	upper-right	corner	where	true	positive	(TP)	and	false	positive	(FP)	are	both
100%.

The	y-axis	shows	the	TP	percentages	from	0	to	100.	As	you	move	up	the	y-axis,	both
TP	and	FP	increase.	As	TP	increases,	so	does	sensitivity;	however,	specificity	falls.	The
ROC	chart	allows	you	to	select	the	level	of	sensitivity	you	need,	but	it	also	shows	you	the
number	of	FPs	you	must	accept	to	achieve	that	level	of	sensitivity.

The	worst	network,	the	dashed	line,	always	has	a	50%	total	prediction	rate.	Given	that
there	are	only	two	outcomes,	this	result	is	no	better	than	random	guessing.	To	get	100%
TP,	you	must	also	have	a	100%	FP,	which	still	results	in	half	of	the	predictions	being
wrong.

The	following	URL	allows	you	to	experiment	with	a	simple	neural	network	and	ROC
curve:

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

We	can	train	the	neural	network	at	the	above	URL	with	simulated	annealing.	Each
time	an	annealing	epoch	is	completed,	the	neural	network	improves.	We	can	measure	this
improvement	by	the	mean	squared	error	calculation	(MSE).	As	the	MSE	drops,	the	ROC
curve	stretches	towards	the	upper	left	corner.	We	will	describe	the	MSE	in	greater	detail
later	in	this	chapter.	For	now,	simply	think	of	it	as	a	measurement	of	the	neural	network’s
error	when	you	compare	it	to	the	expected	output.	A	lower	MSE	is	desirable.	Figure	5.7
shows	the	ROC	curve	after	we	have	trained	the	network	for	a	number	of	iterations:

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

Figure	5.7:	ROC	Curve

It	is	important	to	note	that	the	goal	is	not	always	to	maximize	the	total	prediction	rate.
Sometimes	a	false	positive	(FP)	is	better	than	a	false	negative	(FN.)	Consider	a	neural
network	that	predicts	a	bridge	collapse.	A	FP	means	that	the	program	predicts	a	collapse
when	the	bridge	was	actually	safe.	In	this	case,	checking	a	structurally	sound	bridge	would
waste	an	engineer’s	time.	On	the	other	hand,	a	FN	would	mean	that	the	neural	network
predicted	the	bridge	was	safe	when	it	actually	collapsed.	A	bridge	collapsing	is	a	much
worse	outcome	than	wasting	the	time	of	an	engineer.	Therefore,	you	should	arrange	this
type	of	neural	network	so	that	it	is	overly	specific.

To	evaluate	the	total	effectiveness	of	the	network,	you	should	consider	the	area	under
the	curve	(AUC).	The	optimal	AUC	would	be	1.0,	which	is	a	100%	(1.0)	x	100%	(1.0)
rectangle	that	pushes	the	area	under	the	curve	to	the	maximum.	When	reading	an	ROC
curve,	the	more	effective	neural	networks	have	more	space	under	the	curve.	The	curves
shown	previously,	in	Figure	5.6,	correspond	with	this	assessment.

Multi-Class	Classification

If	you	want	to	predict	more	than	one	outcome,	you	will	need	more	than	one	output
neuron.	Because	a	single	neuron	can	predict	two	outcomes,	a	neural	network	with	two
output	neurons	is	somewhat	rare.	If	there	are	three	or	more	outcomes,	there	will	be	three
or	more	output	neurons.	Artificial	Intelligence	for	Humans,	Volume	1:	Fundamental
Algorithms	does	show	a	method	that	can	encode	three	outcomes	into	two	output	neurons.

Consider	Fisher’s	iris	data	set.	This	data	set	contains	four	different	measurements	for
three	different	species	of	iris	flower.	The	following	URL	contains	this	data	set:

https://archive.ics.uci.edu/ml/datasets/Iris

Sample	data	from	the	iris	data	set	is	shown	here:

sepal_length,sepal_width,petal_length,petal_width,species

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

7.0,3.2,4.7,1.4,Iris-versicolour

6.4,3.2,4.5,1.5,Iris-versicolour

6.3,3.3,6.0,2.5,Iris-virginica

5.8,2.7,5.1,1.9,Iris-virginica

Four	measurements	can	predict	the	species.	If	you	are	interested	in	reading	more	about
how	to	measure	an	iris	flower,	refer	to	the	above	link.	For	this	prediction,	the	meaning	of
the	four	measurements	does	not	really	matter.	These	measurements	will	teach	the	neural
network	to	predict.	Figure	5.8	shows	a	neural	network	structure	that	can	predict	the	iris
data	set:

Figure	5.8:	Iris	Data	Set	Neural	Network

The	above	neural	network	accepts	the	four	measurements	and	outputs	three	numbers.
Each	output	corresponds	with	one	of	the	iris	species.	The	output	neuron	that	produces	the
highest	number	determines	the	species	predicted.

Log	Loss

Classification	networks	can	derive	a	class	from	the	input	data.	For	example,	the	four
iris	measurements	can	group	the	data	into	the	three	species	of	iris.	One	easy	method	to
evaluate	classification	is	to	treat	it	like	a	multiple-choice	exam	and	return	a	percent	score.
Although	this	technique	is	common,	most	machine	learning	models	do	not	answer
multiple-choice	questions	like	you	did	in	school.	Consider	how	the	following	question
might	appear	on	an	exam:

1.	Would	an	iris	setosa	have	a	sepal	length	of	5.1	cm,	

			a	sepal	width	of	3.5	cm,	a	petal	length	of	1.4	cm,	and	

			a	petal	width	of	0.2	cm?

https://archive.ics.uci.edu/ml/datasets/Iris

A)	True

B)	False

This	question	is	exactly	the	type	that	a	neural	network	must	face	in	a	classification
task.	However,	the	neural	network	will	not	respond	with	an	answer	of	“True”	or	“False.”	It
will	answer	the	question	in	the	following	manner:

True:	80%

The	above	response	means	that	the	neural	network	is	80%	sure	that	the	flower	is	a
setosa.	This	technique	would	be	very	handy	in	school.	If	you	could	not	decide	between
true	and	false,	you	could	simply	place	80%	on	“True.”	Scoring	is	relatively	easy	because
you	receive	your	percentage	value	for	the	correct	answer.	In	this	case,	if	“True”	were	the
correct	answer,	your	score	would	be	80%	for	that	question.

However,	log	loss	is	not	quite	that	simple.	Equation	5.2	is	the	equation	for	log	loss:

Equation	5.2:	Log	Loss	Function

You	should	use	this	equation	only	as	an	objective	function	for	classifications	that	have
two	outcomes.	The	variable	y-hat	is	the	neural	network’s	prediction,	and	the	variable	y	is
the	known	correct	answer.	In	this	case,	y	will	always	be	0	or	1.	The	training	data	have	no
probabilities.	The	neural	network	classifies	it	either	into	one	class	(1)	or	the	other	(0).

The	variable	N	represents	the	number	of	elements	in	the	training	set—the	number	of
questions	in	the	test.	We	divide	by	N	because	this	process	is	customary	for	an	average.	We
also	begin	the	equation	with	a	negative	because	the	log	function	is	always	negative	over
the	domain	0	to	1.	This	negation	allows	a	positive	score	for	the	training	to	minimize.

You	will	notice	two	terms	are	separated	by	the	addition	(+).	Each	contains	a	log
function.	Because	y	will	be	either	0	or	1,	then	one	of	these	two	terms	will	cancel	out	to	0.
If	y	is	0,	then	the	first	term	will	reduce	to	0.	If	y	is	1,	then	the	second	term	will	be	0.

If	your	prediction	for	the	first	class	of	a	two-class	prediction	is	y-hat,	then	your
prediction	for	the	second	class	is	1	minus	y-hat.	Essentially,	if	your	prediction	for	class	A
is	70%	(0.7),	then	your	prediction	for	class	B	is	30%	(0.3).	Your	score	will	increase	by	the
log	of	your	prediction	for	the	correct	class.	If	the	neural	network	had	predicted	1.0	for
class	A,	and	the	correct	answer	was	A,	your	score	would	increase	by	log	(1),	which	is	0.
For	log	loss,	we	seek	a	low	score,	so	a	correct	answer	results	in	0.	Some	of	these	log
values	for	a	neural	network’s	probability	estimate	for	the	correct	class:

-log(1.0)	=	0
-log(0.95)	=	0.02
-log(0.9)	=	0.05
-log(0.8)	=	0.1
-log(0.5)	=	0.3
-log(0.1)	=	1
-log(0.01)	=	2
-log(1.0e-12)	=	12
-log(0.0)	=	negative	infinity

As	you	can	see,	giving	a	low	confidence	to	the	correct	answer	affects	the	score	the
most.	Because	log	(0)	is	negative	infinity,	we	typically	impose	a	minimum	value.	Of
course,	the	above	log	values	are	for	a	single	training	set	element.	We	will	average	the	log
values	for	the	entire	training	set.

Multi-Class	Log	Loss

If	more	than	two	outcomes	are	classified,	then	we	must	use	multi-class	log	loss.	This
loss	function	is	very	closely	related	to	the	binary	log	loss	just	described.	Equation	5.3
shows	the	equation	for	multi-class	log	loss:

Equation	5.3:	Multi-Class	Log	Loss

In	the	above	equation,	N	is	the	number	of	training	set	elements,	and	M	represents	the
number	of	categories	for	the	classification	process.	Conceptually,	the	multi-class	log	loss
objective	function	works	similarly	to	single	log	loss.	The	above	equation	essentially	gives
you	a	score	that	is	the	average	of	the	negative-log	of	your	prediction	for	the	correct	class
on	each	of	the	data	sets.	The	inner	most	sigma-summation	in	the	above	equation	functions
as	an	if-then	statement	and	allows	only	the	correct	class	with	a	y	of	1.0	to	contribute	to	the
summation.

Evaluating	Regression

Mean	squared	error	(MSE)	calculation	is	the	most	commonly	utilized	process	for
evaluating	regression	machine	learning.	Most	Internet	examples	of	neural	networks,
support	vector	machines,	and	other	models	apply	MSE	(Draper,	1998),	shown	in	Equation
5.4:

Equation	5.4:	Mean	Squared	Error	(MSE)

In	the	above	equation,	y	is	the	ideal	output	and	y-hat	is	the	actual	output.	The	mean
squared	error	is	essentially	the	mean	of	the	squares	of	the	individual	differences.	Because
the	individual	differences	are	squared,	the	positive	or	negative	nature	of	the	difference
does	not	matter	to	MSE.

You	can	evaluate	classification	problems	with	MSE.	To	evaluate	classification	output
with	MSE,	each	class’s	probability	is	simply	treated	as	a	numeric	output.	The	expected
output	simply	has	a	value	of	1.0	for	the	correct	class,	and	0	for	the	others.	For	example,	if
the	first	class	were	correct,	and	the	other	three	classes	incorrect,	the	expected	outcome
vector	would	look	like	the	following:

[1.0,	0,	0,	0]

You	can	use	nearly	any	regression	objective	function	for	classification	in	this	way.	A
variety	of	functions,	such	as	root	mean	square	(RMS)	and	sum	of	squares	error	(SSE)	can
evaluate	regression,	and	we	discussed	these	functions	in	Artificial	Intelligence	for
Humans,	Volume	1:	Fundamental	Algorithms.

Training	with	Simulated	Annealing

To	train	a	neural	network,	you	must	define	its	tasks.	An	objective	function,	otherwise
known	as	scoring	or	loss	functions,	can	generate	these	tasks.	Essentially,	an	objective
function	evaluates	the	neural	network	and	returns	a	number	indicating	the	usefulness	of
the	neural	network.	The	training	process	modifies	the	weights	of	the	neural	network	in
each	iteration	so	the	value	returned	from	the	objective	function	improves.

Simulated	annealing	is	an	effective	optimization	technique	that	we	examined	in
Artificial	Intelligence	for	Humans	Volume	1.	In	this	chapter,	we	will	review	simulated
annealing	as	well	as	show	you	how	any	vector	optimization	function	can	improve	the
weights	of	a	feedforward	neural	network.	In	the	next	chapter,	we	will	examine	even	more
advanced	optimization	techniques	that	take	advantage	of	the	differentiable	loss	function.

As	a	review,	simulated	annealing	works	by	first	assigning	the	weight	vector	of	a	neural
network	to	random	values.	This	vector	is	treated	like	a	position,	and	the	program	evaluates
every	possible	move	from	that	position.	To	understand	how	a	neural	network	weight
vector	translates	to	a	position,	think	of	a	neural	network	with	just	three	weights.	In	the	real
world,	we	consider	position	in	terms	of	the	x,	y	and	z	coordinates.	We	can	write	any
position	as	a	vector	of	3.	If	we	are	willing	to	move	in	a	single	dimension,	we	could	move
in	a	total	of	six	different	directions.	We	would	have	the	option	of	moving	forward	or
backwards	in	the	x,	y	or	z	dimensions.

Simulated	annealing	functions	by	moving	forward	or	backwards	in	all	available
dimensions.	If	the	algorithm	takes	the	best	move,	a	simple	hill-climbing	algorithm	would
result.	Hill	climbing	only	improves	scores.	Therefore,	it	is	called	a	greedy	algorithm.	To
reach	the	best	position,	an	algorithm	will	sometime	need	to	move	to	a	lower	position.	As	a
result,	simulated	annealing	very	much	follows	the	expression	of	two	steps	forward,	one
step	back.

In	other	words,	simulated	annealing	will	sometimes	allow	a	move	to	a	weight
configuration	with	a	worse	score.	The	probability	of	accepting	such	a	move	starts	high	and
decreases.	This	probability	is	known	as	the	current	temperature,	and	it	simulates	the	actual
metallurgical	annealing	process	where	a	metal	cools	and	achieves	greater	hardness.	Figure
5.9	shows	the	entire	process:

Figure	5.9:	Simulated	Annealing

A	feedforward	neural	network	can	utilize	simulated	annealing	to	learn	the	iris	data	set.
The	following	program	shows	the	output	from	this	training:

Iteration	#1,	Score=0.3937,	k=1,kMax=100,t=343.5891,prob=0.9998

Iteration	#2,	Score=0.3937,	k=2,kMax=100,t=295.1336,prob=0.9997

Iteration	#3,	Score=0.3835,	k=3,kMax=100,t=253.5118,prob=0.9989

Iteration	#4,	Score=0.3835,	k=4,kMax=100,t=217.7597,prob=0.9988

Iteration	#5,	Score=0.3835,	k=5,kMax=100,t=187.0496,prob=0.9997

Iteration	#6,	Score=0.3835,	k=6,kMax=100,t=160.6705,prob=0.9997

Iteration	#7,	Score=0.3835,	k=7,kMax=100,t=138.0116,prob=0.9996

...

Iteration	#99,	Score=0.1031,	k=99,kMax=100,t=1.16E-4,prob=2.8776E-7

Iteration	#100,	Score=0.1031,	k=100,kMax=100,t=9.9999E-5,prob=2.1443E-70

Final	score:	0.1031

[0.22222222222222213,	0.6249999999999999,	0.06779661016949151,	

0.04166666666666667]	->	Iris-setosa,	Ideal:	Iris-setosa

[0.1666666666666668,	0.41666666666666663,	0.06779661016949151,	

0.04166666666666667]	->	Iris-setosa,	Ideal:	Iris-setosa

...

[0.6666666666666666,	0.41666666666666663,	0.711864406779661,	

0.9166666666666666]	->	Iris-virginica,	Ideal:	Iris-virginica

[0.5555555555555555,	0.20833333333333331,	0.6779661016949152,	0.75]	->	

Iris-virginica,	Ideal:	Iris-virginica

[0.611111111111111,	0.41666666666666663,	0.711864406779661,	

0.7916666666666666]	->	Iris-virginica,	Ideal:	Iris-virginica

[0.5277777777777778,	0.5833333333333333,	0.7457627118644068,	

0.9166666666666666]	->	Iris-virginica,	Ideal:	Iris-virginica

[0.44444444444444453,	0.41666666666666663,	0.6949152542372881,	

0.7083333333333334]	->	Iris-virginica,	Ideal:	Iris-virginica

[1.178018083703488,	16.66575553359515,	-0.6101619300462806,	

-3.9894606091020965,	13.989551673146842,	-8.87489712462323,	

8.027287801488647,	-4.615098285283519,	6.426489182215509,	

-1.4672962642199618,	4.136699061975335,	4.20036115439746,	

0.9052469139543605,	-2.8923515248132063,	-4.733219252086315,	

18.6497884912826,	2.5459600552510895,	-5.618872440836617,	

4.638827606092005,	0.8887726364890928,	8.730809901357286,	

-6.4963370793479545,	-6.4003385330186795,	-11.820235441582424,	

-3.29494170904095,	-1.5320936828139837,	0.1094081633203249,	

0.26353076268018827,	3.935780218339343,	0.8881280604852664,	

-5.048729642423418,	8.288232057956957,	-14.686080237582006,	

3.058305829324875,	-2.4144038920292608,	21.76633883966702,	

12.151853576801647,	-3.6372061664901416,	6.28253174293219,	

-4.209863472970308,	0.8614258660906541,	-9.382012074551428,	

-3.346419915864691,	-0.6326977049713416,	2.1391118323593203,	

0.44832732990560714,	6.853600355726914,	2.8210824313745957,	

1.3901883615737192,	-5.962068350552335,	0.502596306917136]

The	initial	random	neural	network	starts	out	with	a	high	multi-class	log	loss	score	of
30.	As	the	training	progresses,	this	value	falls	until	it	is	low	enough	for	training	to	stop.
For	this	example,	the	training	stops	as	soon	as	the	error	falls	below	10.	To	determine	a
good	stopping	point	for	the	error,	you	should	evaluate	how	well	the	network	is	performing
for	your	intended	use.	A	log	loss	below	0.5	is	often	in	the	acceptable	range;	however,	you
might	not	be	able	to	achieve	this	score	with	all	data	sets.

The	following	URL	shows	an	example	of	a	neural	network	trained	with	simulated
annealing:

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

Chapter	Summary

Objective	functions	can	evaluate	neural	networks.	They	simply	return	a	number	that
indicates	the	success	of	the	neural	network.	Regression	neural	networks	will	frequently
utilize	mean	squared	error	(MSE).	Classification	neural	networks	will	typically	use	a	log
loss	or	multi-class	log	loss	function.	These	neural	networks	create	custom	objective
functions.

Simulated	annealing	can	optimize	the	neural	network.	You	can	utilize	any	of	the
optimization	algorithms	presented	in	Volumes	1	and	2	of	Artificial	Intelligence	for
Humans.	In	fact,	you	can	optimize	any	vector	in	this	way	because	the	optimization
algorithms	are	not	tied	to	a	neural	network.	In	the	next	chapter,	you	will	see	several
training	methods	designed	specifically	for	neural	networks.	While	these	specialized
training	algorithms	are	often	more	efficient,	they	require	objective	functions	that	have	a
derivative.

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

Chapter	6:	Backpropagation	Training
Gradient	Calculation
Backpropagation
Learning	Rate	&	Momentum
Stochastic	Gradient	Descent

Backpropagation	is	one	of	the	most	common	methods	for	training	a	neural	network.
Rumelhart,	Hinton,	&	Williams	(1986)	introduced	backpropagation,	and	it	remains
popular	today.	Programmers	frequently	train	deep	neural	networks	with	backpropagation
because	it	scales	really	well	when	run	on	graphical	processing	units	(GPUs).	To
understand	this	algorithm	for	neural	networks,	we	must	examine	how	to	train	it	as	well	as
how	it	processes	a	pattern.

Classic	backpropagation	has	been	extended	and	modified	to	give	rise	to	many	different
training	algorithms.	In	this	chapter,	we	will	discuss	the	most	commonly	used	training
algorithms	for	neural	networks.	We	begin	with	classic	backpropagation	and	then	end	the
chapter	with	stochastic	gradient	descent	(SGD).

Understanding	Gradients

Backpropagation	is	a	type	of	gradient	descent,	and	many	texts	will	use	these	two	terms
interchangeably.	Gradient	descent	refers	to	the	calculation	of	a	gradient	on	each	weight	in
the	neural	network	for	each	training	element.	Because	the	neural	network	will	not	output
the	expected	value	for	a	training	element,	the	gradient	of	each	weight	will	give	you	an
indication	about	how	to	modify	each	weight	to	achieve	the	expected	output.	If	the	neural
network	did	output	exactly	what	was	expected,	the	gradient	for	each	weight	would	be	0,
indicating	that	no	change	to	the	weight	is	necessary.

The	gradient	is	the	derivative	of	the	error	function	at	the	weight’s	current	value.	The
error	function	measures	the	distance	of	the	neural	network’s	output	from	the	expected
output.	In	fact,	we	can	use	gradient	descent,	a	process	in	which	each	weight’s	gradient
value	can	reach	even	lower	values	of	the	error	function.

With	respect	to	the	error	function,	the	gradient	is	essentially	the	partial	derivative	of
each	weight	in	the	neural	network.	Each	weight	has	a	gradient	that	is	the	slope	of	the	error
function.	A	weight	is	a	connection	between	two	neurons.	Calculating	the	gradient	of	the
error	function	allows	the	training	method	to	determine	whether	it	should	increase	or
decrease	the	weight.	In	turn,	this	determination	will	decrease	the	error	of	the	neural
network.	The	error	is	the	difference	between	the	expected	output	and	actual	output	of	the
neural	network.	Many	different	training	methods	called	propagation-training	algorithms
utilize	gradients.	In	all	of	them,	the	sign	of	the	gradient	tells	the	neural	network	the
following	information:

Zero	gradient	–	The	weight	is	not	contributing	to	the	error	of	the	neural	network.
Negative	gradient	–	The	weight	should	be	increased	to	achieve	a	lower	error.
Positive	gradient	–	The	weight	should	be	decreased	to	achieve	a	lower	error.

Because	many	algorithms	depend	on	gradient	calculation,	we	will	begin	with	an
analysis	of	this	process.

What	is	a	Gradient

First	of	all,	let’s	examine	the	gradient.	Essentially,	training	is	a	search	for	the	set	of
weights	that	will	cause	the	neural	network	to	have	the	lowest	error	for	a	training	set.	If	we
had	an	infinite	amount	of	computation	resources,	we	would	simply	try	every	possible
combination	of	weights	to	determine	the	one	that	provided	the	lowest	error	during	the
training.

Because	we	do	not	have	unlimited	computing	resources,	we	have	to	use	some	sort	of
shortcut	to	prevent	the	need	to	examine	every	possible	weight	combination.	These	training
methods	utilize	clever	techniques	to	avoid	performing	a	brute-force	search	of	all	weight
values.	This	type	of	exhaustive	search	would	be	impossible	because	even	small	networks
have	an	infinite	number	of	weight	combinations.

Consider	a	chart	that	shows	the	error	of	a	neural	network	for	each	possible	weight.
Figure	6.1	is	a	graph	that	demonstrates	the	error	for	a	single	weight:

Figure	6.1:	Gradient	of	a	Single	Weight

Looking	at	this	chart,	you	can	easily	see	that	the	optimal	weight	is	the	location	where
the	line	has	the	lowest	y-value.	The	problem	is	that	we	see	only	the	error	for	the	current
value	of	the	weight;	we	do	not	see	the	entire	graph	because	that	process	would	require	an
exhaustive	search.	However,	we	can	determine	the	slope	of	the	error	curve	at	a	particular
weight.	In	the	above	chart,	we	see	the	slope	of	the	error	curve	at	1.5.	The	straight	line	that
barely	touches	the	error	curve	at	1.5	gives	the	slope.	In	this	case,	the	slope,	or	gradient,	is
-0.5622.	The	negative	slope	indicates	that	an	increase	in	the	weight	will	lower	the	error.

The	gradient	is	the	instantaneous	slope	of	the	error	function	at	the	specified	weight.
The	derivative	of	the	error	curve	at	that	point	gives	the	gradient.	This	line	tells	us	the
steepness	of	the	error	function	at	the	given	weight.

Derivatives	are	one	of	the	most	fundamental	concepts	in	calculus.	For	the	purposes	of
this	book,	you	just	need	to	understand	that	a	derivative	provides	the	slope	of	a	function	at
a	specific	point.	A	training	technique	and	this	slope	can	give	you	the	information	to	adjust
the	weight	for	a	lower	error.	Using	our	working	definition	of	the	gradient,	we	will	now
show	how	to	calculate	it.

Calculating	Gradients

We	will	calculate	an	individual	gradient	for	each	weight.	Our	focus	is	not	only	the
equations	but	also	the	applications	in	actual	neural	networks	with	real	numbers.	Figure	6.2
shows	the	neural	network	that	we	will	use:

Figure	6.2:	An	XOR	Network

Additionally,	we	use	this	same	neural	network	in	several	examples	on	the	website	for
this	book.	In	this	chapter,	we	will	show	several	calculations	that	demonstrate	the	training
of	a	neural	network.	We	must	use	the	same	starting	weights	so	that	these	calculations	are
consistent.	However,	the	above	weights	have	no	special	characteristic;	the	program
generated	them	randomly.

The	aforementioned	neural	network	is	a	typical	three-layer	feedforward	network	like
the	ones	we	have	previously	studied.	The	circles	indicate	neurons.	The	lines	connecting
the	circles	are	the	weights.	The	rectangles	in	the	middle	of	the	connections	give	the	weight
for	each	connection.

The	problem	that	we	now	face	is	calculating	the	partial	derivative	for	each	of	the
weights	in	the	neural	network.	We	use	a	partial	derivative	when	an	equation	has	more	than
one	variable.	Each	of	the	weights	is	considered	a	variable	because	these	weight	values	will
change	independently	as	the	neural	network	changes.	The	partial	derivatives	of	each
weight	simply	show	each	weight’s	independent	effect	on	the	error	function.	This	partial

derivative	is	the	gradient.

We	can	calculate	each	partial	derivative	with	the	chain	rule	of	calculus.	We	will	begin
with	one	training	set	element.	For	Figure	6.2	we	provide	an	input	of	[1,0]	and	expect	an
output	of	[1].	You	can	see	that	we	apply	the	input	on	the	above	figure.	The	first	input
neuron	has	an	input	value	of	1.0,	and	the	second	input	neuron	has	an	input	value	of	0.0.

This	input	feeds	through	the	network	and	eventually	produces	an	output.	Chapter	4,
“Feedforward	Neural	Networks,”	covers	the	exact	process	to	calculate	the	output	and
sums.	Backpropagation	has	both	a	forward	and	backwards	pass.	The	forward	pass	occurs
when	we	calculate	the	output	of	the	neural	network.	We	will	calculate	the	gradients	only
for	this	item	in	the	training	set.	Other	items	in	the	training	set	will	have	different	gradients.
We	will	discuss	how	to	combine	the	gradients	for	the	individual	training	set	element	later
in	the	chapter.

We	are	now	ready	to	calculate	the	gradients.	The	steps	involved	in	calculating	the
gradients	for	each	weight	are	summarized	here:

Calculate	the	error,	based	on	the	ideal	of	the	training	set.
Calculate	the	node	(neuron)	delta	for	the	output	neurons.
Calculate	the	node	delta	for	the	interior	neurons.
Calculate	individual	gradients.

We	will	discuss	these	steps	in	the	subsequent	sections.

Calculating	Output	Node	Deltas

Calculating	a	constant	value	for	every	node,	or	neuron,	in	the	neural	network	is	the
first	step.	We	will	start	with	the	output	nodes	and	work	our	way	backwards	through	the
neural	network.	The	term	backpropagation	comes	from	this	process.	We	initially	calculate
the	errors	for	the	output	neurons	and	propagate	these	errors	backwards	through	the	neural
network.

The	node	delta	is	the	value	that	we	will	calculate	for	each	node.	Layer	delta	also
describes	this	value	because	we	can	calculate	the	deltas	one	layer	at	a	time.	The	method
for	determining	the	node	deltas	can	differ	if	you	are	calculating	for	an	output	or	interior
node.	The	output	nodes	are	calculated	first,	and	they	take	into	account	the	error	function
for	the	neural	network.	In	this	volume,	we	will	examine	the	quadratic	error	function	and
the	cross	entropy	error	function.

Quadratic	Error	function

Programmers	of	neural	networks	frequently	use	the	quadratic	error	function.	In	fact,
you	can	find	many	examples	of	the	quadratic	error	function	on	the	Internet.	If	you	are
reading	an	example	program,	and	it	does	not	mention	a	specific	error	function,	the
program	is	probably	using	the	quadratic	error	function,	also	known	as	the	mean	squared
error	(MSE)	function	discussed	in	Chapter	5,	“Training	and	Evaluation.”	Equation	6.1
shows	the	MSE	function:

Equation	6.1:	Mean	Square	Error	(MSE)

The	above	equation	compares	the	neural	network’s	actual	output	(y)	with	the	expected
output	(y-hat).	The	variable	n	contains	the	number	of	training	elements	times	the	number
of	output	neurons.	MSE	handles	multiple	output	neurons	as	individual	cases.	Equation	6.2
shows	the	node	delta	used	in	conjunction	with	the	quadratic	error	function:

Equation	6.2:	Node	Delta	of	MSE	Output	Layer

The	quadratic	error	function	is	very	simple	because	it	takes	the	difference	between	the
expected	and	actual	output	for	the	neural	network.	The	Greek	letter	φ	(phi-prime)
represents	the	derivative	of	the	activation	function.

Cross	Entropy	Error	Function

The	quadratic	error	function	can	sometimes	take	a	long	time	to	properly	adjust	the
weight.	Equation	6.3	shows	the	cross	entropy	error	function:

Equation	6.3:	Cross	Entropy	Error

The	node	delta	calculation	for	the	cross	entropy	error	turns	out	to	be	much	less
complex	than	the	MSE,	as	seen	in	Equation	6.4.

Equation	6.4:	Node	Delta	of	Cross	Entropy	Output	Layer

The	cross	entropy	error	function	will	typically	better	results	than	the	quadratic	it	will
create	a	much	steeper	gradient	for	errors.	You	should	always	use	the	cross	entropy	error
function.

Calculating	Remaining	Node	Deltas

Now	that	the	output	node	delta	has	been	calculated	according	to	the	appropriate	error
function,	we	can	calculate	the	node	deltas	for	the	interior	nodes,	as	demonstrated	by
Equation	6.5:

Equation	6.5:	Calculating	Interior	Node	Deltas

We	will	calculate	the	node	delta	for	all	hidden	and	non-bias	neurons,	but	we	do	not
need	to	calculate	the	node	delta	for	the	input	and	bias	neurons.	Even	though	we	can	easily
calculate	the	node	delta	for	input	and	bias	neurons	with	Equation	6.5,	gradient	calculation
does	not	require	these	values.	As	you	will	soon	see,	gradient	calculation	for	a	weight	only
considers	the	neuron	to	which	the	weight	is	connected.	Bias	and	input	neurons	are	only	the
beginning	point	for	a	connection;	they	are	never	the	end	point.

If	you	would	like	to	see	the	gradient	calculation	process,	several	JavaScript	examples
will	show	the	individual	calculations.	These	examples	can	be	found	at	the	following	URL:

http://www.heatonresearch.com/aifh/vol3/

http://www.heatonresearch.com/aifh/vol3/

Derivatives	of	the	Activation	Functions

The	backpropagation	process	requires	the	derivatives	of	the	activation	functions,	and
they	often	determine	how	the	backpropagation	process	will	perform.	Most	modern	deep
neural	networks	use	the	linear,	softmax,	and	ReLU	activation	functions.	We	will	also
examine	the	derivatives	of	the	sigmoid	and	hyperbolic	tangent	activation	functions	so	that
we	can	see	why	the	ReLU	activation	function	performs	so	well.

Derivative	of	the	Linear	Activation	Function

The	linear	activation	function	is	barely	an	activation	function	at	all	because	it	simply
returns	whatever	value	it	is	given.	For	this	reason,	the	linear	activation	function	is
sometimes	called	the	identity	activation	function.	The	derivative	of	this	function	is	1,	as
demonstrated	by	Equation	6.6:

Equation	6.6:	Derivative	of	the	Linear	Activation	Function

The	Greek	letter	φ	(phi)	represents	the	activation	function,	as	in	previous	chapters.
However,	the	apostrophe	just	above	and	to	the	right	of	φ	(phi)	means	that	we	are	using	the
derivative	of	the	activation	function.	This	is	one	of	several	ways	that	a	derivative	is
expressed	in	a	mathematical	form.

Derivative	of	the	Softmax	Activation	Function

In	this	volume,	the	softmax	activation	function,	along	with	the	linear	activation
function,	is	used	only	on	the	output	layer	of	the	neural	networks.	As	mentioned	in	Chapter
1,	“Neural	Network	Basics,”	the	softmax	activation	function	is	different	from	the	other
activation	functions	in	that	its	value	is	dependent	on	the	other	output	neurons,	not	just	on
the	output	neuron	currently	being	calculated.	For	convenience,	the	softmax	activation
function	is	repeated	in	Equation	6.7:

Equation	6.7:	Softmax	Activation	Function

The	z	vector	represents	the	output	from	all	output	neurons.	Equation	6.8	shows	the
derivative	of	this	activation	function:

Equation	6.8:	Derivative	of	the	Softmax	Activation	Function

We	used	slightly	different	notation	for	the	above	derivative.	The	ratio,	with	the
cursive-stylized	“d”	symbol	means	a	partial	derivative,	which	occurs	when	you
differentiate	an	equation	with	multiple	variables.	To	take	a	partial	derivative,	you
differentiate	the	equation	relative	to	one	variable,	holding	all	others	constant.	The	top	“d”
tells	you	what	function	you	are	differentiating.	In	this	case,	it	is	the	activation	function	φ
(phi).	The	bottom	“d”	denotes	the	respective	differentiation	of	the	partial	derivative.	In
this	case,	we	are	calculating	the	output	of	the	neuron.	All	other	variables	are	treated	as
constant.	A	derivative	is	the	instantaneous	rate	of	change—only	one	thing	can	change	at
once.

You	will	not	use	the	derivative	of	the	linear	or	softmax	activation	functions	to
calculate	the	gradients	of	the	neural	network	if	you	use	the	cross	entropy	error	function.
You	should	use	the	linear	and	softmax	activation	functions	only	at	the	output	layer	of	a
neural	network.	Therefore,	we	do	not	need	to	worry	about	their	derivatives	for	the	interior
nodes.	For	the	output	nodes	with	cross	entropy,	the	derivative	of	both	linear	and	softmax	is
always	1.	As	a	result,	you	will	never	use	the	linear	or	softmax	derivatives	for	interior
nodes.

Derivative	of	the	Sigmoid	Activation	Function

Equation	6.9	shows	the	derivative	of	the	sigmoid	activation	function:	

Equation	6.9:	Derivative	of	the	Sigmoid	Activation	Function

Machine	learning	frequently	utilizes	the	sigmoid	function	represented	in	the	above
equation.	We	derived	the	formula	through	algebraic	manipulation	of	the	sigmoid
derivative	in	order	to	use	the	sigmoid	activation	function	in	its	own	derivative.	For
computational	efficiency,	the	Greek	letter	φ	(phi)	in	the	above	activation	function
represents	the	sigmoid	function.	During	the	feedforward	pass,	we	calculated	the	value	of
the	sigmoid	function.	Retaining	the	sigmoid	function	makes	the	sigmoid	derivative	a
simple	calculation.	If	you	are	interested	in	how	to	obtain	Equation	6.9,	you	can	refer	to	the
following	URL:

http://www.heatonresearch.com/aifh/vol3/deriv_sigmoid.html

Derivative	of	the	Hyperbolic	Tangent	Activation	Function

Equation	6.10	shows	the	derivative	of	the	hyperbolic	tangent	activation	function:	

Equation	6.10:	Derivative	of	the	Hyperbolic	Tangent	Activation	Function

We	recommend	that	you	always	use	the	hyperbolic	tangent	activation	function	instead
of	the	sigmoid	activation	function.

Derivative	of	the	ReLU	Activation	Function

Equation	6.11	shows	the	derivative	of	the	ReLU	function:	

Equation	6.11:	Derivative	of	the	ReLU	Activation	Function

Strictly	speaking,	the	ReLU	function	does	not	have	a	derivative	at	0.	However,
because	of	convention,	the	gradient	of	0	is	substituted	when	x	is	0.	Deep	neural	networks
with	sigmoid	and	hyperbolic	tangent	activation	functions	can	be	difficult	to	train	using
backpropagation.	Several	factors	cause	this	difficulty.	The	vanishing	gradient	problem	is
one	the	most	common	causes.	Figure	6.3	shows	the	hyperbolic	tangent	function,	along
with	its	gradient/derivative:

http://www.heatonresearch.com/aifh/vol3/deriv_sigmoid.html

Figure	6.3:	Tanh	Activation	Function	&	Derivative

Figure	6.3	shows	that	as	the	hyperbolic	tangent	(blue	line)	saturates	to	-1	and	1,	the
derivative	of	the	hyperbolic	tangent	(red	line)	vanishes	to	0.	The	sigmoid	and	hyperbolic
tangent	activation	functions	both	have	this	problem,	but	ReLU	doesn’t.	Figure	6.4	shows
the	same	graph	for	the	sigmoid	activation	function	and	its	vanishing	derivative:

Figure	6.4:	Sigmoid	Activation	Function	&	Derivative

Applying	Backpropagation

Backpropagation	is	a	simple	training	method	that	adjusts	the	weights	of	the	neural
network	with	its	calculated	gradients.	This	method	is	a	form	of	gradient	descent	since	we
are	descending	the	gradients	to	lower	values.	As	the	program	adjusts	these	weights,	the
neural	network	should	produce	more	desirable	output.	The	global	error	of	the	neural
network	should	fall	as	it	trains.	Before	we	can	examine	the	backpropagation	weight	update
process,	we	must	examine	two	different	ways	to	update	the	weights.

Batch	and	Online	Training

We	have	already	shown	how	to	calculate	the	gradients	for	an	individual	training	set
element.	Earlier	in	this	chapter,	we	calculated	the	gradients	for	a	case	in	which	we	gave
the	neural	network	an	input	of	[1,0]	and	expected	an	output	of	[1].	This	result	is
acceptable	for	a	single	training	set	element.	However,	most	training	sets	have	many
elements.	Therefore,	we	can	handle	multiple	training	set	elements	through	two	approaches
called	online	and	batch	training.

Online	training	implies	that	you	modify	the	weights	after	every	training	set	element.
Using	the	gradients	obtained	in	the	first	training	set	element,	you	calculate	and	apply	a
change	to	the	weights.	Training	progresses	to	the	next	training	set	element	and	also
calculates	an	update	to	the	neural	network.	This	training	continues	until	you	have	used
every	training	set	element.	At	this	point,	one	iteration,	or	epoch,	of	training	has	completed.

Batch	training	also	utilizes	all	the	training	set	elements.	However,	we	have	not	updated
the	weights.	Instead,	we	sum	the	gradients	for	each	training	set	element.	Once	we	have
summed	the	training	set	elements,	we	can	update	the	neural	network	weights.	At	this
point,	the	iteration	is	complete.

Sometimes,	we	can	set	a	batch	size.	For	example,	you	might	have	a	training	set	size	of
10,000	elements.	You	might	choose	to	update	the	weights	of	the	neural	network	every
1,000	elements,	thereby	causing	the	neural	network	weights	to	update	ten	times	during	the
training	iteration.

Online	training	was	the	original	method	for	backpropagation.	If	you	would	like	to	see
the	calculations	for	the	batch	version	of	this	program,	refer	to	the	following	online
example:

http://www.heatonresearch.com/aifh/vol3/xor_batch.html

http://www.heatonresearch.com/aifh/vol3/xor_batch.html

Stochastic	Gradient	Descent

Batch	and	online	training	are	not	the	only	choices	for	backpropagation.	Stochastic
gradient	descent	(SGD)	is	the	most	popular	of	the	backpropagation	algorithms.	SGD	can
work	in	either	batch	or	online	mode.	Online	stochastic	gradient	descent	simply	selects	a
training	set	element	at	random	and	then	calculates	the	gradient	and	performs	a	weight
update.	This	process	continues	until	the	error	reaches	an	acceptable	level.	Choosing
random	training	set	elements	will	usually	converge	to	an	acceptable	weight	faster	than
looping	through	the	entire	training	set	for	each	iteration.

Batch	stochastic	gradient	descent	works	by	choosing	a	batch	size.	For	each	iteration,	a
mini-batch	is	chosen	by	randomly	selecting	a	number	of	training	set	elements	up	to	the
chosen	batch	size.	The	gradients	from	the	mini-batch	are	summed	just	as	regular
backpropagation	batch	updating.	This	update	is	very	similar	to	regular	batch	updating
except	that	the	mini-batches	are	randomly	chosen	each	time	they	are	needed.	The
iterations	typically	process	a	single	batch	in	SGD.	Batches	are	usually	much	smaller	than
the	entire	training	set	size.	A	common	choice	for	the	batch	size	is	600.

Backpropagation	Weight	Update

We	are	now	ready	to	update	the	weights.	As	previously	mentioned,	we	will	treat	the
weights	and	gradients	as	a	single-dimensional	array.	Given	these	two	arrays,	we	are	ready
to	calculate	the	weight	update	for	an	iteration	of	backpropagation	training.	Equation	6.6
shows	the	formula	to	update	the	weights	for	backpropagation:

Equation	6.12:	Backpropagation	Weight	Update

The	above	equation	calculates	the	change	in	weight	for	each	element	in	the	weight
array.	You	will	also	notice	that	the	above	equation	calls	for	the	weight	change	from	the
previous	iteration.	You	must	keep	these	values	in	another	array.	As	previously	mentioned,
the	direction	of	the	weight	update	is	inversely	related	to	the	sign	of	the	gradient—a
positive	gradient	should	cause	a	weight	decrease,	and	vice	versa.	Because	of	this	inverse
relationship	Equation	6.12	begins	with	a	negative.

The	above	equation	calculates	the	weight	delta	as	the	product	of	the	gradient	and	the
learning	rate	(represented	by	ε,	epsilon).	Furthermore,	we	add	the	product	of	the	previous
weight	change	and	the	momentum	value	(represented	by	α,	alpha).	The	learning	rate	and

momentum	are	two	parameters	that	we	must	provide	to	the	backpropagation	algorithm.
Choosing	values	for	learning	rate	and	momentum	is	very	important	to	the	performance	of
the	training.	Unfortunately,	the	process	for	determining	learning	rate	and	momentum	is
mostly	trial	and	error.

The	learning	rate	scales	the	gradient	and	can	slow	down	or	speed	up	learning.	A
learning	rate	below	0	will	slow	down	learning.	For	example,	a	learning	rate	of	0.5	would
decrease	every	gradient	by	50%.	A	learning	rate	above	1.0	would	accelerate	training.	In
reality,	the	learning	rate	is	almost	always	below	1.

Choosing	a	learning	rate	that	is	too	high	will	cause	your	neural	network	to	fail	to
converge	and	have	a	high	global	error	that	simply	bounces	around	instead	of	converging	to
a	low	value.	Choosing	a	learning	rate	that	is	too	low	will	cause	the	neural	network	to	take
a	great	deal	of	time	to	converge.

Like	the	learning	rate,	the	momentum	is	also	a	scaling	factor.	Although	it	is	optional,
momentum	determines	the	percent	of	the	previous	iteration’s	weight	change	that	should	be
applied	to	the	iteration.	If	you	do	not	want	to	use	momentum,	just	specify	a	value	of	0.

Momentum	is	a	technique	added	to	backpropagation	that	helps	the	training	escape
local	minima,	which	are	low	points	on	the	error	graph	that	are	not	the	true	global
minimum.	Backpropagation	has	a	tendency	to	find	its	way	into	a	local	minimum	and	not
find	its	way	back	out	again.	This	process	causes	the	training	to	converge	to	a	higher
undesirable	error.	Momentum	gives	the	neural	network	some	force	in	its	current	direction
and	may	allow	it	to	break	through	a	local	minimum.

Choosing	Learning	Rate	and	Momentum

Momentum	and	learning	rate	contribute	to	the	success	of	the	training,	but	they	are	not
actually	part	of	the	neural	network.	Once	training	is	complete,	the	trained	weights	remain
and	no	longer	utilize	momentum	or	the	learning	rate.	They	are	essentially	part	of	the
temporary	scaffolding	that	creates	a	trained	neural	network.	Choosing	the	correct
momentum	and	learning	rate	can	impact	the	effectiveness	of	your	training.

The	learning	rate	affects	the	speed	at	which	your	neural	network	trains.	Decreasing	the
learning	rate	makes	the	training	more	meticulous.	Higher	learning	rates	might	skip	past
optimal	weight	settings.	A	lower	training	rate	will	always	produce	better	results.	However,
lowering	the	training	rate	can	greatly	increase	runtime.	Lowering	the	learning	rate	as	the
network	trains	can	be	an	effective	technique.

You	can	use	the	momentum	to	combat	local	minima.	If	you	find	the	neural	network
stagnating,	a	higher	momentum	value	might	push	the	training	past	the	local	minimum	that
it	encountered.	Ultimately,	choosing	good	values	for	momentum	and	learning	rate	is	a
process	of	trial	and	error.	You	can	vary	both	as	training	progresses.	Momentum	is	often	set
to	0.9	and	the	learning	rate	to	0.1	or	lower.

Nesterov	Momentum

The	stochastic	gradient	descent	(SGD)	algorithm	can	sometimes	produce	erratic
results	because	of	the	randomness	introduced	by	the	mini-batches.	The	weights	might	get
a	very	beneficial	update	in	one	iteration,	but	a	poor	choice	of	training	elements	can	undo	it
in	the	next	mini-batch.	Therefore,	momentum	is	a	resourceful	tool	that	can	mitigate	this
sort	of	erratic	training	result.

Nesterov	momentum	is	a	relatively	new	application	of	a	technique	invented	by	Yu
Nesterov	in	1983	and	updated	in	his	book,	Introductory	Lectures	on	Convex	Optimization:
A	Basic	Course	(Nesterov,	2003).	This	technique	is	occasionally	referred	to	as	Nesterov’s
accelerated	gradient	descent.	Although	a	full	mathematical	explanation	of	Nesterov
momentum	is	beyond	the	scope	of	this	book,	we	will	present	it	for	the	weights	in
sufficient	detail	so	you	can	implement	it.	This	book’s	examples,	including	those	for	the
online	JavaScript,	contain	an	implementation	of	Nesterov	momentum.	Additionally,	the
book’s	website	contains	Javascript	that	output	example	calculations	for	the	weight	updates
of	Nesterov	momentum.

Equation	6.13	calculates	a	partial	weight	update	based	on	both	the	learning	rate	(ε,
epsilon)	and	momentum	(α,	alpha):

Equation	6.13:	Nesterov	Momentum

The	current	iteration	is	signified	by	t,	and	the	previous	iteration	by	t-1.	This	partial
weight	update	is	called	n	and	initially	starts	out	at	0.	Subsequent	calculations	of	the	partial
weight	update	are	based	on	the	previous	value	of	the	partial	weight	update.	The	partial
derivative	in	the	above	equation	is	the	gradient	of	the	error	function	at	the	current	weight.
Equation	6.14	shows	the	Nesterov	momentum	update	that	replaces	the	standard
backpropagation	weight	update	shown	earlier	in	Equation	6.12:

Equation	6.14:	Nesterov	Update

The	above	weight	change	is	calculated	as	an	amplification	of	the	partial	weight
change.	The	delta	weight	shown	in	the	above	equation	is	added	to	the	current	weight.
Stochastic	gradient	descent	(SGD)	with	Nesterov	momentum	is	one	of	the	most	effective
training	algorithms	for	deep	learning.

Chapter	Summary

This	chapter	introduced	classic	backpropagation	as	well	as	stochastic	gradient	descent
(SGD).	These	methods	are	all	based	on	gradient	descent.	In	other	words,	they	optimized
individual	weights	with	derivatives.	For	a	given	weight	value,	the	derivative	gave	the
program	the	slope	of	the	error	function.	The	slope	allowed	the	program	to	determine	how
to	change	the	weight	value.	Each	training	algorithm	interprets	this	slope,	or	gradient,
differently.

Despite	the	fact	that	backpropagation	is	one	of	the	oldest	training	algorithms,	it
remains	one	of	the	most	popular	ones.	Backpropagation	simply	adds	the	gradient	to	the
weight.	A	negative	gradient	will	increase	the	weight,	and	a	positive	gradient	will	decrease
the	weight.	We	scale	the	weight	by	the	learning	rate	in	order	to	prevent	the	weights	from
changing	too	rapidly.	A	learning	rate	of	0.5	would	mean	to	add	half	of	the	gradient	to	the
weight,	whereas	a	learning	rate	of	2.0	would	mean	to	add	twice	the	gradient.

There	are	a	number	of	variants	to	the	backpropagation	algorithm.	Some	of	these,	such
as	resilient	propagation,	are	somewhat	popular.	The	next	chapter	will	introduce	some
backpropagation	variants.	Though	these	variants	are	useful	to	know,	stochastic	gradient
descent	(SGD)	remains	the	most	common	deep	learning	training	algorithm.

Chapter	7:	Other	Propagation	Training
Resilient	Propagation
Levenberg-Marquardt
Hessian	and	Jacobean	Matrices

The	backpropagation	algorithm	has	influenced	many	training	algorithms,	such	as	the
stochastic	gradient	descent	(SGD),	introduced	in	the	previous	chapter.	For	most	purposes,
the	SGD	algorithm,	along	with	Nesterov	momentum,	is	a	good	choice	for	a	training
algorithm.	However,	other	options	exist.	In	this	chapter,	we	examine	two	popular
algorithms	inspired	by	elements	from	backpropagation.

To	make	use	of	these	two	algorithms,	you	do	not	need	to	understand	every	detail	of
their	implementation.	Essentially,	both	algorithms	accomplish	the	same	objective	as
backpropagation.	Thus,	you	can	substitute	them	for	backpropagation	or	stochastic	gradient
descent	(SGD)	in	most	neural	network	frameworks.	If	you	find	SGD	is	not	converging,
you	can	switch	to	resilient	propagation	(RPROP)	or	Levenberg-Marquardt	algorithm	in
order	to	experiment.	However,	you	can	skip	this	chapter	if	you	are	not	interested	in	the
actual	implementation	details	of	either	algorithm.

Resilient	Propagation

RPROP	functions	very	much	like	backpropagation.	Both	backpropagation	and	RPROP
must	first	calculate	the	gradients	for	the	weights	of	the	neural	network.	However,
backpropagation	and	RPROP	differ	in	the	way	they	use	the	gradients.	Reidmiller	&	Braun
(1993)	introduced	the	RPROP	algorithm.

One	important	feature	of	the	RPROP	algorithm	is	that	it	has	no	necessary	training
parameters.	When	you	utilize	backpropagation,	you	must	specify	the	learning	rate	and
momentum.	These	two	parameters	can	greatly	impact	the	effectiveness	of	your	training.
Although	RPROP	does	include	a	few	training	parameters,	you	can	almost	always	leave
them	at	their	default.

The	RPROP	protocol	has	several	variants.	Some	of	the	variants	are	listed	below:

RPROP+
RPROP-
iRPROP+
iRPROP-

We	will	focus	on	classic	RPROP,	as	described	by	Reidmiller	&	Braun	(1994).	The
other	four	variants	described	above	are	relatively	minor	adaptations	of	classic	RPROP.	In
the	next	sections,	we	will	describe	how	to	implement	the	classic	RPROP	algorithm.

RPROP	Arguments

As	previously	mentioned,	one	advantage	RPROP	has	over	backpropagation	is	that	you
don’t	need	to	provide	any	training	arguments	in	order	to	use	RPROP.	However,	this
doesn’t	mean	that	RPROP	lacks	configuration	settings.	It	simply	means	that	you	usually
do	not	need	to	change	the	configuration	settings	for	RPROP	from	their	defaults.	However,
if	you	really	want	to	change	them,	you	can	choose	among	the	following	configuration
settings:

Initial	Update	Values
Maximum	Step

As	you	will	see	in	the	next	section,	RPROP	keeps	an	array	of	update	values	for	the
weights,	which	determines	how	much	you	will	alter	each	weight.	This	change	is	similar	to
the	learning	rate	in	backpropagation,	but	it	is	much	better	because	the	algorithm	adjusts
the	update	value	of	every	weight	in	the	neural	network	as	training	progresses.	Although
some	backpropagation	algorithms	will	vary	the	learning	rate	and	momentum	as	learning
progresses,	most	will	use	a	single	learning	rate	for	the	entire	neural	network.	Therefore,
the	RPROP	approach	has	an	advantage	over	backpropagation	algorithms.

We	start	these	update	values	at	the	default	of	0.1,	according	to	the	initial	update	values
argument.	As	a	general	rule,	we	should	never	change	this	default.	However,	we	can	make
an	exception	to	this	rule	if	we	have	already	trained	the	neural	network.	In	the	case	of	a
previously	trained	neural	network,	some	of	the	initial	update	values	are	going	to	be	too
strong,	and	the	neural	network	will	regress	for	many	iterations	before	it	can	improve.	As	a
result,	a	trained	neural	network	may	benefit	from	a	much	smaller	initial	update.

Another	approach	for	an	already	trained	neural	network	is	to	save	the	update	values
once	training	stops	and	use	them	for	the	new	training.	This	method	will	allow	you	to
resume	training	without	the	initial	spike	in	errors	that	you	would	normally	see	when
resuming	resilient	propagation	training.	This	approach	will	only	work	if	you	are
continuing	resilient	propagation	on	an	already	trained	network.	If	you	were	previously
training	the	neural	network	with	a	different	training	algorithm,	then	you	will	be	able	to
restore	from	an	array	of	update	values.

As	training	progresses,	you	will	use	the	gradients	to	adjust	the	updates	up	and	down.
The	maximum	step	argument	defines	the	maximum	upward	step	size	that	the	gradient	can
take	over	the	update	values.	The	default	value	for	the	maximum	step	argument	is	50.	It	is
unlikely	that	you	will	need	to	change	the	value	of	this	argument.

In	addition	to	these	arguments,	RPROP	keeps	constants	during	processing.	These	are
values	that	you	can	never	change.	The	constants	are	listed	as	follows:

Delta	Minimum	(1e-6)
Negative	η	(Eta)	(0.5)

Positive	-η	(Eta)	(1.2)
Zero	Tolerance	(1e-16)

Delta	minimum	specifies	the	minimum	value	that	any	of	the	update	values	can	reach.
If	an	update	value	were	at	0,	it	would	never	be	able	to	increase	beyond	0.	We	will	describe
negative	and	positive	η	(eta)	in	the	next	sections.

The	zero	tolerance	defines	how	closely	a	number	should	reach	0	before	that	number	is
equal	to	0.	In	computer	programming,	it	is	typically	bad	practice	to	compare	a	floating-
point	number	to	0	because	the	number	would	have	to	equal	0	exactly.	Rather,	you	typically
see	if	the	absolute	value	of	a	number	is	below	an	arbitrarily	small	number.	A	sufficiently
small	number	is	considered	0.

Data	Structures

You	must	keep	several	data	structures	in	memory	while	you	perform	RPROP	training.
These	structures	are	all	arrays	of	floating-point	numbers.	They	are	summarized	here:

Current	Update	Values
Last	Weight	Change	Values
Current	Weight	Change	Values
Current	Gradient	Values
Previous	Gradient	Values

You	keep	the	current	update	values	for	the	training.	If	you	want	to	resume	training	at
some	point,	you	must	store	this	update	value	array.	Each	weight	has	one	update	value	that
cannot	go	below	the	minimum	delta	constant.	Likewise,	these	update	values	cannot
exceed	the	maximum	step	argument.

RPROP	must	keep	several	values	between	iterations.	You	must	also	track	the	last
weight	delta	value.	Backpropagation	keeps	the	previous	weight	delta	for	momentum.
RPROP	uses	this	delta	value	in	a	different	way	that	we	will	examine	in	the	next	section.
You	also	need	the	current	and	previous	gradients.	RPROP	needs	to	know	when	the	sign
changes	from	the	current	gradient	to	the	previous	gradient.	This	change	indicates	that	you
must	act	on	the	update	values.	We	will	discuss	these	actions	in	the	next	section.

Understanding	RPROP

In	the	previous	sections,	we	examined	the	arguments,	constants,	and	data	structures
necessary	for	RPROP.	In	this	section,	we	will	show	you	an	iteration	of	RPROP.	When	we
discussed	backpropagation	in	earlier	sections,	we	mentioned	the	online	and	batch	weight
update	methods.	However,	RPROP	does	not	support	online	training	so	all	weight	updates
for	RPROP	will	be	performed	in	batch	mode.	As	a	result,	each	iteration	of	RPROP	will
receive	gradients	that	are	the	sum	of	the	individual	gradients	of	each	training	set.	This
aspect	is	consistent	with	backpropagation	in	batch	mode.

Determine	Sign	Change	of	Gradient

At	this	point,	we	have	the	gradients	that	are	the	same	as	the	gradients	calculated	by	the
backpropagation	algorithm.	Because	we	use	the	same	process	to	obtain	gradients	in	both
RPROP	and	backpropagation,	we	will	not	repeat	it	here.	For	the	first	step,	we	compare	the
gradient	of	the	current	iteration	to	the	gradient	of	the	previous	iteration.	If	there	is	no
previous	iteration,	then	we	can	assume	that	the	previous	gradient	was	0.

To	determine	whether	the	gradient	sign	has	changed,	we	will	use	the	sign	(sgn)
function.	Equation	7.1	defines	the	sgn	function:

Equation	7.1:	The	Sign	Function	(sgn)

The	sgn	function	returns	the	sign	of	the	number	provided.	If	x	is	less	than	0,	the	result
is	-1.	If	x	is	greater	than	0,	then	the	result	is	1.	If	x	is	equal	to	0,	then	the	result	is	0.	We
usually	implement	the	sgn	function	to	use	a	tolerance	for	0,	since	it	is	nearly	impossible
for	floating-point	operations	to	hit	0	precisely	on	a	computer.

To	determine	whether	the	gradient	has	changed	sign,	we	use	Equation	7.2:

Equation	7.2:	Determine	Gradient	Sign	Change

Equation	7.2	will	result	in	a	constant	c.	We	evaluate	this	value	as	negative	or	positive
or	close	to	0.	A	negative	value	for	c	indicates	that	the	sign	has	changed.	A	positive	value
indicates	that	there	is	no	change	in	sign	for	the	gradient.	A	value	near	0	indicates	a	very
small	change	in	sign	or	almost	no	change	in	sign.

Consider	the	following	situations	for	these	three	outcomes:

-1	*	1	=	-1		(negative,	changed	from	negative	to	positive)

1	*	1	=	1	(positive,	no	change	in	sign)

1.0	*	0.000001	=	0.000001	(near	zero,	almost	changed	signs,	but	not	quite)

Now	that	we	have	calculated	the	constant	c,	which	gives	some	indication	of	sign
change,	we	can	calculate	the	weight	change.	The	next	section	includes	a	discussion	of	this
calculation.

Calculate	Weight	Change

Now	that	we	have	the	change	in	sign	of	the	gradient,	we	can	observe	what	happens	in
each	of	the	three	cases	mentioned	in	the	previous	section.	Equation	7.3	summarizes	these
three	cases:

Equation	7.3:	Calculate	RPROP	Weight	Change

This	equation	calculates	the	actual	weight	change	for	each	iteration.	If	the	value	of	c	is
positive,	then	the	weight	change	will	be	equal	to	the	negative	of	the	weight	update	value.
Similarly,	if	the	value	of	c	is	negative,	the	weight	change	will	be	equal	to	the	positive	of

the	weight	update	value.	Finally,	if	the	value	of	c	is	near	0,	there	will	be	no	weight	change.

Modify	Update	Values

We	use	the	weight	update	values	from	the	previous	section	to	update	the	weights	of	the
neural	network.	Every	weight	in	the	neural	network	has	a	separate	weight	update	value
that	works	much	better	than	the	single	learning	rate	of	backpropagation.	We	modify	these
weight	update	values	during	each	training	iteration,	as	seen	in	Equation	7.4:

Equation	7.4:	Modify	Update	Values

We	can	modify	the	weight	update	values	in	a	way	that	is	very	similar	to	the	changes	of
the	weights.	We	base	these	weight	update	values	on	the	previously	calculated	value	c,	just
like	the	weights.

If	the	value	of	c	is	positive,	then	we	multiply	the	weight	update	value	by	the	value	of
positive	+η	(eta).	Similarly,	if	the	value	of	c	is	negative,	we	multiply	the	weight	update
value	by	negative	-η	(eta).	Finally,	if	the	value	of	c	is	near	0,	then	we	don’t	change	the
weight	update	value.

The	JavaScript	example	site	for	this	book	has	examples	of	the	RPROP	update	as	well
as	examples	of	the	previous	equations	and	sample	calculations.

Levenberg-Marquardt	Algorithm

The	Levenberg–Marquardt	algorithm	(LMA)	is	a	very	efficient	training	method	for
neural	networks.	In	many	cases,	LMA	will	outperform	RPROP.	As	a	result,	every	neural
network	programmer	should	consider	this	training	algorithm.	Levenberg	(1940)
introduced	the	foundation	for	the	LMA,	and	Marquardt	(1963)	expanded	its	methods.

LMA	is	a	hybrid	algorithm	that	is	based	on	Newton’s	method	(GNA)	and	on	gradient
descent	(backpropagation).	Thus,	LMA	combines	the	strengths	of	GNA	and

backpropagation.	Although	gradient	descent	is	guaranteed	to	converge	to	a	local
minimum,	it	is	slow.	Newton’s	method	is	fast,	but	it	often	fails	to	converge.	By	using	a
damping	factor	to	interpolate	between	the	two,	we	create	a	hybrid	method.	To	understand
how	this	hybrid	works,	we	will	first	examine	Newton’s	method.	Equation	7.5	shows
Newton’s	method:

Equation	7.5:	Newton’s	Method	(GNA)

You	will	notice	several	variables	in	the	above	equation.	The	result	of	the	equation	is
that	you	can	apply	deltas	to	the	weights	of	the	neural	network.	The	variable	H	represents
the	Hessian,	which	we	will	discuss	in	the	next	section.	The	variable	g	represents	the
gradients	of	the	neural	network.	You	will	also	notice	the	-1	“exponent”	on	the	variable	H,
which	specifies	that	we	are	doing	a	matrix	decomposition	of	the	variables	H	and	g.

We	could	easily	spend	an	entire	chapter	on	matrix	decomposition.	However,	we	will
simply	treat	matrix	decomposition	as	a	black	box	atomic	operator	for	the	purposes	of	this
book.	Because	we	will	not	explain	how	to	calculate	matrix	decomposition,	we	have
included	a	common	piece	of	code	taken	from	the	JAMA	package.	Many	mathematical
computer	applications	have	used	this	public	domain	code,	adapted	from	a	FORTRAN
program.	To	perform	matrix	decomposition,	you	can	use	JAMA	or	another	source.

Although	several	types	of	matrix	decomposition	exist,	we	are	going	to	use	the	LU
decomposition,	which	requires	a	square	matrix.	This	decomposition	works	well	because
the	Hessian	matrix	has	the	same	number	of	rows	as	columns.	Every	weight	in	the	neural
network	has	a	row	and	column.	The	LU	decomposition	takes	the	Hessian,	which	is	a
matrix	of	the	second	derivative	of	the	partial	derivatives	of	the	output	of	each	of	the
weights.	The	LU	decomposition	solves	the	Hessian	by	the	gradients,	which	are	the	square
of	the	error	of	each	weight.	These	gradients	are	the	same	as	those	that	we	calculated	in
Chapter	6,	“Backpropagation	Training,”	except	they	are	squared.	Because	the	errors	are
squared,	we	must	use	the	sum	of	square	error	when	dealing	with	LMA.

Second	derivative	is	an	important	term	to	know.	It	is	the	derivative	of	the	first
derivative.	Recall	from	Chapter	6,	“Backpropagation	Training,”	that	the	derivative	of	a
function	is	the	slope	at	any	point.	This	slope	shows	the	direction	that	the	curve	is
approaching	for	a	local	minimum.	The	second	derivative	is	also	a	slope,	and	it	points	in	a
direction	to	minimize	the	first	derivative.	The	goal	of	Newton’s	method,	as	well	as	of	the
LMA,	is	to	reduce	all	of	the	gradients	to	0.

It’s	interesting	to	note	that	the	goal	does	not	include	the	error.	Newton’s	method	and
LMA	can	be	oblivious	to	the	error	because	they	try	to	reduce	all	the	gradients	to	0.	In
reality,	they	are	not	completely	oblivious	to	the	error	because	they	use	it	to	calculate	the
gradients.

Newton’s	method	will	converge	the	weights	of	a	neural	network	to	a	local	minimum,	a
local	maximum,	or	a	straddle	position.	We	achieve	this	convergence	by	minimizing	all	the
gradients	(first	derivatives)	to	0.	The	derivatives	will	be	0	at	local	minima,	maxima,	or

straddle	position.	Figure	7.1	shows	these	three	points:

Figure	7.1:	Local	Minimum,	Straddle	and	Local	Maximum

The	algorithm	implementation	must	ensure	that	local	maxima	and	straddle	points	are
filtered	out.	The	above	algorithm	works	by	taking	the	matrix	decomposition	of	the
Hessian	matrix	and	the	gradients.	The	Hessian	matrix	is	typically	estimated.	Several
methods	exist	to	estimate	the	Hessian	matrix.	However,	if	it	is	inaccurate,	it	can	harm
Newton’s	method.

LMA	enhances	Newton’s	algorithm	to	the	following	formula	in	Equation	7.6:

Equation	7.6:	Levenberg–Marquardt	Algorithm

In	this	equation,	we	add	a	damping	factor	multiplied	by	an	identity	matrix.	The
damping	factor	is	represented	by	λ	(lambda),	and	I	represents	the	identity	matrix,	which	is
a	square	matrix	with	all	the	values	at	0	except	for	a	northwest	(NW)	line	of	values	at	1.	As
lambda	increases,	the	Hessian	will	be	factored	out	of	the	above	equation.	As	lambda
decreases,	the	Hessian	becomes	more	significant	than	gradient	descent,	allowing	the
training	algorithm	to	interpolate	between	gradient	descent	and	Newton’s	method.	Higher
lambda	favors	gradient	descent;	lower	lambda	favors	Newton.	A	training	iteration	of	LMA
begins	with	a	low	lambda	and	increases	it	until	a	desirable	outcome	is	produced.

Calculation	of	the	Hessian

The	Hessian	matrix	is	a	square	matrix	with	rows	and	columns	equal	to	the	number	of
weights	in	the	neural	network.	Each	cell	in	this	matrix	represents	the	second	order
derivative	of	the	output	of	the	neural	network	with	respect	to	a	given	weight	combination.
Equation	7.7	shows	the	Hessian:

Equation	7.7:	The	Hessian	Matrix

It	is	important	to	note	that	the	Hessian	is	symmetrical	about	the	diagonal,	which	you
can	use	to	enhance	performance	of	the	calculation.	Equation	7.8	calculates	the	Hessian	by
calculating	the	gradients:

Equation	7.8:	Calculating	the	Gradients

The	second	derivative	of	the	above	equation	becomes	an	element	of	the	Hessian
matrix.	You	can	use	Equation	7.9	to	calculate	it:

Equation	7.9:	Calculating	the	Exact	Hessian

If	not	for	the	second	component,	you	could	easily	calculate	the	above	formula.
However,	this	second	component	involves	the	second	partial	derivative	and	that	is	difficult
to	calculate.	Because	the	component	is	not	important,	you	can	actually	drop	it	because	its
value	does	not	significantly	contribute	to	the	outcome.	While	the	second	partial	derivative
might	be	important	for	an	individual	training	case,	its	overall	contribution	is	not
significant.	The	second	component	of	Equation	7.9	is	multiplied	by	the	error	of	that
training	case.	We	assume	that	the	errors	in	a	training	set	are	independent	and	evenly
distributed	about	0.	On	an	entire	training	set,	they	should	essentially	cancel	each	other	out.
Because	we	are	not	using	all	components	of	the	second	derivative,	we	have	only	an
approximation	of	the	Hessian,	which	is	sufficient	to	get	a	good	training	result.

Equation	7.10	uses	the	approximation,	resulting	in	the	following:

Equation	7.10:	Approximating	the	Exact	Hessian

While	the	above	equation	is	only	an	approximation	of	the	true	Hessian,	the
simplification	of	the	algorithm	to	calculate	the	second	derivative	is	well	worth	the	loss	in
accuracy.	In	fact,	an	increase	in	λ	(lambda)	will	account	for	the	loss	of	accuracy.

To	calculate	the	Hessian	and	gradients,	we	must	determine	the	partial	first	derivatives
of	the	output	of	the	neural	network.	Once	we	have	these	partial	first	derivatives,	the	above
equations	allow	us	to	easily	calculate	the	Hessian	and	gradients.

Calculation	of	the	first	derivatives	of	the	output	of	the	neural	network	is	very	similar	to

the	process	that	we	used	to	calculate	the	gradients	for	backpropagation.	The	main
difference	is	that	we	take	the	derivative	of	the	output.	In	standard	backpropagation,	we
take	the	derivative	of	the	error	function.	We	will	not	review	the	entire	backpropagation
process	here.	Chapter	6,	“Backpropagation	Training,”	covers	backpropagation	and
gradient	calculation.

LMA	with	Multiple	Outputs

Some	implementations	of	LMA	support	only	a	single-output	neuron	because	LMA	has
roots	in	mathematical	function	approximation.	In	mathematics,	functions	typically	return
only	a	single	value.	As	a	result,	many	books	and	papers	do	not	contain	discussions	of
multiple-output	LMA.	However,	you	can	use	LMA	with	multiple	outputs.

Support	for	multiple-output	neurons	involves	summing	each	cell	of	the	Hessian	as	you
calculate	the	additional	output	neurons.	The	process	works	as	if	you	calculated	a	separate
Hessian	matrix	for	each	output	neuron	and	then	summed	the	Hessian	matrices	together.
Encog	(Heaton,	2015)	uses	this	approach,	and	it	leads	to	fast	convergence	times.

You	need	to	realize	that	you	will	not	use	every	connection	with	multiple	outputs.	You
will	need	to	calculate	independently	an	update	for	the	weight	of	each	output	neuron.
Depending	on	the	output	neuron	you	are	currently	calculating,	there	will	be	unused
connections	for	the	other	output	neurons.	Therefore,	you	must	set	the	partial	derivative	for
each	of	these	unused	connections	to	0	when	you	are	calculating	the	other	output	neurons.

For	example,	consider	a	neural	network	that	has	two	output	neurons	and	three	hidden
neurons.	Each	of	these	two	output	neurons	would	have	a	total	of	four	connections	from	the
hidden	layer.	Three	connections	result	from	the	three	hidden	neurons,	and	a	fourth	comes
from	the	bias	neuron.	This	segment	of	the	neural	network	would	resemble	Figure	7.2:

Figure	7.2:	Calculating	Output	Neuron	1

Here	we	are	calculating	output	neuron	1.	Notice	that	output	neuron	2	has	four
connections	that	must	have	their	partial	derivatives	treated	as	0.	Because	we	are

calculating	output	1	as	the	current	neuron,	it	only	uses	its	normal	partial	derivatives.	You
can	repeat	this	process	for	each	output	neuron.

Overview	of	the	LMA	Process

So	far,	we	have	examined	only	the	math	behind	LMA.	To	be	effective,	LMA	must	be
part	of	an	algorithm.	The	following	steps	summarize	the	LMA	process:

1.	Calculate	the	first	derivative	of	output	of	the	neural	network	with	

respect	to	every	weight.

2.	Calculate	the	Hessian.

3.	Calculate	the	gradients	of	the	error	(ESS)	with	respect	to	every	weight.

4.	Either	set	lambda	to	a	low	value	(first	iteration)	or	the	lambda	of	the	

previous	iteration.

5.	Save	the	weights	of	the	neural	network.

6.	Calculate	delta	weight	based	on	the	lambda,	gradients,	and	Hessian.

7.	Apply	the	deltas	to	the	weights	and	evaluate	error.

8.	If	error	has	improved,	end	the	iteration.

9.	If	error	has	not	improved,	increase	lambda	(up	to	a	max	lambda),	restore	

the	weights,	and	go	back	to	step	6.

As	you	can	see,	the	process	for	LMA	revolves	around	setting	the	lambda	value	low
and	then	slowly	increasing	it	if	the	error	rate	does	not	improve.	You	must	save	the	weights
at	each	change	in	lambda	so	that	you	can	restore	them	if	the	error	does	not	improve.

Chapter	Summary

Resilient	propagation	(RPROP)	solves	two	limitations	of	simple	backpropagation.
First,	the	program	assigns	each	weight	a	separate	learning	rate,	allowing	the	weights	to
learn	at	different	speeds.	Secondly,	RPROP	recognizes	that	while	the	gradient’s	sign	is	a
great	indicator	of	the	direction	to	move	the	weight,	the	size	of	the	gradient	does	not
indicate	how	far	to	move.	Additionally,	while	the	programmer	must	determine	an
appropriate	learning	rate	and	momentum	for	backpropagation,	RPROP	automatically	sets
similar	arguments.

Genetic	algorithms	(GAs)	are	another	means	of	training	neural	networks.	There	is	an
entire	family	of	neural	networks	that	use	GAs	to	evolve	every	aspect	of	the	neural
network,	from	weights	to	the	overall	structure.	This	family	includes	the	NEAT,	CPPN	and
HyperNEAT	neural	networks	that	we	will	discuss	in	the	next	chapter.	The	GA	used	by
NEAT,	CPPN	and	HyperNEAT	is	not	just	another	training	algorithm	because	these	neural
networks	introduce	a	new	architecture	based	on	the	feedforward	neural	networks
examined	so	far	in	this	book.

Chapter	8:	NEAT,	CPPN	&	HyperNEAT
NEAT
Genetic	Algorithms
CPPN
HyperNEAT

In	this	chapter,	we	discuss	three	closely	related	neural	network	technologies:	NEAT,
CPPN	and	HyperNEAT.	Kenneth	Stanley’s	EPLEX	group	at	the	University	of	Central
Florida	conducts	extensive	research	for	all	three	technologies.	Information	about	their
current	research	can	be	found	at	the	following	URL:

http://eplex.cs.ucf.edu/

NeuroEvolution	of	Augmenting	Topologies	(NEAT)	is	an	algorithm	that	evolves
neural	network	structures	with	genetic	algorithms.	The	compositional	pattern-producing
network	(CPPN)	is	a	type	of	evolved	neural	network	that	can	create	other	structures,	such
as	images	or	other	neural	networks.	Hypercube-based	NEAT,	or	HyperNEAT,	a	type	of
CPPN,	also	evolves	other	neural	networks.	Once	HyperNEAT	train	the	networks,	they	can
easily	handle	much	higher	resolutions	of	their	dimensions.

Many	different	frameworks	support	NEAT	and	HyperNEAT.	For	Java	and	C#,	we
recommend	our	own	Encog	implementation,	which	can	be	found	at	the	following	URL:

http://www.encog.org

You	can	find	a	complete	list	of	NEAT	implementations	at	Kenneth	Stanley’s	website:

http://www.cs.ucf.edu/~kstanley/neat.html

Kenneth	Stanley’s	website	also	includes	a	complete	list	of	HyperNEAT
implementations:

http://eplex.cs.ucf.edu/hyperNEATpage/

For	the	remainder	of	this	chapter,	we	will	explore	each	of	these	three	network	types.

NEAT	Networks

NEAT	is	a	neural	network	structure	developed	by	Stanley	and	Miikkulainen	(2002).
NEAT	optimizes	both	the	structure	and	weights	of	a	neural	network	with	a	genetic
algorithm	(GA).	The	input	and	output	of	a	NEAT	neural	network	are	identical	to	a	typical
feedforward	neural	network,	as	seen	in	previous	chapters	of	this	book.

A	NEAT	network	starts	out	with	only	bias	neurons,	input	neurons,	and	output	neurons.
Generally,	none	of	the	neurons	have	connections	at	the	outset.	Of	course,	a	completely
unconnected	network	is	useless.	NEAT	makes	no	assumptions	about	whether	certain	input

http://eplex.cs.ucf.edu/
http://www.encog.org
http://www.cs.ucf.edu/~kstanley/neat.html
http://eplex.cs.ucf.edu/hyperNEATpage/

neurons	are	actually	needed.	An	unneeded	input	is	said	to	be	statistically	independent	of
the	output.	NEAT	will	often	discover	this	independence	by	never	evolving	optimal
genomes	to	connect	to	that	statistically	independent	input	neuron.

Another	important	difference	between	a	NEAT	network	and	an	ordinary	feedforward
neural	network	is	that	other	than	the	input	and	output	layers,	NEAT	networks	do	not	have
clearly	defined	hidden	layers.	However,	the	hidden	neurons	do	not	organize	themselves
into	clearly	delineated	layers.	One	similarity	between	NEAT	and	feedforward	networks	is
that	they	both	use	a	sigmoid	activation	function.	Figure	8.1	shows	an	evolved	NEAT
network:

Figure	8.1:	NEAT	Network

Input	2	in	the	above	image	never	formed	any	connections	because	the	evolutionary
process	determined	that	input	2	was	unnecessary.	A	recurrent	connection	also	exists
between	hidden	3	and	hidden	2.	Hidden	4	has	a	recurrent	connection	to	itself.	Overall,	you
will	note	that	a	NEAT	network	lacks	a	clear	delineation	of	layers.

You	can	calculate	a	NEAT	network	in	exactly	the	same	way	as	you	do	for	a	regular
weighted	feedforward	network.	You	can	manage	the	recurrent	connections	by	running	the
NEAT	network	multiple	times.	This	works	by	having	the	recurrent	connection	input	start
at	0	and	update	them	each	type	you	cycle	through	the	NEAT	network.	Additionally,	you
must	define	a	hyper-parameter	to	specify	the	number	of	times	to	calculate	the	NEAT
network.	Figure	8.2	shows	recurrent	link	calculation	when	a	NEAT	network	is	instructed
to	cycle	three	times	to	calculate	recurrent	connections:

Figure	8.2:	Cycling	to	Calculate	Recurrences

The	above	diagram	shows	the	outputs	from	each	neuron,	over	each	connection,	for
three	cycles.	The	dashed	lines	indicate	the	additional	connections.	For	simplicity,	the
diagram	doesn’t	have	the	weights.	The	purpose	of	Figure	8.2	is	to	show	that	the	recurrent
output	stays	one	cycle	behind.

For	the	first	cycle,	the	recurrent	connection	provided	a	0	to	the	first	neuron	because
neurons	are	calculated	left	to	right.	The	first	cycle	has	no	value	for	the	recurrent
connection.	For	the	second	cycle,	the	recurrent	connection	now	has	the	output	0.3,	which
the	first	cycle	provided.	Cycle	3	follows	the	same	pattern,	taking	the	0.5	output	from	cycle
2	as	the	recurrent	connection’s	output.	Since	there	would	be	other	neurons	in	the
calculation,	we	have	contrived	these	values,	which	the	dashed	arrows	show	at	the	bottom.
However,	Figure	8.2	does	illustrate	that	the	recurrent	connections	are	cycled	through
previous	cycles.

NEAT	networks	extensively	use	genetic	algorithms,	which	we	examined	in	Artificial
Intelligence	for	Humans,	Volume	2:	Nature-Inspired	Algorithms.	Although	you	do	not
need	to	understand	completely	genetic	algorithms	to	follow	the	discussion	of	them	in	this
chapter,	you	can	refer	to	Volume	2,	as	needed.

NEAT	uses	a	typical	genetic	algorithm	that	includes:

Mutation	–	The	program	chooses	one	fit	individual	to	create	a	new	individual	that	has
a	random	change	from	its	parent.
Crossover	–	The	program	chooses	two	fit	individuals	to	create	a	new	individual	that
has	a	random	sampling	of	elements	from	both	parents.

All	genetic	algorithms	engage	the	mutation	and	crossover	genetic	operators	with	a
population	of	individual	solutions.	Mutation	and	crossover	choose	with	greater	probability
the	solutions	that	receive	higher	scores	from	an	objective	function.	We	explore	mutation
and	crossover	for	NEAT	networks	in	the	next	two	sections.

NEAT	Mutation

NEAT	mutation	consists	of	several	mutation	operations	that	can	be	performed	on	the
parent	genome.	We	discuss	these	operations	here:

Add	a	neuron:	By	selecting	a	random	link,	we	can	add	a	neuron.	A	new	neuron	and
two	links	replace	this	random	link.	The	new	neuron	effectively	splits	the	link.	The
program	selects	the	weights	of	each	of	the	two	new	links	to	provide	nearly	the	same
effective	output	as	the	link	being	replaced.
Add	a	link:	The	program	chooses	a	source	and	destination,	or	two	random	neurons.
The	new	link	will	be	between	these	two	neurons.	Bias	neurons	can	never	be	a
destination.	Output	neurons	cannot	be	a	source.	There	will	never	be	more	than	two
links	in	the	same	direction	between	the	same	two	neurons.
Remove	a	link:	Links	can	be	randomly	selected	for	removal.	If	there	are	no
remaining	links	interacting	with	them,	you	can	remove	the	hidden	neurons,	which	are
neurons	that	are	not	input,	output,	or	the	single	bias	neuron.
Perturb	a	weight:	You	can	choose	a	random	link.	Then	multiply	its	weight	by	a
number	from	a	normal	random	distribution	with	a	gamma	of	1	or	lower.	Smaller
random	numbers	will	usually	cause	a	quicker	convergence.	A	gamma	value	of	1	or
lower	will	specify	that	a	single	standard	deviation	will	sample	a	random	number	of	1
or	lower.

You	can	increase	the	probability	of	the	mutation	so	that	the	weight	perturbation	occurs
more	frequently,	thereby	allowing	fit	genomes	to	vary	their	weights	and	further	adapt
through	their	children.	The	structural	mutations	happen	with	much	less	frequency.	You	can
adjust	the	exact	frequency	of	each	operation	with	most	NEAT	implementations.

NEAT	Crossover

NEAT	crossover	is	more	complex	than	many	genetic	algorithms	because	the	NEAT
genome	is	an	encoding	of	the	neurons	and	connections	that	comprise	an	individual
genome.	Most	genetic	algorithms	assume	that	the	number	of	genes	is	consistent	across	all
genomes	in	the	population.	In	fact,	child	genomes	in	NEAT	that	result	from	both	mutation
and	crossover	may	have	a	different	number	of	genes	than	their	parents.	Managing	this
number	discrepancy	requires	some	ingenuity	when	you	implement	the	NEAT	crossover
operation.

NEAT	keeps	a	database	of	all	the	changes	made	to	a	genome	through	mutation.	These
changes	are	called	innovations,	and	they	exist	in	order	to	implement	mutations.	Each	time
an	innovation	is	added,	it	is	given	an	ID.	These	IDs	will	also	be	used	to	order	the
innovations.	We	will	see	that	it	is	important	to	select	the	innovation	with	the	lower	ID
when	choosing	between	two	innovations.

It	is	important	to	realize	that	the	relationship	between	innovations	and	mutations	is	not
one	to	one.	It	can	take	several	innovations	to	achieve	one	mutation.	The	only	two	types	of
innovation	are	creating	a	neuron	and	a	link	between	two	neurons.	One	mutation	might
result	from	multiple	innovations.	Additionally,	a	mutation	might	not	have	any	innovations.
Only	mutations	that	add	to	the	structure	of	the	network	will	generate	innovations.	The
following	list	summarizes	the	innovations	that	the	previously	mentioned	mutation	types
could	potentially	create.

Add	a	neuron:	One	new	neuron	innovation	and	two	new	link	innovations
Add	a	link:	One	new	link	innovation
Remove	a	link:	No	innovations
Perturb	a	weight:	No	innovations

You	also	need	to	note	that	NEAT	will	not	recreate	innovation	records	if	you	have
already	attempted	this	type	of	innovation.	Furthermore,	innovations	do	not	contain	any
weight	information;	innovations	only	contain	structural	information.

Crossover	for	two	genomes	occurs	by	considering	the	innovations,	and	this	trait	allows
NEAT	to	ensure	that	all	prerequisite	innovations	are	also	present.	A	naïve	crossover,	such
as	those	that	many	genetic	algorithms	use,	would	potentially	combine	links	with
nonexistent	neurons.	Listing	8.1	shows	the	entire	NEAT	crossover	function	in	pseudocode:

Listing	8.1:	NEAT	Crossover

def	neat_crossover(rnd,mom,dad):

#	Choose	best	genome	(by	objective	function),	if	tie,	choose	random.

		best	=	favor_parent(rnd,	mom,	dad)

		not_best	=	dad	if	(best	<>	mom)	else	mom

		selected_links	=	[]	

		selected_neurons	=	[]

#	current	gene	index	from	mom	and	dad

		cur_mom	=	0

		cur_dad	=	0

		selected_gene	=	None

#	add	in	the	input	and	bias,	they	should	always	be	here

always_count	=	mom.input_count	+	mom.output_count	+	1

for	i	from	0	to	always_count-1:

		selected_neurons.add(i,	best,	not_best)	

#	Loop	over	all	genes	in	both	mother	and	father

		while	(cur_mom	<	mom.num_genes)	or	(cur_dad	<	dad.num_genes):

#	The	mom	and	dad	gene	object

				mom_gene	=	None

				mom_innovation	=	-1

				dad_gene	=	None

				dad_innovation	=	-1

#	grab	the	actual	objects	from	mom	and	dad	for	the	specified

#	indexes

#	if	there	are	none,	then	None

				if	cur_mom	<	mom.num_genes:

						mom_gene	=	mom.links[cur_mom];

						mom_innovation	=	mom_gene.innovation_id

				if	cur_dad	<	dad.num_genes:

						dad_gene	=	dad.links[cur_dad]

						dad_gene	=	dad.links[cur_dad]

						dad_innovation_id	=	dad_gene.innovation_id

#	now	select	a	gene	fror	mom	or	dad.	This	gene	is	for	the	baby

#	Dad	gene	only,	mom	has	run	out

				if	mom_gene	==	None	and	dad_gene	<>	None:

						cur_dad	=	cur_dad	+	1

						selected_gene	=	dad_gene

#	Mom	gene	only,	dad	has	run	out

				else	if	dadGene	==	null	and	momGene	<>	null:

						cur_mom	=	cur_mom	+	1

						selected_gene	=	mom_gene

#	Mom	has	lower	innovation	number

				else	if	mom_innovation_id	<	dad_innovation_id:

						cur_mom	=	cur_mom	+	1

						if	best	==	mom:

								selected_gene	=	mom_gene

#	Dad	has	lower	innovation	number

				else	if	dad_innovation_id	<	mom_innovation_id:

						cur_dad	=	cur_dad	+	1

						if	best	==	dad:

								selected_gene	=	dad_gene

#	Mom	and	dad	have	the	same	innovation	number

#	Flip	a	coin.

				else	if	dad_innovation_id	==	mom_innovation_id:

						cur_dad	=	cur_dad	+	1

						cur_mom	=	cur_mom	+	1

						if	rnd.next_double()>0.5:

								selected_gene	=	dad_gene

						else:

								selected_gene	=	mom_gene

#	If	a	gene	was	chosen	for	the	child	then	process	it.

#	If	not,	the	loop	continues.

				if	selected_gene	<>	None:

#	Do	not	add	the	same	innovation	twice	in	a	row.

						if	selected_links.count	==	0:

								selected_links.add(selected_gene)

						else:

								if	selected_links[selected_links.count-1]

												.innovation_id	<>	selected_gene.innovation_id	{

										selected_links.add(selected_gene)

#	Check	if	we	already	have	the	nodes	referred	to	in

#	SelectedGene.

#	If	not,	they	need	to	be	added.

						selected_neurons.add(

								selected_gene.from_neuron_id,	best,	not_best)

						selected_neurons.add(

								selected_gene.to_neuron_id,	best,	not_best)

#	Done	looping	over	parent's	genes

		baby	=	new	NEATGenome(selected_links,	selected_neurons)

		return	baby

The	above	implementation	of	crossover	is	based	on	the	NEAT	crossover	operator
implemented	in	Encog.	We	provide	the	above	comments	in	order	to	explain	the	critical
sections	of	code.	The	primary	evolution	occurs	on	the	links	contained	in	the	mother	and
father.	Any	neurons	needed	to	support	these	links	are	brought	along	when	the	child

genome	is	created.	The	code	contains	a	main	loop	that	loops	over	both	parents,	thereby
selecting	the	most	suitable	link	gene	from	each	parent.	The	link	genes	from	both	parents
are	essentially	stitched	together	so	they	can	find	the	most	suitable	gene.	Because	the
parents	might	be	different	lengths,	one	will	likely	exhaust	its	genes	before	this	process	is
complete.

Each	time	through	the	loop,	a	gene	is	chosen	from	either	the	mother	or	father
according	to	the	following	criteria:

If	mom	or	dad	has	run	out,	choose	the	other.	Move	past	the	chosen	gene.
If	mom	has	a	lower	innovation	ID	number,	choose	mom	if	she	has	the	best	score.	In
either	case,	move	past	mom’s	gene.
If	dad	has	a	lower	innovation	ID	number,	choose	dad	if	he	has	the	best	score.	In
either	case,	move	past	dad’s	gene.
If	mom	and	dad	have	the	same	innovation	ID,	pick	one	randomly,	and	move	past
their	gene.

You	can	consider	that	the	mother	and	father’s	genes	are	both	on	a	long	tape.	A	marker
for	each	tape	holds	the	current	position.	According	to	the	rules	above,	the	marker	will
move	past	a	parent’s	gene.	At	some	point,	each	parent’s	marker	moves	to	the	end	of	the
tape,	and	that	parent	runs	out	of	genes.

NEAT	Speciation

Crossover	is	a	tricky	for	computers	to	properly	perform.	In	the	animal	and	plant
kingdoms,	crossover	occurs	only	between	members	of	the	same	species.	What	exactly	do
we	mean	by	species?	In	biology,	scientists	define	species	as	members	of	a	population	that
can	produce	viable	offspring.	Therefore,	a	crossover	between	a	horse	and	humming	bird
genome	would	be	catastrophically	unsuccessful.	Yet	a	naive	genetic	algorithm	would
certainly	try	something	just	as	disastrous	with	artificial	computer	genomes!

The	NEAT	speciation	algorithm	has	several	variants.	In	fact,	one	of	the	most	advanced
variants	can	group	the	population	into	a	predefined	number	of	clusters	with	a	type	of	k-
means	clustering.	You	can	subsequently	determine	the	relative	fitness	of	each	species.	The
program	gives	each	species	a	percentage	of	the	next	generation’s	population	count.	The
members	of	each	species	then	compete	in	virtual	tournaments	to	determine	which
members	of	the	species	will	be	involved	in	crossover	and	mutation	for	the	next	generation.

A	tournament	is	an	effective	way	to	select	parents	from	a	species.	The	program
performs	a	certain	number	of	trials.	Typically	we	use	five	trials.	For	each	trial,	the
program	selects	two	random	genomes	from	the	species.	The	fitter	of	each	genome
advances	to	the	next	trial.	This	process	is	very	efficient	for	threading,	and	it	is	also
biologically	plausible.	The	advantage	to	this	selection	method	is	that	the	winner	doesn’t
have	to	beat	the	best	genome	in	the	species.	It	has	to	beat	the	best	genome	in	the	trials.
You	must	run	a	tournament	for	each	parent	needed.	Mutation	requires	one	parent,	and

crossover	needs	two	parents.

In	addition	to	the	trials,	several	other	factors	determine	the	species	members	chosen
for	mutation	and	crossover.	The	algorithm	will	always	carry	one	or	more	elite	genomes	to
the	next	species.	The	number	of	elite	genomes	is	configurable.	The	program	gives	younger
genomes	a	bonus	so	they	have	a	chance	to	try	new	innovations.	Interspecies	crossover	will
occur	with	a	very	low	probability.

All	of	these	factors	together	make	NEAT	a	very	effective	neural	network	type.	NEAT
removes	the	need	to	define	how	the	hidden	layers	of	a	neural	network	are	structured.	The
absence	of	a	strict	structure	of	hidden	layers	allows	NEAT	neural	networks	to	evolve	the
connections	that	are	actually	needed.

CPPN	Networks

The	compositional	pattern-producing	network	(CPPN)	was	invented	by	Stanley	(2007)
and	is	a	variation	of	the	artificial	neural	network.	CPPN	recognizes	one	biologically
plausible	fact.	In	nature,	genotypes	and	phenotypes	are	not	identical.	In	other	words,	the
genotype	is	the	DNA	blueprint	for	an	organism.	The	phenotype	is	what	actually	results
from	that	plan.

In	nature,	the	genome	is	the	instructions	for	producing	a	phenotype	that	is	much	more
complex	than	the	genotype.	In	the	original	NEAT,	as	seen	in	the	last	section,	the	genome
describes	link	for	link	and	neuron	for	neuron	how	to	produce	the	phenotype.	However,
CPPN	is	different	because	it	creates	a	population	of	special	NEAT	genomes.	These
genomes	are	special	in	two	ways.	First,	CPPN	doesn’t	have	the	limitations	of	regular
NEAT,	which	always	uses	a	sigmoid	activation	function.	CPPN	can	use	any	of	the
following	activation	functions:

Clipped	linear
Bipolar	steepened	sigmoid
Gaussian
Sine
Others	you	might	define

You	can	see	these	activation	functions	in	Figure	8.3:

Figure	8.3:	CPPN	Activation	Functions

The	second	difference	is	that	the	NEAT	networks	produced	by	these	genomes	are	not
the	final	product.	They	are	not	the	phenotype.	However,	these	NEAT	genomes	do	know
how	to	create	the	final	product.

The	final	phenotype	is	a	regular	NEAT	network	with	a	sigmoid	activation	function.	We
can	use	the	above	four	activation	functions	only	for	the	genomes.	The	ultimate	phenotype
always	has	a	sigmoid	activation	function.

CPPN	Phenotype

CPPNs	are	typically	used	in	conjunction	with	images,	as	the	CPPN	phenotype	is
usually	an	image.	Though	images	are	the	usual	product	of	a	CPPN,	the	only	real
requirement	is	that	the	CPPN	compose	something,	thereby	earning	its	name	of
compositional	pattern-producing	network.	There	are	cases	where	a	CPPN	does	not
produce	an	image.	The	most	popular	non-image	producing	CPPN	is	HyperNEAT,	which	is
discussed	in	the	next	section.

Creating	a	genome	neural	network	to	produce	a	phenotype	neural	network	is	a
complex	but	worthwhile	endeavor.	Because	we	are	dealing	with	a	large	number	of	input
and	output	neurons,	the	training	times	can	be	considerable.	However,	CPPNs	are	scalable

and	can	reduce	the	training	times.

Once	you	have	evolved	a	CPPN	to	create	an	image,	the	size	of	the	image	(the
phenotype)	does	not	matter.	It	can	be	320x200,	640x480	or	some	other	resolution
altogether.	The	image	phenotype,	generated	by	the	CPPN	will	grow	to	the	size	needed.	As
we	will	see	in	the	next	section,	CPPNs	give	HyperNEAT	the	same	sort	of	scalability.

We	will	now	look	at	how	a	CPPN,	which	is	itself	a	NEAT	network,	produces	an
image,	or	the	final	phenotype.	The	NEAT	CPPN	should	have	three	input	values:	the
coordinate	on	the	horizontal	axis	(x),	the	coordinate	on	the	vertical	axis	(y),	and	the
distance	of	the	current	coordinate	from	the	center	(d).	Inputting	d	provides	a	bias	towards
symmetry.	In	biological	genomes,	symmetry	is	important.	The	output	from	the	CPPN
corresponds	to	the	pixel	color	at	the	x-coordinate	and	y-coordinate.	The	CPPN
specification	only	determines	how	to	process	a	grayscale	image	with	a	single	output	that
indicates	intensity.	For	a	full-color	image,	you	could	use	output	neurons	for	red,	green,
and	blue.	Figure	8.4	shows	a	CPPN	for	images:

Figure	8.4:	CPPN	for	Images

You	can	query	the	above	CPPN	for	every	x-coordinate	and	y-coordinate	needed.
Listing	8.2	shows	the	pseudocode	that	you	can	use	to	generate	the	phenotype:

Listing	8.2:	Generate	CPPN	Image

def	render_cppn(net,bitmap):

		for	y	from	1	to	bitmap.height:

				for	x	from	1	to	bitmap.width:

#	Normalize	x	and	y	to	-1,1

						norm_x	=	(2*(x/bitmap.width))-1

						norm_y	=	(2*(y/bitmap.height))-1

#	Distance	from	center

						d	=	sqrt((norm_x/2)^2	

				+	(norm_y	/2)^2)

#	Call	CPPN

						input	=	[x,y,d]

		color	=	net.compute(input)

#	Output	pixel

		bitmap.plot(x-1,y-1,	color)

The	above	code	simply	loops	over	every	pixel	and	queries	the	CPPN	for	the	color	at
that	location.	The	x-coordinate	and	y-coordinate	are	normalized	to	being	between	-1	and
+1.	You	can	see	this	process	in	action	at	the	Picbreeder	website	at	following	URL:

http://picbreeder.org/

Depending	on	the	complexity	of	the	CPPN,	this	process	can	produce	images	similar	to
Figure	8.5:

Figure	8.5:	A	CPPN-Produced	Image	(picbreeder.org)

http://picbreeder.org/

Picbreeder	allows	you	to	select	one	or	more	parents	to	contribute	to	the	next
generation.	We	selected	the	image	that	resembles	a	mouth,	as	well	as	the	image	to	the
right.	Figure	8.6	shows	the	subsequent	generation	that	Picbreeder	produced.

Figure	8.6:	A	CPPN-Produced	Image	(picbreeder.org)

CPPN	networks	handle	symmetry	just	like	human	bodies.	With	two	hands,	two
kidneys,	two	feet,	and	other	body	part	pairs,	the	human	genome	seems	to	have	a	hierarchy
of	repeated	features.	Instructions	for	creating	an	eye	or	various	tissues	do	not	exist.
Fundamentally,	the	human	genome	does	not	have	to	describe	every	detail	of	an	adult
human	being.	Rather,	the	human	genome	only	has	to	describe	how	to	build	an	adult
human	being	by	generalizing	many	of	the	steps.	This	greatly	simplifies	the	amount	of
information	that	is	needed	in	a	genome.

Another	great	feature	of	the	image	CPPN	is	that	you	can	create	the	above	images	at
any	resolution	and	without	retraining.	Because	the	x–coordinate	and	y–coordinate	are
normalized	to	between	-1	and	+1,	you	can	use	any	resolution.

HyperNEAT	Networks

HyperNEAT	networks,	invented	by	Stanley,	D’Ambrosio,	&	Gauci	(2009),	are	based
upon	the	CPPN;	however,	instead	of	producing	an	image,	a	HyperNEAT	network	creates
another	neural	network.	Just	like	the	CPPN	in	the	last	section,	HyperNEAT	can	easily
create	much	higher	resolution	neural	networks	without	retraining.

HyperNEAT	Substrate

One	interesting	hyper-parameter	of	the	HyperNEAT	network	is	the	substrate	that
defines	the	structure	of	a	HyperNEAT	network.	A	substrate	defines	the	x-coordinate	and
the	y-coordinate	for	the	input	and	output	neurons.	Standard	HyperNEAT	networks	usually
employ	two	planes	to	implement	the	substrate.	Figure	8.7	shows	the	sandwich	substrate,
one	of	the	most	common	substrates:

Figure	8.7:	HyperNEAT	Sandwich	Substrate

Together	with	the	above	substrate,	a	HyperNEAT	CPPN	is	capable	of	creating	the
phenotype	neural	network.	The	source	plane	contains	the	input	neurons,	and	the	target
plane	contains	the	output	neurons.	The	x-coordinate	and	the	y-coordinate	for	each	are	in
the	-1	to	+1	range.	There	can	potentially	be	a	weight	between	each	of	the	source	neurons
and	every	target	neuron.	Figure	8.8	shows	how	to	query	the	CPPN	to	determine	these
weights:

Figure	8.8:	CPPN	for	HyperNEAT

The	input	to	the	CPPN	consists	of	four	values:	x1,	y1,	x2,	and	y2.	The	first	two	values
x1	and	y1	specify	the	input	neuron	on	the	source	plane.	The	second	two	values	x2	and	y2
specify	the	input	neuron	on	the	target	plane.	HyperNEAT	allows	the	presence	of	as	many
different	input	and	output	neurons	as	desired,	without	retraining.	Just	like	the	CPPN	image
could	map	more	and	more	pixels	between	-1	and	+1,	so	too	can	HyperNEAT	pack	in	more
input	and	output	neurons.

HyperNEAT	Computer	Vision

Computer	vision	is	a	great	application	of	HyperNEAT,	as	demonstrated	by	the
rectangles	experiment	provided	in	the	original	HyperNEAT	paper	by	Stanley,	Kenneth	O.,
et	al.	(2009).	This	experiment	placed	two	rectangles	in	a	computer’s	vision	field.	Of	these
two	rectangles,	one	is	always	larger	than	the	other.	The	neural	network	is	trained	to	place	a
red	rectangle	near	the	center	of	the	larger	rectangle.	Figure	8.9	shows	this	experiment
running	under	the	Encog	framework:

Figure	8.9:	Boxes	Experiment	(11	resolution)

As	you	can	see	from	the	above	image,	the	red	rectangle	is	placed	directly	inside	of	the
larger	of	the	two	rectangles.	The	“New	Case”	button	can	be	pressed	to	move	the
rectangles,	and	the	program	correctly	finds	the	larger	rectangle.	While	this	works	quite
well	at	11x11,	the	size	can	be	increased	to	33x33.	With	the	larger	size,	no	retraining	is
needed,	as	shown	in	Figure	8.10:

Figure	8.10:	Boxes	Experiment	(33	resolution)

When	the	dimensions	are	increased	to	33x33,	the	neural	network	is	still	able	to	place
the	red	square	inside	of	the	larger	rectangle.

The	above	example	uses	a	sandwich	substrate	with	the	input	and	output	plane	both

equal	to	the	size	of	the	visual	field,	in	this	case	33x33.	The	input	plane	provides	the	visual
field.	The	neuron	in	the	output	plane	with	the	highest	output	is	the	program’s	guess	at	the
center	of	the	larger	rectangle.	The	fact	that	the	position	of	the	large	rectangle	does	not
confuse	the	network	shows	that	HyperNEAT	possesses	some	of	the	same	features	as	the
convolutional	neural	networks	that	we	will	see	in	Chapter	10,	“Convolutional	Networks.”

Chapter	Summary

This	chapter	introduced	NEAT,	CPPN,	and	HyperNEAT.	Kenneth	Stanley’s	EPLEX
group	at	the	University	of	Central	Florida	extensively	researches	all	three	technologies.
NeuroEvolution	of	Augmenting	Topologies	(NEAT)	is	an	algorithm	that	uses	genetic
algorithms	to	automatically	evolve	neural	network	structures.	Often	the	decision	of	the
structure	of	a	neural	network	can	be	one	of	the	most	complex	aspects	of	neural	network
design.	NEAT	neural	networks	can	evolve	their	own	structure	and	even	decide	what	input
features	are	important.

The	compositional	pattern-producing	network	(CPPN)	is	a	type	of	neural	network	that
is	evolved	to	create	other	structures,	such	as	images	or	other	neural	networks.	Image
generation	is	a	common	task	for	CPPNs.	The	Picbreeder	website	allows	new	images	to	be
bred	based	on	previous	images	generated	at	this	site.	CPPNs	can	generate	more	than	just
images.	The	HyperNEAT	algorithm	is	an	application	of	CPPNs	for	producing	neural
networks.

Hypercube-based	NEAT,	or	HyperNEAT,	is	a	type	of	CPPN	that	evolves	other	neural
networks	that	can	easily	handle	much	higher	resolutions	of	their	dimensions	as	soon	as
they	are	trained.	HyperNEAT	allows	a	CPPN	to	be	evolved	that	can	create	neural
networks.	Being	able	to	generate	the	neural	network	allows	you	to	introduce	symmetry,
and	it	gives	you	the	ability	to	change	the	resolution	of	the	problem	without	retraining.

Neural	networks	have	risen	and	declined	in	popularity	several	times	since	their
introduction.	Currently,	there	is	interest	in	neural	networks	that	use	deep	learning.	In	fact,
deep	learning	involves	several	different	concepts.	The	next	chapter	introduces	deep	neural
networks,	and	we	expand	this	topic	throughout	the	remainder	of	this	book.

Chapter	9:	Deep	Learning
Convolutional	Neural	Networks	&	Dropout
Tools	for	Deep	Learning
Contrastive	Divergence
Gibb’s	Sampling

Deep	learning	is	a	relatively	new	advancement	in	neural	network	programming	and
represents	a	way	to	train	deep	neural	networks.	Essentially,	any	neural	network	with	more
than	two	layers	is	deep.	The	ability	to	create	deep	neural	networks	has	existed	since	Pitts
(1943)	introduced	the	multilayer	perceptron.	However,	we	haven’t	been	able	to	effectively
train	neural	networks	until	Hinton	(1984)	became	the	first	researcher	to	successfully	train
these	complex	neural	networks.

Deep	Learning	Components

Deep	learning	is	comprised	of	a	number	of	different	technologies,	and	this	chapter	is
an	overview	of	these	technologies.	Subsequent	chapters	will	contain	more	information	on
these	technologies.	Deep	learning	typically	includes	the	following	features:

Partially	Labeled	Data
Rectified	Linear	Units	(ReLU)
Convolutional	Neural	Networks
Dropout

The	succeeding	sections	provide	an	overview	of	these	technologies.

Partially	Labeled	Data

Most	learning	algorithms	are	either	supervised	or	unsupervised.	Supervised	training
data	sets	provide	an	expected	outcome	for	each	data	item.	Unsupervised	training	data	sets
do	not	provide	an	expected	outcome,	which	is	called	a	label.	The	problem	is	that	most	data
sets	are	a	mixture	of	labeled	and	unlabeled	data	items.

To	understand	the	difference	between	labeled	and	unlabeled	data,	consider	the
following	real-life	example.	When	you	were	a	child,	you	probably	saw	many	vehicles	as
you	grew	up.	Early	in	your	life,	you	did	not	know	if	you	were	seeing	a	car,	truck,	or	van.
You	simply	knew	that	you	were	seeing	some	sort	of	vehicle.	You	can	consider	this
exposure	as	the	unsupervised	part	of	your	vehicle-learning	journey.	At	that	point,	you

learned	commonalities	of	features	among	these	vehicles.

Later	in	your	learning	journey,	you	were	given	labels.	As	you	encountered	different
vehicles,	an	adult	told	you	that	you	were	looking	at	a	car,	truck,	or	van.	The	unsupervised
training	created	your	foundation,	and	you	built	upon	that	knowledge.	As	you	can	see,
supervised	and	unsupervised	learning	are	very	common	in	real	life.	In	its	own	way,	deep
learning	does	well	with	a	combination	of	unsupervised	and	supervised	learning	data.

Some	deep	learning	architectures	handle	partially	labeled	data	and	initialize	the
weights	by	using	the	entire	training	set	without	the	outcomes.	You	can	independently	train
the	individual	layers	without	the	labels.	Because	you	can	train	the	layers	in	parallel,	this
process	is	scalable.	Once	the	unsupervised	phase	has	initialized	these	weights,	the
supervised	phase	can	tweak	them.

Rectified	Linear	Units

The	Rectified	linear	unit	(ReLU)	has	become	the	standard	activation	function	for	the
hidden	layers	of	a	deep	neural	network.	However,	the	restricted	Boltzmann	machine
(RBM)	is	the	standard	for	the	deep	belief	neural	network	(DBNN).	In	addition	to	the
ReLU	activation	functions	for	the	hidden	layers,	deep	neural	networks	will	use	a	linear	or
softmax	activation	function	for	the	output	layer,	depending	on	if	the	neural	network
supports	regression	or	classification.	We	introduced	ReLUs	in	Chapter	1,	“Neural
Network	Basics,”	and	expanded	upon	this	information	in	“Chapter	6,	Backpropagation
Training.”

Convolutional	Neural	Networks

Convolution	is	an	important	technology	that	is	often	combined	with	deep	learning.
Hinton	(2014)	introduced	convolution	to	allow	image-recognition	networks	to	function
similarly	to	biological	systems	and	achieve	more	accurate	results.	One	approach	is	sparse
connectivity	in	which	we	do	not	create	every	possible	weight.	Figure	9.1	shows	sparse
connectivity:

Figure	9.1:	Sparse	Connectivity

A	regular	feedforward	neural	network	usually	creates	every	possible	weight
connection	between	two	layers.	In	deep	learning	terminology,	we	refer	to	these	layers	as
dense	layers.	In	addition	to	not	representing	every	weight	possible,	convolutional	neural
networks	will	also	share	weights,	as	seen	in	Figure	9.2:

Figure	9.2:	Shared	Weights

As	you	can	see	in	the	above	figure,	the	neurons	share	only	three	individual	weights.
The	red	(solid),	black	(dashed),	and	blue	(dotted)	lines	indicate	the	individual	weights.
Sharing	weights	allows	the	program	to	store	complex	structures	while	maintaining
memory	and	computation	efficiency.

This	section	presented	an	overview	of	convolutional	neural	networks.	Chapter	10,
“Convolutional	Neural	Networks,”	is	devoted	entirely	to	this	network	type.

Neuron	Dropout

Dropout	is	a	regularization	technique	that	holds	many	benefits	for	deep	learning.	Like
most	regularization	techniques,	dropout	can	prevent	overfitting.	You	can	also	apply
dropout	to	a	neural	network	in	a	layer-by-layer	fashion	as	you	do	in	convolution.	You
must	designate	a	single	layer	as	a	dropout	layer.	In	fact,	you	can	mix	these	dropout	layers
with	regular	layers	and	convolutional	layers	in	the	neural	network.	Never	mix	the	dropout
and	convolutional	layers	within	a	single	layer.

Hinton	(2012)	introduced	dropout	as	a	simple	and	effective	regularization	algorithm	to
reduce	overfitting.	Dropout	works	by	removing	certain	neurons	in	the	dropout	layer.	The
act	of	dropping	these	neurons	prevents	other	neurons	from	becoming	overly	dependent	on
the	dropped	neurons.	The	program	removes	these	chosen	neurons,	along	with	all	of	their
connections.	Figure	9.3	illustrates	this	process:

Figure	9.3:	Dropout	Layer

From	left	to	right,	the	above	neural	network	contains	an	input	layer,	a	dropout	layer,
and	an	output	layer.	The	dropout	layer	has	removed	several	of	the	neurons.	The	circles,
made	of	dotted	lines,	indicate	the	neurons	that	the	dropout	algorithm	removed.	The	dashed
connector	lines	indicate	the	weights	that	the	dropout	algorithm	removed	when	it
eliminated	the	neurons.

Both	dropout	and	other	forms	of	regularization	are	extensive	topics	in	the	field	of
neural	networks.	Chapter	12,	“Dropout	and	Regularization,”	covers	regularization	with
particular	focus	on	dropout.	That	chapter	also	contains	an	explanation	on	the	L1	and	L2
regularization	algorithms.	L1	and	L2	discourage	neural	networks	from	the	excessive	use
of	large	weights	and	the	inclusion	of	certain	irrelevant	inputs.	Essentially,	a	single	neural
network	commonly	uses	dropout	as	well	as	other	regularization	algorithms.

GPU	Training

Hinton	(1987)	introduced	a	very	novel	way	to	train	the	deep	belief	neural	network
(DBNN)	efficiently.	We	examine	this	algorithm	and	DBNNs	later	in	this	chapter.	As
mentioned	previously,	deep	neural	networks	have	existed	almost	as	long	as	the	neural
network.	However,	until	Hinton’s	algorithm,	no	effective	way	to	train	deep	neural
networks	existed.	The	backpropagation	algorithms	are	very	slow,	and	the	vanishing
gradient	problem	hinders	the	training.

The	graphics	processing	unit	(GPU),	the	part	of	the	computer	that	is	responsible	for
graphics	display,	is	the	way	that	researchers	solved	the	training	problem	of	feedforward
neural	networks.	Most	of	us	are	familiar	with	GPUs	because	of	modern	video	games	that
utilize	3D	graphics.	Rendering	these	graphical	images	is	mathematically	intense,	and,	to
perform	these	operations,	early	computers	relied	on	the	central	processing	unit	(CPU).
However,	this	approach	was	not	effective.	The	graphics	systems	in	modern	video	games
require	dedicated	circuitry,	which	became	the	GPU,	or	video	card.	Essentially,	modern
GPUs	are	computers	that	function	within	your	computer.

As	researchers	discovered,	the	processing	power	contained	in	a	GPU	can	be	harnessed
for	mathematically	intense	tasks,	such	as	neural	network	training.	We	refer	to	this
utilization	of	the	GPU	for	general	computing	tasks,	aside	from	computer	graphics,	as
general-purpose	use	of	the	GPU	(GPGPU).	When	applied	to	deep	learning,	the	GPU
performs	extraordinarily	well.	Combining	it	with	ReLU	activation	functions,
regularization,	and	regular	backpropagation	can	produce	amazing	results.

However,	GPGPU	can	be	difficult	to	use.	Programs	written	for	the	GPU	must	employ
a	very	low-level	programming	language	called	C99.	This	language	is	very	similar	to	the
regular	C	programming	language.	However,	in	many	ways,	the	C99	required	by	the	GPU
is	much	more	difficult	than	the	regular	C	programming	language.	Furthermore,	GPUs	are
good	only	at	certain	tasks—even	those	conducive	to	the	GPU	because	optimizing	the	C99
code	is	challenging.	GPUs	must	balance	several	classes	of	memory,	registers,	and
synchronization	of	hundreds	of	processor	cores.	Additionally,	GPU	processing	has	two
competing	standards—CUDA	and	OpenCL.	Two	standards	create	more	processes	for	the
programmer	to	learn.

Fortunately,	you	do	not	need	to	learn	GPU	programming	to	exploit	its	processing
power.	Unless	you	are	willing	to	devote	a	considerable	amount	of	effort	to	learn	the
nuances	of	a	complex	and	evolving	field,	we	do	not	recommend	that	you	learn	to	program
the	GPU	because	it	is	quite	different	from	CPU	programming.	Good	techniques	that
produce	efficient,	CPU-based	programs	will	often	produce	horribly	inefficient	GPU
programs.	The	reverse	is	also	true.	If	you	would	like	to	use	GPU,	you	should	work	with	an
off-the-shelf	package	that	supports	it.	If	your	needs	do	not	fit	into	a	deep	learning	package,
you	might	consider	using	a	linear	algebra	package,	such	as	CUBLAS,	which	contains
many	highly	optimized	algorithms	for	the	sorts	of	linear	algebra	that	machine	learning

commonly	requires.

The	processing	power	of	a	highly	optimized	framework	for	deep	learning	and	a	fast
GPU	can	be	amazing.	GPUs	can	achieve	outstanding	results	based	on	sheer	processing
power.	In	2010,	the	Swiss	AI	Lab	IDSIA	showed	that,	despite	the	vanishing	gradient
problem,	the	superior	processing	power	of	GPUs	made	backpropagation	feasible	for	deep
feedforward	neural	networks	(Ciresan	et	al.,	2010).	The	method	outperformed	all	other
machine	learning	techniques	on	the	famous	MNIST	handwritten	digit	problem.

Tools	for	Deep	Learning

One	of	the	primary	challenges	of	deep	learning	is	the	processing	time	to	train	a
network.	We	often	run	training	algorithms	for	many	hours,	or	even	days,	seeking	neural
networks	that	fit	well	to	the	data	sets.	We	use	several	frameworks	for	our	research	and
predictive	modeling.	The	examples	in	this	book	also	utilize	these	frameworks,	and	we	will
present	all	of	these	algorithms	in	sufficient	detail	for	you	to	create	your	own
implementation.	However,	unless	your	goal	is	to	conduct	research	to	enhance	deep
learning	itself,	you	are	best	served	by	working	with	an	established	framework.	Most	of
these	frameworks	are	tuned	to	train	very	fast.

We	can	divide	the	examples	from	this	book	into	two	groups.	The	first	group	shows	you
how	to	implement	a	neural	network	or	to	train	an	algorithm.	However,	most	of	the
examples	in	this	book	are	based	on	algorithms,	and	we	examine	the	algorithm	at	its	lowest
level.

Application	examples	are	the	second	type	of	example	contained	in	this	book.	These
higher-level	examples	show	how	to	use	neural	network	and	deep	learning	algorithms.
These	examples	will	usually	utilize	one	of	the	frameworks	discussed	in	this	section.	In	this
way,	the	book	strikes	a	balance	between	theory	and	real-world	application.

H2O

H2O	is	a	machine	learning	framework	that	supports	a	wide	variety	of	programming
languages.	Though	H2O	is	implemented	in	Java,	it	is	designed	as	a	web	service.	H2O	can
be	used	with	R,	Python,	Scala,	Java,	and	any	language	that	can	communicate	with	H2O’s
REST	API.

Additionally,	H2O	can	be	used	with	Apache	Spark	for	big	data	and	big	compute
operations.	The	Sparking	Water	package	allows	H2O	to	run	large	models	in	memory
across	a	grid	of	computers.	For	more	information	about	H2O,	refer	to	the	following	URL:

http://0xdata.com/product/deep-learning/

In	addition	to	deep	learning,	H2O	supports	a	variety	of	other	machine	learning	models,

http://0xdata.com/product/deep-learning/

such	as	logistic	regression,	decision	trees,	and	gradient	boosting.

Theano

Theano	is	a	mathematical	package	for	Python,	similar	to	the	widely	used	Python
package,	Numpy	(J.	Bergstra,	O.	Breuleux,	F.	Bastien,	et	al.,	J.	Bergstra,	O.	Breuleux,	F.
Bastien,	2012).	Like	Numpy,	Theano	primarily	targets	mathematics.	Though	Theano	does
not	directly	implement	deep	neural	networks,	it	provides	all	of	the	mathematical	tools
necessary	for	the	programmer	to	create	deep	neural	network	applications.	Theano	also
directly	supports	GPGPU.	You	can	find	the	Theano	package	at	the	following	URL:

http://deeplearning.net/software/theano/

The	creators	of	Theano	also	wrote	an	extensive	tutorial	for	deep	learning,	using
Theano	that	can	be	found	at	the	following	URL:

http://deeplearning.net/

Lasagne	and	NoLearn

Because	Theano	does	not	directly	support	deep	learning,	several	packages	have	been
built	upon	Theano	to	make	it	easy	for	the	programmer	to	implement	deep	learning.	One
pair	of	packages,	often	used	together,	is	Lasagne	and	Nolearn.	Nolearn	is	a	package	for
Python	that	provides	abstractions	around	several	machine	learning	algorithms.	In	this	way,
Nolearn	is	similar	to	the	popular	framework,	Scikit-Learn.	While	Scikit-Learn	focuses
widely	on	machine	learning,	Nolearn	specializes	on	neural	networks.	One	of	the	neural
network	packages	supported	by	Nolearn	is	Lasagne,	which	provides	deep	learning	and	can
be	found	at	the	following	URL:

https://pypi.python.org/pypi/Lasagne/0.1dev

You	can	access	the	Nolearn	package	at	the	following	URL:

https://github.com/dnouri/nolearn

The	deep	learning	framework	Lasange	takes	its	name	from	the	Italian	food	lasagna.
The	spellings	“lasange”	and	“lasagna”	are	both	considered	valid	spellings	of	the	Italian
food.	In	the	Italian	language,	“lasange”	is	singular,	and	“lasagna”	is	the	plural	form.
Regardless	of	the	spelling	used,	lasagna	is	a	good	name	for	a	deep	learning	framework.
Figure	9.4	shows	that,	like	a	deep	neural	network,	lasagna	is	made	up	of	many	layers:

http://deeplearning.net/software/theano/
http://deeplearning.net/
https://pypi.python.org/pypi/Lasagne/0.1dev
https://github.com/dnouri/nolearn

Figure	9.4:	Lasagna	Layers

ConvNetJS

Deep	learning	support	has	also	been	created	for	Javascript.	The	ConvNetJS	package
implements	many	deep	learning	algorithms,	particularly	in	the	area	of	convolutional
neural	networks.	ConvNetJS	primarily	targets	the	creation	of	deep	learning	examples	on
websites.	We	used	ConvNetJS	to	provide	many	of	the	deep	learning	JavaScript	examples
on	this	book’s	website:

http://cs.stanford.edu/people/karpathy/convnetjs/

http://cs.stanford.edu/people/karpathy/convnetjs/

Deep	Belief	Neural	Networks

The	deep	belief	neural	network	(DBNN)	was	one	of	the	first	applications	of	deep
learning.	A	DBNN	is	simply	a	regular	belief	network	with	many	layers.	Belief	networks,
introduced	by	Neil	in	1992	are	different	from	regular	feedforward	neural	networks.	Hinton
(2007)	describes	DBNNs	as	“probabilistic	generative	models	that	are	composed	of
multiple	layers	of	stochastic,	latent	variables.”	Because	this	technical	description	is
complicated,	we	will	define	some	terms.

Probabilistic	–	DBNNs	are	used	to	classify,	and	their	output	is	the	probability	that	an
input	belongs	to	each	class.
Generative	–	DBNNs	can	produce	plausible,	randomly	created	values	for	the	input
values.	Some	DBNN	literatures	refer	to	this	trait	as	dreaming.
Multiple	layers	–	Like	a	neural	network,	DBNNs	can	be	made	of	multiple	layers.
Stochastic,	latent	variables	–	DBNNs	are	made	up	of	Boltzmann	machines	that
produce	random	(stochastic)	values	that	cannot	be	directly	observed	(latent).

The	primary	differences	between	a	DBNN	and	a	feedforward	neural	network	(FFNN)
are	summarized	as	follows:

Input	to	a	DBNN	must	be	binary;	input	to	a	FFNN	is	a	decimal	number.
The	output	from	a	DBNN	is	the	class	to	which	the	input	belongs;	the	output	from	a
FFNN	can	be	a	class	(classification)	or	a	numeric	prediction	(regression).
DBNNs	can	generate	plausible	input	based	on	a	given	outcome.	FFNNs	cannot
perform	like	the	DBNNs.

These	are	important	differences.	The	first	bullet	item	is	one	of	the	most	limiting
factors	of	DBNNs.	The	fact	that	a	DBNN	can	accept	only	binary	input	often	severely
limits	the	type	of	problem	that	it	can	tackle.	You	also	need	to	note	that	a	DBNN	can	be
used	only	for	classification	and	not	for	regression.	In	other	words,	a	DBNN	could	classify
stocks	into	categories	such	as	buy,	hold,	or	sell;	however,	it	could	not	provide	a	numeric
prediction	about	the	stock,	such	as	the	amount	that	may	be	attained	over	the	next	30	days.
If	you	need	any	of	these	features,	you	should	consider	a	regular	deep	feedforward
network.

Compared	to	feedforward	neural	networks,	DBNNs	may	initially	seem	somewhat
restrictive.	However,	they	do	have	the	ability	to	generate	plausible	input	cases	based	on	a
given	output.	One	of	the	earliest	DBNN	experiments	was	to	have	a	DBNN	classify	ten
digits,	using	handwritten	samples.	These	digits	were	from	the	classic	MNIST	handwritten
digits	data	set	that	was	included	in	this	book’s	introduction.	Once	the	DBNN	is	trained	on
the	MNIST	digits,	it	can	produce	new	representations	of	each	digit,	as	seen	in	Figure	9.5:

Figure	9.5:	DBNN	Dreaming	of	Digits

The	above	digits	were	taken	from	Hinton’s	(2006)	deep	learning	paper.	The	first	row
shows	a	variety	of	different	zeros	that	the	DBNN	generated	from	its	training	data.

The	restricted	Boltzmann	machine	(RBM)	is	the	center	of	the	DBNN.	Input	provided
to	the	DBNN	passes	through	a	series	of	stacked	RBMs	that	make	up	the	layers	of	the
network.	Creating	additional	RBM	layers	causes	deeper	DBNNs.	Though	RBMs	are
unsupervised,	the	desire	is	for	the	resulting	DBNN	to	be	supervised.	To	accomplish	the
supervision,	a	final	logistic	regression	layer	is	added	to	distinguish	one	class	from	another.
In	the	case	of	Hinton’s	experiment,	shown	in	Figure	9.6,	the	classes	are	the	ten	digits:

Figure	9.6:	Deep	Belief	Neural	Network	(DBNN)

The	above	diagram	shows	a	DBNN	that	uses	the	same	hyper-parameters	as	Hinton’s
experiment.	Hyper-parameters	specify	the	architecture	of	a	neural	network,	such	as	the
number	of	layers,	hidden	neuron	counts,	and	other	settings.	Each	of	the	digit	images
presented	to	the	DBNN	is	28x28	pixels,	or	vectors	of	784	pixels.	The	digits	are
monochrome	(black	&	white)	so	these	784	pixels	are	single	bits	and	are	thus	compatible
with	the	DBNN’s	requirement	that	all	input	be	binary.	The	above	network	has	three	layers
of	stacked	RBMs,	containing	500	neurons,	a	second	500-neuron	layer,	and	2,000	neurons,
respectively.

The	following	sections	discuss	a	number	of	algorithms	used	to	implement	DBNNs.

Restricted	Boltzmann	Machines

Because	Chapter	3,	“Hopfield	&	Boltzmann	Machines,”	includes	a	discussion	of
Boltzmann	machines,	we	will	not	repeat	this	material	here.	This	chapter	deals	with	the
restricted	version	of	the	Boltzmann	machine	and	stacking	these	RBMs	to	achieve	depth.
Figure	2.10,	from	Chapter	3,	shows	an	RBM.	The	primary	difference	with	an	RBM	is	that
the	visible	(input)	neurons	and	the	hidden	(output)	neurons	have	the	only	connections.	In
the	case	of	a	stacked	RBM,	the	hidden	units	become	the	output	to	the	next	layer.	Figure
9.7	shows	how	two	Boltzmann	machines	are	stacked:

Figure	9.7:	Stacked	RBMs

We	can	calculate	the	output	from	an	RBM	exactly	as	shown	in	Chapter	3,	“Hopfield	&
Boltzmann	Machines,”	in	Equation	3.6.	The	only	difference	is	now	we	have	two
Boltzmann	machines	stacked.	The	first	Boltzmann	machine	receives	three	inputs	passed	to
its	visible	units.	The	hidden	units	pass	their	output	directly	to	the	two	inputs	(visible	units)
of	the	second	RBM.	Notice	that	there	are	no	weights	between	the	two	RBMs,	and	the
output	from	the	H1	and	H2	units	in	RBM1	pass	directly	to	I1	and	I2	from	RBM2.

Training	a	DBNN

The	process	of	training	a	DBNN	requires	a	number	of	steps.	Although	the
mathematics	behind	this	process	can	become	somewhat	complex,	you	don’t	need	to
understand	every	detail	for	training	DBNNs	in	order	to	use	them.	You	just	need	to	know
the	following	key	points:

DBNNs	undergo	supervised	and	unsupervised	training.
During	the	unsupervised	portion,	the	DBNN	uses	training	data	without	their	labels,
which	allows	DBNNs	to	have	a	mix	of	supervised	and	unsupervised	data.
During	the	supervised	portion,	only	training	data	with	labels	are	used.
Each	DBNN	layer	is	trained	independently	during	the	unsupervised	portion.
It	is	possible	to	train	the	DBNN	layers	concurrently	(with	threads)	during	the
unsupervised	portion.
After	the	unsupervised	portion	is	complete,	the	output	from	the	layers	is	refined	with
supervised	logistic	regression.
The	top	logistic	regression	layer	predicts	the	class	to	which	the	input	belongs.

Armed	with	this	knowledge,	you	can	skip	ahead	to	the	deep	belief	classification
example	in	this	chapter.	However,	if	you	wish	to	learn	the	specific	details	of	DBNN
training,	read	on.

Figure	9.8	provides	a	summary	of	the	steps	of	DBNN	training:

Figure	9.8:	DBNN	Training

	

Layer-Wise	Sampling

The	first	step	when	performing	unsupervised	training	on	an	individual	layer	is	to
calculate	all	values	of	the	DBNN	up	to	that	layer.	You	will	do	this	calculation	for	every
training	set,	and	the	DBNN	will	provide	you	with	sampled	values	at	the	layer	that	you	are
currently	training.	Sampled	refers	to	the	fact	that	the	neural	network	randomly	chooses	a
true/false	value	based	on	a	probability.

You	need	to	understand	that	sampling	uses	random	numbers	to	provide	you	with	your
results.	Because	of	this	randomness,	you	will	not	always	get	the	same	result.	If	the	DBNN
determines	that	a	hidden	neuron’s	probability	of	true	is	0.75,	then	you	will	get	a	value	of
true	75%	of	the	time.	Layer-wise	sampling	is	very	similar	to	the	method	that	we	used	to
calculate	the	output	of	Boltzmann	machines	in	Chapter	3,	“Hopfield	&	Boltzmann
Machines.”	We	will	use	Equation	3.6,	from	chapter	3	to	compute	the	probability.	The	only
difference	is	that	we	will	use	the	probability	given	by	Equation	3.6	to	generate	a	random
sample.

The	purpose	of	the	layer-wise	sampling	is	to	produce	a	binary	vector	to	feed	into	the

contrastive	divergence	algorithm.	When	training	each	RBM,	we	always	provide	the	output
of	the	previous	RBM	as	the	input	to	the	current	RBM.	If	we	are	training	the	first	RBM
(closest	to	the	input),	we	simply	use	the	training	input	vector	for	contrastive	divergence.
This	process	allows	each	of	the	RBMs	to	be	trained.	The	final	softmax	layer	of	the	DBNN
is	not	trained	during	the	unsupervised	phase.	The	final	logistic	regression	phase	will	train
the	softmax	layer.

Computing	Positive	Gradients

Once	the	layer-wise	training	has	processed	each	of	the	RBM	layers,	we	can	utilize	the
up-down	algorithm,	or	the	contrastive	divergence	algorithm.	This	complete	algorithm
includes	the	following	steps,	covered	in	the	next	sections	of	this	book:

Computing	Positive	Gradients
Gibbs	Sampling
Update	Weights	and	Biases
Supervised	Backpropagation

Like	many	of	the	gradient-descent-based	algorithms	presented	in	Chapter	6,
“Backpropagation	Training,”	the	contrastive	divergence	algorithm	is	also	based	on
gradient	descent.	It	uses	the	derivative	of	a	function	to	find	the	inputs	to	the	function	that
produces	the	lowest	output	for	that	function.	Several	different	gradients	are	estimated
during	contrastive	divergence.	We	can	use	these	estimates	instead	of	actual	calculations
because	the	real	gradients	are	too	complex	to	calculate.	For	machine	learning,	an	estimate
is	often	good	enough.

Additionally,	we	must	calculate	the	mean	probability	of	the	hidden	units	by
propagating	the	visible	units	to	the	hidden	ones.	This	computation	is	the	“up”	portion	of
the	up-down	algorithm.	Equation	9.1	performs	this	calculation:

Equation	9.1:	Propagate	Up

The	above	equation	calculates	the	mean	probability	of	each	of	the	hidden	neurons	(h).
The	bar	above	the	h	designates	it	as	a	mean,	and	the	positive	subscript	indicates	that	we
are	calculating	the	mean	for	the	positive	(or	up)	part	of	the	algorithm.	The	bias	is	added	to
the	sigmoid	function	value	of	the	weighted	sum	of	all	visible	units.

Next	a	value	must	be	sampled	for	each	of	the	hidden	neurons.	This	value	will
randomly	be	either	true	(1)	or	false	(0)	with	the	mean	probability	just	calculated.	Equation
9.2	accomplishes	this	sampling:

Equation	9.2:	Sample	a	Hidden	Value

This	equation	assumes	that	r	is	a	uniform	random	value	between	0	and	1.	A	uniform
random	number	simply	means	that	every	possible	number	in	that	range	has	an	equal
probability	of	being	chosen.

Gibbs	Sampling

The	calculation	of	the	negative	gradients	is	the	“down”	phase	of	the	up-down
algorithm.	To	accomplish	this	calculation,	the	algorithm	uses	Gibbs	sapling	to	estimate	the
mean	of	the	negative	gradients.	Geman	and	Geman	(1984)	introduced	Gibbs	sampling	and
named	it	after	the	physicist	Josiah	Willard	Gibbs.	The	technique	is	accomplished	by
looping	through	k	iterations	that	improve	the	quality	of	the	estimate.	Each	iteration
performs	two	steps:

Sample	visible	neurons	give	hidden	neurons.
Sample	hidden	neurons	give	visible	neurons.

For	the	first	iteration	of	Gibbs	sampling,	we	start	with	the	positive	hidden	neuron
samples	obtained	from	the	last	section.	We	will	sample	visible	neuron	average
probabilities	from	these	(first	bullet	above).	Next,	we	will	use	these	visible	hidden	neurons
to	sample	hidden	neurons	(second	bullet	above).	These	new	hidden	probabilities	are	the
negative	gradients.	For	the	next	cycle,	we	will	use	the	negative	gradients	in	place	of	the
positive	ones.	This	continues	for	each	iteration	and	produces	better	negative	gradients.
Equation	9.3	accomplishes	sampling	of	the	visible	neurons	(first	bullet):

Equation	9.3:	Propagate	Down,	Sample	Visible	(negative)

This	equation	is	essentially	the	reverse	of	Equation	9.1.	Here,	we	determine	the
average	visible	mean	using	the	hidden	values.	Again,	just	like	we	did	for	the	positive

gradients,	we	sample	a	negative	probability	using	Equation	9.4:

Equation	9.4:	Sample	a	Visible	Value

The	above	equation	assumes	that	r	is	a	uniform	random	number	between	0	and	1.

The	above	two	equations	are	only	half	of	the	Gibbs	sampling	step.	These	equations
accomplished	the	first	bullet	point	above	because	they	sample	visible	neurons,	given
hidden	neurons.	Next,	we	must	accomplish	the	second	bullet	point.	We	must	sample
hidden	neurons,	given	visible	neurons.	This	process	is	very	similar	to	the	above	section,
“Computing	Positive	Gradients.”	This	time,	however,	we	are	calculating	the	negative
gradients.

The	visible	unit	samples	just	calculated	can	obtain	hidden	means,	as	shown	in
Equation	9.5:

Equation	9.5:	Propagate	Up,	Sample	Hidden	(negative)

Just	as	before,	mean	probability	can	sample	an	actual	value.	In	this	case,	we	use	the
hidden	mean	to	sample	a	hidden	value,	as	demonstrated	by	Equation	9.6:

Equation	9.6:	Sample	a	Hidden	Value

The	Gibbs	sampling	process	continues.	The	negative	hidden	samples	can	process	each
iteration.	Once	this	calculation	is	complete,	you	have	the	following	six	vectors:

Positive	mean	probabilities	of	the	hidden	neurons
Positive	sampled	values	of	the	hidden	neurons
Negative	mean	probabilities	of	visible	neurons
Negative	sampled	values	of	visible	neurons
Negative	mean	probabilities	of	hidden	neurons
Negative	sampled	values	of	hidden	neurons

These	values	will	update	the	neural	network’s	weights	and	biases.

Update	Weights	&	Biases

The	purpose	of	any	neural	network	training	is	to	update	the	weights	and	biases.	This
adjustment	is	what	allows	the	neural	network	to	learn	to	perform	the	intended	task.	This	is
the	final	step	for	the	unsupervised	portion	of	the	DBNN	training	process.	In	this	step,	the
weights	and	biases	of	a	single	layer	(Boltzmann	machine)	will	be	updated.	As	previously
mentioned,	the	Boltzmann	layers	are	trained	independently.

The	weights	and	biases	are	updated	independently.	Equation	9.7	shows	how	to	update
a	weight:

Equation	9.7:	Boltzmann	Weight	Update

The	learning	rate	(ε,	epsilon)	specifies	how	much	of	a	calculated	change	should	be
applied.	High	learning	rates	will	learn	quicker,	but	they	might	skip	over	an	optimal	set	of
weights.	Lower	learning	rates	learn	more	slowly,	but	they	might	have	a	higher	quality
result.	The	value	x	represents	the	current	training	set	element.	Because	x	is	a	vector
(array),	the	x	enclosed	in	two	bars	represents	the	length	of	x.	The	above	equation	also	uses
the	positive	mean	hidden	probabilities,	the	negative	mean	hidden	probabilities,	and	the
negative	sampled	values.

Equation	9.8	calculates	the	biases	in	a	similar	fashion:

Equation	9.8:	Boltzmann	Bias	Update

The	above	equation	uses	the	sampled	hidden	value	from	the	positive	phase	and	the
mean	hidden	value	from	the	negative	phase,	as	well	as	the	input	vector.	Once	the	weights
and	biases	have	been	updated,	the	unsupervised	portion	of	the	training	is	done.

DBNN	Backpropagation

Up	to	this	point,	the	DBNN	training	has	focused	on	unsupervised	training.	The	DBNN
used	only	the	training	set	inputs	(x	values).	Even	if	the	data	set	provided	an	expected
output	(y	values),	the	unsupervised	training	didn’t	use	it.	Now	the	DBNN	is	trained	with
the	expected	outputs.	We	use	only	data	set	items	that	contain	an	expected	output	during
this	last	phase.	This	step	allows	the	program	to	use	DBNN	networks	with	data	sets	where
each	item	does	not	necessarily	have	an	expected	output.	We	refer	to	the	data	as	partially
labeled	data	sets.

The	final	layer	of	the	DBNN	is	simply	a	neuron	for	each	class.	These	neurons	have
weights	to	the	output	of	the	previous	RBM	layer.	These	output	neurons	all	use	sigmoid
activation	functions	and	a	softmax	layer.	The	softmax	layer	ensures	that	the	output	for
each	of	the	classes	sum	to	1.

Regular	backpropagation	trains	this	final	layer.	The	final	layer	is	essentially	the	output
layer	of	a	feedforward	neural	network	that	receives	its	input	from	the	top	RBM.	Because
Chapter	6,	“Backpropagation	Training,”	contains	a	discussion	of	backpropagation,	we	will
not	repeat	the	information	here.	The	main	idea	of	a	DBNN	is	that	the	hierarchy	allows
each	layer	to	interpret	the	data	for	the	next	layer.	This	hierarchy	allows	the	learning	to
spread	across	the	layers.	The	higher	layers	learn	more	abstract	notions	while	the	lower
layers	form	from	the	input	data.	In	practice,	DBNNs	can	process	much	more	complex	of
patterns	than	a	regular	backpropagation-trained	feedforward	neural	network.

Deep	Belief	Application

This	chapter	presents	a	simple	example	of	the	DBNN.	This	example	simply	accepts	a
series	of	input	patterns	as	well	as	the	classes	to	which	these	input	patterns	belong.	The
input	patterns	are	shown	below:

[[1,	1,	1,	1,	0,	0,	0,	0],

	[1,	1,	0,	1,	0,	0,	0,	0],

	[1,	1,	1,	0,	0,	0,	0,	0],

	[0,	0,	0,	0,	1,	1,	1,	1],

	[0,	0,	0,	0,	1,	1,	0,	1],

	[0,	0,	0,	0,	1,	1,	1,	0]]

We	provide	the	expected	output	from	each	of	these	training	set	elements.	This
information	specifies	the	class	to	which	each	of	the	above	elements	belongs	and	is	shown
below:

[[1,	0],

	[1,	0],

	[1,	0],

	[0,	1],

	[0,	1],

	[0,	1]]

The	program	provided	in	the	book’s	example	creates	a	DBNN	with	the	following
configuration:

Input	Layer	Size:	8
Hidden	Layer	#1:	2
Hidden	Layer	#2:	3
Output	Layer	Size:	2

First,	we	train	each	of	the	hidden	layers.	Finally,	we	perform	logistic	regression	on	the
output	layer.	The	output	from	this	program	is	shown	here:

Training	Hidden	Layer	#0

Training	Hidden	Layer	#1

Iteration:	1,	Supervised	training:	error	=	0.2478464544753616

Iteration:	2,	Supervised	training:	error	=	0.23501688281192523

Iteration:	3,	Supervised	training:	error	=	0.2228704042138232

...

Iteration:	287,	Supervised	training:	error	=	0.001080510032410002

Iteration:	288,	Supervised	training:	error	=	7.821742124428358E-4

[0.0,	1.0,	1.0,	1.0,	0.0,	0.0,	0.0,	0.0]	->	[0.9649828726012807,	

0.03501712739871941]

[1.0,	0.0,	1.0,	1.0,	0.0,	0.0,	0.0,	0.0]	->	[0.9649830045627616,	

0.035016995437238435]

[0.0,	0.0,	0.0,	0.0,	0.0,	1.0,	1.0,	1.0]	->	[0.03413161595489315,	

0.9658683840451069]

[0.0,	0.0,	0.0,	0.0,	1.0,	0.0,	1.0,	1.0]	->	[0.03413137188719462,	

0.9658686281128055]

As	you	can	see,	the	program	first	trained	the	hidden	layers	and	then	went	through	288
iterations	of	regression.	The	error	level	dropped	considerably	during	these	iterations.
Finally,	the	sample	data	quizzed	the	network.	The	network	responded	with	the	probability
of	the	input	sample	being	in	each	of	the	two	classes	that	we	specified	above.

For	example,	the	network	reported	the	following	element:

[0.0,	1.0,	1.0,	1.0,	0.0,	0.0,	0.0,	0.0]

This	element	had	a	96%	probability	of	being	in	class	1,	but	it	had	only	a	4%
probability	of	being	in	class	2.	The	two	probabilities	reported	for	each	item	must	sum	to
100%.

Chapter	Summary

This	chapter	provided	a	high-level	overview	of	many	of	the	components	of	deep
learning.	A	deep	neural	network	is	any	network	that	contains	more	than	two	hidden	layers.
Although	deep	networks	have	existed	for	as	long	as	multilayer	neural	networks,	they	have
lacked	good	training	methods	until	recently.	New	training	techniques,	activation	functions,
and	regularization	are	making	deep	neural	networks	feasible.

Overfitting	is	a	common	problem	for	many	areas	of	machine	learning;	neural	networks
are	no	exception.	Regularization	can	prevent	overfitting.	Most	forms	of	regularization
involve	modifying	the	weights	of	a	neural	network	as	the	training	occurs.	Dropout	is	a
very	common	regularization	technique	for	deep	neural	networks	that	removes	neurons	as
training	progresses.	This	technique	prevents	the	network	from	becoming	overly	dependent
on	any	one	neuron.

We	ended	the	chapter	with	the	deep	belief	neural	network	(DBNN),	which	classifies
data	that	might	be	partially	labeled.	First,	both	labeled	and	unlabeled	data	can	initialize	the
weights	of	the	neural	network	with	unsupervised	training.	Using	these	weights,	a	logistic
regression	layer	can	fine-tune	the	network	to	the	labeled	data.

We	also	discussed	the	convolutional	neural	networks	(CNN)	in	this	chapter.	This	type
of	neural	network	causes	the	weights	to	be	shared	between	the	various	neurons	in	the
network.	This	neural	network	allows	the	CNN	to	deal	with	the	types	of	overlapping
features	that	are	very	common	in	computer	vision.	We	provided	only	a	general	overview
of	CNN	because	we	will	examine	the	CNNs	in	greater	detail	in	the	next	chapter.

Chapter	10:	Convolutional	Neural
Networks

Sparse	Connectivity
Shared	Weights
Max-pooling

The	convolutional	neural	network	(CNN)	is	a	neural	network	technology	that	has
profoundly	impacted	the	area	of	computer	vision	(CV).	Fukushima	(1980)	introduced	the
original	concept	of	a	convolutional	neural	network,	and	LeCun,	Bottou,	Bengio	&	Haffner
(1998)	greatly	improved	this	work.	From	this	research,	Yan	LeCun	introduced	the	famous
LeNet-5	neural	network	architecture.	This	chapter	follows	the	LeNet-5	style	of
convolutional	neural	network.

Although	computer	vision	primarily	uses	CNNs,	this	technology	has	some	application
outside	of	the	field.	You	need	to	realize	that	if	you	want	to	utilize	CNNs	on	non-visual
data,	you	must	find	a	way	to	encode	your	data	so	that	it	can	mimic	the	properties	of	visual
data.

CNNs	are	somewhat	similar	to	the	self-organizing	map	(SOM)	architecture	that	we
examined	in	Chapter	2,	“Self-Organizing	Maps.”	The	order	of	the	vector	elements	is
crucial	to	the	training.	In	contrast,	most	neural	networks	that	are	not	CNNs	or	SOMs	treat
their	input	data	as	a	long	vector	of	values,	and	the	order	that	you	arrange	the	incoming
features	in	this	vector	is	irrelevant.	For	these	types	of	neural	networks,	you	cannot	change
the	order	after	you	have	trained	the	network.	In	other	words,	CNNs	and	SOMs	do	not
follow	the	standard	treatment	of	input	vectors.

The	SOM	network	arranged	the	inputs	into	a	grid.	This	arrangement	worked	well	with
images	because	the	pixels	in	closer	proximity	to	each	other	are	important	to	each	other.
Obviously,	the	order	of	pixels	in	an	image	is	significant.	The	human	body	is	a	relevant
example	of	this	type	of	order.	For	the	design	of	the	face,	we	are	accustomed	to	eyes	being
near	to	each	other.	In	the	same	way,	neural	network	types	like	SOMs	adhere	to	an	order	of
pixels.	Consequently,	they	have	many	applications	to	computer	vision.

Although	SOMs	and	CNNs	are	similar	in	the	way	that	they	map	their	input	into	2D
grids	or	even	higher-dimension	objects	such	as	3D	boxes,	CNNs	take	image	recognition	to
higher	level	of	capability.	This	advance	in	CNNs	is	due	to	years	of	research	on	biological
eyes.	In	other	words,	CNNs	utilize	overlapping	fields	of	input	to	simulate	features	of
biological	eyes.	Until	this	breakthrough,	AI	had	been	unable	to	reproduce	the	capabilities
of	biological	vision.

Scale,	rotation,	and	noise	have	presented	challenges	in	the	past	for	AI	computer	vision
research.	You	can	observe	the	complexity	of	biological	eyes	in	the	example	that	follows.	A
friend	raises	a	sheet	of	paper	with	a	large	number	written	on	it.	As	your	friend	moves
nearer	to	you,	the	number	is	still	identifiable.	In	the	same	way,	you	can	still	identify	the
number	when	your	friend	rotates	the	paper.	Lastly,	your	friend	creates	noise	by	drawing
lines	on	top	of	the	page,	but	you	can	still	identify	the	number.	As	you	can	see,	these

examples	demonstrate	the	high	function	of	the	biological	eye	and	allow	you	to	understand
better	the	research	breakthrough	of	CNNs.	That	is,	this	neural	network	has	the	ability	to
process	scale,	rotation,	and	noise	in	the	field	of	computer	vision.

LeNET-5

We	can	use	the	LeNET-5	architecture	primarily	for	the	classification	of	graphical
images.	This	network	type	is	similar	to	the	feedforward	network	that	we	examined	in
previous	chapters.	Data	flow	from	input	to	the	output.	However,	the	LeNET-5	network
contains	several	different	layer	types,	as	Figure	10.1	illustrates:

Figure	10.1:	A	LeNET-5	Network	(LeCun,	1998)

Several	important	differences	exist	between	a	feedforward	neural	network	and	a
LeNET-5	network:

Vectors	pass	through	feedforward	networks;	3D	cubes	pass	through	LeNET-5
networks.
LeNET-5	networks	contain	a	variety	of	layer	types.
Computer	vision	is	the	primary	application	of	the	LeNET-5.

However,	we	have	also	explored	the	many	similarities	between	the	networks.	The
most	important	similarity	is	that	we	can	train	the	LeNET-5	with	the	same
backpropagation-based	techniques.	Any	optimization	algorithm	can	train	the	weights	of
either	a	feedforward	or	LeNET-5	network.	Specifically,	you	can	utilize	simulated
annealing,	genetic	algorithms,	and	particle	swarm	for	training.	However,	LeNET-5
frequently	uses	backpropagation	training.

The	following	three	layer	types	comprise	the	original	LeNET-5	neural	networks:

Convolutional	Layers
Max-pool	Layers
Dense	Layers

Other	neural	network	frameworks	will	add	additional	layer	types	related	to	computer
vision.	However,	we	will	not	explore	these	additions	beyond	the	LeNET-5	standard.

Adding	new	layer	types	is	a	common	means	of	augmenting	existing	neural	network
research.	Chapter	12,	“Dropout	and	Regularization,”	will	introduce	an	additional	layer
type	that	is	designed	to	reduce	overfitting	by	adding	a	dropout	layer.

For	now,	we	focus	our	discussion	on	the	layer	types	associated	with	convolutional
neural	networks.	We	will	begin	with	convolutional	layers.

Convolutional	Layers

The	first	layer	that	we	will	examine	is	the	convolutional	layer.	We	will	begin	by
looking	at	the	hyper-parameters	that	you	must	specify	for	a	convolutional	layer	in	most
neural	network	frameworks	that	support	the	CNN:

Number	of	filters
Filter	Size
Stride
Padding
Activation	Function/Non-Linearity

The	primary	purpose	for	a	convolutional	layer	is	to	detect	features	such	as	edges,	lines,
blobs	of	color,	and	other	visual	elements.	The	filters	can	detect	these	features.	The	more
filters	that	we	give	to	a	convolutional	layer,	the	more	features	it	can	detect.

A	filter	is	a	square-shaped	object	that	scans	over	the	image.	A	grid	can	represent	the
individual	pixels	of	a	grid.	You	can	think	of	the	convolutional	layer	as	a	smaller	grid	that
sweeps	left	to	right	over	each	row	of	the	image.	There	is	also	a	hyper-parameter	that
specifies	both	the	width	and	height	of	the	square-shaped	filter.	Figure	10.1	shows	this
configuration	in	which	you	see	the	six	convolutional	filters	sweeping	over	the	image	grid:

A	convolutional	layer	has	weights	between	it	and	the	previous	layer	or	image	grid.
Each	pixel	on	each	convolutional	layer	is	a	weight.	Therefore,	the	number	of	weights
between	a	convolutional	layer	and	its	predecessor	layer	or	image	field	is	the	following:

[Filter	Size]	*	[Filter	Size]	*	[#	of	Filters]

For	example,	if	the	filter	size	were	5	(5x4)	for	10	filters,	there	would	be	250	weights.

You	need	to	understand	how	the	convolutional	filters	sweep	across	the	previous	layer’s
output	or	image	grid.	Figure	10.2	illustrates	the	sweep:

Figure	10.2:	Convolutional	Filter

The	above	figure	shows	a	convolutional	filter	with	a	size	of	4	and	a	padding	size	of	1.
The	padding	size	is	responsible	for	the	boarder	of	zeros	in	the	area	that	the	filter	sweeps.
Even	though	the	image	is	actually	8x7,	the	extra	padding	provides	a	virtual	image	size	of
9x8	for	the	filter	to	sweep	across.	The	stride	specifies	the	number	of	positions	at	which	the
convolutional	filters	will	stop.	The	convolutional	filters	move	to	the	right,	advancing	by
the	number	of	cells	specified	in	the	stride.	Once	the	far	right	is	reached,	the	convolutional
filter	moves	back	to	the	far	left,	then	it	moves	down	by	the	stride	amount	and	continues	to
the	right	again.

Some	constraints	exist	in	relation	to	the	size	of	the	stride.	Obviously,	the	stride	cannot
be	0.	The	convolutional	filter	would	never	move	if	the	stride	were	set	to	0.	Furthermore,
neither	the	stride,	nor	the	convolutional	filter	size	can	be	larger	than	the	previous	grid.
There	are	additional	constraints	on	the	stride	(s),	padding	(p)	and	the	filter	width	(f)	for	an
image	of	width	(w).	Specifically,	the	convolutional	filter	must	be	able	to	start	at	the	far	left
or	top	boarder,	move	a	certain	number	of	strides,	and	land	on	the	far	right	or	bottom
boarder.	Equation	10.1	shows	the	number	of	steps	a	convolutional	operator	must	take	to
cross	the	image:

Equation	10.1:	Steps	Across	an	Image

The	number	of	steps	must	be	an	integer.	In	other	words,	it	cannot	have	decimal	places.
The	purpose	of	the	padding	(p)	is	to	be	adjusted	to	make	this	equation	become	an	integer
value.

We	can	use	the	same	set	of	weights	as	the	convolutional	filter	sweeps	over	the	image.
This	process	allows	convolutional	layers	to	share	weights	and	greatly	reduce	the	amount
of	processing	needed.	In	this	way,	you	can	recognize	the	image	in	shift	positions	because
the	same	convolutional	filter	sweeps	across	the	entire	image.

The	input	and	output	of	a	convolutional	layer	are	both	3D	boxes.	For	the	input	to	a
convolutional	layer,	the	width	and	height	of	the	box	is	equal	to	the	width	and	height	of	the
input	image.	The	depth	of	the	box	is	equal	to	the	color	depth	of	the	image.	For	an	RGB
image,	the	depth	is	3,	equal	to	the	components	of	red,	green,	and	blue.	If	the	input	to	the
convolutional	layer	is	another	layer,	then	it	will	also	be	a	3D	box;	however,	the
dimensions	of	that	3D	box	will	be	dictated	by	the	hyper-parameters	of	that	layer.

Like	any	other	layer	in	the	neural	network,	the	size	of	the	3D	box	output	by	a
convolutional	layer	is	dictated	by	the	hyper-parameters	of	the	layer.	The	width	and	height
of	this	box	are	both	equal	to	the	filter	size.	However,	the	depth	is	equal	to	the	number	of
filters.

Max-Pool	Layers

Max-pool	layers	downsample	a	3D	box	to	a	new	one	with	smaller	dimensions.
Typically,	you	can	always	place	a	max-pool	layer	immediately	following	a	convolutional
layer.	Figure	10.1	shows	the	max-pool	layer	immediately	after	layers	C1	and	C3.	These
max-pool	layers	progressively	decrease	the	size	of	the	dimensions	of	the	3D	boxes	passing
through	them.	This	technique	can	avoid	overfitting	(Krizhevsky,	Sutskever	&	Hinton,
2012).

A	pooling	layer	has	the	following	hyper-parameters:

Spatial	Extent	(f)
Stride	(s)

Unlike	convolutional	layers,	max-pool	layers	do	not	use	padding.	Additionally,	max-
pool	layers	have	no	weights,	so	training	does	not	affect	them.	These	layers	simply
downsample	their	3D	box	input.

The	3D	box	output	by	a	max-pool	layer	will	have	a	width	equal	to	Equation	10.2:

Equation	10.2:	Width	Max-pool	Output

The	height	of	the	3D	box	produced	by	the	max-pool	layer	is	calculated	similarly	with

Equation	10.3:

Equation	10.3:	Height	of	Max-pooling	Output

The	depth	of	the	3D	box	produced	by	the	max-pool	layer	is	equal	to	the	depth	the	3D
box	received	as	input.

The	most	common	setting	for	the	hyper-parameters	of	a	max-pool	layer	are	f=2	and
s=2.	The	spatial	extent	(f)	specifies	that	boxes	of	2x2	will	be	scaled	down	to	single	pixels.
Of	these	four	pixels,	the	pixel	with	the	maximum	value	will	represent	the	2x2	pixel	in	the
new	grid.	Because	squares	of	size	4	are	replaced	with	size	1,	75%	of	the	pixel	information
is	lost.	Figure	10.3	shows	this	transformation	as	a	6x6	grid	becomes	a	3x3:

Figure	10.3:	Max-pooling	(f=2,s=2)

Of	course,	the	above	diagram	shows	each	pixel	as	a	single	number.	A	grayscale	image
would	have	this	characteristic.	For	an	RGB	image,	we	usually	take	the	average	of	the	three
numbers	to	determine	which	pixel	has	the	maximum	value.

Dense	Layers

The	final	layer	type	in	a	LeNET-5	network	is	a	dense	layer.	This	layer	type	is	exactly
the	same	type	of	layer	as	we’ve	seen	before	in	feedforward	neural	networks.	A	dense	layer
connects	every	element	(neuron)	in	the	previous	layer’s	output	3D	box	to	each	neuron	in
the	dense	layer.	The	resulting	vector	is	passed	through	an	activation	function.	LeNET-5
networks	will	typically	use	a	ReLU	activation.	However,	we	can	use	a	sigmoid	activation
function;	this	technique	is	less	common.	A	dense	layer	will	typically	contain	the	following
hyper-parameters:

Neuron	Count
Activation	Function

The	neuron	count	specifies	the	number	of	neurons	that	make	up	this	layer.	The
activation	function	indicates	the	type	of	activation	function	to	use.	Dense	layers	can
employ	many	different	kinds	of	activation	functions,	such	as	ReLU,	sigmoid	or	hyperbolic
tangent.

LeNET-5	networks	will	typically	contain	several	dense	layers	as	their	final	layers.	The
final	dense	layer	in	a	LeNET-5	actually	performs	the	classification.	There	should	be	one
output	neuron	for	each	class,	or	type	of	image,	to	classify.	For	example,	if	the	network
distinguishes	between	dogs,	cats,	and	birds,	there	will	be	three	output	neurons.	You	can
apply	a	final	softmax	function	to	the	final	layer	to	treat	the	output	neurons	as	probabilities.
Softmax	allows	each	neuron	to	provide	the	probability	of	the	image	representing	each
class.	Because	the	output	neurons	are	now	probabilities,	softmax	ensures	that	they	sum	to
1.0	(100%).	To	review	softmax,	you	can	reread	Chapter	4,	“Feedforward	Neural
Networks.”

ConvNets	for	the	MNIST	Data	Set

In	Chapter	6,	“Backpropagation	Training,”	we	used	the	MNIST	handwritten	digits	as
an	example	of	using	backpropagation.	In	Chapter	10,	we	present	an	example	about
improving	our	recognition	of	the	MNIST	digits,	as	a	deep	convolutional	neural	network.
The	convolutional	network,	being	a	deep	neural	network,	will	have	more	layers	than	the
feedforward	neural	network	seen	in	Chapter	6.	The	hyper-parameters	for	this	network	are
as	follows:

Input:	Accepts	box	of	[1,96,96]
Convolutional	Layer:	filters=32,	filter_size=[3,3]
Max-pool	Layer:	[2,2]
Convolutional	Layer:	filters=64,	filter_size=[2,2]
Max-pool	Layer:	[2,2]
Convolutional	Layer:	filters=128,	filter_size=[2,2]
Max-pool	Layer:	[2,2]
Dense	Layer:	500	neurons
Output	Layer:	30	neurons

This	network	uses	the	very	common	pattern	to	follow	each	convolutional	layer	with	a
max-pool	layer.	Additionally,	the	number	of	filters	decreases	from	the	input	to	the	output
layer,	thereby	allowing	a	smaller	number	of	basic	features,	such	as	edges,	lines,	and	small
shapes	to	be	detected	near	the	input	field.	Successive	convolutional	layers	roll	up	these
basic	features	into	larger	and	more	complex	features.	Ultimately,	the	dense	layer	can	map
these	higher-level	features	into	each	x-coordinate	and	y-coordinate	of	the	actual	15	digit
features.

Training	the	convolutional	neural	network	takes	considerable	time,	especially	if	you
are	not	using	GPU	processing.	As	of	July	2015,	not	all	frameworks	have	equal	support	of
GPU	processing.	At	this	time,	using	Python	with	a	Theano-based	neural	network
framework,	such	as	Lasange,	provides	the	best	results.	Many	of	the	same	researchers	who
are	improving	deep	convolutional	networks	are	also	working	with	Theano.	Thus,	they
promote	it	before	other	frameworks	on	other	languages.

For	this	example,	we	used	Theano	with	Lasange.	The	book’s	example	download	may
have	other	languages	available	for	this	example	as	well,	depending	on	the	frameworks
available	for	those	languages.	Training	a	convolutional	neural	network	for	digit	feature
recognition	on	Theano	took	less	time	with	a	GPU	than	a	CPU,	as	a	GPU	helps
considerably	for	convolutional	neural	networks.	The	exact	amount	of	performance	will
vary	according	to	hardware	and	platform.	The	accuracy	comparison	between	the
convolutional	neural	network	and	the	regular	ReLU	network	is	shown	here:

Relu:

Best	valid	loss	was	0.068229	at	epoch	17.

Incorrect	170/10000	(1.7000000000000002%)

ReLU+Conv:

Best	valid	loss	was	0.065753	at	epoch	3.

Incorrect	150/10000	(1.5%)

If	you	compare	the	results	from	the	convolutional	neural	network	to	the	standard
feedforward	neural	network	from	Chapter	6,	you	will	see	the	convolutional	neural	network
performed	better.	The	convolutional	neural	network	is	capable	of	recognizing	sub-features
in	the	digits	to	boost	its	performance	over	the	standard	feedforward	neural	network.	Of
course,	these	results	will	vary,	depending	on	the	platform	used.

Chapter	Summary

Convolutional	neural	networks	are	a	very	active	area	in	the	field	of	computer	vision.
They	allow	the	neural	network	to	detect	hierarchies	of	features,	such	as	lines	and	small
shapes.	These	simple	features	can	form	hierarchies	to	teach	the	neural	network	to
recognize	complex	patterns	composed	of	the	more	simple	features.	Deep	convolutional
networks	can	take	considerable	processing	power.	Some	frameworks	allow	the	use	of
GPU	processing	to	enhance	performance.

Yann	LeCun	introduced	the	LeNET-5,	the	most	common	type	of	convolutional
network.	This	neural	network	type	is	comprised	of	dense	layers,	convolutional	layers	and
max-pool	layers.	The	dense	layers	work	exactly	the	same	way	as	traditional	feedforward
networks.	Max-pool	layers	can	downsample	the	image	and	remove	detail.	Convolutional
layers	detect	features	in	any	part	of	the	image	field.

There	are	many	different	approaches	to	determine	the	best	architecture	for	a	neural
network.	Chapter	8,	“NEAT,	CPPN	and	HyperNEAT,”	introduced	a	neural	network

algorithm	that	could	automatically	determine	the	best	architecture.	If	you	are	using	a
feedforward	neural	network	you	will	most	likely	arrive	at	a	structure	through	pruning	and
model	selection,	which	we	discuss	in	the	next	chapter.

Chapter	11:	Pruning	and	Model	Selection
Pruning	a	Neural	Network
Model	Selection
Random	vs.	Grid	Search

In	previous	chapters,	we	learned	that	you	could	better	fit	the	weights	of	a	neural
network	with	various	training	algorithms.	In	effect,	these	algorithms	adjust	the	weights	of
the	neural	network	in	order	to	lower	the	error	of	the	neural	network.	We	often	refer	to	the
weights	of	a	neural	network	as	the	parameters	of	the	neural	network	model.	Some	machine
learning	models	might	have	parameters	other	than	weights.	For	example,	logistic
regression	(which	we	discussed	in	Artificial	Intelligence	for	Humans,	Volume	1)	has
coefficients	as	parameters.

When	we	train	the	model,	the	parameters	of	any	machine	learning	model	change.
However,	these	models	also	have	hyper-parameters	that	do	not	change	during	training
algorithms.	For	neural	networks,	the	hyper-parameters	specify	the	architecture	of	the
neural	network.	Examples	of	hyper-parameters	for	neural	networks	include	the	number	of
hidden	layers	and	hidden	neurons.

In	this	chapter,	we	will	examine	two	algorithms	that	can	actually	modify	or	suggest	a
structure	for	the	neural	network.	Pruning	works	by	analyzing	how	much	each	neuron
contributes	to	the	output	of	the	neural	network.	If	a	particular	neuron’s	connection	to
another	neuron	does	not	significantly	affect	the	output	of	the	neural	network,	the
connection	will	be	pruned.	Through	this	process,	connections	and	neurons	that	have	only	a
marginal	impact	on	the	output	are	removed.

The	other	algorithm	that	we	introduce	in	this	chapter	is	model	selection.	While
pruning	starts	with	an	already	trained	neural	network,	model	selection	creates	and	trains
many	neural	networks	with	different	hyper-parameters.	The	program	then	selects	the
hyper-parameters	producing	the	neural	network	that	achieves	the	best	validation	score.

Understanding	Pruning

Pruning	is	a	process	that	makes	neural	networks	more	efficient.	Unlike	the	training
algorithms	already	discussed	in	this	book,	pruning	does	not	increase	the	training	error	of
the	neural	network.	The	primary	goal	of	pruning	is	to	decrease	the	amount	of	processing
required	to	use	the	neural	network.	Additionally,	pruning	can	sometimes	have	a
regularizing	effect	by	removing	complexity	from	the	neural	network.	This	regularization
can	sometimes	decrease	the	amount	of	overfitting	in	the	neural	network.	This	decrease	can
help	the	neural	network	perform	better	on	data	that	were	not	part	of	the	training	set.

Pruning	works	by	analyzing	the	connections	of	the	neural	network.	The	pruning
algorithm	looks	for	individual	connections	and	neurons	that	can	be	removed	from	the

neural	network	to	make	it	operate	more	efficiently.	By	pruning	unneeded	connections,	the
neural	network	can	be	made	to	execute	faster	and	possibly	decrease	overfitting.	In	the	next
two	sections,	we	will	examine	how	to	prune	both	connections	and	neurons.

Pruning	Connections

Connection	pruning	is	central	to	most	pruning	algorithms.	The	program	analyzes	the
individual	connections	between	the	neurons	to	determine	which	connections	have	the	least
impact	on	the	effectiveness	of	the	neural	network.	Connections	are	not	the	only	thing	that
the	program	can	prune.	Analyzing	the	pruned	connections	will	reveal	that	the	program	can
also	prune	individual	neurons.

Pruning	Neurons

Pruning	focuses	primarily	on	the	connections	between	the	individual	neurons	of	the
neural	network.	However,	to	prune	individual	neurons,	we	must	examine	the	connections
between	each	neuron	and	the	other	neurons.	If	one	particular	neuron	is	surrounded	entirely
by	weak	connections,	there	is	no	reason	to	keep	that	neuron.	If	we	apply	the	criteria
discussed	in	the	previous	section,	neurons	that	have	no	connections	are	the	end	result
because	the	program	has	pruned	all	of	the	neuron’s	connections.	Then	the	program	can
prune	this	type	of	a	neuron.

Improving	or	Degrading	Performance

It	is	possible	that	pruning	a	neural	network	may	improve	its	performance.	Any
modifications	to	the	weight	matrix	of	a	neural	network	will	always	have	some	impact	on
the	accuracy	of	the	recognitions	made	by	the	neural	network.	A	connection	that	has	little
or	no	impact	on	the	neural	network	may	actually	be	degrading	the	accuracy	with	which	the
neural	network	recognizes	patterns.	Removing	this	weak	connection	may	improve	the
overall	output	of	the	neural	network.

Unfortunately,	pruning	can	also	decrease	the	effectiveness	of	the	neural	network.	Thus,
you	must	always	analyze	the	effectiveness	of	the	neural	network	before	and	after	pruning.
Since	efficiency	is	the	primary	benefit	of	pruning,	you	must	be	careful	to	evaluate	whether
an	improvement	in	the	processing	time	is	worth	a	decrease	in	the	neural	network’s
effectiveness.	We	will	evaluate	the	overall	effectiveness	of	the	neural	network	both	before
and	after	pruning	in	one	of	the	programming	examples	from	this	chapter.	This	analysis
will	give	us	an	idea	of	the	impact	that	the	pruning	process	has	on	the	effectiveness	of	the
neural	network.

Pruning	Algorithm

We	will	now	review	exactly	how	pruning	takes	place.	Pruning	works	by	examining	the
weight	matrices	of	a	previously	trained	neural	network.	The	pruning	algorithm	will	then
attempt	to	remove	neurons	without	disrupting	the	output	of	the	neural	network.	Figure
11.1	shows	the	algorithm	used	for	selective	pruning:

Figure	11.1:	Pruning	a	Neural	Network

As	you	can	see,	the	pruning	algorithm	has	a	trial-and-error	approach.	The	pruning
algorithm	attempts	to	remove	neurons	from	the	neural	network	until	it	cannot	remove
additional	neurons	without	degrading	the	performance	of	the	neural	network.

To	begin	this	process,	the	selective	pruning	algorithm	loops	through	each	of	the	hidden
neurons.	For	each	hidden	neuron	encountered,	the	program	evaluates	the	error	level	of	the
neural	network	both	with	and	without	the	specified	neuron.	If	the	error	rate	jumps	beyond
a	predefined	level,	the	program	retains	the	neuron	and	evaluates	the	next.	If	the	error	rate

does	not	improve	significantly,	the	program	removes	the	neuron.

Once	the	program	has	evaluated	all	neurons,	it	repeats	the	process.	This	cycle
continues	until	the	program	has	made	one	pass	through	the	hidden	neurons	without
removing	a	single	neuron.	Once	this	process	is	complete,	a	new	neural	network	is
achieved	that	performs	acceptably	close	to	the	original,	yet	it	has	fewer	hidden	neurons.

Model	Selection

Model	selection	is	the	process	where	the	programmer	attempts	to	find	a	set	of	hyper-
parameters	that	produce	the	best	neural	network,	or	other	machine	learning	model.	In	this
book,	we	have	mentioned	many	different	hyper-parameters	that	are	the	settings	that	you
must	provide	to	the	neural	network	framework.	Examples	of	neural	network	hyper-
parameters	include:

The	number	of	hidden	layers
The	order	of	the	convolutional,	pooling,	and	dropout	layers
The	type	of	activation	function
The	number	of	hidden	neurons
The	structure	of	pooling	and	convolutional	layers

As	you’ve	read	through	these	chapters	that	mention	hyper-parameters,	you’ve
probably	been	wondering	how	you	know	which	settings	to	use.	Unfortunately,	there	is	no
easy	answer.	If	easy	methods	existed	that	determine	these	settings,	programmers	would
have	constructed	the	neural	network	frameworks	that	automatically	set	these	hyper-
parameters	for	you.

While	we	will	provide	more	insight	into	hyper-parameters	in	Chapter	14,
“Architecting	Neural	Networks,”	you	will	still	need	to	use	the	model	selection	processes
described	in	this	chapter.	Unfortunately,	model	selection	is	very	time-consuming.	We
spent	90%	of	our	time	performing	model	selection	during	our	last	Kaggle	competition.
Often,	success	in	modeling	is	closely	related	to	the	amount	of	time	you	have	to	spend	on
model	selection.

Grid	Search	Model	Selection

Grid	search	is	a	trial-and-error,	brute-force	algorithm.	For	this	technique,	you	must
specify	every	combination	of	the	hyper-parameters	that	you	would	like	to	use.	You	must
be	judicious	in	your	selection	because	the	number	of	search	iterations	can	quickly	grow.
Typically,	you	must	specify	the	hyper-parameters	that	you	would	like	to	search.	This
specification	might	look	like	the	following:

Hidden	Neurons:	2	to	10,	step	size	2
Activation	Functions:	tanh,	sigmoid	&	ReLU

The	first	item	states	that	the	grid	search	should	try	hidden	neuron	counts	between	2
and	10	counting	by	2,	which	results	in	the	following:	2,	4,	6,	8,	and	10	(5	total
possibilities.)	The	second	item	states	that	we	should	also	try	the	activation	functions	tanh,
sigmoid,	and	ReLU	for	each	neuron	count.	This	process	results	in	a	total	of	fifteen
iterations	because	five	possibilities	times	three	possibilities	is	fifteen	total.	These
possibilities	are	listed	here:

Iteration	#1:	[2][sigmoid]

Iteration	#2:	[4][sigmoid]

Iteration	#3:	[6][sigmoid]

Iteration	#4:	[8][sigmoid]

Iteration	#5:	[10][sigmoid]

Iteration	#6:	[2][ReLU]

Iteration	#7:	[4][ReLU]

Iteration	#8:	[6][ReLU]

Iteration	#9:	[8][ReLU]

Iteration	#10:	[10][ReLU]

Iteration	#11:	[2][tanh]

Iteration	#12:	[4][tanh]

Iteration	#13:	[6][tanh]

Iteration	#14:	[8][tanh]

Iteration	#15:	[10][tanh]

Each	set	of	possibilities	is	called	an	axis.	These	axes	rotate	through	all	possible
combinations	before	they	finish.	You	can	visualize	this	process	by	thinking	of	a	car’s
odometer.	The	far	left	dial	(or	axis)	is	spinning	the	fastest.	It	counts	between	0	and	9.	Once
it	hits	9	and	needs	to	go	to	the	next	number,	it	forward	back	to	0,	and	the	next	place,	to	the
left,	rolls	forward	by	one.	Unless	that	next	place	was	also	on	9,	the	rollover	continues	to
the	left.	At	some	point,	all	digits	on	the	odometer	are	at	9,	and	the	entire	device	would	roll
back	over	to	0.	When	this	final	rollover	occurs,	the	grid	search	is	done.

Most	frameworks	allow	two	axis	types.	The	first	type	is	a	numeric	range	with	a	step.
The	second	type	is	a	list	of	values,	like	the	activation	functions	above.	The	following
Javascript	example	allows	you	to	try	your	own	sets	of	axes	to	see	the	number	of	iterations
produced:

http://www.heatonresearch.com/aifh/vol3/grid_iter.html

Listing	11.1	shows	the	pseudocode	necessary	to	roll	through	all	iterations	of	several
sets	of	values:

http://www.heatonresearch.com/aifh/vol3/grid_iter.html

Listing	11.1:	Grid	Search

#	The	variable	axes	contains	a	list	of	each	axis.

#	Each	axes	(in	axes)	is	a	list	of	possible	values	

#	for	that	axis.

#	Current	index	of	each	axis	is	zero,	create	an	array

#	of	zeros.

indexes	=	zeros(len(axes))

done	=	false

while	not	done:

#	Prepare	vector	of	current	iteration’s

#	hyper-parameters.

		iteration	=	[]

		for	i	from	0	to	len(axes)

				iteration.add(axes	[i][indexes[i]])

#	Perform	one	iteration,	passing	in	the	hyper-parameters

#	that	are	stored	in	the	iteration	list.		This	function

#	should	train	the	neural	network	according	to	the	

#	hyper-parameters	and	keep	note	of	the	best	trained	

#	network	so	far.

		perform_iteration(iteration)

#	Rotate	the	axes	forward	one	unit,	like	a	car’s

#	odometer.

		indexes[0]	=	indexes[0]	+	1;

		var	counterIdx	=	0;

#	roll	forward	the	other	places,	if	needed

		while	not	done	and		indexes[counterIdx]>=

								len(axes	[counterIdx]):

				indexes[counterIdx]	=	0

				counterIdx	=	counterIdx	+	1

				if	counterIdx>=len(axes):

						done	=	true

				else:

						indexes[counterIdx]	=	indexes[counterIdx]	+	1

The	code	above	uses	two	loops	to	pass	through	every	possible	set	of	the	hyper-
parameters.	The	first	loop	continues	while	the	program	is	still	producing	hyper-
parameters.	Each	time	through,	this	loop	increases	the	first	hyper-parameter	to	the	next
value.	The	second	loop	detects	if	the	first	hyper-parameter	has	rolled	over.	The	inner	loop
keeps	moving	forward	to	the	next	hyper-parameter	until	no	more	rollovers	occur.	Once	all
the	hyper-parameters	roll	over,	the	process	is	done.

As	you	can	see,	the	grid	search	can	quickly	result	in	a	large	number	of	iterations.
Consider	if	you	wished	to	search	for	the	optimal	number	of	hidden	neurons	on	five	layers,
where	you	allowed	up	to	200	neurons	on	each	level.	This	value	would	be	equal	to	200
multiplied	by	itself	five	times,	or	200	to	the	fifth	power.	This	process	results	in	320	billion
iterations.	Because	each	iteration	involves	training	a	neural	network,	iterations	can	take
minutes,	hours	or	even	days	to	execute.

When	performing	grid	searches,	multi-threading	and	grid	processing	can	be	beneficial.
Running	the	iterations	through	a	thread	pool	can	greatly	speed	up	the	search.	The	thread

pool	should	have	a	size	equal	to	the	number	of	cores	on	the	computer’s	machine.	This	trait
allows	a	machine	with	eight	cores	to	work	on	eight	neural	networks	simultaneously.	The
training	of	the	individual	models	must	be	single	threaded	when	you	run	the	iterations
simultaneously.	Many	frameworks	will	use	all	available	cores	to	train	a	single	neural
network.	When	you	have	a	large	number	of	neural	networks	to	train,	you	should	always
train	several	neural	networks	in	parallel,	running	them	one	a	time	so	that	each	network
uses	the	machines	cores.

Random	Search	Model	Selection

It	is	also	possible	to	use	a	random	search	for	model	selection.	Instead	of	systematically
trying	every	hyper-parameter	combination,	the	random	search	method	chooses	random
values	for	hyper-parameters.	For	numeric	ranges,	you	no	longer	need	to	specify	a	step
value,	the	random	model	selection	will	choose	a	continuous	range	of	floating	point
numbers	between	your	specified	beginning	and	ending	points.	For	a	random	search,	the
programmer	typically	specifies	either	a	time	or	an	iteration	limit.	The	following	shows	a
random	search,	using	the	same	axes	as	above,	but	it	is	limited	to	ten	iterations:

Iteration	#1:	[3.298266736790538][sigmoid]

Iteration	#2:	[9.569985574809834][ReLU]

Iteration	#3:	[1.241154231596738][sigmoid]

Iteration	#4:	[9.140498645836487][sigmoid]

Iteration	#5:	[8.041758658131585][tanh]

Iteration	#6:	[2.363519841339439][ReLU]

Iteration	#7:	[9.72388393455185][tanh]

Iteration	#8:	[3.411276006139815][tanh]

Iteration	#9:	[3.1166220877785236][sigmoid]

Iteration	#10:	[8.559433702612296][sigmoid]

As	you	can	see,	the	first	axis,	which	is	the	hidden	neuron	count,	is	now	taking	on
floating-point	values.	You	can	solve	this	problem	by	rounding	the	neuron	count	to	the
nearest	whole	number.	It	is	also	advisable	to	avoid	retesting	the	same	hyper-parameters
more	than	once.	As	a	result,	the	program	should	keep	a	list	of	previously	tried	hyper-
parameters	so	that	it	doesn’t	repeat	any	hyper-parameters	that	were	with	a	small	range	of	a
previously	tried	set.

The	following	URL	uses	Javascript	to	show	random	search	in	action:

http://www.heatonresearch.com/aifh/vol3/random_iter.html

http://www.heatonresearch.com/aifh/vol3/random_iter.html

Other	Model	Selection	Techniques

Model	selection	is	a	very	active	area	of	research,	and,	as	a	result,	many	innovative
ways	exist	to	perform	it.	Think	of	the	hyper-parameters	as	a	vector	of	values	and	the
process	of	finding	the	best	neural	network	score	for	those	hyper-parameters	as	an
objective	function.	You	can	consider	these	hyper-parameters	as	an	optimization	problem.
We	have	previously	examined	many	optimization	algorithms	in	earlier	volumes	of	this
book	series.	These	algorithms	are	the	following:

Ant	Colony	Optimization	(ACO)
Genetic	Algorithms
Genetic	Programming
Hill	Climbing
Nelder-Mead
Particle	Swarm	Optimization	(PSO)
Simulated	Annealing

We	examined	many	of	these	algorithms	in	detail	in	Volumes	1	and	2	of	Artificial
Intelligence	for	Humans.	Although	the	list	of	algorithms	is	long,	the	reality	is	that	most	of
these	algorithms	are	not	suited	for	model	selection	because	the	objective	function	for
model	selection	is	computationally	expensive.	It	might	take	minutes,	hours	or	even	days	to
train	a	neural	network	and	determine	how	well	a	given	set	of	hyper-parameters	can	train	a
neural	network.

Nelder-Mead	and	sometimes	hill	climbing	turn	out	to	be	the	best	options	if	you	wish	to
apply	an	optimization	function	to	model	selection.	These	algorithms	attempt	to	minimize
calls	to	the	objective	function.	Calls	to	the	objective	function	are	very	expensive	for	a
parameter	search	because	a	neural	network	must	be	trained.	A	good	technique	for
optimization	is	to	generate	a	set	of	hyper-parameters	to	use	as	a	starting	point	for	Nelder-
Mead	and	allow	Nelder-Mead	to	improve	these	hyper-parameters.	Nelder-Mead	is	a	good
choice	for	a	hyper-parameter	search	because	it	results	in	a	relatively	small	number	of	calls
to	the	objective	function.

Model	selection	is	a	very	common	part	of	Kaggle	data	science	competitions.	Based	on
competition	discussions	and	reports,	most	participants	use	grid	and	random	searches	for
model	selection..	Nelder-Mead	is	also	popular.	Another	technique	that	is	gaining	in
popularity	is	the	use	of	Bayesian	optimization,	as	described	by	Snoek,	Larochelle,	Hugo	&
Adams	(2012).	An	implementation	of	this	algorithm,	written	in	Python,	is	called
Spearmint,	and	you	can	find	it	at	the	following	URL:

https://github.com/JasperSnoek/spearmint

Bayesian	optimization	is	a	relatively	new	technique	for	model	selection	on	which	we
have	only	recently	conducted	research.	Therefore,	this	current	book	does	not	contain	a
more	profound	examination	of	it.	Future	editions	may	include	more	information	of	this
technique.

https://github.com/JasperSnoek/spearmint

Chapter	Summary

As	you	learned	in	this	chapter,	it	is	possible	to	prune	neural	networks.	Pruning	a	neural
network	removes	connections	and	neurons	in	order	to	make	the	neural	network	more
efficient.	Execution	speed,	number	of	connections,	and	error	are	all	measures	of
efficiency.	Although	neural	networks	must	be	effective	at	recognizing	patterns,	efficiency
is	the	main	goal	of	pruning.	Several	different	algorithms	can	prune	a	neural	network.	In
this	chapter,	we	examined	two	of	these	algorithms.	If	your	neural	network	is	already
operating	sufficiently	fast,	you	must	evaluate	whether	the	pruning	is	justified.	Even	when
efficiency	is	important,	you	must	weigh	the	trade-offs	between	efficiency	and	a	reduction
in	the	effectiveness	of	your	neural	network.

Model	selection	plays	a	significant	role	in	neural	network	development.	Hyper-
parameters	are	settings	such	as	hidden	neuron,	layer	count,	and	activation	function
selection.	Model	selection	is	the	process	of	finding	the	set	of	hyper-parameters	that	will
produce	the	best-trained	neural	network.	A	variety	of	algorithms	can	search	through	the
possible	settings	of	the	hyper-parameters	and	find	the	best	set.

Pruning	can	sometimes	lead	to	a	decrease	in	the	tendency	for	neural	networks	to
overfit.	This	reduction	in	overfitting	is	typically	only	a	byproduct	of	the	pruning	process.
Algorithms	that	reduce	overfitting	are	called	regularization	algorithms.	Although	pruning
will	sometimes	have	a	regularizing	effect,	an	entire	group	of	algorithms,	called
regularization	algorithms,	exist	to	reduce	overfitting.	We	will	focus	exclusively	on	these
algorithms	in	the	next	chapter.

Chapter	12:	Dropout	and	Regularization
Regularization
L1	&	L2	Regularization
Dropout	Layers

Regularization	is	a	technique	that	reduces	overfitting,	which	occurs	when	neural
networks	attempt	to	memorize	training	data,	rather	than	learn	from	it.	Humans	are	capable
of	overfitting	as	well.	Before	we	examine	the	ways	that	a	machine	accidentally	overfits,
we	will	first	explore	how	humans	can	suffer	from	it.

Human	programmers	often	take	certification	exams	to	show	their	competence	in	a
given	programming	language.	To	help	prepare	for	these	exams,	the	test	makers	often	make
practice	exams	available.	Consider	a	programmer	who	enters	a	loop	of	taking	the	practice
exam,	studying	more,	and	then	taking	the	practice	exam	again.	At	some	point,	the
programmer	has	memorized	much	of	the	practice	exam,	rather	than	learning	the
techniques	necessary	to	figure	out	the	individual	questions.	The	programmer	has	now
overfit	to	the	practice	exam.	When	this	programmer	takes	the	real	exam,	his	actual	score
will	likely	be	lower	than	what	he	earned	on	the	practice	exam.

A	computer	can	overfit	as	well.	Although	a	neural	network	received	a	high	score	on	its
training	data,	this	result	does	not	mean	that	the	same	neural	network	will	score	high	on
data	that	was	not	inside	the	training	set.	Regularization	is	one	of	the	techniques	that	can
prevent	overfitting.	A	number	of	different	regularization	techniques	exist.	Most	work	by
analyzing	and	potentially	modifying	the	weights	of	a	neural	network	as	it	trains.

L1	and	L2	Regularization

L1	and	L2	regularization	are	two	common	regularization	techniques	that	can	reduce
the	effects	of	overfitting	(Ng,	2004).	Both	of	these	algorithms	can	either	work	with	an
objective	function	or	as	a	part	of	the	backpropagation	algorithm.	In	both	cases	the
regularization	algorithm	is	attached	to	the	training	algorithm	by	adding	an	additional
objective.

Both	of	these	algorithms	work	by	adding	a	weight	penalty	to	the	neural	network
training.	This	penalty	encourages	the	neural	network	to	keep	the	weights	to	small	values.
Both	L1	and	L2	calculate	this	penalty	differently.	For	gradient-descent-based	algorithms,
such	as	backpropagation,	you	can	add	this	penalty	calculation	to	the	calculated	gradients.
For	objective-function-based	training,	such	as	simulated	annealing,	the	penalty	is
negatively	combined	with	the	objective	score.

Both	L1	and	L2	work	differently	in	the	way	that	they	penalize	the	size	of	a	weight.	L1
will	force	the	weights	into	a	pattern	similar	to	a	Gaussian	distribution;	the	L2	will	force
the	weights	into	a	pattern	similar	to	a	Laplace	distribution,	as	demonstrated	by	Figure

12.1:

Figure	12.1:	L1	vs	L2

As	you	can	see,	L1	algorithm	is	more	tolerant	of	weights	further	from	0,	whereas	the
L2	algorithm	is	less	tolerant.	We	will	highlight	other	important	differences	between	L1
and	L2	in	the	following	sections.	You	also	need	to	note	that	both	L1	and	L2	count	their
penalties	based	only	on	weights;	they	do	not	count	penalties	on	bias	values.

Understanding	L1	Regularization

You	should	use	L1	regularization	to	create	sparsity	in	the	neural	network.	In	other
words,	the	L1	algorithm	will	push	many	weight	connections	to	near	0.	When	a	weight	is
near	0,	the	program	drops	it	from	the	network.	Dropping	weighted	connections	will	create
a	sparse	neural	network.

Feature	selection	is	a	useful	byproduct	of	sparse	neural	networks.	Features	are	the
values	that	the	training	set	provides	to	the	input	neurons.	Once	all	the	weights	of	an	input
neuron	reach	0,	the	neural	network	training	determines	that	the	feature	is	unnecessary.	If
your	data	set	has	a	large	number	of	input	features	that	may	not	be	needed,	L1
regularization	can	help	the	neural	network	detect	and	ignore	unnecessary	features.

Equation	12.1	shows	the	penalty	calculation	performed	by	L1:

Equation	12.1:	L1	Error	Term	Objective

Essentially,	a	programmer	must	balance	two	competing	goals.	He	or	she	must	decide
the	greater	value	of	achieving	a	low	score	for	the	neural	network	or	regularizing	the
weights.	Both	results	have	value,	but	the	programmer	has	to	choose	the	relative
importance.	If	regularization	is	the	main	goal,	the	λ	(lambda)	value	determines	that	the	L1
objective	is	more	important	than	the	neural	network’s	error.	A	value	of	0	means	L1
regularization	is	not	considered	at	all.	In	this	case,	a	low	network	error	would	have	more
importance.	A	value	of	0.5	means	L1	regularization	is	half	as	important	as	the	error
objective.	Typical	L1	values	are	below	0.1	(10%).

The	main	calculation	performed	by	L1	is	the	summing	of	the	absolute	values	(as
indicated	by	the	vertical	bars)	of	all	the	weights.	The	bias	values	are	not	summed.

If	you	are	using	an	optimization	algorithm,	such	as	simulated	annealing,	you	can
simply	combine	the	value	returned	by	Equation	12.1	to	the	score.	You	should	combine	this
value	to	the	score	in	such	a	way	so	that	it	has	a	negative	effect.	If	you	are	trying	to
minimize	the	score,	then	you	should	add	the	L1	value.	Similarly,	if	you	are	trying	to
maximize	the	score,	then	you	should	subtract	the	L1	value.

If	you	are	using	L1	regularization	with	a	gradient-descent-based	training	algorithm,
such	as	backpropagation,	you	need	to	use	a	slightly	different	error	term,	as	shown	by
Equation	12.2:

Equation	12.2:	L1	Error	Term

Equation	12.2	is	nearly	the	same	as	Equation	12.1	except	that	we	divide	by	n.	The
value	n	represents	the	number	of	training	set	evaluations.	For	example,	if	there	were	100
training	set	elements	and	three	output	neurons,	n	would	be	300.	We	derive	this	number
because	the	program	has	three	values	to	evaluate	for	each	of	those	100	elements.	It	is
necessary	to	divide	by	n	because	the	program	applies	Equation	12.2	at	every	training
evaluation.	This	characteristic	contrasts	with	Equation	12.1,	which	is	applied	once	per
training	iteration.

To	use	Equation	12.2,	we	need	to	take	its	partial	derivative	with	respect	to	the	weight.
Equation	12.3	shows	the	partial	derivative	of	Equation	12.2:

Equation	12.3:	L1	Weight	Partial	Derivative

To	use	this	gradient,	we	add	this	value	to	every	weight	gradient	calculated	by	the
gradient-descent	algorithm.	This	addition	is	only	performed	for	weight	values;	the	biases
are	left	alone.

Understanding	L2	Regularization

You	should	use	L2	regularization	when	you	are	less	concerned	about	creating	a	space
network	and	are	more	concerned	about	low	weight	values.	The	lower	weight	values	will
typically	lead	to	less	overfitting.

Equation	12.4	shows	the	penalty	calculation	performed	by	L2:

Equation	12.4:	L2	Error	Term	Objective

Like	the	L1	algorithm,	the	λ	(lambda)	value	determines	how	important	the	L2
objective	is	compared	to	the	neural	network’s	error.	Typical	L2	values	are	below	0.1
(10%).	The	main	calculation	performed	by	L2	is	the	summing	of	the	squares	of	all	of	the
weights.	The	bias	values	are	not	summed.

If	you	are	using	an	optimization	algorithm,	such	as	simulated	annealing,	you	can
simply	combine	the	value	returned	by	Equation	12.4	to	the	score.	You	should	combine	this
value	with	the	score	in	such	a	way	so	that	it	has	a	negative	effect.	If	you	are	trying	to
minimize	the	score,	then	you	should	add	the	L2	value.	Similarly,	if	you	are	trying	to
maximize	the	score,	then	you	should	subtract	the	L2	value.

If	you	are	using	L2	regularization	with	a	gradient-descent-based	training	algorithm,
such	as	backpropagation,	you	need	to	use	a	slightly	different	error	term,	as	shown	by
Equation	12.5:

Equation	12.5:	L2	Error	Term

Equation	12.5	is	nearly	the	same	as	Equation	12.4,	except	that,	unlike	L1,	we	take	the
squares	of	the	weights.	To	use	Equation	12.5,	we	need	to	take	the	partial	derivative	with
respect	to	the	weight.	Equation	12.6	shows	the	partial	derivative	of	Equation	12.6:

Equation	12.6:	L2	Weight	Partial	Derivative

To	use	this	gradient,	you	need	to	add	this	value	to	every	weight	gradient	calculated	by
the	gradient-descent	algorithm.	This	addition	is	only	performed	on	weight	values;	the
biases	are	left	alone.

Dropout	Layers

Hinton,	Srivastava,	Krizhevsky,	Sutskever,	&	Salakhutdinov	(2012)	introduced	the
dropout	regularization	algorithm.	Although	dropout	works	in	a	different	way	than	L1	and
L2,	it	accomplishes	the	same	goal—the	prevention	of	overfitting.	However,	the	algorithm
goes	about	the	task	by	actually	removing	neurons	and	connections—at	least	temporarily.
Unlike	L1	and	L2,	no	weight	penalty	is	added.	Dropout	does	not	directly	seek	to	train
small	weights.

Dropout	works	by	causing	hidden	neurons	of	the	neural	network	to	be	unavailable
during	part	of	the	training.	Dropping	part	of	the	neural	network	causes	the	remaining
portion	to	be	trained	to	still	achieve	a	good	score	even	without	the	dropped	neurons.	This
decreases	coadaption	between	neurons,	which	results	in	less	overfitting.

Dropout	Layer

Most	neural	network	frameworks	implement	dropout	as	a	separate	layer.	Dropout
layers	function	as	a	regular,	densely	connected	neural	network	layer.	The	only	difference
is	that	the	dropout	layers	will	periodically	drop	some	of	their	neurons	during	training.	You
can	use	dropout	layers	on	regular	feedforward	neural	networks.	In	fact,	they	can	also
become	layers	in	convolutional	LeNET-5	networks	like	we	studied	in	Chapter	10,
“Convolutional	Neural	Networks.”

The	usual	hyper-parameters	for	a	dropout	layer	are	the	following:

Neuron	Count
Activation	Function
Dropout	Probability

The	neuron	count	and	activation	function	hyper-parameters	work	exactly	the	same
way	as	their	corresponding	parameters	in	the	dense	layer	type	mentioned	in	Chapter	10,
“Convolutional	Neural	Networks.”	The	neuron	count	simply	specifies	the	number	of
neurons	in	the	dropout	layer.	The	dropout	probability	indicates	the	likelihood	of	a	neuron
dropping	out	during	the	training	iteration.	Just	as	it	does	for	a	dense	layer,	the	program
specifies	an	activation	function	for	the	dropout	layer.

Implementing	a	Dropout	Layer

The	program	implements	a	dropout	layer	as	a	dense	layer	that	can	eliminate	some	of
its	neurons.	Contrary	to	popular	belief	about	the	dropout	layer,	the	program	does	not
permanently	remove	these	discarded	neurons.	A	dropout	layer	does	not	lose	any	of	its
neurons	during	the	training	process,	and	it	will	still	have	exactly	the	same	number	of
neurons	after	training.	In	this	way,	the	program	only	temporarily	masks	the	neurons	rather
than	dropping	them.

Figure	12.2	shows	how	a	dropout	layer	might	be	situated	with	other	layers:

Figure	12.2:	Dropout	Layer

The	discarded	neurons	and	their	connections	are	shown	as	dashed	lines.	The	input
layer	has	two	input	neurons	as	well	as	a	bias	neuron.	The	second	layer	is	a	dense	layer
with	three	neurons	as	well	as	a	bias	neuron.	The	third	layer	is	a	dropout	layer	with	six
regular	neurons	even	though	the	program	has	dropped	50%	of	them.	While	the	program
drops	these	neurons,	it	neither	calculates	nor	trains	them.	However,	the	final	neural
network	will	use	all	of	these	neurons	for	the	output.	As	previously	mentioned,	the	program
only	temporarily	discards	the	neurons.

During	subsequent	training	iterations,	the	program	chooses	different	sets	of	neurons
from	the	dropout	layer.	Although	we	chose	a	probability	of	50%	for	dropout,	the	computer
will	not	necessarily	drop	three	neurons.	It	is	as	if	we	flipped	a	coin	for	each	of	the	dropout
candidate	neurons	to	choose	if	that	neuron	was	dropped	out.	You	must	know	that	the
program	should	never	drop	the	bias	neuron.	Only	the	regular	neurons	on	a	dropout	layer
are	candidates.

The	implementation	of	the	training	algorithm	influences	the	process	of	discarding
neurons.	The	dropout	set	frequently	changes	once	per	training	iteration	or	batch.	The
program	can	also	provide	intervals	where	all	neurons	are	present.	Some	neural	network
frameworks	give	additional	hyper-parameters	to	allow	you	to	specify	exactly	the	rate	of
this	interval.

Why	dropout	is	capable	of	decreasing	overfitting	is	a	common	question.	The	answer	is
that	dropout	can	reduce	the	chance	of	a	codependency	developing	between	two	neurons.
Two	neurons	that	develop	a	codependency	will	not	be	able	to	operate	effectively	when	one
is	dropped	out.	As	a	result,	the	neural	network	can	no	longer	rely	on	the	presence	of	every

neuron,	and	it	trains	accordingly.	This	characteristic	decreases	its	ability	to	memorize	the
information	presented	to	it,	thereby	forcing	generalization.

Dropout	also	decreases	overfitting	by	forcing	a	bootstrapping	process	upon	the	neural
network.	Bootstrapping	is	a	very	common	ensemble	technique.	We	will	discuss
ensembling	in	greater	detail	in	Chapter	16,	“Modeling	with	Neural	Networks.”	Basically,
ensembling	is	a	technique	of	machine	learning	that	combines	multiple	models	to	produce	a
better	result	than	those	achieved	by	individual	models.	Ensemble	is	a	term	that	originates
from	the	musical	ensembles	in	which	the	final	music	product	that	the	audience	hears	is	the
combination	of	many	instruments.

Bootstrapping	is	one	of	the	most	simple	ensemble	techniques.	The	programmer	using
bootstrapping	simply	trains	a	number	of	neural	networks	to	perform	exactly	the	same	task.
However,	each	of	these	neural	networks	will	perform	differently	because	of	some	training
techniques	and	the	random	numbers	used	in	the	neural	network	weight	initialization.	The
difference	in	weights	causes	the	performance	variance.	The	output	from	this	ensemble	of
neural	networks	becomes	the	average	output	of	the	members	taken	together.	This	process
decreases	overfitting	through	the	consensus	of	differently	trained	neural	networks.

Dropout	works	somewhat	like	bootstrapping.	You	might	think	of	each	neural	network
that	results	from	a	different	set	of	neurons	being	dropped	out	as	an	individual	member	in
an	ensemble.	As	training	progresses,	the	program	creates	more	neural	networks	in	this
way.	However,	dropout	does	not	require	the	same	amount	of	processing	as	does
bootstrapping.	The	new	neural	networks	created	are	temporary;	they	exist	only	for	a
training	iteration.	The	final	result	is	also	a	single	neural	network,	rather	than	an	ensemble
of	neural	networks	to	be	averaged	together.

Using	Dropout

In	this	chapter,	we	will	continue	to	evolve	the	book’s	MNIST	handwritten	digits
example.	We	examined	this	data	set	in	the	book	introduction	and	used	it	in	several
examples.

The	example	for	this	chapter	uses	the	training	set	to	fit	a	dropout	neural	network.	The
program	subsequently	evaluates	the	test	set	on	this	trained	network	to	view	the	results.
Both	dropout	and	non-dropout	versions	of	the	neural	network	have	results	to	examine.

The	dropout	neural	network	used	the	following	hyper-parameters:

Activation	Function:	ReLU
Input	Layer:	784	(28x28)
Hidden	Layer	1:	1000
Dropout	Layer:	500	units,	50%
Hidden	Layer	2:	250
Output	Layer:	10	(because	there	are	10	digits)

We	selected	the	above	hyper-parameters	through	experimentation.	By	rounding	the
number	of	input	neurons	up	to	the	next	even	unit,	we	chose	a	first	hidden	layer	of	1000.
The	next	three	layers	constrained	this	amount	by	half	each	time.	Placing	the	dropout	layer
between	the	two	hidden	layers	provided	the	best	improvement	in	the	error	rate.	We	also
tried	placing	it	both	before	hidden	layer	1	and	after	hidden	layer	2.	Most	of	the	overfitting
occurred	between	the	two	hidden	layers.

We	used	the	following	hyper-parameters	for	the	regular	neural	network.	This	process
is	essentially	the	same	as	the	dropout	network	except	that	an	additional	hidden	layer
replaces	the	dropout	layer.

Activation	Function:	ReLU
Input	Layer:	784	(28x28)
Hidden	Layer	1:	1000
Hidden	Layer	2:	500
Hidden	Layer	3:	250
Output	Layer:	10	(because	there	are	10	digits)

The	results	are	shown	here:

Relu:

Best	valid	loss	was	0.068229	at	epoch	17.

Incorrect	170/10000	(1.7000000000000002%)

ReLU+Dropout:

Best	valid	loss	was	0.065753	at	epoch	5.

Incorrect	120/10000	(1.2%)

As	you	can	see,	dropout	neural	network	achieved	a	better	error	rate	than	the	ReLU
only	neural	network	from	earlier	in	the	book.	By	reducing	the	amount	of	overfitting,	the
dropout	network	got	a	better	score.	You	should	also	notice	that,	although	the	non-dropout
network	did	achieve	a	better	training	score,	this	result	is	not	good.	It	indicates	overfitting.
Of	course,	these	results	will	vary,	depending	on	the	platform	used.

Chapter	Summary

We	introduced	several	regularization	techniques	that	can	reduce	overfitting.	When	the
neural	network	memorizes	the	input	and	expected	output,	overfitting	occurs	because	the
program	has	not	learned	to	generalize.	Many	different	regularization	techniques	can	force
the	neural	network	to	learn	to	generalize.	We	examined	L1,	L2,	and	dropout.	L1	and	L2
work	similarly	by	imposing	penalties	for	weights	that	are	too	large.	The	purpose	of	these
penalties	is	to	reduce	complexity	in	the	neural	network.	Dropout	takes	an	entirely	different
approach	by	randomly	removing	various	neurons	and	forcing	the	training	to	continue	with
a	partial	neural	network.

The	L1	algorithm	penalizes	large	weights	and	forces	many	of	the	weights	to	approach

0.	We	consider	the	weights	that	contain	a	zero	value	to	be	dropped	from	the	neural
network.	This	reduction	produces	a	sparse	neural	network.	If	all	weighted	connections
between	an	input	neuron	and	the	next	layer	are	removed,	you	can	assume	that	the	feature
connected	to	that	input	neuron	is	unimportant.	Feature	selection	is	choosing	input	features
based	on	their	importance	to	the	neural	network.	The	L2	algorithm	penalizes	large
weights,	but	it	does	not	tend	to	produce	neural	networks	that	are	as	sparse	as	those
produced	by	the	L1	algorithm.

Dropout	randomly	drops	neurons	in	a	designated	dropout	layer.	The	neurons	that	were
dropped	from	the	network	are	not	gone	as	they	were	in	pruning.	Instead,	the	dropped
neurons	are	temporarily	masked	from	the	neural	network.	The	set	of	dropped	neurons
changes	during	each	training	iteration.	Dropout	forces	the	neural	network	to	continue
functioning	when	neurons	are	removed.	This	makes	it	difficult	for	the	neural	network	to
memorize	and	overfit.

So	far,	we	have	explored	only	feedforward	neural	networks	in	this	volume.	In	this	type
of	network,	the	connections	only	move	forward	from	the	input	layer	to	hidden	layers	and
ultimately	to	the	output	layer.	Recurrent	neural	networks	allow	backward	connections	to
previous	layers.	We	will	analyze	this	type	of	neural	network	in	the	next	chapter.

Additionally,	we	have	focused	primarily	on	using	neural	networks	to	recognize
patterns.	We	can	also	teach	neural	networks	to	predict	future	trends.	By	providing	a	neural
network	with	a	series	of	time-based	values,	it	can	predict	subsequent	values.	In	the	next
chapter,	we	will	also	demonstrate	predictive	neural	networks.	We	refer	to	this	type	of
neural	network	as	a	temporal	neural	network.	Recurrent	neural	networks	can	often	make
temporal	predictions.

Chapter	13:	Time	Series	and	Recurrent
Networks

Time	Series
Elman	Networks
Jordan	Networks
Deep	Recurrent	Networks

In	this	chapter,	we	will	examine	time	series	encoding	and	recurrent	networks,	two
topics	that	are	logical	to	put	together	because	they	are	both	methods	for	dealing	with	data
that	spans	over	time.	Time	series	encoding	deals	with	representing	events	that	occur	over
time	to	a	neural	network.	There	are	many	different	methods	to	encode	data	that	occur	over
time	to	a	neural	network.	This	encoding	is	necessary	because	a	feedforward	neural
network	will	always	produce	the	same	output	vector	for	a	given	input	vector.	Recurrent
neural	networks	do	not	require	encoding	of	time	series	data	because	they	are	able	to
automatically	handle	data	that	occur	over	time.

The	variation	in	temperature	during	the	week	is	an	example	of	time	series	data.	For
instance,	if	we	know	that	today’s	temperature	is	25	degrees,	and	tomorrow’s	temperature
is	27	degrees,	the	recurrent	neural	networks	and	time	series	encoding	provide	another
option	to	predict	the	correct	temperature	for	the	week.	Conversely,	a	traditional
feedforward	neural	network	will	always	respond	with	the	same	output	for	a	given	input.	If
a	feedforward	neural	network	is	trained	to	predict	tomorrow’s	temperature,	it	should
respond	27	for	25.	The	fact	that	it	will	always	output	27	when	given	25	might	be	a
hindrance	to	its	predictions.	Surely	the	temperature	of	27	will	not	always	follow	25.	It
would	be	better	for	the	neural	network	to	consider	the	temperatures	for	a	series	of	days
before	the	day	being	predicted.	Perhaps	the	temperature	over	the	last	week	might	allow	us
to	predict	tomorrow’s	temperature.	Therefore,	recurrent	neural	networks	and	time	series
encoding	represent	two	different	approaches	to	the	problem	of	representing	data	over	time
to	a	neural	network.

So	far	the	neural	networks	that	we’ve	examined	have	always	had	forward	connections.
The	input	layer	always	connects	to	the	first	hidden	layer.	Each	hidden	layer	always
connects	to	the	next	hidden	layer.	The	final	hidden	layer	always	connects	to	the	output
layer.	This	manner	to	connect	layers	is	the	reason	that	these	networks	are	called
“feedforward.”	Recurrent	neural	networks	are	not	so	rigid,	as	backward	connections	are
also	allowed.	A	recurrent	connection	links	a	neuron	in	a	layer	to	either	a	previous	layer	or
the	neuron	itself.	Most	recurrent	neural	network	architectures	maintain	state	in	the
recurrent	connections.	Feedforward	neural	networks	don’t	maintain	any	state.	A	recurrent
neural	network’s	state	acts	as	a	sort	of	short-term	memory	for	the	neural	network.
Consequently,	a	recurrent	neural	network	will	not	always	produce	the	same	output	for	a
given	input.

Time	Series	Encoding

As	we	saw	in	previous	chapters,	neural	networks	are	particularly	good	at	recognizing
patterns,	which	helps	them	predict	future	patterns	in	data.	We	refer	to	a	neural	network
that	predicts	future	patterns	as	a	predictive,	or	temporal,	neural	network.	These	predictive
neural	networks	can	anticipate	future	events,	such	as	stock	market	trends	and	sun	spot
cycles.

Many	different	kinds	of	neural	networks	can	predict.	In	this	section,	the	feedforward
neural	network	will	attempt	to	learn	patterns	in	data	so	it	can	predict	future	values.	Like	all
problems	applied	to	neural	networks,	prediction	is	a	matter	of	intelligently	determining
how	to	configure	input	and	interpret	output	neurons	for	a	problem.	Because	the	type	of
feedforward	neural	networks	in	this	book	always	produce	the	same	output	for	a	given
input,	we	need	to	make	sure	that	we	encode	the	input	correctly.

A	wide	variety	of	methods	can	encode	time	series	data	for	a	neural	network.	The
sliding	window	algorithm	is	one	of	the	simplest	and	most	popular	encoding	algorithms.
However,	more	complex	algorithms	allow	the	following	considerations:

Weighting	older	values	as	less	important	than	newer
Smoothing/averaging	over	time
Other	domain-specific	(e.g.	finance)	indicators

We	will	focus	on	the	sliding	window	algorithm	encoding	method	for	time	series.	The
sliding	window	algorithm	works	by	dividing	the	data	into	two	windows	that	represent	the
past	and	the	future.	You	must	specify	the	sizes	of	both	windows.	For	example,	if	you	want
to	predict	future	prices	with	the	daily	closing	price	of	a	stock,	you	must	decide	how	far
into	the	past	and	future	that	you	wish	to	examine.	You	might	want	to	predict	the	next	two
days	using	the	last	five	closing	prices.	In	this	case,	you	would	have	a	neural	network	with
five	input	neurons	and	two	output	neurons.

Encoding	Data	for	Input	and	Output	Neurons

Consider	a	simple	series	of	numbers,	such	as	the	sequence	shown	here:

1,	2,	3,	4,	3,	2,	1,	2,	3,	4,	3,	2,	1

A	neural	network	that	predicts	numbers	from	this	sequence	might	use	three	input
neurons	and	a	single	output	neuron.	The	following	training	set	has	a	prediction	window	of
size	1	and	a	past	window	size	of	3:

[1,2,3]	->	[4]

[2,3,4]	->	[3]

[3,4,3]	->	[2]

[4,3,2]	->	[1]

As	you	can	see,	the	neural	network	is	prepared	to	receive	several	data	samples	in	a
sequence.	The	output	neuron	then	predicts	how	the	sequence	will	continue.	The	idea	is
that	you	can	now	feed	any	sequence	of	three	numbers,	and	the	neural	network	will	predict
the	fourth	number.	Each	data	point	is	called	a	time	slice.	Therefore,	each	input	neuron
represents	a	known	time	slice.	The	output	neurons	represent	future	time	slices.

It	is	also	possible	to	predict	more	than	one	value	into	the	future.	The	following	training
set	has	a	prediction	window	of	size	2	and	a	past	window	size	of	3:

[1,2,3]	->	[4,3]

[2,3,4]	->	[3,2]

[3,4,3]	->	[2,1]

[4,3,2]	->	[1,2]

The	last	two	examples	have	only	a	single	stream	of	data.	It	is	possible	to	use	multiple
streams	of	data	to	predict.	For	example,	you	might	predict	the	price	with	the	price	of	a
stock	and	its	volume.	Consider	the	following	two	streams:

Stream	#1:	1,	2,	3,	4,	3,	2,	1,	2,	3,	4,	3,	2,	1

Stream	#2:	10,	20,	30,	40,	30,	20,	10,	20,	30,	40,	30,	20,	10

You	can	predict	stream	#1	with	stream	#1	and	#2.	You	simply	need	to	add	the	stream
#2	values	next	to	the	stream	#1	values.	A	training	set	can	perform	this	calculation.	The
following	set	shows	a	prediction	window	of	size	1	and	a	past	window	size	of	3:

[1,10,2,20,3,30]	->	[4]

[2,20,3,30,4,40]	->	[3]

[3,30,4,40,3,30]	->	[2]

[4,40,3,30,2,20]	->	[1]

This	same	technique	works	for	any	number	of	streams.	In	this	case,	stream	#1	helps	to
predict	itself.	For	example,	you	can	use	the	stock	prices	of	IBM	and	Apple	to	predict
Microsoft.	This	technique	uses	three	streams.	The	stream	that	we’re	predicting	doesn’t
need	to	be	among	the	streams	providing	the	data	to	form	the	prediction.

Predicting	the	Sine	Wave

The	example	in	this	section	is	relatively	simple.	We	present	a	neural	network	that
predicts	the	sine	wave,	which	is	mathematically	predictable.	However,	programmers	can
easily	understand	the	sine	wave,	and	it	varies	over	time.	These	qualities	make	it	a	good
introduction	to	predictive	neural	networks.

You	can	see	the	sine	wave	by	plotting	the	trigonometric	sine	function.	Figure	13.1
shows	the	sine	wave:

Figure	13.1:	The	sine	wave

The	sine	wave	function	trains	the	neural	network.	Backpropagation	will	adjust	the
weights	to	emulate	the	sine	wave.	When	you	first	execute	the	sine	wave	example,	you	will
see	the	results	of	the	training	process.	Typical	output	from	the	sine	wave	predictor’s
training	process	follows:

Iteration	#1	Error:0.48120350975475823	Iteration	#2	Error:

0.36753445768855236	Iteration	#3	Error:0.3212066601426759

Iteration	#4	Error:0.2952410514715732	Iteration	#5	Error:

0.2780102928778258	Iteration	#6	Error:0.26556861969786527

Iteration	#7	Error:0.25605359706505776	Iteration	#8	Er236

Introduction	to	Neural	Networks	with	Java,	Second	Edition

ror:0.24842242500053566	Iteration	#9	Error:0.24204767544134156	Iteration

#10	Error:0.23653845782593882

...

Iteration	#4990	Error:0.02319397662897425	Iteration	#4991	Error:

0.02319310934886356	Iteration	#4992	Error:0.023192242246688515

Iteration	#4993	Error:0.02319137532183077	Iteration	#4994	Error:

0.023190508573672858	Iteration	#4995	Error:0.02318964200159761

Iteration	#4996	Error:0.02318877560498862	Iteration	#4997	Error:

0.02318790938322986	Iteration	#4998	Error:0.023187043335705867

Iteration	#4999	Error:0.023186177461801745

In	the	beginning,	the	error	rate	is	fairly	high	at	48%.	By	the	second	iteration,	this	rate
quickly	begins	to	fall	to	36.7%.	By	the	time	the	4,999th	iteration	has	occurred,	the	error
rate	has	fallen	to	2.3%.	The	program	is	designed	to	stop	before	hitting	the	5,000th
iteration.	This	succeeds	in	reducing	the	error	rate	to	less	than	0.03.

Additional	training	would	produce	a	better	error	rate;	however,	by	limiting	the
iterations,	the	program	is	able	to	finish	in	only	a	few	minutes	on	a	regular	computer.	This
program	took	about	two	minutes	to	execute	on	an	Intel	I7	computer.

Once	the	training	is	complete,	the	sine	wave	is	presented	to	the	neural	network	for
prediction.	You	can	see	the	output	from	this	prediction	here:

5:Actual=0.76604:Predicted=0.7892166200864351:Difference=2.32%	6:A

ctual=0.86602:Predicted=0.8839210963512845:Difference=1.79%	7:Ac

tual=0.93969:Predicted=0.934526031234053:Difference=0.52%	8:Act

ual=0.9848:Predicted=0.9559577688326862:Difference=2.88%	9:Actu

al=1.0:Predicted=0.9615566601973113:Difference=3.84%	10:Actual=

0.9848:Predicted=0.9558060932656686:Difference=2.90%	11:Actual=

0.93969:Predicted=0.9354447787244102:Difference=0.42%	12:Actual

=0.86602:Predicted=0.8894014978439005:Difference=2.34%	13:Actua

l=0.76604:Predicted=0.801342405700056:Difference=3.53%	14:Actua

l=0.64278:Predicted=0.6633506809125252:Difference=2.06%	15:Actu

al=0.49999:Predicted=0.4910483600917853:Difference=0.89%	16:Act

ual=0.34202:Predicted=0.31286152780645105:Difference=2.92%	17:A

ctual=0.17364:Predicted=0.14608325263568134:Difference=2.76%

18:Actual=0.0:Predicted=-0.008360016796238434:Difference=0.84%

19:Actual=-0.17364:Predicted=-0.15575381460132823:Difference=1.79%

20:Actual=-0.34202:Predicted=-0.3021775158559559:Difference=3.98%

...

490:Actual=-0.64278:Predicted=-0.6515076637590029:Difference=0.87%

491:Actual=-0.76604:Predicted=-0.8133333939237001:Difference=4.73%

492:Actual=-0.86602:Predicted=-0.9076496572125671:Difference=4.16%

493:Actual=-0.93969:Predicted=-0.9492579517460149:Difference=0.96%

494:Actual=-0.9848:Predicted=-0.9644567437192423:Difference=2.03%

495:Actual=-1.0:Predicted=-0.9664801515670861:Difference=3.35%

496:Actual=-0.9848:Predicted=-0.9579489752650393:Difference=2.69%

497:Actual=-0.93969:Predicted=-0.9340105440194074:Difference=0.57%

498:Actual=-0.86602:Predicted=-0.8829925066754494:Difference=1.70%

499:Actual=-0.76604:Predicted=-0.7913823031308845:Difference=2.53%

As	you	can	see,	we	present	both	the	actual	and	predicted	values	for	each	element.	We
trained	the	neural	network	for	the	first	250	elements;	however,	the	neural	network	is	able
to	predict	beyond	the	first	250.	You	will	also	notice	that	the	difference	between	the	actual
values	and	the	predicted	values	rarely	exceeds	3%.

Sliding	window	is	not	the	only	way	to	encode	time	series.	Other	time	series	encoding
algorithms	can	be	very	useful	for	specific	domains.	For	example,	many	technical
indicators	exist	that	help	to	find	patterns	in	the	value	of	securities	such	as	stocks,	bonds,
and	currency	pairs.

Simple	Recurrent	Neural	Networks

Recurrent	neural	networks	do	not	force	the	connections	to	flow	only	from	one	layer	to
the	next,	from	input	layer	to	output	layer.	A	recurrent	connection	occurs	when	a
connection	is	formed	between	a	neuron	and	one	of	the	following	other	types	of	neurons:

The	neuron	itself
A	neuron	on	the	same	level
A	neuron	on	a	previous	level

Recurrent	connections	can	never	target	the	input	neurons	or	the	bias	neurons.

The	processing	of	recurrent	connections	can	be	challenging.	Because	the	recurrent
links	create	endless	loops,	the	neural	network	must	have	some	way	to	know	when	to	stop.
A	neural	network	that	entered	an	endless	loop	would	not	be	useful.	To	prevent	endless
loops,	we	can	calculate	the	recurrent	connections	with	the	following	three	approaches:

Context	neurons
Calculating	output	over	a	fixed	number	of	iterations
Calculating	output	until	neuron	output	stabilizes

We	refer	to	neural	networks	that	use	context	neurons	as	a	simple	recurrent	network
(SRN).	The	context	neuron	is	a	special	neuron	type	that	remembers	its	input	and	provides
that	input	as	its	output	the	next	time	that	we	calculate	the	network.	For	example,	if	we
gave	a	context	neuron	0.5	as	input,	it	would	output	0.	Context	neurons	always	output	0	on
their	first	call.	However,	if	we	gave	the	context	neuron	a	0.6	as	input,	the	output	would	be
0.5.	We	never	weight	the	input	connections	to	a	context	neuron,	but	we	can	weight	the
output	from	a	context	neuron	just	like	any	other	connection	in	a	network.	Figure	13.2
shows	a	typical	context	neuron:

Figure	13.2:	Context	Neuron

Context	neurons	allow	us	to	calculate	a	neural	network	in	a	single	feedforward	pass.
Context	neurons	usually	occur	in	layers.	A	layer	of	context	neurons	will	always	have	the
same	number	of	context	neurons	as	neurons	in	its	source	layer,	as	demonstrated	by	Figure
13.3:

Figure	13.3:	Context	Layer

As	you	can	see	from	the	above	layer,	two	hidden	neurons	that	are	labeled	hidden	1	and
hidden	2	directly	connect	to	the	two	context	neurons.	The	dashed	lines	on	these
connections	indicate	that	these	are	not	weighted	connections.	These	weightless
connections	are	never	dense.	If	these	connections	were	dense,	hidden	1	would	be
connected	to	both	hidden	1	and	hidden	2.	However,	the	direct	connection	simply	joins
each	hidden	neuron	to	its	corresponding	context	neuron.	The	two	context	neurons	form
dense,	weighted	connections	to	the	two	hidden	neurons.	Finally,	the	two	hidden	neurons
also	form	dense	connections	to	the	neurons	in	the	next	layer.	The	two	context	neurons
would	form	two	connections	to	a	single	neuron	in	the	next	layer,	four	connections	to	two
neurons,	six	connections	to	three	neurons,	and	so	on.

You	can	combine	context	neurons	with	the	input,	hidden,	and	output	layers	of	a	neural
network	in	many	different	ways.	In	the	next	two	sections,	we	explore	two	common	SRN
architectures.

Elman	Neural	Networks

In	1990,	Elman	introduced	a	neural	network	that	provides	pattern	recognition	to	time
series.	This	neural	network	type	has	one	input	neuron	for	each	stream	that	you	are	using	to
predict.	There	is	one	output	neuron	for	each	time	slice	you	are	trying	to	predict.	A	single-
hidden	layer	is	positioned	between	the	input	and	output	layer.	A	layer	of	context	neurons
takes	its	input	from	the	hidden	layer	output	and	feeds	back	into	the	same	hidden	layer.
Consequently,	the	context	layers	always	have	the	same	number	of	neurons	as	the	hidden
layer,	as	demonstrated	by	Figure	13.4:

Figure	13.4:	Elman	SRN

The	Elman	neural	network	is	a	good	general-purpose	architecture	for	simple	recurrent
neural	networks.	You	can	pair	any	reasonable	number	of	input	neurons	to	any	number	of
output	neurons.	Using	normal	weighted	connections,	the	two	context	neurons	are	fully
connected	with	the	two	hidden	neurons.	The	two	context	neurons	receive	their	state	from
the	two	non-weighted	connections	(dashed	lines)	from	each	of	the	two	hidden	neurons.

Jordan	Neural	Networks

In	1993,	Jordan	introduced	a	neural	network	to	control	electronic	systems.	This	style
of	SRN	is	similar	to	Elman	networks.	However,	the	context	neurons	are	fed	from	the
output	layer	instead	of	the	hidden	layer.	We	also	refer	to	the	context	units	in	a	Jordan
network	as	the	state	layer.	They	have	a	recurrent	connection	to	themselves	with	no	other
nodes	on	this	connection,	as	seen	in	Figure	13.5:

Figure	13.5:	Jordan	SRN

The	Jordan	neural	network	requires	the	same	number	of	context	neurons	and	output
neurons.	Therefore,	if	we	have	one	output	neuron,	the	Jordan	network	will	have	a	single

context	neuron.	This	equality	can	be	problematic	if	you	have	only	a	single	output	neuron
because	you	will	be	able	to	have	just	one	single-context	neuron.

The	Elman	neural	network	is	applicable	to	a	wider	array	of	problems	than	the	Jordan
network	because	the	large	hidden	layer	creates	more	context	neurons.	As	a	result,	the
Elman	network	can	recall	more	complex	patterns	because	it	captures	the	state	of	the
hidden	layer	from	the	previous	iteration.	This	state	is	never	bipolar	since	the	hidden	layer
represents	the	first	line	of	feature	detectors.

Additionally,	if	we	increase	the	size	of	the	hidden	layer	to	account	for	a	more	complex
problem,	we	also	get	more	context	neurons	with	an	Elman	network.	The	Jordan	network
doesn’t	produce	this	effect.	To	create	more	context	neurons	with	the	Jordan	network,	we
must	add	more	output	neurons.	We	cannot	add	output	neurons	without	changing	the
definition	of	the	problem.

When	to	use	a	Jordan	network	is	a	common	question.	Programmers	originally
developed	this	network	type	for	robotics	research.	Neural	networks	that	are	designed	for
robotics	typically	have	input	neurons	connected	to	sensors	and	output	neurons	connected
to	actuators	(typically	motors).	Because	each	motor	has	its	own	output	neuron,	neural
networks	for	robots	will	generally	have	more	output	neurons	than	regression	neural
networks	that	predict	a	single	value.

Backpropagation	through	Time

You	can	train	SRNs	with	a	variety	of	methods.	Because	SRNs	are	neural	networks,
you	can	train	their	weights	with	any	optimization	algorithm,	such	as	simulated	annealing,
particle	swarm	optimization,	Nelder-Mead	or	others.	Regular	backpropagation-based
algorithms	can	also	train	of	the	SRN.	Mozer	(1995),	Robinson	&	Fallside	(1987)	and
Werbos	(1988)	each	invented	an	algorithm	specifically	designed	for	SRNs.	Programmers
refer	to	this	algorithm	as	backpropagation	through	time	(BPTT).	Sjoberg,	Zhang,	Ljung,	et
al.	(1995)	determined	that	backpropagation	through	time	provides	superior	training
performance	than	general	optimization	algorithms,	such	as	simulated	annealing.
Backpropagation	through	time	is	even	more	sensitive	to	local	minima	than	standard
backpropagation.

Backpropagation	through	time	works	by	unfolding	the	SRN	to	become	a	regular
neural	network.	To	unfold	the	SRN,	we	construct	a	chain	of	neural	networks	equal	to	how
far	back	in	time	we	wish	to	go.	We	start	with	a	neural	network	that	contains	the	inputs	for
the	current	time,	known	as	t.	Next	we	replace	the	context	with	the	entire	neural	network,
up	to	the	context	neuron’s	input.	We	continue	for	the	desired	number	of	time	slices	and
replace	the	final	context	neuron	with	a	0.	Figure	13.6	illustrates	this	process	for	two	time
slices.

Figure	13.6:	Unfolding	to	Two	Time	Slices

This	unfolding	can	continue	deeper;	Figure	13.7	shows	three	time	slices:

Figure	13.7:	Unfolding	to	Two	Time	Slices

You	can	apply	this	abstract	concept	to	the	actual	SRNs.	Figure	13.8	illustrates	a	two-
input,	two-hidden,	one-output	Elman	neural	network	unfolded	to	two	time	slices:

Figure	13.8:	Elman	Unfolded	to	Two	Time	Slices

As	you	can	see,	there	are	inputs	for	both	t	(current	time)	and	t-1	(one	time	slice	in	the
past).	The	bottom	neural	network	stops	at	the	hidden	neurons	because	you	don’t	need
everything	beyond	the	hidden	neurons	to	calculate	the	context	input.	The	bottom	network
structure	becomes	the	context	to	the	top	network	structure.	Of	course,	the	bottom	structure
would	have	had	a	context	as	well	that	connects	to	its	hidden	neurons.	However,	because
the	output	neuron	above	does	not	contribute	to	the	context,	only	the	top	network	(current
time)	has	one.

It	is	also	possible	to	unfold	a	Jordan	neural	network.	Figure	13.9	shows	a	two-input,
two-hidden,	one-output	Jordan	network	unfolded	to	two	time	slices.

Figure	13.9:	Jordan	Unfolded	to	Two	Time	Slices

Unlike	the	Elman	network,	you	must	calculate	the	entire	Jordan	network	to	determine
the	context.	As	a	result,	we	can	calculate	the	previous	time	slice	(bottom	network)	all	the
way	to	the	output	neuron.

To	train	the	SRN,	we	can	use	regular	backpropagation	to	train	the	unfolded	network.
However,	at	the	end	of	the	iteration,	we	average	the	weights	of	all	folds	to	obtain	the
weights	for	the	SRN.	Listing	13.1	describes	the	BPTT	algorithm:

Listing	13.1:	Backpropagation	Through	Time	(BPTT):

def	bptt(a,	y)			

#	a[t]	is	the	input	at	time	t.	y[t]	is	the	output

			..	unfold	the	network	to	contain	k	instances	of	f

			..	see	above	figure..

			while	stopping	criteria	no	met:

#	x	is	the	current	context

					x	=	[]	

					for	t	from	0	to	n	–	1:									

#	t	is	time.	n	is	the	length	of	the	training	sequence

					..	set	the	network	inputs	to	x,	a[t],	a[t+1],	...,	a[t+k-1]

					p	=	..	forward-propagation	of	the	inputs	

									..	over	the	whole	unfolded	network

#	error	=	target	-	prediction

					e	=	y[t+k]	-	p											

					..	Back-propagate	the	error,	e,	back	across	

					..	the	whole	unfolded	network

							

					..	Update	all	the	weights	in	the	network

					..	Average	the	weights	in	each	instance	of	f	together,	

					..	so	that	each	f	is	identical

#	compute	the	context	for	the	next	time-step

					x	=	f(x)																	

Gated	Recurrent	Units

Although	recurrent	neural	networks	have	never	been	as	popular	as	the	regular
feedforward	neural	networks,	active	research	on	them	continues.	Chung,	Hyun	&	Bengio
(2014)	introduced	the	gated	recurrent	unit	(GRU)	to	allow	recurrent	neural	networks	to
function	in	conjunction	with	deep	neural	network	by	solving	some	inherent	limitations	of
recurrent	neural	networks.	GRUs	are	neurons	that	provide	a	similar	role	to	the	context
neurons	seen	previously	in	this	chapter.

It	is	difficult	to	train	RNNs	to	capture	long-term	dependencies	because	the	gradients
tend	to	either	vanish	(most	of	the	time)	or	explode	(rarely,	but	with	severe	effects),	as
demonstrated	by	Chung,	Hyun	&	Bengio	(2015).

As	of	the	2015	publication	of	this	book,	GRUs	are	less	than	a	year	old.	Because	of	the
cutting	edge	nature	of	GRUs,	most	major	neural	network	frameworks	do	not	currently
include	them.	If	you	would	like	to	experiment	with	GRUs,	the	Python	Theano-based
framework	Keras	includes	them.	You	can	find	the	framework	at	the	following	URL:

https://github.com/fchollet/keras

Though	we	usually	use	Lasange,	Keras	is	one	of	many	Theano-based	frameworks	for
Python,	and	it	is	also	one	of	the	first	to	support	GRUs.	This	section	contains	a	brief,	high-
level	introduction	to	GRU,	and	we	will	update	the	book’s	examples	as	needed	to	support
this	technology	as	it	becomes	available.	Refer	to	the	book’s	example	code	for	up-to-date
information	on	example	availability	for	GRU.

https://github.com/fchollet/keras

A	GRU	uses	two	gates	to	overcome	these	limitations,	as	shown	in	Figure	13.10:

Figure	13.10:	Gated	Recurrent	Unit	(GRU)

The	gates	are	indicated	by	z,	the	update	gate,	and	r,	the	reset	gate.	The	values	h	and
tilde-h	represent	the	activation	(output)	and	candidate	activation.	It	is	important	to	note
that	the	switches	specify	ranges,	rather	than	simply	being	on	or	off.

The	primary	difference	between	the	GRU	and	traditional	recurrent	neural	networks	is
that	the	entire	context	value	does	not	change	its	value	each	iteration	as	it	does	in	the	SRN.
Rather,	the	update	gate	governs	the	degree	of	update	to	the	context	activation	that	occurs.
Additionally,	the	program	provides	a	reset	gate	that	allows	the	context	to	be	reset.

Chapter	Summary

In	this	chapter,	we	introduced	several	methods	that	can	handle	time	series	data	with
neural	networks.	A	feedforward	neural	network	produces	the	same	output	when	provided
the	same	input.	As	a	result,	feedforward	neural	networks	are	said	to	be	deterministic.	This
quality	does	not	allow	a	feedforward	neural	network	the	ability	to	produce	output,	given	a
series	of	inputs.	If	your	application	must	provide	output	based	on	a	series	of	inputs,	you
have	two	choices.	You	can	encode	the	time	series	into	an	input	feature	vector	or	use	a
recurrent	neural	network.

Encoding	a	time	series	is	a	way	of	capturing	time	series	information	in	a	feature	vector
that	is	fed	to	a	feedforward	neural	network.	A	number	of	methods	encode	time	series	data.
We	focused	on	sliding	window	encoding.	This	method	specifies	two	windows.	The	first
window	determines	how	far	into	the	past	to	use	for	prediction.	The	second	window
determines	how	far	into	the	future	to	predict.

Recurrent	neural	networks	are	another	method	to	deal	with	time	series	data.	Encoding
is	not	necessary	with	a	recurrent	neural	network	because	it	is	able	to	remember	previous
inputs	to	the	neural	network.	This	short-term	memory	allows	the	neural	network	to	be	able
to	see	patterns	in	time.	Simple	recurrent	networks	use	a	context	neuron	to	remember	the
state	from	previous	computations.	We	examined	Elman	and	Jordan	SRNs.	Additionally,
we	introduced	a	very	new	neuron	type	called	the	gated	recurrent	unit	(GRU).	This	neuron

type	does	not	immediately	update	its	context	value	like	the	Elman	and	Jordan	networks.
Two	gates	govern	the	degree	of	update.

Hyper-parameters	define	the	structure	of	a	neural	network	and	ultimately	determine	its
effectiveness	for	a	particular	problem.	In	the	previous	chapters	of	this	book,	we	introduced
hyper-parameters	such	as	the	number	of	hidden	layers	and	neurons,	the	activation
functions,	and	other	governing	attributes	of	neural	networks.	Determining	the	correct	set
of	hyper-parameters	is	often	a	difficult	task	of	trial	and	error.	However,	some	automated
processes	can	make	this	process	easier.	Additionally,	some	rules	of	thumb	can	help
architect	these	neural	networks.	We	cover	these	pointers,	as	well	as	automated	processes,
in	the	next	chapter.

Chapter	14:	Architecting	Neural
Networks

Hyper-parameters
Learning	Rate	&	Momentum
Hidden	Structure
Activation	Functions

Hyper-parameters,	as	mentioned	in	previous	chapters,	are	the	numerous	settings	for
models	such	as	neural	networks.	Activation	functions,	hidden	neuron	counts,	layer
structure,	convolution,	max-pooling	and	dropout	are	all	examples	of	neural	network
hyper-parameters.	Finding	the	optimal	set	of	hyper-parameters	can	seem	a	daunting	task,
and,	indeed,	it	is	one	of	the	most	time-consuming	tasks	for	the	AI	programmer.	However,
do	not	fear,	we	will	provide	you	with	a	summary	of	the	current	research	on	neural	network
architecture	in	this	chapter.	We	will	also	show	you	how	to	conduct	experiments	to	help
determine	the	optimal	architecture	for	your	own	networks.

We	will	make	architectural	recommendations	in	two	ways.	First,	we	will	report	on
recommendations	from	scientific	literature	in	the	field	of	AI.	These	recommendations	will
include	citations	so	that	you	can	examine	the	original	paper.	However,	we	will	strive	to
present	the	key	concept	of	the	article	in	an	approachable	manner.	The	second	way	will	be
through	experimentation.	We	will	run	several	competing	architectures	and	report	the
results.

You	need	to	remember	that	a	few	hard	and	fast	rules	do	not	dictate	the	optimal
architecture	for	every	project.	Every	data	set	is	different,	and,	as	a	result,	the	optimal
neural	network	for	every	data	set	is	also	different.	Thus,	you	must	always	perform	some
experimentation	to	determine	a	good	architecture	for	your	network.

Evaluating	Neural	Networks

Neural	networks	start	with	random	weights.	Additionally,	some	training	algorithms
use	random	values	as	well.	All	considered,	we’re	dealing	with	quite	a	bit	of	randomness	in
order	to	make	comparisons.	Random	number	seeds	are	a	common	solution	to	this	issue;
however,	a	constant	seed	does	not	provide	an	equal	comparison,	given	that	we	are
evaluating	neural	networks	with	different	neuron	counts.

Let’s	compare	a	neural	network	with	32	connections	against	another	network	with	64
connections.	While	the	seed	guarantees	that	the	first	32	connections	retain	the	same	value,
there	are	now	32	additional	connections	that	will	have	new	random	values.	Furthermore,
those	32	weights	in	the	first	network	might	not	be	in	the	same	locations	in	the	second
network	if	the	random	seed	is	maintained	between	only	the	two	initial	weight	sets.

To	compare	architectures,	we	must	perform	several	training	runs	and	average	the	final
results.	Because	these	extra	training	runs	add	to	the	total	runtime	of	the	program,
excessive	numbers	of	runs	will	quickly	become	impractical.	It	can	also	be	beneficial	to
choose	a	training	algorithm	that	is	deterministic	(one	that	does	not	use	random	numbers).
The	experiments	that	we	will	perform	in	this	chapter	will	use	five	training	runs	and	the
resilient	propagation	(RPROP)	training	algorithm.	RPROP	is	deterministic,	and	five	runs
are	an	arbitrary	choice	that	provides	a	reasonable	level	of	consistency.	Using	the	Xavier
weight	initialization	algorithm,	introduced	in	Chapter	4,	“Feedforward	Neural	Networks,”
will	also	help	provide	consistent	results.

Training	Parameters

Training	algorithms	themselves	have	parameters	that	you	must	tune.	We	don’t	consider
the	parameters	related	to	training	as	hyper-parameters	because	they	are	not	evident	after	a
neural	network	has	been	trained.	You	can	examine	a	trained	neural	network	to	determine
easily	what	hyper-parameters	are	present.	A	simple	examination	of	the	network	reveals	the
neuron	counts	and	activation	function	in	use.	However,	determining	training	parameters
such	as	learning	rate	and	momentum	is	not	possible.	Both	training	parameters	and	hyper-
parameters	greatly	affect	the	error	rates	that	the	neural	network	can	obtain.	However,	we
can	use	training	parameters	only	during	the	actual	training.

The	three	most	common	training	parameters	for	neural	networks	are	listed	here:

Learning	Rate
Momentum
Batch	Size

Not	all	learning	algorithms	have	these	parameters.	Additionally,	you	can	vary	the
values	chosen	for	these	parameters	as	learning	progresses.	We	discuss	these	training
parameters	in	the	subsequent	sections.

Learning	Rate

The	learning	rate	allows	us	to	determine	how	far	each	iteration	of	training	will	take	the
weight	values.	Some	problems	are	very	simple	to	solve,	and	a	high	training	rate	will	yield
a	quick	solution.	Other	problems	are	more	difficult,	and	a	quick	learning	might	disregard	a
good	solution.	Other	than	the	runtime	of	your	program,	there	is	no	disadvantage	in
choosing	a	small	learning	rate.	Figure	14.1	shows	how	a	learning	rate	might	fare	on	both	a
simple	(unimodal)	and	complex	(multimodal)	problem:

Figure	14.1:	Learning	Rates

The	above	two	charts	show	the	relationship	between	weight	and	the	score	of	a
network.	As	the	program	increases	or	decreases	a	single	weight,	the	score	changes.	A
unimodal	problem	is	typically	easy	to	solve	because	its	graph	has	only	one	bump,	or
optimal	solution.	In	this	case,	we	consider	a	good	score	to	be	a	low	error	rate.

A	multimodal	problem	has	many	bumps,	or	possible	good	solutions.	If	the	problem	is
simple	(unimodal),	a	fast	learning	rate	is	optimal	because	you	can	charge	up	the	hill	to	a
great	score.	However,	haste	makes	waste	on	the	second	chart,	as	the	learning	rate	fails	to
find	the	two	optimums.

Kamiyama,	Iijima,	Taguchi,	Mitsui,	et	al.	(1992)	stated	that	most	literature	use	a
learning	rate	of	0.2	and	a	momentum	of	0.9.	Often	this	learning	rate	and	momentum	can
be	good	starting	points.	In	fact,	many	examples	do	use	these	values.	The	researchers
suggest	that	Equation	14.1	has	a	strong	likelihood	of	attaining	better	results.

Equation	14.1:	Setting	Learning	Rate	and	Momentum

The	variable	α	(alpha)	is	the	momentum;	ε	(epsilon)	is	the	learning	rate,	and	K	is	a
constant	related	to	the	hidden	neurons.	Their	research	suggests	that	the	tuning	of
momentum	(discussed	in	the	next	section)	and	learning	rate	are	related.	We	define	the
constant	K	by	the	number	of	hidden	neurons.	Smaller	numbers	of	hidden	neurons	should
use	a	larger	K.	In	our	own	experimentations,	we	do	not	use	the	equation	directly	because	it
is	difficult	to	choose	a	concrete	value	of	K.	The	following	calculations	show	several
learning	rates	based	on	learning	rate	and	K.

k=0.500000,	alpha=0.200000	->	epsilon=0.400000

k=0.500000,	alpha=0.300000	->	epsilon=0.350000

k=0.500000,	alpha=0.400000	->	epsilon=0.300000

k=1.000000,	alpha=0.200000	->	epsilon=0.800000

k=1.000000,	alpha=0.300000	->	epsilon=0.700000

k=1.000000,	alpha=0.400000	->	epsilon=0.600000

k=1.500000,	alpha=0.200000	->	epsilon=1.200000

k=1.500000,	alpha=0.300000	->	epsilon=1.050000

k=1.500000,	alpha=0.400000	->	epsilon=0.900000				

The	lower	values	of	K	represent	higher	hidden	neuron	counts;	therefore	the	hidden
neuron	count	is	decreasing	as	you	move	down	the	list.	As	you	can	see,	for	all	momentums
(α,	alpha)	of	0.2,	the	suggested	learning	rate	(ε,	epsilon)	increases	as	the	hidden	neuron
counts	decrease.	The	learning	rate	and	momentum	have	an	inverse	relationship.	As	you
increase	one,	you	should	decrease	the	other.	However,	the	hidden	neuron	count	controls
how	quickly	momentum	and	learning	rate	should	diverge.

Momentum

Momentum	is	a	learning	property	that	causes	the	weight	change	to	continue	in	its
current	direction,	even	if	the	gradient	indicates	that	the	weight	change	should	reverse
direction.	Figure	14.2	illustrates	this	relationship:

Figure	14.2:	Momentum	and	a	Local	Optima

A	positive	gradient	encourages	the	weight	to	decrease.	The	weight	has	followed	the
negative	gradient	up	the	hill	but	now	has	settled	into	a	valley,	or	a	local	optima.	The
gradient	now	moves	to	0	and	positive	as	the	other	side	of	the	local	optima	is	hit.
Momentum	allows	the	weight	to	continue	in	this	direction	and	possibly	escape	from	the
local-optima	valley	and	possibly	find	the	lower	point	to	the	right.

To	understand	exactly	how	learning	rate	and	momentum	are	implemented,	recall
Equation	6.6,	from	Chapter	6,	“Backpropagation	Training,”	that	is	repeated	as	Equation
14.2	for	convenience:

Equation	14.2:	Weight	and	Momentum	Applied

This	equation	shows	how	we	calculate	the	change	in	weight	for	training	iteration	t.
This	change	is	the	sum	of	two	terms	that	are	each	governed	by	the	learning	rate	ε	(epsilon)
and	momentum	α	(alpha).	The	gradient	is	the	weight’s	partial	derivative	of	the	error	rate.
The	sign	of	the	gradient	determines	if	we	should	increase	or	decrease	the	gradient.	The
learning	rate	simply	tells	backpropagation	the	percentage	of	this	gradient	that	the	program
should	apply	to	the	weight	change.	The	program	always	applies	this	change	to	the	original
weight	and	then	retains	it	for	the	next	iteration.	The	momentum	α	(alpha)	subsequently
determines	the	percentage	of	the	previous	iteration’s	weight	change	that	the	program
should	apply	to	this	iteration.	Momentum	allows	the	previous	iteration’s	weight	change	to
carry	through	to	the	current	iteration.	As	a	result,	the	weight	change	maintains	its
direction.	This	process	essentially	gives	it	“momentum.”

Jacobs	(1988)	discovered	that	learning	rate	should	be	decreased	as	training	progresses.
Additionally,	as	previously	discussed,	Kamiyama,	et	al.	(1992)	asserted	that	momentum
should	be	increased	as	the	learning	rate	is	decayed.	A	decreasing	learning	rate,	coupled
with	an	increasing	momentum,	is	a	very	common	pattern	in	neural	network	training.	The
high	learning	rate	allows	the	neural	network	to	begin	exploring	a	larger	area	of	the	search
space.	Decreasing	the	learning	rate	forces	the	network	to	stop	exploring	and	begin
exploiting	a	more	local	region	of	the	search	space.	Increasing	momentum	at	this	point
helps	guard	against	local	minima	in	this	smaller	search	region.

Batch	Size

The	batch	size	specifies	the	number	of	training	set	elements	that	you	must	calculate
before	the	weights	are	actually	updated.	The	program	sums	all	of	the	gradients	for	a	single
batch	before	it	updates	the	weights.	A	batch	size	of	1	indicates	that	the	weights	are
updated	for	each	training	set	element.	We	refer	to	this	process	as	online	training.	The
program	often	sets	the	batch	size	to	the	size	of	the	training	set	for	full	batch	training.

A	good	starting	point	is	a	batch	size	equal	to	10%	of	the	entire	training	set.	You	can
increase	or	decrease	the	batch	size	to	see	its	effect	on	training	efficiency.	Usually	a	neural
network	will	have	vastly	fewer	weights	than	training	set	elements.	As	a	result,	cutting	the
batch	size	by	a	half,	or	even	a	fourth,	will	not	have	a	drastic	effect	on	the	runtime	of	an
iteration	in	standard	backpropagation.

General	Hyper-Parameters

In	addition	to	the	training	parameters	just	discussed,	we	must	also	consider	the	hyper-
parameters.	They	are	significantly	more	important	than	training	parameters	because	they
determine	the	neural	networks	ultimate	learning	capacity.	A	neural	network	with	a	reduced
learning	capacity	cannot	overcome	this	deficiency	with	further	training.

Activation	Functions

Currently,	the	program	utilizes	two	primary	types	of	activation	functions	inside	of	a
neural	network:

Sigmoidal:	Logistic	(sigmoid)	&	Hyperbolic	Tangent	(tanh)
Linear:	ReLU

The	sigmoidal	(s-shaped)	activation	functions	have	been	a	mainstay	of	neural
networks,	but	they	are	now	losing	ground	to	the	ReLU	activation	function.	The	two	most
common	s-shaped	activation	functions	are	the	namesake	sigmoid	activation	function	and
the	hyperbolic	tangent	activation	function.	The	name	can	cause	confusion	because
sigmoid	refers	both	to	an	actual	activation	function	and	to	a	class	of	activation	functions.
The	actual	sigmoid	activation	function	has	a	range	between	0	and	1,	whereas	the
hyperbolic	tangent	function	has	a	range	of	-1	and	1.	We	will	first	tackle	hyperbolic	tangent
versus	sigmoid	(the	activation	function).	Figure	14.3	shows	the	overlay	of	these	two
activations:

Figure	14.3:	Sigmoid	and	Tanh

As	you	can	see	from	the	figure,	the	hyperbolic	tangent	stretches	over	a	much	larger
range	than	tanh.	Your	choice	of	these	two	activations	will	affect	the	way	that	you
normalize	your	data.	If	you	are	using	hyperbolic	tangent	at	the	output	layer	of	your	neural
network,	you	must	normalize	the	expected	outcome	between	-1	and	1.	Similarly,	if	you	are
using	the	sigmoid	function	for	the	output	layer,	you	must	normalize	the	expected	outcome
between	-1	and	1.	You	should	normalize	the	input	to	-1	to	1	for	both	of	these	activation
functions.	The	x-values	(input)	above	+1	will	saturate	to	+1	(y-values)	for	both	sigmoid
and	hyperbolic	tangent.	As	x-values	go	below	-1,	the	sigmoid	activation	function	saturates
to	y-values	of	0,	and	hyperbolic	tangent	saturates	to	y-values	of	-1.

The	saturation	of	sigmoid	to	values	of	0	in	the	negative	direction	can	be	problematic
for	training.	As	a	result,	Kalman	&	Kwasny	(1992)	recommend	hyperbolic	tangent	in	all
situations	instead	of	sigmoid.	This	recommendation	corresponds	with	many	literature
sources.	However,	this	argument	only	extends	to	the	choice	between	sigmoidal	activation
functions.	A	growing	body	of	recent	research	favors	the	ReLU	activation	function	in	all
cases	over	the	sigmoidal	activation	functions.

Zeiler	et	al.	(2014),	Maas,	Hannun,	Awni	&	Ng	(2013)	and	Glorot,	Bordes	&	Bengio
(2013)	all	recommend	the	ReLU	activation	function	over	its	sigmoidal	counterparts.
“Chapter	9,	“Deep	Learning,”	includes	the	advantages	of	the	ReLU	activation	function.	In
this	section,	we	will	examine	an	experiment	that	compares	the	ReLU	to	the	sigmoid,	we
used	a	neural	network	with	a	hidden	layer	of	1,000	neurons.	We	ran	this	neural	network
against	the	MNIST	data	set.	Obviously,	we	adjusted	the	number	of	input	and	output
neurons	to	match	the	problem.	We	ran	each	activation	function	five	times	with	different
random	weights	and	kept	the	best	results:

Sigmoid:

Best	valid	loss	was	0.068866	at	epoch	43.

Incorrect	192/10000	(1.92%)

ReLU:

Best	valid	loss	was	0.068229	at	epoch	17.

Incorrect	170/10000	(1.7000000000000002%)

The	accuracy	rates	for	each	of	the	above	neural	networks	on	a	validation	set.	As	you
can	see,	the	ReLU	activation	function	did	indeed	have	the	lowest	error	rate	and	achieved	it
in	fewer	training	iterations/epochs.	Of	course,	these	results	will	vary,	depending	on	the
platform	used.

Hidden	Neuron	Configurations

Hidden	neuron	configurations	have	been	a	frequent	source	of	questions.	Neural
network	programmers	often	wonder	exactly	how	to	structure	their	networks.	As	of	the
writing	of	this	book,	a	quick	scan	of	Stack	Overflow	shows	over	50	questions	related	to
hidden	neuron	configurations.	You	can	find	the	questions	at	the	following	link:

http://goo.gl/ruWpcb

Although	the	answers	may	vary,	most	of	them	simply	advise	that	the	programmer
“experiment	and	find	out.”	According	to	the	universal	approximation	theorem,	a	single-
hidden-layer	neural	network	can	theoretically	learn	any	pattern	(Hornik,	1991).
Consequently,	many	researchers	suggest	only	single-hidden-layer	neural	networks.
Although	a	single-hidden-layer	neural	network	can	learn	any	pattern,	the	universal
approximation	theorem	does	not	state	that	this	process	is	easy	for	a	neural	network.	Now
that	we	have	efficient	techniques	to	train	deep	neural	networks,	the	universal
approximation	theorem	is	much	less	important.

To	see	the	effects	of	hidden	neurons	and	neuron	counts,	we	will	perform	an
experiment	that	will	look	at	one-layer	and	two-layer	neural	networks.	We	will	try	every
combination	of	hidden	neurons	up	to	two	50-neuron	layers.	This	neural	network	will	use	a
ReLU	activation	function	and	RPROP.	This	experiment	took	over	30	hours	to	run	on	an
Intel	I7	quad-core.	Figure	14.4	shows	a	heat	map	of	the	results:

Figure	14.4:	Heat	Map	of	Two-Layer	Network	(first	experiment)

http://goo.gl/ruWpcb

The	best	configuration	reported	by	the	experiment	was	35	neurons	in	hidden	layer	1,
and	15	neurons	in	hidden	layer	2.	The	results	of	this	experiment	will	vary	when	repeated.
The	above	diagram	shows	the	best-trained	networks	in	the	lower-left	corner,	as	indicated
by	the	darker	squares.	This	indicates	that	the	network	favors	a	large	first	hidden	layer	with
smaller	second	hidden	layers.	The	heat	map	shows	the	relationships	between	the	different
configurations.	We	achieved	better	results	with	smaller	neuron	counts	on	the	second
hidden	layer.	This	occurred	because	the	neuron	counts	constricted	the	information	flow	to
the	output	layer.	This	approach	is	consistent	with	research	into	auto-encoders	in	which
successively	smaller	layers	force	the	neural	network	to	generalize	information,	rather	than
overfit.	In	general,	based	on	the	experiment	here,	we	advise	using	at	least	two	hidden
layers	with	successively	smaller	layers.

LeNet-5	Hyper-Parameters

The	LeNet-5	convolutional	neural	networks	introduce	additional	layer	types	that	bring
more	choices	in	the	construction	of	neural	networks.	Both	the	convolutional	and	max-
pooling	layers	create	other	choices	for	hyper-parameters.	Chapter	10,	“Convolutional
Neural	Networks”	contains	a	complete	list	of	hyper-parameters	that	the	LeNet-5	network
introduces.	In	this	section,	we	will	review	LeNet-5	architectural	recommendations
recently	suggested	in	scientific	papers.

Most	literature	on	LeNet-5	networks	supports	the	use	of	a	max-pool	layer	to	follow
every	convolutional	layer.	Ideally,	several	convolutional/max-pool	layers	reduce	the
resolution	at	each	step.	Chapter	6,	“Convolutional	Neural	Networks”	includes	this
demonstration.	However,	very	recent	literature	seems	to	indicate	that	max-pool	layers
should	not	be	used	at	all.

On	November	7,	2014,	the	website	Reddit	featured	Dr.	Geoffrey	Hinton	for	an	“ask
me	anything	(AMA)”	session.	Dr.	Hinton	is	the	foremost	researcher	in	deep	learning	and
neural	networks.	During	the	AMA	session,	Dr.	Hinton	was	asked	about	max-pool	layers.
You	can	read	his	complete	response	here:

https://goo.gl/TgBakL

Overall,	Dr.	Hinton	begins	his	answer	saying,	“The	pooling	operation	used	in
convolutional	neural	networks	is	a	big	mistake,	and	the	fact	that	it	works	so	well	is	a
disaster.”	He	then	proceeds	with	a	technical	description	of	why	you	should	never	use	max-
pooling.	At	the	time	of	this	book’s	publication,	his	response	is	fairly	recent	and
controversial.	Therefore	we	suggest	that	you	try	the	convolutional	neural	networks	both
with	and	without	max-pool	layers,	as	their	future	looks	uncertain.

https://goo.gl/TgBakL

Chapter	Summary

Selecting	a	good	set	of	hyper-parameters	is	one	of	the	most	difficult	tasks	for	the
neural	network	programmer.	The	number	of	hidden	neurons,	activation	functions,	and
layer	structures	are	all	examples	of	neural	network	hyper-parameters	that	the	programmer
must	adjust	and	fine-tune.	All	these	hyper-parameters	can	affect	the	overall	capacity	of	the
neural	network	to	learn	patterns.	As	a	result,	you	must	choose	them	correctly.

Most	current	literature	suggests	using	the	ReLU	activation	function	in	place	of	the
sigmoidal	(s-shaped)	activation	functions.	If	you	are	going	to	use	a	sigmoidal	activation,
most	literature	recommends	that	you	use	the	hyperbolic	tangent	activation	function	instead
of	the	sigmoidal	activation	function.	The	ReLU	activation	function	is	more	compatible
with	deep	neural	networks.

The	number	of	hidden	layers	and	neurons	is	also	an	important	hyper-parameter	for
neural	networks.	It	is	generally	advisable	that	successive	hidden	layers	contain	a	smaller
number	of	neurons	than	the	immediately	previous	layer.	This	adjustment	has	the	effect	of
constraining	the	data	from	the	inputs	and	forcing	the	neural	network	to	generalize	and	not
memorize,	which	results	in	overfitting.

We	do	not	consider	training	parameters	as	hyper-parameters	because	they	do	not	affect
the	structure	of	the	neural	network.	However,	you	still	must	choose	a	proper	set	of	training
parameters.	The	learning	rate	and	momentum	are	two	of	the	most	common	training
parameters	for	neural	networks.	Generally,	you	should	initially	set	the	learning	rate	high
and	decrease	it	as	training	continues.	You	should	move	the	momentum	value	inversely
with	the	learning	rate.

In	this	chapter,	we	examined	how	to	structure	neural	networks.	While	we	provided
some	general	recommendations,	the	data	set	generally	drives	the	architecture	of	the	neural
network.	Consequently,	you	must	analyze	the	data	set.	We	will	introduce	the	t-SNE
dimension	reduction	algorithm	in	the	next	chapter.	This	algorithm	will	allow	you	to
visualize	graphically	your	data	set	and	see	issues	that	occur	while	you	are	creating	a	neural
network	for	that	data	set.

Chapter	15:	Visualization
Confusion	Matrices
PCA
t-SNE

We	frequently	receive	the	following	question	about	neural	networks:	“I’ve	created	a
neural	network,	but	when	I	train	it,	my	error	never	goes	to	an	acceptable	level.	What
should	I	do?”	The	first	step	in	this	investigation	is	to	determine	if	one	of	the	following
common	errors	has	occurred.

Correct	number	of	input	and	output	neurons
Data	set	normalized	correctly
Some	fatal	design	decision	of	the	neural	network

Obviously,	you	must	have	the	correct	number	of	input	neurons	to	match	how	your	data
are	normalized.	Likewise,	you	should	have	a	single-output	neuron	for	regression	problems
or	usually	one	output	neuron	per	class	for	a	classification	problem.	You	should	normalize
input	data	to	fit	the	activation	function	that	you	use.	In	a	similar	way,	fatal	mistakes,	such
as	no	hidden	layer	or	a	learning	rate	of	0,	can	create	a	bad	situation.

However,	once	you	eliminate	all	these	errors,	you	must	look	to	your	data.	For
classification	problems,	your	neural	network	may	have	difficulties	differentiating	between
certain	pairs	of	classes.	To	help	you	resolve	this	issue,	some	visualization	algorithms	exist
that	allow	you	to	see	the	problems	that	your	neural	network	might	encounter.	The	two
visualizations	presented	in	this	chapter	will	show	the	following	issues	with	data:

Classes	that	are	easily	confused	for	others
Noisy	data
Dissimilarity	between	classes

We	describe	each	issue	in	the	subsequent	sections	and	offer	some	potential	solutions.
We	will	present	these	potential	solutions	in	the	form	of	two	algorithms	of	increasing
complexity.	Not	only	is	the	topic	of	visualization	important	for	data	analysis,	it	was	also
chosen	as	a	topic	by	the	readers	of	this	book,	which	earned	its	initial	funding	through	a
Kickstarter	campaign.	The	project’s	original	653	backers	chose	visualization	from	among
several	competing	project	topics.	As	a	result,	we	will	present	two	visualizations.	Both
examples	will	use	the	MNIST	handwritten	digits	data	set	that	we	have	examined	in
previous	chapters	of	this	book.

Confusion	Matrix

A	neural	network	trained	for	the	MNIST	data	set	should	be	able	to	take	a	handwritten
digit	and	predict	what	digit	was	actually	written.	Some	digits	are	more	easily	confused	for
others.	Any	classification	neural	network	has	the	possibility	of	misclassifying	data.	A
confusion	matrix	can	measure	these	misclassifications.

Reading	a	Confusion	Matrix

A	confusion	matrix	is	always	presented	as	a	square	grid.	The	number	of	rows	and
columns	will	both	be	equal	to	the	number	of	classes	in	your	problem.	For	MNIST,	this
will	be	a	10x10	grid,	as	shown	by	Figure	15.1:

Figure	15.1:	MNIST	Confusion	Matrix

A	confusion	matrix	uses	the	columns	to	represent	predictions.	The	rows	represent	what
would	have	been	a	correct	prediction.	If	you	look	at	row	0	column	0,	you	will	see	the
number	1,432.	This	result	means	that	the	neural	network	correctly	predicted	a	“0”	1,432
times.	If	you	look	at	row	3	column	2,	you	will	see	that	a	“2”	was	predicted	49	times	when
it	should	have	been	a	“3.”	The	problem	occurred	because	it’s	easy	to	mistake	a
handwritten	“3”	for	a	“2,”	especially	when	a	person	with	bad	penmanship	writes	the
numbers.	The	confusion	matrix	lets	you	see	which	digits	are	commonly	mistaken	for	each
other.	Another	important	aspect	of	the	confusion	matrix	is	the	diagonal	from	(0,0)	to	(9,9).
If	the	program	trains	the	neural	network	properly,	the	largest	numbers	should	be	in	the
diagonal.	Thus,	a	perfectly	trained	neural	network	will	only	have	numbers	in	the	diagonal.

Generating	a	Confusion	Matrix

You	can	create	a	confusion	matrix	with	the	following	steps:

Separate	the	data	set	into	training	and	validation.
Train	a	neural	network	on	the	training	set.
Set	the	confusion	matrix	to	all	zeros.
Loop	over	every	element	in	the	validation	set.
For	every	element,	increase	the	cell:	row=expected,	column=predicted.
Report	the	confusion	matrix.

Listing	15.1	shows	this	process	in	the	following	pseudocode:

Listing	15.1:	Compute	a	Confusion	Matrix

#	x	-	contains	dataset	inputs

#	y	-	contains	dataset	expected	values	(ordinals,	not	strings)

def	confusion_matrix(x,y,network):

#	Create	square	matrix	equal	to	number	of	classifications

		confusion	=	matrix(network.num_classes,	network.num_classes)	

#	Loop	over	every	element

		for	i	from	0	to	len(x):

				prediction	=	net.compute(x[i])

						target	=	y[i]

						confusion[target][prediction]	=	confusion[target][prediction]	+	1

#	Return	result

		return	confusion

Confusion	matrices	are	one	of	the	classic	visualizations	for	classification	data
problems.	You	can	use	them	with	any	classification	problem,	not	just	neural	networks.

t-SNE	Dimension	Reduction

The	t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE)	is	a	type	of	dimensionality
reduction	algorithm	that	programmers	frequently	use	for	visualization.	We	will	first	define
dimension	reduction	and	show	its	advantages	for	visualization	and	problem	simplification.

The	dimensions	of	a	data	set	are	the	number	of	input	(x)	values	that	the	program	uses
to	make	predictions.	The	classic	iris	data	set	has	four	dimensions	because	we	measure	the
iris	flowers	in	four	dimensions.	Chapter	4,	“Feedforward	Networks,”	has	an	explanation	of
the	iris	data	set.	The	MNIST	digits	are	images	of	28x28	grayscale	pixels,	which	result	in	a
total	of	784	input	neurons	(28	x	28).	As	a	result,	the	MNIST	data	set	has	784	dimensions.

For	dimensionality	reduction,	we	need	to	ask	the	following	question:	“Do	we	really
need	784	dimensions	or	could	we	project	this	data	set	into	fewer	dimensions?”	Projections
are	very	common	in	cartography.	Earth	exists	in	at	least	three	dimensions	that	we	can
directly	observe.	The	only	true	three-dimensional	map	of	Earth	is	a	globe.	However,
globes	are	inconvenient	to	store	and	transport.	As	long	as	it	still	contains	the	information
that	we	require,	a	flat	(2D)	representation	of	Earth	is	useful	for	spaces	where	a	globe	will
not	fit.	We	can	project	the	globe	on	a	2D	surface	in	many	ways.	Figure	15.2	shows	the
Lambert	projection	(from	Wikipedia)	of	Earth:

Figure	15.2:	Lambert	Projection	(cone)

Johann	Heinrich	Lambert	introduced	the	Lambert	projection	in	1772.	Conceptually,
this	projection	works	by	placing	a	cone	over	some	region	of	the	globe	and	projecting	the
image	onto	the	globe.	Once	the	cone	is	unrolled,	you	have	a	flat	2D	map.	Accuracy	is
better	near	the	tip	of	the	cone	and	worsens	towards	the	base	of	the	cone.	The	Lambert
projection	is	not	the	only	way	to	project	the	globe	and	produce	a	map,	Figure	15.3	shows
the	popular	Mercator	projection:

Figure	15.3:	Mercator	Projection	(cylinder)

Gerardus	Mercator	presented	the	Mercator	projection	in	1569.	This	projection	works
by	essentially	wrapping	a	cylinder	about	the	globe	at	the	equator.	Accuracy	is	best	at	the
equator	and	worsens	near	the	poles.	You	can	see	this	characteristic	by	examining	the
relative	size	of	Greenland	in	both	projections.	Along	with	the	two	projections	just
mentioned,	many	other	types	exist.	Each	is	designed	to	show	Earth	in	ways	that	are	useful
for	different	applications.

The	projections	above	are	not	strictly	2D	because	they	create	a	type	of	third	dimension
with	other	aspects	like	color.	The	map	projections	can	convey	additional	information	such
as	altitude,	ground	cover,	or	even	political	divisions	with	color.	Computer	projections	also
utilize	color,	as	we	will	discover	in	the	next	section.

t-SNE	as	a	Visualization

If	we	can	reduce	the	MNIST	764	dimensions	down	to	two	or	three	with	a	dimension
reduction	algorithm,	then	we	can	visualize	the	data	set.	Reducing	to	two	dimensions	is
popular	because	an	article	or	a	book	can	easily	capture	the	visualization.	It	is	important	to
remember	that	a	3D	visualization	is	not	actually	3D,	as	true	3D	displays	are	extremely
rare,	as	of	the	writing	of	this	book.	A	3D	visualization	will	be	rendered	onto	a	2D	monitor.
As	a	result,	it	is	necessary	to	“fly”	through	the	space	and	see	how	parts	of	the	visualization
really	appear.	This	flight	through	space	is	very	similar	to	a	computer	video	game	where
you	do	not	see	all	aspects	of	a	scene	until	you	fly	completely	around	the	object	being
viewed.	Even	in	the	real	world,	you	cannot	see	both	the	front	and	back	of	an	object	you
are	holding—it	is	necessary	to	rotate	the	object	with	your	hands	to	see	all	sides.

Karl	Pearson	in	1901	invented	one	of	the	most	common	dimensionality	reduction
algorithms.	Principal	component	analysis	(PCA)	creates	a	number	of	principal
components	that	match	the	number	of	dimensions	to	be	reduced.	For	a	2D	reduction,	there
would	be	two	principal	components.	Conceptually,	PCA	is	attempting	to	pack	the	higher-
dimensional	items	into	the	principal	components	that	maximize	the	amount	of	variability
in	the	data.	By	ensuring	that	the	distant	values	in	high-dimensional	space	remain	distant,
PCA	can	complete	its	function.	Figure	15.4	shows	a	PCA	reduction	of	the	MNIST	digits	to
two	dimensions:

Figure	15.4:	2D	PCA	Visualization	of	MNIST

The	first	principal	component	is	the	x-axis	(left	and	right).	As	you	can	see,	the	matrix
positions	the	blue	dots	(0’s)	at	the	far	left,	and	the	red	dots	(1’s)	are	placed	towards	the
right.	Handwritten	1’s	and	0’s	are	the	easiest	to	differentiate—they	have	the	highest

variability.	The	second	principal	component	is	the	y-axis	(up	and	down).	On	the	top,	you
have	green	(2’s)	and	brown	(3’s),	which	look	somewhat	similar.	On	the	bottom	are	purple
(4’s),	gray	(9’s)	and	black	(7’s),	which	also	look	similar.	Yet	the	variability	between	these
two	groups	is	high—it	is	easier	to	tell	2’s	and	3’s	from	4’s,	9’s	and	7’s.

Color	is	very	important	to	the	above	image.	If	you	are	reading	this	book	in	a	black-
and-white	form,	this	image	may	not	make	as	much	sense.	The	color	represents	the	digit
that	PCA	classified.	You	must	note	that	PCA	and	t-SNE	are	both	unsupervised;	therefore,
they	do	not	know	the	identities	of	the	input	vectors.	In	other	words,	they	don’t	know
which	digit	was	selected.	The	program	adds	the	colors	so	that	we	can	see	how	well	PCA
classified	the	digits.	If	the	above	diagram	is	black	and	white	in	your	version,	you	can	see
that	the	program	did	not	place	the	digits	into	many	distinct	groups.	We	can	therefore
conclude	that	PCA	does	not	work	well	as	a	clustering	algorithm.

The	above	figure	is	also	very	noisy	because	the	dots	overlap	in	large	regions.	The	most
well-defined	region	is	blue,	where	the	“1”	digits	reside.	You	can	also	see	that	purple	(4),
black	(7),	and	gray	(9)	are	easy	to	confuse.	Additionally,	brown	(3),	green	(2),	and	yellow
(8)	can	be	misleading.

PCA	analyzes	the	pair-wise	distances	of	all	data	points	and	preserves	large	distances.
As	previously	stated,	if	two	points	are	distant	in	PCA,	they	will	remain	distant.	However,
we	have	to	question	the	importance	of	distance.	Consider	Figure	15.5	that	shows	two
points	that	appear	to	be	somewhat	close:

Figure	15.5:	Apparent	Closeness	on	a	Spiral

The	points	in	question	are	the	two	red,	solid	points	that	are	connected	by	a	line.	The

two	points,	when	connected	by	a	straight	line,	are	somewhat	close.	However,	if	the
program	follows	the	pattern	in	the	data,	the	points	are	actually	far	apart,	as	indicated	by
the	solid	spiral	line	that	follows	all	of	the	points.	PCA	would	attempt	to	keep	these	two
points	close	as	they	appear	in	Figure	15.5.	The	t-SNE	algorithm	invented	by	van	der
Maaten	&	Hinton	(2008),	works	somewhat	differently.	Figure	15.6	shows	the	t-SNE
visualization	for	the	same	data	set	as	featured	for	PCA:

Figure	15.6:	2D	PCA	Visualization	of	MNIST

The	t-SNE	for	the	MNIST	digits	shows	a	much	clearer	visual	for	the	different	digits.
Again,	the	program	adds	color	to	indicate	where	the	digits	landed.	However,	even	in	black
and	white,	you	would	see	some	divisions	between	clusters.	Digits	located	nearer	to	each
other	share	similarities.	The	amount	of	noise	is	reduced	greatly,	but	you	can	still	see	some
red	dots	(0’s)	sprinkled	in	the	yellow	cluster	(8’s)	and	cyan	cluster	(6’s),	as	well	as	other
clusters.	You	can	produce	a	visualization	for	a	Kaggle	data	set	using	the	t-SNE	algorithm.
We	will	examine	this	process	in	Chapter	16,	“Modeling	with	Neural	Networks.”

Implementations	of	t-SNE	exist	for	most	modern	programming	languages.	Laurens
van	der	Maaten’s	home	page	contains	a	list	at	the	following	URL:

http://lvdmaaten.github.io/tsne/

http://lvdmaaten.github.io/tsne/

t-SNE	Beyond	Visualization

Although	t-SNE	is	primarily	an	algorithm	for	reducing	dimensions	for	visualization,
feature	engineering	also	utilizes	it.	The	algorithm	can	even	serve	as	a	model	component.
Feature	engineering	occurs	when	you	create	additional	input	features.	A	very	simple
example	of	feature	engineering	is	when	you	consider	health	insurance	applicants,	and	you
create	an	additional	feature	called	BMI,	based	on	the	features	weight	and	height,	as	seen	in
equation	15.1:

Equation	15.1:	BMI	Calculation

BMI	is	simply	a	calculated	field	that	allows	humans	to	combine	height	and	weight	to
determine	how	healthy	someone	is.	Such	features	can	sometimes	help	neural	networks	as
well.	You	can	build	some	additional	features	with	a	data	point’s	location	in	either	2D	or
3D	space.

In	Chapter	16,	“Modeling	with	Neural	Networks,”	we	will	discuss	building	neural
networks	for	the	Otto	Group	Kaggle	challenge.	Several	Kaggle	top-ten	solutions	for	this
competition	used	features	that	were	engineered	with	t-SNE.	For	this	challenge,	you	had	to
organize	data	points	into	nine	classes.	The	distance	between	an	item	and	the	nearest
neighbor	of	each	of	the	nine	classes	on	a	3D	t-SNE	projection	was	a	beneficial	feature.	To
calculate	this	feature,	we	simply	map	the	entire	training	set	into	t-SNE	space	and	obtain
the	3D	t-SNE	coordinates	for	each	feature.	Then	we	generate	nine	features	with	the
Euclidean	distance	between	the	current	data	point	and	its	nearest	neighbor	of	each	of	these
nine	classes.	Finally,	the	program	adds	these	nine	fields	to	the	92	fields	already	being
presented	to	the	neural	network.

As	a	visualization	or	as	part	of	the	input	to	another	model,	the	t-SNE	algorithm
provides	a	great	deal	of	information	to	the	program.	The	programmer	can	use	this
information	to	see	how	the	data	are	structured,	and	the	model	gains	more	details	on	the
structure	of	the	data.	Most	implementations	of	t-SNE	also	contain	adaptions	for	large	data
sets	or	for	very	high	dimensions.	Before	you	construct	a	neural	network	to	analyze	data,
you	should	consider	the	t-SNE	visualization.	After	you	train	the	neural	network	to	analyze
its	results,	you	can	use	the	confusion	matrix.

Chapter	Summary

Visualization	is	an	important	part	of	neural	network	programming.	Each	data	set
presents	unique	challenges	to	a	machine	learning	algorithm	or	a	neural	network.
Visualization	can	expose	these	challenges,	allowing	you	to	design	your	approach	to
account	for	known	issues	in	the	data	set.	We	demonstrated	two	visualization	techniques	in
this	chapter.

The	confusion	matrix	is	a	very	common	visualization	for	machine	learning
classification.	It	is	always	a	square	matrix	with	rows	and	columns	equal	to	the	number	of
classes	in	the	problem.	The	rows	represent	the	expected	values,	and	the	columns	represent
the	value	that	the	neural	network	actually	classified.	The	diagonal,	where	the	row	and
column	numbers	are	equal,	represents	the	number	of	times	the	neural	network	correctly
classified	that	particular	class.	A	well-trained	neural	network	will	have	the	largest	numbers
along	the	diagonal.	The	other	cells	count	the	number	of	times	a	misclassification	occurred
between	each	expected	class	and	actual	value.

Although	you	usually	run	the	confusion	matrices	after	the	program	generates	a	neural
network,	you	can	run	the	dimension	reduction	visualizations	beforehand	to	expose	some
challenges	that	might	be	present	in	your	data	set.	You	can	reduce	the	dimensions	of	your
data	set	to	2D	or	3D	with	the	t-SNE	algorithm.	However,	it	becomes	less	effective	in
dimensions	higher	than	3D.	With	the	2D	dimension	reduction,	you	can	create	informative
scatter	plots	that	will	show	the	relationship	between	several	classes.

In	the	next	chapter,	we	will	present	a	Kaggle	challenge	as	a	way	to	synthesize	many	of
the	topics	previously	discussed.	We	will	use	the	t-SNE	visualization	as	an	initial.
Additionally,	we	will	decrease	the	neural	network’s	tendency	to	overfit	with	the	use	of
dropout	layers.

Chapter	16:	Modeling	with	Neural
Networks

Data	Science
Kaggle
Ensemble	Learning

In	this	chapter,	we	present	a	capstone	project	on	modeling,	a	business-oriented
approach	for	artificial	intelligence,	and	some	aspects	of	data	science.	Drew	Conway
(2013),	a	leading	data	scientist,	characterizes	data	science	as	the	intersection	of	hacking
skills,	math	and	statistics	knowledge,	and	substantive	expertise.	Figure	16.1	depicts	this
definition:

Figure	16.1:	Conway’s	Data	Science	Venn	Diagram

Hacking	skills	are	essentially	a	subset	of	computer	programming.	Although	the	data
scientist	does	not	necessarily	need	the	infrastructure	knowledge	of	an	information
technology	(IT)	professional,	these	technical	skills	will	permit	him	or	her	to	create	short,
effective	programs	for	processing	data.	In	the	field	of	data	science,	we	refer	to	information
processing	as	data	wrangling.

Math	and	statistics	knowledge	covers	statistics,	probability,	and	other	inferential
methods.	Substantive	knowledge	describes	the	business	knowledge	as	well	as	the
comprehension	of	actual	data.	If	you	combine	only	two	of	these	topics,	you	don’t	have	all
the	components	for	data	science,	as	Figure	16.1	illustrates.	In	other	words,	the
combination	of	statistics	and	substantive	expertise	is	simply	traditional	research.	Those
two	skills	alone	don’t	encompass	the	capabilities,	such	as	machine	learning,	required	for
data	science.

This	book	series	deals	with	hacking	skills	and	math	and	statistical	knowledge,	two	of
the	circles	in	Figure	16.1.	Additionally,	it	teaches	you	to	create	your	own	models,	which	is
more	pertinent	to	the	field	of	computer	science	than	data	science.	Substantive	expertise	is
more	difficult	to	obtain	because	it	is	dependent	on	the	industry	that	utilizes	the	data
science	applications.	For	example,	if	you	want	to	apply	data	science	in	the	insurance
industry,	substantive	knowledge	refers	to	the	actual	business	operations	of	these
companies.

To	provide	a	data	science	capstone	project,	we	will	use	the	Kaggle	Otto	Group	Product
Classification	Challenge.	Kaggle	is	a	platform	for	competitive	data	science.	You	can	find
the	Otto	Group	Product	Classification	Challenge	at	the	following	URL:

https://www.kaggle.com/c/otto-group-product-classification-challenge

The	Otto	Group	was	the	first	(and	currently	only)	non-tutorial	Kaggle	competition	in
which	we’ve	competed.	After	obtaining	a	top	10%	finish,	we	achieved	one	of	the	criteria
for	the	Kaggle	Master	designation.	To	become	a	Kaggle	Master,	one	must	place	in	the	top
10	of	a	competition	once	and	in	the	top	10%	of	two	other	competitions.	Figure	16.2	shows
the	results	of	our	competition	entry	on	the	leaderboard:

Figure	16.2:	Results	in	the	Otto	Group	Product	Classification	Challenge

The	above	line	shows	several	pieces	of	information.

We	were	in	position	331	of	3514	(9.4%).
We	dropped	three	spots	in	the	final	day.
Our	multi-class	log	loss	score	was	0.42881.
We	made	52	submissions,	up	to	May	18,	2015.

We	will	briefly	describe	the	Otto	Group	Product	Classification	Challenge.	For	a
complete	description,	refer	to	the	Kaggle	challenge	website	(found	above).	The	Otto
Group,	the	world’s	largest	mail	order	company	and	currently	one	of	the	biggest	e-
commerce	companies,	introduced	this	challenge.	Because	the	group	has	many	products
sold	over	numerous	countries,	they	wanted	to	classify	these	products	into	nine	categories
with	93	features	(columns).	These	93	columns	represented	counts	and	were	often	0.

The	data	were	completely	redacted	(hidden).	The	competitors	did	not	know	the	nine
categories	nor	did	they	know	the	meaning	behind	the	93	features.	They	knew	only	that	the
features	were	integer	counts.	Like	most	Kaggle	competitions,	this	challenge	provided	the

https://www.kaggle.com/c/otto-group-product-classification-challenge

competitors	with	a	test	and	training	data	set.	For	the	training	data	set,	the	competitors
received	the	outcomes,	or	correct	answers.	For	the	test	set,	they	got	only	the	93	features,
and	they	had	to	provide	the	outcome.

The	competition	divided	the	test	and	training	sets	in	the	following	way:

Test	Data:	144K	rows
Training	Data:	61K	rows

During	the	competition,	participants	did	not	submit	their	actual	models	to	Kaggle.
Instead,	they	submitted	their	model’s	predictions	based	on	the	test	data.	As	a	result,	they
could	have	used	any	platform	to	make	these	predictions.	For	this	competition	there	were
nine	categories,	so	the	competitors	submitted	a	nine-number	vector	that	held	the
probability	of	each	of	these	nine	categories	being	the	correct	answer.

The	answer	in	the	vector	that	held	the	highest	probability	was	the	chosen	class.	As	you
can	observe,	this	competition	was	not	like	a	multiple-choice	test	in	school	where	students
must	submit	their	answer	as	A,	B,	C,	or	D.	Instead,	Kaggle	competitors	had	to	submit	their
answers	in	the	following	way:

A:	80%	probability
B:	16%	probability
C:	2%	probability
D:	2%	probability

College	exams	would	not	be	so	horrendous	if	students	could	submit	answers	like	those
in	the	Kaggle	competition.	In	many	multiple-choice	tests,	students	have	confidence	about
two	of	the	answers	and	eliminate	the	remaining	two.	The	Kaggle-like	multiple-choice	test
would	allow	students	to	assign	a	probability	to	each	answer,	and	they	could	achieve	a
partial	score.	In	the	above	example,	if	A	were	the	correct	answer,	students	would	earn	80%
of	the	points.

Nevertheless,	the	actual	Kaggle	score	is	slightly	more	complex.	The	program	grades
the	answers	with	a	logarithm-based	scale,	and	participants	face	heavy	penalties	if	they
have	a	lower	probability	on	the	correct	answer.	You	can	see	the	Kaggle	format	from	the
following	CSV	file	submission:

1,0.0003,0.2132,0.2340,0.5468,6.2998e-05,0.0001,0.0050,0.0001,4.3826e-05

2,0.0011,0.0029,0.0010,0.0003,0.0001,0.5207,0.0013,0.4711,0.0011

3,3.2977e-06,4.1419e-06,7.4524e-06,2.6550e-06,5.0014e-07,0.9998,5.2621e-

06,0.0001,6.6447e-06

4,0.0001,0.6786,0.3162,0.0039,3.3378e-05,4.1196e-05,0.0001,0.0001,0.0006

5,0.1403,0.0002,0.0002,6.734e-05,0.0001,0.0027,0.0009,0.0297,0.8255

As	you	can	see,	each	line	starts	with	a	number	that	specifies	the	data	item	that	is	being
answered.	The	sample	above	shows	the	answers	for	items	one	through	five.	The	next	nine
values	are	the	probabilities	for	each	of	the	product	classes.	These	probabilities	must	add
up	to	1.0	(100%).

Lessons	from	the	Challenge

Having	success	in	Kaggle	requires	you	to	understand	the	following	topics	and	the
corresponding	tools:

Deep	Learning	-	Using	H2O	and	Lasagne
Gradient	Boosting	Machines	(GBM)	-	Using	XGBOOST
Ensemble	Learning	-	Using	NumPy
Feature	Engineering	-	Using	NumPy	and	Scikit-Learn
GPU	is	really	important	for	deep	learning.	It	is	best	to	use	a	deep	learning	package
that	supports	it,	such	as	H2O,	Theano	or	Lasagne.
The	t-SNE	visualization	is	awesome	for	high-dimension	visualization	and	creating
features.
Ensembling	is	very	important.

For	our	submission,	we	used	Python	with	Scikit-Learn.	However,	you	can	use	any
language	capable	of	generating	a	CSV	file.	Kaggle	does	not	actually	run	your	code;	they
score	a	submission	file.	The	two	most	commonly	used	programming	languages	for	Kaggle
are	R	and	Python.	Both	of	these	languages	have	strong	data	science	frameworks	available
for	them.	R	is	actually	a	domain-specific	language	(DSL)	for	statistical	analysis.

During	this	challenge,	we	learned	the	most	about	GBM	parameter	tuning	and
ensemble	learning.	GBMs	have	quite	a	few	hyper-parameters	to	tune,	and	we	became
proficient	at	tuning	a	GBM.	The	individual	scores	for	our	GBMs	were	in	line	with	those	of
the	top	10%	of	the	teams.	However,	the	solution	in	this	chapter	will	use	only	deep
learning.	GBM	is	beyond	the	scope	of	this	book.	In	a	future	volume	or	edition	of	this
series,	we	plan	to	examine	GBM.

Although	computer	programmers	and	data	scientists	might	typically	utilize	a	single
model	like	neural	networks,	participants	in	Kaggle	need	to	use	multiple	models	to	be
successful	in	the	competition.	These	ensembled	models	produce	better	results	than	each	of
the	models	could	generate	independently.

We	worked	with	t-SNE,	examined	in	Chapter	15,	“Visualization,”	for	the	first	time	in
this	competition.	This	model	works	like	principal	component	analysis	(PCA)	in	that	it	is
capable	of	reducing	dimensions.	However,	the	data	points	separate	in	such	a	way	that	the
visualization	is	often	clearer	than	PCA.	The	program	achieves	the	clear	visualization	by
using	a	stochastic	nearest	neighbor	process.	Figure	16.3	shows	the	data	from	the	Otto
Group	Product	Classification	Challenge	visualized	in	t-SNE:

Figure	16.3:	Challenge	t-SNE

The	Winning	Approach	to	the	Challenge

Kaggle	is	very	competitive.	Our	primary	objective	as	we	entered	the	challenge	was	to
learn.	However,	we	also	hoped	to	rank	in	the	top	10%	by	the	end	in	order	to	reach	one	of
the	steps	in	becoming	a	Kaggle	master.	Earning	a	top	10%	was	difficult;	in	the	last	few
weeks	of	the	challenge,	other	competitors	knocked	us	out	of	the	bracket	almost	daily.	The
last	three	days	were	especially	turbulent.	Before	we	reveal	our	solution,	we	will	show	you
the	winning	one.	The	following	description	is	based	on	the	information	publically	posted
about	the	winning	solution.

The	winners	of	the	Otto	Group	Product	Classification	Challenge	were	Gilberto
Titericz	&	Stanislav	Semenov.	They	competed	as	a	team	and	used	a	three-level	ensemble,
as	seen	in	Figure	16.4:

Figure	16.4:	Challenge	Winning	Ensemble

We	will	provide	only	a	high-level	overview	of	their	approach.	You	can	find	the	full
description	at	the	following	URL:

https://goo.gl/fZrJA0

The	winning	approach	employed	both	the	R	and	Python	programming	languages.
Level	1	used	a	total	of	33	different	models.	Each	of	these	33	models	provided	its	output	to
three	models	in	level	2.	Additionally,	the	program	generated	eight	calculated	features.	An
engineered	feature	is	one	that	is	calculated	based	on	the	others.	A	simple	example	of	an
engineered	feature	might	be	body	mass	index	(BMI),	which	is	calculated	based	on	an
individual’s	height	and	weight.	The	BMI	value	provides	insights	that	height	and	weight
alone	might	not.

The	second	level	combined	the	following	three	model	types:

XGBoost	–	Gradient	boosting
Lasange	Neural	Network	–	Deep	learning
ADABoost	Extra	Trees

These	three	used	the	output	of	33	models	and	eight	features	as	input.	The	output	from
these	three	models	was	the	same	nine-number	probability	vector	previously	discussed.	It
was	as	if	each	model	were	being	used	independently,	thereby	producing	a	nine-number
vector	that	would	have	been	suitable	as	an	answer	submission	to	Kaggle.	The	program
averaged	together	these	output	vectors	with	the	third	layer,	which	was	simply	a	weighting.
As	you	can	see,	the	winners	of	the	challenge	used	a	large	and	complex	ensemble.	Most	of
the	winning	solutions	in	Kaggle	followed	a	similar	pattern.

https://goo.gl/fZrJA0

A	complete	discussion	on	exactly	how	they	constructed	this	model	is	beyond	the	scope
of	this	book.	Quite	honestly,	such	a	discussion	is	also	beyond	our	own	current	knowledge
of	ensemble	learning.	Although	these	complex	ensembles	are	very	effective	for	Kaggle,
they	are	not	always	necessary	for	general	data	science	purposes.	These	types	of	models	are
the	blackest	of	black	boxes.	It	is	impossible	to	explain	the	reasons	behind	the	model’s
predictions.

However,	learning	about	these	complex	models	is	fascinating	for	research,	and	future
volumes	of	this	series	will	likely	include	more	information	about	these	structures.

Our	Approach	to	the	Challenge

So	far,	we’ve	worked	only	with	single	model	systems.	These	models	that	contain
ensembles	that	are	“built	in”,	such	as	random	forests	and	gradient	boosting	machines
(GBM).	However,	it	is	possible	to	create	higher-level	ensembles	of	these	models.	We	used
a	total	of	20	models,	which	included	ten	deep	neural	networks	and	ten	gradient	boosting
machines.	Our	deep	neural	network	system	provided	one	prediction,	and	the	gradient
boosting	machines	provided	the	other.	The	program	blended	these	two	predictions	with	a
simple	ratio.	Then	we	normalized	the	resulting	prediction	vector	so	that	the	sum	equaled
1.0	(100%).	Figure	16.5	shows	the	ensemble	model:

Figure	16.5:	Our	Challenge	Group	Entry

You	can	find	our	entry,	written	in	Python,	at	the	following	URL:

https://github.com/jeffheaton/kaggle-otto-group

https://github.com/jeffheaton/kaggle-otto-group

Modeling	with	Deep	Learning

To	stay	within	the	scope	of	this	book,	we	will	present	a	solution	to	the	Kaggle
competition	based	on	our	entry.	Because	gradient	boosting	machines	(GBM)	are	beyond
the	subject	matter	of	this	book,	we	will	focus	on	using	a	deep	neural	network.	To
introduce	ensemble	learning,	we	will	use	bagging	to	combine	ten	trained	neural	networks
together.	Ensemble	methods,	such	as	bagging,	will	usually	cause	the	aggregate	of	ten
neural	networks	to	score	better	than	a	single	neuron.	If	you	would	like	to	use	gradient
boosting	machines	and	replicate	our	solution,	see	the	link	provided	above	for	the	source
code.

Neural	Network	Structure

For	this	neural	network,	we	used	a	deep	learning	structure	composed	of	dense	layers
and	dropout	layers.	Because	this	structure	was	not	an	image	network,	we	did	not	use
convolutional	layers	or	max-pool	layers.	These	layer	types	required	that	input	neurons	in
close	proximity	have	some	relevance	to	each	other.	However,	the	93	input	values	that
comprised	the	data	set	might	not	have	been	relevant.	Figure	16.6	shows	the	structure	of
the	deep	neural	network:

Figure	16.6:	Deep	Neural	Network	for	the	Challenge

As	you	can	see,	the	input	layer	of	the	neural	network	had	93	neurons	that
corresponded	to	the	93	input	columns	in	the	data	set.	Three	hidden	layers	had	256,	128
and	64	neurons	each.	Additionally,	two	dropout	layers	each	had	layers	of	256	and	128
neurons	and	a	dropout	probability	of	20%.	The	output	was	a	softmax	layer	that	classified
the	nine	output	groups.	We	normalized	the	input	data	to	the	neural	network	to	take	their	z-
scores.

Our	strategy	was	to	use	two	dropout	layers	tucked	between	three	dense	layers.	We
chose	a	power	of	2	for	the	first	dense	layer.	In	this	case	we	used	2	to	the	power	of	8	(256).
Then	we	divided	by	2	to	obtain	each	of	the	next	two	dense	layers.	This	process	resulted	in
256,	128	and	then	64.	The	pattern	of	using	a	power	of	2	for	the	first	layer	and	two	more
dense	layers	dividing	by	2,	worked	well.	As	the	experiments	continued,	we	tried	other
powers	of	2	in	the	first	dense	layer.

We	trained	the	network	with	stochastic	gradient	descent	(SGD).	The	program	divided
the	training	data	into	a	validation	set	and	a	training	set.	The	SGD	training	used	only	the
training	data	set,	but	it	monitored	the	validation	set’s	error.	We	trained	until	our	validation
set’s	error	did	not	improve	for	200	iterations.	At	this	point,	the	training	stopped,	and	the
program	selected	the	best-trained	neural	network	over	those	200	iterations.	We	refer	to	this
process	as	early	stopping,	and	it	helps	to	prevent	overfitting.	When	a	neural	network	is	no
longer	improving	the	score	on	the	validation	set,	overfitting	is	likely	occurring.

Running	the	neural	network	produces	the	following	output:

Input					(None,	93)		produces						93	outputs

dense0				(None,	256)	produces					256	outputs

dropout0		(None,	256)	produces					256	outputs

dense1				(None,	128)	produces					128	outputs

dropout1		(None,	128)	produces					128	outputs

dense2				(None,	64)		produces						64	outputs

output				(None,	9)	roduces							9	outputs

epoch				train	loss				valid	loss				train/val				valid	acc		

-------		------------		------------		-----------		-----------		

						1							1.07019							0.71004						1.50723						0.73697	

						2							0.78002							0.66415						1.17447						0.74626	

						3							0.72560							0.64177						1.13061						0.75000	

						4							0.70295							0.62789						1.11955						0.75353		

						5							0.67780							0.61759						1.09750						0.75724	

...

				410							0.40410							0.50785						0.79572						0.80963	

				411							0.40876							0.50930						0.80260						0.80645		

Early	stopping.

Best	valid	loss	was	0.495116	at	epoch	211.

Wrote	submission	to	file	las-submit.csv.

Wrote	submission	to	file	las-val.csv.

Bagged	LAS	model:	1,	score:	0.49511558950601003,	current	mlog:	

0.379456064667434,	bagged	mlog:	0.379456064667434

Early	stopping.

Best	valid	loss	was	0.502459	at	epoch	221.

Wrote	submission	to	file	las-submit.csv.

Wrote	submission	to	file	las-val.csv.

Bagged	LAS	model:	2,	score:	0.5024587499599558,	current	mlog:	

0.38050303230483773,	bagged	mlog:	0.3720715012362133

		epoch				train	loss				valid	loss				train/val				valid	acc	

-------		------------		------------		-----------		-----------		

						1							1.07071							0.70542						1.51785						0.73658	

						2							0.77458							0.66499						1.16479						0.74670	

...

				370							0.41459							0.50696						0.81779						0.80760	

				371							0.40849							0.50873						0.80296						0.80642	

				372							0.41383							0.50855						0.81376						0.80787	

Early	stopping.

Best	valid	loss	was	0.500154	at	epoch	172.

Wrote	submission	to	file	las-submit.csv.

Wrote	submission	to	file	las-val.csv.

Bagged	LAS	model:	3,	score:	0.5001535314594113,	current	mlog:	

0.3872396776865103,	bagged	mlog:	0.3721509601621992

...

Bagged	LAS	model:	4,	score:	0.4984386022067697,	current	mlog:	

0.39710688423724777,	bagged	mlog:	0.37481605169768967

...

In	general,	the	neural	network	gradually	decreases	its	training	and	validation	error.	If
you	run	this	example,	you	might	see	different	output,	based	on	the	programming	language
from	which	the	example	originates.	The	above	output	is	from	Python	and	the
Lasange/NoLearn	frameworks.

It	is	important	to	understand	why	there	is	a	validation	error	and	a	training	error.	Most
neural	network	training	algorithms	will	separate	the	training	set	into	a	training	and
validation	set.	This	split	might	be	80%	for	training	and	20%	for	validation.	The	neural
network	will	use	the	80%	to	train,	and	then	it	reports	that	error	as	the	training	error.	You
can	also	use	the	validation	set	to	generate	an	error,	which	is	the	validation	error.	Because	it
represents	the	error	on	the	data	that	are	not	trained	with	the	neural	network,	the	validation
error	is	the	most	important	measure.	As	the	neural	network	trains,	the	training	error	will
continue	to	drop	even	if	the	neural	network	is	overfitting.	However,	once	the	validation
error	stops	dropping,	the	neural	network	is	probably	beginning	to	overfit.

Bagging	Multiple	Neural	Networks

Bagging	is	a	simple	yet	effective	method	to	ensemble	multiple	models	together.	The
example	program	for	this	chapter	trains	ten	neural	networks	independently.	Each	neural
network	will	produce	its	own	set	of	nine	probabilities	that	correspond	to	the	nine	classes
provided	by	Kaggle.	Bagging	simply	takes	the	average	of	each	of	these	nine	Kaggle-
provided	classes.	Listing	16.1	provides	the	pseudocode	to	perform	the	bagging:

Listing	16.1:	Bagging	Neural	Network

#	Final	results	is	a	matrix	with	rows	=	to	rows	in	training	set

#	Columns	=	number	of	outcomes	(1	for	regression,	or	class	count	for	

classification)

final_results	=	[][]

for	i	from	1	to	5:

			network	=	train_neural_network()

			results	=	evaluate_network(network)

			final_results	=	final_results	+	results

			

#	Take	the	average

final_weights	=	weights	/	5

We	performed	the	bagging	on	the	test	data	set	provided	by	Kaggle.	Although	the	test
provided	the	93	columns,	it	did	not	tell	us	the	classes	that	it	supplied.	We	had	to	produce	a
file	that	contained	the	ID	of	the	item	for	which	we	were	answering	and	then	the	nine
probabilities.	On	each	row,	the	probabilities	should	sum	to	1.0	(100%).	If	we	submitted	a
file	that	did	not	sum	to	1.0,	Kaggle	would	have	scaled	our	values	so	that	they	did	sum	to
1.0.

To	see	the	effects	of	bagging,	we	submitted	two	test	files	to	Kaggle.	The	first	test	file
was	the	first	neural	network	that	we	trained.	The	second	test	file	was	the	bagged	average
of	all	ten.	The	results	were	as	follows:

Best	Single	Network:	0.3794
Five	Bagged	Networks:	0.3717

As	you	can	see,	the	bagged	networks	achieved	a	better	score	than	a	single	neural
network.	The	complete	results	are	shown	here:

Bagged	LAS	model:	1,	score:	0.4951,	current	mlog:	0.3794,	bagged	mlog:	

0.3794

Bagged	LAS	model:	2,	score:	0.5024,	current	mlog:	0.3805,	bagged	mlog:	

0.3720

Bagged	LAS	model:	3,	score:	0.5001,	current	mlog:	0.3872,	bagged	mlog:	

0.3721

Bagged	LAS	model:	4,	score:	0.4984,	current	mlog:	0.3971,	bagged	mlog:	

0.3748

Bagged	LAS	model:	5,	score:	0.4979,	current	mlog:	0.3869,	bagged	mlog:	

0.3717

As	you	can	see,	the	first	neural	network	had	a	multi-class	log	loss	(mlog)	error	of
0.3794.	The	mlog	measure	was	discussed	in	Chapter	5,	“Training	&	Evaluation.”	The
bagged	score	was	the	same	because	we	had	only	one	network.	The	amazing	part	happens
when	we	bagged	the	second	network	to	the	first.	The	current	scores	of	the	first	two
networks	were	0.3794	and	0.3804.	However,	when	we	bagged	them	together,	we	had
0.3720,	which	was	lower	than	both	networks.	Averaging	the	weights	of	these	two

networks	produced	a	new	network	that	was	better	than	both.	Ultimately,	we	settled	on	a
bagged	score	of	0.3717,	which	was	better	than	any	of	the	previous	single	network
(current)	scores.

Chapter	Summary

In	the	final	chapter	of	this	book,	we	showed	how	to	apply	deep	learning	to	a	real-world
problem.	We	trained	a	deep	neural	network	to	produce	a	submission	file	for	the	Kaggle
Otto	Group	Product	Classification	Challenge.	We	used	dense	and	dropout	layers	to	create
this	neural	network.

We	can	utilize	ensembles	to	combine	several	models	into	one.	Usually,	the	resulting
ensemble	model	will	achieve	better	scores	than	the	individual	ensemble	methods.	We	also
examined	how	to	bag	ten	neural	networks	together	and	generate	a	Kaggle	submission
CSV.

After	analyzing	neural	networks	and	deep	learning	in	this	final	chapter	as	well	as	the
previous	chapters,	we	hope	that	you	have	learned	new	and	useful	information.	If	you	have
any	comments	about	this	volume,	we	would	love	to	hear	from	you.	In	the	future,	we	plan
to	create	additional	editions	of	the	volumes	to	include	more	technologies.	Therefore,	we
would	be	interested	in	discovering	your	preferences	on	the	technologies	that	you	would
like	us	to	explore	in	future	editions.	You	can	contact	us	through	the	following	website:

http://www.jeffheaton.com

http://www.jeffheaton.com

Appendix	A:	Examples
Downloading	Examples
Structure	of	Example	Download
Keeping	Updated

Artificial	Intelligence	for	Humans

These	examples	are	part	of	a	series	of	books	that	is	currently	under	development.
Check	the	website	to	see	which	volumes	have	been	completed	and	are	available:

http://www.heatonresearch.com/aifh

The	following	volumes	are	planned	for	this	series:

Volume	0:	Introduction	to	the	Math	of	AI
Volume	1:	Fundamental	Algorithms
Volume	2:	Nature-Inspired	Algorithms
Volume	3:	Deep	Learning	and	Neural	Networks

Latest	Versions

In	this	appendix,	we	describe	how	to	obtain	the	Artificial	Intelligence	for	Humans
(AIFH)	book	series	examples.

This	area	is	probably	the	most	dynamic	of	the	book.	Computer	languages	are	always
changing	and	adding	new	versions.	We	will	update	the	examples	as	it	becomes	necessary,
fixing	bugs	and	making	corrections.	As	a	result,	make	sure	that	you	are	always	using	the
latest	version	of	the	book	examples.

Because	this	area	is	so	dynamic,	this	file	may	become	outdated.	You	can	always	find
the	latest	version	at	the	following	location:

https://github.com/jeffheaton/aifh

http://www.heatonresearch.com/aifh
https://github.com/jeffheaton/aifh

Obtaining	the	Examples

We	provide	the	book’s	examples	in	many	programming	languages.	Core	example
packs	exist	for	Java,	C#,	C/C++,	Python,	and	R	for	most	volumes.	Volume	3,	as	of
publication,	includes	Java,	C#,	and	Python.	Other	languages,	such	as	R	and	C/C++	are
planned.	We	may	have	added	other	languages	since	publication.	The	community	may	have
added	other	languages	as	well.	You	can	find	all	examples	at	the	GitHub	repository:

https://github.com/jeffheaton/aifh

You	have	your	choice	of	two	different	ways	to	download	the	examples.

Download	ZIP	File

GitHub	provides	an	icon	that	allows	you	to	download	a	ZIP	file	that	contains	all	of	the
example	code	for	the	series.	A	single	ZIP	file	has	all	of	the	examples	for	the	series.	As	a
result,	we	frequently	update	the	contents	of	this	ZIP.	If	you	are	starting	a	new	volume,	it	is
important	that	you	verify	that	you	have	the	latest	copy.	You	can	perform	the	download
from	the	following	URL:

https://github.com/jeffheaton/aifh

You	can	see	the	download	link	in	Figure	A.1:

https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh

Figure	A.1:	GitHub

Clone	the	Git	Repository

You	can	obtain	all	the	examples	with	the	source	control	program	git	if	it	is	installed	on
your	system.	The	following	command	clones	the	examples	to	your	computer:	(Cloning
simply	refers	to	the	process	of	copying	the	example	files.)

git	clone	https://github.com/jeffheaton/aifh.git

You	can	also	pull	the	latest	updates	with	the	following	command:

git	pull

If	you	would	like	an	introduction	to	git,	refer	to	the	following	URL:

http://git-scm.com/docs/gittutorial

http://git-scm.com/docs/gittutorial

Example	Contents

The	entire	Artificial	Intelligence	for	Humans	series	is	contained	in	one	download	that
is	a	zip	file.

Once	you	open	the	examples	file,	you	will	see	the	contents	in	Figure	A.2:

Figure	A.2:	Examples	Download

The	license	file	describes	the	license	for	the	book	examples.	All	of	the	examples	for
this	series	are	released	under	the	Apache	v2.0	license,	a	free	and	open-source	software
(FOSS)	license.	In	other	words,	we	do	retain	a	copyright	to	the	files.	However,	you	can
freely	reuse	these	files	in	both	commercial	and	non-commercial	projects	without	further
permission.

Although	the	book	source	code	is	provided	free,	the	book	text	is	not	provided	free.
These	books	are	commercial	products	that	we	sell	through	a	variety	of	channels.
Consequently,	you	may	not	redistribute	the	actual	books.	This	restriction	includes	the
PDF,	MOBI,	EPUB	and	any	other	format	of	the	book.	However,	we	provide	all	books	in
DRM-free	form.	We	appreciate	your	support	of	this	policy	because	it	contributes	to	the
future	growth	of	these	books.

The	download	also	includes	a	README	file.	The	README.md	is	a	“markdown”	file
that	contains	images	and	formatting.	This	file	can	be	read	either	as	a	standard	text	file	or
in	a	markdown	viewer.	The	GitHub	browser	automatically	formats	MD	files.	For	more
information	on	MD	files,	refer	to	the	following	URL:

https://help.github.com/articles/github-flavored-markdown

You	will	find	a	README	file	in	many	folders	of	the	book’s	examples.	The	README
file	in	the	examples	root	(seen	above)	has	information	about	the	book	series.

You	will	also	notice	the	individual	volume	folders	in	the	download.	These	are	named
vol1,	vol2,	vol3,	etc.	You	may	not	see	all	of	the	volumes	in	the	download	because	they
have	not	yet	been	written.	All	of	the	volumes	have	the	same	format.	For	example,	if	you
open	Volume	3,	you	will	see	the	contents	listed	in	Figure	A.3.	Other	volumes	will	have	a

https://help.github.com/articles/github-flavored-markdown

similar	layout,	depending	on	the	languages	that	are	added.

Figure	A.3:	Inside	Volume	3	(other	volumes	have	same	structure)

Again,	you	see	the	README	file	that	contains	information	unique	to	this	particular
volume.	The	most	important	information	in	the	volume	level	README	files	is	the	current
status	of	the	examples.	The	community	often	contributes	example	packs.	As	a	result,	some
of	the	example	packs	may	not	be	complete.	The	README	for	the	volume	will	let	you
know	this	important	information.	The	volume	README	also	contains	the	FAQ	for	a
volume.

You	should	also	see	a	file	named	“aifh_vol3.RMD”.	This	file	contains	the	R
markdown	source	code	that	we	used	to	create	many	charts	in	the	book.	We	produced
nearly	all	the	graphs	and	charts	in	the	book	with	the	R	programming	language.	The	file
ultimately	allows	you	to	see	the	equations	behind	the	pictures.	Nevertheless,	we	do	not
translate	this	file	to	other	programming	languages.	We	utilize	R	simply	for	the	production
of	the	book.	If	we	used	another	language,	like	Python,	to	produce	some	of	the	charts,	you
would	see	a	“charts.py”	along	with	the	R	code.

Additionally,	the	volume	currently	has	examples	for	C#,	Java,	and	Python.	However,
you	may	see	that	we	add	other	languages.	So,	always	check	the	README	file	for	the
latest	information	on	language	translations.

Figure	A.4	shows	the	contents	of	a	typical	language	pack:

Figure	A.4:	The	Java	Language	Pack

Pay	attention	to	the	README	files.	The	README	files	in	a	language	folder	are
important	because	you	will	find	information	about	the	Java	examples.	If	you	have
difficulty	using	the	book’s	examples	with	a	particular	language,	the	README	file	should
be	your	first	step	to	solving	the	problem.	The	other	files	in	the	above	image	are	all	unique
to	Java.	The	README	file	describes	these	files	in	much	greater	detail.

Contributing	to	the	Project

If	you	would	like	to	translate	the	examples	to	a	new	language	or	if	you	have	found	an
error	in	the	book,	you	can	help.	Fork	the	project	and	push	a	commit	revision	to	GitHub.
We	will	credit	you	among	the	growing	number	of	contributors.

The	process	begins	with	a	fork.	You	create	an	account	on	GitHub	and	fork	the	AIFH
project.	This	step	creates	a	new	project	that	has	a	copy	of	the	AIFH	files.	You	will	then
clone	your	new	project	through	GitHub.	Once	you	make	your	changes,	you	submit	a	“pull
request.”	When	we	receive	this	request,	we	will	evaluate	your	changes/additions	and
merge	it	with	the	main	project.

You	can	find	a	more	detailed	article	on	contributing	through	GitHub	at	this	URL:

https://help.github.com/articles/fork-a-repo

https://help.github.com/articles/fork-a-repo

References
This	section	lists	the	reference	materials	for	this	book.

Ackley,	H.,	Hinton,	E.,	&	Sejnowski,	J.	(1985).	A	learning	algorithm	for	Boltzmann
machines.	Cognitive	Science,	147-169.

Bergstra,	J.,	Breuleux,	O.,	Bastien,	F.,	Lamblin,	P.,	Pascanu,	R.,	Desjardins,	G.	Bengio,
Y.	(2010,	June).	Theano:	a	CPU	and	GPU	math	expression	compiler.	In	Proceedings	of	the
python	for	scientific	computing	conference	(SciPy).	(Oral	Presentation)

Broomhead,	D.,	&	Lowe,	D.	(1988).	Multivariable	functional	interpolation	and
adaptive	networks.	Complex	Systems,	2,	321-355.

Chung,	J.,	Gulcehre,	C.,	Cho,	K.,	&	Bengio,	Y.	(2014).	Empirical	evaluation	of	gated
recurrent	neural	networks	on	sequence	modeling.	CoRR,	abs/1412.3555.

Elman,	J.	L.	(1990).	Finding	structure	in	time.	Cognitive	Science,	14	(2),	179-211.

Fukushima,	K.	(1980).	Neocognitron:	A	self-organizing	neural	network	model	for	a
mechanism	of	pattern	recognition	unaffected	by	shift	in	position.	Biological	Cybernetics,
36,	193-202.

Garey,	M.	R.,	&	Johnson,	D.	S.	(1990).	Computers	and	intractability;	a	guide	to	the
theory	of	np-completeness.	New	York,	NY,	USA:	W.	H.	Freeman	&	Co.

Glorot,	X.,	Bordes,	A.,	&	Bengio,	Y.	(2011).	Deep	sparse	rectifier	neural	networks.	In
G.	J.	Gordon,	D.	B.	Dunson,	&	M.	Dudk	(Eds.),	Aistats	(Vol.	15,	p.	315-323).	JMLR.org.

Hebb,	D.	(2002).	The	organization	of	behavior:	a	neuropsychological	theory.	Mahwah
N.J.:	L.	Erlbaum	Associates.

Hinton,	G.	E.,	Srivastava,	N.,	Krizhevsky,	A.,	Sutskever,	I.,	&	Salakhutdinov,	R.
(2012).	Improving	neural	networks	by	preventing	co-adaptation	of	feature	detectors.
CoRR,	abs/1207.0580	.

Hopfield,	J.	J.	(1988).	Neurocomputing:	Foundations	of	research.	In	J.	A.	Anderson	&
E.	Rosenfeld	(Eds.),	(pp.	457-464).	Cambridge,	MA,	USA:	MIT	Press.

Hopfield,	J.	J.,	&	Tank,	D.	W.	(1985).	“Neural”	computation	of	decisions	in
optimization	problems.	Biological	Cybernetics,	52,	141-152.

Hornik,	K.	(1991,	March).	Approximation	capabilities	of	multilayer	feedforward
networks.	Neural	Networks,	4	(2),	251-257.

Jacobs,	R.	A.	(1988).	Increased	rates	of	convergence	through	learning	rate	adaptation.
Neural	Networks,	1	(4),	295-307.

Jacobs,	R.,	&	Jordan,	M.	(1993,	Mar).	Learning	piecewise	control	strategies	in	a
modular	neural	network	architecture.	IEEE	Transactions	on	Systems,	Man	and
Cybernetics,	23	(2),	337-345.

Jordan,	M.	I.	(1986).	Serial	order:	A	parallel	distributed	processing	approach	(Tech.
Rep.	No.	ICS	Report	8604).	Institute	for	Cognitive	Science,	University	of	California,	San

Diego.

Kalman,	B.,	&	Kwasny,	S.	(1992,	Jun).	Why	TANH:	choosing	a	sigmoidal	function.	In
Neural	networks,	1992.	IJCNN,	International	Joint	Conference	on	Neural	Networks	(Vol.
4,	p.	578-581	vol.4).

Kamiyama,	N.,	Iijima,	N.,	Taguchi,	A.,	Mitsui,	H.,	Yoshida,	Y.,	&	Sone,	M.	(1992,
Nov).	Tuning	of	learning	rate	and	momentum	on	back-propagation.	In	Singapore
ICCS/ISITA	‘92.	‘Communications	on	the	move’	(p.	528-532,	vol.2).

Keogh,	E.,	Chu,	S.,	Hart,	D.,	&	Pazzani,	M.	(1993).	Segmenting	time	series:	A	survey
and	novel	approach.	In	an	edited	volume,	data	mining	in	time	series	databases.	Published
by	World	Scientific	Publishing	Company	(pp.	1-22).

Kohonen,	T.	(1988).	Neurocomputing:	Foundations	of	research.	In	J.	A.	Anderson	&
E.	Rosenfeld	(Eds.),	(pp.	509-521).	Cambridge,	MA,	USA:	MIT	Press.

Krizhevsky,	A.,	Sutskever,	I.,	&	Hinton,	G.	E.	(n.d.).	Imagenet	classification	with	deep
convolutional	neural	networks.	In	Advances	in	neural	information	processing	systems	(p.
2012).

LeCun,	Y.,	Bottou,	L.,	Bengio,	Y.,	&	Haner,	P.	(1998).	Gradient-based	learning	applied
to	document	recognition.	In	Proceedings	of	the	IEEE	(pp.2278-2324).

Maas,	A.	L.,	Hannun,	A.	Y.,	&	Ng,	A.	Y.	(2013).	Rectifier	nonlinearities	improve
neural	network	acoustic	models.	In	International	conference	on	machine	learning	(ICML).

van	der	Maaten,	L.,	&	Hinton,	G.	(n.d.).	Visualizing	high-dimensional	data	using	t-
SNE.	Journal	of	Machine	Learning	Research	(JMLR),	9,	2579-2605.

Marquardt,	D.	(1963).	An	algorithm	for	least-squares	estimation	of	nonlinear
parameters.	SIAM	Journal	on	Applied	Mathematics,	11	(2),	431-441.

Matviykiv,	O.,	&	Faitas,	O.	(2012).	Data	classification	of	spectrum	analysis	using
neural	network.	Lviv	Polytechnic	National	University.

McCulloch,	W.,	&	Pitts,	W.	(1943,	December	21).	A	logical	calculus	of	the	ideas
immanent	in	nervous	activity.	Bulletin	of	Mathematical	Biology,	5	(4),	115-133.

Mozer,	M.	C.	(1995).	Backpropagation.	In	Y.	Chauvin	&	D.	E.	Rumelhart	(Eds.),	(pp.
137{169).	Hillsdale,	NJ,	USA:	L.	Erlbaum	Associates	Inc.

Nesterov,	Y.	(2004).	Introductory	lectures	on	convex	optimization:	a	basic	course.
Kluwer	Academic	Publishers.

Ng,	A.	Y.	(2004).	Feature	selection,	l1	vs.	l2	regularization,	and	rotational	invariance.
In	Proceedings	of	the	twenty	first	international	conference	on	machine	learning	(pp.	78-).
New	York,	NY,	USA:	ACM.

Neal,	R.	M.	(1992,	July).	Connectionist	learning	of	belief	networks.	Artificial
Intelligence,	56	(1),	71-113.

Riedmiller,	M.,	&	Braun,	H.	(1993).	A	direct	adaptive	method	for	faster
backpropagation	learning:	The	RPROP	algorithm.	In	IEEE	international	conference	on
neural	networks	(pp.	586-591).

Robinson,	A.	J.,	&	Fallside,	F.	(1987).	The	utility	driven	dynamic	error	propagation
network	(Tech.	Rep.	No.	CUED/F-INFENG/TR.1).	Cambridge:	Cambridge	University
Engineering	Department.

Rumelhart,	D.	E.,	Hinton,	G.	E.,	&	Williams,	R.	J.	(1988).	Neurocomputing:
Foundations	of	research.	In	J.	A.	Anderson	&	E.	Rosenfeld	(Eds.),	(pp.696-699).
Cambridge,	MA,	USA:	MIT	Press.

Schmidhuber,	J.	(2012).	Multi-column	deep	neural	networks	for	image	classification.
In	Proceedings	of	the	2012	IEEE	conference	on	computer	vision	and	pattern	recognition
(cvpr)	(pp.	3642-3649).	Washington,	DC,	USA:	IEEE	Computer	Society.

Sjberg,	J.,	Zhang,	Q.,	Ljung,	L.,	Benveniste,	A.,	Deylon,	B.,	yves	Glorennec,	P.,
Juditsky,	A.	(1995).	Nonlinear	black-box	modeling	in	system	identification:	a	unified
overview.	Automatica,	31,	1691-1724.

Snoek,	J.,	Larochelle,	H.,	&	Adams,	R.	P.	(2012).	Practical	bayesian	optimization	of
machine	learning	algorithms.	In	F.	Pereira,	C.	Burges,	L.	Bottou,	&	K.	Weinberger	(Eds.),
Advances	in	neural	information	processing	systems	25	(pp.	2951{2959).	Curran
Associates,	Inc.

Stanley,	K.	O.,	&	Miikkulainen,	R.	(2002).	Evolving	neural	networks	through
augmenting	topologies.	Evolutionary	Computation,	10	(2),	99-127.

Stanley,	K.	O.,	DAmbrosio,	D.	B.,	&	Gauci,	J.	(2009,	April).	A	hypercubebased
encoding	for	evolving	large-scale	neural	networks.	Artificial	Life,	15	(2),	185-212.

Teh,	Y.	W.,	&	Hinton,	G.	E.	(2000).	Rate-coded	restricted	Boltzmann	machines	for
face	recognition.	In	T.	K.	Leen,	T.	G.	Dietterich,	&	V.	Tresp	(Eds.),	Nips	(p.	908-914).
MIT	Press.

Werbos,	P.	J.	(1988).	Generalization	of	backpropagation	with	application	to	a	recurrent
gas	market	model.	Neural	Networks,	1.

Zeiler,	M.	D.,	Ranzato,	M.,	Monga,	R.,	Mao,	M.	Z.,	Yang,	K.,	Le,	Q.	V.,	Hinton,	G.	E.
(2013).	On	rectified	linear	units	for	speech	processing.	In	ICASSP	(p.	3517-3521).	IEEE.

	Copyright Info
	Front Matter
	Introduction
	Chapter 1: Neural Network Basics
	Chapter 2: Self-Organizing Maps
	Chapter 3: Hopfield & Boltzmann Machines
	Chapter 4: Feedforward Neural Networks
	Chapter 5: Training & Evaluation
	Chapter 6: Backpropagation Training
	Chapter 7: Other Propagation Training
	Chapter 8: NEAT, CPPN & HyperNEAT
	Chapter 9: Deep Learning
	Chapter 10: Convolutional Neural Networks
	Chapter 11: Pruning and Model Selection
	Chapter 12: Dropout and Regularization
	Chapter 13: Time Series and Recurrent Networks
	Chapter 14: Architecting Neural Networks
	Chapter 15: Visualization
	Chapter 16: Modeling with Neural Networks
	Appendix A: Examples
	References

