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Foreword

The quest to find an economic theory that is able to explain all economic activities
has alluded both theorists and practitioners alike. If such a theory can be discussed it
will usher a new area where a desired economic outcome can be engineered and the
social dividends that can be harnessed from this are substantial. However, despite
this limitation it has been quite possible to model aspects of the economy separately.
For example, it is quite possible to model inflation and also engineer concepts such
as inflation targeting.

Economic Modeling Using Artificial Intelligence Methods introduces the con-
cepts of artificial intelligence for modeling economic data. Artificial inteligence is a
scientific technique that looks at how nature operates and emulate it. For example,
how a human mind works or how a group of ants tackle problems. Artificial
intelligence is used particularly in areas where it is incredibly difficult to model
a phenomenon.

The recent economic crisis has highlighted the need to treat the area of economic
instruments with caution. For example complex derivatives have been responsible
for the collapse of banks in the USA. This book deals with the area of understanding
economic data, modeling options, understanding economic growth, understanding
inflation, controlling inflation, optimizing a portfolio of investment assets and
modelling stock market. It also treats the area of interstate peace in promoting
economic activities.

This book gives a different perspective of econometrics.

Johannesburg, South Africa Adam Habib, Ph.D.
March 2013
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Preface

Economic Modeling Using Artificial Intelligence Methods introduces the concepts
of artificial intelligence for modeling economic data. In this book, the artificial
intelligence techniques that are used to model economic data include neural
networks, support vector machines, rough sets, genetic algorithm, particle swarm
optimization, simulated annealing, multi-agent system, incremental learning and
fuzzy networks. In addition, this book explores signal processing techniques to
analyze economic data and to deal with vital subjects such as stationarity. These
signal processing techniques are the time domain methods, time-frequency domain
methods and fractals dimension approaches.

These techniques are used to solve interesting economic problems such as
causality versus correlation, modeling the stock market, modeling inflation and
portfolio optimization. In addition, game theoretic framework is used to simulate the
stock market and control systems technique is used for inflation targeting. Finally,
an important area of the relationship between economic dependency and interstate
conflict is explored and some interesting insights on how economics can be used
to foster peace and vice versa are explored. This book specifically addresses the
issue of causality in the non-linear domain and applies the automatic relevance
determination, the evidence framework, Bayesian approach and Granger causality
to achieve this goal.

This book makes an important contribution to the area of econometrics, and is an
interesting read for graduate students, researchers and financial practitioners.

University of Johannesburg Tshilidzi Marwala
Johannesburg, South Africa
March 2013
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Chapter 1
Introduction to Economic Modeling

Abstract This chapter introduces economic modeling based on artificial
intelligence techniques. It introduces issues such as economic data modeling and
knowledge discovery, including data mining and causality versus correlation. It
also outlines some of the common errors in economic modeling with regard to data
handling, modeling, and data interpretation. It surveys the relevant econometric
methods and motivates for the use of artificial intelligence methods.

1.1 Introduction

This chapter introduces the topic of economic modeling (Baumol and Blinder 1982;
Caldwell 1994; Holcombe 1989; Lange 1945; de Marchi and Blaug 1991). In this
book, modeling is defined as the process of creating mathematical and conceptual
frameworks for describing economic phenomena. In other words, the outcome
of a modeling process, as defined in this book, is a conceptual or mathematical
framework that describes how various concepts in economics actually work. The
mechanisms, whether mathematical or conceptual, adopted in this book are based
on an artificial intelligence framework. Artificial intelligence has been successfully
applied to problems such as missing data estimation (Marwala 2009), engineering
(Marwala 2010), political science (Marwala and Lagazio 2011a) and condition
monitoring (Marwala 2012).

In this book, we define artificial intelligence techniques as mathematical or
conceptual processes that are inspired by how nature works. For example, in
describing how the gross domestic product is influenced by variables such as
average educational levels and international trade volume, we could use a neural
network which is based on how a human brain works, to construct a mathematical
model that will relate these variables to the gross domestic product. This book will
follow this line of thinking, of applying artificial intelligence methods, to describe
how various aspects of the economy actually work.

T. Marwala, Economic Modeling Using Artificial Intelligence Methods, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-4471-5010-7 1,
© Springer-Verlag London 2013
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1.2 Economic Concepts

In this section we describe various economic matters that are addressed in this book,
and these include the stock market, options, derivatives, industrialization, economic
development and political stability.

1.2.1 Stock Market

One important component of the economy that is considered in this chapter is the
stock market (Hamilton 1922; Preda 2009). When companies are listed in the stock
market, their net worth is calculated and part of the company is offered to the public
to buy shares of that company. This instrument of listing a company in the stock
market and thus allowing the public to buy shares in the company is vital for a
company to be able to raise financial capital. One additional element that comes
about as a result of publicly trading shares is that the price of the stock can end up
not reflecting the intrinsic value of the shares. This may result in the over-pricing
or underpricing of stock as a result of the lack of knowledge of the real value of
stock. For a trader in the stock market, whose primary objective is to maximize
financial returns, it is important for there to be instruments that would enable the
trader to be able to predict the future price of stocks. In this book, we apply artificial
intelligence to predict the future prices of stocks. Applying artificial intelligence
techniques for stock market prediction has been conducted quite extensively in the
past by practitioners such as Lunga and Marwala (2006), Leke and Marwala (2005)
as well as Khoza and Marwala (2011).

1.2.2 Options and Derivatives

As described by Pires and Marwala (2004, 2005), many corporations and companies
are exposed to risk in many ways. If a firm’s business model is based on exports,
then it is exposed to the volatility of the exchange rate. For instance, a diamond
mining company is exposed to risk from the diamond price because if the diamond
price drops then the mining concern can lose money. Corporations seek to protect
themselves from this risk and so what they normally do is that they enter into an
agreement to sell diamond at a particular fixed exchange rate and diamond price
for the future months. This contract is fixed and the company will neither make nor
lose any extra money. The two contracts, the company takes, are known as futures
contracts. Because the contract doesn’t permit the owner to require any additional
money if diamond price increases or the exchange rate weakens, then the company
doesn’t pay a premium for the contracts. This reduction of risk is called hedging
(Ross et al. 2001).
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Another mechanism in which companies hedge against this risk is by acquiring
options. An option is the right, not the obligation, to buy or sell an underlying asset
at a later date, which is called maturity date, by fixing the price of the asset at the
present time (Hull 2003). An option that affords the owner the right to buy the asset
is called a call option and an option that affords the owner the right to sell the asset
is called a put option.

There are two types of options and these are European and American styled
options. European options are exercised on the maturity date and American options
are exercised on any date leading up to the maturity date. In the example above, with
the diamond mining company, the company could buy a commodity put option,
permitting the company to sell diamond at a particular price at a fixed time and
purchase an exchange rate call option permitting the company to trade at a particular
exchange rate at a later date. Options differ from futures in that the owner of the
option is offered the right and not the obligation to exercise and thus make them
valuable and so companies can benefit from favourable situations in the market
and still protect themselves from unattractive effects in the market. The difference
between futures and options is that if an unwanted state of affairs happens, then
the owner loses the premium that was paid to buy the option. Because of this
reason, options are acquired at a premium and there is difficulty identifying the
value of this premium. Black and Scholes (1973) formulated a model for pricing
options but the difficulty with their model was that it was only applicable for pricing
European options (Hull 2003). American options are more difficult to price (Hull
2003) because there is a second random process in the contract because it is not
known when the option will be exercised and thus offers the owner of the option an
extra level of flexibility (Jarrow and Turnbull 2000).

1.2.3 Economic Development

In this chapter we apply the concept of a developmental state to understand
economic development. In order to understand the concept of a developmental state,
it is important to highlight some of the characteristics of a developmental state
(Thompson 1996; Woo-Cumings 1999). Developmental states generally put strong
emphasis on technical education and the development of numeracy and computer
skills within the population. This technically oriented education is strategically used
to capacitate government structures particularly the bureaucracy. What emerges
out of this strategy is that the political and bureaucratic layers are populated
by extremely educated people who have sufficient tools of analysis to be able
to take leadership initiatives, based on sound scientific basis, at every level of
decision making nodes within the government structure. Developmental states
have been observed to be able to efficiently distribute and allocate resources and,
therefore, invest optimally in critical areas that are the basis of industrialization
such as education. The other characteristic that has been observed in successful
developmental states is economic nationalism and emphasis on market share over
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profit. They protect their embryonic domestic industries and focus on aggressive
acquisition of foreign technology. This they achieve by deploying their most
talented students to overseas universities located in strategic and major centres
of the innovation world and also by effectively utilizing their foreign missions
(Marwala 2006). Furthermore, they encourage and reward foreign companies that
invest in building productive capacity such as manufacturing plants with the aim
that the local industrial sector will in time be able to learn vital success factors
from these companies. On constructing a harmonious social-industrial complex,
developmental states strike a strategic alliance between the state, labour and industry
in order to increase critical measures such as productivity, job security and industrial
expansion. Even though developmental states do not create enemies unnecessarily
and do not participate in the unnecessary criticism of countries with strategic
technologies that they would like to acquire, they are, however, sceptical of copying
foreign values without translating and infusing them with local characteristics.

1.2.4 Industrialization

The objective of a developmentally oriented state is to create a society in which
the citizens are intellectually, socially, economically, and politically empowered.
In order to accomplish this objective, certain conditions need to be in place to
mobilize social, economic, and political forces to capacitate the state to stimulate
the productive forces that would ensure that this goal is achieved. One viewpoint
concerning the instrument through which these productive forces can be galvanized
is to reorient the country such that adequate productive forces are unleashed to
advance industrialization (Marwala 2005a, b; Xing and Marwala 2011).

One critical aspect of industrialization is manufacturing. Building a manufactur-
ing base in a country requires many factors to be in place such as a large number of
engineers as well as access to minerals such as copper. The goal of industrialization
is to create a country that produces goods and services with high added values.
For example, instead of exporting minerals unprocessed, people can be employed
to beneficiate these minerals and manufacture goods such as watches and thus add
economic value to the final products. The process by which countries add aggregate
economic values to the products and services they offer is directly dependant on the
level of industrialization in the country’s economy.

1.2.5 Political Stability

One important aspect of building a vital economy in a country is political stability,
which is characterized by the absence of conflict. One important characteristic of a
progressive society is a society which is situated within a state that is at peace with
itself, its neighbors, and the international community. Consequently, a democratic
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society as a matter of principle should aspire for global peace and inspire a culture
of the highest form of human development (Marwala and Lagazio 2011a).

Granted that peace is a necessary condition to construct an economically stable
society it is, consequently, important to comprehend the anatomy of militarized
interstate conflicts and use this understanding to build peaceful, stable, and eco-
nomically prosperous states in a peaceful and stable international context. The
ability to scientifically understand the causes of militarized interstate conflict and
then to apply this knowledge to build and spread peace in the international context
is indisputably an essential initiative. This book proposes an artificial intelligence
perspective to unpack some of the complex behaviours that interstate conflicts
display in order to understand the fundamental drivers of war and, therefore,
detect early instances of tensions in the international relations arena and, thereby,
maximize economic activities (Marwala and Lagazio 2011b).

When a business concern intends to invest in a country, the first criterion to
investigate is the stability of a country. Militarized interstate conflict is defined
as a threat of military conflict by a country on another (Marwala and Lagazio
2011b). This phenomenon has been modeled extensively and quite successfully
using artificial intelligence in the past. Tettey and Marwala (2006a) successfully
applied a neuro-fuzzy system for conflict management whereas Habtemariam et al.
(2005) successfully applied support vector machines for modeling and managing
militarized interstate conflict. Marwala and Lagazio (2004) successfully applied the
multi-layered neural networks and genetic algorithms to model and then control
militarized interstate disputes, while Tettey and Marwala (2006b) applied a neuro-
fuzzy system and genetic algorithms for modeling and controlling militarized
interstate disputes. On modeling militarized interstate disputes, it is often important
to extract information from the observed data in a linguistic fashion so that these can
be used for policy formulation. Tettey and Marwala (2007) applied a neuro-fuzzy
system to extract such information from a conflict dataset, while Crossingham et al.
(2008) applied optimized rough sets and standard rough sets to extract information
from an interstate conflict database.

1.3 Econometrics

Econometrics is a field that applies mathematics and statistics to study economics
(Lamy 2012; Spanos 2012; Baldauf and Santos Silva 2012). This is essentially
achieved by building mathematical models to explain economic phenomena. Sup-
pose we would like to build a model that relates car sales to inflation: this
necessarily implies that there exists a causal relationship between inflation and car
sales. Mathematically speaking, this relationship may be written as follows:

car sales D f .inflation/ (1.1)
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The function f can be models such as neural networks or even be linear or
linguistic in the case of fuzzy logic. There are three main criticisms that are leveled
at traditional econometric modeling and these are described in the next sub-sections.

1.3.1 Linear Assumptions

Traditional econometric models usually assume that relationships are linear, and
this assumption is not valid for the majority of the real world cases (Pesaran 1987;
Swann 2008). Therefore, it has become essential to build models that are non-linear
(Moffitt 1980; Adcock 1995). A neural network has been found to be useful in
modeling highly non-linear data because the order of non-linearity is derived or
learned directly from the data and not assumed as is the case in many traditional
non-linear models.

1.3.2 Static Models

Once the model in Eq. 1.1 is identified, it is generally assumed that the model is valid
for all times, which is obviously not the case. It is, therefore, important to build
a model that autonomously adapts while it is in use, and traditional econometric
techniques have not been very successful in addressing this shortcoming. With the
advent of evolutionary programming, it has become quite possible to build models
that evolve (Marwala 2005a, b; Nguyen et al. 2012). This book will also address the
issue of constructing dynamic models as opposed to building static models within
the context of economic modeling.

1.3.3 Causality Versus Correlation

The issue of causality is a problem that has concerned philosophers for many
years (Simon and Rescher 1966; Kar et al. 2011; Fallahi 2011). For example, the
relationship in Eq. 1.1 inherently assumes causality, that is, the fact that inflation
levels influence car sales. However, it might be that this is not the case and what is
really the truth is that variables inflation and car sales are just correlated. This book
will address this matter.

This book will deal with the problems of static models, linear assumptions,
and causality versus correlation problem by applying artificial intelligence which
is described in the next section.
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1.4 Artificial Intelligence

This section presents an overview of artificial intelligence techniques which are
applied for economic modeling in this book.

1.4.1 Neural Networks

One important type of artificial intelligence techniques is a neural network. Neural
networks are computational tools that may be viewed as being inspired by how
the brain functions and applying this framework to construct mathematical models.
Neural networks estimate functions of arbitrary complexity using given data.
Supervised neural networks are used to represent a mapping from an input vector
onto an output vector, while unsupervised networks are used to classify the data
without prior knowledge of the classes involved. In essence, neural networks can
be viewed as generalized regression models that have the ability to model data
of arbitrary complexities. There are many types of neural networks and the most
common neural network architectures are the multilayer perceptron (MLP) and the
radial basis function (RBF) (Bishop 1995). Neural networks have been applied
successfully in many different areas of varying complexities. Soares et al. (2006)
applied neural networks in flight control, while Shukla et al. (2012) applied neural
networks for software maintenance. Xing et al. (2010) applied neural networks
for machine clustering while Nelwamondo et al. (2009) applied neural networks
and dynamic programming for missing data estimation in biomedical applications.
Because of these extensive successes of neural networks, this book will apply neural
networks for modelling economic data.

1.4.2 Support Vector Machines

Support vector machines are supervised learning approaches used largely for classi-
fication, and originated from statistical learning theory and were first introduced by
Vapnik (1998). The use of support vector machines to model complex systems has
been a subject of research for many years. Successful implementations of support
vector machines to model complicated systems include Marwala et al. (2007)
who applied this method for damage detection in structures, Msiza et al. (2007)
who applied this method for forecasting the water demand time series, as well as
Patel and Marwala (2009) who applied support vector machines for caller behavior
classification. Due to these successful applications of support vector machines, this
book also applies support vector machines for modelling economic data.
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1.4.3 Autoassociative Networks

An auto-associative network is a model that is trained to recall its inputs. These
networks are sometimes called auto-encoders or memory networks (Kramer 1992;
Fu and Yan 1995; Marseguerra and Zoia 2006; Marwala 2012; Turova 2012).
This means that, whenever an input is presented to the network, the output is
the predicted input. These networks have been used in a number of applications
including novelty detection, feature selection, and data compression. In this book,
we propose to use auto-associative networks to construct a missing data estimation
technique predictive system, which was described by Marwala (2009). Auto-
associative networks have been applied successfully in many diverse areas such as
HIV modelling (Leke et al. 2006), damage detection in structures (Zhou et al. 2011),
and for predicting internet stability (Marais and Marwala 2004).

1.4.4 Rough Sets

Rough set theory, which was proposed by Pawlak (1991), is a mathematical method
which models vagueness and uncertainty. It allows one to approximate sets that are
difficult to explain even with accessible information (Marwala 2012). As observed
by many researchers in the past, the advantages of rough sets, as with many
other artificial intelligence methods, are that they do not require inflexible a priori
assumptions about the mathematical characteristics of such complex relationships,
as generally required for the multivariate statistical methods (Machowski and
Marwala 2005; Crossingham et al. 2009; Marwala and Lagazio 2011a). Rough set
theory is premised on the assumption that the information of interest is associated
with some information from its universe of discourse (Crossingham and Marwala
2007, 2009; Marwala and Crossingham 2008, 2009; Marwala 2012). This technique
is useful in that unlike neural networks, for example where the identified model
is a strictly mathematical concept, in rough sets method the identified model that
describes the data is in terms of natural language. Because of this reason, rough sets
are useful in economics because they in a sense represent a formal technique for
knowledge extraction from data.

1.4.5 Incremental Learning

Incremental learning methods are approaches that are able to learn incre-
mentally. Incremental learning is suitable for modelling dynamically time-varying
systems where the operating conditions change with time (Pang et al. 2012;
Clemente et al. 2012; Khreich et al. 2012). It is also suitable when the data set
accessible is inadequate and does not completely characterize the system (Marwala
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2012; Cavalin et al. 2012; Martı́nez-Rego et al. 2012; Li et al. 2012a). Another
advantage of incremental learning is that it can take into account the new conditions
that may be presented by the newly acquired data. For example, suppose a model
for predicting inflation is built, the concept of incremental learning can be applied
so that every month when new inflation data set comes out, the model is updated
without having to reconstruct it entirely. In this book we apply incremental learning
techniques that are based on ensemble methods.

Ensemble learning is a method where multiple models are identified and com-
bined to solve a specific problem (Rogova 1994; Polikar 2006). Ensemble learning
is usually applied to increase the performance of a model (Zhang et al. 2012a; Li
et al. 2012b; Hu et al. 2012; Ñanculef et al. 2012). In this book, ensemble based
methods are applied for incremental learning in the modeling of economic data.

1.4.6 Multi-agent Systems

Agents are computer systems that are located in specific environments and are
capable of autonomous action in this environment with the aim of meeting its
objectives (Marivate et al. 2008; Wooldridge 2004; Baig 2012; Hu 2012). Intelligent
agents are agents that are capable of reacting to changes in their environment
and they possess social ability such as communication, as well as interaction
and the ability to use artificial intelligence to achieve their objectives by being
proactive (Wooldridge 2004; Rudowsky 2004; Zhang et al. 2012b). Agents are
active, modeled to achieve specific tasks, and are able to autonomously act and
take decisions (Hu 2012; Chen and Wang 2012). In an object oriented framework,
objects are passive, non-oriented and modeled to represent things (Weisfeld 2009;
Schach 2006; Abadi and Cardelli 1998). Consequently, the agent modeling method
can be viewed as a more powerful manifestation of localized computational units
that execute definite tasks while objects model real-world “things” with particular
characteristics. A multi-agent system (MAS) is a combination of multiple agents in
one system to solve a problem (Baig 2012). These systems have agents that are able
to solve problems that are simpler than the total system. They can communicate with
one another and support each other in realizing larger and more complex objectives
(Hurwitz and Marwala 2007; van Aardt and Marwala 2005). Multi-agent systems
have been applied in simulating trading systems (Mariano et al. 2001) and industrial
automation (Wagner 2002).

1.4.7 Genetic Algorithms

The genetic algorithm approach is a population-based, probabilistic method that is
intended to identify a solution to a problem from a population of possible solutions
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(Velascoa et al. 2012; Goyal and Aggarwal 2012). It is inspired by Darwin’s theory
of natural evolution where the principle of ‘the survival of the fittest’ applies and
members of the population compete to survive and reproduce while the weaker
ones disappear from the population (Darwin 1859). Each individual is allocated
a fitness value in accordance to how well it achieves the aim of solving the problem.
New and more evolutionary fit individual solutions are created during a cycle of
generations, where selection and re-combination operations, analogous to gene
transfer are applied to the current individuals. This continues until a termination
condition is satisfied. Genetic algorithms have been applied successfully in many
areas such as engineering (Marwala 2002), control systems (Marwala 2004), and
condition monitoring of buildings (Marwala and Chakraverty 2006).

1.4.8 Particle Swarm Optimization

The particle swarm optimization (PSO) method was proposed by Kennedy and
Eberhart (1995). This technique was inspired by algorithms that model the “flocking
behavior” seen in birds. Researchers in artificial life (Reynolds 1987; Heppner
and Grenander 1990) developed simulations of bird flocking. In the context of
optimization, the concept of birds finding a roost is analogous to a process of finding
an optimal solution. PSO is a stochastic, population-based evolutionary algorithm
that is extensively used for the optimization of complex problems (Marwala 2010).
It is based on socio-psychological principles that are inspired by swarm intelligence,
which gives understanding into social behavior and has contributed to engineering
applications. Society enables an individual to influence and learn to solve problems
by communicating and interacting with other individuals and, in that way, develop
similar approach of solving problems. Thus, swarm intelligence is driven by two
factors (Kennedy and Eberhart 1995; Marwala 2009, 2010, 2012):

1. Group knowledge.
2. Individual knowledge.

Each member of a swarm always behaves by balancing between its individual
knowledge and the group knowledge.

1.4.9 Control Systems

A control system is essentially a procedure where the input of a system is
manipulated to obtain a particular desired outcome (Marwala and Lagazio 2004;
Boesack et al. 2010; Zhu et al. 2012). To realize this, a model that describes
the relationship between the input and the outcome needs to be identified. For
example, suppose we have a model that describes the relationship between the
growth domestic product (GDP) and the interest rate to the inflation rate. Such a
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relationship can be identified using various methods such as neural networks. After
this model that predicts inflation rate given the interest rate and GDP has been
identified, the following stage is to apply a control system to identify the interest rate
that gives the desired inflation rate. This involves an optimization procedure such
as genetic algorithms or particle swarm optimization. In economics, this process
is called inflation targeting. Control techniques have been applied successfully
in many diverse fields such as brewing (Marwala 2004), water supply systems
(Wu et al. 2012), and political science (Marwala et al. 2009).

1.5 Common Mistakes in Data Modeling

The prospect of artificial intelligence for application in economic modeling has been
apparent to virtually everyone to have even experimented in the fields since their
inception. Efforts to make such artificial intelligence applications accepted within
the economic modeling space have generally been unsuccessful, and not without
justifications. Mistakes have continued to give knowledge and theories that have
passed superficial academic enquiry, but have demonstrated to be unsuccessful when
applied to actual real world data. As identified by Hurwitz and Marwala (2012), a
number of common mistakes will be probed, demonstrating how they frequently
slip past cursory academic inquiry, and then displaying how they fail when applied
to actual real data and why. It is intended that with attention paid to common
shortcomings, researchers can circumvent these drawbacks and improve the uses
of these methods within the economic modeling arena. Even though many of these
errors overlap in individual implementations, this chapter intends to tackle them on
an individual basis in order to more easily circumvent these mistakes in the future.

1.5.1 Insufficient Datasets

According to Hurwitz and Marwala (2012), conventional trading strategies are
complicated systems, usually entailing a cycle of prediction, evaluation, feedback,
and recalibration when designed. The cycle contains a feedback element but not
necessarily the predictive technique. This cycle comprises the designer predicting
price movements then evaluating trades based on price movements. The intention
for recalibration feedback going into both prediction and evaluation instruments is
that in many more complex systems the actual trading based on the predictions will
be updated, as well as the predictions themselves. Because of this cycle, it becomes
essential to have a strictly unseen set of data to evaluate performance. Normally,
trading systems use a training data set and a verification data set (de Oliveira et al.
2011; Lam 2004; Kim 2002; Bao and Yang 2008) and this is not adequate, as neither
the predictive system nor the evaluation system ever see the second set of data
during the optimization phase. This is nevertheless inadequate, as the calibration
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of the training system is conducted with the results of the verification set taken into
account, necessitating a totally unseen validation set to be used so as to validate if
the system is truly generalizing. Overlooking this critical phase can give a system
result that has merely been tweaked by the designer to fit the specific data, without
essentially being able to function correctly in a general setting. The results will
obviously appear satisfactory as the system has been calibrated precisely to fit the
data being used even while the designer has not planned this to be the case. In the
case that the trading mechanism is revisited after the validation set has been utilized,
a new set of unseen validation data must be achieved.

1.5.2 Inappropriate Scaling

As identified by Hurwitz and Marwala (2012), this error is characterized by
expressing the normally large target values of the predicted variable as its actual
value (Kaastra and Boyd 1996), instead of scaling the data to some appropriate level
within (or near) the range of the training data. The justification is to offer a precise
understanding of the actual target values.

The actual data and the predicted data will appear to be close in the initial
prediction, but experience difficulty to reach the higher values in the range for
the later values. The actual errors in this initial prediction will obviously be very
low, being underestimated by the scale of the data, despite their being fairly clearly
unusable for any undertaking that necessitates the prediction. Actually, the errors
characteristic of the system are frequently hidden by using unsuitable measures of
accuracy or performance. It is actually far more risky to commit this error if the
target data is reasonably bounded, as the evident lack of fit will not be obvious, and
what is in effect an unusable prediction can certainly be confused for a performing
predictive system, and leads to all the dangers characteristic in trading upon poor
information.

The reason for this discrepancy is the high quantitative value of the predictive
results, which offer a low registered error for what is really a large trading error.
Considering a prediction for a given input–output set with the correct value being
1,025 and the system’s predicted value being 1,010. The actual error in root mean
squares (RMS) terms is small, while the effect on predictions is actually quite
high, considering a daily expected fluctuation of approximately 15 cents, which
explains why an error that appears so small is actually significant enough to render
a predictive system unusable. The clear recommendation is to first pre-process the
data and as part of that process to scale the data. Depending on the nature of the
historical share price fluctuations, a scaling factor of anything from the maximum
historical price recorded to a fractional amount larger than the maximum historical
price can be applied. It is recommended, even though not necessarily relevant to this
particular error that one also scales input data for ease of training and convergence.
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1.5.3 Time-Series Tracking

This error occurs in time series modeling where the predictive system predicts the
previous day’s price as the present price which satisfies the error minimization
function’s requirement (Hurwitz and Marwala 2012). This error emanates when an
attempt is made to do an exact price prediction based upon the time-series data of
historical prices of the self-same share. Unfortunately, any trading based upon such a
system is completely unusable as it cannot ever predict an accurate price movement
unless by some coincidence every single day’s new close is the same as that of the
day before. To avoid this error, it is then necessary for the user to reconsider the
input–output pairs for the system to learn from and consider change in prices as an
output rather than the price itself. When trading, the direction of price movement is
actually far more important than the precise amount, and this distinction is critical
if a trading system is to be successful.

1.5.4 Inappropriate Measures of Performance

The problem here lies not with the measurements themselves, but rather on the
reliance on them for validating the success of a trading system. These methods often
obscure problems in the system design by looking like successful computational
intelligence systems by the standard computational measures (Hurwitz and Marwala
2012). This includes graphs of receiver operating characteristics (ROC) curve and
other typical computational measures of performance. If any of the preceding errors
had been made, they would not be detected by the usual performance measures
since they only measure the performance of the system based on the given input and
output values. This is a dangerous error to commit, as the system is still concealing
any mistakes made, but the user is satisfied to carry on, secure in the success of the
system, verified by an inappropriate measure of performance. Dependence on these
measures arises naturally to users in this field as they form the benchmark of most
computational intelligence and machine learning approaches, and are, therefore,
likely to be utilized almost out of practice.

Instead of the above, the user should set up a trading simulator, and apply the
designed predictor to simulate trading based on its predictions. By performing actual
trades based upon the predictions, many of the errors described will be quickly
identified, as the actual trading results will be poor, or at best highly erratic. The
nature of the errors will often become apparent when measuring performance in
this manner, matching those described within each section, making it a much more
useful measure of performance both during and after the system design process.
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1.6 Data Handling

There are many ways in which economic data can be handled when used in
economic modeling. The choices on how economic data are handled sometimes
have effects which artificial intelligence modeling method to be used. In this section,
we describe three domains that could be used to model economic data and these are
time, frequency and time-frequency domains.

1.6.1 Time Domain Analysis

Time domain data is un-processed data taken over a time history. For example, if
we consider GDP data as a function of time, this will be said to be in the time
domain. From this data in the time domain, essential statistical features such as
means, variance, Kurtosis can be extracted (Marwala 2012). Normally when these
data are used, some of the statistical analysis such as variance and means are
used. Lima and Xiao (2007) used economic data in the time domain to evaluate
whether shocks last forever while Kling and Bessler (1985) compared multivariate
forecasting procedures for economic time series analysis. Bittencourt (2012) studied
the inflation and economic growth in Latin America in the time domain, while
Greasley and Oxley (1998) compared British and American economic and industrial
performance between years 1860 and 1993 in the time domain. Even though
studying economic phenomena in the time domain is useful, it is sometimes
necessary to study economic data in the frequency domain which is described in
the next section.

1.6.2 Frequency Domain

The measured economic data in the time domain (time series) can be transformed
into the frequency domain using Fourier transforms (Fourier 1822). As an example,
the GDP versus time data can be transformed into the frequency domain using
the Fourier transform and then this signal can be represented in magnitude and
phase versus frequency data. The data in the frequency domain will have a series
of peaks and troughs with each peak corresponding to the frequency of each cycle
that makes the data. McAdam and Mestre (2008) evaluated macro-economic models
in the frequency domain, while Tiwari (2012) conducted an empirical investigation
of causality between producers ‘price and consumers’ price indices in Australia
in the frequency domain. Gradojevic (2012) applied frequency domain analysis to
study foreign exchange order flows while Grossmann and Orlov (2012) studied the
exchange rate misalignments in the frequency domain.
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1.6.3 Time-Frequency Domain

Most economic data are highly non-linear and non-stationary signals. None station-
ary signals are those whose frequency components change as a function of time
(Larson 2007; Marwala 2012). To analyze non-stationary signals, the application of
the Fast Fourier Transform method is not satisfactory. Consequently, time-frequency
methods that concurrently display the time and frequency components of the signals
are essential. Some of the time-frequency methods that have been used are: the
Short-Time Fourier Transform (STFT), Wavelet Transform (WT) and Wigner-Ville
Distribution (WVD). Gallegati (2008) applied wavelet analysis in stock market
analysis, while Yogo (2008) applied wavelet analysis for measuring business cycles.
Furthermore, Benhmad (2012) applied wavelet analysis for modeling nonlinear
Granger causality between the oil price and the U.S. dollar.

1.7 Outline of the Book

In Chap. 2, data modeling techniques in economic modeling are studied. These
methods include concepts such as mean, variance and fractals and how these
vital concepts are applied to economics. Frequency and time-frequency analysis
techniques are also studied.

Chapter 3 introduces the Bayesian and the evidence frameworks to construct an
automatic relevance determination method. These techniques are described in detail,
relevant literature reviews are conducted and their use is justified. The automatic
relevance determination technique is then applied to determine the relevance of
economic variables that are essential for driving inflation rate. Conclusions are
drawn and are explained within the context of economic sciences.

Chapter 4 describes the multi-layered perceptron, radial basis functions, and
support vector machines and apply these to economic modeling. The maximum-
likelihood techniques are implemented to train these networks.

Chapter 5 introduces Bayesian support vector machines and multi-layer pere-
ceptron for option pricing. European styled options can be priced using the
Black-Scholes equation and are only exercised at the end of the period but American
options can be exercised at any time during the period and are, therefore, more
complex due to the second random process they introduce. These techniques are
implemented using a Bayesian approach to model American options and the results
are compared.

Chapter 6 introduces a rough set approach to economic modeling. A rough set
theory based predictive model is implemented for the financial markets. The theory
can be used to extract a set of reducts and a set of trading rules based on trading data.

Chapter 7 introduces an autoassociative network, with optimization methods,
for modeling economic data. The autoassociative network is created using the

http://dx.doi.org/10.1007/978-1-4471-5010-7_2
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http://dx.doi.org/10.1007/978-1-4471-5010-7_7
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multi-layered perceptron network while the optimization techniques which are
implemented are genetic algorithms, particle swarm optimization, and simulated
annealing. The results obtained for modeling inflation are then compared.

Chapter 8 explores the issue of treating a predictive system as a missing data
problem, that is, correlation exercise and compares it to treating it as a cause and
effect exercise, that is, feed-forward network. An auto-associative neural network
is combined with a genetic algorithm and then applied to missing economic data
estimation. The results of the missing data imputation approach are compared to
those from a feed-forward neural network.

Chapter 9 examines the use of a genetic algorithm in order to perform the task of
constantly rebalancing a portfolio targeting specific risk and return characteristics.
Results of targeting both the risk and return are investigated and are compared as
well as optimizing the non-targeted variable in order to create efficient portfolios.

Chapter 10 introduces real-time approaches to economic modeling. This chapter
assumes that a complete model is the one that is able to continuously self-adapt to
the changing environment. In this chapter, an incremental algorithm that is created
to classify the direction of movement of the stock market is proposed and applied.

Chapter 11 introduces multi-agent approaches within game theoretic framework
and applies this to model a sock market. This multi-agent system learns by using
neural networks and adapts using genetic programming.

Chapter 12 applies control approaches to economic modeling and applies this
to inflation targeting. In this chapter, a control system approach that is based on
artificial intelligence is adopted to analyze the inflation targeting strategy.

Chapter 13 explores the role of trade in maintaining peace and, therefore,
healthy economic activities. This is done by constructing the relationship between
independent variables Allies, Contingency, Distance, Major Power, Capability,
Democracy as well as Dependency which indicates inter-country trade and the
dependent variable Interstate Conflict.

In Chap. 14 conclusions are drawn and future and emerging areas in economic
modeling are identified and emerging opportunities are drawn.

1.8 Conclusions

This chapter introduced economic modeling based on artificial intelligence meth-
ods. It introduced issues such as economic data handling and modeling as well
as prediction, knowledge discovery including data mining, and causality versus
correlation. It also outlined some of the common problems in economic modeling
with regards to data handling, modeling, and data interpretation. It surveyed the
relevant econometric methods and motivated for the use of artificial intelligence
methods.
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Chapter 2
Techniques for Economic Modeling: Unlocking
the Character of Data

Abstract In this chapter techniques for understanding economic data are described.
These methods include measures such as the mean, variance, kurtosis, fractals,
stationarity, frequency and time-frequency analysis techniques as well as their
applications to the understanding economic data.

2.1 Introduction

The widespread availability of economic data has prompted researchers and prac-
titioners to device ways of analyzing these data sets. Some of these data sets are
estimated such as the inflation rate or they are priced by the market such as a trading
share price. Data analysis is an area that has been around for a long time. Some of
the techniques that have been used for estimation, like averages, are now so common
that they are used as part of the normal daily conversation lexicology.

The conclusions that are drawn from these data and the statistical parameters
that are derived are far reaching. For example, the conclusions that are drawn from
the average changes of prices in an economy, also called inflation rate, are used to
negotiate salary increases by unionized workers. The implication of a miscalculation
of this very vital parameter is far reaching for the workers and the general economy
of a country.

Recently, researchers and practitioners have developed decision making tools
that are used to assist decision makers make their decisions. For example, a stock
trader no longer has to necessarily visually look at complicated charts in order to
make his or her decision. Instead, they can use a neural network that is able assist
them in making a decision. Of course, this depends on the availability of data and
an effective way of handling such data.

Normally before a piece of data is used, it is important to process it. For example,
if we were to analyze a time history for the past 50 years of an economy of
a particular country, sometimes it is not enough to just calculate the average or
variance or any other statistical parameter of this time history. In such a situation,
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it might be more advisable to take the time data and convert it into the frequency
domain because vital features would be revealed in the frequency domain rather
than in the time domain.

This chapter gives a brief account of some of the techniques that are used to
analyze data. We consider four domains, where we can analyze economic data and
these are time, frequency, time-frequency and fractal domains. In the time domain or
the so-called time series framework, we apply statistical concepts of mean, variance
and kurtosis to analyze the data. In the frequency domain we use both the Fourier
transform to analyze the data; in the time-frequency domain we apply wavelets to
analyze the data while in the fractal domain we use the Hurst dimension to analyze
the data. Another important factor is the characterization of the stationarity of data.
Data is stationary if its characteristics are not changing as a function of time. In this
regard, we apply the variance ratio test to characterize the stationarity of the data.

2.2 Time Domain Data

Data can be presented in the time domain which is what makes it known as time
series data. In this domain, data is presented as a function of time. For example, we
could present the quarterly GDP of the United States from 1 January 1947 to 1 April
2012 as shown in Fig. 2.1. From this figure, it can be observed that the GDP has
been consistently growing during the specified time period. From this data, several
statistical parameters can be derived and we pay attention to the average, variance
and kurtosis.

The data in Fig. 2.1 can be expressed in terms of percentage change of GDP and
this is shown in Fig. 2.2.

2.2.1 Average

The average is the measure of the central tendency of data. For N data points, the
average Nx of series x1; x2; : : : ; xN can be calculated as follows (Hand 2008):

Nx D 1

N

NX

i

xi (2.1)

Ni et al. (2013) studied the variable length moving average trading rules and
its impact on a financial crisis period, while Pavlov and Hurn (2012) tested the
profitability of moving-average rules as a portfolio selection strategy and found that,
for a wide range of parameters, moving-average rules generate contrarian profits.
Chiarella et al. (2012) applied moving averages successfully in a double auction
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Fig. 2.1 The quarterly GDP of the United States from 1947 to 2012

Fig. 2.2 The percentage change of GDP of the United States from 1947 to 2012
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Fig. 2.3 The 6 time unit moving average of the percentage change of GDP of the United States
from 1947 to 2012

market. The data in Fig. 2.2 can be further processed by calculating the 6 time unit
moving average of the percentage change of GDP and the results in Fig. 2.3 are
obtained.

2.2.2 Variance

Variance is the measure of the spread of the data. It is calculated by finding the
difference between the average value of the sum-of-squares and the square of the
sum of averages, which can be written as follows (Hand 2008):

Varx D 1

N

NX

i

.xi /
2�
 

1

N

NX

i

.xi /

!2

(2.2)

Variance has been used to estimate volatility of a stock market. Uematsu et al.
(2012) estimated income variance in cross-sectional data whereas Chang et al.
(2012) applied variance to estimate the rise and fall of S&P500 variance futures.
Clatworthy et al. (2012) applied the variance decomposition analysis to analyze the
relationship between accruals, cash flows and equity returns. The data in Fig. 2.2
can be transformed into the 6 time unit moving variance and this result is shown in
Fig. 2.4.
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Fig. 2.4 The 6 unit period moving variance of the percentage change of GDP of the United States
from 1947 to 2012

From this figure, it can be observed in the earlier years the growth of the GDP
was more volatile than in later years.

2.2.3 Kurtosis

There is a need to deal with the occasional spiking of economic data and to achieve
this task, Kurtosis is applied. Diavatopoulos et al. (2012) used Kurtosis changes
to study the information content prior to earnings announcements for stock and
option returns. They observed that changes in Kurtosis predict future stock returns.
Some other applications of Kurtosis include in portfolio rankings (di Pierro and
Mosevichz 2011), hedging (Angelini and Nicolosi 2010), and risk estimation (Dark
2010). The calculated Kurtosis value is typically normalized by the square of the
second moment. A high value of Kurtosis indicates a sharp distribution peak and
demonstrates that the signal is impulsive in character. Kurtosis can be written as
follows (Hand 2008):

K D 1

N

NX

iD1

.xi � Nx/4

�4
(2.3)

where Nx is the mean and ¢ is the variance (Fig. 2.5).
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Fig. 2.5 The 6 unit period moving kurtosis of the percentage change of GDP of the United States
from 1947 to 2012

2.3 Frequency Doman

The roots of the frequency domain are in the Fourier series, which basically states
that every periodic function can be estimated using a Fourier series. This Fourier
series is in terms of sine and cosine. This in essence implies that each signal is
represented in terms of a series of cycles with different amplitudes and frequencies.
Within the economic modeling perspective this implies that we are representing an
economic time series as a superposition of cycles. The function f (x) can be estimated
using the Fourier series and this is written as follows (Moon and Stirling 1999):

f .x/ � a0

2
C

NX

nD1

.an cos.nx/C bn sin.nx//; N � 0 (2.4)

where

an D 1

�

Z �

��

f .x/ cos.nx/dx; n � 0 (2.5)
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Fig. 2.6 The Fourier series reconstruction of the percentage change of GDP of the United States
from 1947 to 2012 (Key: x: 10 terms, o: 100 terms)

and

bn D 1

�

Z �

��

f .x/ sin.nx/dx; n � 1 (2.6)

The estimation procedure outlined in Eqs. 2.4, 2.5, and 2.6 can be used to
estimate Fig. 2.2 and this is shown in Fig. 2.6.

The representation of a signal using sine and cosine functions necessarily implies
that a time domain signal can be transformed into the frequency domain. This can
be achieved by applying the fast Fourier transform (FFT), which is essentially a
computationally efficient technique for calculating the Fourier transform through
exploiting the symmetrical relationship of the Fourier transform. If the FFT is
applied to the function, x(t), can be written as follows (Moon and Stirling 1999):

X.!/ D 1

2�

Z 1

�1
x.t/e�i!t dt (2.7)

where ! is the frequency and t is the time. This relationship can be written as follows
in the discrete form:

Xk D
N �1X

nD0

xne�i2�k n
N ; k D 0; : : : ; N � 1 (2.8)
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Fig. 2.7 The magnitude and phase from the percentage change of GDP of the United States from
1947 to 2012

The Fourier transform of the signal in Fig. 2.2 is expressed in Fig. 2.7. In this
figure, the peaks in the magnitude plot correspond to the cycles and since here
we are dealing with an economic data it corresponds business cycle. The phase
plot indicates the time lag associated with the magnitude. Grossmann and Orlov
(2012) applied frequency domain methods to study exchange rate misalignments.
They considered the deviations of Canadian, Japanese, and British spot exchange
rates against the US dollar. The results showed that the Plaza Accord and the
Euro introduction reduced the volatility of the exchange rate misalignments and
extra returns for the Yen and the Pound along nearly all frequency components
considered. Tiwari (2012) applied frequency domain methods to study causality
between producers’ price and consumers’ price indices in Australia. The results
obtained indicated that consumer price causes producer price at middle frequencies
reflecting medium-run cycles, while producer price does not cause consumers price
at any frequency. Shahbaz et al. (2012) applied the frequency domain methods
to study causality between the Consumer Price Index (CPI) and the Wholesale
Price Index (WPI). They observed one directional causal link from the CPI
to WPI that varies across frequencies, that is, CPI Granger-causes WPI at all
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frequencies. Gradojevic (2012) applied frequency domain techniques to analyze
foreign exchange order flows. The results indicated that causality depended on the
customer type, frequency, and time period.

2.4 Time-Frequency Domain

Time-frequency techniques are methods where it is possible to see what is going on
in both the time and frequency domains at the same instance. There is a number of
time-frequency techniques and these include Short-time Fourier transform, Wavelet
transform, Bilinear time-frequency distribution function (e.g. Wigner distribution
function), modified Wigner distribution function, and Gabor–Wigner distribution
function (Goupillaud et al. 1984; Delprat et al. 1992; Cohen 1995; Flandrin
1999; Papandreou-Suppappola 2002). In this chapter, we apply wavelet analysis
to characterize an economic data in Fig. 2.2. There are many types of wavelets that
can be used to analyze a signal and this chapter concentrates on the Morlet type
(Chui 1992; Kingsbury 2001).

Zheng and Washington (2012) studied the choice of an optimal wavelet for
detecting singularities in traffic and vehicular data. They found that choosing an
appropriate wavelet mainly depends on the problem at hand and that the Mexican
Hat wavelet offered an acceptable performance in detecting singularities in traffic
and vehicular data. Ćmiel (2012) applied the wavelet shrinkage technique to
estimate Poisson intensity of the Spektor-Lord-Willis problem. They found that
the adaptive estimator gave the optimal rate of convergence over Besov balls to
within logarithmic factors. Caraiani (2012) applied wavelets to study the properties
of business cycles in Romania between 1991 and 2011 by analyzing the relationship
between output and key macroeconomic variables in time and frequency. The results
demonstrated that it is possible to separate the influence of definite events. Haven
et al. (2012) applied wavelets to de-noise option prices. They demonstrated that the
estimation of risk-neutral density functions and out-of-sample price forecasting is
significantly improved after noise is removed using the wavelet method. Svensson
and Krüger (2012) applied the wavelet method for analysing the mortality and
economic fluctuations of Sweden between 1800, whereas Dajcman et al. (2012)
successfully applied wavelets to analyze European stock market movement dynam-
ics during financial crises and Hacker et al. (2012) successfully applied wavelets to
study the relationship between exchange rates and interest.

In this chapter, we apply the Morlet wavelet which is a wavelet with a complex
exponential multiplied by a Gaussian window. It has its roots in the Gabor transform,
which applies concepts from quantum physics and Gaussian-windowed sinusoids
for time-frequency decomposition and give the best trade-off between spatial and
frequency resolution (Connor et al. 2012; Tao and Kwan 2012; Fu et al. 2013;
Gu and Tao 2012; Agarwal and Maheshwari 2012). Goupillaud et al. (1984)
adapted the Gabor transform to maintain the same wavelet shape over equal
octave intervals, resulting in the continuous wavelet transform. The Morlet wavelet
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has been successfully applied before in a number of areas such as in analyzing
earthquake ground motion (Shama 2012), simulating vehicle full-scale crash test
(Karimi et al. 2012), seizure detection (Prince and Rani Hemamalini 2012), texture
analysis for trabecular bone X-ray images (El Hassani et al. 2012), and fault
diagnosis in rolling element bearing (Zhang and Tan 2012). The Morlet wavelet
is described mathematically as follows (Goupillaud et al. 1984):

ˆ� .t/ D c� �� 1
4 e� 1

2 t2 �
ei� t � ��

�
(2.9)

Here �� D e� 1
2 �2

and is called the admissibility criterion while the normalization
constant is:

c� D
�
1C e��2 � 2e� 3

4 �2
�� 1

2
(2.10)

The Fourier transform of the Morlet wavelet can be written as follows
(Goupillaud et al. 1984):

ˆ� .!/ D c� �� 1
4

�
e� 1

2
.��!/2 � �� e� 1

2 !2
�

(2.11)

The variable � permits the trade-off between time and frequency resolutions. The
results obtained when the Morlet wavelets are used to analyze Fig. 2.2 are shown in
Fig. 2.8.

2.5 Fractals

Fractal analysis is a method of defining complex shapes and numerous techniques
for estimating fractal dimensions have been proposed (Marwala 2012). As described
by Lunga (2007) and Lunga and Marwala (2006), fractal dimensions of an object
are an indicator of the degree to which the object occupies space. Alternatively, a
fractal dimension of a time series expresses how turbulent the time series is and also
quantifies the extent to which the time series is scale-invariant (Lunga and Marwala
2006; Lunga 2007). The technique applied to approximate fractal dimensions using
the Hurst exponent for a time series is known as the rescaled range (R/S) analysis
and was proposed by Hurst (1951).

Lunga and Marwala (2006) successfully applied time series analysis applying
fractal theory and online ensemble classifiers to model the stock market, while
Nelwamondo et al. (2006a) applied fractals successfully for early classifications of
bearing faults. Nelwamondo et al. (2006b) applied a multi-scale fractal dimension
for speaker identification systems, while Nelwamondo et al. (2006c) applied fractals
for improving speaker identification rates.
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Fig. 2.8 The wavelet transform of the percentage change of GDP of the United States from 1947
to 2012

Kristoufek (2012) studied the influence of the fractal markets hypothesis for
liquidity and investment horizons on predictions of the dynamics of the financial
markets during turbulences such as the Global Financial Crisis of late 2000s.
They observed that fractal markets hypothesis predicted the observed characteristics
sufficiently.

Krištoufek and Vošvrda (2012) used the fractal dimension, Hurst exponent, and
entropy to quantify capital markets efficiency. The results obtained indicated that
the efficient market was dominated by local inefficiencies and stock indices of the
most developed countries were the most efficient capital markets.

Shin et al. (2012) applied fractals to organize distributed and decentralized
manufacturing resources. The proposed technique was observed to reduce problem
complexity through iterative decomposition of problems in resource management.

2.5.1 The Rescaled Range (R/S) Methodology

As described by Lunga and Marwala (2006) as well as Lunga (2007), this section
describes a method for approximating the quality of a time series signal to identify
the intervals that are vital to classify a time signal. The rescaled range (R/S) analysis
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is a method that was proposed by Hurst (1951) to control reservoir on the Nile
River dam project in 1907. The objective was to identify the optimal design of a
reservoir from data of measured river discharges. A desirable reservoir does not
run dry or overflow. Hurst proposed a statistical quantity, the Hurst exponent (H), a
technique that can be applied to categorize time series signals into random and non-
random series. By applying the R/S analysis, it is possible to identify the average
non-periodic cycle and the measure of persistence in trends because of long memory
effects (Skjeltorp 2000).

To implement R/S when we have a time series of length M is to calculate the
logarithm of a ratio with length NDM� 1 and this can be expressed mathematically
as follows (Lunga 2007):

Ni D log

�
MiC1

Mi

�
; i D 1; 2; 3; : : : ; .M � 1/ (2.12)

The average is estimated by splitting the time period into T adjoining sub-periods
of length j, in such a way that T * jDN, with each sub-period named It, with
tD 1,2 : : : T and each element in It named Nk,t such that kD 1,2, : : : j. This average
can be written as follows (Lunga and Marwala 2006; Lunga 2007):

et D 1

j

jX

kD1

Nk;t (2.13)

Therefore, et is the average value of the Ni enclosed in sub-period It of length j.
The time series of accrued data Xk,t can be calculated from the mean for each sub-
period It, as follows (Lunga 2007):

Xt;t D
kX

iD1

.Nk;t � et / k D 1; 2; 3; : : : ; j (2.14)

The range of the time series in relation to the mean within each sub-period can
be mathematically written as follows (Lunga 2007):

RTt D max .Xk;t /�min .Xk;t / ; 1 < k < j (2.15)

The standard deviation of each sub-period can be calculated as follows (Lunga
2007):

SIt D

vuuut 1

j

kX

iD1

.Ni;t � et /

2

(2.16)
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The range of each sub-period RTt can be rescaled by the respective standard
deviation SIt and is done for all the T sub-intervals in the series and the following
average R/S value is obtained (Lunga 2007):

et D 1

T

TX

tD1

�
RIt

SIt

�
(2.17)

The computation from the Eqs. 2.12, 2.13, 2.14, 2.15, 2.16 and 2.17 can be
recurred for different time ranges and this can be realized by sequentially increasing
j and reiterating the computation until all j values are covered. After computing the
R/S values for a large range of different time ranges j, log(R/S)j can be plotted versus
log(n). The Hurst exponent (H) can be estimated by conducting a least squares linear
regression with log(R/S) as the dependent variable and log(n) as the independent
variable and H is the slope of the regression (Maragos and Potamianos 1999; Hurst
1951; Hurst et al. 1965). The fractal dimension and the Hurst exponent are related
as follows (Lunga 2007; Wang et al. 2000):

Df D 2 �H (2.18)

There are other techniques for estimating the fractal dimensions and these include
using the Box counting dimension (Falconer 1952; Nelwamondo et al. 2006a;
Marwala 2012), the Hausdorff dimension (Falconer 1952) and Minkowski-Boulig
and dimension (Schroeder 1991).

2.5.2 The Hurst Interpretation

In fractal theory, when H 2 .0:5I 1� then the time series is persistent and is described
by long memory effects on all time scales (Lo 1991; Gammel 1998). Within the
context of the stock market, this means that all prices are correlated with all future
hourly price changes (Beran 1994). Persistence indicates that if the time series has
been up or down in the previous time, then there is a probability that it will remain
up and down, respectively, in the future time. The advantage of the tendency to
reinforce behavior, or persistence, increases as H tends to 1. The influence of the
present on the future can be articulated as a correlation function G as follows (Lunga
2007):

G D 22H�1 � 1 (2.19)

When HD 0.5 then GD 0 and the time series is uncorrelated. Nevertheless,
when HD 1 then GD 1, representing ideal positive correlation. Alternatively, when
H 2 Œ0I 0:5/ then the time series signal is anti-persistent and this implies that every
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Fig. 2.9 Hurst of the GDP of the United States from 1947 to 2012

time a time series has been up in the last period, it is more possibly going to be
down in the next period. Therefore, an anti-persistent time series is spiky than a
pure random walk.

The Hurst factor was used to analyse the data in Fig. 2.1 and the results in Fig. 2.9
were obtained. These results were obtained by calculating the H over a period of 50
time units. Here, a unit corresponds to 3 months. The results in Fig. 2.9 indicate that
the data during this period was largely persistent, which indicates that the signal
has long memory effects. The results in Fig. 2.10 indicate that this data was anti-
persistent and this means that every time the GDP change has been up in the previous
period it is most likely going to be down in the next period.

2.6 Stationarity

A stationary process is a stochastic process whose joint probability distribution does
not vary when shifted in space or time. Therefore, if certain parameters (for instance,
the mean and variance) can be estimated, then they do not change over space or time
(Priestley 1988). By the same logic, a non-stationary process is a process whose
joint probability distribution varies when shifted in space or time. There are many
techniques that have been proposed to evaluate whether a given signal is stationary
or not.
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Fig. 2.10 Hurst of the percentage change of the GDP of the United States from 1947 to 2012

Kiremire and Marwala (2008) proposed the stationarity index, which is a
quantification of similarities of the auto correlation integral of a subdivision of a
time series and the cross-correlation of that subdivision with others of the same
time series. This quantification of similarity is a measure of the stationarity of the
time series and, consequently, can be applied to detect and quantify non-stationarity.

The index was successfully applied in the analysis of electrocardiogram (ECG)
and electroencephalogram (EEG) signals to detect the variations in the dynamics
of the signals and the incidence of several events. The index showed sensitivity
to variations in the dynamics shown in ECG signals that were the result of partial
epileptic seizures. Zhou and Kutan (2011) applied non-linear unit root tests and
recursive analysis to evaluate the relationship between the stationarity of real
exchange rates and different currencies, different sample periods, and different
countries. The results showed that a stationary real exchange rate is sensitive to
sample period but not the currencies.

Caporale and Paxton (2013) investigated inflation stationarity in Brazil,
Argentina, Chile, Mexico, and Bolivia from 1980 to 2004. They tested for structural
interruptions in inflation, explained the interruptions using changes in monetary
policies, and tested the relationship between structural interruptions and non-
stationarity results.

Zhou (2013) successfully studied the nonlinearity and stationarity of inflation
rates in the Euro-zone countries, whereas Fallahi (2012) successfully studied the
stationarity of consumption-income ratios (CIR) and observed that the CSI was non-
stationary in most of the countries.
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Other studies on stationarity include energy consumption (Hasanov and Telatar
2011), inflation in Mexico (Caporale and Paxton 2011), interest rate in the European
Union (Zhou 2011), commodity prices (Yang et al. 2012) and purchasing power
parity of post-Bretton Woods exchange rate data for 20 industrialized countries
(Amara 2011).

Suppose we have a stochastic process represented by fYtg with FY .yt1C�; : : : ;

ytnC�/ indicating a cumulative distribution function of the joint distribution fYtg
at times ft1 C �; : : : ; tn C �g then fYt g is stationary if for all values of n, � and
ft1; : : : ; tng then FY .yt1C�; : : : ; ytnC�/ D FY .yt1 ; : : : ; ytn/. There are many of
techniques that have been proposed to quantify stationarity and these include
Dickey-Fuller and Phillips-Perron Tests, Kwiatkowski-Phillips-Schmidt-Shin Test,
as well as the Variance Ratio Test (Granger and Newbold 1974; Perron 1988;
Kwiatkowski et al. 1992; Schwert 1989). In this chapter, we apply the Variance
Ratio Test to determine the stationarity of a signal in Fig. 2.2. The variance ratio (F)
can be written as follows mathematically (Lo and MacKinlay 1989):

F D Ve

V u
(2.20)

Here, Ev is the explained variance and Uv is the unexplained variance and:

Ve D
P
i

ni

� NXi � NX
�2
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(2.21)

and

Vu D

P
ij

�
Xij � NXi

�2

N �K
(2.22)

Here, NXi indicates the sample mean of the ith group, ni is the number of
observations in the ith group, a NX indicates the complete mean of the data, Xij

is the jth observation in the ith out of K groups and N is the overall sample size.
If the variability ratio is 1, then the data is following a random walk, if it is larger
than 1, then it is trending and, therefore, non-stationary and if it is less than one,
then it shows a mean reversal meaning than changes in one direction leads to
probably changes in the opposite direction. The results obtained when we tested
for stationarity using the variance ratio test are shown in Fig. 2.11 for the data in
Figs. 2.1 and 2.12 for the data in Fig. 2.2.

These results were obtained by analyzing a moving window of 50 units with
each unit corresponding to 3 months. These results indicate that the raw values of
the GDP in Fig. 2.1 is non-stationary while the percentage change of GDP in Fig. 2.2
is stationary.
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Fig. 2.11 Variance ratio of the GDP of the United States from 1947 to 2012

Fig. 2.12 Variance ratio of the percentage change of the GDP of the United States from 1947 to
2012
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2.7 Conclusions

In this chapter, techniques for economic data analysis were described and applied to
analyze the GDP data. These methods were the mean, variance, Kurtosis, fractals,
frequency, time-frequency analysis techniques and stationarity. The Fast Fourier
transform method was used to decompose the GDP data from the time domain
to the frequency domain. The Hurst parameter was applied to estimate the fractal
dimension of the data. The variance ratio test was used to characterize stationarity.
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Chapter 3
Automatic Relevance Determination
in Economic Modeling

Abstract This chapter introduces the Bayesian and the evidence frameworks to
construct an automatic relevance determination method. These techniques are de-
scribed in detail, relevant literature reviews are conducted, and their use is justified.
The automatic relevance determination technique is then applied to determine the
relevance of economic variables that are essential for driving the consumer price
index. Conclusions are drawn and are explained within the context of economic
sciences.

3.1 Introduction

This chapter presents the Bayesian and the evidence frameworks to create an auto-
matic relevance determination technique. These methods are explained in detail, and
pertinent literature reviews are conducted. The automatic relevance determination
method is then applied to establish the relevance of economic variables that are
critical for driving the consumer price index (CPI).

Shutin et al. (2012) introduced incremental reformulated automatic relevance
determination and related this to the incremental version of sparse Bayesian
learning. The fast marginal likelihood maximization procedure is an incremental
method where the objective function is optimized with respect to the parameters
of a single component given that the other parameters are fixed. The procedure
is then demonstrated to relate to a series of re-weighted convex optimization
problems.

Huang et al. (2012) introduced stochastic optimization using an automatic rele-
vance determination (ARD) prior model and applied this for Bayesian compressive
sensing. Compressive sensing is a unique data acquisition procedure where the com-
pression is conducted during the sampling process. In condition monitoring systems,
original data compression methods such as compressive sensing are required to
decrease the cost of signal transfer and storage. Huang et al. (2012) introduced

T. Marwala, Economic Modeling Using Artificial Intelligence Methods, Advanced
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Bayesian compressive sensing (BCS) for condition monitoring of signals. The
results obtained from the improved BCS technique were better than conventional
BCS reconstruction procedures.

Böck et al. (2012) used the ARD method for a hub-cantered gene network
reconstruction procedure and exploited topology of the of gene regulatory networks
by using a Bayesian network. The proposed technique was applied to a large
publicly available dataset was able to identify several main hub genes.

Jacobs (2012) applied Bayesian support vector regression with an ARD kernel
for modeling antenna input characteristics. The results indicated that Bayesian
support vector regression was appropriate for highly non-linear modeling tasks.
They observed that the Bayesian framework allowed efficient training of the
multiple kernel ARD hyper-parameters.

Shutin et al. (2011) proposed fast variational sparse Bayesian learning with ARD
for superimposed signals. They showed that a fast version of variational sparse
Bayesian learning can be built using stationary points of the variational update
factors with non-informative ARD hyper-priors.

Zhang et al. (2010) applied the Gaussian process classification using ARD for
synthetic aperture radar target recognition. The method they proposed implemented
kernel principal component analysis to identify sample features and applied target
recognition using Gaussian process classification with an ARD function. When
they compared this technique to the k-Nearest Neighbor clustering method, a Naı̈ve
Bayes classifier, and a Support Vector Machine, the proposed technique was found
to be able to automatically select an appropriate model and to optimize hyper-
parameters.

Lisboa et al. (2009) applied a neural network model and Bayesian regularization
with the typical approximation of the evidence to create an automatic relevance
determination system. The model was applied to local and distal recurrence of breast
cancer.

Mørupa and Hansena (2009) applied automatic relevance determination for
multi-way models, while Browne et al. (2008) applied ARD for identifying thalamic
regions concerned in schizophrenia. Other successful applications of ARD include
in earthquake early warning systems (Oh et al. 2008), feature correlations investiga-
tion (Fu and Browne 2008), ranking the variables to determine ischaemic episodes
(Smyrnakis and Evans 2007), the estimation of relevant variables in multichannel
EEG (Wu et al. 2010) and the estimation of relevant variables in classifying ovarian
tumors (Van Calster et al. 2006).

3.2 Mathematical Framework

The automatic relevance determination technique is a process applied to evaluate
the relevance of each input variable in its ability to predict a particular phe-
nomenon. In this chapter, we apply ARD to determine the relevance of economic
variables in predicting the CPI. ARD achieves this task of ranking input variables
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by optimizing the hyper-parameters to maximize the evidence in the Bayesian
framework (Marwala and Lagazio 2011). As already described by Marwala and
Lagazio (2011), Wang and Lu (2006) successfully applied the ARD technique to
approximate influential variables in modeling the ozone layer, while Nummenmaa
et al. (2007) successfully applied ARD to a dataset where a male subject was
presented with uncontaminated tone and checker board reversal stimuli, individually
and in combination, in employing a magnetic resonance imaging-based cortical
surface model. Ulusoy and Bishop (2006) applied ARD to categorize relevant
features for object recognition of 2D images. One part of the ARD as applied in
this chapter is neural networks, the topic of the next sub-section. It should be borne
in mind that the discourse of ARD is not only limited to neural networks and can,
within the context of artificial intelligence, include subjects such as support vector
machines, Gaussian mixture models, and many other models.

3.2.1 Neural Networks

This section gives a summary of neural networks in the context of economic
modeling (Leke and Marwala 2005; Lunga and Marwala 2006). A neural network
is an information processing procedure that is inspired by the way that biological
nervous systems, like the human brain, process information (Marwala and Lagazio
2011). It is a computer-based mechanism that is aimed at modeling the way in which
the brain processes a specific function of consideration (Haykin 1999; Marwala and
Lagazio 2011).

The neural network technique is a powerful tool that has been successfully used
in mechanical engineering (Marwala and Hunt 1999; Vilakazi and Marwala 2007;
Marwala 2012), civil engineering (Marwala 2000, 2001), aerospace engineering
(Marwala 2003), biomedical engineering (Mohamed et al. 2006; Russell et al. 2008,
2009a, b), finance (Leke and Marwala 2005; Patel and Marwala 2006; Hurwitz and
Marwala 2011; Khoza and Marwala 2012), statistics (Marwala 2009), intrusion
detection (Alsharafat 2013), telecommunications (Taspinar and Isik 2013) and
political science (Marwala and Lagazio 2011).

Meena et al. (2013) applied fuzzy logic and neural networks for gender classi-
fication in speech recognition. To train fuzzy logic and neural networks, features
that included the pitch of the speech were used and the tests showed good results.
Nasir et al. (2013) applied a multilayer perceptron and simplified fuzzy ARTMAP
neural networks for the classification of acute leukaemia cells. The cells were
classified into lymphoblast, myoblast, and normal cell; to categorize the severity
of leukaemia types, and the results obtained gave good classification performance.
Shaltaf and Mohammad (2013) applied a hybrid neural network and maximum
likelihood based estimation of chirp signal parameters and observed that a hybrid of
neural networks and maximum likelihood gradient based optimization gave accurate
parameter approximation for large signal to noise ratio.
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In this chapter, neural networks are viewed as generalized regression models that
can model any data, linear or non-linear. As described by Marwala and Lagazio
(2011), a neural network is made up of four main constituents (Haykin 1999;
Marwala 2012):

• the processing units uj, where each uj has a particular activation level aj(t) at any
given time;

• weighted inter-connections between several processing units. These inter-
connections control how the activation of one unit influences the input for
another unit;

• an activation rule, which takes input signals at a unit to yield a new output signal;
and

• a learning rule that stipulates how to regulate the weights for a given input/output
pair (Haykin 1999).

Neural networks are able to derive meaning from complex data and, therefore,
can be used to extract patterns and detect trends that are too complex to be detected
by many other computer approaches (Hassoun 1995; Marwala 2012). A trained
neural network can be viewed as an expert in the type of information it has been set
to discover (Yoon and Peterson 1990; Valdés et al. 2012; Sinha et al. 2013). A trained
neural network can be used to predict given new circumstances. Neural networks
have been applied to model a number of non-linear applications because of their
capacity to adapt to non-linear data (Leke et al. 2007; Martı́nez-Rego et al. 2012).

The topology of neural processing units and their inter-connections can have
a deep influence on the processing capabilities of neural networks. Accordingly,
there are many different connections that describe how data flows between the input,
hidden, and output layers.

There are different kinds of neural network topologies and these include the
multi-layer perceptron (MLP) and the radial basis function (RBF) (Bishop 1995;
Sanz et al. 2012; Prakash et al. 2012). In this chapter, the MLP was applied to
identify the relationship between economic variables and CPI. The motivation for
using the MLP was because it offers a distributed representation with respect to the
input space due to cross-coupling between hidden units, while the RBF gives only
local representation (Bishop 1995; Marwala and Lagazio 2011).

Ikuta et al. (2012) applied the MLP for solving two-spiral problem whereas
Rezaeian-Zadeh et al. (2012) applied the MLP and RBF for hourly temperature
prediction. Wu (2012) applied a multi-layer perceptron neural network for scattered
point data surface reconstruction while Li and Li (2012) implemented the MLP in a
hardware application.

The conventional MLP contains hidden units and output units and normally has
one hidden layer. The bias parameters in the first layer are presented as mapping
weights from an extra input having a fixed value of x0D 1. The bias parameters
in the second layer are displayed as weights from an extra hidden unit, with the
activation fixed at z0D 1. The model in Fig. 3.1 can take into account the intrinsic
dimensionality of the data. Models of this form can approximate any continuous
function to arbitrary accuracy if the number of hidden units M is adequately large.
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Fig. 3.1 Feed-forward multi-layer perceptron network having two layers of adaptive weights
(Reprinted with permission from Marwala 2009; Marwala and Lagazio 2011)

The size of the MLP may be increased by permitting for a number of layers,
however, it has been verified by the universal approximation theorem (Cybenko
1989) that a two-layered design is suitable for the MLP. Because of this theorem, in
this chapter, the two-layered network shown in Fig. 3.1 was chosen. The relationship
between CPI, y, and economic variables, x, may be written as follows (Bishop 1995;
Marwala 2012):

yk D fouter
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Here, w.1/
j i and w.2/

j i specify neural network weights in the first and second layers,
respectively, going from input i to hidden unit j, M is the number of hidden units, d is
the number of output units while w.1/

j 0 specifies the bias for the hidden unit j. This
chapter uses a hyperbolic tangent function for the function finner(•). The function
fouter(•) is linear because the problem we are handling is a regression problem
(Bishop 1995; Marwala and Lagazio 2011).

On training regular neural networks, the network weights are identified while the
training of probabilistic neural networks identifies the probability distributions of
the network weights. An objective function must be selected to identify the weights
in Eq. 3.1. An objective function is a mathematical representation of the global
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objective of the problem (Marwala and Lagazio 2011). In this chapter, the principal
objective was to identify a set of neural network weights, given the economic
variables and the CPI and then rank the inputs in terms of importance.

If the training set D D fxk; ykgNkD1 is used, where superscript N is the number of
training examples, and assuming that the targets y are sampled independently given
the kth inputs xk and the weight parameters wkj then the objective function, E, may
be written using the sum of squares of errors objective function (Rosenblatt 1961;
Bishop 1995; Wang and Lu 2006; Marwala 2009):

ED D �ˇ

NX

nD1

KX

kD1

ftnk � ynkg2 (3.2)

Here, tnk is the target vector for the nth output and kth training example, N is the
number of training examples, K is the number of network output units, n is the index
for the training pattern, ˇ is the data contribution to the error, and k is the index for
the output units.

The sum of squares error objective function was chosen because it has been found
to be suited to regression problems than the cross-entropy error objective function
(Bishop 1995). Equation 3.2 can be regularized by presenting extra information to
the objective function which is penalty function to solve an ill-posed problem or to
prevent over-fitting by safeguarding smoothness of the solution to reach a trade-off
between complexity and accuracy using (Bishop 1995; Marwala and Lagazio 2011):

EW D �˛

2

WX

j D1

w2
j (3.3)

Here, ˛ is the prior contribution to the regularization error and W is the
number of network weights. This regularization parameter penalizes weights of
large magnitudes (Bishop 1995; Tibshirani 1996; Marwala 2009; Marwala and
Lagazio 2011). To solve for the weights in Eq. 3.1, the back-propagation technique
described in the next section was used.

By merging Eqs. 3.2 and 3.3, the complete objective function can be written as
follows (Bishop 1995):

E DˇED C ˛EW

D� ˇ

NX

nD1

KX

kD1

ftnk � ynkg2 � ˛

2

WX

j D1

w2
j

(3.4)
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3.2.1.1 Back-Propagation Method

As described by Marwala and Lagazio (2011), the back-propagation technique is a
procedure of training neural networks (Bryson and Ho 1989; Rumelhart et al. 1986;
Russell and Norvig 1995). Back-propagation is a supervised learning procedure
and is basically an application of the Delta rule (Rumelhart et al. 1986; Russell
and Norvig 1995). Back-propagation requires that the activation function (seen in
Eq. 3.1) can be differentiated and is divided into the propagation and weight update.
According to Bishop (1995) the propagation characteristic has these steps:

• the propagation’s output activations is enacted by forward propagating the
training pattern’s input into the neural network,

• the deltas of all output and hidden neurons are estimated by back-propagating the
output activations in the neural network by applying the training target.

The weight update characteristic applies the output delta and input activation to
get the gradient of the weight. The weight in the reverse direction of the gradient is
utilized by subtracting a proportion of it from the weight and then this proportion
influences the performance of the learning process. The sign of the gradient of a
weight defines the direction where the error increases and this is the motive that
the weight is updated in the opposite direction (Bishop 1995), and this process is
recurred until convergence.

In basic terms, back-propagation is used to identify the network weights given
the training data, using an optimization technique. Generally, the weights can be
identified using the following iterative technique (Werbos 1974; Zhao et al. 2010;
Marwala and Lagazio 2011):

fwgiC1 D fwgi � �
@E

@fwg .fwgi / (3.5)

In Eq. 3.5, the parameter � is the learning rate while fg characterizes a vector. The
minimization of the objective function, E, is attained by computing the derivative of
the errors in Eq. 3.2 with respect to the network’s weight. The derivative of the error
is calculated with respect to the weight which joins the hidden layer to the output
layer and may be written as follows, using the chain rule (Bishop 1995):

@E

@wkj

D @E

@ak

@ak

@wkj

D @E

@yk

@yk

@ak

@ak

@wkj

D
X

n

f 0
outer .ak/

@E

@ynk

zj (3.6)
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In Eq. 3.6, zj D finner
�
aj

�
and ak D

MP
j D0

w.2/

kj yj . The derivative of the error with

respect to weight which connects the hidden layer to the output layer may also be
written using the chain rule (Bishop 1995):
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(3.7)

In Eq. 3.7, aj D
dP

iD1

w.1/
j i xi . The derivative of the objective function in Eq. 3.2

may thus be written as (Bishop 1995):

@E

@ynk

D .tnk � ynk/ (3.8)

while that of the hyperbolic tangent function is (Bishop 1995):

f 0
inner

�
aj

� D sec h2
�
aj

�
(3.9)

Now that it has been explained how to estimate the gradient of the error with
respect to the network weights using back-propagation procedure, Eq. 3.6 can be
applied to update the network weights by using an optimization process until some
pre-defined stopping criterion is realized. If the learning rate in Eq. 3.5 is fixed, then
this is called the steepest descent optimization technique (Robbins and Monro 1951).
Conversely, the steepest descent technique is not computationally efficient and,
hence, an improved scheme requires to be identified. In this chapter, the scaled con-
jugate gradient technique was applied (Møller 1993), the subject of the next section.

3.2.1.2 Scaled Conjugate Gradient Method

The method in which the network weights are approximated from the data is by
using non-linear optimization technique (Mordecai 2003). In this chapter, the scaled
conjugate gradient technique (Møller 1993) was used. As described earlier in this
chapter, the weight vector, which provides the minimum error, is calculated by
simulating sequential steps through the weight space as presented in Eq. 3.7 until
a pre-determined stopping criterion is achieved. Different procedures select this
learning rate in a different ways. In this section, the gradient descent technique
is described, and after that how it is modified to the conjugate gradient technique
(Hestenes and Stiefel 1952). For the gradient descent technique, the step size is
defined as ��@E =@w , where the parameter � is the learning rate and the gradient of
the error is estimated using the back-propagation method.
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If the learning rate is adequately small, the value of the error decreases at each
following step until a minimum value for the error between the model prediction
and training target data is achieved. The drawback with this method is that it is
computationally expensive when compared to other procedures. For the conjugate
gradient method, the quadratic function of the error is minimized at every step over
a gradually increasing linear vector space that comprises the global minimum of
the error (Luenberger 1984; Fletcher 1987; Bertsekas 1995; Marwala 2012). In the
conjugate gradient technique, the following steps are used (Haykin 1999; Marwala
2009; Babaie-Kafaki et al. 2010; Marwala and Lagazio 2011):

1. Select the initial weight vector fwg0.
2. Estimate the gradient vector @E

@fwg .fwg0/.
3. At each step, n, apply the line search to identify �.n/ that minimizes E.�/

indicating the objective function expressed in terms of � for fixed values of w
and � @E

@fwg .fwng/.
4. Evaluate that the Euclidean norm of the vector � @E

@w .fwng/ is sufficiently less
than that of � @E

@w .fw0g/.
5. Change the weight vector using Eq. 3.4.
6. For wn C 1, calculate the changed gradient @E

@fwg
�fwgnC1

�
.

7. Apply the Polak-Ribiére technique to estimate:

ˇ.nC 1/ D rE
�fwgnC1

�T
.rE
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9. Let nD nC 1 and return to step 3.
10. Terminate when the following criterion is met:
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�� @E

@fwg
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�
where � 0:

The scaled conjugate gradient technique is different from the conjugate gradient
scheme because it does not include the line search referred to in Step 3. The step-size
is estimated using the following formula (Møller 1993):
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(3.10)
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where H is the Hessian of the gradient. The scaled conjugate gradient technique
is applied because it has been observed to resolve the optimization problems of
training an MLP network more computationally effective than the gradient descent
and conjugate gradient approaches (Bishop 1995).

3.2.2 Bayesian Framework

Multi-layered neural networks are parameterized classification models that make
probabilistic assumptions about the data. The probabilistic outlook of these models
is enabled by the application of the Bayesian framework (Marwala 2012). Learning
algorithms are viewed as approaches for identifying parameter values that look
probable in the light of the presented data. The learning process is performed
by dividing the data into training, validation and testing sets. This is done for
model selection and to ensure that the trained network is not biased towards the
training data it has seen. Another way of realizing this is by the application of the
regularization framework, which comes naturally from the Bayesian formulation
and is now explained in detail in this chapter.

Thomas Bayes was the originator of the Bayes’ theorem and Pierre-Simon
Laplace generalized the theorem and it has been applied it to problems such as
in engineering, statistics, political science and reliability (Stigler 1986; Fienberg
2006; Bernardo 2005; Marwala and Lagazio 2011). Initially, the Bayesian method
applied uniform priors and was known as the “inverse probability” and later
succeeded by a process called “frequentist statistics” also called the maximum-
likelihood method. The maximum-likelihood method is intended to identify the
most probable solution without concern to the probability distribution of that
solution. The maximum-likelihood method technique is basically a special case
of Bayesian results indicating the most probable solution in the distribution of
the posterior probability function. Bayesian procedure consists of the following
concepts (Bishop 1995):

• The practice of hierarchical models and the marginalization over the values of
irrelevant parameters using methods such as the Markov chain Monte Carlo
techniques.

• The iterative use of the Bayes’ theorem as data points are acquired and after
approximating a posterior distribution, the posterior equals the next prior.

• In the maximum-likelihood method, a hypothesis is a proposition which must
be proven right or wrong while in a Bayesian procedure, a hypothesis has a
probability.

The Bayesian method has been applied to many complex problems, including
those of finite element model updating (Marwala and Sibisi 2005), missing data
estimation (Marwala 2009), health risk assessment (Goulding et al. 2012), astron-
omy (Petremand et al. 2012), classification of file system activity (Khan 2012),
simulating ecosystem metabolism (Shen and Sun 2012) and in image processing
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(Thon et al. 2012). The problem of identifying the weights (wi) and biases (with
subscripts 0 in Fig. 3.1) in the hidden layers may be posed in the Bayesian form as
(Box and Tiao 1973; Marwala 2012):

P .fwgjŒD�/ D P .ŒD�jfwg/ P .fwg/
P .ŒD�/

(3.11)

where P(w) is the probability distribution function of the weight-space in the
absence of any data, also known as the prior distribution and D� (y1, : : : ,yN)
is a matrix containing the data. The quantity P(wjD) is the posterior probability
distribution after the data have been seen and P(Djw) is the likelihood function.

3.2.2.1 Likelihood Function

The likelihood function is the notion that expresses the probability of the model
which depends on the weight parameters of a model to be true. It is fundamentally
the probability of the observed data, given the free parameters of the model. The
likelihood can be expressed mathematically as follows, by using the sum of squares
error (Edwards 1972; Bishop 1995; Marwala 2012):
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In Eq. 3.12, ED is the sum of squares of error function, ˇ represents the hyper-
parameters, and ZD is a normalization constant which can be approximated as
follows (Bishop 1995):
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3.2.2.2 Prior Function

The prior probability distribution is the assumed probability of the free parameters
and is approximated by a knowledgeable expert (Jaynes 1968; Bernardo 1979;
Marwala and Lagazio 2011). There are many types of priors and these comprise
informative and uninformative priors. An informative prior expresses accurate,
particular information about a variable while an uninformative prior states general
information about a variable. A prior distribution that assumes that model parame-
ters are of the same order of magnitude can be written as follows (Bishop 1995):
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Parameter ˛ represents the hyper-parameters, and ZW is the normalization
constant which can be approximated as follows (Bishop 1995):
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The prior distribution of a Bayesian method is the regularization parameter in
Eq. 3.2. Regularization includes presenting additional information to the objective
function, through a penalty function to solve an ill-posed problem or to prevent
over-fitting to guarantee the smoothness of the solution to balance complexity with
accuracy.

3.2.2.3 Posterior Function

The posterior probability is the probability of the network weights given the
observed data. It is a conditional probability assigned after the appropriate evidence
is taken into account (Lee 2004). It is estimated by multiplying the likelihood
function with the prior function and dividing it by a normalization function. By
combining Eqs. 3.11 and 3.14, the posterior distribution can be expressed as follows
(Bishop 1995):
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Training the network using a Bayesian method gives the probability distribution
of the weights shown in Eq. 3.1. The Bayesian method penalizes highly complex
models and can choose an optimal model (Bishop 1995).
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3.2.3 Automatic Relevance Determination

As described by Marwala and Lagazio (2011), an automatic relevance determination
method is built by associating the hyper-parameters of the prior with each input
variable. This, consequently, necessitates Eq. 3.14 to be generalized to form
(MacKay 1991, 1992):
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˛kfwgT ŒIk� fwg (3.18)

Here, superscript T is the transpose, k is the weight group and [I] is the identity
matrix. By using the generalized prior in Eq. 3.18, the posterior probability in
Eq. 3.16 becomes (Bishop 1995):
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Here, Wk is the number of weights in group k. The evidence can be written as
follows (Bishop 1995):
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The simultaneous estimation of the network weights and the hyper-parameters
can be achieved using a number of ways including the use of Monte Carlo methods
or any of its derivatives to maximize the posterior probability distribution. Another
way of achieving this goal is to first maximize the log evidence and thus giving the
following estimations for the hyper-parameters (Bishop 1995):
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and fwgMP is the weight vector at the maximum point and this is identified in this
chapter using the scaled conjugate gradient method, �j are the eigenvalues of [A],
and [V] are the eigenvalues such that ŒV �T ŒV � D ŒI �. To estimate the relevance of
each input variable, the ˛MP

k , ˇMP, and the following steps are followed (MacKay
1991):

1. Randomly choose the initial values for the hyper-parameters.
2. Train the neural network using the scaled conjugate gradient algorithm to

minimize the objective function in Eq. 3.4 and thus identify fwgMP.
3. Apply the evidence framework to estimate the hyper-parameters using Eqs. 3.22

and 3.23.
4. If not converged go to Step 2.

3.3 Applications of ARD in Inflation Modeling

In this chapter we apply the ARD to identify variables that drive inflation. Inflation is
measured using a concept called Consumer Price Index (CPI). Artificial intelligence
has been used in the past to model inflation. For example, Şahin et al. (2004) applied
neural networks and cognitive mapping to model Turkey’s inflation dynamics while
Anderson et al. (2012) applied neural network to estimate the functional relationship
between certain component sub-indexes and the CPI extracted decision rules from
the network.

Binner et al. (2010) studied the influence of money on inflation forecasting. They
applied recurrent neural networks and kernel recursive least squares regression to
identify the best fitting U.S.A. inflation prediction models and compared these to
a naı̈ve random walk model. Their results demonstrated no correlation between
monetary aggregates and inflation. McAdam and McNelis (2005) used neural
networks and models based on Phillips-curve formulations to forecast inflation. This
proposed models outperformed the best performing linear models. Cao et al. (2012)
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applied linear autoregressive moving average model (ARMA) and neural networks
for forecasting medical cost inflation rates. The results showed that the neural
network model outperformed the ARMA.

Nakamura (2005) applied neural networks for predicting inflation and the results
from a U.S.A. data demonstrated that neural networks outperformed univariate
autoregressive model, while Binner et al. (2006) used a neural network and a
Markov switching autoregressive (MS-AR) model to predict U.S.A. inflation and
found that MS-AR model performed better than neural networks.

The CPI is a measure of inflation in an economy. It measures the changes in
prices of a fixed pre-selected basket of goods. A basket of goods which is used for
calculating the CPI in South Africa is as follows (Anonymous 2012):

1. Food and non-alcoholic beverages: bread and cereals, meat, fish, milk, cheese,
eggs, oils, fats, fruit, vegetables, sugar, sweets, desserts, and other foods

2. Alcoholic beverages and tobacco
3. Clothing and footwear
4. Housing and utilities: rents, maintenance, water, electricity, and others
5. Household contents, equipment, and maintenance
6. Health: medical equipment, outpatient, and medical service
7. Transport
8. Communication
9. Recreation and culture

10. Education
11. Restaurants and hotels
12. Miscellaneous goods and services: personal care, insurance, and financial

services.

This basket is weighed and the variation of prices of these goods is tracked from
month to month and this is a basis for calculating inflation. It must be noted that
there is normally a debate as to whether this basket of goods is appropriate. For
example, in South Africa where there are two economies, one developed and formal
and another informal and under-developed, there is always a debate on the validity
of the CPI. This is even more important because the salary negotiations are based
on the CPI.

In this chapter, we use the CPI data from 1992 to 2011 to model the relationship
between economic variables and the CPI. These economic variables are listed
in Table 3.1. They represent the performance of various aspect of the economy
represented by 23 variables in the agriculture, manufacturing, mining, energy, con-
struction, etc. A multi-layered perceptron neural network with 23 input variables,
12 hidden nodes, and 1 output representing the CPI is constructed. The ARD based
MLP network is trained using the scaled conjugate gradient method and all these
techniques were described earlier in the chapter. The results indicating the relevance
of each variable is indicated in Table 3.1.

From Table 3.1, the following variables are deemed to be essential for modeling
the CPI and these are mining, transport, storage and communication, financial
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Table 3.1 Automatic relevance with multi-layer perceptron and scaled conju-
gate gradient

Variable Alpha Inverse alpha
Relative
weights

Agriculture fish forestry 14:4832 0.0690 1:79

Mining 5:7440 0.1741 4:51

Manufacturing 24:2071 0.0413 1:07

Electricity gas water 6:8551 0.1459 3:78

Construction 7:3717 0.1357 3:51

Retail and trade 15:0679 0.0664 1:72

Transport, storage and communication 2:3174 0.4315 11:18

Financial intermediation, insurance,
real estate, and business services

0:9391 1.0648 27:59

Community, social, and personal
services

0:4626 2.1616 56:00

Government services 7:2632 0.1377 3:57

Gross value added at basic prices 4:7935 0.2086 5:40

Taxes less subsidies on products 0:6467 1.5462 40:06

Affordability 1:0664 0.9377 24:29

Economic growth 4:0215 0.2487 6:44

Rand/USD exchange 25:8858 0.0386 1:00

Prime interest 5:5639 0.1797 4:66

Repo rate 5:5639 0.1797 4:66

Gross domestic product 0:2545 3.9287 101:78

Household consumption 0:4407 2.2692 58:79

Investment 0:5909 1.6924 43:84

Government consumption 7:5703 0.1321 3:42

Exports 20:8664 0.0479 1:24

Imports 5:9678 0.0386 1:00

intermediation, insurance, real estate and business services, community, social
and personal services, gross value added at basic prices, taxes less subsidies
on products, affordability, economic growth, repo rate, gross domestic product,
household consumption, and investment.

It should be noted, however, that these results are purely based on the data set that
was analyzed and the methodology that was used which is the ARD that is based
on the MLP. These conclusions may change from one economy to another and from
one methodology to another e.g. support vector machines instead of the MLP.

3.4 Conclusions

This chapter presented the Bayesian and the evidence frameworks to create an
automatic relevance determination technique. The ARD method was then applied
to determine the relevance of economic variables that are essential for driving the
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consumer price index. It is concluded that for the data analyzed using the MLP
based ARD technique, the variables driving the CPI are mining, transport, storage
and communication, financial intermediation, insurance, real estate and business
services, community, social and personal services, gross value added at basic prices,
taxes less subsidies on products, affordability, economic growth, repo rate, gross
domestic product, household consumption, and investment.
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Chapter 4
Neural Approaches to Economic Modeling

Abstract This chapter describes the multi-layered perceptron (MLP), radial basis
functions (RBF), and support vector machines (SVM). These techniques are then
applied to model inflation by training these networks using the maximum-likelihood
method. The results indicated that the SVM gives the best results followed by the
MLP and then the RBF. The SVM with an exponential RBF gave the best results.

4.1 Introduction

This chapter applies the multi-layered perceptron (MLP), radial basis functions
(RBF) and support vector machines (SVM) to inflation modeling. It uses economic
variables that were identified in Chap. 3 by using the automatic relevance deter-
mination method that was based on the MLP. Modeling inflation is an important
undertaking for economic planning as it impacts on areas of vital economic
activities.

Welfe (2000) applied a Bayesian framework and the Johansen method to model
inflation in Poland, while Price and Nasim (1999) applied co-integration and the
P-star approach to model inflation and money demand in Pakistan.

De Gooijer and Vidiella-i-Anguera (2003) successfully applied the multiplicative
seasonal self-exciting threshold autoregressive which factored monthly inflation
rates and seasonal fluctuations at the same time. Gregoriou and Kontonikas (2009)
modeled non-linearity in inflation deviations from the target of various coun-
tries using an exponential smooth transition autoregressive (ESTAR) and Markov
regime-switching models. They observed that the ESTAR model was able to capture
the non-linear behavior of inflation. In addition they observed a fast adjustment
process in countries that regularly under estimate inflation target while countries
that over-estimate inflation target displayed a slower revision back to equilibrium.
The ESTAR model was also observed to outperform the Markov regime-switching
model.
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Aı̈ssa et al. (2007) modelled inflation persistence with periodicity changes in
fixed and pre-determined prices models. In particular, they considered the relation-
ship between the length of the decision interval for a specified duration of prices
and the dynamic properties of inflations. They observed that higher frequency types
of information, overlapping contracts and hybrid price models forecast inflation
persistence.

Mehrotra et al. (2010) applied the hybrid New Keynesian Phillips Curve (NKPC)
for modelling inflation in China and demonstrated that the NKPC gave good results
of inflation. A probit analysis showed that the forward-looking inflation element and
the output gap were vital inflation variables in provinces that that had undergone
market reform.

Kukal and Van Quang (2011) applied the multi-layered perceptron and radial
basis function neural networks to model how Czech National Bank handled its repo
rate when it implemented its monetary policy and observed that the MLP network
was better at modeling the repo rate than the RBF.

Choudhary and Haider (2012) compared neural networks to autoregressive
models for inflation forecasting and found that neural networks performed better
than the autoregressive models.

Düzgün (2010) compared the generalized regression neural networks to the
autoregressive integrated moving average (ARIMA) and found that neural network
model performed better than the ARIMA model in forecasting the Consumer Price
Index.

Santana (2006) compared neural networks to exponential smoothing and ARIMA
methods for forecasting Colombian Inflation and observed that neural network
forecasts were more accurate than the forecasts from exponential smoothing and
ARIMA methods.

Binner et al. (2005) compared linear forecasting models and neural networks for
modeling Euro inflation rate. The results obtained indicated that neural networks
gave better forecasts than linear models.

Moshiri and Cameron (2000) compared neural network to econometric models
for forecasting inflation and they observed that neural networks were able to forecast
marginally better than traditional econometric methods.

Other approaches that have been used to model inflation are support vector
machines (Wang et al. 2012), genetic optimization (Huang 2012a), neural networks
(Wang and Fan 2010; Ge and Yin 2012), dynamic factor estimation method
(Kapetanios 2004), combinatorial and optimal networks (Luo and Huang 2012),
and elitist neuro-genetic network model (Mitra 2012). Other aspects of inflation
that have been modeled are the relationship between short-term and long term
inflation expectations (Jochmann et al. 2010), pass-through of individual goods
prices into trend inflation (Anderson et al. 2012), identification of post-stabilization
inflation dynamics (Dimirovski and Andreeski 2006) and medical costs inflation
rates (Cao et al. 2012).

From this literature review, it is evident that artificial intelligence methods are
viable tools for modelling inflation. The next sections will describe multi-layered
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perceptrons, radial basis functions, and support vector machines which are tech-
niques that are used to model inflation in this chapter.

4.2 Multi-layer Perceptron Neural Networks

The neural network model considered in this chapter is the multi-layer perceptron.
The MLP is a feed-forward neural network model that estimates a relationship
between sets of input data and a set of corresponding output. Its basis is the standard
linear perceptron and it uses three or more layers of neurons, also called nodes, with
non-linear activation functions. It is more effective than the perceptron because it
can discriminate data that is not linearly separable or separable by a hyper-plane.

The multi-layered perceptron has been used to model many diverse complex
systems in areas such as mechanical engineering (Marwala 2010, 2012), missing
data (Marwala 2009), interstate conflict (Marwala and Lagazio 2011), soil water
assessment (Singh et al. 2012), solid waste (Arebey et al. 2012), in biomarkers
to infer characteristics of contaminant exposure (Karami et al. 2012), collision
avoidance of a ship (Ahn et al. 2012), speech recognition (Ikbal et al. 2012), and
power transformers fault diagnosis (Souahlia et al. 2012). More relevant to the topic
of economic modeling, Tung et al. (2004) applied neural networks to build an early
warning system for banking failure, while Yümlü et al. (2005) used neural networks
for Istanbul stock exchange prediction. Tsai and Wu (2008) applied ensembles of
multi-layer perceptrons for bankruptcy prediction and credit scoring, and observed
that the ensemble performed better than the stand-alone networks.

As described in Chap. 3, the MLP neural network is made up of multiple layers of
computational components typically inter-connected in a feed-forward way (Haykin
1999; Hassoun 1995; Marwala 2012). Every neuron in one layer is linked to the
neurons of the following layer. A completely linked two layered MLP network
is used in this chapter. A NETLAB® toolbox that runs in MATLAB® which was
built by Nabney (2001) was implemented to build the MLP neural network. The
network which was discussed in Chap. 3 can be mathematically described as follows
(Haykin 1999):
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Here w.1/
ji and w.2/

ji are weights in the first and second layer, respectively, from
input i to hidden unit j, M is the number of hidden units, d is the number of output
units while w.1/

j 0 and w.2/

k0 are the weight parameters that represent the biases for the
hidden unit j and the output unit k. These weight parameters can be interpreted as
an instrument that ensures that the model comprehends the data. In this chapter,
the parameter fouter(•) is the linear function while finner is the hyperbolic tangent
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function. As described in Chap. 3, the weight vector in Eq. 4.1 is identified using
the scaled conjugate gradient method that is premised on the maximum-likelihood
approach (Møller 1993).

4.3 Radial-Basis Function (RBF)

The other neural network technique that is applied in this chapter is the radial basis
function. The RBF neural networks are feed-forward networks which are trained
using a supervised training algorithm (Haykin 1999; Buhmann and Ablowitz 2003;
Marwala and Lagazio 2011).

Marcozzi et al. (2001) successfully applied RBF and finite-difference algorithms
for option pricing, while Jing and Ning-qiang (2012) applied the RBF in power
system’s damping analysis. Guo et al. (2012) successfully applied RBF to predict
financial risk of the thermal power industry. Other successful applications of the
RBF to model complex problems include controlling chaotic systems (Hsu et al.
2012), braking system of a railway vehicle (Yang and Zhang 2012) and prediction
of protein interaction sites (Chen et al. 2012b).

Golbabai and Milev (2012) solved a partial integro-differential equation problem
with a free boundary in an American option model. They applied front-fixing
transformation of the underlying asset variable to deal with the free boundary
conditions. A radial basis functions technique was applied to realize a first order
nonlinear equation and they used the Predictor–Corrector technique to solve the
nonlinear equations. The results obtained were similar to those achieved by other
numerical methods.

Yu et al. (2012) applied a hybrid of particle swarm optimization and RBF (PSO-
RBF) for predicting China’s primary energy demands in 2020. They analyzed the
energy demand for the period from 1980 to 2009 based on the gross domestic
product (GDP), population, proportion of industry in GDP, urbanization rate, and
share of coal energy. The results they obtained showed that the PSO–RBF had fewer
hidden nodes and smaller estimated errors than traditional neural network models.

The RBF is normally arranged with a single hidden layer of units whose
activation function is chosen from a class of functions known as the basis functions.
The activation of the hidden units in an RBF neural network is described by a non-
linear function of the distance between the input vector and a vector representing
the centers of mass of the data (Bishop 1995). Although related to back-propagation
radial basis function networks have a number of advantages. They train much faster
than the MLP networks and are less disposed to problems with non-stationary inputs
owing to the behavior of the radial basis function (Bishop 1995). The RBF network
is shown in Fig. 4.1 and is expressed mathematically as follows (Buhmann and
Ablowitz 2003; Marwala and Lagazio 2011):

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
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Fig. 4.1 Radial basis function network having two layers of Adaptive weights (Reprinted from
Marwala and Lagazio 2011 with kind permission from Springer Science C Business Media B.V)
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Here, wjk are the output weights, corresponding to the link between a hidden unit
and an output unit, M denotes the number of hidden units, fcgj is the center for the
jth neuron, 	 (fxg) is the jth non-linear activation function, fxg the input vector, and
k D 1; 2; 3; : : : ; M (Bishop 1995; Marwala and Lagazio 2011). Once more, as in
the MLP, the choice of the number of hidden nodes M is part of the model selection
procedure.

The activation in the hidden layers implemented in this chapter is a Gaussian
distribution which can be written as follows (Bishop 1995):

�
	 .kfxg � fcgk/ D exp

�
�ˇ.fxg � fcg/2

��
(4.3)

where ˇ is constant.
As explained by Marwala (2009), the radial basis function is different from

the multi-layered perceptron because it has weights in the outer layer only and
the hidden nodes have centers. Training the radial basis function network involves
identifying two sets of parameters and these are the centers and the output weights
and both of these can be regarded as free parameters in a regression framework.
Although the centers and network weights can both be estimated at the same time,
in this chapter we apply a two stage training process to identify the centers. The
first is to use self-organizing maps to estimate the centers and, in this chapter, we
apply the k-means clustering technique (Hartigan 1975; Marwala 2009). The step of
identifying the centers only considers the input space whereas the identification of
the network weights uses both the input and output space.
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The k-means procedure is intended for clustering objects based on features into
k partitions. In this chapter, k will be equal to the number of centers M. Its aim is
to determine the centers of natural clusters in the data and assumes that the object
features form a vector space. It realizes this by minimizing the total intra-cluster
variance, or, the squared error function (Hartigan and Wong 1979; Marwala 2009):

E D
CX

iD1

X

xj 2 Si

�fxgj � fcgi
�2

(4.4)

Here, C is the number of clusters Si, i D 1; 2; : : : ; M and fcgi is the centers of all
the points xj 2 Si . The Lloyd procedure is applied to determine the cluster centers
(Lloyd 1982).

As described by Lloyd (1982), the procedure is started by randomly segmenting
the input space into k sets. Then the mean point is computed for each set, and then a
new partition is created by linking each point with the nearest center. The centroids
are then recomputed for the new clusters, and the procedure is reiterated by varying
these two steps until convergence. Convergence is realized when the centroids no
longer change or the points no longer switch clusters.

After the centers have been determined, the network weights then need to be
estimated, given the training data. To realize this, the Moore-Penrose pseudo inverse
(Moore 1920; Penrose 1955; Golub and Van Loan 1996; Marwala 2009) is applied.
Once the centers have been determined, then the approximation of the network
weights is a linear process (Golub and Van Loan 1996). With the training data
and the centers determined, Eq. 4.2 can then be rewritten as follows (Marwala and
Lagazio 2011):



yij

� D Œ	ik�


wkj
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where


yij

�
is the output matrix with i denoting the number of training examples,

and j denoting the number of output instances. The parameter Œ	ik� is the activation
function matrix in the hidden layer, with i denoting the training examples, and k
denoting the number of hidden neurons. The parameter



wkj

�
is the weight matrix,

with k denoting the number of hidden neurons and j denoting the number of output
instances. It can thus be observed that to estimate the weight matrix



wkj

�
, the

activation function matrix Œ	ik� ought to be inverted. Nevertheless, this matrix is not
square and consequently it can be inverted using the Moore-Penrose pseudo-inverse
is as follows (Marwala and Lagazio 2011):
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This means that the weight matrix may be estimated as follows (Marwala and
Lagazio 2011):



wkj

� D Œ	ik��


yij

�
(4.7)

A NETLAB® toolbox that runs in MATLAB® and explained in (Nabney 2001)
was applied to implement both the RBF and the MLP architectures.

4.3.1 Model Selection

Given that techniques of determining the weights that are learned from the training
data given an RBF or even an MLP model, the following undertaking is how to select
a suitable model, given by the size of the hidden nodes. The procedure of choosing
suitable model is called as model selection (Burnham and Anderson 2002). The
idea of deriving a model from data is a no-unique problem. This is for the reason
that many models are capable of describing the training data and, consequently, it
becomes difficult to determine the most suitable model. The basic method for model
selection is based on two principles and these are the goodness of fit and complexity.
The goodness of fit, basically, suggests that a good model should be capable of
predicting the validation data which has not been used to train the networks. The
complexity of the model is actually based on the principle of Occam’s razor that
recommends that the preferred model should be the simplest one.

There are vital issues such as:

• How do you choose a compromise between the goodness of fit and the complex-
ity of the model?

• How are these characteristics applied?

The goodness of fit is evaluated, in this chapter, by calculating the error between
the model prediction and the validation set whereas the complexity of the model is
evaluated by the number of free parameters in the data. As explained by Marwala
(2009), free parameters in the MLP model are defined as the network weights and
biases whereas in the RBF network are defined as the network centers and weights.
In this chapter, model selection is regarded as an instrument of choosing a model
that has a good probability of approximating the validation data that it has not been
exposed to during network training and the bias and variance are indicators of the
capability of this model to function in an acceptable manner.

The MLP is trained in this chapter using the scaled conjugate gradient technique
while for the RBF the k-means and pseudo-inverse techniques are used estimate the
free parameters (centers and weights).
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4.4 Support Vector Regression

The type of artificial intelligence method called support vector machines are a
supervised learning technique applied principally for classification and are resulting
from statistical learning theory and were first presented by Vapnik (1995, 1998).
They have also been modified to handle regression problems (Gunn 1997; Chang
and Tsai 2008; Chuang 2008; Hu et al. 2012; Orchel 2012). As described in Marwala
(2009), Pires and Marwala (2004) successfully applied support vector machines
for option pricing and additionally extended these to the Bayesian framework
whereas Gidudu et al. (2007) successfully applied support vector machines for
image classification.

Furthermore, Khemchandani et al. (2009) successfully applied the regularized
least squares fuzzy support vector regression for financial time series forecast-
ing. Chen et al. (2012a) successfully used support vector machines for seismic
assessment of school buildings, while Golmohammadi et al. (2012) used support
vector machines for quantitative structure–activity relationship estimation of blood-
to-brain partitioning behavior. Zhang et al. (2006) successfully used support vector
regression for on-line health monitoring of large-scale structures whereas Chen et al.
(2012c) applied SVM for customer churn prediction.

One of the difficulties of support vector regression is the computational load
required to train them. Guo and Zhang (2007) established methods for accelerating
support vector regression whereas Üstün et al. (2007) visualized support vector
regression models. Other successful applications of support vector machine include
prediction of carbon monoxide concentrations (Yeganeh et al. 2012), bearing
fault detection in industrial environments (Gryllias and Antoniadis 2012), defect
recognition in SonicIR (Zeng et al. 2012), classification of small-grain weed species
(Rumpf et al. 2012), crash injury severity analysis (Li et al. 2012) and mechanical
fault condition monitoring in induction motor (Salem et al. 2012). Huang (2012b)
applied genetic algorithms and support vector regression for hybrid stock selection
model and demonstrated that the proposed method gave better investment returns
than the benchmark.

The general notion behind support vector regression is to relate the input space
to an output space. Assuming we have the training dataset with one input and one
output being taken into account: f.x1; y1/ ; : : : ; .xi ; yi /g � � � <, where � is the
space of the input parameters and < represents the real number set. We intend to
identify a function f (x) that will relate the training inputs to the training outputs. In
Support Vector regression the objective is to identify this function that has at most "

deviation from the actual training targets yl. We can identify a number of functions
f (x) to relate training inputs to training outputs. These functions are called kernel
functions nevertheless these cannot just be any functions because kernel functions
have to satisfy to some principles (Joachims 1999). As described by many other
researchers we study a linear kernel function (Lang 1987):

f .x/ D hw; xi C b with w 2 �; b 2 < (4.8)
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Table 4.1 Common types of kernels

Kernel Type Equation

Linear k
�
xi ; xj

� D �
xi :xj

�

Polynomial
(inhomogeneous)

k
�
xi ; xj

� D �
xi :xj C c

�d
where d � 2 and c > 0

Radial basis function k
�
xi ; xj

� D exp
�
��

��xi � xj

��2
�

for � > 0

Exponential radial basis
function

k
�
xi ; xj

� D exp

�
� 1

2�2

��xi � xj

��2

�

Spline k
�
xi ; xj

� D 1 C xi xj C 1

2

ˇ̌
xi � xj

ˇ̌
min

�
xi ; xj

�2 C min
�
xi ; xj

�3

3

where h:; :i represents the dot product. Other kernel functions that can be used
include exponential radial basis function, linear spline, radial basis function and
polynomial which are shown in Table 4.1.

It is intended to identify small values for w and this can be achieved by
minimizing the Euclidean norm jjwjj2 (Drezet and Harrison 2001). A slack variables

 i, 
 i

* can be included in order to ensure that particular infeasible constraints in the
minimization of the Euclidean norm can be applied and the minimization problem
then becomes (Oliveira 2006):

min
1

2
kwk2 C C

lX

iD1

�

i C 
i

�� (4.9)

subject to

8
<̂

:̂

yi � hw; xi i � b	 "C 
i

hw; xi i C b � yi 	 "C 
i
�


i ; 
i
�� 0

(4.10)

where l is the number of training points used. The constraints in Eq. 4.10 deal with
an "-insensitive loss function applied to penalize particular training points that are
outside of the bound given by " which is a value selected.

Some other loss functions that may be used include smooth non-convex loss
function (Zhong 2012) and the Huber loss function which can also be applied but
the most common one is the "-insensitive loss function which is given by (Gunn
1997):

j
j" D
(

0 if j
j 	 "

j
j � " otherwise
(4.11)

As explained in Marwala (2009), the value for C is the extent to which deviations
from " are accepted (Trafalis and Ince 2000). It can be viewed as a degree of over-
fitting a function to the training data. If the value of C is set too high then the function
f (x) will be too well fitted to the training data and will not forecast well on data that
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Fig. 4.2 Linear support vector regression for a set of data (left) and the "-insensitive loss function
(right) (Adapted from Gunn 1997)

has not seen by the training of the function. This implies that data located outside of
the bounds given by " are not penalized sufficiently resulting in the function being
too well fitted to the training data (Trafalis and Ince 2000). An illustration of a linear
function being fitted to the training data can be observed in Fig. 4.2 with the bounds
displayed.

The function in Fig. 4.2 (right hand side) is applied to penalize those data points
that are located outside of the bounds (left hand side). The further a data point
is located outside of one of the bounds, the more the data point is penalized and,
therefore, it is factored less in the estimation of the function. Those data points
that are located within the bounds of the function are not penalized at all and their
matching slack variable values (
 i, 
 i

*) are assigned zero and accordingly these data
points contribute significantly in the estimation of the function f (x).

The optimization problem in Eq. 4.9 is then formulated as a quadratic pro-
gramming problem by first determining the Lagrangian multiplier and using the
Karush-Kuhn Tucker (KKT) conditions (Joachims 1999). Then the values for w
and b can be estimated so that the linear function fit the training data can be
identified. This instance of applying the constrained optimization framework is
merely applicable for a linear kernel function and the constrained optimization
framework differs for different kernel functions.

Similarly, a non-linear model can be used to satisfactorily model the data and
this can be conducted by applying a non-linear function to relate the data into a high
dimensional feature space where linear regression is conducted. Then the kernel
method is applied to handle the problem of the curse of dimensionality and for non-
linear problems the "-insensitive loss function can be used to give (Gunn 1997):
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max
˛;˛�

W
�
˛; ˛�� D max

˛;˛�

lX

iD1

˛� .yi � "/

�˛i .yi C "/� 1

2

lX

iD1

lX

j D1

.˛�
i � ˛i /

�
˛�

j � ˛j

�
K
�
xi ; xj

�

(4.12)

subject to

0 	 ˛i ; ˛�
i 	 C ;i D 1; : : : ; l

lX

iD1

�
˛i � ˛�

i

� D 0 (4.13)

In Eqs. 4.12 and 4.13, K is the kernel function and ˛ and ˛� are Lagrangian
multipliers. Solving these equations provides the Lagrangian multipliers and the
regression equation can thus be written as follows (Gunn 1997):

f .x/ D
X

SVs

� N̨ i � N̨�i
�

K .xi ; x/C Nb (4.14)

b D �1

2

lX

iD1

�
˛i � ˛�

i

�
.K .xi ; xr /CK .xi ; xs// (4.15)

The least squares support vector toolbox was applied for the investigation
(Suykens et al. 2002).

4.5 Applications of MLP, RBF and SVM to Economic
Modeling

In Chap. 3, the Bayesian and the evidence frameworks were applied to build an
automatic relevance determination (ARD) method. The ARD technique was then
applied to identify the relevance of economic variables that are essential for driving
the consumer price index. It was concluded that for the data analyzed using the
MLP based ARD the variables driving the CPI are mining, transport, storage
and communication, financial intermediation, insurance, real estate and business
services, community, social and personal services, gross value added at basic prices,
taxes less subsidies on products, affordability, economic growth, repo rate, gross
domestic product, household consumption and investment.

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
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Table 4.2 Characteristics of
the MLP network and the
results

Attributes Number

Input nodes 12
Hidden nodes 8
Output nodes 1
Training time 3.45
Accuracy 84.6 %

Fig. 4.3 Sample results achieved using the MLP network

Table 4.3 Characteristics of
the RBF network and the
results

Attributes Number

Input nodes 12
Hidden nodes 8
Output nodes 1
Training time 0.36
Accuracy 82.7 %

In this chapter, these variables are used to predict the CPI using MLP, RBF, and
SVM. The architecture of the MLP neural network applied in this chapter is as
indicated in Table 4.2. The MLP had linear activation function in the output layer
and hyperbolic tangent function in the hidden nodes (Fig. 4.3). The architecture of
the RBF neural network, applied in this chapter, is as indicated in Table 4.3 and
Fig. 4.4. The RBF had a Gaussian basis function. The sample results obtained can
be viewed in Fig. 4.3.
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Fig. 4.4 Sample results achieved using the RBF network

Table 4.4 Different implementations of the SVM models

C e Order Kernel Accuracy

Model 1 200 0.05 NA Exponential RBF 89.39
Model 2 200 0.05 NA Linear 87.81
Model 3 200 0.05 1 Spline 83.45
Model 4 200 0.05 2 RBF 85.73
Model 5 200 0.05 3 Polynomial 88.36

The architectures of the different SVM networks applied in this chapter are
as indicated in Table 4.4. The C and e parameters were fixed at 200 and 0.05
respectively.

Figure 4.5 shows the sample results from the RBF based SVM.
The results indicate that for the data under consideration, the SVM models

demonstrated better results followed by the MLP then the RBF. The SVM with
the exponential RBF gave the best results.
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Fig. 4.5 Model 1 predicted CPI vs. the actual CPI

4.6 Conclusion

This chapter described the multi-layered perceptron, radial basis functions, and
support vector machines and applied these to modeling the CPI. The results
indicated that the SVM gave the best results followed by the MLP and then the
RBF. The SVM with an exponential RBF gave the best results.
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Chapter 5
Bayesian Support Vector Machines
for Economic Modeling: Application
to Option Pricing

Abstract An option is the right, not the obligation, to buy or sell an underlying asset
at a later date by fixing the price of the asset at the present moment. European styled
options can be priced using the Black-Scholes equation and are only exercised at
the end of the period but American options can be exercised at any time during the
period and are, therefore, more complex due to the second random process they
introduce. Support vector machines and multi-layered perceptron techniques are
implemented using Bayesian technique to model American options and the results
are compared.

5.1 Introduction

This chapter applies the Bayesian approach to model options. An option is a right
but not an obligation to buy or sell an underlying asset at a later date but by fixing
the price of that asset at the present moment. There are two types of options the
American and European options and they differ with the specification on when they
can be exercised. European option can only be exercised at the end of the period
while American option can be exercised at any time during the life cycle of the
options. Mathematically, European options can be exercised using what is known as
the Black-Scholes equation which will be explained in the next section.

Lajbcygier and Connor (1997) applied neural networks and bootstrap methods
to estimate the difference between the standard option-pricing model and intra-day
option prices for stock index option futures. Confidence intervals resulting from the
use of bootstrap approaches were applied for trading.

Anders et al. (1998) applied neural networks to improve the pricing of options on
the German stock index. The results demonstrated better out-of-sample performance
than the Black-Scholes approach.

Ghaziri et al. (2000) applied a multi-layer neural network and neuro-fuzzy
network to price S&P 500 index call options. They compared the results with
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the Black-Scholes approach. They observed that neural network method performed
better than the Black-Scholes model as long as adequate amount of patterns were in
the training data.

Liang et al. (2006) applied a three-layer feed-forward neural network to improve
the option pricing performance. When applied to model the Hong Kong option
market, the model gave better results than the conventional option pricing models.

Dindar and Marwala (2004) applied multi-layer perceptron (MLP) and radial
basis functions (RBF) to model options. The MLP and RBF architectures were
optimized using particle swarm optimization. The results showed that optimized
RBF and MLP networks achieved better results than both the un-optimized networks
and the committee of networks.

Pires and Marwala (2005) applied Bayesian multi-layer perceptrons and
Bayesian support vector machines (SVM) for pricing American option. Their
work is the basis of this chapter. Furthermore, Pires and Marwala (2004) applied the
standard MLP and SVM for pricing American option pricing. Kohler et al. (2010)
applied neural networks for pricing high-dimensional American options. They
assumed that the price of the underlying asset were driven by Markov processes and
applied the Monte Carlo method to produce simulated data of these price processes.
They then applied standard neural networks to approximate option prices from this
data and the results were found to be good.

Nqi and Lidouh (2010) successful applied neural networks to price option with
monotonicity and convexity constraints, while Gradojevic et al. (2009) successfully
applied neural networks for option pricing with modular neural networks.

Andreou et al. (2008) applied artificial neural networks to price European options
and compared these to the Black-Scholes method. The results indicated that there
existed profitable opportunities even in the presence of transaction costs. Thomaidis
et al. (2007) compared neural network model selection strategies for pricing the
S&P 500 stock index options.

Amornwattana et al. (2007) applied a hybrid option pricing model that used
neural network for improving the estimation of option market prices. Neural
network approximated volatility and another neural network was used to value the
difference between the Black-Scholes model and the actual market option prices.
The proposed method performed better than the Black-Scholes approach with
historical volatility or the Black-Scholes approach model with volatility estimated
by the neural network.

Zhang and Lin (2007) applied wavelet neural network to price European options.
They compared this approach to MLP models and the Black-Scholes model on
pricing the Hang Seng index call options. The results indicated that wavelet neural
network was better than the MLP and the Black-Scholes model.

Other successful applications of neural networks for option pricing include using
neural networks and multinomial tree (Chen and Magdon-Ismail 2006), neural net-
works and parametric models (Panayiotis et al. 2004), regularized neural networks
(Choi et al. 2004), and for improving option pricing with product constrained hybrid
neural networks (Lajbcygier 2004).
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Shen et al. (2012) used support vector machine for option pricing and compared
this to the Black-Scholes equation. The results indicated high accuracy, robustness,
stability, and the ability to deal with non-linearity and non-stationarity characteris-
tics. Li (2011) successfully applied SVM to combine various estimating methods to
approximate option price, thereby, avoiding weaknesses of each method.

Liang et al. (2009) applied neural networks and SVM to improve option pricing.
They proposed a model based on neural networks and support vector regressions.
They implemented this method on the Hong Kong option market and the results
showed improved forecasting accuracy. Wang and Huang (2006) successfully
applied a hybrid wavelet-SVM for modeling derivatives valuation.

5.2 Black-Scholes Model

As described by Pires (2005), an option is a financial derivative of a different
financial security such as stock, credit, interest rate or exchange rate. Any of these
instruments are the primary asset of an option (Ross et al. 2001). Options are called
derivatives for the reason that they are derived from other financial securities (Hull
2003). An option provides for the right, but not an obligation to the owner of the
option, to buy or sell the asset at a later time called the maturity date by entering
into a contract that specifies a price for the underlying asset now. This agreed price
is known as the strike price. Because of their high value, options are treasured and
organizations pay a premium known as the price of the option to possess them.
There are two types of options and these are call and put options. A call option is
when a person intends to buy the underlying asset, while a put option is when the
individual intends to sell the underlying asset (Hull 2003).

Options are utilized daily by organizations to hedge their financial risk. For
example, consider a firm with an exposure to foreign trade. This company’s financial
risk is governed by the exchange rate and, if the rate changes dramatically, the
company may not be able to meet its financial obligations. A firm can normally
use an option to protect itself by purchasing a call option and thus giving the firm
the option of a fixed exchange rate.

This practice is called hedging and makes options very treasured and, therefore,
organizations pay a premium called the price of the option (Hull 2003). Other
financial mechanisms that can be used for hedging include forwards and futures
(Ross et al. 2001). There are two types of options and these are European and
American options (Hull 2003; Pires 2005). European options only permit the option
owner to exercise them on the expiry date of the contract, while American options
permit the owners to exercise the option on any date between accepting and the end
date of the contract (Hull 2003). American options are more valuable and introduce
a second random process into the model because of their flexibility on the date they
can be exercised (Jarrow and Turnbull 2000).

Black, Scholes and Merton presented the Black-Scholes model for option pricing
(Black and Scholes 1973; Merton 1973) and proposed the option pricing formula
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for European options. The Black-Scholes model is premised on the following
assumptions (Black and Scholes 1973; Merton 1973):

• Absence of arbitrage.
• Cash can be borrowed and lent at a known constant risk-free interest rate.
• Stock can be bought and sold.
• Transactions have fees or costs.
• The stock price is described by a geometric Brownian motion with constant drift

and volatility.
• The underlying security does declare dividend.

The Black-Scholes model offers a mechanism of approximating the underlying
asset’s volatility which can be predicted using the Black-Scholes equation. The
model offered the first options pricing formula and influenced the manner in which
traders price and hedge options. American options are used extensively by traders
and many traders use the Black-Scholes model together with some sampling process
such as Monte Carlo simulation, which will be described later in the chapter.

Chen et al. (2012) proposed a spectral element technique for solving partial
integro-differential equations for pricing European options under the Black-Scholes
and Merton jump diffusion models. The proposed technique was found to be flexible
for treating different boundary conditions and non-smooth initial conditions and was
found to be efficient and accurate.

Jeunesse and Jourdain (2012) studied the regularity of the value function for the
American Put option when the underlying asset declares a discrete dividend at a
prescribed date, while Iazzolino and Fortino (2012) proposed a correction to the
Black-Scholes model to assess credit risk. Thapa et al. (2012) studied parameters in
the Black-Scholes option pricing model and established the existence, uniqueness,
and continuous dependence of the weak solution of the Black-Scholes model.

Fatone et al. (2012) applied statistical tests to calibrate the Black-Scholes asset
dynamics model to price options with uncertain volatility, while Yousuf-Khaliq
and Kleefeld (2012) applied numerical approximation of nonlinear Black-Scholes
model for exotic path-dependent American options with transaction cost.

The Black-Scholes equation can be expressed mathematically as follows (Hull
2003; Black and Scholes 1973):

@V

@t
C 1

2
S2�2 @2V

@S2
C rS

@V

@S
� rV D 0 (5.1)

Here, S is the price of the stock, V is the price of the derivative as a function of
time and the stock price � is the vitality of the stock return, and r is the annualized
risk-free interest rate. Equation 5.1 can be solved for both call and put options.
The price for a call option for a non-dividend declaring underlying stock can be
mathematically represented as follows (Hull 2003):

C.S; t/ D N .d1/ S �N .d2/ Ke�r.T �t / (5.2)
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The price of an equivalent put option can be written mathematically as follows
(Hull 2003):

P.S; t/ D Ke�r.T �t / � S C C.S; t/

D N.�d2/Ke�r.T �t / �N .�d1/ S (5.5)

where

N.x/ D 1p
2�

Z x

�1
e� z2

2 dz (5.6)

and T � t is the time to maturity, and K is the strike price. In this chapter, we
implement Bayesian neural networks and Bayesian support machines for American
option pricing.

5.3 Bayesian Neural Networks

In this chapter, a multi-layer perceptron neural network model is used for option
pricing. The MLP is formulated in the Bayesian framework and trained using the
hybrid Monte Carlo technique (Marwala 2001, 2007, 2009, 2010, 2012; Marwala
and Lagazio 2011).

Venegas-Martı́nez (2005) proposed a Bayesian model for pricing options with
prior volatility information. A number of estimated formulas for valuing European
call options on the basis of asymptotic and polynomial estimates of Bessel functions
were presented. Flynn et al. (2005) presented a Bayesian framework for pricing
Australian S&P 200 options. The results showed that time-varying volatility,
leptokurtosis, and a small degree of negative skewness were priced in Australian
stock market options.

Bauwens and Lubrano (2002) proposed Bayesian option pricing models using
asymmetric GARCH models, while Foster and Whiteman (1999) applied Bayesian
option pricing models to the soybean market.

In this chapter, a multi-layer perceptron is applied to map the spot price, strike
price, the risk-free rate of interest, the time to maturity of the contract (the time
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difference between when the contract is taken and when the contract expires) and
the volatility of the underlying asset (x) and the price of the call option (y). This
relationship between the y, and x, may be expressed as follows (Bishop 1995;
Marwala 2009, 2012; Marwala and Lagazio 2011):

y D fouter

0

@
MX

j D1

w.2/

kj finner

 
dX

iD1

w.1/
ji xi C w.1/

j 0

!
C w.2/

k0

1

A (5.7)

Here, w.1/
ji and w.2/

kj designate the weights in the first and second layers,
correspondingly, moving from input i to hidden unit j, M is the number of hidden
units, d is the number of output units, whereas w.1/

j 0 designates the bias for the hidden

unit j and w.2/

k0 designates the bias for the output unit k.
Selecting suitable network design is an imperative requirement for model

building. When selecting a correct MLP model, an essential decision lies in the
choice of the correct number of hidden units (M) and the activation functions.
A large value of M gives flexible networks, which learn the noise in the data. On
the contrary, a small M gives networks that are incapable of modeling complex
relationships. Identifying the weights and biases in the MLP neural networks may
be framed in the Bayesian context as (MacKay 1991, 1992; Bishop 1995; Lagazio
and Marwala 2005; Marwala 2009, 2012; Marwala and Lagazio 2011):

P.wjŒD�/ D P.ŒD�jw/P.w/

P.ŒD�/
(5.8)

P(w) is the probability distribution function of the weight-space before the
data is factored into account and it is also the prior distribution function and
[D]� (y1, : : : ,yN) is a matrix comprising the option prices. P(wj[D]) is the posterior
probability distribution function after the data have been seen, P([Djw]) is the
likelihood function and P([D]) is the normalization function, also called the
“evidence”. For the MLP, Eq. 5.8 may be expanded by applying the sum-of squares
of the error function to give (MacKay 1992; Bishop 1995; Marwala 2009):
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The sum-of-squares of the error function is applied because of its regression
advantages. A weight-decay is assumed for the prior distribution as it penalizes the
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weights with large magnitudes. In Eq. 5.9, n is the index for the training example,
hyper-parameter ˇ is the data contribution to the error, k is the index for the output
units, tnk is the target output corresponding to the nth training example and kth output
unit and y is the forecasted option price. The parameter ˛j is a hyper-parameter,
which influences the contribution of the regularization term to the training error.
Equation 5.9 may be solved by sampling the posterior probability space using
methods like the Monte Carlo technique, simulated annealing, the genetic Monte
Carlo method, or the hybrid Monte Carlo method (Marwala 2010, 2012). The next
section describes the hybrid Monte Carlo method which is used in this chapter.

5.4 Hybrid Monte Carlo (HMC)

This chapter applies the HMC method to approximate the posterior probability
of the weight vectors, given the observed data as indicated in Eq. 5.9. The HMC
technique uses the gradient of the mean-square error that is estimated using a back-
propagation method. Using the gradient method assures that the simulation samples
through the areas of higher probabilities and, therefore, accelerates convergence
to a stationary probability distribution function. This technique is a Markov chain
method. The HMC consists of dynamic and stochastic moves. Stochastic moves
allow the method to sample states with different total energy, while the dynamic
moves apply the Hamiltonian dynamics and allow sampling states with constant
total energy. The HMC method can be considered as a hybrid of Monte Carlo
method and gradient search.

Misev et al. (2012) applied HMC for modeling condensed phases in high
performance computing environment, while Wang et al. (2012) applied HMC and
support vector machines for face detection demonstrating the reduction of the
training time. Leermakers et al. (2012) applied the HMC to model a thin layer of a
polyelectrolyte gel near an adsorbing surface, while Zhang et al. (2012) applied the
HMC to estimate geotechnical model uncertainty, and (Niu et al. 2012) applied the
HMC technique in short-term load forecasting.

In Mechanics the positions and the momentum of all molecules at a particular
time in a physical system is called the state space of the system. The positions of the
molecules define the potential energy of the system and the momentum articulates
the kinetic energy of the system. What is called the canonical distribution of the
‘potential energy’ in statistical mechanics is the posterior distribution in this chapter.
The canonical distribution of the system’s kinetic energy is (Neal 1993; Bishop
1995; Marwala 2009, 2012; Marwala and Lagazio 2011):

P .fpg/ D 1

ZK

exp .�K .fpg//
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Here, pi is the momentum of the ith variable and p should not to be confused
with P, which indicates the probability. In this chapter, pi is a fictional parameter
that presents the technique in a molecular dynamics context. The weight vector
fwg and momentum vector fpg are of the same dimension. The sum of the kinetic
and potential energy is known as the Hamiltonian of the system and can be
mathematically designated as follows (Neal 1993; Bishop 1995; Marwala 2009,
2012; Marwala and Lagazio 2011):
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2
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Here, the first two terms are the potential energy of the system and the last term
is the kinetic energy. The canonical distribution over the phase space, i.e., position
and momentum, can be written as follows (Neal 1993; Bishop 1995; Marwala 2009,
2012; Marwala and Lagazio 2011):

P.w; p/ D 1

Z
exp .�H.w; p// D P .wjD/ P.p/ (5.13)

The dynamics in the phase space may be expressed in the Hamiltonian dynamics
by deriving the derivative of the ‘position’ and ‘momentum’ in terms of fictional
time � . The term ‘position’ used here is the network weights. The dynamics of the
system accordingly can be written by using Hamiltonian dynamics as follows (Neal
1993; Bishop 1995; Marwala 2009, 2012; Marwala and Lagazio 2011):
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The dynamics, stated in Eqs. 5.14 and 5.15, cannot be realized precisely.
These equations are discretized by applying a ‘leapfrog’ method. The leapfrog
discretization of Eqs. 5.14 and 5.15 may be written as follows (Neal 1993; Bishop
1995; Marwala 2009, 2012; Marwala and Lagazio 2011):
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By using Eq. 5.16, the leapfrog moves a slight half step for the momentum
vector, fpg, and, using Eq. 5.17, moves a full step for the ‘position’, fwg, and, by
using Eq. 5.18, moves a half step for the momentum vector, fpg. The amalgamation
of these three steps give a single leapfrog iteration that estimates the ‘position’
and ‘momentum’ of a system at time � C " from the network weight vector and
‘momentum’ at time � . This discretization process is reversible in time, it nearly
conserves the Hamiltonian, and conserves the volume in the phase space, as required
by Liouville’s theorem (Neal 1993).

The HMC method functions by following a sequence of routes from an initial
state, i.e., ‘positions’ and ‘momentum’, and moving in some direction in the state
space for a given length of time and accepting the final state by applying the
Metropolis algorithm which is written as follows (Metropolis et al. 1953; Marwala
2009, 2010, 2012; Marwala and Lagazio 2011):

if Enew < Eold accept state .snew/

else

accept .snew/ with probability

exp f� .Enew � Eold/g (5.19)

In Eq. 5.19, states with high probability form the bulk of the Markov chain and
those with low probability form the smaller part of the Markov chain. The validity of
the hybrid Monte Carlo depends on three properties of the Hamiltonian dynamics
which were described by Neal (1993), Bishop (1995), Marwala (2009), Marwala
and Lagazio (2011), and Marwala (2012) as follows:

1. Time reversibility: it is invariant under t!�t, p!�p.
2. Conservation of energy: the H(w, p) is the same at all times.
3. Conservation of state space volumes due to Liouville’s theorem (Neal 1993).

For a specified leapfrog step size, "0, and the number of leapfrog steps, L, the
dynamic transition of the hybrid Monte Carlo method is implemented as described
by Neal (1993), Bishop (1995), Marwala (2009), Marwala and Lagazio (2011), as
well as Marwala (2012):

• Select randomly the direction of the trajectory, �, to be either�1 for a backwards
trajectory orC1 for forwards trajectory.

• Beginning from the first state, (fwg, fpg), execute L leapfrog steps with the step
size " D "0.1 C 0:1k/ leading to state (fwg*, fpg*). Here, "0 is a chosen fixed
step size and k is a number chosen from a uniform distribution and is between
0 and 1.

• Reject or accept (fwg*, fpg*) by using the Metropolis criterion. If the state is
accepted then the new state becomes (fwg*, fpg*). If rejected, the old state, (fwg,
fpg), is reserved as the new state.
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The HMC technique uses the gradient information in Step 2 and the advantages
of using this gradient is so that the HMC trajectories move in the direction of high
probabilities, resulting in an improved acceptance rate of samples (Bishop 1995).

The number of leapfrog steps, L, must be higher than one to permit a fast
exploration of the state space. The choice of "0 and L impacts on the speed at
which the simulation converges to a stationary distribution and the correlation
between the states accepted. The leapfrog discretization doesn’t present systematic
errors because of infrequent rejection of states that end with the increase of the
Hamiltonian. In the HMC technique, the step size " D "0.1 C 0:1k/ where k is
uniformly distributed between 0 and 1 is not fixed and this guarantees that the step
size for each trajectory is altered with the aim of accepting states that have no high
correlation. The same result can be realized by varying the leapfrog steps but in
this chapter only the step size is altered. The use of the Bayesian method in neural
networks leads to weight vectors that have a particular mean and standard deviation.
Accordingly, the output parameters have a probability distribution. Resulting from
the rules of probability theory, the distribution of the output vector fyg for a given
input vector fxg can be expressed in the following form as explained in Bishop
(1995), Marwala (2009), Marwala and Lagazio (2011), and Marwala (2012):

p.fygˇ̌fxg; D/D
Z

p.fygˇ̌fxg; fwg/p.fwgˇ̌D/d fwg (5.20)

The HMC technique was employed to identify the distribution of the weight
vectors, and subsequently, of the output parameters. The integral in Eq. 5.20 may be
approximated as follows (Bishop 1995; Neal 1993; Marwala 2009, 2012; Marwala
and Lagazio 2011):

I � 1

L

LX

iD1

f .fwgi / (5.21)

Here, L is the number of retained states and f is the MLP network. The use of a
Bayesian approach to the neural network leads to the mapping of the weight vector
between the input and output having a probability distribution.

5.5 Bayesian Support Vector Machines

In support vector regression, as it was described in Chap. 4, we seek to identify small
values for w with slack variables 
 i, 
 i

* in order to ensure that particular infeasible
constraints in the minimization of the Euclidean norm can be applied. This problem
can be formulated as follows (Schölkopf et al. 1999; Schölkopf and Smola 2002):

http://dx.doi.org/10.1007/978-1-4471-5010-7_4
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where l is the number of training points used. The constraints in Eq. 5.23 are
associated with an "-insensitive loss function used to penalize specific training data
that are outside of the bound given by " which is a value chosen. The "-insensitive
loss function which is given by (Gunn 1997; Shawe-Taylor and Cristianini 2004):

j
j" D
�

0 if j
j 	 "

j
j � " otherwise
(5.24)

As it was described in Chap. 4, in support vector machines we identify a number
of functions f (x) to relate training inputs to training outputs and these functions
are called kernel functions. In this chapter, we implement the radial basis function
kernel which is written as follows (Gunn 1997; Steinwart and Christmann 2008):

k
�
xi ; xj

� D exp
�
��
��xi � xj

��2
�

for � > 0 (5.25)

A non-linear model can be applied to model the data and this can be achieved
by using a non-linear function to relate the data into a high dimensional feature
space where linear regression is conducted. Then the kernel method is applied to
handle the problem of the curse of dimensionality and for non-linear problems the
"-insensitive loss function can be used to give the following optimization problem
(Gunn 1997):
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94 5 Bayesian Support Vector Machines for Economic Modeling: Application . . .

Here, ˛i and ˛�
i are Lagrange’s multipliers and C is the capacity. The regression

equation can thus be written as follows (Gunn 1997):
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5.5.1 Monte Carlo Method

In this chapter, we sample through the beta values space using Markov Chain Monte
Carlo (MCMC) simulation to identify the distribution of the beta values. This is
done to estimate Eq. 5.8 where the w is the vector containing the beta values.
Before we describe the MCMC, it is important to describe the Monte Carlo method.
Monte Carlo methods are applied to simulate complex systems and form a class
of numerical techniques that depends on recurrent random sampling to estimate
the results. Because they depend on recurrent estimation of random numbers, these
techniques are appropriate for estimating the results using computers and are applied
when it is mathematically infeasible to estimate a solution using a closed form
solution (Marwala and Lagazio 2011; Marwala 2012).

Caporin et al. (2012) applied Monte Carlo method to price energy and tem-
perature Quanto options. Quanto options allow for the correlation between energy
consumption and weather conditions and, thereby, allow price and weather risk to
be managed. They proposed a Monte Carlo pricing model which relaxes some of the
assumptions made by the Black-Scholes model. Hu and Chen (2012) successfully
applied Quasi-Monte Carlo simulation for Asian basket option pricing, while
Caramellino and Zanette (2011) successfully applied a Monte Carlo approach for
pricing and hedging American options in high dimensions. Holčapek and Tichý
(2011) applied the Monte Carlo technique for option pricing with fuzzy parameters.
Other applications of the Monte Carlo method to option pricing include pricing of
Asian options using a Trapezium scheme (Seghiouer et al. 2011) and pricing options
using sequential Monte Carlo (Jasra and del Moral 2011).

Monte Carlo simulation methods are beneficial in analyzing systems with a
large number of degrees of freedom and uncertain inputs in disciplines such as
mechanical engineering, electrical engineering, and computer science (Robert and
Casella 2004). The Monte Carlo method usually follows the following steps (Robert
and Casella 2004; Marwala and Lagazio 2011; Marwala 2012):
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• The input space should be defined.
• Randomly produce inputs from the input space by using a chosen probability

distribution.
• Apply the input for the deterministic computing.
• Integrate the results of the individual computation to estimate the final result.

5.5.2 Markov Chain Monte Carlo Method

A Monte Carlo method which is used in this chapter to sample the probability
distribution of the beta factor in the SVM in this chapter is the Markov Chain
Monte Carlo (MCMC) method. The MCMC is a random walk Monte Carlo method
which produces a Markov chain to identify an equilibrium distribution. The MCMC
encompasses a Markov process and a Monte Carlo simulation (Liesenfeld and
Richard 2008).

Verrall and Wüthrich (2012) applied a reversible jump MCMC technique to
reduce parameters for setting claims reserves for the outstanding loss liabilities.
The proposed technique was observed to describe parameter reduction and tail
factor approximation in the claims reserving procedure and predicted distribution
of the outstanding loss liabilities. Kojima and Usami (2012) applied the Markov
Chain Monte Carlo technique for solving the electromagnetic interrogation problem,
while Fishman (2012) applied the MCMC for counting contingency tables, and
Hettiarachchi et al. (2012) applied the MCMC approach to analyze of EEG data.

The MCMC method is applied by considering a system whose evolution is
described by a stochastic process involving random variables fw1,w2,w3, : : : ,wig
where a random variable wi occupies a state w at discrete time i. The total number of
all possible states that all random variables can inhabit is named a state space. If the
probability that the system is in state wi C 1 at time iC 1 depends entirely on the fact
that it was in state wi at time i, then the random variables fw1,w2,w3, : : : ,wig form
a Markov chain. The transition between states is realized by adding random noise
(") to the current state as follows (Bishop 1995; Marwala 2010, 2012; Marwala and
Lagazio 2011):

wiC1 D wi C " (5.30)

When the current state has been reached, it is either accepted or rejected using
the Metropolis algorithm which was described in Eq. 5.19.

5.6 Experimental Investigation

The data used were obtained from the South African Futures Exchange (Anonymous
2004). This results are based on the work conducted Pires (2005) and Pires and
Marwala (2004, 2005). The data that was analyzed was for all call options for the
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Fig. 5.1 Results obtained from the Bayesian MLP

period of January 2001 to December 2003. In this chapter, Bayesian multi-layered
perceptrons and Bayesian SVM were used to map the relationship between the spot
price, strike price, the risk-free rate of interest, time to maturity of the contract (the
time difference between when the contract is taken and when the contract expires)
and the volatility of the underlying asset to the call price. The MLP network which
was used had seven inputs, 40 hidden nodes, and one output. The hidden nodes were
hyperbolic tangent function while the output activation function was linear. In total,
300 samples were used for training and 300 were used for testing the methods. The
weight decay value was 0.05 number of hybrid Monte Carlo samples was 1,000,
step size of 0.0005 and number of omitted samples at the start of the hybrid Monte
Carlo simulation was 500. The results obtained are indicated in Fig. 5.1 (Pires and
Marwala 2005).

The SVM was implemented and the following parameters were chosen: Ker-
nel: radial basis function, number of training points: 400, Capacity: 10, and
"-insensitivity of 0.005. The results obtained are indicated in Fig. 5.2 (Pires and
Marwala 2005). The number of samples which is under 5 % was 42 for the SVM,
while it was 56 for the MLP. The number of samples which was under 10 % is 82
for the SVM, while it was 112 for the MLP. These results indicate that the MLP
performs better than the SVM.
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Fig. 5.2 Results obtained from the Bayesian SVM

5.7 Conclusion

As described, an option is the right, not the obligation, to buy or sell an underlying
asset at a later date but by fixing the price of the asset at the present moment. Support
vector machines and the multi-layered perceptron techniques were implemented
using the Bayesian technique to model American options and the results were
compared. The results obtained suggested that the MLP gave better results than
the SVM.
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Chapter 6
Rough Sets Approach to Economic Modeling:
Unlocking Knowledge in Financial Data

Abstract Building models to accurately forecast financial markets has drawn the
attention of economists, bankers, mathematicians and scientists alike. The financial
markets are the foundation of every economy and there are many aspects that affect
the direction, volume, price, and flow of traded stocks. The markets’ weakness
to external and non-financial features as well as the ensuing volatility makes
the development of a robust and accurate financial market forecasting model an
interesting problem. In this chapter a rough set theory based forecasting model is
applied to the financial markets to identify a set of reducts and possibly a set of
trading rules based on trading data.

6.1 Introduction

Rough set theory was proposed by Pawlak (1991) and is a mathematical method
which models imprecision and uncertainty. It allows one to approximate sets that
are challenging to describe even with available information. In this chapter, rough
sets are used to create an intelligent and transparent trading system. The benefits
of rough sets, as with many other artificial intelligence approaches, are that they
do not require strict a priori assumptions about the mathematical relationships of
such complex systems, as is usually essential for the multivariate statistical methods
(Machowski and Marwala 2005; Marwala 2012; Crossingham and Marwala 2008;
Marwala and Lagazio 2011). Rough set theory is based on the assumption that
the information of interest is related with some information from its universe of
discourse (Tettey et al. 2007; Crossingham et al. 2009; Marwala and Crossingham
2008; Crossingham and Marwala 2008).

Virginia and Nguyen (2013) applied rough sets theory to automatically produce a
thesaurus from a corpus. They investigated the relationship between keywords and
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the sets produced based on rough sets theory. The results they obtained showed
that applying rough sets theory is a viable approach to automatically create a
thesaurus.

Pérez-Dı́az et al. (2012) applied rough sets to filter spam. The proposed method
was found to perform better than other anti-spam filtering methods such as support
vector machines, Adaboost and Bayes classifiers.

Abed-Elmdoust and Kerachian (2012) applied rough sets for wave height predic-
tion. They applied rough sets to Lake Superior in North America to identify decision
rules for wave height prediction. Rough sets approach was found to perform better
than support vector machines, Bayesian networks, neural networks, and adaptive
neuro-fuzzy inference system on wave height prediction and offered simple decision
rules which can used by users.

Villuendas-Rey et al. (2012) applied rough sets for nearest prototype classifi-
cation. They combined rough set theory with compact sets to obtain a reduced
prototype set and obtained good classification accuracy.

Zhou (2012) applied rough sets to build coal mine safety decision system and
obtained good results whereas Wang et al. (2006) successfully applied rough set
theory to handle uncertainty and, thereby, decreasing the redundancy of evaluating
the degree of malignancy in brain glioma, based on magnetic resonance imaging
findings as well as the clinical data before an operation.

Further applications of rough set theory consist of the work by Xie et al. (2011)
who applied rough sets for land cover retrieval from remote sensing images, Azadeh
et al. (2011) who applied a rough set method to evaluate the efficiency of personnel,
Salamó and López-Sánchez (2011) who applied rough sets for choosing features in
Case-Based Reasoning classifiers, Lin et al. (2011) who applied rough set theory
to forecast customer churn in credit card accounts, Zhang et al. (2008) who applied
rough sets to control reagents in an ionic reverse flotation process, Huang et al.
(2011) who used rough sets in patent development resource allocation, Zou et al.
(2011) who applied rough sets for distributor choice in a supply chain management
system, Gong et al. (2010) in a rare-earth extraction process, Chen et al. (2010) to
diagnose pneumonia in the elderly, Yan et al. (2010) for forecasting soil moisture
and Liao et al. (2010) to model brand trust.

The principal notion of rough set theory is an indiscernibility relation, where
indiscernibility designates indistinguishable from one another. For knowledge
extraction from data with numerical attributes, special approaches are used. The
cost commonly used step called discretization is applied before the principal step of
rule induction or decision tree generation is used (Crossingham and Marwala 2007;
Mpanza 2011). A number of methods that have been used for discretization are
Boolean reasoning, Equal-Width-Bin (EWB) partitioning and Equal-Frequency-Bin
(EFB) partitioning (Jaafar et al. 2006; Fayyad and Irani 1993; Marwala and Lagazio
2011; Marwala 2009; Mpanza and Marwala 2011).

In this chapter we apply rough sets to accurately forecast the financial market.
The next chapter describes the theory of rough sets.
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6.2 Rough Sets

The main aim of utilizing rough sets is to generate approximations of a number
of ideas from the gathered data. Rough set theory has advantages because it does
not require (Crossingham 2007; Nelwamondo 2008; Marwala and Lagazio 2011;
Marwala 2012):

• any new information about the experimental training data for example the
statistical probability; and

• formulation in possibility terms as is done in fuzzy set theory (Pawlak and
Munakata 1996).

Rough set theory is intended to approximate sets that are difficult to describe
with the information available (Ohrn 1999; Ohrn and Rowland 2000; Marwala and
Lagazio 2011; Marwala 2012). It is aimed at classifying imprecise, uncertain, or
incomplete information. Two approximations, the upper and lower estimation are
formulated to deal with inconsistent information. The data are characterized using
an information table.

Rough set theory is based on a set of rules, which are explained in terms of
linguistic variables. Rough sets are important aspect of artificial intelligence and
have been applied to machine learning and decision analysis, mainly in the analysis
of decisions in which there are contradictions. Since they are rule-based, rough
sets are highly transparent nonetheless they are not as accurate as other artificial
intelligence methods. Nevertheless, they are not good as universal approximators,
because other machine learning methods such as neural networks are better in their
predictions. Therefore, in machine learning, there is always a trade-off between
forecasting accuracy and transparency.

Crossingham and Marwala (2007) offered a method to optimize the partition
sizes of rough set using a number of optimization approaches. Three optimization
techniques were used to granularize the variables: the genetic algorithm, hill
climbing and simulated annealing. These optimization methods maximize the
classification accuracy of the rough sets. The three techniques were compared for
their computational time, accuracy, and number of rules produced and then applied
to an HIV data set. The optimized method results were then compared to a non-
optimized discretization technique, using Equal-Width-Bin (EWB) partitioning.
The accuracies attained after optimizing the partitions using a genetic algorithm
(GA), hill climbing, and simulated annealing (SA) were 66.89, 65.84, and 65.48 %,
respectively, compared to the accuracy of the EWB partitioning of 59.86 %. Rough
sets gave the plausibility of the estimated HIV status and the linguistic rules relating
to how demographic parameters influence the risk of HIV.

Rough set theory enables reasoning from vague and imprecise data (Goh and
Law 2003). It is based on the assumption that some observed information is,
somehow, related to some information in the universe of the discourse (Komorowski
et al. 1999; Yang and John 2006; Kondo 2006; Marwala and Lagazio 2011; Mar-
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wala 2012). Objects with the same information are indiscernible in the perspective
of the existing information. An elementary set that consists of indiscernible objects
forms a basic granule of knowledge. A union of an elementary set is known as a
crisp set, otherwise, the set is said to be rough. In the next sub-sections, rough set
theory is explained.

6.2.1 Information System

An information system (ƒ), is deemed as a pair (U, A) where U is a finite set
of objects known as the universe and A is a non-empty finite set of attributes as
illustrated as follows (Crossingham 2007; Yang and John 2006; Nelwamondo 2008;
Marwala 2009, 2012; Marwala and Lagazio 2011).

ƒ D .U; A/ (6.1)

All attributes a 2 A have values, which are elements of a set Va of the attributes
a (Dubois 1990; Crossingham 2007; Marwala and Lagazio 2011; Marwala 2009):

a W U ! Va (6.2)

A rough set is explained with a set of attributes and the indiscernibility relation
between them. Indiscernibility is described in the next subsection.

6.2.2 The Indiscernibility Relation

The indiscernibility relation is one of important notions of rough set theory
(Grzymala-Busse and Hu 2001; Grzymala-Busse 2004; Grzymala-Busse and
Siddhaye2004; Zhao et al. 2007; Pawlak and Skowron 2007; Marwala and Lagazio
2011; Marwala 2012). Indiscernibility essentially implies similarity (Goh and
Law 2003) and, accordingly, these sets of objects are indistinguishable. Given
an information system ƒ and subset B 
 A, B the indiscernibility describes a
binary relation I(B) on U such that (Pawlak et al. 1988; Ohrn 1999; Wu et al.
2003; Ohrn and Rowland 2000; Nelwamondo 2008; Marwala and Lagazio 2011;
Marwala 2012):

.x; y/ 2 I.B/

if and only if

a.x/ D a.y/ (6.3)
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for all a 2 A where a(x) indicates the value of attribute a for element x.
Equation 6.3 put forward that any two elements that are elements of I(B) should
be indistinguishable from the point of view of a. Let’s say that U has a finite set
of N objects fx1,x2, : : : ,xNg. Let Q be a finite set of n attributes fq1,q2, : : : ,qng in
the same information system ƒ, then (Inuiguchi and Miyajima; 2007; Crossingham
2007; Nelwamondo 2008; Marwala and Lagazio 2011; Marwala 2012):

ƒ D hU; Q; V; f i (6.4)

where f stands for the total decision function, called the information function. From
the description of the indiscernibility relation, two objects have a similarity relation
to attribute a if they universally have the same attribute values.

6.2.3 Information Table and Data Representation

An information table is used in rough sets theory as a method for indicating the data.
Data in the information table are arranged, focused on their condition attributes and
decision attributes (D). Condition attributes and decision attributes are analogous
to the independent variables and dependent variable (Goh and Law 2003). These
attributes are separated into C [ D D Q and C [ D D 0. Data is specified
in the table and each object is described in an Information System (Komorowski
et al. 1999).

6.2.4 Decision Rules Induction

Rough sets also necessitate creating decision rules for a given information table.
The rules are normally based on condition attributes values (Bi et al. 2003; Slezak
and Ziarko 2005). The rules are offered in an ‘if CONDITION(S)-then DECISION’
arrangement. Stefanowski (1998) used a rough set method for inference in decision
rules.

6.2.5 The Lower and Upper Approximation of Sets

The lower and upper estimates of sets are defined based on the indiscernibility
relation. The lower approximation is the aggregation of cases whose equivalent
classes are restricted in the cases that require to be approximated, while the
upper approximation is defined as the aggregation of classes that are incompletely
contained in the set to be approximated (Rowland et al. 1998; Degang et al. 2006;
Witlox and Tindemans 2004). If X is defined as a set of all cases defined by
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a particular value of the decision and that any finite union of elementary set, related
to B called a B-definable set (Grzymala-Busse and Siddhaye 2004) then set X can be
approximated by two B-definable sets, called the B-lower approximation indicated
by BX and B-upper approximation BX: The B-lower approximation is written as
follows (Bazan et al. 2004; Crossingham 2007; Nelwamondo 2008; Marwala and
Lagazio 2011; Marwala 2012):

BX D fx 2 U jŒx�B 
 Xg (6.5)

and the B-upper approximation is written as follows (Crossingham 2007; Nelwa-
mondo 2008; Marwala and Lagazio 2011; Marwala 2012):

BX D fx 2 U jŒx�B \ X ¤ 0g (6.6)

There are other methods that have been explained for defining the lower and
upper approximations for an entirely detailed decision table and these include
estimating the lower and upper approximation of X using Eqs. 6.7 and 6.8, as
follows (Grzymala-Busse 2004; Crossingham 2007; Nelwamondo 2008; Marwala
and Lagazio 2011; Marwala 2012):

[fŒx�B jx 2 U; Œx�B 
 Xg (6.7)

[fŒx�B jx 2 U; Œx�B \ X ¤ 0g (6.8)

The definition of definability is revised in situations of incompletely specified
tables. In this case, any finite union of characteristic sets of B is called a B-definable
set. Three different definitions of approximations have been discussed by Grzymala-
Busse and Siddhaye (2004). By letting B be a subset of A of all attributes and R(B)
be the characteristic relation of the incomplete decision table with characteristic
sets K(x), where x 2 U, the following can be defined (Grzymala-Busse 2004;
Crossingham 2007; Nelwamondo 2008; Marwala and Lagazio 2011):

BX D fx 2 U jKB.x/ 
 X g (6.9)

and

BX D fx 2 U jKB.x/ \ X ¤ 0 g (6.10)

Equations 6.9 and 6.10 are called as singletons. The subset lower and upper
approximations of incompletely quantified data sets can then be written as follows
(Nelwamondo 2008; Marwala and Lagazio 2011; Marwala 2012):

[fKB.x/ jx 2 U; KB.x/ 
 X g (6.11)
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and

[fKB.x/ jx 2 U; KB.x/ \ X D 0g (6.12)

More information on these methods can be accessed in (Grzymala-Busse and
Hu 2001; Grzymala-Busse and Siddhaye 2004; Crossingham 2007; Marwala and
Lagazio 2011; Marwala 2012). It can be inferred from these properties that a crisp
set is only defined if B.X/ D B.X/. Roughness is, therefore, defined as the
difference between the upper and the lower approximation.

6.2.6 Set Approximation

Several properties of rough sets have been identified by Pawlak (1991). A significant
property of rough set theory is the definability of a rough set (Quafafou 2000). This
was described for the condition when the lower and upper approximations are equal.
If this is not the condition, then the set is un-definable. As described by Marwala
(2012) various distinctive cases of definability are (Pawlak et al. 1988; Crossingham
2007; Nelwamondo 2008; Marwala 2009, 2012; Marwala and Lagazio 2011):

• Internally definable set: Here, BX ¤ 0 and BX D U . The attribute set B has
objects that definitely are elements of the target set X, even though there are no
objects that can definitively be excluded from the set X.

• Externally definable set: Here, BX D 0 and BX ¤ U . The attribute set B has
no objects that certainly are elements of the target set X, even though there are
objects that can definitively be excluded from the set X.

• Totally un-definable set: Here, BX D 0 and BX D U . The attribute set B has no
objects that, definitely, are elements of the target set X, even though there are no
objects that can, definitively, be excluded from the set X.

6.2.7 The Reduct

An added property of rough sets is the reduct which is a notion that expresses
whether there are attributes B in the information system that are more important to
the knowledge characterized in the equivalence class structure than other attributes.
It is important to identify whether there is a subset of attributes which could be
totally explained by the knowledge in the database. This attribute set is called the
reduct.

Terlecki and Walczak (2007) defined the relations between rough set reducts
and emerging patterns and established a practical application for these observations
for the minimal reduct problem, using these to test the differentiating factor of
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an attribute set. Shan and Ziarko (1995) properly defined a reduct as a subset of
attributes RED 
 B such that:

• Œx�RED D Œx�B . To be precise, the equivalence classes that were induced by
reducing the attribute set RED are equal to the similar class structure that was
induced by the full attribute set B.

• Attribute set RED is minimal for the reason that Œx�.RED�A/ ¤ Œx�B for any
attribute A 2 RED. Basically, there is no attribute that can removed from the
set RED without changing the equivalent classes Œx�B .

Consequently a reduct can be pictured as an appropriate set of characteristics
that can, sufficiently, define the category’s structure. One property of a reduct in
an information system is that it is not unique since there may be other subsets of
attributes which may also conserve the equivalence class structure in the information
system. The set of features that are present in all reducts is a core.

6.2.8 Boundary Region

As described by Marwala (2012) and many researchers before that, the boundary
region, which is defined as the difference BX �BX , is a region which is composed
of objects that cannot be included nor excluded as elements of the target set
X. Basically, the lower approximation of a target set is an approximation which
consists only of those objects which can be identified as elements of the set. The
upper approximation is a rough estimate and includes objects that may be elements
of the target set. The boundary region is the area between the upper and lower
approximation.

6.2.9 Rough Membership Functions

A rough membership function is a function x
A W U ! Œ0; 1� that, when used to

object x, estimates the degree of intersection between set X and the indiscernibility
set to which x is an element of. The rough membership function is used to approx-
imate the plausibility and can be written as follows (Pawlak 1991; Crossingham
2007; Nelwamondo 2008; Marwala and Lagazio 2011; Marwala 2012):

x
A.X/ D jŒx�B \X j

jŒx�B j (6.13)

The rough membership function is analogous to the fuzzification process. The
significant characteristic of a rough membership function is that it is derived from
data (Hoa and Son 2008; Crossingham 2007).
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6.3 Discretization Methods

The approaches which permit continuous data to be processed encompass
discretization. There are a number of approaches that can be discretized and these
include Equal-Frequency-Bin (EFB) partitioning, Boolean reasoning, entropy and
Naı̈ve method (Crossingham 2007).

6.3.1 Equal-Frequency-Bin (EFB) Partitioning

EFB partitioning positions the values of every attribute in increasing arrangements
and splits them into k bins where given m cases every bin has m/k neighboring
values. In most cases, repeated values will possibly occur. The EFB partitioning
can be applied as follows (Crossingham and Marwala 2007; Grzymala-Busse 2004;
Crossingham 2007; Marwala and Lagazio 2011; Marwala 2012):

• Position the values of every attribute
�
va

1; va
2; va

3; : : : ; va
m

�
into intervals whereby

m is the number of cases.
• Consequently every interval is made of the following successive values:

œ D m

4
(6.14)

• The cut-off points may be calculated by means of the this equation which is true
for iD 1,2,3 where k intervals can be estimated for iD 1, : : : , k–1:

ci D vi� C vi�C1

2
(6.15)

6.3.2 Boolean Reasoning

As proposed by Nguyen and Skowron (1995) and also explained by Marzuki and
Ahmad (2007), the Boolean reasoning discretization operates by identifying the
minimum partition Pa of Va for all a 2 A such that:

ƒP D �U; AP [D
�

(6.16)

is still a consistent information system given a consistent decision system:

ƒ D .U; A[D/ (6.17)

More information on Boolean reasoning and its applications can be found in
Pawlak and Skowron (2007) as well as Nguyen (2005, 2006).
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6.3.3 Entropy Based Discretization

As described by Doughety et al. 1995 entropy based discretization method
iteratively divide the value of each attribute with the purpose of ensuring that
the local quantity of entropy is optimized. The stopping criterion is the minimum
description length principle (Doughety et al. 1995). The gain cut b is written as
follows (Doughety et al. 1995):

U0 D fx 2 U ja.x/ < b g (6.18)

U1 D fx 2 U jb < a.x/ g (6.19)

E.U / D
Xl

iD1
P .di jU /log2P .di jU / (6.20)

Gain.a; b; U / D E.U /�
� jU0j

U
E .U0/C jU1j

U
E .U1/

�
(6.21)

b is accepted if (Doughety et al. 1995):

Gain.a; b; U / >
log2 .jU j � 1/

jU j C log
�
3l � 2

�� .lE.U /� I0E .U0/ � I1E .U1/

jU j
(6.22)

where l is number of decision class in U. The entropy based discretization has been
successfully applied for hierarchical clustering (Cao et al. 2012) and forecasting the
stock market (Chen et al. 2010). More information on entropy based discretization
are described by Huang et al. (2009) as well as Sheri and Corne (2009).

6.3.4 Naı̈ve Algorithm

This algorithm makes a cut between two neighbouring points if they have different
classes. If the sorted values of b is vb

1 < � � � < vb
i < � � � < V b

m where @b
j Dn

dx
ˇ̌
ˇb.x/ D vb

j

o
then (Ohrn 1999);

cb D
(

vb
j C vb

j C1

2

ˇ̌
ˇ@b

j ¤ @b
j C1 and j D 1; : : : ; m � 1

)
(6.23)
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6.4 Rough Set Formulation

Rough set modeling is categorized into these five stages (Grzymala-Busse 2004;
Crossingham 2007; Marwala and Lagazio 2011; Marwala 2012):

1. Choose the data.
2. Pre-process the data by discretizing the data and removing outliers.
3. If reducts are factored into account, use the cleaned data to produce reducts.

A reduct is the most succinct mode in which objects can be discerned. Therefore,
a reduct is the minimal subset of attributes that classify elements of the universe
to the same extent as the whole set of attributes. Define lower and upper
approximations to handle contradictions.

4. Rules are extracted or generated based on condition attribute values.
5. Test the newly generated rules on a test set.

The technique for formulating rough sets and extracting rules is given in
Algorithm 6.1 (Crossingham 2007; Marwala 2012; Khoza and Marwala 2012).
After the rules have been extracted, they can be tested using a set of testing
data. The standard rough set implementation is indicated in Fig. 6.1 (Khoza and
Marwala 2011).

Algorithm 6.1 Procedure to generate a rough set model (Crossingham 2007)

Input: Condition and Decision Attributes
Output: Certain and Possible Rules
1 Obtain the data set to be used;
2 Repeat
3 for conditional attribute 1 to size of training data do
4 Pre-process data to ensure that it is ready for analysis;
5 Discretize the data according to the optimization technique;
6 Compute the lower approximation, as defined in equation 6.5;
7 Compute the upper approximation, as defined in equation 6.6;
8 From the general rules, calculate plausibility measures for an object x

belonging to set X, as defined by equation 6.13;
9 Extract the certain rules from the lower approximation generated for

each subset;
10 Similarly, extract the possible rules from the upper approximation of

each subset;
11 Remove the generated rules for the purposes of testing on unseen data;
12 Compute the classifier performance using the AUC;
13 End
14 until Optimization technique termination condition;



112 6 Rough Sets Approach to Economic Modeling: Unlocking Knowledge . . .

Produce Reducts

Pre-processing Data

Discretize Data

Remove Redundant Attribute

Produce Rules

Predict

Fig. 6.1 The rough set
predictive model

6.5 Application to Modeling the Stock Market

In this chapter we model the Johannesburg Stock Exchange’s All Share Index
(ALSI) from 2006 to 2011 as was done by Khoza and Marwala (2011). The data
was randomly divided into 75 and 25 % ratio. Seventy-five percent of the data was
used for training and 25 % was used for validation. There was a total of ten attributes
used and these are shown Table 6.1 (Khoza 2012).

The decision attribute in this chapter can be represented as follows (Khoza 2012;
Al-Qaheri et al. 2008):

D D
PiDn

iD1 ..nC 1/� i/ � kClose.i/ � Close.i � 1/kPn
nD1 i

(6.24)

The decision attribute D is Eq. 6.24 is normalized to limit its value to fall between
�1 andC1. A value of C1 demonstrates that every day for the next n days into the
future the price closes higher than today and likewise a value of�1 shows that every
day for the next n days into the future the price closes lower than it is at present.
In essence D is an indicator on whether we buy or sell and it indicates the future
direction of the index.

When rough set technique was implemented to model the stock market, as
described above, the dominance of each attribute as measured as an appearance
percentage of the total number of reducts generated is shown in Table 6.2 (Khoza
and Marwala 2011).
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Table 6.1 Table of attributes Attributes Description

Open The opening price
High The highest registered price on the day
Low The lowest registered price on the day
Close The closing price
Adjusted close The adjusted closing price
Moving average Moving average over 5 days
Momentum Pi � Pi�4

Rate of change (ROC)
momentum

Pi

� 100

Disparity
Pi

Moving Average
� 100

Decision (D) Decision attribute

Table 6.2 Attribute used to
model the stock market

Attribute Count Percentage (%)

Open 54 29.35
High 73 39.67
Low 81 44
Close 71 38.58
Adj Close 54 29.34
MAV 68 36.95
Momentum 72 39.14
ROC 69 37.5
Disparity 89 48.37

In essence, the rough set procedure applied to model the stock market is oulined
in Fig. 6.2. As identified by Khoza and Marwala (2011), in this chapter we also
identify that the six most important attributes identified from the rough sets are
the highest registered price on the day, followed by the lowest registered price on
the day, which is in turn followed by the closing price of the day, followed by the
momentum, which is followed by the rate of change of price which is followed by
the disparity. To provide comparison, rules were built using the 182 reducts created
in the first stage of the previous phase and then a second set of rules was extracted
using only the core reduct. With 182 reducts a total of 1,004 rules were created and
with the core reduct above a total of 246 rules were generated.

The decision table is built by having columns as several technical indicators and
the rows indicating trading data at each point in time, whereas the window offers
a “snapshot” of the state of the market in that period. There are several parameters
that influence the accuracy of the model these are the data split ratio, discretization
algorithm and the classifier technique (Doughety et al. 1995). To build the most
robust model the correct combination of these parameters is necessary.

Because it was observed in (Doughety et al. 1995) that the quality of the model its
accuracy depends heavily on the discretization algorithm, a number of discretization
algorithms were used so as to assess which gave the best results. These were: EFB,
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New Case

Discretized Data cuts of Training Data

Select Matching Rule
(Standard Voting)

Record decision in 
Confusion matrix

Rule Set

Predict Decision Value

Fig. 6.2 Prediction method

Table 6.3 Discretization algorithm accuracy comparison

Evaluation criteria

Discretization algorithm Reducts Rules Accuracy (%)

EFB (with four data cuts) 182 1;004 86:8

BR 2 1;510 57:7

Entropy 2 484 64:5

Naı̈ve algorithm 32 31;188 43

Table 6.4 EFB cuts
comparison

Evaluation criteria

EFB cuts Reducts Rules Accuracy (%)

3 171 943 66.0
4 182 1,004 86.8
5 190 1,856 77.3
6 197 2,450 76.1

the Boolean Reasoning (BR) algorithm, Entropy/MDL algorithm, and the Naı̈ve
algorithm. The results obtained when these algorithms were implemented are shown
in Table 6.3.

From the results in Table 6.3, it is observed that the EFB gave the best results
and, therefore, all analysis in this chapter will be based on the EFB. The relationship
between the number of data cuts and accuracy when the EFB implemented is shown
in Table 6.4.

As shown in Table 6.4, it was observed that 4 data cuts offered the best results,
from which other tuning of parameters can be based. Using the standard voting
classifier, the difference in accuracy and rules generated from the EFB (four data
cuts) with the normal reducts and the core reducts are shown in Table 6.5.
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Table 6.5 Normal and core
reduct comparison

Reducts Rules Accuracy (%)

Normal 1,004 86.8
Core reduct 246 80.4

Table 6.6 Rough set model
confusion matrix

Predicted

0 1

Actual 0 147 14 0.9130
1 43 87 0.6692

0.7736 0.8613 0.8041

Table 6.5 demonstrates a trade-off between the number of rules generated and
the accuracy of the model. Whilst we aim to make the forecasting model as small
as possible, the accuracy of the model needs to be factored into account. Rough set
model’s confusion matrix is shown in Table 6.6 for the core reduct based system.

6.6 Conclusion

A rough set theory based predictive model for stock prices was proposed in this
chapter. The data was randomly divided into a 75 %/25 % which were the training
and validation data sets, respectively. The data set was discretized using Equal
frequency bin, entropy approach, Boolean reasoning and Naive method. The models
showed a high degree of accuracy on classifying the daily movements of the
Johannesburg Stock Exchange’s All Share Index and that the EFB gave the best
results.
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Chapter 7
Missing Data Approaches to Economic
Modeling: Optimization Approach

Abstract This chapter introduces an auto-associative network with optimization
methods for modelling economic data. This resulting architecture is a missing data
estimation technique, and this is used to predict the production volume by treating it
as a missing variable. The autoassociative network is created using a multi-layered
perceptron network, while the optimization techniques which are implemented
are particle swarm optimization, genetic algorithms and simulated annealing. The
results obtained are then compared.

7.1 Introduction

In this chapter, inference is treated as a correlation phenomenon by applying the
auto-associative multi-layer perceptron network (Marwala 2009). This, in essence,
yields a missing data estimation problem. Moreau et al. (2012) applied this approach
for estimating missing data in the life cycle inventory of hydroelectric power plants,
while Tsai and Yang (2012) applied neural networks to improve measurement
invariance assessments in survey research data that had some values missing.
Kim and Shin (2012) applied the factoring likelihood technique for non-monotone
missing data estimation while Rey-del-Castillo and Cardeñosa (2012) applied fuzzy
min-max neural networks for missing data imputation.

The missing data framework implemented in this chapter is constructed using a
multi-layered perceptron, and the missing data is estimated using three optimization
methods; namely; particle swarm optimization, genetic algorithm, and simulated
annealing (Marwala 2010, 2012; Marwala and Lagazio 2011). The developed
framework is then tested on manufacturing data from the South African Reserve
Bank. The next section describes the missing data estimation framework.

T. Marwala, Economic Modeling Using Artificial Intelligence Methods, Advanced
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7.2 Missing Data Estimation Method

The missing data estimation procedure suggested in this chapter involves the
application of a neural network model that is trained to recall itself (i.e. predict
its input vector) and is called an auto-associative neural network (Miranda et al.
2012; Makki and Hosseini 2012). Mathematically, the auto-associative model can
be written as follows (Marwala 2009):

fY g D f .fXg; fW g/ (7.1)

In Eq. 7.1, fYg is the output vector, fXg the input vector and fW g is the free
parameter vector. In the case of a neural network, the free parameters are called
weights. Because the model is trained to predict its own input vector, the input vector
fXg is approximately equal to output vector fYg and consequently fXg � fY g. In
actual fact, the input vector fXg and output vector fY g will not always be perfectly
the same, therefore an error function expressed as the difference between the input
and output vector is defined (Marwala 2009):

feg D fXg � fY g (7.2)

Substituting the value of fY g from Eq. 7.1 into Eq. 7.2, the following expression
is obtained (Marwala 2009):

feg D fXg � f .fXg; fW g/ (7.3)

Because the aim is for the error to be minimized and non-negative, the function
can be modified as a square of Eq. 7.3 (Marwala 2009):

feg D .fXg � f .fXg; fW g//2 (7.4)

For missing data, some of the values for the input vector fXg are not obtainable.
Therefore, we can classify the input vector elements into fXg known vector
represented by fXkg and fXg unknown vector represented by fXug. Modifying
Eq. 7.4 in terms of fXkg and fXug we have (Marwala 2009):

feg D
�� fXkg
fXug


� f

�� fXkg
fXug


; fW g

��2

(7.5)

The error vector in Eq. 7.5 can be condensed into a scalar by integrating
over the size of the input vector and the number of training examples as follows
(Marwala 2009):

E D
����
�� fXkg
fXug


� f

�� fXkg
fXug


; fW g

������ (7.6)
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Fig. 7.1 Schematic representation of the missing data estimation model

The objective function expressed in Eq. 7.6 is known as the missing data
estimation equation. To estimate the missing input values, Eq. 7.6 is minimized and,
in this chapter, artificial intelligence techniques called particle swarm optimization
(Kennedy and Eberhart 1995, 2001; Shi and Eberhart 1998; Kennedy 1997) and
simulated annealing (Kirkpatrick et al. 1983; Černý 1985; Metropolis et al. 1953;
Granville et al. 1994) are applied. It must be taken into account that any optimization
technique or a combination of these can be applied to realize this objective. Particle
swarm optimization and simulated annealing are selected for the reason that they
both have a higher probability of identifying the global optimum solution than
traditional optimization techniques such as the scaled conjugate gradient technique,
which was used for training the MLP network in Chaps. 3 and 4. For the minimiza-
tion of Eq. 7.6 to be successful, the identification of a global optimum solution, as
opposed to local one, is unequivocally critical because if this is not attained, then a
wrong approximation of the missing data will be realized. The missing data process
described in this section is illustrated in Fig. 7.1 (Marwala 2009).

Briefly, the objective function known as the missing data estimation equation is
derived from the error function of the input and output vector achieved from the
trained neural network. The missing data estimation equation is then minimized
using the particle swarm optimization method, genetic algorithm and simulated
annealing to estimate the missing variables given the observed variables fXkg and
the model f explaining the interrelationships and the rules describing the data.

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
http://dx.doi.org/10.1007/978-1-4471-5010-7_4


122 7 Missing Data Approaches to Economic Modeling: Optimization Approach

7.3 Auto-associative Networks for Missing Data Estimation

The mathematical background to multilayer perceptron neural networks and auto-
associative networks are explained in this section. This chapter applies multi-layered
perceptron neural networks to construct auto-associative neural networks (Marwala
2012). As described in Chaps. 3 and 4, the relationship between the output y and
input x can be written as follows, for the MLP network (Marwala 2012):

yk D
MX

j D0

w.2/

kj tanh

 
dX

iD0

w.1/
j i xi

!
(7.7)

where w.1/
j i and w.2/

kj denotes weights in the first and second layer, respectively, going
from input i to hidden unit j, M is the number of hidden units, and d is the number
of output units. In this chapter, as it was described in Chaps. 3 and 4, the network
weights in Eq. 7.7 are estimated using the maximum-likelihood approach and the
scaled conjugate gradient optimization method.

An auto-associative network is a network that is trained to remember its inputs.
This implies that, every time an input is given to the network, the output is the
approximated input. These networks have been applied in a number of applications
including novelty detection, missing data estimation, feature selection, and data
compression (Kramer 1992; Marwala 2009).

There has been more interest in treating the missing data problem by approxima-
tion or imputation (Abdella 2005; Abdella and Marwala 2005, 2006; Nelwamondo
and Marwala 2007; Nelwamondo 2008). The mixture of the auto-associative neural
network and genetic algorithm has been shown to be a successful technique to
approximate missing data. The method for estimating missing data in this chapter
depends on the identification of the relationships or correlations between the
variables that make up the dataset, and the multi-layered perceptron is able to
achieve this (Kramer 1992).

Other successful applications of auto-associative network includes its use in
fault detection in turbine blades (Lemma and Hashim 2012; Dervilis et al. 2012;
Palmé et al. 2011), face recognition (Wang and Yang 2011) and speech recognition
(Sivaram et al. 2010).

It must be noted that, on using auto-associative neural networks for data
compression, the network has fewer nodes in the hidden layer. Nonetheless, for
missing data estimation it is vital that the network is as accurate as possible and that
this accuracy is not necessarily achieved through few hidden nodes as is the case
when these networks are used for data compression. The auto-associative network
is shown in Fig. 7.2 (Marwala 2009).

In this chapter, global optimum techniques, particle swarm optimization and
simulated annealing were applied to identify the global optimum solution and are
the subject of the next two sections.

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
http://dx.doi.org/10.1007/978-1-4471-5010-7_4
http://dx.doi.org/10.1007/978-1-4471-5010-7_3
http://dx.doi.org/10.1007/978-1-4471-5010-7_4
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Fig. 7.2 An auto-associative MLP network having two layers of adaptive weights

7.4 Particle Swarm Optimization

This chapter applies particle swarm optimization (PSO) to solve Eq. 7.6. PSO is
a stochastic, population-based evolutionary procedure that has been extensively
used for the optimization of complex problems (Engebrecht 2005). It is inspired by
principles that are based on swarm intelligence. Swarm intelligence consists of two
aspects and these are: group knowledge and individual knowledge. Each member of
a swarm acts by balancing between individual knowledge and group knowledge.

When solving problems using PSO, an objective function is formulated indi-
cating the desired outcome. In this chapter, the objective function is the missing
data estimation function represented by Eq. 7.6. To achieve an optimum missing
data estimation function state, a social network representing a population of
possible solutions is randomly generated. The individuals within this social network
interrelate with their neighbours and are called particles. A process to update these
particles is undertaken by assessing the fitness of each particle. Each particle is able
to recall the position where it had its best success as measured by the missing data
estimation function. The best solution of the particle is called the local best and each
particle makes this information on the local best accessible to their neighbors and,
in turn, also observe their neighbors’ success.

The PSO was developed by Kennedy and Eberhart (1995) and it was inspired
by algorithms that model the “flocking behavior” seen in birds. PSO has been very
successful in optimizing complex problems. Marwala (2005) used PSO to improve
finite element models to better reflect the measured data. This method was compared
to a finite element model updating approach that used simulated annealing and
a genetic algorithm. The proposed methods were tested on a simple beam and
an unsymmetrical H-shaped structure. It was observed that, on average, the PSO
method gave the most accurate results followed by simulated annealing and then
the genetic algorithm.
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Dindar and Marwala (2004) successfully used PSO to optimize the structure of
a committee of neural networks. The results obtained from the optimized networks
were found to give better results than both un-optimized networks and the committee
of networks.

Ransome et al. (2005) successfully used PSO to optimize the position of a patient
during radiation therapy. In this application, a patient positioning system integrating
a robotic arm was designed for proton beam therapy. A treatment image was aligned
with a pre-defined reference image and this was attained by aligning the radiation
and reference field boundaries and then registering the patient’s anatomy relative to
the boundary. Methods for both field boundary and anatomy alignment, including
particle swarm optimization, were implemented. It was found that the PSO was
successful to overcome problems in existing solutions.

Farzi et al. (2013) applied PSO to choose the best portfolio in 50 supreme Tehran
Stock Exchange companies and optimize the rate of return, risks, liquidity, and sharp
ratio. The results were then compared to Markowitz’s approach (Markowitz 1952)
and genetic algorithms and it was observed that, although the return of the portfolio
of PSO model was less than in Markowitz approach model, it was able to decrease
the risk.

Nasir et al. (2012) applied a dynamic neighbourhood learning based particle
swarm optimizer for global numerical optimization and the results indicated good
performance on locating the global optimum solution on complicated and multi-
modal fitness functions when compared to five other types of PSO. Muthukaruppan
and Er (2012) applied the PSO for diagnosis of coronary artery disease while
Kalatehjari et al. (2012) applied PSO for slope stability analysis of homogeneous
soil slopes. Gholizadeh and Fattahi (2012) applied PSO for design optimization
of tall steel buildings, while Karabulut and Ibrikci (2012) applied PSO to identify
transcription factor binding sites.

When applying PSO, each particle which is represented by two vectors: pi.k/

the position and vi .k/ the velocity at step k. Positions and velocities of particles are
randomly generated and then updated using the position of the best solution that a
specific particle has encountered during the simulation called pbesti and the best
particle in the swarm which is called gbest.k/. The updated velocity of a particle i
can be estimated using the following equation (Kennedy and Eberhart 1995):

vi .k C 1/ D �vi .k/C c1r1 .pbesti � pi .k//C c2r2 .gbest.k/� pi .k// (7.8)

Here, � is the inertia of the particle, c1 and c2 are the ‘trust’ parameters, r1 and r2

are random numbers between 0 and 1. In Eq. 7.8, the first expression is the current
motion, the second expression is the particle memory influence, and the third
expression is the swarm influence. The updated position of a particle i can be
estimated using these equations (Kennedy and Eberhart 1995):

pi .k C 1/ D pi .k/C vi .k C 1/ (7.9)
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Fig. 7.3 Velocity and particle update in particle swarm optimization

The inertia of the particle regulates the relationship between the current velocity
of the particle and the previous velocity. The trust parameter c1 represents how much
confidence the current particle has on itself, while the trust parameter c2 represents
the confidence the current particle has on the population. The parameters r1 and r2

are random numbers between 0 and 1 and they allow the swarm to explore the space.
The implementation of PSO can be summarized as follows, and is also shown in

Fig. 7.3 (Kennedy and Eberhart 1995; Marwala 2010):

1. Randomly initialize a population of particles’ positions and velocities.
2. Estimate the velocity for each particle in the swarm using Eq. 7.8.
3. Update the position of each particle using Eq. 7.9.
4. Repeat Steps 2 and 3 until convergence.

7.5 Genetic Algorithms (GA)

The missing data estimation method presented in this chapter also uses a genetic
algorithm to estimate the missing data by minimizing Eq. 7.6. A genetic algorithm
is a population-based, probabilistic technique that operates to identify a solution to
a problem from a population of possible solutions (Goldberg 1989, 2002; Holland
1975; Marwala 2009). It is applied to identify estimated solutions to challenging
problems through the similarity of the principles of evolutionary biology to
computer science (Goldberg 2002; Marwala 2009; Tettey and Marwala 2006).
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Fig. 7.4 Flow chart of the
genetic algorithm method

It was derived from Darwin’s theory of evolution where members of the population
compete to survive and reproduce, while the weaker members die-out from the
population.

Every individual has a fitness value indicating how well it fulfills the objective
of solving the problem. New individual solutions are created during a cycle
of generations, where selection and recombination operations occur, alike how
gene transfer occurs to the current individuals. This continues until a termination
condition is achieved, then the best individual by far is deemed to be the estimation
for missing data. This chapter explains the application of a genetic algorithm to
optimize Eq. 7.6.

Successful applications of the genetic algorithm include optimizing rough set
partitions (Crossingham and Marwala 2008), missing data imputation (Hlalele
et al. 2009), finite element updating (Marwala 2002, 2010), controlling fermentation
(Marwala 2004), fault diagnosis (Marwala and Chakraverty 2006), HIV prediction
(Leke et al. 2006), training neural networks (Marwala 2007), stock market pre-
diction (Marwala et al. 2001), bearing fault classification (Mohamed et al. 2006),
optimal weight classifier selection (Hulley and Marwala 2007) and call performance
classification (Patel and Marwala 2009).

When applying the genetic algorithm, the following steps are followed: initializa-
tion, crossover, mutation, selection, reproduction, and termination. The three most
important aspects of using a genetic algorithm are the definition of the objective
function, implementation of the genetic representation, and implementation of the
genetic operators (Marwala 2012). The details of genetic algorithms are shown in
Fig. 7.4.
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Fig. 7.5 The diagram of simulated annealing

7.5.1 Initialization

At this stage, a population of individual solutions is randomly created. This initial
population is sampled so as to cover a good representation of the solution space.

7.5.2 Crossover

The crossover operator mixes genetic information in the population by cutting pairs
of chromosomes at random points along their length and exchanging the cut sections
over (Goldberg 2002, 1989; Marwala 2010; Banzhaf et al. 1998). In this chapter,
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a one crossover point method is selected. This is done by copying a binary string
from the beginning of a chromosome to the crossover point from one parent, and
the rest is copied from the second parent. For example, if two chromosomes in
binary space aD 11001011 and bD 11011111 undergo a one-point crossover at the
midpoint, then the resulting offspring may be cD 11001111.

7.5.3 Mutation

The mutation operator introduces new information into the chromosome and,
by so doing, prevents the genetic algorithm simulation from being trapped in a
local optimum solution (Goldberg 2002; Marwala 2010). In this chapter, adaptive
mutation is applied by randomly producing adaptive directions with respect to the
previous successful or unsuccessful generation. The feasible region is bounded
by the constraints and a step size is selected along each direction whereby linear
constraints and bounds are not violated.

7.5.4 Selection

In every generation, a selection of the proportion of the present population is chosen
to create a new population. This selection is achieved by applying the fitness-based
technique, where solutions that are fitter, as measured by Eq. 7.6, have a higher
probability of survival. Some selection methods rank the fitness of each solution and
choose the best solution, while other procedures rank a randomly designated aspect
of the population. There are quite many selection procedures and in this chapter we
use roulette-wheel selection (Goldberg 2002). Roulette-wheel selection is a genetic
operator used for choosing possible solutions in a GA optimization procedure.

In this method, each likely method is allocated a fitness function that is applied
to map the probability of selection with each individual solution. Let’s say, if the
fitness fi is of individual i in the population, then the probability that this individual
is chosen is (Goldberg 2002):

pi D fi

NP
j D1

fj

(7.10)

Here, N is the total population size.
This technique ensures that solutions with higher fitness values have higher

probabilities of survival than those with a lower fitness value. The benefit of this
is that, even though a solution may have a low fitness value, it may still have some
aspects that are advantageous in the future.
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7.5.5 Termination

The technique described is repeated until a termination condition has been achieved,
either for the reason that a chosen solution that satisfies the objective function has
been identified or for the reason that a stated number of generations have been
realized or the solution has converged or any combination of these.

7.6 Simulated Annealing (SA)

Simulated Annealing (SA) is a Monte Carlo technique that is applied to identify
an optimal solution. It was inspired by the annealing process where metals re-
crystalize or liquids freeze. In the annealing process, the object is heated until it
is molten, then it is gradually cooled in such a way that the metal, at any time, is
nearly in thermodynamic equilibrium. As the temperature of the object is cooled,
the system becomes more organized and tends to a frozen state at TD 0. If the
cooling procedure is done unsatisfactorily or the initial temperature of the object is
not adequately high, the system may turn into a meta-stable state demonstrating that
the system is stuck in a local minimum energy state.

Liu et al. (2012) successfully applied the simulated annealing method in multi-
criteria network path problems, while Shao and Zuo (2012) used it for higher
dimensional projection depth. Milenkovic et al. (2012) successfully applied a fuzzy
simulated annealing method for project time–cost trade-off, while Fonseca et al.
(2012) applied simulated annealing to the high school timetabling problem. Other
successful applications of simulated annealing include antenna array design in
multi-input-multi-output radar (Dong et al. 2012), efficient bitstream extraction for
scalable video (Wan et al. 2012), image reconstruction (Martins et al. 2012) and
optimal sensor placement (Tian et al. 2012).

Simulated annealing has its origins from the work of Metropolis et al. (1953)
and it comprises selecting the initial state and temperature, maintaining temperature
constant, changing the initial formation, and calculating the error at the new state.
If the new error is lower than the old error, then accept the new state, otherwise if
the error is higher, then accept this state with a low probability. Simulated annealing
substitutes a current solution with a “nearby” random solution with a probability
that depends on the difference between the corresponding function values and the
temperature. The temperature drops during the course of the procedure until it
approaches zero and at this stage there are less random changes in the solution.
Simulated annealing identifies the global optimum but it can reach infinite time in
doing so. The probability of accepting the reversal is given by Boltzmann’s equation
(Černý 1985):

P.�E/ D 1

Z
exp

�
��E

T

�
(7.11)
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Here, �E is the variance in error between the old and new states, T is the
temperature of the system and Z is the normalization factor that guarantees that
when the probability is integrated over to infinity it becomes 1.

7.6.1 Simulated Annealing Parameters

As described by Marwala (2010), applying simulated annealing means that a num-
ber of parameters and selections require to be stated: the state space, the objective
function, the candidate generator process, the acceptance probability function, and
the annealing temperature schedule. The selection of these parameters is important
because it has an impact on the efficacy of the SA technique. Nevertheless, there is
no optimal mode for selecting these parameters that will function for all problems
and there is also no methodical routine of optimally selecting these parameters for a
given problem. Accordingly, the selection of these parameters is mainly subjective
and the technique of trial and error is extensively applied.

7.6.2 Transition Probabilities

When SA is applied, a random walk procedure is used for a given temperature.
This random walk procedure involves moving from one temperature to another. The
probability of moving from one state to another is called the transition probability.
This probability is dependent on the current temperature, the order of producing
the candidate solution, and the acceptance probability function. In this chapter, a
Markov Monte Carlo (MMC) technique is applied to ensure a transition from one
state to another. The MMC generates a chain of possible missing data estimates and
accepts or rejects them using the Metropolis algorithm (Metropolis et al. 1953).

7.6.3 Monte Carlo Method

The Monte Carlo technique is a computational procedure that applies recurring
random sampling to estimate a result (Arya et al. 2012; Klopfer et al. 2012).
Jeremiah et al. (2012) applied Monte Carlo sampling for efficient hydrological
model parameter optimization, while Giraleas et al. (2012) applied the Monte
Carlo procedure for analysing productivity change using growth accounting and
frontier-based approaches. Fang et al. (2012) applied Monte Carlo simulation for
variability quantification in finite element models. Other applications of Monte
Carlo simulation include evaluating reliability indices accounting omission of
random repair time for distribution systems (Arya et al. 2012) and characterization
and optimization of pyroelectric X-ray sources (Klopfer et al. 2012).
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7.6.4 Markov Chain Monte Carlo (MCMC)

MCMC is a procedure of simulating a chain of states through a random walk. It
entails a Markov process and a Monte Carlo simulation (Sheridan et al. 2012).
Fishman (2012) successfully applied MCMC for counting contingency tables, while
Hettiarachchi et al. (2012) successfully applied a marginalized Markov Chain
Monte Carlo method for model based analysis of EEG data. Botlani-Esfahani
and Toroghinejad (2012) successfully applied a Bayesian neural network and the
reversible jump Markov Chain Monte Carlo Method to forecast the grain size of hot
strip low carbon steels while Laloy et al. (2012) successfully applied the MCMC to
analyse mass conservative three-dimensional water tracer distribution. Stošić et al.
(2012) successfully applied the MCMC to optimize river discharge measurements.

If a system whose evolution is expressed by a stochastic process fx1; x2; : : : ; xi g
of random variables is considered, a random variable xi inhabits a state x at discrete
time i. The list of all states that all random variables can probably occupy is known
as the state space. If the probability that the system is in state xi C 1 at time iC 1
depends entirely on the fact that it was in state xi at time i, then the random variables
fx1; x2; : : : ; xi g form a Markov chain. For MCMC, the transition between states is
attained by introducing a random noise (") to the current state as follows (Laloy
et al. 2012):

xiC1 D xi C " (7.12)

7.6.5 Acceptance Probability Function: Metropolis Algorithm

When the present state has been attained, it is either accepted or rejected. In this
chapter, the acceptance of a state is conducted using the Metropolis algorithm
(Metropolis et al. 1953; Shao et al. 2012; Vihola 2012; Lee et al. 2012). Zhou et al.
(2012) successfully applied Metropolis-Hastings sampling for system error registra-
tion. In the Metropolis procedure, on sampling a stochastic process fx1; x2; : : : ; xng
consisting of random variables, random changes to x are introduced and are either
accepted or rejected according to the following criterion:

if Enew < Eold accept state .snew/

else

accept .snew/ with probability

exp f� .Enew �Eold/g (7.13)

Here, E is the objective function.
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7.6.6 Cooling Schedule

Cooling scheduling is the procedure which is followed to lower the temperature
T (Stander and Silverman 1994). Natural annealing teaches us that the cooling
rate should be adequately low for the probability distribution of the present state
to be close to the thermodynamic equilibrium at all times during the simulation
(Miki et al. 2003). The time taken for the equilibrium to be restored after a
change in temperature is influenced by the shape of the objective function, the
current temperature and the candidate generator. The best cooling rate should be
experimentally attained for each problem. Thermodynamic, simulated annealing
circumvents this problem by removing the cooling schedule and regulating the
temperature at each step in the simulation based on the difference in energy between
the two states, in accordance to the laws of thermodynamics (Weinberger 1990). The
following cooling model is used (Salazar and Toral 1997; Marwala 2010):

T .i/ D T .i � 1/

1C �
(7.14)

where T .i/ is the current temperature; T .i � 1/ is the previous temperature and �

is the cooling rate. The implementation of SA is shown in Fig. 7.1 (Marwala 2010).

7.7 Experimental Investigations and Results

The methodology described below is used to analyze the manufacturing data from
South Africa collected between 1992 and 2011. The variables identified for the
modelling are (1) Domestic sales volumes; (2) Production volumes; (3) Number
of factory workers; (4) Current stocks of raw materials in relation to planned
production; (5) Business confidence; (6) Percentage rating shortage of skilled labour
a constraint; and (7) Percentage rating shortage of semi-skilled labour a constraint.
We then build an auto-associative network with seven input variables, four hidden
nodes and seven outputs. The auto-associative network was based on the multi-
layer perceptron architecture. It had a hyperbolic tangent activation function in the
hidden nodes and a linear activation function in the outer layer. It assumes that
the production volumes will be treated as a missing values to be estimated. The
missing data estimation equation is optimized using a genetic algorithm, particle
swarm optimization, and simulated annealing to identify the production volume.

When implementing a genetic algorithm, the population size was set to 20,
the number of generations was set to 100, and the one point crossover with
probability of crossover was set to be 0.65. The selection function which was
used was the Roulette wheel and adaptive mutation with a mutation rate of 0.01.
On implementing simulated annealing, the initial temperature was set to be 100.
When implementing PSO, a population size of ten was set and the simulation



References 133

was conducted for 500 generations. The results obtained when these optimization
methods were implemented were an average of 5.3 % for GA, 5.1 % for simulated
annealing, and 5.4 % for the PSO.

7.8 Conclusion

This chapter introduced auto-associative networks with genetic algorithms, particle
swarm and simulated annealing optimization methods for modelling manufacturing
data. The autoassociative network was created using the multi-layered perceptron.
The results obtained gave marginally best results for simulated annealing, followed
by genetic algorithm and the particle swarm optimization method.
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Chapter 8
Correlations Versus Causality Approaches
to Economic Modeling

Abstract This chapter explores the issue of treating a predictive system as a
missing data problem i.e. correlation exercise and compares it to treating as a
cause and effect exercise, that is, feed-forward network. An auto-associative neural
network is combined with genetic algorithm and then applied to missing economic
data estimation. The algorithm is used on data that contain ten economic variables.
The results of the missing data imputation approach are compared to those from a
feed-forward neural network.

8.1 Introduction

This chapter explores the problem of correlation and causal approaches to modeling
economic data. The concept of correlation is sometimes confused with the concept
of correlation. It turns out that if variable x is causes variable y to happen then
there is necessarily a correlation between variable x and variable y. What will make
the correlation between variable x and variable y to necessarily imply causality is
that variable x should happen before variable y. This time delay necessarily implies
that once x had happened then y happen.

To build the causal machine we create a model which takes variables x as inputs
and give output variable y. There are many models that have been used to achieve
this goal and these include linear as well as non-linear models. In this chapter we
model economic data as well as credit scoring data and these are complicated data
sets. Consequently, it is important to use non-linear models to model these data sets
and in this chapter we apply the multi-layered perceptron neural networks.

To build a correlation machine we take variables x and y as a combined variable
z and map this z variable non-linearly on itself. This is called the autoassociative
neural networks. The auto-associative model basically models the interrelationships
between variables and thus we call this approach a correlation machine. For regres-
sion or classification the dependent variable y is estimated using an optimization
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method or for a two class problem by testing each class and evaluating whether
the interrelationships that have been defined by the auto-associative network are
maintained as much as possible.

The other issue that is explored in this chapter is the Granger causality. We
apply the automatic relevance determination (ARD) method to evaluate the causal
relationships amongst variables. In the ARD implementation we define the concept
of relevance of a variable in as far as the prediction of the dependent variable as
another way of articulating causality.

8.2 Causality Approach to Economic Modeling

In this chapter we also apply the input–output to model economic data. If we have
an input vector x and output vector y where the output happens after a time lag t
after x has happened and this can be written as follows:

y D f .x; w/ (8.1)

Here w is the free parameter also known as weights that ensure that whenever x
is given then y can be estimated. This relationship necessarily assumes that there is
a causal relationship between x and y.

In this chapter this relationship is represented using a multi-layered percep-
tron (MLP) neural networks which has been described in detail in the previous
chapters. This relationship is written mathematically as follows (Marwala 2012;
Bishop 1995):

yk D fouter

0

@
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j D0

w.2/

kj finner

 
dX

iD0

w.1/
j i xi

!1

A (8.2)

Here yk is the kth output values, fouter is the activation function in the outer layer
and in this chapter it is a linear function while finner is the activation function in the
inner layer and in this chapter it is a hyperbolic tangent function, w is the network
weight and d is the size of input vector and M is the number of the hidden units. The
diagram illustrating a model in Eq. 8.2 is shown in Fig. 8.1.

Turchenko et al. (2011) applied the MLP for stock price prediction and the results
showed high accuracy of the prediction. Correa and Gonzalez (2011) applied the
MLP for credit scoring case and the results demonstrated that the MLP performed
better than the logistic regression. Ebrahimpour et al. (2011) applied the MLP to
model the Tehran Stock Exchange whereas Sermpinis et al. (2012) successfully
applied the MLP to predict the Euro-US-Dollar exchange rate.

Lin (2012) successfully applied the MLP to design power system transient
stability preventive control system whereas Daya et al. (2012) successfully applied
the MLP for multiclass vehicle type recognition. Pereira et al. (2012) successfully
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applied the MLP for fingerprint detection, while Salazar et al. (2012) implemented
data transformations and seasonality adjustments to improve the MLP ensembles.
Other successful applications of the MLP include blind modulation classification
(Dubey et al. 2012), drought forecasting (Rezaeian-Zadeh and Tabari 2012),
electricity load forecasting (Dragomir et al. 2011), automotive price prediction
(Peyghami and Khanduzi 2012) and landmine detection (Achkar et al. 2011).

In this section, we implement the MLP to predict the consumer price index (CPI)
as it was done in Chap. 3. The input variables to the neural networks is the mining
production, transport, storage and communication, financial intermediation, insur-
ance, real estate and business services, community, social and personal services,
gross value added at basic prices, taxes less subsidies on products, affordability,
economic growth, repo rate, gross domestic product, household consumption and
investment from the South African economy. The neural network was trained with
12 input units, 23 hidden nodes and one output nodes. The prediction accuracy
realized was 84.58 % and the sample results are shown in Fig. 8.2.

8.3 Correlation Machines for Economic Modeling

In the previous section we deemed the MLP input–output model to be a causal
model. This is because this model fundamentally assumes that there is a relationship
between the input (causes) and output (effect). In this section we describe another
model which is largely based on the interrelationships amongst variables and this
model is called the correlation machine. It is based on the autoassociative neural
network which essentially maps a set of variables (this would include both the input
and the output in the previous model) to itself (Kramer 1992). This model is called
an autoassociative network and can be found in Fig. 8.3. Once this model is trained it
essentially defines correlation relationships between the data. Thereafter, this model
is treated as a missing data estimator where the missing data (the effect) is treated
as a variable to be estimated using an optimization method.

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
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Fig. 8.2 Figure showing the results achieved using the MLP network
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Fig. 8.3 An autoassociative
model

Cette and de Jong (2013) studied the breakeven inflation rates and their
correlation relationships whereas Vladislavleva et al. (2012) predicted the energy
output of wind farms based on weather data correlations.

Chen (2010) applied autoassociative model and genetic algorithm to estimate
business failure. They conducted this by employing a method proposed by Ab-
della and Marwala (2005a, b) which solves a regression problem by treating the
required variables as missing values to be estimated using the autoassociative
neural networks and genetic algorithm. Further work on this subject can be found
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in Marwala (2009), Marwala and Chakraverty (2006) and Mistry et al. (2009). This
procedure was observed to be feasible for predicting business failure by treating it
as a missing value.

Aydilek and Arslan (2012) introduced a hybrid approach to estimate missing
values in databases. The difference between this method and that explained in
Marwala (2009) is that they used a hybrid neural network instead of the standard
MLP and that they used K-nearest neighbor to enhance the optimization process.
Narayanan et al. (2002) successfully applied auto-associative regression machines
for missing data estimation.

The correlation machine proposed in this chapter is shown in Fig. 8.4. The
implementation of the correlation machine in this chapter is as follows:

1. Create an autoassociative network using the MLP network
2. Formulate the missing data estimator and this is shown in Eq. 8.3
3. Minimize the missing data estimator using genetic algorithm
4. Stop when the method has converged.

The missing data estimator is written as follows (Marwala 2009):

E D
����
�� fXkg
fXug


� f

�� fXkg
fXug


; ŒW �

������ (8.3)

Here, E is the fitness function while the subscript u stands for the unknown
component of X while the subscript k stands for known component of X.

In this chapter the optimization method chosen to solve the missing data
optimization is the genetic algorithm (GA). Genetic algorithm is a mathemmatical
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procedure that optimizes a function based on the principles of evolution. In essence
the process seeks to identify a set of parameters that are the fittest. Within the context
of this chapter this essentially means identifying Xu in Eq. 8.3. Mutlu et al. (2013)
applied a genetic algorithm technique for the assembly line worker assignment
and balancing problem, whereas Vidal et al. (2013) applied a genetic algorithm
for vehicle routing. Ramı́rez Palencia and Mejı́a Delgadillo (2012) applied a ge-
netic algorithm for a bus body assembly line while Liu et al. (2012) applied a genetic
algoritm in aviation ammunition transport. Other successful applications of genetic
algorithms include customer segmentation (Davis 2012), dampening an impact of
price fluctuation (Lu et al. 2012) and in scheduling problems (Sioud et al. 2012).

A genetic algorithm operates by using three key drivers, and these are crossover,
mutation and reproduction. The implementation of genetic algorithms is as fol-
lows:

1. Initialize the algorithm by choosing the population size and generating the
population of possible solutions

2. Pick pairs of possible solutions and cross-over them (this should be conducted
with a certain probability)

3. Pick a set of possible solutions and mutate them (this should be conducted with
a certain probability)

4. Reproduce the solution
5. Go to Step 2 and repeat until convergence or until the specified number of

iterations have been reached

In this chapter we implement simple crossover and this is done iin binary space.
Suppose we have two possible solutions which can be written in binary space as
follows: 0101 and 1100. A cut-off point is randomly chosen and suppose in this
chapter we choose after a second digit then the crossover is implemented as by
exchanging the genes between the two possible solutions after this cut-off point.
Thus 0101 and 1100 possibly becomes 0100 and 1101.

In this chapter we implement simple mutation. Again suppose we randomly
choose a possible solution written in binary space as 0100 for mutation then we
pick a gene for mutation randomly and if it is the second element of this possible
solution then we invert this gene and thus 0100 becomes 0000.

Reproduction essentially means reproducing the solutions that are successful and
in this chapter we apply the Roulette wheel reproduction. This is done by evaluating
the fitnesses of all the solutions in the population and ranking them according to
their fittness. The fittest solutions are reproduced with a higher probability than than
the less fit ones.

The correlation machine was applied to estimate the CPI by treating it as a
missing variable. The architecture of the autoassociative model was as follows:
number of input and output were each 13, number of hidden nodes was ten,
activation function was a hyperbolic tangent function in the inner layer and linear
in the outer layer. The population size of the genetic algorithm was ten. When the
method was implemented an accuracy of 88 % was observed and the sample results
are in Fig. 8.5.
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Fig. 8.5 Results from the correlation machine

The results obtained in this section and Sect. 8.2 seem to suggest that the
correlation machine performs better than the causal machine. Of course this is
specific to the problem at hand because there are other factors that might be at play,
for example, the specific nature of the data and the optimization technique used. The
next section compares the two procedures using the classification data.

8.4 Classification: Correlation and Causal Machine

In this section we apply the correlation and causal machines for credit scoring.
Credit scoring is a problem where financiers assess individuals that are seeking
credit as to whether they should be given credit or not and if they are given credit
the terms of the credit granted. In this chapter we treat credit scoring as either a yes
or a no credit.

Blanco et al. (2013) applied multilayer perceptron neural networks for credit
scoring models for the micro-finance industry. They used data from a Peruvian
micro-finance institution. The results obtained showed that that multi-layer percep-
tron neural network models gave good results.
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Table 8.1 Confusion matrix
when the causal machine was
used

Actual

Positive Negative

Predicted Positive 119 30
Negative 46 145

Vedala and Kumar (2012) successfully applied Naive Bayes classification for
credit scoring whereas Tang and Qiu (2012) applied fuzzy support vector machine
for credit scoring and observed that their method was simple, produced good
accuracy and was resistant to noise.

Akkoç (2012) applied neural networks and the three stage hybrid Adaptive Neuro
Fuzzy Inference System model for credit scoring and the results showed that the
model they proposed performed better than the linear discriminant analysis, logistic
regression analysis and natural network.

Other successful methods that have been applied for credit scoring are non-
parametric statistical analysis of machine learning methods (Garcı́a et al. 2012),
manifold supervised learning algorithm (Vieira et al. 2012) and ensemble classifier
(Zieba and Światek 2012).

In this section we consider an Australian credit scoring data from the UCI
data repository which was gathered by Quinlan (1987, 1992) and applied to credit
scoring by Chen and Åstebro (2012). This data set was for credit card applications
but the attribute names and values were altered to fictitious symbols to maintain
confidentiality of the data. The data had a good combination of attributes which
were continuous, nominal with small numbers of values and nominal with larger
numbers of values. This data set had 14 input variables and the results was a yes or
no in terms of the approval or disapproval of the credit card.

The causal and the correlation machines were created in order to classify the
data. On creating the causal machine a multi-layer perceptron neural networks was
used and it was trained using the scaled conjugate gradient method (Bishop 1995).
The MLP network had the following attributes: number of inputs was 14, number
of hidden units was eight, a number of output units was a one, activation functions
in the hidden units was a hyperbolic tangent function while the activation function
in the outer layer was a logistic function.

The network was trained with 350 data points and was tested with 340 data
points. The results obtained was expressed in terms of the confusion matrix with
the class cut-off at 0.5 and a 0 indicating no credit card be given while a 1 indicates
that a credit card be given and the accuracy obtained was 78 % and confusion matrix
is given in Table 8.1.

On creating the correlation machine a multi-layer perceptron autoassociative
neural networks was used and it was trained using the scaled conjugate gradient
method (Bishop 1995). The MLP network had the following attributes: number of
inputs was 15 (here we include the outcome class), number of hidden units was
eight, a number of output units was a 15, activation functions in the hidden units was
a hyperbolic tangent function while the activation function in the outer layer was a
logistic function. Instead of applying genetic algorithm in this case and because the
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Table 8.2 Confusion matrix
when the correlation machine
was used

Actual

Positive Negative

Predicted Positive 112 37
Negative 58 133

answer was either a 0 for no credit and a 1 for a credit the correlation machine was
obtained by testing a 0 or a 1 on the missing data estimator which is in Eq. 8.3 and
the choosing the value which offers lower missing data estimator error.

The network was trained with 350 data points and was tested with 340 data
points. The results obtained was expressed in terms of the confusion matrix with
the class cut-off at 0.5 and a 0 indicating no credit card be given while a 1 indicates
that a credit card be given and the accuracy obtained was 72 % and confusion matrix
is given in Table 8.2.

The results obtained indicated that the causal machine performed better than the
correlation machine.

8.5 Causality

Causality is when an event causes another event. This effect is, therefore, a result
of the cause (Abdoullaev 2000; Pearl 2000; Green 2003). In engineering, a causal
system is a structure with output and internal states that are caused only by the
existing and preceding input values. In economics previous data are used to surmise
causality by regression approaches (Granger 1969; Hacker and Hatemi 2006).

Miyazaki and Hamori (2013) used non-uniform weighting cross-correlations
to test causality between gold return and the performance of the stock market.
They observed one-direction causality in mean from stock to gold, however, they
identified no causality in variance between the two. For the period prior to the
financial crisis they observed two-direction causality and one-direction causality in
mean and variance from stock to gold for the crisis period.

Liu and Wan (2012) applied cross-correlation analysis, structural co-integration
and non-linear causality test to study the relationships between Shanghai stock
market and CNY/USD exchange rate. They then applied the linear and non-
linear Granger causality tests and observed no causality between stock prices and
exchange rates.

Chen and Yeh (2012) studied the causality between demand uncertainty and hotel
failure. This analysis was based on two phases with the first using a first-order
autoregressive model to model lodging demand uncertainty and the second using
a logit model to approximate the probability of failures of hotels. They observed
that demand uncertainty caused hotel failures.

Ashley and Ye (2012) applied the Granger causality to identify causal rela-
tionship between the median inflation and price dispersion. They observed causal
relationship between the median inflation and price dispersion.
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Other successful applications of Granger causality were for root cause diagnosis
of plant-wide oscillations (Yuan and Joe Qin 2012), between wholesale price and
consumer price indices in India (Tiwari 2012) and between tourism and economic
growth (Wang et al. 2012).

Akkemik et al. (2012) applied causal analysis to relate energy consumption
to income in Chinese provinces. The results obtained indicated that the Chinese
government should include a regional viewpoint when articulating and applying
energy policies. Wesseh Jr. and Zoumara (2012) studied the causal relationship
between energy consumption and economic growth in Liberia whereas Patilea and
Raı̈ssi (2012) applied adaptive estimation of vector autoregressive models with time-
varying variance to test linear causality in mean.

Suppose we have variables observations yk; yk�1; : : : ; y1 and xk�1; xk�2; : : : ; xi

then there is a causal relationship between the variables if (Granger 1969):

yk D f .˛k�1yk�1; : : : ; ˛1y1;k�1; ˇk�1xk�1; : : : ; ˇ1x1;k�1/ (8.4)

here ˛ and ˇ are hyper-parameters and are non-zero. In fact from the principles of
causality the following factors are valid (Granger 1969):

Observation 1 For there to be causal relationship from variable x to variable y then
there has to be correlation relationship between variable yk and a lagged variable xq

where time q happens before time k.

Observation 2 It is far easier to rule out causality than to observe it.

Observation 3 It is more difficult to know all the variables that cause another
variable.

Now that we have described the principles of causality the next step is to create a
model that will describe Eq. 8.1 and use it to study the causal relationship between
variables and we achieve this goal by implementing the automatic relevance
determination method which was described in detail in Chap. 3.

8.6 Automatic Relevance Determination (ARD) for Causality

This chapter proposes automatic relevance determination to study the causality
between variables. Automatic relevance determination is a procedure where in a
predictive model the causal variable is ranked in order of its effect on the output
variable. In this case if there is no causal relationship between variable a and variable
b then variable a will be assigned an irrelevancy factor. The application of the ARD
within the context of causality studies has not been performed extensively and this
chapter proposes the combination of the ARD and Granger causality framework to
study the causality between economic variables.

Browne et al. (2008) applied automatic relevance determination for identifying
thalamic regions implicated in schizophrenia. The ARD method was created using

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
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hyperparameters of the prior
associated to each input

neural networks and the results demonstrated that the thalamic sub-regions were
important in schizophrenia. Smyrnakis and Evans (2007) applied the ARD method
to classify ischemic events. The ARD method was created using the Bayesian
framework and the multilayer perceptron neural network. The ARD technique was
applied to classify which of the extracted input features to the multilayer perceptron
neural network was the most important with respect to the models performance.

Van Calster et al. (2006) applied the ARD method to classify ovarian tumors.
They used the Bayesian multi-layer perceptron networks to choose the most relevant
variables. Wang and Lu (2006) applied the ARD technique to approximate urban
ozone level and identify the degree of influence by various factors that drive ozone
levels. Horner (2005) applied the ARD technique to identify the stage of ovarian
cancer in the mass-spectrum of serum proteins whereas Li et al. (2002) applied the
ARD method to classify gene expression data and identify relevant features.

The schematic illustration of the ARD is shown in Fig. 8.6.
As described in Chap. 3, an automatic relevance determination technique is

created by associating the hyper-parameters of the prior with each input variable
and, therefore, the prior can be generalized as follows (MacKay 1991, 1992):

EW D 1

2

X

k

˛kfwgT ŒIk� fwg (8.5)

where superscript T is the transpose, k is the weight group and [I] is the identity
matrix. As explained in detail in Chap. 3 using the generalized prior in Eq. 8.5, the
posterior probability in equation then is (Bishop 1995):
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where Wk is the number of weights in group k. The evidence can be written as
follows (Bishop 1995):
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Maximization of the log evidence gives the following estimations for the hyper-
parameters (Bishop 1995):
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and fwgMP is the weight vector at the maximum point and this is identified in this
chapter using the scaled conjugate gradient method, �j are the eigenvalues of [A],
and [V] are the eigenvalues such that ŒV �T ŒV � D ŒI �.

As described in Chap. 3, the relevance of each input variable, the ˛MP
k and ˇMP is

estimated by choosing the initial values for the hyper-parameters randomly, training
the network using scaled conjugate gradient method to identify fwgMP and use
Eqs. 8.9 and 8.10 to estimate the hyper parameters and repeating the procedure until
convergence without further initialization of the hyper parameters (MacKay 1991).
When the ˛ is low then the relevance of a variable on predicting the output variable
is high.

http://dx.doi.org/10.1007/978-1-4471-5010-7_3
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Fig. 8.7 The illustration of the automatic relevance determination with the hyper-parameters of
the prior associated to each input

In order to test the method we apply it to the credit rating problem that was
discussed in Sect. 8.4. In addition to the 14 input variables we introduce an
additional variable which is randomly generated using a uniform distribution. This
is to test whether the method will be able to link this variable to the credit scoring.
The results of the relevance .1=˛/ are shown in Fig. 8.7. This clearly indicates that
there is causal relationship between variable 15 and the credit score.

A further ARD based MLP with the 14 variables as inputs, 8 hidden units and 1
output was constructed and the results of the relevance of each variable on predicting
the credit scores is given in Fig. 8.8. This ARD model with this relevance was used
to predict the credit scores and the accuracy of 77 % was observed and the resulting
receiver operating characteristics (ROC) curve is shown in Fig. 8.9.

The ROC curve is a graphical representation of the sensitivity of the classifier,
also known as the true positive rate, against the sensitivity also known as the
false positive rate. It has been applied widely for assessing the performance of
the classifiers. The ROC has been applied to evaluate the accuracy of classifiers
by many researchers and some of the applications include in imaging (Lorimer
et al. 2012), for correlated diagnostic marker data (Tang et al. 2012), in network
intrusion detection (Meng 2012), field-assessed aerobic fitness related to body size
and cardio-metabolic risk in school children (Boddy et al. 2012) and for credit risk
rating (Kürüm et al. 2012). The ROC in Fig. 8.9 shows a good classification results.
The corresponding confusion matrix is also shown in Table 8.3.
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Fig. 8.8 The illustration of the automatic relevance determination with the hyperparameters of the
prior associated to each input

Fig. 8.9 The ROC curve when using the ARD network
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Table 8.3 Confusion matrix
when the ARD based
machine was used

Actual

Positive Negative

Predicted Positive 115 34
Negative 44 147

8.7 Conclusions

This chapter explored the issue of treating a predictive system as a missing data
problem i.e. correlation machine and compared it to treating as a cause and effect
exercise i.e. causal machine. An auto-associative neural network was combined
with genetic algorithm to build the correlation machine. Furthermore, the automatic
relevance determination (ARD) approach was also applied to identify causal
relationships between variables. These techniques were then applied to modeling
the CPI and for credit scoring. The ARD technique was found to be able to asses the
causal relationships between the variables while the causal machine was found to
perform better than the correlation machine for modeling credit scoring data while
the correlation machine was found to perform better than the causal machine for
modelling the CPI.
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Chapter 9
Evolutionary Approaches to Computational
Economics: Application to Portfolio
Optimization

Abstract This chapter examines the use of genetic algorithms (GA) to perform
the task of continuously rebalancing a portfolio, targeting specific risk and return
characteristics. The portfolio is comprised of a number of arbitrarily performing
trading strategies, plus a risk-free strategy in order to rebalance in a way similar
to the traditional Capital Asset Pricing Model (CAPM) method of rebalancing
portfolios. A format is presented for the design of a fitness function appropriate to
the task, which is evaluated by examining the final results. The results of targeting
both risk and return were investigated and compared, as well as optimizing the
non-targeted variable to create efficient portfolios. The findings showed that GA is,
indeed, a viable tool for optimizing a targeted portfolio using the presented fitness
function.

9.1 Introduction

This chapter, applies genetic algorithm (GA) to continuously re-balance a portfolio
by targeting specific risk and return characteristics. This chapter is based on the
work of Hurwitz and Marwala (2012). The portfolio is comprised of a number of
arbitrarily performing trading strategies, plus a risk-free strategy to rebalance in
a similar method to the traditional Capital Asset Pricing Model (CAPM) method
of rebalancing portfolios. A format is presented for designing a fitness function
appropriate to the task, and evaluated by examining the final results. The results
of targeting both the risk and return were investigated and compared. In addition,
the non-targeted variable was optimized to create efficient portfolios. The viability
of seeking a targeted portfolio using a GA and the proposed fitness function was
evaluated.

In the course of managing funds, it is often required of the fund manager to
manage funds in such a manner as to obtain specific measurable bounds of the
portfolio’s performance. In particular, the two most commonly used measures are
that of return and risk. The need for such targeted funds are many and varied, but
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can all be expressed by having either a targeted, normally minimum, return, with a
minimized risk value, or targetting a maximum risk value with a maximized return
value (Fischer and Jordan 1991). The theoretical model originally proposed by
Markowitz (1952) is used to model all available investments, including composite
investment strategies, in terms of their historical risks and returns. These are
combined to form an efficient portfolio, which forms the basis of the financial
engineering used to gain a targeted return. This chapter explores the use of a GA
to perform that balancing, targeting both risk, as measured as a statistical variance,
and return. The use of a GA to optimize non-linear multi-variable problems is well
explored. This problen can be framed as an optimization problem and a GA can be
used to optimize risks and rewards.

Optimization in this chapter is intended to solve the traditional capital asset
pricing model problem of achieving a targeted fund. This is done by including a
risk-free asset into the suite of strategies for the GA to optimize with. The methods
examined in this chapter are for creating a targeted risk or return portfolio in an
uncertain environment, where the characteristics of each strategy change over time,
thus requiring constant rebalancing.

A successful implementation of GA to portfolio optimization was conducted
by Chang et al. (2009) for different risk measures. The GA was compared to a
mean–variance model in a cardinality constrained efficient frontier. Chang et al.
(2009) collected three different risk measures based on a mean–variance model
by Markowitz, together with semi-variance, mean absolute deviation, and variance
with skewness. They demonstrated that these portfolio optimization problems
can be solved through the use of a GA if mean–variance, semi-variance, mean
absolute deviation and variance with skewness are used as the measures of risk.
The robustness of the GA technique was verified by three data sets collected from
financial markets. The results demonstrated that the investors should include only
one third of their total assets in the portfolio which then outperforms those that
contained more assets.

Another application of GA was conducted by Chen et al. (2011) who applied a
particular variant with guided mutation called Genetic Relation Algorithm (GRA)
for large-scale portfolio optimization. GRA is one of the evolutionary approaches
that have a graph structure. Chen et al. (2011) introduced a new operator, called
guided mutation. To select the most efficient portfolio, GRA considers the cor-
relation coefficient between stock brands as strength, which shows the relation
between nodes in each individual of the GRA. Guided mutation produces offspring
according to the average value of correlation coefficients of each individual, to
enhance the exploitation ability of evolution of the GRA. When applied, the results
showed that the GRA approach was successful in portfolio optimization. This study
demonstrates that sometimes GA ought to be modified in order to obtain good
results.

A successful application of GA for portfolio optimization was conducted by Oh
et al. (2005) who applied it to index fund management. Index fund management
is one of the popular strategies in portfolio management and its objective is to
match the performance of the benchmark index such as the FTSE 100 in London.
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This strategy is applied by fund managers particularly when they are not sure about
outperforming the market and want to adjust themselves to average performance.
The application of GA in this problem gave good results.

A successful application of GA was conducted by Lin and Liu (2008) applied it
to portfolio selection problems with minimum transaction lost. Usually, portfolio
selection problems are solved with quadratic or linear programming models.
However, the solutions obtained by these approaches are in real numbers and
difficult to apply because each asset usually has its minimum transaction lot.
Approaches that consider minimum transaction lots were developed based on some
linear portfolio optimization models. No study has ever investigated the minimum
transaction lot problem in portfolio optimization based on Markowitz’ model, which
is probably the most well-known and widely used. Based on Markowitz’ model,
Lin and Liu (2008) presented three possible models for portfolio selection problems
with minimum transaction lots, and devised corresponding GA models to obtain the
solutions. The results of Lin and Liu (2008) showed that the portfolios obtained
using the proposed algorithms were very close to the efficient frontier, indicating
that the presented method can obtain near optimal results and find practically
feasible solutions to the portfolio selection problem in an acceptably short time.
They recommended their model based on a fuzzy multi-objective decision-making
framework because of its adaptability and simplicity.

Other successful applications of genetic algorithms to portfolio optimization
include Anagnostopoulos and Mamanis (2011) who applied a GA in the mean–
variance cardinality constrained portfolio optimization problem as well as Chen
et al. (2010) who applied time-adapting genetic-network programming for portfolio
optimization.

9.2 Background

This section covers the background theory of portfolio optimization and that of
optimization through the use of a genetic algorithm (GA). In the case of portfolio
optimization, the basic theory assumes a stationary system, an assumption that if
we discard, and it is desirable to discard, needs to be accounted for (Hurwitz 2012;
Hurwitz and Marwala 2011, 2012).

9.2.1 Modern Portfolio Theory

To characterize a given investment portfolio, it is measured according to both its
return and its risk characteristics (Markowitz 1952). Over a given period of time,
the return of a portfolio (R) is characterized by Eq. 9.1 (Markowitz 1952), which
determines the percentage gain (or loss) made by the portfolio over a given period.

RP D IRF C .RM � IRF / �P =�M (9.1)
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Fig. 9.1 Return-risk and the
efficient horizon

Here RP is the Expected Return of Portfolio, RM is the Return on the Market
Portfolio, IRF is the Risk-Free rate of Interest, �M is the Standard Deviation of the
Market Portfolio, and �P is the Standard Deviation of the Portfolio.

The risk of a given portfolio over a set period of time is measured by obtaining
its statistical variance (Markowitz 1952). These two variables then become the
characteristic measurements of a portfolio’s performance (Markowitz 1952). To
compare portfolios, the portfolios are plotted together on a Cartesian plane, plotting
return, R versus risk, � , as shown in Fig. 9.1.

Note the characteristic line, marking what is referred to as the Efficient Horizon.
This frontier line marks the minimal values of risk for a given reward obtainable
with the given portfolios, or conversely, the maximum return obtainable for a given
value of risk. If a portfolio lies on this line, it is said to be efficient (Markowitz 1952).

9.2.2 CAPM Modeling

CAPM (Capital Asset Pricing Model) modeling is a process designed to obtain a
given value of risk from a composite portfolio, often significantly lower in value
than the lowest efficient portfolio in the universe of portfolios (Jiang 2011). To
achieve this, an optimal portfolio is first found along the efficient horizon (Jiang
2011). This portfolio is then combined in a linear fashion with a zero-risk portfolio
in a proportional manner to create a new portfolio, which meets the required
specifications (Jiang 2011). This process is illustrated in Fig. 9.2.

A zero-risk asset is an asset so safe that it has a variance of zero (Jiang 2011).
Such commonly used assets are treasury bonds, and often other government-backed
securities that are assumed never to default. This obviously does not account for
political risk, or the possibility of a government going bankrupt, something that
in all likelihood needs a deeper examination, considering the recent global credit
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Fig. 9.2 CAPM portfolio
targeting

crisis, and the on-going effects still being felt. In this way, the system is analogous
to a feed-forward control system, that aims to control the targeted variable (return
or risk) while, at the same time, optimizing the secondary variable.

9.2.3 Genetic Algorithms

A genetic algorithm (GA) uses the principles of genetic evolution to optimize multi-
variable, non-linear problems (Holland 1975). The heart of the GA is in the concept
of the fitness function (Holland 1975), which evaluates any given solution, and
provides a score, based on that solution. The algorithm creates a population of
possible solutions, and then pairs likely breeders from the population based on
their fitness. The breeding pairs then combine their various values (referred to in
the literature as chromosomes) through various methods (Holland 1975). To avoid
becoming stuck in local minima, the GA employs one of a number of mutation
operations (again, based on biological genetic mutation), giving the population
enough diversity to find solutions outside of the local minima (Holland 1975). Being
an evolutionary optimization technique, there is no guarantee of finding a global
optimum, although in most cases this limitation is purely academic (Hart 1994).

Unlike many optimization algorithms, a genetic algorithm has a higher prob-
ability of converging to a global optimal solution than a gradient-based method.
A genetic algorithm is a population-based, probabilistic technique that operates
to find a solution to a problem from a population of possible solutions (Kubalı́k
and Lazanský 1999). It is used to find approximate solutions to difficult problems
through the application of the principles of evolutionary biology to computer science
(Michalewicz 1996; Mitchell 1996; Forrest 1996; Vose 1999; Marwala 2003, 2010;
Tettey and Marwala 2006). It is analogous to Darwin’s theory of evolution where
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members of the population compete to survive and reproduce while the weaker ones
die out. Each individual is assigned a fitness value according to how well it meets
the objective of solving the problem and, in this chapter, portfolio optimization.
New and more evolutionary-fit individual solutions are produced during a cycle of
generations, wherein selection and re-combination operations take place, analogous
to how gene transfer applies to the current individuals. This continues until a
termination condition is met, after which the best individual thus far is considered
to be the optimum portfolio.

Literature reveals that genetic algorithms have been proven to be very successful
in many applications including:

• finite element analysis (Marwala 2002; Akula and Ganguli 2003),
• selecting optimal neural network architecture (Arifovic and Gençay 2001),
• training hybrid fuzzy neural networks (Oh and Pedrycz 2006),
• solving job scheduling problems (Park et al. 2003),
• missing data estimation (Abdella and Marwala 2006), and
• portfolio optimization (Chen et al. 2009a, b; Soleimani et al. 2009; Bermúdez

et al. 2012; Branke et al. 2009).

Furthermore, the genetic algorithm method has been proven to be successful in
complex optimization problems such as wire routing, scheduling, adaptive control,
game playing, cognitive modeling, transportation problems, traveling salesman
problems, optimal control problems, and database query optimization (Pendharkar
and Rodger 1999; Marwala et al. 2001; Marwala and Chakraverty 2006; Marwala
2007; Crossingham and Marwala 2007; Hulley and Marwala 2007).

In this chapter, the genetic algorithm views learning as a competition among
a population of evolving candidate problem solutions. A fitness function evaluates
each solution to decide whether it will contribute to the next generation of solutions.
Through operations analogous to gene transfer in sexual reproduction, the algorithm
creates a new population of candidate solutions (Goldberg 1989). The three most
important aspects of using genetic algorithms are:

1. the definition of the objective function;
2. implementation of the genetic representation; and
3. implementation of the genetic operators (initialization, crossover, mutation,

selection, and termination).

9.2.3.1 Initialization

In the beginning, a large number of possible individual solutions are randomly
generated to form an initial population. This initial population is sampled so that
it covers a good representation of the updating solution space. For example, if there
are two variables to be updated, the size of the population must be greater than when
there is only one variable to be updated.
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9.2.3.2 Crossover

The crossover operator mixes genetic information in the population by cutting
pairs of chromosomes at random points along their length and exchanging the
cut sections over. This has a potential for joining successful operators together.
Crossover, in this chapter, is an algorithmic operator used to alter the programming
of a potential solution to the optimization problem from one generation to the other
(Gwiazda 2006).

Crossover occurs with a certain probability. In many natural systems, the prob-
ability of crossover occurring is higher than the probability of mutation occurring.
One example is a simple crossover technique (Goldberg 1989).

For simple crossover, one crossover point is selected, a binary string from the
beginning of a chromosome to the cross-over point is copied from one parent, and
the rest is copied from the second parent. For example, if two chromosomes in
binary space are aD 11001011 and bD 11011111 and they undergo a one-point
crossover at the midpoint, then the resulting offspring may be cD 11001111. For an
arithmetic crossover, a mathematical operation is additionally performed to make
the offspring. For example, an AND operator can be performed on aD 11001011
and bD 11011111 to form an offspring dD 11001011. For this chapter, arithmetic
crossover was used.

9.2.3.3 Mutation

The mutation operator picks a binary digit of the chromosomes at random and
inverts it. This has a potential of introducing new information to the population,
and, thereby, prevents the genetic algorithm simulation from being stuck in a local
optimum. Mutation occurs with a certain probability. In many natural systems, the
probability of mutation is low (normally less than 1 %). In this chapter, binary
mutation is used (Goldberg 1989). When binary mutation is used, a number written
in binary form is chosen and one bit value is inverted. For example: the chromosome
aD 11001011 may become the chromosome bD 11000011.

9.2.3.4 Selection

For every generation, a selection of the proportion of the existing population is
chosen to breed a new population. This selection is conducted using the fitness-
based process, where solutions that are fitter are given a higher probability of being
selected. Some selection methods rank the fitness of each solution and choose
the best solutions while other procedures rank a randomly chosen sample of the
population for computational efficiency.

Many selection functions tend to be stochastic in nature and thus are designed
in such a way that a selection process is conducted on a small proportion of less
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fit solutions. This ensures that diversity of the population of possible solutions is
maintained at a high level and, therefore, avoids converging on poor and incorrect
solutions. There are many selection methods and these include roulette-wheel
selection (Mohamed et al. 2008).

Roulette-wheel selection is a genetic operator used for selecting potentially
useful solutions in a genetic optimization process. In this method, each possible
procedure is assigned a fitness function which is used to map the probability
of selection with each individual solution. Suppose the fitness fi is of individual
i in the population, then the probability that this individual is selected is
(Goldberg 1989):

pi D fi

NP
j D1

fj

(9.2)

where N is the total population size.
This process ensures that candidate solutions with a higher fitness have a lower

probability so that they may eliminate those with a lower fitness. By the same token,
solutions with low fitness have a low probability of surviving the selection process.
The advantage of this is that, even though a solution may have low fitness, it may
still contain some components which may be useful in the future.

The processes described result in the subsequent generation of a population of
solutions that is different from the previous generation and that has an average
fitness that is higher than the previous generation.

9.2.3.5 Termination

The process described is repeated until a termination condition has been achieved,
either because a desired solution that satisfies the fitness function was found or
because a specified number of generations has been reached or the solution’s fitness
has converged (or any combination of these).

The process described above is shown in pseudo code in Algorithm 9.1 (Goldberg
1989). Table 9.1 shows the operations, types, and parameters in the implementation
of a genetic algorithm. This table indicates that in a genetic algorithm implemen-
tation, there are many choices that ought to be made. For example, for genetic
algorithm representation, a choice has to be made between a binary and a floating
point representation. For this chapter, a binary representation was used. Given this
choice, a bit size must be chosen. For this chapter, a 16-bit binary representation
was chosen.
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Algorithm 9.1 An algorithm for implementing a genetic algorithm (reprinted with
permission from Marwala 2009)

• Select the initial population
• Calculate the fitness of each chromosome in the population:
• Repeat

• Choose chromosomes with higher fitness to reproduce.
• Generate a new population using crossover and mutation to produce off-

spring.
• Calculate the fitness of each offspring.
• Replace the low fitness section of the population with offspring .

• Until termination

Table 9.1 Operations, types and parameters for the implementation of a genetic algorithm

Operation Types Parameters to select

Genetic representation Binary, floating point Bit size
Initialization Population, random seed Population size, distribution

of the random seed
Crossover Arithmetic, simple, one-point,

two-point, uniform
Probability of crossover

Mutation Non-uniform, binary Probability of mutation
Fitness function evaluation Problem specific
Selection Roulette wheel, tournament

selection
Reproduction Two parents, three parents

reproduction

For the initialization process, a choice has to be made for the population size.
Table 9.1 illustrates that in the implementation of genetic algorithms, the difficulty
is that there are many choices to be made and there is no direct methodology on how
these choices must be made, so these choices tend to be arbitrary.

9.3 Problem Statement

To investigate the problem, a number of simple trading strategies were required. To
ensure that enough facets were available to trade between, data was generated with
specific underlying patterns (Hurwitz and Marwala 2011), and then was overlaid
with an energy-based noise function (Hurwitz and Marwala 2011). These datasets
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(or pseudo-data) were then traded on using a simple trading strategy that was based
upon their underlying facets (Hurwitz and Marwala 2011). These trading strategies
were deliberately not fine-tuned, as there needs to be periods of loss and gain, as
well as low and high risk in each trading strategy. A final strategy was then created,
being a buy-and-hold strategy that invested in a low-return bond, emulating a zero-
risk portfolio (Hurwitz and Marwala 2012).

The strategies were not perfect exploiters of their data-sets. In many cases
they performed admirably, while in others they actually lost money, owing to the
individual idiosyncrasies of their trading strategy interacting with the data they were
attempting to exploit. A case in point is the first strategy, which performed well on a
steep gradient, but performed very poorly when on a flat gradient, being fooled into
poor trades by the noise in the data.

9.4 Genetic Algorithm Setup

To use the genetic algorithm (GA) to optimize the portfolio, a number of values
must be specified. The first is the form of the individual, which is characterized by
four variables, each representing the relative weighting of each strategy. Since the
GA has freedom to use any combination of values within the set bounds (in this
case the set between 0 and 1), the weights must be rescaled to account for all of the
funds held by the portfolio. This rescaling is done as shown in Eq. 9.3 (Hurwitz and
Marwala 2012).

Wi D Wi

nP
j D1

wj

(9.3)

The rescaled values were also enforced on the individuals, aiding in convergence.
The next step involved the evaluation of the individual fitness from a given
individual. To do this, first the actual return and risk for the given period was
calculated for each strategy. Using the given weighting factors, the risk and return
for the combined portfolio represented by the individual were calculated. These
were then compared to the target value, and the error found was the primary
component of the fitness function. To optimize the portfolio, the secondary factor
was then used to either maximize the return of the targeted risk portfolio, or to
minimize the risk of a targeted return portfolio. Equations 9.4 and 9.5 show these
two fitness functions respectively, where � is the risk, R is the return, and T is the
target value (Hurwitz and Marwala 2012).
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Note that in both cases, the factor k determines the amount by which the primary
target takes precedence over optimizing the secondary target. By adjusting k, some
slight accuracy can, in theory, be sacrificed to obtain overall better performance.
Equations 9.4 and 9.5 can also be modified so that the first term returns no error if
the performance exceeds the bound set by the target (so it returns zero if [D][ � 0] is
less than T, or if [D][R0] is greater than T), creating the following equations (Hurwitz
and Marwala 2012).

if ŒD�


� 0� > T IF� D �k
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By doing so, the GA is not forced to (potentially) sacrifice performance to meet
an exact target specification, but is instead free to perform within acceptable bounds
so as to achieve better overall performance.

9.5 Analysis

This section examines the details of the optimization process, covering the technical
specifications of the optimizations and gives an analysis of the results.

9.5.1 Technical Specifications

All three strategies used a traditional Moving Average Convergence-Divergence
(MACD) indicator for generating their buy and sell indicators (Kilpatrick and
Dahlquist 2010). The portfolio trading was limited to trading no more than once
a week, with daily values used to determine the results. In accordance with common
reporting standards (Dodel 2011), risk and return results were computed on a
monthly basis, since it is this target that a targeted risk-return fund would be aiming
for (Jiang 2011).

The first experiment was to attempt to create a targeted risk fund, one easily
achievable with the given strategies, namely a zero-risk fund. This should be very
easy to achieve, as the GA only needs to choose to use the risk-free asset exclusively.
It is, however, not completely risk-free, as the growth is based on a yearly return,
and the daily returns have a slight variance owing to the non-reported days in
between, such as weekends and public holidays. The first and most notable issue
is that the performance is incredibly poor, owing to its natural preference to choose
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strategies that are currently sold, and hence have a genuinely zero-risk factor and
correspondingly zero return. To avoid this trap, it proved necessary to introduce a
large penalty for favoring any dis-invested strategy. With this done, the simulations
could continue unimpeded. Multiple portfolios were then created, using varying
targets and parameter settings and the parameters in question were the factor k and
the choice of whether to aim for an exact targeted risk and return or simply set
an upper or lower bound on the risk and return targets. Portfolios were generated
targeting both risk and return, with their performance measured against their targets,
and relatively against each other using the non-targeted, optimized measure. Errors
were expected to be present, owing to the system’s reliance on historical data to
predict future events. The ability to spread the risk between multiple strategies was
intended to mitigate this problem somewhat, although it is unreasonable to expect it
to be fully compensated for.

9.5.2 Results Analysis

The first set of portfolios looked at targeted risk as the control variable. The targeting
of the variable is a hard target, desiring an exact controlled match. This first portfolio
was designed to obtain the minimum possible risk that the component strategies
allowed. The results shown in Fig. 9.3 indicated that the portfolio achieved the
desired risk, or better, for the vast majority of the time period. Spikes of poor
performance are inevitable, owing to the lack of any feedback in the system, and
the unreliable nature of the component strategies themselves.

When studying the strategy choices made by GA when optimizing the portfolio,
it was observed that there was the heavy dependence (as expected) on the zero-risk
portfolio. The rest of the portfolios were generated in a similar manner, with the
various parameters changing. Table 9.2 shows the targeted risk portfolio as well as
the parameter settings used in each instance.

Some portfolios have been omitted to preserve a measure of clarity in the figures.
Of particular interest is the fact that as the targeted risk is relaxed (i.e., set to a
higher value), the returns achieved by the portfolio become greater, matching the
expectations of modern portfolio theory. The achievement of a mean variance within
the targeted risk bounds indicates the usefulness of the technique to successfully
balance (and rebalance) a portfolio. Of further interest is the difference between
portfolios with the same targeted risk, but where one is allowed for the risk to be
merely an upper bound, while the other targets the exact value. As can be seen, the
freedom to not specifically target a given risk value actually allows for a greater
return, while the mean risk still remains within the controlled bounds. Another facet
worth mentioning is the effect of the factor k, we can see portfolios number 2 and
number 5 perform the same function, but while number 2 has k set to 100, number
5 is far less stringent, setting its value to only 10. The resulting portfolio in number
5 has a better return than number 2, but a more wildly fluctuating risk, the variance
of the risk is sacrificed in exchange for a better return.
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Fig. 9.3 Minimum-risk scenario

Table 9.2 Targeted risk portfolio

Portfolio
number

Firm/bounded
target Target ¢ K Mean ¢

Mean periodic
return

1 Firm 0.15 100 0.022 0.15
2 Firm 0.2 100 0.44 0.27
3 Firm 1 100 0.93 0.47
4 Bounded 1 10 0.55 0.58
5 Bounded 0.2 10 0.073 0.29
6 Firm 1 10 0.92 0.45
7 Bounded 0.2 100 0.069 0.24
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Table 9.3 Targeted return portfolios

Portfolio
number

Firm/bounded
target

Target
return K

Mean periodic
return Mean ¢

1 Firm 0.1 100 0.28 0.16
2 Firm 0.3 100 0.43 0.66
3 Firm 0.5 100 0.58 1.04
4 Bounded 0.1 100 0.40 4.2
5 Bounded 0.3 100 0.44 4.3
6 Firm 0.3 10 0.38 0.34
7 Bounded 0.3 10 0.31 3.6

Its mean risk, however, is in fact far lower than that of number 2, likely due to
a quirk of the GA. The targeted return portfolio analysis follows the same pattern,
with the first portfolio being a target matching the zero-risk dataset (Hurwitz and
Marwala 2012).

As can be seen, this portfolio did not optimize nearly as well as the targeted
zero-risk portfolio. The GA attempted to use the other strategies, instead of just the
zero-risk strategy, and try as it might, it could not quite keep the return down to
the targeted return of 0.16, settling instead on a return of 0.28. The results from the
targeted return set of portfolios are given in Table 9.3 (Hurwitz and Marwala 2012).

We see very quickly that while the firm targets work well for the targeted return,
the bounded targets actually introduce greater risk, instead of lowering it. It is easy
to conclude then that for a targeted return fund, an exact value needs to be aimed
for. It is also worth noting that despite these problems, the portfolios all achieved
a reasonable return relative to their targeted returns, using only a combination of
strategies that have risks and returns far-removed from the targeted values. Similar
risk-return profiles indicate that the risk-targeting in fact is more reliable than the
return targeting, as similar return values can be obtained for much lower risk in the
set of risk targeted portfolios.

9.6 Conclusions

As shown, the use of genetic algorithms for the continual rebalancing of portfolios
is a viable technique that holds much promise. Given a set of strategies, the GA was
able to choose between them to meet a given target of performance, be it risk or
reward, and to optimize the secondary target. The inclusion of a risk-free asset into
the optimization process obviates the need to first find an optimal, efficient portfolio
to then linearly combine with the risk-free asset, instead of allowing the system to
move directly on to balancing a targeted portfolio that meets the investor’s needs.
The relaxing of precise control restraints in favor of bounded control restraints has
proven to be a highly promising technique, allowing for improved performance
whilst still meeting the target performance requirements. It was found that risk
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targeting produces a more reliable and efficient portfolio optimization strategy
than risk targeting, which may be due to the data-generation method. The inherent
unreliability of the various strategies, while problematic, proved not to sabotage the
performance of the overall portfolio, although it did, unsurprisingly, heighten the
element of risk. Nonetheless, this risk was manageable within acceptable bounds.
For more stable results, it is recommended that a penalty be introduced to the
fitness function for more radical changes, thereby, favoring strategies that limit their
amount of trading (also bringing down trading costs for real-world application).
Further work is recommended using combinations of both more advanced trading
rules, and even simple buy-and-hold strategies, both on idealized data and on
real-world equity data.
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Chapter 10
Real-Time Approaches to Computational
Economics: Self Adaptive Economic Systems

Abstract This chapter examines modelling of financial movement direction with
LearnCC by forecasting the daily movement direction of the Dow Jones. The
LearnCC approach is implemented using a multi-layer perceptron as a weak-
learner, where this weak-learner is improved by making use of the LearnCC
algorithm. In addition, the LearnCC algorithm introduces the concept of on-line
incremental learning, which means that the proposed framework is able to adapt to
new data.

10.1 Introduction

This chapter assumes that a complete model is the one that is able to continuously
self-adapt to the changing environment. In this chapter, an on-line incremental
algorithm that classifies the direction of movement of the stock market is described
(Lunga and Marwala 2006a). One very important component of the economic
system is the financial market. The financial market is a complex, evolving, and
non-linear dynamic system. In order to increase the wealth of investors it is vital
to be able to forecast the direction of the financial markets. The field of financial
forecasting is manifested by data intensity, noise, non-stationarity, unstructured
nature, high degree of uncertainty, and hidden relationships (Carpenter et al.
1992; Lunga and Marwala 2006a, b). Various aspects interact in finance, and
these include social forces, political developments, overall economic conditions,
and traders’ expectations. Consequently, predicting market price movements is a
difficult undertaking. Movements of market prices are not entirely random and they
behave in a highly non-linear and dynamic manner. The standard random walk
assumption of future prices is a different manifestation of randomness that hides
a noisy non-linear process (McNelis 2005).

T. Marwala, Economic Modeling Using Artificial Intelligence Methods, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-4471-5010-7 10,
© Springer-Verlag London 2013
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Incremental learning is a possible solution to such situations and is defined as the
process of extracting new information from the data without losing prior knowledge
from an additional dataset that later becomes available (Lunga and Marwala 2006a).
A number of definitions and interpretations of incremental learning can be found in
the literature, including on-line learning (Freund and Schapire 1997; Lunga and
Marwala 2006b), re-learning of previously misclassified instances, and growing
and pruning of classifier architectures (Bishop 1995). An algorithm possesses
incremental learning capabilities if it meets the following criteria (Lunga and
Marwala 2006b):

• Capability to attain further knowledge when new data are introduced.
• Capability to remember previously learned information about the data.
• Capability to learn new classes of data if introduced by new data.

Some applications of on-line classification problems have been reported recently
(Polikar et al. 2002, 2004; Polikar 2000; Vilakazi et al. 2006; Vilakazi 2007). In
many situations, the extent of accuracy and the acceptability of certain classifica-
tions are measured by the error of misclassified instances. LearnCC has mostly
been applied to classification problems and the choice of LearnCC algorithm
can boost a weak-learner to classify stock closing values with minimum error
and reduced training time (Lunga and Marwala 2006b). For financial markets,
forecasting methods based on minimizing forecasting error may not be sufficient.
Trade driven by a certain forecast with a small forecast error may not be as profitable
as trade guided by an accurate prediction of the direction of movement. This chapter
discusses the ensemble systems, introduces the basic theory of incremental learning
and the LearnCC algorithm, and applies these to financial markets.

10.2 Incremental Learning

An incremental learning algorithm is defined as an algorithm that learns new
information from unseen data, without requiring access to previously observed data
(Polikar et al. 2002, 2004; Polikar 2000). The algorithm is capable of learning
newly available information from the data and to recall the knowledge from the
previously observed data. Furthermore, the algorithm is capable of learning new
classes that are introduced by subsequent data. This kind of learning algorithm is
called an on-line learning procedure. Learning new information without accessing
previously used data invokes the ‘stability-plasticity dilemma’ (Carpenter et al.
1992). A completely stable classifier retains the knowledge from previously learned
data but fails to learn new information while a completely plastic classifier learns
new data but forgets prior knowledge. The problem with neural network techniques
is that they are stable classifiers and cannot learn new information after they have
been trained. Different measures have been applied to capacitate neural networks
with incremental learning capability. One technique of learning new information
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from supplementary data entails eliminating the trained classifier and training a new
classifier using accumulated data. Other approaches such as pruning of networks
or controlled alteration of classifier weight or growing of classifier architectures
are known as incremental learning techniques and they change classifier weights
using only the misclassified instances. These techniques are capable of learning
new information, nevertheless, they suffer from ‘forgetting’ and necessitate access
to old data. One method evaluates the current performance of the classifier
architecture. If the present architecture does not adequately characterize the decision
boundaries being learned, new decision clusters are generated in response to new
pattern. Additionally, this method does not involve access to old data and can
accommodate new classes. Nonetheless, the central inadequacies of this method
are: cluster proliferation and sensitivity to selection of algorithm parameters.
In this chapter, LearnCC is applied for on-line prediction of stock movement
direction.

10.3 Ensemble Methods

The on-line learning technique implemented in this chapter is based on ensemble
learning (Hansen and Salamon 1990; Jordan and Jacobs 1994; Kuncheva et al.
2001). Ensemble learning is a method where multiple models, such as classifiers,
are deliberately created and combined to solve a particular problem (Rogova 1994;
Polikar 2006; Marwala 2012). These techniques combine an ensemble of usually
weak classifiers to exploit the so-called instability of the weak classifier (Polikar
2006). A tactical mixture of these classifiers eradicates the individual errors, creating
a strong classifier. This makes the classifiers build adequately different decision
boundaries for negligible changes in their training parameters and, as a result, each
classifier makes different errors on any given instance. Ensemble systems have
enticed a great deal of attention over the last decade due to their empirical success
over single classifier systems on a variety of applications (Hulley and Marwala
2007; Marwala 2009).

Hannah and Dunson (2012) successfully applied an ensemble method to geo-
metric programming based circuit design whereas Tong et al. (2012) successfully
applied an ensemble of Kalman filters for approximating a heterogeneous con-
ductivity field by integrating transient solute transport data. Austin et al. (2012)
successfully applied ensemble methods for forecasting mortality in patients with
cardiovascular disease whereas Halawani and Ahmad (2012) successfully applied
ensemble methods to predict Parkinson disease and Ebrahimpour et al. (2012)
successfully applied ensemble method to detect epileptic seizure.

In Sect. 10.3 ensemble learning methods are described: bagging, stacking and
adaptive boosting (Marwala 2012). Particularly, the Adaptive Boosting technique
is described because it was the basis for the creation of the LearnCC procedure,
which is the on-line routine, implemented in this chapter (Polikar 2006).



176 10 Real-Time Approaches to Computational Economics: Self Adaptive Economic . . .

10.3.1 Bagging

Bagging is a technique which is premised on the combination of models fitted to
randomly chosen samples of a training data set to decrease the variance of the
prediction model (Efron 1979; Breiman 1996; Marwala 2012). Bagging essentially
necessitates randomly choosing a subset of the training data and applying this subset
to train a model and repeating this process. Subsequently, all trained models are
combined with equal weights to form an ensemble.

Louzada and Ara (2012) successfully applied bagging for fraud detection
tool whereas Ghimire et al. (2012) successfully applied bagging for land-cover
classification in Massachusetts. Syarif et al. (2012) successfully applied bagging
to intrusion detection whereas Zhang et al. (2012) successfully applied bagging for
high resolution range profile recognition for polarization radar.

10.3.2 Stacking

A model can be chosen from a set of models by comparing these models using data
that was not used to train the models (Polikar 2006; Marwala 2012). This prior belief
can also be applied to select a model amongst a set of models, based on a single data
set by using a method called cross-validation (Bishop 1995; Marwala 2012). This
is accomplished by dividing the data into a training data set, which is used to train
the models, and a testing data set which is used to test the trained model. Stacking
takes advantage of this prior belief by using the performance from the test data to
combine the models instead of choosing among them the best performing model
when tested on the testing data set (Wolpert 1992).

Sulzmann and Fürnkranz (2011) successfully applied stacking to compress an
ensemble of rule sets into a single classifier whereas Chen and Wong (2011)
successfully applied ant colony optimization method to optimize stacking ensemble.
Lienemann et al. (2009) successfully applied stacking in metabonomic applications.

10.3.3 Adaptive Boosting (AdaBoost)

Boosting is a technique that incrementally generates an ensemble by training each
new model with data that the previously trained model misclassified. Then the
ensemble, which is a combination of all trained models, is used for prediction.
Adaptive Boosting is an extension of boosting to multi-class problems (Freund
and Schapire 1997; Schapire et al. 1998; Marwala 2012). There are many types
of Adaptive Boosting, for instance AdaBoost.M1, where each classifier is assigned
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a weighted error of no more than ½ and AdaBoost.M2 with weak classifiers
with a weighted error of less than ½. Tang et al. (2008) applied successfully
Adaptive Boosting technique for analog circuit fault diagnosis whereas Li and Shen
(2008) successfully applied Adaptive Boosting method for image processing. Nock
et al. (2012) successfully applied boosting to classify natural scenes whereas Xia
et al. (2012) successfully applied boosting for image retrieval. La et al. (2012)
successfully applied boosting for text classification.

For AdaBoost.M1, samples are drawn from a distribution D that is updated in
such a way that successive classifiers concentrate on difficult cases. This is achieved
by adjusting D in such a way that the earlier, misclassified cases are likely to be
present in the following sample. The classifiers are then combined through weighted
majority voting. The distribution begins as a uniform distribution so that all cases
have equal probability can be drawn into the first data subset S1.

As described by Polikar (2006), at each iteration t, a new training data subset is
sampled, and a weak classifier is trained to create a hypothesis ht. The error given
by this hypothesis with regards to the current distribution is estimated as the sum of
distribution weights of the cases misclassified by ht. AdaBoost.M1 requires that this
error is less than ½, and if this requirement is violated then the procedure terminates.
The normalized error ˇt is then calculated so that the error that is in the [0 0.5]
interval is normalized into the [0 1] interval. The transformed error is implemented
in the distribution update rule, where Dt(i) is decreased by a factor of ˇt ; 0 < ˇt < 1,
if xi is correctly classified by ht, or else it is left unaltered. When the distribution is
normalized so that Dt C 1(i) is a proper distribution, the weights of those instances
that are misclassified are increased. This update rule guarantees that the weights of
all instances are correctly classified and the weights of all misclassified instances
add up to ½. The requirement for the training error of the base classifier to be less
than ½ forces the procedure to correct the error committed by the previous base
model. When the training process is complete, the test data are classified by this
ensemble of T classifiers, by applying a weighted majority voting procedure where
each classifier obtains a voting weight that is inversely proportional to its normalized
error (Polikar 2006). The weighted majority voting then selects the class ! allocated
the majority vote of all classifiers. The procedure for Adaptive Boosting is shown in
Algorithm 10.1 (Polikar 2006).

As described by Polikar (2006), the theoretical analysis of the Adaptive Boosting
technique shows that the ensemble training error E is bounded above by:

E < 2T

TY

tD1

p
"t .1 � "t / (10.1)

The "t < 1=2 ensemble error E is reduced when new classifiers are added. The
Adaptive Boosting method is not prone to over-fitting and this is explained by the
margin theory (Schapire 1990; Polikar 2006).
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Algorithm 10.1 The AdaBoost Algorithm.M1

Input:

• Input X D fx1; x2; : : : ; xng and output Y D fy1; y2; : : : ; yng
• Weak-learner algorithm
• Number of classifiers T and distribution D1.i/ D 1=nI i D 1; : : : ; n

For tD 1,2, : : : ,T;

1. Sample a training subset St with a distribution Dt

2. Train Weak-learner with St and create hypothesis ht W X ! Y

3. Estimate the error of ht W "t D
nP

iD1

I Œht .xi / ¤ yi � � Dt .i/ D
P

t Wht .xi /¤yi

Dt .i/

4. If "t >
1

2
terminate

5. Estimate the normalized error ˇt D "t =.1 � "t /) 0 	 ˇt 	 1

6. Update the distribution Dt: DtC1.i/ D Dt .i/

Zt

�
(

ˇt ; if ht .xi / yi

1; otherwise
where

Zt is the normalization constant so that DtC1 becomes a proper distribution
function.

Test using majority voting given an unlabeled example z as follows:

• Count the total vote from the classifiers Vj D P
t Wht .z/

log .1 =ˇt /

j D 1; : : : ; C

• Select the class that receives the highest number of votes as the final
classification.

10.4 The Real-Time Method

Real-time learning is suitable for modelling dynamically time-varying systems
where the characteristics of the environment in which the system is operating
changes with time. It is also suitable when the data set existing is inadequate and
does not entirely describe the system and, therefore, this approach incorporates new
conditions that may be presented by newly acquired data.

A real-time computational economics model must have incremental learning
competency if it is to be applied for automatic and continuous real-time prediction.
The basis of real-time learning is incremental learning, which has been studied by
many researchers (Higgins and Goodman 1991; Fu et al. 1996; Yamaguchi et al.
1999; Carpenter et al. 1992; Marwala 2012). The difficulty with real-time learning
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is the tendency of a real-time learner to forget the information learned during the
initial stages of the learning process (McCloskey and Cohen 1989). The real-time
learning technique adopted for this chapter is LearnCC and was proposed by
Polikar et al. (2004).

Vilakazi and Marwala (2007a) applied the real-time incremental learning tech-
nique for monitoring the condition of high voltage bushings. Two incremental
learning techniques were applied to the problem of condition monitoring. The first
technique used was the incremental learning capability of the Fuzzy ARTMAP
(FAM), and they investigated whether the ensemble approach can improve the
performance of the FAM. The second technique applied was LearnCC that imple-
mented an ensemble of multi-layer perceptron classifiers. Both methods performed
well when tested for transformer bushing condition monitoring.

Mohamed et al. (2007) applied incremental learning for the classification of
protein sequences. They used the fuzzy ARTMAP as an alternative machine
learning system with the ability to incrementally learn new data as it becomes
available. The fuzzy ARTMAP was seen to be comparable to many other machine
learning systems. The application of an evolutionary strategy in the selection and
combination of individual classifiers into an ensemble system, coupled with the
incremental learning capability of the fuzzy ARTMAP was shown to be suitable
as a pattern classifier. Their algorithm was tested using the data from the G-Coupled
Protein Receptors Database and it demonstrated a good accuracy of 83 %.

Mohamed et al. (2006) applied fuzzy ARTMAP to multi-class protein sequence
classification. They presented a classification system that used pattern recognition
method to produce a numerical vector representation of a protein sequence and
then classified the sequence into a number of given classes. They applied fuzzy
ARTMAP classifiers and showed that, when coupled with a genetic algorithm
based feature subset selection, the system could classify protein sequences with
an accuracy of 93 %. This accuracy was then compared to other classification
techniques and it was shown that the fuzzy ARTMAP was most suitable because
of its high accuracy, quick training times and ability to learn incrementally.

Perez et al. (2010) applied a population-based, incremental learning approach
to microarray gene expression feature selection. They evaluated the usefulness
of the Population-Based Incremental Learning (PBIL) procedure on identifying
a class differentiating gene set for sample classification. PBIL was based on
iteratively evolving the genome of a search population by updating a probability
vector, guided by the extent of class-separability demonstrated by a combination
of features. The PBIL was then compared to standard Genetic Algorithm (GA)
and an Analysis of Variance (ANOVA) method. The procedures were tested on a
publicly available three-class leukemia microarray data set (nD 72). After running
30 repeats of both GA and PBIL, the PBIL could identify an average feature-
space separability of 97.04 % while the GA achieved an average class-separability
of 96.39 %. The PBIL also found smaller feature-spaces than GA, (PBIL – 326
genes and GA – 2,652) thus excluding a large percentage of redundant features.
It also, on average, outperformed the ANOVA approach for nD 2,652 (91.62 %),



180 10 Real-Time Approaches to Computational Economics: Self Adaptive Economic . . .

q < 0.05 (94.44 %), q < 0.01 (93.06 %) and q < 0.005 (95.83 %). The best PBIL run
(98.61 %) even outperformed ANOVA for nD 326 and q < 0.001 (both 97.22 %).
PBIL’s performance was credited to its ability to direct the search, not only towards
the optimal solution, but also away from the worst.

Hulley and Marwala (2007) applied GA-based incremental learning for opti-
mal weight and classifier selection. They then compared LearnCC, which is an
incremental learning algorithm to the new Incremental Learning Using Genetic Al-
gorithm (ILUGA). LearnCC demonstrated good incremental learning capabilities
on benchmark datasets on which the new ILUGA technique was tested. ILUGA
showed good incremental learning ability using only a few classifiers and did
not suffer from catastrophic forgetting. The results obtained for ILUGA on the
Optical Character Recognition (OCR) and Wine datasets were good, with an overall
accuracy of 93 and 94 %, respectively, showing a 4 % improvement over LearnCC.
MT for the difficult multi-class OCR dataset.

Lunga and Marwala (2006a) applied a time series analysis using fractal theory
and real-time ensemble classifiers to model the stock market. The fractal analysis
was implemented as a concept to identify the degree of persistence and self-
similarity within the stock market data. This concept was carried out using the
Rescaled range analysis (R/S) technique. The R/S analysis outcome was then
applied to a real-time incremental algorithm (LearnCC) that was built to classify
the direction of movement of the stock market. The use of fractal geometry in this
study provided a way of determining, quantitatively, the extent to which the time
series data could be predicted. In an extensive test, it was demonstrated that the R/S
analysis provided a very sensitive technique to reveal hidden long runs and short
run memory trends within the sample data. A time series data that was measured to
be persistent was used to train the neural network. The results from the LearnCC
algorithm showed a very high level of confidence for the neural network to classify
sample data accurately.

Lunga and Marwala (2006b) applied incremental learning for the real-time
forecasting of stock market movement direction. In particular, they presented a
specific application of the LearnCC algorithm, and investigated the predictability
of financial movement direction with LearnCC by forecasting the daily movement
direction of the Dow Jones. The framework was implemented using the multi-layer
perceptron (MLP) as a weak-learner. First, a weak learning algorithm, which tried to
learn a class concept with a single input perceptron, was established. The LearnCC
algorithm was then applied to improve the weak MLP learning capacity and thus
introduced the concept of incremental real-time learning. The presented framework
could adapt as new data were introduced and could classify the data well. This
chapter is based on this study by Lunga and Marwala (2006b).

Vilakazi and Marwala (2007b) applied incremental learning to bushing condition
monitoring. They presented a technique for bushing fault condition monitoring
using the fuzzy ARTMAP. The fuzzy ARTMAP was introduced for bushing
condition monitoring because it can incrementally learn information as it becomes
available. An ensemble of classifiers was used to improve the classification accuracy
of the system. The test results showed that the fuzzy ARTMAP ensemble gave an
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accuracy of 98.5 %. In addition, the results showed that the fuzzy ARTMAP could
update its knowledge in an incremental fashion without forgetting the previously
learned information.

Nelwamondo and Marwala (2007) successfully applied a technique for handling
missing data from heteroskedasticity and non-stationary data. They presented a
computational intelligence approach for predicting missing data in the presence
of concept drift using an ensemble of multi-layer feed-forward neural networks.
Six instances prior to the occurrence of missing data were used to approximate the
missing values. The algorithm was applied to a simulated time series data set that
resembled non-stationary data from a sensor. Results showed that the prediction
of missing data in a non-stationary time series data was possible but was still a
challenge. For one test, up to 78 % of the data could be predicted within a 10 %
tolerance range of accuracy.

Khreich et al. (2012) conducted a survey of techniques for incremental learning
of hidden Markov model parameters while Tscherepanow et al. (2011) applied
hierarchical adaptive resonance theory network for the stable incremental learning
of topological structures and associations from noisy data. Bouchachia (2011)
studied incremental learning with multi-level adaptation. The author examined self-
adaptation of classification systems which were natural adaptation of the base
learners to change in the environment, contributive adaptation when combining the
base learners in an ensemble, and structural adaptation of the combination as a form
of dynamic ensemble. The author observed that this technique was able to deal with
dynamic change in the presence of various types of data drift.

Martı́nez-Rego et al. (2011) proposed a robust incremental learning technique
for non-stationary environments. They proposed a method, for single-layer neural
networks, with a forgetting function in an incremental on-line learning procedure.
The forgetting function offered a monotonically increasing significance to new
data. Owing to the mixture of incremental learning and increasing significance
assignment the network forgot quickly in the presence of changes while retaining a
stable behavior when the context was stationary. The performance of the technique
was tested over numerous regression and classification problems and the results
were compared with those of previous works. The proposed procedure revealed
high adaptation to changes while maintaining a low consumption of computational
resources.

Yang et al. (2011) proposed an extreme and incremental learning based single-
hidden-layer regularization ridgelet network which applied the ridgelet function as
the activation function in a feed-forward neural network. The results showed that
the method demonstrated incremental learning capability.

Topalov et al. (2011) successfully applied a neuro-fuzzy control of antilock
braking system using a sliding mode incremental learning procedure. An incre-
mental learning procedure was applied to update the parameters of the neuro-fuzzy
controller. The application of this on the control of anti-lock breaking system model
gave good results.

Folly (2011) proposed a method to optimally tune the parameters of power
system stabilizers for a multi-machine power system using the Population-based
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incremental learning (PBIL) procedure. The PBIL procedure is a method that
combines features of genetic algorithms and competitive learning-based on artificial
neural networks. The results showed that PBIL based power system stabilizers
performed better than genetic algorithm based power system stabilizers over a range
of operating conditions considered.

Other successful implementations of incremental learning techniques include
its use in anomaly detection (Khreich et al. 2009), in human robot interaction
(Okada et al. 2009), for real-time handwriting recognition (Almaksour and Anquetil
2009), for predicting human movement in a vehicle motion (Vasquez et al. 2009),
in visual learning (Huang et al. 2009), in nuclear transient identification (Baraldi
et al. 2011), in object detection and pose classification (Tangruamsub et al. 2012),
in classification of Alzheimer’s disease (Cho et al. 2012), in face recognition (Lu
et al. 2012) as well as in speech recognition (Li et al. 2012).

10.4.1 LearnCC Incremental Learning Method

LearnCC is an incremental learning procedure that was proposed by Polikar and
co-workers (Polikar et al. 2002, 2004; Muhlbaier et al. 2004; Erdem et al. 2005;
Polikar 2006; Marwala 2012). It is based on adaptive boosting procedure and applies
multiple classifiers to capacitate the system to learn incrementally. The procedure
operates on the notion of using many classifiers that are weak-learners to give a
good overall classification. The weak-learners are trained on a separate subset of
the training data and then the classifiers are combined using a weighted majority
vote. The weights for the weighted majority vote are selected using the performance
of the classifiers on the entire training dataset.

Each classifier is trained using a training subset that is sampled in accordance
to a stated distribution. The classifiers are trained using a weak-learner approach.
The condition for the weak-learner procedure is that it must give a classification
rate of less than 50 % firstly (Polikar et al. 2002). For each database Dk that
contains training series, S, where S contains learning examples and their equivalent
classes, LearnCC starts by setting the weights vector, w, according to a specified
distribution DT , where T is the number of hypothesis. Firstly the weights are set to
be uniform giving equal probability for all cases chosen for the first training subset
and the distribution is then given by (Polikar et al. 2002; Marwala 2012):

D D 1

m
(10.2)

Here, m is the number of training examples in S. The training data are then
distributed into training subset TR and testing subset TE to confirm the weak-learner
capability. The distribution is then applied to choose the training subset TR and
testing subset TE from Sk. After training and testing subsets have been chosen, then



10.4 The Real-Time Method 183

the weak-learner procedure is applied. The weak-learner is trained using subset TR.
A hypothesis, ht, attained from a weak-learner is tested using both the training and
testing subsets to achieve an error (Polikar et al. 2002; Marwala 2012):

"t D
X

t Whi .xi /¤yi

Dt .i/ (10.3)

The error is required to be less than 0.5; a normalized error is computed using
(Polikar et al. 2002; Marwala 2012):

Bt D "t

1 � "t

(10.4)

If the error is greater than 0.5, the hypothesis is rejected and the new training and
testing subsets are chosen according to a distribution DT and another hypothesis is
estimated. All classifiers created are then combined using weighted majority voting
to obtain a combined hypothesis, Ht (Polikar et al. 2002; Marwala 2012):

Ht D arg max
y2Y

X

t Wht .x/Dy

log

�
1

ˇt

�
(10.5)

The weighted majority voting offers higher voting weights to a hypothesis that
performs well on the training and testing data subsets. The error of the composite
hypothesis is calculated as follows (Polikar et al. 2002; Marwala 2012):

Et D
X

t WHi .xi /¤yi

Dt .i/ (10.6)

If the error is greater than 0.5, the current hypothesis is rejected and the new
training and testing data are chosen according to a distribution DT . Or else, if the
error is less than 0.5, then the normalized error of the composite hypothesis is
calculated as follows (Polikar et al. 2002; Marwala 2012):

Bt D Et

1 �Et

(10.7)

The error is applied in the distribution update rule, where the weights of the
correctly classified cases are reduced, accordingly increasing the weights of the mis-
classified instances. This confirms that the cases that were misclassified by the cur-
rent hypothesis have a higher probability of being chosen for the succeeding training
set. The distribution update rule is given by the following equation (Polikar et al.
2002; Marwala 2012):

wtC1 D wt .i / �B
1�ŒjHt .xi /¤yi j�
t (10.8)
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Fig. 10.1 LearnCC algorithm

After the T hypothesis has been generated for each database, the final hypothesis
is calculated by combining the hypotheses using weighted majority voting as
described by the following equation (Polikar et al. 2002; Marwala 2012):

Ht D arg max
y2Y

KX

kD1

X

t WHt .x/Dy

log

�
1

ˇt

�
(10.9)

The LearnCC algorithm is represented diagrammatically in Fig. 10.1 (Polikar
2006; Marwala 2012).

10.4.2 Confidence Measurement

To approximate the confidence of the LearnCC procedure, a majority of hypotheses
agreeing on given instances is an indicator of confidence on the decision proposed.
If it is assumed that a total of T hypotheses are generated in k training sessions for a
C-class problem, then for any given example, the final classification class, the total
vote class c received is given by (Muhlbaier et al. 2004; Marwala 2012):



10.4 The Real-Time Method 185

Table 10.1 Confidence
estimation representation
(Lunga and Marwala 2006b)

Confidence range (%) Confidence level

0.9 � �c � 1 Very high (VH)
0.8 � �c � 0.8 High (H)
0.7 � �c � 0.8 Medium (M)
0.6 � �c � 0.7 Low (l)
0 � �c � 0.6 Very low (VL)

�c D
X

t Wht .x/Dc

‰t (10.10)

where ‰t denotes the voting weights of the tth, hypothesis ht.
Normalizing the votes received by each class can be performed as follows

(Muhlbaier et al. 2004; Marwala 2012):

�c D �c

CP
cD1

�c

(10.11)

Here, �c can be interpreted as a measure of confidence on a scale of 0–1 and this
representation is shown in Table 10.1 (Lunga and Marwala 2006b). A high value of
�c shows high confidence in the decision and conversely, a low value of �c shows
low confidence in the decision. It should be noted that the �c value does not represent
the accuracy of the results, but the confidence of the system in its own decision.

10.4.3 Multi-layer Perceptron

In this chapter we use the multi-layer perceptron neural network to create a
weak-learner. The multi-layered perceptrons have been successfully used to model
complex systems (Marwala 2007), missing data estimation (Marwala 2009), inter-
state conflict modelling (Marwala and Lagazio 2011) and condition monitoring
(Marwala 2012). Each connection between inputs and neurons is weighted by
adjustable weight parameters. Furthermore, each neuron has an adjustable bias
weight parameter which is represented by a connection from a constant input
x0D 1 and z0D 1 for the hidden neurons and the output neuron, respectively.
This group of two-layer multi-layer perceptron models is capable of estimating
any continuous function with arbitrary accuracy, providing the number of hidden
neurons is appropriately large (Bishop 1995).

The advantage of the multi-layer perceptron network is the interconnected cross-
coupling that occurs between the input variables and the hidden nodes, and the
hidden nodes and the output variables. If we assume that x is the input to the
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multi-layer perceptron and y is the output of the MLP, a mapping function between
the input and the output may be written as follows (Bishop 1995):

y D foutput

0

@
MX

j D1

wj fhidden

 
NX

iD0

wij xi

!
C w0

1

A (10.12)

where N is the number of input units, M is the number of hidden neurons, xi is the ith
input unit, wij is the weight parameter between input i and hidden neuron j and wj is
the weight parameter between hidden neuron j and the output neuron. The activation
function foutput.

�/ is sigmoid and can be written as follows (Bishop 1995):

foutput .a/ D 1

1C e�a
(10.13)

For classification problems, the sigmoid function is ideal (Bishop 1995). The
activation function fhidden.�/ is a hyperbolic tangent can be written as follows
(Bishop 1995):

fhidden.a/ D tanh.a/ (10.14)

The neural network model in Eq. 10.12 is trained using the scaled conjugate
gradient method, which is described in Bishop (1995).

10.5 Experimental Investigation

This analysis examines the daily changes of the Dow Jones Index. The Dow
Jones averages are particular in that they are price weighted rather than market
capitalization weighted. Their component weightings are consequently impacted
only by changes in the stock prices, in contrast with other indexes’ weightings that
are impacted by both price changes and changes in the number of shares outstanding
(Leung et al. 2000). When the averages were originally generated, their values were
computed by merely totalling up the constituent stock prices and dividing by the
number of constituents. Altering the divisor was started to isolate the consequences
of stock separations and other corporate activities.

The Dow Jones Industrial Average measures the composite price performance of
over 30 highly capitalized stocks trading on the New York Stock Exchange (NYSE),
representing a broad cross-section of industries in the USA. Trading in the index
has gained unparalleled reputation in foremost financial markets around the world.
The increasing diversity of financial instruments associated to the Dow Jones Index
has expanded the dimension of global investment prospect for both individual and
institutional investors. There are two basic explanations for the success of these
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Input Data Data processing and 
Feature Extraction 

Prediction of 
Closing Price

CVtto CVt-1if CVt>CVt-1 then upward 
direction and if CVt<CVt-1 then downward direction

Compare

Fig. 10.2 Proposed model for real-time stock forecasting

index trading instruments. The first reason is that they afford an effective means
for investors to hedge against potential market risks. The second reason is that they
generate new profit making prospects for market investors. Consequently, it has deep
consequences and importance for researchers and practitioners to correctly forecast
the direction of the movement of stock prices.

Previous research has investigated the cross-sectional relationship between stock
index and macroeconomic variables. Macroeconomic input variables which are
normally implemented for forecasting include term structure of interest rates,
short-term interest rate, long-term interest rate, consumer price index, industrial
production, government consumption, private consumption and gross domestic
product. In this chapter, the closing values of the index were selected as inputs.

A one step forward prediction of the index was performed on a daily basis. The
output of this prediction model was used as input to the LearnCC algorithm for
classification into the correct category that would give an indication of whether the
predicted index value is 1 (indicating a positive increase in next day’s predicted
closing value compared to the previous day’s closing value) or a predicted closing
value of �1, indicating a decrease in next day’s predicted closing value compared
to the previous day’s closing value. Figure 10.2 shows the conceptual model of all
processes needed for this study (Lunga and Marwala 2006a). The first prediction
model can be written as (Lunga and Marwala 2006a):

CVt D F .cvt�1; cvt�1; cvt�1; cvt�1/ (10.15)

where CVt is the predicted close value at time t, cvt � 1 indicates the close value at
day i, where iD 1,2,3, t� 1. The second model takes the output of the first model
as its input in predicting the direction of movement for the index. The classification
prediction stage can be represented as (Lunga and Marwala 2006a):

Directiont D F .CVt/ (10.16)

where CVt is the first model prediction of the fifth day stock closing value when
given the raw data at time t� 1 to t� 4 respectively. Directiont is a categorical
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Table 10.2 Training and
generalisation performance
of LearnCC

Database Class (1) Class (�1) Test performance (%)

S1 132 68 72
S2 125 75 82
S3 163 37 85
S4 104 96 86
Validate 143 57 –

variable to indicate the movement direction of the Dow Jones Index at time t. If the
Dow Jones Index at time t is larger than that at time t� 1, Directiontis 1, otherwise,
Directiontis �1.

The model estimation selection process is then followed by an empirical
evaluation which is based on the out-of-sample data. At this step, the comparative
performance of the model is measured by the classification accuracy of the final
hypothesis chosen for all given databases. The confidence of the algorithm on its
own decision is used to evaluate the accuracy of the predicted closing value category.
The first experiment implements a one step forward prediction of the next day’s
stock closing value. After predicting the next day’s closing value this value is fed
into a classification model to indicate the direction of movement for the stock prices.
As discussed above, the database consisted of 1,476 instances of the Dow Jones
average closing value during the period from January 2000 to November 2005;
1,000 instances are used for training and all the remaining instances are used for
validation (Lunga and Marwala 2006a). The two binary classes are 1, indicating
an upward direction of returns in Dow Jones stock, and �1 to indicate a predicted
fall/downward direction of movement for the Dow Jones stock.

Four datasets S1, S2, S3 and S4, where each dataset included exactly one quarter
of the entire training data, were provided to LearnCC in four training sessions
for incremental learning. For each training session k (kD 1, 2, 3, 4) three weak
hypothesis were produced by LearnCC. Each hypothesis h1, h2, and h3 of the kth
training session was produced using a training subset TRt and a testing subset TEt.
The weak-learner was a single hidden layer multi-layer perceptron with 15 hidden
layer nodes and 1 output node with an MSE goal of 0.1. The testing set of data
consisted of 476 instances that were used for validation purposes. On average,
the multi-layer perceptron hypothesis, weak-learner, performed little over 50 %,
which improved to over 80 % when the hypotheses were combined by making
use of weighted majority voting. This improvement demonstrated the performance
improvement property of LearnCC, as inherited from Adaptive Boosting, on a
given database. The data distribution and the percentage classification performance
are given in Table 10.2 (Lunga and Marwala 2006b). The performances listed are
on the validation data.

Table 10.3 gives an actual breakdown of correctly classified and misclassified
instances falling into each confidence range after each training session. The
trends of the confidence estimates after subsequent training sessions are given in
Table 10.3. The desired outcome on the actual confidences is high to very high



10.6 Conclusions 189

Table 10.3 Confidence
results

VH H M VL L

Correctly classified S1 96 96 13 15 6

S2 104 104 22 17 14

S3 111 111 6 3 39

S4 101 101 42 12 4

Incorrectly classified S1 23 7 13 3 8

S2 27 0 1 3 4

S3 21 1 2 4 2

S4 24 0 2 2 0

Table 10.4 Confidence
trends for Dow Jones

Increasing steady Decreasing

Correctly classified 119 8
Misclassified 16 24

confidences on correctly classified instances, and low to very low confidences on
misclassified instances. The desired outcome on confidence trends is increasing or
steady confidences on correctly classified instances, and decreasing confidences on
misclassified instances, as new data is introduced.

The performance shown in Table 10.2 indicates that the algorithm is improving
its generalization capacity as new data become available. The improvement is
modest, however, as majority of the new information is already learned in the first
training session. Table 10.4 indicates that the vast majority of correctly classified
instances tend to have very high confidences, with continually improved confidences
at consecutive training sessions (Lunga and Marwala 2006a).

While a considerable portion of misclassified instances also had high confidence
for this database, the general desired trends of increased confidence on correctly
classified instances and decreasing confidence on misclassified ones were notable
and dominant, as shown in Table 10.3 (Lunga and Marwala 2006a).

10.6 Conclusions

In this chapter, an incremental learning procedure, LearnCC, was applied to predict
the financial markets movement direction. LearnCC is found to provide good
results on adapting the weak-learner (MLP) into a strong learning algorithm that
has confidence in all its decisions. The LearnCC procedure was found to evaluate
the confidence of its own decisions. Generally, the majority of correctly classified
cases had very high confidence approximations while lower confidence values
were related with misclassified cases. Consequently, classification cases with low
confidences can be further evaluated. In addition, the procedure also demonstrated
increasing confidences in correctly classified instances and decreasing confidences
in misclassified instances after successive training sessions.
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Chapter 11
Multi-agent Approaches to Economic
Modeling: Game Theory, Ensembles,
Evolution and the Stock Market

Abstract A multi-agent system that learns by using neural networks is
implemented to simulate the stock market. Each committee of agents, which is
regarded as a player in a game, is optimized by continually adapting the architecture
of the agents through the use of genetic algorithms. The proposed procedure is
implemented to simulate trading of three stocks, namely, the Dow Jones, the
NASDAQ and the S&P 500.

11.1 Introduction

In this chapter a committee of agents is used to simulate the stock market (Marwala
et al. 2001). Each committee of agents is viewed as a player in a game and, therefore,
a game theoretic framework is applied in this chapter (Marwala et al. 2001). These
players in a game compete and cooperate (Perrone and Cooper 1993). The commit-
tee of agents is optimized using a genetic algorithm (Holland 1975; Goldberg 1989).
Perrone and Cooper (1993) introduced a committee of networks, which optimizes
the decision-making of a population of non-linear predictive models (Bishop 1995).
They attained this by assuming that the trained predictive models were accessible
and then allocating, to each network, a weighting factor, which specifies the role that
the network has on the total decision of a population of networks. The drawback of
their proposal is that, in a condition where the problem is altering such as the stock
market, the technique is not sufficiently elastic to permit for the dynamic evolution
of the population of networks.

This chapter aims to relax this constraint on the committee technique by ensuring
that the individual networks that create the committee are permitted to dynamically
evolve as the problem evolves using genetic programming (Michalewicz 1996), and
this was first conducted by Marwala et al. (2001).

The parameters describing the design of the networks, such as the number of
hidden units, which form a committee, are defined as design variables and are

T. Marwala, Economic Modeling Using Artificial Intelligence Methods, Advanced
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permitted to evolve as the trading environment evolves. The network characteristics
that are appropriate for survival substitute for those that are not appropriate. On
applying a genetic algorithm to choose the appropriate individuals, three steps are
followed: (1) crossover of network attributes within the population; (2) Mutation
of each individual attributes; and (3) reproduction of the successful attributes. The
simple crossover, the binary mutation, and roulette wheel reproduction techniques
are used.

In conclusion, the proposed technique is applied to simulate the trading of three
stocks. The scalability of the number of agents and players in the simulations with
respect to computational time were investigated. The evolution of the complexity of
the simulation as the players participate in more trading was also investigated. The
next section describes game theory, which is a framework that is used to set up the
simulation.

11.2 Game Theory

In this chapter, we apply game theory to model the stock market. Game theory
essentially consists of players, set of actions (strategy), and pay-off function (Villena
and Villena 2004; Ross 2006; van den Brink et al. 2008). Game theory has been
applied to many areas of activity including economics (van den Brink et al. 2008),
procurement of land (Hui and Bao 2013), auction (Laffont 1997), the hotel industry
(Wei et al. 2012), facial recognition (Roy and Kamel 2012), medicine (McFadden
et al. 2012) and computer science (Papadimitriou 2001). There are many types of
games and, in this chapter we will illustrate the well-known prisoner’s dilemma
problem. Suppose players A and B are arrested for a crime and they are put into
separate cells. They are given choices to either cooperate or defect, and this is
represented in Table 11.1.

Game theory can be used to solve the problem in Table 11.1. In this table, if a
player remains slilent, he gets either 2 months in prison or serves 1 year in prison.
If he pleas bargains, he gets either 6 months in prison or goes free. According to John
von Neumann, the best strategy is the one that guarantees you maximum possible
outcome even if your opponent knew what choice you were going to make. In this
case, the best strategy is to enter a plea bargain. The concept of Nash equilibrium
states that the best strategy for each player is such that every player’s move is a best

Table 11.1 Illustration of the prisoner’s dilemma

Prisoner B remains silent Prisoner B plea bargains

Prisoner A remains silent Each serves 2 months Prisoner A serves 1 year
Prisoner B goes free

Prisoner A plea bargains Prisoner B serves 1 year Each serves 6 months
Prisoner A goes free
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response to the other players’ move. Therefore, entering a plea bargain is a Nash
equilibrium. Of course, all these assume that each player is rational and aims to
maximize pay-off (Beed and Beed 1999).

Hodgson and Huang (2012) compared evolutionary game theory and evolu-
tionary economics and concluded that these methods improve understanding of
structures and causal processes, whereas Christin (2011) applied game theory in
network security games and concluded that it was vital to understand reasons of
different players in a network to design systems to support appropriate outcome.

Hanauske et al. (2010) extended the hawk-dove game by a quantum method
and demonstrated that evolutionary stable strategies, which are not forecast by
traditional evolutionary game theory and where the total economic population
applies a non-aggressive quantum strategy, can also emerge.

McCain (2009) studied theoretical and experimental results in game theory
and, the neo-classical notion of inter-temporal discrepancy in choice to debate
that the motivational theory which is common between neo-classical economics
and non-cooperative game theory, mistakenly assumes that commitment never
occurs in human decisions. They concluded that the conditions that favor com-
mitment, other than alterations of an assumed utility, function to account for
non-self-regarding motivations are advantageous in behavioral economics and game
theory.

Roth (2002) applied game theory to the design of the entry level labor market
for American doctors and the auctions of radio spectrum. He proposed that
experimental and computational economics complemented game theory for design
and debated that some of the tasks confronting both markets include handling with
associated types of complementarities.

The example illustrated at the beginning of this chapter was a two player
game. It becomes extremely difficult to deal with multiple player games and a
computational technique has been developed and is able to handle, to some extent,
multiple player games and this procedure is called a multi-agent system and is the
subject of the next section.

11.3 Multi-agent Systems

A multi-agent system is, by definition, a system of multiple agents. An agent is an
object that is autonomous, perceives its environment, and acts on its environment
is intelligent, and operates autonomously in that environment (Russell and Norvig
2003; Franklin and Graesser 1996; Kasabov 1998). Agents have the following
characteristics (Kasabov 1998):

• They are autonomous.
• They are flexible, reactive, proactive and social.
• They have control capability.
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To illustrate the working of a multi-agent system, a well-known swarm
intelligence theory can be used. In this example, agents or birds (in the case of
the swarming of birds) operate using two simple rules. These are that, in seeking the
next move, a bird considers the best position it has encountered and the best position
the entire flock has encountered (where other birds are going). Using these simple
rules, the swarm is able to solve very complex problems. More details on these can
be found in the literature (Marwala 2009, 2010, 2012; Marwala and Lagazio 2011).

Teweldemedhin et al. (2004) presented an agent-based, bottom-up modeling
technique to develop a simulation tool for estimating and predicting the spread of
the human immunodeficiency virus (HIV) in a given population. They developed a
simulation instrument to understand the spread of HIV.

Hurwitz and Marwala (2007) studied the deed of bluffing, which has perplexed
game designers. They asserted that, the very act of bluffing was even open for
debate, introducing additional difficulty to the procedure of producing intelligent
virtual players that can bluff, and therefore play, truthfully. Through the application
of intelligent, learning agents, and prudently designing agents, an agent was found
to learn to predict its opponents’ reactions based on its own cards and actions of
other agents. They observed that, an agent can learn to bluff its opponents, with the
action not indicating an “irrational” action as bluffing is usually regarded, but as an
act of maximizing returns by an actual statistical optimization. They applied a TD
lambda learning algorithm to adapt a neural network based agent’s intelligence and
demonstrated that agents were able to learn to bluff without outside encouragement.

Abdoos et al. (2011) applied a multi agent technique for traffic light control in
non-stationary environments. The results they obtained indicated that the proposed
method performed better than a fixed time technique under different traffic demands.
Elammari and Issa (2013) applied model driven architecture to develop multi-agent
systems, while Chitsaz and Seng (2013) successfully applied a multi agent system
for medical image segmentation.

Stroeve et al. (2013) successfully applied event sequence analysis and
multi-agent systems for safety assessments of a runway incursion scenario, while
El-Menshawy et al. (2013) verified, successfully, conformance of multi-agent
commitment-based protocols.

Montoya and Ovalle (2013) applied multi-agent systems for energy consumption
by positioning a reactive inside wireless sensor networks, while Khalilian (2013)
applied multi agent systems and data mining approaches towards a smart advisor’s
framework. Liu et al. (2012b) applied, successfully, multi-agent systems to bidding
mechanism in an electricity auction.

In this chapter, the agent architecture implemented is shown in Fig. 11.1 and the
multi-agent system is shown in Fig. 11.2. It has intelligence capability, which is
a committee of a combination of multi-layer perceptrons and radial basis function
network.

The agent is able to adapt using genetic programming, by adapting the committee
structure. The next section describes neural networks which are applied to enable
the agent to be intelligent.
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11.4 Neural Networks

This section describes neural networks which are used to model data. Neural
networks are, by definition, mathematical models that are inspired by the way
the human brain processes information. This section describes the type of neural
networks that relate some information to another, and these are called supervised
neural networks. Supervised neural networks take input data x and relate this to the
output data y. In this chapter, we apply two types of supervised neural networks and
these are radial basis functions and multi-layer pereceptron.

Radial basis function (RBF) is a neural network technique which is based on the
distance of the data set from its origin (Bishop 1995). The RBF is usually structured
with a single hidden layer of units with an activation function that is chosen from
a type of functions called basis functions. The activation of the hidden units is
characterized by a non-linear function of the distance between the input vector and
a vector indicating the centers of gravity of the data (Bishop 1995). Despite the
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fact that the RBF is similar to a multi-layer perceptron (MLP), radial basis function
networks have the following advantages:

• They are faster to train than the MLP networks
• They are less prone to problems with non-stationary inputs

The RBF network can be defined mathematically as follows (Buhmann and
Ablowitz 2003; Marwala and Lagazio 2011):

yk .fxg/ D
MX

j D1

wjk	
���fxg � fcgj

��� (11.1)

where, wjk are the output weights, relating a hidden unit and an output unit, M shows
the number of hidden units, fcgj is the center for the jth neuron, 	 (fxg) is the jth non-
linear activation function, fxg is the input vector, and k D 1; 2; 3; : : : ; M (Bishop
1995; Marwala and Lagazio 2011). Radial basis functions are trained in this chapter
using the k-nearest neighbor method to estimate the centers and the weights are then
estimated using the pseudo-inverse technique, and the details of these can be found
in Bishop (1995).

Radial basis functions have been successfully applied to many complex problems
such as voice transformation (Nirmal et al. 2013), image analysis of deformation
(Biancolini and Salvini 2012), analysis of hemodynamics pattern flow (Ponzini et al.
2012), analysis of gene expression data (Liu et al. 2012a), and the prediction of
logistics demand (Chen et al. 2012).

The MLP is a feed-forward neural network technique that approximates a
relationship between sets of input data and a set of output data. It applies three
or more layers of neurons, also called nodes, with non-linear activation functions.
It can distinguish data that is not linearly separable or separable by a hyper-plane.

The MLP neural network consists of multiple layers of computational compo-
nents normally inter-connected in a feed-forward manner (Haykin 1999; Hassoun
1995; Marwala 2012). Every neuron in one layer is connected to the neurons
of the subsequent layer and this can be mathematically represented as follows
(Haykin 1999):
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Here, w.1/
j i and w.2/

j i are weights in the first and second layers, correspondingly,
from input i to hidden unit j, M is the number of hidden units, d is the number of
output units, while w.1/

j 0 and w.2/

k0 are the weight parameters that indicate the biases
for the hidden unit j and the output unit k. These weight parameters can be viewed
as a mechanism that enables the model to understand the data. The weight vector in
Eq. 11.2 is identified using the scaled conjugate gradient technique that is based on
the maximum-likelihood method (Møller 1993).



11.5 Ensembles of Networks 201

The MLP has been successfully applied in many areas and these include
power transformer diagnosis (Souahlia et al. 2012), automatic musical intrument
recognition (Azarloo and Farokhi 2012), diagnosing of cervical cancer (Sokouti
et al. 2012), automatic vehilce type classification (Daya et al. 2012), fingerprint
spoof detection (Pereira et al. 2012), and intrusion detection (Ahmad et al. 2011).

The agent proposed in Fig. 11.1 contains a group of neural networks that
collectively make a decision, and this is either called a committee approach or an
ensemble of networks and is the subject of the next section.

11.5 Ensembles of Networks

When a group of neural networks are used to collectively make a decision, then
this is known as an ensemble approach. There are many types of ensembles and, in
this chapter, we discuss few of these and these are: bagging, boosting, stacking, and
evolutionary committees.

11.5.1 Bagging

Bagging is a method that is based on an amalgamation of models fitted to bootstrap
samples of a training data set to decrease the variance of the prediction model
(Breiman 1996). Bagging fundamentally involves randomly selecting a section
of the training data, training a model with this selection, and then iterating this
procedure and then all trained models are pooled together with equal weights to
form an ensemble. Bagging has been successfully applied in many areas such as
the detection of obsessive compulsive disorder (Parrado-Hernández et al. 2012),
diagnosing of arrhythmia beats (Mert et al. 2012), fraud detection tools (Louzada
and Ara 2012), identification of MicroRNA Precursors (Jha et al. 2012), land-cover
classification (Ghimire et al. 2012), and intrusion detection (Syarif et al. 2012).

11.5.2 Boosting

Boosting is a method that incrementally constructs an ensemble by training each
new model with data that the heretofore trained model misclassified. Then the
ensemble, which is a combination of all trained models, is used for prediction. Jasra
and Holmes (2011) successfully applied stochastic boosting algorithms which used
sequential Monte Carlo methods, while Leitenstorfer and Tutz (2011) successfully
applied boosting methods to estimate single-index models. Other successful appli-
cations of boosting include object classification (Piro et al. 2013), categorization of
natural scenes (Nock et al. 2012), automatic anatomy detection (Tajbakhsh et al.
2012), multi-view face pose classification (Yun and Gu 2012), and automatic audio
tagging (Foucard et al. 2012).
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11.5.3 Stacking

The general approach in mathematical modeling is that one chooses from a set of
models by comparing them on data that was not used to train the models. This
insight can also be applied to choose a model using a method called cross-validation
(Bishop 1995). This is achieved by apportioning the data set into a held-in data set,
which is used to train the models, and a held-out data set which is used to test the
trained models (Sill et al. 2009; Marwala 2012).

Stacking uses performance of the model on the held-out data to combine the
models instead of selecting from them the best performing model when tested on
the held-out data and this gives an ensemble that performs better than any single
one of the trained models (Wolpert 1992). Stacking has been successfully applied to
many areas such as instance-based ensemble learning algorithms (Homayouni et al.
2010), real estate appraisal (Graczyk et al. 2010), and metabonomic applications
(Lienemann et al. 2009).

11.5.4 Evolutionary Committees

Evolutionary committees are methods that are adaptive techniques that adapt to the
environmental changes. This is usually achieved by evolving the weighting function
that defines the contribution of each individual technique, with respect to the overall
outcome of the committee.

Marwala (2009) introduced committees of networks for missing data estimation.
The first committee of networks was made of multi-layer perceptrons (MLPs),
support vector machines (SVMs), and radial basis functions (RBFs); and entailed
the weighted combination of these three networks. The second, third, and fourth
committees of networks were evolved using a genetic programming method and
used the MLPs, RBFs and SVMs, respectively. The committees of networks
were applied, collectively, with a hybrid particle swarm optimization and genetic
algorithm technique for missing data estimation. When they were tested on an
artificial taster, as well as HIV datasets, and then compared to the individual
MLPs, RBFs, and SVMs for missing data estimation, the committee of networks
approach was observed to give better results than the three approaches acting in
isolation. Nonetheless, this improvement came at a higher computational load than
the individual methods. In addition, it was observed that evolving a committee
technique was a good way of constructing a committee.

In this chapter, we apply the three member ensemble which is shown in Fig. 11.3.
The ideas presented in this section are an adaptation of the work done by Perrone
and Cooper (1993) where they introduced the concept of a committee of networks
and confirmed that this committee provides results that are more reliable than when
using networks in isolation.
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The mapping of the input x and output y can be expressed as the desired function
plus an error. For notational accessibility, the mapping functions are assumed to
have single outputs y1, y2, and y3. This can be easily adapted to multiple outputs as
follows (Perrone and Cooper 1993):

y1.x/ D h.x/C e1.x/ (11.3)

y2.x/ D h.x/C e2.x/ (11.4)

y3.x/ D h.x/C e3.x/ (11.5)

Here, h(�) is the estimated mapping function; and e(�) is the error.
The mean square errors (MSE) for model y1.x/, y2.x/, and y3.x/ may be

expressed as follows (Perrone and Cooper 1993):

E1 D "
h
fy1.x/ � h.x/g2

i
D "



e2

1
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(11.6)

E2 D "
h
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D "



e2

2

�
(11.7)

E3 D "
h
fy2.x/ � h.x/g2

i
D "



e2

3

�
(11.8)

Here, " Œ�� denotes the expected value and corresponds to the integration over the
input data, and is defined as follows (Perrone and Cooper 1993):
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Here, p Œ�� is the probability density function; and d Œ�� is a differential operator.
The average MSE of the three networks acting separately may be expressed as
follows (Perrone and Cooper 1993):

EAV D E1.x/CE2.x/C E3.x/

3

D 1

3

�
"
�
e2

1

�C "
�
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2

�C "
�
e2

3

�� (11.12)

11.5.4.1 Equal Weights

The output of the committee is the average of the outputs from the three networks.
The committee prediction may be expressed in the following form, by giving equal
weighting functions (Perrone and Cooper 1993):

yCOM D 1

3
.y1.x/C y2.x/C y3.x// (11.13)

The MSE of the committee can be written as follows:
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If it is assumed that the errors (e1, e2, and e3) are uncorrelated then

"Œe1e2� D "Œe1e2� D "Œe2e3� D "Œe1e3� D 0 (11.15)

Substituting Eq. 11.15 in Eq. 11.14, the error of the committee can be related
to the average error of the networks acting individually as follows (Perrone and
Cooper 1993):
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Equation 11.16 indicates that the MSE of the committee is one-third of the
average MSE of the individual technique. This implies that the MSE of the
committee is always equal to or less than the average MSE of the three methods
acting individually.

11.5.4.2 Variable Weights

The three networks might not essentially have the same predictive capability.
To accommodate the strength of each technique, the network should be given suit-
able weighting functions. It will be explained later how these weighting functions
will be evaluated when there is no prior knowledge of the strength of each approach.

The output of the ensemble may be defined as the combination of the three
independent methods with estimated weighting functions as:

yCOM D �1y1.x/C �2y2.x/C �3y3.x/ (11.17)

where �1, �2, and �3 are the weighting functions and �1 C �2 C �3 D 1. The MSE
due to the weighted committee can be written as follows (Marwala 2000):

ECOM D "
h
.�1y1.x/C �2y2.x/C �3y3.x/ � Œ�1h.x/C �2h.x/C �3h.x/�/2

i

D "
h
.�1 Œy1.x/ � h.x/�C �2 Œy2.x/ � h.x/�C �3 Œy3.x/ � h.x/�/2

i

D "
h
.�1e1 C �2e2 C �3e3/

2
i

(11.18)

Equation 11.18 may be rewritten in Lagrangian form as follows (Perrone and
Cooper 1993):

ECOM D "
h
.�1e1 C �2e2 C �3e3/

2
i
C � .1 � �1 � �2 � �3/ (11.19)

where � is the Lagrangian multiplier. The derivative of the error in Eq. 11.19 with
respect to �1, �2, �3 and � may be calculated and equated to zero as follows (Perrone
and Cooper 1993):
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dECOM

d�2

D 2e2" Œ.�1e1 C �2e2 C �3e3/� � � D 0 (11.21)

dECOM

d�3

D 2e3" Œ.�1e1 C �2e2 C �3e3/� � � D 0 (11.22)
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dECOM

d�
D 1 � �1 � �2 � �3 D 0 (11.23)

In solving Eqs. 11.20, 11.21, 11.22, and 11.23, the minimum error is obtained
when the weights are (Perrone and Cooper 1993):
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Equations 11.24, 11.25, and 11.26 may be generalized for a committee with
n-trained networks and may be written as follows (Perrone and Cooper 1993):
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From Eq. 11.27, the following conditions may be derived as follows (Marwala
2000):
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11.6 Genetic Algorithms

The multi-agent system proposed in this chapter is adaptive and this is enabled by a
genetic algorithm. Genetic algorithms were enthused by Darwin’s theory of natural
evolution. In natural evolution, members of a population compete with each other to
survive and reproduce. Evolutionary successful individuals reproduce, while weaker
members disappear. Consequently, the genes that are successful are probably going
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to spread within the population. This natural optimization technique is applied in
this chapter to optimize the decision of a committee of agents shown in Fig. 11.3.
This essentially allows an agent to become better, based on how well it performed
and, in this chapter, on trading in the stock market.

The basic genetic algorithm proposed by Holland (1975) is applied. The
algorithm acts on a population of binary-string chromosomes. These chromosomes
are acquired by utilizing the Gray algorithm. Each of these strings is a discretized
representation of a point in the search space. Here we are searching for the most
optimum combination of architectures that form a committee and that give the
least errors. Consequently, the fitness function is the error offered by committee of
agents. On producing a new population, three operators are executed: (1) crossover;
(2) mutation; (3) and reproduction.

Similar to natural evolution, the probability of mutation happening is lower
than that of crossover or reproduction. The crossover operator combines genetic
information in the population by cutting pairs of chromosomes at random points
along their length and exchanging over the cut sections. This operator has a
potential of connecting successful operators together. Simple crossover is applied
in this chapter. The mutation operator picks a binary digit of the chromosomes at
random and inverts it. This has the potential of introducing to the population new
information. Reproduction takes successful chromosomes and reproduces them in
accordance to their fitness function. The fit parameters are allowed to reproduce
and the weaker parameters are removed. This is conducted using the roulette wheel
procedure.

Genetic algorithms have been applied successfully in many areas such as content
based image retrieval (Syam and Rao 2013), variable selection in solar radiation
estimation (Will et al. 2013), non-destructive characterization of tie-rods (Gentilini
et al. 2013), assembly line worker assignment (Mutlu et al. 2013), sheep farming
(Del Pilar Angulo-Fernandez et al. 2013), and power consumption (Shen and
Zhang 2013).

11.7 Simulating the Stock Marketing

In this chapter, we apply a multi-agent system to model the stock market. Multi-
agent systems have been applied to stock markets in the past (Tirea et al. 2012;
Liu and Cao 2011; Yoshikazu and Shozo 2007; Ikeda and Tokinaga 2004). The
structure that is proposed consists of committees of agents forming a player in the
stock market. The simulation framework consists of a population of these players
that compete for a fixed number of stocks. The agents learn through the use of neural
networks. The structure of each agent evolves using a genetic algorithm such that
its contribution to the overall function of a committee adapts to the evolutionary
time-varying nature of the problem. The characteristics of the agents that evolve are
the number of hidden units and the weight contribution of each network towards a
player. The number of hidden units is constrained to fall within a given space, in
this study 1 and 10. Each committee of agents, known as a player, trades stocks
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with other agents and when prices of stocks are announced, the players trade by
following these rules:

• Once a price is announced, the committees look at the current price and the future
price of stocks. The future price is determined from the agents that learn using
neural networks. For a player, the predicted price is the average of the prediction
of each agent within that particular player.

• If the predicted price of a stock is lower than the current price, then the player
tries to sell the stock. If the predicted price for the stock is higher than the current
price, then the committee tries to buy the stock.

• At any given stage, the committee is only prepared to sell the maximum of 40 %
of the volume of stocks it has.

• The amount of stocks that a committee buys or sells depends on, amongst other
factors, the predicted price. If the predicted price of a particular stock is x %
higher than the current price, the committee tries to acquire x % of the volume
available on the market of that particular stock. This simulation is started by
choosing the number of players that participate in the trading of stocks, together
with the number of agents that form a player. Then the agents are trained by
randomly assigning the number of hidden units to fall in the interval [1 10] and
assigning weighting functions of the committee. The agents are trained using the
data from the previous 50 trading days. The trained agents are grouped into their
respective players and are then used to predict the next price, given the current
price. The simulation followed in this chapter is shown in Fig. 11.4.

After 50 days of trading have elapsed, the performance of each agent and the
weighting functions are evaluated and these are transformed into 8 bits and each
player exchanges bits with other players, a process called crossover. Thereafter, the
agents mutate at low probability. The successful agents are duplicated, while the less
successful ones are eliminated. Then the networks are retrained again and the whole
process is repeated. When a price is announced, trading of stocks is conducted until
the consensus is reached. At this state, the overall wealth of the committees does not
increase as a result of trading.

The example that is considered in this study is the trading of three stocks, namely:
(1) the Dow Jones; (2) NASDAQ; and (3) S&P 500. The time-histories of the stocks
are downloaded from the Internet and used to train agents. For a given set of price of
these stocks, the committee of agents predicts the future prices of stocks. It should
be noted that, on implementing this procedure, the total number of stocks available
is kept constant. This figure indicates that sometimes the players with successful
strategies do not necessarily dominate indefinitely. This is due to the fact that,
strategies that are successful in one time frame are not necessarily successful at
a later time.

When the scalability of the simulations was studied, it was found that the
method proposed was scalable. However, it was observed that the computational
time increased with the increase in the number of agents and players. A linear
relationship existed between the average computational time taken to run the
complete simulation and the number of players as well as the number of agents
that form a player.
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Fig. 11.4 Illustration of the simulation of the stock market

The complexity of the populations of agents that make players of the game
was studied and defined as the measure of a degree of variation in a population
of agents. Each species of agents form a dimension in space. Each dimension has
a variation indicating the level of complexity of a population of that species. The
results indicated that, as the system evolved, the number of hidden units for a given
player steadily decreased and stabilized around 3. It was additionally observed that
no player had the monopolistic advantage on the prediction of the stock market.

11.8 Conclusions

A simulation of the stock market was successfully implemented. It is established that
the number of players and agents that form a player that partake in the trading game
are directly proportional to the computational time taken to run the simulation. It is
additionally found that, no player has the monopolistic advantage on the prediction
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of the stock market. The simulation also demonstrated that, as the time of the trading
passes, the complexity of the players decrease. This is because of the fact that, as
the time of trading elapsed, the players become more adapted to the time-varying
nature of the problem, thus developing common features. Optimizing a committee of
agents is observed to be a feasible method to modelling a player in the stock market.
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Chapter 12
Control Approaches to Economic Modeling:
Application to Inflation Targeting

Abstract In this chapter, a control system approach that is based on artificial
intelligence is adopted to analyze the inflation targeting strategy. The input/output
model is constructed using a multi-layered perceptron network and a closed loop
control strategy is adopted using a genetic algorithm to control inflation through
the manipulation of interest rates. Given the historical inflation rate data, a control
scheme is used to determine the interest rate that is required to attain the given
inflation rate. The calculated interest rate is then compared to the historical inflation
rate to evaluate the effectiveness of the control strategy.

12.1 Introduction

Inflation is a measure of the rate of increase of the price levels. It is a major factor
in many areas of economic life such as when negotiating with unions on salary
increases. Many countries implement what is known as inflation targeting, which
is essentially a policy framework that seeks to maintain inflation between certain
bounds.

Countries’ economies have been decimated by what is called hyper-inflation,
which is a situation where the inflation levels are so high that the currency becomes
useless. Recently, the economy of Zimbabwe experienced hyper-inflation which
decimated its economy and ended up with the dollarization of its economy to replace
its own currency.

There are many other similar experiences of hyper-inflation including in Brazil
between 1967 and 1994, Germany in 1923 and this is thought to have ultimately
resulted in the seizure of power by the Nazis and, subsequently, de-civilizing and
plunging Germany into the dark ages, Hungary in 1945–1946, and many more other
countries.

It is important to maintain some level of inflation in the economy because if the
economy experiences deflation then rational consumers postpone the purchase of
goods and services to a future date when the goods and services will be cheaper.
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If, however, the economy experiences hyper-inflation then rational consumers seek
to buy goods and services today because if they postpone the purchase, goods and
services will be unaffordable in the future date. Both these scenarios are undesirable.

Inflation thus needs to be controlled. Amira et al. (2013) studied the growth
effects of inflation targeting in the emerging markets and observed that, even though
inflation targeting leads to higher economic growth, it does not automatically assure
a stable growth rate.

Yilmazkuday (2013) studied inflation targeting and observed that during the
Turkish inflation-targeting period regional inflation rates converged to each other
with non-tradable constituents, while they diverged from each other with tradable
constituents.

Carrasco and Ferreiro (2013) analyzed inflation expectations in Mexico and
applied unit root, normality and co-integration tests. The results they obtained
rejected the null hypothesis of normality for inflation expectations over the studied
period. They demonstrated a persistent relationship between the exchange rate and
the interest rate. They also observed that inflation expectations influence the long-
term dynamics.

Karahan and Çolak (2013) studied the impact of the inflation targeting policy
on the inflation uncertainty in Turkey. They applied the ARCH-GARCH technique
to generate an inflation uncertainty series and observed that an inflation targeting
policy was a great strategy for reducing inflation uncertainty.

Ding and Kim (2012) investigated whether inflation targeting matters for pur-
chasing power parity (PPP). The results obtained demonstrated that inflation
targeting contributes a vital contribution in giving favourable information for long-
run PPP.

Garcı́a-Solanes and Torrejón-Flores (2012) analyzed the macroeconomic effects
of inflation targeting in five Latin American countries from 2000 to 2007. They
observed that inflation gave to lower variability in gross domestic product (GDP)
growth.

Bleich et al. (2012) approximated forward-looking monetary policy rules for 20
inflation targeting countries. They observed that inflation targeting considerably
changes the central bank’s response purpose of inflation stabilization. They also
demonstrated that inflation targeting stabilizes inflation.

Pourroy (2012) studied whether the exchange rate control improved inflation
targeting in emerging economies. They demonstrated considerable confirmation that
inflation targeting is improved by the exchange rate.

Abo-Zaid and Tuzemen (2012) studied the effects of the inflation targeting
on levels and volatilities of inflation, GDP growth and fiscal imbalances. They
observed that inflation targeting in developing countries gave rise to lower and stable
inflation as well as higher and stable GDP growth. In the developed nations, inflation
targeting gave higher GDP growth.

Kose et al. (2012) studied the relationship between the interest rate and inflation
rate in Turkey between 2002 and 2009. The results obtained demonstrated that
monetary policy rates depended on inflationary expectations and that long-term
interest rates depended on monetary policy.
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Palma and Portugal (2009) studied the formation of inflationary expectations
in Brazil using neural networks. The results obtained showed that inflationary
expectations were most influenced by the exchange rate volatility and commodities
prices variation.

Broto (2011) successfully applied the GARCH models to study inflation target-
ing in Latin America, while Harjes and Ricci (2010) successfully applied Bayesian
analysis for inflation targeting in South Africa. Atesoglu and Smithin (2006)
contended that, an inflation-targeting policy was not an appropriate monetary policy
rule. They argued that, inflation targeting reduced the equilibrium growth rate and
that lower inflation target reduced real wages as well as profits and increased
interest rates.

Lomax (2005) reviewed the function that model-based forecasts play in the
monetary policy process in the United Kingdom. They observed that predictive
models have been useful for inflation targeting.

Levin (2004) proposed a model of inflation targeting in a small open economy
under floating exchange rates and applied Taylor rule to attain a target inflation rate
and Phillips curve to determine the inflation process.

It is clear that the concept of inflation targeting is applicable and has been
successful. In this chapter, we adopt a framework that involves modeling inflation
and using the control framework for inflation targeting. To model inflation, we
use a multi-layered perceptron neural network and, for control, we use a genetic
algorithm. It is important to note that it is easier to model data that is stationary than
to model data that is not stationary. Stationary data is a data set whose character
does not change as a function of time. If the data is non-stationary, then it is difficult
to model. The next section asks the question whether inflation data is stationary
or not?

12.2 Is Inflation Non-stationary?

As explained in Chap. 2 of this book, a stationary process is a stochastic process
whose joint probability distribution does not fluctuate when shifted in space or time.
As a result, if certain properties of the data, such as the mean and variance, can be
approximated then they do not change over space or time (Priestley 1988). A non-
stationary process is a process whose joint probability distribution fluctuates when
moved in space or time.

There are many techniques that have been proposed to evaluate whether a given
signal is stationary or not and these include a quantification of similarities of the
auto correlation integral of a subdivision of a time series and the cross-correlation
of that sub-division with others of the same time series by Kiremire and Marwala
(2008); Dickey-Fuller and Phillips-Perron Tests (Perron 1988), Kwiatkowski-
Phillips-Schmidt-Shin Test (Kwiatkowski et al. 1992), as well as the Variance Ratio
Test (Granger and Newbold 1974; Schwert 1989).

http://dx.doi.org/10.1007/978-1-4471-5010-7_2
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This section evaluates whether the inflation is stationary and applies the variance
test to answer that question. As described in Chap. 2, the Variance Ratio Test
quantifies the stationarity of a signal by calculating the variance ratio (F) as follows
(Lo and MacKinlay 1989):

F D Ve

Vu
(12.1)

Here, Ve is the explained variance and Vu is the unexplained variance and:
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Here, NXi indicates the sample mean of the ith group, ni is the number of
observations in the ith group, a NX indicates the complete mean of the data, Xij

is the jth observation in the ith out of K groups and N is the overall sample size.
When the variability ratio is 1, then the data follows a random walk, if it is larger
than 1, then it is non-stationary, and if it is less than 1, then it shows a mean reversal.

Russell (2011) contended that, for the reason that the United States inflation has
been non-stationary over the past five decades, the enormous amount of empirical
research that did not account for non-stationarity was unsound. They studied
50 years of United States inflation data and found that the Phillips curve results
were as a result of the non-stationarity inflation over the period.

Lopez (2009) studied the stationary behavior of the inflation rates for the Euro-
zone members and some bordering countries between 1957 and 2007 and observed
that some of the Euro-zone inflation rates were non-stationary, while some were
stationary.

Russell and Banerjee (2008) observed that theories of inflation include a Phillips
curve and are generally approximated using methods that pay no attention to the
non-stationary nature of inflation and, therefore, are inaccurate. They approximated
a Phillips curve which factored non-stationarity in inflation and observed a positive
relationship between inflation and unemployment.

Fujihara and Mougoué (2007) investigated whether the United States inflation
rate was stationary and observed that US inflation had low frequency permanent
shocks contrasted with the high frequency permanent shocks.

We analyzed whether the USA inflation is stationary or not. Figure 12.1 shows
the consumer price index (CPI) from 1913 to 2011. When we apply the variance
ratio test on this data in its entirety we obtain 1.800 indicating that the CPI index is
non-stationary in its entirety.

http://dx.doi.org/10.1007/978-1-4471-5010-7_2
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Fig. 12.1 The graph showing the CPI versus the year

The same CPI data can be transformed into inflation by calculating the percent-
age change of inflation and this data are shown in Fig. 12.2. The variance ratio test
results give a variance of 1.047 indicating that inflation is fairly stationary in the
period.

The 11 years moving variance ratio is shown in Fig. 12.3. This figure indicates
that inflation was stationary at times and non-stationarity at other times.

12.3 Control of Non-stationary Process

In this chapter, we define inflation targeting as a control problem. In the previous
section, we concluded that inflation is essentially a non-stationary phenomenon.
Given this conclusion, in this section, we will define important aspects that the
control of non-stationary phenomenon must have.

Guo and Zhang (2012) applied H1 to control vehicle suspension under non-
stationary conditions. They observed that the H1 control strategy improved results
in terms of ride comfort, dynamic suspension deflection, dynamic tire loads, and
non-stationary conditions.

Abdoos et al. (2011) applied multi agent Q-learning for traffic light control in
non-stationary environments. The results revealed that the technique performed
better than the fixed time technique.
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Fig. 12.2 The graph showing the inflation versus the year

Fig. 12.3 An illustration of the moving variance ratio of inflation calculating over a period of
11 years
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Fig. 12.4 Illustration of the control system for non-stationary environment

Strijbosch et al. (2011) studied the interface between forecasting and stock
control for the situation of non-stationary demand. The results obtained contributed
to better understanding of operational matters and improved the stock control
systems.

Sheng et al. (2011) proposed a system identification and controller design for an
active-head slider with non-stationary and non-linear slider dynamics. The proposed
system identification technique and controller was observed to give good results.

KöroLglu and Scherer (2011) applied control systems for robust reduction of
non-stationary sinusoidal disturbances with measurable frequencies. The proposed
method was successfully implemented to control the steering of a ship.

Jasour and Farrokhi (2010) applied neural networks and predictive control and
applied these to robotic manipulators in non-stationary environments. The results
obtained indicated that the proposed technique was effective.

Qi and Moir (2010) proposed an in-car design to identify the driver’s voice and
to control in-car infrastructure in a non-stationary noise car environment. They
observed that the proposed method was able to identify speech with accuracy of
75 %, as opposed to 10 % benchmark results.

Predictive control systems with non-stationary environment require that the
predictive model be dynamic enough to be able to evolve with the predictive
model in line with the evolution of non-stationarity. Artificial intelligence has
been able to offer models that are sufficiently flexible to be adaptive and evolve.
The general control system that is able to deal with non-stationarity is shown
in Fig. 12.4. In this figure, the predictive model receives the input data which
can be categorized into the controllable and uncontrollable input variables. The
predictive model then transforms these input variables into the output. This output is
compared to a reference signal, which is the desired output. If the desired predicted
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output is not sufficiently close to the reference output then a controller identifies
appropriate controllable variables and the process is repeated. As this scheme
is being implemented, the predictive model senses its changing environment to
improve its predictive capacity in line with the sensed environment. The next section
explains the multi-layered perceptron, which is adaptable to account for non-linear
control.

The next section implements a method for a predictive model, which is a multi-
layered neural network.

12.4 Modeling Inflation

In this section we apply multi-layer perceptron to create an adaptive predictive
model that is indicated in Fig. 12.4. Nasrzadeh et al. (2011) applied the multi-
layer perceptrons and conventional adaptive filters for channel estimation in a code
division multiple access (CDMA) system. The results indicated that the multi-layer
perceptron gave better results than conventional methods.

Achili et al. (2009) applied adaptive multi-layer perceptron and sliding mode
methods for an adaptive parallel robots control. When this technique was imple-
mented on a parallel robot, the technique performed well even in the presence of
external disturbances.

Gavrilov et al. (2006) applied multi-layer perceptron and adaptive resonance
theory for mobile robots recognition of new objects whereas Shafiq and Moinuddin
(2003) applied a multi-layer perceptron for adaptive inverse control and observed
that it was able to control a non-minimum phase system and that the inverse multi-
layer perceptron was less sensitive to the frequency spectrum of the excitation
signal.

Suksmono and Hirose (2003) applied a multi-layer perceptron for adaptive beam
forming. The results obtained indicated that the complex-valued back-propagation
algorithm performed better than beam forming using a complex-valued least mean
square method, the rate of learning convergence, and interferences suppressions.

Langlet et al. (2001) successfully applied a multi-layer perceptron for adaptive
pre-distortion for a solid state power amplifier while You and Hong (1996)
successfully applied the multi-layer perceptron for blind adaptive equalization, and
Riedmiller (1994) successfully applied multi-layer perceptron for some benchmark
problem.

The multi-layer perceptron neural network is an input-out model that is able to
model data of arbitrary complexity. The network which was discussed in Chap. 3
can be mathematically described as follows (Bishop 1995):
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Here, w.1/
j i and w.2/

j i are weights in the first and second layer, respectively, from
input i to hidden unit j, M is the number of hidden units, d is the number of output
units, while w.1/

j 0 and w.2/

k0 are the weight parameters that represent the biases for
the hidden unit j and the output unit k. These weight parameters can be interpreted
as instruments that ensure that the model essentially comprehends the data. In this
chapter, the parameter fouter(•) is the linear function, while finner is the hyperbolic
tangent function.

The network weights in Eq. 12.4 are identified from the data that contains the
input x and input y. There are many techniques that have been applied to identify
these network weights, given the observed data. These include the maximum-
likelihood as well as Bayesian methods. When the maximum-likelihood framework
is applied to identify the network weights, given the observed data, the techniques
used include the steepest gradient method, the conjugate method, and the scaled
conjugate method (Bishop 1995). The methods that have been applied to identify
the network weights, given the observed data, include the Monte Carlo method, the
Markov Chain Monte Carlo Method, Simulated Annealing, hybrid Monte Carlo and
the shadow hybrid Monte Carlo method (Marwala 2007, 2009, 2010, 2012; Marwala
and Lagazio 2011).

The model in Eq. 12.4 can be forced to become adaptive by ensuring that, every
time a new observation is sensed from the environment, the network weights are re-
estimated by using some optimization procedure. Within the Bayesian framework,
this will entail re-estimating the posterior distribution in the light of the observed
information.

The model in Eq. 12.4 is applied to model inflation. The input variables are
mining output, transport, storage and communication output; financial intermedi-
ation, insurance, real estate and business services output; community, social and
personal services output; gross value added at basic prices; taxes less subsidies
on products; affordability; economic growth; repo rate; GDP growth; household
consumption; and investment while the output was the inflation rate of the South
African economy. When the multi-layered perceptron was implemented it had 12
inputs, seven hidden nodes, and one output while the activation function in the
hidden layer was a hyperbolic tangent, while the activation function in the output
layer was linear. To identify the network weights, the maximum-likelihood method
was used and the scaled conjugate optimization method was used to find the optimal
weights. The results obtained when this procedure was implemented are shown in
Fig. 12.5. These results indicate that the multi-layer perceptron is able to model
inflation rate.

12.5 Controlling Inflation

Figure 12.4 has a controller which, in this chapter, uses a genetic algorithm. This
controller is enabled by minimizing the error between the reference signal and the
output signal of the adaptive predictive model in Fig. 12.4. This objective can be
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Fig. 12.5 Results obtained when the multi-layer perceptron was used to model the inflation rate

achieved by minimizing the error E and this can be mathematically represented as
follows:
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Here, y is the prediction from the adaptive predictive model, w is the weight
vector of the trained multi-layer perceptron, xu is the uncontrolled variables vector,
xc is the controlled variables vector, and R is the reference signal.

Öztürk and Çelik (2012) applied genetic algorithms for speed control of perma-
nent magnet synchronous motors. The results obtained showed that the implemented
controller gave better dynamic response than that of the conventional one. Shill et al.
(2012) successfully applied quantum genetic algorithms to optimize a fuzzy logic
controller, while Takahashi et al. (2012) successfully applied a multi-layer quantum
neural network controller designed using a genetic algorithm.

Mahdavian et al. (2012) applied a hybrid genetic algorithm controller for load
frequency control of a two-area HVAC/HVDC power system. The results they
obtained indicated the effectiveness of the proposed controller on controlling load
frequency.
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Asan Mohideen et al. (2013) applied a genetic algorithm for system identification
and tuning of a modified model reference adaptive controller for a hybrid tank
system. The results obtained demonstrated that the genetic algorithm controller gave
better transient performance than the PID controller. Furthermore, the proposed
method gave good steady-state performance for controlling non-linear processes.

Guo et al. (2012) applied genetic algorithms for designing a steering controller
for trajectory tracking of unmanned vehicles. The results obtained demonstrated that
this method robustly and accurately track the reference trajectories.

Farouk (2012) applied a genetic algorithm and fuzzy tuning PID controller for a
speed control system for marine diesel engines. The results obtained demonstrated
that the proposed controller was more effective and gave faster system response than
a fuzzy tuned PID controller.

Ghosh and Gude (2012) successfully applied a genetic algorithm tuned optimal
controller for glucose regulation in type 1 diabetic subjects. The results obtained
showed that the method handled noisy output measurement, modeling error, and
delay in sensor measurement well.

Zhang et al. (2012) applied a genetic algorithm fuzzy logic controller for semi-
active suspension. The results obtained showed that this method improved the
performance of a full car suspension system and was better than passive suspension
response.

Valarmathi et al. (2012) applied genetic algorithm controllers and applied this in
non-linear liquid tank systems. When a genetic algorithm controller was compared
to a Ziegler-Nicholas (ZN) closed loop controller and a ZN open loop technique, it
was found to perform better.

Al-Faiz and Sabry (2012) successfully applied a genetic algorithm optimal
linear quadratic controller in TCP/AQM router, while Slavov and Roeva (2012)
successfully applied a genetic algorithm to tune a PID controller for glucose
concentration control.

In this chapter, we apply a genetic algorithm to build a controller shown in
Fig. 12.4. This chapter will use game theory to describe genetic algorithms. Game
theory is a conceptual technique that is derived on how games are played. It has
been applied to economics quite extensively (Wei et al. 2012). Game theory has few
key components and these are the players, rules, strategy, and pay-off (Cleveland
and Ackleh 2013; Hui and Bao 2013; Baker and Shokrieh 2013; Dev Choudhury
and Goswami 2012).

The players in genetic algorithms are the elements of the population. The
rules are cross-over, mutation and reproduction. The strategy is the survival of
the fittest principle, while the pay-off is the fitness function (Holland 1975;
Goldberg 1989, 2002).

A genetic algorithm is randomly initiated by specifying the size of the population
of individual solutions. For example, if the population size is 10, then within the
context of game theory is a game with ten players. Implementing a genetic algorithm
can be viewed as a cooperative game, and this cooperation is enabled through a
process called crossover.
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The crossover operator is a mechanism which combines genetic information in
the population by cutting pairs of chromosomes at random points along their length
and exchanging the cut sections over (Banzhaf et al. 1998). This process allows the
players in a game to exchange information, thereby, making genetic algorithms a
cooperative game.

There are many types of the cross-over methods and here we describe a one
crossover point technique. A one point cross-over is conducted by copying a binary
string from the beginning of a chromosome to the crossover point from one parent,
and the rest is copied from the second parent. For instance, if two chromosomes in
binary space aD 11001010 and bD 11010011 undergo a one-point crossover at the
midpoint, then the resulting offspring maybe 11000011 as well as 11011010.

The other operator used in the formulation of a genetic algorithm is called
mutation. This is an operator which introduces new information into the player
of the game and averts the genetic algorithm simulation from being trapped in a
local optimum solution (Goldberg 2002). A simple mutation is applied by randomly
choosing a mutation point in the chromosome of each player and randomly inverting
it. For instance, if a chromosome in binary space 11001010 is mutated at the second
element of the chromosome then the offspring becomes 10001010.

A selection of the proportion of the current population is selected to generate
a new population and this is based on the fitness function, which is the pay-off in a
genetic algorithm. This selection is attained by applying the fitness-based method,
where solutions that are fitter, as measured by Eq. 12.5, have a higher probability of
survival. Some selection approaches rank the fitness of each solution and select the
best solution, while other techniques rank a randomly selected aspect of the popu-
lation. There is a significant number of selection processes and, in this chapter we
use roulette-wheel selection (Goldberg 2002). Roulette-wheel selection is a genetic
operator applied for selecting possible solutions in a genetic algorithm optimization
technique. In this technique, each likely process is allotted a fitness function that is
applied to map the probability of selection with each individual solution.

This method guarantees that solutions with higher fitness values have higher
probabilities of survival than those with a lower fitness value. The advantage of
this is that, despite the fact that a solution may have a low fitness value; it may
still have some features that are beneficial in the future. The method is recurred
until a termination condition has been attained, either for the reason that a selected
solution that meets the objective function has been obtained, or for the reason that
a stated number of generations have been realized, or the solution has converged or
any combination of these.

The neural-network-genetic-algorithm method proposed in this chapter for
inflation targeting can be summarized as follows:

• Train a multi-layer perceptron neural network to take variables x and predict the
inflation rate y. Here, note that x can be divided into xc that is controlled and, in
this chapter, it is the interest rate and xu which is not controlled.

• Then create an inflation controller which minimizes, using a genetic algorithm,
the distance between the predicted inflation from the neural network and the
targeted inflation to identify the required interest rate.
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12.6 Experimental Investigation

The inflation rate scheme proposed in this chapter is based on the premise that there
is a relationship between the inflation rate and the interest rate. This assumption has
been made by several researchers in the past (Kose et al. 2012; Zaheer Butt et al.
2010; Mills 2008; Booth and Ciner 2001; Lanne 2001; Crowder and Hoffman 1996).

This chapter uses Eq. 12.4 to model the relationship between input variables:
mining output, transport, storage and communication output; financial intermedi-
ation, insurance, real estate and business services output; community, social and
personal services output; gross value added at basic prices; taxes less subsidies
on products; affordability; economic growth; repo rate; GDP growth; household
consumption; as well as investment and output variable inflation rate. These data
was obtained from the Reserve Bank of South Africa.

As indicated before, the multi-layered perceptron had 12 inputs, seven hidden
nodes and one output, while the activation function in the hidden layer was a
hyperbolic tangent and the activation function in the output layer was linear. The
network weights were identified using the maximum-likelihood technique and
scaled conjugate gradient optimization method.

The data was partitioned into two parts, the 100 examples for creating a multi-
layered perceptrons and 15 for inflation targeting. The actual observed inflation rates
for these 15 data points were assumed to be the targeted inflation rate. The measure
of how well the inflation targeting strategy is how well the targeted inflation rate is
to what was actually observed and, at the same time, how close the corresponding
interest rate was to the actual one. This is the best we can do this because it is costly
to implement this technique in real life because of the associated cost of testing a
new method on a real economy.

For the optimization procedure, a genetic algorithm with ten players (population
size) was used and simple cross-over, simple mutations, and Roulette wheel
reproduction was used. The results obtained when these methods are employees
are shown Fig. 12.6.

The results obtained indicate that inflation targeting seems to work. Of course
this model can be improved by using more robust predictive model as well as
optimization methods.

12.7 Conclusions

In this chapter, an attempt was made to create a system that can be used for inflation
targeting. A control system approach was adopted in this regard and this was based
on artificial intelligence. The input/output model was constructed using a multi-
layered perceptron network and a closed loop control strategy was adopted using
a genetic algorithm to control inflation through the manipulation of interest rate.
Given the historical inflation rate data, a control scheme was used to determine the
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Fig. 12.6 Achieved versus targeted inflation rate

interest rate which was required to attain the given inflation rate. The calculated
interest rate was then compared to the historical inflation rate to evaluate the
effectiveness of the control strategy and this was found to give good results.
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Chapter 13
Modeling Interstate Conflict: The Role
of Economic Interdependency
for Maintaining Peace

Abstract This chapter assumes that peace is a necessary condition for healthy
economic activities. It explores the role of trade in maintaining peace and, therefore,
healthy economic activities. This is done by constructing the relationship between
independent variables Allies, Contingency, Distance, Major Power, Capability,
Democracy, as well as Economic Interdependency and the dependant variable
Interstate Conflict. The chapter applies artificial intelligence techniques to study
the sensitivity of the variable Economic Interdependency on driving peace and thus
a healthy economic environment.

13.1 Introduction

Any progressive society seeks to build a society that aims to attain the highest form
of social, economic, and political advancement of its people. A formula on how to
create such a society remains elusive. One important characteristic of a progressive
society is that it is a society which is positioned within a state; which is at peace with
itself, its neighbors, and the international community. For this reason a progressive
society, as a matter of value, should aim for global peace and inspire a culture of the
highest form of human development.

Granted that peace is a necessary condition to build a progressive and econom-
ically prosperous society, it is consequently important to comprehend the anatomy
of interstate conflicts and use this insight to increase the occurrence of peace
and economic prosperity. This chapter handles conflict between countries as a
scientific phenomenon to be analyzed and comprehended, and then be applied to
increase peace. The capacity to scientifically comprehend the causes of militarized
interstate conflict, and then to use this knowledge to shape and promote peace in the
international context is irrefutably an imperative endeavor for economic prosperity.

In order to comprehend international conflicts, this chapter suggests an artificial
intelligence viewpoint to analyze some of the complex behaviors exhibited by inter-
state conflicts (Lagazio 2001; Marwala and Lagazio 2011a). Artificial intelligence
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is essentially a method in which computers or machines are capacitated to think like
intelligent human beings. Artificial intelligence can be applied to identify conflicts
before they occur and, thereby, serve as an early warning system which could be
used to prevent destruction of economic and social infrastructure.

As described by Marwala and Lagazio (2011a), early warning usually refers to a
set of actions whose goal is to gather, integrate, and analyze data with the intention
of detecting and identifying the early indicators of an incipient crisis before it bursts
out into violence and economic destruction (Alexander 2003). Conflict prevention,
as an alternative, describes the development and crisis intervention actions intended
at reconciling parties with conflicting interests, to prevent the search for different
objectives from deteriorating into conflicts of severe intensity (Rupesinghe 1994).
The notion of conflict deterrence has also been prolonged to consist of the efforts
and management strategies designed and applied to avoid future reversions into
violence.

Early warning and conflict prevention are connected and, if they are implemented
quickly, can strengthen one another. Early warning is executed for preventive
purpose of (Alexander 2003; Marwala and Lagazio 2011a, b):

• Expecting the escalation of violent conflict;
• The development of strategic responses to these crises; and
• To offer choices to decision makers for decision-making and preventive action.

Furthermore, both of them are intended to prevent any type of violent conflict,
including war. Early warning and conflict prevention are complex fields with many
different approaches, and have a comprehensive number of players involved; in-
cluding experts, grassroots players, and researchers. Even though a few people will
differ with the need for early warning and conflict prevention systems, successful
early warning related to conflict prevention has proved to be difficult. There is
a requirement to actively engage in crisis prevention, where the first step is the
diagnosis and prognosis of when, why, and where conflict will explode in addition
to how to intervene. This is the same technique as any diagnostic procedure, where
the following questions are asked (Marwala and Lagazio 2011a):

(a) What is the issue?
(b) How impending is it?
(c) What are the primary causes?
(d) How do we solve it?
(e) Is the preventive intervention having an effect?

The choices and actions that can be selected and applied are predicated upon a
proper understanding of the potential conflict. In essence, early warning becomes
one of the conditions for success in conflict prevention.

This chapter emphasizes the relationship between early warning and prevention
and how conflict prevention can be improved to spread peace and promote economic
activities, and it summarizes the work conducted by Marwala and Lagazio (2011a).
The results of all the analyses are integrated into a controlling model to offer
a workable single solution for increasing peace in the international system of
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governance. Singular consideration is placed on the three drivers of Kantian
peace, democracy, economic interdependence, and international organizations, and
how based on the results, the international community should apply these three
crucial factors to encourage the diffusion of peace in the international system of
governance. It is vital to pay attention to the fact that we are not attempting to
analytically deliberate and solve all the conceivable tasks that the international
community have difficulty with, when preventing future conflicts.

Hegre et al. (2010) investigated whether trade promoted peace and concluded
that it does promote peace, because violence has significant costs. Boehmer (2007)
studied the impact of economic crisis, domestic discord, and state efficacy on the
decision to initiate interstate conflict, and observed that democracy and economic
development offer internal stability and interstate peace. Other researchers who
have studied the relationship between trade and peace are Momani (2007), Blanton
(2004), and Kanafani (2001).

The objective is to use this improved pockets of understanding that are revealed
by artificial intelligence techniques to build practical platforms and solutions for
early warning of conflict in order to manage dispute. In this chapter, we apply
fuzzy systems, neuro-rough models, optimized rough models, and support vector
machines to model interstate conflict. From these models, the role of trade is identi-
fied as a critical variable for maintaining peace amongst countries. Furthermore, we
apply control systems to control conflict and, again, trade emerges as an important
variable.

13.2 The Drivers of Interstate Conflict

In this section we discuss the data and variables that are vital for understanding
interstate conflict. The used data set contains a population of politically relevant
dyads (pair of countries) from 1885 to 2001, as explained comprehensively by
Oneal and Russett (2005), Marwala and Lagazio (2011a, b), Tettey and Marwala
(2006a, b), Marwala and Lagazio (2004), Habtemariam et al. (2005), Tettey and
Marwala (2007), and Crossingham et al. (2008). These variables are known as dyads
because they involve two countries. For instance, the variable distance explains the
distance between two countries (Marwala and Lagazio 2004).

The dependent variable of the models consists of a binary variable, which shows
the inception of a militarized interstate conflict (Maoz 1999; Marwala and Lagazio
2011b), is called the peace-conflict-status. Only dyads with no interstate conflict
or with only the initial year of the militarized interstate conflict ranging from any
severity to war are included, because our concern, related to early warning, is
to estimate the inception of an interstate conflict rather than its perpetuation. For
interstate conflict, we apply the conventional definition of conflict, which is a set of
interactions between states comprising threats to use military force, demonstration
of military force, or definite use of military force (Maoz 1999, 2005; Lagazio and
Marwala 2005).
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We involve seven dyadic independent variables, and these are Allies, Con-
tingency, Distance, Major Power, Democracy, Economic Interdependency, and
Capability. Contingency is a binary variable, coded 1 if both states share a border
and 0 if they do not. Distance is a measure of the distance between the two states’
capitals. Major power is a binary variable coded 1 if either or both states in the
dyad are a super power. The variable Democracy is measured on a scale where a
value of 10 is an extreme democracy and �10 is an extreme autocracy, and we use
the value of the less democratic country in the dyad for our analyses. Economic
Interdependency is measured as the sum of the countries import and export, with
its partner divided by the Gross Domestic Product (GDP) of the stronger country,
and it measures the level of economic interdependence. Capability is the ratio of the
total population, plus the number of people in urban areas, plus industrial energy
consumption, plus iron and steel production, plus the number of military personnel
in active duty, plus military expenditure in the last 5 years, measured from a stronger
country to a weaker country. We lag all independent variables by 1 year to make
temporally plausible any inference of causation. We then apply artificial intelligence
techniques to identify the relationships between the seven independent variables and
the interdependent variable peace-conflict-status.

13.3 Artificial Intelligence

Artificial Intelligence (AI) is a comparatively recent field which is about con-
structing intelligent computer systems with the capacity to learn and reason, in the
same way that intelligent human beings do (Marwala and Lagazio 2011b). AI has
been applied in important disciplines such as making decisions with incomplete
information (Marwala 2009), engineering sciences (Marwala 2010), and making
robotic machines that take care of the elderly (Kortenkamp et al. 1998).

There are generally two types of AI methods, and these are learning and
optimization approaches. Learning techniques imitate the manner in which the
human brain functions to construct better computer machines. The second type
applies the mechanism of complex social organisms, such as the flock of birds,
colony of ants, and schools of fishes to create computers that are capable of adapting
without human intervention, by showing dialectic relationships between individual
and group intelligence. In this chapter, we apply AI techniques to understand the
relationships between dyadic variables and the peace-conflict-status between two
countries. This is done in order to accomplish the following (Marwala et al. 2009):

• To predict peace-conflict-status between two countries given the independent
variables Allies, Contingency, Distance, Major Power, Democracy, Economic
Interdependency and Capability;

• To comprehend the factors that drive interstate conflict; and
• To identify strategies and tactics for controlling and managing interstate conflict.
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13.3.1 Support Vector Machines (SVMs) for Classifying
Conflicts

Support vector machines were proposed by Vapnik (1995, 1998) and his co-workers.
In this section, we describe support vector machines in the context of conflict
classification. Unlike in Chap. 5, where SVMs were applied to perform regression
on economic data, in this section we apply SVMs to classify data. The classification
problem can be stated as approximating a function f W RN ! f�1; 1g dependent on
input-output training data which are produced from an independently and identically
distributed unknown probability distribution P(fxg,y) in such a way that f is able to
classify unseen (fxg,y) data (Müller et al. 2001; Habtemariam 2006; Marwala and
Lagazio 2011a). The function minimizes the expected error and is mathematically
expressed as follows (Müller et al. 2001; Habtemariam 2006; Habtemariam et al.
2005; Marwala and Lagazio 2011b):

RŒf � D
Z

l .f .fxg/ ; y/ dP .fxg; y/ (13.1)

where l is a loss function (Müller et al. 2001). For the reason that the fundamental
probability distribution P is unknown, Eq. 13.1 is unsolvable directly. To solve this
equation, an upper bound for the risk function is identified, and it is given mathemat-
ically as follows (Vapnik 1995; Müller et al. 2001; Marwala and Lagazio 2011a):
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where h 2 NC is the Vapnik-Chervonenkis (VC) dimension of f 2F and • > 0.
The VC dimension of a function class F is defined as the biggest number of h
coordinates that can be divided in all possible ways by means of functions of that
class (Vapnik 1995). The empirical error R[f ]emp is a training error given by (Vapnik
1995; Habtemariam 2006; Marwala and Lagazio 2011a):

RŒf �emp D 1

n

nX

iC1

l .f .xi /; yi / (13.3)

Given that the training sample is linearly separable by a hyper-plane of the form
(Vapnik 1998; Habtemariam 2006; Marwala and Lagazio 2011a):

f .x/ D hw; fxgi C b with w 2 �; b 2 < (13.4)

where h:; :i is the dot product, fwg is an adjustable weight vector and fbg is an offset
(Müller et al. 2001; Marwala and Lagazio 2011a). The objective of the learning
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process as pioneered by Vapnik and Lerner (1963) is to identify the hyper-plane with
maximum margin of separation from the class of dividing hyper-planes. However,
for the reason that practical data normally show complex properties which cannot
be divided linearly, more complex classifiers are necessary. To evade the complexity
of the non-linear classifiers, the concept of linear classifiers in a feature space can
be introduced. SVMs identify linear separating hyper-planes by mapping the input
space into a higher dimensional feature space F through substituting xi by ¥(xi) to
give (Müller et al. 2001; Habtemariam 2006; Marwala and Lagazio 2011a):

Yi ..fwg �ˆ.fxgi //C b/ ; i D 1; 2; : : : ; n (13.5)

The VC dimension h in the feature space F is constrained subject to
h	 jjW jj2R2 C 1, where R is the radius of the smallest sphere around the training
data (Müller et al. 2001). Consequently, minimizing the expected risk can be defined
as an optimization problem as follows (Burges 1998; Müller et al. 2001; Schölkopf
and Smola 2003; Marwala and Lagazio 2011a):

Minimize .fwg ; b/
1

2
jjfwgjj2 (13.6)

subject to:

ci .fwg; fxgi � b/ � 1; i D 1; : : : ; n (13.7)

Equations 13.6 and 13.7 are the quadratic programming problem because they
are a problem of optimizing a quadratic function of a number of variables subject to
linear constraints (Schölkopf and Smola 2003) and can be expressed as:

kfwgk2 D w � w (13.8)
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It can be shown that the dual of SVM can be expressed in Lagrangian form by
maximizing in ˛i, (Schölkopf and Smola 2003):
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subject to:

˛i � 0; i D 1; : : : ; n (13.11)

and subject to the following constraints:

nX

iD1

˛i ci D 0 (13.12)

Here, the kernel is (Müller et al. 2001):

k
�fxgi ; fxgj

� D fxgi � fxgj (13.13)

13.3.1.1 Soft Margin

An improved maximum margin idea that enables misclassified data points was
proposed by Cortes and Vapnik (1995). In the absence of a hyper-plane that can
distinguish between a “yes” or “no” data points, the Soft Margin method chooses a
hyper-plane that separates data points effectively while maximizing the distance to
the nearest data points. The method introduces slack variables, � i which quantify the
extent of misclassification of data points, and can be expressed as follows (Cortes
and Vapnik 1995):

ci .fwg � fxgi � b/ � 1 � �i ; 1 	 i 	 n (13.14)

In order to penalize non-zero ”i augments, the objective to ensure a trade-off
between margin and error penalty, a function needs to be identified. By assuming a
linear penalty function, the optimization problem can be expressed by minimizing
fwg and ”i of the objective function (Cortes and Vapnik 1995):
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2
kfwgk2 C C
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subject to:

ci .fwg � fxgi � b/ � 1 � �i ; �i � 0; i D 1; : : : ; n (13.16)

where C is the capacity. These Eqs. 13.15 and 13.16, can be expressed in Lagrangian
form by optimizing in terms of fwg, ”, b, ’ and ˇ of the following equation (Cortes
and Vapnik 1995):



240 13 Modeling Interstate Conflict: The Role of Economic Interdependency. . .
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here ˛i ; ˇi � 0. The advantage of a linear penalty function is that the slack
variables are eliminated from the dual problem and, as a result, C is merely a
redundant constraint on the Lagrange multipliers. The application of non-linear
penalty functions to decrease the effect of outliers causes the optimization problem
non-convex and difficult solve.

13.3.1.2 Non-linear Classification

The kernel function was applied to transform the linear SVM procedure into non-
linear classifiers (Aizerman et al. 1964; Boser et al. 1992) by substituting the dot
product by a non-linear kernel function to fit the maximum-margin hyper-plane.
The dot product transformation is non-linear and the transformed space is in high
dimensions and, as an example, a Gaussian radial basis function kernel transforms
the feature space into a Hilbert space of infinite dimension. In this section, we
apply the radial basis function kernel which can be written as follows (Vapnik 1995;
Müller et al. 2001):

k
�fxgi ; fxgj

� D exp
�
��
��fxgi � fxgj

��2
�

; � > 0 (13.18)

To identify the variables of the maximum-margin hyper-plane, the optimization
method can be used to solve the objective function using an interior point technique
based on the Karush-Kuhn-Tucker (KKT) conditions (Kuhn and Tucker 1951;
Karush 1939). The KKT method is a generalized type of the Lagrangian method.

13.3.2 Fuzzy Sets for Classifying Conflicts

Neuro-fuzzy method combines neural networks and fuzzy logic (Jang 1993; Jang
et al. 1997). It is a system that combines the human-like reasoning characteristics
of fuzzy systems with the learning characteristics of neural systems resulting
in a universal approximator with comprehendible IF-THEN rules. As explained
by Marwala and Lagazio (2011a), neuro-fuzzy systems implicate two conflicting
characteristics: interpretability versus accuracy. The neuro-fuzzy in fuzzy modeling
research consists of linguistic fuzzy modeling that is more interpretable (Mamdani
1974) and accurate fuzzy modeling focused (Sugeno and Kang 1988; Sugeno 1985;
Takagi and Sugeno 1985).
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Fig. 13.1 An example of a two-input first order Takagi-Sugeno fuzzy model

Fuzzy logic notions offer a technique of expressing vague models of reasoning.
It bears a similarity to human reasoning in its application of estimated information
and uncertainty to produce decisions. The estimation of the output is accomplished
by a calculating structure known as the fuzzy inference system. The fuzzy inference
system transforms fuzzy inputs to the output. This fuzzy inference system imple-
ments the inputs using fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning to
attain the output. It includes the fuzzification of the input variables, assessment of
rules, aggregation of the rule outputs, and then the de-fuzzification (i.e. extraction
of a crisp value which best represents a fuzzy set) of the result.

In this chapter, we apply the Takagi-Sugeno neuro-fuzzy model and this is shown
in Fig. 13.1 (Babuska and Verbruggen 2003). In this model, the antecedent part
of the rule is a fuzzy proposition and the consequent function is an affine linear
function of the input variables and is mathematically defined as follows (Takagi and
Sugeno 1985):

Ri W If x is Ai then yi D aT
i x C bi (13.19)

where Ri is the ith fuzzy rule, x is the input vector, Ai is a fuzzy set, ai is
the consequence parameter vector, bi is a scalar offset and i D 1; 2; : : : ; K:

The parameter K is the number of rules in the fuzzy model. Too few rules in the
fuzzy model comes at a cost of accuracy, while too many rules leads to a complex
model with redundant fuzzy rules compromising the integrity of the model (Sentes
et al. 1998).
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On implementing this method, the input space is partitioned into the input space
in order to form the antecedents of the fuzzy rules. The shapes of the Gaussian
membership functions of the antecedents are selected in this chapter and these can
be written as follows (Zadeh 1965).

i .x/ D
nY

j D1

e
�
�
xj �ci

j

�2

�
bi
j

�2

(13.20)

Here, i is the antecedent value for the ith rule, n is the number of antecedents
of the ith rule, c is the center of the Gaussian function, and b is the variance of the
Gaussian membership function.

The consequent function in the Takagi-Sugeno neuro-fuzzy model can either be
constant or linear and, in this chapter, a linear consequent function is implemented
(Babuska and Verbruggen 2003):

yi D
nX

j D1

pij xj C pi0 (13.21)

where pij is the jth parameter of the ith fuzzy rule. When yi D pi , the Takagi-
Sugeno neuro-fuzzy model is then a Mamdani inference system (Mamdani 1974).
The output y of the inference system is calculated by a weighted average of the
individual rules’ contributions as (Babuska and Verbruggen 2003):
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where ˇi .x/ is the activation of the ith rule and parameters ai then approximate
models of the non-linear system under consideration (Babuska and Verbruggen
2003). There are two techniques to train the neuro-fuzzy method (Babuska and
Verbruggen 2003):

1. Fuzzy rules can be extracted from expert knowledge and used to create an initial
model.

2. The number of rules can be identified from gathered data using a model selection
procedure.
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13.3.3 Neuro-Rough Sets for Classifying Conflicts

Bayesian rough sets have been studied extensively recently and Li et al. (2010)
applied a probabilistic rough set model with variable precision on Bayesian
decisions and observed a reduction of the error risk. The Bayesian framework can
be expressed as (Marwala 2007a, b; Marwala and Crossingham 2008; Marwala and
Lagazio 2011a):

P.M jD/ D P.DjM /p.M /

p.D/
(13.23)

where M D
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>>>>>;
P.M jD/ is the probability of the rough set model given the observed data, P.DjM /

is the probability of the data given the assumed rough set model, P.M / is the prior
probability of the rough set model, and P.D/ is the probability of the data. The
probability of the data given the assumed rough set model and the resulting error
may be approximated as follows (Marwala and Crossingham 2008; Marwala and
Lagazio 2011b):
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where z1 is the normalization constant, L is the number of outputs, and K is the
number of training examples. In this problem, the prior probability is linked to
the concept of reduct. It is the prior knowledge that the best rough set model is
the one with the minimum number of rules (Nr), and that the best network is
the one whose weights are of the same order of magnitude. Therefore, the prior
probability may be written as follows (Marwala 2007b; Marwala and Crossingham
2008; Marwala and Lagazio 2011b):

P.M / D 1

z2

exp
n
�˛Nr � ˇ

X
w2
o

(13.26)
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where z2 is the normalization constant and ˇ is the hyper-parameter of the network
weights. Given the observed data, the posterior probability of the model is thus
(Marwala and Crossingham 2008; Marwala and Lagazio 2011b):

P.M jD/ D 1

z
exp

n
A.Nr; R; Gx/ � 1 � ˛Nr � ˇ

X
w2
o

(13.27)

where z is the normalization constant and ˛ is the hyper-parameter of the number
of rules. Since the number of rules and the rules generated, given the data, depends
on the nature of granulization, we shall sample in the granule space as well as the
network weights using a procedure called Markov Chain Monte Carlo (MCMC)
simulation (Bishop 1995).

The way in which the probability distribution in Eq. 13.28 is sampled, is to
randomly produce a succession of granule-weight vectors and accepting or rejecting
them based on how probable they are, using the Metropolis algorithm (Metropolis
et al. 1953). The MCMC produces a chain of granules and network weights and
accepts or rejects them using the Metropolis algorithm. The application of the
Bayesian approach and MCMC neuro-rough sets give a probability distribution
function of the granules and network weights and thus the distribution of the neuro-
rough model outputs. From these distribution functions, the average approximation
of the neuro-rough set model and the variance of that approximation can be
computed. Applying the laws of probability theory gives the following distribution
of the output parameter y (Marwala 2007a, b; Marwala and Crossingham 2008;
Marwala and Lagazio 2011a):

p.yjx; D/ D
Z

p.yjx; M /p.M jD/dM (13.28)

Equation 13.28 cannot be solved analytically because of the high dimension of
the granule and weight space. For this reason, the solution of this equation may
be estimated as (Marwala 2007a, b; Marwala and Crossingham 2008; Marwala and
Lagazio 2011a):

�
y Š 1

L

ZCL�1X

iDI

F .Mi / (13.29)

F is a model that gives the output given the input, is the average prediction
of the Bayesian neuro-rough set model (Mi), Z is the number of initial states that
are discarded in the hope of reaching a stationary posterior distribution function
disregarded, and L is the number of retained samples. The MCMC technique
was applied by sampling a stochastic process consisting of random variables
fgw1,gw2, : : : ,gwng by introducing random changes to granule-weight vector fgwg
and either accepting or rejecting the state using the Metropolis algorithm. The
Metropolis algorithm uses the differences of posterior probabilities between two
states as follows (Metropolis et al. 1953; Marwala and Crossingham 2008).
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If P .MnC1jD/ > P .MnjD/ then accept MnC1; (13.30)

Else accept if
P .MnC1jD/

P .MnjD/
> 
 where 
 2 Œ0; 1� (13.31)

else reject and randomly generate another model MnC1.

13.3.4 Automatic Relevance Determination (ARD)

It is useful for the relationship that exists between variables to be identified. In this
chapter, these are the seven variables and the conflict status. In order to achieve this
task, the automatic relevance determination (ARD), which is based on the multi-
layered perceptron method, is used (MacKay 1991, 1992). The ARD framework is
implemented by introducing a hyper-parameter that is associated with each variable
in the prior distribution of the Bayesian formulation of the training of the multi-layer
perceptron network (Bishop 1995).

The ARD method that is based on the multi-layer perceptron is implemented
estimating the ˛MP

k (hyper-parameter associated with the kth input variable), ˇMP

(hyper-parameter associated with the error between the model prediction and the
target data) and the most Probable weight, fwgMP as follows (MacKay 1991;
Bishop 1995):

1. Randomly select the initial values for the hyper-parameters.
2. Estimate fwgMP by training the multi-layer perceptron neural network using the

scaled conjugate gradient algorithm to minimize the following cost function:
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where N and K are the number of outputs and training data, respectively, and y
and t are the predicted and target output, respectively.

3. Apply the evidence framework to estimate the hyper-parameters using:
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whereas �j and [V] are the eigenvalues and eigenvectors of [A].
4. Repeat Steps 2 and 3 until convergence.
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13.4 Controlling Interstate Conflict

There is a revolutionary statement that says: “The aim of a revolutionary is not
merely to understand the world but to actually change it”. Contextualizing this
famous statement, the aim of using AI models in studying interstate conflict is not
merely to predict the onset of conflict but actually to use the prediction to prevent
conflict and thus promote economic activities. In this chapter, AI is used to relate the
prediction of conflict and identification of causes of conflict with the choice of the
correct preventive action. The AI model is applied to control conflicts and develop
a proper scientific understanding on how to select the right preventive action.

A control system is essentially a procedure where the input of a system is
changed to attain a desired outcome. To attain this, a model that characterizes the
relationship between the input and the outcome are to be obtained. In this chapter,
this model involves characterizing the relationship between the militarized interstate
dispute dyadic variables and the peace-conflict status. A number of methods can
be used to identify such relationships. In this chapter, a Bayesian neural network
trained using the hybrid Monte Carlo method is used to identify such a relationship
and more details on this method can be found in Bishop (1995), as well as Marwala
and Lagazio (2011a). The model that predicts the peace-conflict status given the
militarized interstate dispute dyadic variables, the next task is to apply this method to
identify the set of variables that ensure that conflict can be controlled by reducing the
incidence of conflict. The justification for the development of the interstate dispute
prediction infrastructure is to maximize the incidence of peace and minimize the
incidence of conflict. This is attained by control theory to conflict resolution.

The control system used in this chapter is shown in Fig. 13.2 and this confirms
that it has two modules (Marwala and Lagazio 2011a):

• The Bayesian neural network that was applied to identify the relationship
between the militarized interstate dispute dyadic variables and the peace-conflict
status; and

• The optimization element that evaluates the difference between the peace-conflict
and the preferred output, which is peace, and categorizes the set of inputs that
minimize the distance between the predicted output (from the Bayesian neural
network) and the desired output (peace).

Fig. 13.2 Feedback control loop that uses Bayesian neural networks and an optimization method
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The Bayesian network component which takes the militarized interstate dispute
dyadic variables as input vector fxg given the network weight vector fwg and
predicts the peace-conflict status as output scalar y can be mathematically written
as follows (Marwala and Lagazio 2011a):

y D f .fxg; fwg/ (13.32)

The network weights are identified using the learning process, which is through
the Bayesian framework and the details are in Bishop (1995) and Marwala and
Lagazio (2011a).

The second element of the control loop is to identify the input given the
desired output and an optimization method is used. The objective function of the
optimization problem is (Marwala and Lagazio 2011a):

error D
X

.y � td /2 (13.33)

Here, y is the Bayesian neural network output and td is the desired target output.
Equation 13.33 is solved using the golden section search technique and simulated
annealing (Marwala and Lagazio 2011a).

13.5 Investigation and Results

The correlates of war (COW) data are used to generate training and testing sets
(Anonymous 2012). More information on this data set can be found in (Marwala and
Lagazio 2011a). The training data set consists of 500 conflict- and 500 non-conflict
cases, and the test data consists of 392 conflict data and 392 peace data. A balanced
training set, with a randomly selected equal number of conflict- and non-conflict
cases was chosen to yield robust classification and stronger comprehensions on the
explanation of conflicts. The data were normalized to fall between 0 and 1.

Support vector machines, Takagi-Sugeno neuro-fuzzy systems, and the Bayesian
neuro-rough sets were implemented to model militarized interstate dispute data and
the results obtained are shown in Table 13.1.

The results obtained demonstrate that the three methods gave similar results
on predicting the peace-conflict status. The ARD framework was then used to
rank variables with regard to their influence on the militarized interstate dispute.

Table 13.1 Classification results

Method True conflicts TC (%) True peace TP (%)

Takagi-Sugeno neuro-fuzzy 77 73
Support vector machine 76 74
Bayesian rough set model 76 75
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Fig. 13.3 Relevance of each variable with regards to the classification of MIDs (Marwala and
Lagazio 2011a)

The ARD was implemented, the hyper-parameters computed, and then the inverse of
the hyper-parameters was computed, and the results are demonstrated in Fig. 13.3.
Figure 13.3 shows that Economic Interdependency has the highest influence on
peace-conflict status, followed by Capability, followed by Democracy, and then
Allies. The remaining three variables, that is, Contingency, Distance, and Major
Power, have similar impact although it is much smaller in comparison with the
other two variables, democracy and economic interdependence, and the two realist
variables, allies and difference in capabilities.

The results in Fig. 13.3 indicate that all the variables used in this book influence
the conflict and peace outcome. However, alliance and power ratio play a part
in providing opportunities and incentives for interstate action and, therefore, they
also have an important effect on promoting peace or conflict between states.
Overall, the results first support the theory of democratic peace, which claims
that democracies never go to war. Secondly, the results indicate the importance of
economic interdependence and economic ties for promoting peace. In addition, this
result underlines that the relationship between peace and the Kantian factors is not
bi-directional. Economic interdependence interacts with democracy to enhance its
own influence, as well as democracy’s influence on peace.

However, the three remaining realist variables, Distance, Contingency, and
Major Power, cannot be completely ignored. They still provide the ex-ante con-
ditions for war to happen. For example, Swaziland and Bahamas have a lower
probability of going to war, primarily because they are so far apart and, as a result,
they have no incentives to go to war. The same cannot be said in relation to major
powers. Great powers have the capacity to engage in distant conflicts as well as
the incentives to do so. In summary, the constrains that the high level of economic
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interdependence, democracy, allies, as well as difference in capability ratio exert on
interstate behavior, are activated when the opportunities for conflicts, provided by
geographical proximity and/or great power interests, are in place.

When control strategies are applied to identify the vital independent variables
for maximizing peace, it is observed that all four controllable dyadic variables
i.e. Allies, Democracy, Economic Interdependency, and Capability could be used
concurrently to avoid all the correctly predicted interstate conflicts. In addition, it
was observed that, either Economic Interdependency or Capability could also be
used to avoid all the correctly predicted conflicts, followed by controlling only
Democracy and then controlling Allies. In conclusion, by comparing outcomes from
a single and multiple approaches, it is observed that Economic Interdependency
and Democracy are crucial variables to realize peace because, even in a multiple
approach, they necessitate substantial changes, which are close to their single
level requirement in comparison to the other dyadic variables. This implies that,
substantial changes in Economic Interdependency and Democracy are essential,
even if the other dyadic variables have been positively influenced to attain peace.
It is worth noting that the techniques applied in this chapter can guide prevention
policy or strategies, but should not be used in isolation. A case-by-case method
requires to be combined with the results of the controlling model. It would not be
worthwhile to apply this AI model thoughtlessly without supporting the result with
contextual information.

13.6 Conclusions

Contemporary advances in the interstate conflict literature have underscored the
significance of treating international conflicts as complex phenomena, showing
complex interactions amongst the relevant militarized interstate conflict variables.
Persistently, the relationships between the characteristics of a pair of states and the
probability of militarized interstate conflicts have been demonstrated to be reliable
in both time and space. The interstate characteristics that have been observed to
affect the onset of militarized interstate conflicts are Economic Interdependence,
Democracy, Distance, Relative Power and Alliances. If two states are both reputable
democracies, the probability of them engaging in war is almost non-existent, and
this is what political scientists call the Theory of Democratic Peace. For this reason,
the likelihood of, for example, the United States and South Africa ever going to
war is very small. Likewise, if the two states are economically interdependent, the
probability of them engaging in war is low. For example, Canada and the United
States are highly unlikely ever going to war. Therefore, the variables Democracy
and Economic Interdependence offer essential constraints on a state’s behaviour
and intention to wage a war. Additionally, if two states’ capitals are positioned
close together, the probability of them engaging in war if there is a dispute is high.
For this reason, countries like Swaziland and Bahamas are highly unlikely to go
to war. In addition, if one of the states is a superpower, the distance between the
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two states’ capitals becomes immaterial, because the capability of a superpower
to fight a distant war is high. If the difference in power between two states is
low, their willingness to use force will also be low, since equal power works as
a deterrent. Lastly, the number of standing alliances also affects the probability
of militarized interstate conflicts, with more alliances increasing the probability of
peace. Alliances are constraining the probability of war with non-allies, providing
a deterrence mechanism, similar to relative power, while they also reduce the
probability of war among their members. Distance, Relative Power and Alliances
provide the state with the opportunities to wage a war. The constraints which
are enforced by Democracy and Economic Interdependence, and the opportunities
offered by Distance, Relative Power and Alliances interact among each other and
generate different routes to war and peace. This analysis demonstrates that there is a
major effect between Economic Interdependence, Democracy and peace-conflict-
status. Nevertheless, as an alternative to exerting a constant effect, Economic
Interdependence and Democracy vary their effect as they are either facilitated or
not facilitated by interaction between themselves and other variables.
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Chapter 14
Conclusions and Further Work

Abstract This chapter summarises this book and makes recommendations for
further studies. It demonstrates that indeed artificial intelligence is a viable tool
for analyzing economic data. It also demonstrates that the accuracy of the artificial
intelligence method depends on the problem at hand and that there is a wide scope of
applying other emerging artificial intelligence techniques to model economic data.

14.1 Conclusions

This book introduced economic modeling based on artificial intelligence techniques.
The artificial intelligence methods used included multi-layer perceptrons, radial
basis functions, support vector machines, rough sets techniques, automatic relevance
determination, autoassociative network, particle swarm optimization, genetic algo-
rithms, simulated annealing, Bayesian networks, and multi-agent systems (Marwala
2007, 2009, 2010, 2012; Marwala and Lagazio 2011). Some other approaches that
were studied included game theory, control systems, Fourier transforms and wavelet
transforms. The book introduced important themes such as economic data handling
and modeling as well as prediction, knowledge discovery including data mining
and causality versus correlation. It also outlined some of the common problems in
economic modeling with regards to data handling, modeling and data interpretation.
The book analyzed various economic data such as the stock market, inflation, credit
rating, option pricing, portfolio optimization and described important subjects such
as inflation targeting.

The book introduced robust methods for economic data analysis and these were
the mean, variance, kurtosis, fractals, frequency, time-frequency analysis techniques
and stationarity. The Bayesian and the evidence frameworks were applied to
generate an automatic relevance determination (ARD) tool. The ARD tool was used
to evaluate the relevance of economic variables that were important for driving the
consumer price index (CPI).

T. Marwala, Economic Modeling Using Artificial Intelligence Methods, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-4471-5010-7 14,
© Springer-Verlag London 2013
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The multi-layered perceptron, radial basis functions and support vector machines
were applied to model the CPI. The results indicated that the SVM gave the best
results followed by the MLP and then the RBF.

Support vector machines and the multi-layered perceptron methods were applied
using the Bayesian method to model American options and the results indicated
that the MLP gave better results than the SVM. This book also introduced rough
set theory and applied this to stock price prediction and observed high accuracy on
classifying the daily movements of the Johannesburg Stock Exchange’s All Share
Index. The book applied auto-associative networks based multi-layered perceptron
with genetic algorithms, particle swarm and simulated annealing optimization
techniques for modeling manufacturing data and demonstrated that simulated
annealing performed marginally better, followed by genetic algorithms and then the
particle swarm optimization technique.

Furthermore, this book treated a predictive system as a missing data problem i.e.
correlation machine and compared it to treating it as a cause and effect exercise
i.e. causal machine. The correlation machine applied the autoassociative network,
while the causal machine used the ARD. These approaches were applied to model
the CPI and credit scoring. The ARD technique was found to be able to asses the
causal relationships between the variables and the causal machine was found to
perform better than the correlation machine for modeling credit scoring data while
the correlation machine was found to perform better than the causal machine for
modelling the CPI.

Genetic algorithms (GA) were applied for the continual rebalancing of portfolios.
When both risk and return were targeted, the results showed that a GA was a viable
tool for optimizing a targeted portfolio. The book applied an incremental learning
procedure to predict the financial markets movement direction. Incremental learning
was found to provide good results on adapting the weak networks into a strong
learning algorithm that has confidence in all its decisions. The procedure was found
to increase confidences in correctly classified instances and decrease confidences in
misclassified instances after successive training sessions.

This book also simulated the stock market and implemented these within the
game theory framework and the results indicated that this approach was a viable
method for simulating the stock market. A control system approach was built
for inflation targeting. The input/output model was built using a multi-layered
perceptron network and a closed loop control strategy was adopted using GA to
control inflation through the manipulation of interest rate. The calculated interest
rate was compared to the historical inflation rate to evaluate the effectiveness of the
control strategy and good results were obtained. The book also studied the role of
trade in promoting peace and healthy economic activities, and the results indicated
that trade was important for maintaining peace.
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14.2 Further Work

For further studies, articial intelligence should be used to predict prices of crucial
minerals, such as platinum, and relate these to economic growth of resource based
economies. Another area for further study is the application of artificial intellence
in remanufacturing, an area that is very important for modern industrialization.
This book applied missing data approaches to classification and regression in
economic modeling. For further studies, other techniques should be applied for
missing data approaches to regression and classification, and these should include
the Expectation Maximization Approach, Random Forrest, Firefly Algorithm, and
Artificial Immune Systems.
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