
www.cambridge.org/9780521194822

Computational Logic and Human Thinking

How to be Artificially Intelligent

The practical benefits of computational logic need not be limited to mathematics and
computing. As this book shows, ordinary people in their everyday lives can profit from
the recent advances that have been developed for artificial intelligence. The book draws
upon related developments in various fields from philosophy to psychology and law. It
pays special attention to the integration of logic with decision theory, and the use of logic
to improve the clarity and coherence of communication in natural languages such as
English.
This book is essential reading for teachers and researchers who want to catch up with

the latest developments in computational logic. It will also be useful in any
undergraduate course that teaches practical thinking, problem solving or communication
skills. Its informal presentation makes the book accessible to readers from any
background, but optional, more formal, chapters are also included for those who are more
technically oriented.

robert kowalski is Emeritus Professor and Research Investigator in the
Department of Computing at Imperial College London. In 2011 he received the IJCAI
Award for Research Excellence for his contributions to logic for knowledge
representation and problem solving, including his pioneering work on automated
theorem proving and logic programming.

Computational Logic
and Human Thinking

How to be Artificially Intelligent

ROBERT KOWALSKI
Imperial College London

cambridge univers ity press

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521194822

© R. Kowalski 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Kowalski, Robert.

Computational logic and human thinking : how to be artificially
intelligent / Robert Kowalski.

p. cm.
ISBN 978-0-521-19482-2 (hardback)

1. Computational intelligence. 2. Logic, Symbolic and mathematical – Famous
problems. 3. Rhetoric – Mathematics. 4. Communication – Philosophy.

5. Reasoning. 6. Critical thinking. I. Title.
Q342.K69 2011

511.3–dc22
2011002461

ISBN 978-0-521-19482-2 Hardback
ISBN 978-0-521-12336-5 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

To Bob, John and Mary

Contents

Preface page ix
Summary and plan of the book xii

Introduction 1
1 Logic on the Underground 9
2 The psychology of logic 24
3 The fox and the crow 40
4 Search 50
5 Negation as failure 60
6 How to become a British Citizen 77
7 The louse and the Mars explorer 92
8 Maintenance goals as the driving force of life 107
9 The meaning of life 125

10 Abduction 134
11 The Prisoner’s Dilemma 144
12 Motivations matter 155
13 The changing world 166
14 Logic and objects 179
15 Biconditionals 188
16 Computational Logic and the selection task 198
17 Meta-logic 213

Conclusions of the book 227

A1 The syntax of logical form 231
A2 Truth 247
A3 Forward and backward reasoning 257

vii

A4 Minimal models and negation 263
A5 The resolution rule 269
A6 The logic of abductive logic programming 280
References 296
Index 303

viii Contents

Preface

The mere possibility of Artificial Intelligence (AI) – of machines that can think
and act as intelligently as humans – can generate strong emotions. While some
enthusiasts are excited by the thought that one day machines may become more
intelligent than people, many of its critics view such a prospect with horror.
Partly because these controversies attract so much attention, one of the most

important accomplishments of AI has gone largely unnoticed: the fact that many
of its advances can also be used directly by people, to improve their own human
intelligence. Chief among these advances is Computational Logic.
Computational Logic builds upon traditional logic, which was originally

developed to help people think more effectively. It employs the techniques of
symbolic logic, which has been used to build the foundations of mathematics
and computing. However, compared with traditional logic, Computational
Logic is much more powerful; and compared with symbolic logic, it is much
simpler and more practical.
Although the applications of Computational Logic in AI require the use of

mathematical notation, its human applications do not. As a consequence, I have
written the main part of this book informally, to reach as wide an audience as
possible. Because human thinking is also the subject of study in many other
fields, I have drawn upon related studies in Cognitive Psychology, Linguistics,
Philosophy, Law, Management Science and English Composition.
In fact, the variant of Computational Logic presented in this book builds not

only upon developments of logic in AI, but also uponmany other complementary
and competing knowledge representation and problem-solving paradigms. In
particular, it incorporates procedural representations of knowledge from AI and
Computing, production systems from AI and Cognitive Science, and decision
analysis from Management Science, Cognitive Psychology and Philosophy.
Because Computational Logic has so many applications and so many rela-

tions with other fields, the ideal, ultimate use of this book would be as a

ix

companion text for an undergraduate degree in practical thinking. Such a degree
course would combine the traditional virtues of a liberal arts education with the
argumentation skills of analytic philosophy, the rigours of scientific method and
the modern benefits of information technology. It would provide the student
with the transferable thinking and communication skills needed not only for
more specialised studies, but also for problems that do not fall into neatly
classified areas.
As far as I know, nothing approaching such a degree course exists today; and

as far as I can see, no such degree course is likely to exist in the near future.
Logic as an academic discipline, as it exists today, is fragmented between
Mathematics, Philosophy and Computing. Moreover, the practical applications
of Informal Logic are mostly buried inside other academic disciplines, like Law,
Management Science and English Composition. None of these disciplines
could host such a degree course on its own, and few of them would welcome
such an expansion of logic in their own field.
Perhaps one day, an educational institution will make room for a degree

course focusing on how to think. In the meanwhile, this book can be used as a
supplement to more conventional courses. For those who have already com-
pleted their formal education, it can provide a glimpse into a possible future
world.
In writing this book, I have taken pains to avoid misrepresenting the subject

by over-simplification. For this reason, I have included a number of additional,
more advanced chapters, which fill in some of the otherwise missing technical
detail. These chapters can be safely skipped by the casual reader. Taken on their
own, they provide a self-contained introduction and reference to the formal
underpinnings of the Computational Logic used in this book.
I have also been sensitive to the fact that, because I address issues of English

writing style, I am inviting attention to the inadequacies of my own writing
style. In defence, let me argue that without the help of Computational Logic, my
writing would be a lot worse.
When I started my undergraduate studies at the University of Chicago years

ago, my writing was so bad that I failed the placement examination and had to
take an extra, non-credit, remedial course. I finished the year with As in all my
other subjects, but with a D in English writing skills. It took me years to
diagnose the problems with my writing and to learn how to improve it. In the
course of doing so, I learned more about practical logic than I did in any of my
formal logic courses. I like to believe that my writing is a lot better today than it
was during my first year in Chicago. But more importantly, I hope that the
lessons I learned will also be helpful to some of the readers of this book.

x Preface

I am very grateful to Tom Blackson, François Bry, Tony Burton, Keith Clark,
Jacinto Davila, Phan Minh Dung, Maarten van Emden, Steffen Hoelldobler, Luis
Pereira, Yongyuth Permpoontanalarp, Fariba Sadri, Keith Stenning, Dania
Kowalska-Taylor, Sten-Ake Tarnlund, Jeff Thompson, Francesca Toni and
Mike Tunstall for their valuable comments on earlier drafts of the book. Thanks
also to Simon Taylor for the drawing of the fox and the crow.

Preface xi

Summary and plan of the book

Because this book ranges over a wide variety of topics, it is useful to summa-
rise the relationships between the different chapters in one place. However,
instead of placing this summary at the end of the book, where all of its terms
will have already been explained in detail, I have decided to present it here, in
keeping with the general spirit of the book that it is better to work backwards
from your destination, than to stumble forward, wondering where you are
going.
Therefore, this summary may be read either before or after the main body of

the book. But it can also be read in parallel, to get a better orientation of how the
individual chapters are related.

Introduction

In Artificial Intelligence, an agent is any entity, embedded in a real or artificial
world, that can observe the changing world and perform actions on the world to
maintain itself in a harmonious relationship with the world. Computational
Logic, as used in Artificial Intelligence, is the agent’s language of thought.
Sentences expressed in this language represent the agent’s beliefs about the
world as it is and its goals for the way it would like it to be. The agent uses its
goals and beliefs to control its behaviour.
The agent uses the inference rules of Computational Logic, applying them to

its thoughts in logical form, to reason about the world and to derive actions to
change the world for its own benefit. These inference rules include both forward
reasoning to derive consequences of its observations, and backward reasoning
to reduce its goals to subgoals and actions. The agent can also use forward
reasoning to deduce consequences of candidate actions, to help it choose
between alternative candidates.

xii

Although the main purpose of Computational Logic is to represent an agent’s
private thoughts and to control its behaviour, the agent can also use Computa-
tional Logic to guide its public communications with other agents. By express-
ing its communications in a more logical form, a speaker or writer can make it
easier for the listener or reader to translate those communications into thoughts
of her own.

Chapter 1: Logic on the Underground

The London Underground Emergency Notice illustrates the way in which the
meanings of English communications can be understood as thoughts in logical
form. In Computational Logic, these thoughts have both a logical and computa-
tional character. Their logical character is apparent in their explicit use of logical
connectives, like any, if, and and not; and their computational character is
manifest in their use as procedures for reducing goals to subgoals. Because of
this dual logical and computational character, sentences expressed in this form
are also called logic programs.
The Emergency Notice also illustrates how the coherent use of English

communications can be understood in terms of logical connections between
the meanings of those communications and other thoughts in an agent’s web
of goals and beliefs. Once the agent has made the connections, the agent can
activate them by forward or backward reasoning, when the need arises.
Connections that are activated frequently can be collapsed into derived goals
or beliefs, which can be used more directly and more efficiently in the future.

Chapter 2: The psychology of logic

The most influential and widely cited argument against logic comes from psy-
chological experiments about reasoning with natural-language sentences in con-
ditional form. The most popular interpretation of these experiments is that people
do not have a natural general-purpose ability to reason logically, but have
developed instead, through the mechanisms of Darwinian evolution, specialised
algorithms for solving typical problems that arise in their environment.
In this chapter I discuss some of the issues involved in solving these reason-

ing tasks, and argue that one of the main problems with the experiments is that
they fail to appreciate that the natural-language form of a conditional is only an
approximation to the logical form of its intended meaning. Another problem is
that the interpretation of these experiments is based upon an inadequate

Summary and plan of the book xiii

understanding of the relationship between knowledge and reasoning. In
Computational Logic applied to human thinking, this relationship can be
expressed rather loosely as an equation: thinking = specialised knowledge +
general-purpose reasoning.

Chapter 3: The fox and the crow

Aesop’s fable of the fox and the crow illustrates the backward reasoning of a
clever fox, to generate a plan to achieve the goal of having the cheese of a not so
clever crow. It contrasts the fox’s proactive, backward reasoning with the crow’s
reactive, forward reasoning, to respond to the fox’s praise by breaking out in
song, thereby dropping the cheese to the ground, where the fox can pick it up.
Both the fox and the crow reason in accordance with the inference rules of
Computational Logic, but the fox has a better knowledge of the world, and has
more powerful ways of using that knowledge for her own benefit.
If the crow knew as much as the fox and were able to reason preactively,

thinking before he acts, then he could reason forward from the hypothetical
performance of his candidate actions, predict their likely consequences and
choose an alternative action, like flying away or swallowing the cheese, that
achieves a better expected resulting state of affairs.

Chapter 4: Search

In Computational Logic, a proof procedure consists of a collection of inference
rules and a search strategy. The inference rules determine both the structure of
proofs and the search space of all possible proofs relevant to the solution of a
goal. The search strategy determines the manner in which the search space is
explored in the search for a solution.
Many different search strategies are possible, including both parallel strat-

egies, which explore different parts of the search space at the same time, and
best-first strategies, which aim to find the best solution possible in the shortest
amount of time.

Chapter 5: Negation as failure

In the semantics of Computational Logic, the world is a positive place, charac-
terised by the positive atomic sentences that are true at the time. Because the

xiv Summary and plan of the book

ultimate purpose of an agent’s goals and beliefs is to manage its interactions
with the world, the syntactic form of the agent’s thoughts also has a correspond-
ing positive bias. In many cases, syntatically negative thoughts arise from the
failure to observe or derive positive information.
Negation as failure is a natural way to reason by default with incomplete

information, deriving conclusions under the assumption that the agent knows it
all, but then gracefully withdrawing those conclusions if new information
shows that they do not hold. It also facilitates higher-level ways of organising
goals and beliefs into hierarchies of rules and exceptions, in which the rules
represent only the most important conditions, and the exceptions add extra
conditions when they are needed.

Chapter 6: How to become a British Citizen

The British Nationality Act is a body of English sentences, which states
precisely the conditions under which a person may acquire, renounce or be
deprived of British Citizenship. The Act is designed to be both unambiguous, so
there is little doubt about its intended meaning, and flexible, so that it can be
applied to changing circumstances. Its English style resembles the conditional
form of sentences in Computational Logic.
In addition to its use of conditional form, the British Nationality Act illus-

trates many other important features of Computational Logic, including the
representation of rules and exceptions, and meta-level reasoning about what it
takes for a person, like you or me, to satisfy the Secretary of State that the person
fulfils the requirements for naturalisation as a British Citizen.
In contrast with the British Nationality Act, the University of Michigan Lease

Termination Clause shows how an ambiguous, virtually unintelligible English
text can be made understandable by reformulating it in Computational Logic
style.

Chapter 7: The louse and the Mars explorer

Arguably, the most influential computational model of human thinking in
Cognitive Psychology is the production system model, as illustrated in this
chapter by the wood louse and the Mars explorer robot. Production systems
combine a working memory of atomic facts with condition–action rules of the
form if conditions then actions. The working memory is like a model of the
current state of the world, and the rules are like an agent’s goals and beliefs.

Summary and plan of the book xv

The condition–action rules are embedded in an observation–thought–
decision–action cycle and are executed by matching the conditions of rules
with facts in the working memory and generating the actions of rules as candidate
actions. This manner of execution is called forward chaining, which is similar to
forward reasoning. If more than one candidate action is generated in this way,
then a process, called conflict resolution, is used to decide between the candidates.
The chosen action is then executed, changing the state of the working memory,
simulating the way an agent’s actions change the state of the world.
From a logical point of view, there are three kinds of condition–action rules:

reactive rules, which are like instinctive stimulus–response associations; goal-
reduction rules, which reduce goals to subgoals by forward chaining; and
forward reasoning rules, which perform genuine logical forward reasoning.

Chapter 8: Maintenance goals as the driving force of life

The agent model presented in this book combines the functionalities of logic
and production systems in a logical framework. The framework takes from
production systems the observation–thought–decision–action cycle, but repla-
ces condition–action rules by goals and beliefs in the logical form of condi-
tionals. It replaces reactive rules bymaintenance goals used to reason forwards,
goal-reduction rules by beliefs used to reason backwards, and forward reason-
ing rules by beliefs used to reason forwards.
In the logical agent model, the agent cycle responds to observations of the

environment by reasoning forwards with beliefs, until it derives a conclusion
that matches one of the conditions of a maintenance goal. It reasons backwards,
to check the other conditions of the maintenance goal. If all the conditions of the
maintenance goal are shown to hold in this way, it reasons forwards one step,
deriving the conclusion of the maintenance goal as an achievement goal. It then
starts to reason backwards using its beliefs to reduce the achievement goal to a
plan of candidate actions. It decides between different candidate actions, and
starts to execute a plan. If necessary, it interrupts the execution of the plan, to
process other observations, interleaving the plan with other plans.

Chapter 9: The meaning of life

The logical framework of the preceeding chapter views an agent’s life as
controlled by the changes that take place in the world, by its own goals and
beliefs, and by the choices the agent makes between different ways of achieving

xvi Summary and plan of the book

its goals. The combination of its beliefs and its highest-level goals generates a
hierarchy of goals and subgoals. However, for the sake of efficiency, this
hierarchy may be collapsed into a collection of more direct stimulus–response
associations, whose original goals are no longer apparent, but are implicit and
emergent.
In AI and computing more generally, it is common for an intelligent designer

to implement an artificial agent that does not contain an explicit representation
of its higher-level goals. The designer is aware of the agent’s goals, but the agent
itself is not. As far as the agent is concerned, its life may seem to be entirely
meaningless.
In this chapter, we contrast the seemingly meaningless life of an imaginary,

artificial wood louse, with the more meaningful life of an intelligent agent, in
which stimulus–response associations and awareness of higher-level goals are
combined.

Chapter 10: Abduction

One of the main functions of an agent’s beliefs is to represent causal relation-
ships between its experiences. The agent uses these causal representations both
proactively to generate plans to achieve its goals, and preactively to derive
consequences of candidate actions to help it choose between alternative candi-
date actions. However, the agent can also use the same causal beliefs abduc-
tively to generate hypotheses to explain its observations, and to derive
consequences of candidate hypotheses to help it choose between alternative
hypotheses. This process of generating and choosing hypotheses to explain
observations is called abduction.
Like default reasoning with negation as failure, abduction is defeasible in the

sense that new information can cause a previously derived conclusion to be
withdrawn.

Chapter 11: The Prisoner’s Dilemma

The problem of deciding between alternative abductive explanations of an
observation is similar to the problem of deciding between alternative actions,
which is exemplified by the Prisoner’s Dilemma. In this chapter, we see how an
agent can use a combination of Computational Logic and decision theory to
decide between alternatives. According to decision theory, the agent should
choose an alternative that has the best expected outcome. The expected outcome

Summary and plan of the book xvii

of an action is determined by appropriately combining judgements of the utility
(or desirability) of the action’s consequences with judgements of the probability
(or likelihood) that the consequence will actually happen.
Decision theory is a normative theory, which requires detailed knowledge of

utilities and probabilities, but neglects the motivations of an agent’s actions. In
practice, agents more typically employ heuristic goals and beliefs (or rules of
thumb), which approximate the decision-theoretic norms. But heuristics often
go astray. When it is important to make smarter choices, it is better to use the
more encompassing framework of the agent cycle, to analyse the motivations of
actions and to ensure that a full range of alternatives is explored.

Chapter 12: Motivations matter

Decision theory leads to consequentialist theories of morality, which judge the
moral status of actions simply in terms of their consequences. But in psycho-
logical studies and the law, people judge actions both in terms of their con-
sequences and in terms of their motivations. We show how Computational
Logic can model such moral judgements by using constraints to prevent actions
that are deemed to be morally or legally unacceptable.

Chapter 13: The changing world

An agent’s life is a continuous struggle to maintain a harmonious relationship
with the ever-changing world. The agent assimilates its observations of the
changing state of the world, and it performs actions to change the world in
return.
The world has a life of its own, existing only in the present, destroying its past

and hiding its future. To help it survive and prosper in such a changing environ-
ment, an intelligent agent uses beliefs about cause and effect, represented in its
language of thought. In this chapter we investigate in greater detail the logical
representation of such causal beliefs and the semantic relationship between this
logical representation and the changing world.

Chapter 14: Logic and objects

Whereas in Cognitive Psychology production systems are the main competitor
of logic, in Computing the main competitor is Object-Orientation. In the object-

xviii Summary and plan of the book

oriented way of looking at the world, the world consists of objects, which
interact by sending and receiving messages. Objects respond to messages by
using encapsulated methods, invisible to other objects, and inherited from
general classes of objects.
Computational Logic is compatible with Object-Orientation, if objects

are viewed as agents, methods are viewed as goals and beliefs, and messages
are viewed as one agent supplying information or requesting help from another.
Viewed in this way, the main contribution of Object-Orientation is twofold: it
highlights the value both of structuring knowledge (goals and beliefs) in relatively
self-contained modules, and of organising that knowledge in abstract hierarchies.

Chapter 15: Biconditionals

In this chapter we explore the view that conditional beliefs are biconditionals in
disguise. For example, given only the two alternative conditions that can cause
an object to look red:

an object looks red if the object is red.
an object looks red if it illuminated by a red light.

the two conditionals can be understood as standing for the biconditional:

an object looks red if and only if
the object is red or the object is illuminated by a red light.

Both negation as failure and abduction can be understood as reasoning with
such biconditionals as equivalences, replacing atomic formulas that match the
conclusion by the disjunction of conditions (connected by or) that imply the
conclusion.

Chapter 16: Computational Logic and the selection task

In this chapter we return to the problem of explaining some of the results of
psychological experiments about reasoning with conditionals. We investigate
the different ways that Computational Logic explains these results, depending
on whether a conditional is interpreted as a goal or as a belief. If it is interpreted
as a belief, then it is often natural to interpret the conditional as specifying the
only conditions under which the conclusion holds. This explains one of the two
main mistakes that people make when reasoning with conditionals, when
judged by the standards of classical logic.

Summary and plan of the book xix

The other main mistake is that people often fail to reason correctly with
negation. This mistake is explainable in part by the fact that an agent’s obser-
vations are normally represented by positive atomic sentences, and that negative
conclusions have to be derived from positive observations. In many cases this
derivation is easier with conditional goals than with conditional beliefs.

Chapter 17: Meta-logic

In this chapter we explore how meta-logic can be used to simulate the
reasoning of other agents, and to solve problems that cannot be solved in the
object language alone. We illustrate this with a variant of the wise man puzzle,
and with Gödel’s theorem that there are true but unprovable sentences in
arithmetic.

Conclusions of the book

This concluding chapter takes a step back from the details, and takes a broader
look at the main aim of the book, which is to show how Computational Logic
can reconcile conflicting paradigms for explaining and guiding human behav-
iour. It also suggests how Computational Logic may help to reconcile conflicts
in other areas.

Chapter A1: The syntax of logical form

This additional, more formal chapter gives a more precise formulation of
Computational Logic as a logic of sentences having the conditional form if
conditions then conclusion or equivalently having the form conclusion if con-
ditions. In its simplest form, the conclusion of a conditional is an atomic
expression, consisting of a predicate and a number of arguments. The condi-
tions are a conjunction (connected by and) of atomic expressions or the
negations of atomic expressions.
In this chapter, I compare the conditional form of logic with standard classical

logic. I argue that classical logic is to conditional logic, as natural language is to
the language of thought. In both cases, there are two kinds of reasoning,
performed in two stages. The first stage translates sentences that are unstruc-
tured and possibly difficult to understand into simpler sentences that are better
structured. The second stage derives consequences of the resulting simpler

xx Summary and plan of the book

sentences. The logic of conditional forms is the logic of such simpler and better
structured sentences.

Chapter A2: Truth

Conditionals in Computational Logic represent an agent’s goals and beliefs in
its private language of thought. They also represent the meanings of its public
communications with other agents, and for this reason they can be said to
represent the semantics of natural-language sentences. However, sentences in
logical form also have a semantics in terms of their relationship with states of
the world.
This additional chapter makes a start on the discussion of this semantics, and

of the relationship between truth in all models and truth in minimal models. It
argues from the example of arithmetic that truth in minimal models is more
fundamental than truth in all models.

Chapter A3: Forward and backward reasoning

This chapter defines the forward and backward rules of inference more pre-
cisely, and shows how they can be understood in semantic terms, as showing
how the truth of one set of sentences implies the truth of another. This semantic
point of view applies both to the use of these inference rules to determine truth
in all models and to their use to generate and determine truth in minimal models.

Chapter A4: Minimal models and negation

This chapter shows how the semantics of negation as failure can be understood
in terms of the minimal model semantics of Chapter A2.

Chapter A5: The resolution rule of inference

In this chapter we see that forward and backward reasoning are both special
cases of the resolution rule of inference, and that resolution is the underlying
mechanism for reasoning in connection graphs.
Resolution was originally presented as a machine-oriented rule of infer-

ence, whereas forward and backward reasoning are human-oriented ways

Summary and plan of the book xxi

of understanding human thinking. This combination of human and machine
orientation is reflected in the fact that the human mind can be regarded as a
computing machine whose software is a conditional form of logic and whose
hardware is a connectionist form of resolution.

Chapter A6: The logic of abductive logic programming

This chapter provides most of the technical support for the combination of
forward reasoning, backward reasoning and negation as failure, which are the
basic inference rules of the Computational Logic used in this book.
The proof procedure presented in this chapter can be understood in semantic

terms, as generating a minimal model in which an agent’s goals and beliefs are
all true. However, it can also be understood in argumentation terms, as generat-
ing an argument in favour of a claim, both by providing support for the claim
and by defeating all attacking arguments with counter-arguments.

xxii Summary and plan of the book

Introduction

Computational Logic has been developed in Artificial Intelligence over the past
50 years or so, in an attempt to program computers to display human levels of
intelligence. It is based on Symbolic Logic, in which sentences are represented
by symbols and reasoning is performed by manipulating symbols, like solving
equations in algebra. However, attempts to use Symbolic Logic to solve prac-
tical problems by means of computers have led to many simplifications and
enhancements. The resulting Computational Logic is not only more powerful
for use by computers, but also more useful for the original purpose of logic, to
improve human thinking.
Traditional Logic, Symbolic Logic and Computational Logic are all con-

cerned with the abstract form of sentences and how their form affects the
correctness of arguments. Although Traditional Logic goes back to Aristotle
in the fourth century b.c., Symbolic Logic began primarily in the nineteenth
century, with the mathematical forms of logic developed by George Boole and
Gottlob Frege. It was enhanced considerably in the twentieth century by the
work of Bertrand Russell, Alfred North Whitehead, Kurt Gödel and many
others on its application to the Foundations of Mathematics. Computational
Logic emerged in the latter half of the twentieth century, starting with attempts
to mechanise the generation of proofs in mathematics, and was extended both
to represent more general kinds of knowledge and to perform more general
kinds of problem solving. The variety of Computational Logic presented in
this book owes much to the contributions of John McCarthy and John Alan
Robinson.
The achievements of Symbolic Logic in the past century have been consid-

erable. But they have resulted in mainstream logic becoming a branch of math-
ematics and losing touch with its roots in human reasoning. Computational Logic
also employs mathematical notation, which facilitates its computer implementa-
tion, but obscures its relevance to human thinking.

1

In this book, I will attempt to show that the practical benefits of Computational
Logic are not limited to mathematics and Artificial Intelligence, but can also be
enjoyed by ordinary people in everyday life, without the use of mathematical
notation. Nonetheless, I include several additional, more technical chapters at the
end of the book, which can safely be omitted by the casual reader.

The relationship between logic and thinking

Logic in all its varieties is concerned with formalising the laws of thought. Along
with related fields such as Law and Management Science, it focuses on the
formulation of normative theories, which prescribe how people ought to think.
Cognitive Psychology is also concerned with thinking, but it focuses almost
exclusively on descriptive theories, which study how people actually think in
practice, whether correctly or not. For the most part, the two kinds of theories
have been developed in isolation, and bear little relationship to one another.
However, in recent years, cognitive psychologists have developed dual

process theories, which can be understood as combining descriptive and nor-
mative theories. Viewed from the perspective of dual process theories, tradi-
tional descriptive theories focus on intuitive thinking, which is associative,
automatic, parallel and subconscious. Traditional normative theories, on the
other hand, focus on deliberative thinking, which is rule-based, effortful, serial
and conscious. In this book, I will argue that Computational Logic is a dual
process theory, in which intuitive and deliberative thinking are combined.
But logic is concerned, not only with thinking in the abstract, but with

thoughts represented in the form of sentences and with thinking treated as
manipulating sentences to generate new thoughts. In Computational Logic,
these logical manipulations of sentences also have a computational interpreta-
tion. Viewed in this way, Computational Logic can be regarded as a formal-
isation of the language of human thought.

Computational Logic and the language of thought

As used in Artificial Intelligence, Computational Logic functions first and
foremost as an intelligent agent’s language of thought. It includes a syntax (or
grammar), which determines the form of the agent’s thoughts, a semantics,
which determines the contents (or meaning) of those thoughts, and an inference
engine (or proof procedure), which generates (or derives or infers) new thoughts
as consequences of existing thoughts. In this role, Computational Logic can be

2 Computational Logic and Human Thinking

regarded as a private language, representing the agent’s goals and beliefs, and
helping the agent to regulate its behaviour. This private language is independent
of, and more fundamental than, ordinary, natural languages like English.
However, in multi-agent systems in Artificial Intelligence, the private lan-

guage of an individual agent also serves the secondary function of representing
the meanings of its communications with other agents. These communications
are expressed in a shared public language, which may differ from the private
languages of individual agents. The task of a communicating agent is to trans-
late thoughts from its private language into the public language, in such a way
that the receiving agent can readily translate those public communications into
appropriate thoughts in its own private language.
It would be easier if all agents shared the same private language, and if that

private language were identical to the public language of the community of
agents. This can be arranged by design in an artificial multi-agent system, but it
can only be approximated in a society of human agents.
The distinction between private and public languages, which is so clear cut in

Artificial Intelligence, has been proposed in the Philosophy of Language to
explain the relationship between human thinking and communication. Many of
these proposals, which for simplicity can be lumped together as “language of
thought” (LOT) proposals, maintain that much human thinking can be under-
stood as taking place in a language of thought. The most famous proposal along
these lines is Fodor’s hypothesis that the LOT is a private language, which is
independent of the Babel of public languages (Fodor, 1975). Other proposals,
notably Carruthers (2004), argue that a person’s LOT is specific to the public
language of the person’s social community.
No matter where they stand on the relationship between private and public

languages, most proposals seem to agree that the LOT has some kind of logical
form. However, for the most part these proposals are remarkably shy about the
details of that logical form. By comparison, the proposal that I present in this
book – that Computational Logic can be regarded as a formalisation of the
LOT – is shamelessly revealing. I draw the main support for my argument from
the uses of Computational Logic in Artificial Intelligence. But I also draw
support from the relationship between Computational Logic and normative
theories of human communication.

Computational Logic and human communication

Much of the time, when we speak or write, we simply express ourselves
in public, without making a conscious effort to communicate effectively. But
when it really matters that we are understood – like when I am writing this

Introduction 3

book – we try to be as clear, coherent and convincing as possible. The
difference is like the difference between descriptive and normative theories
of thinking; and, as in the case of the two kinds of thinking, the two kinds
of communication are studied mainly in different academic disciplines.
Whereas linguistics is concerned with developing descriptive theories about
how people use language in practice, rhetoric and allied disciplines such as
English composition and critical thinking are concerned with normative
theories about how people should use language to communicate more
effectively.
In this book, I present a normative theory of intelligent thinking, comm-

unication and behaviour. But I pay attention to descriptive theories, because
descriptive theories help us to understand where we are coming from, whereas
normative theories show us where we are aiming to go.
The descriptive theory of communication that comes closest to a normative

theory is probably relevance theory (Sperber and Wilson, 1986). It is based on a
more general theory of cognition,which loosely speaking hypothesises that, given
competing inputs from their environment, people direct their attention to those
inputs that provide them with the most useful information for the least processing
cost. Applied to communication, the theory hypothesises that, given a potentially
ambiguous communication as input, readers or listeners translate the input into a
logical form that maximises the amount of information it contains, while mini-
mising the computational effort needed to generate that logical form.
Relevance theory is compatible with the hypothesis that Computational

Logic, or something like it, is the logic of the language of thought. Like
Computational Logic, relevance theory also has both logical and computational
components. Moreover, it provides a link with such normative theories of
communication as Joseph Williams’ guides to English writing style (Williams,
1990, 1995).
One way to interpret Williams’ guidance is to understand it in logical terms,

as including the advice that writers should express themselves in a form that is
as close as possible to the logical form of the thoughts they want to communi-
cate. In other words, they should say what they mean, and they should say it in a
way that makes it as easy as possible for readers to extract that meaning. Or to
put it still differently, the public expression of our private thoughts should be as
close as possible to the logical form of those thoughts.
If our private language and public language were the same, we could literally

just say what we think. But even that wouldn’t be good enough; because we
would still need to organise our thoughts coherently, so that one thought is
logically connected to another, and so that our readers or listeners can relate our
thoughts to thoughts of their own.

4 Computational Logic and Human Thinking

Williams’ guidance for achieving coherence includes the advice of placing
old, familiar ideas at the beginning of a sentence and placing new ideas at its
end. In a succession of sentences, a new idea at the end of a sentence becomes an
old idea that can be put at the beginning of the next sentence.
Here is an example of his advice, which uses an informal version of

the syntax of Computational Logic, and which incidentally shows how
Computational Logic can be used to represent an agent’s goals and beliefs to
guide its behaviour:

You want to be more intelligent.
You will be more intelligent if you are more logical.
You will be more logical if you study this book.
So (given no other alternatives) you should study this book.

It may not be poetry, and you might not agree with it, but at least it’s clear,
coherent and to the point.

What is Computational Logic?

The version of Computational Logic presented in this book combines a sim-
plified form of language for representing information with mechanical (or
automatic) ways of using information to infer its consequences. Sentences in
this language have the simple form of conditionals: if conditions then conclu-
sion (or equivalently conclusion if conditions). The basic rules of inference are
forward and backward reasoning.
Forward reasoning is the classical rule of inference (also called modus

ponens) used to derive conclusions from conditions. For example, given the
belief that in general a person will be more logical if the person studies this
book, forward reasoning derives the conclusion that Mary will be more logical
from the condition thatMary studies this book. Forward reasoning includes the
special case in which an agent derives consequences of its observations, to
determine how those consequences might affect its goals.
Backward reasoning works in the opposite direction, to derive conditions

from conclusions. For example, given the belief that in general a person will be
more intelligent if the person is more logical as the onlyway of concluding that a
person will be more intelligent, backward reasoning derives the condition that
John should be more logical from the conclusion John will be more intelligent.
Backward reasoning can be regarded as a form of goal reduction, in which the
conclusion is a goal, and the conditions are subgoals. Backward reasoning

Introduction 5

includes the special case in which an agent derives subgoals that are actions,
which the agent can perform in the world.
Backward reasoning gives Computational Logic the power of a high-level

computer programming language, in which all programs consist of goal-
reduction procedures. Indeed, the programming language Prolog, which stands
for Programming in Logic, exploits this form of computation mainly for
applications in Artificial Intelligence.
Computational Logic, in the more general form that we investigate in this

book, also includes the use of inference to help an agent choose between
alternative courses of action. For example, having used backward reasoning to
derive two alternative subgoals, say John is more logical or John takes
intelligence-enhancing drugs, for achieving the goal John is more intelligent,
John can use forward reasoning to infer the possible consequences of the
alternatives before deciding what to do. In particular, if John infers the con-
sequence that John may suffer irreversible brain damage if John chooses
the second alternative, John takes intelligence-enhancing drugs, then it
will encourage John to choose the first alternative, John is more logical,
instead.

What is Artificial Intelligence?

Artificial Intelligence (AI) is the attempt to program computers to behave
intelligently, as judged by human standards. Applications of AI include such
problem areas as English speech recognition, expert systems for medical and
engineering fault diagnosis, and the formalisation of legal reasoning.
The tools of AI include such techniques as search, Symbolic Logic, artificial

neural networks and reasoning with uncertainty. Many of these tools have
contributed to the development of the Computational Logic we investigate in
this book. However, instead of concerning ourselves with Artificial Intelligence
applications, we will focus on the use of Computational Logic to help ordinary
people think and behave more intelligently.
Thinking of people in computational terms might suggest that people can be

treated as though they were merely machines. On the contrary, I believe instead
that thinking of other people as computing agents can help us to better appre-
ciate our common nature and our individual differences. It highlights our
common need to deal with the cycle of life in an ever-changing world; and it
draws attention to the fact that other people may have other experiences, goals
and beliefs, which are different from our own, but which are equally worthy of
understanding, tolerance and respect.

6 Computational Logic and Human Thinking

Computational Logic and the cycle of life

The role of Computational Logic in the mind of an intelligent agent can be
pictured approximately like this:

Forward
reasoning

Forward
reasoning

Backward
reasoning

Consequences
of alternative
candidate actions

Decide

Maintenance goal Achievement goal

Observe Act
The world

Stimulus–response associations

In this way of looking at the relationship between an agent and the world, the
mind of the agent is a syntactic structure, which represents the agent’s beliefs
about the world as it is and its goals for the way it would like the world to be.
These beliefs and goals are represented in the agent’s private language of
thought, whose sentences have the syntactic form of conditionals.
The world, on the other hand, is a semantic structure, which includes the

agent’s body, and gives meaning to the agent’s thoughts. It is a dynamic
structure, which is continuously changing, and exists only in the here and
now. However, the agent can record its changing experiences in its language
of thought, and formulate general beliefs about the causal relationships between
its experiences. It can then use these beliefs, which explain its past experiences,
to help it achieve its goals in the future.
The agent observes events that take place in the world and the properties that

those events initiate and terminate. It uses forward reasoning to derive conclu-
sions of its observations. In many cases, these conclusions are actions, triggered

Introduction 7

by instinctive or intuitive stimulus–response associations, which can also be
expressed in the logical form of conditionals. The agent may execute these actions
by reflex, automatically and immediately. Or it may monitor them by performing
higher-level reasoning, as in dual process models of human thinking.
But whether an agent is tempted to react immediately with stimulus–response

associations or not, the agent can reason forwards to determine whether the
observation affects any higher-level goals that need to be maintained to keep it
in a harmonious relationship with its environment. Forward reasoning with
higher-level maintenance goals of this kind generates achievement goals for the
future. The agent can reason backwards, to reduce these achievement goals to
subgoals and to search in its mind for plans of actions to achieve these goals.
The agent may find that there are several, alternative plans all of which

achieve the same goal; and, if there are, then the agent needs to decide between
them. In classical decision theory, the agent uses the expected consequences of
its candidate plans to help it make this decision. With its beliefs represented in
the logical form of conditionals, these consequences can be derived by reason-
ing forwards from conditions that represent the hypothetical performance of
alternative candidate actions. The agent can evaluate the consequences, reject
actions that have unintended and undesirable consequences, and choose actions
that have the most desirable expected outcomes (or utility).
However, the consequences of an agent’s actions may depend, not only on its

own actions, but also on the actions of other agents or on other conditions that
are outside the agent’s control. The agent may not be able to determine for
certain whether these conditions hold in advance, but it may be able to judge
their likelihood (or probability). In such cases, the agent can use the techniques
of decision theory, to combine its judgements of probability and utility, and
choose a course of actions having the highest expected utility. Alternatively, the
agent may use more pragmatic, precompiled plans of action that approximate
the decision-theoretic ideal.
Among the criteria that an agent can use to decide between alternative ways

of accomplishing its goals, is their likely impact on the goals of other agents.
Alternatives that help other agents achieve their goals, or that do not hinder the
achievement of their goals, can be given preference over other alternatives. In
this way, by helping the agent to understand and appreciate that other agents
have their own experiences, goals and beliefs, Computational Logic can help
the agent avoid conflict and cooperate with other agents.
This book aims to show that these benefits of Computational Logic, which

have had some success in the field of Artificial Intelligence, also have great
potential for improving human thinking and behaviour.

8 Computational Logic and Human Thinking

1

Logic on the Underground

If some form of Computational Logic is the language of human thought, then
the best place to look for it would seem to be inside our heads. But if we simply
look at the structure and activity of our brains, it would be like looking at the
hardware of a computer when we want to learn about its software. Or it would
be like trying to do sociology by studying the movement of atomic particles
instead of studying human interactions. Better, it might seem, just to use
common sense and rely on introspection.
But introspection is notoriously unreliable. Wishful thinking can trick us into

seeing what we want to see, instead of seeing what is actually there. The
behavioural psychologists of the first half of the twentieth century were so
suspicious of introspection that they banned it altogether.
Artificial Intelligence offers us an alternative approach to discovering the

language of thought, by constructing computer programs whose input–output
behaviour simulates the externally visible manifestations of human mental
processes. To the extent that we succeed in the simulation, we can regard the
structure of those computer programs as analogous to the structure of the human
mind, and we can regard the activity of those programs as analogous to the
activity of human thinking.
But different programs with different structures and different modes of

operation can display similar behaviour. As we will see later, many of these
differences can be understood as differences between levels of abstraction.
Some programs are closer to the lower and more concrete level of the hardware,
and consequently are more efficient; others are closer to the higher and more
abstract level of the application domain, and consequently are easier to under-
stand. We will explore some of the relationships between the different levels
later in the book, when we explore dual process theories of thinking in
Chapter 9. In the meanwhile, we can get an inkling of what is to come by first
looking closer to home.

9

If human thoughts have the structure of language, then we should be able to
get an idea of that structure by looking at natural languages such as English.
Better than that, we can look at English communication in situations where we
do our best to express ourselves as clearly, coherently and effectively as
possible. Moreover, we can be guided in this by the advice we find in books
on English writing style.
For the purpose of revealing the language of thought, the most important

advice is undoubtedly the recommendation that we express ourselves as clearly
as possible – making it as easy as we can for the people we are addressing to
translate our communications into thoughts of their own. Everything else being
equal, the form of our communications should be as close as possible to the
form of the thoughts that they aim to convey.
What better place to look than at communications designed to guide people

on how to behave in emergencies, in situations where it can be a matter of life or
death that the recipient understands the communication as intended and with as
little effort as possible.
Imagine, for example, that you are travelling on the London Underground

and you hear a suspicious ticking in the rucksack on the back of the person
standing next to you. Fortunately, you see a notice explaining exactly what to do
in such an emergency:

Emergencies

Press the alarm signal button
to alert the driver.

The driver will stop
if any part of the train is in a station.

If not, the train will continue to the next station,
where help can more easily be given.

There is a fifty pound penalty
for improper use.

The public notice is designed to be as clear as possible, so that you can translate
its English sentences into your own thoughts with as little effort as possible. The
closer the form of the English sentences to the form in which you structure your
thoughts, the more readily you will be able to understand the sentences and to
make use of the thoughts that they communicate.

10 Computational Logic and Human Thinking

The thoughts that the management of the Underground wants you to have are
designed to make you behave effectively in an emergency, as well as to prevent
you from behaving recklessly when there isn’t an emergency. They are
designed, therefore, not only to be clear, but to be to the point – to tell you
what to do if there is an emergency and what not to do if there isn’t one. But they
are also intended to be coherent, so that you can easily relate the new thoughts
that new sentences communicate to existing thoughts you already have in your
head. These existing thoughts include both thoughts that were already there
before you started reading and thoughts that might have been conveyed by
earlier sentences in the text you are reading.

The Emergency Notice as a program

The purpose of the Emergency Notice is to regulate the behaviour of
passengers on the London Underground. It does so in much the same way
that a computer program controls the behaviour of a computer. In general,
much of our human communication can be understood in such computa-
tional terms, as one human attempting to program another, to elicit a desired
behaviour.
I do not mean to suggest that people should be treated as though they were

merely machines. I mean to propose instead that thinking of people as comput-
ing agents can sometimes help us to communicate with them in more effective
and more efficient terms. Our communications will be more effective, because
they will better accomplish our intentions; and they will be more efficient, both
because they will be easier for other people to understand, and because the
information they convey will be easier for other people to use for their own
purposes.
Understanding a communication is like the process that a computer performs

when it translates (or compiles) a program written in an external source
language into an internal target language that the computer already under-
stands. When a computer compiles the source program, it needs both to translate
individual sentences of the program into the target language and to place those
sentences into a coherent internal structure expressed as a target program.
Compiling a program is efficient when it can be done with as little processing
as necessary. Analogously, understanding an English communication is efficient
when compiling it from its English form into a mental representation can be
done with as little effort as possible.
Using the information in a communication is like executing a target program,

after it has been compiled. When a computer executes a program, it follows

1: Logic on the Underground 11

the instructions mechanically in a systematic manner. When a person uses the
information in a communication, the person combines that information with
other information that the person already has and uses the combined informa-
tion to solve problems. People perform much of this process of using informa-
tion systematically, automatically and unconsciously. Like a computer program,
the information that people use to solve problems is efficient if it helps them to
solve problems with as little effort as possible.
The computational nature of the Emergency Notice is most obvious in the

first sentence:

Press the alarm signal button
to alert the driver.

This has the form of a goal-reduction procedure:

Reduce the goal of alerting the driver
to the subgoal of pressing the alarm signal button.

Goal-reduction procedures are a common form of human knowledge represen-
tation. They structure our knowledge in a way that facilitates achieving goals
and solving problems. Here the thought communicated by the sentence is that
the goal of alerting the driver can be reduced to the subgoal of pressing the alarm
signal button.
To understand and make use of the goal-reduction procedure, you need

to assimilate it into your existing goals and beliefs. For example, you might
already know that there could be other ways of alerting the driver, such as
shouting out loud. You probably know that alerting the driver is one way of
getting help, and that there are other ways of getting help, such as enlisting the
assistance of your fellow passengers. You probably recognise that if there is an
emergency then you need to deal with it appropriately, and that getting help is
one such way, but that other ways, such as running away or confronting the
emergency head on yourself, might also be worth considering.
Goal-reduction procedures are also a common form of computer know-

ledge representation, especially in Artificial Intelligence. Liberally understood,
they can serve as the sole construct for writing any computer program. However,
almost all computer languages also use lower-level programming constructs.
Most of these constructs bear little resemblance to human ways of thinking.
But there is one other construct that is even higher-level than goal reduction,

and which may be even closer to the way humans structure their thoughts. This
construct is exemplified by the logical form of the conditional sentences found
in the second and third sentences of the Emergency Notice.

12 Computational Logic and Human Thinking

The logic of the second and third sentences

Many linguists and philosophers subscribe to some form of LOT hypothesis,
the hypothesis that many of our thoughts have a structure that is similar to the
structure of natural languages such as English. Most of those who subscribe
to the hypothesis also seem to believe that the language of thought has a logical
form. In this book, I will explore the more specific hypothesis that the language
of thought has the logical form of conditional sentences. This hypothesis
is supported by the English form of the second and third sentences of the
Emergency Notice.
Indeed, the second and third sentences of the Emergency Notice both have

the logical form of conditionals (also called implications). Conditionals are
sentences of the form:

if conditions then conclusion
or equivalently: conclusion if conditions.

A more precise definition is given in the additional Chapter A1.
In the Emergency Notice, the second sentence is written with its conclusion

first; and the third sentence is written the other way around, with its implicit
conditions first.
In formal logic, it is normal to write conditionals in the forward direction if

conditions then conclusion. This is why reasoning from conditions to conclusions
is called forward reasoning, and why reasoning from conclusion to conditions is
called backward reasoning. However, no matter whether conditionals are written
conditions-first or conclusion-first, they have the same meaning. But we often
write them one way rather than the other when we have one preferred direction of
use in mind, or when we want to write them more coherently in the context of
other sentences.
I have argued that the notice is designed to be as easy as possible to under-

stand, and that as a consequence its external form should be a good indication of
the internal form of its intended meaning. In particular, the external, conditional
form of the second and third sentences suggests that their intended meaning also
has the logical form of conditionals.
However, whatever the form of the LOT, one thing is certain: Its sentences are

unambiguous, in that they mean what they say. In contrast, English sentences
are often ambiguous, because they can have several different meanings. For
example, the English sentence the first passenger attacked the second passen-
ger with a rucksack has two possible meanings. Either the first passenger
carried out the attack with a rucksack or the second passenger had a rucksack,

1: Logic on the Underground 13

and the first passenger attacked the second passenger in some indeterminate
manner. The difference between the two meanings could make a big difference
in a court of law.
Ambiguity is the enemy of clarity. It creates confusion, because the reader

does not immediately know which of the several possible interpretations of the
communication is intended; and it creates extra effort for the reader, because
the reader has to explore different interpretations, to find an interpretation
that makes the most sense in the context of the reader’s background goals and
beliefs.
You might be surprised, therefore, to discover that the second and third

sentences of the notice are more ambiguous than they first appear. In particular,
the second sentence does not explicitly state what the driver will actually stop
doing. It is unlikely, for example, that:

The driver will stop causing the emergency
if any part of the train is in a station.

Instead, it is more likely that:

The driver will stop the train in a station
if any part of the train is in the station.

But even this interpretation does not fully capture the sentence’s intended
meaning. Understood in the context of the first sentence, the second sentence
has an additional implicit condition, namely that the driver has been alerted to
an emergency. Therefore, the intended meaning of the second sentence is
actually:

The driver will stop the train in a station
if the driver is alerted to an emergency
and any part of the train is in the station.

Without the additional condition, the sentence on its own literally means that
the driver will stop the train whenever the train is in a station, whether or not there
is an emergency. If that were the case, the train would never leave a station once it
was there. To understand the sentence, the reader of the notice needs both general
background knowledge about the way train drivers normally behave and specific
knowledge about the context of the earlier sentences in the notice.
In the spirit of our interpretation of the second sentence, it should now be

clear that the intended meaning of the third sentence is:

The driver will stop the train at the next station
and help can be given there better than between stations

14 Computational Logic and Human Thinking

if the driver is alerted to an emergency
and not any part of the train is in a station.

In natural language, it is common to leave out some conditions, such as any
part of the train is in the station, that are present in the context. In more formal
logic, however, the context needs to be spelled out explicitly. In other words,
sentences in formal logic, to represent information unambiguously, need to
stand on their own two feet, without relying for support on the context around
them.

The web of belief

Because the meaning of individual sentences expressed in purely logical form
does not rely on context, collections of sentences in logical form can be written
in any order. In theory, therefore, if this book were written in purely logical
form, I could write it – and you could read it – forwards, backwards, or in any
other order, and it would still have the same meaning. In fact, you could take
any text written as a sequence of sentences in logical form, write the individual
sentences on little pieces of paper, throw them up in the air like a pack of cards,
and pick them up in any order. The resulting sequence of sentences would have
the same meaning as the text you started with.
In contrast, much of the work in writing a book like this is in trying to find an

order for presenting the ideas, so they are as clear, coherent and convincing as
possible. No matter whether I spell out all of the contexts of individual senten-
ces in detail, I need to present those sentences in a coherent order, which relates
consecutive sentences both to ideas you had before you started reading and to
ideas you obtained from reading earlier sentences.
One way to achieve coherence is to follow Williams’ advice of placing

old, familiar ideas at the beginnings of sentences and new ideas at their ends.
Sometimes, as a limiting case, if an “old” idea is particularly salient, because it
has just been introduced at the end of the previous sentence, then the old part of
the next sentence can be taken for granted and simply left out. This is
what happens in the Emergency Notice, both in the transition from the
first sentence to the second sentence, where the condition the driver is
alerted to an emergency has been left out, and in the transition from the second
sentence to the third sentence, where any part of the train is in a station has been
left out.
If the language of thought is a logic of conditional forms, then the simplest

way to achieve coherence is by linking the beginnings and ends of consecutive

1: Logic on the Underground 15

sentences by means of the conclusions and conditions of the thoughts they
express, using such obvious patterns as:

If condition A then conclusion B.
If condition B then conclusion C.

and

conclusion C if condition B.
conclusion B if condition A.

The need for coherence in human communication suggests that the language of
thought is not an unstructured collection of sentences, after all. Rather, it is a
linked structure in which sentences are connected by means of their conclusions
and conditions.
Connection graphs (Kowalski, 1975, 1979), which link conclusions and

conditions of sentences in logical form, have been developed in Artificial
Intelligence to improve the efficiency of automated reasoning. The links in
connection graphs pre-compute much of the thinking that might be needed later.
Here is a connection graph representing some of a person’s goals and beliefs
before reading the Emergency Notice:

Goal: If there is an emergency
then you deal with the emergency appropriately.

You deal with the emergency appropriately
if you get help.

You get help
if you alert the driver.

You alert the driver
if you shout for help.

You get help
if you enlist the assistance of your neighbours.

You deal with the emergency appropriately
if you confront the emergency yourself.

You deal with the emergency appropriately
if you run away.

16 Computational Logic and Human Thinking

Here is the same connection graph, augmented with additional beliefs, after the
person reads the Emergency Notice, assuming the person believes everything
written in the notice:

Goal: If there is an emergency
then you deal with the emergency appropriately.

You deal with the emergency appropriately
if you get help.

You get help
if you alert the driver.

You alert the driver
if you press the alarm signal button.

The driver will stop the train immediately
if the driver is alerted to an emergency
and any part of the train is in a station.

The driver will stop the train at the next station
if the driver is alerted to an emergency
and not any part of the train is in a station.

You alert the driver
if you shout for help.

You get help
if you enlist the assistance of your neighbours.

You deal with the emergency appropriately
if you confront the emergency yourself.

You deal with the emergency appropriately
if you run away.

There is a fifty pound penalty
if you press the alarm signal
button and you do so improperly.

1: Logic on the Underground 17

We will see in later chapters that the kind of conditional represented by the
sentence if there is an emergency then you deal with the emergency appropri-
ately is a maintenance goal, which a person tries to make true by making its
conclusion true whenever its conditions become true.
Connection graphs are related to W.V. Quine’s (1963) web of belief. Quine

argued that scientific theories, and human beliefs more generally, form a web of
beliefs, which are linked to the world of experience by means of observational
sentences at the periphery. Beliefs in scientific theories stand and fall together as
a whole, because any belief, no matter how theoretical, might be involved in the
derivation of an empirically testable, observational consequence. If an obser-
vational consequence of a theory is contradicted by experience, consistency can
be restored by revising any belief involved in the derivation of the contradiction.
Connection graphs can be viewed as a concrete realisation of theweb of belief, in

which goals and beliefs are connected by links between their conditions and
conclusions.Although in principle itmight be possible tofind a chainof connections
between any two beliefs, in practice connections seem to cluster in relatively self-
contained domains, like modules in a computer program and like the different
kinds of intelligence in Howard Gardner’s (1983) theory of multiple intelligences.
There will be more to say about connection graphs in later chapters. But in the

meanwhile, we have amore pressing concern: How does the connection graph view
of themind, as awebof conditionals, relate to goal-reductionprocedures?The simple
answer is that goal-reduction procedures are one way of using the connections.

The first sentence as part of a logic program

The first sentence of the Emergency Notice, written in the form of a goal-
reduction procedure, hides an underlying logical form. In general, goal-reduction
procedures of the form:

Reduce goal to subgoals

hide logical conditionals of the form:

Goal if subgoals.

The goal-reduction behaviour of procedures can be obtained from conditionals
by backward reasoning:

To conclude that the goal can be solved,
show that the subgoals can be solved.

Thus, the first sentence of the Emergency Notice has the hidden logical form:

You alert the driver,
if you press the alarm signal button.

18 Computational Logic and Human Thinking

Viewed in connection graph terms, backward reasoning is one way in which a
thinking agent can use links between conditionals to direct its attention from one
thought to another. Backward reasoning directs the agent’s attention from a goal
to a conclusion that matches the goal. For example:

You deal with the emergency appropriately
if you get help.

Goal: You deal with the emergency appropriately.

The use of backward reasoning to turn conditionals into goal-reduction procedures
is the basis of logic programming, which in turn is the basis of the programming
language Prolog.
Backward reasoning contrasts with forward reasoning, which is probably

more familiar to most people. Given a conditional of the form:

If conditions then conclusion.

and a collection of statements that match the conditions, forward reasoning
derives the conclusion as a logical consequence of the conditions. For example,
given the statements:

The driver is alerted to an emergency.
A part of the train is in a station.

forward reasoning uses the conditional:

The driver will stop the train immediately
if the driver is alerted to an emergency
and any part of the train is in a station.

to derive the conclusion that the driver will stop the train immediately.
Viewed in connection graph terms, forward reasoning directs attention from

the conclusions of beliefs to a belief whose conditions are linked to those
conclusions. For example:

The driver will stop the train immediately
 if the driver is alerted to an emergency
and any part of the train is in a station.

The driver is alerted
to an emergency.

A part of the train is in a station.

Backward reasoning is also called top-down reasoning, or analysis. Forward
reasoning is also called bottom-up reasoning, or synthesis.

1: Logic on the Underground 19

When and how to combine backward and forward reasoning are one of
the main topics of this book. However, the connection graph view of the
mind suggests that pure backward or forward reasoning are not the only
ways of reasoning. Connections can also be activated in different parts
of the mind simultaneously and in parallel (Cheng and Juang, 1987).
Moreover, connections that are activated frequently can be short-circuited,
and their effect can be compiled into a single goal or belief. For example, the link:

You deal with the emergency appropriately
if you get help.

You get help
if you alert the driver.

between two beliefs can be compiled into the single belief:

You deal with the emergency appropriately
if you alert the driver.

The fourth sentence as an inhibitor of action

In natural language, the logical form of conditionals is often hidden below the
surface, sometimes appearing on the surface in procedural form, at other times
appearing in declarative form. For example, the last sentence of the Emergency
Notice is a declarative sentence, which hides its underlying conditional form:

There is a fifty pound penalty if
you press the alarm signal button and
you do so improperly.

The sentence does not say that youwill necessarily receive the penalty for improper
use. So its conclusion, more precisely stated, is only that, under the condition that
you use the alarm signal button improperly, you will be liable to the penalty.
Backwards reasoning turns this conditional into a goal-reduction procedure:

To be liable to a fifty pound penalty,
press the alarm signal button and
do so improperly.

It is very unlikely that a passenger would want to get a fifty pound penalty, and
very unlikely, therefore, that the passenger would want to use the conditional as

20 Computational Logic and Human Thinking

such a goal-reduction procedure. It is more likely that the passenger would use it
to reason forward instead, to conclude that using the alarm signal button
improperly could have an undesirable consequence.
In subsequent chapters, we will see two ways of dealing with the undesirability

ofthe possible consequences of actions. The first is to use decision theory, associat-
ing probabilities and utilities with the consequences of actions, and choosing an
action having the best expected outcome. The other is to use deontic constraints
onactions, formulated in terms of obligations, permissions and prohibitions.
In standard logical representations, the deontic notions of obligation, permission

and prohibition are accorded the same status as the logical connectives and, or, if
and not, in so-called deontic logics. However, in the approachwe take in this book,
we treat obligations and prohibitions more simply as a species of goal. Obligations
are represented by conditional goals whose conclusion the agent attempts to bring
about if the conditions hold. Prohibitions (or constraints) are represented by
conditional goals with conclusion false, whose conclusion the agent attempts to
prevent, by ensuring that the conditions do not hold. In the case of the fourth
sentence of the Emergency Notice, this prohibition could be stated in the form:

Do not be liable to a penalty.
Or, stated as a conditional goal: If you are liable to a penalty then false.

Although it may seem a little strange, we will see later that representing
prohibitions and other constraints as conditional goals (with conclusion false)
has the advantage that then they share the same semantics and the same rules of
inference as other conditional goals. When used to reason forward and to derive
the conclusion false, they eliminate any hypothesis or candidate action that
leads to the derivation of false.
Thus, in conjunction either with the use of decision theory or with the use of

deontic constraints, the fourth sentence acts as an inhibitor of action rather than
as a motivator of actions. This explains why the sentence is written declaratively
and not procedurally.
In fact, only the first sentence of the Emergency Notice is written in procedural

form, and only this first sentence of the notice functions as a normal program, to
evoke the behaviour that is desired of passengers on the Underground. The
fourth sentence functions as a constraint, to prevent undesired behaviour.
The second and third sentences, on the other hand, describe part of a program

to be executed by a different agent, namely by the driver of the train. These
sentences are written declaratively and not procedurally precisely because
they are to be executed by a different agent, and not by the agent observing the
emergency. However, passengers can use these two sentences, like the fourth
sentence, to derive the likely consequences of pressing the alarm signal button.

1: Logic on the Underground 21

Programs with purpose

It is implicit that the purpose1 (or goal) of the Emergency Notice is to explain
how you can get help from the driver in an emergency. That is why the third
sentence includes a phrase that explains why the driver does not stop the train
immediately when it is not in a station, but waits to stop until the next station:

where help can more easily be given.

The notice makes sense because the first sentence, in particular, coheres with the
goals and beliefs that you probably already had before you started reading the
notice. For example, with such sentences as:

If there is an emergency then
deal with the emergency appropriately.

You deal with the emergency appropriately if
you get help.

You get help if you alert the driver.

Although I havedeliberatelywritten the second and third sentences here conclusion-
first, because it is natural to use them conclusion-first, backwards, as procedures
for dealing with emergencies, I have written the first sentence condition-first,
because it is natural to use it condition-first, forwards, to respond to emergencies.
The first sentence also has the form of a conditional. But here its conclusion is

written imperatively (deal with the emergency appropriately) rather than dec-
laratively (you deal with the emergency appropriately). This follows English
grammar, in which beliefs are expressed as declarative sentences, but goals,
including commands and prohibitions, are expressed as imperative sentences.
The difference between goals and beliefs is that beliefs describe an agent’s

understanding of the world as it is, whereas goals describe the agent’s view of
the world as the agent would like it to be. This distinction between goals and
beliefs has largely been neglected in symbolic, mathematical logic, because in
Mathematics truth is eternal, and there are no actions that a mathematical theory
can do to make a sentence become true. However, the distinction is important in
Artificial Intelligence, because the ability to perform actions to achieve goals is
an essential property of an agent’s nature.
Ordinary natural languages distinguish between goals and beliefs by using

imperative sentences for goals and declarative sentences for beliefs. However, in
the Computational Logic used in this book, both kinds of sentences are expressed
declaratively. For example, we represent the conditional-imperative sentence:

1 The terms “goal” and “purpose” are interchangeable. Other terms that sometimes have the same
meaning are “motivation”, “reason”, “interest”, “desire”, “objective”, “mission”, “target”, “value”, etc.

22 Computational Logic and Human Thinking

If there is an emergency then
deal with the emergency appropriately.

as the declarative sentence:

If there is an emergency then
you deal with the emergency appropriately.

We distinguish between goals and beliefs, not by means of syntax, but by
assigning them to different categories of thought.

Where do we go from here?

This chapter has been intended to give an impression of the book as a whole. It
shows how English sentences can be viewed in both computational and logical
terms; and it shows how the two views are combined in Computational Logic.
Traditional logic, on which Computational Logic is based, has fallen out of

fashion in recent years. Part of the problem is that its use of symbolic notation can
give the impression that logic has little to do with everyday human experience.
But another part of the problem is that it fails to address a number of issues that are
important in human thinking and behaviour. These issues include the need:

* to distinguish between goals and beliefs
* to be open to changes in the world
* to combine thinking about actions with deciding what to do
* to combine thinking and deciding with actually performing actions
* to reason by default and with rules and exceptions.

We will see how Computational Logic addresses these issues in the following
chapters. For the moment, we can picture the problem we face roughly like this:

?

Computational Logic as
the thinking component
of an intelligent agent

The world

1: Logic on the Underground 23

2

The psychology of logic

In this chapter, I will discuss two psychological experiments that challenge the
view that people have an inbuilt ability to perform abstract logical reasoning.
The first of these experiments, the “selection task”, has been widely interpreted
as showing that, instead of logic, people use specialised procedures for dealing
with problems that occur commonly in their environment. The second, the
“suppression task”, has been interpreted as showing that people do not reason
using rules of inference, like forward and backward reasoning, but instead
construct a model of the problem and inspect the model for interesting proper-
ties. I will respond to some of the issues raised by these experiments in this
chapter, but deal with them in greater detail in Chapter 16, after presenting the
necessary background material.
To motivate the discussion of the selection task below, consider its potential

application to the problem of improving security on the London Underground.
Suppose that the management of the Underground decides to introduce a security
check, as part of which security officers stick a label with a letter from the
alphabet to the front of every passenger entering the Underground. Suppose
that the security officers are supposed to implement the following conditional:

if a passenger is carrying a rucksack on his or her back,
then the passenger is wearing a label with the letter A on his or her front.

Imagine that you have the task of checking whether the security officers have
properly implemented the conditional. Which of the following four passengers
do you need to check? In the case of Bob and John you can see only their backs,
and in the case of Mary and Susan you can see only their fronts:

Bob, who is carrying a rucksack on his back.
Mary, who has the label A stuck to her front.
John, who is carrying nothing on his back.
Susan, who has the label B stuck to her front.

24

Unfortunately, I have had only limited experience with trying this test myself.
So I’m not entirely sure what to expect. But if you are like most ordinary people,
and if the task I have asked you to perform is sufficiently similar to some of the
psychological experiments that have been performed on ordinary people, then
depending on how you interpret the task your performance may not be very
logical.
If you were being logical, then you would certainly check Bob, to make sure

that he has the label A stuck to his front; and most people, according to
psychological studies, correctly perform this inference. So far so good.
But, if you were being logical according to the standards of classical logic,

then you would also check Susan, because she might be carrying a rucksack on
her back, in which case she would have the incorrect label B stuck to her front.
Unfortunately, in many psychological experiments with similar reasoning tasks,
most people fail to make this correct inference. If you were to make the same
mistake in this version of the selection task, the failure could be disastrous,
because Susan could be a terrorist carrying a bomb in a rucksack on her back.
Not so good.
According to classical logic, those are the only cases that matter. It is not

necessary to check Mary, because the conditional does not state that carrying a
rucksack on the back is the only condition under which the letter A is stuck to a
person’s front. There could be other, alternative conditions, for example like
carrying a hand grenade in a waist belt, that might also require the security
officers to stick the letter A on a person’s front. But you have not been asked to
check whether Mary might be a terrorist. That is the security officers’ job. You
have been asked to check only whether the security officers have correctly
implemented the one stated conditional. Checking to see whether Mary has a
rucksack on her back is going beyond the call of duty. However, in many
psychological experiments with similar tasks, most subjects do indeed perform
this additional, logically unnecessary step.
It remains to consider the case of John, who has nothing on his back.

Logically, it doesn’t matter what letter he has stuck to his front. It could be
the letter B, or even be the letter A. There is no need to check John at all. In
psychological studies with similar tasks, most people also reason “correctly”,
concluding that the letter stuck to John’s front is entirely irrelevant. Even most
people who interpret the conditional as expressing the only condition under
which the letter A is stuck to a person’s front conclude that it is unnecessary to
check John. (But if they really believed that the conditional expresses the only
such condition, then they should check that the conclusion that John has the
letter A stuck to his front doesn’t hold under any other conditions, such as the
condition that he has nothing on his back.)

2: The psychology of logic 25

You might think that the psychologists who devise these experiments would
be disappointed with the evidence that most people appear not to be very
logical. But many psychologists seem to be absolutely delighted.

The Wason selection task

The first and most famous of these experiments was performed by Peter Wason
(1968). InWason’s experiment, there are four cards, with letters on one side and
numbers on the other. The cards are lying on a table with only one side of each
card showing:

d 3 7f

The task is to select those and only those cards that need to be turned over, to
determine whether the following conditional holds:

If there is a d on one side,
then there is a 3 on the other side.

Variations of this experiment have been performed numerous times, mainly
with college students. The surprising result is that only about 10% of the
subjects give the logically correct solutions.
Almost everyone recognises, correctly, that the card showing d needs to be

turned over, to make sure there is a 3 on the other side. This is a logically correct
application of the inference rule modus ponens, which is also called forward
reasoning. Most people also recognise, correctly, that the card showing f does
not need to be turned over. Although, if you ask them why, they might say
“because the conditional does not mention the letter f ”, which (as you will see in
a moment) is not the right reason.
Many subjects also think, incorrectly, that it is necessary to turn over the card

showing 3, to make sure there is a d on the other side. This is logically incorrect,
because the conditional does not claim that having a d on one side is the only
condition that implies the conclusion that there is a 3 on the other side. This
further claim is expressed by the so-called converse of the conditional:

If there is a 3 on one side,
then there is a d on the other side.

26 Computational Logic and Human Thinking

The two conditionals are the converse of one another, in the same way that the
two conditionals:

If it is raining, then there are clouds in the sky.
If there are clouds in the sky, then it is raining.

are also mutually converse. In fact (in case it’s not obvious), the first conditional
is true and the second conditional is false.
However, more disturbingly, only a small percentage of subjects realise that it

is necessary to turn over the card showing 7, to make sure that d is not on the
other side. It is necessary to turn over the 7, because the original conditional is
logically equivalent to its contrapositive:

If the number on one side is not 3 (e.g. 7),
then the letter on the other side is not d.

Similarly, the second sentence in the pair of sentences:

If it is raining, then there are clouds in the sky.
If there are no clouds in the sky, then it is not raining.

is the contrapositive of the first sentence, and the two sentences are also
logically equivalent. Notice that it is logically necessary to turn over the card
showing 7 (because the number 3 is not the number 7), even though the original
conditional does not mention the number 7 at all.
The obvious conclusion, which many psychologists draw, is that people are

not logical, and that logic has relatively little to do with real human reasoning.

A variant of the selection task

Psychologists have shown that people perform far better when the selection task
experiment is performed with a problem that is formally equivalent to the card
version of the task but has meaningful content. The classic experiment of this
kind considers the situation in which people are drinking in a bar, and the
subject is asked to check whether the following conditional holds:

If a person is drinking alcohol in a bar,
then the person is at least eighteen years old.

Again there are four cases to consider, but this time instead of four cards there
are four people. We can see what two of them are drinking, but not how old they
are; and we can see how old two of them are, but not what they are drinking:

Bob, drinking beer.
Mary, a senior citizen, obviously over eighteen years old.

2: The psychology of logic 27

John, drinking cola.
Susan, a primary school child, obviously under eighteen years old.

In contrast with the card version of the selection task, most people solve the bar
version correctly, realising that it is necessary to check Bob to make sure that he
is at least eighteen years old, and to check Susan to make sure that she is not
drinking alcohol, but that it is not necessary to check Mary and John.
Cognitive psychologists have proposed a bewildering number of theories to

explain why people are so much better at solving such versions of the selection
task compared with other, formally equivalent variations, like the original card
version. The most generally cited of these theories, due to Leda Cosmides (1985,
1989), is that humans have evolved a specialised algorithm (or procedure) for
detecting cheaters in social contracts. The algorithm has the general form:

If you accept a benefit,
then you must meet its requirement.

In the bar version of the selection task, the “benefit” is “drinking beer” and the
“requirement” is “being at least eighteen years old”.
Cosmides and her co-workers also argue that humans have evolved other

specialised algorithms for dealing with other kinds of problems, for example an
algorithm for avoiding hazards:

If you engage in a hazardous activity,
then you should take the appropriate precaution.

Stephen Pinker (1997) cites Cosmides ’ evolut ionary explanatio n approvi ngly in
his widely acclaimed book, How the Mind Works. He points out that the cheater
algorithm explanation doesn’t always justify the logically correct solution. For
example, given the conditional if he pays $20 he receives a watch, subjects
typically select the person who doesn’t pay $20, to check he hasn’t received a
watch. But logically, this is unnecessary, because the conditional doesn’t say
that he receives a watch only if he pays $20. The conditional is entirely
compatible, for example, with a person receiving a watch if he takes early
retirement. Thus, according to Cosmides and Pinker, evolutionary algorithms
explain human performance on selection tasks, whether or not that performance
coincides with the dictates of classical logic.
At about the same time as Cosmides developed the evolutionary theory,

Cheng and Holyoak (1985) put forward a related theory that people reason
about realistic situations using specialised algorithms. But for Cheng and
Holyoak, these algorithms are “pragmatic reasoning schemes”. Chief among
these pragmatic schemes are ones involving deontic notions concerned with

28 Computational Logic and Human Thinking

permission, obligation and prohibition. In English these notions are typically
signalled by the use of such words as “can”, “should”, “need” and “must”. But
these explicit linguistic signals can be omitted if the context makes it obvious
that an obligation or prohibition is involved, as in the formulation of the bar
version of the selection task above.
In fact, if Cheng and Holyoak are right, then the security check version of the

selection task shouldn’t be hard at all, because the most natural interpretation of
the conditional:

If a passenger is carrying a rucksack on his or her back,
then the passenger is wearing a label with the letter A on his or her front.

is deontic:

If a passenger is carrying a rucksack on his or her back,
then the passenger should be wearing a label with the letter A
on his or her front.

But then the real problem isn’t just how people reason with conditionals in
logical form, but also how people interpret natural language conditionals and
translate them into conditionals in logical form.
But both Cosmides and Cheng and Holyoak draw a different conclusion.

They argue that people do not have an in-built, general-purpose ability for
abstract logical reasoning, but instead employ specialised procedures for deal-
ing with classes of practical problems that arise naturally in the world around
them. I will discuss the selection task in greater detail in Chapter 16, but the
relationship between general-purpose and special-purpose methods is too
important not to address it here. It is part of the more fundamental relationship
between knowledge representation and problem solving, which is one of the
main themes of this book.

Thinking = knowledge representation + problem solving

In Artificial Intelligence, the ultimate goal of an agent is to maintain itself in a
harmonious relationship with the world. For this purpose, intelligent agents
employ a mental representation of the world and use that representation to
respond to threats and opportunities that arise in their environment. They do so
by observing the current state of the world, generating appropriate goals, reducing
those goals to actions and performing actions, to change the world for their
benefit. In Computational Logic, these mental representations are expressed in a
logical language of thought; and both the generation of goals from observations
and the reduction of goals to actions are performed by logical reasoning.

2: The psychology of logic 29

Thus, an intelligent agent needs both specialised knowledge (in the form of
goals and beliefs) and general-purpose reasoning abilities (including forward
and backward reasoning). The agent needs specialised knowledge, both to deal
with everyday problems that occur as a matter of course, and to deal with
problems that might never occur but could have life-threatening consequences
if they do. But the agent also needs general-purpose reasoning, to be able to use
its knowledge flexibly and efficiently.
The relationship between knowledge representation and reasoning is like the

relationship between a computer program and program execution. Knowledge
is like a computer program, consisting of specialised procedures for solving
problems that are particular to a problem domain. Reasoning is like program
execution, employing general-purpose methods to execute programs in any
domain. In Computational Logic, programs are represented in logical form,
and program execution is performed by applying rules of inference.
Compared with conventional computer programs, whose syntax consists of

instructions for a machine, programs in logical form aremuch higher-level, in that
their syntax more closely mirrors the semantic structure of the world that they
represent. However, in Computational Logic the application of general-purpose
inference rules to domain-specific knowledge behaves like specialised algorithms
and procedures. This relationship can be expressed in the form of an equation:

algorithm ¼ knowledgeþ reasoning:

I will argue later in this book that the kind of specialised algorithm involved in
cheater detection can be viewed as combining a goal (or constraint) of the
logical form:

if a person accepts a benefit
and the person fails to meet its requirement
then false.

with general-purpose reasoning with goals that have the form of such condi-
tionals. In general, given a goal of the logical form:

if conditions then conclusion.

* reason forward to match an observation with a condition of the goal
* reason backward to verify the other conditions of the goal
* reason forward to derive the conclusion as an achievement goal.

In the special case where the achievement goal is false and therefore unachiev-
able, then this pattern of reasoning detects violation of the goal. In the special
case where the other conditions are properties that can be observed in the

30 Computational Logic and Human Thinking

agent’s environment, then the agent can attempt to verify these properties by
actively attempting to observe whether or not they are true.
This analysis of the cheater detection algorithm applies without prejudice to

the issue of whether or not people actually use such algorithms to solve
selection tasks. Moreover, it is compatible with the argument of Sperber et al.
(1995) that people are more likely to solve selection task problems in accord-
ance with the norms of classical logic, the more natural it is for them to represent
the conditional:

if conditions then conclusion
in the form: it is not the case that

conditions and not conclusion.
or equivalently: if conditions and not conclusion then false.

This analysis of the cheater detection algorithm is also compatible with the
argument of Cheng and Holyoak (1985) and Stenning and van Lambalgen
(2008) that people more readily solve selection task problems in accordance
with classical logic if they interpret those problems in deontic terms. It is even
compatible with Cosmides’ argument that people use Darwinian algorithms,
because the analysis is independent of the source of the agent’s knowledge.
The agent might have obtained its knowledge by learning it through its own
experience, by learning it from parents, teachers or friends, or by inheriting it
through the mechanisms of Darwinian evolution.
Although this analysis may explain some of the cases in which people reason

correctly in terms of classical logic, it does not explain those cases, as in the card
version of the selection task, where they reason with the converse of the conditional
or where they fail to reason with the contrapositive. We will return to this problem
in Chapter 16. But before we leave this chapter, we will look at another example
that challenges the claim that people reason using logical rules of inference.

The suppression task

Consider the following pair of premises:

If she has an essay to write, then she will study late in the library.
She has an essay to write.

Most people correctly conclude:

She will study late in the library.

Suppose I now say in addition:

If the library is open, then she will study late in the library.

2: The psychology of logic 31

Given this additional information, many people (about 40%) suppress their
earlier conclusion that she will study late in the library.
This problem was originally studied by Ruth Byrne (1989) and used as

evidence to argue that people do not reason with logical rules of inference,
such as modus ponens (forward reasoning), but reason instead by constru-
cting and inspecting mental models, which are like architects’ models or
diagrams, whose structure is analogous to the structure of the situation they
represent.
Mental models, as Johnson-Laird (1983) and Johnson-Laird and Byrne

(1991) describe them, look a lot like the semantic structures that we investigate
in later, mainly additional chapters. But they also look like sets of atomic
sentences, and consequently are ambiguous by the rigorous standards of math-
ematical logic (Hodges, 1993, 2006). It would be easy to dismiss mental models
as confusing syntax and semantics. But it might be a sign of a deeper relation-
ship between syntax and semantics than is normally understood.
Indeed, somewhat in the spirit of mental models, I will argue later in this book

that the appropriate semantics for Computational Logic is one in which seman-
tic structures are represented syntactically as sets of atomic sentences. I will also
argue that the kind of reasoning that is most useful in Computational Logic is
the reasoning involved in generating such a synactically represented semantic
structure, in order to make or show that a given set of sentences may be true. We
will see that it is hard to distinguish between reasoning about truth in such
syntactic/semantic structures and reasoning with purely syntactic rules of
inference.
Like the Wason selection task, the suppression task has generated a wealth of

alternative explanations. The explanation that comes closest to the approach of
this book is the explanation of Stenning and van Lambalgen (2008) that solving
problems stated in natural language is a two-stage process of first identifying the
logical form of the problem and then reasoning with that logical form. The
mistake that many psychologists make is to ignore the first stage of the process,
assuming that if the syntax of a natural language statement already has an
apparently logical form, then that apparent form is the intended form of the
statement’s meaning.
We saw a clear example of the difference between the apparent logical form

of an English sentence and its intended logical form in Chapter 1, in the case of
the second sentence of the London Underground Emergency Notice:

The driver will stop
if any part of the train is in a station.

where its intended meaning was:

32 Computational Logic and Human Thinking

The driver will stop the train in a station
if the driver is alerted to an emergency
and any part of the train is in the station.

The intended meaning of the sentence contains both the missing object, the
train, of the verb stop and an extra condition, coming from the context of the
previous sentence press the alarm signal button to alert the driver. Because this
missing condition is already present in the context, it is relatively easy for the
reader to supply it without even noticing it isn’t actually there.

Arguably, the situation in the suppression task is similar, in that the English-
language sentence if she has an essay to write, then she will study late in the
library is also missing an extra condition, namely the library is open, needed to
represent the logical form of its intended meaning:

If she has an essay to write and the library is open,
then she will study late in the library.

But in the suppression task, the missing condition comes in a later sentence,
rather than in an earlier one. In any case, it is hard to argue that the later sentence
if the library is open, then she will study late in the library means what it
actually says. Taken literally, the sentence says that she will study late in the
library, whether or not she has an essay to write, as long as the library is open. It
is also hard to argue that the sentence measures up to the standards of clarity
advocated in books on good English writing style.
There are a number of ways that the task could be reformulated, to conform to

better standards of English style. Perhaps the formulation that is closest to the
original statement of the problem is a reformulation as a rule and an exception:

If she has an essay to write, she will study late in the library.
But, if the library is not open, she will not study late in the library.

Exceptions are a conventional way of adding extra conditions to a rule, after a
simplified form of the rule has been presented. In general, rules and exceptions
have the form:

Rule: a conclusion holds if conditions hold.
Exception: but the conclusion does not hold if other conditions hold.

Expressed in this form, the meaning of the rule depends upon the context of the
exception that follows it. However, the rule can also be expressed context-
independently, as strict logical form requires, by adding to the rule an extra
condition:

Context-independent rule: a conclusion holds if conditions hold
and other conditions do not hold.

2: The psychology of logic 33

In the suppression task, the extra condition is equivalent to the positive con-
dition the library is open.
We will see other examples of rules and exceptions in later chapters. We will

see that the kind of reasoning involved in the suppression task, once its intended
logical form has been identified, is a form of default (or defeasible) reasoning, in
which the conclusion of a rule is deemed to hold by default, but is subsequently
withdrawn (or suppressed) when additional information contradicting the appli-
cation of the rule is given later.

Natural language understanding versus logical reasoning

Communicating effectively in natural language is a challenge not only for the
writer (or speaker) but also for the reader (or listener). It is a challenge for the
writer, who needs to express her thoughts as clearly, coherently and effectively
as possible; and it is a challenge for the reader, who needs to construct a logical
form of the communication, assimilate that logical form into his web of goals
and beliefs, and act appropriately if necessary.
As we well know, the syntax of English sentences is only an imperfect

conveyor of a writer’s thoughts. In particular, English sentences frequently
omit conditions (like the driver is alerted to an emergency and the library is
open) and other qualifications (the driver will stop the train) needed to recon-
struct their meaning. As a consequence, although a reader needs to use the
syntax of English sentences to help him reconstruct their logical form, he cannot
rely exclusively upon their syntax. In many cases, there can be several, alter-
native candidate logical forms for the same English sentence, and consequently
the reader needs to draw on other resources to help him choose between the
alternatives.
The only other resource a reader can draw upon are his own goals and beliefs,

including the goals and beliefs he has extracted from previous sentences in the
discourse, and including his beliefs about the writer’s goals and beliefs. In
choosing between the alternative meanings of a sentence, the reader needs to
choose a logical form that is as coherent as possible with this context.
There are different ways to judge coherence. Obviously, a logical form that

has no connections with the reader’s understanding of the writer’s goals and
beliefs is less coherent than a logical form that does have such connections. A
logical form that confirms this understanding is more coherent than a logic form
that conflicts with this understanding. In a sequence of English sentences, a
logical form that has connections with the logical forms of previous sentences is
more coherent than a logical form that does not.

34 Computational Logic and Human Thinking

I have already argued, following Stenning and van Lambalgen, that the
suppression task is a clear-cut case in which the first stage of solving the
problem, namely constructing its logical form, is much harder than the second
stage of reasoning with that logical form. In particular, it is hard because the
writer has expressed one of the sentences in the converse form of its intended
meaning. By comparison, the selection task is even more difficult, because both
stages are hard.
The first stage of the selection task is hard, because the reader has to decide

whether the conditional has any missing conditions, whether it is the only
conditional having the given conclusion, and whether it is to be interpreted as
a goal or as a belief. To help in making these decisions, the reader needs to
assimilate the logical form of the conditional as coherently as possible into his
existing goals and beliefs. Sperber et al. (1995) argue that, because there is so
much variation possible in the first stage of the selection task, it is impossible to
form any judgement about the correctness of the reasoning processes involved
in the second stage. This view is also supported by the results of experiments by
Almor and Sloman (2000) who showed that, when subjects are asked to recall
the problem after they have given their solution, they report a problem statement
that is consistent with their solution rather than with the original problem
statement.
The second stage of the selection task is hard, mostly because negation is

hard. For one thing, it can be argued that positive observations are more
fundamental than negative observations. For example, we observe that a person
is tall, fat and handsome, not that she is not short, not thin and not ugly. Such
negative sentences have to be inferred from positive observations or assump-
tions, and the longer the chain of inferences needed to derive a conclusion, the
harder it is to derive it.
We will look at reasoning with negation in greater detail in subsequent

chapters. In the meanwhile, there is another issue, which goes to the heart of
the relationship between logical and psychological reasoning, namely whether
the given task is to be solved in the context of an agent’s goals and beliefs, or
whether it is to be solved in a context in which those goals and beliefs are
temporarily suspended.

Reasoning in context

I argued above that, because natural language is ambiguous, readers often need
to choose between alternative logical forms as a representation of the writer’s
intended meaning. The syntax of an English sentence is only one guide to that

2: The psychology of logic 35

intended meaning. Coherence with the reader’s existing goals and beliefs,
including logical forms of earlier sentences in the same discourse, as well as
the reader’s beliefs about the writer’s goals and beliefs, all play a part in helping
to identify the intended logical form of a new sentence in the discourse.
Most of the time we understand communications intuitively, spontaneously

and unconsciously, without being aware of these difficulties, relying perhaps
more on our expectations of what the writer wants to say, than on what the writer
actually says.
Sometimes, when communications have little connection with our own

experience, they go in one ear and out the other, as though they were a kind
of background noise. And sometimes we just understand sentences in our own,
private way, only loosely connected to what the writer has written, and even
more loosely connected to what the writer had in mind.
In contrast with sentences in natural language, sentences in logical form say

exactly what they mean. But because different people have different goals and
beliefs, the same sentence in logical form has different significance for different
people. So, although a sentence may have the samemeaning for different people
when the sentence is regarded in isolation, it may have a different meaning (or
significance) when the sentence is understood in the context of a person’s goals
and beliefs.
Assume, for example, that the sentence Susan has a rucksack on her back

means exactly what it says, and is already in logical form. But if I believe that
Susan has a bomb in the rucksack and you believe that Susan has only her lunch
in the rucksack, then the same belief that Susan has a rucksack on her back has a
different significance for the two of us.
Understanding sentences for their significance in the context of the reader’s

goals and beliefs is a higher kind of logic than understanding sentences in the
isolated context of a psychological experiment. But most psychological studies of
human reasoning make the opposite assumption: that logical reasoning means
interpreting natural language problem statements context-independently, using
only the sentences explicitly presented in the experiment.
Such ability to suspend one’s own goals and beliefs and to reason context-

independently, as studied in psychological experiments, is indeed an important
and useful skill, but it is not quite the same as reasoning logically. In some cases,
it is more like failing to see the wood for the trees.
Computational Logic is concerned with representing goals and beliefs in

logical form and reasoning with those representations to solve problems that
arise in the real world. Compared with representations in logical form, commu-
nications in natural language are generally only a poor approximation to the
logical forms of those communications. As a consequence, reasoning tasks

36 Computational Logic and Human Thinking

presented in natural language are often only an approximation to reasoning
tasks performed on pure logical forms.
Before we conclude this chapter, we will look at yet another example that

illustrates the confusion between natural language understanding and logical
reasoning.

The use of conditionals to explain observations

The philosopher John Pollock (1995) uses the following example, not to argue
that people are illogical, but to support the view that real logic involves a
sophisticated form of argumentation, in which people evaluate arguments for
and against a given conclusion. Here I use the same example to illustrate the
difference between the apparent logic of the natural language statement of a
problem and the underlying logic of the problem when it is viewed in the
context of an agent’s goals and beliefs.
Suppose I tell you that:

An object is red if it looks red.

Try to suspend any other goals and beliefs you might have about being red and
looking red, and treat the sentence as meaning exactly what it says. Now
suppose I also tell you that:

This apple looks red.

You will probably draw the obvious conclusion that this apple is red. Now
suppose I say in addition:

An object looks red if it is illuminated by a red light.

It is likely that you will now withdraw your previous conclusion.
The example is similar to the suppression task, because the third sentence can

be interpreted as drawing your attention to a missing condition in the first
sentence:

An object is red if it looks red and it is not illuminated by a red light.

Pollock explains the example in terms of competing arguments for and against
the conclusion that this apple is red. But there is an alternative explanation:
namely, that you understand the first sentence in the context of your existing
beliefs, which already include, perhaps naïvely, the belief that looking red is
caused by being red, represented in the natural effect if cause form:

2: The psychology of logic 37

An object looks red if it is red.

Thus the first sentence of the discourse is the converse of your pre-existing
causal belief. It tells you in effect that the writer believes that the only cause of
an object looking red is that it actually is red. Given only this first sentence of the
discourse, you conclude that the apple is red because that is the only way of
explaining the observation that the apple looks red.
However, the third sentence of the discourse gives an additional possible

cause for an object looking red. Either you already have this additional causal
belief, and the writer is simply drawing your attention to it, or you add this new
causal belief to your existing beliefs. In both cases the logical form of the third
sentence is coherent with your existing beliefs. And in both cases you withdraw
the assumption that being red is the only explanation for the apple looking red.
This way of thinking about the example views it as a problem of abductive

reasoning, which is the problem of generating hypotheses to explain observa-
tions. Abductive reasoning is the topic of Chapter 10.

Conclusions

In this chapter, we considered the claim, supported by the selection task, that people
reason bymeans of specialised algorithms rather than bymeans of general-purpose
logic. I attacked this claim by arguing that it fails to appreciate that specialised
algorithms combine specialised knowledge with general-purpose reasoning.
Following Sperber et al. (1995) and Stenning and van Lambalgen (2008), I

argued that the discussion of psychological experiments of reasoning often fails
to pay adequate attention to the first stage of solving such problems, which is to
translate them from natural language into logical form. Moreover, it fails in
particular to take into account the need for those logical forms to be coherent
with the reader’s other goals and beliefs.
However, even taking these arguments into account, there remain problems

associated with the second stage of reasoning with the resulting logical forms.
Some of these problems, as illustrated by both the suppression task and the red
light examples, have to do with the relationship between conditionals and their
converse. Other, more difficult problems have to do with reasoning with
negation. Both kinds of problems, reasoning with converses and reasoning
with negation, will be taken up in later chapters.
We also considered the argument, supported by the suppression task, that

people reason by means of mental models rather than by means of rules of

38 Computational Logic and Human Thinking

inference. In the more advanced Chapters A2, A3, A4 and A6, I will argue that
forward and backward reasoning can both be viewed as determining truth in
minimal models. This observation lends support to a variant of the mental
model theory of deduction, reconciling it with the seemingly contrary view
that people reason by means of rules of inference.

2: The psychology of logic 39

3

The fox and the crow

In this chapter we revisit the ancient Greek fable of the fox and the crow, to
show how the proactive thinking of the fox outwits the reactive thinking of the
crow. In later chapters, we will see how reactive and proactive thinking can be
combined.
The fox and the crow are a metaphor for different kinds of people. Some

people are proactive, like the fox in the story. They like to plan ahead, foresee
obstacles, and lead an orderly life. Other people are reactive, like the crow. They
like to be open to what is happening around them, take advantage of new
opportunities, and be spontaneous. Most people are both proactive and reactive,
at different times and to varying degrees.

The fox and the crow

Most people know the story, attributed to Aesop, about the fox and the crow. It
starts, harmlessly enough, with the crow perched in a tree with some cheese in
its beak, when along comes the fox, who wants to have the cheese.

Goal: The fox has cheese.
Beliefs: The crow has cheese.
An animal has an object
if the animal is near the object
and the animal picks up the object.
The fox is near cheese if the crow sings.
The crow sings if the fox praises the crow.

?

40

In this version of the story, we consider the fox’s point of view. To model her
proactive way of thinking, we represent her goals and beliefs in logical form:

Goal: I have the cheese.
Beliefs: the crow has the cheese.

An animal has an object
if the animal is near the object
and the animal picks up the object.

I am near the cheese
if the crow has the cheese
and the crow sings.

the crow sings if I praise the crow.

As you can see, the fox is not only a logician of sorts, but also an amateur physicist.
In particular, her belief about being near the cheese if the crow sings combines in a
single statement her knowledge about her location relative to the crow with her
knowledge of the laws of gravity. Reasoning informally, the single statement can
be derived from other more fundamental statements in the following way:

The fox knows that if the crow sings,
then the crow will open its beak
and the cheese will fall to the ground under the tree.

The fox also knows that, because the fox is under the tree,
the fox will then be near the cheese.

Therefore, the fox knows she will be near the cheese if the crow sings.

The fox is also an amateur behavioural psychologist. Being a behaviourist, she is
interested only in the crow’s external, input–output behaviour, and not in any
internal methods that the crow might use to generate that behaviour. In particular,
although the fox represents her ownbeliefs about the crow in logical terms, she does
not assume that the crow also uses logic to represent any beliefs about anything. As
far as the fox is concerned, the crow’s behaviour might be generated by means of
condition–action rules without any logical form. Or his behaviour might even be
“hardwired” directly into his body, without even entering into his mind.
Like the fox’s belief about being near the cheese if the crow sings, the fox’s

belief that the crow will sing if the fox praises the crow might also be derived
from other, more fundamental beliefs. They might be derived perhaps from
more general beliefs about the way some naïve, reactive agents respond to being
praised, without thinking about the possible consequences of their actions.

3: The fox and the crow 41

The fox also has ordinary common sense. She knows that an animal will have
an object if she is near the object and picks it up. As with her other beliefs, she
can derive this belief from more basic beliefs. For example, she can derive this
belief from the simpler belief that an animal will have an object if the animal
picks up the object, by combining it with the constraint that to pick up an object
the animal has to be near the object (ignoring other constraints like the weight
and size of the object).
The fox holds this belief about the conditions under which she will have

an object as a general law, which applies universally to any animal and to any
object (although she doesn’t seem to know that the law also applies to robots,
unless she views robots as another species of animal). She also knows enough
logic to be able to instantiate the general law, in other words, to apply it to special
instances of animals and objects, such as the fox and the cheese respectively.

The fox’s beliefs as a logic program

The fox’s beliefs have not only logical form, but they also have the more
specialised form of conditionals:

conclusion if conditions.

Both the conclusion and the conditions are written in declarative form. The
conditionals are written backwards, conclusion first, to indicate that they can be
used to reason backwards, from conclusions to conditions. Using backward
reasoning, each such conditional behaves as a goal-reduction procedure:

to show or make the conclusion hold,
show or make the conditions hold.

Even “facts”, which record observations, like the belief that the crow has the
cheese, can be viewed as conditionals that have a conclusion, but no conditions:

conclusion if nothing.

Or in more logical terms:

conclusion if true.

Such facts also behave as procedures:

to show or make the conclusion hold, show or make
true hold.

or: to show or make the conclusion hold, do nothing.

Therefore, the fox’s beliefs can be used as a collection of procedures:

42 Computational Logic and Human Thinking

to have an object, be near the object and pick up the object.
to be near the cheese, check the crow has the cheese
and make the crow sing.
to make the crow sing, praise the crow.
to check that the crow has the cheese, do nothing.

Notice that the subgoals in these procedures are expressed in the imperative
mood. This manner of expression is risky. What do you do if you have two
alternative procedures for achieving the same goal? For example:

to have an object, make the object.

There is no problem with a declarative formulation:

An animal has an object if the animal makes the object.

But the two procedures, with two imperatives, create a conflict. We will see later
in Chapter 7 that the need for conflict resolution, to choose between conflicting
imperatives, also arises with condition–action rules. However, in the mean-
while, we can avoid such explicit conflicts by treating the subgoals of proce-
dures, not as imperatives, but as recommendations:

to have an object, you can be near the object
and you can pick up the object.
to have an object, you can make the object.

You wouldn’t get very far with such irresolute language in the army, but at least
you would avoid the need for conflict resolution. However, let’s not worry about
these niceties for now, and return to our story of the fox and the crow.
The fox can use these procedures (whether expressed imperatively or as

recommendations), one after the other, to reduce the top-level goal I have the
cheese to the two action subgoals I praise the crow and I pick up the cheese.
Together, these two actions constitute a plan for achieving the top-level goal.

Backward reasoning in connection graphs

The fox’s reduction of her original goal to the two action subgoals can be
visualised as searching for a solution in the connection graph that links her top-
level goal to the web of her beliefs. Of course, the totality of all her beliefs is
bound to be huge, and the search would be like looking for a needle in a haystack.
However, the strategy of backward reasoning guides the search, so that she
needs to consider only relevant beliefs whose conclusion matches the goal.
Starting from the original, top-level goal and following links in the graph, the

fox can readily find a subgraph that connects the goal either to known facts, such

3: The fox and the crow 43

as the crow has the cheese, or to action subgoals, such as I praise the crow and I
pick up the object, that can be turned into facts by executing them successfully
in the real world. This subgraph is a proof that, if the actions in the plan succeed,
and if the fox’s beliefs are actually true, then the fox will achieve her top-level
goal. The fox’s strategy for searching the graph, putting the connections
together and constructing the proof is called a proof procedure.

Goal: I have the cheese.

An animal has an object
if the animal is near the object
 and the animal picks up the object.

I am near the cheese
if the crow has the cheese
 and the crow sings.

The crow sings
if I praise the crow.

An animal has an object
if the animal makes the object.

The crow has the cheese.

possibly other beliefs

other beliefs

Backward reasoning is performed by matching (or better unifying) a goal with
the conclusion of a conditional and deriving the conditions of the conditional as
subgoals. For example, the top-level goal:

I have the cheese.

matches the conclusion of the conditional:

An animal has an object
if the animal is near the object and the animal picks up the object.

Backward reasoning derives the two subgoals:

I am near the cheese and I pick up the cheese.

by instantiating the general terms the animal and the object with the specific
terms I and the cheese respectively.

44 Computational Logic and Human Thinking

The second of these two subgoals is an action, which matches the conclusion
of no conditional in the connection graph. It can be solved only by performing it
successfully. However, the first subgoal can be reduced to other subgoals
by three further steps of backward reasoning. The final result of this chain of
backward reasoning is a logical proof that the fox has the cheese if she praises
the crow and picks up the cheese.
In traditional logic, it is more common to present proofs in the forward

direction. In this case, a traditional proof would look more like this:

I praise the crow.
Therefore: the crow sings.

The crow has the cheese.
Therefore: I am near the cheese.

I pick up the cheese.
Therefore: I have the cheese.

Although forward reasoning is a natural way to present proofs after they have
been found, backward reasoning is normally a more efficient way to find them.
Both forward and backward reasoning involve search; but given a goal to be
solved, backward reasoning is goal-directed and focuses attention on beliefs
that are relevant to the goal.
The connection graph pictured above illustrates only a fraction of the beliefs

that are potentially relevant to the goal. Some of the links, like the one linking
the top-level goal to the belief that an animal has an object if the animal makes
the object do not feature in the plan that the fox eventually finds to solve her
goal. The belief is relevant to the goal, because its conclusion matches the goal.
But for simplicity, I have ignored, for now, the possibility that the fox might
explore this alternative way of solving her top-level goal.
In a more realistic representation of the graph, there would be many more such

potentially relevant links. Some of them might lead to other solutions, for example
to the solution in which the fox climbs the tree and snatches the cheese from the
crow. Others might lead to useless or even counter-productive attempted solutions,
for example the fox leaping at the crow, but frightening him away in the process.
The fox needs both a strategy to guide her search for solutions and a strategy

to compare solutions and decide between them. We will discuss the problem of
searching for solutions in Chapter 4, and the problem of deciding between
solutions in later chapters.
But, first, notice that, in addition to other links, which lead to other ways of trying

to solve the top-level goal I have the cheese, there is another way of trying to solve
the goal, which doesn’t even make it, as a link, into the graph, namely by trying to
use the fact the crow has the cheese. Remember this fact is actually a kind of

3: The fox and the crow 45

degenerate conditional the crow has the cheese if true, which behaves as the simple
procedure to check that the crowhas the cheese, donothing. This procedure could be
used to try to solve the top-level goal I have the cheese, by trying to identify (match
or unify) the two specific terms I and the crow. If this identification were possible,
backward reasoning with the fact would solve the top-level goal in one step.
We have been using the related terms identification, instantiation, matching and

unification informally. These terms have precise definitions, which are presented in
ChapterA3. For the purposes of this example, it suffices to note that these definitions
preclude the possibility of identifying different specific terms with one another. So,
unless the fox is having an identity crisis, she cannot match the conclusion of the
degenerate conditional the crow has the cheese if true with her goal I have the
cheese. The connection graph does not include a link between the fact and the goal,
because it pre-computes unifying instantiations, and recognises that the identifica-
tion of the specific terms I with the crow is impossible. This pre-computation is
independent of the different purposes to which such a link might contribute.
Thus backward reasoning, connection graphs and a host of other techniques

developed in the field of Automated Reasoning in Artificial Intelligence signifi-
cantly reduce the amount of search that an agent needs to perform to solve its
goals. But evenwith all of these refinements, the problem of search is inescapable,
and we will return to it in Chapter 4, where it gets a whole chapter of its own.

The end of the story of the fox and the crow?

For a logic extremist, this would be the end of the story. For the extremist, there is no
difference between the fox’s world and the fox’s beliefs about the world, and no
differencebetween the fox’splan forgetting thecheese and the fox’s actuallyhaving it.
However, common sense tells us that there is more to life than just thinking. In

addition to thinking, an agent needs to observe changes in theworld and toperform
actions to change the world in return. Logic serves these purposes by providing
the agent with a means of constructing symbolic representations of the world
and of processing those representations to reason about the world. We can picture

this relationship between the world and logic in the mind of an agent like this:

agent

Logical
representation
of the world

actobserve

The world

46 Computational Logic and Human Thinking

Representation and meaning

This relationship can be looked at in different ways. On the one hand, sentences
in logical form represent certain aspects of the agent’s experience of the world.
On the other hand, the world is an interpretation, which gives meaning (or
semantics) to sentences expressing the agent’s goals and beliefs.
This notion of meaning, by the way, is quite different from the meaning that we

were concerned with before, when we understood meaning as the thoughts that
peopleattempt tocommunicatebymeansofsentences innatural language.There, the
meaningof apublic sentencewas aprivate sentence in the communicator’s language
of thought.Here, it is themeaningof thatprivate sentence in relationship to theworld.
These relationships between different kinds of meaning can be pictured like this:

Thoughts expressed in
logical form

Sentences expressed in
natural language

The world

speaker’s
meaning

logical
meaning

linguistic
meaning

Whereas before we were concerned with so-called speaker’s meaning, here we
are concerned with logical meaning. Linguists and philosophers are also con-
cerned with linguistic meaning, understood in terms of the relationship between
natural language sentences and the world. But in my opinion, ordinary natural
language communications are too imprecise and too clumsy to have a meaning
that is independent of the logical meaning of their speaker’s meaning.
We can better understand the notion of logical meaning if we consider it in

general terms, as a relationship between sentences in logical form and interpre-
tations (sometimes also called models or possible worlds), including artificial
and imaginary worlds, like the world in the story of the fox and the crow. An
interpretation is just a collection of individuals and relationships among individ-
uals. For simplicity, properties of individuals are also regarded as relationships.
An interpretation in traditional logic normally corresponds to a single, static

state of the world. For example:

In the story of the fox and the crow, the fox, crow, cheese, tree, ground under the tree,
and airspace between the crow and the ground can be regarded as individuals; and
someone having something can be regarded as a relationship between two
individuals. The sentence “The crow has the cheese.” is true in the interpretation at the
beginning of the story and false in the interpretation at the end of the story.

3: The fox and the crow 47

The simplest way to represent an interpretation in symbolic form is to represent
it by the set of all the atomic sentences that are true in the interpretation. In this
example we might represent the interpretation at the beginning of the story by
the atomic sentences:

the crow has the cheese.
the crow is in the tree.
the tree is above the air.
the air is above the ground.
the tree is above the ground.
the fox is on the ground.

The difference between such atomic sentences and the interpretation they repre-
sent is that in an interpretation the individuals and the relationships between them
can be understood as having an existence that is independent of language.
Atomic sentences are only symbolic expressions, consisting of a predicate (or

predicate symbol) and zero, one or more arguments. As explained in Chapter A1,
a predicate symbol represents a property of an individual or a relation among
several individuals, represented by the arguments of the predicate. For example,
words and phrases like the crow, the cheese, the tree, etc. are names of individ-
uals, and has and is in are predicates that name relations between individuals.
The attraction of logic as a way of representing the world lies largely in its

ability to represent regularities (or rules) by means of conditional sentences. For
instance, in the atomic sentences above, the fact that the tree is above the ground
can be derived from the more basic facts that the tree is above the air and the air
is above the ground, given the conditional:

one object is above a second object
if the first object is above a third object
and the third object is above the second object.

Or, looking at it differently, the conditional is true in the interpretation repre-
sented by the atomic sentences.
The ultimate purpose of interpretations is to determine whether sentences are

true or false. In the case of an agent embedded in the real world, beliefs that are
true are normally more useful than beliefs that are false. Goals that are easy to
make true are normally more useful than goals that are difficult to make true.
In general, the problem of determining the truth value of a non-atomic

sentence in an interpretation reduces to the problem of determining the truth
values of simpler sentences. For example:

A sentence of the form conclusion if conditions is true
if conditions is false or conclusion is true.

48 Computational Logic and Human Thinking

A sentence of the form everything has property P is true
if for every individual T in the interpretation, T has property P is true.

Backward reasoning with such meta-sentences (sentence about sentences) even-
tually reduces the problem of determining the truth value of an arbitrary sentence
to the problem of determining the truth values of atomic sentences alone.
Thus, for the purpose of determining whether arbitrary sentences are true or

false, it is unnecessary to know what are the real individuals and relationships in
an interpretation. It is sufficient merely to know which atomic sentences are true
and which atomic sentences are false.
We will investigate semantics in greater detail in the more advanced

Chapter A2, and the representation of changing states of the world in
Chapter 13. But before we leave this chapter:

What is the moral of the story of the fox and the crow?

Presumably Aesop’s fable had a purpose – a lesson that it is not safe to take
another agent’s words and actions at face value, without trying to understand the
agent’s underlying goals and intentions. Or, even more simply, that before you
do something you should think about its possible consequences.
The crow in Aesop’s fable reacts to the fox’s praise spontaneously – without

thinking, you could say. A more intelligent crow would monitor his intended
actions, before performing them, to determine whether they might have any
unintended and undesirable consequences.
If only the crow knew what the fox knows, then the crow might have been

able to reason preactively as follows:

I want to sing.
But if I sing, then the fox will be near the cheese.
If the fox is near the cheese and picks up the cheese,
then the fox will have the cheese.
Perhaps the fox wants to have the cheese and therefore will pick it up.
But then I will not have the cheese.
Since I want to have the cheese, I will not sing.

This line of reasoning uses some of the same beliefs as those used by the fox, but it
uses them forwards rather than backwards. We will investigate this dual use of
beliefs for both backward and forward reasoning in future chapters. In the mean-
while, we note that, whether or not the use of logic might seem to be the most
natural way to think, it can often help us to think and behave more effectively.

3: The fox and the crow 49

4

Search

It is a common view in some fields that logic has little to do with search. For
example, Paul Thagard (2005) inMind: Introduction to Cognitive Science states
on page 45: “In logic-based systems, the fundamental operation of thinking is
logical deduction, but from the perspective of rule-based systems, the funda-
mental operation of thinking is search.”

Similarly, Jonathan Baron (2008) in his textbook Thinking and Deciding
writes on page 6: “Thinking about actions, beliefs and personal goals can all be
described in terms of a common framework, which asserts that thinking consists
of search and inference. We search for certain objects and then make inferences
from and about the objects we have found.” On page 97, Baron states that
formal logic is not a complete theory of thinking because it “covers only
inference”.
In this book, we see the inference rules of logic as determining a search

space of possible solutions of goals, and search strategies as determining
proof procedures for finding solutions of goals. But like Baron, we also
see the need to use the inference rules of logic to infer consequences of
candidate solutions. Moreover, we also distinguish thinking, which generates
solutions and infers their consequences, from deciding, which evaluates
solutions and chooses between them. In Chapter 8, we will see that rule-
based systems, championed by Thagard, can also be understood in logical
terms.
The relationship between search and backward reasoning is easy to see when

the search space generated by backward reasoning is pictured as an and–or tree.
Nodes in the tree represent atomic goals, with the top-level goal at the top of the
tree. There are two kinds of arcs: or-arcs linking an atomic goal with all the
alternative ways of solving the goal, and and-arcs connecting all of the subgoals
in the same alternative.

50

There is a clear relationship between such and–or trees and connection
graphs. Or-arcs correspond to links in a connection graph, and and-arcs corre-
spond to the conjunction of all the conditions in a conditional. Here is the and–
or tree for the fox’s goal of having the crow’s cheese:

An animal has an object if

 I have the cheese.

I am near the cheese if

The crow sings if
I praise the crow.

 An animal has an object if
 the animal makes the object.

The crow has
 the cheese.

possibly other beliefs

 other beliefs

the animal is
near the object.

the animal picks
up the object.

the crow sings. the crow has
the cheese

or

and

and

or

And–or trees have been used extensively for problem solving in Artificial
Intelligence, especially for two-person games, such as chess. In game playing,
or-arcs represent the first player’s alternative moves, and and-arcs represent all
of the second player’s possible reponses. To win the game, the first player must
have a move that defeats every move of the second player.
In very large games, such as chess, it is impossible for a player to search the

tree completely before deciding on the next move. However, even in such
games, it is often possible to compute an approximate measure of the value of
a node, and to use that measure to guide the search for the best solution within
the time and other resources available. The minimax search strategy, for exam-
ple, uses such a measure to choose a move that minimises the value of the best
moves for the other player. Similar search strategies can be used for more
general and–or trees corresponding to backward reasoning in connection
graphs.

4: Search 51

In conventional and–or trees, the subgoals associated with the same alternative
are independent of one another. But in connection graphs, subgoals are often
interdependent. For example, if you are an animal and you try to use the belief:

an animal has an object
if the animal is near the object
and the animal picks up the object.

to have an object, then you have two subgoals, to find an object you are near and
to find an object you can pick up. But the object you find should be the same for
both subgoals. In theory, you could solve the two subgoals independently, finding
nearby objects and picking up arbitrary objects, and then trying to find an object
that belongs to both sets of solutions afterwards. In practice, however, you would
be far better off first finding an object near you, and then trying to pick it up.
Because of this interdependence between subgoals, it is often more convenient

to represent the search space for backward reasoning as a simple or-tree, whose
nodes are conjunctions of all the subgoals associated with an alternative. Whereas
the and–or tree and connection graph representations display the original goals and
beliefs, the or-tree shows only the goals and subgoals generated by beliefs. Here is
what such an or-tree looks like for the fox’s goal of having the crow’s cheese:

 I make the cheese.

possibly other beliefs

other beliefs

 the crow has the cheese and the crow sings and I pick up the cheese.

or

or

 the crow sings and I pick up the cheese.

I praise the crow and I pick up the cheese.

 I am near the cheese and I pick up the cheese.

I have the cheese.

52 Computational Logic and Human Thinking

The underlined subgoal in each node is the subgoal selected for goal reduction,
which gives rise to the next level of nodes lower in the search space.
Because of their simplicity, it is easy to see how to define a variety of search

strategies for searching or-tree search spaces. The most naïve strategy is to search
breadth-first, level by level, first generating all nodes one step away from the top-
level goal, then all nodes two steps away, etc. If there is any solution to the top-
level goal, then breadth-first search is guaranteed to find the shortest solution. But
breadth-first search is combinatorially explosive. If every node has two alternative
successor nodes, one level lower in the tree, then if the shortest solution involves
two goal reductions, the search strategy needs to generate only 22 = 4 branches.
If it involves 10 goal reductions, it needs to generate 210 = 1024 branches. But if it
involves 50 goal reductions, then it needs to generate 250 = 1,125,899,906,842,624
branches. No wonder many critics believe that AI is impossible.
There are two ways around the problem. One is to use a better search strategy.

The other is to use a better search space. We will come back to the second way
later. But first consider the same situation as before, in which every node has two
successors, but now suppose that half of the branches contain a solution, say at
the same level 50 steps away from the top-level goal. Then, on average, depth-
first search needs to generate only 100 nodes to find the first solution.
Depth-first search is the opposite of breadth-first search, it explores only one

branch at a time, backtracking to try other branches only when necessary. It is
very efficient when the search space contains lots of solutions. But it can go
disasterously wrong if it contains infinite branches and they are explored before
alternative finite branches containing solutions. Here is a connection graph for a
simple example:

Goal: Who will go to the party?

mary will go to the party if
john will go to the party.

bob will go to the party.

Who = bob
Who = mary

john will go to the party if
mary will go to the party.

Who = john

4: Search 53

Now consider the or-tree search space for the same problem:

 bob will go to the party.

ad infinitum

 john will go to the party.

 Who will go to the party.

Who = mary

 john will go to the party. mary will go to the party.

Who = bob

 mary will go to the party.

Who = john

 mary will go to the party. john will go to the party.

ad infinitum

If you are interested in finding only one solution, and you do a breadth-first
search, then you find your answerWho = bob in one step. But it you do a depth-
first search, and you consider the branch in which Who = mary or the branch in
whichWho = john, then you can go on forever, but you will never find a solution.
The programming language Prolog searches or-trees generated by backward

reasoning depth-first, using the order in which clauses are written to determine
the order in which branches are explored. If the clauses are written in the order:

mary will go to the party if john will go to the party.
john will go to the party if mary will go to the party.
bob will go to the party.

then Prolog goes into an infinite loop. But if the third sentence bob will go to the
party is written first, then Prolog finds a solution in one step. Of course, in this
case, the problem can easily be solved by the programmer controlling the order
in which clauses are written. But there are many other more complicated cases
where this easy solution doesn’t work.
It seems that this kind of unintelligent behaviour is one of the main reasons

that logic programming languages, like Prolog, went out of fashion in the

54 Computational Logic and Human Thinking

1980s. Many alternative solutions to the looping problem and related ineffi-
ciencies have been explored since the 1970s, but the one that seems to have been
the most effective is the use of tabling (Sagonas et al., 1994), which is now
incorporated in several Prolog systems.
Tabling maintains subgoals and their solutions in a table. When a previously

generated subgoal is re-encountered, the search strategy reuses solutions from
the table, instead of redoing inferences that have already been performed. In the
example just given, if it generates the subgoalmary will go to the party and later
generates it again, it will recognise the loop, fail and backtrack to an alternative
branch of the search space.
The problem of search is a well-developed area of Artificial Intelligence,

featuring prominently in such introductory textbooks as those by Russell and
Norvig (2010), Poole and Mackworth (2010) and Luger (2009). The search
strategies described in these books apply equally well to the problem of searching
for solutions inComputational Logic. For themost part, these search strategies are
general-purpose methods, such as depth-first, breadth-first and best-first search.

Best-first search

Best-first search strategies are useful when different solutions of a problem have
different values. For example, assuming that the fox in our story judges that
having the crow’s cheese is more valuable than making her own food, she could
use best-first search to guide her search for the best solution.
To use best-first search, you need to be able to evaluate and compare different

solutions. For example, if you want to go from A to B, then you might prefer a
travel plan that takes the least time, costs the least money or causes the least
harm to the environment. No single plan is likely to be best for all of these
attributes, so you may have to weigh and trade one attribute off against the other.
Given such weights, you can use the weighted sum of the values of the attributes
as a single measure of the overall value of a solution.
It is often possible to extend the measure of the value of a complete solution

to a measure of the value of a partial solution. For example, suppose you want to
travel from Bridgeport in Connecticut to Petworth in England, and you are
exploring a partial travel plan that involves flying from New York to London,
but haven’t figured out the rest of the plan. You know that the best cost of any
complete travel plan that extends the partial plan will need to include the cost of
the flight. So you can add together the cost of the flight with an estimate for the
best costs of any additional travel, to estimate the cost of the best travel plan that
includes this partial plan.

4: Search 55

Best-first search uses this measure of the value of partial solutions to direct its
search for complete solutions. The breadth-first variant of best-first search does
this by picking a branch that has currently best value, and generating its
successor nodes. Under some easily satisfied conditions, the first solution
found in this way is guaranteed to be the best (optimal) solution.
Although such best-first search is better than simple breadth-first search, it

suffers from similar disadvantages. It too is computationally explosive, espe-
cially when there are many solutions that differ from one another only slightly in
value. These disadvantages can be avoided to some extent by a depth-first
version of best-first search, which like simple depth-first search, explores only
one branch of the search space at a time.
The depth-first version of best-first search keeps a record of the best solution

found so far. If the current branch is not a solution, and the branch can be extended,
then it extends the branch by generating a successor node that has the highest
estimated value. However, if the estimated value of the extended branch exceeds
the value of the best solution found so far (if there is one), then the extendedbranch
terminates in failure and the search strategy backtracks to an earlier alternative.
If the current branch is a new solution, then the search strategy compares its

value with the value of the best solution found so far (if there is one), and it
updates its record of the currently best solution. In this way, the search strategy
can be terminated at any time, having generated the best solution that can be
found within the computational resources available.
Both variants of best-first search complement the use of decision theory for

choosing the best solution, once it has been found. The depth-first variant has the
further advantage that it interprets “best solution” more realistically as “the best
solution given the computational resources available”.Morever, itsmeasure of the
value of solutions and of partial solutions can be extended to include not only their
utility, but also the probability of their actually achieving their expected outcomes.
The resulting measure of value as expected utility, combining utility and proba-
bility, integrates best-first search into a classical decision-theoretic framework.
The connection graph of an agent’s goals and beliefs can also help with best-

first search, by associating with links statistical information about the degree to
which the links have proved useful in the past. This information can be used to
increase or decrease the strength of connections in the graph. Whenever the
agent solves a new goal, it can increase the strength of links that have con-
tributed to the solution, and decrease the strength of links that have led it down
the garden path. The strength of links can be used for best-first search, by
activating stronger links before weaker links.
The strength of links can be combined with activation levels associated

with the agent’s current goals and observations. Activation levels can be spread

56 Computational Logic and Human Thinking

through the graph in proportion to the strength of links, reasoning bidirection-
ally both backwards from the goals and forwards from the observations. Any
candidate action subgoal whose level of activation exceeds a certain threshold
can be executed automatically.
The resulting action execution combines a form of best-first search with a form

of decision-theoretic choice of best action, in an algorithm that resembles a
connectionist model of the brain. An agent model employing this approach
has been developed by Pattie Maes (1990). The model does not use logic or
connection graphs explicitly, but it can be understood in such purely logical terms.
Connection graphs can also be used to combine search with compiling

general-purpose goals and beliefs into more efficient special-purpose form.
This is because very strong links between goals and beliefs behave as though
the links were goals or beliefs in their own right. Generating these goals or
beliefs explicitly and adding them to the graph short-circuits the need to activate
the links explicitly in the future. For example, the fox’s specialised belief that
the crow sings if I praise the crow can be generated from such more general-
purpose beliefs as:

an agent does Y if I do X and the agent reacts to X by doing Y

agent = the crow X = praise Y = sing

the crow reacts to praise by singing

I will argue later in Chapter 9 that this kind of compiling links into new goals
and beliefs can be viewed in some cases as a kind of compiling of conscious
thought into subconscious thought.

Knowledge representation matters

But efficient search strategies and other general-purpose problem-solving meth-
ods are only half the story of what it takes to solve problems efficiently. The
other half of the story concerns knowledge representation. In our story of the fox
and the crow, in particular, we have employed a simplified representation,
which vastly over-simplifies the knowledge representation issues involved.
To start with, the representation completely ignores temporal considerations.

It is obvious that the action of an agent picking up an object initiates the property
of the agent possessing the object afterwards. This property continues to hold
until it is terminated by some other action or event, such as the agent giving the

4: Search 57

object away, losing it or consuming it. Thus, to be more precise, we should have
expressed the relationship between picking up an object and possessing it more
like this:

an animal has an object at a time
if the animal is near the object at an earlier time
and the animal picks up the object at the earlier time
and nothing terminates the animal having the object between the two times.

In fact, as we will see in Chapter 13, this representation combines in a single
belief a more basic law of cause and effect (that a state of possession is initiated
by picking up an object) with a constraint (that a precondition of picking up an
object is being near the object).
The representation of cause and effect is sufficiently complex that we give it

detailed consideration in Chapter 13. But, even ignoring such considerations,
there are still major knowledge representation issues at stake. In fact, we skirted
around these issues earlier when we argued informally that the fox might derive
the belief I am near the cheese if the crow has the cheese and the crow sings
from more basic beliefs concerning the laws of gravity and her location in
relation to other objects.
There, the primary motivation was simply to make the example sufficiently

simple, not to get bogged down in excruciating detail. But there was another
reason: There is so much knowledge that could be relevant to the fox’s goal
that it would be hard to know where to stop. If Quine were right about the
web of belief, that every belief is connected to every other belief, an agent
would potentially need to consider all of its beliefs, in order to solve any
goal that might arise in its environment. It is this knowledge representation
problem, more than any problem to do with general-purpose reasoning, that is
the major bottleneck in developing Artificial Intelligence. Arguably, it is also
the biggest problem for understanding and improving human intelligence. To
put it more directly, knowledge is more important than raw problem-solving
power.
Probably the most ambitious attempt to address this knowledge representa-

tion problem is the Cyc Project (Lenat and Guha, 1989; Panton et al., 2006),
which has assembled a collection of several million assertions encoding the
common-sense knowledge of human experience. Assertions in Cyc are formu-
lated in a variety of Computational Logic, similar to the one investigated in this
book, and its inference engine is based primarily on backward reasoning.
Cyc organises its knowledge in collections of micro-theories, concerning such

separate domains as science, society and culture, climate and weather, money
and financial systems, health care, history and politics. These micro-theories, in

58 Computational Logic and Human Thinking

turn, are organised in hierarchies, in which micro-theories lower in the hierarchy
inherit assertions from more abstract micro-theories higher in the hierarchy.
Micro-theories in Cyc are like classes in object-oriented computer programming
languages and like modules in some computational theories of the mind. We
will have more to say about such classes and modules later in Chapter 14.

4: Search 59

5

Negation as failure

It’s easy to take negation for granted, and not give it a second thought. Either it
will rain or it won’t rain. But definitely it won’t rain and not rain at the same time
and in the same place. Looking at it like that, you can take your pick. Raining
and not raining are on a par, like heads and tails. You can have one or the other,
but not both.
So it may seem at first glance. But on closer inspection, the reality is different.

The world is a positive, not a negative place, and human ways of organising our
thoughts about the world are mainly positive too. We directly observe only
positive facts, like this coin is showing heads, or it is raining. We have to derive
the negation of a positive fact from the absence of the positive fact. The fact that
this coin is showing heads implies that it is not showing tails, and the fact that it
is sunny implies, everything else being equal, that it is not raining at the same
place and the same time.
From an agent’s point of view, an observation can be passive or active. A

passive observation is an observation over which you have no control. The
world forces it upon you, and you have to take it on board, like it or not. Because
our conceptualisation of the world consists of positive facts, these passive
observations are positive, atomic sentences.
An active observation, on the other hand, is one that you actively perform to

determine the value of some atomic predicate. If the predicate contains no
variables,1 then the result of the observation is either true or false. If it contains

1 Variables in symbolic logic are similar to variables in mathematics, but more precise. In
mathematics, it is common to make no distinction between the different roles that the variable X
plays in the two equations: 2X= 2, X+Y=Y+X. In the first equation X is an unknown, and
implicitly, the equation represents the existentially quantified goal of showing that there exists an
X such that 2X= 2, namely the value X= 1. However, in the second equation X and Y stand for
arbitrary numbers, and implicitly the equation represents the universally quantified sentence
expressing that for any pair of numbers X and Y it doesn’t matter in which order you add them, the
result is the same.

60

variables whose values are unknown, then either the observation succeeds and
returns values for the unknowns, or the observation fails and returns a negative
observation. In either case, you can use the result and just forget about it, or you
can record it for possible future use. For example:

You look out the window and fail to see any raindrops falling from the sky. You
conclude that it is not raining.

It is just before bedtime and time for a midnight snack, but you are on a diet. You
pause to monitor the sensations in your body. Failing to feel pangs of hunger, you
decide you are not hungry, and stick to your diet. You are lucky this time. Not only
has the active observation of the state of your body returned a negative response, but
you have not been attacked by unprovoked, “passive” feelings of hunger.

You are a robot looking for life on Mars, moving one step at a time on uncertain
terrain. Every time you move forward one step, you observe and record how far you
have gone. If your attempt to move has failed, then you have observed that you
haven’t moved at all.

We will see later that negative observations can be represented by means of
constraints, which are conditional goals with conclusion false. But in the mean-
while here are a couple of examples:

if raining then false.
i.e. it is not the case that it is raining.

if I am hungry then false.
i.e. it is not the case that I am hungry.

We will also see that negative observations can be derived from positive
observations, using constraints. For example:

Observation: the grass is wet.
Constraint: if an object is wet and the object is dry then false.
i.e. it is not the case that

an object is wet and the object is dry.
Forward reasoning: it is not the case that the grass is dry.

Mental representations have a positive bias

In the semantics of Computational Logic, it is convenient to identify the world,
at any given point in time, with the set of all the atomic sentences that are true in
the world at that time. This is the source of our positive observations. It gives
our goals and beliefs a positive bias too, because the main function of our mental
representations is to help us deal with the world around us. Even emotionally

5: Negation as failure 61

negative thoughts, like being lonely, sad or disgruntled, which reflect the way
we feel about our situation in the world and which affect the decisions we make,
have logically positive mental representations.
Further evidence that our mental representations have a positive bias is in the

way we record information in history books and computer databases. For
example:

We record that Columbus discovered America in 1492 – not in 1493, not in 2010, not
in any other year, but in and only in 1492.

The last train to leave London Victoria for Pulborough, West Sussex fromMonday to
Friday, between 17 May 2010 and 12 December 2010 is at 22:52 – not 22:51 and not
22:53. If you arrive at Victoria at 22:53 and you miss the train, then it’s your fault, and
not the fault of the timetable.

But mental representations involve more than just records of positive facts.
They also involve the use of conditionals to represent facts more compactly by
means of general rules. Since the facts are positive, the conclusions of the
conditionals used to derive the facts are positive too. For example, the time of
the last train to Pulborough could be represented by means of a conditional
whose conclusion gives the time and whose conditions restrict the days of the
week and the calendar period:

the last train from victoria to pulborough leaves at 22:52 on a day
if the day is a weekday and the day is in the period
between 17 may 2010 and 12 december 2010.

Of course, to complete the representation, the conditional would need to be
augmented with additional, lower-level conditionals with positive conclusions
to represent the days of the week and the days in the period between two days.
This use of conditionals to represent data more compactly is associated with

deductive databases and the database family of languages called Datalog. But
most conventional computer databases either store the data explicitly or com-
pactify it by using conventional, low-level computer programming techniques.
Conditionals in logic programming and in the programming language Prolog

can also be used to represent programs and to execute them by systematically
reducing goals to subgoals. But programs, no matter what language they are
written in, also have a positive bias. For example, they compute positive
arithmetic relationships like addition and multiplication, and not negative
relationships like non-addition and non-multiplication. For one thing, it would
be hard to know where to draw the line. Sure:

2þ 2 6¼ 1 and 2þ 2 6¼ 5:

But what about : 2þ 2 6¼ a pot of gold?

62 Computational Logic and Human Thinking

Where do goals and beliefs come from?

To do justice to the role that negation plays in our goals and beliefs, we would
need to tackle larger issues concerning the nature and sources of all our goals
and beliefs. The argument about the primacy of positive information, presented
so far, relates only to beliefs that are obtained first-hand from experience, that
generalise experience, or that are computed by programs. It ignores two other
important sources of goals and beliefs, namely those that we may have been
born with, and those that we may have obtained second-hand as the result of the
testimony, persuasion or coercion of other agents.
These other sources of goals and beliefs often do have an essentially negative

character in the form of constraints. For example:

Nothing is both big and small.
No number is both odd and even.
No letter is both a vowel and a consonant.
Do not drink alcohol in a bar if you are under eighteen years old.
Do not harm a person who is not threatening any harm.
Do not steal.
Do not talk with your mouth full.

We will see later that such constraints play an important role in monitoring and
eliminating both candidate actions and candidate explanations of observations.
In the meanwhile, however, we will focus on the simpler source of negative
information, which is from the failure to derive positive information.

Negation as failure and the closed-world assumption

The derivation of negative conclusions from the lack of positive information
about a predicate is justified by a belief or assumption that we have all the
positive information that there is to be had about the predicate. This applies both
to the conclusions we derive by actively observing the world, and to the
conclusions we derive by consulting our beliefs. For example:

You look for your keys in their usual place, and you cannot find them. On the
assumption that you have done a thorough investigation, you conclude that they are
not in their usual place.

If you believe that Christopher Columbus discovered America in 1492, and you
believe that a person can discover something only once, then it follows that
Christopher Columbus did not discover America in 2010 or in any year other
than 1492.

5: Negation as failure 63

If you believe that the last train is at 22:52, and you believe that the only trains on a
given day are between the first and last train, then there is no train scheduled to leave
at 22:53 or at any other time after 22:52 on the same day.

If you believe that you know how to add two numbers, that every pair of numbers has
only one sum, and that when you add 2 + 2 you get 4, then you can conclude that 2 +
2 ≠ a pot of gold.

Deriving a negative conclusion from the failure to solve a positive goal is called
negation as failure in logic programming:

to show that the negation of a positive sentence holds,
show that the positive sentence does not hold.

Negation as failure extends the much simpler if–then–else statement of more
conventional programming languages. Analogues of the if–then–else statement
are also familiar in natural languages like English. For example, the second and
third sentences of the London Underground Emergency Notice are expressed in
a variant of the if–then–else form:

if any part of the train is in a station,
then the driver will stop the train,
else the driver will stop the train at the next station.

The use of negation as failure to derive a negative conclusion is justified by the
closed-world assumption that you have complete knowledge about all the condi-
tions under which the positive conclusion holds. It might better be called the closed-
mind assumption, since an agent’s beliefs are not held externally in the world, but
internally in its mind. The assumption can be represented as a meta-belief:

the negation of a sentence holds
if the sentence does not hold.

This meta-belief is a meta-sentence, because it talks about sentences. It can also
be understood as an epistemic or autoepistemic sentence,2 because it can be
phrased in terms of what an agent knows or believes:

the negation of a sentence holds
if I do not know (or believe) that the sentence itself holds.

The term epistemic comes from the same root as epistemology, the study of
knowledge.
As we will see in Chapter 17, the language of Computational Logic can be

extended to include goals and beliefs that are meta-logical or epistemic. Because

2 Epistemic logic and meta-logic are very similar when understood informally, but they are very
different when they are formalised. The relationship between them is touched upon in later
chapters, but to some extent is still an open research issue.

64 Computational Logic and Human Thinking

the closed-world assumption has conditional form, it can be used to reason
backwards or forwards, like any other conditional. Backward reasoning with the
closed world assumption is equivalent to negation as failure. Therefore, neg-
ation as failure is a natural complement to the use of backward reasoning in
general. Given a conditional with negative conditions of the form:

positive conclusion if positive conditions and negative conditions

backward reasoning uses the conditional as a goal-reduction procedure:

to show or make the positive conclusion hold,
show or make the positive conditions hold and
show or make the negative conditions fail to hold.

To illustrate the negation as failure rule (abbreviated naf), suppose that we are
trying to decide on whether or not to go to a party and suppose:

mary will go if john will go.
john will go if bob will not go.

Suppose we are interested in whether mary will go. Then we can reason back-
wards as follows:

Initial goal: mary will go.
Subgoal: john will go.
Subgoal: bob will not go.

Naf: bob will go.
Failure: no!

Success: yes!

In accordance with the closed-world assumption, because we have no way of
showing that bob will go, it follows that bob will not go, and therefore that mary
will go.
The same conclusion thatmarywill go can also be derived by reasoning forward,

once we get off the ground by starting with the assumption that bob will not go:

Assume: bob will not go.
Forward reasoning: john will go.
Forward reasoning: mary will go.

Now suppose Bob decides to be difficult. Believing that mary will go, he
decides to go as well. Let’s see what Mary thinks about that:

Initial goal: mary will go.
Subgoal: john will go.
Subgoal: bob will not go.

Naf: bob will go.

5: Negation as failure 65

Success: yes!
Failure: no!

So it seems that Bob will be going to the party on his own. The addition of the
new information that bob will go defeats the previous argument that mary will
go. It similarly defeats any attempt to show that john will go.
This property of negation as failure and the closed-world assumption is called

defeasibility or non-monotonicity.3 It is a form of default reasoning, in which an
agent jumps to a conclusion, but then withdraws the conclusion given new
information that leads to the contrary of the conclusion.
Looked at in this way, the closed-world assumption is not so close-minded

after all, because any conclusion obtained with its aid is always subject to
revision. It is as though the conclusion had an extra, hidden auto-epistemic
qualification, as far as I know. For example:

Conclusion: Mary and John will not go the party, as far as I know.

The development of logics for default reasoning has been one of the most
important achievements of Artificial Intelligence. Most of the research has
been concerned with exploring alternative “semantics” of default reasoning
and with developing efficient proof procedures. The closed-world assumption
is an informal semantics, but it needs to be refined to deal with more difficult
cases, as the following example shows.
Suppose that Bob is now out of the picture, but Mary and John are still having

trouble deciding what to do:

mary will go if john will go.
john will go if mary will go.

Initial goal: mary will go.
Subgoal: john will go.
Subgoal: mary will go.
ad infinitum . . .

Since it cannot be shown that mary will go, it follows from the closed-world
assumption that mary will not go. Similarly john will not go. As far as we know.

The example shows that default reasoning can involve the need to reason
with an infinite amount of resources. For this reason, the semantics is said to be
non-constructive. However, in this as in many other cases, the infinite chain of

3 Monotonicity in mathematics means that the more you put into a system, the more you get out.
Classical logic is monotonic in this sense. Default reasoning is non-monotonic, because putting in
more information can result in previously derived conclusions being withdrawn.

66 Computational Logic and Human Thinking

reasoning needed to show that a negative conclusion holds can be detected
finitely by noticing that the same subgoal reoccurs as a subgoal of itself. But in
the general case, infinite failure cannot be detected by finite means.
This is an example of the same phenomenon underlying Kurt Gödel’s (1931,

1951) proof of the incompleteness theorem, which states that there exist true, but
unprovable sentences of arithmetic.Wewill return to this issue in Chapters 15, 17
andA2.Moreover in Chapter 15, wewill investigate a finite, constructive version
of negation as failure and discuss its relationship with proof in arithmetic.

An intelligent agent needs to have an open mind

Granted that we tend to view the world in positive terms, and to derive negative
conclusions from the failure to show positive conclusions, it doesn’t follow that
we need to have a closed mind about everything. We can distinguish between
closed predicates, about which we have complete knowledge, and open pred-
icates, about which our knowledge is incomplete. Closed predicates are appro-
priate for concepts that we use to organise and structure our thoughts, and which
do not directly represent our interactions with the world. They include predi-
cates that classify observations and actions into more abstract categories, like
emergencies and getting help, as well as more complex predicates, like being
eligible for Housing Benefit and being a British Citizen.
But there are other predicates about which it makes no sense to believe that

we have complete knowledge. These are open predicates that describe states of
affairs in the external world about which we have little or no experience. Did it
rain last night in Port Moresby in Papua New Guinea? In the event of my
applying for naturalisation as a British Citizen, will the Secretary of State deem
fit to grant me a certificate of naturalisation?Was a child found abandoned in the
UK born to parents at least one of whom was a British Citizen? You would have
to be self-confident to the point of recklessness to believe you could use the
closed-world assumption to answer all such questions.

Relaxing the closed-world assumption

Many of the benefits of reasoning with the closed-world assumption can be
achievedmoremodestly without assuming that we know it all, but by the selective
use of conditions of the form cannot be shown in otherwise normal conditionals.
For example, the closed-world assumption can be applied selectively to a single
particular sentence, formalising an agent’s meta-belief that if the particular
sentence were true, then the agent would know (and believe) that the particular

5: Negation as failure 67

sentence is true; otherwise the sentence is false. This can be stated in the same
form as the more general closed-world assumption, but restricted to the single
particular sentence rather than applied to all atomic sentences. Robert Moore
(1985) gives the following example of such a selective closed-world assumption:

“Consider my reason for believing that I do not have an older brother. It is surely not
that one of my parents once casually remarked, ‘You know, you don’t have any older
brothers’. Nor have I pieced it together by carefully sifting other evidence. I simply
believe that if I did have an older brother I would surely know about it, and since I
don’t know of any older brothers, I must not have any.”

Moore’s belief that he does not have an older brother follows from the selective
closed-world assumption:

I do not have an older brother
if I cannot show that I have an older brother.

Default reasoning

From the selective closed-world assumption, it is only a small step to full-blown
default reasoning without the closed-world assumption. Instead of limiting
expressions of the form cannot be shown to closed-world and selective closed-
world assumptions, they can be used in the conditions of any conditional. The
negation as failure inference rule can be generalised accordingly:

to show that a sentence cannot be shown
show that all ways of trying to show the sentence result in failure.

Consider the belief that a person is innocent unless proven guilty, and suppose
that Bob is accused of robbing the bank.

a person is innocent of a crime
if the person is accused of the crime
and it cannot be shown that
the person committed the crime.

a person committed an act
if another person witnessed the person commit the act.

bob is accused of robbing the bank.

Clearly, there are other conditions, besides there being a witness, that may lead
an agent to believe that a person committed a crime, for example DNA evidence
of the person’s involvement in the crime. But it is hard to identify and consider
all of these other possibilities from the outset. In the next section, we will see
how default reasoning makes it easier to deal with such additional possibilities
incrementally by successive approximation.

68 Computational Logic and Human Thinking

However, given the simplified representation above, negation as failure can
be used to determine whether Bob is innocent. Here we assume the taxonomic
knowledge that robbing a bank is a crime and a crime is an act:

Initial goal: bob is innocent of robbing the bank.
Subgoals: bob is accused of robbing the bank and

it cannot be shown that bob committed robbing the bank.
Subgoal: it cannot be shown that bob committed robbing the bank.

Naf: bob committed robbing the bank.
Subgoals: another person witnessed bob commit robbing the bank.
Failure: no!

Success: yes!

The negation as failure inference rule shows that Bob cannot be shown to have
robbed the bank. But without the closed-world assumption, it does not follow that
Bob actually did not rob the bank!He did not rob the bank, only so far aswe know.
But suppose that we are given the additional information:

john witnessed bob commit robbing the bank.

The application of the negation as failure rule now succeeds, and the previous
conclusion that he is innocent no longer holds.

Missing conditions

In everyday language, it is common to state only the most important conditions
of a general statement (or rule) explicitly, and to leave it implicit that other
unstated conditions may also apply. For example, we commonly say:

all birds fly.
i.e. an animal can fly if the animal is a bird.

rather than: an animal can fly if the animal is a bird
and the animal is not a penguin
and the animal is not unfledged
and the animal is not injured.

But instead of revising our statement when it becomes apparent that it was an
over-simplification, we more commonly correct ourselves in seemingly contra-
dictory, separate statements. We say for example:

an animal cannot fly if the animal is a penguin.
an animal cannot fly if the animal is unfledged.
an animal cannot fly if the animal is injured.

5: Negation as failure 69

We saw an even more confusing example of this in the suppression task, where
the first statement is an over-generalisation, and the second statement attempts
to draw attention to a missing condition of the first sentence:

she will study late in the library if she has an essay to write.
she will study late in the library if the library is open.

The example is confusing because it doesn’t play the correction game in the
standard way. The standard way is to seemingly contradict yourself, by stating
missing conditions in separate sentences whose conclusion is contrary to the
conclusion of the first sentence:

Over-simplification: a conclusion holds if conditions hold.
Correction: the conclusion does not hold if other conditions hold.
Intended meaning: a conclusion holds if conditions hold

and other conditions do not hold.

There are logics that give semantics and provide proof procedures for reasoning
directly with sentences in this seemingly contradictory form. These semantics
and proof procedures are typically defined in terms of arguments, what it means
for arguments to attack and defend one another, and what it means for a set of
arguments collectively to defeat an attack. In these semantics and associated
proof procedures, there are ways to ensure that a correction defeats an original
over-simplification.
However, in the version of Computational Logic in this book, it is simpler to

re-express the original over-simplification more precisely from the start, with an
explicit condition stating that the contrary of the conclusion does not hold:

Restated rule: a conclusion holds if conditions hold
and it is not the case that the conclusion does not hold.

It might seem that the two negations it is not the case that and does not hold
would cancel one another out, but in fact they don’t. The first negation it is not
the case that is negation as failure, and the second negation does not hold can be
reformulated as a positive predicate. This second kind of negation is sometimes
called strong negation.4

Strong negation is commonly used to represent the opposite of one of the
positive predicates in a pair of antonyms or contraries, like wet and dry, tall and
short, big and small, good and bad. Using strong negation, not wet is equivalent
to dry and not good is equivalent to bad. We will see other examples of strong
negation later in the book.

4 Strong negation was introduced into logic programming in Gelfond and Lifschitz (1988).

70 Computational Logic and Human Thinking

The advantage of restating rules with missing conditions in the more precise
formulation is that additional conditions can be added to the rule in separate
sentences without the appearance of seeming contradiction. For example, here
is a restatement of the suppression task example in the more precise formula-
tion, with separate corrections, to take into account different conditions that
might prevent a student from studying late in the library:

she will study late in the library
if she has an essay to write
and it is not the case that
she is prevented from studying late in the library.

she is prevented from studying late in the library
if the library is not open.
she is prevented from studying late in the library
if she is unwell.
she is prevented from studying late in the library
if she has a more important meeting.
she is prevented from studying late in the library
if she has been distracted.

Here, being prevented from studying late in the library is a positive predicate,
which is the contrary of studying late in the library. Its meaning and associated
rules of inference would be unchanged if it were replaced by the strongly
negated predicate she will not study late in the library.

However, no matter how the corrections are expressed, they can be compiled
into a representation in which all of the qualifying conditions are stated explicitly:

Intended meaning: she will study late in the library
if she has an essay to write
and the library is open
and she is not unwell
and she doesn’t have a more important meeting
and she hasn’t been distracted.

The only problemwith this compiled representation, as simple as it is, is that it has
to be changed every time a newmissing condition is identified. The formulation is
lower-level than the higher-level rule and exceptions formulation. It requires less
sophisticated problem-solving resources, and is therefore more efficient. But the
formulation as a higher-level rule and exception is easier to develop andmaintain.
The relationship between the two formulations is another example of the

relationship between a higher-level and a lower-level representation, which is a

5: Negation as failure 71

recurrent theme in this book. In this case, the higher-level rule acts as a simple
first approximation to the more complicated lower-level rule.
In many cases, when a concept is under development, the complicated rule

doesn’t even exist, and the higher-level representation as a rule and exceptions
makes it easier to develop the more complex representation by successive
approximation. In other cases, when a complicated rule already exists, for
example in the case of existing legislation, the rule and exception form makes it
easier to communicate the rule to other agents. By isolating the most important
conditions of the rule, and highlighting them in the general rule, the less important
conditions can be mentioned in separate corrections/exceptions when and if
the need later arises. Public communications of regulations are a good example.
The following example is from the UK Citizen’s Advice Bureau website:

Housing Benefit is a benefit for people on a low income to help them pay their rent.
You may be able to get Housing Benefit if you are on other benefits, work part-time or
work full-time on a low income.

The word “may” in the second sentence indicates that there are other conditions
that also need to be satisfied to get Housing Benefit, but they are not significant
enough to be mentioned in an introduction.5 The sentence is a simplified rule
that is subject to unstated exceptions. Here is a partial representation of the logic
of the two sentences:

a person gets help to pay rent if the person receives housing benefit.

a person receives housing benefit
if the person is on other benefits

or the person works part-time
or the person works full-time on a low income

and it is not the case that
the person is ineligible to receive housing benefit.

The representation is partial because it does not represent the “constraint” that
Housing Benefit is for people on a low income. This constraint can be treated as
an exception:

a person is ineligible to receive housing benefit
if the person is not on a low income.

We will see a number of other examples of rules and exceptions when we look
at the British Nationality Act. But first we will look briefly at an example that
illustrates the way rules and exceptions can be organised into hierarchies.

5 In more traditional logic, the word “may” is more commonly regarded as a modal operator in
modal logic.

72 Computational Logic and Human Thinking

Hierarchies of rules and exceptions

Consider the following informal statement of the example:

Rule 1: All thieves should be punished.
Rule 2: Thieves who are minors should not be punished.
Rule 3: Any thief who is violent should be punished.

Here the intention is that rule 2 is an exception to rule 1, and rule 3 is an
exception to rule 2. In argumentation terms, rule 2 attacks arguments con-
structed using rule 1, and rule 3 defends arguments constructed using rule 1,
by attacking arguments constructed using rule 2. These intentions and argument
attack relations can be compiled into the lower-level rules:

a person should be punished
if the person is a thief and the person is not a minor.

a person should be punished
if the person is a thief and the person is a minor
and the person is violent.

In this compiled representation it is not necessary to write explicitly that:

a person should not be punished if the person is a thief
and the person is a minor and the person is not violent

if we treat the predicate a person should be punished as a closed predicate.
The compiled rules can be decompiled into higher-level rules and exceptions

in several ways. Here is one such representation:

a person should be punished
if the person is a thief
and it is not the case that
the person is an exception to the punishment rule.

a person is an exception to the punishment rule
if the person is a minor
and it is not the case that
the person is an exception to the exception to the punishment rule.

a person is an exception to the exception to the punishment rule
if the person is violent.

Notice that the positive predicates a person is an exception to the punishment
rule and a person is an exception to the exception to the punishment rule
cannot be written as the more obvious predicates a person should not be
punished and a person should be punished respectively. If they were, then

5: Negation as failure 73

the top-level rule would also be an exception to the exception, which is not
what is intended.
Suppose, for example, that Bob is a thief:

Initial goal: bob should be punished.
Subgoals: bob is a thief and

it is not the case that
bob is an exception to the punishment rule.

Subgoals: it is not the case that
bob is an exception to the punishment rule.

Naf: bob is an exception to the punishment rule.
Subgoals: bob is a minor and it is not the case that

bob is an exception to the exception
to the punishment rule.

Failure: no!

Success: yes!

It cannot be shown that Bob is an exception to the punishment rule, because it
cannot be shown that he is a minor. Suppose, instead, that Mary is a thief, who is
also a minor:

Initial goal: mary should be punished.
Subgoals: mary is a thief and

it is not the case that
mary is an exception to the punishment rule.

Subgoals: it is not the case that
mary is an exception to the punishment rule.

Naf: mary is an exception to the punishment rule.
Subgoals: mary is a minor and it is not the case that

mary is an exception to the exception
to the punishment rule.

Subgoal: it is not the case that
mary is an exception to the exception
to the punishment rule.

Naf: mary is an exception to the exception
to the punishment rule.

Subgoals: mary is violent.
Failure: no!

Success: yes!

Failure: no!

74 Computational Logic and Human Thinking

I’m sure you can figure out for yourself what happens to John, who is a thief, a
minor, violent and prone to fits of jealousy.

Conclusions

In this chapter, I have argued the case for the primacy of positive predicates,
starting with the claim that the state of the world at any given time is charac-
terised by the atomic sentences that are true in the world at that time.
Consequently, passive observations, over which an agent has no control, are
invariably represented by positive atomic sentences. However, active observa-
tions, which an agent can perform to determine the value of some predicate, can
result in negative observations, as the result of the failure to obtain a positive
result.
Active observations, whether they return a positive or negative result, can be

used to solve the problem at hand and can be forgotten, or they can be recorded
for future use. We will see in later chapters that negative observations can be
recorded by means of constraints, or can be derived from positive observations
by means of constraints.
The primacy of positive predicates extends to an agent’s beliefs, which

typically have the form of conditionals with positive atomic conclusions.
However, negations of atomic predicates can occur as conditions of condi-
tionals and can be solved by means of negation as failure, justified by the
closed-world assumption – that the agent knows all there is to know about the
predicate of the condition. The closed-world assumption can be relaxed, by
replacing negative conditions by weaker conditions that positive predicates
cannot be shown. But whether or not the assumption is relaxed in this way,
the resulting beliefs are defeasible, in the sense that new information can defeat
previously derived conclusions and can cause them to be withdrawn.
A common application of defeasible reasoning, also called default reasoning,

is to reason with rules and exceptions. In these applications, it is often natural to
represent the conclusion of an exception as the negation of the conclusion of the
general rule; and it is often common to neglect to qualify the general rule with an
explicit condition expressing that the rule is subject to possible exceptions.
Semantics and proof procedures, often of an argumentation-theoretic form, can
be provided for beliefs in this form. However, it is simpler to define semantics
and proof procedures for precise rules with explicit conditions stating that
contrary conditions do not hold.

5: Negation as failure 75

We have seen that rules and exceptions can be compiled into lower-level rules
in which all of the qualifying conditions of the exceptions are incorporated into
the rules. But just as importantly, lower-level rules can often be decompiled into
higher-level rules and exceptions. These higher-level rules are easier to develop,
maintain and communicate to other agents.
Unfortunately, there is more to negation than we have been able to cover in

this chapter. We need to deal with negation by means of constraints, and we
have to investigate the kind of reasoning with contrapositives that is involved in
problems like the selection task. We also need to see how negation can be
understood in terms of biconditionals. These are topics for later chapters. The
semantics of negation as failure is investigated in greater detail in the more
advanced Chapter A4.

76 Computational Logic and Human Thinking

6

How to become a British Citizen

In this chapter we return to the topic of Chapters 1 and 2: the relationship
between logic, natural language and the language of thought.We will look at the
law regulating British Citizenship, which is the British Nationality Act 1981
(BNA), and see that its English style resembles the conditional style of
Computational Logic (CL) (Sergot et al., 1986).
The BNA is similar to the London Underground Emergency Notice in its

purpose of regulating human behaviour. But whereas the Emergency Notice
relies on the common sense of its readers to achieve its desired effect, the BNA
has the power of authority to enforce its provisions. The BNA differs from the
Emergency Notice also in its greater complexity and the more specialised nature
of its content.
Nonetheless, like the Emergency Notice, the BNA has been written in an

English style that has been chosen to be as easy as possible for its intended
audience to understand. Arguably therefore, like the Emergency Notice, its
linguistic form is likely to reflect the form of the private, mental language in
which its readers represent their own thoughts.
We will see that the most obvious similarity between the BNA and CL is their

shared use of conditional sentences (or rules) as the main vehicle for representing
information. Butwewill also see that theBNA, like ordinary English, uses a variety
of grammatical forms to express the conditions of conditionals, often inserting them
into the conclusions. More importantly, we will see that the BNA highlights the
need for logical features in CL that we have seen only in toy examples until now.
The most important of these features are negation and meta-level reasoning. We
will also use the BNA as an excuse to delve into the more formal side of CL.
In addition to studying the BNA for clues to the logic of the language of

human thought, we will also see examples where expressing the BNA in CL
form can make its natural language expression easier to understand. In contrast
with the BNA, we will look at the University of Michigan lease termination

77

clause, whichwas studied byUniversity ofMichigan law professor LaymanAllen
and his colleague Charles Saxon (1984) as an example of ambiguous English, and
will see how its language can be improved by expressing it in CL form.

The British Nationality Act 1981

The following examples from the BNA illustrate the representation of time,
default reasoning and meta-level reasoning about belief.

Acquisition by birth

The first subsection of the BNA deals with acquisition of citizenship by virtue of
birth in the United Kingdom after commencement (1 January 1983, the date on
which the Act took effect):

1.-(1) A person born in the United Kingdom after commencement shall be a British

citizen if at the time of the birth his father or mother is -

(a) a British citizen; or

(b) settled in the United Kingdom.

The English of this clause can be considered an informal variant of CL form,
even to the extent of expressing its conclusion before (most of) its conditions,
which is the conventional syntax for logic programs used to reason backwards.
The biggest difference from CL syntax is that it inserts the logical conditions

born in the United Kingdom after commencement into the middle of its logical
conclusion a person shall be a British citizen. Syntactically, these conditions are a
variant of the restrictive relative clause who is born in the United Kingdom after

commencement.
Restrictive relative clauses are similar in syntax to non-restrictive relative

clauses, but their semantics is entirely different. Restrictive relative clauses add
extra conditions to conditionals. Non-restrictive relative clauses add extra con-
clusions. Grammatically, non-restrictive clauses are supposed to be set apart from
the rest of the sentence by commas, but restrictive clauses are supposed to be tied
to the phrase they qualify without any commas. But most of the time, it seems that
writers and readers ignore the rules of grammar, and rely instead upon their
background knowledge to determine the intended meaning.
For example, the following two sentences are punctuated correctly. The relative

clause is restrictive in the first sentence, and non-restrictive in the second sentence:

A British citizen who obtains citizenship by providing false information
may be deprived of British citizenship.

A British citizen, who is an EU citizen,
is entitled to vote in EU elections.

78 Computational Logic and Human Thinking

In CL, the logical form of the two clauses is dramatically different:

a person may be deprived of British citizenship
if the person obtains citizenship by providing false information.

a person is entitled to vote in EU elections
if the person is a British citizen.

a person is an EU citizen if the person is a British citizen.

Some grammarians also insist that the correct relative pronoun for restrictive
relative clauses is that rather than which or who. According to them, the first
sentence in the pair of sentences above should be written:

A British citizen that obtains citizenship by providing false information
may be deprived of British citizenship.

But in British English, this rule is largely ignored these days. In any case, if it is
important that your readers understand what you write, then it is better not to
rely on such subtle grammatical devices as the presence or absence of commas,
and the supposed differences of meaning between that and which, which few
readers know or care about. It is better to express yourself in an English form
that more closely resembles the logical form of the thought you wish to convey.
For example, do not write:

A British citizen, who has the right of abode in the UK,
owes loyalty to the Crown.

or
A British citizen that has the right of abode in the UK
owes loyalty to the Crown.

But, depending on what you mean, write:

All British citizens have the right of abode in the UK
and owe loyalty to the Crown.

or

A British citizen owes loyalty to the Crown
if the citizen has the right of abode in the UK.

The use of relative clauses is one way in which the syntax of English differs
from the syntax of conditionals in logical form. Another difference is the way in
which it represents variables. Symbolic forms of CL use symbols, like X and Y
for variables, which range over classes of individuals. Variables are distinct
from constants, which represent unique individuals.
English uses the combination of an article, like a and the, and a common noun,

like person, animal, object and thing, as a sorted or typed variable. It uses the

6: How to become a British Citizen 79

articles a and an, as in an animal and a person, for the first use of a variable; and it
uses the article the, as in the animal and the person, for subsequent uses of the
same variable. It uses proper nouns, likeMary,Felix andVenus, which are usually
capitalised, as constants, to represent individuals. Individuals can also be repre-
sented by definite descriptions, as in the phrase the strongest man on earth.

Putting all these considerations about relative clauses andvariables together, and
taking the liberty to introduce one or two other refinements, we obtain the follow-
ing more precise, but still relatively informal CL representation of subsection 1.1:1

X acquires british citizenship by subsection 1.1 at time T
if X is a person
and X is born in the uk at time T
and T is after commencement
and Y is a parent of X
and Y is a british citizen at time T or

Y is settled in the uk at time T

Notice that the condition X is a person prevents cats and dogs from claiming
British Citizenship. However, it is unnecessary to add the condition Y is a person,
because if X is a person then any parent of X is also a person. Notice also that the
condition Y is a parent of X is short for Y is a mother of X or Y is a father of X.
This representation uses the Prolog convention in which capitalised words or

letters, such as X, Y and T, stand for variables, which is why british and uk have
been written in lower case. This is the opposite of the English convention in
which upper case is used for proper nouns and names, and lower case is used for
common nouns. Just for the record, this is one of the ways a die-hard mathe-
matical logician might write 1.1:

∀X(∀T(∃Y(b(X, uk, T) ∧ c(T) ∧ d(Y, X) ∧ (e(Y, T) ∨ f (Y,T)))→ a(X, 1.1, T))).

Representation of time and causality

The English formulation of subsection 1.1 is precise about the temporal rela-
tionships among the conditions of 1.1, but does not state the temporal relation-
ship between the conditions and the conclusion. In other words, it does not say
when a person satisfying the conditions of 1.1 actually is a British Citizen. I
have used the term acquires british citizenship as a kind of place-holder, which
can accommodate different relationships between these times. Anticipating
Chapter 13, about the representation of time and change, this is as good a
place as any to propose a likely intended relationship:

1 Notice that this has the propositional form A if (B and C and D and (E or F)), which is equivalent
to two separate conditionals: A if B and C and D and E and A if B and C and D and F.

80 Computational Logic and Human Thinking

a person is a british citizen at a time
if the person acquires british citizenship at an earlier time
and it is not the case that

the person ceases to be a british citizen between the two times.

This should remind you of the relationship between picking up an object and
having the object at a later time, which was mentioned briefly at the end of
Chapter 4. In both cases, these relationships are instances of a more general,
abstract relationship. Here is a statement of that relationship in the event
calculus (Kowalski and Sergot, 1986):

a fact holds at a time
if an event happened at an earlier time
and the event initiated the fact
and it is not the case that

an other event happened between the two times and
the other event terminated the fact.

The different special cases can be obtained by adding information about specific
types of events initiating and terminating specific types of facts. For example:

the event of a person acquiring british citizenship initiates
the fact that the person is a british citizen.

the event of a person being deprived of british citizenship terminates
the fact that the person is a british citizen.

the event of an animal picking up an object initiates
the fact that the animal has the object.

the event of an animal dropping an object terminates
the fact that the animal has the object.

Notice that in the case of an animal picking up an object, our earlier representa-
tion in Chapter 4 of the relationship:

an animal has an object at a time
if the animal is near the object at an earlier time
and the animal picks up the object at the earlier time
and nothing terminates the animal having the object between the two times.

contains an additional condition that the animal is near the object at an earlier
time. In the event calculus, this additional condition can be expressed as a
separate constraint:

if an animal picks up an object
and it is not the case that the animal is near the object at a time
then false.

6: How to become a British Citizen 81

In general, the event calculus constraint expresses that an event is possible if all
its preconditions hold. We will discuss the representation of preconditions of
events later in Chapter 13.
The use of the term fact in the event calculus axiom can be stretched to cover,

not only ordinary facts, which are atomic sentences, but also more general
sentences, which are initiated by events like the commencement of an act of
parliament. For example:

the commencement of an act of parliament initiates a provision
if the provision is contained in the act.

the repeal of an act of parliament terminates a provision
if the provision is contained in the act.

The treatment of events and sentences as individuals is an example of reifica-
tion. The corresponding phenomenon in English is nominalisation, in which a
verb, such as commence is turned into a noun, such as commencement.
Reification is a powerful tool, which has proved to be indispensible for knowl-
edge representation in Artificial Intelligence. But it worries some philosophers,
who view it as populating the world with individuals of questionable existence.

Acquisition by abandonment

The second subsection of the BNA also employs reification, in this case to reify
the purposes of subsection 1.1:

1. -(2) A new-born infant who, after commencement, is found abandoned in the

United Kingdom shall, unless the contrary is shown, be deemed for the

purposes of subsection (1)-

(a) to have been born in the United Kingdom after commencement; and

(b) to have been born to a parent who at the time of the birth was a British

citizen or settled in the United Kingdom.

It might seem a little strange to devote the very second sentence of the BNA to
such a hopefully uncommon case, when there are so many simpler and more
common cases to consider. But what better, more coherent place is there for a
provision referring to the purpose of subsection 1.1 than immediately after 1.1
itself? Somewhat more awkward, from our point of view, is that subsection 1.2
combines so many other complex logical features in a single rule that it’s hard to
know where to begin in picking its logic apart.
Perhaps the easiest place to start is with the notion of purpose. It is clear that

purpose is just another name for goal. But in logic programming, the conclusion
of a conditional, used to reason backwards, is treated as a goal and its conditions

82 Computational Logic and Human Thinking

are treated as subgoals. Accordingly, the conclusion of a conditional identifies
its purpose. Thus we can interpret the phrase the purposes of subsection (1) as a
reference to the logical conclusion of 1.1, namely to acquire British Citizenship.
The phrase could equally well have been expressed less dramatically as the

conclusion of subsection (1).
Moreover, the phrases 1.2.a and 1.2.b are exactly the logical conditions of 1.1.

Therefore, translating unless as if not, we can paraphrase subsection 1.2 in the form:

The conclusion of 1.1 holds for a person

if the person is found newborn abandoned in the uk after commencement

and the contrary of the conditions of 1.1 are not shown to hold for the person.

The paraphrased sentence combines in a single sentence the use ofmeta-language
to talk about the conclusions and conditions of sentences with the object-language
to talk about states of affairs in the world. The use of meta-language treats
sentences as individuals, and is another example of reification. We shall return
to the issue of meta-language both later in this chapter and in Chapter 17.

The other notable feature of 1.2 is its use of the phrase unless the contrary is

shown. We have seen the use of the similar phrase cannot be shown for default
reasoning before. The phrase cannot be shown has nice theoretical properties; but,
as we have seen, it includes the need to expend a potentially infinite amount of
resources trying to show that something is the case. The phrase is not shown ismore
practical, because it assumes that only a finite amount of effort has been spent, but it
suffers from the imprecision of not specifying how much effort is needed.
Moreover, it does not cater for the possibility that new information or additional
effort might make it possible to show conditions that could not be shown before.
Ignoring these concerns and exploiting the fact that the contrary of born in the

UK is born outside the UK, and the contrary of born after commencement is born

on or before commencement, we can rewrite 1.2 as:

A person found newborn abandoned in the uk after commencement

shall be a british citizen by section 1.2

if it is not shown

that the person was born outside the uk

and it is not shown that

the person was born on or before commencement

and it is not shown that

both parents were not british citizens at the time of birth

and it is not shown that

both parents were not settled in the uk at the time of birth

6: How to become a British Citizen 83

This gives us two logical paraphrases of subsection 1.2. However, I suspect that,
of the two, the combined object-language/meta-language representation is
probably the easier to understand.

Rules and exceptions

The phrases is not shown and cannot be shown are forms of negation that can be
implemented by variants of negation as failure. The BNA also includes the use
of negation to represent exceptions to rules. For example:

40.-(2) The Secretary of State may by order deprive a person of a citizenship

status if the Secretary of State is satisfied that deprivation is conducive to the

public good.

40.-(4) The Secretary of Statemay not make an order under subsection (2) if he is

satisfied that the order would make a person stateless.

Aswe saw in Chapter 5, the exception can be compiled into the conditions of the
rule:

40.-(2) The Secretary of State may by order deprive a person of a citizenship

status if the Secretary of State is satisfied that deprivation is conducive to the

public good,

and he is not satisfied that the order would make the person stateless.2

English typically distinguishes between rules and exceptions by presenting the
rule before its exceptions, and introducing the exceptions by such words or
phrases as “but”, “however” or “on the other hand”. In the following provision
12.1 of the BNA, the signal that the rule is subject to exceptions is given by the
vague qualification, subject to subsections (3) and (4):

12.-(1) If any British citizen of full age and capacity makes in the prescribed

manner a declaration of renunciation of British citizenship, then, subject to

subsections (3) and (4), the Secretary of State shall cause the declaration to be

registered . . .

12.-(3) A declaration made by a person in pursuance of this section shall not be

registered unless the Secretary of State is satisfied that the person who made it

will after the registration have or acquire some citizenship or nationality other

than British citizenship; . . .

2 The condition he is not satisfied that the order would make the person stateless is not equivalent to
the arguably more natural condition he is satisfied that the order would not make the person
stateless. The “more natural condition” is equivalent to a stronger version of 40.-(4): The
Secretary of State may not make an order under subsection (2) unless he is satisfied that the order
would not make a person stateless.

84 Computational Logic and Human Thinking

12.-(4) The Secretary of State may withhold registration of any declaration made

in pursuance of this section if it is made during any war in which Her Majesty may

be engaged in right of Her Majesty’s government in the United Kingdom.

12.3 is a straightforward exception to 12.1, expressing in effect a condition under
which the Secretary of State may not cause a declaration of renunciation to be
registered. 12.4 is also an exception, but its effect depends on whether the
Secretary of State actually decides to exercise permission towithhold registration.
Taking the difference between these two exceptions into account, the intended
combined meaning of 12.1, 12.3 and 12.4 can be compiled into a single rule:

The Secretary of State shall cause a declaration of renunciation

of British citizenship to be registered

if the declaration is made by a British citizen of full age and capacity

and the declaration is made in the prescribed manner

and the Secretary of State is satisfied that after the registration the person will

have or acquire some citizenship or nationality other than British citizenship;

and it is not the case that

the declaration is made during a war in which Her Majesty is engaged

in right of Her Majesty’s government in the United Kingdom

and the Secretary of State decides to withhold the registration.

Notice that the rule can be further simplified by replacing the condition the

Secretary of State is satisfied that after the registration the person will have or

acquire some citizenship or nationality other than British citizenship by the equiv-
alent condition the Secretary of State is satisfied that after the registration the

person will not be stateless.
Section 12 contains another rule and exception, which on the face of it is even

more complicated:

12.-(2) On the registration of a declaration made in pursuance of this section the

person who made it shall cease to be a British citizen.

12.-(3) . . . ; and if that person does not have any such citizenship or

nationality on the date of registration and does not acquire some such

citizenship or nationality within six months from that date, he shall be,

and be deemed to have remained, a British citizen notwithstanding the

registration.

However, much of the complication disappears if the rule and exception are
compiled into a single rule defining termination of citizenship:

the event of registering a declaration of renunciation by a person terminates
the fact that the person is a british citizen
if the registration was made on date T1

6: How to become a British Citizen 85

and the person has some citizenship or nationality
other than british citizenship on date T2
and T1 ≤ T2 ≤ T1 + six months.

Understood in the context of the event calculus, the termination rule takes effect
at the time of registration only if the person renouncing citizenship is a citizen or
national of some other country within six months following the registration. The
complexity is due, not to the logical form of the rule, but to its content, whereby
a state of affairs in the past (termination of citizenship) is caused in part by a
state of affairs in the future (possession of some other citizenship or nationality).

How to satisfy the Secretary of State

The provisions in the BNA for depriving a person of British Citizenship and for
registering a renunciation of British Citizenship involve seemingly inscrutable
references to satisfying the Secretary of State. However, under the assumption
that the Secretary of State is a rational person, not all of these references are as
impenetrable as they may seem. Consider, for example, the main provision for
acquiring British Citizenship by naturalisation:

6.-(1) If, on an application for naturalisation as a British citizenmade by a person

of full age and capacity, the Secretary of State is satisfied that the applicant

fulfils the requirements of Schedule 1 for naturalisation as such a citizen under

this sub-section, hemay, if he thinks fit, grant to him a certificate of naturalisation

as such a citizen.

At the top-most level, this has the logical form:

the secretary of state may grant a certificate of naturalisation
to a person by section 6.1
if the person applies for naturalisation
and the person is of full age and capacity
and the secretary of state is satisfied that

the person fulfils the requirements of schedule 1
for naturalisation by 6.1

and the secretary of state thinks fit
to grant the person a certificate of naturalisation.

The first two conditions are simple object-level conditions concerning the state
of the world. But the last two conditions are epistemic or meta-level conditions
concerning the Secretary of State’s state of mind. In theory, the last condition is
totally inscrutable and can only be given as part of the input for a given case.
However, in practice, an expert lawyer might be able to predict with a high

86 Computational Logic and Human Thinking

degree of certainty how the Secretary of State will decide new cases based on
the lawyer’s knowledge of previous decisions in similar, old cases.
The third condition is more interesting, because the BNA includes a speci-

fication of the requirements for naturalisation that an applicant must fulfil to the
satisfaction of the Secretary of State. If the Secretary of State’s state of mind
were entirely impenetrable, there would be no point in specifying these require-
ments. The schedule is quite long, and it is convenient therefore to summarise
and paraphrase its contents:

a person fulfils the requirements of schedule 1 for naturalisation by 6.1

if either the person fulfils the residency requirements

of subparagraph 1.1.2

or the person fulfils the crown service requirements

of subparagraph 1.1.3

and the person is of good character

and the person has sufficient knowledge

of english, welsh, or scottish gaelic

and the person has sufficient knowledge about life in the uk

and either the person intends to make his principal home in the uk

in the event of being granted naturalisation

or the person intends to enter or continue in crown service or

other service in the interests of the crown in the event of being

granted naturalisation.

On the assumption that the Secretary of State is a rational person and that all
rational people understand the meaning of the words if, or and and as they occur
in schedule 1 in the same way, it can be shown that:

the secretary of state is satisfied that

a person fulfils the requirements of schedule 1 for naturalisation by 6.1

if either the secretary of state is satisfied that

the person fulfils the residency requirements of subparagraph 1.1.2

or the secretary of state is satisfied that

the person fulfils the crown service requirements of subparagraph 1.1.3

and the secretary of state is satisfied that

the person is of good character

and the secretary of state is satisfied that

the person has sufficient knowledge

of english, welsh, or scottish gaelic

and the secretary of state is satisfied that

the person has sufficient knowledge about life in the uk

and either the secretary of state is satisfied that

6: How to become a British Citizen 87

the person intends to make his principal home in the uk

in the event of being granted naturalisation

or the secretary of state is satisfied that

the person intends to enter or continue in crown service or

other service in the interests of the crown in the event of being

granted naturalisation.

The result is an explicit, though tedious statement of what it takes to satisfy the
Secretary of State concerning the requirements for naturalisation. We will see
how to derive this explicit form in Chapter 17.
As we have seen, compared with ordinary English, the language of the BNA

is extraordinarily, and at times even painfully precise. Its precision is due in
large part to its use of conditional form, which helps to eliminate ambiguity.
A syntactic expression is ambiguous when it has several distinct identifiable

meanings. For example, the word he is ambiguous in the following pair of
sentences:

The Secretary of State deprived Bob Smith of his British citizenship.
He was very upset about it.

Ambiguity can be eliminated simply by replacing the ambiguous expression by
a precise expression that represents its intended meaning; for example, by
replacing the word he in the second sentence above either by the Secretary of
State or by Bob Smith.
The conditional form of CL helps to reduce the ambiguity associated with

such relative clauses as who was born in the UK. As we have seen, restrictive
relative clauses add extra conditions to conditionals, whereas non-restrictive
relative clauses add extra conclusions.
Ambiguity is distinct from, but often confused with vagueness. Ambiguity

arises when a syntactic expression has several distinct interpretations, all of
which can be expressed explicitly. Vagueness, on the other hand, arises when a
concept, like newborn infant has no crisp, hard and fast definition. Logic
tolerates vagueness, but does not tolerate ambiguity. It accommodates vague
concepts as conditions of conditionals, simply by not attempting to define them
in the conclusions of other conditionals.
Although, like ambiguity, vagueness causes problems of interpretation, it is

often useful in practice, because it allows the law to evolve and adapt to
changing circumstances. Arguably, however, except for its use in poetry,
humour and deception, ambiguity serves no other useful purpose.
Whereas the syntax of the BNA is expressed in explicit conditional form, the

syntax of the University of Michigan lease termination clause below is both
unstructured and highly ambiguous. The termination clause was originally

88 Computational Logic and Human Thinking

investigated by Allen and Saxon to illustrate the use of propositional logic to
formulate a precise interpretation of an ambiguous legal text. Significantly, the
intended interpretation identified by Allen and Saxon has the conditional form
associated with Computational Logic.

The University of Michigan lease termination clause

The clause consists of a single sentence, which I advise you not to try to
understand until I first explain why the sentence in this form is virtually
impossible to understand:

“The University may terminate this lease when the Lessee, having made
application and executed this lease in advance of enrollment, is not eligible to
enroll or fails to enroll in the University or leaves the University at any time prior
to the expiration of this lease, or for violation of any provisions of this lease, or for
violation of any University regulation relative to Resident Halls, or for health
reasons, by providing the student with written notice of this termination 30
days prior to the effective time of termination; unless life, limb, or property
would be jeopardized, the Lessee engages in the sales or purchase of
controlled substances in violation of federal, state or local law, or the Lessee is
no longer enrolled as a student, or the Lessee engages in the use or possession
of firearms, explosives, inflammable liquids, fireworks, or other dangerous
weapons within the building, or turns in a false alarm, in which cases a
maximum of 24 hours notice would be sufficient”.

In fact, I could not resist trying to make your task a little easier by highlighting
the two conclusions, the first of which is split into two halves, separated by its
various conditions.
The sentence is hard to understand, because it has the ambiguous form:

A if B and B0, C or D or E or F or G or H
unless I or J or K or L or M in which case A0.

The sentence is ambiguous for the same reason that the arithmetic expression
1 + 1 × 2 is ambiguous. In mathematics and mathematical logic, such ambigu-
ities are resolved by the appropriate use of parentheses, either 1+(1 × 2) or
(1 + 1) × 2 in the case of the arithmetic expression.
In the case of the termination clause, the subclauses A, A0, B, B0,C,D, E, F,G,

H, I, J, K, L and M can be grouped together by means of parentheses in many
different ways. Some of these groupings are logically equivalent. After account-
ing for these equivalences, Allen and Saxon identified approximately 80 ques-
tions that would need to be asked to disambiguate between the different
interpretations. As a result of their analysis they identified the intended inter-
pretation as having the unambiguous logical form:

6: How to become a British Citizen 89

(A if (not (I or J or K or L or M) and ((B and B0 and (C or D))
or E or F or G or H)) and A0 if (I or J or K or L or M)).

This formal representation can be simplified if we rewrite it in the syntax of
conditionals, and if we assume that the second conditional states the only
conditions under which the conclusion A0 holds. Using this assumption, we
can replace the condition not (I or J or K or L or M) by not A0, obtaining the
conditionals:

A if not A0 and B and B0 and C. A0 if I
A if not A0 and B and B0 and D. A0 if J
A if not A0 and E. A0 if K
A if not A0 and F. A0 if L
A if not A0 and G. A0 if M.

The repetition of the conclusions A and A0 is a little tedious, but at least it makes
the meaning crystal clear. In English, we can obtain a similar effect without the
tedious repetition by signalling the disjunction of the different conditions with
the phrase “one of the following conditions holds”:

The University may terminate this lease by providing the student with
written notice of this termination 30 days prior to the effective time of termination
if the University may not terminate this lease

with a maximum of 24 hours notice
and one of the following conditions holds:

1) The Lessee, having made application and executed this lease in
advance of enrollment, is not eligible to enroll
or fails to enroll in the University.

2) The Lessee leaves the University at any time
prior to the expiration of this lease.

3) The Lessee violates any provisions of this lease.
4) The Lessee violates any University regulation

relative to Resident Halls.
5) There are health reasons for the termination.

The University may terminate this lease
with a maximum of 24 hours notice
if one of the following conditions holds:

1) Life, limb, or property would be jeopardized.
2) The Lessee engages in the sales or purchase of controlled substances in

violation of federal, state or local law.
3) The Lessee is no longer enrolled as a student.
4) The Lessee engages in the use or possession of firearms, explosives,

inflammable liquids, fireworks, or other dangerous weapons within the
building.

5) The Lessee turns in a false alarm.

90 Computational Logic and Human Thinking

There are two reasons why you may not be entirely satisfied with this rewriting of
the sentence. First, why would the University want to restrict itself, in cases where
it is allowed to give 24 hours notice, so that it does not have the discretion of giving
30 days notice instead? This is probably a mistake, due to the complex wording of
the original sentence, which even its writers may not have fully understood.
Second, what does it mean to say that the University may terminate this lease

with a maximum of 24 hours notice? The word maximum here suggests that in
such cases the University may terminate the lease with less than 24 hours notice.
Surely, in all fairness, the student deserves a minimum of 24 hours to get her
things together and to vacate her room.
So how could the lawyers who drafted the lease make such a big mistake?

Perhaps they meant that, upon receiving such notice, the student would have a
maximum of 24 hours to vacate the halls of residence. If so, the intention could
have been achieved more correctly and more simply by expressing the con-
clusion in a parallel form to the alternative conclusion that the University may
terminate a lease with 30 days notice. The parallel form would mention neither
the term maximum nor minimum:

The University may terminate this lease by providing the student with notice of

this termination 24 hours prior to the effective time of termination.

Part of the moral of the story is to do as every good book on English writing
style advises: Express similar ideas in similar ways.

Summary

Both the BNA and the University of Michigan lease termination clause illus-
trate, in their very different ways, the usefulness of expressing information in
conditional form. Arguably this is because, not only are conditionals close to the
language of human thought, but also close to the laws that govern both our
natural and social worlds.
TheBNAshows thatwe still have someway to go to understand the subtleties and

complexities of meta-level reasoning and of different kinds of negation. However,
the University of Michigan lease termination clause shows that, even without those
complexities, the syntactic form of conditionals can help not only to clarify the
intended meanings of English sentences, but also to uncover unintended meanings.
In the next chapter, we explore production systems, which are widely

regarded in Cognitive Psychology as the most convincing computational
model of the mind. In the following chapter, we will see how Computational
Logic reconciles logic and production systems.

6: How to become a British Citizen 91

7

The louse and the Mars explorer

Logical Extremism, which views life as all thought and no action, has given logic a
bad name. It has overshadowed its near relation, Logical Moderation, which
recognises that logic is only oneway of thinking, and that thinking isn’t everything.
The antithesis of Logical Extremism is Extreme Behaviourism, which denies

any “life of the mind” and views Life instead entirely in behavioural terms.
Behaviourism, in turn, is easily confused with the condition–action rule model
of thinking.

Behaviourism

If you were analysing the behaviour of a thermostat, which regulates the
temperature of a room by turning on the heat when it is too cold and turning
off the heat when it is too hot, you might describe the thermostat’s input–output
behaviour in condition–action rule terms:

If the current temperature is C degrees
and the target temperature is T degrees
and C < T – 2°
then the thermostat turns on the heat.

If the current temperature is C degrees
and the target temperature is T degrees
and C > T + 2°
then the thermostat turns off the heat.

But you wouldn’t attribute the thermostat’s behaviour to a mind that consciously
manipulates such descriptions to generate its behaviour.
In the same way that you could view the thermostat’s external behaviour

without committing yourself to a view of its internal operation, the behaviourist

92

views agents in general. Thus, in the story of the fox and the crow, a behaviourist,
unable to examine the fox’s internal, mental state, would view the behaviour of the
fox in the same way that we view the behaviour of the thermostat:

If the fox sees that the crow has cheese, then the fox praises the crow.
If the fox is near the cheese, then the fox picks up the cheese.

The behaviourist’s description of the fox in the story begins and endswith the fox’s
externally observable behaviour. The behaviourist justifies her refusal to attribute
any internal, mental activity to the fox, by the fact that it is impossible to verify
such attributions by the scientific method of observation and experimentation.
According to the behaviourist, the fox could be a purely reactive agent,

simply responding to changes in the world around her. If, in the course of
reacting to these changes, the fox gets the cheese, then this result might be
merely an indirect, emergent effect, rather than one that the fox has deliberately
aimed to bring about by proactive thinking.
The behaviourist also sees no reason to distinguish between the behaviour of

a thermostat and the behaviour of a human. The behaviourist might use a
conditional:

If a passenger observes an emergency on the underground,
then the passenger presses the alarm signal button

to describe the behaviour of a passenger on the underground. But the use of such
a description says nothing about how the passenger actually generates that
behaviour. As far as the behavourist is concerned, pressing the alarm signal
button whenever there is an emergency might be only an instinctive reaction, of
whose purpose the passenger is entirely unaware.
Behaviourism is indirectly supported byDarwinism,which holds that organisms

evolve by adapting to their environment, rather than by a goal-oriented process of
self-improvement.
Behaviourism also shares with condition–action rules a focus on modelling

behaviour as reactions to changes in the environment. However, whereas
behaviourism restricts its attention to descriptions of behaviour, condition–
action rules in production systems are used to generate behaviour.
The program for a thermostat implemented by means of a production system

would look like this:

If the current temperature is C degrees
and the target temperature is T degrees
and C < T – 2°
then turn on the heat.

7: The louse and the Mars explorer 93

If the current temperature is C degrees
and the target temperature is T degrees
and C > T + 2°
then turn off the heat.

Production systems

Few psychologists subscribe today even to moderate versions of behaviourism.
Most adhere instead to the cognitive science view that intelligent agents engage
in some form of thinking that can usefully be understood as the application of
computational procedures to mental representations of the world.
Paul Thagard (2005) states in his bookMind: Introduction to Cognitive Science

that, among the various models of thinking investigated in Cognitive Science,
production systems have “the most psychological applications” (page 51). Steven
Pi nk er (1997) in How the Mind Works also uses production systems as his main
example of a computational model of the mind (page 69). The most influential
computational models of human thinking are probably the production system
models Soar (Laird et al., 1987) and ACT-R (Anderson and Lebiere, 1998).
A production system is a collection of condition–action rules, of the form:

If conditions then actions

which are incorporated in the thinking component of an agent’s observation–
thought–decision–action cycle. Condition–action rules (also called production
rules, if–then rules or just plain rules) are similar to the behaviourist’s descriptions
of behaviour. However, because they are used by an agent internally to generate
the agent’s behaviour, their conclusions are often expressed in the imperative
mood:

If conditions then do actions.

Production systems were invented as a mathematical model of computation by the
logician, Emil Post (1943) in the 1920s, but first published in 1943. They were
proposed as a computational model of human intelligence by the Artificial
Intelligence researcher Alan Newell (1973). They have also been used for devel-
oping numerous expert systems, computer programs that simulate human expertise
in such fields as medicine, finance, science and engineering.

The production system cycle

Production systems embed condition–action rules in an observation–thought–
decision–action cycle:

94 Computational Logic and Human Thinking

Repeatedly,
observe the world,
think,
decide what actions to perform,
act.

Thinking in production systems is similar to, but subtly different from, forward
reasoning in logic. As in logic, if all of the conditions of a rule hold in a given
state, then the rule is said to be triggered or enabled, and the conclusion is derived.
However, whereas, in logic, forward reasoning derives a conclusion that is a
logical consequence of the conditions, in production systems, the conclusion is
only a recommendation to perform actions. This kind of thinking is often called
forward chaining, which helps to distinguish it from genuine forward reasoning,
although not everyone uses these terms in this way.
Although the conclusion of a production rule is only a recommendation to

perform actions, it is common to express the actions as commands. If more than
one rule is triggered in a given situation, and the actions of the rules are
incompatible, then the agent needs to choose between them. This decision
between conflicting recommendations is called conflict resolution. The rule or
rules whose actions are chosen are said to be fired.

Production systems with no representation of the world

In the simplest case, an agent’s mental state might consist solely of production
rules, without any mental representation of the world. All of the conditions of a
rule are verified simply bymatching them against the agent’s current observations.
In such a case, it can be said that “the world is its own best model” (Brooks, 1991).
If you want to find out about the world, don’t think, just look!
Observing the current state of the world is a lot easier than trying to predict it

from past observations and from assumptions about the persistence of past
states of affairs. And it is a lot more reliable, because persistence assumptions
can easily go wrong, especially when there are other agents around, changing
the world to suit their own purposes.

What it’s like to be a louse

To see what a production system without any representation of the world might
be like, imagine that you are a wood louse and that your entire life’s behaviour
can be summed up in the following three rules:

7: The louse and the Mars explorer 95

If it’s clear ahead, then move forward.
If there’s an obstacle ahead, then turn right.
If I am tired, then stop.

Because you are such a low form of life, you can sense only the fragment of the
world that is directly in front of you. You can also sense when you are tired. Thus,
your body is a part of the world, external to yourmind. Like other external objects,
your body generates observations, such as being tired or being hungry, which are
attended to by your mind.
It doesn’t matter where the rules came from, whether they evolved through

natural selection, or whether they came from some Grand Designer. The
important thing is, now that you have them, they regulate and govern your life.
Suppose, for the purpose of illustration, that you experience the following

stream of observations:

clear ahead.
clear ahead.
obstacle ahead.
clear ahead and tired.

Matching the observations, in sequence, against the conditions of your rules
results in the following interleaved sequence of observations and actions:

Observe: clear ahead.
Do: move forward.

Observe: clear ahead.
Do: move forward.

Observe: obstacle ahead.
Do: turn right.

Observe: clear ahead and tired.

At this point, your current observations trigger two different rules, and their
corresponding actions conflict. You can’t move forward and stop at the same
time. Some method of conflict resolution is needed, to decide what to do.
Many different conflict resolution strategies are possible. But, in this as in

many other cases, the conflict can be resolved simply by assigning different
priorities to the different rules, and selecting the action generated by the rule
with the highest priority. It is obvious that the third rule should have higher
priority than the second. So the appropriate action is:

96 Computational Logic and Human Thinking

Do: stop.

An even simpler approach is to avoid conflict resolution altogether, by changing
the rules, adding an extra condition and you are not tired to the first and second
rules. A more complicated approach is to use decision theory, to compare the
different options and to select the option that has the highest expected benefit.
But, no matter how it is done in this case, the result is likely to be the same –
better to rest when you are tired than to forge ahead regardless.
Once a louse has learned the rules, its internal state is fixed. Observations

come and go and the louse performs the associated actions, as stimulus–
response associations, without needing to record or remember them. The price
for this simplicity is that a louse lives only in the here and now and has no idea of
the great wide world around it. For a normal louse, this may be a small price to
pay for enjoying the simple life.

Production systems with internal state

Although the simple life has its attractions, most people prefer a little more
excitement. Some people even want to believe that their life has a purpose,
whether or not they know what that purpose may be.
We will investigate the meaning of life for our imaginary louse in Chapter 9,

but in the meantime we will have to be content with spicing up our production
system model with an internal database that serves as an internal state. The
database is a set of atomic sentences, which is like a relational database.
Typically it is much smaller than a conventional database, and for this and for
other, more psychological reasons it is often called a working memory.
The database can be used to simulate the external world, or to represent and

manipulate some imaginary world. It is also commonly used as a temporary
memory to store calculations to solve a temporary goal.
In a production system with an internal database, a rule is triggered when an

atomic sentence that is an external or internal update of the database matches one
of the conditions of the rule, and any additional conditions of the rule are verified
as holding in the current state of the database.1 If the rule is triggered in this way,
then the actions of the rule are derived as candidates for execution.When all of the
candidate actions have been determined, then conflict resolution is used to choose
one ormore actions for execution. If a chosen action is an external action, then it is

1 More generally and to improve efficiency, partially triggered rules can be treated as new rules that
can be further triggered by future updates.

7: The louse and the Mars explorer 97

performed on the external world. If it is an internal action, then it is performed as
an internal update of the database.

What it’s like to be a Mars explorer

To imagine what a production system with memory might be like, suppose that
your life as a louse has expired; and, as a reward for your past efforts, you have
been reincarnated as a robot sent on a mission to look for life on Mars.
Fortunately, your former life as a louse gives you a good idea how to get

started. Moreover, because you are a robot, you never get tired and never have to
rest. However, there are two new problems you have to deal with: How do you
recognise life when you see it, and how do you avoid going around in circles?
For the first problem, your designers have equipped you with a life recognition

module, which allows you to recognise signs of life, and with a transmitter to
inform mission control of any discoveries. For the second problem, you have an
internal database to remember whether you have been to a place before, so that
you can avoid going to the same place again.
Of course, the problems facing a real-life robot are far more complex than

that. They include very hard problems of constructing mental representations of
observations and of converting mental representations of actions into physical
motor controls. But to make the example tractible, we will ignore these interface
problems and also simplify the associated knowledge representation issues.
Given these simplifications, a production system with memory, which is a

refinement of the production system of a louse, might look something like this:

If the place ahead is clear
and I haven’t gone to the place before,
then go to the place.

If the place ahead is clear
and I have gone to the place before,
then turn right.

If there’s an obstacle ahead
and it doesn’t show signs of life,
then turn right.

If there’s an obstacle ahead
and it shows signs of life,
then report it to mission control
and turn right.

To recognise whether you have been to a place before, you need to make a map
of the terrain. You can do this, for example, by dividing the terrain into little

98 Computational Logic and Human Thinking

squares and naming each square by a coordinate, (E, N), where E is the distance
of the centre of the square East of the origin, N is its distance North of the origin,
and the origin (0, 0) is the square where you start.
For this to work, each square should be the same size as the step you take when

you move one step forward. Assuming that you have recorded the coordinates of
your current location in the database, then you can use simple arithmetic to
compute the coordinates of the square ahead of you and the square to the right
of you, and therefore the coordinates of your next location.
Every time you go to a square, you record your visit in the database. Then, to

find out whether you have gone to a place before, you just consult the database.
Suppose, for example, that you are at the origin, pointed in an Easterly

direction. Suppose also that the following atomic sentences describe a part of
the external world around you:

life at (2, 1)
clear at (1, 0)
clear at (2, 0)
obstacle at (3, 0)
obstacle at (2, −1)
obstacle at (2, 1).

Suppose also that you can see only one step ahead. So, when you start, the only
thing you know about the world, in your internal database, is that your current
location is (0, 0) and the only thing you can observe is that it is clear at (1, 0),
which is the place immediately in front of you.
Assume also that, although it is your mission to look for life, you are the only

thing that moves. So this description of the initial state of the world will also
apply to all future states of the world that you will encounter.
With these assumptions, your behaviour is completely predetermined:

Initial database: at (0, 0)

Observe: clear at (1, 0)
Do: move forward.
Update database: delete at (0, 0), add at(1, 0), add visited (0, 0)

Observe: clear at (2, 0)
Do: move forward.
Update database: delete at (1, 0), add at (2, 0), add visited (1, 0)

Observe: obstacle at (3, 0)

Do: turn right.

7: The louse and the Mars explorer 99

Observe: obstacle at (2, −1).
Do: turn right.

Observe: clear at (1, 0).
Do: turn right.

Observe: obstacle ahead at (2, 1) and life at (2, 1).
Do: report life at (2, 1) and turn right2.

Notice that reporting your discovery of life to mission control is just another
action, like moving forward or turning right. You have no idea that, for your
designers, this is the ultimate goal of your existence.
Your designers have endowed you with a production system that achieves the

goal of discovering life as an emergent property of your behaviour. Perhaps, for
them, this goal is but a subgoal of some higher-level goal, such as satisfying their
scientific curiosity. But for you, none of these goals or subgoals is apparent.

Condition–action rules with implicit goals

Condition–action rules that implement reactive behaviour are an attractive model
of evolutionary theory. As in the theory of evolution, the ultimate goal of such
reactive rules is to enable an agent to survive and prosper, and is emergent rather
than explicit. For example, the two rules:

If there is an emergency then get help.
If there is an emergency then run away.

have the implicit goal of dealing appropriately with the emergency, which is a
euphemism for trying to save yourself, andmaybe trying to save others if you can.
Reactive rules are also a natural way to generate simpler kinds of reactive

behaviour, with more modest emergent goals. Herbert Simon (1999) gives the
example of a production system for solving algebraic equations in one
unknown, for example for solving the equation 7X+ 6= 4X+12 with the
unknown X.

1. If the expression has the form X = N, where N is a number,
then halt and check by substituting N in the original equation.

2 I leave it to the reader to work out what happens next, and I apologise for any complications in
advance.

100 Computational Logic and Human Thinking

2. If there is a term in X on the right hand side,
then subtract it from both sides and collect terms.

3. If there is a numerical term on the left hand side,
then subtract it from both sides, and collect terms.

4. If the equation has the form NX = M, N ≠ 0,
then divide both sides by N.

To solve the equation, both the initial equation and an extra copy of the equation
are put into the initial database. The actions of the rules change the copy of the
equation until it is in the right form for the application of rule 1, when the
solution needs to be substituted into the original equation. The production
system cycle executes the following steps:

Initial equation: 7X + 6= 4X + 12
Use 2 to obtain: 3X + 6= 12
Use 3 to obtain: 3X = 6
Use 4 to obtain: X =2
Use 1 to halt and check: 7·2 + 6= 4·2 + 12.

Notice that there is no explicit representation of the top-level goal of solving the
original equation. Nor is there any representation of the implicit intermediate
subgoals of combining all occurrences of the variable into one occurrence and
of isolating the variable. The first subgoal is the purpose of rule 2, and the
second subgoal is the purpose of rules 3 and 4.
The top-level goal and its relationship with the intermediate subgoals could

be made explicit by means of the conditional (Bundy et al., 1979):

An equation with a single variable X is solved
if all occurrences of X are combined into a single occurrence
and the single occurrence of X is isolated.

We will investigate the relationship between logical conditionals with explicit
goals and production rules with emergent goals when we explore the meaning
of life and dual process theories of thinking in Chapter 9. In that chapter, I will
suggest that an agent has a higher level of consciousness when it has an explicit
representation of its goals, and that it has a lower level of consciousness when its
goals are only emergent.
But even emergent goals are better than none. The fact that an agent’s

behaviour has any goals at all, whether they be conscious or emergent, can
be said to give the agent’s life a meaning, in the sense that they give its life a
purpose.

7: The louse and the Mars explorer 101

The use of production systems for forward reasoning

The natural correspondence between reactive condition–action rules and stimulus–
response associations is probably production systems’ biggest selling point. It may
even be the evolutionary ancestor of all later forms of higher-level intelligence. If
so, the next step in evolution might have been the extension from forward chaining
with reactive rules to forward reasoning with conditionals.

Consider, for example, the following fragment of the family tree of Adam and
Eve from the Book of Genesis:

Eve mother of Cain
Eve mother of Abel
Adam father of Cain
Adam father of Abel
Cain father of Enoch
Enoch father of Irad

Consider also the production rules:

If X mother of Y
then add X ancestor of Y.

If X father of Y
then add X ancestor of Y.

If X ancestor of Y
and Y ancestor of Z
then add X ancestor of Z.

Suppose that the only conflict resolution that is performed is to avoid firing the
same rule matching it with the same facts in the database more than once (called
refraction in the production system literature). Then the initial database is
successively updated, until no new facts can be added:

In the first iteration add: Eve ancestor of Cain
Eve ancestor of Abel
Adam ancestor of Cain
Adam ancestor of Abel
Cain ancestor of Enoch
Enoch ancestor of Irad

In the second iteration add: Eve ancestor of Enoch
Adam ancestor of Enoch
Cain ancestor of Irad

102 Computational Logic and Human Thinking

In the third iteration add: Eve ancestor of Irad
Adam ancestor of Irad

If the word add is omitted from the action part of the three production rules, then
the rules are indistinguishable from logical conditionals, and forward chaining
is indistinguishable from forward reasoning.
More generally, production systems can implement forward reasoning from

an initial set of facts with any set of conditionals all of which satisfy the
restriction that any variable in the conclusion of a conditional occurs some-
where in the conditions of the conditional. This restriction, called the range-
restriction, is relatively easy to satisfy and avoids such conditionals as:

If pigs can fly then X is amazing
i.e. If pigs can fly then everything is amazing

To implement forward reasoning with production rules, it suffices to prefix the
word add before every conclusion, to turn the conclusion into an action that
updates the database.

The use of production systems for goal reduction

The step from reactive rules to forward reasoning with conditionals is an easy
one. The next step, to goal reduction, is much harder. This is because, to
represent goal reduction in production rule form, the working memory needs
to contain, in addition to “real” facts, which represent the current state of a
database, also goal facts, which represent some desired future state. Goal-
manipulation actions need to add goal facts when goals are reduced to subgoals
and to delete goal facts when they are solved. Goal reduction is implemented,
not by backward reasoning as in logic programming, but by forward chaining
with rules of the form:

If goal G and conditions C then add H as a subgoal.

Goal reduction in production rule form is an important feature both of cognitive
models, such as Soar and ACT-R, and of many commercial expert systems.
In his Introduction to Cognitive Science, Thagard (2005) uses the ability of

production systems to perform goal reduction to support his claim that “unlike
logic, rule-based systems can also easily represent strategic information about
what to do”. He illustrates his claim with the following example (page 45):

If you want to go home and you have the bus fare,
then you can catch a bus.

7: The louse and the Mars explorer 103

Forward chaining with the rule reduces a goal (going home) to a subgoal
(catching a bus).
But earlier in the book, we saw that goal reduction can also be performed by

backward reasoning with conditionals. In the case of Thagard’s example, with
the conditional:

You go home if you have the bus fare and you catch a bus.

Thus Thagard’s argument against logic can be viewed instead as an argument
for logic programming and Computational Logic, because they too can easily
represent strategic information.
In fact, Thagard’s argument can be turned against itself. How do you repre-

sent the fox’s strategy for having an object by first getting near it and then
picking it up? The production rule:

If you want an object and you are near the object,
then you can pick the object up.

assumes you are already near the object. It’s not obvious how to formulate the
more general strategy:

If you want an object
then you can get near the object,
and you can pick the object up.

The actions in this general strategy are a sequence of a subgoal followed by an
action. But production systems normally accommodate only actions that can be
performed in the same iteration of a cycle.
To deal with problems of this kind, the production systems Soar and ACT-R

employ a different structure for goals and subgoals than they do for ordinary
facts. They store goals in a stack. When a goal is reduced to a subgoal, the new
subgoal is put (or pushed) on top of the stack. When a goal is solved, it is taken
off (or popped) from the top of the stack. Only the goal at the top of the stack can
contribute to the triggering of a production rule.
The goal stack can be used to reduce the goal of having an object to the

subgoals of getting yourself and the object near to one another and of picking
the object up, for example in the following way:

If your goal (at the top of the goal stack) is to have an object
and you are not near the object,
then make your goal (pushing it on top of the stack) to be near the object.

If your goal (at the top of the goal stack) is to have an object
and you are near the object,
then pick up the object.

104 Computational Logic and Human Thinking

If your goal (at the top of the goal stack) is to have an object
and you have the object
then delete the goal (by popping it from the top of the stack).

To represent the general strategy as a single rule, it is necessary either to
represent it in logical form or to represent it in an agent programming
language.
Many of the agent programming languages (see, for example, Dennis et al.

(2008)) that have been developed in Artificial Intelligence can be viewed as
extensions of production systems in which rules have the more general form of
reactive plans:

If triggering condition and other conditions hold,
then solve goals and perform actions.

The conclusions of such reactive plans can be a collection of subgoals to be
achieved and of actions to be performed over several agent cycles. The triggering
condition can be either an observation or a goal. Thus, forward chainingwith such
rules can perform goal reduction, without the restriction of production systems
that all the actions in the conclusion of a rule have to be performed in a single
cycle.
The alternative to performing goal reduction by forward chaining, whether

with simple production rules or with reactive plans, is to perform goal reduction
by backward reasoning with logical conditionals. The advantage of the logical
alternative is that it simultaneously represents both the goal-reduction procedure
and the belief that justifies the procedure.

Logic versus production rules

Thus there are three kinds of production rules: reactive rules, forward reasoning
rules and goal-reduction rules. It is only reactive rules that do not have an
obvious logical counterpart. However, in the next chapter, we will see that
reactive rules can be understood in logical terms as conditional goals. Forward
reasoning rules can be understood as conditional beliefs used to reason forward,
and goal-reduction rules as conditional beliefs used to reason backwards.
Thagard’s textbook (2005, page 47) includes the claim that, in contrast with

logic, “rules can be used to reason backward or forward”. In fact, it would be
more accurate to state that in contrast with production rules, logical conditionals
can be used to reason backward or forward. Because conditions in production
rules come first and actions come later, true production rules can be used only in
the forward direction.

7: The louse and the Mars explorer 105

To be fair to Thagard, in most of his arguments against logic and in favour of
rules, he is only reporting common misconceptions, failing to recognise the
properties of logical conditionals and attributing their properties to production
rules instead. What is most unfortunate is that these confusions have permeated
Cognitive Science since the early 1970s.
However, production systems do have a critical feature that logic is missing –

the production system cycle, which is the intellectual ancestor of the agent
cycle. The agent cycle plays a critical role in the logic-based agent model of this
book, linking an agent’s thoughts in logical form to changes in the agent’s
surrounding environment.

Conclusions

The use of production systems to generate the behaviour of an intelligent agent,
as seen in this chapter, can be pictured like this:

Forward chaining Conflict resolution

working memory

the world

?

actobserve

In the next chapter we will see how logic and production systems can be
reconciled in a more general framework, which uses logic for an agent’s
thoughts, and uses an agent cycle to embed the agent in a semantic structure,
which gives meaning to the agent’s thoughts.

106 Computational Logic and Human Thinking

8

Maintenance goals as the driving force of life

What do the passenger on the London Underground, the fox, the wood louse,
the Mars explorer and even the heating thermostat have in common? It certainly
isn’t the way they dress, the company they keep, or their table manners. It is the
way that they are all embedded in a constantly changing world, which some-
times threatens their survival, but at other times provides them with opportu-
nities to thrive and prosper.
To survive and prosper in such an environment, an agent needs to be aware of

the changes taking place in theworld around it, and to perform actions that change
the world to suit its own purposes. No matter whether it is a human, wood louse,
robot or heating thermostat, an agent’s life is an endless cycle, in which it must:

repeatedly (or concurrently)
observe the world,
think,
decide what actions to perform, and
act.

We can picture this relationship between themind of an agent and theworld like this:

observe act

The world

think decide

107

The observation–thought–decision–action cycle is common to all agents, no
matter how primitive or how sophisticated. For some agents, thinking might
involve little more than firing a collection of stimulus–response associations,
without any representation of the world. For other agents, thinking might be a
form of symbol processing, in which symbols in the mind represent objects and
relationships in the world. For such symbol manipulating agents, the world is a
semantic structure, which gives meaning to the agent’s thoughts.
Although production systems perform thinking by manipulating symbolic

expressions, they do not interpret expressions in terms of semantic structures.
Instead, the production system cycle provides production systems with a
so-called operational semantics, which is a mathematical characterisation of
the transitions from one state of the production system cycle to the next. From a
logical point of view, operational semantics is not a semantics at all.
In contrast with production systems, logic has a well-developed semantics

understood in terms of the relationship between symbolic expressions and the
objects those symbolic expressions represent. However, the semantics of traditional
logic does not take adequate account of the dynamic interaction between symbolic
representations and the environment in which those representations are embedded.
We will investigate the semantics of logical representations of the changing

world in greater detail in Chapter 13. In this chapter, we sketch a preliminary
framework that combines the dynamic interactions of the production system
cycle with the semantics and inference mechanisms of Computational Logic.
The first step in this direction is to interpret reactive condition–action rules as
conditional goals in logical form, and to recognise that the role of such goals is
to motivate an agent to change the world around it.

The semantics of beliefs

We discussed logical semantics briefly in Chapter 3 and discuss it in greater
detail in the more advanced Chapters A2, A3, A4 and A6. Here we will deal
with only the most important features that distinguish the semantics of goals
from the semantics of beliefs. To understand the semantics of goals, we need to
understand, first, the simpler semantics of beliefs.
Traditional logic is mainly concerned with the logic of beliefs, which repre-

sent an agent’s view of the world, whether or not the beliefs are actually true.
They include atomic sentences that record the agent’s observations, such as the
fox’s seeing that the crow has cheese. They also include causal beliefs about
the laws of nature, such as the belief that if an agent picks up an object then the
agent will possess the object.

108 Computational Logic and Human Thinking

In addition to its beliefs about the directly observable world, an intelligent
agent needs theoretical beliefs to organise and connect its other beliefs together.
These include beliefs that identify objects as belonging to different theoretical
classes, such as the classes of foxes, humans, animals, animates, agents,
artefacts, and things. They typically also include beliefs that organise such
classes into hierarchies, in which, for example, foxes and humans are animals,
animals are agents, agents are animates, and animates and artefacts are things.
If an agent expresses its beliefs in the right form, then beliefs about objects

belonging to classes higher in the hierarchy will apply with little extra effort to
objects belonging to classes lower in the hierarchy. Thus the belief that if an
animal picks up an object then the animal will possess the object also applies to
all foxes and in particular to the fox in the story of the fox and the crow.
Theoretical beliefs can also include beliefs about unobservable entities, like

ghosts, angels or electrons, and about unobservable relationships, such as
haunting, blessing or sending out waves. Such beliefs complicate the semantics
of logic, because their entities and relationships need not really exist in the
agent’s independently existing world.
But such complications arise even with classes of objects and with hierarch-

ical relationships, which are also not directly observable. Indeed, even observ-
able objects and relationships, as in the fox’s observation that the crow has the
cheese, are arguably constructed in part by the eye of the beholder. Thus, the
easiest way to deal with all of these complications in one go is simply to identify
the agent’s external environment with the set of atomic sentences, which
represents the world as the agent experiences it.

The semantics of goals

In contrast with an agent’s beliefs, which represent the way the agent sees the
world as it is, whether the agent likes it or not, an agent’s goals represent the
agent’s view of the world as the agent would like it to be. There isn’t much an
agent can do about the past. So goals only affect actions that the agent can
perform in the future.
The most obvious kind of goal is an achievement goal, to attain some desired

future state of the world. The simplest kind of achievement goal is just an atomic
action, such as the fox picks up the cheese. However, a more typical achieve-
ment goal is an observation sentence, such as the fox has the cheese, that the
agent would like to hold in the future. Achievement goals can include actions
and conjunctions of atomic sentences, such as the fox has the cheese and the fox
eats the cheese. They can also include existentially quantified goals, which

8: Maintenance goals as the driving force of life 109

contain “unknowns” such as there exists some instance of food, such that the fox
has the food and the fox eats the food. Achievement goals motivate an agent to
generate a plan of actions, such as the fox praises the crow, picks up the cheese
and eats the cheese, to change the world into future states in which the goals are
true.
A less obvious kind of goal, but arguably one that is more fundamental, is a

maintenance goal, which maintains the agent in a harmonious relationship with
the changing state of the world. Achievement goals are typically derived from
maintenance goals, as the result of the agent observing some change in the
world around it.
For example, in the story of the fox and crow, the fox’s goal of having the

crow’s cheese appears out of the blue. A more realistic version of the story
would include the circumstance that triggered the goal. Perhaps the fox is
behaving like a spoiled child, wanting to have anything she observes in the
possession of another animal. Or perhaps she is just looking for her next meal.
In either case, the fox’s goal of having the cheese can be viewed as a goal of
achieving some future state of the world, in response to observing a change in
the world, which triggers a higher-level goal of maintaining some desired
relationship with the world around her.
Suppose that we give the fox the benefit of doubt and assume that she wants

to have the cheese simply because she is hungry, and not because she has a
personality defect. This can be represented by the maintenance goal:

if I become hungry, then I have some food and I eat the food.

The goal can be paraphrased, in the imperative:

if I become hungry, then get some food and eat the food.

The imperative formulation resembles a condition–action rule, except the con-
clusion get some food is not a simple action.More generally, reactive condition–
action rules can be understood as the special case of maintenance goals in which
the conclusion is an action or a conjunction of actions, all of which are to be
performed in the same iteration of the agent cycle.
It is common in natural languages to express goals, whether they be achieve-

ment goals, maintenance goals or constraints, imperatively as commands, in
such forms as do this, if this then do that and don’t do that. But in logic, it is
simpler to express goals declaratively, with such expressions as this will be the
case, whenever this is the case then that will be the case and that will never be
the case.
The advantage of the declarative, logical representation of goals, compared

with the imperative formulation, is that the same semantic notion of truth that

110 Computational Logic and Human Thinking

relates an agent’s beliefs to the world also applies to the relationship between the
agent’s goals and the world. The main difference being that beliefs represent
sentences about the world that is outside the agent’s control, whereas goals
represent sentences about the world that the agent can try to control by perform-
ing actions to make them true.
To see how the fox’s achievement goal I have the cheese is related to the

maintenance goal, suppose that the fox’s body tells her that she has just become
hungry. Since her body is a part of the world, she becomes aware of her hunger
by means of an observation:

Observation: I become hungry.

The observation matches the condition of the maintenance goal and forward
reasoning derives the conclusion of the maintenance goal as an achievement goal:

I have some food and I eat the food.

Thus, the real achievement goal is not specifically to have the crow’s cheese, but
more generally to have some instance of food. And having food is only half the
story. The fox also needs to eat the food. As far as the top-level maintenance
goal is concerned, having food without eating it is useless.
To connect the achievement goal with the rest of the story, the fox needs to

have the taxonomic knowledge that cheese is a kind of food and that food is a
kind of object. This knowledge can be represented in a number of different
ways, and there are even specialised logics for this purpose, the details of which
are unimportant here. Suffice it to say that, one way or another, this taxonomic
knowledge is needed to instantiate the achievement goal, substituting the crow’s
cheese for the “unknown” existentially quantified variable some food.

The time factor

Our reconsideration of the story of the fox and crow is still an over-
simplification, because it does not deal with the issue of time. It does not
indicate how much time can elapse between becoming hungry and eating.
Nor does it distinguish between different occurrences of becoming hungry at
different times.
We have already seen briefly in earlier chapters that one way of dealing with

time is by including time points in the mental language with such representa-
tions of the temporal relationship between cause and effect as:

an animal has an object at a time
if the animal is near the object at an earlier time

8: Maintenance goals as the driving force of life 111

and the animal picks up the object at the earlier time

and nothing terminates the animal having the object between the two times.

In a similar way, the fox’s maintenance goal with explicit temporal relationships
can be represented like this:

if I become hungry at a time
then I have some food at a later time
and I eat the food at the later time.

Although the different times and temporal relationships are explicit, they can be
made more precise with a little symbolic notation:

for every time T1
if I become hungry at time T1
then there exists a time T2 and an object O such that O is food
and I have O at time T2
and I eat O at time T2
and T1 ≤ T2.

Here the variable T1 is universally quantified with scope the entire goal, and the
variables T2 and O are existentially quantified with scope the conclusion of the
goal.
Although this representation does not put any limit on the amount of time that

can elapse between the time T1 of becoming hungry and the time T2 of having
food and eating, it does at least indicate their temporal order. It would be easy to
add an extra condition to the conclusion, for example T2 ≤T1 + 24 hours, but it
would be hard to quantify the limit exactly.
The alternative to adding an extra condition is to leave the decision

about when to do what to the decision-making component of the agent
cycle. This way, the decision is made in the broader context of the totality of
the agent’s current goals, balancing the urgency, utility and probability of
achieving one goal against another. We shall investigate such decision making
in Chapter 11 and return to the revised story of the fox and the crow in the
section after next.

Maintenance goals as the driving force of life

The notion of maintenance goal arises, in one guise or another, in many different
disciplines, often in opposition to the notion that the purpose of life, whether of
an individual or of an organisation, consists of achievement goals.

112 Computational Logic and Human Thinking

At the lowest level, even below the level of condition–action rules, main-
tenance goals appear in the biological mechanism of homeostasis, which plants
and animals use to maintain a stable relationship with their environment. For
example, homeostasis controls our body’s temperature by causing us to sweat
when it’s too hot, and to shiver when it’s too cold. The body’s homeostatic
temperature control mechanism is like a maintenance goal, implemented in hard-
ware rather than in software, responding to observations of the current temperature
by generating actions to keep the body in balance with the changing environment.
More importantly for the topic of this book, an analogous notion appears also

in Management Science, where it is associated with the so-called soft systems
methodology, developed by Peter Checkland (2000) and inspired by Sir
Geoffrey Vickers’ notion of appreciative system. Vickers (1965) developed
the notion of appreciative system as the result of his practical experience in
management and administration in the British civil service, as a member of the
National Coal Board and other public bodies.
In his work, Vickers acknowledged the influence of Simon’s (1957, 1960)

model of management, in which individuals and organisations set goals, consider
alternative solutions and evaluate alternatives tomake decisions. However, Vickers
sought to transcend this goal-oriented view of management by supplementing
it with a view that is more “appreciative” of the tight coupling between agents
and their environment. As Checkland (2000) puts it, in an appreciative system:

“we all do the following:
selectively perceive our world;
make judgements about it,
judgements of both fact (what is the case?) and
value (is this good or bad, acceptable or unacceptable?);
envisage acceptable forms of the many relationships
we have to maintain over time; and
act to balance those relationships in line with our judgements.”

Here there is an obvious similarity both with the agent cycle in general and with
the focus on maintaining relationships between perceptions and actions.
Judgements of value are a matter for the decision-making component of the
agent cycle, which we investigate in Chapter 11.

Embedding goals and beliefs in the agent cycle

We return to the story of the fox and the crow. For simplicity, to focus on the way
in which the fox’s reasoning is integrated with the agent cycle, we ignore the
factor of time, and ignore the alternative ways in which the fox can attempt to

8: Maintenance goals as the driving force of life 113

achieve the goal of having food. Suppose, therefore, that the fox has the
following maintenance goal and beliefs:

Goal: if I become hungry, then I have food and I eat the food.
Beliefs: an animal has an object

if the animal is near the object
and the animal picks up the object.

I am near the cheese
if the crow has the cheese
and the crow sings.
the crow sings if I praise the crow.

cheese is a kind of food.
food is a kind of object.

For simplicity, we assume that the different components of the cycle – observing,
thinking, deciding and acting – occur in sequence. In a real agent these individual
components of the cycle might take place concurrently or even in parallel. To
simulate concurrency, we will assume that the fox is such a rapid cycler that she
has only enough time to perform one step of thinking in a single cycle.
Wewill also assume that the fox’s attempts to perform an action can fail, and that

in the next step of the cycle she gets feedback by observing whether her actions
succeed or fail. We retell the story from the point where the fox becomes hungry.

The first iteration of the cycle

This is the classic case of an observation triggering a maintenance goal and
deriving an achievement goal.

Observation: I become hungry.
Forward reasoning, achievement goal: I have food and I eat the food.
No candidate action.

The second iteration

The only thinking that the fox can do in this cycle is to reason backwards, to
reduce the subgoal of having food to the subgoal of being near the food and
picking it up. This reasoning involves the taxonomic reasoning of matching
“food” with “object”.

No observation.
Backward reasoning, new subgoals: I am near food and I pick up the food and

I eat the food.
No candidate action.

114 Computational Logic and Human Thinking

The third iteration

In this iteration of the cycle, we suppose that the fox observes the crow has
cheese. The fox has the choice of continuing to reason backwards from its
current subgoals or of reasoning forwards from its new observation. Generally,
it is a good idea to give priority to reasoning with new observations, just in case
there is an emergency that needs to be dealt with immediately or an opportunity
that shouldn’t be missed.
The observation matches one of the conditions of her belief I am near the

cheese if the crow has the cheese and the crow sings. Because the belief is
expressed in logical form, it can be used to reason forward or backward. Using it
to reason forward, as in this case, it gives rise to a new belief.

Observation: The crow has cheese.
Forward reasoning, new belief: I am near the cheese if the crow sings.
No candidate action.

The fourth iteration

The fox matches the conclusion of the new belief with the subgoal I am near
food, by instantiating the universally quantified variable food with cheese. This
could be viewed as either forward or backward reasoning, or just marrying up
the two, which is another case of the resolution rule presented in Chapter A5. No
matter how you look at it, the effect is to reduce the goal of being near food to
the subgoal of making the crow sing. This has the side-effect of finding out what
the food is going to be if the new subgoals succeed.

No observation.
New subgoals: the crow sings and I pick up the cheese

and I eat the cheese.
No candidate action.

The fifth iteration

The fox reduces the subgoal of making the crow sing to the subgoal of praising
the crow. She now has a plan of actions, which she can start to execute. In this
representation of actions without time, there is nothing to indicate the order in
which the actions should be performed. So she cheats, knowing that in a
representation with explicit time, it would be obvious that the new action
I praise the crow should be performed first.

8: Maintenance goals as the driving force of life 115

No observation.
Backward reasoning, new subgoals: I praise the crow and I pick

up the cheese and I eat the cheese.
Action: I praise the crow.

The sixth iteration

The fox observes the result of the action she performed in the previous cycle.
Assuming that the fox has not lost her voice, the observation confirms the
success of her action, and solves the first of the three action subgoals, leaving
the remaining two subgoals. The next of these two subgoals is also an action;
and, given the intended order of the actions, there are no other candidate actions
that she can perform at this time.

Observation: I praise the crow.
Forward reasoning, remaining subgoals: I pick up the cheese

and I eat the cheese.
Action: I pick up the cheese.

The seventh iteration

The fox observes the result of her action. However, this time, to make the story
more interesting, assume that the action fails, either because the crow has not yet
started singing, because the cheese has not yet reached the ground, or because
the fox is physically inept. We also assume that the fox can try the same action
again, provided that if there is a time limit on when the action needs to be
performed, then that limit has not yet been reached.

Negative observation: I do not pick up the cheese.
No thinking that can be shown without an explicit representation of time.
Action: I pick up the cheese.

The negative observation I do not pick up the cheese can be regarded as a
negative response to the action I pick up the cheese, viewed as a query do I pick
up the cheese? from the fox to the world.
In general, an agent’s attempted actions can be regarded as queries posed to

the world. In the simplest and ideal case, the world just responds in the
affirmative, confirming that the action has succeeded. In the worst case, the
world responds that the action has failed. But in the general case, the action may
contain an existentially quantified variable representing an unknown, for

116 Computational Logic and Human Thinking

example to indicate how far an action of moving forward one step actually
succeeds. In such a case the world responds by instantiating the variable, giving
feedback about the result of the action.
In our semantics, in which the world is described only by means of posi-

tive facts, a negative observation can be understood as a negative reply from the
world to an attempted action or to an active observation by the agent.

The eighth iteration

The fox observes that the action was successful this time. The observation
solves the associated action subgoal, leaving only the last action in the plan,
which the fox decides to perform in this cycle.

Observation: I pick up the cheese.
Forward reasoning, remaining subgoal: I eat the cheese.
Action: I eat the cheese.

The ninth iteration

The observation of the successful performance of the action solves the last of the
action subgoals. However, the maintenance goal remains, to be triggered on
other, future occasions.

Observation: I eat the cheese.

The general pattern of reasoning in this example, spread out over several cycles
and interleaved with other observations and actions, is this:

Observation: An event happens.
Forward reasoning: The event matches a condition of

a maintenance goal or belief.
Achievement goal: Eventually, after a combination of forward and

backward reasoning, an instance of the conclusion
of a maintenance goal is derived
as an achievement goal.

Backward reasoning: Beliefs are used to reduce the achievement goal
to actions.

Actions: Action subgoals are selected for execution.
Observation: The agent observes whether the actions

succeed or fail. Actions that fail are retried
if their time limit has not expired.

8: Maintenance goals as the driving force of life 117

The simple pattern of reasoningneeds to bemademore elaborate, bymonitoringnot
only whether the agent’s actions succeed, but also whether its goals succeed. If its
actions succeed, but its goals do not, then some of its beliefs, linking its actions to its
goals, must be false. The agent can attempt both to diagnose the failure by identify-
ing the false beliefs and to avoid future failures by correcting the faulty beliefs.
The general process of using confirming and refuting instances of beliefs to

learn more correct beliefs is the basic technique of inductive logic program-
ming (Muggleton and De Raedt, 1994). The integration of inductive logic
programming into the agent cycle has been investigated by Dávila and
Uzcátegui (2005), but is beyond the scope of this book.
The general pattern of reasoning that is exemplified by the story of the fox

and the crow is not exceptional. A similar pattern arises in the London
Underground example.

The London Underground revisited

Consider the following formulation of the London Underground example,
ignoring other ways of dealing with emergencies and other ways of getting help:

Maintenance goal: if there is an emergency then I get help.
Beliefs: a person gets help if the person alerts the driver.

a person alerts the driver if the person presses the alarm signal button.
there is an emergency if there is a fire.
there is an emergency if one person attacks another.
there is an emergency if someone becomes suddenly ill.
there is an emergency if there is an accident.

Here the last four beliefs can be viewed as part of the definition of a hierarchy of
classes of events. These definitions could be extended upwards, for example by
classifying an emergency as a kind of threat that needs to be dealt with immedi-
ately. They could be extended sideways by adding other kinds of emergencies.
The hierarchy could also be extended downwards, for example by classifying

different kinds of accidents. However, for the purpose of the present example,
assume that we have additional beliefs, which do not classify fires, but help to
recognise their manifestations. For simplicity, we represent these beliefs in the
form cause if effect. We use this form, rather than the more fundamental causal
formulation effect if cause, because it simplifies the kind of reasoning needed.
We will discuss the reasoning, called abduction, needed for the causal formu-
lation in Chapter 10. Moreover, we will also discuss the relationship between
the two formulations when we discuss the treatment of conditionals as bicondi-
tionals in Chapter 15.

118 Computational Logic and Human Thinking

Additional beliefs: there is a fire if there are flames.
there is a fire if there is smoke.

This decomposition of the problem of recognising fire could be carried on
indefinitely. But we would soon find it impossible to describe all the necessary
lower-level concepts in recognisable, linguistic terms. Eventually, there must
come a point at which there is a lowest level, which is irreducible to lower-level
concepts. This is the level at which the agent’s sensory system transforms the
sensations it receives from the world into observations that can be represented
as concepts in symbolic terms.
Suppose, for thesakeof theexample, that theconceptsofflamesandsmokeare the

lowest-level concepts directly observable in the environment. Suppose, moreover,
that you are travelling on the Underground and you observe smoke. Without going
into all of the detail we went into for the fox and crow example, your reasoning,
possibly spread across several iterations of the agent cycle, will look like this:

Observation: there is smoke.
Forward reasoning, new belief: there is a fire.
Forward reasoning, new belief: there is an emergency.
Forward reasoning, achievement goal: I get help!
Backward reasoning, subgoal: I alert the driver!
Backward reasoning, action: I press the alarm signal button!

We can picture this combination of forward and backward reasoning like this:

If there is an emergency then get help

Forward
reasoning

Backward
reasoning

get help

press the alarm
signal button

There is a fire alert the driver

There is smoke

The world

There is an emergency

Observe Act

8: Maintenance goals as the driving force of life 119

The action of pressing the alarm signal button, like the observation of an
emergency, can be reduced to lower-level terms; for example, by first moving
your finger to the button and then pushing the button with your finger. Moving
your finger to the button can also be reduced, in turn, to still lower-level
subgoals, like first moving your arm to the vicinity of the button and then
fine-tuning the movement of your finger to the button. But eventually, there has
to be a point where your body takes over from your mind and performs the
actions directly on its own.
All of this thinking takes time, during which you may have to deal with other

observations and perform other actions. Scheduling actions so that everything is
dealt with in a timely manner is a task for the decision-making component of the
agent cycle. We have kept the examples in this chapter deliberately simple, so
that no such decisions need to be made. However, we will address the problem
of making decisions in Chapter 11.

The semantics of maintenance goals reconsidered

The same definition of truth applies to both conditional goals and conditional
beliefs. In general a conditional, whether a goal or a belief, is true if and only if
either its conditions are false or its conclusion is true. In the first case, when its
conditions are false, the conditional is true because then it doesn’t matter
whether its conclusion is true or false. In the second case, when its conclusion
is true, the conditional is true because then it doesn’t matter whether its
conditions are true or false. The only case that matters is the case in which a
conditional can fail to be true, and that is when the conditions are true and the
conclusion is false.
The difference between an agent’s goals and its beliefs is that the world

determines the truth of the agent’s beliefs, but maintaining the truth of the
agent’s goals partly determines the world.
An agent’s actions serve no other purpose than to make its goals true in the

world. To make a maintenance goal true, it is enough for the agent to make the
conclusion truewhenever the world makes the conditions true. Either the world
makes the conditions true independently of the agent, whether the agent likes it
or not; or the world makes them true, because the agent has made them true for
some other purpose of its own.
The agent need not make the conclusion of a maintenance goal true

when the conditions are false; and it need not make extra work for itself,
by first making the conditions true, and then being forced to make the
conclusion true.

120 Computational Logic and Human Thinking

However, there is another case in which an agent can make a maintenance
goal true, which although it is not strictly necessary can nonetheless be very
useful. It is the case in which an agent makes the conditions false, to prevent
them from becoming true, to avoid the need to make the conclusion true in the
future. For example, although an agent can make true the goal if there is an
emergency then I get help simply by waiting for an emergency and then getting
help, it can also make the goal true by preventing the emergency instead.
We will see how Computational Logic deals with preventative maintenance in

Chapter A6. In the meanwhile, we note that, if production systems are viewed in
logical terms, then they make condition–action rules true only by making their
conclusions true when the world makes their conditions true. They cannot make
condition–action rules true by preventing their conditions from becoming true.

Prohibitions

Prevention can be viewed as a voluntary form of prohibition. Given the
obligation of making a maintenance goal true, an agent has a choice: Either
make the conclusion true when the conditions become true, or make the
conditions false, preventing the conditions from becoming true. With genuine
prohibitions there is no choice: Make the conditions false.
A prohibition can be regarded as a special kind of maintenance goal whose

conclusion is literally false. For example:

if you steal then false.
i.e. Do not steal.

if you are drinking alcohol in a bar and are under eighteen then false.
i.e. Do not drink alcohol in a bar if you are under eighteen.

if you are liable to a penalty for performing an action
and you cannot afford the penalty and you perform the action
then false.

i.e. Do not perform an action
if you are liable to a penalty for performing the action
and you cannot afford the penalty.

The advantage of regarding prohibitions as a special kind of maintenance goal is
that the same semantics and the same inference rules that apply to maintenance
goals in general also apply to prohibitions in particular.
The semantics of maintenance goals applies to prohibitions, because the

only way to make a conditional true if its conclusion is false is to make the
conditions false.

8: Maintenance goals as the driving force of life 121

We will see later that reasoning forwards with a maintenance goal can be
triggered not only by an observation, but also by a hypothetical candidate
action. Similarly, the consideration of a candidate action can trigger forward
reasoning with a prohibition. Backward reasoning can then attempt to deter-
mine whether the other conditions of the prohibition are true. If they are, then
one step of forward reasoning derives the conclusion false. The only way to
make the prohibition true, therefore, is to make the conditions of the prohibition
false, by making the candidate action false and thereby eliminating it from
further consideration. For example:

if you are considering stealing, then banish it from your thoughts.

if you are tempted to drink alcohol in a bar
and are under eighteen, then don’t.

if you are thinking of performing an action
and you are liable to a penalty for performing the action
and you cannot afford the penalty, then do not perform the action.

Constraints

Prohibitions are constraints on the actions you can perform. But there can also
be constraints on what you are willing to believe. Constraints of this second
kind are familiar in the context of computer databases, where they maintain the
integrity of the database, and for this reason are called integrity constraints.
For example, a family database might contain such integrity constraints as:

if X is the mother of Y and X is the father of Z then false.
i.e. No one is both a mother and a father.

if X is an ancestor of X then false.
i.e. No one is their own ancestor.

Integrity constraints are used to reject an update of the database that makes an
integrity constraint false. For example, the second of the two integrity con-
straints above, would reject the following update to the database given by:

Update: Enoch father of Adam
Database: Eve mother of Cain

Eve mother of Abel
Adam father of Cain
Adam father of Abel
Cain father of Enoch

122 Computational Logic and Human Thinking

Enoch father of Irad
X ancestor of Y if X mother of Y
X ancestor of Y if X father of Y
X ancestor of Z if X ancestor of Y and Y ancestor of Z.

The pattern of reasoning to check the integrity of the update is the same as the
pattern for assimilating observations:

Update: Enoch father of Adam
Forward reasoning: Enoch ancestor of Adam
Forward reasoning: X ancestor of Adam if X ancestor of Enoch
Backward reasoning: X ancestor of Adam

if X ancestor of Y and Y ancestor of Enoch
Backward reasoning: X ancestor of Adam

if X ancestor of Y and Y father of Enoch
Backward reasoning: X ancestor of Adam if X ancestor of Cain
Backward: X ancestor of Adam if X father of Cain
Backward reasoning: Adam ancestor of Adam
Forward reasoning: false.

In a conventional database, the update would be rejected, because it implies the
impossible conclusion false. But in Quine’s web of belief, any of the goals or
beliefs involved in the derivation of false could be deemed the culprit, and could
be rejected or revised instead.
But belief and goal revision are complicated processes, not to be under-

taken lightly. Fortunately, in many cases, full-scale revision is unnecessary
because it is obvious from the start which goals and beliefs are regarded
with suspicion and which are deemed to be beyond any doubt. In the case
of database updates, the integrity constraints are treated as given, and old
data has higher priority than new data. So if new data violates an integrity
constraint, it is the new data that takes the blame. In other applications,
such as in learning new beliefs, in which the beliefs are under suspicion,
the observations have higher priority than other beliefs, and belief revision
is used to refine the beliefs.
In subsequent chapters we will see that constraints play an important role in

eliminating candidate explanations of observations (abduction), and in elimi-
nating candidate actions (prohibition). In these applications, it is even more
obvious than in the case of database updates that it is the candidate explanation
or action that is on trial, and which is the sole potential culprit to be rejected if
falsity is derived.

8: Maintenance goals as the driving force of life 123

Summary

The examples in this chapter illustrate how logic can be used in the context of an
agent’s observation–thought–decision–action cycle. Placed in this context,
logic is used for the higher levels of thought – both to reason forwards from
observations, triggering maintenance goals and deriving achievement goals,
and to reason backwards to reduce achievement goals to actions.
Below the logical level, sensory and perceptual processes transform raw sensa-

tions into observations, and motor processes transform conceptual representations
of actions into raw physical activity. The entire process can be pictured like this:

Forward
reasoning

Backward
reasoning

Maintenance goal

Observe Act

Sensory
processes

Motor
 processes

Achievement goal

The world

We have seen that forward reasoning with maintenance goals generalises
condition–action rules, achievement goals generalise the actions of condition–
action rules, and backward reasoning with beliefs generates plans of action. In
later chapters, we will see how backward reasoning can also be used to explain
observations (abduction) and how forward reasoning can also be used to infer
consequences of both candidate explanations of observations and candidate
actions. We will also see how this use of forward reasoning from candidate
explanations and actions helps to inform the next, decision-making stage in the
cycle, so that different candidates can be compared, and better informed decisions
can be made.
But first, in the next chapter, we will see that much of this sophisticated

reasoning can often be compiled into more efficient, lower-level stimulus–
response associations.

124 Computational Logic and Human Thinking

9

The meaning of life

It’ls bad enough to be a Mars explorer and not to know that your purpose in life
is to find life on Mars. But it’s a lot worse to be a wood louse and have nothing
more important to do with your life than just follow the meaningless rules:

Goals: if it’s clear ahead, then I move forward.
if there’s an obstacle ahead, then I turn right.
if I am tired, then I stop.

In fact, it’s even worse than meaningless. Without food the louse will die,
and without children the louse’s genes will disappear. What is the point
of just wandering around if the louse doesn’t bother to eat and make
babies?
Part of the problem is that the louse’s body isn’t giving it the right signals –

not making it hungry when it is running out of energy, and not making it desire a
mate when it should be having children. It also needs to be able to recognise
food and eat, and to recognise potential mates and propagate.
So where does the louse go from here? If it got here by natural evolution, then

it has nowhere to go and is on the road to extinction.
But if it owes its life to some Grand Designer, then it can plead with her to

start all over again, this time working from the top down. The Grand Designer
would need to rethink the louse’s top-level goals, decide how to reduce them to
subgoals and derive a new, more effective specification of the louse’s input–
output behaviour.
Suppose the Grand Designer identifies these as the louse’s top-level goals:

Top-level goals: the louse stays alive for as long as possible and
the louse has as many children as possible.

Of course, a critic might well ask: What purpose do these goals serve, and why
these goals and not others? Perhaps staying alive is just a subgoal of having
children. And perhaps having children is just one way of promoting the survival

125

of one’s genes. But eventually the critic would have to stop. Otherwise he could
continue asking such questions forever.
To reduce the louse’s top-level goals to subgoals, the designer needs to use her

beliefs about the world, including her beliefs about the louse’s bodily capabilities.
Moreover, she can build upon her earlier design, inwhich the lousemoved around
aimlessly, and give its movements a purpose. She could use such beliefs as:

Beliefs: the louse stays alive for as long as possible,
if whenever it is hungry then it looks for food
and when there is food ahead it eats it,
and whenever it is tired then it rests,
and whenever it is threatened with attack then it defends itself.

the louse has as many children as possible,
if whenever it desires a mate then it looks for a mate and
when there is a mate ahead it tries to make babies.

the louse looks for an object,
if whenever it is clear ahead then it moves forward,
and whenever there is an obstacle ahead and it isn’t the object

then it turns right
and when the object is ahead then it stops.

the louse defends itself if it runs away.

food is an object.
a mate is an object.

If the louse were as intelligent as the designer, then the designer could just
hand these beliefs and the top-level goal directly over to the louse itself. The
louse could then reason forwards and backwards, as the need arises, and would be
confident of achieving its goals, provided the designer’s beliefs are actually true.
But the louse possesses neither the designer’s obvious physical attractions,

nor her superior intellect and higher education. The designer, therefore, not only
has to identify the louse’s requirements, but she has to derive an input–output
representation, which can be implemented in the louse, using its limited phys-
ical and mental capabilities.
One way for the designer to do her job is to do the necessary reasoning for the

louse in advance. She can begin by reasoning backwards from the louse’s top-
level goals, to generate the next, lower level of subgoals:

Subgoals: whenever the louse is hungry then it looks for food and
when there is food ahead it eats it, and
whenever the louse is tired then it rests, and

126 Computational Logic and Human Thinking

whenever the louse is threatened with attack then it defends
itself and

whenever the louse desires a mate then it looks for a mate and
when there is a mate ahead it tries to make babies.

The English words “whenever” and “when” are different ways of saying “if”,
but they carry an additional, temporal dimension.1 It would be a distraction to
deal with such temporal issues here. For that reason, it is useful to reformulate
the subgoals in more conventional logical terms. At the same time, we can take
advantage of the reformulation to eliminate an ambiguity associated with the
scope of the words “and when”:

Subgoals: if the louse is hungry then it looks for food, and
if the louse is hungry and there is food ahead then it eats it, and
if the louse is tired then it rests, and
if the louse is threatened with attack then it defends itself, and
if the louse desires a mate then it looks for a mate, and
if the louse desires a mate and there is a mate ahead
then it tries to make babies.

Unfortunately, the designer’s work is not yet done. Some of the conclusions of
the subgoals include other goals (like looking for food, defending itself, and
looking for a mate) that need to be reduced to still lower-level subgoals.2

Fortunately, for the designer, this is easy work. It takes just a little further
backward reasoning and some logical simplification3 to derive a specification
that a behaviourist would be proud of:

New goals: if the louse is hungry and it is clear ahead
then the louse moves forward.

if the louse is hungry and there is an obstacle ahead and it isn’t food
then the louse turns right.

if the louse is hungry and there is food ahead
then the louse stops and it eats the food.

if the louse is tired then the louse rests.

if the louse is threatened with attack then the louse runs away.

if the louse desires a mate and it is clear ahead
then the louse moves forward.

1 It is interesting that both the temporal and logical interpretations of the ambiguous English
word “then” are meaningful here.

2 For simplicity, we assume that running away, resting and trying to make babies are all
actions that the louse can execute directly without reducing them to lower-level subgoals.

3 The necessary simplification is to replace sentences of the form if A, then if B then C by logically
equivalent sentences of the form if A and B then C.

9: The meaning of life 127

if the louse desires a mate and there is an obstacle ahead and it
isn’t a mate then the louse turns right.

if the louse desires a mate and there is an obstacle ahead and it is
a mate then the louse stops and it tries to make babies.

The new goals specify the louse’s input–output behaviour and can be imple-
mented directly as a production systemwithout memory. However, the new goals
are potentially inconsistent. If the louse desires a mate and is hungry at the same
time, then it may find itself in a situation, for example, where it has to both stop
and eat and also turn right and look for a mate simultaneously. To avoid such
inconsistencies, the louse would need to perform conflict resolution.
But if it’s too much to expect the louse to reason logically, it’s probably also

too much to expect the louse to perform conflict resolution. And it’s certainly far
too much to expect it to apply decision theory to weigh the relative advantages
of satisfying its hunger compared with those of satisfying its longing for a mate.
The simplest solution is for the designer to make these decisions for the louse,
and to build them into the specification:

if the louse is hungry and is not threatened with attack and
it is clear ahead then the louse moves forward.

if the louse is hungry and is not threatened with attack and
there is an obstacle ahead and it isn’t food and it doesn’t desire a mate
then the louse turns right.

if the louse is hungry and is not threatened with attack and
there is food ahead then the louse stops and eats the food.

if the louse is tired and is not threatened with attack and
is not hungry and does not desire a mate then the louse rests.

if the louse is threatened with attack then the louse runs away.

if the louse desires a mate and is not threatened with attack and
it is clear ahead then the louse moves forward.

if the louse desires a mate and is not threatened with attack and
is not hungry and there is an obstacle ahead and it isn’t a mate
then the louse turns right.

if the louse desires a mate and is not threatened with attack and
there is a mate ahead then the louse stops and tries to make babies.

if the louse desires a mate and is hungry and
is not threatened with attack and

128 Computational Logic and Human Thinking

there is an obstacle ahead and it isn’t a mate and it isn’t food
then the louse turns right.

The new specification is a collection of input–output associations that give
highest priority to reacting to an attack, lowest priority to resting when tired,
and equal priority to mating and eating. Now the only situation in which a
conflict can arise is if there is a mate and food ahead at the same time. Well,
you can’t always worry about everything. Even a wood louse deserves a
modicum of free will, even if it means nothing more than making a random
choice.

The mind/body problem

In general, a designer’s job ends when she has constructed a declarative
description of her object’s input–output behaviour. How that behaviour is
implemented inside the object is not her concern.
In computer science, this decoupling of an object’s design from its imple-

mentation is called encapsulation. The implementation is encapsulated inside
the object. Objects can interact with other objects, taking only their input–
output behaviour into account.
The notion of encapsulation partially vindicates the behaviourist’s point of

view. Not only is it impossible in many cases to determine what goes on inside
another object, but for many purposes it is also unnecessary and even
undesirable.
Our louse is no exception. It would be easy, given the input–output specifi-

cation, to implement the louse’s behaviour using a primitive production system
without memory and without conflict resolution. But does the louse need to
have a mind at all – to represent concepts such as hunger and food and to derive
symbolic representations of its actions? Does the louse really need to carry
around all this mental baggage, when the necessary, instinctive behaviour can
be hardwired, as a collection of input–output associations, directly into the
louse’s body instead?4

Similarly, as we saw in Chapter 7, a designer might specify a thermostat in
symbolic terms. But it doesn’t follow that the thermostat needs to manipulate
symbolic expressions to generate its behaviour. Most people would be perfectly

4 This argument has been made, among others, by Rodney Brooks at MIT, who has implemented
several generations of mindless, louse-like robots, which display impressively intelligent
behaviour.

9: The meaning of life 129

happy if the design were implemented with a simple mechanical or electronic
device.
In the same way that a thermostat’s behaviour can be viewed externally

in logical, symbolic terms, without implying that the thermostat itself
manipulates symbolic expressions, our louse’s behaviour can also be
implemented as a collection of instinctive input–output associations in a
body without a mind.

Dual process theories of intuitive and deliberative thinking

In our imaginary example, the Grand Designer has a high-level awareness of the
louse’s goals and has beliefs that explain how the louse’s behaviour helps the
louse to achieve its goals. But the louse has only low-level, instinctive input–
output associations, without being aware of their purpose.
But people are different. Although much of our human behaviour is intuitive,

instinctive and sometimes even mindless, we can often step back from our
intuitive judgements, consciously deliberate about their implicit goals, and
control our behaviour to better achieve those goals. It is as though we could
be both a louse and a louse designer at the same time.
This combination of intuitive and deliberative thinking is the focus of

dual process theories of human thinking. As Kahneman and Frederick (2002)
put it, the intuitive, subconscious level “quickly proposes intuitive answers to
judgement problems as they arise”, while the deliberative, conscious level
“monitors the quality of these proposals, which it may endorse, correct, or
override”.
In Computational Logic, dual process theories have both a computational and

logical interpretation. The computational interpretation is that, when an agent is
deliberative, its behaviour is controlled by a high-level program, which manip-
ulates symbols that have meaningful interpretations in the environment. But
when the agent is intuitive, its behaviour is generated by a low-level program or
physical device, whose structure is largely determined by the physical charac-
teristics of the agent’s body.
The logical interpretation of dual process theories is that, when an agent is

deliberative, its behaviour is generated by reasoning with high-level goals and
beliefs. When the agent is intuitive, its behaviour is determined by low-level
input–output associations, even if these associations can also be represented in
logical form.

130 Computational Logic and Human Thinking

Two kinds of thinking on the Underground

The London Underground example illustrates the two kinds of thinking and the
relationship between them. The high-level representation contains an explicit
representation of the goal, and the supporting beliefs:

Goal: if there is an emergency then I get help.

Beliefs: a person gets help if the person alerts the driver.
a person alerts the driver if the person presses the alarm signal button.
there is an emergency if there is a fire.
there is an emergency if one person attacks another.
there is an emergency if someone becomes seriously ill.
there is an emergency if there is an accident.
there is a fire if there are flames.
there is a fire if there is smoke.

A passenger can use the high-level goal and the beliefs explicitly, reasoning
forward from observations to recognise there is an emergency and to derive the
goal of getting help, and then reasoning backward, to get help by pressing the
alarm signal button.
However, the same behaviour can be generated more efficiently, with

less thought, by using a low-level representation in the form of input–output
associations or condition–action rules. This representation can also be
expressed in the logical form of maintenance goals, which need only
one step of forward reasoning to generate output actions from input
observations.

Goals: if there are flames then I press the alarm signal button.
if there is smoke then I press the alarm signal button.
if one person attacks another then I press the alarm signal button.
if someone becomes seriously ill then I press the alarm signal button.
if there is an accident then I press the alarm signal button.

The low-level representation can be derived from the high-level representation
by doing the necessary forward and backward reasoning in advance, before the
need arises.
The low-level representation is nearly as low as a representation can go, while

still remaining in logical form. However, it is possible to go lower, if the
associations are implemented by direct physical connections between the rele-
vant parts of the agent’s sensory and motor systems. This is like implementing
software in hardware.

9: The meaning of life 131

A computational interpretation of intuitive and
deliberative thinking

In computing, different levels of representation have different advantages and
are complementary. Low-level representations are more efficient. But high-
level representations are more flexible, easier to develop and easier to change.

In the London Underground example, the low-level representation lacks the
awareness, which is explicit in the high-level representation, of the goal of
getting help, which is the purpose of pressing the alarm signal button. If some-
thing goes wrong with the low-level representation, for example if the button
doesn’t work or the driver doesn’t get help, then the passenger might not realise
there is a problem. Moreover, if the environment changes, and there are new
kinds of emergencies, or newer and better ways of dealing with emergencies,
then it is harder to modify the low-level representation to adapt to the changes.
In computing, the high-level representation is typically developed first, some-

times not even as a program but as an analysis of the program requirements. This
high-level representation is then transformed, either manually or by means of
another program called a compiler, into a low-level, more efficiently executable
representation.
The reverse process is also possible. Low-level programs can sometimes be

decompiled into equivalent high-level programs. This is useful if the low-level
program needs to be changed, perhaps because the environment has changed or
because the program has developed a fault. The high-level representation can
then be modified and recompiled into a new, improved, lower-level form.
However, this reverse process is not always possible. Legacy systems, devel-

oped directly in low-level languages and modified over a period of many years,
may not have enough structure to identify their goals precisely and to decompile
them into higher-level form. But even then it may be possible to decompile them
partially and to approximate them with higher-level programs. This process of
rational reconstruction can help to improve the maintenance of the legacy system,
even when wholesale reimplementation is not possible.

The relationship between intuitive and
deliberative thinking

This relationship between high-level and low-level programs in computing has
similarities with the relationship between deliberative and intuitive thinking in
people.

132 Computational Logic and Human Thinking

Compiling a high-level program into a lower-level program in computing is
similar to the migration from deliberative to intuitive thinking that takes place, for
example, when a person learns to use a keyboard, play amusical instrument or drive
a car. In computing, compiling a high-level program or specification is normally
done by reasoning in advance, before the more efficient program is implemented.
But in human thinking, it is more common to collapse an explicit high-level
representation into a lower-level shortcut after an extended period of repeated use.
Decompiling a low-level program into a higher-level program is similar to the

process of reflecting on subconscious knowledge and representing it in con-
scious terms – for example, when a linguist constructs a formal grammar for a
natural language. Whereas a native speaker of the language might know the
grammar only tacitly and subconsciously, the linguist formulates an explicit
model of the grammar consciously and deliberatively. Non-native speakers can
learn the explicit grammar, and with sufficient practice eventually compile the
grammar into more efficient and spontaneous form.

Conclusions

Computational Logic is a wide-spectrum language of thought, which can
represent both high-level goals and beliefs, as well as low-level stimulus–
response associations. An intelligent agent can use the high-level representation
when time allows, and the low-level representation when time is limited. It can
also use both representations simultaneously.
An agent may have inherited its stimulus–response associations at birth, and

finely tuned them to its own personal experiences. If so, then it can reasonably
rely upon them when new situations are similar to situations that the agent and
its designer or ancestors have successfully dealt with in the past.
An intelligent agent, on the other hand, might also be able to reflect upon its

behaviour and formulate an understanding of the consequences of its actions.
The agent can use this higher-level understanding, to help it better achieve its
fundamental goals, especially in new situations that are unlike situations that
have arisen in the past.
In the more advanced Chapter A5, I show how the resolution rule of inference

can be used to perform not only forward and backward reasoning when they are
needed in the current situation, but also similar kinds of reasoning in advance.
This kind of reasoning in advance can be viewed as compiling high-level
representations of goals and beliefs into more efficient, lower-level form.

The ability to combine the two levels of representation combines their
individual strengths and compensates for their individual weaknesses.

9: The meaning of life 133

10

Abduction

Most changes in the world pass us by without notice. Our sensory organs and
perceptual apparatus filter them out, so they do not clutter our thoughts with
irrelevancies. Other changes enter our minds as observations. We reason for-
ward from them to deduce their consequences, and we react to them if neces-
sary. Most of these observations are routine, and our reactions are spontaneous.
Many of them do not even make it into our conscious thoughts.
But some observations are not routine: the loud bang in the middle of the

night, the pool of blood on the kitchen floor, the blackbird feathers in the pie.
They demand explanation. They could have been caused by unobserved events,
which might have other, perhaps more serious consequences. The loud bang
could be the firing of a gun. The pool of blood could have come from the victim
of the shooting. The blackbird feathers in the pie could be an inept attempt to
hide the evidence.
Even routine observations can benefit from explanation: Why do the Sun, the

Moon and the stars rise in the East and set in theWest?Why does the door stick?
Why do the apples drop before they are ready to eat? Explaining routine
observations helps us to discover new connections between otherwise unrelated
phenomena, predict the future and reconstruct the past.
An agent might explain its observations by using its existing beliefs or by

using new hypothetical beliefs. Both kinds of explanation deductively imply the
observations, because if the explanations are true, then the observations are true.
Forward reasoning is a natural way to justify explanations after they have been
found, but backward reasoning is normally a much better way of actually
finding them. As Sherlock Holmes explained to Dr. Watson, in A Study in
Scarlet:

“I have already explained to you that what is out of the common is usually a guide
rather than a hindrance. In solving a problem of this sort, the grand thing is to be
able to reason backward. That is a very useful accomplishment, and a very easy one,

134

but people do not practise it much. In the everyday affairs of life it is more useful
to reason forward, and so the other comes to be neglected. There are fifty who can
reason synthetically for one who can reason analytically.”

“I confess,” said I, “that I do not quite follow you.”
“I hardly expected that you would. Let me see if I can make it clearer. Most people,

if you describe a train of events to them, will tell you what the result would be.
They can put those events together in their minds, and argue from them that
something will come to pass. There are few people, however, who, if you told them a
result, would be able to evolve from their own inner consciousness what the steps
were which led up to that result. This power is what I mean when I talk of
reasoning backward, or analytically.”

Backward reasoning can be used to find explanations, whether the resulting
explanations use existing beliefs or generate new hypothetical beliefs. Forward
reasoning, in contrast, makes sense only when deducing consequences from
existing beliefs or hypotheses. To use forward reasoning to explain an obser-
vation, you have to make a guess in the dark, generate a hypothesis, and then
check whether or not the hypothesis has any relevance to the observation. With
backward reasoning, the hypothesis is generated automatically and guaranteed
to be relevant.
But the main problem with explaining an observation is, not so much the

problem of generating relevant explanations, but the problem of deciding which
is the best explanation, given that there can be many alternative, candidate
explanations for the same observation. We will see later that the problem of
determining the best explanation is similar to the problem of determining the
best plan for achieving a goal.
Hypothetical beliefs come in two forms: in the form of general rules (or

conditionals) and in the form of specific facts. Hypotheses in the form of general
rules represent connections between several observations; and the process of
generating hypotheses in the form of rules is known as induction. Generating
hypotheses by induction is hard, and includes the case of generating a scientific
theory, like the laws of celestial motion. We shall return to the problem of
induction briefly in the concluding chapter of this book.
Hypotheses in the form of facts, on the other hand, represent possible

underlying causes of observations; and the process of generating them is
known as abduction. Typically, a hypothesis generated by abduction is trig-
gered by the desire to explain one or more particular observations. The more
observations the hypothesis explains, the better the explanation. Similarly, in
deciding between different plans of action, the more goals a plan achieves, the
better.
Abduction is possible only for an agent who has an open mind and is willing

to entertain alternative hypotheses. It is not possible for a close-minded agent,

10: Abduction 135

who thinks he knows it all. The simplest way to have an open mind, but to keep
the candidate hypotheses within manageable bounds, is to restrict them to open
predicates, to which selective closed-world assumptions and negation as failure
do not apply.
The term abduction was introduced by the logician Charles Sanders Peirce

(1931). He illustrated the difference between deduction, induction and abduc-
tion with the following example:

Deduction: All the beans from this bag are white.
These beans are from this bag:
Therefore These beans are white.

Induction: These beans are from this bag.
These beans are white.
Therefore All the beans from this bag are white.

Abduction: All the beans from this bag are white.
These beans are white.
Therefore These beans are from this bag.

Generating abductive hypotheses and deciding between them includes the
classic case in which Sherlock Holmes solves a crime by first identifying all
the hypothetical suspects and then eliminating them one by one, until only one
suspect remains. To put it in his own words (from The Adventure of the Beryl
Coronet): “It is an old maxim of mine that when you have excluded the
impossible, whatever remains, however improbably, must be the truth.”
SherlockHolmes described his reasoning technique as deduction. But deduction

in logic leads from known facts or observations to inescapable conclusions. If the
beliefs used to deduce the conclusions are true, then the conclusions must also be
true.Abduction, on the other hand, can lead from true observations and other beliefs
to false hypotheses. For this reason, abductive inference is said to be fallible or
defeasible. We will see in Chapter 15 that the distinction between deduction and
abduction is blurredwhen conditionals are interpreted as biconditionals in disguise.

The grass is wet

The time-worn example of abduction in Artificial Intelligence is to explain the
observation that the grass is wet when you get up one morning. Of course,
there are many possible explanations, but in this part of the world the most
likely alternatives are either that it rained or that the sprinkler was on. The
easiest way to find these explanations is by reasoning backwards from the

136 Computational Logic and Human Thinking

observation, treated as a goal,1 with causal connections represented in the form
effect if cause:

Beliefs: the grass is wet if it rained.
the grass is wet if the sprinkler was on.

Here the grass is wet is a closed predicate, and it rained and the sprinkler was on
are open predicates:

Observation: the grass is wet.

Backward reasoning: or

Hypotheses: it rained. the sprinkler was on.

Instead of failing to solve the goal, because there is no direct evidence that
either of the two subgoals hold, abduction by backward reasoning identifies
the two possible causes as alternative hypothetical explanations of the
observation.
It would be possible just to leave it at that: Either it rained or the sprinkler

was on. But to be on the safe side, it may pay to spend a little more
mental energy and pursue the logical consequences of the alternatives. If
it rained last night, then the clothes on the clothes line outside will be wet,
and you won’t be able to do the ironing you planned for this morning. If the
sprinkler was on, then your water bill is going to go through the roof, and you
had better disconnect the sprinkler in case it decides to turn itself on again
tonight.
Suppose you are too lazy or too clever to do the obvious thing and just go

outside and check the clothes on the clothes line or check the state of the
sprinkler. Instead, you might just sit in your living room armchair and reason
as follows: If it rained last night, then there will be drops of water on the living
room skylight. There are drops of water on the skylight. So it is likely that it
rained last night, because the assumption that it rained explains two independent
observations, compared with the assumption that the sprinkler was on, which
explains only one. The combination of backward and forward reasoning
involved in this example can be pictured like this:

1 Notice that treating observations as goals extends the notion of goal, beyond representing the
world as the agent would like it to be in the future, to explaining the world as the agent actually
sees it. This is because the two kinds of reasoning, finding actions to achieve a goal and finding
hypotheses to explain an observation, can both be viewed as special cases of the more abstract
problem of finding assumptions to deductively derive conclusions. See, for example, Kakas et al.,
(1998).

10: Abduction 137

Observation:
the skylight is wet. the grass is wet.

Forward Backward
reasoning: reasoning:

Hypotheses: it rained. the sprinkler was on.

For the moment, leave aside the possibility that some prankster might have got a
hose and aimed it at the skylight, just to throw you off the right explanation.
Thus, forward reasoning from alternative explanations can sometimes derive

additional consequences that can be confirmed by past or future observations.
The greater the number of such additional observations a hypothesis explains,
the better the explanation.We will see in the next chapter that forward reasoning
from alternative plans of action can also help to decide between alternative
plans. The greater the number of additional goals a plan achieves, the better
the plan.

The London Underground revisited again

In the previous chapters, we represented the relationships between fire, smoke
and flames in the form cause if effect. This form made it easy to assimilate the
observation of smoke and to conclude by forward reasoning that there is an
emergency. It would have been more natural to express the relationship in the
form effect if cause:

there are flames if there is a fire.
there is smoke if there is a fire.

However, with this representation, given the observation there is smoke, it is
impossible to derive there is an emergency by using deduction alone. It is
necessary instead to first use abduction, to determine that there is a fire as the
explanation of the observation, and then use forward reasoning as before.
This comparison between the two ways of representing the connection

between cause and effect might remind you of the discussion in Chapter 2
about the two ways of representing the connection between being red and looking
red. In that example, we also argued that it is more natural to represent alternative
causes of looking red in the effect if cause form with separate conditionals:

an object looks red if it is red.
an object looks red if it is illuminated by a red light.

138 Computational Logic and Human Thinking

Similarly, it is more natural to represent the alternative causes of smoke by
separate conditionals in effect if cause form:

there is smoke if there is a fire.
there is smoke if there is teargas.

We will see later in Chapter 15 that it is possible to derive, from the assumption
that these are the only conditions under which the conclusion holds, the two
alternative cause if effect conditionals:

there is a fire if there is smoke and it is not the case that there is teargas.
there is teargas if there is smoke and it is not the case that there is a fire.

In classical logic, both of these conditionals are logically equivalent to a condi-
tional with a disjunctive conclusion:

there is a fire or there is teargas if there is smoke.

In Computational Logic with negative conditions interpreted as negation as
failure, we obtain an asymmetric approximation to the disjunction, with one of
the two alternatives holding by default. In this example, because fire is a more
common cause of smoke than teargas, the first of the two cause if effect condi-
tionals can be used to derive fire as the cause of smoke by default. This avoids
the computationally expensive effort of trying to determine the best explana-
tion, and amounts to the use of a simple and quick heuristic instead.
The two alternative ways of representing the relationship between cause and

effect have different advantages and disadvantages. The effect if cause repre-
sentation is higher-level, in the sense that its syntax is closer to the causal
structure that it represents. However, it requires more complex abductive
reasoning. The cause if effect representation is lower-level and more efficient.
It requires only deductive reasoning, and makes it easy to build in a preference
for one explanation over another. This relationship between the two levels of
representation is similar to other such relationships that we have seen elsewhere
in the book. However, in this chapter we focus on the higher-level abductive
representation, bearing in mind that it can also be implemented purely deduc-
tively, as we will see again in greater detail in Chapter 15.

What counts as a reasonable explanation?

Not every set of abductive hypotheses that deductively implies an observation is
a reasonable explanation of the observation. To be a reasonable explanation, the
hypotheses:

10: Abduction 139

* should be relevant to the observation, and should not include arbitrary
hypotheses that have no bearing on the observation and

* should be consistent with the agent’s existing beliefs.

We touched upon the relevance requirement earlier. It is automatically satisfied
by reasoning backwards from the observation. Backward reasoning ensures that
every hypothesis generated in an explanation is ultimately connected to the
observation by a chain of links in the connection graph of beliefs. The relevance
requirement is weaker than the requirement that explanations be minimal. The
minimality requirement insists that no subset of the explanation is also an
explanation. For example:

Beliefs: the floor is wet if it rained and the window was open.
the floor is wet if it rained and there is a hole in the roof.
there is a hole in the roof.

Observation: the floor is wet.
Relevant explanation: it rained and the window was open.
Minimal explanation: it rained.
Irrelevant explanation: it rained and the dog was barking.

Minimality is often cited as a desirable, or even necessary property of
abductive explanations; but ensuring that an explanation is minimal can be
computationally infeasible. Relevance, on the other hand, comes for free
with backward reasoning, and in most cases is an acceptable approxima-
tion to minimality. Both relevance and minimality are a form of Ockham’s
razor.
The consistency requirement excludes impossible explanations, such as the

explanation it rained, if there were clothes outside and they didn’t get wet.
Ensuring consistency is complicated in the general case. However, in many
cases it can be facilitated by representing negative concepts in positive form,
and by using constraints to monitor that contrary predicates do not hold
simultaneously. For example, the negative concept not wet can be represented
by the positive concept dry, and the relationship between wet and dry can be
expressed by means of the constraint:

if a thing is dry and the thing is wet then false.
i.e. nothing is both dry and wet.

In such cases, consistency reduces to the requirement that a hypothesis does not
deductively imply the conclusion false, and a natural way to enforce the
requirement is to reason forward from a hypothesis and eliminate it if it implies
false. For example:

140 Computational Logic and Human Thinking

Beliefs: the clothes outside are dry.
the clothes outside are wet if it rained.

Hypothesis: it rained.
Forward reasoning: the clothes outside are wet.
Forward reasoning: if the clothes outside are dry then false.
Forward reasoning: false.

The derivation of false eliminates the hypothesis that it rained as a candidate
explanation of the observation that the grass is wet.

Contraries and strong negation

As we saw in Chapter 5, many concepts occur as pairs of contrary positive
concepts, like wet and dry, tall and short, big and small, good and bad. Often
these contraries are expressed as negations of one another, as in not wet instead
of dry and not dry instead of wet. This use of negation is sometimes called
strong negation. Viewed as a form of negation, it has the truth value gap
property that there can be instances of a predicate that are neither true nor
false. For example, if my clothes are merely damp, I might consider them as
being neither wet nor dry.
The use of pairs of contrary predicates with truth gaps is a natural way to

represent vague concepts. Positive instances of the concept can be represented
by one predicate of the pair, and negative instances of the concept by the other
predicate. Instances that are neither clearly positive nor clearly negative can
simply be left undetermined.
Thus, reasoning with strong negation in the form of positive contraries

requires no extension of the inference rules of Computational Logic, if for
every pair of contrary predicates, we have constraints of the form:

if predicate and contrary-predicate then false.

What counts as a best explanation?

Restricting explanations to hypotheses that are relevant and consistent is not
good enough. In many situations, there will be several such relevant and
consistent explanations. In some cases, where none of the alternatives has
any important, foreseeable consequences, it may be unnecessary to choose
between them. But in other cases, where an explanation does have such
consequences, it can be a good idea to determine whether the explanation
is actually true, so that preparations can be made to deal with those

10: Abduction 141

consequences. If the consequences are beneficial, then they can be exploited:
and if they are harmful, then it might be possible to counteract them before
they do too much damage.
For example, for most people most of the time, the observation that the grass

is wet is hardly worth explaining. Whether it rained or the sprinkler was on is
likely to be of little significance, especially if the sprinkler doesn’t belong to you
and the grass needs watering anyway. In comparison, some of the alternative
explanations of an observation that the floor is wet do have important conse-
quences. If the wet floor is due to a hole in the roof, then the roof will have to be
repaired before it gets much worse. If it is due to leaking plumbing, then you
need to deal with the problem before you have a flood on your hands.

Global warming is a more topical example. If observed rises in world temperature are
primarily due to carbon emissions, then at the rate we are going global warming will
soon make much of our planet uninhabitable, and we had better dramatically reduce
our emissions before it is too late. But if they are primarily due to natural climatic
processes, then we might as well just adjust to climate change and its consequences
and enjoy them while we can.
Nothing in life is certain, and that goes as much for explaining observations as it

does for everything else. One way to judge the likelihood of an explanation is to
consult expert opinion. For example, according to the IPCC Fourth Assessment
Report: Climate Change 2007, most of the observed increase in global temperatures
since the mid-twentieth century is more than 90% likely to be due to the increase in
manmade greenhouse gas concentrations. Therefore, weighing the importance of the
consequences by the probabilities of their causes and choosing the most likely
explanation with the most significant consequences, we should assume that the causes
of climate change are human greenhouse gas emissions, and act accordingly.

Another way to judge the likelihood of an explanation is to use statistical
information about the relative past frequency of different causes. For example, you
don’t need to be a car mechanic to realise that, if your car doesn’t start, it must be
due to a fuel problem, an electrical problem, or a mechanical problem. But you need
at least a little experience to realise that electrical problems are more common than
fuel and mechanical problems. So everything else being equal, it is a good strategy
to check whether there is an electrical problem first. You can do this, for example, by
reasoning forward from the hypothesis that there is an electrical problem caused by
the battery, and conclude that if the battery is at fault then the lights will not work.
So if you try the lights and they don’t work, then the problem is most likely due to a
faulty battery, because the more observations a hypothesis explains the more likely
it is to be true.

These two criteria for helping to decide between competing explanations, their
relative likelihood and their utility as judged by the number and importance of
their consequences, are virtually identical to the criteria that are most helpful in
deciding between different courses of action to achieve a higher-level goal. We
will explore these criteria in greater detail in the next chapter.

142 Computational Logic and Human Thinking

Conclusions

Abduction builds upon traditional logic and is a defining feature of Computational
Logic. Like default reasoning, it addresses a problem that has been one of the
greatest obstacles to the use of logic in everyday life, the problem that we need to
make judgements and to act upon those judgements in situations where our
knowledge about the world is incomplete.
Abduction and default reasoning are related by their common use of assump-

tions to augment beliefs. In abduction, we augment our beliefs with assump-
tions concerning instances of open predicates. In default reasoning, we augment
them with assumptions that an instance of the contrary of a predicate cannot be
shown. In both cases, these assumptions are defeasible, and can be withdrawn if
later observations provide information to the contrary. This relationship
between abduction and default reasoning was first investigated by Poole et al.
(1987).
The problem of identifying the best explanation has many important features

in common with the problem of deciding between different courses of action.
Similar criteria involving judgements of probability and utility apply to both
problems. We will look at these criteria in the next chapter and at the technical
underpinnings of abductive logic programming in Chapter A6.

10: Abduction 143

11

The Prisoner’s Dilemma

Suppose, in your desperation to get rich as quickly as possible, you consider the
various alternatives, infer their likely consequences and decide that the best
alternative is to rob the local bank. You recruit your best friend, John, well
known for his meticulous attention to detail, to help you plan and carry out the
crime. Thanks to your joint efforts, you succeed in breaking into the bank in the
middle of the night, opening the safe and making your get-away with a cool
million pounds (approximately 1.65 million dollars – and falling – at the time of
writing) in the boot (trunk) of your car.
Unfortunately, years of poverty and neglect have left your car in a state of

general disrepair, and you are stopped by the police for driving at night with
only one headlight. In the course of a routine investigation, they discover the
suitcase with the cool million pounds in the boot. You plead ignorance of
any wrong doing, but they arrest you both anyway on the suspicion of
robbery.
Without witnesses and without a confession, the police can convict you and

your friend only of the lesser offence of possessing stolen property, which
carries a penalty of one year in jail. However, if one of you turns witness against
the other, and the other does not, then the first will be released free of charge,
and the second will take all of the blame and be sentenced to six years in jail. If
you both turn witness, then you will share the blame and will be sentenced to
three years in jail each.
This is an example of the classical Prisoner’s Dilemma, studied in decision

theory and game theory. In decision theory, the general problem of deciding
between alternative actions is often represented as a decision table, in which the
rows represent actions, the columns represent the state of the world and the
entries represent the resulting outcome. In this case, your decision table looks
like this:

144

Action State of the world
John turns witness John refuses

I turn witness I get 3 years in jail I get 0 years in jail
I refuse I get 6 years in jail I get 1 year in jail

If you and John are offered the same deal and have a chance to consult before you
decide, then you will soon realise that the best option is for you both to refuse to
turn witness against the other. To prevent this, the police interrogate you in separate
cells. Thus you have to decide what to do without knowing what John will do.
According to classical decision theory, you should choose the action that has

highest expected utility, in this case the action that minimises the number of
years you expect to spend in jail. We will see how to do this later in the chapter.

The logic of the Prisoner’s Dilemma

The Prisoner’s Dilemma has a natural representation in terms of goals and
beliefs:

Goal: if an agent requests me to perform an action,
then I respond to the request to perform the action.

Beliefs: I respond to a request to perform an action if I perform the action.
I respond to a request to perform an action
if I refuse to perform the action.

I get 3 years in jail if I turn witness and john turns witness.
I get 0 years in jail if I turn witness and john refuses to turn witness.
I get 6 years in jail if I refuse to turn witness and john turns witness.
I get 1 year in jail if I refuse to turn witness
and john refuses to turn witness.

According to our agent model, the maintenance goal is triggered by the
observation:

Observation: the police request me to turn witness.
Forward reasoning,1 achievement goal:

I respond to the request to turn witness.

1 To make the connection between the observation and the condition of the goal, it is necessary to
unify the police with an agent and turn witness with perform an action. In a computer
implementation, this unification would have to be done mechanically. For this purpose, it would
be necessary to recognise turn witness as shorthand for perform turn witness.

11: The Prisoner’s Dilemma 145

Backward reasoning, one candidate action:
I turn witness.

Forward reasoning, consequences:
I get 3 years in jail if john turns witness.
I get 0 years in jail if john refuses to turn witness.

Backward reasoning, another candidate action:
I refuse to turn witness.

Forward reasoning, consequences:
I get 6 years in jail if john turns witness.
I get 1 years in jail if john refuses to turn witness.

Here the consequences (or outcome) of your candidate actions depend upon
whether or not John turns witness against you. Unfortunately, you need to
decide what to do without knowing what John will do.
In classical logic, it would be possible to reason as follows:

Candidate action: I turn witness.
Disjunctive constraint: john turns witness or

john refuses to turn witness.
Disjunctive consequence: I get 3 years in jail or I get 0 years in jail.

Candidate action: I refuse to turn witness.
Disjunctive constraint: john turns witness or

john refuses to turn witness.
Disjunctive consequence: I get 6 years in jail or I get 1 years in jail.

Intuitively, the disjunctive consequence of the first candidate action seems better
than the disjunctive consequence of the second alternative, and in theory it might
be possible to evaluate the disjunctive consequences, compare them and use the
result of the comparison to help choose between the alternative candidates.
However, the disjunctive constraint is a crude way to express uncertainty. It

cannot represent degrees of uncertainty. For example, because John is your
friend, you might believe:

john turns witness with probability 10%.
john refuses to turn witness with probability 90%.

These probabilities can be propagated from the conditions to the conclusions of
beliefs. For example:

if I turn witness
and john turns witness with probability 10%
then I get 3 years in jail with probability 10%.

146 Computational Logic and Human Thinking

Decision theory provides a principled way of propagating uncertainty and of
combining judgements of probability with judgements of utility to determine
the expected utility of an action. According to the norms of decision theory,
given a collection of alternative candidate actions, an agent should choose an
action that has the best expected utility.
Before seeing how to compute the expected utility of an action, and inves-

tigating its application to the Prisoner’s Dilemma, we will take a short break and
look at the more mundane problem of deciding whether or not to take an
umbrella when you leave home.

Should you carry an umbrella?

The problem can be represented in a decision table:

Action State of the world
It rains It doesn’t rain

I take an umbrella I stay dry I stay dry
I carry an umbrella I carry an umbrella

I leave without an umbrella I get wet I stay dry

We can represent the problem by the (simplified) goals and beliefs:

Goal: if I go outside, then I take an umbrella
or I leave without an umbrella.

Beliefs: I go outside.
I carry an umbrella if I take the umbrella.
I stay dry if I take the umbrella.
I stay dry if it doesn’t rain.
I get wet if I leave without an umbrella and it rains.

Notice that the representation in terms of beliefs is more informative than the
decision table representation, because it indicates more precisely the conditions
on which the outcome of an action depends. For example, it indicates that staying
dry depends only on taking an umbrella and not on whether or not it rains.
You can control whether or not you take an umbrella, but you cannot control

the weather. To decide between the alternative actions that you can control, you
should infer their possible consequences, and choose the action with highest
overall expected utility.

11: The Prisoner’s Dilemma 147

Suppose you judge that the value of staying dry is greater than the incon-
venience of taking an umbrella. Then intuitively you should decide to take the
umbrella, if you estimate that the probability of rain is high. But, you should
decide to leave without the umbrella, if you estimate that the probability of rain
is low. These intuitions are justified and made more precise by the mathematics
of decision theory.

Applying decision theory to taking an umbrella

According to decision theory, you can compute the overall expected utility of an
action by weighing the utility of each possible outcome of the action by its
probability, and then sum all of the weighted utilities. In mathematical terms:

the expected utility of an action is p1u1 + p2u2 + � � � + pnun
if the action has n alternative outcomes with associated
utilities u1, u2, . . ., un and respective probabilities p1, p2, . . ., pn.

You should then choose the action with greatest expected utility.
In the case of deciding whether to take an umbrella, suppose you judge:

the benefit of staying dry is worth 2 candy bars,
the cost of carrying an umbrella is worth –1 candy bar,
the cost of getting wet is worth –8 candy bars,
the probability that it will rain is P, and therefore
the probability that it will not rain is (1 – P).

These judgements of utilities and probabilities can be added to the decision table:

Action State of the world
It rains with
probability P

It doesn’t rain with
probability (1–P)

Expected utility
P × utility1 +
(1–P)× utility2

I take an
umbrella

I stay dry
I carry an umbrella
with utility1 =
2−1 = 1

I stay dry
I carry an umbrella
with utility2 =
2−1 = 1

P + (1–P) = 1

I leave without
an umbrella

I get wet
with utility1 = –8

I stay dry
with utility2 = 2

–8P+ 2(1–P) =
–10P + 2

If the expected utilities of the alternative actions are the same, then it makes no
difference, measured in candy bars, whether you take an umbrella or not. This is
the case when:

148 Computational Logic and Human Thinking

� 10Pþ 2 ¼ 1

i.e. P = 0.1

Therefore, if the probability of rain is greater than 10%, then you should take an
umbrella; and if it is less than 10%, then you should leave your umbrella at home.
The use of decision theory is a normative ideal. In real life, we tend to

approximate this ideal, by compiling routine decisions directly into goals and
beliefs. For example:

Goals: if I go outside and it looks likely to rain,
then I take an umbrella.
if I go outside and it looks unlikely to rain,
then I leave without an umbrella.

Beliefs: it looks likely to rain if there are dark clouds in the sky.
it looks likely to rain if it is forecast to rain.
it looks unlikely to rain if there are no clouds in the sky.
it looks unlikely to rain if it is forecast not to rain.

More generally:

if I am leaving a place and I have a thing at the place
and the thing would be useful while I am away from the place
and the value of the thing outweighs the trouble of taking the thing,
then I take the thing with me.

if I am leaving a place and I have a thing at the place
and the thing would be useful while I am away from the place
and the trouble of taking the thing outweighs the value of the thing,
then I leave the thing at the place.

the value of an umbrella outweighs the trouble of taking the umbrella
if it looks likely to rain.

the trouble of taking an umbrella outweighs the value of the umbrella
if it looks unlikely to rain.
etc.

A psychologist might prefer to view such goals and beliefs as pragmatic
reasoning schemes or Darwinian algorithms. But, as we have been arguing
throughout this book, both of these views are compatible with the view that
thinking is the application of general-purpose logical rules of inference to
domain-specific knowledge (goals and beliefs) expressed in logical form.

11: The Prisoner’s Dilemma 149

Solving the Prisoner’s Dilemma

The Prisoner’s Dilemma and the problem of deciding whether to take an
umbrella are both instances of the same general pattern of cause and effect:

a particular outcome happens if I do a certain action
and the world is in a particular state.

Similarly:

I will be rich if I buy a lottery ticket and my number is chosen.
I will be famous if I write a book and it receives critical acclaim.
It will rain tomorrow if I do a rain dance and the gods are pleased.

In all of these cases, you can control your own actions, but you cannot
completely control the actions of others or the state of the world. At best, you
might be able to judge the exact probability that the world will be in a particular
state. At worst, you might just assume that the odds of its being or not being in
the state are simply equal.
However, suppose that in the case of the Prisoner’s Dilemma, you decide to

do a little high school algebra. Let:

the utility of your getting N years in jail be –N.
the probability that John turns witness be P.

Therefore the probability that John refuses to turn witness is (1 – P).
These utilities and probabilities can be added to the decision table:

Action State of the world
John turns witness
with probability P

John refuses with
probability (1–P)

Expected utility
P × utility1 +
(1–P) × utility2

I turn witness I get 3 years
with utility1 = –3

I get 0 years
with utility2 = 0

–3P

I refuse I get 6 years
with utility1 = –6

I get 1 year
with utility2 = –1

–6P –(1–P) =
–5P – 1

But the expected utility –3P of turning witness is greater than the expected
utility −5P–1 of refusing to turn witness, for all values of P between 0 and 1. So
no matter what the probability P that John turns witness against you, you are
always better off turning witness against him.
Unfortunately, if John has the same beliefs, goals and utilities as you, then he

will similarly decide to turn witness against you, in which case both of you will
get a certain 3 years in jail. You would have been better off if both of you had

150 Computational Logic and Human Thinking

ignored decision theory, taken a chance and refused to turn witness against the
other, in which case you would both have got only 1 year in jail.
But there is a different moral you could draw from the story: that the fault lies,

not with decision theory, but with your own selfish judgement of utility. You
have placed no value at all on the consequences of your actions for the time that
John will spend in jail.
Suppose, for example, that you assign equal value to the time that both of you

will spend in jail. The corresponding new judgements of utility can be incorpo-
rated into a revised decision table:

Action State of the world
John turns witness
with probability P

John refuses with
probability (1–P)

Expected utility
P× utility1 +
(1–P) × utility2

I turn witness I get 3 years
John gets 3 years
with utility1 = –6

I get 0 years
John gets 6 years
with utility2 = –6

–6P –6(1–P) = –6

I refuse I get 6 years
John gets 0 years
with utility1 = –6

I get 1 year
John gets 1 year
with utility2 = –2

–6P–2(1–P) =
–4P–2

But –6 ≥ –4P –2, for all values of P between 0 and 1. Therefore, no matter what
the probability P that John turns witness against you, there is never any
advantage in your turning witness against him. Moreover, if John has the
same beliefs, goals and utilities as you, then he will similarly decide not to
turn witness against you, in which case you will both get a certain 1 year in jail.
But it is probably unrealistic to expect you to value equally both what

happens to John and what happens to yourself. To be more realistic, suppose
instead that you value what happens to John only half as much as you value
what happens to yourself:

Action State of the world
John turns witness
with probability P

John refuses with
probability (1–P)

Expected utility
P× utility1 +
(1–P) × utility2

I turn
witness

I get 3 years
John gets 3 years with
utility1 = –4.5

I get 0 years
John gets 6 years with
utility2 = –3

–4.5P–3(1–P) =
–1.5P–3

I refuse I get 6 years
John gets 0 years with
utility1 = –6

I get 1 year
John gets 1 years with
utility2 = –1.5

–6P –1.5(1–P) =
–4.5P–1.5

11: The Prisoner’s Dilemma 151

The expected utilities of the two alternatives are the same when:

�1:5P� 3 ¼ �4:5P� 1:5

i:e: 3P ¼ 1:5

i:e: P ¼ 0:50

Therefore, if you judge that the probability of John turning witness is less than
50%, then you should not turn witness. But if you judge that the probability is
greater than 50%, then you should turn witness. Tit for tat.
Just as in the case of deciding whether to take an umbrella when you leave

home, these calculations are a normative ideal. But in real life, we more
normally compile our decisions into rules (or heuristics), which approximate
the decision-theoretic ideal, but which can be applied more simply and more
efficiently. For example:

Goals: if an agent requests me to perform an action,
and the action does not harm another person
then I perform the action.

if an agent requests me to perform an action,
and the action harms another person
then I refuse to perform the action.

These rules are not very subtle, but clearly they can be refined, both by adding
extra rules to deal with other cases, and by adding extra conditions to accom-
modate extra qualifications.

Smart choices

But decision theory and heuristics are not the only possibilities. In fact, in their
different ways, they both miss seeing the bigger picture. Decision theory deals
only with independently given alternative candidate actions, evaluating their
likely consequences, but ignoring where the alternatives came from and the
purposes that they serve. Heuristics sidestep the fundamental issues by employ-
ing little more than higher-level stimulus–response associations.

The smarter way to make decisions is to step back, and pay due attention to
your higher-level goals and to any outside circumstances that may have trig-
gered the need to make a decision:

* Identify the higher-level goal (purpose, motivation, problem or objective) of
the decision you need to make. Is this goal an implicit property of heuristics
triggered by events in the environment? Or is it an explicit, higher-level

152 Computational Logic and Human Thinking

achievement goal; or a subgoal (or means) towards a yet higher-level goal
(or fundamental objective).

* Assuming that you can identify the top-level goal and any subgoals along the
way, consider the alternative ways of solving these goals. Have you
adequately considered all of the relevant alternatives? Or have you
constrained yourself unnecessarily by considering only the first alternatives
that entered your mind? Do you have enough knowledge (or beliefs) of the
problem domain to generate the “best” alternatives?

* Explore the consequences (or outcomes) of the alternatives, and their
impacts. Evaluate these consequences for the extent to which they achieve,
not only the goals that may have motivated the alternatives, but also any other
goals that might be achieved opportunistically along the way. Check whether
the alternatives violate any constraints, or whether they have any other
negative consequences that you should avoid.

* Assess the uncertainties associated with the consequences. Are you
indulging in wishful thinking, or taking any unnecessary risks?

* Compare the alternatives, by combining your evaluation of their
consequences with your assessment of their uncertainty. Use this
comparison, not only to identify your final decision, but also to guide you
efficiently in your search.

* Identify the other linked subgoals that need to be solved to achieve your
top-level goals. Make sure that the decision is compatible with the smart
solution of these other subgoals. Give preference to decisions that facilitate
achieving future subgoals and that keep future options open for as long as
possible.

If these guidelines look familiar, it is because they are based on the issues that
recur throughout this book. But if they sound a little unfamiliar, it is because I
have paraphrased them in the manner of Hammond et al.’s (1999) Smart
Choices – A practical guide to making better decisions.
The guidelines in the Smart Choices book are based on solid research in

decision science and on extensive practical experience. They appeal to logic and
common sense, but of the familiar, informal variety. In this book, we deal with
similar issues, but we place them within a Computational Logic and Artificial
Intelligence setting.

Conclusions

The use of decision theory, heuristics and smart choices are three different ways
of making decisions.

11: The Prisoner’s Dilemma 153

Decision theory is a powerful, normative tool. But it needs knowledge about
utility and probability, and time to calculate and compare expected utilities,
which is typically not available in most commonly occurring situations.
Moreover, it neglects the motivations of actions, and the structure of those
motivations in a hierarchy of goals and subgoals, and of alternative ways of
reducing goals to subgoals.
Instead of decision theory, most people probably use heuristics to guide their

decision making. Heuristics deal efficiently with the most commonly occurring
cases, and often they approximate the decisions that would be taken using a
decision-theoretic analysis. But heuristics are subject to biases of all kinds, and
often lead to bad choices, sometimes when we are making the most important
decisions in our lives.
In situations where it is important to make as good a decision as possible, we

need to monitor our heuristic responses, and to analyse their role within the full
hierarchy of our goals and subgoals. We need to question the implicit goals of
our intuitive reactions, determine the alternative ways of achieving those goals,
explore their possible consequences and make a smart choice.
But no matter howwemake our decisions, we cannot avoid the uncertainty of

their outcomes. As we have seen in this chapter and elsewhere throughout this
book, the outcomes of our actions typically depend upon the uncertain state of
the world:

a particular outcome happens if I do a certain action
and the world is in a particular state.

Because the world is such an uncertain place, and because our knowledge of the
world is so incomplete, it is impossible to judge these outcomes without
uncertainty.
The approach to uncertainty taken in this book is based upon the approach

developed by David Poole (1997), in which probability is associated with
conditions of conditionals rather than with conditionals as a whole. This
approach fits well with other applications of probability, for example in helping
to choose between different abductive explanations of an observation.
Integrating probability and logic is one of the most active areas of research in
Artificial Intelligence today. The collection of papers in De Raedt et al. (2008)
contains an overview of recent work in this field.

154 Computational Logic and Human Thinking

12

Motivations matter

In the Prisoner’s Dilemma, the need to choose between different actions is
generated by the need to solve an achievement goal, obtained as the result of a
request from the police to turn witness against your friend. The achievement
goal, triggered by the external event, is the motivation of the action you
eventually choose.
But in classical decision theory, the motivation of actions is unspecified.

Moreover, you are expected to evaluate the alternatives by considering only
their likely consequences.
Conflict resolution in production systems shares with decision theory a

similar need to decide between mutually exclusive actions. However, whereas
in decision theory the deciding factor is the likely consequences of the actions,
in production systems the decision is normally compiled into much simpler
considerations. In production systems, actions are derived explicitly by means
of condition–action rules, whose motivations (or goals) are typically implicit (or
emergent).
In contrast with both decision theory and production systems, in which

motivations are missing or implicit, in classical planning systems in AI moti-
vation is the main concern. In classical planning, plans of action are motivated
(or intended) by higher-level achievement goals; but, in contrast with decision
theory, the unintended consequences of actions are commonly ignored. The
different ways in which actions are evaluated in different paradigms are sum-
marised in the following table:

Evaluation of
actions

Production
systems

Decision
theory

Classical
planning

Computational
Logic

Motivations No No Yes Yes
Consequences No Yes No Yes

155

In Computational Logic, actions are motivated by achievement goals, which are
generated by maintenance goals, which are triggered by observations of
changes in the world. Deciding which alternative actions to execute is informed
by evaluating the likely consequences of the actions, including the achievement
goals, which motivated the actions to begin with. This decision can be assisted
by employing the techniques of decision theory, or it can be compiled into more
pragmatically useful goals and beliefs, in which the evaluation of motivations
and consequences is emergent rather than explicit.

Moral considerations

Decision theory guides an agent’s actions towards the optimal achievement of
the agent’s personal goals. These personal goals might be concerned solely with
the agent’s own selfish interests, or they might include the interests of other
agents. As we saw in the Prisoner’s Dilemma, the interests of an individual
agent can sometimes be better served if the agent also values the interests of
other agents. Arguably, the encouragement of personal goals that include the
interests of other agents is the basis of human intuitions about morality.
Although morality is one of the main concerns of religion, psychological

studies have shown that people of widely diverse cultural and religious back-
grounds share similar moral intuitions (Hauser et al., 2007). Moreover, these
studies show that many of these intuitions depend upon distinguishing between
the motivations and the consequences of actions. In particular, they support the
principle of double effect.
The principle of double effect holds that an action with bad consequences

may be morally acceptable if the action was motivated by a good end, provided
the bad consequences were not intended as a means to achieve the good end.
But an action is not morally acceptable if it was motivated by a bad end or if it
involved the use of a bad means to a good end, even if its good consequences
might outweigh its bad consequences.
The principle of double effect has been used, for example, to justify bombing

a military facility in wartime even if there is a potential danger to innocent
civilians. But it condemns bombing a civilian target to terrorise the enemy.
The principle of double effect is opposed to consequentialism, which, like

decision theory, is concerned only with the consequences of actions. According
to consequentialism, there is no moral distinction between killing innocent
civilians as a side-effect of destroying a military facility and killing them as a
deliberate act of terrorism.

156 Computational Logic and Human Thinking

The principle of double effect also plays a normative role in law. For
example, it accounts for the distinction between murder, in which the death of
a person is directly intended, and manslaughter, in which it is foreseeable as a
possible side-effect of a less bad, but still blameworthy intention.
Thus the principle of double effect plays a descriptive role in understanding

moral intuitions and a normative role in law. Mikhail (2007) explains this dual
role with the suggestion that, although individuals seem to be unaware of the
principles that guide their moral intuitions, “the judgments can be explained by
assuming that these individuals are intuitive lawyers who implicitly recognize
the relevance of ends, means, side effects and prima facie wrongs, such as
battery, to the analysis of legal and moral problems”.
The challenge is to explain these intuitions, which cannot be explained by

decision theory alone.

The runaway trolley

The most famous psychological experiment concerning intuitions about double
effect is the trolley problem. There are two main variants:

Passenger: A runaway trolley is about to run over and kill five people. The
driver has fainted. You are a passenger on the train and you can
press a button that will turn the train onto a sidetrack, saving the
five people, but killing one man who is standing on the
sidetrack. Is it morally permissible to press the button?

Footbridge: A runaway trolley is about to run over and kill five people. You
are a bystander standing on a footbridge over the track. The
only way to stop the train and save the five people is to throw a
heavy object in front of the train. The only heavy object
available is a large man standing next to you. Is it morally
permissible to throw the man onto the track?

In an experiment (Hauser et al., 2007) on the Internet with approximately 5000
voluntary subjects, 85% judged that it is permissible for the passenger to
push the button, but only 12% judged that it is permissible for the bystander
to throw the man. The difference between the two cases is explained by the
principle of double effect. In the case of the passenger pressing the button,
the person on the sidetrack is killed as a consequence of the action of pushing
the button, which is a subgoal of saving five people. The action of pushing the
button is not bad in and of itself. So most people regard the action as morally
permissible.

12: Motivations matter 157

However, in the case of the bystander throwing the heavy man onto the
track, the action of throwing the man onto the track is morally bad itself, even
though it helps to achieve the morally good goal of saving five people.
According to consequentialism, both cases have the same moral standing;

and according to utilitarianism, which holds that it is best to do what most
benefits the greatest number of people, both cases are morally justifiable and
preferable to doing nothing.
Assuming that people subconciously apply the principle of double effect in

judging the morality of actions may explain intuitive judgements in trolley
problems and the like. But that doesn’t explain why people use the principle of
double effect rather than straightforward decision theory. I will propose such an
explanation – namely that motivations matter – after we first investigate a
logical representation of the runaway trolley problem.

The logic of the runaway trolley

The following representation is specialised for the runaway trolley problem. As
with other examples in this book, the representation could also be expressed
more generally to separate out general-purpose beliefs from the special beliefs
needed for the problem at hand. However, the specialised representation has the
advantage that it allows us to ignore distracting details.

Beliefs:
a person is killed if the person is in danger of being killed by a train
and no one saves the person from being killed by the train.

an agent kills a person
if the agent throws the person in front of a train.

a person is in danger of being killed by a train
if the person is on a railtrack
and a train is speeding along the railtrack
and the person is unable to escape from the railtrack.

an agent saves a person from being killed by a train
if the agent stops the train or the agent diverts the train.

an agent stops a train
if the agent places a heavy object in front of the train.

an agent places a heavy object in front of the train
if the heavy object is next to the agent
and the train is on a railtrack

158 Computational Logic and Human Thinking

and the agent is within throwing distance of the object to the railtrack
and the agent throws the object in front of the train.

an agent diverts a train
if there is a sidetrack ahead of the train
and an agent is on the train
and the agent pushes the sidetrack button.

a train is speeding along a sidetrack
if the train is speeding along a track
and there is a sidetrack ahead of the train
and an agent pushes the sidetrack button.

In a more precise formulation, using the event calculus for example, it would be
stated that the act of pushing the sidetrack button terminates the state of the train
speeding along its current track and initiates a state in which the train is speeding
along the sidetrack.

The current situation: five people are on the maintrack.
one person is on the sidetrack.
a train is speeding along the maintrack.
the sidetrack is ahead of the train.
the five people are unable to escape from the maintrack.
the one person is unable to escape from the sidetrack.

mary is on the train.
john is next to bob.
john is a heavy object.
bob is within throwing distance of john to the maintrack.

There is nothing in these beliefs to motivate anyone to do anything. To motivate
Bob, John or Mary, they need a motivating goal. As with other examples in this
book, the motivating goal is an achievement goal derived from a maintenance
goal, triggered by an observation of the environment. In this case, the main-
tenance goal and associated supporting beliefs might be:

Goal: if a person is in danger of being killed by a train
then you respond to the danger of the person being killed by the train.

Beliefs: you respond to the danger of a person being killed by the train
if you ignore the danger.

you respond to the danger of a person being killed by the train
if you save the person from being killed by the train.

12: Motivations matter 159

Given that all three agents have knowledge of the current situation, and assum-
ing for simplicity that they treat the five people on the maintrack as a single
person, then the three agents would similarly conclude:

Forward reasoning: five people are in danger of being killed by the train.

Achievement goal: you respond to the danger of
the five people being killed by the train.

Alternative subgoal: you ignore the danger.

Alternative subgoal: you save the five people from being killed by the train.

Mary can save the five people by diverting the train, by pushing the sidetrack
button. Bob can save thefive people by stopping the train, by placing a heavy object
in front of the train, by throwing John in front of the train. Fortunately for Bob,
John cannot similarly save the five people by throwing Bob in front of the train,
because he has no reason to believe that Bob is a heavy object. Also, conveniently
for John, we have ignored the possibility that he can save the five people simply
by throwing himself in front of the train of his own volition. Therefore, only Mary
and Bob have to choose between the two alternative subgoals.
Mary has to decide whether to save the five people by pushing the sidetrack

button. Given the urgency of the situation, she may or may not have the time to
contemplate all the possible consequences of the action. If she does have
enough time and enough composure, then she will conclude that the one person
on the sidetrack will be killed by the train if no one saves the person. But saving
five people for sure compared with the near certainty of one person being killed
is better than doing nothing.
If Mary does not have the time to think through the consequences, then she

may simply judge that saving five people is better than doing nothing, in which
case she will simply push the button, whatever the consequences. In either case,
her behaviour is morally justified, because her intentions are good, and any
possible bad side-effects are both unintended and outweighed by the benefits.

Bob, on the other hand, has to decide whether to save the five people by
throwing John in front of the train. Assuming that Bob has enough time to
generate this plan, he may well have enough time to realise that if he throws
John in front of the train, then not only will John be killed as a consequence, but
he will kill John as a means to the end.
Of course, Bob could use decision theory, to decide whether it is worth it:

Five people saved compared with one person killed. The calculation argues in
favour of killing John. But if Bob concludes that as a consequence of killing
John he might be committing a crime, then the calculation isn’t so easy.

In cases like these, decision making is a lot easier if there are clear and simple
rules (or constraints) that can be followed, like:

160 Computational Logic and Human Thinking

if an agent kills a person
and the person is not threatening another person’s life
then false.

If Bob has no such rule, then he may decide to throw John onto the track, with
the good higher-level intention of saving five people. Nonetheless, we may
judge that his action is morally unacceptable. Our judgement would be justified
by concern about Bob’s lack of moral constraint. Although his lack of constraint
might lead to an overall good consequence on this occasion, it could lead to very
bad consequences on other occasions.
If Bob does have such a constraint, but still decides to throw John onto the

track, it must be because he has enough time to generate the plan, but not
enough time to trigger and exercise the constraint. Or so a lawyer might argue, if
the case ever came to a court of law.

The computational case for moral constraints

You could argue for moral constraints on religious grounds. But you can also
argue for them on the computational grounds that there are many situations
in which people don’t have the time or knowledge to make optimal decisions
in accordance with the norms of decision theory. Even if they did, it would
be unreasonable to expect everyone to adhere to the purely utilitarian prin-
ciple that their own personal interests, or the interests of their family and
friends, are worth no more than the interests of their worse enemy or greatest
rival.
If everyone used decision theory without any constraints, there would be

chaos. Some people would use the freedom to employ arbitrary utility measures
to suit their own interests and to trample over the interests of others. To protect
against the antisocial consequences of the exercise of such unbridled self-
interests, societies impose constraints on the behaviour of individuals. But to
be effective, these constraints need to be simple and easy to apply, even when
time and knowledge are in short supply.
In our representation of the trolley problem, the constraint was a qualified

version of the sixth commandment, thou shalt not kill, and the only way to kill a
person was to throw the person in front of a train. This was an oversimplifica-
tion. It employs a very specific definition of killing a person, which conven-
iently applies to Bob, but not to Mary. It could be argued that an alternative,
more realistic definition, like:

an agent kills a person
if the agent performs an action and the action causes the person’s death.

12: Motivations matter 161

would apply to both Bob and Mary, depending on how causality is defined.
Certainly throwing a person in front of a train causes the death of the person. But
does pushing the sidetrackbutton also cause the deathof the personon the sidetrack?

Philosophers and legal scholars have struggled with dilemmas of this kind for
centuries. There has to be an easier solution. Otherwise the exercise of con-
straints would require solving difficult problems of causality, and it would be
impossible to apply constraints in practice.
There is an easier solution. Replace the condition that the action causes the

person’s death by the computationally much simpler condition that the action
causes the person’s death directly by initiating it in one step:

an agent kills a person
if the agent performs an action
and the action initiates the person’s death.

In most cases, determining whether an action initiates a person’s death takes
only one step of deductive inference, which every agent of full age and capacity
should be able to perform. The inference can be made even simpler by compil-
ing the definition of killing into the constraint:

if an agent performs an action
and the action initiates a person’s death
and the person is not threatening another person’s life
then false.

In contrast, determining whether an action causes a person’s death may require
an unbounded number of inferences through an arbitrarily long chain of actions.
The greater the number of inferences, the less reasonable it is to expect an agent
to be able to perform them.
The use of simple constraints on actions that initiate bad consequences makes

the exercise of constraints much easier, but does not solve all of the problems
that can arise. There will always be hard cases where the direct effect of an
agent’s actions also depends on the state of the world – for example if a person’s
death is initiated by an agent driving too fast and the car going out of control.
Hard cases like these are the livelihood of the legal profession, and are

beyond the scope of this book. But, before we leave this topic, there is an
even bigger problem with constraints.

What to do about violations?

The problemwith constraints is that people violate them. They violate them, and
either they get away with it or they pay the penalty: Don’t press the alarm signal
button improperly. But if you do, then be prepared to pay a £50 fine.

162 Computational Logic and Human Thinking

Logically it doesn’t make sense. Formulating a constraint as a conditional
with conclusion false, is supposed to prevent the conditions of the constraint
from becoming true. It doesn’t make sense to have additional constraints that
apply only when the conclusion false has been derived.
This problem has been studied in philosophical logic in the form of

Chisholm’s paradox (Chisholm, 1963). The paradox is usually formulated in
some form of deontic logic, but it can be also formulated in terms of constraints.
Here is an informal statement of the paradox:

It ought to be that Jones goes to assist his neighbors.
It ought to be that if Jones goes, then he tells them he is coming.
If Jones doesn’t go, then he ought not tell them he is coming.
Jones doesn’t go.

In standard deontic logic, these statements imply the paradoxical conclusions:

Jones ought to tell them he is coming.
Jones ought not to tell them he is coming.

Almost all deontic logics are modal logics, in which ought is a logical con-
nective with the same logical status as and, or, if and not. But in abductive logic
programming (ALP), which is the basis of the Computational Logic that we use
in this book, obligations and prohibitions are represented by means of integrity
constraints, which include maintenance goals and constraints. Here is a repre-
sentation of the paradox in ALP terms:

Goals: jones goes.
if jones goes then jones tells.
if jones stays and jones tells then false.
if jones stays and jones goes then false.

Belief: jones stays.

The first sentence is an achievement goal. In a more complete version of the
story it might have been derived by means of a maintenance goal, such as if a
person needs help and jones can help then jones goes.
The second sentence is neither a maintenance goal nor a conventional con-

straint, but is nonetheless a typical integrity constraint. Viewed in database
terms, it imposes the restriction that whenever the database contains a record
that jones goes then it also contains a record that jones tells. Viewed in ALP/
planning terms, it imposes the restriction that any plan that includes the action
jones goes also includes the action jones tells.
The third and fourth sentences are contraints. The fourth sentence expresses

that staying is the contrary of going, and the third sentence constrains Jones
from both staying (not going) and telling.

12: Motivations matter 163

The fifth sentence expresses that Jones doesn’t go as a positive atomic fact.
Not only does the collection of five sentences together imply the conclusion
false, but the first, fourth and fifth sentences alone imply false. In other words,
Jones ought to go, but doesn’t. In the ALP representation the second and third
sentences serve no function at all.
Constraints and violations of constraints are similar to rules and exceptions.

The primary constraint is like a general rule, and remedial constraints that deal
with violations are like exceptions. We have seen that, in the case of ordinary
rules and exceptions, inconsistency can be avoided by adding an explicit
condition to the general rule stating that no exception applies. We can try to
solve the paradox of constraints and their violation similarly. In Jones’ case, for
example, we can add to the primary constraint an extra condition, for example
that jones is not irresponsible:

if a person needs help and jones can help
and jones is not irresponsible then jones goes.

Several solutions of this kind have been developed and explored, both in the
context of defeasible deontic logic (Nute, 1997) and in repairing violations of
integrity constraints in databases (Bertossi and Chomicki, 2003). They also
arise more generally in computing, for example when a program malfunctions
and corrective measures need to be applied. The existence of practical solutions
to these problems in computing suggests that similar solutions exist in a more
logical setting. However, the investigation of these solutions is yet another
problem that is beyond the scope of this book.

Conclusions

The Prisoner’s Dilemma shows that it pays for an agent to value the interests
of other agents, and to include those interests in its judgements of the utility
of its actions. More generally, the Prisoner’s Dilemma and similar examples
show that an agent’s decisions can be judged not only for their consequences
for the agent alone, but for the good of society as a whole. Such concern for
the general good of society seems to be the basis of human intuitions about
morality.
In the Prisoner’s Dilemma, moral values can be catered for relatively simply

by including the interests of other agents in judgements of utility. And according
to consequentialism and utilitarianism, these judgements are sufficient to deter-
mine the moral status of an agent’s decisions in general. However, according to

164 Computational Logic and Human Thinking

the proponents of the principle of double effect, they do not fully account for
human moral intuitions, nor for the normative role of distinctions between ends,
means and side-effects in the field of law.

Psychological studies of moral intuitions about trolley problems show that
people instinctively judge an agent’s actions both for their motivations and for
their consequences. We have seen that Computational Logic provides a model
of agency in which such moral intuitions can be explained. The model shows
that, in situations where knowledge and time are limited, an agent may not be
able to judge and compare the expected utilities of all the relevant consequences
of its alternative candidate actions. In cases such as these, the agent can use
constraints to avoid actions that are deemed to be morally unacceptable.
The application of Computational Logic to Computational Morality in gen-

eral and to the trolley problem in particular has been investigated by Luis
Pereira (Pereira and Saptawijaya, 2007, 2009). Although in this chapter we
have used Computational Logic to justify moral intuitions concerning the
principle of double effect, it does not follow that Computational Logic is
restricted to modelling or justifying only one moral theory, or to modelling
only one analysis of trolley problems. Its conceptual framework of goals,
subgoals, constraints and consequences is morally neutral and can be used for
many purposes, for better or for worse.

12: Motivations matter 165

13

The changing world

In mathematics, semantic structures are static and truth is eternal. But for an
intelligent agent embedded in the real world, semantic structures are dynamic
and the only constant is change.
Perhaps the simplest way to understand change is to view actions and other

events as causing a change of state from one static world structure to the next.
For example:

The fox praises
 the crow.

The fox picks
up the cheese.

The crow has the cheese.

The crow is in the tree.

The fox is on the ground.

It is raining.

The fox has the cheese.

The crow is in the tree.

The fox is on the ground.

The fox is next
to the cheese.

It is raining.

The cheese is
on the ground.

The crow is in the tree.

The fox is on the ground.

The fox is next
to the cheese.

It is raining.

The crow has the cheese.

The crow is in the tree.

The fox is on the ground.

It is raining.

The crow sings.

This view of change is formalised in the possible world semantics of modal
logic. In modal logic, sentences are given a truth value relative to a static

166

possible world embedded in a collection of possible worlds linked with one
another by an accessibility relation.
In modal logics of time, one possible world is directly accessible from another if

it can be reached from the other by one state-transforming event. Syntactic
expressions such as “in the past”, “in the future”, “after”, “since” and “until” are
treated as modal operators, which are logical connectives, like “and”, “or”, “if”,
“not” and “all”.
The truth value of sentences containing modal operators is defined, as for

ordinary classical logic, in terms of the truth values of simpler sentences.
However, whereas in classical logic truth is relative to one interpretation (or
possible world), truth in modal logic is relative to one possible world in a
collection of possible worlds. For example:

A sentence of the form in the future P is true
in a possible world W in a collection of worlds C
if there is possible world W’ in C
that can be reached from W by a sequence of state-transforming events
and the sentence P is true in W’.

For example, in modal logic, it is possible to express the sentence

In the future the crow has the cheese.

This sentence is true in the possible world at the beginning of the story of the fox
and the crow and false in the possible world at the end of the story (assuming
there are no possible worlds after the story ends).
One objection to the modal logic approach is that its ontology (the things that

exist) is too conservative, which makes knowledge representation unacceptably
difficult. The alternative is to increase the expressive power of the language by
treating events and states of the world as individuals. To treat something as an
individual, as though it exists, is to reify it; and the process itself is called reification.
The advantage of reification is that it makes talking about things a lot easier.

The disadvantage is that it makes some people very upset. It’s alright to talk
about material objects, like the fox, the crow and the cheese, as individuals. But
it’s something else to talk about states of the world and other similarly abstract
objects as though they too were ordinary individuals.

The situation calculus

The situation calculus shares with modal logic the same view of change as
transforming one state of the world into another, but it reifies actions and states
(or situations) as individuals. In effect, it treats the accessibility relation of

13: The changing world 167

modal logic as a first-class relation, along with other relations, like the fox has
the cheese, among ordinary material objects.
For example, in the situation calculus, in the story of the fox and the crow,

there is only one relevant semantic structure and it contains, in addition to
ordinary individuals, individuals that are actions and individuals that are global
states. It is possible to express such sentences as:

the crow has the cheese in the state at the beginning of the story.
the crow has the cheese in the state
after the fox picks up the cheese,
after the crow sings,
after the fox praises the crow,
after the state at the beginning of the story.

The first of these two sentences is true. But the second sentence is false.
Reifying actions and states as individuals makes it possible to represent and

reason about the effect of actions on states of the world. If we also reify “facts”,
then this representation can be formulated as two situation calculus axioms:

a fact holds in the state after an action,
if the action initiates the fact
and the action is possible in the state just before the action.

a fact holds in a state after an action,
if the fact held in the state just before the action
and the action is possible in the state just before the action
and the action does not terminate the fact.

Our original version of the story of the fox and the crow can be reformulated
in situation calculus terms, by defining the appropriate initiates, terminates and
is possible predicates. For this purpose, it is convenient to treat the action of the
crow singing also as a fact:

an action in which an animal picks up an object
initiates a fact that the animal has the object.

an action in which an animal picks up an object
is possible in a state in which the animal is near the object.

an action in which I praise the crow
initiates a fact that the crow sings.

an action in which I praise the crow
is possible in any state.

an action in which the crow sings
initiates a fact that I am near the cheese.

168 Computational Logic and Human Thinking

an action in which the crow sings
terminates a fact that the crow has the cheese.

an action in which the crow sings
is possible in any state.

In theory, an agent, such as the fox, could include such axioms among its
beliefs, to plan its actions, infer their consequences, and infer the consequences
of other agents’ actions. In practice, however, the use of the second situation
calculus axiom (called the frame axiom) is computationally explosive. This
problem, called the frame problem, is often taken to be an inherent problemwith
the use of logic to reason about change.
The frame problem is not very noticeable with the goal of determining

whether or not the crow has the cheese at the end of the story. Two applications
of backward reasoning with the frame axiom reduce the goal to a conjunction of
subgoals, one of which is to show that the action of singing does not terminate
the “fact” that the crow has the cheese. But because the action of singing does
terminate the fact, the subgoal is false, and therefore the initial goal is also false.
However, the frame problem is more obvious with the goal of determining

whether or not it is raining at the end of the story, on the assumption that it was
raining at the beginning of the story. Whether used forward or backward, the
frame axiom needs to be used as many times as there are actions in the story, to
show that it was raining in every state between the beginning and end of the
story. This kind of thinking is not so difficult in the imaginary world of the fox
and the crow, but it is clearly impossible for a real agent living in the real world.
Arguably, it is not logic that is the source of the problem, but the situation

calculus view of change, which the situation calculus shares with the possible
world semantics of modal logic. In both cases, an action is treated as changing
the entire global state of the world. As a result, to show that a fact that holds in a
given state of the world continues to hold until it is terminated, it is necessary to
know and reason about all the other actions that take place throughout the entire
world in the meantime.

An event-oriented approach to change

The alternative is to abandon the global view of actions as transforming one state of
the world into another, and replace it with a more local view that actions and other
events can occur simultaneously and independently in different parts of the world.
In the event calculus, events include both ordinary actions, which are performed

by agents, and other events, like the cheese landing on the ground, which can be
understood metaphorically as actions that are performed by inanimate objects.

13: The changing world 169

For simplicity, we can assume that events occur instantaneously. For this
purpose, an event that has duration can be decomposed into an instantaneous
event that starts it, followed by a state of continuous change, followed by an
instantaneous event that ends it. Thus the cheese falling to the ground can be
decomposed into an instantaneous event in which the cheese starts to fall, which
initiates the state of the cheese actually falling, followed by an instantaneous
event in which the cheese lands, which terminates the state of falling.
Events initiate and terminate relationships among individuals. These relation-

ships, together with the time periods for which they hold, can be regarded as
atomic states of affairs. We can picture such an atomic state and the events that
initiate and terminate it like this:

event
happens

the event
initiates a fact

another event
happens

the fact holds

the other event
terminates the fact

Time

In the story of the fox and the crow, this picture looks like this:

The fox is near
the cheese.

The crow has
the cheese.

The fox has
the cheese.

The fox praises
the crow.

The fox picks
up the cheese.

The crow
sings.

Here the crow’s singing is treated as an action/event that is caused by the action/
event of praising the crow. This causal relationship can be viewed as yet another
instance of the general pattern:

a particular outcome happens if I do a certain action
and the world is in a particular state.

In this case, the actions/events in the relationship are associated with the times
of their occurrence:

the crow sings at time T 0 if I praise the crow at time T
and the crow reacts to the praise between times T and T 0.

The condition the crow reacts to the praise between times T and T 0 is an open
predicate, which can be assumed, either to explain an observation of the crow

170 Computational Logic and Human Thinking

breaking out in song at some time T 0 or as part of a plan for the fox to have
the cheese.

A simplified calculus of events

The event calculus represents the relationship between events and the properties
they initiate and terminate by means of the following axiom and constraint:

Axiom: a fact holds at a time,
if an event happens at an earlier time
and the event initiates the fact
and there is no other event

that happens between the two times and
that terminates the fact.

Constraint: if an event happens at a time
and the event is not possible at the time then false.

Equivalently: if an event happens at a time
then the event is possible at the time.

The event calculus constraint is analogous to the situation calculus condition
that an action is possible in a state. The constraint is necessary for planning.
Without it, an agent could generate unexecutable plans containing actions
whose preconditions do not hold at the time of execution.
Inmany cases, the execution of an action terminates a precondition. For example,

to give an object away, the agent must have the object. For this reason, to make the
constraint work correctly, the event calculus employs the convention that a fact
holds after the event that initiates it, but at the time of the event that terminates it. So,
for example, if Mary gives an apple to John, then Mary must have the apple at the
time that she gives it (constraint), but John has the apple afterwards (axiom).

To apply the event calculus in practice, it needs to be augmented, like the
situation calculus, with additional axioms defining initiation, termination, pos-
sibility and temporal order. Thus, the event calculus treats the predicates a fact
holds at a time, an event initiates a fact, an event terminates a fact, an event is
possible at a time and the predicates for temporal ordering as closed predicates.
But it treats the predicate an event happens at a time as an open predicate.

The event calculus for predicting consequences of events

The open predicate an event happens at a time can be given directly as an
observation, generated by abduction to explain observed facts, or generated as a
candidate action in a plan to solve an achievement goal. Here is an example of

13: The changing world 171

the first of these three cases, given similar definitions of initiation, termination
and possibility as in the situation calculus example, but using the event calculus
representation of events:

the fox praises the crow at time 3.
the crow sings at time 5.
the fox picks up the cheese at time 8.

We also need to represent the fact that the crow has the cheese at the beginning
of the story. This can be done in several different ways, but the simplest is just to
assume an additional event, such as:

the crow picks up the cheese at time 0.

Reasoning backwards to determine whether or not the crow has the cheese at the
end of the story, say at time 9, the event calculus axiom generates the following
sequence of goals and subgoals:

Initial goal: the crow has the cheese at time 9.

Subgoals: an event happens at time T and T < 9 and
the event initiates the fact that the crow has the cheese and
there is no other event that happens between T and 9 and
the other event terminates the fact that the crow has the cheese.

Subgoals: the crow picks up the cheese at time T and T < 9 and

there is no other event that happens between T and 9 and
the other event terminates the fact that the crow has the cheese.

Subgoals: there is no other event that happens between 0 and 9 and
the other event terminates the fact that the crow has the cheese.

Naf: an event happens at time T’ and T’ is between 0 and 9 and
the event terminates the fact that the crow has the cheese.

Subgoals: the crow sings at time T’ and T’ is between 0 and 9.

Subgoals: 5 is between 0 and 9.
Success: yes!

Failure: no!

The conclusion that the crow does not have the cheese follows from negation as
failure and the fact that, given the order in which the subgoals are selected, there
are no other ways of solving the initial goal. Of course, this conclusion depends
upon the closed-world assumption, that there are no other events that take place
before time 9 that initiate the crow having the cheese. On the other hand, there is
nothing to rule out the possibility that the crow could regain possession of the
cheese at some time after 9, for example by praising the fox.
Notice that the efficiency of the search for a solution is highly sensitive to the

order in which subgoals are selected. Given the order of selection in the proof

172 Computational Logic and Human Thinking

presented above, there are no other branches in the search space; and the search
is very efficient. However other selection strategies, for example selecting the
subgoal an event happens at time T first, would be very inefficient. The
efficiency of the search can be further improved by storing and accessing events
in order of occurrence, so that only the most relevant events are considered.

The event calculus and the frame problem

Taken together, the subgoal selection and event storage strategies help the event
calculus to overcome many, but not necessarily all of the inefficiencies of the
frame problem. Other inefficiencies are avoided as a result of the event calculus
localised view of change.
Suppose, for example, that we add that it was raining at the beginning of the

story, by assuming an additional event, such as it starts raining at time−1, where:

an event in which it starts raining initates a fact that it is raining.
an event in which it stops raining terminates a fact that it is raining.

We can simplify the problem of determining whether or not it is raining at
time 9 by solving the subgoals an event initiates a fact and an event
terminates a fact of the event calculus axiom in advance, generating the
specialised axiom:

it is raining at a time,
if it starts raining at an earlier time
and it does not stop raining between the two times.

Reasoning backwards with the specialised axiom generates the following
sequence of goals and subgoals:

Initial goal: it is raining at time 9.

Subgoals: it starts raining at time T and T < 9 and

and it does not stop raining between T and 9.

Subgoals: it does not stop raining between –1 and 9.

Naf: it stops raining at time T’ and T’ is between –1 and 9.
Failure: no!

Success: yes!

Notice that, unlike the solution of the same problem in the situation calculus, the
length of the solution does not depend on the number of states, actions or events
between the time –1 at which it starts raining and the time 9 under consideration.
In the event calculus, the length depends only on the number of relevant rain
initiating and terminating events, and their time of occurrence.

13: The changing world 173

The event calculus for plan generation

The event calculus constraint is not needed when the event calculus axiom is
used to predict the consequences of observed events. But it can be used to
monitor observed events. If an observation violates the constraint, then the
agent needs to choose between rejecting the observation as an illusion, and
rejecting a belief that is incompatible with the observation.
However, the constraint is needed when the event calculus axiom is used to

generate candidate events to explain observations or to generate candidate
actions to solve achievement goals.
Here is the beginning of a solution of the fox’s achievement goal of having

the crow’s cheese. In this solution only the initial event the crow picks up the
cheese at time 0 is given:

Initial goal: the fox has the cheese at time T.

Subgoals: an event happens at time T 0 and T 0 < T and
the event initiates the fact that the fox has the cheese and
there is no other event that happens between T 0 and T and
the other event terminates the fact that the fox has the cheese.

Subgoals: the fox picks up the cheese at time T 0 and T 0 < T and

there is no other event that happens between T 0 and T and
the other event terminates the fact that the fox has the cheese.

Without the event calculus constraint, this is as far as the fox needs to go to solve
the goal. The fox can simply pick up the cheese at any time, provided she
doesn’t do anything to terminate having the cheese in between times. Although
this solution may seem incomplete, it actually satisfies all of the formal con-
ditions for a solution in the proof procedure of the additional Chapter A6.
However, the solution is genuinely incomplete when the constraint is taken

into account. When the constraint is considered, the candidate action the fox
picks up the cheese at time T’ triggers the constraint and generates the further
achievement goal:

Further goal: the fox picks up the cheese is possible at time T 0.
Using the relevant definition of possibility:

an animal picks up an object is possible at a time
if the animal is near the object at the time.

backward reasoning reduces this further goal to:
Subgoal: the fox is near the cheese at time T 0.

This subgoal is the same kind of achievement goal that we started with, but it is
one step closer to a complete plan.

174 Computational Logic and Human Thinking

Reasoning in this way, alternating between the use of the event calculus
axiom and the event calculus constraint, the fox can soon generate a complete
plan to achieve her initial goal. In addition to the relevant actions, the plan
includes subgoals that prevent the fox from performing any other actions that
might interfere with the plan. It also contains an explicit assumption that the
crow will react to the fox’s praise by singing.
The solution looks more complicated than it is. Some of the apparent com-

plexity can be eliminated by compiling the constraint into the event calculus
axiom itself:

Compiled axiom: a fact holds at a time,
if an event happens at an earlier time
and the event initiates the fact
and the event is possible at the earlier time
and there is no other event

that happens between the two times and
that terminates the fact.

Evenmore of the complexity can be eliminated by solving the subgoals an event
initiates a fact and an event is possible at a time in advance, generating
specialised axioms for the special case under consideration. For example:

an animal has an object at a time,
if the animal picks up the object at an earlier time
and the animal is near the object at the earlier time
and there is no other event

that happens between the two times and
the event terminates the fact that the animal has the object.

This compiled form of the event calculus is closer to the representation of the
story of the fox and the crow in Chapters 3 and 4. But it is less flexible for
predicting the consequences of observed events, where the use of the constraint
is unnecessary.
Notice that explaining an observation that the fox has the cheese is similar to

generating a plan for the fox to have the cheese. This is because planning and
explaining observations are formally identical.

Partially ordered time

Whereas the possible world semantics and the situation calculus both associate
global states with facts, actions and other events, the event calculus associates
time points. In the examples we have seen so far, these time points are numbers,

13: The changing world 175

with the property that all facts and events are ordered linearly on the same time
line. However, the times of unrelated events do not need to be linearly ordered,
as pictured in the example:

The cheese falls to
the ground.

The crow has
the cheese.

The fox has
the cheese.

The fox praises
the crow.

The crow
sings.

The fox picks
up the cheese.

The wolf enters the
scene.

The wolf eats
the fox

To represent such partially ordered events, we need a different way of naming
time points, and of determining when one time point comes before another. For
example:

the crow picks up the cheese at timecrow-pickup.
the fox praises the crow at timepraise.
the crow sings at timesing.
the fox picks up the cheese at timefox-pickup.
the wolf enters the scene at timeenter.
the wolf eats the fox at timeeat.
timecrow-pickup < timepraise < timesing < timefox-pickup < timeeat
timeenter < timeeat
T1 < T3 if T1 < T2 and T2 < T3

The event calculus works equally well with such different representations of
time.

Keeping track of time

The representation of time by numbers, dates and/or clock time serves two
functions. It not only linearly orders time points, but it also measures the
duration between time points. This ability to judge duration is necessary for
the proper functioning of the agent cycle. For example, if you are hungry, then
you need to get food and eat it before you collapse from lack of strength. If a car
is rushing towards you, then you need to run out of the way before you get run
over. If you have a 9:00 appointment at work, then you need to get out of bed,
wash, eat, dress, journey to work and arrive before 9:00.

176 Computational Logic and Human Thinking

To get everything done in time, you need an internal clock, both to timestamp
observations and to compare the current time with the deadlines of any inter-
nally derived future actions. This creates yet more work for the agent cycle:

repeatedly (or concurrently):
observe the world, record any observations,
together with the time of their observation,
think,
decide what actions to perform, choosing only actions
that have not exceeded their deadline, and
act.

Consider, for example, the fox’s response to an observation that she is hungry.
She needs to estimate how long she can go without eating before it is too late:

if I am hungry at time Thungry
and I will collapse at a later time Tcollapse if I don’t eat
then I have food at a time Tfood
and I eat the food at the time Tfood
and Tfood is between Thungry and Tcollapse.

She also needs to be able to deal with any attack from the local hunters:

if the hunters attack me at time Tattack
and they will catch me at a later time Tcatch if I don’t run away
then I run away from the hunters at a time Trun
and Trun is between Tattack and Tcatch.

Suppose, the fox is both hungry and under attack at the same time. Then the fox
needs to do a quick mental calculation, to estimate both how much time she has
to find food and how much time she has to run away. She needs to judge the
probability and utilities of the two different actions, and schedule them to
maximise their overall expected utility. If the fox has done her calculations
well and is lucky with the way subsequent events unfold, then she will have
enough time both to satisfy her hunger and to escape from attack. If not, then
either she will die of starvation or she will die from the hunt.
But this kind of reasoning is a normative ideal, which is perhaps better suited

to a robot than an intelligent biological being. It would be easier simply to give
higher priority to escaping from attack than to satisfying hunger, using heuristic
“rules of thumb” that might look more like this:

if I am hungry at time Thungry
then I have food at a time Tfood
and I eat the food at the time Tfood
and Tfood is as soon as possible after Thungry.

13: The changing world 177

if someone attacks me at time Tattack
then I run away from the attackers at a time Trun
and Trun is immediately after Tattack.

Then if you are both hungry and attacked at the same time, say time 0 arbitrarily,
your goals would look like this:

I have food at a time Tfood
I eat the food at the time Tfood
I run away from the hunters at a time Trun
and Trun is immediately after time 0
and Tfood is as soon as possible after 0.

It would then be an easy matter for you to determine not only that Trun should be
before Tfood but that Trun should be the next moment in time.
It would be the same if you were attacked after you became hungry, but

before you succeeded in obtaining food. You would run away immediately, and
resume looking for food only after (and if) you have escaped from attack.
Rules of thumb give a quick and easy decision, which is not always optimal.

If you were running away from attack and you noticed a piece of cheese on the
ground, a normative calculation might determine that you have enough time
both to pick up the cheese and to resume running and escape from attack. Rules
of thumb, which are designed to deal with the most commonly occurring cases,
are less likely to recognise this possibility.
Our agent model is neutral with respect to the way decisions are made. It is

compatible, in particular, with the use of decision theory, the use of heuristic
rules of thumb and any combination of the two.

Historical background and additional reading

The event calculus (Kowalski and Sergot, 1986) was inspired in large part by
the situation calculus developed by McCarthy and Hayes (1969). The use of
temporal storage of events to alleviate the frame problem in the event calculus is
discussed in Kowalski (1992). A more radical approach to the frame problem,
which manipulates a destructively updated working memory, is described in
Kowalski and Sadri (2010). The frame problem is the subject of Murray
Shanahan’s (1997) Solving the Frame Problem.
The use of the event calculus for knowledge representation and reasoning in

Artificial Intelligence is one of the main topics in Erik Mueller’s (2006)
Commonsense Reasoning. The application of the event calculus to the analysis of
tense and aspect in natural language from the vantage point of Cognitive Science is
the topic of van Lambalgen and Hamm’s (2005) The Proper Treatment of Events.

178 Computational Logic and Human Thinking

14

Logic and objects

What is the difference between the fox and the crow, on the one hand, and the
cheese, on the other?Of course, the fox and the crow are animate, and the cheese is
inanimate. Animate things include agents, which observe changes in the world
and perform their own changes on theworld. Inanimate things are entirely passive.
But if you were an Extreme Behaviourist, you might think differently. You

might think that the fox, the crow and the cheese are all simply objects, distin-
guishable from one another only by their different input–output behaviours:

if the fox sees the crow and the crow has food in its mouth,
then the fox praises the crow.

if the fox praises the crow,
then the crow sings.

if the crow has food in its beak and the crow sings,
then the food falls to the ground.

if the food is next to the fox,
then the fox picks up the food.

Extreme Behaviourism was all the rage in Psychology in the mid-twentieth
century. A more moderate form of behaviourism has been the rage in Computing
for approximately the past 30 years, in the form of Object-Orientation.
It’s easy to make fun of yesterday’s Extreme Behaviourists. But it’s not so

easy to dismiss today’s Object-Orientated Computer Scientists and Software
Engineers. Object-Orientation (OO) today dominates every aspect of computing:
from modelling the system environment, through specifying the system require-
ments, to designing and implementing the software and hardware.
Advocates of OO argue that it provides a natural way of looking at the world,

helping to decompose large systems into manageable components, making them
easier to develop and maintain. These claims of naturalness place it in direct
competition with logic in general and Computational Logic (CL) in particular.

179

For a while in the 1980s, it looked as though some form of Computational
Logic might come to occupy the central role in computing that OO occupies
today. If we can understand why OO won the competition between them, then
we might gain a better understanding of the prospects of CL, not only for
computing, but for human reasoning as well.

Objects as individuals

In the object-oriented way of looking at things, the world consists of objects,
which interact with one another through their externally manifest input–output
behaviour. OO turns the relationship between an agent and the world, as viewed
in conventional logic:

outside in:

agent

observe act

The world

The world

object

Representation
of the world

object object

An agent’s observations turn into messages received from other objects, and its
actions turn into messages sent to other objects. The world becomes absorbed into
the network of interacting objects, or becomes a separate object like any other object.

Encapsulation

An object consists of a local state, which is a collection of current values of the
object’s attributes, and a collection ofmethods, which the object uses to respond

180 Computational Logic and Human Thinking

to messages or to compute values of its attributes. Both of these are encapsu-
lated within the object, hidden from other objects.
Encapsulation of an object’s methods is an inherent property of the natural

world, because no object can tell for sure what goes on inside another object. In
theory, if you could get inside another object, you might discover that it is just
like you. Every object – bear, tree, river, mountain or stone –might have a spirit,
which is its internal mental state. Contrariwise, you might discover that no
object, other than yourself, has any internal state at all.
Encapsulation of methods is a useful property for constructing artificial

worlds. It reduces the complexity of combining individual objects into complex
systems of objects, because the engineer needs to take into account only the
external behaviour of the components. Furthermore, should one of the compo-
nents of a functioning system become defective or obsolete, it can be replaced
by a new component that has the same external behaviour, without affecting the
behaviour of the system overall.
OO is more moderate than behaviourism. In addition to combining existing

encapsulated objects, the engineer can create new objects by initialising the
values of their attributes and implementing their methods.

Methods

The common OO languages used for implementing methods are typically
procedural languages with a syntax inherited from pre-OO programming lan-
guages and without the declarative semantics of logic-based knowledge repre-
sentation languages.
However, even when OO methods are implemented in procedural program-

ming languages, it is natural to express their specifications in logical form. These
specifications often have the form of condition–action rules in declarative mood:

if an object receives a message of the form S from object O
then the object sends a message of the form R to object P.

For example:

if the fox receives a message that the crow has food in its mouth,
then the fox sends a message of praise to the crow.

if the crow receives a message of praise from the fox,
then the crow sends a message of song.

if the crow has food in its mouth
and the food receives a message of song from the crow
then the food sends a message of falling to the ground.

14: Logic and objects 181

if the food sends a message that it is next to the fox,
then the fox sends a message that she picks up the cheese.

The encapsulated methods by means of which these specifications are imple-
mented can be programmed in different ways. They can be implemented, in
particular, as we will discuss later and as should already be apparent, by
programs expressed in logical form.

Classes

OO makes it easy for the engineer to create new objects by instantiating more
general classes of objects.
For example, an engineer might create a new fox by creating a new instance

of the general class of all foxes. The class of foxes as a whole might have general
methods for dealing with such messages as the sight of another animal having
food and the appearance of food within its grasp. It might also have typical
values for such attributes as the colour of its fur and the shape of its tail. The new
fox would inherit these methods and values of attributes with little or no
modification, possibly with the addition of certain special methods and attrib-
utes unique to itself.
Classes are organised in taxonomic hierarchies. So for example, the class of

all foxes might inherit most of its methods and attributes from the class of all
animals. The class of all animals might inherit them, in turn, from the class of all
animate beings; the class of all animate beings might inherit them from the class
of all material objects; and the class of all material objects might inherit them
from the class of all things.

Reconciling logic and objects

There is an obvious way to reconcile logic and objects: simply by using
Computational Logic to implement the methods associated with objects and
classes. An implementation of this logical kind might combine maintenance
goals, which respond to observations of incomingmessages, with beliefs, which
reduce goals to subgoals, including actions of sending outgoing messages. For
example:

Goal: if I receive message of form S from object O then G.

Beliefs: G if conditions and I send message of form R to object P.

182 Computational Logic and Human Thinking

Using CL to implement OO methods can benefit OO by providing it with
higher-level knowledge representation and problem-solving capabilities.
Conversely, using OO encapsulation and inheritance techniques can

benefit CL by providing a framework for combining individual logic-
based agents into multi-agent communities. Individual agents can share their
knowledge and problem-solving resources with other agents in the same
community.
In such a community of agents, complex problems can be decomposed into

simpler subproblems, and their solution can be distributed to different agents,
specialising in different problem domains. No single agent needs to know it all,
or to solve every problem on its own.
Similarly, a complex connection graph of goals and beliefs might be dis-

tributed among several agents. Relatively self-contained subgraphs with sparse
links to other subgraphs can be associated with individual agents. The links
between the subgraphs can serve as communication channels between the
agents, sending requests for help in solving subgoals and receiving solutions
and other information in return.

Message-passing or shared environment?

In computing, there are two main alternative approaches to combining agents
into multi-agent systems: the communicating agents approach, in which agents
interact directly by communicating messages, and the shared environment
approach, in which agents interact indirectly through the medium of a global
database. Computational Logic is compatible with both approaches, and sug-
gests a natural way of combining them.
CL supports the communicating message approach, when agents are

interpreted as subgraphs of a connection graph, and messages are interpreted
as links between subgraphs. But it supports the shared environment
approach, when the environment is viewed as a semantic structure that gives
meaning to an agent’s thoughts. In CL, these two views are compatible and
combined.
The simplest way to combine and reconcile the two approaches in CL is to

use message passing as an internal mechanism to link subgraphs of the con-
nection graph of a single agent’s mind, and to use the environment as an external
medium to coordinate the agent’s interactions with other agents. Viewed in this
way, the main contribution of OO is the way in which it structures knowledge
and goals into manageable, semi-independent, encapsulated, modular and hier-
archically organised components.

14: Logic and objects 183

Semantic networks as a variant of Object-Orientation

There are a number of other computing paradigms that structure knowledge in
similar object-oriented terms. Among the most notable of these are semantic
networks, which represent the world as a web of relationships among individ-
uals. For example, a semantic network representing the initial state of the story
of the fox and the crow might look like this:

the crow is in the tree

has

the cheese is above

the fox is on the ground

Here circles (or nodes) represent individuals (or objects), and arcs represent
binary relationships between pairs of individuals. The representation can be
extended to non-binary relationships.
Semantic network representations are object-oriented, in the sense that they

store all the facts about an individual in a single place, namely surrounding the
node that represents the individual. These facts are represented by the arcs con-
nected to that node and by the other nodes to which those arcs are also connected.
However, in contrast with orthodox OO, relationships are represented only once,

but are connected to all the individuals that participate in the relationship.Moreover,
they are visible to the outside world, and not merely encapsulated inside objects.
Semantic networks have also been used to represent dynamic information, by

reifying events. For example:

the crow

object agentagent object

agent

the fox

agent

the cheese

praise then sing then fall then land then

agent

pick up

184 Computational Logic and Human Thinking

In this network, the terms object and agent are only loosely associated with our
notions of object and agent.
Semantic networks have also been used to represent hierarchies of classes.

For example:

thing

is a

material

is a

animate

is ais a

is a

animal food

is a is a

fox

the fox

is a is ais a

cheese

the cheesethe crow

crow

Semantic networks are like the semantic structures of Chapter A2, which are
just sets of atomic sentences. In fact, semantic network connections of the form:

one thing is related to another thing

are simply graphical representations of atomic sentences of the form one thing is
related to another thing.

Object-oriented structuring of natural language

Semantic networks are a graphical way of picturing object-oriented structuring
of information. OO structuring can also be applied to natural language.
We noted earlier inChapter 1 that sentences expressed in logical form are context-

independent and can be written in any order, but some sequences of sentences are
much easier to understand than others. Grouping sentences into collections of
sentences about objects is another way to make sentences easier to understand.

14: Logic and objects 185

For example, we can group the atomic sentences describing the beginning of
the story of the fox and the crow into collections of sentences about the objects
in the story:

The crow: The crow has the cheese.
The crow is in the tree.

The tree: The tree is above the ground.

The fox: The fox is on the ground.

Of course, we can also group the same sentences by means of other objects:

The cheese: The crow has the cheese.

The tree: The crow is in the tree.

The ground: The tree is above the ground.
The fox is on the ground.

To find a good organisation, it is necessary to decide which objects are the most
important. Generally, active objects, including agents, are more important than
passive objects.
Natural languages, like English, take object-orientation a step further, by

employing grammatical forms in which the beginning of a sentence indicates its
topic and the following part of the sentence expresses a comment about the
topic. This form often coincides with, but is not limited to, the grammatical
structuring of sentences into subjects and predicates.
The two forms of object-orientation – grouping sets of sentences by object

and structuring individual sentences by object – are often combined in practice.
Consider, for example, the pair of English sentences from Brown and Yule
(1983, page 130):

The prime minister stepped off the plane.
Journalists immediately surrounded her.

Both sentences are formulated in the active voice, which conforms to the
guidelines for good practice advocated in all manuals of English style.
The two sentences refer to three objects, the prime minister (referred to as

“her” in the second sentence), journalists and the plane. The prime minister is
the only object in common between the two sentences. So, the prime minister is
the object that groups the two sentences together. However, the topic changes
from the prime minister in the first sentence to the journalists in the second.
Now consider the following logically equivalent pair of sentences:

The prime minister stepped off the plane.
She was immediately surrounded by journalists.

186 Computational Logic and Human Thinking

Here, the two sentences have the same topic. However, the second sentence is
now expressed in the passive voice. Despite this fact and despite its going against
a naïve interpretation of the guidelines of goodwriting style, most people find this
second pair of sentences easier to understand. This seems to suggest that people
have a strong preference for organising their thoughts in object-oriented form,
which is stronger than their preference for the active over the passive voice.
Object-orientation is not the only way of structuring and ordering sentences.

In both of the two pairs of sentences above, the sentences are ordered by the
temporal sequence of events.
Now consider the following sequence of sentences:

The fox praised the crow.
The crow sang a song.
The cheese fell to the ground.
The fox picked up the cheese.

Here the sentences are ordered by temporal sequence. Individual sentences are
structured, not by object, but by agent, as reflected in the use of the active voice.

Conclusions

In the same way that there are many systems of logic, there are many forms of
object-orientation. In extreme forms of OO, there is no distinction between
active and passive objects, and all interaction between objects is reduced to
sending and receiving messages.
Extreme OO takes equality of objects too far. Instead of treating all objects as

equal, it would be more natural to distinguish between active and passive
objects. Active objects, which have encapsulated methods, are like agents,
which have internal goals and beliefs. Passive objects, which have no internal
structure, simply participate in external relationships with other objects.
Extreme OO also takes the message-passing metaphor too far. Instead of

forcing all interactions between objects to be messages, it would be more natural
to distinguish between messages sent from one active object to another and
messages that are really observations or actions.
The real value of object-orientation lies in moderate forms of OO in which

objects are encapsulated, modular collections of relatively self-contained
knowledge, most of which is inherited from more general classes.
The example of natural languages like English shows that logic and OO have

different areas of concern. Logic is concerned with representing knowledge,
whereas OO is concerned with structuring knowledge representations. It would
be interesting to see how OO notions of stucturing might apply to the collection
of sentences that make up this book.

14: Logic and objects 187

15

Biconditionals

As we saw in Chapter 5, negation as failure has a natural meta-logical
(or autoepistemic) semantics, which interprets the phrase cannot be shown
literally, as an expression in the meta-language or in autoepistemic logic. But
historically the first and arguably the simplest semantics is the completion
semantics (Clark, 1978), which treats conditionals as biconditionals in disguise.
Both the meta-logical and the completion semantics treat an agent’s beliefs as

specifying the only conditions under which a conclusion holds. But whereas the
meta-logical semantics interprets the term only in themeta-language, biconditionals
in the completion semantics interpret the same term, only, in the object language.
Suppose, for example, that we have complete information about whether or

not Mary will go to the party, and the only belief we have is:

mary will go if john will go.

Then it follows that: mary will go only if john will go.The meta-logical inter-
pretation of negation as failure interprets this use of only if in the meta-language:

“mary will go if john will go”
is the only way of showing “mary will go”.

However, the orthodox interpretation of only if in traditional logic interprets
only if in the object-language, understanding sentences of the form:

conclusion only if conditions

as object-language conditionals of the form:

conditions if conclusion.

Thus given a single conditional:

conclusion if conditions

188

together with an assumption that the conditional describes the only conditions
under which the conclusion holds, traditional logic interprets the conditional as
the object-language biconditional:

conclusion if and only if conditions.

More generally, in the propositional case (where there are no variables), tradi-
tional logic interprets the assumption that the conditionals:

conclusion if conditions1
. . .

conclusion if conditionsn

are the only ways of establishing the given conclusion as the biconditional:

conclusion if and only if conditions1 or . . . or conditionsn.

Written in this form, the conditions of the biconditional can be regarded as
giving a definition of the conclusion.
If the conditional is a simple fact, then the biconditional is equivalent to a

definition of the form:

conclusion if and only if true.

If an atomic predicate is the conclusion of no conditional, then it is equivalent to
a definition of the form:

atomic predicate if and only if false.
Or equivalently: it is not the case that atomic predicate.

This is also equivalent to the constraint:

Constraint: if atomic predicate then false.

The biconditional form is more complicated in the non-propositional case. For
example, suppose that we have complete information about who will go to the
party, and that the only beliefs we have are:

mary will go if john will go.
john will go if bob will not go.

Then the biconditional form of the beliefs is:

a person will go
if and only if the person is identical to mary and john will go
or the person is identical to john and bob will not go.

For simplicity, we ignore the non-propositional case in the rest of the book.

15: Biconditionals 189

Reasoning with biconditionals used as equivalences

The object-level interpretation of only if was originally used by Clark (1978) as
a semantics for negation as finite failure. But it can also be used in its own right
as a basis for an object-level proof procedure, in which biconditionals are used
as equivalences, to replace atomic formulas that match their conclusions by
their defining conditions (Fung and Kowalski, 1997). Using biconditionals in
this way is a form of backward reasoning, which behaves almost exactly like
backward reasoning with normal conditionals. Moreover, when applied to an
atomic formula inside negation, it behaves almost exactly like negation as
failure. In fact, in everyday informal reasoning, it can be hard to distinguish
between ordinary backward reasoning and reasoning with equivalences.
Suppose, for example, that we want to determine whether or notmary will go

to the party, but this time using biconditionals to represent the assumption that
the conditionals are the only ways of showing their conclusions:

mary will go if and only if john will go.
john will go if and only if it is not the case that bob will go.
bob will go if and only if false.

Initial goal: mary will go.
Equivalent subgoal: john will go.
Equivalent subgoal: it is not the case that bob will go.
Equivalent subgoal: it is not the case that false.
Equivalent subgoal: true.

Suppose Bob changes his mind:

mary will go if and only if john will go.
john will go if and only if it is not the case that bob will go.
bob will go if and only if true.

Initial goal: mary will go.
Equivalent subgoal: john will go.
Equivalent subgoal: it is not the case that bob will go.
Equivalent subgoal: it is not the case that true.
Equivalent subgoal: false.

Now suppose Bob is out of the picture, and we try to showmary will not gowith
the beliefs:

mary will go if and only if john will go.
john will go if and only if mary will go.

190 Computational Logic and Human Thinking

Initial goal: it is not the case that mary will go.
Equivalent subgoal: it is not the case that john will go.
Equivalent subgoal: it is not the case that mary will go.
Equivalent subgoal: it is not the case that john will go.
ad infinitum: . . .

It is impossible to show that mary will not go and impossible to show that mary
will go. Similarly for John.
This last result is different from the one we obtained with the same example

when we understood it is not the case that as it cannot be shown, using negation
as failure in Chapter 5. There the result was that mary will not go, because it
cannot be shown that mary will go. This shows that default reasoning with
biconditionals is a form of negation as finite failure.

Using biconditionals to simulate autoepistemic failure

Reconsider the belief that a person is innocent unless proven guilty. Let’s see
what happens if we replace the meta-level negation it cannot be shown by the
object-level negation it is not the case that and replace conditionals by
biconditionals:1

a person is innocent of a crime
if and only if the person is accused of the crime
and it is not the case that the person committed the crime.

a person committed an act
if and only if another person witnessed the person commit the act.

bob is accused of robbing the bank if and only if true.

In addition, we need to represent a form of the closed-world assumption for
predicates that do not occur either as facts or as the conclusions of conditionals,
for example to represent the initial situation in which no one has seen Bob
commit the crime. This can be expressed as a negative fact in biconditional form
or as a constraint:2

1 This discussion glosses over a number of details. For example, if Bob is the only person accused of
committing a crime, then this could be represented by a person is accused of committing a crime if
and only if the person is identical to bob and the crime is robbing the bank, where is identical to is
a kind of equality (defined by X is identical to X).

2 There are arguments for both representations. However, in practice, the two representations
behave similarly. The biconditional representation uses backward reasoning to replace an atom by

15: Biconditionals 191

a person witnessed bob commit robbing the bank if and only if false.
or if a person witnessed bob commit robbing the bank then false.

To solve a goal, such as showing that bob is innocent of robbing the bank, it
suffices to repeatedly replace atomic formulas by their definitions, performing
obvious simplifications associated with true and false. In the case of showing
that bob is innocent of robbing the bank, this form of backward reasoning
generates the following transformation of the initial goal into a sequence of
equivalent expressions, representing subgoals. Atomic formulae that are
replaced by their definitions are underlined:

Initial goal: bob is innocent of robbing the bank.
Equivalent subgoal: bob is accused of robbing the bank and

it is not the case that
bob committed robbing the bank.

Equivalent subgoal: it is not the case that
bob committed robbing the bank.

Equivalent subgoal: it is not the case that another person
witnessed bob commit robbing the bank.

Equivalent subgoal: it is not the case that false.
Equivalent subgoal: true.

This solves the initial goal, because it is equivalent to true. Although reasoning
explicitly with true and false may seem a little awkward, it mirrors the kind of
reasoning that takes place implicitly when reasoning with meta-level conditions
of the form it cannot be shown.
Reasoningwith biconditionals in thisway is defeasible, because if we now replace

the assumption that no one witnessed Bob commmit robbing the bank by:

john witnessed bob commit robbing the bank if and only if true.

then the previous conclusion is withdrawn:

Initial goal: bob is innocent of robbing the bank.
Equivalent subgoal: bob is accused of robbing the bank and

it is not the case that
bob committed robbing the bank.

Equivalent subgoal: it is not the case that
bob committed robbing the bank.

Equivalent subgoal: it is not the case that another person
witnessed bob commit robbing the bank.

its definition false. The constraint representation uses forward reasoning from the atom to derive
false and to conjoin false to the atom. In both cases, logical simplification (of the kind described in
Chapter A6) transforms the atom and its conjuncts to false.

192 Computational Logic and Human Thinking

Equivalent subgoal: it is not the case that true.
Equivalent subgoal: false.

Remarkably, not only do both proofs mirror the search for proofs using negation
as failure, but they simulate the autoepistemic character of negation as failure.
This is because any conclusion derived using the biconditional representation
has an implicit global autoepistemic assumption that the conclusion holds as far
as I know.

Abduction or deduction?

Similarly to the way in which reasoning with biconditionals provides an alter-
native way of performing default reasoning, it also provides an alternative way
of explaining observations by deduction rather than by abduction. For example,
to explain the observation that the grass is wet, it uses biconditionals as
equivalences to replace closed predicates by their definitions, leaving open
predicates as potential hypotheses:

Belief: the grass is wet if and only if it rained
or the sprinkler was on.

Observation and initial goal: the grass is wet.
Equivalent subgoal: it rained or the sprinkler was on.

Here the predicate the grass is wet is closed, whereas the predicates it rained and the
sprinkler was on are both open and serve as hypotheses to explain the observation.
Note that, using deduction with biconditionals, the disjunction or is expressed

in the object language. In contrast, using abduction with conditionals, the same
disjunction would be expressed in the meta-language by saying that the grass is
wet because it rained or the grass is wet because the sprinkler was on.
In the same way that forward reasoning can be used to deduce consequences

of hypotheses derived by abduction, forward reasoning can also be used to
deduce consequences of hypotheses derived by means of biconditionals. For
example, if it rained last night, then the clothes outside will be wet. If you check
the clothes, and observe they are dry, then you can eliminate the possibility that
it rained (using the fact that wet and dry are contraries). This reasoning can be
expressed more precisely in the following way:

Beliefs: the grass is wet if and only if it rained or the sprinkler was on.
the clothes outside are wet if and only if it rained.
the clothes outside are dry if and only if true.

Constraint: if the clothes outside are dry and the clothes outside are wet then
false.

15: Biconditionals 193

Herewe represent the fact thatwet and dry are contraries as a constraint, whichwe
write (and use) in the same way as maintenance goals, but with conclusion false.

Observation and initial goal: the grass is wet.
Equivalently (by backward reasoning): it rained or the sprinkler was on.
Equivalently (by forward reasoning):

(it rained and the clothes outside are wet) or the sprinkler was on.
Equivalently (by forward reasoning):

(it rained and the clothes outside are wet
and (if the clothes outside are dry then false)) or the sprinkler was on.

Equivalently (by backward reasoning):
(it rained and the clothes outside are wet and false)
or the sprinkler was on.

Equivalently: false or the sprinkler was on.
Equivalently: the sprinkler was on.

Here the atom is underlined if it is replaced by its definition using backward
reasoning, or if it is used for forward reasoning.

Deriving cause if effect from effect if cause

Interpreting a conditional conclusion if conditions as a biconditional conclusion
if and only if conditions in disguise explains why it is so easy to confuse the
conditional with its converse conditions if conclusion. It also explains the
relationship between the more natural effect if cause representation of causality
and the more efficient cause if effect representation.
For example, given an assumed complete effect if cause representation of the

alternative causes of smoke:

there is smoke if there is a fire.
there is smoke if there is teargas.

the completion semantics interprets the representation as a biconditional:

there is smoke if and only if there is a fire or there is teargas.

One half of the biconditional is the original pair of conditionals. The other half
of the biconditional is the converse of the original pair of conditionals, and is a
conditional with a disjunctive conclusion:

there is a fire or there is teargas if there is smoke.

194 Computational Logic and Human Thinking

Conditionals with disjunctive conclusions are not very informative. If we had
statistical information about the relative frequency of different causes of smoke,
we could be more informative. For example:

there is a fire with 99.9% probability if there is smoke.
there is teargas with 0.1% probability if there is smoke.

This would be analogous to associating probabilities with the alternative
hypotheses in the more natural effect if cause representation.
But we can obtain a similar effect if we rewrite the conditional having a

disjunctive conclusion as a logically equivalent conditional with an atomic
conclusion and a negative condition:

there is a fire if there is smoke
and it is not the case that there is teargas.

This conditional derives fire as the cause of smoke by default, avoiding both the
completely uninformative disjunctive conclusion and the overly informative
probabilistic conclusion.
Again, we have a case of different levels of representation. The effect if cause

representation is higher-level. But it needs abduction to explain observations,
and such criteria as relative likelihood and explanatory power to help decide
between alternative hypotheses. The cause if effect representation is lower-
level. It gives similar results, but it does so more efficiently, using deduction
instead of abduction.

Truth versus proof in arithmetic

The two interpretations of negation as failure, the two ways of understanding
explanations, and the two ways of representing the relationship between cause
and effect are related to the difference between truth and proof in arithmetic.
Arguably, the meta-logical interpretation of negation as failure, the abductive

understandingof explanations, and the representation of cause and effect in the form
effect if cause are all more fundamental than their object-level, deductive and cause
if effect alternatives. Similarly, truth in arithmetic is more fundamental than proof.
For simplicity in mathematical logic, the natural numbers are represented by

repeatedly adding 1 to the number 0, so that X+ 1 is the number immediately
after X. For example, the numbers 0, 1, 2, 3, . . . come out looking like:

0, 0+1, (0+1)+1, ((0+1)+1)+1, . . .

With this representation, arithmetic is just the set of all the properties of addition
and multiplication, defined by the conditionals:

15: Biconditionals 195

0þ Y ¼ Y: ðXþ 1Þ þ Y ¼ ðZþ 1Þ if Xþ Y ¼ Z:

0� X ¼ 0: ðXþ 1Þ � Y ¼ V if X� Y ¼ U and Uþ Y ¼ V:

A more precise and more formal representation is given in the additional
Chapter A2, where X + 1 is represented by the successor function s(X).
Forward reasoning with these conditionals generates the addition and multi-

plication tables for all the natural numbers. Backward reasoning reduces addi-
tion and multiplication problems to similar problems for smaller numbers. For
example, here is a computation by backward reasoning, reducing the multi-
plication problem 1 × 3 to the simpler subproblems of multiplying 0 × 3 and
adding 3 to the result:

Initial goal: (0+1) × (((0+1)+1)+1) = V
Subgoals: 0 × (((0+1)+1)+1) = U and U + (((0+1)+1)+1) = V
Subgoal: 0 + (((0+1)+1)+1) = V
which succeeds with: V = (((0+1)+1)+1), i.e. V = 3.

The addition and multiplication tables generated by forward reasoning have a
number of intuitive properties. For example, the order in which two numbers are
multiplied doesn’t matter:

X� Y ¼ Y� X

The intuition that such (universally quantified) properties are true is due to the
fact that they are true of the set of all atomic facts that can be derived from the
definitions of addition and multiplication. This notion of truth is more funda-
mental than any notion of proof in arithmetic.
However, the notion of truth in arithmetic is non-constructive, in the same

way that negation as potentially infinite failure is non-constructive. In the case
of negation as failure, showing that the negation of a sentence is true requires
recognising infinite failure. In the case of arithmetic, showing that a universally
quantified sentence is true requires showing that potentially infinitely many
instances of the sentence are true.
In many, but not all cases, truth can be captured by proof. In the case of

negation as failure, the completion semantics, replacing conditionals by bicon-
ditionals, captures finite failure. Moreover, with the addition of axioms of
induction, the completion semantics can also capture cases where infinite failure
is due to a regular loop.
Similarly, many properties of arithmetic can be proved by finite means, using

the biconditional representations of addition and multiplication augmented with
axioms of induction. In fact, this representation is equivalent to the standard set

196 Computational Logic and Human Thinking

of axioms of arithmetic, called Peano arithmetic. The analogy between the
Peano axioms and the completion and induction axioms used to prove proper-
ties of logic programs was investigated by Clark and Tärnlund (1978).

But in arithmetic, as we know from Gödel’s incompleteness theorem, there
exist true sentences (or properties of arithmetic) that cannot be proved by any
finite means. Similarly for logic programs and other conditionals, there exist
true negative sentences that hold by infinite failure that cannot be proved using
the completion, even augmented with axioms of induction or sophisticated
forms of loop detection.
The incompleteness theorem for arithmetic is arguably the most important

result of mathematical logic in the twentieth century. The analogy with negation
as failure shows that the theorem has similar importance for the relationship
between truth and proof in human reasoning more generally.

Conclusions

There are two ways to understand conditional beliefs. One way is to understand
them as representing the semantic structure of all the atomic facts that can be
derived from them by means of forward reasoning. This semantic structure is
the minimal model of the conditionals, which determines the truth (or falsity) of
all other sentences expressed in the same language. The other way to understand
conditional beliefs is as biconditionals in disguise.
The first way, which is explored in the additional Chapters A2, A3, A4 and

A6, is arguably more fundamental. It specifies the notion of truth against which
all methods of proof need to be judged for soundness and completeness. The
second way is the standard way of trying to prove such true sentences. It is
sound, but incomplete, even augmented with axioms of induction.
Thus both ways of understanding conditionals have their place. The first way

identifies the goal, which is to determine the truth. The second way seeks to
achieve the goal constructively by finite means.
However, it is not always easy to tell the two approaches apart. For example,

the ALP procedure of the additional Chapter A6, which is designed to generate
and determine truth in minimal models, is a modification of the IFF proof
procedure for showing logical consequence by reasoning with biconditionals.

15: Biconditionals 197

16

Computational Logic and the selection task

In Chapter 2, we saw that psychological studies of the selection task have been
used to attack the view that human thinking involves logical reasoning, and to
support the claim that thinking uses specialised algorithms instead. I argued that
these attacks fail to appreciate the relationship between logic and algorithms, as
expressed by the equation:

specialised algorithm =
specialised knowledge + general-purpose reasoning.

Specialised knowledge can be expressed in logical form, and general-purpose
reasoning can be understood largely in terms of forward and backward reasoning
embedded in an observe–think–decide–act agent cycle.
I also argued that many of the studies that are critical of the value of logic in

human thinking fail to distinguish between the problem of understanding
natural-language sentences and the problem of reasoning with logical forms.
This distinction and the relationship between them can also be expressed by an
equation:

natural language understanding =
translation into logical form + logical reasoning.

We saw that even natural-language sentences already in seemingly logical form
need to be interpreted, in order to determine, for example, whether they are
missing any conditions, or whether they might be the converse of their intended
meaning. Because of the need to perform this interpretation, readers typically
use their own background goals and beliefs, to help them identify the intended
logical form of the natural-language problem statement.
However, even after taking these problems of representation and interpretation

into account, there remains the problem of reasoning with the resulting logical
forms. This problem is the topic of this chapter.

198

An abstract form of the selection task

Assume that an agent has been told that a sentence having the logical form:

if P then Q

ought to be true, but might be false. Assume, moreover, that P and Q are open
predicates that are directly observable. The abstract form of the selection task is
to determine how the agent should respond to various observations of the truth
values of these predicates.
I will argue that this is a naturalwayof presenting the selection task to an agent in

the context of the agent cycle. Because the agent believes that the conditional ought
to be true, it is natural for the agent to use the conditional to assimilate observations
by deriving their consequences. But because the agent believes that the conditional
might be false, it is also natural for the agent to actively observe whether con-
sequences that ought to be true if the conditional is true are actually true.
In our agent model, the agent’s response depends upon whether the agent

interprets the conditional as a goal or as a belief. If the agent interprets it as a
goal, then the possibility that the goal might be false means that the state of the
world may not conform to the goal. But if the agent interprets it as a belief, then
the possibility that the belief might be false means that the belief may not
conform to the state of the world.
But classical logic does not distinguish between goals and beliefs. According

to classical logic, the correct responses are:

From an observation of P deduce Q. (modus ponens)
From an observation of not Q deduce not P. (modus tollens)

However, in psychological studies of some variants of the selection task,
including the original card version, most people:

From an observation of P deduce Q. (modus ponens)
From an observation of Q deduce P. (affirmation of the consequent)

They correctly performmodus ponens, but they commit the fallacy of affirmation
of the consequent, and they fail to perform modus tollens. In theory, there is one
additional response they could make:

From an observation of not P to deduce not Q. (denial of the antecedent)

However, most people make this inference only rarely.
The challenge is to explain why most people reason correctly in some cases,

and seemingly incorrectly in other cases. Part of the problem, of course, is that
the psychological tests assume that subjects have a clear concept of deductive

16: Computational Logic and the selection task 199

inference. Butwe have seen that even SherlockHolmes had trouble distinguishing
deduction from abduction.Andwe have also seen that there is good reason for this
trouble, because abduction can be performed by deduction if conditionals are
understood as biconditionals. This explains why most subjects commit the
deductive fallacy of affirmation of the consequent, which is not a fallacy at all,
when these considerations are taken into account.

I will argue that, given the above abstract form of the selection task:

* Modus ponens is easy, no matter whether the conditional is interpreted as a
goal or as a belief, because in both cases, forward reasoning derives Q from
an observation of P.

* Affirmation of the consequent is a correct inference if the conditional is
interpreted as the only belief that implies its conclusion. It is justified either
by abduction if only is interpreted in the meta-language, and by the
biconditional formulation of the conditional if only is interpreted in the
object language. However, it is not justified if the conditional is interpreted
as a goal.

* Modus tollens is hard if the conditional is interpreted as a belief, mostly
because it is necessary to connect a positive observation Q’ with the negation
not Q of the conclusion of the conditional if P then Q. In many cases, this
connection needs to be made through an unstated background constraint if Q
and Q’ then false.
In such cases, modus tollens is easier if the conditional is interpreted as a

goal, because then it is natural to reason in advance of obervations and to
compile the conditional and the constraint into the form if P and Q’ then false.
Represented in this form, the conditional can easily derive if P then false, i.e.
not P from the observation Q’.

* Denial of the antecedent is a theoretical possibility if the conditional is
interpreted as the only conditional implying its conclusion, but is made
harder by the need to derive the negative conclusion not P from a positive
observation P’. Arguably, the need both to interpret the conditional as the
only conditional and to derive a negative conclusion makes denial of the
antecedent harder and therefore less likely.

A more accurate representation of the selection task

The abstract form of the conditional if P then Q is only an approximation to the
conditionals in the psychological experiments. It would be more accurate to
represent them in the form:

200 Computational Logic and Human Thinking

if X has value u for property p then X has value v for property q.

For example:

if a card X has letter d on the letter side
then the card X has number 3 on the number side.

if a person X is drinking alcohol in a bar
then the person X has age at least eighteen years old.

In many cases, the properties p and q have only a single value for a given value
of X.1 For example, a card has only one letter on the letter side of the card, and
only one number on the number side of the card. In the case of the property q,
this can be expressed as an integrity constraint:

if X has value V for property q and X has value W for property q
then V is identical to W.

where the predicate is identical to is defined by the clause:

X is identical to X.

For example:

if a card X has number N on the number side
and the card X has number M on the number side
then N is identical to M.

We will see that we need such integrity constraints – or something like them – to
derive negative conclusions from positive observations. A similar constraint
holds for the age of a person:

if a person X has age at least eighteen years old
and the person X has age under eighteen years old
then false.

These integrity constraints are similar to the constraints:

if predicate and contrary-predicate then false.

that we used to reason with negation when performing abduction, and which we
treated as a species of goal.
We now consider in greater detail the case in which the conditional is

interpreted as a belief, and afterwards the case in which the conditional is
interpreted as a goal.

1 In mathematics this means that the relationship X has value V for property q is a functional
relationship, which is normally written q(X) =V, where q is now a function symbol.

16: Computational Logic and the selection task 201

The conditional interpreted as a belief

If an agent understands the conditional as a belief, and has reasons to doubt the
belief, then the agent can test the belief by checking its consequences. If these
consequences are not already derivable from other beliefs, and if they are
observable, then the agent can attempt to observe the consequences to confirm
or refute the belief. For example, in the card version of the selection task, if the
agent observes what is on one side of a card and concludes what should or
should not be on the other side of the card, then the agent can turn the card over
to actively observe whether the conclusion is actually true.
The situation is similar to the one in which an observation can be

explained by a hypothesis. The agent can test the hypothesis by checking
its consequences. Observing that a consequence is true adds to the weight of
evidence in favour of the hypothesis. But observing that a consequence is
false refutes the hypothesis once and for all, and excludes it from further
consideration.
Thus, if the validity of a conditional belief is in doubt, then forward reasoning

from a true observation to consequences of the belief and observing that a
consequence is true increases confidence in the belief. But in the case of a
conditional belief with universally quantified variables, a true consequence
does not validate the belief, because other instances of the belief may be false.
On the other hand, the observation of a single false consequence refutes the
belief forever. In concrete versions of the selection task, it is usual to formulate
the instructions to encourage observations of consequences that can falsify the
conditional, and to discourage observations that can only confirm that an
instance of the conditional is true.

Modus ponens

In Computational Logic, conditional beliefs are used to reason both backwards
and forwards. In particular, given a (passive) observation of a positive predicate
P, forward reasoning with the conditional if P then Q derives the positive
conclusion Q. This is a classically correct application of modus ponens
(together with any instantiations of the variables in the conditional needed to
match the observation with the condition P).
If the conclusion Q is observable, and there is a reason to check Q, because

there is some doubt whether the conditional is actually true, then the agent can
actively observe whether Q is true. If Q fails to be true, then the conditional is
false. If Q is true, then the instance of the conditional matching the observation
P is true (although other instances may be false).

202 Computational Logic and Human Thinking

Affirmation of the consequent

In Computational Logic, conditionals are also used to explain observations.
Given an observation ofQ, backward reasoning derives P as a candidate explan-
ation of Q. This derivation can be viewed both as abduction with the conditional
if P then Q and as deduction with the biconditionalQ if and only if P. In classical
logic, this form of reasoning is called the fallacy of affirmation of the consequent.

As in the case ofmodus ponens, if P is observable, then the agent can actively
observe whether P is true. If P fails to be true, then the belief in its conditional
form fails to explain the observation, even though the belief itself may be true;
but the belief in its biconditional form is definitely false.

Modus tollens

Themain problemwithmodus tollens is that real observations are positive and not
negative. Negative conclusions have to be derived from positive observations.2

The longer the derivation and the larger the number of distracting, irrelevant
derivations, the more difficult it is for the agent to make the necessary, relevant
derivation.
The positive observation in the card version of the selection task is the fact:

the fourth card has number 7 on the number side.

To perform modus tollens with the belief:

if a card X has letter d on the letter side
then the card X has number 3 on the number side.

it is necessary first to derive the negative conclusion:

it is not the case that the fourth card has number 3 on the number side.

But this derivation is hard to motivate. Why not also derive the irrelevant
conclusions:

it is not the case that the fourth card has number 1 on the number side.
it is not the case that the fourth card has number 2 on the number side.
it is not the case that the fourth card has number 4 on the number side.
etc.

However, the effect of modus tollens can be obtained more directly, without the
distraction of these additional conclusions, by using the integrity constraint:

2 A negative observation can also be obtained from the failure to make a positive observation.
However, the standard selection task examples involve only positive observations from which
“negative observations” need to be derived before modus tollens can be applied.

16: Computational Logic and the selection task 203

if a card X has number N on the number side
and the card X has number M on the number side
then N is identical to M.

Forward reasoning with the observation:

the fourth card has number 7 on the number side.

using the constraint derives:

if the fourth card has number M on the number side
then 7 is identical to M.

Backward reasoning using the conditional derives:

if the fourth card has letter d on the letter side
then 7 is identical to 3.

At this point, the standard pattern of forward and backward reasoning suggests
that the condition the fourth card has letter d on the letter side should be checked
before deriving the conclusion 7 is identical to 3. However, this condition can
be checked only by performing an active observation. But the active observation
is unnecessary if the conclusion is true, because a conditional with a true
conclusion is always true, no matter whether its conditions are true or false.

In fact, if the constraint had been in the form:

if a card X has number N on the number side
and the card X has number M on the number side
and N is not identical to M then false.

then we could check instead, the condition 7 is not identical to 3, using negation
as failure and the definition X is identical to X. We would then obtain the desired
result:

if the fourth card has letter d on the letter side then false.
i.e. it is not the case that the fourth card has letter d on the letter side.

The single condition can then be checked by performing an active observation.
This reasoning is a minor variation of the standard pattern:

* Reason forwards to match an observation with a condition of a goal.
* Reason backwards to verify the other conditions.
* Reason forwards to derive the conclusion.
* Reason backwards to solve the conclusion.

The derivation can also be viewed as activating links in a connection graph of
constraint and beliefs:

204 Computational Logic and Human Thinking

Constraint: if a card X has number N on the number side
and the card X has number M on the number side

then N is identical to M.

the fourth card has number
7 on the number side

a card X has number 3 on the number side
if the card X has letter d on the letter side

X is identical to X

Step 0:
Observation

Step 3 or 4:
Active observation

Step 2:
M = 3

Step 3 or 4:
N = M

Step 1:
N = 7
card = fourth card

Arguably, viewed in these terms, the derivation is hard because the connection
between the positive observation and the conditional belief needs to be made
through a constraint/goal that is only loosely related with the problem statement.
I will argue in the next section that when the conditional is interpreted as a goal,
the connection is typically stronger and the derivation is easier.
We considered the problem ofmodus tollens in the concrete case of the original

card version of the task. However, similar considerations apply in other cases in
which the conditional is interpreted as a belief. In general, the harder an agent needs
towork toderive a conclusion, the less likely it is that the agentwill be able to do so.
It is a lot easier to recognise a solution than it is to generate it, because

generating a solution requires search, but recognising the solution does not.
This would explain whymany people fail to applymodus tollens in the selection
task, but still recognise its correct application when they see it.

Denial of the antecedent

A less common mistake in the selection task is to conclude not Q from an
observation of not P. On the one hand, the inference can be justified for the same
reasons that affirmation of the consequent can be justified. On the other hand,
the inference is hard for the same reasons that modus tollens is hard. However,
since it is not a major issue in the selection task, we ignore it here.

Conclusions

Thus if the conditional is interpreted as a belief, then reasoningwith Computational
Logic in the agent cycle is compatible with psychological studies of human

16: Computational Logic and the selection task 205

performance on the selection task. In bothComputational Logic and human reason-
ing, modus ponens and affirmation of the consequent are straightforward. Modus
tollens is possible but hard, mostly because deriving negative conclusions from
positive observations is hard.Denial of the antecedent is also possible but hard.
I will argue in the next section that modus tollens is normally easier if the

conditional is interpreted as a goal.

The conditional interpreted as a goal

In this book, we have seen a variety of uses for an agent’s conditional goals. Their
primary use is to help the agent maintain a harmonious personal relationship with
the changing state of the world. However, conditional goals can also serve a
secondary function of helping to maintain harmony in the society of agents as a
whole. In both cases, conditional goals regulate the behaviour of agents, both
generating and preventing actions that change the state of the world.
In the examples of both the bar version of the selection task and the security

measures on the London Underground:

if a person is drinking alcohol in a bar,
then the person is at least eighteen years old.

if a passenger is carrying a rucksack on his or her back,
then the passenger is wearing a label with the letter A on his or her front.

it is natural to understand the conditional as a social constraint. An agent can use
the constraint to monitor states of the world by observing whether instances of
the constraint are true or false. Observations of false instances violate the goal/
constraint. Observations of true instances comply with the goal/constraint.
In well-regulated societies, agents normally conform to the rules, and viola-

tions are exceptional. Therefore, in concrete formulations of the selection task,
in situations where the context makes it clear that the conditional is to be
interpreted as a goal, it is unnecessary to stress that the task is to detect violations,
because preventing violations is the normal purpose of such goals. In computing,
integrity constraints perform a similar function in monitoring database updates.
I will argue that, when an agent interpets the selection task as one of

monitoring compliance with a conditional goal, then the inferences that are
easy in Computational Logic are the ones that are also correct according to the
standards of classical logic. The two main problems are to explain why affir-
mation of the consequent does not apply and whymodus tollens is easy. But first
we need to confirm that modus ponens is easy.

206 Computational Logic and Human Thinking

Modus ponens

The general pattern of reasoning with conditional goals is to reason forwards
from a fact or assumption that matches a condition of the goal, backwards to
verify the other conditions of the goal, and then forwards one step to derive the
conclusion. This pattern of reasoning includes the classically correct application
ofmodus ponens as the special case in which the goal has no other conditions to
be verified.
If the conditional goal is a personal maintenance goal, then the conclusion is

an achievement goal, which the agent can attempt to solve by backward
reasoning and eventually by performing actions. If the conditional goal is a
social constraint, then the agent can actively attempt to observe whether the
conclusion is true. If the agent observes that the conclusion is true, then the
instance of the social constraint triggered by the initial observation or assump-
tion is satisfied, but if the agent observes that the conclusion is false, then the
social constraint is violated.

Affirmation of the consequent

If the conditional if P then Q is interpreted as a belief, then backward reasoning,
either directly with the conditional or with the biconditional can be used to
derive P as an explanation of an observation of Q.
However, if the task is interpreted as monitoring the truth of the conditional

understood as a goal, then an observation thatQ is true immediately confirms that
the conditional if P then Q is true. There is no point in actively observing whether
or not P is true, because the truth value of P has no influence on the truth value of
the conditional. In other words, no observation of the truth value ofP can uncover
a violation of the conditional.

Modus tollens

I argued before that modus tollens is hard when the conditional is interpreted as
a belief, mostly because it is hard to derive negative conclusions. I will now
argue that the derivation of negative conclusions is normally easier when the
conditional is interpreted as a goal. The argument is supported by experience
with the problem of checking integrity constraints in computing.
In computing, integrity checking is an expensive operation, which needs to be

performed whenever the database is updated. Because many different integrity
constraints can be affected by a single update, it is common to optimise the
constraints by doing as much of the reasoning as possible in advance. For this

16: Computational Logic and the selection task 207

purpose, a common optimisation is to convert condition–action rules into event–
condition–action rules. The optimisation is so common, in fact, that many
systems, including active databases (Widom and Ceri, 1996), allow rules only
in event–condition–action form.
However, the more general conversion of conditional goals into event–

condition–conclusion form can be performed mechanically by reasoning in
advance. For example, the maintenance goal:

if there is an emergency then get help.

can be converted into:

if there are flames then get help.
if there is smoke then get help.
if one person attacks another then get help.
if someone becomes seriously ill then get help.
if there is an accident then get help.

The reasoning involved in this example was illustrated in Chapter 9 and is
formalised in Chapter A5. But notice that the reduction in Chapter 9 of the
conclusion get help to atomic actions does not affect efficiency to the same
extent as the reduction of the condition there is an emergency.
The efficiency advantage of the converted rules is that they can be triggered

directly by external observations without the need to reason forwards with
intermediate beliefs. The disadvantage is that in some cases the number of
converted rules can become prohibitively large.
In the case of the conditional goal in the selection task, if the derivation of

negative conclusions from positive observations is bymeans of a constraint of the
form if Q and Q’ then false, then this optimisation can be performed by activating
the link between the conditional and the constraint in advance of any input
observations. This compiles the initial conditional goal into a denial:

Conditional goal: if P then Q.

Constraint: if Q and Q’ then false.

Compiled goal: if P and Q’ then false.
it is not the case that P and Q’.Or equivalently:

In this form, an observation that Q’ is true triggers the compiled goal, which
initiates an active observation of the value of P. If P is true then Q’ violates the
conditional goal. If P is false then Q’ satisfies the conditional goal. This is not
quite simple modus tollens, but it is the behaviour associated with modus

208 Computational Logic and Human Thinking

tollens, namely actively observing the truth value of P, given an observation of
the contrary of Q.
For example, in the bar version of the selection task:

Conditional goal: if a person X is drinking alcohol in a bar
then the person X has age at least eighteen years old.

Constraint: if a person X has age at least eighteen years old
and the person X has age under eighteen years old
then false.

Compiled goal: if a person X is drinking alcohol in a bar
and the person X has age under eighteen years old
then false.

Or equivalently: it is not the case that
a person X is drinking alcohol in a bar
and the person X has age under eighteen years old.

Denial of the antecedent

Since only beliefs, and not goals, are used to explain observations, it is not
possible to conclude not Q from an observation of not P. In particular, there is no
link between:

Conditional goal: if P then Q.
Constraint: if P and P’ then false.

where P’ is the contrary of P.

Conclusions

Thus if the conditional is interpreted as a goal, then neither affirmation of the
consequent nor denial of the antecedent is applicable, and modus ponens is
straightforward. Modus tollens is easy under the assumption that the focus on
checking for violations encourages reasoning in advance, compiling the goal
into a form that makes violations easier to detect.
This assumption about compiling the goal is similar to the argument of

Sperber et al. (1995), that subjects are likely to reason in accordance with
classical logic and to perform modus tollens, if they interpret the conditional
if P then Q as a denial:

16: Computational Logic and the selection task 209

i.e. it is not the case that P and not Q.
or equivalently: if P and not Q then false.

This analysis of the selection task is also compatible with the evolutionary
psychology view that people have an inbuilt cheater detection algorithm.
However, in Computational Logic, cheater detection is just a special case of
detecting violations of social integrity constraints.
Applied to the bar version of the selection task compiled into the form:

if a person X is drinking alcohol in a bar
and the person X has age under eighteen years old
then false.

general-purpose integrity checking monitors observations that match one of the
conditions of the constraint. Given an observation of a person drinking alcohol,
the agent can attempt to actively observe the age of the person, and if the
person’s age is under eighteen years old, then the agent can infer that there has
been violation of the goal. Similarly, given an observation of a person who is
under eighteen years old, the agent can actively check whether the person is
drinking alcohol, and if he is, then the agent can similarly infer a violation.

Security measures reconsidered

I started Chapter 2 with the imaginary example of improving security on the
London Underground:

if a passenger is carrying a rucksack on his or her back,
then the passenger is wearing a label with the letter A on his or her front.

To solve the selection task in this example, the simple analysis of this chapter
needs to be refined.
I don’t think there is any doubt that the conditional in this example is a social

constraint. There are no problems with modus ponens, affirmation of the con-
sequent or denial of the antecedent. But what about modus tollens?
As in all the other examples, the main problem is to derive a negative

conclusion from a positive observation. You might notice, for example, that a
person on the underground has a rucksack on his back, is accompanied by a dog
or smoking a cigarette. But you do not spontaneously observe that the person
does not have the letter A pinned on his front, is not accompanied by a Scottish
Terrier or is not smoking a Marlboro.

210 Computational Logic and Human Thinking

I have argued in this chapter that to obtain the effect of modus tollens, it is
necessary to connect a passive positive observationQ’with a negative conclusion
not Q. I suggested that in many cases the necessary connection is through an
unstated background constraint if Q and Q’ then false. But is there such a
constraint in this example? For example, the constraint:

if a person X has a letter L on the front
and the person X has a letter M on the front
then L is identical to M.

is obviously not good enough. What if the person is wearing a peace symbol on
his front? Or is topless? Or is obscuring his front with a replica Roman shield?
There are just too many such possibilities to count as the contrary Q’ of the
conclusion Q.
To obtain the effect of modus tollens we need to compile the conditional into

a form that can be triggered by a relevant, passive positive observation. The
simplest such representation is probably:

if a person is a passenger on the underground
and the person is carrying a rucksack on his or her back,
and the person is not wearing a label with the letter A on his or her front
then false.

This is a minor variation of the form if P and not Q then false identified by
Sperber et al. (1995) as facilitating the application of modus tollens.
Given this compiled form of the conditional and a positive observation of a

passenger on the underground, you can actively observe either whether the
person is carrying a rucksack on his back or whether he is wearing the letter A
on his front. If it is easier to check the latter of these two conditions, and you fail
to observe the letter A on his front, then you should check the other condition, to
see whether he has a rucksack on his back. If not, then the conditional has been
violated. This is the behaviour associated with classical modus tollens.
The reader who studies Chapter A6 and pays close attention to the analysis of

modus tollens for the card version of the selection task in this chapter will
appreciate that what is involved in both of these examples is an inference rule of
the form:

Given an integrity constraint of the form: if P then Q or R
derive the integrity constraint: if P and not Q then R

for the special case where R is just false. This inference rule is the converse of
the negation rewriting rule of Chapter A6.

16: Computational Logic and the selection task 211

What the security measure example shows is that the inference rules of
Computational Logic need to be refined for dealing with certain cases of
negation, but as they currently stand they are pretty close to what is needed in
problems like the selection task.

Conclusions

The selection task is a worthy challenge for any theory of human reasoning. In
this chapter, I argued that with certain qualifications, Computational Logic
embedded as the thinking component of the agent cycle is capable of meeting
that challenge. Computational Logic explains both cases where people reason
seemingly incorrectly according to the norms of classical logic and cases where
they reason correctly. It also explains why people might be able to recognise a
correct solution even when they are unable to produce it themselves.
I have argued that this analysis of the selection task is compatible with other

analyses, most notably with that of Sperber et al. (1995), but even with that of
Cosmides (1985, 1989) if generously understood.
But as the example of the imaginary security measures on the London

underground shows, the inference rules of Computational Logic need further
elaboration. It is possible that the selection task and other psychological studies
of human reasoning may help to suggest some of the ways of filling in the
details.

212 Computational Logic and Human Thinking

17

Meta-logic

Do you want to get ahead in the world, improve yourself, and be more
intelligent than you already are? If so, then meta-logic is what you need.
Meta-logic is a special case of meta-language. Ameta-language is a language

used to represent and reason about another language, called the object lan-
guage. If the object language is a form of logic, then the meta-language is also
calledmeta-logic. Therefore, this book is an example of the use of meta-logic to
study the object language of Computational Logic.
However, in this book we use meta-logic, not only to study Computational

Logic, but to do so in Computational Logic itself. In other words, the language
of meta-logic, as understood in this book, is also Computational Logic. So, to
paraphrase the first paragraph of this chapter, if you want to be more intelligent,
you should use Computational Logic as a meta-logic to think about thinking.
In fact, even if you are satisfied with your own level of intelligence, you can

use meta-logic to simulate the thinking of other agents, whether you believe
they are more or less intelligent than you are. For example, an intelligent fox
could use meta-logic to simulate the thinking of a stupid crow.
We have already touched upon some of the applications of meta-logic as early

as Chapter 3, where we used it to represent the definition of truth for sentences in
the form of conditionals. We also used it in Chapter 6, to represent the purposes of
subsection 1.1 and the subgoal of satisfying the Secretary of State, and in
Chapter 13, to represent the situation calculus and event calculus. In this chapter,
we will focus on its use to represent and reason about reasoning. Here is a simple
example, in which the meta-language terms P, (P if Q), Q and (P and Q) name
object-language sentences. The parentheses are used to avoid ambiguities:

meta1: an agent believes P
if the agent believes (P if Q) and the agent believes Q.

meta2: an agent believes (P and Q)
if the agent believes P and the agent believes Q.

213

The example may seem fairly pointless, but it is a solid foundation on which
other, more significant examples can be built. But even in this simple case, the
example illustrates how an agent can be aware of its own thinking, even if that
thinking may not be very exciting.
More elaborate variants of this example have widespread, practical use in

computing, to implement meta-interpreters, which are computer programs writ-
ten in a meta-language to implement an object-language. Typically, the object-
language implemented in this way provides some desirable features missing from
the meta-language itself.
In English, it is common to use quotation marks to distinguish sentences and

other syntactic entities from their names. So for example, “Mary” is the name of
Mary, and “Mary is an intelligent agent” is the name of the sentence inside the
quotes. However, in many practical applications in computing, it turns out that
quotation marks and other naming devices are unnecessary, because the context
makes it clear whether an expression belongs to the object-language or the
meta-language.
Here is an example of the use of meta-logic to implement object-level

reasoning with disjunction (P or Q), without using disjunction in the meta-
language.

meta3: an agent believes P
if the agent believes (P or Q) and the agent believes (not Q).

The terms or and not in this meta-sentence are not logical connectives in
the meta-language, but are names of logical connectives in the object-
language.
We will use meta3 to solve the wise man puzzle later in this chapter. We will

also need to reason that if an agent observes whether or not a fact is true, then
the agent believes the result of the observation. In the solution of the wise man
puzzle, this reasoning is needed only for the case of a negative observation,
which is an instance of negation as failure:

meta4: an agent believes (not Q)
if the agent observes whether Q
and not (Q holds).

Here the expression not occurs at both the object-level and the meta-level. The
first occurrence of not names the logical connective not of the object-language,
but the second occurrence of not is a logical connective in the meta-language.
This use of the same syntax for the object-language and meta-language is called
ambivalent syntax. It is not ambiguous, provided the different usages can be
distinguished by their context.

214 Computational Logic and Human Thinking

The semantics of belief

Without the use of quotation marks or some other device for naming sentences,
meta-logic looks like amodal logic. Inmodal logic, believes is a logical connective
like the connectives if and and. Even more remarkable, the axioms of belief meta1
andmeta2 inmeta-logic are virtually indistinguishable from the axioms of belief in
modal logic. But meta-logic and modal logic have different semantics.
The modal logic semantics of belief is similar to the possible world semantics of

time, whichwe discussed briefly in Chapter 13. Inmodal logic, sentences are given
a truth value relative to a possible worldW embedded in a collection of worlds. In
such a collection of possible worlds, an agent believes a proposition P in a possible
worldW, if P is true in every possible world accessible to the agent from W.
In meta-logic, an agent believes P if P is a belief in the agent’s language of

thought. With this meta-logical semantics of belief, the meta-beliefs meta1 and
meta2 are literally false, because they fail to take into account the limitations of
real agents in practice. For this reason, the believesmeta-predicate might be better
called the can-be-shown-in-theory predicate. In this respect, it is similar to
negation as failure, which might similarly be called cannot-be-shown-in-theory.

The relationship between modal logics and meta-logics of belief is a complex
issue, about which there is still no general agreement. However in Computing,
the combination of ambivalent syntax with meta-logical semantics has proved
to be very useful in practice. For this and other reasons, it is this representation
of belief that we use in this chapter.

How to make a good impression

Suppose you believe:

mary is impressed with a person
if mary believes the person is well-bred.

mary believes everyone who speaks the queen’s english
and has a noble character is well-bred.

Or, to put the second sentence more precisely:

mary believes ((a person is well-bred if the person speaks the queen’s english
and the person has a noble character) holds for all persons).

Intuitively, it follows that Mary will be impressed with you if she believes you
speak the Queen’s English and have a noble character. It doesn’t matter whether
you really do speak the Queen’s English or not, or whether you do have a noble
character or are a complete scoundrel. What matters is only what Mary thinks

17: Meta-logic 215

about you. On the other hand, whether or not Mary believes she is impressed is
not the issue. It’s whether she actually is impressed that counts.
Making these intuitions water-tight may not be as simple as you think.

Among other things, you need to reason that, because Mary believes in general
that a property holds for all people, then for every person she believes in
particular that the same property holds for that person. For this, you need an
extra meta-level belief, such as:

meta5: an agent believes (S holds for a person)
if the agent believes (S holds for all persons).

This belief is similar to the if-half of the definition of truth for universally
quantifed sentences mentioned in passing at the end of Chapter 3 and presented
more formally in Chapter A2. As in Chapters 3 and A2, the meta-belief can be
expressed more generally for arbitrary types, and not only for the type of
persons. However, meta5 is simpler and sufficient for our purposes.
To understand better the consequences of your beliefs, it helps to put all the

relevant beliefs together in the same connection graph. Themeta-beliefs meta3 and
meta4 are not relevant in this example, and so their connections are not displayed:

mary believes ((a person is well-bred if the person speaks the queen’s
english and the person has a noble character) holds for all persons).

meta2: an agent believes (P' and Q')
if the agent believes P'
and the agent believes Q'.

mary is impressed with a person
if mary believes the person is well-bred.

meta1: an agent believes P
if the agent believes (P if Q) and the agent believes Q.

meta5: an agent believes (S holds for a person)
if the agent believes (S holds for all persons)

agent = mary
S = (a person is well-bred if the person speaks the queen’s
english and the person has a noble character)

agent = mary
P holds for a person = a person is well-bred

(P if Q) = (S holds for a person)
Q = (P' and Q')

216 Computational Logic and Human Thinking

The connection graph can be simplified by reasoning in advance, selecting any
link and deriving the resolvent, as described in detail in Chapter A5. In fact, several
links can even be activated in parallel. Suppose, in particular, that we activate the
two links among the three meta-beliefs meta1, meta2 and meta5. We can replace the
three general meta-beliefs by the resulting more specialised meta-belief:

mary believes ((a person is well-bred if the person speaks the queen’s
english and the person has a noble character) holds for all persons).

mary is impressed with a person
if mary believes the person is well-bred.

an agent believes P holds for a person
 if the agent believes ((P if P' and Q') holds for all persons)
 and the agent believes P' holds for the person
 and the agent believes Q' holds for the person.

agent = mary
P = a person is well-bred
P' = the person speaks the queen’s english
Q' = the person has a noble character

agent = mary
P holds for a person = a person is well-bred

The resulting connection graph can be further simplified, by activating the
remaining two links and deriving:

mary is impressed with a person
if mary believes the person speaks the queen’s english
and mary believes the person has a noble character.

Now, provided you are indeed a person, then this is the conclusion you were after.

How to satisfy the Secretary of State

Here is another application of the three meta-beliefs meta1, meta2 and meta5, but
with a different purpose. Suppose, this time, that you want to think like the
Secretary of State, either because you aspire to take his place one day, or
because you have applied to naturalise as a British Citizen and you want to
anticipate what he will think about your application. Suppose, in particular, that

17: Meta-logic 217

you want to determine whether the secretary of state is satisfied that you fulfil
the requirements of schedule 1 for naturalisation by 6.1, which is a problem left
over from Chapter 6.
To simplify matters, suppose that your application for naturalisation is based

on having been resident in the UK and not on any past or future service to the
crown. So the two most relevant provisions suitably simplified are:

sec1: the secretary of state may grant a certificate of naturalisation
to a person by section 6.1
if the person applies for naturalisation
and the person is of full age and capacity
and the secretary of state is satisfied that

the person fulfils the requirements of schedule 1
for naturalisation by 6.1

and the secretary of state thinks fit
to grant the person a certificate of naturalisation.

sec2: a person fulfils the requirements of schedule 1 for naturalisation by 6.1
if the person fulfils the residency requirements of subparagraph 1.1.2
and the person is of good character
and the person has sufficient knowledge of english,

welsh, or scottish gaelic
and the person has sufficient knowledge about life in the uk
and the person intends to make his principal home in the uk

in the event of being granted naturalisation.

The problem is how to link the third condition of the first provision sec1 with the
conclusion of the second provision sec2. The problem is similar to the previous
one of trying to determine whether Mary will be impressed.
Obviously, to say that the Secretary of State is satisfied that something holds

is another way of saying that he believes that something holds. Therefore, to
simulate what the Secretary of State thinks about your application for natural-
isation, you can replace the phrase is satisfied that by believes and use any
relevant meta-beliefs about beliefs.
You also need to reflect one level up, and assume that the Secretary of State

believes all the provisions of the British Nationality Act, and the second
provision sec2 in particular. We can put all the relevant provisions and
assumptions together with the relevant meta-beliefs in the same connection
graph. To avoid unnecessary clutter, the matching instantiations of variables
are not displayed.
Perhaps not surprisingly, this connection graph has a similar structure to the

connection graph for impressing Mary:

218 Computational Logic and Human Thinking

the secretary of state believes
((a person fulfils the requirements of schedule 1 for naturalisation by 6.1
 if the person fulfils the residency requirements of subparagraph 1.1.2
 and the person is of good character
 and the person has sufficient knowledge of english,
 welsh, or scottish gaelic
 and the person has sufficient knowledge about life in the uk
 and the person intends to make his principal home in the uk
 in the event of being granted naturalisation)
 holds for all persons).

meta2: An agent believes (P' and Q')
if the agent believes P'
and the agent believes Q'.

the secretary of state may grant a certificate of naturalisation
to a person by section 6.1
if the person applies for naturalisation
and the person is of full age and capacity
and the secretary of state believes the person fulfils
 the requirements of schedule 1 for naturalisation by 6.1
and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

meta1: An agent believes P
if the agent believes (P if Q) and the agent believes Q.

meta5: An agent believes (S holds for a person)
if the agent believes (S holds for all persons)

Here the clauses meta1 and meta2 contain additional implicit, internal links
between their conditions and conclusions. The internal link in meta1 is not
needed in this example, but the internal link in meta2 needs to be activated three
times, to deal with the four conditions of the requirements of schedule 1.
Activating all but the topmost link gives us the simplified connection graph,
which now contains the previously missing link between the two original
provisions that we started with:

17: Meta-logic 219

the secretary of state believes a person fulfils
 the requirements of schedule 1 for naturalisation by 6.1
if the secretary of state believes that
 the person fulfils the residency requirements of subparagraph 1.1.2
and the secretary of state believes that the person is of good character
and the secretary of state believes that
 the person has sufficient knowledge of english, welsh, or scottish gaelic
 and the secretary of state believes that
 the person has sufficient knowledge about life in the uk
and the secretary of state believes that
 the person intends to make his principal home in the uk
 in the event of being granted naturalisation.

the secretary of state may grant a certificate of naturalisation
to a person by section 6.1
if the person applies for naturalisation
and the person is of full age and capacity
and the secretary of state believes the person fulfils
 the requirements of schedule 1 for naturalisation by 6.1
and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

To solve the problem left over from Chapter 6, it suffices to replace the term
believes by the phrase is satisfied that.

A more flexible way to satisfy the Secretary of State

I would not blame you if you did not find these arguments entirely convincing. You
might think, for example, that the Secretary of State should be more flexible,
allowing for example a strong belief that a person has good character to compensate
for a weak belief that the person has sufficient knowledge of English, Welsh or
Scottish Gaelic. Fortunately, meta-logic makes it possible to represent such more
flexible ways of judging whether a conjunction of conditions implies a conclusion.
For example, we could replace the two meta-beliefs meta1 and meta2 by:

meta10: an agent believes P
if the agent believes (P if Q)
and the agent believes Q with strength S
and S > t.

meta20: an agent believes (P and Q) with strength S
if the agent believes P with strength SP

220 Computational Logic and Human Thinking

and the agent believes Q with strength SQ
and SP + SQ = S.

If you are familiar with neural networks of the brain, you will see a resemblance
between such networks and meta10 and meta20. The condition S > t is similar to
the requirement that, for a neuron to fire, the strength of the inputs to the neuron
must exceed a certain threshold t. The sum SP + SQ = S corresponds to summing
the strengths of all the inputs of a neuron. The neural network analogy could be
pursued further, by associating weights with the conditions P and Q. So for
example, having good character might have greater weight than the ability to
speak one of the native British languages.
At first sight, meta10 and meta20 may seem a long way from a represention of

Computational Logic as the language of an agent’s thoughts. But bear in mind
that an implementation of the connection graph proof procedure needs a strategy
for activating links. Meta10 and meta20 can be thought of as an approximate
representation of the best-first strategy sketched in Chapters 4 and A5. But in any
case, they show the power of a meta-logic without an explicit notion of strength
of belief to represent an object-level logic in which strength of belief is explicit.

The two wise men

In this example, we will investigate a more impressive use of meta-logic to
simulate the thinking of another agent, to solve a problem that cannot be solved
by object-level thinking alone.
The problem is usually formulated with a king and three wise men. To

simplify the problem and to bring it up-to-date, we will consider a queen and
two wise men version of the story. To avoid any embarassment to Mary, John
and Bob, we will refer to the participants in the story simply as “the Queen”,
“wise man one” and “wise man two”:

There are two wise men. Both of them have mud on their face. Each can see the mud
on the other wise man’s face, but not the mud on his own. The Queen tells them both
that at least one of them has mud on his face. After a short pause, the first wise man
announces that he does not know whether he has mud on his face. The second wise
man, who knows how to do meta-level reasoning, then declares that he knows that he
has mud on his face.

Wise man two can solve the problem by reasoning in two steps as follows:

Step 1: Wise man one knows that he has mud on his face
or I have mud on my face.
So if wise man one can see that I do not have mud on my face,
then he would know that he has mud on his own face.

17: Meta-logic 221

Step 2: Since wise man one does not know that he has mud on his face,
he does not see that I do not have mud on my face, and
therefore he must see that I do have mud on my face.

This kind of reasoning is a little more complicated than it may seem, partly
because it involves reasoning about knowing and seeing. But “seeing is believ-
ing”, and “knowing” is a special case of “believing” too. So the solution can be
reformulated in terms of belief. Here is a connection graph representation of the
reasoning involved in step 1 formulated in terms of belief:

meta3: an agent believes P
if the agent believes (P or Q) and the agent believes (not Q).

meta4: an agent believes (not Q)
if the agent observes whether Q and not(Q holds).

wise1: wise man one believes
(wise man one has mud on his face
or wise man two has mud on his face).

wise2: wise man one observes whether
(wise man two has mud on his face).

Step 1 can be broken down into two substeps. The first substep performs
forward reasoning with wise1 and wise2, which in effect replaces meta3 by
meta30 and meta4 by meta40:

meta3': wise man one believes wise man one has mud on his face
 if wise man one believes (not wise man two has mud on his face).

meta4': wise man one believes (not wise man two has mud on his face)
 if not wise man two has mud on his face.

The second substep, which activates the link between meta30 and meta40, is a
kind of forward reasoning with an assumption:

result of step 1: wise man one believes wise man one has mud on his face
if not wise man two has mud on his face.

222 Computational Logic and Human Thinking

Step 2 connects the result of reasoning in step 1 with wise man one’s assertion
that he does not know whether he has mud on his face. Expressed in terms of
belief, this assertion has two subparts: He doesn’t believe that he has mud on his
face, and he doesn’t believe that he does not have mud on his face. Only the first
subpart is relevant to the solution:

result of step 1: wise man one believes wise man one has mud on his face
 if not wise man two has mud on his face.

wise0: if wise man one believes wise man one has mud on his face
 then false.

result of step 2: if not wise man two has mud on his face then false.

The result of step 2 is equivalent to:

conclusion: wise man two has mud on his face.

The equivalence can be justified either as reasoning with the totality constraint
not wise man two has mud on his face or wise man two has mud on his face of
Chapters A4 and A6 or as using the negation rewriting rule (replace if not P then
false by P) of Chapter A6.
The connection graph solution above is presented in the style of a typical

mathematical proof, rather than in the style of the general pattern of reasoning
within the agent cycle.
To present the solution as an instance of the general pattern, we need an

observation to trigger the pattern. Actually, in this example, there are two
observations, the Queen’s assertion that one of the wise men has mud on his
face, and wise man one’s assertion that he does not knowwhether he has mud on
his face. For simplicity, let’s ignore the first observation, since it doesn’t really
lead anywhere (for the same reason that wise man one says that he doesn’t know
whether he has mud on his face).
Let’s focus instead on wise man two’s response to the second observation,

expressed as the positive atomic sentence:

wise-1: wise man one asserts I do not know whether
(wise man one has mud on his face).

Whereas in the connection graph solution we took the negative conclusion:

17: Meta-logic 223

wise0: if wise man one believes wise man one has mud on his face then false.

as our starting point, now we need to derive the negative conclusion wise0 from
the positive observation wise-1 using an appropriate constraint (similar to the
derivation in the selection task in Chapter 16).
Intuitively, wise man two is justified in deriving the negative conclusion from

the positive observation, if wise man two believes that wise man one’s asssertion
can be trusted. This belief can be represented at different levels of abstraction. Here
is a fairly concrete representation of the belief that wise man one is trustworthy:

wise-2: if wise man one asserts I do not know whether P
and wise man one believes P then false.

Obviously, this belief could be derived from more general beliefs, for example
from a more general belief that all wise men are trustworthy.
We can now present wise man two’s solution of the problem as a special case

of the general pattern:

Observation, wise-1: wise man one asserts I do not know whether
(wise man one has mud on his face).

Forward reasoning with wise-2:

wise0: if wise man one believes wise man one has mud on his face then false.

Backward reasoning with meta3 to verify the other condition of wise-2:

if ((wise man one believes wise man one has mud on his face) or Q)
and wise man one believes (not Q) then false.

Backward reasoning with wise1:

if wise man one believes (not wise man two has mud on his face)
then false.

Backward reasoning with meta4:

if wise man one observes whether wise man two has mud on his face)
and not wise man two has mud on his face then false.

Backward reasoning with wise2:

if not wise man two has mud on his face then false.

Or equivalently:

wise man two has mud on his face.

This solution is an instance of the general pattern, used not to derive a plan of
actions to solve an achievement goal, generated by the triggering of a main-
tenance goal, but to generate an explanation of an observation. In this instance,

224 Computational Logic and Human Thinking

the general pattern generates wise man two has mud on his face as an explan-
ation of the observation wise man one asserts I do not know whether (wise man
one has mud on his face).

Combining object-language and meta-language

You may not have noticed that I cheated you. The three examples in this chapter
are not represented strictly in meta-logic alone, but rather in a combination of
object-language and meta-language. For example, the sentence:

mary is impressed with a person
if mary believes the person is well-bred.

combines an object-level conclusion with a meta-level condition. This combi-
nation makes for a much more expressive language than an object or meta-
language alone. It is made much simpler by using an ambivalent syntax.
But not all applications of meta-logic can benefit from the simplifications of

ambivalent syntax. Some applications of meta-logic only make sense if the
distinction between using sentences and mentioning them is made explicit in the
syntax. The usual way of doing this in English is to use quotation marks. But it is
also possible to name sentences and other syntactic entities by constant symbols
and other expressions, like meta1 – meta5, as is common in mathematics.

The use of constants to name sentences makes it possible for sentences to refer
to themselves. The most famous self-referential sentence is the liar paradox:

This sentence: This sentence is false.

The sentence is a paradox, because if it is true, then it is false, and if it is false,
then it is true.
In formal logic, a common solution to such paradoxes is to ban self-

referential sentences completely. But most self-referential sentences are com-
pletely innocuous. For example:

This sentence: This sentence contains 37 characters.

is true if you count spaces, and is false if you do not.
In fact, banning self-referential sentences would outlaw one of the most im-

portant theorems of mathematics and logic of all time, Gödel’s Incompleteness
Theorem. The proof of the theorem constructs a true, but unprovable, self-
referential sentence of the form:

This sentence cannot be proved.

17: Meta-logic 225

In Gödel’s construction, sentences and other syntactic expressions, including
proofs, are named by a numerical code. It is because names are represented by
numbers that sentences about numbers can refer to themselves.
A number of commentators, including most notably J. R. Lucas (1959)

and Roger Penrose (1989), in his prize-winning book, have argued that the
Incompleteness Theorem implies that people are not machines, because they
can recognise true sentences that a machine cannot prove. According to Hao
Wang (1974), Gödel himself also held similar views.
However, it seems that most logicians and philosophers disagree with this

interpretation of the Incompleteness Theorem. Stewart Shapiro (1989), for
example, points out that, given any constructible set of axioms of arithmetic
to which Gödel’s theorem applies, the construction of the true, but unprovable
sentence is entirely mechanical. This sentence could be added to the axioms, but
then there would be a new, true, but unprovable sentence, which could also be
added to the axioms. This process of constructing and adding true, but previ-
ously unprovable sentences can be continued ad infinitum, and beyond
(Feferman, 1962).

Conclusions and further reading

The combination of object-logic and meta-logic is a powerful knowledge
representation and problem-solving tool, which can be used by computers and
humans alike. In Computing, it is used routinely to implement more powerful
object-languages in simpler meta-languages. In human thinking, it allows
people to reflect upon their own thoughts and to simulate the thinking of other
people.
The combination of object-logic and meta-logic is also the key to the proof of

the Incompleteness Theorem. The theorem shows that by looking at an object
language, arithmetic in this case, from the perspective of the meta-language, it is
possible to solve problems that cannot be solved in the object-language alone.
The formal underpinnings of meta-logic and its combination with object-

logic in a logic programming setting are surveyed in Perlis and Subrahmanian
(1994), Hill and Gallagher (1998) and Costantini (2002). Gillies (1996) dis-
cusses the significance of Gödel’s theorem for the question of whether humans
can solve problems that are not solvable by machines.

226 Computational Logic and Human Thinking

Conclusions of the book

I have made a case for a comprehensive, logic-based theory of human intelli-
gence, drawing upon and reconciling a number of otherwise competing para-
digms in Artificial Intelligence and other fields. The most important of these
paradigms are production systems, logic programming, classical logic and
decision theory.

Unification of competing paradigms

The production system cycle, suitably extended, provides the bare bones of the
theory: the observe–think–decide–act agent cycle. It also provides some of the
motivation for identifying an agent’s maintenance goals as the driving force of
the agent’s life.
Logic programming opens the door to abductive logic programming, in

which beliefs are expressed as conditionals in logic programming form, and
goals are expressed in a variant of the clausal form of classical logic. Open
predicates represent the interface between thoughts in the agent’s mind and
things in the external world.
The agent interacts with the external world through its observations, which it

assimilates into its web of goals and beliefs, and through the actions it attempts
to execute. Decision theory provides the agent with a normative theory for
deciding between alternative actions, taking into account the uncertainty and the
utility of their expected outcomes. It also provides a bridge to more practical
decision-making methods.
In addition to these main paradigms explicitly contributing to the logic-based

agent model, other paradigms support the model implicitly.

227

Relationships with other paradigms

In Computing, the agent model receives support, not only from logic program-
ming, deductive databases and default reasoning, but also frommoderate forms of
object-orientation. Whereas in extreme object-orientation objects interact only by
sending and receiving messages, in moderate forms, objects are like agents that
interact with one another through the medium of a shared environment.
However, the agent model receives its greatest support from paradigms

outside Computing. Most of these paradigms, like Williams’ (1990, 1995)
guidelines for good writing style, Checkland’s (2000) soft systems method-
ology, Hammond et al.’s (1999) Smart Choices and Baron’s (2008) character-
isation of thinking as search plus inference, are informal theories, which are
compatible with the more formal logic-based agent model.
The agent model has also been influenced both by formal and informal

theories of legal reasoning. This is most obvious in relation to rule-based
theories, which hold that rule-based law promotes consistency, transparency
and replicability. Legal rules share with logical conditionals the properties that
rules need not be fully specified, may be subject to exceptions, and may hold
only by default.
In legal reasoning and many other fields, rule-based reasoning operates in

tandem with case-based reasoning. Although the two kinds of reasoning may
seem to be conflicting paradigms, it can be argued that they are complementary.
For one thing, rules are often generated by induction from cases. For another
thing, rules are refined by evaluating their application in particular cases, and
modifying them if their consequences are judged to be inappropriate. The
conditional form of rules facilitates their modification, because unacceptable
conclusions can be withdrawn by adding extra conditions, and missing con-
clusions can be added by adding extra rules.
This process of using cases to generate and modify rules is the basic technique

of inductive logic programming (Muggleton and De Raedt, 1994), which is a
branch of machine learning in Artificial Intelligence. Donald Gillies (1996)
argues that the achievements of inductive logic programming in such applications
as generating expert systems and discovering laws of protein structure have
significant implications for the problem of induction in the philosophy of science.
Unfortunately, I have neglected this aspect of Computational Logic, as well

as other important areas. In particular, although I have touched upon the need to
integrate judgements of uncertainty into the decision-making component of the
agent cycle, I have not explored the broader relationships between
Computational Logic and Probability Theory. Much of the work in this area

228 Computational Logic and Human Thinking

combines probabilistic reasoning with inductive logic programming. De Raedt
et al. (2008) contains a survey of representative work in this active research
area.
The other major area that I have neglected is the relationship between

Computational Logic, neural networks and other connectionist models of the
brain. Although I have suggested a connectionist interpretation of connection
graphs, most of the work in this area has concerned the relationship between
logic programming and neural networks, starting with Hölldobler and Kalinke
(1994) and including d’Avila Garcez et al. (2001) and Stenning and van
Lambalgen (2008). A good overview of the challenges in this area can be
found in Bader et al. (2006).
The list of such topics goes on for longer than I can continue, and it has to stop

somewhere. But before finishing, I would like to mention briefly one more area,
which is too important to leave out, and where Computational Logic may be
able to contribute.

Conflict resolution

We have seen that conflicts can arise when a single agent needs to make a choice
between two or more actions or goals: The crow wants to eat the cheese and sing
at the same time. The louse wants to eat and look for a mate. Bob wants to stay
friends with John, but stay out of jail. This kind of conflict within a single agent
is the source of conflict resolution in production systems and the bread and
butter of decision theory.
Conflict resolution is important enough when there is only one individual

involved, but it can be much more important when it involves two or more
agents: The man with the rucksack wants to blow up the train, but the passen-
gers want to stay alive. The fox wants to have the crow’s cheese, but the crow
wants to eat it himself. Bob wants to stay out of jail by turning witness against
John, and John wants to stay out of jail by turning witness against Bob.
We have seen in the example of the Prisoner’s Dilemma that conflicts among

several agents can be treated as a conflict for a single agentwho cares asmuch about
other agents as he cares about himself. The application of decision theory to this
case is a form of utilitarianism: The greatest good for the greatest number of people.
But unbridled utilitarianism does nothing to protect an individual agent or

a minority of agents from having their interests violated by the majority.
The protection of individual and minority rights requires constraints, which
prevent the maximisation of utility from getting out of hand. We saw how such
constraints might operate in the example of the runaway trolley in Chapter 12.

Conclusions 229

The Computational Logic agent model combines both constraints on indi-
vidual actions and conflict resolution for deciding between alternative actions.
But it also provides opportunities for conflict resolution at the higher levels of an
agent’s hierarchy of goals. If a conflict cannot be resolved at the action level, it
may be possible to resolve the conflict by finding an alternative way of solving
goals at a higher level, and of reducing those goals to new alternative actions
that no longer create a conflict. The greater the number of levels in the hierarchy
and the greater the number of alternative ways of reducing goals to subgoals, the
more opportunities there are to avoid and resolve potential conflicts.
This hierarchy of goals and subgoals is determined by the agent’s beliefs.

Whether or not these beliefs actually help the agent to achieve its goals depends
on whether or not they are really true. The greater the number of true beliefs, the
greater the number of alternative ways the agent can try to achieve its goals and
avoid conflict with other agents.
An agent obtains its beliefs from different sources. Some of these beliefs may

be hardwired into the agent from birth; but others, perhaps most, are obtained
through personal experience and from communications with other agents. But
different agents have different experiences, which lead to different beliefs,
which can lead to conflicts between agents even when they have the same
top-level goals. Therefore, conflicts can often be reconciled by reconciling
different beliefs, acknowledging that they may explain different experiences.
This book has been an attempt to reconcile different paradigms for explaining

and guiding human behaviour, most notably to reconcile production systems,
logic programming, classical logic and decision theory. To the extent that it has
succeeded, it may exemplify the broader potential of Computational Logic to
help reconcile conflicts in other areas.

230 Computational Logic and Human Thinking

A1

The syntax of logical form

The language of Computational Logic used in this book is an informal and
simplified form of Symbolic Logic. Until now, it has also been somewhat vague
and imprecise. This additional chapter is intended to specify the language more
precisely. It does not affect the mainstream of the book, and the reader can either
leave it out altogether, or come back to it later.

Atoms

In all varieties of logic, the basic building block is the atomic formula or atom
for short. In the same way that an atom in physics can be viewed as a collection
of electrons held together by a nucleus, atoms in logic are collections of terms,
like “train”, “ driver” and “station”, held together by predicate symbols, like
“in” or “stop”. Predicate symbols are like verbs in English, and terms are like
nouns or noun phrases.
Where we have been writing informally:

the driver stops the train

in Symbolic Logic, this would normally be written in the form:

stop(driver, train)

Here the predicate symbol is written first, followed by the atom’s terms, which
are called its arguments, surrounded by parentheses and separated by commas.
Each predicate symbol has a standard number of arguments, written in some
fixed but arbitrary order. Here the predicate symbol stop has two arguments,
with its subject driver first and its object train second.
The advantage of the symbolic form of logic for writing atoms is that it

unambiguously distinguishes between the atom’s predicate symbol and its

231

arguments, and moreover it identifies the different roles (such as subject or
object) of its arguments by their positions inside the parentheses. It is this
precision that makes Symbolic Logic suitable for processing by computer.
However, this advantage is bought at the cost of having to over-specify an

atom’s components. For example, an equally legitimate representation of the
sentence the driver stops the train is the atomic formula:

happens(stop, driver, train)

This alternative representation treats stop as a term rather than as a predicate
symbol. It is also possible, although not very useful, to represent the same
sentence with a predicate symbol having zero arguments, say as happens-stop-
driver-train() written more simply as happens-stop-driver-train. In fact, the
representation that is closest to the intended, underlying meaning of the English
sentence is a collection of atomic sentences:

happens(event-0014)
type(event-0014, stop)
agent(event-0014, 007)
object(event-0014, the-flying-scotsman)
isa(007, train-driver)
isa(the-flying-scotsman, train)

This representation makes explicit that the driver 007 is a unique individual, and
that the train is a specific train with its own unique identification the-flying-
scotsman. Even the event itself is a unique event, with an identifier event-0014
that distinguishes it from other events in which the same driver stops the same
train on other occasions.
Although such representations are rather cumbersome by comparison with

English sentences, they are often necessary in computer implementations of
logic, where the distinctions they make are unavoidable. Arguably, the same
distinctions are unavoidable also in a human agent’s language of thought.
The informal representation we use in most of the book has the advantage that

it hides the underlying complexity involved in such precise representations.
However, the reader should be aware that, to represent the intended meaning of
seemingly simple English sentences, they would normally need to be translated
into the more precise kind of representation illustrated here.

Predicate symbols

Predicate symbols can have zero, one or more arguments. Atomic formulas
whose predicate symbol has zero arguments are sometimes called propositional

232 A1: The syntax of logical form

formulas. This includes the two special atoms true and false. The special case of
Symbolic Logic, in which all atoms are propositional formulas, is called
propositional logic. The more general case, in which predicate symbols can
have any number of arguments, is called predicate logic.
Propositional formulas are sentences that denote propositions. Predicate

symbols with one argument denote properties of individuals, and predicate
symbols with more than one argument denote relations between individuals.
This distinction between propositions, properties and relations is significant in
ordinary natural language, but is an unnecessary and unwelcome complication
in Mathematics. It is simpler and more convenient to refer to all three notions as
relations, which may hold between zero, one or more individuals. Thus, with
this terminology, we can say simply that predicate symbols denote (or repre-
sent) relations.
However, not all relations need to be represented by predicate symbols.

Relations can also be represented by predicates that are compound syntactic
expressions constructed from simpler expressions by joining them with logical
connectives like “and”, “or”, “not” and “if”. For example, the property of being
tall and handsome can be denoted by a predicate, say tall(X) and handsome(X),
which need not be expressed by a separate predicate symbol. We will often find
it convenient to speak of such predicates, without implying that they are
expressed by predicate symbols.
Denotation is a semantic relationship between symbols and the objects those

symbols represent. It is one of the great achievements of Symbolic Logic,
envied even by many of its critics, that it has a proper semantics. But before
discussing semantics, we need to complete our discussion of syntax.

Terms

The simplest kind of term is a constant, like 007, which denotes an individual,
say the person born on 1 April, 2000 to parents Mary Smith and John Smith in
Petworth, England. But terms also include variables, which stand for whole
classes of individuals. It is common in Symbolic Logic to use letters, like X and
Y for variables, as in the algebraic formula:

Xþ Y ¼ Yþ X

which holds for all numbers X and Y. In this book, we use the convention,
borrowed from the logic programming language Prolog, that variables start with
an upper-case letter, like X or Y, and constants and predicate symbols start with a
lower-case letter.

A1: The syntax of logical form 233

More complex terms can be constructed from simpler terms, like mother of X,
written mother(X), or 2 + 3, written +(2, 3), where mother and + are function
symbols. However, functions are a special case of relations, and therefore function
symbols are, strictly speaking, unnecessary. Instead of writing, for example:

motherðcainÞ ¼ eve

þð2; 3Þ ¼ 5

we can write : motherðcain; eveÞ
þð2; 3; 5Þ

Representing functions as relations has the advantage that function symbols can
be reserved for constructing names of individuals. Function symbols used in
this way are sometimes called Skolem functions, in honour of the logician
Thoralf Skolem.
Used for naming, function symbols make it possible to name an infinite

number of individuals with a finite vocabulary. For example, in mathematical
logic, it is common to name the natural numbers 0, 1, 2, . . . by the terms 0,
s(0), s(s(0)), . . . where the function symbol s is called the successor function.
The term s(X) is equivalent to X + 1. Using the successor function and repre-
senting the addition function as a relation, we can represent 2 + 3 = 5 by:

þðsðsð0ÞÞ; sðsðsð0ÞÞÞ; sðsðsðsðsð0ÞÞÞÞÞÞ
Not very pretty, but better suited for theoretical studies than the use of such
alternative number systems as decimal, binary or Roman numerals.
Terms that contain no variables are called ground terms. They play a special

role in the semantics, because they are the pool from which the names of
individuals are drawn.

Conditionals

Strictly speaking, a conditional is a sentence of the formA→B, whereA andB are
sentences. However, we use the term conditionalmore loosely to refer to senten-
ces that may contain variables. Moreover, for the most part, we restrict attention
to conditionals that can be written in either one of the two equivalent forms:

C1 ∧ . . . ∧ Cn ∧ ¬D1 ∧ . . . ∧ ¬ Dm → E

i.e. if C1 and . . . and Cn and not D1 and . . . and not Dm then E
E ← C1 ∧ . . . ∧ Cn ∧ ¬D1 ∧ . . . ∧ ¬ Dm

i.e. E if C1 and . . . and Cn and not D1 and . . . and not Dm

where the conclusion E is an atomic formula, the conditions Ci are atomic
formulas, and the conditions ¬ Dj are the negations of atomic formulas. Such

234 A1: The syntax of logical form

conditionals are also sometimes called clauses, and sets of such conditionals are
also called logic programs.
As is common with mathematical definitions, the number of positive con-

ditions n and the number of negative conditions m can be 0. If m is 0, then the
conditional is called a definite clause.
Definite clauses are important for two reasons. First, they are adequate for

representing any computable predicate. Second, as we will see in Chapter A2,
they have a very simple semantics in terms of minimal models.
If the number of conditions n+m is 0, then the degenerate conditional E←

(or→E) is in effect just an atomic sentence, which is normally written without
the arrow, simply as E.
The backward arrow ← is read if, and the forward arrow → is read with the

same meaning, but in the opposite direction. The symbol ∧ is used for the
logical connective and. Expressions connected by ∧ are called conjunctions.
Predicate symbols and constant symbols appearing in different clauses are the

external glue that links different clauses together. Variables are another kind of
glue internal to clauses. For example, the variable X in the clause:

amazing(X) ← can-fly(X)

has the effect of expressing that anything that can fly is amazing. In contrast, the
two variables in the clause:

amazing(X) ← can-fly(Y)

have the effect of expressing that if something can fly then everything is
amazing!
Variables in clauses are consequently said to be universally quantified within

the scope of the clause in which they appear. In Symbolic Logic the quantifi-
cation of variables is normally written explicitly with symbols ∀ standing for for
all and ∃ standing for there exists, and the scope of the quantifiers is indicated by
parentheses. Thus the two conditionals above would be written:

∀X (amazing(X) ← can-fly(X))
∀X ∀Y (amazing(X) ← can-fly(Y))

Because all variables appearing in clauses are universally quantified and their
scope is the entire clause, there is no ambiguity if the quantifiers are omitted.
Because conditionals can have no conditions, atomic sentences can also

contain universally quantified variables. Here is a fanciful example:

likes(bob, X)

Atomic sentences that do not contain such variables are also called facts.

A1: The syntax of logical form 235

In the simplest versions of Symbolic Logic, variables like X and Y can refer to
any kind of individual. So, for example, the clause amazing(X) ← can-fly(X)
implies that if a rock can fly then the rock is amazing. Similarly, the mathematical
equation X + Y = Y + X, if it were written in logical notation, would imply that
you could add two rocks together in either order and the result would be the same.
To overcome the unnatural use of unrestricted variables, sorted or typed

logics have been developed, in which variables are restricted, so that they
refer only to individuals in designated classes, which are called sorts or types.
A similar effect can be obtained more tediously in unsorted logic by including
for every variable in a clause an extra condition whose predicate expresses the
sort of that variable.
For example, to state that any animal that can fly is amazing, we would need

to write in unsorted logic, say:

amazing(X) ← can-fly(X) ∧ animal(X)

To conclude that any person who can fly is amazing, we would need a clause
expressing that all people are animals:

animal(X) ← person(X)

Or as adherents of object-orientation in computing (see Chapter 14) would
prefer us to say, the class of all people inherits the property of flying from the
more abstract class of all animals.
In the informal version of Computational Logic that we use in this book, not

only do we omit universal quantifiers, but we also sometimes express unsorted
variables by words like anything and everything and sorted variables by com-
mon nouns, like an animal, a station, or a bird. The virtue of this informal usage
is that it is neutral with respect to whether it is formalised in some version of
sorted logic or formalised in unsorted logic with explicit predicates for sorts. So,
for example, instead of writing:

∀X (amazing(X) ← can-fly(X) ∧ animal(X))

we simply write:

if an animal can fly then the animal is amazing
or any animal that can fly is amazing.

Moreover, the informal version is compatible with other formal representations,
such as:

amazing(X) ← can-fly(X) ∧ isa(X, animal)
isa(X, animal) ← isa(X, person)

236 A1: The syntax of logical form

Recursive definitions

Conditionals are often used to define predicates. For example, here is a defi-
nition of the predicate natural-number:

natural-number(0)
natural-number(s(X)) ← natural-number(X)

The definition is said to be recursive, because the predicate natural-number
defined in the conclusion of the second sentence recurs in the conditions (and
vice versa). The ability to express recursive definitions gives conditionals the
full power of a general-purpose programming language.
Here is a recursive definition of addition:

þ ð0;Y;YÞ
þ ðsðXÞ;Y; sðZÞÞ←þ ðX;Y;ZÞ

For simplicity, I have omitted the qualifying conditions that X, Yand Z are natural
numbers. In functional notation, the definition ismuch simpler and looks like this:

0þ Y ¼ Y

sðXÞ þ Y ¼ sðXþ YÞ
This can also be written in the even simpler form (X + 1) + Y = (X + Y) + 1. But

this is misleading, because the plus sign+ in the expression + 1 is different from
the plus sign + for example in (X + Y). I will have more to say about the
relationship between functions and relations a little later in this chapter.

Goal clauses

In Computational Logic, we use conditionals (including facts and other atomic
sentences) to represent beliefs, all of whose variables are universally quantified.
In addition, we use conjunctions to represent goals whose variables are all
existentially quantified.
In general, a goal clause is an existentially quantified conjunction of atoms

and negations of atoms:

∃ X1 . . . ∃ Xm (C1 ∧ . . . ∧ Cn∧ ¬D1 ∧ . . . ∧ ¬ Dm)
i.e. there exists X1 . . . and there exists Xm such that

C1 and . . . and Cn and not D1 and . . . and not Dm

If m is 0, then the goal clause is called a definite goal clause.
Because all variables in a goal clause are existentially quantified within the

scope of the goal clause in which they occur, it is normal to omit the explicit use
of existential quantifiers. For example, the goal clause:

A1: The syntax of logical form 237

likes(bob, X)
stands for ∃ X likes(bob, X)

Such existentially quantified goal clauses are sufficient for representing an
agent’s achievement goals. However, as we will see in greater detail later,
they are not sufficient for representing maintenance goals and constraints.
Both definite clauses (including atomic sentences) and definite goal clauses are

also calledHorn clauses after the logician Alfred Horn, who studied some of their
mathematical properties. Horn clauses are equivalent in power to TuringMachines,
which are the standard mathematical model of mechanical computation.
In logic programming, goal clauses represent the computation to be per-

formed. For example, the goal clause:

þðsðsð0ÞÞ; sðsð0ÞÞ;XÞ ^ þðX;Y; sðsðsðsðsð0ÞÞÞÞÞÞ
represents the problem of computing the sum X of 2 plus 2 and computing a
number Y that added to X gives 5.

Other kinds of sentences

Conditionals, used to represent beliefs, and goal clauses, used to represent
achievement goals, have a very simple syntax. However, conditionals are
logically equivalent to more complex sentences in the syntax of classical
logic. Here are some examples of such equivalences:

∀X ∀Y (amazing(X) ← can-fly(Y))
is equivalent to: ∀X (amazing(X) ← ∃ Y can-fly(Y))

amazing(X) ← can-fly(X)
amazing(X) ← movie-star(X)

are equivalent to: amazing(X) ← (can-fly(X) ∨ movie-star(X))
generous-to(X, Z) ← likes(X, Y) ∧ gives(X, Y, Z)

is equivalent to: (generous-to(X, Z) ← likes(X, Y)) ← gives(X, Y, Z)

The symbol ∨ is used for the logical connective or. Expressions connected by ∨
are called disjunctions. In general, a disjunction has the form:

C1 ∨ . . . ∨ Cn

i.e. C1 or . . . or Cn

We will see later that, in addition to allowing the use of existential quantifiers
and disjunctions, it is useful to extend the syntax of conditional logic to
represent more complex goals and beliefs. In particular, it is useful to include

238 A1: The syntax of logical form

existential quantifiers and disjunctions in the conclusions of maintenance goals.
For example:

Maintenance goals: hungry(me) → ∃X eat(me, X)
attacks(X, me) → runaway(me) ∨ attacks(me, X)

Existential quantifiers in the conclusions of conditional goals are so com-
mon that it is convenient to omit them, with the convention that variables in
the conclusion of a conditional goal that are not in the conditions of the
goal are existentially quantified, with scope the conclusion of the goal. For
example:

Maintenance goal: hungry(me) → eat(me, X)

The inclusion of disjunctions in the conclusions of conditionals gives the logic
of conditionals the power of classical logic. We shall have more to say about the
relationship between the logic of conditionals and classical logic in Chapter A2.
We focus on the conditional form of logic in this book, because it is easier for
both computers and humans to understand.
Arguably, the relationship between classical logic and the logic of condi-

tionals is like the relationship between the language of human communication
and the language of human thought. One way to understand this relationship is
to view reasoning as involving two kinds of inference rules, applied in two
stages. The first kind of rule, applied in the first stage, translates complicated
sentences into simpler sentences. The second kind, applied in the second stage,
reasons with the resulting simpler sentences.
This two-stage reasoning process is used in many of the proof procedures

developed for classical logic in computing. In systems based on the resolution
principle (Robinson, 1965a) in particular, the first stage translates sentences of
classical logic into clausal form. The second stage processes clauses using
refinements of the resolution rule of inference. We discuss the resolution
principle in the additional Chapter A5.

Understanding human communications in natural language can be viewed as
a similar two-stage process. The first stage translates (or compiles) sentences of
natural language into simpler sentences in the language of thought. The second
stage processes these simpler sentences using rules of inference, like forward
and backward reasoning, which are simple cases of resolution. The closer the
natural language sentences are to the language of thought, the less effort is
needed to translate those sentences into the language of thought, and the easier it
is to understand them.

A1: The syntax of logical form 239

Negation

In classical logic, negative and positive sentences have the same status. To be or
not to be – there is no reason to prefer one to the other. But in Computational
Logic, positive sentences are more basic than negative sentences, and negative
sentences typically just fill in the gaps between positive sentences. This more
basic status of positive sentences is reflected in the syntax of conditionals,
which normally have only positive conclusions, but may have negative con-
ditions ¬ C (also written not C), for example:

liable-to-penalty(X) ← press-alarm(X) ∧ not emergency
can-fly(X) ← bird(X) ∧ not penguin(X)

As we have seen in Chapter 5 and elsewhere, it is natural to conclude that
a negative condition not C holds if the corresponding positive condition C
fails to hold. This interpretation of negation is called negation as failure. So
given a situation in which we are told bird(john), but have no reason to believe
penguin(john), it follows by negation as failure that can-fly(john).

Here is a definition of the odd and even numbers, using only positive
conclusions and a negative condition:

even(0)
even(s(s(X))) ← even(X)
odd(X) ← not even(X)

Because it cannot be shown that even(s(0)), it follows from these clauses and
negation as failure that odd(s(0)).
In addition to negative conditions interpreted by negation as failure, negative

sentences can have the form of constraints, which are conditional goals with
conclusion false. For example, in the context of an agent monitoring its candi-
date actions, the constraint:

liable-to-penalty(X)→ false
i.e. Do not be liable to a penalty

functions as a prohibition, which prevents actions, like your pressing the alarm
signal button improperly or your failing to pay your taxes, that are liable to a
penalty.
Moreover, as we have seen in Chapter 10, a constraint, such as:

even(X) ∧ odd(X)→ false
i.e. Nothing is both odd and even

which is a property of the definitions of the even and odd numbers, can be used
to eliminate candidate explanations of observations.

240 A1: The syntax of logical form

We will see later that both kinds of negation (negation as failure and
constraints) have the same semantics as negation in classical logic. However,
they perform different functions in knowledge representation and reasoning.

Functions, relations and equality

In this book, we use function symbols sparingly, only to construct composite
names of individuals. Other kinds of functions are treated as relations (or
predicates), as in relational databases. Instead of writing f(X) = Y, where f is a
function symbol, we write f(X, Y), where f is a predicate (or relation) symbol. In
this relational representation, the fact that the relation is a function is represented
by the constraint:

fðX;Y1Þ ^ fðX;Y2Þ ! Y1 ¼ Y2

We combine this relational representation of functions with a simple notion of
equality, understood as identity, and defined by the simple axiom:

X ¼ X

This representation, of functions as relations and of equality as identity, works
well only if individuals have unique names. Thus, for example, it’s not good
enough to say bob stops the train if the same person is also called robert and if
more than one person is also called bob. We have to give bob a unique name,
007 for example, and say something like:

stops(007, the train)
first-name(007, bob)
first-name(007, robert)
first-name(008, bob)

Similar considerations apply to the name of the train, of course, and maybe to
the name of the event, as we saw earlier in this chapter.
The definition of equality as identity, means that two individuals are identical

if and only if they have the same unique name. This contrasts with the more
conventional notion of equality, in which the same individual can have several
names. For example:

the morning star = the evening star

doctor jekyll = mister hyde

To reason with equalities of this kind, it is normal to use additional axioms, such
as the definite clauses:

A1: The syntax of logical form 241

X ¼ X

fðX1; . . . ;XnÞ ¼ fðY1; . . . ;YnÞ←X1 ¼ Y1 ^ . . . ^ Xn ¼ Yn

pðX1; . . . ;XnÞ←pðY1; . . . ;YnÞ ^ X1 ¼ Y1 ^ . . . ^ Xn ¼ Yn

for every function symbol f and every predicate symbol p. However, reasoning
with such axioms is computationally expensive. Moreover, their use needs to be
exercised with caution, if we want to make such distinctions as:

good(doctor jekyll) ∧ bad(mister hyde)

Classical logic

The syntax of classical logic is an extension of the syntax of the conditional
form of logic used in this book. Terms and atomic formulas in classical logic are
the same as in the logic of conditionals. However, non-atomic sentences can be
constructed using arbitrary combinations of the logical connectives →, ∧, ∨
and ¬, and the quantifiers ∀ and ∃.
Classical logic is less well-structured than the conditional form of logic. For

example, in conditional form, there is only one way to express that all birds can
fly and John is a bird, namely:

can-fly(X) ← bird(X)
bird(john)

But in classical logic, the same beliefs can be expressed in many logically
equivalent ways, including:

¬(∃X((¬can-fly(X) ∧ bird(X)) ∨ ¬bird(john)))
¬(∃X((¬can-fly(X) ∨ ¬bird(john)) ∧ (bird(X) ∨ ¬bird(john))))

To translate classical logic into the conditional form of logic, it is necessary to
use such equivalence-preserving rules of inference as:

replace ¬∃X ¬A by ∀X A

replace ¬A ∨ ¬B by ¬(A ∧ B)

replace A ∨ ¬B by A ← B

Classical logic and conditional logic differ also in their use of quantifiers. In
conditional logic, all variables in conditionals are universally quantified, and all
variables in goal clauses are existentially quantified, and therefore quantifiers
can be ommitted. But in classical logic, all variables can be universally or
existentially quantified, and therefore quantifiers need to be explicit.
In conditional logic, existential quantifiers are avoided by giving everything

that exists a name, which is either a constant or a function symbol applied to

242 A1: The syntax of logical form

other names. Instead of saying, for example, ∃X bird(X), we say bird(john) or
bird(007). We do so because giving individuals explicit names conveys more
information. If you know that john is a bird, why conceal John’s identity by
saying only that someone is a bird, especially if you are talking to yourself in
your own language of thought.

The relationship among classical logic, clausal logic
and Computational Logic

Anything that can be said in classical logic can also be said in the conditional
form of logic, but it has to be said using only universally quantified variables,
and allowing disjunctions in the conclusions of conditionals. To be more
precise, any sentence of classical logic can be translated into a set of clauses
of the form:

C1 ^ . . . ^ Cn ! D1 _ . . . _Dm

where each condition Ci and conclusion Dj is an atomic formula, and all
variables in the clause are implicitly universally quantified with scope the entire
clause. If n is 0, thenC1∧ . . . ∧Cn is equivalent to true. Ifm is 0, thenD1∨ . . .

∨ Dm is equvalent to false.
Traditionally, such clauses are written in the logically equivalent form of

universally quantified disjunctions (also called clausal form):

:C1 _ . . . _ :Cn _D1 _ . . . _Dm

Although sentences of classical logic can always be translated into clausal form,
the original sentence and its translation are not always logically equivalent.
For example, the sentence ∀X ∃Y (mother(X, Y)← person(X)) can be translated
into the clause mother(X, mom(X)) ← person(X). The clause uses a Skolem
function to name names, and is in a sense more informative than the original
sentence.
In theory, the use of Skolem functions to replace existential quantifiers entails

the need to reason with equality. For example, mom(cain) = eve. However, such
existential qualifiers typically occur in the conclusions of goals, rather than in
beliefs. The proof procedure of Chapter A6 works with explicit existential
quantifiers in the conclusions of goals. So the problems of reasoningwith equality
created by the use of Skolem functions seems not to arise much in practice.
In clausal logic, achievement goals are solved by reductio ad absurdum,

assuming their negation and deriving false from the resulting set of clauses. For
example, the negation of the achievement goal:

A1: The syntax of logical form 243

9X1 . . . 9XmðC1 ^ . . . ^ CnÞ
is equivalent both to the (universally quantified) denial:

C1 ^ . . . ^ Cn ! false

and to the ordinary (universally quantified) clause:

:C1 _ . . . _ :Cn

Maintenance goals in clausal logic are solved in the same way, by converting
their negation into clausal form and deriving false. However, because main-
tenance goals are universally quantified, their negations are existentially quan-
tified, and these existential quantifiers need to be replaced by Skolem constants.
For example, to solve the maintenance goal:

attacks(X, me) → runaway(me) ∨ attacks(me, X)

it is necessary to replace the variable X by a Skolem constant, say ☹, and
convert the negation of the Skolemised conditional into the clauses:

attacks(☹, me)
¬ runaway(me)
¬ attacks(me, ☹)

If this way of solving maintenance goals succeeds (by deriving false), then it
succeeds in solving them once and for all.
However, in this book, we solve maintenance goals differently, by showing

that whenever their conditions are true, their conclusions are true. This alter-
native treatment of maintenance goals is discussed informally in Chapter 8 and
formalised in Chapter A6.
This different treatment of maintenance goals reflects the fact that, neither

classical logic nor clausal logic makes a fundamental distinction between goals
and beliefs. In contrast, we distinguish between goals and beliefs, by employing
a minor variant of clausal form for goals, and the closely related logic program-
ming form:

C1 ^ . . . ^ Cn ^ . . .:D1 ^ . . . ^ :Dm ! E

or E←C1 ^ . . . ^ Cn ^ :D1 ^ . . . ^ :Dm

for beliefs. As mentioned before, the conclusions of goals (but not of beliefs)
may contain both disjunctions and existentially quantified variables.
Somewhat confusingly, as is common in the literature, I use the term clause to

refer either to clauses written as conditionals, to clauses written as disjunctions

244 A1: The syntax of logical form

or to logic programming clauses. Perhaps even more confusingly, I use the
term conditional both for clauses written as conditionals with disjunctive
conclusions and for logic programming clauses. I also call the resulting combi-
nation of the two kinds of conditionals the conditional form of logic, as well as
the form of Computational Logic used in this book. Hopefully, in most cases the
context makes the intended meaning obvious.

Conclusions and further references

This whirlwind tour of the syntax of the conditional form of logic and its
relationship with both the standard and clausal forms of classical logic has
covered a lot of ground, but only touched the surface.
The conditional form of logic is as powerful as, but simpler than, the

unstructured form of sentences in classical logic. The inference rules of the
conditional form are also correspondingly simpler. The inference rules of
classical logic are more complex, because in effect, in addition to the rules
needed to reason with conditionals, they also include rules to translate sentences
of classical logic into equivalent sentences in conditional form.
This distinction between the two kinds of inference rules in classical logic

corresponds to the distinction between two kinds of reasoning in natural
language. The inference rules needed to translate classical logic into condi-
tionals corresponds to the reasoning needed to translate natural language into
the LOT; and the inference rules needed to reason with conditionals corresponds
to the reasoning needed in the LOT.
I have been supported in this view of the relationship between classical logic

and conditional logic and between natural language and the LOT by the guide-
lines for good writing style given in such books as Williams’ (1990, 1995).
These guidelines, advocating clarity, simplicity and coherence, can be viewed
as encouraging a writing style that minimises the difference between the syntax
of natural-language communications and the representation of their meanings in
the LOT.
The conditional form of logic evolved from the clausal form of logic, and the

clausal form of logic evolved from standard classical logic. One of the earliest
uses of clausal form was by Martin Davis and Hillary Putnam (1960) in one of
the first mechanical proof procedures for classical logic. It was also used for the
resolution rule developed by Alan Robinson (1965a).
The application of clausal form to knowledge representation and of resolu-

tion to problem solving was pioneered by Cordell Green (1969). However, the
resolution theorem provers available at that time did not behave sensibly, and

A1: The syntax of logical form 245

were vulnerable to attacks against the resolution-based approach by advocates
of procedural, as opposed to declarative, representations of knowledge (Hewitt,
1971; Winograd, 1971, 1972).
In defence of clausal logic, Kowalski and Kuehner (1971) argued that

SL-resolution, essentially a resolution interpretation of Loveland’s (1968)
model elimination proof procedure, could be understood procedurally in goal-
reduction terms. In 1971 and 1972, I collaborated with Alain Colmerauer in
Marseille, resulting in Colmerauer’s development of Prolog in 1972, and in the
procedural interpretation (Kowalski, 1974) of SLD-resolution, a variant of
SL-resolution, applied to Horn clauses.
In Logic for Problem Solving (Kowalski, 1974, 1979), I argued more gen-

erally for the use of clausal form for knowledge representation and reasoning. A
detailed analysis of the relationship between clausal logic and classical logic can
be found in chapters 2 and 10 of that book. The combination in Computational
Logic of clausal logic for goals and logic programming for beliefs comes from
abductive logic programming (ALP) (Kakas et al., 1998). The technical under-
pinnings of ALP are dealt with in Chapter A6.

246 A1: The syntax of logical form

A2

Truth

This additional chapter explores the semantics of classical logic and conditional
logic. In classical logic, the semantics of a set of sentences S is determined by
the set of all the interpretations (or semantic structures), called models, that
make all the sentences in S true. The main concern of classical logic is with the
notion of a sentence C being a logical consequence of S, which holds when C is
true in all models of S.
Semantic structures in classical logic are arbitrary sets of individuals and

relationships, which constitute the denotations of the symbols of the language in
which sentences are expressed. In this chapter, I argue the case for restricting the
specification of semantic structures to sets of atomic sentences, calledHerbrand
interpretations.
The semantics of conditionals, which we use in this book, inherits the

semantics of classical logic, but also has a related minimal model semantics.
This minimal model semantics associates with every definite clause program a
unique minimal model, which has the property that a definite goal clause is true
in all models of the program if and only if it is true in the minimal model.
I argue that, for definite clauses, truth in minimal models is more fundamental

than truth in all models. I support the argument by observing that the standard
model of arithmetic is the minimal model of a simple definite clause program
defining addition and multiplication. According to Gödel’s Incompleteness
Theorem, truth in this minimal model can only be approximated by truth in
all models of any computable set of axioms for arithmetic.

Truth and consequences

All variants of Symbolic Logic are formal systems, in which rules of inference
are used to manipulate symbolic expressions and derive new symbolic

247

expressions without paying attention to their intended meaning. However,
without any meaning, these expressions and their manipulations are not only
meaningless, but useless.
In the case of an agent embedded in the real world, symbolic expressions

in the agent’s language of thought represent actual or potential situations in
the world. Beliefs that are true in the world help the agent to anticipate the
consequences of its actions and to achieve its goals. Goals that the agent can
realistically make true in the world help the agent to maintain a harmonious
relationship with the world and to change the world for its own benefit. Rules of
inference, which manipulate thoughts and which derive new thoughts from
existing thoughts, help the agent to derive logical consequences of its goals,
beliefs and hypotheses, and guide its interactions with the world.
In classical logic, the notion of logical consequence provides the criterion

for judging whether or not a set of inference rules performs its intended function:

A sentence C is a logical consequence of a set of sentences S
(or S logically implies C) if (and only if) C is true whenever S is true.

A set of inference rules is sound (or truth-preserving) if (and only if)
whenever it derives a sentence C from a set of sentences S,
then C is a logical consequence of S.

A set of inference rules is complete if (and only if) whenever a sentenceC is a
logical consequence of a set of sentences S, then there exists a derivation, by
means of the inference rules, of C from S.

These concepts of logical consequence, soundness and completeness depend
upon the notion of truth, which applies only to well-formed formulas that
are sentences. A well-formed formula is an expression constructed from
atomic formulas using the logical connectives →, ∧, ∨ and ¬, and the
universal quantifiers ∀ and ∃. A sentence is a well-formed formula all of whose
variables are explicitly or implicitly quantified using the quantifiers ∀ and ∃.

The notion of truth is relative to an interpretation of the symbols of the
language in which the sentences are expressed. An interpretation is a collection
of individuals (called the domain of discourse), which are the denotations (or
meanings) of the constants and other ground terms of the language, together
with a set of relations, which are the denotations of the predicate symbols. The
relations belonging to an interpretation determine the truth of the atomic
sentences of the language, and the truth of the atomic sentences, in turn,
determines the truth values of all other sentences.
For example, if the conditional

amazing(john) ← can-fly(john)

248 A2: Truth

is interpreted in such a way that the constant john denotes my cat, the predicate
symbols amazing and can-fly denote the properties of being lazy and sleeping
all day respectively, then the conditional means:

My cat is lazy if my cat sleeps all day.

And because my cat sleeps all day and my cat is lazy, the sentences can-fly(john)
and amazing(john) are both true. As a consequence, the conditional amazing(john)
← can-fly(john) is also true.
For convenience, we include the atomic sentences true and false in the

language. We sometimes use the atom true to represent an empty conjunction
and the atom false to represent an empty disjunction. We also use the atom false
in the conclusions of conditionals, to represent constraints. Unfortunately, these
usages are easily confused with the truth values true and false. When it is
necessary to distinguish between these atoms and the truth values, we refer to
them as the atoms true or false and the truth values true or false, respectively.
The truth values true and false are asymmetric, because falsity is defined in

terms of truth:

A sentence that is not true is also said to be false.
A negative sentence ¬ C is true if (and only if) the sentence C is false.

An atomic sentence of the form p(c1, . . . , cn), where c1, . . . , cn are ground
terms, is true in an interpretation if (and only if) the individuals denoted by
the terms c1, . . . , cn are in the relation denoted by the predicate symbol p.
If the atomic sentence is a predicate symbol with no arguments (i.e. n= 0),
then the sentence is true if (and only if) the interpretation simply assigns it
the truth value true. The atomic sentence true is always assigned the truth
value true. The atomic sentence false is never assigned the truth value true
(and therefore has the truth value false).

A sentence that is a conjunction C1 ∧ . . . ∧Cn is true in an interpretation if
(and only if) all ofCi are true. (Therefore, if n=0, then the conjunction is true.)

A sentence that is adisjunctionC1∨ . . . ∨Cn is true in an interpretation if (and
only if) at leastoneofCi is true. (Therefore, ifn=0, thenthedisjunction isnot true.)

A sentence that is a conditionalC→D is true in an interpretation if (and only
if) C has the truth value false or D has the truth value true. (Therefore a
conditional of the formC→ false is true if and only ifChas the truth value false.)

A universally quantified sentence ∀X C is true if (and only if) every
ground instance ofC (obtained by replacing every occurrence of the variable
X in C by a ground term) is true.

An existentially quantified sentence ∃X C is true if (and only if) some
ground instance of C is true.

A2: Truth 249

Finally, an interpretation of a set of sentences is said to be a model of the set
of sentences if (and only if) every sentence in the set is true in the interpretation.

It is this sense of the term model that explains the use of the term model-
theoretic semantics. There is another sense of the term model, which is more
common in English, and which we also use in this book. This is its sense as a
synonym for theory. It is this more common meaning of the term that we intend
when we speak, for example, of an agentmodel, a cognitivemodel or of amodel
of the mind. If necessary, we use the term semantic model, to distinguish it from
model in the sense of a theory.

The semantics of conditionals

According to the semantics of classical logic, a conditional (also calledmaterial
implication) of the form C→D is logically equivalent to a disjunction ¬C ∨D.
This implies that the conditional is true whenever the conclusion D is true, no
matter whether the condition C is true or false. The conditional is also true
whenever the condition C is false, no matter whether the conclusion D is true or
false. For example, the conditionals:

john can fly → 2 + 2 = 4
the moon is made from green cheese → john can fly

are both true in any interpretation in which 2 + 2 = 4 is true and the moon is
made from green cheese is false, no matter whether john can fly is true or false.
These properties of the semantics of conditionals are sufficiently unintuitive

that they have come to be known as the paradoxes of material implication. The
desire to avoid such paradoxes has given rise to various non-classical logics, the
most influential of which is Relevance Logic (Anderson and Belnap, 1975).
However, there are some cases where these properties seem to make sense.

For example:

john can fly → I am a monkey’s uncle

On the obviously intended assumptions that my assertion is true and that I am
an monkey’s uncle is false, it must be that I mean to imply that john can fly is
false. This implication relies upon the semantics of the material implication as
understood in ordinary classical logic.
The semantics of conditionals in this book is the classical semantics. The

paradoxes are avoided, partly by invoking pragmatic, rather than semantic,
considerations, as argued for example by Grice (1989). The role of pragmatics
is most obvious in the case of disjunctions. For example, why assert the weak
disjunction, even if it is true:

250 A2: Truth

I am going to the party ∨ I will stay at home

if I have no intention of going to the party, but I amplanning to stay at home instead?
In Computational Logic, the paradoxes are avoided for the additional reason

that practical proof procedures eliminate weak disjunctions and weak condi-
tionals for the sake of computational efficiency. In the case of propositional
logic, they eliminate any disjunction C ∨ D that is subsumed by a stronger
disjunction, say D alone. They also eliminate any weak conditional B ∧ C→ D
or C → D ∨ E that is subsumed by a stronger conditional C → D.
In the more general case of sentences containing variables, subsumption also

eliminates any sentence that is an instance of another sentence. For example, if I
believe likes(bob, X) and you ask me what Bob likes, I will tell you that Bob
likes everything, partly because it is more informative, and partly because if I
had a more specific belief, say that likes(bob, mary), I would have eliminated it
to avoid cluttering my mind with unnecessary details. We will discuss sub-
sumption and related matters in greater detail in Chapter A5.

Universal quantifiers and Herbrand interpretations

According to the semantics of universal quantifiers, a sentence of the form ∀XC is
true if and only if every ground instance ofC is true. This simple definition (called
the substitution interpretation of quantifiers) works correctly only if there are
enough ground terms in the language to name all the individuals in the interpre-
tation. The set of ground terms needs to include not only the names of all the
individuals in the set of sentences under consideration, but also a pool of names for
talking about any individuals that might need talking about in the future.
Assuming that there are enough names to talk about all the individuals that

might need talking about makes it possible to do away with the mystery of
what counts as an individual and what counts as a relation. It allows us simply
to identify an interpretation with the set of all the atomic sentences that are
assigned the truth value true in the interpretation.
The fact that an interpretation directly identifies only those atomic sentences

that are true, and that the definition of truth for a negative sentence ¬ C reduces
to the failure of C to be true, reflects the asymmetry between truth and falsity. In
the conditional form of logic, this asymmetry is further reflected in the fact that
sentences with positive conclusions are more basic than sentences with negative
conclusions. In the agent model, it is reflected in the fact that an agent’s basic
observations are represented by positive atomic sentences.
Sets of atomic sentences regarded as interpretations or as semantic models are

called Herbrand interpretations or Herbrand models, in honour of the logician

A2: Truth 251

Jacques Herbrand. The mathematical attraction of Herbrand interpretations is
the property that if there exists any other kind of model then there exists a
Herbrand model as well. Arguably, for our purpose, such Herbrand interpreta-
tions are more useful than arbitrary interpretations.
Indeed, for our purpose, the only interpretation that really matters is the real

world, and the only semantic relationship that really matters is the relationship
between an agent’s thoughts and the succession of states of the world.
The interface between the real world and the agent’s goals and beliefs is the

set of observations that the agent encounters and the set of actions that the agent
performs. This interface is as close as the agent needs to get to the real world, to
determine whether its beliefs are true and whether its goals can be made true.
The use of Herbrand interpretations restricts the agent’s knowledge of the world
to this interface, and avoids trying to identify the true nature of the world
without describing it in some other language.

Minimal models of definite clause programs

In classical logic, a sentence C is a logical consequence of a set of sentences S if
(and only if) C is true in every model of S. Typically, the set of sentences S has
many, often infinitely many, models. However, in the case of definite clauses,
there is a single model that stands out from all the others. It is the Herbrand
modelM that is generated by instantiating universally quantified variables with
ground terms and by reasoning forwards.
Consider, for example, the recursive definite clauses E:

even(0)
even(s(s(X))) ← even(X)

Forward reasoning generates the infinite sequence of atomic sentences:

even(0), even(s(s(0))), even(s(s(s(s(0))))), . . . ad infinitum.

This set is a Herbrand model of E. In fact, it is the smallest Herbrand model that
makes the two sentences in E both true.
The smallest Herbrand model of a definite clause program H always exists,

and it is called theminimal model ofH. This model isminimal in the sense that it
is contained in every other Herbrand model of H.1 In fact, every larger set of

1 However, the minimal model depends upon the vocabulary of the underlying language of H.
This vocabulary includes all the ground terms that can be constructed from the terms occurring in
H, but it could also include other constants or function symbols. These other, unused symbols
might be held in reserve to be used in future extensions of H. But in any case, these ground terms
need to be sorted (or well-typed), to exclude such terms as s(bob).

252 A2: Truth

atomic sentences is also a model. This includes the maximal model in which all
the ground atoms are true.
Themaximal model is one of those models that give the semantics of classical

logic a bad name. The minimal model, on the other hand, has all the good
properties that the critics desire. In particular, it has the remarkable property
that, as far as goal clauses (or achievement goals) are concerned, truth in the
minimal model is equivalent to truth in all models:

For every definite clause program H, there exists a unique minimal modelM
such that for all definite goal clauses G:

G is a logical consequence of H (i.e. G is true in all models of H)
if and only if G is true in M.

This property is a direct consequence of a theorem proved in van Emden and
Kowalski (1976) for the case where G is an atomic fact. It also holds for
disjunctions of definite goal clauses, i.e. sentences of the form G1 ∨ . . . ∨ Gn

where each Gi is an (existentially quantified) definite goal clause. However, it
does not hold for sentences containing negation or universal quantification.
For example, the sentences:

not even(s(s(s(0))))
∀X (even(s(s(X))) → even(X))

are both true in the minimal modelM of E, but they are not logical consequences
of E. The first sentence is true inM, because the atomic sentence even(s(s(s(0))))
is not true inM. However, it is not a logical consequence of E, because it is not
true, for example, in the maximal model of E.
The second sentence ∀X (even(s(s(X)))→ even(X)) is true inM, because for all

ground terms t that canbe constructed from the constant 0 and the function symbol s:

if even(s(s(t))) is true in M, then it must have been derived by forward
reasoning using the ground instance even(s(s(t))) ← even(t) of the
conditional in E. But then the condition even(t) of this ground instance must
also be true in M.

Notice that this second sentence is the converse of the second conditional in E. It is
not true in all models of E, because there exist non-Herbrand models containing
weird individuals, for example the individual named weird, such that even(s(s(weird)))
is true, but even(weird) is not true. The simplest and smallest such model is just the
minimalmodel augmentedwith the one additional atomic sentence even(s(s(weird))).
Arguably, it is the minimal model of a definite clause program H that is the

intended model of H, and it is relative to this model that the truth or falsity of
arbitrary sentences in the syntax of classical logic should be judged.

A2: Truth 253

This way of looking at models separates sentences into two kinds: sentences
like definite clauses that determine minimal models, and arbitrary sentences of
classical logic that are true in such minimal models.
The difference between these two kinds of sentences is analogous to the

difference between an agent’s beliefs and its goals. Beliefs have the form of
logic programs, and represent a minimal model of the agent’s world. Goals have
the form of arbitrary sentences of classical logic, and represent properties of the
world that the agent would like to hold.
This difference between beliefs and goals is most striking in the case of

maintenance goals, which are universally quantified conditionals. Wewill see in
Chapter A6 that the semantics of a maintenance goal G can be naturally under-
stood as generating a set of atomic sentences Δ describing atomic actions, such
that G is true in the minimal model of B ∪ Δ, where B is the set of the agent’s
beliefs. With this semantics, forward reasoning can be viewed as trying to make
G true by making its conclusion true whenever its conditions are made true.
This process of forward reasoning goes on forever, unless no new atomic
sentences can be observed or derived.
Any model generated by forward reasoning in this way is minimal, not

only in the sense that B ∪ Δ has a minimal model, but also in the sense that
atomic sentences are made true by adding them to Δ only when necessary. In
particular, there is no need to make conditions of maintenance goals true for no
reason.

Truth in arithmetic

The case for viewing minimal models as intended models is supported by the
fact that the standard model of arithmetic is the minimal model of a definite
clause program. Here is a definite clause representation of addition and multi-
plication in terms of relations, along with a more conventional representation in
terms of functions on the right:

+(0, Y, Y) i.e. 0 + Y =Y
+(s(X), Y, s(Z)) ← +(X, Y, Z) i.e. s(X) + Y = s(X + Y)
×(0, Y, 0) i.e. 0 × Y = 0
×(s(X), Y, V) ← ×(X, Y, U) ∧ +(U, Y, V) i.e. s(X) × Y = (X × Y) + Y

The functional representation is undoubtedly easier to understand, but the
relational representation more clearly distinguishes between the undefined
function symbol s, used to construct the natural numbers, and addition and

254 A2: Truth

multiplication, which are defined by the conditionals. Moreover, the relational
representation avoids the need for a separate equality predicate.
Arguably, the relational representation also has a more obvious semantics in

terms of the minimal model A defined by the four definite clauses. It is this
model that we mean when we speak of the intended model of arithmetic and of
truth in arithmetic (as remarked in effect by Martin Davis (1980)).
Consider, for example, the sentence:

8XðþðX; 0;XÞÞ
where X is a natural number. This sentence is not a goal clause, because X is
universally quantified. However, it is easy to show that the sentence is true in
the minimal model A. Here is a proof by mathematical induction:

Base case: X = 0. Then +(X, 0, X) is just +(0, 0, 0),
which is true in A
because it is an instance of the clause +(0, Y, Y).

Inductive case: X = s(n). By induction hypothesis, +(n, 0, n) is true in A.
We need to show +(s(n), 0, s(n)) is true in A.
But this follows by one step of forward reasoning,
using the clause (s(X), Y, s(Z)) ← +(X, Y, Z).

This semantic argument can be expressed purely syntactically, by augmenting
the definite clauses with additional axioms, including axioms for induction. The
induction axiom needed for this example is an instance of the axiom schema:2

Pð0Þ ^ 8NðPðNÞ ! PðsðNÞÞÞ ! 8XPðXÞ:
where P(X) is any predicate in which X is the only unquantified variable. The
instance of P(X) needed in the example is +(X, 0, X).
In the example, the universally quantified sentence ∀X (+(X, 0, X)) is both

true and provable using induction. However, Gödel’s Incompleteness Theorem
shows that there are universally quantified sentences of arithmetic that are true
but unprovable using any constructible set of axioms for arithmetic. Intuitively,
this is because to show that a universally quantified sentence is true, it is
necessary to show that every ground instance of the sentence is true, and
there are infinitely many such ground instances, one for every natural number.

2 An axiom scheme is a collection of axioms, one for each predicate P(X) (not restricted to
predicate symbols). However, induction can also be represented as a single sentence in either
meta-logic or so-called second-order logic. In meta-logic, P ranges over names of formulas. In
second-order logic, P ranges over subsets of the natural numbers. From a mathematical point of
view, the big difference between the meta-logical and second-order representations is that the
set of formulas is infinite but countable, whereas the set of all subsets of the natural numbers is
infinite but uncountable.

A2: Truth 255

In many cases, the infinitely many instances display a recurrent pattern that
can be captured finitely with proof by induction. But in the case of the sentence
constructed in the proof of the Incompleteness Theorem, it cannot. The sentence
is constructed by coding sentences of arithmetic by natural numbers, and by
representing the provability predicate of arithmetic as an arithmetical predicate.
In this way, arithmetic becomes its own meta-language, and sentences about
arithmetic become sentences of arithmetic.
The true, but unprovable sentence, is a sentence that says of itself that it is

unprovable. If the sentence is false, then it is not true that the sentence is
unprovable, and the sentence can actually be proved, in which case the axioms
of arithmetic are inconsistent. If the sentence is true, then it cannot be proved, in
which case the axioms of arithmetic are incomplete. Therefore any constructive
axiomatisation of arithmetic that is consistent is incomplete. Moreover, any
such axiomatisation is certain to have non-minimal, unintended models, in
which sentences that are true in the intended model of arithmetic are false.

Conclusions

In this chapter, we investigated the notions of truth, logical consequence and
minimal models. I sketched an argument for restricting attention to Herbrand
interpretations, which are sets of atomic sentences. In the case of an agent
embedded in the real world, the advantage of Herbrand interpretations is that
they avoid the philosophical problems of trying to identify the true nature of the
world, and they focus instead on just specifying the interface between the
agent’s thoughts and the world.
I also sketched a further argument for regarding minimal models as intended

models, and pointed out that, in the case of definite clauses, a definite goal
clause is true in all models if and only if it is true in the minimal model.
I argued that in the case of arithmetic, the truth or falsity of arbitrary sentences

is best understood as truth or falsity in the minimal model of the definite clause
program defining addition and multiplication. I also sketched an argument that
the semantics of an agent’s maintenance goals can similarly be understood as
generating a minimal model in which the maintenance goals are all true.
The fact that forward reasoning can be understood as generating minimal

models also draws support from mental model theory, which argues that people
reason by constructing model-like structures in the mind. In Chapters A3 and
A6, we will see how the inference rules of forward reasoning, backward
reasoning and negation as failure can be understood in semantic terms, as
determining the truth of sentences in minimal models.

256 A2: Truth

A3

Forward and backward reasoning

We have already looked informally at forward and backward reasoning with
conditionals without negation (definite clauses). This additional chapter defines
the two inference rules more precisely and examines their semantics.
Arguably, forward reasoning is more fundamental than backward reasoning,

because, as shown in Chapter A2, it is the way that minimal models are generated.
However, the two inference rules can both be understood as determining
whether definite goal clauses are true in all models of a definite clause program,
or equivalently whether the definite goal clauses are true in the minimal model.

Forward reasoning

Of the two rules of inference, only forward reasoning is truth-preserving, in the
sense that, if the sentences it starts with are true in an interpretation, then the
derived sentence is also true in the same interpretation. It follows that any
sentence obtained by repeatedly applying forward reasoning, starting from an
initial set of premises, is a logical consequence of the premises. Therefore,
forward reasoning is a sound rule of inference. We will see later that forward
reasoning with definite clauses is also complete.
To see how forward reasoning preserves truth, consider the case of John who

buys a lottery ticket in the hope of becoming rich:

buys-ticket(john, 150541)
buys-ticket(X, Y) ∧ chosen(Y) → rich(X)

Forward reasoning can be applied if the variables can be instantiated in such a
way that the fact and one of the conditions of the conditional become identical.
If such an instantiation is possible, then forward reasoning instantiates the
conditional:

257

Step 1: buys-ticket(john, 150541) ∧ chosen(150541) → rich(john)

This is logically equivalent to the non-standard conditional:

buys-ticket(john, 150541) → (chosen(150541) → rich(john))

Forward reasoning with this equivalent conditional then derives the conclusion.
This is just classical modus ponens:

Step 2: chosen(150541) → rich(john)

Both steps are truth-preserving. Step 1 is truth-preserving, because a conditional
is true if and only if every instance is true. Step 2 is truth-preserving, because if
a conditional is true and its conditions are true then its conclusion must also
be true.
In the more general case, forward reasoning involves an atomic sentence and

a conditional, both of which may contain universally quantified variables. For
example:

likes(bob, X)
likes(X, Y) ∧ gives(X, Y, Z) → generous-to(X, Z)

If the atomic sentence and the conditional can be instantiated, so that the
resulting atomic sentence and one of the conditions of the conditional are
identical, then instantiation is performed:

Step 1: likes(bob, X)
likes(bob, X) ∧ gives(bob, X, Z) → generous-to(bob, Z)

Equivalently: likes(bob, X) → (gives(bob, X, Z) → generous-to(bob, Z))

Notice that the variable X in the original sentences is actually two different
variables, because the “scope” of a variable is limited to the sentence in which it
occurs. Outside of that scope, the name of the variable loses its significance, and
inside that scope, all occurrences of the variable can be renamed, without
affecting the semantics of the sentence. Notice also that the instantiation of
the two sentences is the most general instantiation that does the job of making
the two atoms identical.
In the next step, forward reasoning deletes from the instantiated conditional

the condition that is identical to the instantiated atom:

Step 2: gives(bob, X, Z) → generous-to(bob, Z)

In general, starting from an atomic sentence and a conditional:

atomic sentence
conditions → conclusion

258 A3: Forward and backward reasoning

forward reasoning first instantiates both sentences, so that the instantiated
atomic sentence is identical to one of the conditions of the instantiated
conditional:

Step 1: atomic sentence0

atomic sentence0 ∧ other-conditions0 → conclusion0.

This instantiation of terms for variables is the most general instantiation that
makes the two atoms identical, and is called the (most general) unifier of the two
atoms. All other common instances of the two atoms are instances of this most
general unifier. The operation of most general instantiation is called unification;
and the resulting atoms are said to be unified. The unifier of two atoms, if there is
one, is unique up to the renaming of variables.
Having performed unification, forward reasoning deletes from the instanti-

ated conditional the condition that is now identical to the instantiated atomic
sentence:

Step 2: other-conditions0 → conclusion0.

Note that atomic sentence0 can occur anywhere in the conditions of the condi-
tional. However, for simplicity, both here and elsewhere, it is written first,
because the order in which formulas appear in a conjunction doesn’t matter,
and because it makes the description of the inference rule simpler.

Backward reasoning

With backward reasoning, truth is preserved in the opposite direction: If the
subgoals that are derived are true, and the conditional used to derive the
subgoals is true, then the initial goal from which the subgoals are derived is
true. To see this, consider first the simple case of a single atomic goal clause:

Initial goal clause: generous-to(X, mary)
Conditional: likes(X, Y) ∧ gives(X, Y, Z) → generous-to(X, Z)

Here the variable X in the goal clause is existentially quantified and different
from the universally quantified variable X in the conditional, despite having the
same (local) name.
Backward reasoning attempts to unify the atomic goal and the conclusion of

the conditional. If the attempt succeeds, then both sentences are instantiated by
applying the unifier:

Step 1: generous-to(X, mary)
likes(X, Y) ∧ gives(X, Y, mary) → generous-to(X, mary)

A3: Forward and backward reasoning 259

Instantiation of the conditional is truth-preserving, because all of its
variables are universally quantified, and if the conditional is true then all of
its instances are true. In this example, the instantiation of the goal clause is
unnecessary.
However, in the general case, when the goal clause needs to be instantiated,

this instantiation is not truth-preserving, because all of the variables in the goal
clause are existentially quantified. But if an instance of a goal clause is true, then
the goal clause itself is true, because an existentially quantified sentence is true
if an instance is true.
Having instantiated the goal clause and the conditional, backward reasoning

continues by replacing the goal atom by the conditions of the conditional, as
subgoals:

Step 2, subgoals: likes(X, Y) ∧ gives(X, Y, mary)

Here the variables X and Yare existentially quantified. (To find someone who is
generous to Mary, it suffices to find someone who gives something he/she likes
to Mary. He/she does not need to give everything he/she likes to Mary.) If the
subgoals and the conditional are true, then the initial goal clause is also true in
the same interpretation.
In general, starting from a selected atomic goal in an initial goal clause and a

conditional:

selected-goal ∧ other-goals
conditions → conclusion

backward reasoning attempts to unify the selected-goal with the conclusion of
the conditional. If the unification is possible, then the unifier is applied to both
sentences:

Step 1, instantiation: selected-goal 0 ∧ other-goals0

conditions0 → selected-goal0.

Backward reasoning then replaces the instantiated selected goal by the con-
ditions of the instantiated conditional:

Step 2: conditions0 ∧ other-goals0.

In the special case where there are no other-goals, the second step is simply
modus ponens in reverse. In the special case where there are no conditions, the
conditions are equivalent to true, and the conditional is in effect a fact.
Below is an example of the way in which backward reasoning is used for

computation in logic programming. The example uses the theoretically elegant,

260 A3: Forward and backward reasoning

though hopelessly inefficient representation of the natural numbers using only 0
and the successor function s. The inefficiency of the computation is not an
inherent property of logic programming, but rather a property of this specific
representation.
Consider the goal of adding 2 plus 2, using the definition of addition given in

Chapter A1. Here the names of variables are chosen to make the matching
instantiations more obvious:

Initial goal clause: +(s(s(0)), s(s(0)), X)
New goal clause: +(s(0), s(s(0)), X’) where X = s(X’)
New goal clause: +(0, s(s(0)), X ”) where X 0 = s(X”)
New goal clause: true where X ” = s(s(0))

The cumulative instantiations of the existentially quantified variables compute
the sum X = s(s(s(s(0)))).

Soundness and completeness

As we have seen, forward reasoning is sound. Backward reasoning, on the other
hand, is backwards sound: Given an initial goal clause and a derived goal clause
obtained by reasoning backwards with a conditional, the initial goal clause is true
in any interpretation inwhich the derived goal clause and the conditional are true.
Moreover, if the derived goal clause is the atom true (an empty conjunction of
subgoals), then the initial goal clause is true, simply if the conditional is true.
Thus forward and backward reasoning are two different, but sound ways to

solve a goal clause C1 ∧ . . . ∧ Cn. Forward reasoning can be understood as
solving the goal clause by deriving atomic sentences C1

0 . . . Cn
0 such that the

conjunction C1
0 ∧ . . . ∧ Cn

0 is an instance of the goal clause C1 ∧ . . . ∧ Cn.
Backward reasoning can be understood as solving the goal clause by deriving
the goal atom true from the initial goal clause.
The soundness of forward reasoning and the backward soundness of back-

ward reasoning ensure that if a goal clause is solved using either forward or
backward reasoning, then the goal clause is true in every interpretation in which
the conditionals used in the derivation are true.
The backward soundness of backward reasoning can be turned into ordinary

soundness if goal clauses G are turned into denials G → false, and if solving a
goal clause is understood as deriving true→ false, which is equivalent to false.1

This way of looking at backward reasoning makes it easier to see that both

1 Note that the denial of a goal clause ¬(∃ X1 . . .∃ Xm (C1 ∧ . . . ∧ Cn)) is equivalent to a
conditional constraint ∀ X1 . . .∀ Xm (C1 ∧ . . . ∧ Cn → false).

A3: Forward and backward reasoning 261

backward and forward reasoning are special cases of the resolution rule,
presented in Chapter A5. It also makes it easier to obtain completeness by
means of refutation completeness:

Let C be any sentence of classical logic,
and S any set of sentences of classical logic.
Then C is a logical consequence of S
if (and only if) the sentences S and C → false have no model;
if (and only if) S and C → false logically imply false.

Therefore, a set of inference rules is refutation complete
if (and only if) whenever C is a logical consequence of S,
then there exists a derivation (called a refutation)
by means of the inference rules, of false from S and C → false.

Both forward and backward reasoning are refutation complete for Horn clauses.
If G is a definite goal clause and S is a definite clause program, then the
following are equivalent:

* G is a logical consequence of S.
* G is true in the minimal model of S.
* There exists a derivation of false from the clauses S and G → false both by

forward reasoning and by backward reasoning.

Conclusions

In this chapter, we saw that forward and backward reasoning are both sound and
refutation complete for Horn clauses. In Chapter A4, we will see how to extend
reasoning with Horn clauses by means of negation as failure. In Chapter A5, we
will see how to extend forward and backward reasoning to the resolution rule,
which is sound and refutation complete for the clausal form of full classical
logic.

262 A3: Forward and backward reasoning

A4

Minimal models and negation

To a first approximation, the negation as failure rule of inference is straight-
forward. Its name says it all:

to show that the negation of a sentence holds
try to show the sentence holds, and
if the attempt fails, then the negation holds.

But what does it mean to fail? Does it include infinite or only finite failure? To
answer these questions, we need a better understanding of the semantics.
Consider, for example, the English sentence:

bob will go if no one goes

Ignore the fact that, if Bob were more normal, it would be more likely that bob
will go if no one else goes. Focus instead on the problem of representing the
sentence more formally as a logical conditional.
The variable X in the obvious representation:

bob will go ← not(X will go)

is universally quantified with scope the entire conditional:

∀X (bob will go ← not(X will go))
i.e. bob will go ← ∃X not(X will go)
i.e. bob will go ← not ∀X (X will go)
i.e. bob will go if not everyone will go

What we really want is:

bob will go← not ∃X (X will go)

In fact, that is what we actually get if we apply the negation as failure inference
rule in the obvious way, ignoring quantification:

Initial goal: bob will go
Subgoal: not X will go

263

Naf: X will go
Subgoal: not X’ will go (where X = bob)

Naf: X’ will go
Subgoal: not X’’ will go (where X’ = bob)

ad infinitum . . .

But then we have two problems: The problem we started with, that all variables
in conditionals are implicitly universally quantified, when what we need is an
existentially quantified variable inside negation; and the problem of the infinite
loop.
But as we have just seen, the first problem is not a problem, but a solution to a

problem that we may not have realised we had. In general, negation as failure
interprets variables in negative conditions that do not occur elsewhere as
existentially quantified inside the negation; and for most applications this is
exactly what we want! We will see later that this is also what we want and what
we get with variables in the conclusions of maintenance goals that do not occur
in the conditions.
It is the infinite loop that is the real problem. But before we try to tackle the

problem in this particular example, let’s sharpen our intuitions by considering
some simpler cases first. The simplest case is the one without any negation at all.

Negation in minimal models

We have seen in Chapter A2 that every set H of conditionals without negation
(i.e. Horn clause program) has a unique minimal model M, which is generated
by instantiating universally quantified variables with ground terms and by
forward reasoning. I have argued that it is this minimal model that is the
intended model of H. Viewed this way, the semantics of negation as failure is
simply the normal semantics of negation in classical logic:

a sentence not p holds by negation as (potentially infinite) failure
if and only if not p is true in M
if and only if p is not true in M.

In fact, the negation as failure inference rule can be understood simply as
reasoning backwards with the definition of truth, to show that not p is true in
M, by showing that p is not true in M.
Remember the simple definite clause program E:

even(0)
even(s(s(X))) ← even(X)

with its infinite Herbrand model M consisting of the atomic sentences:

264 A4: Minimal models and negation

even(0), even(s(s(0))), even(s(s(s(s(0))))), . . . ad infinitum.

Consider the problem of determining if not even(s(s(s(0)))) is true in M:

if and only if even(s(s(s(0)))) is not true in M
if and only if even(s(s(s(0)))) does not belong to M,
which is the case.

The negation as failure inference rule gives the same result without the need to
generate the model M explicitly:

even(s(s(s(0))))) can be shown
if and only if even(s(0)) can be shown
but only if s(0) can be unified either with 0 or with s(s(0)).
But it cannot. So even(s(s(s(0)))) cannot be shown.
So not even(s(s(s(0)))) can be shown.

Intended models of general logic programs

The minimal model semantics of definite clauses can be extended to condi-
tionals with negative conditions, which are also called general logic programs.
The first step, given such a general logic program P, is literally to extend Pwith
a set Δ of negations not a of atom sentences a, treating these negations as though
they were positive atoms (as in strong negation).
The second step is then to treat the extended set P∪Δ as though it were a

definite clause program, with its own unique minimal model MΔ. If the set Δ is
appropriately restricted, so that, among other things, MΔ does not include both
an atom a and its negation not a, thenMΔ is an intended model of P. We will see
later that a program P can have several such extensions Δ.

Before discussing in greater detail the conditions necessary to ensure that Δ is
appropriately restricted, consider the even/odd program:

even(0)
even(s(s(X))) ← even(X)
odd(X) ← not even(X)

Ignoring, to begin with, the definition of odd, let Δ be the set of all ground
negations that are true in the minimal model of the Horn clause program E,
i.e. let Δ be the set:

not even(s(0)), not even(s(s(s(0)))),
not even(s(s(s(s(s(0)))))), . . . ad infinitum.

Let M be the minimal model of even/odd ∪ Δ, treating Δ as a set of positive
atoms. This adds to the minimal model of E the additional positive atoms:

A4: Minimal models and negation 265

odd(s(0)), odd(s(s(s(0)))),
odd(s(s(s(s(s(0)))))), . . . ad infinitum.

Arguably,M is the unique intended model of the program even/odd. Notice that
the constraint even(X) ∧ odd(X) → false is true in M.
There exists a large class of general logic programs having a unique minimal

model that can be generated in this way. This is the class of so-called locally
stratified programs (Przymusinski, 1988). Intuitively, locally stratified pro-
grams can be layered into strata in such a way that negative conditions in higher
strata are defined in lower strata, in the way that odd is defined in terms of even.

In the next section, we will investigate the unstratified program:

bob will go ← not john will go
john will go ← not bob will go

But first, we need to identify the restrictions necessary to ensure that Δ is
appropriate, in both the stratified and unstratified cases. The most important
restriction is obviously that:

Δ is consistent with P.
i.e. If not a is in Δ then a is not true in the minimal model M of P∪Δ.
i.e. for all atoms a, the constraint a ∧ not a → false is true in M.

The only other restriction that Δ needs to satisfy is that Δ should be sufficiently
large. This condition can be understood in different ways, the simplest of which
is that:

Δ is total.
i.e. if a is not true in M, then not a is true in M,

and therefore not a is in Δ.
i.e. For all atoms a, the “constraint” a ∨ not a is true in M.

These two restrictions, consistency and totality, define the stable model seman-
tics of general logic programs (Gelfond and Lifschitz, 1988):

The minimal Herbrand model M obtained by treating P∪Δ
as a definite clause program is a stable model of P if and only if
not a is in M if and only if a is not in M.

In the stable model semantics, not a can be understood both as not a is true and
as a cannot be shown.

Examples of stable models

Let us return now to the example we started with. Call it the program B:

bob will go ← not ∃X (X will go)

266 A4: Minimal models and negation

The only ground atom that can be constructed from the vocabulary of B is the
atom bob will go. However, the language in which the sentence is expressed
might contain other constants for other individuals and objects not mentioned in
the sentence.We can ignore this slight complication, because it has no impact on
the following argument.
The problem is to determine whether there is a stable model and whether

bob will go is true or false in this model. Suppose there is such a stable model
MΔ, which is the minimal model of some extension B∪Δ of B. Now consider
whether the negative sentence not bob will go is in Δ:

If not bob will go is in Δ, then bob will go is in MΔ,
and then Δ is not consistent with the program B.
If not bob will go is not in Δ, then neither bob will go
nor not bob will go is in MΔ, and then Δ is not total.

Therefore the program B has no such stable extension Δ and therefore no stable
model. It is simply inconsistent.
In the stable model semantics, a logic program can have more than one stable

model, as in the case of the program BJ:

bob will go ← not john will go
john will go ← not bob will go

The program has one stable model in which not john will go and bob will go, and
another stable model in which not bob will go and john will go.
In cases where a program has more than one minimal model, an agent can be

either credulous or sceptical. In the stable semantics, a credulous agent may
choose to believe a sentence if and only if it is true in someminimal model. But
a sceptical agent believes a sentence if and only if it is true in all minimal
models. Of course, an agent may be credulous in some situations, but sceptical
in others.
In the last example, according to a sceptical semantics, it is impossible to say

whether or not bob will go or john will go. This is like the situation in classical
logic, where the two conditionals above would be written as a disjunction:

bob will go ∨ john will go.

Conclusions

In classical logic, a sentence C is a logical consequence of a set of sentences S if
and only if C is true in every interpretation in which S is true. However, for the

A4: Minimal models and negation 267

applications in this book, it is intended interpretations, rather than arbitrary
interpretations, that matter.
For beliefs in the form of definite clauses, these intended interpretations are

minimal models, which can be generated by instantiation and forward reason-
ing. For more general beliefs that are general logic programs, the intended
interpretations are minimal models obtained by extending the beliefs with the
negations of atomic sentences. Viewing semantics in terms of such minimal
models is in the spirit of virtually all of the logics that have been developed for
default reasoning in Artificial Intelligence. These logics include circumscription
(McCarthy, 1980), default logic (Reiter, 1980), modal non-monotonic logic
(McDermott and Doyle, 1980) and autoepistemic logic (Moore, 1985).
Thus, the argument for viewing thinking in terms of determining truth in

minimal models, rather than in terms of logical consequence, is supported by
the examples of default reasoning, arithmetic and the real world. Johan van
Benthemdiscusses some of these andmany other examples (vanBenthem, 1989).

268 A4: Minimal models and negation

A5

The resolution rule

This additional chapter shows that both forward and backward reasoning are
special cases of the resolution rule of inference. Resolution also includes
compiling two clauses, like:

into one:

you deal with the emergency appropriately ← you get help.

you get help ← you alert the driver.

you deal with the emergency appropriately ← you alert the driver.

In the propositional case, given two clauses of the form:

D →E A

A B → C

whereB andD are conjunctions of atoms including the atom true, andC andE are
disjunctions of atoms including the atom false, resolution derives the resolvent:

D ^ B ! E _ C:

The two clauses from which the resolvent is derived are called the parents of the
resolvent, and the atom A is called the atom resolved upon.
Resolution was originally defined by Robinson (1965a) for clauses that are

disjunctions represented as sets of literals, where a literal is an atom or the
negation of an atom. For example, the conditional D ∧ B→ E ∨ C, where B, C,
D and E are single atoms, is interpreted as the disjunction ¬D ∨¬B ∨ E ∨C and
is represented by the set of literals {¬D, ¬B, E, C}.
The representation of clauses as sets of literals, interpreted as disjunctions,

builds into the resolution rule several inference rules of classical logic, which

269

would otherwise have to be stated separately and explicitly. For example,
the following logical equivalences are implicit in the set representation of
clauses:

A ∨ A is equivalent to A
A ∨ B is equivalent to B ∨ A
A ∨ (B ∨ C) is equivalent to (A ∨ B) ∨ C.

In the propositional case, the resolvent of two clauses represented as sets:

fAg [F and f:Ag [G

is the clause F ∪ G.
In this book, we represent clauses as conditionals, but we treat the con-

ditions and conclusions of clauses as sets of atoms. This simplifies the
statement of the resolution rule, because it means that the atom A that is
resolved upon can occur anywhere in the conclusion of one parent and
anywhere in the conditions of the other parent. It also means that if an atom
occurs in the conditions of both parents or in the conclusions of both parents,
then the duplicate occurrences of the atom are automatically merged into
one occurrence in the resolvent. Merging duplicate atoms is also called
factoring.
Resolution is sound and refutation complete. If a set of clauses has no model,

then there exists a derivation of false using only the resolution rule of inference
(including factoring).
The refutation completeness of resolution suffices for showing logical con-

sequence in classical first-order logic: To show that a set of sentences S logically
implies a sentence C in classical logic, translate S and the negation of C into
clausal form and use resolution to derive false.
The unrestricted resolution rule is very elegant, but also very inefficient. To

improve efficiency, numerous refinements have been developed. Most of these
refinements are generalisations of forward and backward reasoning. For exam-
ple, hyper-resolution (Robinson, 1965b) is a generalisation of forward reason-
ing and SL-resolution (Kowalski and Kuehner, 1971) is a generalisation of
backward reasoning. The connection graph proof procedure (Kowalski, 1975
and chapter 8, 1979), on the other hand, performs unrestricted resolution, but
deletes links when resolutions are performed to avoid redundancies.
In the case of propositional definite clauses, forward reasoning is the special

case of resolution in which B→ C is derived from A and A ∧ B→ C. Backward
reasoning is, in effect, the special case in which D ∧ B→ false is derived from
D → A and A ∧ B → false.

270 A5: The resolution rule

Unification and factoring

In the non-propositional case, in which clauses can contain (universally quanti-
fied) variables, the resolution rule needs to be extended with unification, to
make the two atoms resolved upon identical. Given two clauses:

D → E A1

A2 B → C

such that A1 and A2 are unifiable, the resolvent is:

D0 ^ B0 ! E0 _ C0

where B0, C0, D0 and E0 are obtained by applying the most general unifier of A1

and A2 to B, C, D and E respectively.
The original resolution rule is a little more complicated than this, because it

includes additional unifications, to make two literals in the same clause identi-
cal, to factor them into one literal. Factoring is unnecessary in the case of Horn
clauses, but is necessary in some other cases.
Consider the example of the barber paradox, in which a barber, John, shaves

everyone who does not shave himself, but shaves no one who does shave
himself. Ignoring the complication that the variable standing for the shaved
person ought to be restricted to some appropriate sort (as mentioned in Chapters
A1 and 6), the example can be represented in the clausal form:

shaves(john, X) ∨ shaves(X, X)
shaves(john, X) ∧ shaves(X, X) → false

These two clauses have four resolvents (two of which are duplicates):

shaves(X, X) → shaves(X, X)
shaves(john, john) → shaves(john, john)
shaves(john, john) → shaves(john, john)
shaves(john, X) → shaves(john, X)

Nomatter howmany further resolutions are performed, it is impossible to derive
false, because every resolution step deletes two atoms, leaving two atoms
behind in the resolvent.
In cases such as these, the simple resolution rule needs to be augmented with

factoring: Given a clause of one of the two forms

D ! E _ A1 _ A2

or A1 ^ A2 ^ B ! C

A5: The resolution rule 271

such that A1 and A2 have a most general instance A, factoring derives the clause

D0 ! E0 _ A

or A ^ B0 ! C0

where B0, C0, D0 and E0 are obtained by applying the most general unifier of A1

and A2 to B, C, D and E respectively.
Applied to the barber paradox, factoring generates two additional clauses

from the two original clauses:

shaves(john, john) → false
shaves(john, john)

Resolution derives false in one step, proving that no such barber exists.

Connection graphs

The efficiency of resolution can be greatly enhanced by storing clauses, their
unifying links and their unifiers in connection graphs. These links can then be
activated later when needed, without having to search for the connections.
Reasoning is performed by activating a link – any link at all – adding the

resolvent to the graph, deleting the activated link, and adding new links between
the newly added resolvent and other clauses in the graph.
The deletion of a link may cause a parent clause to contain an unlinked atom.

When this happens, the parent clause can be deleted along with all its other
links. This deletion can sometimes have a rippling effect, leading to the deletion
of other clauses and their links. Here is an example from Kowalski (1979):

happy(U) → false

playing(X) → happy(X) working (Y) employs(X, Y)→ happy(X)

playing(bob) working(bob) employs(john, bob)

U = XU = X

X = bob Y = bob
X = john
Y = bob

The connection graph proof procedure, like resolution, is a refutation procedure.
So it succeeds, if the clause false is derived. Notice that the clause playing(bob)
∨ working(bob) is a non-Horn clause. So strict forward or backward reasoning
is not possible.

272 A5: The resolution rule

Any link in the graph can be activated. Let’s see how close we can come to
reasoning forward with breadth-first search. The obvious place to start is with
the link connected to the “fact” employs(john, bob). When the associated
resolvent is generated and the link is deleted, both parent clauses have unlinked
atoms, and therefore both parents can be deleted, along with all their other links.
Doing so, in effect, replaces the two parents by the resolvent, because the
resolvent inherits its parents’ links. However, the unifiers associated with
these inherited links are now the result of combining the unifier of the activated
link with the unifiers of the inherited links:

happy(U) → false

playing(X) → happy(X) working(bob) → happy(john)

playing(bob) working(bob)

U = X U = john

X = bob

Again we can activate any link. Reasoning forward with the disjunction this
time, choosing the link with the unifier X = bob, the resolvent clause replaces
both its parents again:

happy(U) → false

happy(bob) working(bob) working(bob) → happy(john)

U = johnU = bob

Activating the link between the two occurrences of the atom working(bob), we
obtain:

happy(U) → false

happy(bob) happy(john)

U = johnU = bob

A5: The resolution rule 273

The two remaining links can be activated in any order, and even in parallel.
Either way, the clause false is derived in two steps, and the rest of the connection
graph is empty. The happy person we are looking for is U = bob or U = john.
A recursive clause, like +(s(X), Y, s(Z))← +(X, Y, Z), can resolve with a copy

of itself, giving in this case the resolvent +(s(s(X)), Y, s(s(Z))) ← +(X, Y, Z).
Self-resolving clauses give rise to internal links within the same clause, standing
for links between two different copies of the clause. In such cases, similar rules
about deletion and inheritance of links apply. Here is a connection graph for
computing the sum of 2 + 2:

false ← +(s(s(0)), s(s(0)), U)

+(0, V, V)+(s(X), Y, s(Z)) ← +(X, Y, Z)

X = 0, Y = V, Z = V

X = s(0), Y = s(s(0)), U = s(Z)

In theory, any link, including the internal link, could be selected for activation.
However, the standard program execution strategy activates links backwards
from the goal. Applying this strategy systematically gives rise to the following
sequence of connection graphs, renaming variables in the recursive clause, to
avoid confusion:

false ← +(s(0), s(s(0)), Z)

+(0, V, V)+(s(X'), Y', s(Z')) ← +(X', Y', Z')

X' = 0, Y' = V, Z' = V

X' = 0, Y' = s(s(0)), Z = s(Z')

274 A5: The resolution rule

false ← +(0, s(s(0)), Z')

+(0, V, V)+(s(X'), Y', s(Z')) ← +(X', Y', Z')

X'= 0, Y' = V, Z' = V

V = s(s(0)), Z' = s(s(0))

false

+(0, V, V)+(s(X'), Y', s(Z')) ← +(X', Y', Z')

X'= 0, Y' = V, Z' = V

The cumulative instantiations U = s(Z), Z = s(Z0), Z0 = s(s(0)) compute the
sum U = s(s(s(s(0)))).
In examples like this, if you ignore the fact that the connection graph is just

facilitating resolution, it looks like the goal clause is being repeatedly over-
written, in the way that computers execute conventional computer programs. If
you can stretch your imagination a little further, then you might even imagine
that the unifying substitutions are like signals that are transmitted along a
network of neural connections in a brain.
This imaginative view of connection graphs, as a kind of connectionist model

of the mind, is supported by their similarity with Maes’ (1990) spreading
activation networks. As in activation networks, different levels of strength can
be associated with different initial goals, reflecting their relative importance.
Different levels of strength can also be associated with different observations,
reflecting perhaps some instinctive judgement of their significance. As in
activation networks, these activation levels can be transmitted from clause to
clause along links in the connection graph.
Such activation levels are similar to utility measures in decision theory; and,

like utility measures, they can be weighted by measures of uncertainty. In the
case of connection graphs, these weights might reflect the frequency with which
the activation of a link has contributed to successful outcomes in the past. The
resulting level of activation weighted by likelihood of leading to a useful result

A5: The resolution rule 275

can be used to select a link expected to have the best outcome in the current
situation based upon past experience.

Connection graphs as an agent’s language of thought

The connection graph implementation of resolution shows how different the
syntax of sentences in LOTcan be from the linear syntax of traditional logic and
of natural languages like English.
One of the most important characteristics of connection graphs, inherited

from resolution, is that the ordering of sentences and of conditions within
sentences doesn’t matter. Thus, for example, the two English sentences:

I get wet if I do not take an umbrella and it will rain.
I get wet if it will rain and I do not take an umbrella.

have the same logical form, and therefore represent the same belief.
A less obvious, but even more important characteristic of connection

graphs is that the names of predicates and their arguments do not matter.
The only thing that, matters is the connections, both the connections within
the graph and the connections to the real world outside the agent’s mind. For
example:

 if ##!!

##!!

Goal: if then

 if $$££

$$££

276 A5: The resolution rule

Subsumption

The connection graph proof procedure is only one among a great number of
refinements of resolution that have been developed to improve the efficiency of
automated reasoning. Another such enhancement, which is compatible with
connection graphs, is the deletion of subsumed clauses. This improves effi-
ciency, because if there exists a refutation using a subsumed clause, then there
exists an even shorter refutation using the subsuming clause. There is no need to
keep both clauses, because the subsuming clause is both more informative and
more efficient than the subsumed clause. Provided it is done carefully, deletion
of subsumed clauses does not affect soundness or completeness.
Suppose, for example, that I believe:

mary is going to the party.
mary is going to the party → X is going to the party.
I am going to the party ∨ I will stay at home.

From the first two clauses, I can derive that everyone (or everything) is going to
the party:

X is going to the party.

This subsumes the disjunction I am going to the party ∨ I will stay at home,
which therefore can be deleted.
As noted in Chapter A2, deletion of subsumed clauses is a pragmatic way of

dealing with the paradoxes of material implication without abandoning classical
logic.

Paraconsistency

The paradoxes of material implication are closely related to the property of
classical logic that an inconsistent set of sentences logically implies every
sentence. This unintuitive property of classical logic comes from interpreting
whenever in the definition of logical consequence:

A sentence C is a logical consequence of a set of sentences S
(or S logically implies C) if (and only if) C is true whenever S is true.

as material implication in the meta-language. Interpreting whenever in this way,
if S is inconsistent, then it is false that S is true in any interpretation. ThereforeC
is a logical consequence of S, and it doesn’t matter whether or not C is true in
any interpretation. However, it would be more informative to say:

A5: The resolution rule 277

Given that C is a logical consequence of S and that S is inconsistent,
it is impossible to say whether or not C is true in any interpretation.

Looked at like this, there is nothing wrong with interpreting whenever as
material implication. What’s wrong is thinking that it is informative to tell
someone that a sentence is a logical consequence of an inconsistent set of
sentences.
In fact, resolution, whether or not it is augmented with subsumption, derives

only informative consequences of a set of clauses. Consider the simplest
possible case of two clauses, p and not p. Only one application of resolution
is possible, and it derives false in one step. It doesn’t derive that the moon is
made of green cheese, or that the world is coming to an end.
However, there is a perverse sense in which resolution can be used to show

that any sentence q is a logical consequence of p and not p:

To show q is a logical consequence of p and not p,
represent not q as a set of clauses not-Q,
use resolution to refute the set of clauses {p, not p} ∪ not-Q, and
ignore the fact that none of the clauses in not-Q
participate in the refutation.

But with backward reasoning (generalised to arbitrary clauses as in SL-
resolution), even this perverse approach will not work. Backwards reasoning
from the conclusion reduces goals to subgoals using only relevant clauses. If the
inconsistent clauses are not relevant to the solution, then they will not contribute
to a proof. For example, if q is an atomic sentence, then q cannot be shown at
all by backward reasoning using the inconsistent and irrelevant clauses p and
not p.
In the same way that the paradoxes of material implication have led to

relevance logic and other non-classical logics, the fact that inconsistent sets of
sentences logically imply any sentence has led to the development of non-
classical, paraconsistent logics (Priest, 2002). As the discussion in this section
shows, these problems can be solved in classical logic, by treating them as
pragmatic problems in the spirit of Grice (1989).

Conclusions

The resolution rule is an elegant and powerful rule of inference, which includes
forward and backward reasoning as special cases. When it was first invented (or
discovered?) by its author, John Alan Robinson (1965a), it was presented as a
machine-oriented inference principle, suitable for computer implementation,

278 A5: The resolution rule

but not for human use. In my 1979 book, I argued, on the contrary, that special
cases of resolution have a natural interpretation in human-oriented terms.
These two contrary views of resolution are in fact complementary, and are

supported by dual process theories of human reasoning. Moreover, the con-
nection graph implementation of resolution is compatible with the view that the
human mind is like a machine. Its software is the clausal form of logic, and its
hardware is the resolution principle. Reasoning in connection graphs is sound,
because resolution is sound. However, despite many attempts to prove com-
pleteness (Siekmann and Wrightson, 2002), it is not known whether or not it is
complete.
Although completeness is an important theoretical property, the difficulty of

demonstrating its completeness is somewhat paradoxically an argument in its
favour. Completeness is easy to show when a proof procedure allows many
different, but essentially equivalent ways of generating the same proof. It is
more difficult to show counter-examples of when there are fewer ways of
generating a proof. As long as there are no proofs that cannot be generated,
the difficulty of demonstrating completeness suggests that the connection graph
proof procedure is efficient because it contains few redundancies.
In Chapter A2, I argued that subsumption solves the paradoxes of material

implication, and in this chapter I argued that resolution solves the problem that
an inconsistent set of sentences logically implies every sentence. In both cases,
the solution treats these as pragmatic problems, which do not affect the seman-
tics and proof procedures of classical logic.
Resolution and the connection graph proof procedure were developed as

refutation procedures for showing logical consequence in classical first-order
logic. However, I have argued in other chapters that it is truth in minimal models
rather than logical consequence that we should be aiming for.
In fact, without acknowledging it, many of the connection graphs presented

in other chapters do not conform to the official resolution rule, because they
contain links between atoms in the conclusions of conditional goals and atoms
in the conclusions of conditional beliefs. These non-conformist connection
graphs are needed for showing that conditional goals are true in minimal
models, as shown implicitly in Chapter A6.

A5: The resolution rule 279

A6

The logic of abductive logic programming

This additional chapter provides the technical support for abductive logic
programming (ALP), which is the basis of the Computational Logic used in
this book. ALP uses abduction, not only to explain observations, but to generate
plans of action.
ALP extends ordinary logic programming by combining the closed predicates

of logic programming, which are defined by clauses, with open predicates, which
are constrained directly or indirectly by integrity constraints represented in a
variant of classical logic. Integrity constraints in ALP include as special cases the
functionalities of condition–action rules, maintenance goals and constraints.
More formally, an abductive logic program <P, O, IC> consists of a logic

program P, a set of open predicates O and a set of integrity constraints IC. The
open predicates are restricted so they do not occur in the conclusions of clauses
in P. This restriction is not essential, but it simplifies the technicalities.

There are many variants of ALP, with different syntax, semantics and proof
procedures. In this book, we express integrity constraints in the form of
generalised conditionals, which are like ordinary conditionals, but which may
have existential quantifiers and disjunctions in their conclusions. The inclusion
of disjunctions in the conclusions of integrity constraints means that, in the
propositional case, they have the full power of classical logic.1 The inclusion of
existential quantifiers in conclusions means that, in the non-propositional case,
the use of Skolem functions to eliminate existential quantifiers, as discussed in
Chapter A1, is reduced in comparison with ordinary causal form.
In ALP, we are concerned with the problem of solving a goal clauseG, which

may simply be an atomic sentence in the case of explaining an observation, or

1 In the propositional case, they have the expressive power of range-restricted clauses, in which
every universally quantified variable occurring in the conclusion of an integrity constraint also
occurs in the conditions of the constraint.

280

may be a conjunction of conditions in the case of planning. In both cases, a
solution of G is a set Δ of ground instances of the open predicates O such that:

G holds with respect to the program P∪Δ and
P∪Δ satisfies IC.

The notions of holding and satisfying are deliberately vague (or abstract). This is
becausemany different notions of holding and satisfying have been explored, and
there is still no general agreement about which notions are most appropriate.
Several competing views of the semantics of integrity constraints, associated

with different proof procedures for checking database integrity, were investi-
gated intensively in the field of deductive databases in the 1980s. To begin with,
the two main views were the consistency view and the theoremhood view. In the
consistency view, an integrity constraint is satisfied if it is consistent with the
database. In the theoremhood view, it is satisfied if it is a theorem, true in all
models of the database. Reiter (1988) also proposed an epistemic view, according
to which integrity constraints are true statements about what the database knows.
Reiter (1988) also showed that in many cases these three views are equivalent

for databases with the closed-world assumption. For relational databases, the
three views are also equivalent to the standard view that a database satisfies an
integrity constraint if the integrity constraint is true in the database regarded as a
Herbrand interpretation.
However, there are also many cases in which these different views result in

different judgements of integrity satisfaction. The simplest example is the
program consisting of the single Horn clause C← C and the integrity constraint
C → false. According to the consistency and epistemic views, the integrity
constraint is satisfied; but according to the standard theoremhood view, it is not.
The different views can be understood as different ways of interpreting

negation as failure. The consistency and epistemic views understand it as
infinite failure, and the theoremhood view interprets it as finite failure. For
Horn clause programs, the consistency and epistemic views are equivalent to
the view that an integrity constraint is satisfied if and only if it is true in the
unique minimal model.
Having been involved in the debates about the semantics of integrity con-

straints, developed proof procedures for both integrity checking (Sadri and
Kowalski, 1988) and ALP (Fung and Kowalski, 1997; Kowalski et al., 1998)
and argued against conventional model-theoretic semantics (Kowalski, 1995), I
am now convinced that semantics in general, and the semantics of ALP in
particular, is best understood in terms of truth in minimal models:

A set Δ of ground instances of the open predicates O is a solution of G
if and only if {G}∪ IC is true in some minimal model of P∪Δ.

A6: The logic of abductive logic programming 281

The notion of minimal model is clear-cut in the case in which P∪Δ is a Horn
clause program. Although this case may seem very restricted, it is the basis for
all other cases and extensions. The extension to the case where P and IC are not
ground is quite straightforward, involving mainly just performing instantiation
or unification. The extension to the case with negation is similar to the extension
from minimal models of Horn clause programs to stable models of logic
programs with negation. We will discuss the treatment of negation and other
extensions later in the chapter.

A system of inference rules for ground Horn ALP

A ground Horn abductive logic program <P, O, IC> consists of a program P,
which is a ground (variable-free) Horn clause program, a set of open predicates
O and integrity constraints IC, which are ground conditionals of the form:

A ^ B ! C

where A is an open atom (i.e. an atom with an open predicate inO), and B and C
are conjunctions of atoms.2 Integrity constraints of this form are like the event–
condition–action rules of active databases (Widom and Ceri, 1996). The atom A
is like an event that is not defined by the database.
The problem is to solve a ground Horn goal clauseG0, which is a conjunction

of variable-free atoms.
The following definition of abductive derivation is adapted from the IFF

proof procedure for ALP (Fung and Kowalski, 1997). Whereas the IFF proof
procedure uses logic programs expressed in the biconditional, if and only if
form, the abductive proof procedure of this chapter employs similar inference
rules for logic programs in conditional form. The two proof procedures differ
mainly in their semantics. The IFF proof procedure employs the theoremhood
view of integrity satisfaction, whereas the abductive proof procedure of this
chapter employs the minimal model view.
The proof procedure uses forward and backward reasoning in an attempt to

generate a solution Δ of G0 by generating an abductive derivation G0 , G1 , . . . ,
GN such that GN contains the set Δ but no other goals that need to be solved.
Each Gi+1 is obtained from the previous Gi by one of the following inference
rules:

2 Note that the atom A can occur anywhere in the conditions of the constraint. Note also that if
there is no B, then this is equivalent to B being true. If there is no C, then this is equivalent to
C being false. We will discuss the case where C is a disjunction of conjunctions later.

282 A6: The logic of abductive logic programming

F1: Forward reasoning with a selected open atom A in Gi and an integrity
constraint in IC. Suppose the integrity constraint has the form A ∧ B→

C and Gi has the form A ∧ G. Then Gi+1 is (B → C) ∧ A ∧ G.

(Notice that this introduces a conditional into the goal clause. For this
reason, we call the resulting goal clauses generalised goal clauses.)

F2: Forward reasoning can also be used with a selected open atom A and a
conditional in Gi. Suppose Gi has the form (A ∧ B → C) ∧ A ∧ G.

Then Gi+1 is (B → C) ∧ A ∧ G.
B1: Backward reasoning with a selected atom C in Gi and a clause in P.

Suppose the clause has the form C ← D and Gi has the form C ∧ G.

Then Gi+1 is D ∧ G.
B2: Backward reasoning with a selected atom C in a conditional in Gi

having the form (C ∧ B → H) ∧ G. Suppose C ← D1 � � � C ← Dm

are all the clauses in P having conclusion C.

Then Gi+1 is (D1 ∧ B → H) ∧ � � � ∧ (Dm ∧ B → H) ∧ G.
Fact: Factoring between two copies of an open atom A in Gi.

If Gi has the form A ∧ A ∧ G, then Gi+1 is A ∧ G.

(Any previous applications of F1 and F2 to any occurrence of A are
deemed to have been done to the resulting single copy of A.)

S: Logical simplification: Replace true → C by C.
Replace true ∧ C by C.
Replace false ∧ C by false.

An abductive derivation G0, G1, . . . , GN using these inference rules is a
successfully terminating derivation of a set of open atoms Δ if and only if:

GN is not false,
GN has the form (B1→ C1) ∧ � � � ∧ (Bm→ Cm) ∧ A1 ∧ � � � ∧ An,m ≥ 0, n ≥ 0,
where each Ai is an open atom,
no further applications of the inference rules can be performed on GN

no matter which atom is selected, and Δ = {A1, . . . , An}.

The residual conditionals Bi → Ci in a successfully terminating derivation are
conditionals introduced by F1 but whose remaining conditions Bi are not true in
the minimal model of P∪Δ. The conditions Bi of these residuals may consist
solely of open atoms not in Δ; or they may contain closed atoms C that are not
the conclusions of any clauses in P. In the latter case, it is as though there were a
clause of the formC← false inP (as a result of which Bi is false, and the residual
can be simplified to true and be ignored).
Note that if Gi has the form C ∧ G, where C is a closed atom that is the

conclusion of no clause in P, thenGi cannot be part of a successfully terminating

A6: The logic of abductive logic programming 283

derivation. It is as though there were a clause of the form C ← false in P (as a
result of which C is false, and Gi can be simplified to false).

Together the inference rules F1, F2, and B2 check whether the conditions of an
integrity constraint hold true in theminimalmodel ofP∪Δ; and if they do, logical
simplification adds the conclusion of the integrity constraint to the goals. The
inference rule B1 uses ordinary backward reasoning to solve both the initial goal
and any new goals introduced from the conclusions of integrity constraints. In
effect, the factoring rule Fact treats the open predicates added to Δ as though they
were facts added to P. The inference rules F1, F2, B1, B2, Fact and S are sound.

Theorem: Given a ground Horn abductive logic program <P, O, IC> and
ground Horn goal clause G0:

If there exists a successfully terminating derivation of Δ,
then {G0} ∪ IC is true in the minimal model of P∪Δ.

The inference rules are not complete, because they do not recognise infinite failure.

Infinite success and incompleteness

Consider the abductive logic program < {C← C}, {A}, {A ∧ C→ false}> and
the goal A. The inference rules generate the non-terminating derivation:

G0 A given
G1 (C → false) ∧ A by F1

G2 (C → false) ∧ A by B2

ad infinitum . . . by B2

This infinite derivation is the only derivation possible. However, Δ = {A} is a
solution ofG0 because both the integrity constraint and the initial goal are true in
the minimal model of P∪ {A}. The integrity constraint A ∧ C → false is true,
because C is false.
It is possible to capture this kind of non-terminating “successful” derivation

by broadening the notion of successful derivation:

An abductive derivation G0, G1, . . . , GN is a successful derivation of a set of
open atoms Δ if and only if:

GN is not false,
GN has the form (B1→ C1) ∧ � � � ∧ (Bm→ Cm) ∧ A1 ∧ � � � ∧ An,m ≥ 0, n ≥ 0,
where each Ai is an open atom,
no further applications of the inference rules can be performed on the Ai,
Δ = {A1, . . . , An} and
the conditions Bi of the residues are not true
in the minimal model of P∪Δ.

284 A6: The logic of abductive logic programming

Implementing the requirement that the conditions of the residues are not true
in P∪Δ can be done by trying to show that the conditions are true and failing.
However, as the example above shows, this necessitates recognising infinite
failure. This is impossible in general, but can be solved effectively in many
cases (including the ground case) by the use of tabling (Sagonas et al., 1994).
With the new definition, the inference rules are complete in the following sense.

Theorem: Given a ground Horn abductive logic program <P, O, IC>, a ground
Horn goal clause G0 and a set of ground open atoms Δ:

If {G0} ∪ IC is true in the minimal model of P∪Δ,
then there exists a successful derivation of Δ0, such that Δ0 ⊆ Δ.

Proof procedures for ground Horn ALP

The inference rules F1, F2, B1, B2, Fact and S determine the form of abductive
derivations. To obtain a proof procedure, it is necessary to specify how the search
space of derivations is generated and explored. It is important to note that only B1
generates alternative derivations, corresponding to alternative ways of reasoning
backwards from a selected atomic goalC inGi using alternative clauses C←D in
P. All the other inference rules simply transform one (generalised) goal clause Gi

into another. Moreover, the order in which the inference rules are applied doesn’t
matter, because they all have to be applied (except for the alternative ways of
applying B1) in order to generate a successful derivation. However, for efficiency,
the simplification rules S andFact should be applied as soon as they are applicable.
The search space of all possible derivations has the form of an or-tree

(or search tree):

R The initial goal G0 is the root of the tree.

S/Fact Given any node Gi in the search tree,
if a rule in S or Fact can be applied,
then the node has a single successor Gi+1

obtained by applying one such rule.

Select Otherwise, some atom C either in the position C ∧ G
or in the position (C ∧ B → H) ∧ G in Gi

is selected for application of the inference rules.

F If the selected atomC is an open atom in the positionC∧G, and F1 can
be applied with an integrity constraint in IC or F2 can be applied with
some conditional in Gi, then one such application is performed to
generate Gi+1. In both cases, this application of F1 or F2 should not
have been performed before.

A6: The logic of abductive logic programming 285

B1 If the selected atomC is a closed atom in the position C ∧G, then there
are as many successor nodesGi+1 as there are ways of applying B1 with
some clause in P with conclusion C.

B2 If the selected atom C is in the position (C ∧ B → H) ∧ G, then B2 is
used to generate Gi+1.

It is important to note that there are as many such search trees as there are ways
of applying a simplification or factoring rule in step S/Fact, of applying forward
reasoning in step F, and of selecting an atom in step Select. It is necessary to
explore only one such search tree in an attempt to generate a successful
derivation. This makes it worthwhile to put some effort into deciding which
search space to generate, to make the resulting search as efficient as possible.
Any search strategy, including depth-first, breadth-first, best-first, serial or
parallel, can be used to explore the selected search space. In particular, the
search tree could be embedded in a connection graph, and the best-first search
strategy sketched in Chapter 4 could be used to guide the search.

Integrity constraints with disjunctive conclusions

Several of the examples in the book involve integrity constraints with disjunc-
tive conclusions:

C ! D1 _ � � � _Dm

To deal with such integrity constraints, it suffices to add the additional inference
rule:

Splitting: If Gi has the form (D1 ∨ . . . ∨ Dm) ∧ G, then there are as many
successor nodes Gi+1 of the form Di ∧ G as there are disjuncts Di.

Splitting needs to be performed when the conditions of an integrity constraint
have been reduced to true, and the disjunctive conclusion has been conjoined to
the subgoals in Gi.
In the propositional case, integrity constraints with disjunctive conclusions

have the expressive power of the clausal form of classical logic. The splitting
rule, together with the forward reasoning rules F1 and F2, turns the proof
procedure into a model generator for clausal logic. In fact, the proof procedure
for the case<P,O, IC>, where P is empty andO is the set of all predicates in the
language, is equivalent to the SATCHMO (Manthey and Bry, 1988) model
generator (and proof procedure) for the clausal form of classical logic.
We will see how splitting can be used to implement the totality restriction of

the stable model semantics of negation as failure, in the next section.

286 A6: The logic of abductive logic programming

Negation through abduction with contraries
and constraints

The minimal model semantics of ALP blends smoothly with the stable model
semantics of logic programs with negation. In both cases, the semantics is
defined in terms of the minimal model of a Horn clause program P extended
with a set Δ. In the case of abduction, Δ consists of open ground atoms; and in
the case of logic programs with negation, Δ consists of negations of ground
atoms treated as though they were positive atoms.
The stable model semantics can be interpreted as a special case of ALP, by

treating all negations of atoms not a as positive, open atoms, say non-a, and by
using integrity constraints to express that a and non-a are contraries.3 The most
important integrity constraint needed for this is the consistency constraint:

non-a ^ a ! false

We also need to ensure that Δ is sufficiently large. To capture the stable model
semantics, we need the totality constraint:

true ! non-a _ a

With this representation, for every logic program with negation P, there is a
corresponding abductive logic program <P0, O, IC>, where O is the set of
positive contraries of the negations of atoms in P, P0 is the Horn clause program
obtained from P by replacing negations of atoms with their positive contraries in
O, and IC is the set of consistency and totality constraints.
With this correspondence the stable models of P coincide with the minimal

models of P0 ∪Δ, where Δ is a solution of the initial goal true (Eshghi and
Kowalski, 1989). In fact, the very definition of stable model coincides with the
definition of abductive solution in this special case.
However, there is a problem with the correspondence: It requires the satisfaction

of all the totality constraints whether they are relevant to the initial goal G0 or not.
We will investigate this problem and discuss its solution in the following sections.

The case for ignoring the totality constraints

Consider the program from Chapter A4:

P: bob will go ← not john will go.
john will go ← not bob will go.

3 Treating negations as positive contraries makes it easier to compare the treatment of negation in
ALP with the treatment of negation in the stable model semantics. However, it is also possible to
treat negations directly as open formulas, as in the IFF proof procedure.

A6: The logic of abductive logic programming 287

To reformulate the program in ALP terms, re-express the negative conditions as
positive open predicates, say in the form:

P0: bob will go ← john stays away.
john will go ← bob stays away.

O: {john stays away, bob stays away}
IC: bob will go ∧ bob stays away → false.

john will go ∧ john stays away → false.

Ignore the totality constraints for now, and consider the initial goalG0 = bob will
go. The proof procedure generates only one successfully terminating derivation
with solution Δ = {john stays away} as follows:

G0 bob will go
G1 john stays away
G2 (john will go → false) ∧ john stays away
G3 (bob stays away → false) ∧ john stays away

Similarly, the proof procedure generates the solution Δ= {bob stays away} for
the initial goalG0 = john will go. The results are the same as those obtained with
the stable model semantics, but without the totality constraints.

The case for the totality constraints

The following example shows that we need the totality constraints, or some-
thing like them. Consider the program consisting of the clauses:

P: john can fly ← john is a bird ∧ not(john is abnormal)

john is a bird

Under the closed-world assumption and the stable model semantics, since it
cannot be shown that john is abnormal, it follows that not(john is abnormal)
and therefore that john can fly. But it cannot be shown that not(john can fly).
But without the totality constraints it is possible to show not(john can fly) re-

expressed as a positive predicate john is flightless, using the corresponding
abductive logic program <P0, O, IC>, where:

P0 john can fly ← john is a bird ∧ john is normal
john is a bird

O {john is flightless, john is normal}
IC: john is flightless ∧ john can fly → false.

john is normal ∧ john is abnormal → false.

According to the semantics of ALPwithout totality constraints, john is flightless
has the undesirable solution Δ = {john is flightless}. This same solution is also
generated by the abductive proof procedure:

288 A6: The logic of abductive logic programming

G0 john is flightless
G1 (john can fly → false) ∧ john is flightless
G2 (john is a bird ∧ john is normal → false) ∧ john is flightless
G3 (john is normal → false) ∧ john is flightless

It seems that we need the totality constraint (or something like it), after all.4

With the totality constraint:

true → john is normal ∨ john is abnormal

the undesired solution disappears, because neither john is normal nor john is
abnormal is true in the minimal model of P0 ∪Δ, where Δ = {john is flightless}.
Here is what the proof procedure (with one particular selection strategy)

does with the same problem augmented with the totality constraint above (ignoring
the other totality constraint, to avoid clutter). The first three steps of the derivation
are the same. However, the initial goal can be regarded as containing the disjunctive
conclusion of the totality constraint, because the condition of the constraint is true:

G0 (john is normal ∨ john is abnormal) ∧ john is flightless
G1 (john is normal ∨ john is abnormal) ∧

(john can fly → false) ∧ john is flightless
G2 (john is normal ∨ john is abnormal) ∧

(john is a bird ∧ john is normal → false) ∧ john is flightless
G3 (john is normal ∨ john is abnormal) ∧

(john is normal → false) ∧ john is flightless
G4 john is normal ∧ (john is normal → false) ∧ john is flightless
G5 john is normal ∧ john is flightless ∧ false
G6 false
G4

0 john is abnormal ∧ (john is normal → false) ∧ john is flightless

The generalised goal clause G3 has two successor nodes G4 and G4
0. The

successor node G4 leads to a failing derivation of false. The successor node G4
0

terminates unsuccessfully, because john is abnormal is not an open atom and no
inference rules can be applied toG4

0. So with the totality constraint, the undesired
solution disappears, both in the semantics and in the proof procedure.

An alternative to the totality constraints

Unfortunately, the totality constraints are computationally very expensive. They
require the global consideration of a totality constraint for every ground atom in the

4 This is also a counter-example to replacing the totality requirement of the stable model
semantics by the requirement that P∪Δ or P0 ∪Δ be maximally consistent.

A6: The logic of abductive logic programming 289

language, whether the ground atom is relevant to the goal or not. This is bad
enough in the ground case; but in the case with variables, it is prohibitively
expensive.
An alternative to checking all the totality constraints is to check only those

totality constraints that are locally relevant to the problem at hand. In addition
to avoiding the computational problems of the global constraints, the local
alternative has other merits. Among its other properties, the alternative is incon-
sistency tolerant, deals with the problem of preventative maintenance, and has
a nice interpretation in terms of arguments for and against the initial goal.
The effect of restricting the totality constraints to those that are locally relevant
can be obtained by adding aminor variant of the negation rewriting rule of the IFF
proof procedure, together with an additional simplification rule:

Neg: If Gi has the form (non-C ∧ B → H) ∧ G,
then Gi+1 is (B → H ∨ C) ∧ G.
Replace non-C ∧ C by false
Replace false ∨ C by C.

We assume that the set of integrity constraints IC is a set of clauses possibly
with disjunctive conclusions, but without negation. Therefore, negation rewrit-
ing deals only with negation introduced from the conditions of logic programs
by backward reasoning using B2. But if a negation non-C is introduced by B2

into the conditions of an integrity constraint representing a maintenance goal,
then Neg makes it possible to satisfy the maintenance goal by making C true,
thereby preventing the need to achieve the conclusion of the maintenance
goal.
To see how negation rewriting compares with the totality constraints, recon-

sider the example of the last section G0 = john is flightless using the same
abductive logic program:

P0 john can fly ← john is a bird ∧ john is normal
john is a bird

O { john is flightless, john is normal}
IC: john is flightless ∧ john can fly → false.

john is normal ∧ john is abnormal → false.

The first three steps are the same as they were before without the totality
constraint:

G0 john is flightless
G1 (john can fly → false) ∧ john is flightless
G2 (john is a bird ∧ john is normal → false) ∧ john is flightless
G3 (john is normal → false) ∧ john is flightless

290 A6: The logic of abductive logic programming

Whereas before, without totality, the derivation terminated successfully with
G3, now negation rewriting applies, and the derivation terminates unsuccess-
fully with G4:

G4 john is abnormal ∧ john is flightless

The derivation terminates unsuccessfully, for the same reason that G4
0 failed

when we used the totality constraint before, because the subgoal john
is abnormal is not an open atom, and no further inference rules can be
applied.
Thus negation rewriting eliminates the same undesired solution eliminated

by the totality constraint before, but now by means of a local inference rule,
which applies only when it is relevant.
Before we discuss the semantics of the proof procedure with negation rewrit-

ing, reconsider the goal G0 = bob will go using the abductive logic program:

P0: bob will go ← john stays away.
john will go ← bob stays away.

O: { john stays away, bob stays away}
IC: bob will go ∧ bob stays away → false.

john will go ∧ john stays away → false.

The example is significant both because the proof procedure obtains the same
results as the stable model semantics, and because these results are different
from those of the IFF proof procedure, on which the abductive proof procedure
is based.
The first three steps are the same as they were without the totality constraint:

G0 bob will go

G1 john stays away

G2 (john will go → false) ∧ john stays away

G3 (bob stays away → false) ∧ john stays away

Before the derivation terminated successfully with G3. Now negation rewriting
applies, and the derivation terminates successfully with G6:

G4 bob will go ∧ john stays away
G5 john stays away ∧ john stays away
G6 john stays away

The derivation terminates, because the only inference rule, namely F1, that can
be applied to john stays away has already been applied to the earlier copy of
john stays away and is treated as having been applied to the new single copy in
accordance with the definition of Fact.

A6: The logic of abductive logic programming 291

Preventative maintenance

The combination of Neg and Splitting makes it possible to satisfy maintenance
goals by preventing the need to achieve their conclusions. For example, if you
have an exam coming up and you fail the exam then you need to retake the
exam later. If you don’t like the idea of retaking the exam, you can reason as
follows:

P: you fail the exam ← you do not study.
O: {you have an exam, you study, you do not study, you retake the exam}
IC: you have an exam ∧ you fail the exam → you retake the exam.

you study ∧ you do not study → false.

G0 you have an exam
G2 you have an exam∧ (you do not study→ you retake the exam)
G3 you have an exam ∧ (you study ∨ you retake the exam)
G4 you have an exam ∧ you study
G4

0 you have an exam ∧ you retake the exam

So the choice is up to you. Either you study or you retake the exam.

An argumentation-theoretic interpretation

An abductive derivation G0, G1, . . . , GN using Neg for logic programs P with
negation, but without other open predicates and other integrity constraints, can
be viewed as constructing an argument to support and defend the claim G0:

The inference rule B1 reduces the initial goal, and all other goals needed to
support it, to subgoals, and ultimately to open subgoals of the form non-a.
If the derivation is successful then the set of all these open subgoals is the
set Δ.
When an open atom non-a is generated by B1, to be added to Δ, the

inference rule F1 is used with the consistency constraint to derive a→ false,
in an attempt to attack the argument being constructed by B1 by undermining
non-a. However, no attempt is made to undermine non-a if non-a already
belongs to Δ. Instead, Fact is used to merge the two copies of non-a into a
single copy, and to avoid attacking and defending non-a redundantly.
The inference rule B2 reduces a in a → false to alternative arguments

attacking non-a. Each such attacking argument is ultimately reduced to a
conjunction of open subgoals of the form non-b.

292 A6: The logic of abductive logic programming

For each such attacking argument, reduced to open atoms, the proof
procedure attempts to undermine one such open atom non-b and defeat the
attack. This is done by using the inference rules Neg and Splitting, to
generate a counter-attack, by showing b. However, no attempt is made to
counter-attack non-b if non-b belongs to Δ. Instead, F2 is used to eliminate
non-b from the attack. This also ensures that Δ does not attack itself.

In a successful derivation, this dialectic process of support, attack and counter-
attack continues until every attack against the open atoms in Δ has been
considered and counter-attacked, and all the goals and subgoals needed for
this purpose have been reduced to open atoms in Δ.

An argumentation-theoretic semantics

This view of abductive derivations in terms of arguments and counter-arguments
can be given an argumentation-theoretic semantics.Moreover, it suggests that the
stable model semantics itself can also be understood in argumentation terms:
given an abductive logic program <P0, O, IC> corresponding to a normal logic
program P, the stable model semantics can be understood as sanctioning a set Δ
of open atoms as a solution of a goal G0 if and only if:

P0 ∪Δ supports an argument for G0.
No argument supported by P0 ∪Δ attacks Δ.
For every non-b not in Δ,
P0 ∪Δ supports an argument that attacks non-b.

In the stable model semantics, argumentation is all-out warfare: for Δ to be
stable, every non-b has to take a side, either with or against Δ. If non-b is not
with Δ, then Δ attacks non-b.
With abductive derivations, Δ is an admissible solution of G0, if and only if:

P0 ∪Δ supports an argument for G0.
No argument supported by P0 ∪Δ attacks Δ.
For every argument supported by P0 ∪Δ0 that attacks Δ,
P0 ∪Δ supports an argument that attacks Δ0.

In the admissibility semantics, argumentation is merely self-defence.
The inference rules F1, F2, B1, B2, Fact, S and Neg are sound:

Theorem: Given an abductive logic program <P0, O, IC> corresponding to a
ground logic program P with negation, but without other open predicates and
other integrity constraints, and given a goal clause G0:

A6: The logic of abductive logic programming 293

If there is a successfully terminating derivation of Δ,
then Δ is an admissible solution of G0.

As in the case of ground Horn ALP, to obtain completeness, the definition of
successful derivation needs to be extended to the possibly non-terminating case.
A discussion of these and related issues can be found in Dung et al. (2006) in the
context of proof procedures for abstract argumentation.

Extensions of the abductive proof procedure

The most important extension is, of course, to the case of non-ground abductive
logic programs. In the case of the IFF proof procedure, on which the abductive
proof procedure is based, this extension involves a number of additional
inference rules, for dealing with substitutions represented by means of equa-
tions. However, in the case of the abductive derivations of this chapter, the
extension to the non-ground case requires mainly just adding unification for
forward reasoning, backward reasoning and factoring. It also requires the range-
restriction on variables, which is not too difficult to live with in practice.5

Unfortunately, there is not sufficient space to deal with this extension and the
issues it raises in this book.
Four other extensions are needed to deal with the topics in this book:

We need to generalise forward reasoning, so that the atom A in Gi used for
forward reasoning can be a closed atom. This allows the consequences of
hypothetical actions and explanations to be considered without the need to
reduce them to open atoms.
We need to extend clauses/beliefs to include conditionals in the conditions

of conditionals; for example, to represent the wood louse designer’s beliefs
in Chapter 9.
We need to extend forward reasoning, to reason forwards using beliefs,

and not only using integrity constraints. This involves relaxing the restriction
that every integrity constraint contains an atom with an open predicate.
We need to integrate the abductive and the connection graph proof

procedures.

The first extension is trivial. The restriction that A be an open atom was imposed
for simplicity. The restriction can be removed without further ado.

5 With a minor modification of this restriction, integrity constraints can contain existentially
quantified variables in their conclusions, and these existential quantifiers may be left implicit.

294 A6: The logic of abductive logic programming

The second extension is also very easy. We already have conditionals in
generalised goal clauses introduced by forward reasoning with integrity con-
straints. They could just as easily have been introduced by backward reasoning
with clauses.
The third extension requires a little more work. Integrity checking methods

that reason forwards with clauses were developed for deductive databases in the
1980s (Sadri and Kowalski, 1988). These could be integrated with the abductive
proof procedure presented in this chapter. However, it is interesting to note
that many practical systems in computing restrict rules to the form of event–
condition–action rules, which are obtained in effect by reasoning in advance.
The fourth extension is not very difficult in theory, because forward and

backward reasoning are special cases of resolution, and the connection graph
proof procedure is just a vehicle for implementing resolution more efficiently.
However, as remarked at the end of Chapter A5, the connection graph proof
procedure was developed as a refutation procedure to show logical conse-
quence. To adapt it to the generation of minimal models in ALP, conclusions
of conditional goals need to be linked to the conclusions of conditional beliefs.
Note that the combination of abduction with open predicates and default

reasoning with negative predicates requires no extension at all, but simply the
inclusion of both kinds of predicates, their associated integrity constraints, and
negation rewriting in the same abductive logic program.

Conclusions

This chapter has presented the technical support for the main reasoning tech-
niques studied in this book. However, there remain a number of extensions
needed for a comprehensive framework. Many of these extensions are straight-
forward, because all of them have been developed as individual components or
in combination with other components in other frameworks. Their harmonious
integration into a single encompassing framework is a topic for further research.
This chapter also introduced an argumentation semantics and proof proce-

dure for abductive logic programming. The semantics and proof procedure
build upon recent advances in logic-based argumentation in AI. One of the
most important achievements of this argumentation-based approach is the
demonstration that almost all of the original logic-based formalisms developed
for default reasoning in AI can be understood uniformly in argumentation terms
(Bondarenko et al., 1997). This approach has been especially influential in the
field of AI and law (Prakken and Sartor, 1996). A recent survey can be found in
Rahwan and Simari (2009).

A6: The logic of abductive logic programming 295

References

Allen, L. E. and Saxon, C. S. 1984. Computer aided normalizing and unpacking: some
interesting machine-processable transformation of legal rules. In Computing Power
and Legal Reasoning, C. Walter (ed.). St. Paul, MN: West Publishing Company;
495–572.

Almor, A. and Sloman, S. 2000. Reasoning versus text processing in theWason selection
task: a non-deontic perspective on perspective effects.Memory & Cognition 28(6):
1060–70.

Anderson, A. R. and Belnap, N. 1975. Entailment: The logic of relevance and necessity,
Vol. I. Princeton, NJ: Princeton University Press.

Anderson, J. R. and Lebiere, C. 1998. The Atomic Components of Thought. Mahwah, NJ:
Erlbaum.

d’Avila Garcez, A. S., Broda, K. and Gabbay, D.M. 2001. Symbolic knowledge extrac-
tion from trained neural networks: a sound approach. Artificial Intelligence
125(1–2): 155–20.

Bader, S., Hitzler, P. and Hölldobler, S. 2006. The integration of connectionism and first-
order knowledge representation and reasoning as a challenge for artificial intelli-
gence. Information 9(1).

Baron, J. 2008. Thinking and Deciding, 4th edn. Cambridge: Cambridge University
Press.

van Benthem, J. 1989. Semantic parallels in natural language and computation. In Logic
Colloquium 1981, H.-D. Ebbinghaus (ed.). Amsterdam: Elsevier Science
Publishers; 331–75.

Bertossi, L. and Chomicki, J. 2003. Query answering in inconsistent databases. In Logics
for Emerging Applications of Databases, J. Chomicki, G. Saake and R. van der
Meyden (eds). New York: Springer; 43–83.

Bondarenko, A., Dung, P.M., Kowalski, R. and Toni, F. 1997. An abstract
argumentation-theoretic approach to default reasoning. Journal of Artificial
Intelligence 93(1–2): 63–101.

Brooks, R. A. 1991. Intelligence without reason. MIT AI Lab Memo l293, April l99l.
Reprinted in Proceedings of the l2th International Joint Conference on Artificial
Intelligence, Sydney, Australia, l–21.

Brown, G. and Yule, G. 1983. Discourse Analysis. Cambridge: Cambridge University
Press.

296

Bundy, A., Byrd, L., Luger, G., Mellish, C. and Palmer, M. 1979. Solving mechanics
problems using meta-level inference. Proceedings of the 6th International Joint
Conference on Artificial Intelligence.

Byrne, R.M. J. 1989. Suppressing valid inferences with conditionals. Cognition 31:
61–83.

Carruthers, P. 2004. Practical reasoning in a modular mind. Mind & Language 19(3):
259–78.

Checkland, P. 2000. Soft systems methodology: a thirty year retrospective. Systems
Research and Behavioral Science Systems Research 17: S11–58.

Cheng, P.W. and Holyoak, K. J. 1985. Pragmatic reasoning schemas. Cognitive
Psychology 17: 391–416.

Cheng, P. D. and Juang J. Y. 1987. A parallel resolution procedure based on connection
graph. Sixth National Conference on Artificial Intelligence.

Chisholm, R. 1963. Contrary-to-duty imperatives and deontic logic. Analysis 24: 33–6.
Clark, K. L. 1978. Negation by failure. In Logic and Databases, H. Gallaire and

J. Minker (eds). New York: Plenum Press; 293–322.
Clark, K. L. and Tärnlund, S.-A. 1978. A first-order theory of data and programs. In

Proceedings of the 1FIP Congress 77: 939–44.
Colmerauer, A. and Roussel, P. 1992. The birth of Prolog. The Second ACM SIGPLAN

Conference on History of Programming Languages, 37–52.
Costantini, S. 2002. Meta-reasoning: a survey. In Computational Logic: Logic

Programming and Beyond, Vol. 2, A. C. Kakas and F. Sadri (eds). New York:
Springer; 253–88.

Cosmides, L. 1985. Deduction or Darwinian algorithms: an explanation of the “elusive”
content effect on the Wason selection task. PhD thesis, Harvard University.

Cosmides, L. 1989. The logic of social exchange: has natural selection shaped how
humans reason? Studies with the Wason selection task. Cognition 31: 187–276.

Dávila, J. and Uzcátegui, M. 2005. Agents that learn to behave in multi-agent simulations.
Proceedings of Fifth IASTED International Conference on Modelling, Simulation
and Optimization (MSO’2005); 51–5. See also http://galatea.sourceforge.net.

Davis, M. 1980. The mathematics of non-monotonic reasoning. Journal of Artificial
Intelligence 13: 73–80.

Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory.
Journal of the ACM 7(3): 201–15.

Dennis, L. A., Farwer, B., Bordini, R. H., Fisher, M. and Wooldridge, M.A. 2008.
Common Semantic Basis for BDI Languages, LICS 4908. New York: Springer;
124–39.

De Raedt, L., Frasconi, P., Kersting, K. and Muggleton, S. (eds) 2008. Probabilistic
Inductive Logic Programming. New York: Springer.

Dung, P.M. 1991. Negation as hypothesis: an abductive foundation for logic program-
ming. Proceedings of the 8th International Conference on Logic Programming.
Cambridge, MA: MIT Press.

Dung, P.M., Kowalski, R. and Toni, F. 2006. Dialectic proof procedures for
assumption-based, admissible argumentation. Journal of Artificial Intelligence
170(2): 114–59.

van Emden, M. and Kowalski, R. 1976. The semantics of predicate logic as a program-
ming language. JACM 23(4): 733–42.

References 297

Eshghi, K. and Kowalski, R. 1989. Abduction compared with negation by failure. In
Sixth International Conference on Logic Programming, G. Levi and M. Martelli
(eds). Cambridge, MA: MIT Press; 234–54.

Feferman, S. 1962. Transfinite recursive progressions of axiomatic theories. Journal of
Symbolic Logic 27: 259–316.

Fodor, J. 1975. The Language of Thought. Cambridge, MA: Harvard University Press.
Fung, T. H. and Kowalski, R. 1997. The IFF proof procedure for abductive logic

programming. Journal of Logic Programming.
Gardner, H. 1983. Frames of Mind: The Theory of Multiple Intelligences. New York:

Basic Books.
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

Proceedings of the Fifth International Conference on Logic Programming (ICLP);
1070–80.

Gillies, D. 1996. Artificial Intelligence and Scientific Method. Oxford: Oxford University
Press.

Gödel, K. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I. Monatshefte für Mathematik und Physik 38: 173–98.

Gödel, K. 1951. Some basic theorems on the foundations of mathematics and their
implications. In Collected works / Kurt Gödel, Vol. III, S. Feferman (ed.) (1995).
Oxford: Oxford University Press; 304–23.

Green, C. 1969. Application of theorem proving to problem solving. Proceedings of the
1st International Joint Conference on Artificial Intelligence. San Francisco:
Morgan Kaufmann; 219–39.

Grice, H. P. 1989. Studies in the Way of Words. Cambridge, MA: Harvard University
Press.

Hammond, J., Keeney, R. and Raiffa, H. 1999. Smart Choices – A practical guide to
making better decisions. Cambridge, MA: Harvard Business School Press.

Hauser, M., Cushman, F., Young, L. and Mikhail, J. 2007. A dissociation between moral
judgments and justifications. Mind and Language 22(1): 1–21.

Hewitt, C. 1971. Procedural embedding of knowledge in planner. Proceedings of the 2nd
International Joint Conference on Artificial Intelligence. San Francisco: Morgan
Kaufmann.

Hill, P.M. and Gallagher, J. 1998. Meta-programming in logic programming. In
Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 5
D. Gabbay, C. J. Hogger and J. A. Robinson (eds). Oxford: Oxford University
Press; 421–97.

Hodges, W. 1993. The logical content of theories of deduction. Behavioral and Brain
Sciences 16(2): 353–4.

Hodges, W. 2006. Two doors to open. InMathematical Problems from Applied Logic I:
Logics for the XXIst Century, Vol. 4, D. Gabbay, S. Goncharov and
M. Zakharyaschev (eds). New York: Springer; 277–316.

Hölldobler, S. and Kalinke, Y. 1994. Toward a new massively parallel computational
model for logic programming, Proceedings of Workshop on Combining Symbolic
and Connectionist Processing, ECAI-94, Amsterdam; 68–77.

IPCC. 2007. Fourth Assessment Report: Climate Change.
Johnson-Laird, P. 1983. Mental Models. Cambridge: Cambridge University Press.
Johnson-Laird, P. N. and Byrne, R.M. J. 1991. Deduction. London: Psychology Press.

298 References

Kahneman, D. and Frederick, S. 2002. Representativeness revisited: attribute substitu-
tion in intuitive judgment. In Heuristics of Intuitive Judgment: Extensions and
Application, T. Gilovich, D. Griffin and D. Kahneman (eds). New York:
Cambridge University Press.

Kakas, A., Kowalski, R. and Toni, F. 1998. The role of logic programming in abduction.
Handbook of Logic in Artificial Intelligence and Programming, Vol. 5. Oxford:
Oxford University Press; 235–324.

Kowalski, R. 1975. A proof procedure using connection graphs. JACM 22(4): 572–95.
Kowalski, R. 1974, 1979. Logic for Problem Solving. DCL Memo 75, Department of

Artificial Intelligence, University of Edinburgh (1974). Expanded edition published
by North Holland Elsevier (1979). Also at http://www.doc.ic.ac.uk/~rak/.

Kowalski, R. 1992. Database updates in the event calculus. Journal of Logic
Programming 12(162): 121–46.

Kowalski, R. 1995. Logic without model theory. In What is a Logical System?,
D. Gabbay (ed.). Oxford: Oxford University Press.

Kowalski, R. and Kuehner, D. 1971. Linear resolution with selection function. Artificial
Intelligence 2: 227–60.

Kowalski, R. A. and Sadri, F. 1990. Logic programs with exceptions. Proceedings of the
Seventh International Conference on Logic Programming. Cambridge, MA: MIT
Press; 598–613.

Kowalski, R. A. and Sadri, F. 2010. An agent language with destructive assignment and
model-theoretic semantics. In CLIMA XI – Computational Logic in Multi-Agent
Systems, J. Dix, G. Governatori, W. Jamroga and J. Leite (eds). NewYork: Springer.

Kowalski, R. and Sergot, M. 1986. A logic-based calculus of events. New Generation
Computing 4(1): 67–95. Also in The Language of Time: A Reader, I. Mani,
J. Pustejovsky and R. Gaizauskas (eds). Oxford: Oxford University Press (2005).

Kowalski, R. and Toni, F. 1996. Abstract argumentation. Journal of Artificial
Intelligence and Law 4(3–4): 275–96.

Kowalski, R., Toni, F. and Wetzel, G. 1998. Executing suspended logic programs.
Fundamenta Informatica 34(3): 1–22.

Laird, R., Newell, J. and Paul, A. 1987. Soar: an architecture for general intelligence.
Artificial Intelligence 33: 1–64.

Lenat, D. and Guha, R.V. 1989. Building Large Knowledge-Based Systems;
Representation and Inference in the Cyc Project. Boston: Addison-Wesley
Longman Publishing. (An up-to-date overview can be found at http://www.cyc.
com/.)

Loveland, D.W. 1968. Mechanical theorem-proving by model elimination. Journal of
the ACM 15: 236–51.

Lucas, J. R. 1959. Minds, machines and Gödel. Philosophy,XXXVI, 1961. Reprinted in
TheModeling of Mind, K.M. Sayre and F. J. Crosson (eds). Paris: Notre Dame Press
(1963) and inMinds and Machines, A. R. Anderson (ed.). New York: Prentice-Hall
(1964).

Luger, G. 2009. Artificial Intelligence, Structures and Strategies for Complex Problem
Solving. London: Pearson Education Limited.

Manthey, R. and Bry, F. 1988. SATCHMO: A theorem prover implemented in Prolog.
Proceedings CADE 1988. Lecture Notes in Computer Science 310. New York:
Springer; 415–34.

References 299

Maes, P. 1990. Situated agents can have goals. Robotic and Autonomous Systems 6(1–2):
49–70.

McCarthy, J. 1980. Circumscription – a form of non-monotonic reasoning. Artificial
Intelligence 13: 27–39.

McCarthy, J. and Hayes, P. J. 1969. Some philosophical problems from the standpoint
of artificial intelligence. In Machine Intelligence 4, D. Michie (ed.). New York:
Elsevier.

McDermott, D. and Doyle, 1980. Nonmonotonic logic I. Artificial Intelligence 13:
41–72.

Mikhail, J. 2007. Universal moral grammar: theory, evidence, and the future. Trends in
Cognitive Sciences 11(4): 143–52.

Moore, R. C. 1985. Semantical considerations on nonmonotonic logic. Artificial
Intelligence 25: 75–94.

Mueller, E. 2006. Commonsense Reasoning. Amsterdam: Elsevier.
Muggleton, S. H. and De Raedt, L. 1994. Inductive logic programming: theory and

methods. Journal of Logic Programming 19(20): 629–79.
Newell, A. 1973. Production systems: models of control structure. In Visual Information

Processing, W. Chase (ed.). New York: Academic Press; 463–526.
Nilsson, N. 1998. Artificial Intelligence: A New Synthesis. San Francisco: Morgan

Kaufmann.
Nute, D. 1997. Defeasible Deontic Logic. Dordrecht: Kluwer Academic.
Panton, C., Matuszek, D., Lenat, D., Schneider, M., Witbrock, N. et al. 2006. Common

sense reasoning – from Cyc to Intelligent Assistant. In Ambient Intelligence in
Everyday Life, LNAI 3864, Y. Cai and J. Abascal (eds). Berlin: Springer; 1–31.

Peirce, C. S. 1931. Collected Papers, C. Hartshorn and P. Weiss (eds). Cambridge, MA:
Harvard University Press.

Penrose, R. 1989. The Emperor’s New Mind: Concerning Computers, Minds, and The
Laws of Physics. Oxford: Oxford University Press.

Pereira, L.M. and Saptawijaya, A. 2007. Moral decision making with ACORDA. In:
14th International Conference on Logic for Programming Artificial Intelligence
and Reasoning (LPAR’07), N. Dershowitz and A. Voronkov (eds).

Pereira, L.M. and Saptawijaya, A. 2009. Modelling morality with prospective logic. In:
International Journal of Reasoning-based Intelligent Systems (IJRIS) 1(3/4):
209–21. [Also to appear in M. Anderson and S. Anderson (eds), Machine Ethics,
Cambridge University Press, Cambridge.]

Perlis, D. and Subrahmanian, V. S. 1994. Metalanguages, reflection principles and self-
reference. In Handbook of Logic in Artificial Intelligence and Logic Programming,
Vol. 2, D.M. Gabbay, C. J. Hogger and J. A. Robinson (eds). 328–58.

Pollock, J. 1995. Cognitive Carpentry. Cambridge, MA: MIT Press.
Poole, D. 1997. The independent choice logic for modeling multiple agents under

uncertainty. Artificial Intelligence 94: 7–56.
Poole, D., Goebel, R. and Aleliunas R. 1987. Theorist: a logical reasoning system for

defaults and diagnosis. In The Knowledge Frontier: Essays in the Representation of
Knowledge, N. Cercone and G. McCalla (eds). New York: Springer; 331–52.

Poole, D. and Mackworth, A. 2010. Artificial Intelligence: Foundations of
Computational Agents. Cambridge: Cambridge University Press.

300 References

Post, E. 1943. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics 65(2): 197–215.

Prakken, H. and Sartor, G. 1996. A dialectical model of assessing conflicting arguments
in legal reasoning. Journal of Artificial Intelligence and Law 4(3–4).

Priest, G. 2002. Paraconsistent logic.Handbook of Philosophical Logic, 2nd edn, Vol. 6,
D. Gabbay and F. Guenthner (eds). Dordrecht: Kluwer Academic; 287–393.

Przymusinski, T. 1988. On the declarative semantics of deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming. New
York: Morgan Kaufmann; 193–216.

Quine, W.V.O. 1963. Two dogmas of empiricism. From a Logical Point of View. New
York: Harper & Row; 20–46.

Rahwan, I. and Simari, G. (eds). 2009. Argumentation in Artificial Intelligence. New
York: Springer.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13: 81–132.
Reiter, R. 1988. On integrity constraints. 2nd Conference on Theoretical Aspects of

Reasoning about Knowledge, 97–111.
Robinson, J. A. 1965a. A machine-oriented logic based on the resolution principle.

Journal of the ACM 12(1): 23–41.
Robinson, J. 1965b. Automatic deduction with hyper-resolution. International Journal

of Computer Mathematics 1(3): 227–34.
Russell, S. J. and Norvig, P. 2010. Artificial Intelligence: A Modern Approach, 3rd edn.

Upper Saddle River, NJ: Prentice Hall.
Sadri F. and Kowalski R. 1988. A theorem-proving approach to database integrity. In

Foundations of Deductive Databases and Logic Programming, J. Minker (ed.).
New York: Morgan Kaufmann; 313–62.

Sagonas, K., Swift, T. and Warren, D. S. 1994. XSB as an efficient deductive database
engine. SIGMOD Record 23(2): 442–53.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P. and Cory, H. T.
1986. The British Nationality Act as a logic program. CACM 29(5): 370–86.

Shanahan, M. P. 1997. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. Cambridge, MA: MIT Press.

Shapiro, S. 1989. Incompleteness, mechanism, and optimism. The Bulletin of Symbolic
Logic 4(3): 273–302.

Siekmann, J. andWrightson, G. 2002. Strong completeness of R. Kowalski’s connection
graph proof procedure. In Computational Logic: Logic Programming and Beyond,
A. Kakas and F. Sadri (eds). New York: Springer Lecture Notes on AI, Vol. 2408;
231–52.

Simon, H. A. 1957. Administrative Behaviour, 2nd edn. New York: Macmillan.
Simon, H. A. 1960. The New Science of Management Decision. New York: Harper &

Row. (1977 Revised edition, Prentice-Hall, Englewood Cliffs, NJ.)
Simon, H.A. 1999. Production systems. In The MIT Encyclopedia of the Cognitive

Sciences, R. Wilson and F. Keil (eds). Cambridge, MA: MIT Press; 676–7.
Sperber, D. and Wilson, D. 1986. Relevance. Oxford: Blackwell.
Sperber, D., Cara, F. and Girotto, V. 1995. Relevance theory explains the selection task.

Cognition 52: 3–39.
Stenning, K. and van Lambalgen M. 2008. Human Reasoning and Cognitive Science.

Cambridge, MA: MIT Press.

References 301

Thagard, P. 2005. Mind: Introduction to Cognitive Science, 2nd edn. Cambridge, MA:
M.I.T. Press.

van Lambalgen, M. and Hamm, F. 2005. The Proper Treatment of Events. Oxford:
Blackwell.

Vickers, G. 1965. The Art of Judgment. London: Chapman & Hall.
Wang, H. 1974. From Mathematics to Philosophy. London: Routledge & Kegan Paul.
Wason, P. 1968. Reasoning about a rule. The Quarterly Journal of Experimental

Psychology. 20(3): 273–81.
Widom, J. and Ceri, S. 1996. Active Database Systems: Triggers and Rules for Advanced

Database Processing. San Francisco: Morgan Kaufmann.
Williams, J. 1990, 1995. Style: Toward Clarity and Grace. Chicago: University of

Chicago Press.
Winograd, T. 1971. Procedures as a representation for data in a computer program for

understanding natural language, MITAI TR-235.
Winograd, T. 1972. Understanding Natural Language. New York: Academic Press.

302 References

Index

abduction, 38, 134–43, 203
by deduction, 193–94

abductive derivation, 282
abductive logic programming, 163,

280–95
achievement goal, 8, 109, 207, 238, 253
actions, 116, 120
activation levels, 56
activation networks, 275
active databases, 208, 282
active observation, 60, 202
active voice, 186
ACT-R, 94, 103, 104
Adam and Eve, 102
admissibility semantics, 293
Aesop, 40
affirmation of the consequent, 199, 203, 207
agent, xii
agent cycle, xvi, 106
agent programming languages, 105
algebra, 100
algorithm, 30
ambiguity, 35, 88, 89, 127
ambivalent syntax, 214, 225
analysis, 19
and–or tree, 50
antonyms, 70
appreciative system, 113
argument (of predicate), 48, 231
argumentation, 37, 70, 73, 294
Aristotle, 1
arithmetic, 62, 67, 89
incompleteness theorem, 197, 225, 255
induction, 196
intended model, 255
natural numbers, 234, 237
Peano arithmetic, 197
standard model, 254
successor function, 234

truth, 254–56
truth versus proof, 195–97

articles, 79
Artificial Intelligence, 6
atomic formula, 231–32
atomic sentences, 48
atoms, 231–32
autoepistemic

failure, 191
logic, 268
sentence, 64

automated reasoning, 46, 277
axiom schema, 255
axioms

of arithmetic, 197
of belief, 215

backtracking, 53
backward reasoning, xii, 5, 18, 43–45, 65,

259–61
completeness, 261–62
soundness, 261–62
truth-preserving, 259–61

barber paradox, 271
Baron, J., 50, 228
behavioural psychology, 9, 41
behaviourism, 92–93, 127, 179
beliefs, 22
best explanation, 135, 141–42
best-first search, 55–57, 221, 286
biconditionals, xix, 188–97, 203, 282
bidirectional search, 57
BNA. See British Nationality Act
Book of Genesis, 102
Boole, G., 1
bottom-up reasoning, 19
brain, 221, 275
breadth-first search, 53
British Nationality Act, xv, 77–89

303

British Nationality Act, (cont.)
acquisition by abandonment, 82–84
acquisition by birth, 78–80
deprivation of citizenship, 84
renunciation of citizenship, 84–86
satisfying the Secretary of State, 86–89,

217–21
Byrne, R., 32

case-based reasoning, 228
causal beliefs, 108
causality, 80–82, 161–62
cause and effect, 37, 58, 118, 137, 138–39, 150,

194–95
cheater detection, 28, 30, 210
Checkland, P., 113, 228
Cheng and Holyoak, 28
chess, 51
Chisholm’s paradox, 163
circumscription, 268
citizen’s advice, 72
Clark, K. L., 190
classes, 109
classes of objects, 182, 236
classical logic, 66, 139, 146, 167, 199, 206, 212,

238–39, 242–45, 252, 253, 262, 264, 267,
270

classical planning, 155
clausal logic, 242–45, 286
clauses, 235, 243, 269
closed predicates, 67, 137, 280
closed-world assumption, 63–64, 281, 288
closed-mind assumption, 64
close-minded agent, 135
cognitive science, 94, 106
coherence, 15–16
Colmerauer, A., 246
combining object-language and meta-language,

225–26
common noun, 79, 236
communicating agents, 183
compilation, 11, 20, 57, 71, 73, 85, 132, 175,

208, 239, 269
complete knowledge, 67
completeness
of ALP proof procedure, 284–85
of connection graph proof procedure, 279

completion semantics, 188
computable predicate, 235
computation, 238
in logic programming, 260

Computational Logic, 5–6
condition–action rules, 92, 94, 131, 208
conditional, xx, 13, 42, 234–36
conflict resolution, 43, 95, 96–97, 128, 155,

229–30
conjunction, 235, 249
connection graph proof procedure, 295
connection graphs, 16–20, 43–46, 51, 53, 183,

204, 216, 218, 222, 272–76
completeness, 279
non-conformist, 279

connectionist model of the brain, 57,
221, 229

of the mind, 275
consciousness, 101
consequences of actions, 155
consequentialism, 156
consistency constraints, 266, 287
consistency view
of integrity satisfaction, 281

consistent explanations, 140–41
constants, 79, 233
constraints, 42, 58, 61, 63, 122–23, 140–41,

189, 194, 208, 224, 249, 261, 266
context, 14–15, 33, 34–37
contrapositive, 27, 31
contraries, 70, 140–41, 193, 201, 209, 287
converse, 26, 31, 38, 194, 211, 253
Cosmides, L., 28
credulous semantics, 267
Cyc Project, 58

Darwinian algorithms, 149
Darwinism, 93
databases, 62, 122
active, 208, 282
deductive, 62
integrity checking, 206, 207
integrity constraints, 122
relational, 241
violations of integrity constraints, 164

Datalog, 62
Davis, M., 245, 255
decision table, 144, 147
decision theory, 56, 97, 128, 144–52,

155, 275
decision-making, 112, 113
decompilation, 132
deduction, 136, 138, 193–94, 200, 203
deductive databases, 62
default logic, 268

304 Index

default reasoning, xv, 34, 66, 68–69, 139, 195
defeasible deontic logic, 164
defeasible reasoning, 34, 66, 136
definite clause, 235, 252–54
definite description, 80
definite goal clause, 237
definitions, 189
recursive, 237

denial of the antecedent, 199, 205, 209
denotation, 233, 248
deontic
constraints, 21
logics, 21, 163
notions, 28

depth-first search, 53
descriptive theories, 2, 4
dialectic, 293
discourse, 34–36, 38
disjunction, 139, 146, 193, 194, 214, 238, 249,

267, 269, 280
domain of discourse, 248
double effect, 156–57
dual process theories, 2, 101, 130–33, 279
duration, 176–78

efficiency, 12
emergent property, 100
encapsulation, 129, 180–81
English writing style, 4–5, 33, 34,

185–87, 245
active voice, 186
ambiguity, 35, 88, 89, 127
coherence, 15–16, 34–36
parallel syntax, 91
passive voice, 187
relative clause, 78–79
relative pronoun, 79
topic, 186

epistemic, 86
logic, 64
sentence, 64
view of integrity satisfaction, 281

epistemology, 64
equality, 241–42
equation solving, 100–1
equivalences, 190–91
event calculus, 81–82, 86, 159, 169–78
constraint, 171, 174–75
frame problem, 173

event–condition–action rules, 208, 282, 295
evolution, 100, 102, 125

evolutionary algorithms, 28
evolutionary psychology, 210
execution (of program), 11
existential quantification, 60, 111, 112, 280
existentially quantified goals, 109
expected utility, 56, 147
expert systems, 94, 103, 228
explanations, 135

factoring, 270, 271–72, 283
facts, 42, 60, 82, 235
fallacy of affirmation of the consequent, 200, 203
feedback, 117
Fodor, J., 3
formal systems, 247
forward chaining, 95, 102
forward reasoning, xii, xvi, 5, 19, 45, 102, 257–59

completeness, 261–62
soundness, 261–62
truth-preserving, 257–59

fox and crow, 40–49
in the agent cycle, 113–18

frame axiom, 169
frame problem, 169, 173
free will, 129
Frege, G., 1
function symbols, 234
functional relationship, 201
functions, 241–42

games, 51
general logic programs

intended models, 265–67
generalised goal clauses, 283
Gillies, D., 228
global warming, 142
goal clauses, 237–38, 253, 280
goal reduction, xvi, 5, 12, 18, 42–43, 53, 65, 103
goals, 22

achievement goals, 109
existentially quantified, 109
maintenance goals, 107–24, 131

Gödel, K., xx, 1, 226, 255
Grand Designer, 96, 125–29
Green, C., 245
Grice, H., 250
ground terms, 234

Hamm, F., 178
Hammond, Keeney and Raiffa, 228
Hayes, P., 178

Index 305

Herbrand interpretations, 251–52, 281
Herbrand, J., 252
heuristics, 139, 152, 177
hierarchies, 59, 109, 118, 230
of classes, 185
of rules and exceptions, 73–75

history, 62
homeostasis, 112
Horn clauses, 238, 271
Horn, A., 238
Housing Benefit, 72
human communication, 3–5, 34–37, 72, 239
hyper-resolution, 270
hypothesis, 135, 202

identity, 241–42
crisis, 46

IFF proof procedure, 282, 290, 291, 293
if–then rules, 94
if–then–else statement, 64
imperative mood, 43
implications. 13 See conditionals
incompleteness theorem, 67, 197, 225, 255
inconsistency tolerance, 290
individuals, 47, 180, 233
induction, 135, 196, 228
inductive logic programming, 118, 228
inference, 50
inference rules, xii, xiv, 239, 269
completeness, 248
for ground Horn ALP, 282–84
soundness, 248
truth-preserving, 248

infinite failure, 67, 285
infinite loop, 54, 264, See loop, infinite
inheritance, 182, 236
input–output associations, 129, 131
instantiation, 42, 44–46, 111, 258
integrity checking
for deductive databases, 295

integrity constraints, 122, 163, 201, 206, 280, 281
with disjunctive conclusions, 286

intended model of arithmetic, 255
intended models, 253
of general logic programs, 265–67

interpretations, 47, 248

Kahneman and Frederick, 130
knowledge representation, 29–31, 57–59
Kowalski, R., 246
Kuehner, D., 246

language of thought, 2, 9, 13–15, 47, 232, 239,
243, 276

legacy systems, 132
legal reasoning, 228
liar paradox, 225
linguistic meaning, 47
literals, 269
locally stratified programs, 266
logic program, 42–43, 235
logic programming, 19, 62, 64, 103, 104, 226,

238, 260
logical consequence, 248, 252, 262, 270
logical form, 13–15, 47, 231–46, 276
logical meaning, 47
logical simplification, 283, 285, 290
London Underground, 10–23, 32, 64, 131–32,

138–39
security measures, 24–25, 210–12

loop, infinite. See infinite loop
LOT. See language of thought
louse. See wood louse
Loveland, D., 246
Lucas, J. R., 226

machine learning, 228
Maes, P., 57, 275
maintenance goals, 8, 107–24, 131, 207,

239, 254
as the driving force of life, 112–13

management science, 113
manslaughter, 157
Mars explorer, 98–100
matching, 44–46
material implication, 250
mathematical induction, 255
mathematical logic, 22, 80, 195–97, 234
mathematics, 22, 60, 66, 166, 201
maximal consistency, 289
maximal model, 253
McCarthy, J., 1, 178
meaning, 36, 47
meaning of life, 125–33
mental models, 32, 38, 256
merging, 270
message passing, 183
meta-interpreters, 214
meta-language, 83, 213
meta-level, 86
meta-logic, 64, 213–26, 255
meta-sentences, 49, 64
methods, 180–82

306 Index

mind/body problem, 129–30
minimal explanations, 140
minimal model view
of integrity satisfaction, 282

minimal models, 252–54, 281
negation, 263–68

minimax search strategy, 51
modal logic, 72, 163, 166–67, 215
modal non-monotonic logic, 268
modal operators, 167
model generator, 286
models, 47, 250
model-theoretic semantics, 250
modules, 18, 59
modus ponens, 26, 199, 202, 207, 258, 260
modus tollens 199, 203–05, 207–09, 210–12
Moore, R., 68
moral constraints, 160–62
morality, 156–57
most general unifier, 259
motivations, 155–62
motor processes, 124
motor system, 131
Mueller, E., 178
multi-agent systems, 3, 183
murder, 157

names, 242
natural language, 185–87, 276
natural numbers, 195, 234, 237, 261
negation, 234, 240–41
as constraints, 240
as failure, xv, 60–76, 84, 240, 263, 281
as finite failure, 190–91
as infinite failure, 196
as potentially infinite failure, 67, 196
by abduction, 287–91
completion semantics, 188
in classical logic, 241
minimal models, 263–68
rewriting rule, 211, 223, 289–91

negative observations, 35, 61, 203–05
neural networks, 221, 229, 275
Newell, A., 94
nominalisation, 82
non-classical logics, 250
non-conformist connection graphs, 279
non-constructive semantics, 66, 196
non-monotonicity, 66
normative ideal, 152, 177
normative theories, 2, 4

object language, 83, 213
object-orientation, 59, 179–87
classes, 182, 236
inheritance, 182
message passing, 183
methods, 180–82

obligations, 121
observations, 60, 134, 251

active, 60
negative, 61, 203–05
passive, 60

observation–thought–decision–action cycle, 108
Ockham’s razor, 140
ontology, 167
open predicates, 67, 136, 137, 199, 280
operational semantics, 108
or-tree, 52–54, 285

paraconsistency, 277–78
paraconsistent logics, 278
paradoxes of material implication, 250, 277
parallel syntax, 91
parallelism, 20, 217
parentheses, 89, 235
partially ordered time, 175–76
passive observation, 60
passive voice, 187
Peano arithmetic, 197
Peirce, C. S., 136
Penrose, R., 226
Pereira, L., 165
philosophy

of language, 3
of science, 228

Pinker, S., 28
plan of actions, 8, 44, 110, 115, 280
planning, 155, 171, 174
Pollock, J., 37
Poole, D., 154
Poole, Goebel and Aleliunas, 143
possible world semantics, 166–67, 215
possible worlds, 47
Post, E., 94
pragmatic reasoning schemes, 28, 149
pragmatics, 250, 278
preactive thinking, 49
preconditions, 171
predicate, 48, 233
predicate logic, 233
predicate symbols, 48, 232–33
preventative maintenance, 121, 291

Index 307

Prisoner’s Dilemma, 144–52, 164
private language. See language of thought
proactive thinking, 40
probability, 56, 146, 228
problem solving, 29–31
production rules, 94
production systems, 94–106
conflict resolution, 95, 96–97, 155
cycle, 94
for forward reasoning, 102–03
for goal reduction, 103–05
with implicit goals, 100–01
with internal state, 97–100
with no representation of the world, 95–97,
128

program requirements, 132
prohibitions, 121–22, 240
Prolog, 6, 19, 54, 62, 80, 233
proof, 44, 45, 278
proof procedure, xiv, 44, 50
for ALP, 285–86

proper noun, 80
properties, 47, 233
propositional formulas, 232
propositional logic, 233
propositions, 233
psychological studies, 36, 156–58
public language, 3 See human communication
punctuation, 78
purpose, 82, 101, 125
Putnam, H., 245

Quine, W., 18, 58, 123
quotation marks, 214

range restriction, 103, 280, 294
reactive plans, 105
reactive rules, xvi, 100
reactive thinking, 40
real world, 36, 48, 169, 248, 252
recursive clauses, 274
recursive definitions, 237, 252
reductio ad absurdum, 243
refraction, 102
refutation, 202, 262, 272
refutation completeness, 262, 270
reification, 82, 83, 167, 184
Reiter, R., 281
relational databases, 241, 281
relations, 47, 233, 241
relative clause, 78–79, 88

relative pronoun, 79
relevance logic, 250, 278
relevance theory, 4
relevant
beliefs, 43, 45
hypotheses, 135, 140

religion, 156
renaming, 258
residual conditionals, 283–85
resolution, 115, 239, 269–79
resolvent, 269
Robinson, J. A., 1, 245, 269, 278
robot, 61, 98
rule-based systems, 50
rules, 48, 62, 94
condition–action rules, 94, 131
enabled, 95
event–condition–action, 282, 295
fired, 95
if–then rules, 94
production rules, 94
triggered, 95, 97

rules and exceptions, 33, 71, 84–86, 164
Russell, B., 1

SATCHMO, 286
sceptical semantics, 267
search, 43, 50–57, 272
search space, xiv, 50, 173, 285
search strategy, xiv, 50, 286
best-first, 55–57, 221
bidirectional, 57
breadth-first, 53
depth-first, 53

search tree, 285
second-order logic, 255
security on London underground, 24–25, 210–

12
selection task, 24–31, 67–68, 198–212
selective closed world assumption, 67–68
self-referential sentences, 225
self-resolving clauses, 274
semantic networks, 184–85
semantic structure, 7, 32, 108, 166, 183
semantics, 47, 108, 233, 247–56, 281
argumentation-theoretic, 294
logical consequence, 248
negation, 263–68
non-constructive, 66, 196
of ALP, 281
of beliefs, 108–09

308 Index

of goals, 109–11
of integrity constraints, 281
of maintenance goals, 120–21
possible world semantics, 166–67

sensory processes, 124
sensory system, 119, 131
sentence, 248
Shanahan, M., 178
Shapiro, S., 226
shared environment, 183
Sherlock Holmes, 134, 136
significance, 36
Simon, H., 100, 113
situation calculus, 167–69
frame problem, 169

Skolem functions, 234, 243, 280
SL-resolution, 270, 278
smart choices, 152–53
Soar, 94, 103, 104
social constraint, 206–12
soft systems methodology, 113
sorted logics, 236
sorts, 236, 252
soundness, 248
of ALP proof procedure, 284, 293

source language, 11
speaker’s meaning, 47
Sperber, Cara and Girotto, 35, 38
splitting, 286
stable model semantics, 266–67
by abduction, 287
by argumentation, 293

stable models, 266–67, 282
stack, 104
standard model of arithmetic, 254
statistical information, 56, 142, 195
Stenning, K., 35, 38
stimulus-response associations, 8
strong negation, 70, 141, 265
substitution interpretation of quantifiers, 251
subsumption, 251, 277
successful derivation, 284
successfully terminating derivation, 283
successor function, 234
suppression task, 71
symbolic logic, 1, 60, 231, 247
syntax of logical form, 231–46
synthesis, 19

tabling, 55, 285
target language, 11

taxonomic
hierarchies, 182
knowledge, 69, 111
reasoning, 114

terms, 233–34
Thagard, P., 50, 94, 103, 105
theoremhood view

of integrity satisfaction, 281, 282
theoretical beliefs, 109
theory, 250
Theory of Multiple Intelligences, 18
thermostat, 92–93, 129
thinking, 29–31, 50

deliberative, 130–33
intuitive, 130–33

time, 57, 80–82, 111–12
duration, 176–78
partially ordered, 175–76

top-down reasoning, 19
topic, 186
totality constraints, 223, 266, 287–89
traditional logic, 23, 47, 108, 276
transformation, 132
trolley problems, 157–62
trust, 224
truth, 110, 120, 247–56
truth value, 48, 249
truth value gap property, 141
truth preservation, 257
Turing Machines, 238
two wise men, 221–25
typed logics, 236
types, 216, 236, 252

uncertainty, 146
unification, 44–46, 259, 271
unique names, 241
universal quantification, 60, 112, 235, 251
University of Michigan Lease Termination

Clause, xv, 89–91
unknowns, 60, 61, 110
utilitarianism, 158
utility, 56, 147

vagueness, 88
van Benthem, J., 268
van Lambalgen, M., 35, 38, 178
variables, 60, 79–80, 112, 233
Vickers, G., 113
violations, 206
violations of constraints, 162–64

Index 309

violations of integrity constraints, 164, 210
vocabulary, 252, 267

Wang, H., 226
Wason, P., 26
weak disjunction, 250
web of belief, 18, 58, 123

weight of evidence, 202
well-formed formula, 248
Whitehead, A.N., 1
Williams, J., 4–5, 15, 228, 245
wise men. See two wise men
wood louse, 95–97, 125–29
working memory, 97

310 Index

	Contents
	Preface
	Summary and plan of the book
	Introduction
	Chapter 1: Logic on the Underground
	Chapter 2: The psychology of logic
	Chapter 3: The fox and the crow
	Chapter 4: Search
	Chapter 5: Negation as failure
	Chapter 6: How to become a British Citizen
	Chapter 7: The louse and the Mars explorer
	Chapter 8: Maintenance goals as the driving force of life
	Chapter 9: The meaning of life
	Chapter 10: Abduction
	Chapter 11: The Prisoner’s Dilemma
	Chapter 12: Motivations matter
	Chapter 13: The changing world
	Chapter 14: Logic and objects
	Chapter 15: Biconditionals
	Chapter 16: Computational Logic and the selection task
	Chapter 17: Meta-logic
	Conclusions of the book
	Chapter A1: The syntax of logical form
	Chapter A2: Truth
	Chapter A3: Forward and backward reasoning
	Chapter A4: Minimal models and negation
	Chapter A5: The resolution rule of inference
	Chapter A6: The logic of abductive logic programming

	Introduction
	The relationship between logic and thinking
	Computational Logic and the language of thought
	Computational Logic and human communication
	What is Computational Logic?
	What is Artificial Intelligence?
	Computational Logic and the cycle of life

	1 Logic on the Underground
	The Emergency Notice as a program
	The logic of the second and third sentences
	The web of belief
	The first sentence as part of a logic program
	The fourth sentence as an inhibitor of action
	Programs with purpose
	Where do we go from here?

	2 The psychology of logic
	The Wason selection task
	A variant of the selection task
	Thinking = knowledge representation + problem solving
	The suppression task
	Natural language understanding versus logical reasoning
	Reasoning in context
	The use of conditionals to explain observations
	Conclusions

	3 The fox and the crow
	The fox and the crow
	The fox’s beliefs as a logic program
	Backward reasoning in connection graphs
	The end of the story of the fox and the crow?
	Representation and meaning
	What is the moral of the story of the fox and the crow?

	4 Search
	Best-first search
	Knowledge representation matters

	5 Negation as failure
	Mental representations have a positive bias
	Where do goals and beliefs come from?
	Negation as failure and the closed-world assumption
	An intelligent agent needs to have an open mind
	Relaxing the closed-world assumption
	Default reasoning
	Missing conditions
	Hierarchies of rules and exceptions
	Conclusions

	6 How to become a British Citizen
	The British Nationality Act 1981
	Acquisition by birth
	Representation of time and causality
	Acquisition by abandonment
	Rules and exceptions
	How to satisfy the Secretary of State
	The University of Michigan lease termination clause
	Summary

	7 The louse and the Mars explorer
	Behaviourism
	Production systems
	The production system cycle
	Production systems with no representation of the world
	What it’s like to be a louse
	Production systems with internal state
	What it’s like to be a Mars explorer
	Condition–action rules with implicit goals
	The use of production systems for forward reasoning
	The use of production systems for goal reduction
	Logic versus production rules
	Conclusions

	8 Maintenance goals as the driving force of life
	The semantics of beliefs
	The semantics of goals
	The time factor
	Maintenance goals as the driving force of life
	Embedding goals and beliefs in the agent cycle
	The first iteration of the cycle
	 The second iteration
	The third iteration
	The fourth iteration
	The fifth iteration
	The sixth iteration
	The seventh iteration
	The eighth iteration
	The ninth iteration

	The London Underground revisited
	The semantics of maintenance goals reconsidered
	Prohibitions
	Constraints
	Summary

	9 The meaning of life
	The mind/body problem
	Dual process theories of intuitive and deliberative thinking
	Two kinds of thinking on the Underground
	A computational interpretation of intuitive and deliberative thinking
	The relationship between intuitive and deliberative thinking
	Conclusions

	10 Abduction
	The grass is wet
	The London Underground revisited again
	What counts as a reasonable explanation?
	Contraries and strong negation
	What counts as a best explanation?
	Conclusions

	11 The Prisoner’s Dilemma
	The logic of the Prisoner’s Dilemma
	Should you carry an umbrella?
	Applying decision theory to taking an umbrella
	Solving the Prisoner’s Dilemma
	Smart choices
	Conclusions

	12 Motivations matter
	Moral considerations
	The runaway trolley
	The logic of the runaway trolley
	The computational case for moral constraints
	What to do about violations?
	Conclusions

	13 The changing world
	The situation calculus
	An event-oriented approach to change
	A simplified calculus of events
	The event calculus for predicting consequences of events
	The event calculus and the frame problem
	The event calculus for plan generation
	Partially ordered time
	Keeping track of time
	Historical background and additional reading

	14 Logic and objects
	Objects as individuals
	Encapsulation
	Methods
	Classes
	Reconciling logic and objects
	Message-passing or shared environment?
	Semantic networks as a variant of Object-Orientation
	Object-oriented structuring of natural language
	Conclusions

	15 Biconditionals
	Reasoning with biconditionals used as equivalences
	Using biconditionals to simulate autoepistemic failure
	Abduction or deduction?
	Deriving cause if effect from effect if cause
	Truth versus proof in arithmetic
	Conclusions

	16 Computational Logic and the selection task
	An abstract form of the selection task
	A more accurate representation of the selection task
	The conditional interpreted as a belief
	Modus ponens
	Affirmation of the consequent
	Modus tollens
	Denial of the antecedent
	Conclusions

	The conditional interpreted as a goal
	Modus ponens
	Affirmation of the consequent
	Modus tollens
	Denial of the antecedent
	Conclusions

	Security measures reconsidered
	Conclusions

	17 Meta-logic
	The semantics of belief
	How to make a good impression
	How to satisfy the Secretary of State
	A more flexible way to satisfy the Secretary of State
	The two wise men
	Combining object-language and meta-language
	Conclusions and further reading

	Conclusions of the book
	Unification of competing paradigms
	Relationships with other paradigms
	Conflict resolution

	A1 The syntax of logical form
	Atoms
	Predicate symbols
	Terms
	Conditionals
	Recursive definitions
	Goal clauses
	Other kinds of sentences
	Negation
	Functions, relations and equality
	Classical logic
	The relationship among classical logic, clausal logic and Computational Logic
	Conclusions and further references

	A2 Truth
	Truth and consequences
	The semantics of conditionals
	Universal quantifiers and Herbrand interpretations
	Minimal models of definite clause programs
	Truth in arithmetic
	Conclusions

	A3 Forward and backward reasoning
	Forward reasoning
	Backward reasoning
	Soundness and completeness
	Conclusions

	A4 Minimal models and negation
	Negation in minimal models
	Intended models of general logic programs
	Examples of stable models
	Conclusions

	A5 The resolution rule
	Unification and factoring
	Connection graphs
	Connection graphs as an agent’s language of thought
	Subsumption
	Paraconsistency
	Conclusions

	A6 The logic of abductive logic programming
	A system of inference rules for ground Horn ALP
	Infinite success and incompleteness
	Proof procedures for ground Horn ALP
	Integrity constraints with disjunctive conclusions
	Negation through abduction with contraries and constraints
	The case for ignoring the totality constraints
	The case for the totality constraints
	An alternative to the totality constraints
	Preventative maintenance
	An argumentation-theoretic interpretation
	An argumentation-theoretic semantics
	Extensions of the abductive proof procedure
	Conclusions

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

