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FOREWORD

I met Sean over a decade ago. I was then leading the teams at Google 
responsible for many of the large-scale machine learning systems power-
ing Google’s search ads business. Sean, one of the top engineers in my 
group, was working on a set of challenging problems at the frontier of what 
was possible with machine learning at the time. Since we first began work-
ing together, the type of artificial intelligence embodied in the techniques 
of statistical machine learning has gone from a relatively inaccessible, arcane 
art and the exclusive domain of researchers and the highest of high-tech 
companies, to an increasingly approachable and highly useful set of tools 
and techniques that deserves to be in every software developer’s bag 
of tricks.

The rapid progress being made at the moment in machine learning is 
being driven in part by an explosion in data; a renaissance in high perfor-
mance computer architecture; cloud providers competing to build scalable 
AI platforms for developers and researchers; and a rush to embed real-time 
intelligence into mobile devices, cars, consumer electronics, and the increas-
ingly ubiquitous computing devices connected at the edge of the cloud. 
Even though this rapid progress has included achievements that have sur-
prised many onlookers as machines have approached or exceeded human 
capabilities in a number of narrow domains—such as labeling objects in 
images, recognizing speech, playing strategy games, and translating between 
human languages—we are still in the early days of the development of 
these technologies with decades of innovation and discovery ahead of us.

Understanding how machine learning works is a smart career bet for 
developers and researchers alike. Expertise in these technologies is already 
in high demand at the world’s biggest technology companies. Many of 
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these same companies—Microsoft, Amazon, Google, Apple, Baidu—
provide APIs, toolkits, and cloud computing infrastructure to put machine 
learning development in the hands of tens of millions of developers across 
the world. Over the coming years it is highly likely that most developers 
will need at least a little machine learning in their repertoire as more and 
more applications incorporate “intelligent” functionality. And that’s where 
this book will prove to be an invaluable asset.

How Smart Machines Think was borne out of Sean’s desire to understand 
what makes modern machine learning tick. And in describing the essence 
of these systems in a clear, approachable way, Sean leverages over a decade 
of experience in industry and academia solving some of the toughest 
problems that machine learning has to offer. Given that machine-learning 
systems are sometimes able to reproduce aspects of human intelligence, 
poetic license can be stretched near its breaking point. Sean’s careful, prag-
matic descriptions of these technologies reflect his years in the trenches, 
where one learns through a sometimes-painful process of trial and error 
that machine learning isn’t magic. It’s an extremely useful tool when you 
understand how to apply it, and where its limits lie, and near worthless 
when you don’t.

Sean makes the concepts of modern machine learning accessible by 
motivating techniques with real-world examples and by avoiding unnec-
essary jargon. How Smart Machines Think assumes relatively little back-
ground in machine learning or computer science, and hence is entirely 
approachable to a broader audience. Given the lively contemporary dia-
logue around machine learning–based artificial intelligence and the 
impacts that these technologies might have on our future, it behooves any-
one wanting to get involved in that conversation to get as educated as 
they can. With the paucity of approachable, technically sound introductions 
to machine learning, this book is an ideal way to bootstrap your under-
standing of the underlying technologies, and to help you make better 
determinations about what to believe and what to discard as hyperbolic 
nonsense.

Kevin Scott
CTO, Microsoft



PREFACE

The seed for this book was planted in an AI research lab on the top floor 
of a computer science department one night in 2010. Having attended 
some recent talks about self-driving cars, and curious about how they 
worked, I did a few web searches. The best explanations I could find were 
the original academic papers written by some of the researchers at Carn-
egie Mellon University and Stanford. I looked at them for a few minutes, 
gained a superficial understanding of how self-driving cars worked, and 
eventually moved on.

But over time, I found myself repeating this process again and again. 
Whenever I saw another breakthrough in artificial intelligence or machine 
learning hit the press, I came back to the same question: How does it work? 
The curious thing to me was that I’d spent countless hours studying and 
practicing machine learning in academia and industry, and yet I still couldn’t 
consistently answer that question. Perhaps I didn’t know AI and machine 
learning as well as I should, I thought, or perhaps college courses didn’t 
teach us the right material. Most college courses on these topics usually just 
teach the building blocks behind these breakthroughs—not how these 
building blocks should be put together to do interesting things.

But there was another, more fundamental reason I couldn’t figure out 
how they worked: most of these breakthroughs really did involve ground-
breaking research; we simply didn’t know how to build them until a group 
of researchers figured it out and wrote about the process or built a proto-
type. That’s why researchers have been writing about these breakthroughs 
in peer-reviewed journals: precisely because they’re novel, impactful, and 
non-obvious (and peer-reviewed). But it still didn’t help that the details 
behind these breakthroughs, once published, were spread out, haphazardly, 
across many different sources.
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Eventually I realized that I should share what I was learning during my 
own research with other people, so they wouldn’t need to jump through 
the same hoops to understand the same things. In other words: I wrote this 
book because it was a book I wanted to read.

I’ve written How Smart Machines Think with the hope that it will be 
helpful for tech enthusiasts young and old who are curious about sci-
ence and technology in general, or to industry leaders who hope to learn 
more about whether machine learning and artificial intelligence might 
be useful for their companies. This book is meant to be accessible to a 
broad audience—from a curious high school student to a retired mechanical 
engineer. Although it will help if you know a little computer science, the 
only real prerequisites for this book are curiosity and a bit of an attention 
span. And I have intentionally kept the math in this book to a minimum 
to communicate the core ideas without alienating casual readers.

Experts in the robotics, AI, and machine learning communities will 
often know the implementation details of some of the algorithms I will 
describe; but the remaining narrative and the design of entire systems 
will still probably be new to many of them (except when that is their 
area of research). My hope is that there is something new in this book for 
everyone.
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1  THE SECRET OF THE AUTOMATON

THE FLUTE PLAYER

In the year 1737, at the dawn of the Industrial Revolution, the French 
mechanical genius Jacques de Vaucanson completed a masterpiece: a statue 
that could create music from a flute like a real human. Holding a real flute 
up to its mouth, the life-sized statue would blow into the instrument with 
its mechanical lungs to produce a note. By moving its lips and adjusting 
how hard it blew, and by moving its fingers precisely over the holes, the 
statue could produce a sequence of notes to form a complete song “as per-
fectly as any human being.”1 Vaucanson, not content with a statue that 
could play just a single song on its flute, endowed the statue with the abil-
ity to play 12 different songs.2

The public had seen devices like the Flute Player before, although this 
one was special. They knew such machines as automata, and they simply 
couldn’t get enough of them. Commissioning such devices had become a 
hobby among the wealthy elite throughout Europe.3 For a little while Vau-
canson charged the equivalent of a week’s salary for each member of a 
small audience to see his strange device. Its natural movement and the 
complexity of its behavior were simply unknown at the time. Eventually 
Vaucanson toured this and several of his other automata around other parts 
of Europe.

But how did it work? Was it dark magic? A church official had ordered a 
decade earlier that one of Vaucanson’s workshops be destroyed, because he 
considered it profane; so Vaucanson was sure to steer clear of doing any-
thing that might look too much like magic. Was it a hoax? Just a few years 
before the Flute Player, an automaton that could apparently play the 
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harpsichord had enchanted the French king Louis XV. The king, insisting 
on learning how the device worked, discovered that it was just a puppet, 
with a five-year-old girl inside.4 But Vaucanson, keenly aware of this hoax, 
eagerly showed his audiences the inner mechanics of his Flute Player. It 
moved so fluidly and naturally, yet, as he showed them, it was apparently 
just following a sequence of instructions encoded into its mechanical 
bowels.

To further legitimize his invention, Vaucanson presented the automaton 
to the French Academy of Sciences, offering a dissertation titled “Mecha-
nism of the Automaton Flute Player.” In his dissertation, Vaucanson 
explained precisely how the fantastic machine worked. The statue was con-
structed of wood and cardboard, painted to look like marble, with leather 
on its fingertips to form a tight seal with the flute’s holes. The mechanical 
drivers of the automaton were two rotating axles. To produce the statue’s 
breath, one of these axles—the crankshaft—pumped three sets of bellows, 
which produced flows of air at three different pressures: low, medium, and 
high. These three streams combined into a single artificial trachea that fed 
into the statue’s mouth. The other axle of the device slowly rotated a drum 
covered with small studs. As the drum rotated, these studs pressed against 
fifteen spring-loaded levers. Via chains and cables, these levers actuated var-
ious parts of the automaton. Some of the levers controlled the movement 
of the fingers and lips.5 The remaining levers determined which of the 
three pressure ranges should be used to blow into the flute, as well as which 
position the device’s tongue should take to modify the airflow. By placing 
the studs onto the correct positions on the rotating drum, Vaucanson could 
program the statue to play virtually any song he wanted; it was little more 
than a gigantic—albeit sophisticated—music box. The academy accepted 
his dissertation with a glowing review.6

Vaucanson’s masterpiece was just one of many automata developed by 
the inventors of that century, over the course of decades. The automaton 
was popular precisely because it was fully autonomous and because it 
appeared to replicate human intelligence. The Flute Player and others like 
it were the artificially intelligent harbingers of the Industrial Revolution: 
as the materials and inventions that would enable it became available over 
the course of decades, the technologists and hobbyists of the time used 
them in their uniquely human quest to replicate our bodies and minds.
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TODAY’S AUTOMATA

Fast-forward to the present day. Real-life self-driving cars now cruise 
around the cities of Silicon Valley day and night. We’ve trained computer 
programs to play Atari games far better than humans can by offering them 
treats, the same way you would train a dog to sit or to rollover. A computer 
program managed somehow to defeat two world champions at the game 
of Jeopardy! We’ve developed a computer program that can beat the best 
humans at the ancient game of Go. Meanwhile, the artificial intelligence 
behind these breakthroughs has been improving at a rate that’s astonish-
ing even to experts in the field.

It’s hard to overstate this last point. The team that created Watson to play 
Jeopardy said it wasn’t yet possible to create a program that could beat the 
world’s best players, just before they embarked on a system that did just that. 
Many experts thought that it would take another decade to create a com-
puter program that could play Go competitively up until they were proven 
wrong by AlphaGo, a program trained over the course of months to beat 
a leading world champion. Within 20 months, AlphaGo’s creators devel-
oped another version of the program that taught itself thousands of years’ 
worth of accumulated knowledge about the game within the course of 
three days; this version of AlphaGo defeated the previous version in 100 
out of 100 matches with a 10th of the computing power. This was in part 
due to advances in artificial neural networks, the technology underlying 
AlphaGo and the focus of intensive research over the past decade. These 
networks don’t just play games: they now have an ability to recognize 
images in photographs and spoken text that rivals humans’ abilities.

As these breakthroughs have continued to make headlines, they natu-
rally pique our curiosity: How do they work? Just as 18th-century Europe-
ans wondered about the Flute Player and other automata of the time, this 
question often lingers unanswered, always beneath the surface, when we 
talk about these new automata.

Fortunately, and comparable to the way Vaucanson presented his disser-
tation to the French Academy of Sciences, the creators of many of these 
recent advances have documented in precise detail how to build these 
smart computer programs. That detail is spread across many different places; 
so in this book I have attempted to organize it, and to explain in simple 
terms, how these smart machines think.
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Unlike the hoax automaton with the five-year-old girl hidden inside, 
the breakthroughs we’ll look at in this book are legitimate scientific 
advances. Although they might look like magic, academic communities 
have vetted them all carefully, just like the Academy of Sciences vetted the 
Flute Player. Also like the Flute Player, they’re examples of automata. An 
automaton is a self-moving machine. It appears to operate independently, 
often like a person or an animal, as if it could think for itself. But by defi-
nition, automata follow programs. These programs are predetermined 
sequences of instructions, like the programs Vaucanson developed for the 
Flute Player to play its songs.

As we’ll see, it turns out that technologists haven’t changed much over 
the past few centuries. They’re still building and programming automata 
to replicate the human mind and body, and they sometimes still create hoax 
automata. The only difference is that now they’ve upgraded their tool 
chest to the levers, gears, and engines of the 21st century: computers and 
the software that runs on them.

THE SWING OF A PENDULUM

The automata of the 18th century sometimes used the cutting edge of pre-
cision technology at the time—mechanical clockwork—to carry out 
their programs. They were powered with mechanical energy: a hefty weight 
lifted high or a wound-up coil turned by a key. Their creators were often 
watchmakers, and the automata’s technological ancestors were clocks that 
performed elaborate and entertaining mechanical sequences at the strike 
of an hour. These kept the time and performed their feats by drawing from 
potential energy stored within them before they were set in motion. Their 
clockwork enabled them to carry out their programs, step by step, by releas-
ing this stored energy in small increments.

Mechanical clocks keep time with the swing of a pendulum. The pen-
dulum swings with such regular frequency that it was the best method for 
timekeeping until the 1930s.7 With each swing, a series of latches and gears 
registers the passage of another epoch, releasing a bit of stored energy so 
the clock can do something interesting, and to give the pendulum a small 
push to keep it swinging. And then the process repeats itself. A mechani-
cal watch works on a similar principle: a finely coiled spring spins a 
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circular disk back and forth around its center. With each twist of the disk, 
a gear moves one or two teeth at a time, so that the rest of the clockwork 
can do something interesting.

To a first approximation, this is the same machinery that enables elec-
tronic computers to run their programs. Computers use the principle of 
latches and gears; but instead of the quiet swing of a clock’s pendulum, they 
use the swing of electrons, as they silently whoosh from one part of the 
circuit to another and back again. When the electrons are halfway to their 
destination at either extreme, they keep their momentum as they flow 
through another part of the circuit: a coiled piece of wire, for example (an 
electromagnet); or even the elastic swing of a crystalline tuning fork (a lab-
grown and precisely cut piece of sand) whose vibrations at millions of 
times per second offers the circuit an extraordinarily precise resonant fre-
quency. These crystal oscillators replaced physical pendula because they 
were stable—resistant to external forces like earthquakes, temperature 
changes, and the acceleration of airplanes and submarines—and because 
they were fast (millions of swings-per-second fast).

Each time these electrons swing from one part of the circuit to the other, 
electronic latches—analogous to the physical latches of a mechanical clock 
or watch—register the passage of another epoch in which to carry out 
another instruction in the program. Then the instruction counter moves 
forward, the clockwork waits for the electrons to swing back (or for new 
electrons to take their place), and the process repeats itself.

AUTOMATA WE’LL DISCUSS IN THIS BOOK

The swing of these electrons, and the intelligent behavior they enable, will 
be the focus of this book. In this book we won’t ever look at the low-level 
instructions of these programs—that is, the variable and function names 
that the programmers wrote down to create their programs or the machine 
code generated by their programs. But we will look at the intermediate 
building blocks that make up these automata—basically the “statistical gears 
and bellows” one level higher. By understanding the building blocks that 
make up these automata, my hope is that you’ll be better prepared to 
understand how other modern automata work. For example, now that you 
know how Vaucanson’s Flute Player worked, you could probably make 
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some educated guesses at how parts of his famous Digesting Duck worked. 
This automaton could flap its wings, quack, eat, digest, and (apparently) 
defecate.8

Vaucanson’s automata couldn’t react to the world. The automata of his 
day followed simple, predefined sequences of steps. Our modern-day 
automata can react to a changing environment because they have an abil-
ity to perceive. They can react not only to the press of a button on a key-
board, but also to the sight of cars and pedestrians passing through a 
crowded intersection, or to the subtle clues laid out in a Jeopardy question. 
Today’s automata can do these things in ways that would have left Vaucanson 
and his contemporaries in awe.

I’ve written this book for anyone interested in how these devices work. 
You won’t need to have a college degree in computer science to under-
stand this book, although I’ll assume that you’re familiar with some basic 
facts about computers, such as that they follow explicit instructions 
encoded by humans, that images are represented by computers based on 
the amount of red, green, and blue they have in each pixel, and so on. And 
if you’re already familiar with artificial intelligence or robotics, some parts 
of this book will probably still be new to you. Although you might have 
learned about the building blocks of these devices in your classes—the ele-
ments of machine learning and artificial intelligence—there’s still a good 
chance that you haven’t learned about how these building blocks have been 
put together to create these breakthroughs, because these topics aren’t all 
typically taught in a single place. And finally, I’ve written this book so that 
you can usually jump straight to the topic that most interests you if you 
don’t feel like reading all the way through. You shouldn’t need to backtrack 
more than a couple of chapters to catch up on the machine learning and 
artificial intelligence background you need to know.

What are machine learning and artificial intelligence, anyway? Artificial 
intelligence (AI) is a broad field of study devoted to giving computers the 
ability to do intelligent things. There’s no promise in AI that computers will 
do these things the way humans do them, and as we’ll see, they often do 
things very differently than humans would do them. AI simply addresses 
how they can do intelligent things, and usually it addresses this question for 
very narrow domains, like finding a path through a maze. Machine learn-
ing is a closely related field devoted to enabling machines to do smart 
things by learning from data. As we’ll see in this book, neither AI nor 
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machine learning on their own can do everything. There will be cases 
where we’ll need algorithms that can dumbly brute-force their way to 
intelligent solutions without using any data whatsoever; and there will be 
cases where we need to design algorithms that can learn from billions of 
data points but are still useless until we combine them with the dumb, 
brute-forced solutions. We’ll need to combine algorithms of both types to 
do interesting things.

I’ve already mentioned some of the wonderful advances in machine 
learning and AI that we’ll explore in How Smart Machines Think. In the first 
half of the book, I’ll outline some of the key ideas that enable intelligent 
machines to perceive and interact with the world. We’ll see what enables 
self-driving cars to stay on the road and to navigate through crowded urban 
environments. We’ll see how neural networks can enable these cars—and 
other machines—to perceive the world around them, and we’ll see how 
they can recognize objects in pictures or words in a recording of human 
speech. I’ll also outline how one of the best movie-recommendation 
engines in the world worked, both because the story behind it is so fasci-
nating and because many of the core ideas from that system permeate the 
other machines we’ll look at in this book. Then I’ll tell you how we can 
train computers to perform certain behaviors by feeding them treats and 
how they can perceive the world with artificial neural networks. Later in 
this book we’ll look more closely at how computers can play a variety of 
games. Specifically, we’ll take a look at AlphaGo and Deep Blue, which beat 
reigning world champions Lee Sedol and Garry Kasparov at the strategy 
games of (respectively) Go and chess; as well as IBM’s Watson, which beat 
Jeopardy champions Ken Jennings and Brad Rutter.

Throughout this book, we’ll follow the stories behind how these break-
throughs have occurred. We’ll meet many of the researchers involved, and 
we’ll see the factors beyond their technology and methodology that made 
these advances possible. One recurring theme, for example, is that a com-
petitive research community can help to focus efforts and to catalyze prog-
ress. This is what thrust the field of self-driving cars into the public 
imagination and into its modern form: hundreds of research teams com-
peted in a contest to build self-driving robot cars that could travel for miles 
in the desert, without human drivers. And that’s where our story begins—
on a cool morning in the Mojave Desert, as some of these teams prepared 
their cars for the race.





2  SELF-DRIVING CARS AND THE DARPA  
GRAND CHALLENGE

Most things worth doing aren’t easy, and they aren’t fast. You play with what 
you got, and how things turn out, that’s the way they are supposed to be. The 
right thing to do is choose something you love, go after it with everything you 
got, and that’s what life is about.
—William “Red” Whittaker, leader of the Red Team1

THE $1 MILLION RACE IN THE DESERT

The first robot car race began in the Mojave Desert on a cool Thursday 
morning in 2004. As the sun began to rise, a desert tortoise poked its head 
out of its burrow, hoping to spend the day basking on the quickly warm-
ing road. Today he found himself trapped near his burrow, unable to move 
far in any direction. Some twenty biologists had put barriers around this 
and similar burrows to protect endangered species from the fleet of robot 
cars that was about to drive down the nearby highway.2 They anticipated 
(correctly) that the cars wouldn’t be able to stay on the roads, let alone 
avoid tortoises in the middle of them.

Expectations about the cars’ ability to finish the race varied wildly. 
The race manager unblinkingly claimed a winner would finish the 142-
mile span in under 10 hours.3 Others—including many in the robotics 
community—doubted that any contestants would finish the race at all.4

A $1 million prize was at stake. Among those who wanted that prize was 
Chris Urmson, design lead for a team of researchers developing a self-
driving Humvee.

Chris was tall and thin, with messy blond hair. Under the mentorship 
of the legendary roboticist William “Red” Whittaker, Chris was working 
his way toward a PhD at Carnegie Mellon University (CMU). Singularly 
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dedicated to his research, he had spent nearly two months in the desert 
running tests on the team’s Humvee, staying up for nearly 40 hours straight 
at one point.5 During one of its long-running tests he watched till near 
midnight, huddled under heavy blankets, as the Humvee drove in circles.6 
With its headlights visible through the thin fog, the Humvee suddenly 
veered off-course into a chain-link fence.7 In another experiment the 
Humvee rolled over when it attempted a sharp turn, throwing its sensors 
off for weeks. Chris knew it was better to have these accidents before the 
race than during it.

A self-driving motorcycle was (of course) the media darling for the race. 
Its designers had attached gyroscopes to it so that it could remain upright 
by counter-turning just enough to stay balanced. It was among more than 
100 submissions from researchers and hobbyists throughout the country.8 
A gyroscopic motorcycle was clever, but everyone knew that if any team 
were to win the race it would likely be Chris and William’s team from 
CMU. Researchers from Carnegie Mellon had been leading the field for 
the past two decades, putting a rudimentary self-driving car onto Pitts-
burgh’s streets as far back as 1991. No one could deny the CMU research-
ers’ electromechanical chops. And their generous funding by military grants 
probably didn’t hurt.9

The day of the race, the Humvee designed by Chris and his team 
zoomed by the tortoise’s burrow, peppered with sensors and followed 
closely by another car. The Humvee had been driving for about 25 min-
utes. It wasn’t driving fast—it averaged a little over 15 miles per hour for 
the 7 miles it had traveled—but it was still faring better than the other sub-
missions that day. Its windshield obscured by a large CAT logo, the robot 
car hummed along confidently. But suddenly its vision gave out as it fol-
lowed a switchback curving sharply to the left. Unable to see the road, the 
car was driving blind.

HOW TO BUILD A SELF-DRIVING CAR

How did the Humvee drive on its own for seven miles? You might have 
heard that self-driving cars use machine learning—specifically “deep neu-
ral networks”—to drive themselves. But when Chris and his colleagues 
described their Humvee after the race, they didn’t mention machine learn-
ing or neural networks at all. This was 2004, nearly a decade before we had 
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figured out how to train neural networks to reliably “see” objects. So 
what did these early self-driving cars use instead? In the next few chapters, 
I’ll answer this question, explaining some of the bare minimum algo-
rithms that enable cars to drive autonomously. I’ll start by explaining how a 
car can drive for miles on a remote desert road without any traffic, when it 
has been given a list of locations to visit. Then I’ll work my way up over the 
next few chapters to describe the algorithms that enable these cars to “see” 
the world around them and to reason about driving in an urban environ-
ment well enough to obey California traffic laws. But before we get into 
those details—all of which are part of a self-driving car’s software—let’s 
take a quick look at the way a computer controls the hardware of the car.

When Vaucanson created the Flute Player we saw in the last chapter, he 
programmed it to play specific songs by carefully placing studs at specific 
locations on the rotating drum. These studs then pressed levers that con-
trolled its lips, the airflow in its breath, and its fingers. If Vaucanson wanted 
to create a new song, he just needed to create a new drum with its studs 
placed at different locations. And if he wanted to change the way the statue 
moved its lips or fingers, while keeping his library of 12 songs, he just 
needed to adjust the levers, chains, and joints of the physical device. He had 
separated the development of his automaton into two parts—the rotating 
drum and the rest of the system—which made improving it and reason-
ing about it much easier. We can do the same thing with a self-driving car.

Let’s just focus on its speed for now. At its simplest, the car needs to turn 
a number the computer gives to it—such as “25”—into something con-
crete: the car’s driving speed. The thing that makes this more difficult than 
it sounds is that the physical engine has no concept of what “25” means. 
For example, even if you knew that applying 250 volts to an electric engine 
would make the car drive at 25 miles per hour, you couldn’t expect that 
by simply scaling the voltage up or down you’d get the speed you want. If 
you wanted the car to drive at one mile per hour, you couldn’t expect that 
applying 10 volts to the engine would do the job. It wouldn’t move at all 
at that voltage.

Vaucanson’s contemporaries solved this problem by using a device called 
a centrifugal governor, which creates a feedback loop to control the 
engine’s speed. A centrifugal governor is the “spinny” device with two 
metal balls—as shown in figure 2.1—that you might associate with steam 
engines and the mechanical workshops of the Enlightenment. As the 
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Steam 
engine

Fuel line

Valve to control fuel
closes when speed

is too high

Flyballs move outward
when axis rotates quickly

Fuel to engine

Non-rotating plate
moves down when
wheels spin quickly

Everything on 
darkly-shaded

segment rotates
with the engine

Fixed joint

Figure 2.1
A centrifugal governor, the precursor to electronic control systems. As the engine 
runs more quickly, the rotating axis with the “flyballs” spins more rapidly, and the 
flyballs are pulled outward by centrifugal force. Through a series of levers, this causes 
the valve to the engine to close. If the engine is running too slowly, the valve will 
allow more fuel through.
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engine runs faster, the governor spins more quickly, and the metal balls are 
pulled outward by centrifugal force. Through a series of levers, a valve closes 
on the fuel line feeding into the engine, slowing it back down. If the engine 
is running too slowly, the device increases fuel to the steam engine, 
speeding it back up. By adjusting the fuel to the engine, the governor keeps 
the engine’s speed consistent.

The downside to this governor is that it only knows how to keep the 
engine running at a single speed. Modern self-driving cars use a similar 
feedback loop, except that they can run at whatever target speed is dictated 
by the computer program. You can see such a feedback loop in figure 2.2. 
Your target speed—say, 25 miles per hour—is an input to this feedback 
loop, and the loop uses an electronic speed sensor instead of a spinny device 
to gauge how far the wheel speed is from the target speed.

The intuitive behavior we want out of a speed control algorithm is that 
it will increase the power to the motor when the car is driving too slowly 
and decrease it when the car is driving too fast. One popular way to adjust 
the power to the motor is called proportional control, so-called because the 
adjustments we make to the power are equal to the difference between the 
target and current speed, multiplied by a fixed number. Proportional con-
trol isn’t perfect—if the car is driving uphill or driving against strong winds, 
it will tend to drive more slowly than we want. So usually a couple of other 
adjustments are made to the control algorithm—so that, for example, if the 
car is consistently too slow, the power to the engine will get a little boost. 

 Engine Power 
source

Speedometer

PID 
controller

Desired speed—

Error

Actual speed

Figure 2.2
The control loop for a PID controller, the three-rule controller 
described in the text. The controller uses feedback from the speed-
ometer to adjust inputs to the engine, such as power.
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The most common control algorithm is a set of three simple rules like this 
that reliably get the car to its target speed. It was this three-rule controller 
(experts call it a PID controller) that was used in many of the self-driving 
cars we’ll cover in the next few chapters.10

Now that we have a rough sense for how to control the hardware, we 
don’t need to think a whole lot more about these messy details. Creating 
the hardware is certainly important, but we can assume that it’s a separate 
challenge, maybe a topic for a different book. To control speed and steer-
ing from our perspective, we just need to write software that tells the car 
what speed to drive at, and how much it should turn its wheels. We’ve 
turned driving a car from a hardware problem into a software problem, and 
now we can focus exclusively on that software problem.

PLANNING A PATH

When the Humvee drove in the race, it didn’t just drive for 25 minutes in 
a random direction; it drove along a path toward a specific destination. It 
did this because the car had a piece of software that told it where to go. This 
planning component is the most important part of the self-driving car: 
it determines the priorities for the rest of the system. Everything else 
the car does—such as steering to stay on the path and not crashing into 
rocks—is done to further the goal of following that path.

The organizers of the robot car race gave the contestants an electronic 
map of the route a mere two hours before the race started because they 
didn’t want the contestants to peek at the route. This map outlined—with 
global positioning system (GPS) coordinates—where the car could go on its 
way from the beginning of the race to the end of the race. So Chris and his 
team outfitted their car with a GPS sensor to detect where it was. In theory, 
the car simply needed to navigate from one spot on the map to another, 
using their GPS sensor to turn this way and that to stay close to the route.

Chris’s team, which called itself the Red Team, knew that GPS was the 
most important part of navigation, but they also knew that it wasn’t enough. 
Obstacles like fences and rocks would be in the way. So the Red Team also 
created a massive map in advance, which they called “the best map in the 
world,” to augment the one they would receive the morning of the race.11 
In the weeks before the race began, they studied satellite images from 
54,000 square miles of desert to identify where the obstacles were located. 
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Then, during the two-hour window in which they had the route’s GPS 
coordinates before the race started, fourteen humans hurried (with the 
help of a couple dozen computers) to manually annotate the terrain along 
the route.12

As these human workers annotated the map, a computer continuously 
searched for the best route from the start of the race to the end of it, sending 
updates back to the workers so they could prioritize their research. 
Chris and his team planned to upload this pre-computed path to their self-
driving Humvee just before the race started.

PATH SEARCH

When you were a child, you may have played a game in which you pre-
tended that the floor in your living room was hot lava. The point of this 
game was to find a path through the room that avoided the floor—that is, 
the lava—whenever possible. The Humvee needed to do the same thing to 
get from its current position to the next goal point in the map, except that 
instead of avoiding lava, it needed to avoid dangerous parts of the desert.

But we can’t simply tell the Humvee, “Find a good path.” Remember, 
when Vaucanson created the Flute Player, he had to provide the statue with 
instructions for every little movement it would need to make to play the 
flute. Similarly, when we program a computer to find a good path, we need 
to give it a clear sequence of steps it must follow to figure out that path on 
its own. These steps are like a recipe, except that we must be explicit about 
the most minute of details.

If we were to formalize the process you went through to find a path 
through your hot-lava living room, it probably went something like this. 
First, without thinking about it, you assigned a cost in your mind to tak-
ing a step on different surfaces or items in the room, perhaps like this:

Table 2.1

Terrain type “Cost” of one step

Carpet (lava) 1
Table 0.5 (Mom will get mad, but it’s not lava)
Couch 0
Sleeping dog or cat 10
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Then you planned your path through the room by estimating which 
sequence of steps would get you to the other side of the room for the least 
possible cost. Notice that we framed the problem of searching for a good path 
as minimizing some function (the cost of a path). This is important, because 
we framed the problem in terms of something computers are good at. 
They’re bad at open-ended planning in complex environments, but they’re 
good at minimizing functions. We will see this idea again and again in this 
book.

The Humvee was in a timed race, so the Red Team assigned a cost to 
each meter-by-meter cell in their map to reflect the time they expected 
the Humvee would take to safely drive one meter, on a six-point scale. 
Difficult terrain received a higher cost than easy terrain since the Humvee 
would need to drive more slowly on it. The team added extra penalties for 
regions of the map that were unpaved, lacked GPS data, or had uneven or 
steep ground, or for cells that were too far from the center of the race cor-
ridor described by their GPS coordinates. Once they had a map with costs 
assigned to each square cell, they needed to estimate their path through 
the map.

In one popular path-finding process called Dijkstra’s algorithm, the com-
puter searches for a path by growing a search “frontier” out from the start 
point.13 The program runs a loop, pushing the frontier out a small amount 
each time it runs through the loop until eventually the frontier reaches the 
final destination. As the program grows the frontier, it slowly increases 
the cost it’s willing to “pay” to get to any point within the frontier; so any 
time it stretches the frontier to include another point, that new point is just 
at the cusp of what it’s willing to pay. The benefit of stretching the frontier 
like this is that the frontier can search along the most promising routes—
such as smooth roads, which have a low cost—long before it bothers search-
ing far into the more difficult routes—such as rough, off-road terrain.

By the time this frontier reaches the goal point—the destination, in the 
case of the self-driving car—the computer knows a path exists, and it knows 
the cost of that path. As long as the computer kept track of how it spread the 
frontier through the map, it can then quickly backtrack to find the shortest 
path to the goal point. You can see what such a shortest path looks like—as 
well as what the search frontier looks like—in figure 2.3.

Computer scientists and roboticists have spent years studying algorithms 
like this, and they know how to find the lowest-cost path in large maps in 



Figure 2.3a
An example map. Darker shades indicate a higher travel cost.

Figure 2.3b
The search “frontier” at different iterations of Dijkstra’s algorithm.

Figure 2.3c
An optimal path through this map.

(a) A map with four different types of terrain. Each cell in the grid represents a square 
meter and takes one of four colors, indicating the type of terrain. Darker shades have 
a higher cost and cannot be traversed as easily. Start and end positions are respectively 
marked on the left and at the top. From lightest to darkest grey, the time to pass over 
a cell are 1.0, 3.0, 9.0, and 18.0 seconds / meter. (b) Some search algorithms run by 
growing a search “frontier” out from the start point. Each frontier is represented by a 
contour line; these represent how far the car could travel in 175, 350, 525, and 700 
seconds. (c) Once the algorithm has completed, it has mapped an optimal path 
through the cost grid. In this case, the path tends to prefer to stay on light-colored 
terrain, on which the car can drive more quickly.
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a fraction of a second. When the path doesn’t need to be the best possible 
path—just a good-enough path—they can estimate it in even less time. 
After the Red Team’s computers planned the Humvee’s path with such an 
algorithm, the Humvee was ready to begin the race.

NAVIGATION

To find its position on the map, the Humvee used a GPS sensor that Chris’s 
team had strapped to it. GPS sensors use signals from a constellation of 
dozens of carefully calibrated satellites put into orbit by the US Department 
of Defense. At any given time, a handful of these satellites—not always the 
same ones—will be visible to a GPS sensor; it uses four of the visible ones to 
triangulate its current time (t) and its position (x, y, z) up to a few meters.

GPS alone isn’t enough for a self-driving car, however. First, GPS mea-
surements aren’t consistently accurate: a good GPS system might be accu-
rate up to centimeters, but some systems can be hundreds of meters off in 
the worst cases. There might also be gaps in GPS measurements from hard-
ware hiccups, when passing through a tunnel, or even from disturbances of 
the satellites’ signals as the signals pass through the earth’s ionosphere. GPS 
also couldn’t tell the robot car its orientation: the Humvee might lose its 
bearings if its wheels slipped on the dusty road, for example. Having a way 
to navigate without GPS was therefore critical for the Humvee.

So the Red Team also put accelerometers onto the Humvee to measure 
its acceleration in three dimensions, which the Humvee accumulated to 
estimate the car’s velocity and position. They also attached gyros, which are 
accelerometers that measure rotation, so the Humvee could keep track of 
its orientation.

The car combined measurements from these accelerometers and GPS 
sensors using a Kalman filter, a mathematical model discovered in 1960. A 
Kalman filter is a method for tracking an object over time—the position 
of a submarine in the ocean or a robot Humvee, for example—by distill-
ing a collection of measurements of the object into an estimate of its posi-
tion. The core idea behind a Kalman filter is that we never really know an 
object’s true position and speed: we can only take imperfect snapshots, like 
blips on sonar. Some blips might be wrong, and we don’t want that to 
throw off the estimate—maybe it’s a reflection off of an orca or a piece of 
seaweed, for example—but a Kalman filter can smooth out these outliers. 
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In fact, a Kalman filter doesn’t expect any of its measurements to be correct; 
it just expects them to be correct on average. And with enough observations, 
it can approximate an object’s true position and velocity extraordinarily 
well: a Kalman filter taking in measurements from accelerometers, gyros, 
and GPS, combined with measurements from the wheels, can enable a 
self-driving car to estimate its position, even during a two-minute GPS 
outage, with an error of mere centimeters.14

But even with these precise measurements, the Humvee might still 
run into fences, boulders, or other things along the road that might not 
have been visible in the Red Team’s map, so the team also added a gigantic 
“eye” to the Humvee. They planned for this giant eye to scan the ground 
in the Humvee’s path to find obstacles that weren’t already encoded into 
the preplanned route. If there were an object or uneven ground in the 
path it had intended to take, the Humvee was programmed to veer left or 
right to avoid hitting it.15

The eye was a combination of a laser and a light sensor, together called 
lidar, which is short for light detection and ranging. Lidar is like sonar or 
radar, except that it bounces light off objects instead of bouncing sound or 
radio waves off them. (I’ll use the term laser scanners from this point when 
I refer to the technology). The giant eye also had a pair of cameras mounted 
on a gimbal that could be pointed by the robot in different directions.16 
(A gimbal is a fixture that enables an object to rotate along different axes, 
like that of a globe of the earth.)

But the Humvee’s giant eye was also very rudimentary. The Humvee 
wasn’t programmed to adjust its route in any material way in response to 
what its eye saw. It merely followed its preplanned path, veering left or right 
according to simple rules to avoid troublesome ground.

And this rudimentary eye was also what eventually gave the Humvee 
trouble, just before it skidded onto the shoulder of the road and crashed 
into a rock.

THE WINNER OF THE GRAND CHALLENGE

The Humvee hit the rock close to the place where we left it a few pages 
ago, just after passing its seven-mile mark in the desert. It had been follow-
ing a switchback as it curved to the left, but the Humvee’s turn was too 
sharp, and its left wheels went over an embankment at the edge of the road. 
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Its belly ground in the dirt as it slid forward until it hit the rock. A full 
minute on the race timer passed, followed by another, as the Humvee 
spun its wheels in the dust. A couple of race officials who had followed 
the Humvee to monitor its progress watched as the Humvee struggled in 
the morning light.

The Humvee’s tires spun for nearly seven minutes before finally catch-
ing fire. The nearby officials slammed a remote e-kill switch to stop the 
robot and jumped out to extinguish the flames. The Humvee’s wheels had 
been spinning so fast that both of its half-shafts split when they hit the kill 
switch.17 Chris’s team was officially out of the race.

A branch of the US Defense Department known as the Defense 
Advanced Research Projects Agency, or DARPA, organized this robot car 
race. Out of the 106 applicants to what became known as the DARPA 
Grand Challenge, 15 competed on the day of the race, including the robot 
Humvee designed by Chris and his team.

Exactly zero of these self-driving cars won the $1 million prize. To an 
onlooker, the competing cars might have looked like a rather pathetic 
bunch: one contestant, a large truck, slowly backed away from bushes, as 
another car, afraid of a shadow, drove off the road.18 The self-driving motor-
cycle’s creator, amid the excitement and cheering before the race, had 
forgotten to switch the motorcycle over to self-drive mode. It fell over at 
the starting line.19

The Humvee had driven 7.4 miles before grinding to a halt on the edge 
of the road. Although it was the race’s best performer, it had traveled a mere 
5 percent of the route.

The Red Team studied their race logs and published a lengthy report 
outlining the strengths and weaknesses of their Humvee. In their report, 
they enumerated some problems during its 25-minute run. It reads like the 
script of a Blues Brothers movie:

Impact with fence post #1

Impact with fence post #2

Momentary pause

Impact with fence post #3

Impact with boulder

High centering in the hairpin [i.e., the final accident]20



Self-Driving Cars and the DARPA Grand Challenge	 21

These impacts were described as “off-nominal behavior” in the Red 
Team’s report, but an insurance company might have more aptly called 
them “accidents.”

DARPA had announced to contestants that the race could be com-
pleted with a stock four-wheel-drive pickup truck,21 but the Red Team 
selected a Humvee because they didn’t want hardware to be a bottleneck. 
This did help in some cases. For example, fence post #3 was reinforced, 
which meant that the Humvee—which was more reinforced, as it was a 
Humvee—pushed against it for nearly two minutes before finally pushing 
it over and continuing on its way. Chris even called their Humvee a “bat-
tering ram of a car … at 22mph a Beast on a roll.”22 But a tough truck 
wasn’t enough to win.

The problem was that the Humvee could barely see where it was going. 
Its gigantic eye was too primitive, its vision too poor. Except for its ability 
to navigate over long distances, most of the Humvee’s intelligent behavior 
involved reacting to its sensors using simple rules. The Red Team, aware 
of these limitations, programmed the Humvee to ignore data from its 
camera and laser scanners when that data was likely to be unreliable, and 
then to follow its GPS coordinates, driving blind along its preplanned 
route. This is what happened right before the Humvee’s fatal crash. Its 
eye, and any software to support that eye, would have to be improved.

A FAILED RACE

To an outside observer, the Grand Challenge might have looked like a fail-
ure. CNN summarized it with the headline “Robots Fail to Complete 
Grand Challenge.”28 Popular Science called it “DARPA’s Debacle in the 
Desert.”23 On the bright side, as one spectator pointed out, it was “a good 
day for the tow-truck drivers.”24

But many of the competitors were genuinely happy with the results. 
Contestants and organizers partied that night at Buffalo Bill’s Casino at the 
finish line, where they were surrounded by fellow geeks with a passion for 
building robot cars. Soon they would be able to read in detail about how 
a robot Humvee had managed to travel 7.4 miles—7.4 miles!—in rough 
desert terrain. They could also finally catch up on sleep after having worked 
nights and weekends for months.25
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DARPA officials were also excited, congratulating each other about the 
race. For the past eight years, the field of self-driving cars had been hiber-
nating in virtual winter ever since Ernst Dickmanns, one of its leaders, had 
proclaimed that the field would need to wait until computers were more 
powerful. Now that computers were 25 times faster, DARPA’s Grand Prize 
had quickly begun to thaw the self-driving landscape so that researchers 
could make progress again.26

DARPA was also a step closer to achieving its mandate from Congress—
to make a third of military vehicles self-driving by 2015 (a mandate, to my 
knowledge, that they didn’t achieve). Like the contestants, DARPA had 
documentation from the world’s experts on how to make cars that could 
autonomously drive miles in the desert. “It didn’t matter to us if anybody 
completed the course,” DARPA director Anthony Tether explained. “We 
wanted to spark the interest in science and engineering in this area.”27

Seen from that perspective, the race was a resounding success. It had 
attracted more than a hundred applicants and saw reporting from more 
than 450 television news segments and 58 newspapers within just a few 
months.28 Top magazines like Wired and Popular Science featured the event 
in multipage spreads.29 Although they didn’t know it at the time, it would 
also precede at least a decade and a half of heavy industry investment in 
self-driving car technology.

Eager to continue the progress, DARPA officials announced that they 
would hold another race in just over a year. They sweetened the prize, dou-
bling the payout to $2 million. Gary Carr, one of the sleep-deprived 
contestants in the weeks leading up to the first challenge, was among those 
who could hardly wait. “We will be here. Our vehicle will be different, but 
we will be here.”30 He wasn’t the only one excited about the next race. 
Chris and the rest of the Red Team now had another shot.
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IN SELF-DRIVING CARS

Treat autonomous navigation as a software problem.
—Stanford Racing Team design philosophy, 2005

THE SECOND GRAND CHALLENGE

The second Grand Challenge took place a year and a half later, also in the 
Mojave Desert. One robot car would be released from the starting line every 
five minutes so the cars couldn’t interfere with one another on the route.1

The Red Team’s strategy was again to focus primarily on mapping and 
navigation. This time, over the course of a month, the team sent three 
drivers to scan 2,000 miles of desert to find potential routes the race might 
take. As before, a human team preprocessed the route for two hours before 
the race to help a computer plan a path that was then uploaded to the 
Humvee.2 They also encoded a rule into the Humvee intended to prevent 
it from getting stuck behind another rock. If it got stuck—that is, if its 
wheels were turning but its GPS sensor said it wasn’t moving anywhere—
it was programmed to back up 10 meters, clear its estimates of obstacles, 
and try again.3

The most challenging part of the race for these cars was Beer Bottle Pass, 
a 1.5-mile stretch of dirt road with sheer rock on one side and a 100-foot 
drop-off on the other.4 Competitors crowded around a live video feed of 
the pass to see whether their robot cars would make it.5 The Red Team’s 
Humvee made it through mostly fine, although it scraped itself a bit along 
the way. In fact, the Humvee successfully drove all 132 miles of the race, 
almost twenty times the distance it had traveled in the first race.6 But it 
didn’t win.
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The winner of the race was Stanley, a car built by the Stanford Racing 
Team, newcomers to the race that year. Stanley drove so fast that it had to 
be paused twice to give the car in front of it more time.7 Eventually race 
organizers paused the car ahead of Stanley to let it pass. In the end, Stanley 
finished over ten minutes faster than the Red Team’s Humvee.8

The Stanford Racing Team was led by Sebastian Thrun, the head of 
Stanford’s artificial intelligence laboratory and the youngest person ever to 
hold that role. Sebastian had also come from Carnegie Mellon, where he 
was a junior faculty member in the robotics lab just a few years earlier. 
Although he had never built a self-driving car before, he was inspired dur-
ing the first Grand Challenge. Knowing the results of that challenge—the 
Debacle in the Desert—he asked himself: Could we do better?9 With help 
offered by Volkswagen—two Volkswagen Touaregs and support from the 
company’s Electronics Research Laboratory—he could turn this inspira-
tion into action.10

As Sebastian wrote in a personal account of the race, he assembled the 
manpower to build Stanley by first organizing a seminar class to build a 
prototype.11 This wasn’t a normal class: it had no textbooks, no syllabus, and 
no lectures.12 The 20 students in the course read just two papers for the 
class, so that they wouldn’t be biased toward any particular approach.13 
Within eight short weeks, they had built a prototype that could travel far-
ther along the desert route (albeit more slowly) than the Humvee.14

What made Stanley so successful in the race? The teams in the previous 
year had relied too little on things like obstacle detection.15 The Stanford 
Racing Team had the insight that placing so much emphasis on mapping 
and navigation at the expense of sensing the environment was a mistake. 
Although their competitors, the Red Team, had scouted those 2,000 
miles of desert roads in advance of the second Grand Challenge, the area 
amounted to a mere 2 percent of the actual race route.16

So the Stanford Racing Team—knowing that even a massive Humvee 
could be stopped by rocks, and reminded by DARPA that a stock pickup 
truck could traverse the route—converged on a different design philoso-
phy: treat autonomous navigation as a software problem.17 After the class in which 
students designed the initial robot, Sebastian and a smaller team (compris-
ing just a handful of those students and some other researchers) threw out 
most of their code and began to rewrite the software for Stanley more 
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carefully, setting a high bar for software to be included in the car.18 But they 
didn’t just plan to rely on any software: more specifically, they planned to 
use machine learning to solve driving.

 MACHINE LEARNING IN SELF-DRIVING CARS

The Stanford Team wasn’t the first research group to use machine learn-
ing to design self-driving cars: machine learning had been researched in the 
context of self-driving cars since at least the 1980s.19 But they were one of 
the first modern self-driving car teams to take such a full bet on machine 
learning, embracing its role in self-driving cars nearly a decade before it 
became a buzzword in the mainstream media. As Sebastian’s team wrote 
in a description of their car after the race:

The pervasive use of machine learning, both ahead [of ] and during the race, 
made Stanley robust and precise. We believe that those techniques, along with 
the extensive testing that took place, contributed significantly to Stanley’s suc-
cess in this race.20

When Sebastian and his team first embarked on building Stanley, they 
had an immense task ahead of them. They needed to design a way for their 
automaton to both perceive the world and react: Stanley couldn’t wait for 
seconds at a time as it searched for a new path; it needed to make seamless 
decisions as its model of the world changed. The team thought about this 
task just as a team of architects would think about designing a new build-
ing. They needed to find an architecture for Stanley.

STANLEY’S ARCHITECTURE

The architecture they converged on was organized into three separate parts, 
as shown in figure 3.1. The leftmost part of the architecture was a hardware 
layer containing both sensors to collect data and actuators to control the 
steering, brakes, and engine speed. This layer didn’t do anything smart; its 
purpose was solely to fetch data from the sensors (the cameras, laser scan-
ners, and the GPS system) and to use commands from the planning layer 
(like engine speed and wheel angle) to control the hardware of the car. 
Except for the Kalman filters that might be embedded in the hardware, this 
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layer did very little that would typically fall into the realm of AI or machine 
learning.21

At the opposite extreme, on the far right, was the “thinking” layer: it 
performed high-level planning for the car. (There wasn’t much high-level 
thinking in Stanley—we’ll see much more of it in a self-driving car in the 
next chapter—but what little existed in Stanley existed here.) This layer 
figured out, given obstacles in its path, how the car should swerve to avoid 
them. This layer was in charge of making decisions about how the car 
should actually drive. It sent orders to the leftmost layer, often to the three-
rule controllers we saw in the last chapter. If the planning layer wanted 
the engine to target a specific speed, such as 25 miles per hour, it just 
needed to send that command to the hardware controllers.

The middle layer in figure 3.1 intermediated between the sensing/
control layer on the left and the thinking layer on the right. It turned raw 
sensor readings into interpretable models so the thinking layer could do its 
job. Some of these models simply summarized the high-level route that 
Stanley needed to follow, a route that Stanley had planned at the beginning 
of the race. Other models crunched numbers to tell Stanley what its sen-
sors were seeing. A variety of machine learning modules—including sev-
eral road-detection systems that we’ll take a closer look at in a moment—ran 
continuously in the middle layer, interpreting a disorganized mess of sensor 
readings and turning them into more meaningful interpretations of the 
world for the planning layer.

Hardware Perception Planning and control

Sensors: GPS, 
accelerometers, 
laser scanners, 
and cameras

Actuators: 
throttle and 

steering

Perception 
modules

World model

Path planner

Decisions about 
throttle and 

steering

Figure 3.1
A simplified summary of the software and hardware organization of 
Stanley, the Stanford Racing Team’s 2005 Grand Challenge winner.
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These sensor readings came into the middle layer as just clouds of points. 
By interpreting them for the planning layer on the right, the middle layer 
made it easier for the planning layer to focus solely on its higher-level rea-
soning. And although the modules that ran in this central layer were often 
cleverly engineered and used complex machine learning algorithms, they 
weren’t really “smart.” They only appeared to be smart when working in 
combination with the planning layer. Let’s take a closer look now at the 
perception modules from this middle layer.

AVOIDING OBSTACLES

Just as the Red Team had done, the Stanford Racing Team also outfitted 
their car with laser scanners to “see” the terrain around it. They pro-
grammed Stanley to imagine a grid around itself, a bit like the one in 
figure 3.2 (except that the size of each cell in their map was much smaller):

Figure 3.2
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Stanley used data from its laser scanner to estimate which cells in this 
grid were “occupied” by some object (the occupied ones in figure 3.2 are 
the dark ones). Stanley’s planning algorithms then allowed it to drive over 
cells that were not occupied while swerving to avoid any cells that were 
occupied.

But how could they tell whether a cell was occupied? Sebastian and his 
team programmed Stanley to do this by measuring characteristics about 
each cell, like the heights of different points in the cell—which was infor-
mation they could get from the laser scanner—and how long it had been 
since the last good measurement of those points had taken place. They then 
used these measurements to estimate the probability that the cell contained 
two points that were of different heights. If the cell did contain two points 
that were likely to be very different in height, then Stanley could mark that 
cell in its map as occupied.22

Sebastian and his team had the right idea with this approach, but they 
also found that their algorithm for marking these cells wasn’t very good. 
For one thing, their sensors tended to drift over time. If Stanley’s laser 
scanner was tilted just a fraction of a degree, Stanley would think that 
there were obstacles in front of it, which led its planning algorithm in the 
rightmost layer to order Stanley to swerve off the road. The Stanford 
Racing Team could have invested hundreds of thousands of dollars in an 
expensive pose-estimation system designed by topnotch research scien-
tists, but the team already had such scientists onboard; so they just built a 
model on their own that would be robust to these sorts of measurement 
errors. Their resulting model was correct, at least in spirit, but it also had 
many parameters to tune.23

Joshua Davis, a reporter for Wired, noted that Sebastian was well aware 
of these limitations. One day, a few months before the race, while Sebas-
tian was out in the desert with Stanley, he kicked some dirt at the side of 
the road in frustration over the car’s tendency to veer off the right path.24 
Stanley had nearly crashed into a ditch, and Sebastian saw that the car had 
the same problem as the entries in the first challenge that were afraid of 
shadows and bushes. So Sebastian thought carefully, trying to figure out 
which algorithms could enable the car to use data from its sensors better.25

Enter machine learning. Sebastian’s solution was to have a person drive 
Stanley around while its laser scanners measured the world around the 
car (by one account Sebastian himself drove Stanley to collect these 
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measurements), saving these measurements to use later. The idea was that 
whoever was driving Stanley would only drive Stanley on ground that 
was safe, and that some of the ground that Stanley didn’t drive on was 
not safe. They could use their sensor measurements to tune the many 
parameters in their obstacle-detection model. By doing this, they would in 
effect be “training” their algorithm with data.

The method Sebastian’s team used to predict which ground was safe to 
drive on was known as supervised classification.26 We’ll take a closer look 
at this approach beginning in a couple of chapters, but for now all you need 
to know is that a classifier like the one the Stanford Racing Team used pro-
vides a way for a computer to automatically predict which of two catego-
ries an item belongs to. The idea is that you combine your measurements 
using a simple mathematical function that produces a prediction. That 
mathematical function might have many knobs to tune, but—and here’s 
where the machine learning comes in—since these knobs can be tuned 
with data, the predictions can become very accurate.

The Stanford Racing Team’s data-driven tuning improved their terrain-
detection algorithm by orders of magnitude. Before they used it, they 
mistook safe ground for unsafe ground—the type of mistake that could 
throw Stanley off the road—12.6 percent of the time. After fitting their 
classifier with data, they cut this rate down by a factor of 6,000.27 This was 
their first major step in improving on the giant eye used by the Red Team.

FINDING THE ROAD’S EDGES

But was Stanley now able to drive safely down the road? Not quite. This 
classifier told Stanley what ground in its field of vision was drivable, but it 
didn’t say anything about roads, and it didn’t compel Stanley to actually stay 
on the road. With the classifier above, Stanley would have happily driven 
off the road as long as the off-road path was drivable.

Perhaps that was okay, though. After all, the race didn’t technically 
require Stanley to stay on the road, and as long as the classifier said the ter-
rain was drivable, then it was safe to drive on by definition, right? But the 
Stanford Racing Team recognized that leaving the road could be risky busi-
ness. As they wrote after the race, “Obstacles—such as rocks, brush, and 
fence posts—exist most often along the sides of the road. By simply driving 
down the middle of the road, most obstacles on desert roads can be avoided 
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without ever detecting them!”28 It’s perhaps no accident that some of the 
items they listed were those hit by the Red Team’s Humvee. Still, their 
point was clear. And so they developed another algorithm for Stanley’s 
vision system, this one to help Stanley find the edges of the road.

The Stanford Racing Team reasoned that the road’s edges should typi-
cally be parallel to their preplanned path. So they fitted Stanley with extra 
laser scanners to scan the ground in the car’s proximity for these road edges, 
in lines parallel to its planned path, as shown in figure 3.3:

Figure 3.3

This road-edge-detecting module then heuristically checked whether 
the lines scanned by the laser were free of obstacles. The outermost line on 
either side without a detected obstacle was considered an “observation” of 
where the road boundary was located, so as Stanley drove along, the module 
collected many of these observations. In raw form these looked like a 
sequence of points—just lateral offsets on either side of the car. But once 
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Stanley passed them through another Kalman filter, it had a smooth and 
accurate estimate of the road’s edges.29 And once Stanley had an estimate 
of the road’s edges, it could also keep an ongoing estimate of where the 
middle of the road was. Stanley’s path-planning algorithm, which we’ll 
see in a moment, was then programmed to drift toward the middle of the 
road if there weren’t any other obstacles in its path (the route was blocked 
to outside traffic for the robot race, so there were no oncoming cars).

SEEING THE ROAD

But problems still remained with Stanley’s vision system. Even though 
these modules could keep Stanley on the road, its laser scanners could only 
“see” about 30 meters ahead. This wasn’t far enough for Stanley to safely 
drive any faster than about 25 miles per hour, because these desert roads 
often had switchbacks, like the one that stopped the Humvee in the first 
race.30 Sebastian and his team calculated that 25 miles per hour would be 
too slow for them to be competitive, so they looked for another way for 
Stanley to see past the range of the laser scanner.

Their solution was to attach a color camera to the front of their robot. 
The camera could see farther than the laser scanners, so if they could deter-
mine that the road stretched out far ahead of Stanley, then Stanley could 
assume that the stretch could be driven on safely—and it could increase its 
speed from just 25 miles per hour to 45 miles per hour.31

When we humans look at a picture of a road, it’s immediately clear 
which part of the picture is the road, which part is the side of the road, 
and which part is the sky. None of these details are obvious at first to a 
computer program. Again, Stanley needed a step-by-step recipe to find the 
road in its images from the camera. To do this, Stanley applied another 
technique from machine learning, called clustering, to group together 
pixels with similar colors. By doing this, Stanley would be better able to 
tell whether a pixel belonged to part of the road—or to a part of the 
ground on the side of the road.

To understand how Stanley did this, imagine you’re a vampire who has 
just done a load of laundry. Since you’re a vampire, your favorite colors are 
red and black, and your socks are various shades of red and various shades 
of gray. After coming home from the laundromat, you begin to sort through 
these socks, spreading them out on the bed so that similarly colored socks 
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are near each other. Over time there will be a pile of red socks and a pile 
of gray socks, and they might overlap where the darker shades of red meet 
the darker shades of gray.

But then imagine that you find a bright green sock in your laundry. This 
sock clearly doesn’t belong in either of these piles, so you conclude that it 
must have gotten mixed up with your clothes at the laundromat. You reject it.

This is exactly how Stanley reasoned about the pixels in the image from 
the camera. It created clusters of road pixels by looking at the pixels rep-
resenting the ground just in front of the car. In the desert, you can imag-
ine that these road-color pixels might be a mix of gray and brown, which 
would have caused Stanley to end up with a cluster of gray-ish pixels and 
a cluster of brownish pixels.32 Stanley then tested whether the rest of the 
pixels in the image matched these clusters.33 If they matched the clusters, 
they were part of the road; otherwise, Stanley rejected them, just as you 
rejected the green sock: they weren’t part of the road. Once Stanley fig-
ured out which pixels “belonged” to the road, it could estimate how far 
ahead the road stretched by using simple geometry. If the road stretched 
out in front of Stanley for a long distance, then Stanley could speed up. This 
road-seeing module ran constantly in Stanley, repeating itself on a regular 
basis, continually adjusting its estimate of the road color.

Could Stanley be sure that it was actually picking the right pixels to 
build up its estimate of the road’s color? Wasn’t it possible that Stanley might 
accidentally select pixels from the side of the road to build up its clusters, 
instead of selecting pixels from the road? It was certainly possible for the 
algorithm to be wrong in identifying which pixels were road—just as it was 
possible for any of its algorithms to be wrong—but this was mitigated in 
part because Stanley had other modules, like the one to detect drivable ter-
rain, and because the algorithm was only used to control speed, not steer-
ing. Even if Stanley went off the road for a bit, it was still resistant to 
crashing. And once Stanley was back on the road, its road-seeing module 
could quickly readjust to the correct road color.

PATH PLANNING

Stanley’s modules for detecting the road and its obstacles were located in 
the middle of the architecture shown in figure 3.1, in the perception layer. 
The software that selected Stanley’s speed was over on the far right of its 
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architecture, in the planning layer. The rightmost layer didn’t need to look 
at raw sensor data; it just used information from the perception layer to 
make its decision. Another algorithm in Stanley’s planning layer was its soft-
ware to plan paths around obstacles. But before Stanley could meaning-
fully avoid obstacles, it needed to have an overall route to follow.

Just as the Red Team had done for their Humvee, Stanley preplanned 
its overall route at the beginning of the race. Stanley’s route didn’t incor-
porate external information about terrain like the Red Team’s did; as we’ll 
see, the Stanford Racing Team’s perception algorithms were good enough 
that Stanley could just detect and avoid obstacles on the fly. Instead, the 
primary goal of Stanley’s route-planning algorithm was simply to provide a 
route that was close to the GPS coordinates they were given by the race 
organizers, and which smoothed out the zigs and zags that would have 
been in the route if they had simply drawn straight lines between the GPS 
coordinates. This algorithm took Stanley only 20 seconds to run at the very 
beginning of the race.34

Once Stanley had this smooth route planned out, all it needed to do was 
follow that route, avoiding obstacles it detected along the way with its per-
ception algorithms. As we saw earlier, Stanley kept track of obstacles by 
finding which terrain around it was drivable; the obstacles were the square 
cells tagged as not drivable. To navigate around these obstacles, Stanley con-
tinuously recalculated the best path from its current position—wherever 
it was at a given moment—to a goal just a little further, say 10 seconds, 
along its preplanned route—wherever that might be. When Stanley planned 
this path, it just needed to find a way to get from its current position to its 
goal position without hitting any objects. As long as Stanley could continue 
to plan and execute these paths, the car would succeed in moving further 
along the route without hitting any objects.

Remember that the Humvee’s path-search algorithm from the last 
chapter used a cost function that incorporated how long it would take the 
Humvee to drive over each small square in the map. Stanley needed a simi-
lar cost function to avoid its own obstacles. One idea might be to incor-
porate some penalty for each cell in the grid based on that cell’s distance 
to the nearest obstacle; Stanley could use such a cost function to find a 
path that would keep it as far away from obstacles along its path as possi-
ble. In fact, this is exactly what the Stanford Racing Team originally tried. 
This algorithm kept Stanley away from obstacles, but it also made Stanley 
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swerve around erratically to avoid them. The team dubbed this algo-
rithm the “drunken squirrel.”35

To fix this, they programmed Stanley to follow a virtual corridor that 
was parallel to the smooth route Stanley had calculated before the race. 
Their goal was for Stanley to drive as fast as it could along this corridor, 
only swerving left or right within the corridor to avoid obstacles. It was 
as if Stanley were playing a classic arcade driving game in which the only 
controls were to speed up or to brake, and to slide left or right along that 
fixed route. Absent obstacles, Stanley was also programmed to drift toward 
the middle of the road it detected with its road-edge detector. To figure out 
whether to move left or right, and how quickly it needed to move—that 
is, whether it needed a small nudge or a quick swerve—Stanley still used 
a search algorithm, but it only considered smooth paths between where it 
was and where it could be in a few moments. Its cost function penalized 
several things, including driving far from the preplanned path, driving over 
obstacles, and Stanley’s distance from the center of the road. The path-plan-
ning algorithm then considered many of these paths and selected the best 
one it found. The algorithm ran continuously as the car zipped along its 
route, repeating itself about 10 times per second—fast enough that Stan-
ley could notice and avoid objects about 15 to 25 meters ahead of it.36

HOW PARTS OF STANLEY’S BRAIN TALKED TO EACH OTHER

When they were designing Stanley, the Stanford Racing Team needed to 
figure out how all of these algorithms should communicate with each 
other. They knew how to connect them, but that wasn’t enough: they also 
needed to figure out the protocol these algorithms would follow when 
talking to each other. Should there be a centralized “master process” direct-
ing everything? Should it be organized as some sort of hierarchy? The 
team chose to do the exact opposite: they combined these different soft-
ware modules together by simply letting them run independently, in par-
allel. There would be no “master” process telling everything what to do.37

You can think of these modules as workers in a grocery store who each 
have a separate job. The “stockers” at the grocery store unload goods from 
the delivery trucks parked in the back and put these goods onto the cor-
rect shelves in the store. The “cashiers” check out customers, and the “man-
agers” periodically move cash from the registers to the bank and order 
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more groceries for the store. Each worker does his or her job continuously 
and mostly independently of the others.

Because the shelves are continuously stocked and the cashiers are always 
at their registers ringing people up, customers can expect to be in and out 
of the store very quickly. We would say that the service at the store has low 
latency. The service is fast because the cashiers have exactly one job to 
do—ringing up the customers—not making deposits at the bank or stock-
ing the shelves.

Stanley could react quickly to events for the same reason: each of its 
modules—particularly those that needed to react to the environment—
could do so quickly because each module had only one job to do. Stan-
ley’s modules could react quickly to the environment because they never 
held full conversations with one another. Doing so would have run the risk 
of getting locked in a conversation, a problem known as deadlock. If two 
components become deadlocked, the whole system could screech to a halt, 
unable to recover until one or more of the components were restarted.

This doesn’t mean that the modules didn’t communicate. They commu-
nicated all the time, by posting one-way, time-stamped messages to each 
other. This is akin to having a public announcement system at the grocery 
store, where managers, for example, can warn cashiers that the store is run-
ning low on $1 bills, and suggest using them only when necessary. Cashiers 
can serve customers more reliably if the cashiers are never stuck in long 
conversations with their managers.

In the self-driving car, the GPS and accelerometers estimated the car’s 
position and orientation, “published” them with the current timestamp, 
and continued to take and publish updated position information for the 
rest of the race: that was their only job. The pixel-clustering, road-finding 
module fetched camera and laser scanner data, found roads, and then pub-
lished this information so the speed controller and path planner could use 
them at their convenience. Meanwhile, the path-finding module estimated 
the best path for the robot given its current position and obstacles, 
repeating itself ten times per second—and so on, for a total of about 30 
modules.

These modules won the Stanford Racing Team $2 million and a place 
in robot history. The team deserved their win, but Stanley was still very 
primitive by modern self-driving car standards. None of the five cars that 
completed the second Grand Challenge could drive on city streets, for 
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example. They couldn’t operate in oncoming traffic, and they couldn’t 
reason about parking spots, changing lanes, or traffic stops.

This wasn’t a design shortcoming: these cars were intended to drive only 
the race they entered, which didn’t require them to do any of those things. 
But DARPA’s next competition, the DARPA Urban Challenge—which 
would require robot cars to obey California traffic laws while navigating 
city streets with oncoming traffic—would change all of this. It would also 
give Chris and his team at CMU—the team that built the Humvee—one 
more shot at winning first place, provided that they could build a car to do 
all of these things.



4  YIELDING AT INTERSECTIONS: THE BRAIN  
OF A SELF-DRIVING CAR

At this point the question naturally arises: Why do so many independently 
designed architectures turn out to have such a similar structure? Are three 
components necessary and/or sufficient, or is three just an aesthetically pleas-
ing number or a coincidence?
—Erann Gatt1

THE URBAN CHALLENGE

Chris Urmson’s team spent the next two years preparing for the Urban 
Challenge. By this time Chris had become a professor at CMU. He was also 
the person in full charge of its racing team, now dubbed “Tartan Racing.” 
Not only had Chris’s team seen considerable turnover; it had also retired 
their Humvee, choosing instead a 2007 Chevrolet Tahoe they named “Boss.” 
Boss would incorporate the best of their previous design and much of what 
they had learned from the Stanford Racing Team the previous year.2

This challenge would be much more difficult than the previous ones. 
In the previous Grand Challenges, all the robot cars had driven solo, 
released one by one and monitored so they couldn’t interfere with one 
another. But the Urban Challenge was different. These self-driving cars 
would drive around an old military base with each other and with human 
drivers—a total of about 50 cars on the road at the same time—on city 
streets, at intersections, and in parking lots. And there would be no off-
road driving allowed here: these cars could lose points or even be dis-
qualified for disobeying California traffic laws.3

DARPA held several qualifying rounds before the November 2007 race. 
One called the Gauntlet required cars to carefully stay within their lanes 
while avoiding parked cars and other obstacles. Another qualifying round 
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tested the cars’ higher-level thinking: they needed to stop at four-way 
intersections, wait, and proceed when it was their turn, and they needed 
to be capable of deciding when a route was blocked—and of finding an 
alternate route when it was.

Another qualification round, known as “Area A,” tested the cars’ ability 
to detect and avoid moving objects. This round required self-driving cars to 
drive in a loop, making left-hand turns in front of oncoming traffic, as 
shown in figure 4.1. Self-driving cars needed to follow the black arrows on 
the right half of the loop while professional human drivers drove around 
on the outside of the loop.

PERCEPTUAL ABSTRACTION

To understand how Boss maneuvered through these environments, let’s 
take a closer look at how Chris’s team developed the car’s brain. Like 
Stanley (the Stanford Racing Team’s car in the second Grand Challenge), 
they designated a layer in Boss’s brain to synthesize the data coming in from 
its eighteen sensors. They called this middle layer (shown in figure 4.2) the 

STOP

Figure 4.1
Area A in the DARPA Urban Challenge. Professional human drivers circled in the 
outer loop as self-driving cars circulated on the right half. The primary challenge 
here for autonomous cars was to merge into a lane of moving traffic at the stop sign. 
Self-driving cars were allowed to circulate as many times as they could within their 
time limit.
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Figure 4.2
Boss’s architecture, simplified: the hardware, the perception (and world-modeling), 
and the reasoning (planning) modules, organized in increasing levels of reasoning 
abstraction from left to right. Its highest-level reasoning layer (planning, far right) was 
organized into its own three-layer architecture: the controller (route planner mod-
ule), the sequencer (Monopoly board module), and the deliberator (motion planner 
module). The motion planner could have arguably been placed with the sequencer.
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perception and world-modeling layer. Like Stanley’s perception layer, Boss’s per-
ception layer didn’t do any complex reasoning because its sole purpose 
was to interpret the data coming from its sensors—its laser scanners, radar, 
camera, GPS, and accelerometers—and to generate higher-level models of 
the world from that data. The data abstractions generated by this layer 
would then be used by modules that reasoned at a higher level to perform 
more complex tasks.4

The perception and world-modeling layer performed some of the tasks 
we saw in earlier races: estimating where the edges of the road were, find-
ing obstacles, and keeping track of where the car was, given its GPS data 
and its accelerometers. But for driving in urban environments, the percep-
tion layer needed to do more. Boss’s environment could change, as other 
cars came and went. So this layer represented static objects like trees and 
buildings with a grid on a map, filling in those grid cells or clearing them 
as sensors detected the presence or absence of objects. It also kept track of 
a road map provided by DARPA and a description of the missions to be 
completed, adjusting the map when it detected that paths on the map were 
blocked or unblocked.5

Boss’s perception and world-modeling layer also needed to detect 
and model the physics of moving objects. The module to detect moving 
objects had a rule that every observation made by its sensors should be 
associated with either a fixed or moving object in its object database. 
Boss calculated a quality measurement for that association; if the match 
between that measurement and an object was good, then that measure-
ment would be incorporated into Boss’s model for that object, so that, in 
Boss’s mind, the object would move a little bit. But if Boss couldn’t find 
a high-quality match between the measurement and an existing object, 
then the module proposed the existence of a new object to explain that 
observation. Occasionally the proposal took a static object and con-
verted it into a moving object. This might happen, for example, if Boss 
encountered a car that was parked but then began pulling out from its 
parking spot.

Once Boss detected a moving object, it could track the object with a tra-
ditional tracking algorithm. Boss used—yet again—a Kalman filter to track 
its moving objects.6 Boss also assumed that objects moved either like bikes—
where they could move forward or backward and had an orientation—or 
like drifting points—where they could move in any direction but lacked an 
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orientation; Boss based this decision on whichever model fit the data best. 
The assumptions for these models were then integrated directly into the 
Kalman filter: Kalman filters are very general, and they can be used to track 
not just objects’ positions, but also their velocities and accelerations.

Boss then imagined these objects as rectangles and other polygons mov-
ing around in its virtual world.7 Of course, Boss didn’t “see” them as part of 
a scene but rather as coordinates on a grid. As far as Boss was concerned, 
each rectangle should be given enough clearance, whether Boss was follow-
ing the rectangle in a traffic lane or bearing toward it from the opposite lane.

THE RACE

After many months of testing and anticipation, the day of the Urban Chal-
lenge arrived. During the race, Boss and other cars would need to com-
plete several “missions,” driving from one checkpoint on the base to 
another, all the while navigating through moving traffic along urban streets 
and amid other autonomous cars and human drivers. DARPA had pro-
vided a map of the compound to the competitors a couple of days before 
the race, and they provided mission descriptions to the teams just five min-
utes before the race. These missions required the cars to drive through the 
streets of the compound, park in parking lots, and navigate busy intersec-
tions fully autonomously.

DARPA officials wrote after the race that they had pared the applicant 
pool from eighty-nine to eleven for the final race by carefully reviewing 
the entrants’ applications and putting them through the qualifying rounds, 
which meant that the cars on the road during the final event had been 
carefully vetted.8 But this didn’t mean the human drivers were com-
pletely safe: the humans on the route—all of whom were professional 
drivers—drove with safety cages, race seats, and fire systems, and each 
autonomous car had a chase vehicle whose human drivers had a remote 
e-kill switch. The robot cars, while vetted, still had the very real potential 
to kill them.9

Fortunately, there were no major accidents on the day of the race. One 
car malfunctioned in a parking lot and tried to drive into an old building 
before DARPA officials hit its e-kill switch. There was also a low-speed col-
lision between another couple of self-driving cars. By the middle of the 
morning, almost half of the contestants had been removed from the course.10
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Yet several cars managed to finish the race successfully, including Boss. 
Within three years, self-driving cars had gone from being unable to drive 
more than eight miles in the desert to successfully maneuvering busy intersec-
tions while spending hours on the road. In addition to seeing with its percep-
tion and world-modeling layer, Boss and the other cars needed a way to reason 
about their environment. None of the cars we saw in the past two chapters 
could have come close to doing these things: So how did Boss do them?

BOSS’S HIGHER-LEVEL REASONING LAYER

Were improvements in hardware a factor? Hardware had been improving, of 
course, but in the three years since the first DARPA Grand Challenge there 
hadn’t been a notable revolution in the hardware of self-driving cars beyond 
what Moore’s law had predicted (Moore’s law predicted at the time that 
popular processors roughly doubled in performance doubled every 18 to 
24 months). The real answer to this question—and the cause of hallucina-
tions Boss would have during the race—lay in advances to these cars’ 
software architectures.

At the core of Boss’s brain were three components with decreasing 
levels of “reasoning abstraction.” You can see this in the rightmost panel of 
the architecture in figure 4.2. At the top of this panel is the route planner 
module, which searched for a low-cost path from Boss’s current position 
to the next checkpoint on its mission. This was a lot like the module in 
Stanley that planned that vehicle’s smooth path at the beginning of the 
second Grand Challenge. Instead of planning a single path at the begin-
ning of the race, Boss’s route planner planned its path continuously, re-
estimating the best path from its current position to its destination again 
and again. To estimate the path, the route planner used a combination of 
time and risk in its cost function, trusting that the perception layer always 
presented it with an up-to-date map. So all it needed to do was plan its path 
and tell the component below it—located in the middle of the rightmost 
panel of figure 4.2—what it needed to do next.11

We’ll call this next lower layer of abstraction the Monopoly board layer, 
for reasons that will become clear very soon.12 This layer was arguably the 
most complex because it needed to keep track of what Boss was doing and 
what it needed to do next. It was implemented with something called a 
finite state machine.13
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A finite state machine provides a way for a computer program to rea-
son about the world by limiting the things it needs to worry about. It 
works a lot like the game Monopoly: you have a piece that can move 
around on a board, and at any given time, your piece can be in exactly 
one “state” (that is, position) on the board. This position determines what 
you’re allowed to do now and where you’re allowed to move next. If you 
land on Park Place when you’re playing Monopoly and nobody owns it, 
you’re allowed to buy it. If you wind up in jail, your options for getting 
out are to roll the dice and hope to get doubles, pay $50, or produce a 
get-out-of-jail-free card. The rules of the game—and the position of your 
playing piece on the board—simplify the world for you as a Monopoly 
player so you aren’t overwhelmed with possibilities. By implication, any-
thing you’re not expressly allowed to do when you’re on a square, you’re 
not allowed to do at all. If you land on Park Place, you can’t buy Board-
walk or collect $200; you can’t do anything except buy Park Place (as 
long as no one else owns it and provided you want it).

Your current state (again, your position) on the Monopoly board also 
determines which set of moves you can make next: sometimes you can 
move forward up to 12 squares, depending on a dice roll, and buy a prop-
erty, and sometimes you might go directly to jail. But you can’t jump to an 
arbitrary position on the board.

When Tartan Racing designed Boss, they created a variety of finite 
state machines for the Monopoly board module: one for each type of envi-
ronment Boss might find itself in. As Boss drove along, its Monopoly 
board module moved a virtual Monopoly piece around its finite state 
machine in order to keep track of what the car was doing and what it 
needed to do to achieve its next goal.

Depending on Boss’s current situation, its Monopoly board used one of 
three finite state machines: one to drive down the road, keeping track of 
whether it needed to change lanes, for example; one to handle intersec-
tions; and one to maneuver itself into a specific position, such as a parking 
spot or the other side of a crowded intersection. Each of these finite state 
machines outlined a set of simple rules the module should follow to achieve 
its goal. Wherever it was, Boss’s Monopoly board module kept track of 
the world and its goals with its virtual piece on the board.

I show a simplification of Boss’s handle intersection finite state machine 
in figure 4.3.14 You can follow Boss’s line of reasoning about crossing 
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an intersection in this state machine. When it was Boss’s turn to enter 
the intersection, Boss waited until the intersection was clear and would 
remain clear long enough for Boss to pass through it. It did this by using 
another, smaller finite state machine called a precedence estimator, which 
determined whether Boss had precedence to enter the intersection based 
on common driving etiquette. How did Boss know these rules about 
driving etiquette? A programmer simply encoded them into a set of states 
and transitions for the finite state machine, the same way Monopoly’s cre-
ator, Elizabeth Magie, originally created the rules to its precursor, the 

Drive through 
the intersection 

as a “lane”

Wait for the 
intersection to 

be clear

Start

Monitor 
sensing

Is sensing 
okay?

Back into start 
position

Wait for 
precedence

Do we have 
precedence?

Is the intersection 
partially blocked?

Is there an 
obstacle in the 

way?

Done

No Yes
Yes

Drive through 
the intersection 

as a “zone”

Change 
lane

No

No

Yes No Yes

Figure 4.3
The handle intersection finite state machine. The Monopoly board module steps 
through the diagram, from “start” to “done.”  The state machine waits for precedence 
and then attempts to enter the intersection. If the intersection is partially blocked, 
it is handled as a “zone,” which is a complex area like a parking lot, instead of being 
handled as a “lane”; otherwise the state machine creates a “virtual lane” through the 
intersection and drives in that lane. This is a simplified version of the state machine 
described in Urmson et al. (see note 7).
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Landlord’s Game. This wasn’t just the case for the precedence estimator; 
humans encoded the rules for all of the state machines.

The Monopoly board performed much of the “human” reasoning you 
might associate with driving, but Boss didn’t need to be smart to use its 
Monopoly board module. A human playing Monopoly may make careful, 
deliberate calculations about which actions to take. But the Monopoly 
board module didn’t actually play monopoly, and it didn’t have any con-
cept of success or winning, so it didn’t make any careful, strategic decisions 
about what it should do or where it should go next. It was more like the 
rulebook for Monopoly. At each state, the Monopoly board module sim-
ply followed a set of dead-simple rules, and then it moved to the next state 
based on the results of another simple test. Boss did perform careful, delib-
erative planning, but that happened in its route planner—the module we 
saw a few pages ago, which searched for paths.

The functional responsibility of the Monopoly board module, then, was 
to take its assignment from the route planner, keep track of how far along 
it was in completing that assignment, and to delegate actions in the mean-
time to the next lower level—the motion planner—until its assignment 
was complete.

The responsibility of the motion planner, the module represented in the 
bottom-right of figure 4.2, was to find and execute a trajectory for the car 
that would bring it safely from its current position toward a goal state 
assigned by the Monopoly board. For example, the Monopoly board might 
order the motion planner to perform one of these actions:

•  �Plan and execute a way to park in that empty spot over there (giving 
the motion planner a position).

•  �Continue driving straight in this lane.

•  �Switch to the left lane.

•  �Drive through this intersection.

Once the Monopoly board gave the motion planner an order, the 
motion planner would find a path from its current position to its goal posi-
tion. The motion planner was a bit like the route planner in this respect, 
except that the motion planner’s goal was to plan out actions on a much 
shorter timescale. While the route planner planned movement at the scale 
of minutes and miles, the motion planner planned movement at the scale of 



46	 Chapter 4 

seconds and feet: at its largest, it might have planned in areas up to about a 
third of a mile, or a half kilometer.15

The Monopoly board assumed that the motion planner would try to 
achieve its goal safely, although the motion planner was allowed to tell the 
Monopoly board that it had failed—for example, because the parking spot 
turned out to be occupied by a motorcycle that it hadn’t seen until it tried 
to park—in which case the Monopoly board would find a contingency 
plan.16

Another difference between the route planner and the motion planner 
was that the route planner only needed to account for the car’s position on 
a map when searching for a path, while the motion planner needed to 
search for a path while keeping track of the car’s position, velocity, and ori-
entation, all while making sure that Boss didn’t violate any laws of physics. 
Cars can only move in the direction their wheels are pointing: they don’t 
slide sideways unless something’s going wrong, and the motion planner 
needed to account for this (roboticists would call this the car’s kinematic 
constraints). The motion planner also made sure the car didn’t accelerate, 
turn, or stop too quickly: it shouldn’t brake or accelerate aggressively, and 
it shouldn’t turn so quickly that it flips over. The Red Team’s Humvee had 
flipped during testing, a mistake that devastated its sensors just weeks 
before the first Grand Challenge, as “a quarter million dollars’ worth of 
electronics was crushed in an instant.”17 The Humvee’s sensors were never 
the same again, and this likely had at least some impact on its performance 
during that race.

The path-finding algorithm for Boss’s motion planner was a bit more 
complicated than its algorithm for route planning because it needed to 
keep track of Boss’s position, velocity, and orientation (we can call these 
three things together its “state”). The motion planner couldn’t search for 
a path in a simple grid because a grid alone can’t keep track of all of these 
things. In parking lots, the motion planner searched for a best path from 
its current state to its goal state by searching for ways to combine very small 
path segments to make one large path, where each path segment ensured 
that Boss’s velocity and position followed the laws of physics. For exam-
ple, if the beginning of one path segment indicates that Boss would be at 
its current position, facing forward, and moving at five feet per second with 
no acceleration, then the end of that path segment needs to be consistent 
with the beginning: it must assert that Boss is five feet ahead of its current 
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position, facing forward, moving at five feet per second.18 I show an exam-
ple of this process in the four diagrams of figure 4.4. This planning could 
take time, so Boss used a second motion planner to plan its subsequent path 
simultaneously so it didn’t need to pause between motions.

For driving down the road, Boss’s motion planner also used a search 
algorithm that was more like Stanley’s steering algorithm. First, it gener-
ated a set of possible trajectories for the car. These began at the car’s cur-
rent position and speed and ended farther down the road but varied in 
lateral offset and curvature. Then the motion planner scored these paths 
based on factors like their smoothness, how close they were to the center 

Goal
A

Figure 4.4a
The motion planner of a self-driving car has been instructed by the 
Monopoly board to park in the designated parking spot.

Goal

B

Figure 4.4b
The car has an internal map represented as a grid in which obstacles 
fill up cells in that grid. The motion planner also uses a cost function 
when picking its path (shaded gray). The cost function incorporates 
the distance to obstacles (in this case, other cars).

(continued)
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of the road, and how close they were to obstacles.19 Boss then ran this 
motion planner constantly, continuously searching for the best path from 
its current state. This meant that it would continuously adjust its path, grace-
fully correcting its little errors as they occurred.

GETTING PAST TRAFFIC JAMS

The three layers of high-level reasoning in the rightmost panel of 
figure 4.2—Boss’s route planner, its Monopoly board, and its motion 
planner—enabled Boss to travel through the old military base on the day 

Goal

D

Figure 4.4d
A candidate path to the goal.

Goal

C

Figure 4.4c
The motion planner searches for a path to its goal. The path will 
comprise many small path segments that encode velocity, position, 
and orientation. Unlike this picture, the search is performed from 
the end state to the start state.
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of the race. However, none of the systems I’ve described so far would have 
saved Boss when it started to hallucinate during the race.

Boss had demonstrated in the qualifying rounds that it was among the 
best prepared of the contestants. But during the Urban Challenge, as it was 
racing down the road to complete one of its missions, it found the lane in 
front of it blocked by another car. Boss slowed, came to a stop, and waited. 
It made a couple of attempts to move forward, but there was no way 
through: the road was completely blocked by traffic.20 So Boss waited, the 
seconds ticking by on the race timer.

The problem was, this traffic jam didn’t exist. There was nothing in front 
of Boss at all; what it thought was a blocked lane was just a hallucination. And 
this wasn’t the first time Boss had imagined things on the day of the race.21

Boss’s hallucination was caused by a problem in one of its perception 
algorithms. When it saw a car in front of it, and that car moved away, it 
didn’t always clear its estimate of the car’s location, so it would occasion-
ally think there was still something there. It’s possible that improved per-
ception algorithms would have prevented this specific hallucination, but 
Chris and his team were experienced enough in building complex soft-
ware to know that all software has bugs. Fortunately they had the foresight 
to make Boss robust to problems like this.

This problem Boss faced was similar to the problem the Humvee faced 
in the first Grand Challenge, when it got stuck behind a rock. Chris’s 
team fixed this in the second race by programming the Humvee to sim-
ply back up 10 meters if it was stuck, clear its estimate of obstacles, and 
try again. But that was a short-term hack: it was a brittle solution—a 
Band-Aid—and by no means robust, and it might not work at a crowded 
intersection. Chris’s team needed a system that could handle bugs or 
unexpected situations, and they needed a system that would never give 
up. Tartan Racing formalized this idea in Boss by adding a more general 
“error recovery” system to the Monopoly board layer; it had three key 
principles, reminiscent of Isaac Asimov’s three robot laws:22

•  �Until the error is resolved, the car should be willing to take greater and 
greater risks, and its attempts to recover should not repeat.

•  �The recovery behavior should be appropriate to the driving context. 
For example, Boss should have different recovery behavior in traffic 
lanes than in parking lots.
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•  �The error recovery should be kept as simple as possible to reduce the 
likelihood of introducing more software bugs or undesirable behaviors.

As a last-ditch effort, if Boss didn’t move more than a meter within five 
minutes, its error-recovery system simply selected a random nearby goal 
position in an algorithm called wiggle. The idea was that Boss should be able 
to dislodge itself from whatever predicament it had found itself in, and then 
it could clear its memory and try again.23

When Boss faced the (imagined) blocked lane during the Urban Chal-
lenge, five levels of error recovery kicked in. First, it tried to get to a spot a 
little past the traffic jam; second, it tried to get to a spot farther past the jam; 
third, it tried to get to a spot even farther past the traffic jam; fourth, it backed 
up and tried to get to a spot past the jam again. Finally, it assumed the road in 
front of it was completely blocked and made a U-turn. When it assumed the 
road was completely blocked, it actually marked the road as impassable in 
the route map in its perception and world-modeling layer, causing the 
route planner to find an alternative path.24

Boss hallucinated twice during the race, and the result was that the car 
drove an extra two miles that day, a minor inconvenience for a race that 
took about four hours. Despite these inconveniences, Boss went on to 
finish the race 19 minutes ahead of Stanford’s car.25 A redundant error-
handling system—in which higher-level planning could resolve problems 
with lower-level planning or perception—was one of the most important 
parts of Boss’s architecture, handing Chris and his team the prize he had 
focused on for so long.

THREE-LAYER ARCHITECTURES

What enabled Boss—and Stanley from chapter 3—to work so spectacu-
larly? As we saw, it had a lot to do with their reasoning architectures. One 
key design principle in both Boss and Stanley was their organization into 
hardware, perception, and planning (reasoning) layers, the three layers 
from left to right in figure 4.2. As we’ve seen, the perception layer enabled 
the reasoning components on the right side of the figure to focus on 
higher-level tasks. They weren’t burdened with the challenge of dealing 
with low-level sensor data, because that was the responsibility of the per-
ception modules. The perception modules, in turn, were largely 
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implemented with machine learning models that turned raw sensor data 
into actionable information, but they didn’t focus on any high-level plan-
ning or decision-making. As we saw in the last chapter, each perception 
module had one job to do, which meant that each module could do its 
job quickly.

But Boss demonstrated some other, more important qualities of a self-
driving car: the ability to carry out complex behaviors such as driving miles 
in an urban environment, parking in parking spots, and interacting with 
other moving cars, while still gracefully reacting to unanticipated 
situations.

While one of the self-driving cars from Alphabet, Google’s parent com-
pany, was driving around Mountain View, California, it came upon a 
rather singular situation. Chris Urmson explained the scene during his 
TED2015 talk, gesturing to a video of the scene as he spoke:

This is a woman in an electric wheelchair chasing a duck in circles on the 
road. Now it turns out, there is nowhere in the DMV [driving] handbook that 
tells you how to deal with that. But our vehicles were able to encounter that, 
slow down, and drive safely.26

If all unexpected contingencies occurred as infrequently as you encoun-
ter a woman in an electric wheelchair chasing a duck in the middle of the 
street, it might not be a problem for self-driving cars. But the curse of these 
rare contingencies is that, taken together, they happen frequently, and 
they’re always a bit different. They could be caused by missing signs in con-
struction zones, chain-installation blockades on snowy mountain roads, or 
even police guiding traffic through intersections. Each situation will have 
its own particular quirks, and a self-driving car must be able to handle all of 
them. What was it about Boss that enabled it to handle these situations?

We can answer this question by looking at the second important decision 
Chris’s team made in designing Boss: the organization of its higher-level-
reasoning components into three layers of increasing abstraction, repre-
sented by the three boxes shown in the rightmost panel of figure 4.2. This 
way of organizing an agent is sometimes called a three-layer architecture in 
the field of robotics, and it enabled self-driving cars like Stanley and Boss 
to react quickly in real-time environments. To emphasize, when I refer to 
a three-layer architecture, I’m talking specifically about the three boxes on 
the right of figure 4.2, not the left-to-right organization of Boss’s brain.



52	 Chapter 4 

The top layer in a three-layer architecture performs deliberative behav-
iors, which typically involves slow, careful planning. In the case of Boss, 
this slow, deliberative step was precisely its route planner, which searched 
for paths through the city environment. This is where Boss planned its 
highest-level goals—possibly its most “intelligent” behavior. Formulat-
ing these goals was possible because this planning layer didn’t need to 
worry about perception (the perception layer handled that) and because 
it didn’t need to worry about unanticipated contingencies (the Monop-
oly board handled that). The route planner just needed to plan missions 
and paths.

The bottom layer of a three-layer architecture is called the controller. In 
the case of Boss, the controller layer was its motion planner and its steer-
ing and speed controllers.27 This layer performed relatively low-level 
actions, such as “park in that spot over there.” The motion planner was tied 
to the actuators, which directly controlled the steering wheel, brake, and 
gas pedals. This layer also included the three-rule controllers we saw in the 
first chapter. Traditionally the controller layer doesn’t do anything very 
smart: its purpose is to perform simple actions and react to simple sensor 
readings. A typical reaction to the environment might be to increase motor 
torque or apply brakes to bring the car’s speed to the target speed.

In between the deliberator and the control layer is the sequencer. The 
goal of the sequencer is to carry out assignments from the top-level, 
deliberative layer by giving the controller below it a sequence of com-
mands. Boss’s sequencer was its Monopoly board. The sequencer can’t just 
give the controller a fixed sequence of commands, because the state of the 
world may change before the full sequence is carried out. To see how 
things could go wrong in a robot that couldn’t respond to a changing 
world, imagine that I’ve designed a robot butler to serve you a glass of wine. 
This robot might carry a bottle of wine out of the kitchen, roll over to you, 
and reach out its robot hand with the bottle to pour you some wine. You 
might helpfully lift your glass from the table toward the robot to make it 
easier for the robot. But the robot butler had been planning to pour the 
wine directly into the glass on the table, and thus would have ignored your 
gesture, pouring a glass worth of wine directly onto the table.

This wouldn’t be acceptable for a robot butler, let alone a self-driving 
car. A real-time AI system needs to react to changes in the environment. 
For Boss, a finite state machine was its way of keeping track of which 
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actions the controller had successfully completed and which it should try 
next. If the world changes before the controller is able to carry out its job, 
then the sequencer can come up with a contingency plan and send updated 
instructions to the controller.

Erann Gat was a researcher at Cal Tech’s Jet Propulsion Lab when he and 
several other research teams simultaneously discovered this three-layer 
architecture—the deliberator, sequencer, and controller—while they were 
designing robots. He summarized the role of the sequencer based on their 
shared research:

The fundamental design principle underlying the sequencer is the notion of 
cognizant failure. A cognizant failure is a failure which the system can detect 
somehow. Rather than design algorithms which never fail, we instead use 
algorithms which (almost) never fail to detect a failure.28

Why bother designing algorithms that could sometimes fail instead of 
designing ones that never fail? Gat continues:

First, it is much easier to design navigation algorithms which fail cognizantly 
than ones which never fail. Second, if a failure is detected then corrective 
action can be taken to recover from that failure. Thus, algorithms with high 
failure rates can be combined into an algorithm whose overall failure rate is 
quite low provided that the failures are cognizant failures.29

The three-layer architecture may seem obvious now that you’re read-
ing about it, but it wasn’t so obvious at first. To understand why, it’s worth 
looking at some versions that preceded three-layer architectures. As Erann 
Gat recalled, one such architecture was sense-plan-act, which was widely 
used in robots until 1985.30 This architecture lives up to its name: the robot 
senses the world around it, plans its next step, and executes that step. Infor-
mation flows in a single direction, from sensors to the planner to the 
controller. The shortcoming of this architecture, of course, is that it is not 
reactive. If your robot butler used the sense-plan-act architecture, I would 
advise you to ask it to serve clear fluids only.

What followed sense-plan-act, Erann Gat observed, was a profusion of 
subsumption architectures. These look like sense-plan-act, with the flow 
of information from the environment to the planner to the controller; 
but they differ because their modules can react to the environment by 
“overriding” actions from lower layers. Robots designed with the sub-
sumption architecture could zip around the research lab more 
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impressively than their sense-plan-act predecessors, but roboticists found 
that their architectures grew complex very quickly. The connections 
between layers became confusing, and the modules interacted in unpre-
dictable ways. A small change to the low-level layers might require a 
redesign of the whole system. Design of these systems became a mess. The 
three-layer architecture, on the other hand, enables robots to react quickly 
while still providing a clean separation between the different parts of the 
architecture so we can still reason about it.31

The motion planner in Boss, rather complicated for a controller, is 
almost a three-layer architecture by itself, without a sequencer. This com-
plexity suggests another possibility: What if we nest three-layer architec-
tures, with one serving as another one’s controller? We might even imagine 
that cities will one day use AI to improve traffic congestion. At the top 
level of planning, some module might search for optimal traffic flows to 
decrease congestion during rush hour, telling individual self-driving cars in 
the controller which routes they can’t take. The cities’ sequencers might 
react to accidents and other contingencies.

Self-driving cars, treated by the city as controllers, might themselves be 
implemented with three-layer architectures; and given the constraints 
imposed by the city’s sequencer, along with their own goals, would then 
plan their missions accordingly.

CLASSIFYING THE OBJECTS SEEN BY SELF-DRIVING CARS

Machine learning’s role in self-driving cars has received a lot of attention, to 
the extent that many people confound the algorithms that perform percep-
tion with those that perform high-level planning. This is probably in part 
because Alphabet’s self-driving cars were on the road and picking up media 
attention around the time other major breakthroughs in machine learning 
(many also by Alphabet companies like Google) were being reported in the 
news. Although clever machine learning algorithms can exist in the top-
level planning layer of self-driving cars, much of the high-level reasoning 
layer comes from ideas that have been around in AI for decades—ideas like 
search algorithms and finite state machines—that wouldn’t traditionally be 
considered machine learning (remember, machine learning deals primarily 
with teaching machines using data, while AI doesn’t necessarily need data). 
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Instead, much of the machine learning used in self-driving cars lies com-
fortably within their perception and world-modeling layer.

One of the important perception tasks of a self-driving car is classifying 
objects seen by its sensors into categories. Boss didn’t attempt to classify 
objects into fine categories; its urban environment was artificial, so the only 
moving objects in its environment were cars. In the wild, self-driving cars 
encounter many different types of objects, so they must classify these objects 
into different categories to react appropriately. By understanding whether 
an object is a car, a bicycle, a pedestrian, or a woman in an electric wheel-
chair chasing a duck, the car can better model it and predict its path.

How could a self-driving car categorize the objects it sees with its sen-
sors? A certain class of machine vision algorithms showed significant 
advances in the years surrounding 2012. This class of algorithms, from a field 
known as deep learning, enable computers to classify the content of photo-
graphs as accurately as many humans. These algorithms advanced rapidly in 
the ensuing few years, to the extent that custom hardware was developed by 
companies like NVidia for express use in self-driving cars’ vision systems. 
Later in this book we’ll take a closer look at how these algorithms work.

SELF-DRIVING CARS ARE COMPLICATED SYSTEMS

There are a lot of important aspects to building self-driving cars that we 
haven’t covered yet. Let’s take a brief look at a few of these now.

Among other things, a huge amount of software must be written for a 
self-driving car. Writing this software requires a huge amount of human 
investment. The winning teams were large, on the scale of roughly 40 to 60 
people, including researchers, engineers, and undergraduate students. Such 
large-scale efforts require careful management between people and parties 
to ensure that contributors are happy and productive. But even happy, pro-
ductive workers can write bugs.

As we saw, one way to handle bugs was via graceful error-recovery sys-
tems. The successful teams in the Grand Challenges also put a lot of effort 
into testing and simulation. One Wired magazine reporter saw Chris 
Urmson bring up a visualization that resembled a “mountainous Tron land-
scape.” It was detailed enough to run simulations of how a self-driving car 
could handle the road, right down to its tires and shocks.32 These teams, 
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especially in later years, developed simulation environments that would 
allow them to replay past drives so they could improve their learning algo-
rithms and exception handling.33 This topic alone is enough to fill an 
entire book, but we have other topics to digest.

THE TRAJECTORY OF SELF-DRIVING CARS

After nearly a decade of winter for self-driving cars in the 1990s, DAR-
PA’s Grand Challenges had helped to reignite the field. Despite the 
advances made during those races, it would be years before these cars could 
drive without humans on public roads due to both technical and legal 
challenges.34 A decade after the Urban Challenge, the ability to handle 
unexpected situations remained among the biggest problems these cars 
continue to face. Uber was still struggling with this problem as of 2017. 
Their experimental self-driving cars, which have humans behind the 
wheel at all times, could only drive about 0.8 miles on average before a 
disengagement—that is, before a human needed to intervene.35 Waymo, 
Alphabet’s self-driving car company, which has logged a great deal more 
miles on the road than Uber, logged just 0.2 disengagements per 1,000 
miles at the time.36 And beyond this, the teams behind these cars must 
build and maintain highly detailed maps.37

Many of the rivals in the DARPA Grand Challenges ended up work-
ing together to build self-driving cars in the years following the races. 
Sebastian Thrun, leading Alphabet’s self-driving car project, eventually 
hired Chris Urmson and Andrew Levandowski, a creator of the self-bal-
ancing motorcycle, along with other leaders in the field. Chris himself 
eventually became Alphabet’s self-driving car project lead in 2013.38 The 
project—possible because of a field kick-started by a well-organized 
DARPA competition in 2004—would log over 1.2 million miles on the 
road by the time he left in 2016.39



5  NETFLIX AND THE RECOMMENDATION-ENGINE 
CHALLENGE

The Netflix prize contest will be looked at for years by people studying how 
to do predictive modeling.
—Chris Volinsky, senior scientist at AT&T Labs and member of Team BellKor1

A MILLION-DOLLAR GRAND PRIZE 

As robotics departments were busy in 2006 preparing their cars for the 
DARPA Urban Challenge the following year, Netflix made an announce-
ment to the budding data science community about their own Grand 
Prize: they were looking for teams that could create movie recommenda-
tion engines, and they were willing to pay $1 million to the best team.

When Netflix made their announcement, their streaming video business 
didn’t yet exist; the company operated as a physical DVD rental service.2 
Customers could request DVDs from Netflix, and Netflix would send 
these DVDs to them by mail. But customers needed to give up one of their 
current DVDs to receive the next one, and the new DVD might take days 
to reach them. A bad selection could ruin days of quality movie-watching 
time, so customers tended to be careful about how they made their requests. 
This is where Netflix’s desire to recommend movies came in.

As part of their service, Netflix allowed their customers to rate individ-
ual movies on an integer scale of 1 star (worst) to 5 stars (best). Netflix 
hoped to use these ratings to help customers decide which movies they 
should rent. After announcing the competition, Netflix released a dataset 
consisting of 100 million of these star-ratings, collected from 1998 to 2005, 
to the research community.3 The first team to create a recommendation 
algorithm that improved on Netflix’s own algorithm by 10 percent would 
win the grand prize.4
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This dataset was a godsend to full-time and casual data scientists, 
and they approached the problem with gusto.5 Within the first week 
some teams beat Netflix’s own recommendation engine by 1 percent.6 
Within the first year, 20,000 teams had registered, some 2,000 of which 
submitted entries to the competition.7

THE CONTENDERS

The contenders for the prize were a ragtag group, but one three-person 
team maintained a strong position on the leaderboard. This team was 
BellKor, made up of three research scientists from AT&T Labs (one of them 
moved to Yahoo! in the course of the competition), whose expertise in the 
field of networks and recommendation systems equipped them with excel-
lent skills for the project.8 Another team, ML@UToronto, consisted of a 
group of well-known neural network researchers from the University of 
Toronto.9 The members included Geoffrey Hinton, widely seen as one of 
the fathers of neural networks.

Not everyone in the competition had a PhD. One of the underdog 
teams with only three undergraduate members—two computer-science 
students and one of their roommates, a math student—came from Prince-
ton University. The two computer science students were soon headed to 
top PhD programs to study machine learning, although one of them would 
stick around to work in Princeton’s psychology department for a year. The 
math student was on his way to trade interest rate derivatives at JP Morgan. 
The young, overachieving trio named their team after the first movie listed 
in their dataset: Dinosaur Planet.10 In spirit, they were similar to a couple of 
Hungarian graduate students who named their team Gravity.

The competition also included a variety of even less-credentialed con-
testants. Eventually a two-person team named Pragmatic Theory popped 
up. This French-Canadian duo had been working on the project in their 
spare time. One of them had set up shop in his kitchen, working from 
9 p.m. to midnight while his kids were asleep. Having had no experience 
in the field of collaborative filtering, they were modest in their self-assess-
ment: “Two guys, absolutely no clue.”

The list of contestants went on, thousands upon thousands long, 
including dabblers from seemingly disparate fields like psychology. And 
although these teams were competing with each other, they would find 



Netflix and the Recommendation-Engine Challenge	 59

themselves collaborating during the competition. In fact, as we’ll see, it 
would have been virtually impossible for a team unwilling to learn from 
and collaborate with other teams to have succeeded in the competition. 
In the next two chapters, we’ll follow the journeys of several of these 
teams in their quest for the $1 million prize.

HOW TO TRAIN A CLASSIFIER

You may be wondering why I’ve included chapters about movie rec-
ommendations in this book. Are movie-recommendation engines really a 
major AI breakthrough?

Imagine the reception to Vaucanson’s Flute Player had it been able to 
accurately recommend books or songs to members of the audience based 
solely on what else they liked. The public would have been equally as 
floored. Indeed, a recommendation engine is an algorithm that aims to 
capture the preferences that make us human. As we’ll see in this chapter, 
recommendation engines can model human preferences so well that they 
can rival lawmakers at their most important job: voting on legislation. It 
certainly wouldn’t stretch credulity to suggest that they’ve already had a far 
bigger impact on our economy than self-driving cars and chess-playing 
computer programs, as they power online commerce.

There’s also another, more important reason I’ve included the Netflix 
Prize in this book. Some of what happened during the competition, 
including how the contestants approached the problem and with what 
tools, will directly inform how we look at other breakthroughs in this book. 
As we’ll see, the ideas poured into the competition touched on just about 
every theme we’ll see later.

In that vein, let’s look back for a moment at one of the building blocks of 
Stanley, the self-driving car from Stanford that we discussed a couple of 
chapters ago. Stanley depended heavily on machine learning, which enabled 
it to stay on the road and to perceive the world around it. As we saw, Sebas-
tian Thrun and his team drove Stanley around while its sensors collected 
data from the surrounding environment. They then used that data to train a 
classifier to detect whether different types of ground were safe for the car to 
drive on. We glossed over some of the details about how Stanley’s drivable-
ground classifier worked, but knowing how classifiers work is important if 
we’re going to understand how movie recommendations—and the neural 
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networks we’ll see in later chapters—work. These classifiers operate on a 
principle as simple as that of a physical gear or lever, except that, instead of 
transforming energy to produce a useful result, they transform data to pro-
duce a useful result. Let’s go over those details now.

Imagine that you’re editing a cookbook called The World’s Best Recipes 
for Kids. For this cookbook, you’ll collect recipes that appear on the web-
site Bettycrocker​.com. You have a simple decision to make for each recipe: 
is it, or is it not, a recipe you should include in the kids’ cookbook?

One way to answer this question would be to prepare each recipe you 
found on the website, feed it to your kids, and ask them for their opinion. 
But if there were 15,000 recipes on this website, then even at a healthy clip 
of 9 new recipes per day, you’d be cooking for over four years. How could 
you determine which recipes are good for kids without a huge investment 
of time and energy?

A machine-learning student would eagerly tell you how to solve the 
problem: you could train a classifier! In the field of machine learning, a clas-
sifier provides a way to automatically figure out whether an item (like a 
recipe) belongs to a certain category—like “recipes that are appropriate for 
kids,” as opposed to “recipes that are inappropriate for kids.”

To use a classifier for this task, you first need to decide which charac-
teristics of a recipe are likely to distinguish between the ones that are good 
for kids and the ones that are bad for kids. You can use your creativity and 
judgment here, but some things might stand out as particularly helpful in 
making that distinction. Users on the Betty Crocker website can provide 
star ratings of the recipes, and these are probably correlated with the reci-
pes kids like, so you can use those ratings as one of these distinguishing 
characteristics. You also want to prefer recipes that are easy to prepare and 
easy to understand, for example, because they require a small number of 
steps or only a few ingredients. You may also want to consider the num-
ber of grams of sugar (kids like sugar) and the number of grams of vege-
tables (kids don’t like vegetables).

In machine learning, we call these distinguishing characteristics 
features. The magic happens when we combine these features into a single 
“recipe score” that describes how good a recipe is. The simplest way to 
combine them—and the way you can assume they’re always combined 
in other classifiers in this book—is by taking a weighted average, where 
we use weights that summarize how important we think each feature is in 
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the final score. Take a moment to look at how I’ve applied this to the recipe 
“Holiday Baked Alaska” in figure 5.1.11

Why combine the features with a weighted average? It might seem arbi-
trary, and you’ve probably guessed (correctly) that machine-learning 
researchers have figured out a million other ways we could combine these 
features into a score. But this way of doing it is simple, straightforward, and 
easy to reason about. It’s by far the most important “statistical gear” that 
makes up all of the automata in this book. And remember that this is just a 
building block: we want it to be simple, since we’ll be combining it with 
other building blocks, and since we’ll want to be able to understand what 
we’ve built.

To get a classifier from the weighted average, we just need to pick a 
threshold—let’s just say “0” to be concrete—and call everything with a 
score above that threshold a good recipe and everything below it a bad 
recipe. According to the classifier in figure 5.1, Holiday Baked Alaska 
would be a very good recipe to add to the kids’ cookbook, even though 
it’s a bit complicated, because its other benefits—lots of sugar and no 
vegetables—make up for that.

If you’re using machine learning to fit the classifier, you’d use data 
to figure out the weights for each feature and possibly to pick the 

Recipe details for 
“Holiday Baked Alaska”

Weights for
features

Grams of sugar

Number of steps in recipe
Number of long words in recipe

Average number of stars

Grams of vegetables
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–18
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  0
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40Recipe score

Number of ingredients 14  –2x –28

Figure 5.1
By applying a classifier to the recipe “Holiday Baked Alaska” we can see whether 
it would be good for kids. The weights stay fixed, and the details (and hence 
the recipe score) change for each recipe. “Holiday Baked Alaska” details are 
from the Betty Crocker website (see notes).
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threshold. You might collect this data by asking your kids to prepare 
some recipes and keeping track of how much they liked each one. Then 
you’d use a standard formula from statistics to estimate these weights 
from this data. You’ve probably already seen this formula (and promptly 
forgotten it) in high school, where you learned it as fitting the best line 
through a bunch of points (x, y) on a piece of paper. Here you use the 
same formula, except that you have more than one x-coordinate for 
each y-coordinate.

Once you’ve fit this classifier’s weights using a handful of recipes—say, 
100 recipes instead of 15,000—then you can have a computer run this clas-
sifier over the remaining 14,900 recipes to predict whether each one is 
good or bad. You could pick the top 200 recipes out of those 15,000 for 
your book according to this classifier, try them to make sure they’re good, 
keep the best ones, and then you’d be all set.

With the skill of fitting a classifier in hand, now, let’s turn back to the 
Netflix Prize to see how we can use it to recommend movies.

THE GOALS OF THE COMPETITION

What criteria should Netflix use to recommend movies to its viewers? 
What should its goals in recommending movies be? Clive Thompson 
pondered these questions in an article he wrote for the New York Times 
Magazine back in 2008, as the competition was underway.12 Should 
Netflix’s movie-recommendation service aim to recommend “safe bets” 
that you’re very likely to enjoy, he asked, even if it doesn’t push you out of 
your comfort zone? Or should it fill the role of that quirky movie-store 
clerk, taking bets to suggest movies that you may absolutely love, while 
running a risk of suggesting a movie that you’ll think is a dud?13

At traditional video stores at the time, new and popular movies 
accounted for the majority of rentals; these stores could lean on this limited 
selection to make it easier to recommend movies. Netflix was different: 
70 percent of their rentals were independent or older “backlist” titles. 
With such a large collection, and with a long delay between rentals, Netflix 
depended on Cinematch, its own movie-recommendation system, for its 
ability to recommend movies to its users. Improving Cinematch was 
important to the company’s bottom line, because they risked losing cus-
tomers who watched too few Netflix movies or who disliked a movie they 
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had waited a few days to see: those viewers were the most at risk of can-
celing their subscriptions.14

So Netflix’s own engineers worked and worked to improve their Cin-
ematch recommendation algorithm. When they couldn’t improve Cine-
match any more, they decided to host the Netflix Prize, offering the $1 
million to the first team that could beat their own algorithm by 10 per-
cent. As Netflix CEO Reed Hastings pointed out, paying out the grand 
prize wasn’t really a risk for them: the financial benefits in having better 
movie recommendations could far exceed the cost of the prize.15 Even a 
small improvement in their recommendations could lead to big wins 
overall, because it was multiplied across the hundreds of millions of rec-
ommendations they made per day.16 And in case none of the teams ever 
reached the 10 percent target, Netflix would also offer Progress Prizes: if 
the contestants made enough progress each year, the best team would be 
offered $50,000. Netflix attached just one condition to these prizes: the 
winner needed to publish the details of their recommendation algorithm.

Netflix made the task simple for their contestants by offering them a 
clear, objective target. The contestants needed to predict how many stars 
certain customers assigned to specific movies on specific dates. Netflix 
would evaluate the performance of each team by computing the average 
squared difference between their predicted ratings and the actual ratings the 
customers gave on a secret dataset that the contestants would never see.17

Whenever a team submitted some predictions to Netflix, Netflix mea-
sured the team’s performance on the secret dataset and updated their scores 
on a public leaderboard that was closely followed by other teams and journal-
ists.18 It was technically possible for a team to still “peek” at these ratings by 
submitting a lot of predictions to be evaluated on this dataset, but Netflix was 
clever enough to have also stashed away yet another secret dataset that would 
never be revealed to the contestants. This double-secret dataset would only be 
used at the very end of the competition to evaluate the top candidates.

A GIANT RATINGS MATRIX

Given that the Netflix competition focused exclusively on customers’ 
movie ratings, it’s helpful to reason about the Netflix Prize by looking at 
the problem as a gigantic matrix of ratings. I show a small sample from this 
matrix (with made-up numbers) in figure 5.2.
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This matrix was immense: it provided ratings for 17,770 separate movies 
and 480,189 separate users.19 Netflix provided some customers’ ratings on 
some movies, and it asked contestants to predict some of the missing 
ratings (these are the question marks in the grid). Despite its size, only 
1 percent of the matrix had any numbers at all: naturally most Netflix 
customers never rated most movies.

So where should the contestants begin?
Early into the competition, most of the top competitors converged on 

very similar approaches to analyze these ratings. The members of team 
BellKor—the team with researchers from AT&T and Yahoo!—noted the 
importance of starting with a simple “baseline” model to explain away the 
most basic trends in the ratings matrix. BellKor’s baseline model began with 
two components. The first applied just to movies; we might call it the “E.T. 
effect.”20 The E.T. effect measured the popularity of a movie regardless of 
who was rating it. In the Netflix dataset, for example, the least popular 
movie was Avia Vampire Hunter, a low-budget movie about a woman who 
hunts poorly costumed vampires. Avia had 132 ratings on Netflix, with an 
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on various movies. Netflix provided some of the ratings in the matrix 
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ing recommendations (shown as question marks).
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average rating of just 1.3 out of 5 stars. One of two reviews on Amazon​
.com said the following about the movie:

I should be paid for watching this trash. It was made in someones [sic] back-
yard with a hand held camera. Don't order it. It is the worst movie, if you can 
call it that, that I have ever seen!!! If I knew before hand, you couldn't give it 
to me free of charge.

At the other extreme, the most popular movie was the extended edi-
tion of the fantasy Lord of the Rings: The Return of the King, which had 73,000 
ratings in the Netflix dataset, with a respectable average of 4.7 out of 5 stars. 
Its Amazon​.com reviews were also overwhelmingly positive; here is one 
review on Amazon​.com for this movie:

SOOOO GOOOOD! If you have never seen The Lord of the Rings Trilogy, 
I HIGHLY recommend it. It is an excellent trilogy. I especially love the 
extended editions …

Although this review is more about the trilogy than the movie, it’s clear 
that people like it. And the movie’s negative reviews on Amazon​.com 
tended to be more about the format of the video or the seller of the video, 
not the movie itself.

Another part of BellKor’s baseline model, which we might call the 
“Scrooge effect,” aimed to capture whether Netflix users rated movies with 
a glass-half-empty mentality or a glass-half-full mentality. Some users 
assigned 1-star ratings to all the movies they rated; but most were some-
where in-between. Whether these viewers were trying to be objective 
wasn’t relevant, but the fact that such trends existed in the data meant that 
teams like BellKor needed to capture them.

With the two effects BellKor outlined—the E.T. effect and the Scrooge 
effect—we can begin piecing together a rudimentary recommendation 
engine. BellKor combined the E.T. effect, the Scrooge effect, and an over-
all bias term—which described the average movie rating across all movies 
and customers—into a single model using a classifier like the one we cre-
ated for our World’s Best Recipes for Kids book. In this simple model, they 
learned a weight for each movie, a weight for each user, and the intercept. 
With such a “recommendation engine,” BellKor could recommend the 
best movies to Netflix’s users—a decent start in the absence of any other 
information.
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The problem with this recommendation engine is that it would always 
recommend the same exact shows to all users—specifically, The Lord of the 
Rings and other popular DVDs, like the first season of Lost and the sixth 
season of The Simpsons. It couldn’t produce personalized recommendations. 
If Netflix used this approach to recommend movies to each user, then it 
would never satisfy Netflix users who only like foreign films, cult classics, 
or kids’ movies. It would be decent for everybody but great for nobody.

And it really is the case that most people aren’t well served by a one-size-
fits-all system. The US Air Force discovered this when they were trying to 
understand what was causing so many airplane crashes in the 1950s. 
Cockpits had been built since the 1920s to match the average measure-
ments of American men, but Lt. Gilbert Daniels, a scientist who studied 
the problem, discovered that most men aren’t average. As Todd Rose explains 
in his book The End of Average:

Out of 4,063 pilots, not a single airman fit within the average range on all 10 
dimensions. One pilot might have a longer-than-average arm length, but 
a shorter-than-average leg length. Another pilot might have a big chest but 
small hips. Even more astonishing, Daniels discovered that if you picked out 
just three of the ten dimensions of size—say, neck circumference, thigh cir-
cumference and wrist circumference—less than 3.5 percent of pilots would be 
average sized on all three dimensions. Daniels’s findings were clear and incon-
trovertible. There was no such thing as an average pilot. If you’ve designed a 
cockpit to fit the average pilot, you’ve actually designed it to fit no one.21

Based upon these findings, Daniels recommended that the cockpits be 
adjusted so that they could be personalized to the pilots, a recommenda-
tion the Air Force adopted:

By discarding the average as their reference standard, the air force initiated a 
quantum leap in its design philosophy, centred on a new guiding principle: 
individual fit. Rather than fitting the individual to the system, the military 
began fitting the system to the individual. In short order, the air force 
demanded that all cockpits needed to fit pilots whose measurements fell 
within the 5-percent to 95-percent range on each dimension.

They designed adjustable seats, technology now standard in all automo-
biles. They created adjustable foot pedals. They developed adjustable helmet 
straps and flight suits.

Once these and other design solutions were put into place, pilot perfor-
mance soared, and the US Air Force became the most dominant air force on 
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the planet. Soon, every branch of the American military published guides 
decreeing that equipment should fit a wide range of body sizes, instead of 
standardized around the average.22

We need to determine the equivalent of adjustable seats for the Netflix 
recommendation engine so that it can be customized for each user. We 
need something that can capture the Terminator effect: the fact that some 
Netflix users—but not all of them—like science-fiction and action movies, 
and that other users like kids’ movies, that some users like both, and that 
some like neither. To capture the Terminator effect, most teams converged 
on a method known as matrix factorization.

MATRIX FACTORIZATION

Matrix factorization relies on the fact that the giant ratings matrix in fig-
ure 5.2 has a lot of redundant information. People who liked Futurama tend 
to like The Simpsons, and people who liked Shrek tend to like its spinoff, 
Puss in Boots. That there would be redundant information in this matrix 
isn’t such a crazy idea—after all, the very premise that we can offer person-
alized recommendations assumes that there are predictable patterns in 
peoples’ ratings.

To see the key insight behind matrix factorization, let’s assume for the 
moment that we can summarize movies and users with just a handful of 
numbers apiece. For each movie, those numbers might just represent its 
possible genres: Is it an action movie, a comedy, a thriller, or some combi-
nation of these? We could represent each movie as a short, ordered list of 
numbers: 1 where it fits a certain genre and 0 where it doesn’t.

We could also do the same thing for Netflix user preferences: 1 if the 
user likes the genre, –1 if the user doesn’t like it, and 0 if the user doesn’t 
care about it. If the user really likes or dislikes a genre, we might use more 
extreme numbers, like 1.5 or −2.2. Don’t worry for the moment about 
where we get this information about our movies and users. For now, just 
assume that we can find which movies belong to which genres from pub-
lic sources like Wikipedia and the Internet Movie Database (IMDb), and 
that we can simply use a survey to ask people which genres they like.

Once we’ve described each movie and person in our database with 
these descriptive numbers, we’d like to use them to predict whether any 
one person likes a given movie. Let’s try to predict whether the director 
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Steven Spielberg likes Jurassic Park. That movie is mostly science fiction and 
adventure, so let’s say it has a 1 for those two genres and 0 for everything 
else. And let’s say that Steven Spielberg really likes science fiction (1.2), 
sort-of likes adventure and comedy movies (0.6 and 0.5), and dislikes hor-
ror movies (−1.2). How should we combine these numbers to predict 
whether he likes Jurassic Park?

One simple way is to take the numbers describing whether Jurassic Park 
falls into each genre, multiply those by how much Steven Spielberg likes 
those genres, and then add these products up to get a score that describes 
how much he likes Jurassic Park (see figure 5.3). I’m making no promises that 
this is the “best” way to combine these numbers, but if you’re willing to 
suspend your disbelief for a moment, you’ll probably agree that this 
should at least point us in the right direction.

In a nutshell, this is matrix factorization. This is the most important algo-
rithm we’ll see for making personalized recommendations, and here’s the 

Jurassic Park
movie genres

Steven Spielberg’s
genre affinity

Science fiction

Comedy
Horror

Adventure

Drama

Romance

x 1.2

0.5
–1.2

0.6

0.3

–0.1

1.0

0.0
0.0

1.0

0.0

0.0

1. Multiply

x
x

x
x
x

1.2

0.0
0.0

0.6

0.0

0.0

2. Add

1.8

Spielberg’s affinity to
Jurassic Park’s genres

Spielberg’s affinity to
Jurassic Park

Figure 5.3
A test to determine whether Steven Spielberg would like the movie Jurassic 
Park. Here, we can assume Jurassic Park falls into two genres: science fiction and 
adventure. Steven Spielberg tends to like science fiction movies, comedies, and 
adventures, and tends not to like horror movies, as indicated by his genre affinities. 
We combine these into a score by multiplying together the genre scores, which 
are 0 or 1, with Spielberg’s affinities for those genres, and adding the results 
together. The result is a fairly high “affinity” score describing how much Spielberg 
likes Jurassic Park.
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key intuition I want you to internalize about it: this algorithm assumes that 
we’ve summarized each movie with a few numbers and each user with a 
few numbers, and it provides a way—precisely the way I showed you in 
figure 5.3—to combine these sets of numbers into a score to describe how 
much any user will like any movie. This is called matrix factorization 
because, the way the math works out, it’s equivalent to approximating the 
original, gigantic ratings matrix in figure 5.2 as the matrix product of two 
or more much smaller matrices—its factors—which encode exactly the 
numbers we’ve used to describe the movies and users.23

If you compare figure 5.3 with figure 5.1, you’ll notice that we’ve cre-
ated a classifier in both. In figure 5.1 the features are recipes and the weights 
are kids’ preferences; in figure 5.3 the features are movies’ genres and the 
weights are Mr. Spielberg’s movie preferences. This hand-built classifier 
gives us personalized recommendations for Steven Spielberg.

As you might imagine, we can do better if we learn these weights from 
data. If Mr. Spielberg has rated movies on Netflix, we could use those rat-
ings and the genres of the movies he’s rated to learn his movie preferences 
automatically. This is exactly the same thing we did when we trained the 
classifier to find good recipes for kids, except that now we’re training a clas-
sifier to make movie recommendations for Steven Spielberg. This classifier 
will only work for Steven Spielberg, but it’s trivial to repeat this process for 
each Netflix user. Using each user’s past movie ratings, we could auto-
matically create a classifier for everyone, without needing to directly ask 
them which genres they like.

It turns out that we can improve these predictions even more. To see 
how, look again at figure 5.3. Notice that Jurassic Park’s genres are fixed to 
either 0 or 1. I chose these numbers by looking at IMDb, but we can 
improve our predictions by learning about movies’ genres from data. 
Instead of requiring that Jurassic Park be described by either 0 or 1, we 
could represent it with numbers that we’ve learned from users’ ratings of 
the movie, applying the exact same approach we used to learn Steven 
Spielberg’s preferences for different genres.

Why bother learning movies’ genres from data when we already know 
the actual genres for each movie? We do this because we have no reason to 
believe that the genre labels selected by humans are the best way to sum-
marize movies for the task of making movie recommendations. Fixed 
genres are too coarse a way to describe movies; and in fact, we have plenty 
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of evidence that movie genres are fluid. Movies like Jurassic Park illustrate 
this perfectly: Jurassic Park was both a science-fiction film and an adventure 
film, but it also had some elements of comedy and some elements of hor-
ror. So it should have at least a little weight for these latter genres. And 
some genres are too coarse: comedy movies might be dry, slapstick, or 
raunchy; and each type of comedy might draw vastly different audiences. 
Genres are a useful way for movie store clerks and other people to describe 
movies, but they don’t tend to be very useful for predicting how much 
people will like them, at least compared to what we can learn from the 
data.24 We can actually predict movie ratings much better if we ignore “real” 
movie genres altogether and just use the artificial ones we’ve machine-
learned from the ratings matrix.25

In fact, as Chris Volinsky of BellKor pointed out, none of the data that 
came from outside the ratings matrix during his team’s experiments seemed 
to be very useful in predicting ratings. They tried a bunch of things—
movie genre, which actors were in the movie, what the movie’s release 
date was, and so on—but nothing seemed to help. Chris’s intuition was 
that the dataset of movie ratings was so large and so rich that peoples’ rat-
ings told you all you really needed to know about who would like a 
movie. Knowing how thousands of different people voted on a movie 
could tell you more about that movie than any amount of external 
knowledge ever could. The ratings for a movie are like its digital finger-
print, and matrix factorization provides a compact but excellent sum-
mary of that fingerprint.

If we repeatedly alternate between these two steps—that is, learning 
movies’ genres while holding users’ affinities for those genres fixed, and 
then estimating users’ affinities for those genres while holding the genres 
fixed, then our recommendations will get better and better until eventu-
ally the genres stop changing. At that point, we’ll have learned a set of 
weights for each user and another set of weights for each movie that we 
can multiply together and sum up to provide rich, personalized recom-
mendations for each user-movie pair. This is what most data scientists 
mean when they refer to matrix factorization, and this alternating process 
of relearning the genres and genre affinities from data is how they often 
compute the matrix factorization.

As we learn these artificial genres with this alternating method, they’ll 
diverge from the original genres we started with. By the time we’re done, 



Netflix and the Recommendation-Engine Challenge	 71

they might not look like the original genres at all, but they’ll still often be 
interpretable.

The way I’ve described matrix factorization just now probably isn’t the 
way you’d hear about matrix factorization in a college class. Often when 
researchers talk about matrix factorization to other people, they draw up an 
image of the movies in the ratings matrix forming a point cloud, where mov-
ies with similar ratings are near one another and movies with very different 
ratings tend to be farther apart. In fact, it’s easy to create such a cloud from the 
matrix, although it’s difficult to visualize, because each movie-point has 
480,189 coordinates: one for each of the 480,189 users’ ratings for the movie.

But just like the matrix, this cloud has a lot of redundant information. 
Matrix factorization takes the high-dimensional cloud of movies and col-
lapses it down into a lower-dimensional cloud that still captures the trends 
we care about—namely, that similar movies cluster near one another, while 
different movies tend to settle farther apart from one another. In the new 
space, each movie might be described with only half a dozen or a hundred 
numbers apiece—exactly the numbers we’d find with the alternating 
method above.

Matrix factorization and its brethren are often the first approach 
researchers try when they’re working with any data that can be put into a 
large matrix.26 For example, political scientists use matrix factorization to 
understand how lawmakers vote on legislation. If we place US lawmak-
ers’ votes on different bills into a giant matrix and apply matrix factoriza-
tion to it, we can summarize each lawmaker and each piece of legislation 
very well with just one or two numbers apiece.27 In one two-year period, 
for example, it was possible to explain 98 percent of the votes coming out 
of the House of Representatives by using just a single number to describe 
each lawmaker, and this number turns out to explain their political party. 
If you use this number to place lawmakers along the real line, Democrats 
and Republicans are usually perfectly separated. Matrix factorization tells 
us that US congresspersons’ voting is, quite literally, one-dimensional.

THE FIRST YEAR ENDS

Armed with tools like matrix factorization to capture the Terminator effect, 
and combining them with models that captured the Scrooge effect and the 
E.T. effect, the top teams made considerable progress toward the Netflix 
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Prize. By the end of the first year, the top teams were around 8 percent 
better than Netflix’s own Cinematch algorithm. This wasn’t enough for 
them to win the grand prize, but it was more than enough to guarantee 
that some team would be eligible for the $50,000 Progress Prize. The Prog-
ress Prize was to be awarded annually, which meant that the contestants 
faced a fast-approaching deadline.

Among the top teams as the deadline approached was BellKor, whose 
members were the researchers from AT&T Labs and Yahoo!, and who had 
held the lead throughout most of the first year. But earlier in the game, the 
top of the leaderboard had changed frequently. The neural network 
researchers from the University of Toronto were near the top for a bit, and 
they produced an influential paper with a model that was used by other 
teams, including BellKor. But the three Princeton students making up 
Dinosaur Planet, free for the summer, had been working aggressively to 
challenge BellKor.28 And another team of young upstarts—the two Hun-
garian graduate students from the team Gravity—was challenging the 
Princeton students for second place.

Then, on October 21, 2007, one day before the first year’s deadline, the 
ground shifted. The two teams that had been hanging around second and 
third place—Dinosaur Planet and Gravity—formed an alliance. They com-
bined their models, submitting the average of their models’ scores to the 
leaderboard, and suddenly they were in first place. BellKor had just one day 
to try to regain its position to claim the Progress Prize. Although they didn’t 
realize it yet, this was also the beginning of a phenomenon that would 
shape the rest of the competition.



6  ENSEMBLES OF TEAMS: THE NETFLIX  
PRIZE WINNERS

Pragmatic (adjective)—Dealing with things sensibly and realistically in a way 
that is based on practical rather than theoretical considerations.

Chaos (noun)—The property of a complex system whose behaviour is so 
unpredictable as to appear random, owing to great sensitivity to small changes 
in conditions.
—Oxford English Dictionary, 2017

CLOSING THE GAP BETWEEN CONTENDERS

The first year of the Netflix Prize had been a whirlwind of ideas and a blur 
of progress. Before BellKor rose to the top of the leaderboard, a handful of 
other teams came in and out of the top spot, while a flurry of discussion 
and exchange of ideas taking place in the community helped to close the 
gap between the remaining contenders. Some of this discussion took place 
at academic conferences and workshops focused on data mining. Another 
venue was the Netflix Prize Forum, an online community Netflix had set 
up for the contestants.

The Netflix Prize Forum offered a place for contestants to share their 
results and insights informally. Soon after the competition began, the forum 
was humming with activity. As one of the competition’s organizers 
observed:

In addition to active submissions, there has been substantial engagement 
between contestants on the Netflix Prize Forum, including sharing of code 
and coding ideas, additional data, insights on the patterns found in the data, 
even pooling of submissions (and hence teams) themselves to achieve increased 
accuracy (“blending”).1
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Before the teams had published much of their research, Netflix also 
studied comments in the forum to find which methods performed well. 
On this forum, within less than a year after the competition began, Net
flix noticed two of the key ideas that became ubiquitous among the top 
teams’ submissions: an influential description of matrix factorization as well 
as an approach known as model blending.2

Newspapers and magazines had also begun to chronicle the real-life 
stories of casual and part-time data scientists working nights and week-
ends from their home offices. One contestant, a 48-year-old management 
consultant with a degree in psychology, was considering whether to get a 
PhD in machine learning. He went by the name “Just a guy in a Garage” 
in the competition, although technically he worked out of his bedroom.3 
Soon after that, the New York Times chronicled a 32-year-old father of 
four who worked at his dining room table, along with a 51-year old 
“semi-retired” computer scientist who brainstormed with his 12- and 
13-year-old kids about which new ideas to try. They suggested looking 
carefully at movie sequels to get a leg up on the competition.4

THE END OF THE FIRST YEAR

In the final weeks of the first year of the competition, Team BellKor—the 
AT&T and Yahoo! researchers—held first place. But near the end of the first 
year they found themselves challenged by the second- and third-place con-
tenders, teams consisting of young and ambitious recent graduates from 
two teams, Gravity and Dinosaur Planet.

A day before that first year ended, these second- and third-place teams 
literally merged. The combined team, which called itself “When Gravity 
and Dinosaurs Unite,” averaged their predictions and submitted this aver-
age of their two models to Netflix, and the newly minted team was sud-
denly in first place.5 Over the next day, BellKor and the new team raced 
against the clock, furiously coding and debugging. Technically they could 
only submit one model to Netflix per day, so their final submission 
needed to count. In the end, BellKor managed to submit an entry that 
barely beat When Gravity and Dinosaurs Unite, coming in at 8.43 per-
cent above Cinematch—and just 0.05 percent above their competitors. 
BellKor won the first year’s $50,000 Progress Prize, but not by much.6



To claim the reward, BellKor needed to publish a report about their 
algorithms. After they did this, their secrets were out in the open for every-
one to see, and the moat around them continued to fill with other contes-
tants.7 To make matters worse, BellKor found that it was becoming more 
and more difficult to beat their own results. Having averaged an improve-
ment of 0.16 percent per week toward the Prize goal of 10 percent in the 
first year, BellKor averaged just 0.02 percent per week the second year. 
Their progress had ground to a near-halt.

They had already picked most of the low-hanging fruit in the first year, 
when the teams established the most successful components of their 
models. This included the baseline model—the Scrooge effect (to describe 
users’ tendency to rate high or low) and the E.T. effect (to explain whether 
movies were good or bad regardless of who was rating them)—along with 
models like matrix factorization to handle the Terminator effect, which 
summarized users’ unique preferences.

In the second year, these teams were facing what we might call the 
Napoleon Dynamite problem. Teams competing for the Netflix Prize found 
it famously difficult to predict the effect the 2004 cult classic Napoleon 
Dynamite would have on different viewers.8 Clive Thompson explained the 
reason the film posed such a challenge in the New York Times Magazine, 
citing one of the contestants:

The reason, [the contestant] says, is that Napoleon Dynamite is very weird and very 
polarizing. It contains a lot of arch, ironic humor, including a famously kooky 
dance performed by the titular teenage character to help his hapless friend win a 
student-council election. It’s the type of quirky entertainment that tends to be 
either loved or despised. The movie has been rated more than two million times 
in the Netflix database, and the ratings are disproportionately one or five stars.9

The difficulty in predicting whether a Netflix customer will like Napo-
leon Dynamite gets at both the core strength and the core weakness of any 
recommendation system: personalized recommendations can only work if there is 
some redundancy in users’ preferences. If a movie existed that was completely 
un-redundant with other movies, then neither matrix factorization nor 
other methods would be useful for making personalized recommendations 
about that movie.10 This doesn’t mean that Napoleon Dynamite wasn’t 
redundant, but with many of the methods people tried, they couldn’t find 
where that redundancy was hidden.
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It felt like the ratings matrix was a wet towel that they had been trying 
to squeeze dry for a while, collecting the precious water from the towel in 
a bucket. They had squeezed it as long as they could in a certain way, so it 
was time to unfold the towel to try squeezing it in a different way. And so 
these teams tried some different approaches to capture the Terminator effect, 
turning the towel this way and that.

One model that became popular, even in the first year, was an artificial 
neural network developed by the researchers in the team ML@UToronto. 
This neural network was mathematically very similar to matrix factoriza-
tion, but it dealt with missing ratings differently, and it treated ratings as 
discrete categories 1, 2, 3, 4, or 5 instead of real numbers in the range 1.0 
to 5.0. In other words, it twisted the towel a bit differently than matrix 
factorization.

Another method the teams used searched for movies that were similar 
to one another. If you like a certain movie—say, Cinderella—and this movie 
is very similar to another one that you’ve never rated—say, Sleeping 
Beauty—then these methods should be able to recommend the latter movie 
to you. The teams also tried to find which users were similar. If you were 
similar to a fellow over in Wyoming in the way you’ve rated movies, 
and this fellow has given a high rating to a movie you’ve never seen—say, 
Back to the Future—then these methods should recommend that movie to 
you, too. The trick with getting these methods to work, of course, was in 
how they decided what made one user “similar to” another user. There’s no 
single, correct way to do this, but the teams did their best, writing out 
mathematical functions in their programs to encode their intuitions.

Another trick to solving the Napoleon Dynamite problem was by look-
ing not just at which star ratings users gave to different movies, but also at 
which movies they had rated. For example, regardless of whether you like 
the movie Star Trek IV—the one in which they go back to present-day 
Earth to find whales—the fact that you have even rated a Star Trek movie 
gives a lot of information about which types of movies you tend to like.11 
The teams found that by incorporating this “implicit” information—that 
is, information about which movies you’ve watched, not just how you rate 
them—they could decrease their relative error by roughly 10 percent. This 
was a small but welcome improvement, given how difficult it was to 
squeeze water out of their towel by this point.12
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PREDICTIONS OVER TIME

The second year of the competition, these teams also turned their atten-
tion to a different part of the data: when users rated movies.13 But contes-
tants faced a problem because Netflix ratings reflect a changing world: the 
popularity of movies changes over time, and people themselves change their 
preferences over time. If you asked a viewer to rate a movie one month and 
have her rate the movie again a month later, her rating would change by 
an average of 0.4 stars.14 And to make things even more difficult, she’d 
tend to assign different scores to movies on Mondays than she will on 
Fridays.15

The researchers behind BellKor addressed this problem by letting parts 
of their model be flexible enough to reflect their observations about how 
ratings changed over time. They revisited the movie-popularity offset in 
their baseline model. Instead of measuring a movie’s popularity once over 
the entire period, they measured it more often, grouping the ratings into 
10-week “bins.”16

Figure 6.1 shows what the average popularity looked like for The 
Matrix, which came out in 1999, if we break it up into 10-week intervals. 
Over the two years following its release in 1999, The Matrix gradually 
decreased in popularity. Its sequel, Matrix Reloaded, was released in May 
2003, which might have explained the spike in popularity of the original 
Matrix in early 2003.

A bigger challenge in how time impacted movie ratings rested in the 
viewers themselves. Sometimes a user rated many movies at a time, and 
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Popularity of the movie The Matrix over time.
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those “bursts” might occur when she was in a particularly good or bad 
mood. Other times the primary Netflix user in a household changed—
for example, as a teenager began watching more Netflix than her parents. 
BellKor addressed this by assuming that customers’ preferences might 
drift gradually over time in a fixed direction, while also assuming that their 
ratings on a given day might be a bit higher or lower than this gradual 
drift suggested.17

The data was wildly distorted in other ways, too. BellKor noticed that 
Netflix customers’ rating scales could moderate over time, as if they were 
becoming more or less apathetic in rating movies. It wasn’t that their 
ratings became higher or lower on average (although this happened too). 
It was that they also became more or less extreme over time. As before, 
BellKor captured this effect by assuming that users rated movies in bursts 
on a given day, when they were particularly moderate or extreme in the 
ratings they assigned.18

Sometimes these trends were harder to explain. The members of Prag-
matic Theory—the “two guys without a clue” we briefly met in the last 
chapter—noticed that the number of ratings made by a customer on a given 
day was a useful predictor of whether the movie was good or not.

The team’s observation was confusing because it wasn’t just due to 
anomalies in the users who made the bulk ratings: that part was old news. 
This was a peculiarity about the movies being rated. Some movies tended 
to receive more stars than expected when included in a bulk rating, while 
other movies tended to receive fewer stars than expected when included 
in a bulk rating. When team BellKor eventually learned about this result 
from the guys in Pragmatic Theory, they hypothesized that users remember 
movies asymmetrically. Some movies are memorably good or memorably 
bad, while others are just not very memorable. When users rates movies in 
bulk, they tend to include movies they saw a long time ago—particularly 
those movies that were memorably good or bad. Those who loved or hated 
a memorably good or bad movie will remember it long afterward and 
likely rate it during a bulk rating, while those who didn’t feel strongly 
about it will simply forget about it by the next time they bulk-rate 
movies.19

The Netflix Prize dataset was chock-full of data-mining gems like this. 
Here’s another one: a team named BigChaos noticed that the number of 
letters in a title was predictive of whether users liked it (the effect wasn’t 



large, but it was present). As the competition wore on, the different teams 
mined these gems, bit by precious bit.

OVERFITTING

Since Netflix gave its contestants so much data, the teams could just about 
“assume” parts of their model into existence by adding parameters to their 
model in a way that matched their intuitions. If a team had a hunch that 
movies’ popularities were predictive of customers’ ratings (they are), they 
simply needed to add a new parameter to their model for each movie that 
could “absorb” that information.20 If the team had a hunch that customers 
might be somewhat biased in their ratings (they are), then they simply 
needed to add a new parameter to their model for each customer to absorb 
that information too. These two parameters made up their baseline model. 
And when a team wanted to also assume that movies’ popularities change 
over time, and that customers’ biases vary over time, they did so by adding 
parameters to their model for each of those things.

The main risk the teams faced with these parameters was whether they 
were adding more flexibility to their models than justified by the amount 
of data they had. If they added too many parameters, they ran a risk of 
“overfitting” to their dataset. Overfitting means that their apparently good 
performance in predicting ratings might be a mirage. They might think that 
they’re predicting ratings well because the error in their predictions looks 
low, when it’s instead because they have so many parameters to work 
with—basically, so many knobs to tune—that they end up making their 
model look better than it really is. If they were overfitting, then their appar-
ently good predictions might not carry over to the secret dataset that 
Netflix used to evaluate the contestants. For example, BellKor could have 
added a parameter to their model for every customer-movie pair in their 
dataset. This could explain the ratings in their movies dataset with perfect 
accuracy.21 But it would be useless in predicting ratings for any user-movie 
pairs they hadn’t seen before. Fortunately it was easy for the contestants to 
keep an eye on whether they were overfitting, because they could keep 
aside a fraction of their own dataset (Netflix provided them with a sample 
for this very purpose) and test against it to make sure they weren’t overfit-
ting. We’ll see a couple more ways to deal with overfitting when we look at 
neural networks in a few chapters.
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MODEL BLENDING

The progress toward the Netflix Prize and its conclusion in the first year 
had transfixed the contestants. After BellKor published their work for the 
community, their peers pored over their report carefully, reading about 
their baseline model, their matrix factorization model, and the neural net-
work BellKor used. They also read about how BellKor had blended a 
whole bunch of different versions of these models together. It wasn’t a 
surprise to the other contestants that BellKor had been blending models—
it hadn’t exactly been a secret, and blended models had already been dis-
cussed in the online forum. But it was now undeniable from BellKor’s 
paper that blended models worked. Besides, when Gravity and Dinosaur 
Planet combined, they had implicitly used model blending when they 
averaged predictions from their two separate models.

When BellKor was researching how to predict ratings, they needed to 
make a lot of decisions about what should go into their model. When they 
fit a matrix factorization model, they needed to answer questions such as: 
How many “genres” should we use to summarize each movie? Should we include 
the implicit ratings information? When they fit a nearest-neighbor model for 
movies, they needed to decide what it meant for two movies to be similar. 
They could try a bunch of educated guesses and validate their guesses with 
data, but they had a lot of different decisions to make. If they tried to tune 
all of their parameters to find the perfect setting for all of them, there was 
a good chance they might overfit.

Instead, BellKor created many models with somewhat different param-
eter settings, and then they averaged them. To win their first Progress Prize, 
they averaged 107 different models. Did BellKor need to combine so many 
separate models? Probably not: they noted that they used so many models 
in part for convenience. They already had those models from earlier exper-
iments, and it didn’t hurt to keep them in the final blend, so why not? But 
they found that they could get results that were comparably as good or bet-
ter with only about fifty models.22

Why does model blending work? When a contestant asked BellKor on 
the Netflix Prize Forum which of their 107 models was best, Yehuda 
Koren, one of the members of the team, listed some of its benefits:

It allows concentrating on relatively simple models, which are fast to code and to 
run. The result is also more robust against programming bugs and overfitting. …



I will not recommend just one of the predictors. You want at least to 
explain the data at multiple scales (local+regional).23

In other words, blending models is good for both practical and model-
ing reasons. It’s practical to use the average of many simple models, because 
simple models are easy to program and less prone to bugs. And if you use 
many different models, you can capture the uncertainty in your dataset 
at many different “granularities.” For example, if you’re debating between 
using 10 genres and 100 genres in your matrix factorization model, you 
can simply use both. The 10-genre model can capture the high-level 
“gist” of each user’s movie preferences, while the 100-genre model can 
capture the fine nuance of her preferences.

This idea of model averaging is also supported by a rich set of theoreti-
cal results, and the intuition is easy to get at. Let’s say that you’re investing 
in the stock market, and you are deciding whether to put all of your money 
into stock A, which returns, on average, 12 percent per year; or into a 
hundred different stocks which each return, on average, 12 percent per 
year. If you have the same uncertainty about the outcome of all of these 
stocks, then you’re better off splitting your money equally among the 
hundred stocks.24 Why? Because you can still expect to get an average of 12 
percent per year, but you’ll have lower uncertainty about your outcome: 
some of the stocks that return less than 12 percent will be offset by the 
stocks that return more than that.25 Each of BellKor’s 107 models was 
“trained” to make a different prediction of users’ movie-ratings; so by 
blending these 107 models, BellKor’s new predictor still predicted the 
same thing, but with less uncertainty.

But wait, you might say. We saw that with the financial crisis of 2008 and 
2009, the entire stock market went down. Having a portfolio of 100 stocks 
wouldn’t have offered much protection against this, so this “less uncer-
tainty” argument is bogus. This is correct, and it gets at the core of when 
model blending works and when it doesn’t work. Most stocks are cor-
related to one another, and model blending works well when the models 
are uncorrelated. If one model predicts too high a Netflix rating, the 
other models should help to mitigate this, not to reinforce it. This can hap-
pen more easily when they are uncorrelated.

We can get some further intuition for how model blending helps by 
looking at boosting, one of the methods the top teams used to blend 
their models as their submissions improved. The intuition behind 
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boosting is that by combining many “weak” models—each one of 
which might not be very good, but each of which is at least a little good—
we can end up with a much more powerful model than any of the origi-
nal ones.26

To apply boosting to a problem like the Netflix challenge, we would 
begin by training a very simple model to predict movie ratings. Its predic-
tions won’t be perfect, so we take the ratings that the model got wrong and 
magnify them—that is, we give them more weight than the other ratings, 
because we want the classifier to care about them more the next time 
around—and then we fit a second model with these adjusted weights. Then 
we repeat the process again and again, magnifying the incorrect ratings and 
refitting a new model each time. By the time we’re done, we’ll have easily 
trained tens, hundreds, or even thousands of models. If we average these 
models with the right weights, the result will be a single, blended monster 
of a model that works better than any single one.

THE SECOND YEAR

As the second year wore on, several other teams began threatening BellKor 
on the leaderboard. The team When Gravity and Dinosaurs Unite was 
never very far behind, but after the first summer, the three Princeton 
undergrads from the Dinosaur Planet part of the team found themselves 
busy with grad school and work.27 As the end of the second year of the 
competition grew near, another team called BigChaos began to threaten 
BellKor.

BigChaos was experimenting a lot with the way they blended their 
models. In the first year, they combined models by simply using a weighted 
average of them. During the second year they found a neural network to 
be especially useful when combining their models. The neural network 
could learn a more sophisticated way to combine the simple models than 
by taking a simple average.28

But as the second year continued, all of the top teams struggled to make 
more progress. The prize organizers were starting to wonder whether con-
testants would make enough progress to win the prize at all.29 As the 
deadline for the second Progress Prize approached, the situation grew more 
intense. For any team to win the second $50,000 Progress Prize, they 
needed to exceed the previous year’s 8.43 percent improvement by an 



entire 1 percent. BellKor and BigChaos were the top two teams, but at the 
rate they were progressing, it could take them over a month to reach the 
9.43 percent goal.30

In the end, BellKor and BigChaos caused another upset: they combined 
into a single team. The merged team, which they decided to call BellKor 
in BigChaos, exceeded Cinematch by 9.44 percent. This was precariously 
close to the threshold they needed for the second Progress Prize, and it was 
still far from their 10 percent target, but it was enough for the new team 
to win their $50,000.

The five members of BellKor in BigChaos could pause to make a col-
lective sigh of relief, but they couldn’t rest long. If no team hit that 10 per-
cent goal in the coming year, nobody would qualify for the Progress Prize 
either. Would that be the end of the competition? There was also palpable 
speculation in the air about another topic: Which teams would merge next? 
The competition had entered a new phase, and the teams’ attention began 
to shift from predicting ratings in the ratings matrix to finding the best 
strategy for teams to merge.

THE FINAL YEAR

As the final year progressed, BellKor in BigChaos continued to top the 
leaderboard, with When Gravity and Dinosaurs Unite never far behind. 
But by then, another team had begun to show up on the leaderboards: Prag-
matic Theory, the Canadian duo we’ve seen a couple of times already, the 
two guys without a clue. Despite their initial unfamiliarity with the 
field, they found the Netflix community to be extremely collegial, and 
they carefully studied the methods of the other contestants. When BellKor 
in BigChaos published their results, the members of Pragmatic Theory 
immediately downloaded and carefully studied their papers. Over time, and 
working nonstop, Pragmatic Theory continued to move up the official 
leaderboard.31

If BellKor’s emphasis was on the theory of collaborative filtering, and 
BigChaos’s emphasis was on blending algorithms, then Pragmatic Theo-
ry’s emphasis was the sheer quantity of effort they invested and results they 
obtained. In one paper they published about their methods, I counted 707 
separate models that went into their blend. Although this would have 
been impractical for the production system that Netflix would need to 
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implement, Pragmatic Theory didn’t care about that. They cared about 
predicting the ratings as accurately as possible. They outlined this philoso-
phy in one of their papers (emphasis added):

The solution presented in this document was exclusively aimed at building 
a system that would predict subscriber ratings with the highest possible 
accuracy. … The solution is based on a huge amount of models and predictors 
which would not be practical as part of a commercial recommender system. 
However, this result is a direct consequence of the nature and goal of the com-
petition: obtain the highest possible accuracy at any cost, disregarding completely the 
complexity of the solution and the execution performance.32

In other words, Pragmatic Theory developed a solution that would have 
been impractical to implement precisely because they were being pragmatic. 
BellKor in BigChaos saw another trait in them. Chris Volinsky, of the orig-
inal team BellKor, explained that he and his colleagues converged on the 
adjective fearless to describe Pragmatic Theory. But Pragmatic Theory was 
also alarming to BellKor in BigChaos for another reason.

This late in the competition, the focus of the community had moved 
somewhat away from optimizing and blending their models and toward 
optimizing their teams. Since each team was facing the same difficulties in 
eking out improvements in their models, the tone of the competition was 
beginning to suggest that these teams would continue to merge to reach 
the 10 percent target.

BellKor in BigChaos noticed that Pragmatic Theory—the fearless 
Canadian duo—was a prime “merge target” by another team. If another 
team picked them up, that team could become a serious threat. Should 
BellKor in BigChaos try to merge with Pragmatic Theory? Maybe, 
but BellKor in BigChaos were also in secret discussions with other teams, 
and there might be a better team to merge with, such as When Gravity 
and Dinosaurs Unite—the recent grads from Princeton who went off 
to industry and grad school, who had combined with the Hungarian 
graduate students.

BellKor in BigChaos needed to act, and they needed to do so quickly. 
Around this time, When Gravity and Dinosaurs Unite formed a new team 
called Grand Prize Team. This new team invited anyone to join, offering 
a fraction of the $1 million prize proportional to how much closer the 
newcomers brought them to winning. This frightened BellKor in 



BigChaos, as it could quickly spell the end of them if a team like Prag-
matic Theory joined Grand Prize Team.

In the end, BellKor in BigChaos decided to merge with Pragmatic 
Theory to form the new team BellKor’s Pragmatic Chaos (you can keep 
track of how the leading teams merged in figure 6.2). BellKor in BigChaos 
had been in secret discussions with Pragmatic Theory and other teams for 
some time before their merger. When BellKor’s Pragmatic Chaos submit-
ted their combined model, they beat Cinematch by 10.05 percent, putting 
them past the 10 percent threshold.

But this wasn’t quite the end of the competition. Netflix’s rules dictated 
that, once the first team breached the 10 percent barrier, a 30-day “last call” 
period would begin. At the end of that period, the winner would be 
decided, based on whoever had the lowest prediction error on that double-
secret dataset that Netflix had set aside at the very beginning of the 
competition. Scores on that double-secret dataset would be rounded to 
four decimal points, and ties would be broken by submission time.
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Figure 6.2
The chart shows team progress toward the Netflix Prize. The final team to win the 
competition was BellKor’s Pragmatic Chaos.
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The remaining teams had a month to catch up. The bubbling phenom-
enon of team merging spilled over into a desperate froth. The other lead-
ing teams, including Grand Prize Team, brokered a deal to form a massive 
consortium called “The Ensemble,” which contained over thirty teams (an 
“ensemble” in machine learning is another name for a blend of different 
models).33

Internally, the members of The Ensemble debated about their strategy 
in the final month: Should they wait until the last minute, and then sub-
mit their combined model? Or should they make submissions early and 
often? Submitting late could keep their existence a secret and catch 
BellKor’s Pragmatic Chaos by surprise. But submitting early could enable 
them to avoid any last-minute catastrophes. Ultimately they voted to 
keep the existence of The Ensemble a closely held secret and to make 
their first submission as a team one day before the deadline; when that 
day arrived, they submitted their model as The Ensemble, coming in at 
10.09 percent, just barely beating BellKor’s Pragmatic Chaos, who had 
gotten up to 10.08 percent by then. Twenty-four minutes before the final 
deadline, BellKor’s Pragmatic Chaos submitted again, and also came in 
with a score of 10.09 percent. And then, four minutes before the final 
deadline, The Ensemble submitted a model that reached 10.10 percent on 
the leaderboard. The competition was over, and Netflix needed to evalu-
ate the models on their double-secret dataset.

On the double-secret dataset, BellKor’s Pragmatic Chaos and The 
Ensemble tied up to four decimal places, which, according to Netflix’s 
rules, put them at a tie; and ties were to be broken based on the time of 
submission. BellKor’s Pragmatic Chaos had made their submission 20 min-
utes earlier than The Ensemble, and so the three-year competition came 
to an end. BellKor’s Pragmatic Chaos claimed the $1 million prize.34

AFTER THE COMPETITION

Despite the impressive performance of the final teams, Netflix never imple-
mented the final suite of models submitted by either BellKor’s Pragmatic 
Chaos or The Ensemble. A few people, apparently upset about this, even 
called the Netflix Prize a failure. And although Netflix tried to anonymize 
their dataset, one group of researchers pointed out some ways the dataset 
theoretically exposed its customers’ privacy, claims which were widely 



misinterpreted in the media. As a result, Netflix withdrew their dataset 
from the public and attempted to scrub all traces of it, a move one con-
testant called a “damned shame.”

This aside, the competition was a success by a number of metrics. First, 
Netflix had incorporated some of the ideas from the competition. They 
found that two of the methods described by teams in their first year—
matrix factorization and the neural network developed by the Toronto 
team—offered significant improvements over Netflix’s own algorithm; 
these two alone netted them a 7.6 percent improvement over Cinematch. 
For paying out two Progress Prizes of $50,000 and the grand prize of $1 
million, they received in return many thousands of hours of cutting-edge 
research by world experts along with exposure to this talent in a tight labor 
market.35

They also received—possibly most importantly of all—strong evidence 
that they shouldn’t invest significant effort beyond a certain point. They had 
seen from the contestants where they should start to expect diminishing 
returns. In the meantime, they had also seen their business moving much 
more in the direction of online, streaming video, and away from DVD 
rental. While their recommendation engine would still be an important 
feature of their new product, they also had other things to think about.36

The Netflix Prize was a success for the research community as well. 
While the DARPA Grand Challenges received hundreds of submissions, 
the Netflix Prize had tens of thousands.37 On the technical side, the 
competition empirically established matrix factorization and model aver-
aging as some of the best methods for recommendation systems. While 
these ideas had been around for a long time, the competition helped 
to publicize them by offering objective and public evidence of their 
performance.
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7  TEACHING COMPUTERS BY GIVING THEM TREATS

Why don’t we have robots that can tidy the house or clean up after the kids? 
It’s not because we’re not mechanically capable—there are robots that could 
do that. But the problem is that every house, every kitchen, is different. You 
couldn’t pre-program individual machines, so it has to learn in the environ-
ment it finds itself in.
—Demis Hassabis, founder of DeepMind1

DEEPMIND PLAYS ATARI

In early 2014, as Google’s self-driving car project was humming along, the 
company was on an acquisition spree, gobbling up a variety of artificial 
intelligence and robotics companies. During this spree they acquired a 
small and mysterious company named DeepMind for over $500 million. 
At the time, DeepMind had only about 50 employees. Its website appeared 
to consist of a single webpage listing its founders and two email addresses.

Google holds an all-hands meeting at the end of every week called TGIF. 
The founders and other leaders of the company use the meeting to make 
announcements and to share details on projects within its various organi-
zations. A number of months after Google acquired DeepMind, word 
spread around the company that DeepMind would be presenting at TGIF. 
Everyone at Google could finally learn what the secretive unit had been 
working on this whole time.

DeepMind explained at the meeting that they had figured out how to 
let a computer program teach itself how to play a wide variety of Atari 
games, including classic games like Space Invaders and Breakout. After Deep-
Mind allowed their program to play millions of games, it often became far 
better than human players.
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DeepMind then gave a demonstration to the audience, showing them 
a video of its program playing Space Invaders, a game in which the player 
must move a spaceship around the bottom of the screen to shoot aliens 
before the aliens make their way down to the bottom (you might recog-
nize screenshots of this game and of Breakout in figures 7.1a and 7.1b).

As the audience looked on intently, the program played the game impec-
cably. Every shot it fired hit a target. As the game’s round neared its end, a 
single alien remained. The computer fired one stray shot, as the alien was 
moving step by step away from the missile and toward the right side of the 
screen. The humans in the room relaxed slightly: maybe this AI wasn’t a 
threat to their existence after all.

And then, as the audience continued to look on, the alien bounced off 
the side of the screen and began moving back toward the screen’s center. 

A

B

Figure 7.1a, b
Two of the Atari games played by DeepMind’s agent: 
Space Invaders (top) and Breakout (bottom).
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The program’s strategy became clear. The alien moved directly into the 
trajectory of the stray missile and was destroyed. The computer had won 
a flawless game. The room erupted in cheers.

Why was the audience of Googlers so excited? Hadn’t IBM created 
Deep Blue to defeat the Garry Kasparov, the world’s best chess player nearly 
two decades earlier, in 1997? Hadn’t Watson defeated the Jeopardy! cham-
pion Ken Jennings in 2011? Didn’t Google’s engineers already know about 
its self-driving cars, which had traveled nearly 700,000 autonomous miles 
on the road? If self-driving cars were possible, why was everyone impressed 
that a computer could beat a simple video game, when computers had 
been playing video games competitively for years?

The computer program was so impressive because it had learned how to 
play the game without any human guidance. Earlier breakthroughs had 
involved a high degree of human judgment and tweaking for the algo-
rithms to work. With the self-driving car, a human needed to carefully 
develop the features for detecting drivable terrain and then tell the car that 
it could drive on that terrain. A human needed to manually create the finite 
state machines in the self-driving car’s Monopoly board module. Self-driving 
cars had not learned how to drive on their own by trial and error.

In contrast, the DeepMind program was never told by a programmer that 
tapping the joystick left would make the spaceship move left, or that hitting 
the button would shoot a missile, or even that shooting a missile at an alien 
would destroy the alien and earn it points. The only inputs to the Atari-
playing agent were the raw pixels on the screen—their red, green, and blue 
colors—and the current score.2 Even more impressively, DeepMind used 
the same program to learn how to play all of 49 Atari games—the majority 
of which it learned to play well—with no hand-tuning whatsoever. All that 
the program needed was the time to practice each game. DeepMind did this 
with an idea called reinforcement learning, a field of artificial intelligence 
devoted to giving computer programs the ability to learn from experience.

REINFORCEMENT LEARNING

In this chapter and the next I’ll explain the key intuition behind how 
DeepMind used reinforcement learning to master these Atari games.3 
Computer programs that use this technique learn to do things when they 
receive occasional rewards or punishments; so to train them, we just need 
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to program them to seek these incentives—and then we need to give them 
these incentives when they’ve done something we want them to do (or not 
do) again. Just as your dog will learn to follow your commands when you 
give him a treat, a program that learns by reinforcement learning—the 
lingo for such a program in the AI community is agent—will also learn to 
follow your commands.

Reinforcement-learning agents may seem too smart to be automata, 
but, as we’ll see in the next two chapters, they still follow deterministic 
programs. Once the Atari-playing agent had been trained, for example, the 
agent just needed to look at the four most-recent screenshots from an Atari 
game (see figure 7.2). After looking at these screen shots, it evaluated a 
mathematical function to select a joystick action: left, right, or press the 
“fire” button, for example. It then repeated this process, over and over again, 
looking at the recent screenshots of the game and selecting an action based 
on what it saw, until the game was over. As you might guess, though, the 
magic wasn’t in how it played the game: as I just explained, that part was 
simple. The real magic was in how it learned to play the game—and in 
how it perceived what was happening on the screen. In this chapter we’ll 
begin with the first of those questions: How can an agent learn which 
actions to take given its past experience?
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Figure 7.2
DeepMind’s Atari-playing agent ran continuously. 
At any given moment, it would receive the last 
four screenshots’ worth of pixels as an input, and 
then it would run an algorithm to decide on its 
next actions and output its action.
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I’ll use a virtual game of golf to illustrate how reinforcement learning 
works. With this game of golf, which we’ll play on the course shown in 
figure 7.3a, the goal of the agent is to hit the golf ball into the hole in as 
few strokes as possible. We’re interested in designing an agent that can 
“learn” in which direction it should swing to get it closer to the hole when 
it’s in different parts of the golf course. Should it aim north, east, south, or 
west? To teach the agent, we will train it until it has enough experience to 
play golf on its own. At that point, it will be able to select on its own the 
direction in which it should to aim to make progress toward the hole, no 
matter where it is on the course.

Are we overcomplicating things? Do we really need to use reinforce-
ment learning to tell the agent where to aim on the golf course? Couldn’t 
we just program the agent to aim directly toward the hole? As you’ll see 
in the next section, that’s not a viable option because there will be many 
obstacles in the way. Instead, the agent will need to make subtle adjustments 
to its swings depending on where it is on the course. Reinforcement learn-
ing won’t just be a tool for the job; it will be the tool for the job.

INSTRUCTIONS TO THE AGENT

You, the agent, will play golf on the course shown in figure 7.3a. You can 
aim your swing in any of the cardinal directions (north, east, south, or west) 
or halfway between these (northeast, southeast, northwest, or southwest). 
If you succeed in hitting the ball, it will move one square in the direction 
you aimed, as in figure Figure 7.3b, and your hope is to use as few strokes 
as possible to get the ball into the hole. Note also that this is a humongous 
golf course, so it might take 150 strokes or so to play a full round.

Two more things will make this game of golf interesting. First, and most 
importantly, there are explosive mines all over the place, as shown in fig-
ure 7.3c. You know where these mines are as you play the game—and they 
stay fixed every time you play the game—but you must avoid stepping on 
them at all costs.

The mines wouldn’t be a problem if you could aim perfectly, so I’m 
going to add a final rule to make this game more difficult: the ball will not 
always move in the direction you swing. Sometimes it will end up in a dif-
ferent cell adjacent to you, and sometimes it may not move at all. You 
could attribute this to whatever you want—maybe it’s wind, or maybe it’s 
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B

Figure 7.3b
Your goal is to hit the ball from the start position into the hole in as few swings as 
possible; the ball moves only one square (or zero squares) per swing.

A

Figure 7.3a
The golf course used in the reinforcement-learning example. Terrain types, ranging 
from light grey to dark black: the green (least difficult), fairway, rough, sand trap, and 
water hazard (most difficult). The starting point is on the left, and the goal is in the 
top-right corner.
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a bad swing. You don’t know details of how it moves when you swing—
there’s some randomness involved—but you suspect that the ball is more 
difficult to hit on difficult terrain like rough than on easy terrain like green; 
these are all details you need to learn from experience. From easiest to most 
difficult, the types of terrain are green, fairway, rough, and sand trap. There is 
also a water hazard. If you hit the ball into the water hazard, you’ve wasted 
a stroke and need to retry from your last place on the course.

What should your strategy be to get the ball into the hole in as few 
strokes as possible? Should you aim directly for the hole no matter where 
you are, crossing the sand trap if need be? Should you try to stay on the 
fairway and the green so you can maintain control of the ball? And how 
far from the mines should you stay to remain safe?

PROGRAMMING THE AGENT

The answer to these questions will depend on a lot of factors, but even if 
the agent doesn’t have this information, we can still teach it a good strat-
egy if we let it play for a while and give it rewards at the right times. How 

C

Figure 7.3c
The golf course also has explosive mines, each of which is marked with an x. You 
must avoid hitting these.
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do we train the agent? We will offer it an immediate reward of a choco-
late bar (for a value of 1) whenever it has reached the end position—the 
hole at the end of the golf course—at which time the game ends. If the 
agent steps on a mine, we will punish it with an electric shock that is equal 
to a reward of minus one-half a chocolate bar (value of –1/2). For stepping 
onto any other square, we’ll neither give it a reward nor punish it.

The more interesting and technically challenging question we need to 
answer is: How can we create an agent that can learn from these rewards? We can’t 
just give the agent chocolate bars and expect it to do what we want. We 
also need it to know that chocolate bars are worth seeking.

There are two observations that will help us to answer this question. The 
first relates to how we let the agent store its model of the world. The model 
must summarize the agent’s experience in a way that it can use to make 
future decisions. Let’s have the agent store its model of the world in a giant 
cube of numbers, like the one in figure 7.4.

Each cell of this cube will store a number that tells the agent the 
expected “value”—that is, how much chocolate it should expect to 
receive—for taking certain actions from different positions on the course. 
Each time the agent needs to decide which action to take, it looks up all 
eight actions for its current position—those actions form a “stack” of 
values going straight through the cube—and then it selects whichever 
action has the highest value. After taking this action, the agent will find 
itself in another state—possibly a state it didn’t expect to find itself in—
and it will repeat the same process. If the cube already has the correct 
values filled in, this strategy seems like it could work, and it’s simple 
enough that we could encode it even with a physical device, to create a 
mechanical automaton. But this still begs the question: How do we figure 
out which values go into each cell of the cube?

State Acti
on

Figure 7.4
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To answer that question, we need to make another key observation, this 
time about what the values in the cube should represent. Note that if the 
agent moves to a state that’s not the end goal, the agent receives no choc-
olate bar. This is problematic because a lack of rewards conveys little sense 
of progress to the agent. We might say that the “landscape” of rewards in 
the golf course is too flat. If the agent followed rewards blindly in this envi-
ronment, it would struggle to make progress. This brings us to the final 
observation we need to design a reinforcement-learning agent: even when 
the agent receives no chocolate bar from some state, it still has the opportu-
nity to eventually reach the chocolate bar from that state. The values in the 
cube should represent, at least intuitively, this opportunity.

One property we want in designing this idea of “opportunity” for the 
agent is that the agent should prefer to receive chocolate bars sooner rather 
than later. This makes intuitive sense: if your dog is across the room and you 
hold out your hand with a treat for your dog, he will immediately bound 
over to you. Provided that you’ve already trained your dog to do some 
tricks, he will sit and roll over, maybe even before you’ve given him the 
commands to do so. Your dog is behaving in a way that will earn him a treat 
as soon as possible. If the dog has a choice between doing something to get 
the treat now and doing the same thing to get the treat in thirty seconds, he 
will do what it takes to get it now. However we decide to define this idea of 
“opportunity,” our hope is that this preference for chocolate bars sooner 
rather than later will fall out naturally from that definition.

We can formalize this idea of opportunity—again, the opportunity is 
the value we want represented by each cell of the cube—by defining it as 
the total of all future chocolate bars the agent can expect to receive, adjusted 
for how long it will take the agent to receive those bars. A chocolate bar 
far into the future should be worth less than a chocolate bar now. This 
time-adjustment works a lot like how you would value money. Let’s say you 
could put a $10 bill into a change machine for $10 in quarters. If the 
machine had a delay of one day—that is, you put in your $10 today and 
get $10 in quarters tomorrow, you probably wouldn’t think it’s a good trad-
eoff, because you’ve given up the ability to spend that money in the 
meantime and because there’s some uncertainty that you’ll be able to 
recover it tomorrow. So maybe you’d be willing to put just $8 into the 
machine today to get your $10 in quarters tomorrow. If the machine had 
a two-day delay, you’d be even less willing to put in money today—maybe 
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you’d be willing to put, say, just $6.40 into the machine. The longer you 
need to wait to receive some reward, the lower the value you’ll typically 
assign to that reward. Researchers call this idea temporal discounting (but I’ll 
just call it time adjustment from now on).

To program an agent to seek out the opportunity to earn chocolate bars, 
then, we will need to develop a way to fill in each cell of the cube with an 
estimate of the total of all chocolate the agent should expect for taking an 
action, adjusted for how long it will take to receive each payout of choco-
late in the future.4 Actions with high values in the cube suggest more choc-
olate, earlier chocolate, more frequent chocolate, or some combination of 
these; while actions with low values suggest smaller, fewer, or later choco-
late bars. An agent in a certain state faced with a choice between an action 
that offers a time-adjusted reward of 2.5 pounds of chocolate, and another 
action that offers a time-adjusted reward of 1.5 pounds of chocolate, should 
choose the first one.

This time adjustment gives the agent a chance at making progress toward 
the hole when the majority of the actions it takes lead to no chocolate bars. 
It turns the flat landscape faced by the agent into a hilly landscape, where 
the reward is at the peak of a mountain. The agent doesn’t actually do any 
complex planning: at each step it simply needs to “follow the gradient” in 
an effort to reach the top of the mountain.

This time adjustment also gives us a knob to adjust for the agent. This 
knob controls the tradeoff between having the agent seek an immediate 
reward and having it take a path that might postpone the reward for an 
even bigger reward later. Usually the way we apply this time adjustment 
is by multiplying the reward by a fixed amount between 0 and 1 for every 
unit of time—every hour, second, or day, for example—the agent needs 
to wait to receive its reward. This multiplier changes the reward landscape 
the agent sees, and it controls how much willpower the agent has: if it’s 
close to 0, the agent will tend to think very short-term, taking whatever 
chocolate it can get as soon as possible, even if that means giving up 
chocolate down the road. If this number is close to 1, the agent will be 
willing to give up short-term chocolate in favor of even more chocolate 
later.5



Teaching Computers by Giving Them Treats	 99

HOW THE AGENT SEES THE WORLD

One obvious difference between a dog and DeepMind’s Atari-playing 
agent—aside from the fact that dogs aren’t supposed to eat chocolate—is 
that the dog lives in the real world, while the Atari-playing agent lives in 
a simulated, virtual world. Instead of sitting or begging for treats, the Atari 
agent’s actions are limited to whichever joystick actions it can play in the 
game. And instead of using its eyes, ears, and nose to perceive the world 
around it, the Atari agent must perceive its world by looking at the pixels 
on the screen and tasting the virtual treats we give it. When DeepMind 
designed the agent, they needed some way to link what was happening in 
the game with what the agent perceived. How could they do this in a 
simple, coherent way that made their agent easy to reason about?

Fortunately for DeepMind, researchers at the University of Alberta had 
created a platform called the Arcade Learning Environment, which enabled 
them to let the agent move around in its Atari universe. The environment 
was built on top of an Atari emulator—that is, a program that mimics the 
behavior of an Atari console—and the environment pulled information 
directly from these games’ computer memory.6 By using the Arcade 
Learning Environment, DeepMind could simply “look up” the inputs to 
its agent—the pixels and the current score—to present them as sensory 
input to their agent, and send the agent’s commands to the environment 
to be interpreted as joystick actions. The Arcade Learning Environment 
then dealt with the messy details of simulating the Atari world correctly.

NUGGETS OF EXPERIENCE

From everything we’ve seen so far, we still don’t have a concrete way to fill 
in the values of the action-value cube. We know that each value of the cube 
should represent the time-adjusted chocolate the agent will receive in the 
future, and we know that to create an agent to use these values, we need 
to program it to select the action with the highest value for whichever state 
it’s in; but it’s not clear how to compute the values that go into the cube 
in the first place.

If we had perfect information about the game—such as how likely we 
are to hit the ball in a certain direction on each area of the course—then 
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we could use some mathematical formulas from the field of reinforcement 
learning to compute the values of the entire cube without ever having the 
agent play a game. But perfect information is a luxury we don’t have. In 
the golf game, as with Atari games, we don’t even know how likely we are 
to end up in different states after performing an action.

DeepMind resolved this problem by having their agent learn the val-
ues in the cube by trial and error. At first, their agent chose completely 
random actions so it could learn from experience which state-action pairs 
tended to be followed by rewards. Using a trick from the field of reinforce-
ment learning called off-policy learning, the agent learned a good strategy 
for its games even though it stumbled around randomly. Then, as the agent 
gained experience, it began to prefer actions that weren’t random.

Let’s apply an off-policy learning algorithm to the golf game. First we 
let the agent play through a game, selecting random actions each time it 
needs to make a move. This will generate a sequence of state-action pairs, 
as in the left panel of figure 7.5. After the agent has played through the 
game, we need to update the values in the action-value cube using what 
the agent experienced during the game.

We can summarize the agent’s experience by breaking it into chunks, 
each of which has several bits of information: what state it was in when it 
selected and performed an action, which action it chose (north, northeast, 
east, and so on), which state it ended up in after it made its action, and 
whether it earned or lost any chocolate when it reached the next state. You 
can see such a chunk outlined in the left side of figure 7.5. The agent will 
learn everything it needs to from these “nuggets” of experience.

We need some way to update the value of the action-value cube 
to incorporate each of these nuggets. If the agent ended up at its final 
destination—the hole—after experiencing some state-action pair, we nudge 
the value of that state-action pair in the cube a little bit toward the reward 
of 1. We don’t set it to 1; we just nudge it a little bit toward 1. If a state-
action pair led to a spot on the course with an explosive mine, we nudge 
the value of the state-action pair a bit toward –1/2. Otherwise, we nudge 
the value of the state-action pair closer to 0. When I use the word “nudge,” 
I’m using the term casually, but reinforcement learning offers a mathemati-
cally precise way to adjust these values that agrees well enough with the 
intuitive meaning of the word.
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Figure 7.5
One way to train a reinforcement-learning agent is with simulation. 
First the agent plays through a game to generate a series of state-action 
pairs and rewards, as shown in the left panel. Next, as shown in the 
right panel, the agent’s estimate of future rewards for taking different 
actions when it’s on a given state is updated using the state-action pairs 
experienced by the agent. This particular method is sometimes called 
“temporal difference, or TD, learning.”
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This is enough to teach the agent about the rewards it will see imme-
diately after its action. But remember: we want the action-value cube to 
represent the time-adjusted stream of all future chocolate, since we want 
the agent to pick actions that will move it toward chocolate even when it is 
far away. We need some way to estimate the stream of chocolate the agent 
will see after this action. And herein lies the secret to training the agent: since 
we already know from the experience-nugget the state in which the 
agent ended up after choosing some action, we can look this information 
up in the cube itself !

More specifically, since we already know that the agent’s strategy is to 
select the best action for whichever state it’s in, then we can figure out 
exactly which action a clever agent will take after the experience-nugget. 
Because we know—by definition—that the cube stores the amount of 
time-adjusted chocolate the agent will receive for that next action, we can 
use that information to update the current state-action pair.

Since that action (and its chocolate) are one step into the future, we time-
adjust the chocolate the agent will receive for that future action, and then we 
nudge our original state-action pair toward the value of that time-adjusted 
chocolate. To train the agent, we repeat this process for the states the agent 
visited during its game, and then we repeat this process for many games.

This self-referential trick might set off some alarm bells in your head. 
When we first start training the agent, the numbers in the cube will be 
garbage. Combine this with the fact that the agent starts out by selecting 
random actions, and it’s hard to believe it could possibly learn a good strat-
egy. Doesn’t garbage in equal garbage out? It’s true that the values in the 
action-value cube will start out very bad at first, and the initial changes we 
make to the cube won’t be very helpful. But the quality of learning will 
gradually improve over time.

There’s an important assumption I’ve made about the world hidden in 
the way I’ve described how the agent populates and uses the action-value 
cube. Here is the assumption: in anticipating the agent’s future, the only state 
that’s relevant is its current state. This doesn’t mean that its past states and 
actions don’t matter: they might have been important in getting the agent to 
its current state. But once we know the agent’s current state, we can forget 
about everything before that, because we assume its current state captures all 
of the history that’s relevant in anticipating its future. This is often called a 
Markovian assumption. While simple, the Markovian assumption enables us 
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to update the action-value cube with experience nuggets that link the past 
to the future, so that the values in the action-value cube themselves link the 
past to the future. This is how, with each game the agent plays, the cube’s 
values will become a little more accurate. The cells of the cube will improve 
in a virtuous cycle, as they change from “bad” to “good” to “great.”

In each game of golf, the sequence of states the agent visits form a “tra-
jectory” on the golf course. You can see what some of these trajectories 
look like in figures 7.6a and 7.6b. At first, on the top, the agent moves 
around completely randomly, and it takes many strokes to reach the hole 
at the end. With a few games, the agent can bumble toward the hole at the 
end of the course. Once it has played through a few thousand games, how-
ever, it moves precisely around the mines. In the lower half of the figure, 
you can see that the agent is even able to anticipate and steer to avoid the 
mines far in advance of reaching them. Once the agent has learned a per-
fect strategy, it still bumbles a bit: there’s no way for it to avoid the random-
ness it faces in each swing. But the agent has become optimal in a different 
way: it learns to anticipate the mines long in advance of reaching them.

PLAYING ATARI WITH REINFORCEMENT LEARNING

The method I describe in this chapter is one of the most common ways 
reinforcement learning is used in practice. In this method, the agent moves 
around from state to state by selecting different actions, and we give the 
agent rewards—chocolate—when it has done something we approve of. 
When it needs to perform an action, the agent references its action-value 
cube: it looks up which actions it can make, selects the one with the high-
est time-adjusted reward stream—and performs that action, moving to a 
different state and possibly receiving another reward as a result. When we 
want to train the agent, we let it play many games and then we use its “nug-
gets” of experience to update its action-value cube.

It’s possible to play golf with this action-value cube because there were 
60 × 100 = 6,000 states in the golf course and 6,000 × 8 = 48,000 cells in 
the action-value cube. That’s a lot of cells, but it’s not so many that we can’t 
accurately estimate the values in this cube by telling the agent to bumble 
around randomly for a while.

Unfortunately the method I’ve just described wouldn’t work if we 
wanted an agent that could play Atari. The problem is that the action-value 
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Figure 7.6a, b
Trajectories (white paths) made by the golf-playing agent. (a): a trajectory made by the 
agent after playing 10 games. (b): a trajectory made by the agent after playing 3,070 
games.
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cube needs to be many orders of magnitude larger for the Atari-playing 
agent than it is for our golf-playing agent.

As we saw at the beginning of the chapter, DeepMind considered the 
state in an Atari game to be the arrangement of the pixels on the screen 
for the past four screenshots.7 For a game like Space Invaders, the action-
value cube would need to keep track of many trillions of states.8 The 
approach we used to estimate the values in the action-value cube when 
we played golf—learning by choosing actions randomly—wouldn’t have 
worked, because we would need to play far too many games to fill up the 
action-value cube with reasonable values.

This may sound like just a technicality, but it’s a very real limitation.9 
Even if we had enough time to fill up the cube, or even if we only needed 
to fill up a fraction of the cube, its size would also push up against the 
memory limits of computers. The cube for most Atari games would sim-
ply be too big.

DeepMind needed some other way to represent the information we put 
into the action-value cube. The tool they turned to was neural networks.





8  HOW TO BEAT ATARI GAMES BY USING  
NEURAL NETWORKS

NEURAL INFORMATION PROCESSING SYSTEMS

Even before Google acquired DeepMind in 2014, word about this new 
research company was spreading quietly. At a machine learning conference 
in late 2012, for instance, DeepMind had been competing aggressively with 
companies like Facebook and Google to recruit members of the machine 
learning community.1 And conference attendees learned that the founder 
of this mysterious company was Demis Hassabis, a quiet, brilliant, and 
ambitious neuroscientist.

At the conference, known as Neural Information Processing Systems, 
artificial neural networks was one of the main topics for discussion. The 
excitement was unusually palpable: breakthroughs in the field had been 
occurring rapidly for the past few years. The convergence of better hard-
ware, huge datasets, and new ways to train these networks was suddenly 
allowing researchers to create neural network architectures that could per-
form feats only dreamed of decades earlier. This year in particular, research-
ers from the University of  Toronto had created a neural network that 
gave computers an uncanny ability to perceive objects in photographs.

APPROXIMATION, NOT PERFECTION

To create agents that play Atari games, we need some way to summarize 
which action the agent should take for each state it might find itself in. In 
chapter 7 we learned how a cube of state-action pairs keeps track of these 
values. If there aren’t too many states or actions, this works swimmingly. 
But when we have a huge number of states—as with Atari games—the 
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cube of state-action pairs grows unwieldy, and it’s impossible to fill in the 
values for that cube in a reasonable amount of time.

Another way we can think about the action-value cube is by looking 
at these values as defining a mathematical function:

time-adjusted reward = q (current state, joystick action).

Just as with the cube, this function tells the agent the time-adjusted 
stream of rewards it should expect for taking a certain action, assuming that 
the agent always chooses the best action after that. If the agent knows this 
function, it simply evaluates that function for each action it is considering 
and the state it’s in, and then it chooses whichever action has the highest 
value. In reinforcement learning this function is called the action-value 
function or, simply, the q-function.

The problem with this q-function is that, if we want it to represent the 
action-value cube perfectly, then to encode that function on a computer, we 
would still need an enormous amount of disk space to store the program. 
We would run into the same problem we faced with the original cube.

The key to making this function tractable is the recognition that it doesn’t 
need to be perfect. There is a lot of correlation in the values of the state-
action cube, just as there was a lot of correlation in the Netflix ratings matrix. 
And as with matrix factorization, we can use that correlation to describe the 
function succinctly. If you’re over on the left side of the golf course, for 
example, you need to generally head to the east, and if you’re anywhere 
along the bottom of the course, you need to generally head north. Instead of 
trying to stuff the entire cube into the function, we can use a much simpler 
function—a function that uses characteristics about the state and actions—
to approximate the value of the q-function. The idea is to create a classifier 
exactly like the one we used to create The World’s Best Recipes for Kids; except 
that instead of classifying recipes, we’ll be classifying state-action pairs.

For the children’s cookbook, we chose features that were intuitive and 
easy to calculate. It’s difficult to specify features that will be useful for an 
Atari-playing agent, since the features might vary from game to game. But at 
a high level, we want these features to simplify the original state space while 
still capturing the salient information that’s useful for playing the game well.

For the q-function, we’ll need something a little more complicated than 
a simple classifier. The form of the q-function needs to be flexible enough 
to approximate the true action-value cube well, which means that it should 
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be able to represent a wide variety of functions. At the same time, we 
must be able to “train” the q-function with experience nuggets we collect 
from our simulations.

Neural networks have the properties we seek. Even better, they provide 
a way to automatically generate features so we don’t need to worry about 
handcrafting them for 50 different games.

NEURAL NETWORKS AS MATHEMATICAL FUNCTIONS

A neural network is a biologically inspired mathematical function made up 
of artificial “neurons” that interact with one another. (I should point out 
that many neural network researchers believe that favoring a method 
because it’s biologically inspired can be “fraught with danger.”)

When researchers explain the structure of a neural network, they often 
draw a picture that looks something like the one in figure 8.1.

In that neural network diagram, each circle represents a neuron, and 
the arrows between neurons represent weights that describe the relation-
ships between neurons. You can think of each neuron in the network as a 
little light bulb that is either on or off, depending on whether or not it is 
“activated.” If it is activated, it can take a range of numerical values. It may 
glow very dimly, or it may be extraordinarily bright. If it is not activated, 
it will not glow at all. Whether each neuron is off or on—and, if it is on, 
how brightly it glows—depends on the brightness of the neurons that 
feed into it and the weights that connect those neurons to this one.

The greater the weight between a neuron pair, the greater the influence 
of the upstream neuron on the downstream one. If the weights between 

Inputs Outputs

Figure 8.1
A simple neural network. 
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neurons are negative, a brightly glowing neuron will inhibit the brightness 
of the neuron it points to.

You can see how the value of a neuron depends on the values of 
upstream neurons in figure 8.2. You’ll probably recognize immediately that 
this diagram is familiar: each neuron is just a simple weighted-average clas-
sifier with some function that squashes the output of the classifier in 
some way. In other words, the entire neural network is just a bunch of 
little classifiers wired together.
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Figure 8.2
Propagation of values through a neural network. In 
neural networks, the value of a neuron is either 
specified by outside data—that is, it’s an “input” 
neuron—or it is a function of other “upstream” neu-
rons that act as inputs to it. When the value of the 
neuron is determined by other neurons, the values 
of the upstream neurons are weighted by the edges, 
summed, and passed through a nonlinear function 
such as max(x,0), tanh(x), or an S-shaped function, 
exp(x)/(exp(x) + 1).
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To use a neural network, we typically set the input neurons to specific 
values—for example, to match the colors of pixels in an image—three 
numbers in the range 0 to 1 for each pixel—and then we “run” the net-
work. When we run it, the brightness of the neurons in the first layer will 
determine the brightness of neurons in the next layer, which will deter-
mine the brightness of neurons in the following layer, and so on, the 
information flowing through the network until it reaches the output layer. 
By the time the output neurons are activated, their values will hopefully 
be useful for some purpose. In the case of an Atari-playing agent, these 
neurons will tell us which action the agent should take.

Despite the biological inspiration for neural networks, there’s nothing 
mystical or mysterious about them. The brightness of the input neurons 
will determine precisely and unambiguously the brightness of the rest of 
the neurons in the network. Neural networks are just fancy calculators that 
evaluate a series of mathematical formulas; the connections between the 
neurons dictate, as in figure 8.2, what those formulas are. There’s no uncer-
tainty, randomness, or magic in figuring out whether different neurons in 
the network will glow, as long as we know the weights of all of the con-
nections between the neurons along with how the input neurons were set. 
A neural network is a computer, and it is therefore a prime building block 
for an automaton.

The network above is called a feedforward neural network, because infor-
mation flows through it in a single direction, from the inputs to the out-
puts. In general, a neural network could have a different number of neurons 
in each layer, or it may have a different number of layers, or it may not even 
be organized into layers; but this feedforward architecture is still very com-
mon, and it’s what DeepMind used to play Atari games.

Let’s step back for a moment, though. Why bother using a neural net-
work at all? Are we overcomplicating things? Could we design a simpler 
approximation to the q-function, maybe with just a simple classifier?

If our goal were to design an agent that played a single, specific game, 
the answer is probably yes. We could carefully handcraft features for the 
game and combine them with a weighted-average classifier. But doing so 
wouldn’t move us toward the goal of developing an automaton that can 
perform a wide variety of tasks, which was one of DeepMind’s goals in 
designing the Atari-playing agent in the first place. Remember: Deep-
Mind’s agent could play about 50 different Atari games, many (but not all) 
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of them very well, and DeepMind did no custom tuning for these games. 
It just let the agent play each game for a while. It needed a q-function that 
was flexible enough to play a wide variety of games.

It turns out that neural networks—even networks as simple as the one 
above—provide exactly the flexibility we need. An important theorem 
about neural networks, called the universal approximation theorem, states 
that if we were to use a network like the one above, with a single layer 
sandwiched between the input layer and the output layer, then we could 
approximate any function from the inputs to the outputs to any degree of 
accuracy.2 This is a profound theorem. It tells us that some neural network 
will indicate the best possible moves to make in an Atari game, given the 
pixels on the screen—provided that we select the network’s weights care-
fully. We just need to create the network to have the right shape and then 
find what those weights are, which brings us to the other major benefit of 
neural networks: their weights can easily be learned with data.

I show the universal approximation theorem in action in figure 8.3. 
First, look at the picture of the smiley face in figure 8.3a. This is a target 
we’d like to “predict” with a neural network. The remaining images in fig-
ure 8.3 show how well several neural networks with a single middle layer 
can approximate this target (the layers between the inputs and outputs are 
sometimes called “hidden” layers because we don’t directly observe their 
values. The input layer to each of these networks is two neurons, which are 
set to the x and y coordinates of each pixel in the image. The output of each 
network is a single neuron, which describes how dark the pixel at those 
coordinates should be: 0 for black and 1 for white. As we add more neu-
rons to the middle—that is, the hidden—layer of the network, it can 
approximate its smiley-face target better and better. Figure 8.3c, which has 
200 hidden neurons, somewhat resembles the face, while figure 8.3d, which 
has 2,000 hidden neurons, very much resembles the face.

This network with a single hidden middle layer is the most “shallow” 
network we can use to still allow the network to represent arbitrary map-
pings from its input neurons to its output neurons. If we removed the 
middle layer and connected the input neurons directly to the output neu-
rons, then the network wouldn’t be nearly as expressive. Our approxima-
tion to the smiley face would just be a gray box that gradually ranges from 
light gray to dark gray in some direction. We wouldn’t see eyes or a mouth. 
So we need at least one hidden layer between the inputs and the outputs.



How to Beat Atari Games by Using Neural Networks	 113

The universal approximation theorem also doesn’t say anything about 
how big the middle layer of the network must be to approximate the smi-
ley face as well as we’d like: we might need millions or billions of hidden 
neurons to represent the face beyond the limits of human perception, just 
as we might need millions of neurons in the hidden layer of a similar net-
work to play Atari games. This observation is important to our goal of 
building an Atari-playing agent, because such a network might be too large 
to store on disk or too large to “train” with data, just as the original state-
action cube was. This is the price we pay for trying to stuff all of this infor-
mation into a single hidden layer. But it doesn’t mean that we can’t design 
a simpler network to play Atari in some other way—for example, by using 
more layers with fewer neurons per layer.

Figure 8.3
The performance of several neural networks (b)–(d) trained to represent a 
target image (a). The networks take as their inputs the x and y coordinates 
of each pixel in the image and predict the brightness of each pixel, in the 
range 0 to 1.
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Before we build a network for the Atari agent, then, we need answers 
for two questions: What shape should we pick for the neural network? How do 
we select its weights? In the rest of this chapter I’ll answer these questions, and 
again we’ll again use the golf game to build the network.

THE ARCHITECTURE OF AN ATARI-PLAYING  

NEURAL NETWORK

In figure 8.4 I show a neural network designed to play the golf game. It has 
an input layer that takes the agent’s current position (x, y), an output layer 
that predicts in which of the eight directions the agent should aim, and a 
large hidden layer.

In this network, we will set the values of the input neurons so that they 
equal the coordinates of the current position of the ball using its position 
(x, y). When we run the network, the input neurons will activate the neu-
rons in the middle hidden layer, and those neurons will then activate the 
output neurons. We want the output values of the network to approxi-
mate the values from the action-value cube we saw in the last chapter. 
Given the position of the ball, the output values of the network should be 
equal to the time-adjusted future rewards—that is, the amount of future 
chocolate—the agent should expect to receive for choosing that action. 

Joystick
direction

Current 
position on 

course

…

x

y

…

Figure 8.4
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Once we’ve figured out this network’s weights, the agent will be able to 
choose its moves by setting the input neurons of the network with its 
position on the course, evaluating the network to produce values for its 
eight actions, selecting the action with the highest weight, performing 
that action, and then repeating this process.

As before, we just need to let the agent bumble around for a while so we 
can use its nuggets of experience to give the agent chocolate or an electric 
shock at the right times. I’ll explain in the next chapter how to “train” a 
neural network with data, but for now you just need to know that it’s possi-
ble to do this. We know that this architecture will work because the universal 
approximation theorem tells us that it will: we’ve already seen this with the 
smiley faces in figure 8.3. Because we’re starting with the coordinates (x, y), 
the network won’t need to be too large; it just needs to store eight different 
maps of where the agent should go—one for each output direction.

But wait—doesn’t the Atari-playing agent use raw pixel values instead of 
(x, y) coordinates as its input? I did kind-of cheat by letting our network 
take as its inputs the coordinates of the ball on the course instead of taking 
pixels representing the course. But it’s easy to get around this: we can do so 
by adding more layers at the beginning of this network to convert raw pix-
els into the coordinates of the ball on the course. This will be the last leap 
that will enable us to create neural networks that can play Atari games.

I’ve done this in figure 8.5. The right two layers in this network perform 
the exact same function we saw above, transforming the current position 
(x, y) into output values predicting chocolate yield; so we just need to con-
vince ourselves that the left two layers can turn an image into the (x, y) 
coordinates of the golf ball.

How could they do this? One way is to use a convolutional layer for the 
first hidden layer. A convolutional layer of a neural network contains clas-
sifiers that identify objects in the original input image, like the ball or the 
hole. Each classifier (we technically need only one in this case, to identify 
the ball’s position) is applied over every 8 × 8 patch of pixels in the input 
image. The output of this layer contains one image for each classifier. 
Each pixel of each output image is the result of applying the classifier over 
the respective patches in the input layer: black if there was no match with 
the classifier and white if there was a match.

You can see how this works for a single classifier in figure 8.6, which 
shows a convolution that uses 3 × 3 patches instead of 8 × 8 patches. In the 
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Figure 8.6
A convolutional layer with two filters. Each filter scans the image and produces a 
resulting image in which each “pixel” corresponds to a patch of the input image 
passed through that filter.
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Figure 8.5
A neural network designed to play the game golf. The right two layers, from the 
“Current position on course” to the “Joystick direction,” determine where the agent 
should aim, given the current position of the ball and the goal. The left two layers 
convert the pixels of the screen into the coordinates.
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figure, a classifier predicts whether each patch in the original image matches 
a certain pattern. The convolutional layer produces an image that aligns 
with the input image and describes where that image matches whatever 
the filter is looking for.

How do these classifiers work? Each classifier is just a weighted-aver-
age classifier like the one we used for the kids’ cookbook, possibly followed 
by a squashing function (more on this function in the next few pages). 
Remember: that’s all a neuron in a neural network is. Each pixel in the 
output of the convolutional layer is a neuron, where the weights corre-
spond to the classifier’s weights.

To make things more concrete, let’s just assume that the golf course is a 
grayscale image, and that we’re using the original start-position of the ball 
and goal from the last chapter. The pictures in figures 8.7a and 8.7b show 
weights for classifiers that classify the flagpole and the ball from the original 
golf course in figure 7.2a. These filters will “activate”—that is, they will 
produce a value of 1—exactly when they are directly over the flagpole or 
the ball, respectively; otherwise they will produce a value of 0. If you squint 
a little, it’s clear that the filter in figure 8.7a looks a bit like the flagpole. The 
filter in 8.7b (for the ball) is less intuitive. It looks for lightly colored pixels 
surrounded by darker pixels, which is the defining characteristic of the ball.

The output of these convolutional filters is two images, each the result 
of applying one of the two classifiers over the original image, as you can 
see in figure 8.8. The output images are mostly black, except for one neu-
ron in each that is glowing where the filter has found its pattern in the 
input image.

To get from the second layer to the third layer, we simply need a map-
ping from each “pixel” in a black-and-white image to the coordinates (x, y) 
of the white pixel. The network has no idea that the pixel at one place in 
the image is adjacent to its neighbors: it just sees each image as big list of 
numbers. However, the network can learn the mapping from each pixel to 
its position by seeing enough data and encoding each neuron’s coordi-
nates into the weights themselves, as shown in figure 8.9.

Now it turns out that this last step—that is, converting the output of the 
convolutional layer into coordinates—is useful for interpreting what’s 
happening in the network, but it’s not a necessary step for the network to 
work. Because we didn’t squash the neurons’ values after converting the 
position of the ball to its coordinates, it’s mathematically possible to fully 
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Figure 8.9
A layer that converts white pixels in a convolutional layer into coordinates. In this 
figure, the weight between a pixel and the neuron giving the x-coordinate is equal 
to the x-coordinate of that pixel, and the weight between a pixel and the neuron 
giving the y-coordinate is equal to the y-coordinate of the pixel. If the neuron at 
(4,3) in the left layer is glowing with a value of 1 and all other neurons are dark, then 
the values of the output of this layer will reflect this: they will be x=4 and y=3.
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Figure 8.8
A convolutional layer with two filters. The filters are classifiers that scan the input 
image looking for certain patterns. The output of each filter is a set of neurons, orga-
nized as an image, which are “bright” wherever patches of pixels in the original image 
matched the filter.
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Figure 8.7a–b
Convolutional filters for the flagpole in the hole (left) and the ball (right).
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connect the output of the convolutional layer to the final hidden layer 
before the output, and setting the weights to account for this. That lets us 
skip the middle layer that stores the (x, y) coordinates of the ball entirely.

And with this, we’ve constructed a network that is similar in spirit to the 
one used by the Atari-playing neural network. The first layer is a convo-
lutional layer that looks for objects on the screen, squashing the result into 
the range 0 to 1. This layer is then fully connected to a hidden layer with 
32 units, followed by another squashing function, and the result is fully 
connected to the output layer, the values of which represent the time-
adjusted stream of chocolate the agent can expect to receive for taking 
different actions.

There are a few differences between this network and the one used by 
the Atari-playing agent. We used only two filters for the golf game (and 
we only needed to use one), but the Atari-playing agent used 32 separate 
filters in its first convolutional layer. The output of this first layer was then 
placed into 32 separate images, where each image glowed wherever the 
original image matched the respective filter. Since it had 32 filters, it could 
search for a wide variety of objects, from the paddle in the game Pong to 
the aliens or spaceships in Space Invaders. You can see an example of how 
it might apply this with several filters in figure 8.10.

The Atari-playing network also had more convolutional layers than 
our golf network. The layers were stacked, so that the output of one layer 
was the input to the next layer. A later version of their network had three 
convolutional layers followed by the same two fully connected layers. By 
using three convolutional layers, their network could find more complex 
patterns of the input image. We’ll get some more intuition for why this can 
be useful in the next chapter, when we look at how deep neural networks 
can accurately interpret the content of photographs.

The architecture of this agent is somewhat reminiscent of the architec-
tures in Stanley and Boss. You can compare the architecture of the Atari 
agent in figure 8.11 with Boss’s architecture, which was figure 4.2. An 
important part of those architectures was a separation of the components 
into a perception layer and a reasoning layer. The “perception” part of the 
Atari agent is the neural network, which takes the raw pixels on the screen 
and transforms them into useful features about the world. The “reasoning” 
part of the Atari agent is nothing more than a program that continuously 
looks at the output values of the neural network and selects the action with 
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Figure 8.10
The convolutional layer of the Atari neural network. Layer 1 
shows the input to the network: a screenshot of the game 
(the Atari network actually used 4 recent screenshots). The 
next layer is a convolutional layer that searches for 32 distinct 
patterns of pixels in the first layer with 32 filters. The result of 
applying each filter is 32 images, each of which is close to 0 
everywhere except where the filter matches part of the input 
screenshot.
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the highest value. You might even interpret this action-selection loop as a 
very simple type of “search” algorithm, whose goal is to search for the best 
among eight actions.

DIGGING DEEPER INTO NEURAL NETWORKS

Atari was in many ways a perfect testbed for DeepMind to demonstrate 
the strengths of neural networks. Atari games provided an explicit 
objective function for the agent—the number of points it had scored—
while simultaneously offering a virtually unlimited amount of data for 
DeepMind to train its networks. Since the University of Alberta research-
ers had developed the Arcade Learning Environment, DeepMind could 
focus solely on the task of developing an agent that could play many 
games, exactly as the creators of the learning environment had intended. 
As we’ll see in chapter 9, quantity of data is one of the most important 
factors allowing us to train complex neural networks.

We’ve seen, at least at a high level, what happens in the neural net-
work as it plays an Atari game. But many questions remain unanswered. 
For example, when does the Atari-playing agent not perform well? 

Sensing

Pixels

Action loop

Arcade Learning
Environment Perception Planning

Object 
detection and 

modelingScore

Convolutional
neural network

Actuators

Joystick controls

Action selector

Figure 8.11
The architecture for an Atari-playing agent.
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Although the agent used the same neural network architecture—that is, 
three convolutional layers followed by two fully connected layers—for 
each game, it learned different network weights for each game it played. 
After training, it played 29 of these games better than professional 
human players could play them.

The neural network performed best relative to humans on the Atari 
game Video Pinball. In pinball, the most important task of the agent is to 
react to a relatively small part of the game: where the pins hit the ball. The 
network simply needs to react, quickly and precisely, when the ball is near 
the bottom of the screen. The game also allows the player to “tilt” the 
pinball machine in either direction to nudge the ball to a better position. 
The agent could use this tilt operation to position the ball perfectly as 
it approaches the bottom of the screen. Since the network could learn 
about motion, and since it could react with machine precision, it earned 
about 20 times more points than professional human players at the game.3

The agent performed terribly on the game Montezuma’s Revenge.4 In 
Montezuma’s Revenge, the player is expected to explore a labyrinthine 
underground Aztec pyramid (think of Super Mario Brothers with ladders). 
The player moves from room to room while avoiding enemies and search-
ing for jewels. The second-most-difficult game for the agent was a game 
called Private Eye, in which the player must search for clues and items 
throughout a city.

Both of these games involve exploration, which requires the player to 
maintain context throughout the game. The player must keep track of what 
it has done and what it hasn’t done, where it has gone and where it needs 
to go next. The Atari-playing agent couldn’t do this because it had no 
memory. It had no way to keep track of which rooms it had visited and 
which it hadn’t visited, of what it had done and what it hadn’t done.

There was also another, related reason it couldn’t play these games well. 
Remember that the agent initially trained itself by choosing completely 
random actions. By taking random actions, the agent couldn’t make much 
progress in games that required exploration. In Montezuma’s Revenge, the 
agent just stepped and bounced around the room, rarely if ever making 
it past the first room of the labyrinth. Because it couldn’t make much 
progress in its exploration, it couldn’t earn enough points to learn anything 
useful. Later we’ll see some ways agents can keep track of game state, but 
I’ll warn you now that we won’t get all of the answers we need: this is still 
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an open problem and an active area of research for reinforcement-
learning researchers.

One of the more successful parts of the Atari agent was its ability to 
perceive its world with convolutional neural networks. While relatively 
new, deep convolutional networks have quickly matured in the past few 
years, to the extent that computers can now classify objects in photo-
graphs better than many humans. In the next few chapters, we’ll take a 
look under the hood of some of these networks to see get a better sense 
for how they can do this.





9  ARTIFICIAL NEURAL NETWORKS’  VIEW  
OF THE WORLD

THE MYSTIQUE OF ARTIFICIAL INTELLIGENCE

In 2016, a Bloomberg News reporter wrote that several startup companies 
had begun offering intelligent “chatbots” as personal assistants.1 One of 
these chatbots, named Amy Ingram, was marketed by her company as “a 
personal assistant who schedules meetings for you.” You simply needed to 
“cc” Amy to an email thread for her to do her magic. Users of the service 
liked Amy’s “humanlike tone” and “eloquent manners.” One user said she 
was “actually better than a human for this task.” Some men even asked 
her out on dates.2

Before we get into the details of how Amy worked, let’s go back in time 
a bit to see some trends in machine learning leading up to her debut. 
Beginning around 2006 and extending for the next decade, the ability of 
computers to recognize the contents of images and other media has 
improved dramatically because of a technology known as deep neural net-
works. These are like the networks we saw in the last chapter, but many 
layers deep. By some metrics, deep networks are now better than humans 
at recognizing objects in photographs, and they’ve become capable of artis-
tic feats like rendering photographs as “paintings”—complete with brush 
strokes—and going the other way, creating photorealistic renderings of 
paintings. These breakthroughs have been the result of several factors, 
including more data, better hardware, better neural network architectures, 
and better ways to train these networks.

In the last chapter we learned to think about a neural network as a map-
ping that takes some input (pixels in an image) and produces some output 
(the value of performing joystick actions). Importantly—and consistent 
with the fact that neural networks can be the building blocks of 
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automata—the mapping from inputs to outputs is fixed. There’s nothing 
magical or unpredictable about neural networks. Rather, they’re the exact 
opposite: perfectly predictable. Neural networks are just deterministic func-
tions, compositions of the simple operations performed by their artificial 
neurons, which are just classifiers when we look at them closely enough.

We also learned that a network with just a single hidden layer can rep-
resent any function, from the network’s inputs to its outputs, to any degree 
of accuracy—provided that that hidden layer is big enough.3 Finding this 
function is just a matter of adjusting the weights of the network like knobs 
until it gives us the output we want, for whichever input we might give 
it. And as I mentioned in the last chapter, it’s possible to fit these weights 
automatically, by training the neural network with data.

At this point we might pause to ask ourselves whether these two facts 
are sufficient to say we understand neural networks well enough to move 
on to other topics. We know that it’s theoretically possible for a neural net-
work with a single hidden layer to represent any function, and we know 
that it’s possible to train the network by feeding it enough data. Is this 
enough?

I’ll make the case below that the answer is an emphatic no. Knowing that 
it’s possible to train a neural network to recognize whatever we want still 
doesn’t shed light on important details, like what internal representation 
the neural network uses to understand the world, how a network could 
classify objects in photographs, and when a network won’t work well. 
Knowing these details is important for us if we hope to understand the 
capabilities and limitations of neural networks and the automata made out 
of them. Let’s turn briefly to a famous automaton for a more concrete 
lesson on why this is true.

THE AUTOMATON CHESS PLAYER, OR THE TURK

A mysterious mechanical device was built in the year 1770, a few decades 
after Vaucanson’s Flute Player. Like the Flute Player, this device was an 
automaton, and it looked and moved like a human. It sat at a desk, sur-
rounded by the haze of two nearby candelabra. This device could per-
form an impressive—albeit mechanical—feat on the chessboard called the 
knight’s tour. Holding the chess piece with its gloved hand, which was 
attached to a wooden arm and torso, the device could move the knight 



from square to square with legal chess moves, visiting each square of the 
chessboard exactly once.

More impressively, this strange device could also play an expert game of 
chess, winning its games against the vast majority of human competitors.4

The public was even more enamored of the device than of the Flute 
Player; they came to know this one as the Automaton Chess Player, or 
sometimes, simply, as the Turk, given its headdress and the rest of its garb.5 
The device’s owners took it around Europe and eventually to parts of the 
New World for public demonstrations, as growing crowds of spectators 
stared at it in awe, puzzling over its mechanical secrets. It even played leg-
endary games against Napoleon and Benjamin Franklin in Paris.

But how did it work? Skeptics suspected that there was a child hidden 
inside, but the device’s owners invariably showed spectators its innards 
before they gave presentations. The spectators had seen clear through the 
Turk’s desk as the operator opened various drawers for them, one by one. 
They saw the mass of clock-like gears that powered the device. They even 
heard the whir of these gears, all devised by a mechanical genius who also 
had an inkling for building steam engines and devices to replicate human 
speech. When the operator lifted the robes of the human-like Turk to 
reveal its backside, the spectators saw that it was just wood and gears; the 
wooden figure was definitely not a person in a costume.6 And to make 
matters even more confusing, the original owner presented a small, coffin-
like box that he claimed was necessary for the device to run properly, 
which he peered into from time to time. People wondered whether it was 
somehow magical.

Speculation abounded, as books with titles like Inanimate Reason were 
published to make sense of the phenomenon. Unlike Vaucanson, who 
shared his device’s workings with the French Academy of Sciences, the 
owners of the chess-playing automaton kept its workings a closely held 
secret.

The Turk was eventually destroyed in a fire some 84 years after it was 
built. Despite years of speculation, the secret of the automaton was never 
fully revealed during its lifetime. It had remained shrouded in mystery for 
two generations.

After it was destroyed, the son of the device’s final owner recognized that 
there was little reason to keep the secret, so he described the machine in 
a series of articles. The Turk was operated by an expert human chess player 
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who was hidden inside the desk.7 It was nothing more than a giant puppet 
that used misdirection and some clever mechanics to trick viewers into 
thinking there was no human operator. The setup included magnets to 
transmit information through the chessboard to the hidden puppeteer and 
a sliding seat that enabled the chess player to move out of sight as the 
mechanic opened various drawers before the game. During the games, 
the puppeteer worked by candlelight within the dark confines of the desk. 
The smoke of his candle, in turn, was disguised by the haze of the cande-
labra. And the mysterious coffin-like box and clockwork served no useful 
purpose except to distract the audience. It was misdirection, a ruse to 
make it look as though the Turk was driven by other forces.

MISDIRECTION IN NEURAL NETWORKS

The Turk, with its “mysterious” mechanics, demonstrates that we should be 
unwilling to accept an answer such as “it works because it uses a neural 
network,” because that’s exactly the sort of thinking that allowed people 
to believe in the Turk. It leaves us open to getting caught up in some of 
the unfounded hype in AI, when that attention could be better focused 
on the more promising breakthroughs. Even worse, this careless think-
ing could leave us open to believing in hoaxes like the Turk—hoaxes that 
we still see every day. For example, Amy Ingram, the “artificially intelli-
gent” chatbot I described at the beginning of this chapter, appeared to be 
such a hoax (although, if you looked at the fine print in her company’s 
advertising, you might conclude that humans could step in from time to 
time, and you might call it “rosy marketing” instead of a hoax). Several of the 
companies offering these bots were powered by humans working behind 
the scenes around the clock. Amy, for example, was powered by a variety of 
people, including, sometimes, a 24-year-old dude named Willie Calvin.8

One way to be sure we aren’t falling for hoaxes or for rosy marketing 
like this is to study these devices carefully, as we’ll do in the next few chap-
ters, and to insist on a clear exposition from their creators about how they 
work. It’s unreasonable to expect everyone to understand these things in 
detail: people are busy, automata old and new are complicated, and the 
technology behind them continues to change rapidly. In those cases, how-
ever, we can still insist that these devices be scrutinized by scientific or 
engineering organizations, just as the French Academy of Sciences reviewed 



(and then accepted) the thesis that Vaucanson had presented to them. In the 
remaining cases—for example, when companies have a reasonable inter-
est in protecting their intellectual property—you can hopefully be better 
prepared to make the judgment on your own.

For the reasons above, we’ll spend the rest of this chapter emphatically 
digging more deeply into some of the details behind how artificial neural 
networks—particularly deep neural networks—work; and we’ll start by 
creating a neural network that can recognize photos of dogs. Some of the 
details in the next few chapters will be involved, but they’ll pay dividends, 
as they will offer us a better understanding not just for what neural net-
works can do, but also for how and when they can do certain things.

RECOGNIZING OBJECTS IN IMAGES

Let’s imagine for the moment that you’ve already designed your neural 
network, and that you’re ready to train it to recognize photos of dogs. The 
process for training a neural network is, just like reinforcement learning, 
reminiscent of the process for training a pet with treats. First, we pick a 
picture that we want the network to understand. This “training example” 
is just a photo—a picture with a dog or a picture without a dog—that we 
want the network to remember. For the network to understand this 
training example, we first need to encode the example numerically. We do 
this by describing the picture with numbers to represent the color of each 
of its pixels: since we need three colors (red, green, and blue) per pixel, a 
picture with 300 × 200 is be represented with 300 × 200 × 3 = 180,000 
numbers.

Once we’ve set the network’s input neurons to these numbers, we 
can “run” the network, letting the neurons propagate their information 
through the network. They will activate (or not) layer by layer until they 
produce an output at the end.

Remember from the last chapter that we can think about neurons in the 
network as little light bulbs that turn off or on, shining more brightly when 
their activation level is higher. Once the network has run, some of the 
little neurons in the network will be dark, while others will glow. Some 
might glow very brightly.

Generally we care most about how brightly the neurons at the output 
layer of the network are glowing, because those neurons represent what 
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we’re trying to predict. Because we’re training the network to identify pic-
tures of dogs, let’s assume that there’s exactly one neuron in the output 
layer; we’ll call this the “dog” neuron. If this neuron is brightly glowing, 
we’ll say that the network thinks that there was a dog in the picture, whereas 
if it’s dark, the network thinks there was not a dog. If it’s somewhere in-
between, glowing but not bright, the network thinks there may be a dog 
but isn’t quite sure.

Once we’ve run the network to get a prediction of whether the train-
ing picture has a dog in it, we compare the brightness of the output neu-
ron with the label of our training example, which tells us whether the 
photo actually had a dog or not. We would encode the label of this train-
ing example numerically: 1 if the picture has a dog in it and 0 if it doesn’t. 
So if the neuron at the end was glowing brightly and the label was 1, or if 
the neuron was dark and the label was 0, then the network was correct; 
otherwise, it was incorrect. We then create a new message describing how 
much error there was in the network’s prediction and propagate that mes-
sage backward through the network, adjusting the weights between the 
neurons like little knobs so that the network will give a slightly better 
response the next time around. When the network is correct, or mostly 
correct, we will still send back a message and adjust the knobs, but we won’t 
adjust them by much.

At first, the network will usually be incorrect. It will be guessing ran-
domly. But over time, the network will become more and more accurate. 
After we’ve trained the network for a long time, we would also adjust its 
weights less and less, just as you would fine-tune the volume knob on a 
radio once you’re close to the volume you want.

In a nutshell, this is the way many standard neural networks are trained. 
This method, while simple, wasn’t discovered and well understood until the 
1970s and the 1980s, even though neural networks had been around for 
decades before that.9 It should also go without saying that “we” aren’t doing 
much work here. The computer does all of the hard work for us, and we 
just need to feed the network as many training examples as we can find for 
it.10 If we were fitting a network to classify images, we would repeat this 
process with image after image,11 and we’d repeat the process until the net-
work was no longer improving. As long as we have enough data and a big 
enough network, we could train the neural network to recognize just about 
anything we want it to recognize.



If you tried to train your neural network with a few pictures of your pet 
dog from around your house and a few pictures of your trip to Scotland, 
it wouldn’t work very well. More likely, the network would learn a simple 
rule, such as that the colors of the inside of your house are predictive of 
there being a dog in a photo, and the presence of lots of green in the image 
is predictive of there not being a dog in the photo. That’s because the oper-
ative phrase in the paragraph above, on which everything depends, was 
this one: as long as we have enough data and a big enough network.

OVERFITTING

One of the biggest challenges in fitting neural networks is that if the net-
work is too flexible, or if we don’t have enough data to train the model, 
then we might learn a model that explains the training examples well but 
doesn’t generalize to other, unseen examples. We saw this same problem in 
chapter 6, about the Netflix Prize; this risk is called overfitting. What does 
overfitting look like in practice?

In figure 9.1a, I show a small sample of data. In this case, it’s just pairs of 
points, (input, output). Let’s say we want a model for these points that, given 
an input value, produces an estimate of the output value. This is exactly what 
you’re doing when you fit a neural network: you’re just fitting a model to 
predict some output values from the input values. And just below this, in 
figure 9.1b, is a model I’ve fit to these points. The model is the curvy line 
that goes through or near many of the points. From this model—the curvy 
line—you can see what it would predict for each input value, both for the 
inputs we had seen during training (the black dots) and for many values 
we hadn’t seen in training.

But there’s a problem with this model: although it matches the training 
data well, it’s unlikely to explain new data very well. It’s too complex. It 
makes too many assumptions about the data, so it’s got too many squiggles. 
Overfitting can become problematic because it might make assumptions 
about the data—assumptions like “lots of green in a photo means there isn’t 
a dog in it”—when it’s not justified in making these assumptions. We have 
no evidence yet that a much simpler model wouldn’t be better, or that 
we have enough data to fit the complex model. We would be remiss if 
we didn’t follow the principle of Occam’s razor, which states that we 
should favor the most simple model for our data absent compelling 
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Figure 9.1
Plots to illustrate overfitting: (a) a sample of 
points (input, output) for which we hope to 
build a model; (b) a complex and overfit model 
of these points (the black curvy line); (c) a linear 
model of these points (the straight line); and (d) 
a complex but not overfit model of these points 
(the black, not-very-curvy line).



evidence for a more complex one. (A linguistics professor of mine once 
explained Occam’s razor succinctly as, “Keep it simple, stupid.”)

The two most common ways to avoid overfitting are either to use a 
simpler model—that is, a model with fewer knobs to tune (as I show in 
figure 9.1c) or to use more data with the complex model (figure 9.1d)—
or some combination of these. As you can see, the model we find when 
there is a lot of data looks a lot more like a straight line, which confirms 
our hunch that we did indeed overfit the data with the first, curvy model.

Neural networks are especially prone to this problem of overfitting 
because they might have billions of connections between neurons—and, 
hence, billions of knobs to tune.12 If you don’t have lots of photos to train 
your network to find pictures of your dog, then you will very possibly 
overfit the neural network. Researchers typically address this with some 
combination of the solutions I mentioned above: by using a network that 
has fewer knobs to tune and by using as much data as possible. We’ll explore 
both of those now, starting with having lots of data.

IMAGENET

One popular source of photos to train neural networks is the web, but 
unfortunately most photos on the web don’t have explicit labels attached 
to them. It’s possible to use data like this to train neural networks; but in 
general, explicitly labeled pictures are better.

Enter Li Fei-Fei. Fei-Fei is an energetic and intensely focused machine 
learning and computer vision professor at Stanford University (who has 
recently joined Google to lead its cloud AI efforts). Fei-Fei became famous 
in part for her work on producing large, well-labeled collections of images 
that can be used for training computers to understand images—and for 
evaluating their ability to do so. She began this work as she was develop-
ing an algorithm in her research. To train and evaluate that algorithm, she 
and her colleagues collected images by flipping through the pages of a dic-
tionary, finding entries with illustrations. Once she and her colleagues 
found 101 different entries that could serve as object categories, they 
looked for as many images as possible from each category with Google 
Image Search. The result was a collection of about nine thousand images 
that researchers could use to train and evaluate their own algorithms.13
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Recognizing how useful this data was, Fei-Fei and her students 
embarked on a more ambitious project over the next decade: ImageNet. 
She and her colleagues again collected images for a variety of categories 
using Google Image Search, adjusting their queries and issuing the que-
ries in different languages to get a broader variety of images.14 After doing 
this, she and her research teams had millions of images, but some didn’t 
match the expected category very well. For example, if I search for “kayak” 
on Google Image Search, one of the results is the logo for the travel web-
site Kayak​.com, when what I probably want is the thing I’d use to travel 
down a river. To filter out these images, Fei-Fei and her team turned to 
Amazon Mechanical Turk.15

Amazon Mechanical Turk is a relatively recent milestone in the history 
of automata. It’s a website provided by Amazon​.com that allows any user to 
dispatch small, simple tasks to a “computer” that performs these tasks. The 
user must provide simple instructions to the website describing how these 
tasks should be accomplished and then pay a small fee for each task. Fei-
Fei and her team gave the Amazon Mechanical Turk precise instructions 
asking the computer in effect to “tell us whether this image contains a 
kayak” or “tell us whether this image contains a Siamese cat.”16 Once tasks 
like this have been uploaded to Amazon​.com, the website’s computers then 
process the tasks as instructed.

Amazon Mechanical Turk takes its name because, like the chess-play-
ing Turk, its “computers” aren’t actually automata: they’re people, often just 
sitting at home on their own personal computers. The website “abstracts 
away” the people behind the service, making it feel as if these tasks are 
being performed automatically by a computer. (The website doesn’t keep 
it a secret that humans perform these tasks, and you can still interact in 
limited ways with the users who have worked on your tasks.)

The result of Fei-Fei’s effort—downloading images from Google 
Image Search and cleaning up their tags with Amazon Mechanical 
Turk—is that ImageNet grew to over 14 million high-resolution images, 
labeled with over 22,000 categories.17 Compared to other benchmark 
datasets at the time, ImageNet provided an order of magnitude more 
labeled images. While other datasets might have a category for cat or dog, 
ImageNet also had fine-grained labels for some categories. Among the 
120 different labels it had for dogs, for example, were Dalmatian, Kees-
hond, and Miniature Schnauzer.18



In 2010, Fei-Fei organized a competition with 1.4 million images from 
1,000 categories in this dataset: the ImageNet Large-Scale Visual Rec-
ognition Challenge. One part of the competition required researchers’ 
algorithms to identify which of the objects across the 1,000 categories 
were in an image; these categories ranged broadly, from great white shark to 
hen to hourglass.19

The first two years of the competition saw measured improvement, as 
the error rate dropped from 28 percent in 2010 to 26 percent in 2011. 
Like the second year of the Netflix Prize, researchers in the field of com-
puter vision had picked all of the low-hanging fruit over the years. Each 
year the field eked out small gains by adding more and more handcrafted 
features. But a paradigm shift happened in 2012, when an inelegant and 
underdog submission became the undisputed winner of the ImageNet 
Challenge. The submission was a deep neural network, and it came in 
with an error rate of 16 percent, far below the previous year’s rate of 26 
percent.20

CONVOLUTIONAL NEURAL NETWORKS

The paradigm-shifting 2012 network became known as AlexNet, named 
after the first author on the paper that made it famous. AlexNet worked bet-
ter than its competitors for several reasons, two of which I mentioned 
above: it had been trained on a huge amount of data, and it was built in 
such a way that it didn’t have too many weights to tune. The researchers 
had architected the network so that the number and locations of its knobs 
made efficient use of their data. (In fact, AlexNet wouldn’t be called effi-
cient or accurate by our “modern” standards of just six years later, but I’ll 
come back to this point shortly.)

Let’s return to our goal of building a neural network that can detect 
pictures of dogs and use the ideas from AlexNet. AlexNet was, like the 
Atari-playing network, a convolutional neural network using a sequence 
of convolutional layers followed by a sequence of fully connected layers 
(five of the former and three of the latter as shown in figure 9.2).21

This pattern—convolutional layers followed by fully connected 
layers—turns out to be very common in networks used for image 
recognition. What’s so special about this architecture that makes it suc-
cessful across a range of applications?
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Remember from the last chapter that convolutional layers transform the 
image by finding objects in it. Each convolutional layer has a set of filters 
that look for distinct patterns in the image (or images) in the previous layer. 
The convolutional layer slides each filter over patches of neurons in the 
previous layer. You can imagine this as looking for different items on a 
beach with a bunch of magical “thing detectors.” The “thing detectors” are 
the filters. One filter might look for beautiful shells on the beach, while 
another might look for wristwatches left behind by beachgoers. The output 
of the convolutional layer is a collection of maps of the beach, one for each 
filter. If the shell filter doesn’t find a shell in any patch of the image that 
matches its pattern, then the map for that filter will be dark everywhere; 
otherwise it will have a bright spot wherever it found a shell; the same 
applies to the watch detector. As we saw in the last chapter, a neuron in 

192 convolutions

Fully-connected layersConvolutional layers

48 convolutions
128 convolutions

19212848
128

128192 convolutions

192

2048 2048

1000

OutputInput image

3 pixels

Figure 9.2
The architecture of AlexNet, the artificial network that won the 2012 ImageNet 
Challenge, set the stage for further improvements in image classification. AlexNet 
had five convolutional layers followed by three fully connected layers. Much of the 
network was trained on two different processors, so that some layers didn’t process 
any inputs from the convolutional layers handled by the other processor. The input 
layer represented the red-green-blue values of an image, while the output layer had 
1,000 neurons corresponding to each of the categories predicted by the network. 
Image adapted with permission from Russakovsky et al., “ImageNet Large Scale 
Visual Recognition Challenge.”
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the output layer of the convolution will be very bright if there is a strong 
match for the filter at that position of the input to the convolution.

In the last chapter I discussed filters for aliens and paddles. But that was 
a bit idealistic and unrealistic for the filters in the first convolutional layer 
for a network that recognizes natural images (and, probably, for one that 
plays Atari games as well). It’s unlikely that any single filter of a convolutional 
layer would recognize complex objects like this, in part because the filters 
in the first layer are usually fairly small. In AlexNet, for example, the filters in 
the first layer looked for patterns in 11 × 11 patches of pixels.

If these filters can’t recognize aliens and spaceships from pixels, how can 
they identify pictures of dogs, let alone dogs of different breeds? Remem-
ber that AlexNet has five layers of convolutions. It’s not until the final layers 
that the network is able to recognize complex objects like dogs and 
spaceships. Before we can understand how they do that, let’s look back at 
the first layer. AlexNet used about a hundred filters in its first layer, which 
meant that it had a hundred magical “thing detectors.”

I show a set of filters from a convolutional neural network just like 
AlexNet in figure 9.3a. Each square in this image shows a patch of pixels 
that will brightly light up one of the filters in the first convolutional layer. 
Although you can’t see it in these black-and-white images, these filters also 
matched different colors; some tended to match blue and white, while oth-
ers matched yellow and red, and so on. A lot of researchers interpret these 
filters as “edge detectors” because they match edges or other simple pat-
terns in the input image. These patches of pixels may not look very mean-
ingful, but they become meaningful when combined with other edge 
detectors by layers deeper in the network. In other words, they’re the build-
ing blocks used by the layers further downstream in the network. And this 
is where the magic of convolutional neural networks really starts.

AlexNet’s remaining four convolutional layers each have a few hundred 
more filters.22 Each successive convolutional layer uses filters from its pre-
ceding layer as building blocks to compose them into more complex pat-
terns. The second convolutional layer doesn’t think in terms of pixels; it 
thinks in terms of filters from the first layer—that is, in terms of edges—and 
it builds up patterns of these edges to search for. You can see some of these 
patterns in figure 9.3b. Each square in this figure represents which pixels in 
the input image would brightly light up a filter in the output of the second 



138	 Chapter 9 

layer. These patterns are still not full objects, but it’s clear that they’re starting 
to become more interesting: some of them look a bit like fur (which is use-
ful for recognizing dogs), while some of them look like curvy segments 
(which is useful for recognizing snakes, lips, or other curvy objects).

As we continue to move deeper into the network, the compositions 
captured by the convolutional filters continue to become more and more 
complex. You can see the filters for the third and fourth convolutional layers 
in figure 9.3c and figure 9.3d. As before, each square represents a patch of 
pixels that would highly activate some filter in that layer. Here you can 
begin to make out coherent parts of objects: some patches appear to be 
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Figure 9.3
Patterns of pixels that activate filters in various layers of AlexNet in 
convolutional layers 1 (a), 2 (b), 3 (c), and 4 (d). These filters search 
for patterns of light and dark (they also search for certain colors, 
which you can’t see in this picture). Images used with permission 
from Yosinski et al., “Understanding Neural Networks Through 
Deep Visualization.”



animals’ eyes, while others appear to be larger patches of fur. Others yet 
appear to be larger parts of animals. One even looks a bit like a face! This 
increasing abstraction continues as we go deeper into the convolutional 
layers in AlexNet.

Once we’ve moved past the fifth convolutional layer, we find three fully 
connected layers. The output of the network had a thousand different neu-
rons, corresponding to each of the categories in the ImageNet Challenge. 
AlexNet was trained so that, when presented with an image containing one 
of these categories, the corresponding output neuron should light up. If 
presented with an image of a shark, then the shark neuron should light up. 
If presented with an image of an hourglass, the hourglass neuron should 
light up. Otherwise these neurons should stay dark.

You can see a sample of image patches that would light up some of the 
neurons in the final, output layer of this network in the four images shown 
in figure 9.4. Not surprisingly, image patches that light up the neuron for 
one of these categories tend to match our intuition: the image patch that 
lights up the great white shark neuron appears to have great white sharks 
in it, and the image patch that lights up the hourglass neuron appears to 
have an hourglass in it. Amazingly, the objects in these images didn’t come 
from any single picture: these image patches were generated from the net-
work itself, to reflect precisely what each neuron “looks” for.

The images in the ImageNet Challenge were biased toward animals, 
with 120 different categories for domestic dogs alone, out of its 1,000 total 
categories. This means that, to create our network to recognize your pet 
dog, we can probably just use the AlexNet network with only a small modi-
fication: we just remove (or ignore) all output neurons except for the ones 
that best match your dog. But in general, we might want to keep the other 
output neurons, since it can be helpful to know whether the image matches 
other things, such as a different type of dog or even a cat.

WHY “DEEP” NETWORKS?

What is it about deep neural networks—and AlexNet in particular—that 
enabled them to work so well in the ImageNet Challenges? Did the net-
works’ architectures help? For example, did these networks need to be so 
deep? As we already know, neural networks with just a single hidden layer 
should be capable of representing arbitrarily complex functions, so it should 
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be possible, at least in theory, for a network with just a single hidden layer 
to beat the ImageNet Challenge.

The problem with a single hidden layer is that we have no guarantee 
that the hidden layer won’t need to become extraordinarily large to rep-
resent the function we want. If the hidden layer becomes too large—that 
is, too wide—then we would need to learn too many weights, and we’re 
likely to overfit without an extraordinarily large amount of data. On the 
other hand, there’s theoretical evidence that suggests that by going 
deeper instead of wider, we can represent complex functions much 
more efficiently—that is, with far fewer neurons, and therefore with far 
fewer weights to learn.23

A B

C D

Figure 9.4
Image patches that activate the neurons in the output layer of our net-
work. Neurons correspond to categories in the ImageNet Challenge 
(A: great white shark; B: hourglass; C: hen; D: wall clock). Images used 
with permission from Yosinski et al., “Understanding Neural Networks 
Through Deep Visualization.”



What is it about going deeper instead of wider that makes a network 
more efficient? If you’ve ever used a Nintendo Wii, there’s a good chance 
that you’ve created a Mii. A Mii is a cartoon character that represents you, 
as a player. It’s your avatar for certain Nintendo Wii games. To create your 
Mii, you select eyes, nose, skin color, hair, and a variety of other facial and 
body features to make a character that looks like yourself. For each char-
acteristic, you have a handful of options—we’ll say about 5 to 10—from 
which to select. While the end result is often more cartoonish than pho-
torealistic, it can still bear a striking (and humorous) resemblance to you, 
or to anyone else for whom you make a character. By using just a handful 
of building blocks—the eyes, nose, hair, mouth, and other features shared 
as building blocks for all Mii characters—you can create a wide variety of 
Mii characters that can faithfully represent just about anyone you might 
imagine.

Now let’s think back to the benefit that convolutional layers provide. 
Neural net researchers have suggested that convolutional layers are power-
ful because they use a distributed representation to process an image. They let 
you reuse components among different neurons. If your neural network 
can recognize 120 different breeds of dogs, the first few layers can focus on 
recognizing the very basic characteristics we might use to describe dogs: 
the different types of fur they might have, different types of ears, and differ-
ent patterns of coloration. Then the deeper layers can focus on combining 
these different “primitives” in various ways. Just as you can construct a 
Mii using a variety of well-defined and reusable facial and body features, 
higher-level convolutional layers can construct objects—like dogs—from 
the features found in earlier convolutional layers. And this can repeat at 
each level, giving an exponential increase in the things that can be repre-
sented with each layer. As you can imagine, in some layer beyond where 
the network can recognize dogs and people, you might have neurons that 
can explain entire scenes. You might have, for example, a neuron that rec-
ognizes recreational parks (by leveraging neurons earlier in the network 
that recognize dogs, people, and playground equipment); or you might have 
a neuron that recognizes urban environments (cars, streets, and commer-
cial storefronts). In the next chapter we’ll actually look at neural networks 
that can generate captions for scenes like this. The creators of AlexNet saw 
this benefit to using multiple layers empirically as well. If they removed any 
convolutional layer, then their network’s performance degraded.24 The 
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ImageNet Challenge contestants also noticed this in the years following 
AlexNet: as they continued to build deeper and deeper networks, their 
performance on the challenge continued to improve.

Many of the submissions to the ImageNet Challenge after 2012 fol-
lowed AlexNet’s lead and used deep neural networks. Although AlexNet 
won by a commanding lead in 2012, a number of other teams beat AlexNet 
in 2013, when all of the top teams used deep learning. In a research field 
otherwise used to eking out small gains each year, the error rate plummeted 
over the next few years, as researchers continued to improve their new 
favorite toy. In 2014, Google produced a network that by some metrics 
exceeded the accuracy of humans.

In 2018, as I write this book, the field of research is still extraordinarily 
active and fruitful, as researchers are discovering new ways to connect 
layers to one another. The top-performing networks in the ImageNet 
Challenge now have an error rate of 2.3 percent, a small fraction of 
AlexNet’s 16 percent error rate.25 As Dave Patterson, a computer architec-
ture researcher at Google Brain and former professor at UC Berkeley, 
noted, it’s shocking even to pioneers in the field that these methods in deep 
learning are working so well.

Noticing that network depth can be helpful, contestants in the ImageNet 
Challenge have made their networks deeper and deeper, to seemingly 
absurd levels. One 22-layer network designed by Google, for example, was 
called the Inception Network, a reference to the 2010 movie Inception and 
the internet meme, “We need to go deeper.”26 But adding more layers 
increases the number of parameters we need to tune; so how did Google’s 
researchers manage to go so deep without overfitting? One way was by 
recognizing that the neurons in its convolutional layers might be too 
simple (they are, after all, just weighted-average classifiers). So they 
replaced them with miniature networks that could find more complicated 
patterns. Critically, however, they did this in such a way that they used fewer 
parameters per layer (for example: two 3 × 3 filters and one 1 × 1 filter, and 
three weights to combine them, require 22 parameters altogether, while a 
single, “dumb” 5 × 5 filter has 25 parameters). Depths like that of the 
Inception Network are no longer considered extreme; it’s not uncommon 
now for a network to be 10 to 20 layers deep, with billions of weights to 
tune. Some networks have gone thousands of layers deep.27



Researchers have discovered ways to improve networks besides depth. 
They’ve discovered, for example, that networks can perform better when 
information is allowed to “bypass” certain layers, something made possible 
by adding connections between nonadjacent convolutional layers. They’ve 
also found ways for neurons to reinforce one another within a layer, a pro-
cess called excitation. This is useful when, for example, one part of a convo-
lutional layer recognizes cat fur: that should be a signal to other parts of the 
layer to be on the lookout for related items, like cat eyes and cat tongues.

DATA BOTTLENECKS

AlexNet’s network architecture was important, but another factor in its 
success was the sheer scale of the data its researchers used to train it. They 
used 1.2 million images from the competition to train their network, but, 
observing that “object identity is invariant to changes in the intensity and 
color of the illumination,” they augmented their training data by flipping 
their images horizontally, translating them, and adjusting their color bal-
ance.28 As a result, they ended up with 2,000 times the amount of training 
data they started with, or about 2 billion images with which to train their 
network. If they hadn’t augmented their training data like this, they would 
have needed to use a much smaller—and less expressive—network.29

With so many images for training, their bottleneck wasn’t how many 
images they could feed into their network, but rather how fast they could 
feed them in. As the creators of AlexNet observed:

In the end, the network’s size is limited mainly by the amount of memory 
available on current [processors] and by the amount of training time that we are 
willing to tolerate. Our network takes between five and six days to train. … 
All of our experiments suggest that our results can be improved simply by 
waiting for faster [processors] and bigger datasets to become available.30

Conveniently, the hardware most suited to train these networks has con-
tinued to improve since then. Training neural networks involves perform-
ing many matrix operations. Computer games must perform exactly the 
same types of operations to render high-quality graphics, and graphics cards 
have been optimized over the past few decades to support these operations. 
Deep learning researchers have begun using these cards because they can 
speed up the time it takes to train a network by a factor of anywhere from 
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10 to 50. The market for computer graphics cards that perform these 
operations had become large and competitive even before deep learning 
depended on them, which had forced the cards to become affordable, until 
demand for the cards picked back up in the past few years.31 NVidia, one 
of the primary manufacturers of these cards, has been printing them like 
newspapers and selling them like hotcakes; the company has also begun 
producing even more specialized hardware for self-driving cars. These facts 
have not been lost on its investors, who are willing to pay $242 for a pre-
cious share of its stock in 2018 when they only paid $20 per share 2015. 
Google has meanwhile introduced specialized chips that appear to improve 
upon the speeds of the graphics chips by a similar order of magnitude.32

So far we’ve focused on the high-level details of how neural networks 
allow computers to perceive the contents of images. We’ve looked at the 
way their layers are organized and the way they’re trained, and at how 
improvements at this high level have pushed the boundaries of what’s pos-
sible with computer perception. But as researchers have been figuring out 
useful ways to architect these networks at a macroscopic level, they’ve also 
been looking at ways to improve these networks at the microscopic level—
that is, at the level of individual neurons. Changing the way neurons in a 
network light up, given their inputs, can have surprising effects on these 
networks’ ability to retain the information we use to train them. We’ll take 
a closer look at why this is the case in the next chapter.



10  LOOKING UNDER THE HOOD OF DEEP  
NEURAL NETWORKS

COMPUTER-GENERATED IMAGES

On June 10, 2015, a strange and mysterious image showed up on the inter-
net, posted anonymously on the website Imgur​.com. At first glance, the 
picture looked like one or two squirrels relaxing on a ledge. But the resem-
blance ended there: as you looked more closely, you could make out 
bizarre detail—and objects—at every scale. The image on the internet was 
psychedelic, like a fractal, with a dog’s snout on the squirrel’s face, a mysti-
cal pagoda here, a human torso there, and a bird-giraffe creature over there, 
seamlessly embedded into the fine detail of the image. Uncanny eyes 
peered out from every nook and cranny. Looking at this image felt like 
looking for objects in clouds, except that it wasn’t your imagination. Or 
was it? You had to look again to see.

It was clear that the image hadn’t been created by a human. It was too 
bizarre to be a photograph, and its detail was too fine to be an illustration. 
The anonymous user who had posted the picture on Imgur​.com described 
it only with this note:

This image was generated by a computer on its own (from a friend working 
on AI).1

As the image began to spread and the denizens of the internet tried to 
make sense of it, engineers over at Google were generating more images 
just like this and sharing them with one another. A week later, they pub-
lished a blog post explaining the phenomenon. The image had indeed been 
generated by AI—specifically an artificial neural network. The phenom-
enon became known as Deep Dream. With the arrival of these images, 
people began asking some uncomfortable questions that had been lurking 
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beneath the surface. Are these really android dreams? Do we even under-
stand what’s going on in these networks? Have researchers gone too far in 
their efforts to recreate human thinking?

These concerns about intelligent machines had been further stirred up 
because the likes of modern industrialist Elon Musk were voicing their 
own worries. Musk, who had reportedly invested in DeepMind to keep an 
eye on the progress of AI, worried that his good friend Larry Page—one 
of Google’s founders—might “produce something evil by accident,” 
including, rather specifically, “a fleet of artificial intelligence–enhanced 
robots capable of destroying mankind.”2

When these images came out, we already knew that neural networks 
could be useful in playing Atari games and in understanding the content 
of images. The images did stir up some uncomfortable questions, but as 
we’ll see, the reasons neural networks can be good at playing Atari games 
and the reasons they’re able to produce psychedelic dreamscapes are actu-
ally closely related. And even though these dreamscapes seemed at first to 
make deep neural networks more mysterious, it turns out that they can also 
make them less mysterious.

SQUASHING FUNCTIONS

In the history of neural networks, there was a period during which 
researchers eschewed deep architectures. They had the universal 
approximation theorem, which suggested that maybe they didn’t need 
to go so deep, and they also knew in practice that deep networks were 
difficult to train. But these networks were difficult to train because 
researchers hadn’t yet discovered the best way for neurons in their net-
works to light up.

Remember that in a neural network, each neuron is a simple classifier. 
The neuron takes a weighted sum of its inputs and squashes this weighted-
sum in some way to produce an output, as we saw in figure 8.2. This 
squashing function might seem like a footnote, but it turns out to be 
extremely important in enabling us to train deep networks. For a long time, 
researchers’ favorite squashing function in neural networks followed 
the S-shaped curve I show in figure 10.1a.3 This S-shaped curve takes 
the weighted sum of the neurons’ brightness in the previous layer and 
squashes it into the range 0 to 1. If the weighted sum of the neuron’s 
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inputs is very small, the output of the neuron will be close to 0. If it is very 
large, the output of the neuron will be very close to 1.

The benefit of using this S-curve is that neurons’ output values are all 
“well-behaved”: no neuron will output a ridiculously high or low value, and 
there is a smooth relationship between the inputs and the outputs. These are 
good properties to have when you’re training or using the network, because 
otherwise the edge weights could blow up to infinity when you’re using 
the network. Having a smooth function means that you always know how 
much you should adjust the network weights if you adjust the network’s 
input or output just a little bit. Researchers also liked to point out that 
this function was biologically inspired—but remember, using something 
because it’s biologically inspired can sometimes be “fraught with danger.”
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Figure 10.1
Activation functions for neural networks. The 
S-curve (a) (formally known as a sigmoid) was 
used for a long time, but ReLU activation func-
tions (c) have become popular because they 
make training deep neural networks easier.
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The problem with using the S-shaped curve is that it tends to “dilute” 
messages passed through the network. If the weighted-sum input to the 
neuron is high, the neuron doesn’t care whether the input is large or really 
large: it outputs the number 1 either way. It’s the same at the other extreme: 
whether the input to the neuron is somewhat negative or really nega-
tive, the neuron outputs 0 regardless. This may not be a problem when we 
“run” the network, but it can become a problem when we’re trying to 
train it. The message we send backward through the network to adjust the 
weights will become diluted as it passes through the network. One of the 
benefits we originally thought we had—that we know how much to adjust 
the weights when we’re training the network—isn’t much of a benefit, 
because the training algorithm may think it doesn’t need to adjust the 
weights at all, when they should in fact be changed a lot. This problem is 
sometimes known as a “vanishing gradient.” The gradient is the direction 
that weights in a neural network must move for it to learn from a sample 
of training data. If the gradient vanishes—that is, if it appears to be zero 
when the network training is not complete—then this means the net-
work can’t learn from its training examples: it will ignore the training 
example, even if the example is useful. Because of this problem, research-
ers continued to poke around at other activation functions.4

At the opposite extreme, what if we don’t squash the output of the neu-
rons at all, and instead pass the weighted sum computed by each neuron 
directly through as the output of that neuron, using the activation func-
tion in figure 10.1b? This doesn’t have the problem we had with the van-
ishing gradient, and in fact it will be really easy to update the network 
weights if we use this squashing function. But this poses a different prob-
lem: if we use this squashing function for all of the neurons in our network, 
then the entire network will collapse mathematically into the equivalent 
of a single-layer network. Any benefits we thought we’d gained from having 
a deep network simply vanish. Assuming that we want the benefits of a 
multilayer network—and we do—this won’t work either.

RELU ACTIVATION FUNCTIONS

Since about 2010, we’ve been seeing much better results with an activa-
tion function that’s somewhere in-between these two extremes: the one 
shown in figure 10.1c. This activation function—used by AlexNet in 2012 
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and a variety of other networks since then—is called the rectified linear 
unit, or “ReLU” for short.5 The ReLU is zero if the sum of the neuron’s 
inputs is less than zero, and it’s equal to the sum of the inputs if that sum 
is greater than zero. For a while researchers were worried that this would 
have the same problem as the S-shaped curve—namely, that the network 
would dilute a message passed through many layers. But this doesn’t seem 
to happen in practice.6

Instead, the ReLU activation function appears to have some rather nice 
properties. For any fixed input, some subset of the network’s neurons will 
be dark, while others will be lit up. If you vary the input a little bit in any 
direction, the set of neurons set to on or off typically won’t change. The 
brightness of the on neurons will change as you vary the input a small 
amount, but the on ones will stay on, and the off ones will stay off. But more 
importantly, the network will behave in the small vicinity of this input 
exactly like a single-layer network—that is, like a bunch of weighted-aver-
age classifiers.

As you continue to vary the input to the network, moving it further 
from the initial input, the set of on neurons will begin to change. The out-
put will still vary smoothly as you change the input smoothly—that is, it 
will never make a sudden jump in value as long as you don’t make a sud-
den change in the input.7 The relationship between the inputs and outputs, 
however, will change. You can think of the overall network as a patchwork 
of single-layer networks, stitched together to agree with the training data. 
Which single-layer network handles the input depends on which neurons 
are turned on or off by the input. In fact, it’s possible for there to be an 
exponentially large number of single-layer networks encoded within the 
overall network.8

When I say there are an “exponentially large” number of networks, 
I don’t mean this casually or carelessly. I mean “exponential” in the math-
ematical sense. The number of possible single-layer networks hidden 
within the overall network is described by all of the possible ways the 
neurons in the network can be switched on or off. For a ReLU network 
with just 60 neurons, the number of ways to assign its neurons to on/
off—and, hence, the number of single-layer networks we could hide 
within it—is about the number of grains of sand on all the beaches and in 
all the deserts of the world.9 A network with 270 neurons has the potential 
to represent as many combinations as there are atoms in the known 
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universe.10 And remember: modern neural networks can easily have mil-
lions of neurons. If the network only needs to use a simple function to 
represent its input, it can do so; and if it needs to use a more complicated 
function—as with a patchwork of single-layer networks—it can do that 
instead.11

Why doesn’t the ReLU have the same problem the S-curve had, given 
that large parts of the ReLU are also flat? Let’s say you have a training 
example you want the network to learn. Although many of the neurons 
will be turned off for a typical input, as long as there is at least some path 
of lit-up neurons from the input of the network to its output, then the net-
work can adjust the weights along that path to learn the training example. 
The weights along that path will take the credit or the blame for the training 
example, as information from the example propagates through those 
lit-up neurons.12 Later, when the network sees an input that’s similar to 
examples it saw during training, it will “remember” those training exam-
ples by lighting up some or all of the same neurons that were lit up when 
it saw a similar example during training.

This benefit of ReLUs is similar to another popular trick for training 
deep neural networks in which neurons are temporarily “suppressed” dur-
ing training. Any time a training example is used to train the network, a 
random subset—say, 50 percent—of the neurons are temporarily sup-
pressed, by setting their outputs temporarily to zero.13 The remaining 
neurons’ weights are then updated using the training example, as if the 
suppressed neurons never existed. As with the ReLUs, there are an expo-
nentially large number of ways these neurons might be suppressed—and, 
hence, a virtually infinite number of networks to train.

When the resulting network is used for prediction, the output of each 
neuron is scaled down, so that the input to each neuron becomes the aver-
age of many independently trained models. The overall network effec-
tively becomes a giant blend of a huge number of networks that were 
trained, reminiscent of the model-averaging techniques that were success-
ful in the Netflix Prize.14

This combination of tricks for training deep neural networks—that is, 
ReLU activation functions and the random suppression of neurons during 
training, along with having lots of data, using depth instead of width, and 
using convolutional layers—were some of the main factors in creating 
networks that could classify images as well as, or better than, humans.
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Although it was technically true that neural networks have done better 
than humans at identifying objects in images, this fact requires a large aster-
isk. At least one network did indeed exceed humans’ ability to recognize 
very fine-grained categories, but the network had an advantage in that it 
was trained on narrow, specific categories of objects, such as the 120 dog 
breeds from the training data. In many cases, the network could correctly 
identify narrow types of objects, such as “coucal,” “Komondor,” and “yellow 
lady’s slipper,” when a typical human would have only recognized these 
items based on their broad categories: “cuckoo,” “sheepdog,” and “orchid,” 
or possibly just “bird,” “dog,” and “flower.” The humans compared with the 
computer had the chance to study these categories, and the researchers 
behind the ImageNet Challenge found that humans did better the more 
they studied, but the fact remains: humans are imperfect.15

And neural networks have their own weaknesses. The same algorithms 
that beat humans can still make mistakes identifying objects in images that 
humans would have had no trouble recognizing.16 It’s even possible to cre-
ate optical illusions for neural networks that can “trick” them into being 
extremely confident that they are seeing objects that aren’t really there, 
when to a human the illusion looks like abstract art. In one case, a white 
background with five columns of red stitch-marks could trick a neural 
network into thinking it was looking at a baseball; in another, a rippling 
pattern of black, gray, and orange convinced a neural network that it was 
looking at a king penguin; and in yet another, a grid of carefully positioned 
rectangles convinced a neural network that it was looking at a remote 
control. It’s also possible to construct illusions that look to humans like one 
object, while they look to neural networks like entirely different objects.17 
This happens because of the unique way a neural network interprets the 
picture.

ANDROID DREAMS

Suppose that we take a photo of your pet dog and pass that photo 
through a convolutional neural network like the ones we trained in the 
last chapter. As long as you know the network weights, the layers of the 
network will activate predictably, layer by layer. In each layer, some neu-
rons will remain dark while others will light up as they respond to dif-
ferent patterns in the image. Since we passed a photo of your pet dog 
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into the network, then when we look deep enough in the network—
say, at the fourth or fifth level—the neurons will represent object parts 
that we’ll likely recognize. Those neurons that respond to things like fur 
and parts of a dog’s face will be glowing brightly. If we look at the final 
layer, the dog neuron(s) will be lit up, while most of the remaining neu-
rons will be dark.

Now here’s where it gets interesting. When we first trained the network 
in the last chapter, I glossed over some details about how we adjusted the 
weights of the network for each training example. Remember that the 
algorithm to train the network adjusted its weights based on how “incor-
rect” the dog neuron at the end of the network was. It used a mathemati-
cal function that measured how close the output of the network was to the 
training example’s label. That label was just a 1 or a 0 describing whether 
the image did or didn’t have a dog. The algorithm to train the network then 
calculated, using high school calculus, in which direction it should adjust 
the network’s weights so the network could predict the output values just 
a bit more accurately the next time around.

What if, instead of adjusting the network’s weights to agree more with 
the image, we instead adjusted the image to agree more with the network? 
In other words, once we’ve already trained the network, what would hap-
pen if we keep the network’s weights fixed to what they are, and adjust the 
input image—say, a photograph of a cloud—so that the dog neuron is more 
bright while the other neurons remain dark?

If we adjust the image like this, adjusting the pixels a bit at a time and 
then repeating, then we would actually start to see dogs in the photo, even 
if there weren’t dogs there to begin with!18 In fact, this is how some of the 
images in the last chapter were generated: a group of deep learning 
researchers took a network just like AlexNet and adjusted input images so 
that certain neurons—representing a great white shark or an hourglass, for 
example—became bright, while other neurons remained dark.19 Google’s 
researchers used a similar method to analyze their own neural networks. 
When they wrote about how they did this, they gave several examples. In 
one of these examples, they looked at images generated from a neuron that 
recognized dumbbells, the equipment that you would find in a gym. They 
found that the images indeed showed dumbbells; but they also showed 
muscular arms attached to these dumbbells. Apparently, they observed, the 
network learned that an important distinguishing characteristic of 
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dumbbells isn’t just the hardware itself; but also the context in which it 
they’re used.20

Google created its Deep Dream images in a similar way, except that 
instead of forcing the network to generate pictures of dogs or other spe-
cific objects, they let the network create more of whatever it saw in the 
image. As the Deep Dream engineers wrote on Google’s research blog:

Instead of exactly prescribing which feature we want the network to amplify, 
we can also let the network make that decision. In this case we simply feed the 
network an arbitrary image or photo and let the network analyze the picture. 
We then pick a layer and ask the network to enhance whatever it detected. Each 
layer of the network deals with features at a different level of abstraction, so the 
complexity of features we generate depends on which layer we choose to 
enhance. For example, lower layers tend to produce strokes or simple ornament-
like patterns, because those layers are sensitive to basic features such as edges and 
their orientations.

If we choose higher-level layers, which identify more sophisticated features 
in images, complex features or even whole objects tend to emerge. Again, we 
just start with an existing image and give it to our neural net. We ask the net-
work: “Whatever you see there, I want more of it!” This creates a feedback 
loop: if a cloud looks a little bit like a bird, the network will make it look more 
like a bird. This in turn will make the network recognize the bird even more 
strongly on the next pass and so forth, until a highly detailed bird appears, 
seemingly out of nowhere.21

And that’s how the mysterious image from Imgur​.com was created. You 
can see the results of a Deep Dream created by feeding a photograph of 
kittens into a similar algorithm in figure 10.2b.

Soon after Google’s blog post, other researchers began using a similar 
idea to reimagine artistic style. They created tools that would enable any-
one to transfer the style from an artist’s painting to an entirely different 
image. If you wanted to make a photo of your family look like Vincent van 
Gogh painted it, you simply needed to run your photo through one of 
these programs.

In these programs, a style image—the Van Gogh painting—is passed 
through the network so that the neurons light up as usual. The neurons that 
light up would include some low-level edge detectors in the first few lay-
ers as well as high-level object detectors in the higher layers. Then, the 
style-transfer algorithm measures how the filters in each layer correlate 



Figure 10.2
A photo of foster kittens, (a), along with a reinterpretation of the photo based on what 
the network sees after many iterations of the Deep Dream algorithm, (b), and style 
transfer algorithms, (c) and (d). Image (c) uses style from a Vincent van Gogh painting, 
while image (d) uses a style created from The Simpsons. All images except (a) were 
generated via https:​//deepdreamgenerator​.com.

https://deepdreamgenerator.com


Looking Under the Hood of Deep Neural Network	 155

with one another across the entire image. This correlation is exactly how 
these algorithms define the style of an artist. If certain filters tend to con-
sistently light up with each other across different parts of the image, the 
reasoning goes, then this indicates something important about the style of 
the artist. If the artist tends to use only a few, simple colors with many small 
dots, then the neurons that explain these small dots tend to co-occur with 
each other. If the artist tends to use sharp brush strokes, then any neuron 
that captures these sharp brush strokes will tend to occur next to itself 
wherever it occurs.

After this, a “content” image—your family photo—is passed through 
another copy of the same network, and we select a specific layer of the net-
work to capture the essence of what’s in the image. Once we’ve selected 
this layer, the algorithm adjusts the family photo so that the neurons in each 
layer correlate with one another in the same way they did with the style 
image, without allowing the neurons in the layer we’ve selected deviate too 
far from their original values. As long as we were correct in assuming that 
the correlation in filters expressed at each layer can capture the style of an 
artist, then this will cause the new image to take on the style of the first 
photo. This appears to be a reasonable assumption in practice, as the results 
of the algorithm match our intuition: when the algorithm finishes 
running, your family photo will have been reimagined as a Van Gogh 
painting—or as just about any other painting style that you used for the 
style image!22 I’ve applied this same method to some photos of the three 
kittens in figure 10.2c and 10.2d. As you can see, the resulting images 
capture the intuition we expect in different artistic styles: one of them has 
the intense brush strokes we associate with some of Van Gogh’s most 
famous work, such as his self-portrait; while the other image has a style 
reminiscent of a cartoon image; this style was called a “Simpsons” style.

When this algorithm “reimagines” your family photo, remember that 
no actual “imagining” happens. The network simply processes the style 
image and the content image, its neurons lighting up in predictable ways for 
each, and then the algorithm adjusts the content image to optimize a well-
defined mathematical function so that the network’s activated neurons cor-
relate in a way that agrees with the style image. The end result may seem 
spectacular for a computer program, but that’s mostly because these net-
works perform their operations with higher-level abstractions than what 
we usually expect from computer programs. Until recently, we’ve come to 
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expect computers to operate on images at a very primitive level, because 
that’s all they’ve been able to do. Your home photo-editing software 
has tools that let you adjust the color balance of a photograph or apply 
softening to it. Up until recently, these operations could have been 
implemented with the lowest level of a convolutional neural network. 
But the algorithms I’ve described in this chapter operate on images at a 
much more abstract level, interpreting and adjusting images by using neu-
rons several layers deep in the network. This is the primary strength of 
these networks, and it’s one of the reasons they can be applied in many 
unique and non-intuitive applications.

In the past few chapters, we’ve gained some intuition for how deep neu-
ral networks can enable computers both to interpret and manipulate 
images in remarkably “human” ways. But up until now, our focus has been 
exclusively on using deep neural networks to interpret visual information. 
Is it possible to use deep neural networks to better interpret and manipu-
late other types of media, like audio recordings or written text? As we’ll see 
in the next chapter, the answer is a clear yes. Deep neural networks can 
work well in these domains, in part because we have large amounts of data 
in these other domains as well. But as we’ll soon see, we’ll need to develop 
some new neural network tools—akin to convolutional filters, but for 
time-series data—to work with these different types of data.



11  NEURAL NETWORKS THAT CAN HEAR,  
SPEAK, AND REMEMBER

WHAT IT MEANS FOR A MACHINE TO “UNDERSTAND”

We’ve spent most of the past few chapters looking at how deep neural 
networks are able to recognize objects in images. I’ve focused on these 
networks largely because many of the machines in this book use vision in 
some form to perceive the world around them. But what if we wanted 
our machines to have other ways to interact with the world—to generate 
English sentences, or to understand human speech, for example? Would 
convolutional networks prove useful for this as well? Are there other neu-
ral network “primitives” that would be helpful? Popping up a level, does 
it even make sense to use neural networks for tasks like understanding 
speech?

The answer to all of these questions is yes, and in this chapter we’ll take 
a brief look at how to do these things. Before we get into these details, 
however, let me be clear about what I mean when I talk about computer 
programs that can “understand” human speech. We’re still a long way from 
having machines that can understand human language in the way a human 
does. However, we have figured out how to create computer programs that 
can turn a sound recording of a person speaking into a sequence of writ-
ten words, a task commonly known as speech recognition. These algo-
rithms do the same thing with a sound recording that AlexNet did with 
images: they classify the recording, tagging it with human-interpretable 
labels: words. And just as the algorithms to detect objects in images rival 
humans’ accuracy, our speech-recognition algorithms now rival humans’ 
ability to recognize speech.
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DEEP SPEECH II

Imagine that you were given the task of designing a neural network that 
could transcribe human speech. Where would you begin? What would the 
input to the network look like, and what would its outputs be? How many 
layers would you use, and how would you connect these layers together? 
We can look at the speech-recognition system built by the web search giant 
Baidu to answer these questions. Baidu’s network rivals humans’ ability to 
transcribe speech; it could do this for the same reason Google’s network 
was able to rival humans at image classification: they started with lots of 
data. Baidu used 11,940 hours—over a full year of spoken English—to train 
one of their best speech networks. And just as the creators of AlexNet did 
with their ImageNet data, Baidu augmented their speech dataset by trans-
forming samples from it: they stretched their recordings this way and that, 
changed the recordings’ frequencies, and added noise to them, so that they 
had many times the amount of data they started with.1 In each case they 
didn’t change what was being said; they just changed how it was being said. 
But having a lot of training data wasn’t enough on its own to build a net-
work to accurately transcribe speech: they also needed to pick the right 
network architecture.

We want a neural network that can take a sound recording as its 
input and produce a sequence of letters—a written transcription of the 
recording—as its output. As the input to our speech network, we can use 
a spectrogram of the recording. A spectrogram summarizes a sound 
recording by describing the intensity of different frequencies in the 
recording over time. You can think of a spectrogram as a black-and-white 
image: the x-axis is time, the y-axis is frequency, and the darkness of each 
pixel is the intensity of a certain frequency at a certain time in the record-
ing. The spectrogram for a high-frequency tone would consist of a single 
dark bar across the top of the spectrogram, while the spectrogram for a 
low-frequency tone would consist of a single bar across the bottom of 
the spectrogram. Several pulses of sound would appear in the image as 
dark blobs from left to right across a white background. And just as you 
can turn a sound recording into a spectrogram, you can also go the other 
way: from a spectrogram you can reconstruct the original recording. The 
fact that the spectrogram encodes the recording means that we can pass 
the spectrogram alone as an input to the neural network.
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Now that we know that a sound recording can be turned into an image, 
we might ask ourselves whether the network should have some convolu-
tional layers. The answer is yes, and that’s what Baidu’s network used: the 
first few layers of their network were indeed convolutional layers. But we’ll 
need more than just convolutional layers. We’ll need an explicit way for the 
neural network to deal with time.

RECURRENT NEURAL NETWORKS

The most common type of neural network that interacts with time-series 
data—or any sequential data, really—is the recurrent neural network, some-
times just called an RNN. An RNN is a neural network made up of iden-
tical “units” of neurons that feed into one another in a series, as in figure 
11.1. Each of these units shares the same weights, just as convolutional fil-
ters share the same weights. The only difference is that convolutional fil-
ters that share the same weights don’t typically feed into one another. The 
very nature of RNNs, on the other hand, is that each RNN unit feeds its 
output directly into the next RNN unit, which, by definition, has 
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Figure 11.1
Recurrent neural network (RNN) units unfolded in time. Each 
unit has a state variable h that transitions from unit to unit. The 
transition is determined by the input x and the state of the previous 
unit. Each unit also produces an output y to share information 
about the state with the rest of the network. The dark boxes repre-
sent transformations—typically encoded by other neurons in the 
network—that may take place within the unit.
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identical weights as the last unit. And each RNN unit takes its input and 
transforms it in various ways before outputting it. This is the magic 
behind RNNs: the way they manipulate data and pass it to one another 
enables them to keep track of state.

Let’s briefly think back to what it was about self-driving cars that 
enabled them to exhibit complex behavior. Their ability to make sense of 
the world—that is, their ability to perceive—was certainly critical. But cars 
like Boss that drove through urban environments needed some way to 
make intelligent decisions as they encountered complex situations. In the 
middle of Boss’s reasoning layer was a finite state machine (its Monopoly 
board), which kept track of how far along it was in carrying out its mis-
sion. As Boss made progress on its mission, it moved a virtual piece around 
on its Monopoly board to keep track of its state: where it is now, where it 
can go next, and how it should decide where to go next.

RNNs provide the same service for the neural network that the 
Monopoly board played for Boss. Each recurrent unit looks at its current 
state, does (or doesn’t do) something with that state, and sometimes changes 
the state based on what it perceives in the world. You can think of the 
RNN’s role as the piece-mover for the Monopoly board.

There are a few differences from Boss’s Monopoly board, of course. 
Boss’s finite-state machine had, not surprisingly, a finite number of states. 
The state of an RNN is often encoded with a vector of floating-point 
numbers, so the concept of a state in an RNN is more fluid: it’s a point in 
a high-dimensional space, and its position in that space defines the seman-
tics of the state. Another difference is that the finite-state machine in a 
self-driving car like Boss was handcrafted by humans, with simple rules that 
Boss would follow to transition from state to state.

The states and transitions in an RNN, on the other hand, are based on 
rules encoded into its neurons’ weights; and these weights are learned from 
data. That said, each RNN unit is still very simple: it doesn’t do much 
more than keep track of, and update, this state. It’s just a state updater. To 
enable the network to do something interesting with the state, the RNN 
unit will typically output messages about the state to other parts of the 
network. For our speech network, these units output their messages deeper 
into the network. As you can imagine, with enough data, a chain of recur-
rent units in a speech network will learn states that are useful for summa-
rizing frequency spectrograms of recorded human speech. They’ll learn 
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that certain sounds are common and which sounds tend to follow other 
sounds.

Now that we have RNNs, we can use them in different places in the 
speech network. Just as we can build RNNs that point forward in time, we 
can also build RNNs that point backward in time, so that they learn states 
and transitions that will summarize spectrograms in a different way. We can 
also stack sequences of RNNs on top of one another—not end-to-end in 
the time dimension, but placed on top of one another so that they’re 
aligned in the time dimension, as in figure 11.2. Stacking RNNs this way 
helps for the same reason it helps to have multiple convolutional layers: as 
we go deeper, each RNN layer will summarize the previous layer by find-
ing the most salient trends in it, building up higher and higher levels of 
abstraction to reason about the input to the network. Once we’ve stacked 
several layers of RNNs on top of one other, and stacked those on top of 
some convolutional layers, we can add a fully connected layer on top.

So a speech network takes a spectrogram as input, and processes it with 
a network that looks a lot like AlexNet, except that there are some RNN 
layers sandwiched between the convolutional layers and the fully con-
nected layers to enable the network to model the transition between dif-
ferent sounds. At this point, we just need a way to predict the transcription 
from the output layer of the network.

The output layer of the network is a grid of neurons that represent time 
in one direction and letters of the English alphabet (plus gaps between 
these letters) in another direction. When run, the network produces a pre-
diction of how likely each letter is to occur at any given moment during 
the transcription. This prediction is encoded in the output values: it’s higher 
if the letter (at a given moment) is more likely to occur and lower if that 
letter is less likely to occur. But this leads to a challenge in predicting the 
transcription from the recorded sequence: we need to align the neurons in 
the output layer with the actual transcription. If we do the simplest thing, 
and take the most-likely letter at any given moment, then we will end up 
with many repeating letters, like this:

wwwhhhaattt iissss tthhe wwweeeaatthheerrrr lllikke iiinnn bboostinn rrri-
ghtt nnowww

One way to resolve this—at least for the task of predicting a sequence 
of letters—is to simply take the string of the most likely character at each 

http://wwweeeaatthheerrrr
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Figure 11.2
The architecture for Deep Speech 2, Baidu’s speech-recognition 
system. The network is trained using written transcriptions of record-
ings of human speech and a concept known as connectionist temporal 
classification, which searches for an alignment between the label and 
the fully connected layers. This image is adapted from Amodei et al., 
“Deep Speech 2” (cited in note 1).
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moment in time, and then to remove duplicates.2 This will often lead to a 
plausible, if slightly incorrect, transcription, like this one:

what is the weather like in bostin right now3

Note that the word “Boston” has clearly been misspelled but is phoneti-
cally correct. Sometimes the transcription is mostly phonetic but looks 
more like gibberish, as in this transcription:

arther n tickets for the game4

That should have been transcribed as: “Are there any tickets for the game?”
We can fix these transcriptions by using statistics about sequences of 

English words. To get an intuition for how this can help, see which of the 
following two phrases sounds more natural. Is it this one?:

People he about spilled thing the fun secret most of the the was blender

Or this one?:

He spilled the secret of the blender was the most fun thing about people

These phrases have the exact same words, and both of them are seman-
tically meaningless, but you’d probably agree that the second one just 
sounds more natural. If you look more closely at that phrase and pick any 
three consecutive words in it, those words flow like you might find them in 
a normal sentence. This isn’t the case for the first sequence of words. Baidu’s 
researchers used this same idea, keeping track of which word collections, up 
to five words long, sound the most natural, based on how frequently they 
appeared in English text.5 As you can imagine, using statistics about 
sequences of words like this can drastically narrow down the set of likely 
transcriptions. As another exercise, see whether you can predict the follow-
ing word in this sequence:

rain fell from the _____.

Clearly this phrase ends with a word like sky or clouds. So, even if the 
recording objectively sounded more like “rain fell from this guy,” Baidu’s 
speech-recognition system would use language statistics to pick a transcrip-
tion more like “rain fell from the sky.”

Baidu’s speech system then used a search algorithm to find this best-
matching sequence of letters, given both the output layer of the speech 
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network and the statistics about sequences of words it had from elsewhere. 
This search algorithm was a lot like the path-search algorithm Boss used 
to park in a parking lot, except that instead of finding a way to combine 
small path segments, the speech system searched for a sequence of letters; 
and instead of using factors like time and risk in its cost function, the speech 
system tried to maximize the likelihood of different letters and words in 
its transcription, given both the predictions from its network and the sta-
tistics of these words from its five-word language model.

GENERATING CAPTIONS FOR IMAGES

Although speech-recognition systems like the one above can accurately 
transcribe sound recordings, they don’t understand the content of the 
audio recording. We’re still far from having networks that can understand 
language, but researchers have found ways to use RNNs to make it look 
they can understand language. One recent breakthrough is networks that 
can create natural-sounding phrases to describe the content of images.

What’s so spectacular about these image-captioning algorithms is that 
everything—from understanding the image to generating a sequence of 
words to describe the image—is done by neural networks (with the excep-
tion of another search algorithm, which we’ll see in a moment). To put 
these algorithms into context, let’s take a quick look at some of their pre-
decessors, which filled in templates with the names of objects the algo-
rithm detected in the image. The output of these algorithms was like the 
typical “baby talk” you might expect from a computer program:

There are one cow and one sky. The golden cow is by the blue sky.6

Here’s another example:

This is a photograph of one sky, one road and one bus. The blue sky is above 
the gray road. The gray road is near the shiny bus. The shiny bus is near the 
blue sky.7

Although these algorithms do explain the scene, they’re also awkward: it 
is true that the shiny bus is near the blue sky in the photograph, but it’s 
semantically weird to say that the bus is near the sky. Yet this is what we’ve 
grown to expect from computers. You expect that your image-manipula-
tion software can perform low-level image operations on an image, like 
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adjust color balance and blurring pixels, but not more complicated things. 
And we don’t expect computers to use language in a complicated way 
either.

On the other hand, the neural network approach to generating captions 
can create descriptions such as the following:

A group of people shopping at an outdoor market

A group of people sitting in a boat in the water

and

A giraffe standing in a forest with trees in the background8

The neural networks to generate captions like these use a series of 
transformations to convert the photograph into a series of words. In the 
first of these transformations, they use a convolutional neural network to 
process the image. This is a lot like the way AlexNet processes an image, 
except that instead of predicting whether different objects were in the 
image, the network “encodes” the image into a large vector of numbers 
that provide a succinct description of the scene for the rest of the network. 
Once the algorithm has this vector summary of the image, the rest of the 
network—which consists of a sequence of RNN units—generates its 
caption. The units, as before, are linked by their states, and each unit in the 
chain outputs a single word of the caption, as in figure 11.3.9

How could such a simple network generate coherent English captions? 
Remember the key feature of recurrent units: they enable a neural network 
to keep track of state. As we move further along in the chain, the state can 
change to keep track of what’s been said and what hasn’t been said. As each 
unit inspects its current state and outputs a new word, it updates its inter-
nal state so the next recurrent unit can do its job. And to help each unit 
update its state, the input to each recurrent unit is the word output by the 
previous recurrent unit.

You probably won’t be surprised to hear that we can improve the way 
this network generates captions by attaching a search algorithm to the top 
of the network, just as Baidu did for its speech recognition system. Tech-
nically the output layer of the neural network has one neuron for each 
word for each time step; its output values can be combined to predict how 
likely each word is to appear as the next word in the sequence. From the 
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examples I showed a few pages ago, you can probably guess that the first 
word is likely to be “A” no matter what is in the image. If there is a cat in 
the image, then it’s not unlikely that the next word will be “cat,” and so on.

Instead of running the model once and selecting the most likely word 
each time we have a choice, the search algorithm runs the model many 
times to generate many sequences of words. Each time it needs to select a 
word, it selects a word that’s likely under the model, but the search algo-
rithm searches in a narrow beam among the most promising candidate 
captions: in some iterations it might select “furry” instead of “cat,” and so 
on. Once the algorithm has run the model many times to generate many 
possible phrases, it evaluates each of them according to a cost function that 
measures how likely each sequence of words was according to the network, 
to find the best caption among many.10
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Figure 11.3
An image-captioning neural network. The state for each RNN 
unit summarizes how much of the caption has been generated. 
The output of each unit is a probability distribution over words; 
and the input to each unit is the previously generated word. The 
input to the first unit is the output of a convolutional neural 
network. This image is adapted from Vinyals et al., “Show and Tell.”
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LONG SHORT-TERM MEMORY

Because RNNs have units that feed into one another, we can think of 
them as deep networks when unfolded in time.11 For a long time RNNs 
couldn’t be built too deep because the messages that we need to send 
through a chain of these units during training tended to decay as they 
passed through the chain. The deeper into the chain of recurrent units you 
went, the more they tended to forget. One way the research community 
has gotten around this is by using “control” neurons that modify the way 
the unit interprets and modifies its state, as in figure 11.4.12 You can think 
of these control neurons as special wires that change the way the unit 
behaves. These control wires work like the “set” button on a digital clock 
that allows you to set the time. If you hold down the set button, the clock 
will enter a special mode, so that when you press the other buttons, you 
can modify the time. When you’re done, you can return the clock to its 
normal mode, which is to just increment the time, second by second.13 
When the control wires are set on these RNNs, their state can be updated 
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just like that clock; otherwise they transform the state based on their nor-
mal rules. These special units, used in Google’s image-captioning network 
among other places, are called Long Short-Term Memory units, or LSTMs 
(see figure 11.4).

ADVERSARIAL DATA

Although these algorithms are getting automata a bit closer to understand-
ing natural human language, they are still very primitive, in the sense that 
they can break down easily, especially if you give them inputs intended to 
trick them. For example, we saw in the last chapter that it’s possible to cre-
ate optical illusions that can trick neural networks into thinking they’re 
seeing something that’s not actually there. It would be similarly easy to trip 
up the caption-generating network by passing such an image to it. 
Researchers in the field of machine learning would call inputs like this—
that is, data intended to trick a machine-learned model—adversarial inputs.

This idea of “tricking” neural networks with adversarial inputs is impor-
tant because by understanding what sorts of images can trick these net-
works, we can also learn how to make them more robust. Some very recent 
and promising work in the field of deep learning embraces this idea to train 
networks that can generate realistic images.14 One part of the system tries 
as hard as possible to generate images that look like the images that come 
from some category you care about—such as pictures of cats’ faces—while 
another part of the system tries its best to figure out whether the gener-
ated image is from that category. Both sides of these generative adversarial 
networks (GANS) continue to improve until the generative part of the sys-
tem is extremely good at creating realistic data. It’s a game of cat-and-
mouse, an adversarial arms race, where each side does its best to compete 
against the other side.

It may not seem immediately obvious why GANS are useful: why 
should we care about two networks that compete with each other? These 
networks are useful when we want to create data for some purpose: we 
might want a network that can generate a natural-looking picture of a 
horse, a bird, or a person, for example. It’s possible to train one of these net-
works with pictures of horses and zebras, for example, to create a “genera-
tive network” that can convert photos of horses into convincing (but fake) 
photos of zebras; and we can train a network to produce photorealistic 
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scenes from Van Gogh paintings.15 And as I mentioned above, these net-
works can be used to generate non-image data, like sounds or realistic 
English sentences.

On that note, let’s get back to the difficulties in building a program that 
can understand human language. The programs that we’ve discussed so far 
are still far from understanding human language. They can generate short 
sentences to describe images, but when you look closely enough at these 
algorithms, you’ll quickly recognize their limitations.

In the first chapter of this book I mentioned IBM’s Watson, which beat 
champions Ken Jennings and Brad Rutter in the American game show 
Jeopardy!. If we’re still far from designing machines that can understand natu-
ral human language, you might wonder, how could Watson have per-
formed so well at a game that seems to require a contestant to understand 
of the nuances of the English language? There was certainly some clever 
engineering in the project, but as we’ll see in chapter 12, Watson wasn’t 
engineered to understand the questions. Watson was engineered to answer 
them.





12  UNDERSTANDING NATURAL LANGUAGE  
(AND JEOPARDY! QUESTIONS)

Watson cannot be intimidated. It never gets cocky or discouraged. It plays its 
game coldly, implacably, always offering a perfectly timed buzz when it’s con-
fident about an answer.
—Ken Jennings, human Jeopardy! champion1

PUBLICITY STUNT OR BOON TO AI RESEARCH?

In 2006, Sebastian Thrun gave a presentation at an artificial intelligence 
conference about Stanley, the self-driving car he and his colleagues devel-
oped for the second DARPA Grand Challenge. The audience was electri-
fied. Among the audience was James Fan, a graduate student at the 
University of Texas at Austin who was studying question answering, a quiet 
field of computer science devoted to developing computer programs that 
can answer written questions. As James watched Sebastian’s presenta-
tion, he began to speculate.

“Wouldn’t it be great,” he later asked a group of his colleagues, “If there 
were a Grand Challenge in question answering, hosted by Alex Trebek?”2 
Alex was the host of the popular American game show Jeopardy!, in which 
contestants must have an encyclopedic knowledge of trivia, ranging from 
ancient history to biology to movies. During the show, Trebek poses clues 
to contestants in the form of an answer, and the contestants must answer 
these clues while phrasing their responses in the form of questions.3

But the colleagues laughed off James’s idea. Trebek was too big a celebrity. 
Government pay-schedules and research grants wouldn’t be able to accom-
modate his speaking fees. It might be great publicity for the field of question 
answering, they thought, but it wouldn’t be a great use of taxpayer money.
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IBM WATSON

Nearly five years later, on two cold days in January 2011, Ken Jennings 
and Brad Rutter, two of the most successful human players in the history 
of Jeopardy, faced off in a Jeopardy match against Watson, a computer pro-
gram built by a team of researchers from IBM.4 The game was hosted at 
one of IBM’s research buildings, and Watson was running on racks of 
computers in a datacenter next door, completely cut off from the inter-
net. The datacenter was cold and loud, as fans blew air across thousands of 
CPUs.5

The temporary studio was much warmer than both the datacenter and 
the winter air outside. IBM had snagged Alex Trebek to host the game; he 
offered the contestants clues as they selected topic categories on the game 
board. When the contestants knew an answer, they would buzz in. Watson 
also buzzed in when it knew an answer, electromechanically, its solenoid 
thumb hitting the buzzer with perfect timing.6

“Tickets aren’t needed for this event, a black hole’s boundary from 
which matter can’t escape,” Trebek offered.

Watson answered correctly, its screen glowing as its gentle voice—a 
mechanical voice of the “smooth, genial male variety” (in the words of one 
reporter)—rose and fell7: “What is event horizon?”

Long before the game ended, Jennings and Rutter realized they had no 
chance. The game had been humiliating for them. By the end of the two-
day challenge, Jennings had earned $24,000, and Rutter had earned 
$21,600. Watson finished with a total of $77,147, a commanding lead 
over its human opponents.8 Jennings wrote out a statement of surrender 
below his answer to the final question of the game: “I, for one, welcome 
our new computer overlords.”

CHALLENGES IN BEATING JEOPARDY

Watson was miles ahead of the next-best computer program that could 
answer trivia questions. To see why Watson was such a breakthrough, let’s 
look at just a few of the clues Watson was designed to answer. Here’s one 
about the 2008 Olympics:

Milorad Čavić almost upset this man’s perfect 2008 Olympics, losing to him 
by one hundredth of a second.
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Here’s another clue:

Wanted for general evil-ness; last seen at the Tower of Barad-Dur; it’s a giant 
eye, folks, kinda hard to miss.

And here’s yet another clue, in the category “The main vegetable”:

Coleslaw.

Take a moment to consider how a computer might answer these ques-
tions: what information it must know, how it might store that information, 
and how it might process the question to look up that information. And 
remember that IBM’s researchers couldn’t just program Watson to simply 
read the question, understand it, and recall the answer from what it 
had read. Its programmers needed to provide Watson with an explicit 
sequence of operations it could follow to answer each clue.

IBM’s Watson had no human understanding of what each word—let 
alone each collection of words—meant. And yet still it managed to defeat 
two human champions. In chapters 12 and 13, we’ll look more deeply 
at how Watson managed to do this. In this chapter, we’ll start with the first 
piece of this puzzle: how Watson figured out what the clue was even 
asking.

LONG LISTS OF FACTS

On the surface, some Jeopardy questions might look easy for a computer to 
answer: Jeopardy is a quiz show, and quiz shows are about facts. And Wat-
son had four terabytes of disk to store its databases of facts.9 This should get 
us most of the way to building Watson, right?

For example, take the following Jeopardy clue, which appeared under the 
category “Who Wrote It?”:10

A “savage journey” titled “Fear & Loathing in Las Vegas.”

Here’s another example, under the category “Writers by Middle Names”:

Allan, who was “nevermore” as of Oct. 7, 1849.

To answer these questions, Watson needs to know that Hunter S. 
Thompson wrote Fear and Loathing in Las Vegas, and that Edgar Allan Poe 
passed away October 7, 1849—or, at least, that Poe was associated with the 
phrase “nevermore” or had the middle name “Allan.”11
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Another relation—helpful for the second clue above—is the alive-until 
relation:

Facts like these can be stored in databases, and Watson did store facts like 
this, whenever it could. Such facts are known as relations. Relations are con-
nections between people, places, and things. One such relation is the 
author-of relation, which can give us an answer to the first clue above:

Table 12.1

Charles Dickens author-of A Christmas Carol
Hunter S. Thompson author-of Fear and Loathing in Las Vegas
J. K. Rowling author-of Harry Potter and the Sorcerer’s Stone
… … …

Table 12.2

Edgar Allan Poe alive-until October 7, 1849
Abraham Lincoln alive-until April 15, 1865
Genghis Khan alive-until August 18, 1227
… … …

As you can imagine, the set of possible relations is endless, and Watson 
stored millions of them, to keep track of dates, movies, books, people, places, 
and so on.

But millions of relations alone would still leave Watson far short of being 
able to play Jeopardy. Take the clue I mentioned above, which was offered 
during Watson’s televised match:

Wanted for general evil-ness; last seen at the Tower of Barad-Dur; it’s a giant 
eye, folks, kinda hard to miss.

Although Watson provided the correct response, What is Sauron?, it’s 
unlikely that Watson had an is-a-giant-eye relation, let alone an is-a-giant-eye-
who-resided-in relation.12 It’s unlikely that Watson had anything in its 
structured databases about Sauron, except that Sauron is a character in Lord 
of the Rings, and that Lord of the Rings was written by J. R. R. Tolkien. Just 
as a self-driving car couldn’t anticipate rare occurrences like a woman in 



an electric wheelchair chasing a duck in the middle of the street—an 
encounter that we know happened for one self-driving car—the research-
ers behind Watson couldn’t have anticipated all possible relations that 
might show up in a clue.

Another challenge Watson faced is that Jeopardy clues are phrased in a 
wide variety of ways. Take the clue above about Edgar Allan Poe, who 
was “nevermore” as of 1849. Watson needed some way to recognize that 
“nevermore” was a synonym for “dead.” Watson used dictionaries and 
thesauri, but a typical thesaurus doesn’t list “nevermore” as a synonym for 
“dead.” The synonym is only meaningful in this context because “never-
more” is the famous line from one of Edgar Allan Poe’s poems. Although 
relations gave Watson the ability to simply “look up” answers in its data-
bases, only a quarter of questions had these relations to start with. To make 
things even worse, Watson was only able to simply “look up” answers for 
a mere 2 percent of clues.13

So how did Watson answer the remaining 98 percent of clues? It did this 
by systematically analyzing the clue, teasing out key information with a 
fine-toothed comb.

THE JEOPARDY CHALLENGE IS BORN

Shortly before Watson competed against Jennings and Rutter, a popular 
book by Stephen Baker called Final Jeopardy came out. The book was orig-
inally published electronically, its final chapter withheld until after the 
competition aired on television. Readers needed to wait to read the final 
chapter, which was delivered electronically after the show was broadcast 
(and included in the subsequent print version). Among other things, the 
book outlined how the team at IBM made their decision to develop a pro-
gram to play Jeopardy, a story that unfolded as follows.14

In the early 2000s, IBM was looking for a Grand Challenge, a public 
display of the company’s technical prowess. Finding such a challenge was 
important to IBM because the company had a lucrative consulting busi-
ness, and this business depended on its customers’ faith that the company 
was at the cutting edge in fields like big data and large-scale computing. 
IBM had defeated chess champion Garry Kasparov in 1997 with Deep 
Blue, which had been one such success; so the idea of another challenge 
was on everyone’s mind.15
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It’s difficult to trace exactly where the original idea for a Jeopardy Chal-
lenge started: different employees at the company have different accounts. 
One version of the story holds that a senior manager at IBM got the idea 
when he was at a steakhouse one autumn day in 2004. He noticed other 
customers getting up from their untouched meals to move to a different 
section of the restaurant. They were crowding around televisions at the bar, 
three people deep, to watch Ken Jennings during his famous winning 
streak. After winning over 50 consecutive games, would Ken just keep on 
going? If the public was so fascinated by this game, the IBM manager won-
dered, would they be similarly interested in a game between a human and 
a computer?16

However the idea for an IBM Jeopardy Challenge actually started (at least 
one other employee at the company thought he had the idea, and James Fan, 
whom we met at the beginning of this chapter, also independently had the 
idea), once it had coalesced, it ran into plenty of internal resistance. Some 
saw a Jeopardy Challenge as a publicity stunt that could waste money and 
researchers’ time. Even worse, it might risk the company’s credibility. Despite 
this resistance, the head of IBM’s 3,000-person research division pitched 
the project to some of his researchers, one of whom was David Ferrucci.17

Ferrucci was already familiar with the problems they might face, because 
one of the research teams he managed had already been working for a hand-
ful of years on a question-answering system. Theirs was among the better 
question-answering systems in the world, and it consistently performed well 
in competitions. But Ferrucci and his team also knew how far from playing 
Jeopardy these systems currently were. Still, he pitched the problem to his 
team. Only one of them was optimistic about the idea: James Fan, who had 
recently joined the team after finishing his PhD.18 But the team concluded 
that the field wasn’t ready yet: it would be too difficult. Ferrucci told the 
head of research that it would be best not to pursue the project.19

Before long the head of research returned to ask again about Jeopardy; 
Ferrucci and his team retreated to a conference room once again to brain-
storm. As they discussed the project, their conclusions remained roughly 
the same: a system able to answer Jeopardy questions would need to be 
much faster than their current system; it would need to answer a much 
broader array of questions; and, most difficult of all, it would need to answer 
those questions more accurately. There were too many open research prob-
lems to address. It didn’t seem possible. But in the end, inspired by the 



possibility of success and some hunches about how they might proceed, 
they relented, and Watson was born.20

DEEPQA

The question-answering system Ferrucci’s team already had when they 
first began working on Watson was good by the standards of the day. IBM 
had already devoted a lot of resources to it—a four-person team had devel-
oped the system over the course of six years. But their existing system 
didn’t work out of the box for Jeopardy, so Ferrucci’s team spent about a 
month converting it to play the game.

Ferrucci’s team also needed a way to evaluate their system. Fortunately 
they discovered a goldmine of Jeopardy clues and answers on the internet. 
Avid Jeopardy fans had created a website containing all Jeopardy questions 
and answers from televised episodes, and they had annotated the questions 
with detailed information.21

Using this site, the IBM team collected performance statistics of past 
Jeopardy winners: How often did the winners in Jeopardy buzz in? When 
they did buzz in, how often did they give the correct answer? Ferrucci’s 
team created a scatterplot of these two numbers, a cloud of data points 
illustrating how accurate and how prolific at answering questions past Jeop-
ardy winners were. They called this plot the “Winners Cloud,” and they 
used it as a measuring stick to benchmark Watson.22 If they could move 
Watson into the cloud, they could match the human winners’ performance. 
If they could move it past the cloud, they could beat these humans.

After the team had spent a month converting their previous system to 
play Jeopardy, they evaluated it using these metrics. But their converted 
system performed abysmally: if it answered the 62 percent of questions 
Watson was most confident about—the same fraction Ken Jennings 
answered on average—it would only answer 13 percent of questions cor-
rectly. To be competitive with Jennings, Watson would need to answer 
more than 92 percent of these questions correctly.23 It was clear to them 
that they would need to do things much differently.

This failure of their existing system was in fact a strategy on Ferrucci’s 
part: the team needed to realize that their current system, with its tradi-
tional methods, had failed. By failing, they could start from scratch to 
reinvent a new way of looking at things.24

Understanding Natural Language (and Jeopardy! Questions)	 177



178	 Chapter 12 

And so Ferrucci and his team experimented, implementing state-
of-the-art methods from the academic literature. After many months of 
experimentation, the team finally arrived at an architecture that seemed to 
work; they called it DeepQA.25 The approach behind DeepQA was sim-
ple. Like many other question-answering systems, to arrive at an answer it 
followed just a few concrete steps, which you can see in figure 12.1: ana-
lyze the question, come up with candidate answers with search engines, research these 
answers, and score these answers based on the evidence it found for them. In 
the rest of this chapter we’ll focus on the first phase of this pipeline: 
Watson’s Question Analysis phase.

QUESTION ANALYSIS

The goal of  Watson’s Question Analysis phase is to decompose a question 
into pieces of information that could be useful in finding and evaluating 
answers later in the pipeline. Like most parts of Watson, the Question 
Analysis phase depended heavily on the field of natural language processing, or 
NLP. NLP gave Watson the ability to do something meaningful with the 
words making up the clue: Watson used it to find the parts of speech of 
the words in the clue, to search for names and places in the clue, and to cre-
ate sentence diagrams of the clue.26
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A very basic overview of the very complicated DeepQA 
pipeline.



The most important task for Watson during its Question Analysis phase 
was to find the phrase in the clue summarizing what specifically it is asking 
for. Take this clue, for example:

It’s the B form of this inflammation of the liver that’s spread by some kinds of 
personal contact.

The phrase summarizing what the clue is asking for is this inflammation 
of the liver. Watson’s researchers called this phrase the “focus.” The focus is 
the part of the clue that, if replaced by the answer, turns the clue into a 
statement of fact.27 If we replace the focus of the clue above by the answer, 
hepatitis, it becomes:

It’s the B form of hepatitis that’s spread by some kinds of personal contact.

Now it is a factual statement. Here’s another example:

In 2005 this title duo investigated “The Curse of the Were-Rabbit.”

In this clue, the focus is “this title duo.” Replacing the focus by its answer, 
we get:

In 2005 Wallace and Gromit investigated “The Curse of the Were-Rabbit.”

Again, that is a factual statement. By finding the focus, Watson could use 
that information down the road when it would generate possible answers 
and score them. Now let’s apply this to our clue about the 2008 Olympics. 
Here’s that clue again, with its focus in bold:

Milorad Čavić almost upset this man’s perfect 2008 Olympics, losing to him 
by one hundredth of a second.

Another type of information Watson extracted from the question is a 
word or phrase describing the answer type.28 Is the clue asking for a presi-
dent? Is it asking for a city? Or maybe it’s asking for an inflammation like 
hepatitis or an ingredient like lettuce. Again, Watson used this information 
to come up with candidate answers and to score them later in the pipe-
line. I’ll describe exactly how Watson used this information in the next 
chapter; but for now, all you need to know is that Watson stored this infor-
mation in this stage so it could select and narrow down possible answers 
in later stages. If the question was asking for a disease, for example, then 
Watson could narrow down its candidate answers in a later stage by giving 
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higher weight to those candidate answers that were actually diseases and 
lower weights to candidate answers that were, for example, symptoms of 
diseases. The answer type is usually part of the focus, so if Watson could 
find the focus, it had a good chance at finding the answer type. In our clue 
about the 2008 Olympics, the answer type was simply man. So Watson 
would use this information later in its pipeline to narrow down its candi-
date answers to those were instances of man.

Sometimes Watson had little more than a few nouns or verbs to go on in 
its clue. In one of the clues we saw above, the clue was a single word: Cole-
slaw.29 When Watson couldn’t find an answer type in cases like this one, it 
searched the clue’s category for an answer type. (Every question in Jeopardy 
is assigned to a category, and this category is visible to all players when they 
see the question.) The category for the clue Coleslaw was The main vegeta-
ble, so in this case Watson could set its answer type to vegetable, which would 
later help Watson to find the correct answer: cabbage.30

Watson also looked for proper nouns, dates, and relations in clues. By 
finding proper nouns, Watson could be much more focused as it searched 
for candidate answers later on. In the clue about the 2008 Olympics, it 
would have found the name Milorad Čavić and the phrase 2008 Olympics. 
It would also have recognized that 2008 is a date in the clue.

And so Watson proceeded to dissect the clue, teasing little bits of useful 
information out of it. For some of this information, Watson used simple 
pattern matching. For example, it’s easy to make Watson search for dates 
by having it search for sequences of four digits starting with 1 or 2. But for 
Watson to pull other information from the clue, like the clue’s focus and 
answer type, it needed a more sophisticated suite of tools.

HOW WATSON INTERPRETS A SENTENCE

One of the most important ways our modern automata interact with 
the world is via perception. We’ve seen how a self-driving car perceives the 
world around it: it uses laser scanners, cameras, and accelerometers to 
create a model of the world. Watson didn’t have laser scanners or accel-
erometers, nor did it have a camera to read the screen or microphones 
to listen to Alex Trebek. Instead, the clue was delivered to Watson elec-
tronically, in the form of a text file. When Watson looked at this text file, 
it saw nothing more than an ordered sequence of letters, so it used 



tricks from the field of natural language processing to make sense of 
them.

The first way Watson made sense of these characters was by inter-
preting the clue as a sequence of words instead of as a sequence of letters. 
Once Watson interpreted a clue as a sequence of words, it could then use 
some more interesting tricks to process the clue. The most important of 
these tricks was to map out the structure of the clue with a sentence dia-
gram, just as you likely did in grade school.A computer creates a sentence 
diagram in a process called parsing; and the resulting sentence diagram is 
usually called a parse tree. You can see a parse tree for the clue about the 
2008 Olympics in figure 12.2. In this clue, the subject is the proper noun 
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Figure 12.2
A parse tree for the sentence “Milorad Čavić almost upset this 
man's perfect 2008 Olympics, losing to him by one hundredth 
of a second.”  This tree is a traditional parse, much like what 
you might have learned in grade school. Watson didn’t parse 
a sentence exactly like this, but it used the same idea.
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Milorad Čavić, and the verb is the word upset; the remaining parts of the 
sentence modify the verb phrase. (This isn’t the exact way Watson parsed 
a sentence, but the basic idea is the same.) Once Watson had a diagram 
of a sentence, it could use this diagram to perform more interesting anal-
ysis of the question, which we’ll get to shortly. But first, let’s look briefly 
at how a program like Watson could create a parse tree.

A computer can create a parse tree by using a search algorithm, a lot like 
the way Boss planned a path through its urban environment. Instead of 
searching for the best path over a map as Boss did, Watson’s parser searched 
for the best way to create a tree out of the words in the sentence that agreed 
with the rules of grammar. Modern parsers use statistics about the relation-
ships between words and parts of speech to find which parse trees are the 
most likely.

You probably remember from your school days that English sentences 
can be decomposed into a subject phrase and a verb phrase, and that each 
of these can be decomposed further. For example, verb phrase or noun phrase 
can be decomposed into two parts:

verb phrase = adverb + verb phrase

or

noun phrase = adjective + noun

We can continue applying rules like this until a sentence has been 
decomposed into small pieces, each of which is a single part of speech. 
Some sentence parsers use this fact. To parse a sentence, these parsers search 
for the best possible ways to split up the sentence using these rules, until 
they can’t split the sentence into any more pieces.

Sometimes sentences have ambiguous parse trees. Here are some sen-
tences rumored to have appeared as newspaper headlines:31

Juvenile Court to Try Shooting Defendant

Hospitals Are Sued by 7 Foot Doctors

You might think that these examples seem contrived. These are just the 
rare exceptions, right? Actually, these sorts of ambiguities can happen all 
the time. They’re always lurking just below the surface of our language, but 
we don’t notice them most of the time because our minds resolve their 



ambiguity quickly. See if you can find the ambiguity in one of the clues 
we saw earlier in this chapter:

It’s the B form of this inflammation of the liver that’s spread by some kinds of 
personal contact.

In this clue, the ambiguity is around whether it’s the inflammation 
that’s spread by some kinds of personal contact, or whether it’s the liver 
that’s spread by some kinds of personal contact. While it’s painfully obvi-
ous to us humans that livers can’t spread by personal contact, this isn’t 
obvious to Watson’s sentence parser. There’s nothing ungrammatical about 
that parse, even if it’s semantically weird.

Here’s another example, which Watson faced when it played against Ken 
and Brad:

This 1959 Daniel Keyes novella about Charlie Gordon and a smarter-than-
average lab mouse won a Hugo award.

In this case, the ambiguity is around whether the novella is about Charlie 
Gordon and a smarter-than-average lab mouse (the correct parse), or whether 
both a novella about Charlie Gordon and a smarter-than-average lab mouse won 
a Hugo award. (A Hugo award is an award for science fiction and fantasy 
books.) There’s nothing syntactically or even semantically wrong with 
the second parse, although if you knew about the Hugo award, you would 
realize that it’s not typically awarded to smart mice. The answer to this clue, 
by the way—which Watson got correct—is Flowers for Algernon.

There’s no way for a computer to know for certain which parse tree 
for the statements above are correct unless it has more context about the 
situation; but as I mentioned before, modern parsers use statistics about 
words, parts of speech, and the ways they combine to form sentences. 
Often those probabilities are enough for the computer to find the correct 
parse.

Even though Watson could create these sentence diagrams, it still had 
no idea what they meant. To Watson, these diagrams were nothing more 
than data structures floating around its computer memory, some of which 
pointed to other ones. Fortunately for Watson, it didn’t need to understand 
these sentence diagrams. They were merely useful tools the programmer 
could use to interpret the question. But how could the programmer inter-
pret the question without even looking at it?
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Remember back to the Monopoly board in the self-driving car. The 
Monopoly board encoded human knowledge about situations the car 
might find itself in, such as the etiquette around precedence at traffic stops. 
Just as Boss’s creators handcrafted the rules for it to traverse crowded inter-
sections when those researchers weren’t around, Watson’s developers 
handcrafted their own rules so that Watson could traverse its sentence dia-
grams to pull meaningful information from clues when its researchers 
weren’t around.

Watson used these rules to inspect parse trees all through its DeepQA 
pipeline, starting with its Question Analysis phase. One place it used the 
parse tree was to find the focus of a clue. Remember, the focus is the phrase 
in the clue that captures what exactly is being asked for—like this man or 
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Figure 12.3
Some of the most important information Watson looks for in its clues during its 
Question Analysis phase.



this inflammation. To find the focus, Watson used simple rules such as search 
for a noun phrase described by “this” or “these.”32 Watson also looked for other 
information in its parse tree, including whether there were clues embed-
ded within other clues or whether there were pairs of clues joined by a 
conjunction like “or.” Watson also searched the parse tree for information 
about relations involving the clue’s focus.

You can see how Watson would have analyzed our clue about the Olym-
pics in figure 12.3. Watson has systematically dissected the clue with many 
rules, using the parse tree as a lens through which to inspect it. In its Ques-
tion Analysis phase, Watson is an obsessive-compulsive organizer, carefully 
taking stock of what it finds in the sentence and putting bits of information 
into carefully labeled boxes. But it still hasn’t come any closer to under-
standing what the clue was asking. Watson has blindly processed its clue 
so the next few phases in its DeepQA pipeline can do their work.

When Watson had finished this labeling process, its work was still far 
from over: it still faced the daunting task of finding the correct answer for 
the clue. For this, it used some of the typical data sources you might expect: 
dictionaries, geographic and movie databases, and even Wikipedia. But, as 
we’ll see in chapter 13, Watson used them in a very different way than a 
human would use them.
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THE BASEMENT BASELINE

As David Ferrucci began plotting IBM’s path for taking on Jeopardy!, he 
wanted some evidence that the project wouldn’t be too hard. As Stephen 
Baker, the author of Final Jeopardy, observed, there was enough internal 
pushback that it could be politically risky to devote many person-years of 
effort if there was no chance that they could succeed.1 At the same time, 
he also became concerned about the possibility that it might be too easy 
to build a computer to play Jeopardy. What if IBM invested years of research 
in the project and spent millions on marketing, only to be shown up by a 
lone hacker working in his basement for a month? This could be a huge 
embarrassment—let alone a waste of time—for the company.2

Ferrucci and his team came up with a simple test that became known as 
the basement baseline. As most of his team spent a month converting their 
existing question-answering system to play Jeopardy, Ferrucci asked James 
Fan, who was the most enthusiastic member of the team about building a 
system to play the game, to spend that month working alone in his second-
floor office, hacking together a system with whatever tools he could find. 
James Fan wouldn’t work at all with the rest of the team during this period, 
except to join them for lunch and meetings. Instead, he would have to 
come up with his own methods. This hacker baseline would then compete 
with the system the other researchers were converting in order to play 
Jeopardy. If James Fan’s system did better, then Ferrucci and his team 
needed to figure out how to address that.3 If they couldn’t demonstrate 
enough new ideas in this period, that would also be evidence that the 
problem was too hard.4
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After a month of effort by the two teams—the regular research team and 
the team consisting of just James Fan—they found the basement baseline 
to be okay for a baseline—nearly as good as the converted system by some 
metrics—but it still couldn’t play Jeopardy anywhere close to how well a 
human could play Jeopardy. At the same time, James Fan had found some 
promising ideas during his effort.5 This was a relief, and the team now had 
some evidence that their problem had just the right amount of difficulty: 
it wasn’t so easy that they were likely to be embarrassed, and yet they had 
learned that they could improve on their current approaches by applying 
some good old-fashioned elbow grease and throwing some extra man-
power at the problem.6

As we saw in the last chapter, however, they faced another problem: the 
system they had converted to play Jeopardy still fell far short of where it 
needed to be to beat a human player.7 Instead of trying to make their exist-
ing system work, they threw away their old assumptions and started from 
scratch. After months of experiments they converged on a system they 
named DeepQA.

Their DeepQA system began with the Question Analysis phase we saw 
in the last chapter. The goal of the Question Analysis phase was to pull the 
most salient information out of the clue, to find the people, places, and 
things mentioned in it; to find what type of answer the clue was looking 
for; and to carefully label these bits of information and package them up 
for later phases in the pipeline. The remaining phases in DeepQA, which 
we’ll cover in this chapter, would enable Watson to find the correct answer.

Watson didn’t find an answer to the question in the same way a human 
would have come up with an answer. A human might think about the 
question, decide on the single most appropriate source for the answer, and 
look the answer up in that source. If she doesn’t find the answer where she 
looked, she might look up the answer in the second-best source, or she 
might adjust her research path if she finds a promising lead along the way. 
Once the human researcher finds the answer—very possibly from a single 
source—she closes her books, puts them away, and answers the question 
confidently.

Watson, however, treated each question as a massive research project. Its 
process was a lot like searching for the perfect person to hire for a job 
opening. The first step involves creating a detailed job description; that was 
Watson’s Question Analysis phase, which we saw in the last chapter. Once 
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Watson had finished putting the together the job description, it then col-
lected résumés for hundreds of possible people from a myriad of sources, 
researched many of these candidates in detail by “interviewing” them, and 
then carefully weighed the pros and cons of each candidate to select the 
best one among them all.8 Let’s begin with the first of these steps in find-
ing and evaluating candidates: the way Watson came up with a list of can-
didates, a phase Watson’s creators called its Candidate Generation phase.

CANDIDATE GENERATION

To fill your job vacancy, your first step at this stage would be to collect 
résumés of people who might be interested in the job. Your goal isn’t to 
select the right person; it’s just to put together a list of all people you 
should consider hiring. You would likely seek out these applicants in 
many places. You might list the job on a jobs search engine, you might 
reach out to some people in your professional network, and you might 
post the job opening on your company’s website. You might even put a 
listing in the local classified ads. After some time, you will have collected 
a nice stack of résumés for these candidates.

Watson used the same approach to create its list of candidate answers. 
Watson’s goal wasn’t to select the correct answer; it was just to collect 
possible candidates for it. But Watson’s problem was a bit trickier than the 
hiring problem: unlike a job opening—for which there might be more 
than one qualified applicant—clues in Jeopardy have exactly one correct 
answer. If the correct answer wasn’t part of  Watson’s candidate list at the end 
of this stage, then Watson had no chance at answering the clue correctly. 
Watson therefore had a low bar to consider something as a candidate.

To be concrete, let’s look at the clue about the 2008 Olympics we saw 
in the last chapter, to see how Watson would find candidates for it. Here’s 
that clue again:

Milorad Čavić almost upset this man’s perfect 2008 Olympics, losing to him 
by one hundredth of a second.

During the Question Analysis phase described in the last chapter, Watson 
would have found out several things about the clue: in figure 12.3, we saw 
that Watson would have identified the proper nouns “Milorad Čavić” and 
“2008 Olympics” in the clue, that it would have found the focus, this man, 
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and that it would have found the answer type, man. With this information 
about its clue, Watson could start to seek out candidate answers.

Watson looked all over the place for its candidate answers, including 
in news articles and encyclopedia articles. Some of its candidates came 
from its structured data sources, which were mostly tables with different 
types of relations (remember, relations were connections between people, 
places, and things). As a rough rule of thumb, you can assume that the 
relations Watson knew about were the contents of those “info-boxes” you 
can find on the margin of some Wikipedia pages.9 For example, in 2010, the 
info-boxes on the Wikipedia pages about Milorad Čavić and the 2008 
Olympics included the facts that Čavić’s nationality is Serbian and that 
the 2008 Olympics took place in Beijing. So Watson would add “Serbian” 
and “Beijing” to its list of candidate answers, along with some of the other 
arguments to relations it found about these two. You can see some candi-
dates I found for this clue from these relations in table 13.1.

As I mentioned in the last chapter, databases of relations only worked 
for a small fraction of clues. This clue was no exception: although Watson 
wouldn’t have known this yet, none of the candidates we found from these 
structured databases provided the correct answer. But that’s okay. Remem-
ber: Watson didn’t need to select the correct answer at this stage in the 
pipeline. It just needed to make sure the correct answer was somewhere in 
its list. That’s why Watson looked in many more places.

SEARCHING FOR ANSWERS

Watson continued its search for candidate answers in its vast unstructured 
data stores, collections of documents like encyclopedia and newspaper arti-
cles, Wikipedia articles, literary works, dictionaries, and thesauri. But how 
could Watson find answers from these massive collections within just a 
few seconds? Watson did it in the same way you find answers in large col-
lections of text documents: with a search engine.10

Since Watson wasn’t allowed to access the internet during the competi-
tion, it couldn’t simply use a web search engine like Google. Therefore 
Watson’s researchers collected all of  Watson’s documents and loaded them 
into their own custom search engines before unplugging Watson from the 
internet. These search engines then ran as part of  Watson in IBM’s datacen-
ter during the game.11 From the perspective of Watson, these search 
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Table 13.1
Candidate answers for the clue “Milorad Čavić almost upset this man’s perfect 
2008 Olympics, losing to him by one hundredth of a second”

Source of candidates Candidate answer

Relations from 
Wikipedia info-boxes 
(DBPedia) related to 
“Milorad Čavić” and 
“2008 Olympics”

Serbian (Čavić’s nationality) 
6'6" (Čavić’s height) 
215 pounds (Čavić’s weight) 
butterfly, freestyle (Čavić’s strokes) 
University of California, Berkeley (Čavić’s college team) 
Beijing (2008 Olympics city) 
Beijing National Stadium (2008 Olympics venue) 
August 8 (2008 Olympics opening ceremony date) 
August 24 (2008 Olympics closing ceremony date)

Candidates from 
Wikipedia: the titles 
of articles in the 
search results, articles 
that redirect to these 
articles, text of 
hyperlinks between 
articles, and titles of 
the pages linked from 
these results

Grobari (title) 
Rafael Muñoz (title, link text) 
Pieter van den Hoogenband (title) 
Aleksandar Đorđević (title) 
Milorad Čavić (title) 
Swimming at the 2012 Summer Olympics (title) 
World and Olympic records set at the 2008 Summer 
Olympics (title) 
Michael Phelps (title, link text) 
Le Clos (title) 
Yevgeny Korotyshkin (title) 
Beijing Olympics (link text) 
100 m butterfly world record (link text) 
voting (link text) 
Usain Bolt (link text) 
2008 Summer Olympics (title) 
2008 Olympics (page that redirects to search result)
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engines worked a lot like a web search engine works for you: you enter a 
search query and get back a list of search results.12

To use these search engines, Watson just needed to come up with search 
queries. To make these search queries, it used the words or phrases from the 
clue that it found during its Question Analysis phase to be important, and 
it included the answer type (president, vegetable, sense organ, duo) in the query. 
If it found a relation in the clue, like the actor-in relation, it gave any argu-
ments to that relation in the clue more weight. When you search for an 
answer on Google, you probably sometimes take a moment to think about 
which terms to include in your search query. Watson didn’t think at all 
about how it crafted its queries: it just filled in blanks in simple templates 
created by its developers with the information it found during its Ques-
tion Analysis phase.

After Watson sent these queries to its search engines, it created more 
candidate answers from the results. Sometimes this was as simple as adding 
the titles of the search results as candidate answers.13 Other times Watson 
used more nuanced tricks.

One trick made clever use of Wikipedia articles. During his month of 
hacking on the basement baseline, James Fan discovered that Wikipedia 
could be exceptionally useful in generating candidate answers.14 After 
researching Wikipedia a bit more, the team working on Candidate Genera-
tion discovered that an astounding 95 percent of Jeopardy answers were 
also the title of some Wikipedia article.15

Armed with this information, the team made Wikipedia a cornerstone 
in Watson’s Candidate Generation phase. Any time Watson found a Wikipe-
dia passage in its search results for a clue, it went through a checklist to 
generate candidate answers from that passage. First, it added the Wikipe-
dia page title for the passage to its list of candidate answers. It also looked 
more closely at the passage matching the search query to find more can-
didates: it created candidate answers from the text of any hyperlinks (called 
anchor text) in the passage, as well as from the titles of any Wikipedia pages 
linked from those passages and the titles of any Wikipedia pages that redi-
rected to those links.16

Watson’s researchers also built up a list of all Wikipedia article titles so 
they could look for these phrases elsewhere, whether they appeared in 
documents from other sources—where they could become candidate 
answers—or in the clue itself during Watson’s Question Analysis phase.17 
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This is how Watson could know, for example, that “2008 Olympics” is a 
proper noun in its clue: there’s also a Wikipedia article titled “2008 
Olympics.”

Let’s look back at that clue about the 2008 Olympics to see what can-
didates we could get out of these Wikipedia tricks. I created a search query 
for the clue similar to what Watson would have come up with, and I entered 
it into Google, restricting the search to just give results from Wikipedia​
.org.18 Remember, Watson couldn’t use Google since it was cut off from 
the internet, but its custom search engines served roughly the same role, 
and Wikipedia was one of the sources Watson’s researchers programmed 
into Watson’s search engines. If we go through these search results and fol-
low the checklist Watson followed for Wikipedia—adding the text from 
article titles, the text of web links, and so on—then we’ll come up with a 
lot more candidate answers, such as: Rafael Muñoz, Pieter van den 
Hoogenband, Swimming at the 2012 Summer Olympics, and Michael 
Phelps. I show these and more in the bottom half of table 13.1.

These candidates are already starting to look a lot better! This is in part 
because now at least some of them match the clue’s answer type, which was 
man. But remember: Watson didn’t know these answers were more prom-
ising. In fact, when I was collecting these answer candidates to write this 
chapter, I found the correct answer, with strong evidence to support the 
answer. But even though Watson would have come across this evidence 
when it was generating candidates, it didn’t check whether it found the cor-
rect answer until later on. It just continued its search, looking through more 
and more sources, to compile its large list of candidates.

LIGHTWEIGHT FILTER

By the time Watson had finished compiling its list, it typically had several 
hundred candidates, and it needed to perform a deeper analysis of each of 
them to figure out which one was correct. Watson would need to devote 
considerable effort to researching each candidate—enough effort to pre-
vent researching them all—so it narrowed its list down to a smaller set with 
a “lightweight filter.”

You would do the same thing in your search for someone to fill the job 
opening. Once you had a stack of résumés for your job posting, your next 
step would be to perform a “deeper analysis” of your job applicants—that 



194	 Chapter 13 

is, you would invite some of them onsite for interviews. If you’re hiring to 
fill a single role and you have a few hundred applications, however, you 
don’t have enough time to interview all of these applicants onsite. You 
would instead apply a lightweight filter to narrow down the résumés—for 
example, by eliminating those candidates lacking a college degree or expe-
rience most relevant to your job—before inviting that smaller set of can-
didates for an onsite interview. Out of necessity—you have a lot of résumés 
to review—this filter would be simple.

Watson’s lightweight filter was also very simple: it might test whether 
the candidate answer matched the answer type—president, city, or man, for 
example.19 For the clue about the 2008 Olympics, the answer type was 
man, so we could assume that Watson narrowed down its candidate list 
for this clue to those that match the names of people. Any candidates that 
passed the lightweight filter moved on to the Evidence Retrieval phase, 
so that Watson could spend more time collecting information about each 
candidate.20

EVIDENCE RETRIEVAL

This Evidence Retrieval phase was akin to doing onsite interviews. 
Whereas you might interview only a few candidates, Watson carefully 
researched about 100 of its candidate answers.21 To do this, Watson again 
turned to its databases and search engines.

If you were interviewing a job candidate onsite, you probably wouldn’t 
get to know the job candidate by going through the job description bullet 
by bullet. You would ask the candidate questions tailored to the individual’s 
background as well as to the specifics of the job opening, hoping to find 
unique ways the candidate is a good fit for the job. Watson did the same 
thing when it researched its candidate answers. It formulated questions—
search queries—specific to both the answer candidate and the clue. Again, 
it turned to its structured and unstructured data sources to do this research.

Watson created its search queries by combining important words and 
phrases from the clue with the candidate answer, treating the candidate 
answer as a required phrase. Here’s how that might look for the 2008 
Olympics clue, if we were to formulate it as a Google search query:

+“Rafael Muñoz” Milorad Čavić upset 2008 Olympics losing hundredth 
second
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Watson then issued queries like this to its search engines, as in figure 13.1, so 
it could collect evidence tailored to both the candidate and the clue.

In doing its research, Watson collected a pile of evidence to support 
each of its candidates; most of this evidence was just pieces of text from its 
search results. For the candidate answer “Rafael Muñoz,” the Wikipedia 
search results aren’t too promising: the first result, a page about swimming 
in the 2008 Olympics, only references Rafael Muñoz in a table with one 
of his swim times. (As an aside, it turns out that evidence for the correct 
answer—which is not Rafael Muñoz—is actually elsewhere on this page, 
but again, Watson would have had no idea about this, because it was fol-
lowing prescriptive rules, and none of these rules told it to look at that 
part of the page.) The other search results for the query about “Rafael 
Muñoz” are similarly useless.

Databases and
search engines

IMDBDictionary
Thesaurus

Serbian
6’6”

215 poundsbutterfly, 
freestyle)University of 
CaliforniaBeijingBeijing National 

StadiumAugust 8
August 24

GrobariSwimming at the 
2012World and 

Olympic records Beijing Olympics100 m butterfly 
worldRafael MuñozPieter van den 

HoogenbandBoltAleksandar 

or eviMilorad avi
avi

Michael Phelps
Le Clos
PhelpsYevgeny 

Korotyshkin
Usain Bolt

Rafael Muñoz

Pieter van den

HoogenbandBolt

Aleksandar or evi

Milorad avi

avi

Michael Phelps

Le Clos

Phelps

Yevgeny

KorotyshkinUsain Bolt

Filter

Triple
store Wikipedia

Create
queries

Answer candidates EvidenceFiltered answers

Figure 13.1
The evidence retrieval phase of  Watson. Watson first filtered its answer candidates 
using a lightweight filter and then collected reams of evidence for each of its remaining 
candidates from its databases and search engines.



196	 Chapter 13 

Of course, Watson didn’t stop after researching its first candidate. It care-
fully researched all of the candidates that passed through its lightweight 
filter. Let’s try this Evidence Retrieval exercise with a different candidate 
answer: Pieter van den Hoogenband. The search results for this query are a 
bit better, though they’re still not great. One result is the Wikipedia page 
about Hoogenband, which contains the following passage:

He returned to the Olympic Games in 2008 in Beijing and finished fifth in 
the 100 m freestyle.

That sentence has matches for 2008, Olympics, and 100 (which is like hun-
dredth), but otherwise is not a good match. The remaining results for this 
candidate are also underwhelming. Let’s try one final candidate: Michael 
Phelps. The very first search result, a Wikipedia page about swimming in 
the 2008 Olympics, contains this passage:

U.S. swimmer Michael Phelps set a new Olympic record of 50.58 to defend 
his title in the event, edging out Serbia’s Milorad Čavić (50.59) by one hun-
dredth of a second (0.01).22

Ah-ha! That looks much more promising. A similar passage appears in 
another search result, the Wikipedia page about Michael Phelps:

On August 16, Phelps won his seventh gold medal of the Games in the men's 
100-meter butterfly, setting an Olympic record for the event with a time of 
50.58 seconds and edging out his nearest competitor Čavić, by one hundredth 
(0.01) of a second.23

Again, the candidate “Michael Phelps” looks very promising. If we 
can trust Watson’s ability to evaluate the evidence for its candidates later 
in the pipeline, this approach for the Evidence Retrieval phase seems 
promising.

Wikipedia wasn’t the only source Watson used in its Evidence Retrieval 
stage; as I mentioned above, Watson used a variety of sources, including 
dictionaries, thesauri, encyclopedias, newswire archives, and tables of rela-
tions, like alive-until and capital-city-of.  Watson’s creators made sure Watson’s 
queries to different sources were appropriately customized. Watson created 
queries for each relevant source given what it had learned about the clue 
from the Question Analysis phase and given the candidate answer it was 
researching, sometimes using information from the clue’s parse tree. Then 
it stored the results of the search to use later.
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When we found the passage suggesting that “Michael Phelps” was the 
correct answer to the clue, we were satisfied that we had the answer and 
knew we could stop looking. But Watson wouldn’t have stopped its research 
like a human would have done, because it didn’t try to understand the evi-
dence it was collecting yet. It didn’t start to judge its candidates until its 
next phase, when it would score the evidence. As far as Watson was con-
cerned at this point, the supporting evidence for Michael Phelps was no 
stronger than the evidence for Pieter van den Hoogenband; the evidence 
for each candidate was simply pieces of text sitting somewhere in its com-
puter memory, similar to notes taken by the people who interviewed the 
job candidate. Instead, Watson simply continued its research, collecting pas-
sage after passage of evidence to support its remaining candidates. When 
Watson was finally done interviewing candidates, it was ready for perhaps 
the most interesting bit: scoring each of these candidates.

SCORING

After collecting supporting evidence for each of its candidates, Watson 
passed the results to a collection of scoring algorithms. Just as Watson used 
a variety of rules to analyze its question, its Scoring phase used a variety 
of rules to analyze the evidence for each candidate answer.

These scorers did most of the work you’d probably consider “interest-
ing” in Watson: they estimated how closely each piece of evidence about 
each candidate answer matched the clue.

This phase would be akin to creating a giant spreadsheet to evaluate the 
evidence for each job candidate. To evaluate each piece of evidence for a 
candidate, you might use several different criteria: whether the evidence 
demonstrates good communication, job-related experience, culture fit, or 
on-their-toes critical thinking ability. Your goal in this Scoring phase is not 
to evaluate the candidates themselves: your goal is to evaluate only the can-
didates’ responses to the questions you asked, to try to stay objective. This 
means you might need to separately score many pieces of evidence for each 
candidate. You’d then distill the spreadsheet’s results into a final decision in a 
later stage, just as Watson waited until a later stage to weigh its own scores 
for each piece of evidence.

Watson used many scorers to evaluate its evidence, but each scorer 
tended to be fairly simple. One scorer, for example, measured the number 
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of overlapping words between the clue and the supporting passage. It 
weighted each word with an approach called IDF, which gives rare words 
more weight, as a proxy for how much “information” the word conveys. 
The intuition behind this approach is that rare words convey more infor-
mation precisely because they are rare: if the clue and the passage share 
a rare word, such as “Čavić” or “scorpion,” then this should carry more 
weight than if they share a frequent word, like “almost” or “one.”24 The 
candidate answer “Michael Phelps” would have been scored well by this 
metric, because many supporting passages for the candidate Michael Phelps 
shared rare words, like “Čavić,” with the clue. The passages supporting the 
other candidates wouldn’t have fared so well for this scorer.

The glaring weakness of this word-overlap scorer is that it completely 
ignores the order of words in the supporting passage. For example, take 
this clue:

He famously became the President of China in June of 2003.

The word-overlap scorer would score the following passage highly even 
though it suggests the wrong answer:

President George W. Bush famously praised China in June of 2003.

Clearly this scorer would give the wrong passage too much weight, sim-
ply because it has many overlapping words.

So Watson also had some scorers that could address this shortcoming. 
One of them attempted to align the words in the clue and the passage 
sequentially, finding an alignment between the two with a search algo-
rithm. Once aligned, matching words caused the score to be higher, while 
mismatching or missing words caused the score to be lower. As before, the 
alignment scorer gave more weight to rare words, preferring alignments 
that matched on rare words over those that matched on common words.

One scorer the IBM researchers added was a gender scorer; it was evi-
dent that Watson needed this scorer after Watson saw this clue during 
testing:

This first lady was born Thelma Catherine Ryan, on March 16, 1912, in 
Nevada.25

Watson’s answer, before it had the gender scorer, was “Richard Nixon.” 
(The correct answer was Nixon’s wife, Thelma Catherine “Pat” Nixon.)
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Watson also used parse trees in its scorers. One scorer was like the word-
overlap scorer, but instead of measuring word overlap, it counted how 
often pairs of words that were connected to each other in the clue’s parse 
tree were also connected to each other in the supporting passage’s parse 
tree.26 Another scorer tried to directly align the parse tree for the clue with 
the parse tree for the passage; if the resulting two parse trees, when aligned, 
matched the focus to the candidate answer, then this provided strong 
support for the candidate.

Some scorers checked whether dates from the clue and supporting pas-
sages agreed; others checked for geographic agreement between the clue 
and the passage. The list of scorers used by Watson went on and on; Watson 
had over a hundred scorers in all. As with the models for the Netflix 
Prize, any time someone in the team behind Watson found a shortcoming 
in the way Watson scored its answers, she could turn her intuition into a 
mathematical function, encode it as a scorer, test whether it improved 
Watson, and, if so, add it to Watson.

By the time Watson had finally finished scoring its candidates, it still 
hadn’t formed an opinion about which candidate was best, although it was 
much closer. At this point it had lists of numerical scores for each bit of 
evidence for its candidates. Watson would finally form an opinion about 
its candidate answers in its final stage: the Aggregation and Ranking phase.

AGGREGATION AND RANKING

You might think that for Watson to select its top candidate, it could just 
score its answers with a simple classifier—just as we did for the children’s 
cookbook, or just as an artificial neuron does with its inputs. But things 
weren’t so simple for Watson. Watson did eventually use a classifier, but it 
needed to transform its spreadsheet of scored evidence into the right for-
mat first. Remember that when we created the spreadsheet to evaluate bits 
of evidence for each candidate, we might have had lots of pieces of evi-
dence for some—and therefore lots of scores for these candidates—while 
we might have had little or no evidence for others—and therefore few 
scores for those candidates. The list of candidates was unwieldy in other 
ways too: there could be duplicate answers among them, and so on.

In short, this spreadsheet wasn’t in the right form yet to feed into a clas-
sifier, because the things Watson was classifying—answer candidates—were 
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heterogeneous. Weighted-average classifiers expect each item you’re classi-
fying to have the same set of features. Using a classifier on these candidates 
would be like trying to fit a square peg into a round hole. It just doesn’t 
work. To resolve this mess, Watson used a sequence of seven separate trans-
formations, each with its own classifier, before producing a final answer.27 
You can see a sketch of this in figure 13.2.

One of these transformations merged duplicate answers. In our Olym-
pics example, the candidate answer Phelps is the same as Michael Phelps, 
and Bolt is the same as Usain Bolt. Sometimes Watson had a more-specific 
version of an answer and a less-specific version of the answer, such as a 
generic “sword” and “Excalibur,” the name of a legendary sword. In each of 
these cases, Watson merged these duplicate answers into a single answer, 
combining their supporting evidence in the process.28

Another problem Watson faced was that it might have a different num-
ber of scores from each scorer across different candidate answers. So another 
of these seven transformations combined these scores in whichever way 
made sense for the scorer. Watson averaged the results of some scorers for 
each candidate, while for other scorers Watson took the highest value the 
scorer produced across all of the candidate’s supporting evidence.29 Yet 
other phases in Watson’s ranking pipeline transformed the scores by scal-
ing them or filling in missing feature values.30

Finally, a single classifier that’s good at separating the best candidates 
from the worst candidates might be bad at differentiating between the very 
best candidates. So one transformation in Watson’s pipeline used a classi-
fier to filter out the very worst candidates, another selected the top five 
candidates, and then one more selected the best of those five.31

These transformations ultimately manipulated Watson’s candidates until 
they were in a form that was conducive to applying a simple classifier, 
which was the final stage in the pipeline. The transformations took the 
square peg and shaved off its corners so that it could fit through the round 
hole, so that Watson could eventually feed it into that classifier.

The fascinating thing about these seven layers in Watson’s final Merg-
ing and Ranking phase was that each layer had the same architecture. That 
doesn’t mean that they did the same thing; as we just saw, each layer per-
formed a different operation for Watson. But the way Watson plumbed data 
through each layer was identical. Each layer was composed of three basic 
elements: an evidence merging step, a processing step that performed 
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Figure 13.2
The Merging and Ranking phase in the DeepQA framework on which Watson 
ran. This phase consisted of seven operations, each of which had a merge step, a 
transform and filter step, and a linear classifier step, which used different classifiers for 
different types of questions. Each of the seven operations was unique in that their 
merge, transform, and classify steps differed (some transformations even skipped one 
or more of these steps), but the framework provided the capability for each step within 
each transformation.
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whatever operation was unique to that layer—like manipulating features 
or filtering out candidates—and then a classification step to rescore candi-
dates for the next phase. In some ways, these seven layers were similar to a 
seven-layer neural network; you can even think of this as a custom-built 
neural network on steroids, where the operations at the neuron level were 
more expressive than simple neurons, a bit like Google’s Inception network.32 
The first two steps of each layer performed nonlinear transformations to the 
candidates, and then the third step—the classification step—was a simple 
linear classifier followed by the S-curve we saw in the last chapter. And 
the result of these transformations was a list of  Watson’s final answers, 
each with a confidence score. Watson’s selected answer was the candidate 
from this list with the highest score.

TUNING WATSON

Watson was an absolutely massive system. In its complexity, it was also slow 
and difficult to tune. In an early version of  Watson, which ran on a single 
CPU, Watson took two hours to answer a single question.33 Fortunately 
Watson was also designed so that many of its stages could be run in parallel. 
For example, instead of researching the individual candidates separately in 
succession, Watson researched them all at once by farming its work out to 
many different CPUs. By making Watson parallel and distributing its 
work across about 2,880 processors, Ferrucci’s team drove down Watson’s 
answer time until it was consistently less than five seconds—and fast 
enough to beat Rutter and Jennings.

But how did Ferrucci and his team reason about such a complicated 
system? Watson was a huge software project that required the coordination 
of a large team of researchers—about 25 researchers working over a 
four-year period.34 Changes couldn’t be made in isolation. If a researcher 
improved her part of the system, her change might cause unanticipated 
problems elsewhere. To design and tune a complex machine like Watson, 
Ferrucci and his team used experimentation and end-to-end metrics 
extensively. They carefully measured every change they made, and they per-
formed “marginal” analyses of  Watson to measure how well Watson per-
formed if they added or removed a single scorer; or how well Watson 
performed if they included only a single scorer. And all throughout, they 
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kept careful track of where Watson was in the Winners Cloud, the scatter-
plot that we saw in the last chapter, which summarized how accurate 
human Jeopardy champions were when they answered questions at differ-
ent levels of confidence.

DEEPQA REVISITED

What was so special about Watson that enabled it to beat its human com-
petitors at Jeopardy, when no other system up to that time could come 
anywhere close? Watson differed from its predecessors mostly in its sheer 
scale and in its use of DeepQA. Up to now, I’ve talked about Watson and 
DeepQA as if they were the same thing; but they were technically some-
what different. DeepQA is a data-processing engine, and Watson—at least 
Watson the Jeopardy-playing program I’ve talked about in the past two 
chapters—was built on top of DeepQA. DeepQA was a more general-
purpose engine that could be used for other purposes, and IBM had 
experimented with it in applications as diverse as medicine and gaming. 
Ferrucci and his team found that, when they adapted DeepQA to one of 
the question-answering competitions they had worked on before Jeopardy, 
it performed better than the system they’d built specifically for that com-
petition.35 Meanwhile, the converse wasn’t true: when they tried to adapt 
the older, competition-specific system to play Jeopardy in that first month 
of work, it failed miserably.

DeepQA has nothing to do with the deep learning. The “Deep” in 
DeepQA refers to deep natural language processing or deep question answering, 
phrases IBM used to contrast it with simpler approaches to natural lan-
guage processing, like the methods used in its individual scorers. Its 
strength came in its blending of these shallow methods, one of its core 
design principles, just as the best models from the Netflix Prize were blends 
of simpler models.36

WAS WATSON INTELLIGENT?

Was Watson’s ability to answer Jeopardy questions an indication that it was 
truly intelligent? The answer is the same as for the other machines in this 
book: not really—at least if we’re going to compare it with human 
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intelligence. To understand why, let’s think back to how Watson found the 
correct answer when it was presented with a clue. Watson’s first step was 
to tease apart the clue with a variety of rules created by humans. It cre-
ated a sentence diagram and used its handcrafted rules to pull out and 
label key bits of information that it would use to answer the clue. Watson 
then used these bits of information to search for the correct answer 
with search engines. It created a list of candidates with the result, filtered 
these candidates down, and searched for more evidence to support each 
candidate. After this it scored the evidence it had collected, and then 
finally it selected the best candidate with its series of transformations and 
classifiers.

At no point in this pipeline, however, did Watson actually understand 
what the clue was asking. It simply followed a deterministic sequence of 
steps, inspecting the question and scoring the supporting evidence with 
human-engineered rules and weights it had learned from data.

We can gain more insight into Watson’s limitations by looking at where 
it went wrong during its live games. We already saw a case where Watson 
embarrassed itself by guessing that Richard Nixon was a first lady of the 
United States before it had a gender scorer. These problems could occur 
any time Watson lacked the correct scorer or filter. A related problem 
caused Watson to sometimes offer offensive answers.

As Stephen Baker noted in Final Jeopardy, Watson and some human 
competitors were asked during a practice session for a four-letter word in 
the category Just Say No. Although Watson wasn’t confident enough about 
its answer to buzz in, its top choice, which was displayed on the screen for 
all to see, was “What is Fuck?” (Fortunately, a Jeopardy executive and his 
colleagues in the room found this funny rather than offensive.) This wasn’t 
an isolated mishap: the team found that five percent of  Watson’s answers 
might be considered embarrassing even if they weren’t outright offensive. 
Ferrucci put together a team to ensure Watson wouldn’t say anything 
stupid during its live game (this team became known as the “Stupid Team”), 
while another team built a profanity filter with the potential to “censor” 
Watson during its live game.37

Watson was also limited by the ways it interacted with the world. For 
example, during one of its live games, Watson came upon a category in 
which it could answer clues very accurately. Watson’s creators had cleverly 
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programmed it to favor such categories when it had control of the board. 
Unfortunately for Watson, the clues from this category were also very short, 
which meant that any time Watson selected a clue from this category, its 
human competitors could answer more quickly than Watson, taking points 
for the answer and taking control of the board away from Watson.38 In 
another case, Watson buzzed in after Ken Jennings answered a question 
incorrectly. Watson’s answer was incorrect too, but it wasn’t an unreasonable 
incorrect answer. The problem was that Watson gave the same incorrect 
answer Jennings had just given!

Most information about DeepQA has come from IBM itself, which has 
a financial incentive—and a skilled marketing team—to promote Watson 
as truly “intelligent.”39 In one of its white papers, for example, IBM 
described Watson’s scorers as “reasoning algorithms,” which is a bit of a 
stretch, when some of these scorers only do things like count up the num-
ber of overlapping words. IBM has marketed Watson to be a generically 
intelligent solution for a wide variety of problems.

However great Watson was at Jeopardy, the original version was still 
engineered for that one very specific task. Just as Pragmatic Theory 
focused on winning the Netflix Prize above all else, the team behind Wat-
son focused on building a system that could play Jeopardy. And so Wat-
son—at least the original version of  Watson—couldn’t do anything else, 
without first being retooled. And indeed, IBM has marketed Watson for a 
variety of other applications. Some of these other systems are likely to 
have been implemented so differently from the original Watson that it’s 
difficult to judge their performance on those other applications. In fact, 
the Watson brand has sometimes received disappointing reviews beyond 
Jeopardy.

That said, when Watson made its initial splash, IBM published about 
how it worked, and this research has been accepted into the mainstream 
natural language processing community. No doubt that Watson’s ability to 
play Jeopardy is widely seen as a truly respectable engineering achievement, 
and IBM set the bar considerably higher in building it.40

During a game of Jeopardy, players like Watson must make many types 
of decisions during the game that have nothing to do with understanding 
natural language. These decisions involve higher-level strategy, such as when 
to buzz in, whether to buzz in, how much to wager, and which clue to select next. 
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In addition to their clue scorer, the team behind Watson carefully crafted 
algorithms for Watson to make these strategic decisions.

These algorithms were based on models Watson had of its human oppo-
nents’ behavior. We could spend an entire chapter on this topic, outlining 
how Watson simulated its games far into the future to make its decisions. 
But instead of focusing on Watson for another chapter, let’s instead look in 
the next chapter at the more general question of how smart machines can 
play games of strategy.



14  BRUTE-FORCE SEARCH YOUR WAY  
TO A GOOD STRATEGY

It is not being suggested that we should design the strategy in our own image. 
Rather it should be matched to the capacities and weakness of the computer. 
The computer is strong in speed and accuracy and weak in analytical abilities 
and recognition. Hence, it should make more use of brutal calculation than 
humans.
—Claude Shannon1

SEARCH FOR PLAYING GAMES

In the first chapter of this book we saw that the automata of the 18th cen-
tury operated on the same principles as mechanical clockwork. Using 
only mechanical components—pulleys, gears, levers, and so on—they 
could perform amazing feats, like playing the harpsichord (a piano-like 
instrument), writing legible sentences, and making detailed illustrations 
with a pencil in their hand. They did this by following programs encoded 
within their clockwork.

Throughout this book, we’ve encountered computer programs that 
can emulate a wide variety of human-like behaviors, and in the next two 
chapters we’ll take a closer look at computer programs that have been 
developed to play games like chess and Go better than the best human 
players. These game-playing automata were implemented as modern, digital 
computer programs; but, like their mechanical ancestors, modern com-
puters still follow programs.

In fact, the computer programs that play games like chess and Go could 
be replicated perfectly with only physical devices. These mechanical com-
puters, sometimes called mechanical Turing machines, can be built out of 
only wooden components and powered by a hand crank. Such a wooden 
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computer might need to be extraordinarily large—so large that it might 
take impractically large investments to build and power—but at least in 
theory, it’s possible.2

If you take a moment to ponder this, the whole premise that a wooden 
device powered by a hand crank could play a competitive game of chess 
is extraordinary. This was, after all, the appeal of the Mechanical Turk. How 
is it that such devices could not only play these games of strategy well; but 
that they could play them so well that they’ve beat the best human play-
ers? This is the central question you should hold in your mind throughout 
this chapter, as we explore the way in which machines can be programmed 
to play games of strategy. One of the key features of these machines is a 
form of foresight that they use to anticipate how the game will play out 
many moves into the future. To see how this works, let’s start with a 
simple game, a game for which the program only needs to anticipate its 
own moves: the classic game of Sudoku.

SUDOKU

Sudoku is a game in which the sole player must fill in the blank spaces 
(cells) on a 9 × 9 grid with the numbers 1 through 9. For each game of 
Sudoku, the puzzle creator partially fills some subset of the cells, so that 
before play begins the grid looks something like the one in figure 14.1.

The goal of the Sudoku player is to place a number in each blank 
square, so that each row has each of the numbers 1 through 9, each col-
umn has each of the numbers 1 through 9, and each of the nine 3 × 3 
subset grids has each of the numbers 1 through 9.

Humans approach this game by filling in one square at a time, with some 
combination of guesswork and the process of elimination. For example, we 
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might notice that the third square in the first row can’t be any number 
except 5, so we would write “5” into that square and move on.

Some cells are a bit more difficult: at first glance, the third cell in the sec-
ond-from-bottom row could be 1, 2, or 8. So we might focus on some other 
squares first, in the hope that doing so will narrow down the possibilities by 
the time we come back to that cell later; or else we might pencil-in one of 
these numbers—say, 8—and see where that takes us. The puzzle above is rela-
tively easy because it doesn’t need much of this guesswork. In the more dif-
ficult puzzles, it’s impossible to proceed without some amount of guessing.

Sudoku became popular in the 1990s largely because of a mild-
mannered New Zealander named Wayne Gould. Gould designed a com-
puter program that could develop Sudoku puzzles, which he then distributed 
for free to newspapers all over the world. Gould’s program could develop 
Sudoku puzzles at different levels of difficulty: some, like the one above, 
were predictably easy even for novice Sudoku players, while others were 
predictably challenging for experienced Sudoku players. Perhaps cleverer 
than Gould’s computer program was his marketing strategy: he gave his 
puzzles to the newspapers for free. In return, they advertised his computer 
program and his books, which the Sudoku players devoured; through this 
arrangement he sold over four million copies of his books.3

Although Sudoku can be challenging to play, it’s not very difficult to 
write a computer program to solve Sudoku puzzles. Software engineers in 
Silicon Valley have been asked to do this during job interviews, and just 
about every introductory class in artificial intelligence teaches the key tool 
you need to solve a puzzle like this: search algorithms.

We’ve seen that self-driving cars use search algorithms to find paths 
through large maps and to plan ways to park in empty parking spots, and 
we saw that speech-recognition software uses search algorithms to find 
transcriptions of recorded speech. The way we would use a search algo-
rithm to solve Sudoku is similar, except that instead of searching for a 
sequence of steps to take to move across a map, the program must search 
for a sequence of numbers to fill up the board.

In Sudoku, there are trillions upon trillions of possible board configu-
rations. A computer program designed to solve Sudoku will search through 
these board configurations, iterating through many of them until it finds 
a fully populated board that is also a legal Sudoku layout. In the board 
above, there are 45 blank spaces, so the search algorithm must search 
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through many different ways to fill all these spaces with numbers until it 
finds some configuration that works.

To search through these combinations, a search algorithm would rea-
son about the Sudoku board as being in different states. The state of the 
board is described precisely by the set of numbers currently on the board. 
As the search algorithm fills in a certain number on the board, it moves 
from one state to another—to a state with one fewer blank space. At other 
times, the search algorithm might remove a number from the board—to 
a state with one more blank space.

There are many possible ways a search algorithm might wind through 
these states, and it’s really we humans—the computer’s programmers—who 
decide how the search algorithm should do this. We might program the 
computer to try every possible value for the first empty slot—the one 
in the top, left corner of the board—fill it in, and then consider each of 
these nine new states. For each of these nine states, the program would 
choose one of the values 1 through 9 for the next empty slot, and so on. 
Once the algorithm has filled in the 45 missing numbers, it can then test 
whether the board configuration is legal. If it’s not legal, it will need to 
backtrack to change some number it set previously and then continue 
forward again, repeating this until it finds a combination that works.

You can think of these states as being connected in a tree structure, where 
two states are connected if the search algorithm can move between them by 
filling in (or removing) a number. I show such a “search tree” in figure 14.2, 
except that I’ve simplified the tree to search through a 2 × 2 grid instead of 
a 9 × 9 grid, and so that it only uses the numbers 1 through 3 to fill in the 
grid, instead of the numbers 1 through 9. This search tree has 81 different 
states at the bottom, which means the diagram is too small for you to see 
much detail, so I also show a subset of this tree (but larger) in figure 14.3.

Figure 14.2
A search tree to find all ways to fill a 2 × 2 grid with the numbers 1 through 3. The 
number of states to search through grows quickly with each level of the tree, and 
there are 34 = 81 states at the bottom of this tree. A Sudoku board with 45 empty spots 
would have an unfathomable 945 states at the bottom of the tree.
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Notice that a computer algorithm to search through a tree like this 
doesn’t need to make any “smart” decisions. It just needs to be consistent in 
how it descends through the tree. At any level of the tree, the computer just 
tries to fill in the next empty slot with the next number it hasn’t tried yet, 
starting from 1, and then it moves into that state to fill in the remaining 
squares by repeating the same process. On any given level, if it has tried a 1 
for the next empty slot—and then tried all possible values for the remaining 
empty slots without success—it replaces that 1 with a 2 and then tries all 
combinations of the remaining slots again, and so on. As it tries these com-
binations, it essentially enumerates all of the possible ways for the 45 empty 
spots to be filled with the numbers 1 through 9, until it finds one that works.

I’d like to reiterate two observations I’ve already made. First, how exactly 
the algorithm moves through these states is up to the programmer. Second, 
a search tree like the ones in figures 14.2 and 14.3 gives the computer a 
methodical way to visit each state. There is no discretion an algorithm like 
this has in choosing which states to visit. As the computer searches through 
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A subset of the search tree in figure 14.2, showing only selected 
states in the tree. At each level of the tree, the algorithm selects the 
next empty square and attempts to fill it in with each of the num-
bers 1 through 3 (shown in bold). The algorithm fills the spot 
with one of these values, descends to the next level, and attempts 
to fill in the next number.
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these states, it follows a simple, prescriptive algorithm—exactly something 
a wooden machine with a hand crank could do.

THE SIZE OF THE TREE

Unfortunately, a “brute-force” approach like this would also be impracti-
cal because it requires the computer to consider an exponential number 
of states. As in chapters 9 and 10, where I discuss neural networks, I mean 
“exponential” in the mathematical sense: for each level deeper we go into 
the Sudoku tree, the number of states grows by a factor of 9. Just two levels 
deep, as in figure 14.4, there are 81 states in the tree. If we look 45 levels 
deep, the number of states is about 1 followed by 43 zeros. This would be 
far too many states to evaluate within a reasonable amount of time even if 
we had an army of people turning hand cranks on wooden machines, let 
alone a large cluster of computers.

Does it help that we don’t need to enumerate all possible states to find 
the solution? For example, for the Sudoku board we saw earlier, we only 
need to try 36 percent of these combinations before finding one that 
works. Unfortunately, 36 percent of 1043 is 1042.6, which is still an impos-
sibly large number.

We can fix this by “pruning” branches of the search tree, cutting the 
search short on a branch if we know that the branch could never lead to 
a valid Sudoku solution. So when we’re trying to figure out which number 
to put into an empty spot, we still consider each of the values 1 through 
9, but we only “descend” into a state if selecting that number would lead 
to a valid Sudoku layout. I show how a search tree for this algorithm would 
look in figure 14.5.

Figure 14.4
The number of states just two levels into the Sudoku search tree is 9 × 9 = 81. Because 
the number of states grows by a factor of 9 with each level in the tree, we must use a 
pruning algorithm to narrow the search down.
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Figure 14.5
A “pruned” search tree to find the values in a 
Sudoku board. Most branches are cut short 
because they would lead to a Sudoku board 
that couldn’t lead to a valid Sudoku layout.
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Figure 14.5 is hardly a “tree” all: it’s more like a search “beam”! As you can 
see, there are a couple of false starts, but the algorithm doesn’t need to branch 
out too much at each level. Instead of having nine branches at each level, the 
pruned search tree usually has just one. If we’re lucky, we might only check 
about nine boards for most levels of the tree, and we could throw most of 
them away after finding that they’re illegal. This would eliminate all but one 
branch at most levels before descending. This would be about 9 × 45 boards 
we need to evaluate—a measly 405 states. This is small enough that you 
could run this search algorithm quickly with a computer from the 1970s.

THE BRANCHING FACTOR

The amount by which a search tree grows at each level is sometimes 
called its branching factor or branching ratio. The branching factor was 9 in 
the first, un-pruned Sudoku search tree and close to 1 in the pruned 
search tree. The branching factor varies by the initial layout of a Sudoku 
board, and the difficulty of a Sudoku puzzle for a human depends heavily 
on that puzzle’s branching factor. When Wayne Gould invented his pro-
gram to create Sudoku boards, he was certainly aware of this: a game of 
Sudoku must strike the right balance in its branching factor. It can’t be so 
low that the game feels mechanical, and it can’t be so high that the game 
feels frustrating.

UNCERTAINTY IN GAMES

Solitary games like Sudoku tend to be less interesting from the perspec-
tive of AI research because there’s no uncertainty in them: the search path 
and the actions the player can make are well defined from the first turn all 
the way to the end. One thing that makes games more interesting is uncer-
tainty. Uncertainty can show up when there’s some amount of randomness 
involved—as with any game where you roll dice—or when there’s more 
than one player—as in a game like chess.

To see how the game play changes when there’s some amount of uncer-
tainty, let’s look at a simple game, which I’ll call “You-pick-this-then-flip-
a-coin,” in figure 14.6.

In this game, you pick a direction to go from the start position—either 
up or down—and then flip a coin to see where you go from there. You 
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You pick
this

Flip a
coin

$10

$0

$5

$6

Start

You pay
me

Figure 14.6

then need to pay me whatever value you end up on (sorry, but this isn’t a 
very fun game for you). Take a moment to look at this diagram to figure 
out what your strategy for the first move is going to be.

To reason about this game, you might have taken an average of the two 
upper-most outcomes, and compared this with the average of the two 
lower-most outcomes, and decided that, on average, you’re best off choos-
ing the higher branch, because you would pay me less on average. If 
you’re risk-averse, you might have reasoned differently: you would have 
noticed that $10 is the worst possible outcome and chosen the lower 
branch to avoid that outcome. Regardless of which strategy you took, the 
key observation is that you made your decision by looking at the end 
values and working your way backward to the starting decision.

Two-player games also have uncertainty, but in some sense they have less 
uncertainty for any one player because the other player’s choices are some-
what predictable. Consider the game in figure 14.7, which I’ll call 
“You-pick-this-then-I-pick-that.”

You pick
this

I pick
that

$10

$0

$5

$6

Start

You pay
me

Figure 14.7
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In this game, as before, you make the first up-or-down choice; then 
I choose whether to go up or down from there. After we’ve each made a 
choice, you again pay me the amount we end up at. Take another moment 
to look at the diagram in figure 14.7 to figure out your decision before you 
read further.

Again, this isn’t a very fun game for you, because I always win; but you do 
have a greater ability to predict the outcome, so your choice is easier. You 
know that I will always choose the highest number among my options—
either $10 or $6—so you would choose “down,” since that will lead to you 
paying me only $6. As with the You-pick-this-then-flip-a-coin game, you 
started at the end and moved backward to decide which action to take.

In a game like chess, where the players take many turns, you would use 
the same approach to find the best strategy in the game, except that you 
must anticipate the outcome of many more decisions over the course of 
the game. The search tree will branch out massively within a few moves, 
as in figure 14.8, but even more so than can be shown in the figure. In this 
figure, gray dots at the end represent the outcome that you win, while white 

I pick
this

You pick
this

I pick
this

= You win
= I win

You pick
this

Figure 14.8
A multilayer search tree representing choices in a two-player game. Each level of the 
tree represents a single player’s choice between two actions. Gray dots at the end 
represent the outcome that you win, while white dots represent the outcome that  
I win.
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dots represent the outcome that I win. To figure out which move you 
should make on your turn, you’d again reason from the end, working your 
way backward. At each level, you would either predict which action I 
would take so I have the highest chances of winning, or select an action 
for yourself that would maximize your chances at winning. In this game, 
it is possible for you to win, provided that you make the right choices.

If we wanted to program a computer to play this game, we would use 
a search algorithm just as in Sudoku, but we would write the program to 
anticipate which moves you and I would make at each level of the search 
tree. It must start out by searching deep into the tree. Once the program has 
descended in its search to the end of the game, it then works in reverse: it 
looks at each move I might make as my final move, anticipates that I would 
only make a move that would allow me to win, if such a move exists, and 
assumes that that is my choice. Once it has done that, the algorithm can 
ignore the final layer of the tree, because it knows the outcome of my move. 
In the next-higher level, the algorithm anticipates which move you would 
choose. You would choose a move that guarantees that you would win, if 
such a move exists. Once the program has figured out which move you 
would take, it can figure out who will win from there, and it can ignore all 
levels of the search tree below that. And so the program would proceed, 
moving backward in the tree, predicting which move either one of us would 
make, until it hits the beginning of the search tree, which is the current 
layout of the board. Once it gets to the beginning, it can tell you what 
move you should make to guarantee that you win. We would say that this 
algorithm anticipates that each player will be rational, that is, that each will 
act in his or her own best interest and by thinking ahead. It is possible to 
assume each player is rational when we can search through the entire tree. 
Just as you figured out the best move for each player by starting from the 
end of the tree, the program would do the same, in a predictable way.

The tree above is, of course, much simpler than a game of chess. In the 
tree above, the branching factor is 2, with four moves (called “plies”) in the 
game. Master chess players work through games that have, on average, a 
branching factor of 30 to 40 and an average of 40 moves per game.4 This 
leads to a search tree that is far too large for a computer to search through 
without a lot more pruning.5 The number of states we would need to 
search through could easily exceed the number 1 followed by 59 zeros.



218	 Chapter 14 

Could we resolve this by using a fast-enough computer? Not really. The 
exponential growth rate of states as we descend into the search tree is a 
problem that transcends technology: it will always be prohibitively expen-
sive to evaluate all of these states. Even if we could build a computer that 
could evaluate all board states up to 40 levels deep in a reasonable amount 
of time—say, over the course of two minutes—this computer would grind 
to a halt on searches just two levels deeper, where there are 40 × 40 = 1,600 
times as many states to evaluate, so that the computer would need over two 
days to crunch through its states. And this is in a search tree that’s already 
been pruned in the way we pruned the Sudoku tree: these 30 to 40 moves 
per turn in chess are legal moves. So we need another way to prune this tree 
if we’re going to solve chess with computers.

CLAUDE SHANNON

If you’ve ever visited the quaint, Midwest town of Gaylord, Michigan, 
there’s a good chance you’ve seen the bronze bust of Claude Shannon. 
Shannon was a mathematician well known for his work in the field of 
information theory, which provides an elegant way to measure the amount 
of information—in a very literal sense—contained in a message.

The intuition around Shannon’s idea of information revolved around 
how exceptional a message is. If I told you that my cat meows, I wouldn’t 
be giving you very much information: you know that most cats make this 
sound. However, if I told you that my cat barks, this would be higher-
information, because most cats don’t bark. And if I told you ten different 
(unrelated) facts like this, then I would be giving you ten times as much 
information.

Shannon encoded this intuition into a framework for reasoning about 
information. He did this by formalizing the idea of uncertainty: information 
is what you gain by removing that uncertainty. Shannon’s ideas have led to 
a vast and beautiful branch of mathematics commonly known as informa-
tion theory. Ideas from information theory have been used to help us to 
understand a wide variety of things, such as the theoretical limits of how 
much information we can send in electronic messages. This is the same idea 
used in the word-overlap scorer from Watson: that scorer weighted words 
by how much information they conveyed: words like “scorpion” and 
“Čavić” convey more information than “almost” and “one.”
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Shannon’s work on information theory is extremely important in the 
field of machine learning, but he is less well known for an academic paper 
he wrote in 1949 about how to create computer programs to play chess. 
Years before computers were household commodities, Shannon made 
some simple but thoughtful suggestions about how to write algorithms to 
play chess that have become commonplace in the field of AI. One of his 
core suggestions was the idea of an evaluation function.

EVALUATION FUNCTIONS

An evaluation function is a test that can be applied to a game state to pre-
dict which player will win if each player plays rationally after that. A perfect 
evaluation function for the search tree in figure 14.8 will tell you who will 
win, starting from each game state. You can see what a perfect evaluation 
function for this game would look like in figure 14.9, where I’ve colored 
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Figure 14.9
A multilayer search tree in which each state is col-
ored with the result of an evaluation function. This 
evaluation function is perfect: it describes which 
player will win the game from each state, provided 
that each player plays perfectly. In practice, most 
evaluation functions are approximate.
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each state based on who will win. A computer algorithm using this evalua-
tion function doesn’t need to search all the way to the end of the tree to 
figure out which move to make: it just needs to search one or two levels 
deep to peek at the evaluation function to decide which move to make.

Usually it’s impossible to create a perfect evaluation function, and we 
must resort to using an approximate evaluation function instead. If you’ve 
played chess, you’ve probably used an approximate evaluation function to 
decide your moves. Without even thinking about it, you probably assigned 
a rough value to each piece on the board: a queen is worth more than a 
knight, which is worth more than a pawn, and so on; and your opponent’s 
queen is worth more to them than their knight, and so on.

As Shannon explained, a computer’s evaluation function for chess might 
assign explicit weights to these pieces: a queen might be worth 9, a bishop 
worth 3, a knight 3, and a pawn 1; and the value to a player of having a set 
of pieces on the board is the sum of these pieces’ values.6 The numbers I’ve 
listed here are arbitrary—and probably wrong—but they capture some of 
our intuition. If you have a chance to capture your opponent’s queen but 
need to sacrifice a bishop in the process, it’s very possibly still a good move. 
If you can capture your opponent’s queen without losing any pieces of 
your own, that’s all for the better. Formalizing this into a more rigorous 
evaluation function, you might use a weighted sum of how many pieces of 
each type you have, minus a weighted sum of your opponent’s pieces, like 
this:7

(100K+ 9Q + 5R + 3B + 3N + 1P) 
   – (100Ko + 9Qo + 5Ro + 3Bo + 3No + 1Po)

If you used this—which, by the way, is an example of a classifier—as an 
evaluation function, then it would help you to predict who will win the 
game based on how many of each type of piece is on the board.

This is just a simple example of an evaluation function, but evaluation 
functions like it can be extraordinarily powerful if you add enough features. 
Deep Blue, a powerful chess-playing system built by IBM, used an evalua-
tion function; but whereas we used 12 features in our evaluation function, 
they used over 8,000 features!8

What might some of these additional features be? Many of them were 
esoteric, but they could roughly be broken up into two categories: mate-
rial features—that is, features to describe which pieces were on the board, 
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like the ones above—and positional features—features that describe where 
these pieces are on the board. For example, one of your pawns is worth much 
more if it is near your opponent’s side of the board because it is more likely 
to turn into a queen. And indeed, at least one version of Deep Blue pre-
ferred to advance pawns toward the opposite side of the board for this rea-
son. Positional features are also necessary for computer chess. This became 
clear when Deep Blue played one of its games against the then-reigning 
chess champion Garry Kasparov.9

Kasparov is one of the greatest chess players to have ever lived. Intense 
and full of energy, he described playing chess as “controlling chaos.”10  When 
asked in 1988 whether a computer could beat a human grandmaster by the 
year 2000, Kasparov’s answer was simple. “No way, and if any Grand
master has difficulty playing computers, I would be happy to provide 
my advice.”11 In one game he played with Deep Blue, Kasparov built up a 
significant strategic advantage against Deep Blue. The poor computer had 
no idea that it was losing until it was too late: Deep Blue’s evaluation 
function, focused on material advantage, underestimated Kasparov’s own 
positional advantage.12

How would you use an evaluation function in practice? One approach 
is to search to a fixed depth in the tree, run the evaluation function on each 
game state at that depth, and then treat the result of the evaluation function 
as if it were the outcome of the game, as in figure 14.10. You don’t need to 
search 40 levels deep in a game like chess: you might only search 6 or 12 
levels deep, and then you’d use the evaluation function to decide which 
states are the most promising. Even though you may not come anywhere 
close to the end of the game with just six moves, the hope is that you’ll have 
a much more accurate idea of who will have an advantage at that depth.

Evaluation functions can also be used to prune the search tree in other 
ways. One way to do this is with an approach called alpha-beta pruning. 
In alpha-beta pruning, you strategically prune based on what you’ve 
observed so far in the search tree. Let’s say that you’re figuring out your 
next move in a game of chess against me. After looking at the first move 
you might make—move A—you’ve determined that it’s pretty good 
according to the evaluation function, considering all of my counter-moves 
to your move A, your counter-counter-moves, and so-on.

At this point you could stop searching, but you realize that you might 
be able to find an even better move, perhaps move B or move C. So you 
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look at these moves too. With the very next move you consider (move B), 
you immediately notice that I could make a counter-move that will let me 
win the game. There’s no point in looking at move B any further, since you 
know that I will always choose the best move for myself. I wouldn’t choose 
any counter-move to move B that would be any worse than that for me. 
So you can stop considering move B altogether and move on to evaluat-
ing move C. This is the essence of alpha-beta pruning: cutting your search 
short when you know a certain branch on the search tree won’t lead to any 
better moves than one you’ve found already.

Alpha-beta pruning isn’t limited to just the top layers of the search tree: 
it can be applied at any level of the tree. Its effectiveness depends on the 
order in which you search through the search tree, but it can be very effec-
tive even if you don’t prioritize your search. It was also one of the methods 
used by IBM’s chess-playing Deep Blue.13
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Figure 14.10
Using an evaluation function to search to a fixed depth 
in a two-player game.
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DEEP BLUE

IBM’s Deep Blue was the computer that proved world chess champion 
Garry Kasparov wrong in his 1988 prediction that no computer could 
defeat a grandmaster by the year 2000. Within a year of his prediction, 
a computer built by a little-known team of graduate students at Carn-
egie Mellon defeated a chess grandmaster for the first time in history.14 As 
their computer and its descendants gradually improved over the following 
decade, they grew more and more competitive, toppling grandmaster after 
grandmaster.

Deep Blue originated with this group of graduate students who had 
begun working on computer chess mostly for fun, largely basing their 
system on custom hardware designed by Feng-hsiung Hsu, the founding 
member of the project. Using hardware to play chess wasn’t uncommon at 
the time, even though these chess machines could sometimes be the size of 
a small office refrigerator.15 But by implementing Deep Blue in hardware, 
Hsu observed, they could get about a hundred-times speedup compared 
with the same algorithm implemented purely in software.16 Deep Blue 
leaned heavily on the ability this hardware gave it to quickly search 
through its tree. Distributed across 30 separate computers, Deep Blue used 
480 custom chess chips to blaze through about 126 million positions per 
second.17

But the team behind Deep Blue learned that brute-force search up to 
a certain depth with an evaluation function wasn’t enough. They found 
that chess masters could anticipate moves in a much deeper beam than a 
search algorithm that searched up to a fixed depth. They did use an evalu-
ation function with a limited-depth tree, and they did use alpha-beta prun-
ing, but Hsu was skeptical of clever pruning methods and search tricks, at 
least in their hardware. Instead of using clever tricks to prune their search 
tree, Hsu and the team favored a different method to address the high 
branching factor: something called a singular extension.18

In contrast to pruning methods, which selectively cut off certain search 
paths, singular extensions selectively extend certain search paths. For exam-
ple, if you move your pawn into a position that threatens my king, I will 
make some move to defend my king. Such moves have the property that 
they’re clearly among best possible move I could make—sometimes the 
only possible move I could make—and when Deep Blue could identify 
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them, it would selectively extend its search in that direction, with a branch-
ing factor of close to 1 along that extension.19

Unlike DeepMind’s Atari-playing agent, which could play many different 
games, Deep Blue was designed specifically to play chess. The majority of 
the features in Deep Blue’s evaluation function were hand-selected and 
hand-created, which stands in sharp contrast to most of the statistical 
machines in this book—although the team did use some data-driven tun-
ing to select the weights in their evaluation function. Deep Blue also used 
an “opening book” to select good strategic moves near the beginning of 
the game and an “endgame” database to select moves near the end of the 
game.20

JOINING IBM

As Feng-hsiung Hsu began developing the chess programs that eventually 
culminated in Deep Blue, he began to recruit his fellow graduate students 
to help out.21 A few years into the project, IBM got wind of the students’ 
chess-playing efforts. By one account, the seed for the idea was planted 
with a vice president during a conversation in a men’s restroom. The con-
versation, if you allow for some narrative liberties, went roughly like this:22

Friend:  Super Bowl commercials are an expensive way to do market-
ing, aren’t they?

VP: They sure are.

Friend:  Oh, by the way, have you heard about this CMU group’s chess-
playing computer? No? Perhaps IBM could hire this team, and they 
could beat the best chess player in the world. That sort of marketing 
could be good for business, and maybe cheaper, huh?

VP:  Interesting …

IBM eventually acquired the core group of CMU students working on 
the project. The students cut themselves an attractive deal when they joined 
IBM: they negotiated that they be given the mandate to build the “ultimate 
chess machine.” They asked that they have the flexibility to do things on 
their own, without the likes of Dilbert’s pointy-haired boss ordering them 
around.23 They got their wish, along with some other benefits of working 



Brute-Force Search Your Way to a Good Strategy	 225

within IBM, including the deep pockets that would enable them to build 
the final version of Deep Blue and to attend competitions, and help from 
IBM’s marketing team to manage their game against Garry Kasparov.24

By 1997, within a decade of Garry Kasparov’s prediction that no com-
puter could beat a grandmaster by 2000, the researchers’ line of chess-playing 
computers culminated in the final version of Deep Blue. In a six-game 
match, the computer managed to defeat Garry Kasparov himself, the first 
professional match Kasparov had ever lost. As Hsu wrote:

Yes, you read it right. Garry had never lost a single chess match in his profes-
sional life before the 1997 rematch. … Some were concerned that Garry would 
react angrily to losing a match. The IBM team was asked … specifically not to 
smile during the closing ceremony, especially if Deep Blue won the match.25

SEARCH AND NEURAL NETWORKS

So, why we didn’t we use an approach like this—that is, a search algorithm—
to play Atari games? Could we have designed a search algorithm to play a 
game like Breakout or Space Invaders? Although I’m reluctant to say the 
answer is a categorical no, there are a few challenges we’d face if we tried 
to do this.

In chess and Sudoku, the states are obvious: they describe the positions 
of chess pieces or numbers on the game board. The positions on the board 
and the rules of the game are well defined, so it’s easy to encode the 
states and the transitions between them into a search tree. But remember 
that DeepMind wanted an agent that could play many different games. It’s 
unclear what the “states” in a search tree should even look like for Atari 
games. Should a state in the search tree for an Atari game represent the 
unique arrangement of pixels on the screen? That would result in far more 
states than we faced for chess or Sudoku. An even bigger problem is that 
we have no idea how to move from one state to another as we search 
through the state space. It’s difficult for a search algorithm to anticipate the 
future of the game if we don’t even know how the states are connected to 
each other!

The role of a search algorithm when playing games is to help the agent 
find a path from its current state to a state with the highest likelihood of 
a good outcome. In chess, we search for states deep within the tree for 
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which the evaluation function has a high value, and then we take an action 
that gets us one step closer to that state.

Reinforcement learning with a neural network gives us a different way 
to accomplish the same goal. The role of reinforcement learning when 
playing games is to orient the agent toward states with future rewards by 
telling it which actions will move it toward those states. Reinforcement 
learning essentially turns the problem from a search problem (which might 
be much harder) into a “hill-climbing” problem, where it can move, step 
by step, toward more promising states.

Sometimes hill-climbing algorithms don’t work. They don’t work 
well when the algorithm leads you to the top of a low hill when there are 
much higher hills around, separated from you by valleys. DeepMind 
faced this problem with games like Montezuma’s Revenge, where it hadn’t 
explored enough of the landscape to figure out where the bigger hills 
were; so it was stuck on one of these low hills.26 A search algorithm, in 
contrast, might be able to search through a wider landscape, to get you past 
those valleys. The deeper we can search into the game tree—in theory, at 
least—the more likely we are to find a good action for the agent.

Is it possible to use a hybrid of these two approaches? That is, could we 
use a search algorithm to search deeply into the tree when possible, and 
then use a very sophisticated evaluation function, like the one we used for 
Atari, in a sort of search / neural-network hybrid?

TD-GAMMON

Gerald Tesauro, an IBM researcher who eventually worked on Watson’s 
wagering strategy for Jeopardy!, used an approach exactly like this when he 
developed a program to play backgammon in the early and mid-1990s. 
Backgammon, like chess, is a two-player game in which players move their 
pieces around on a board. It involves a dice roll in addition to a small set 
of player actions, so its branching factor is a few hundred for each ply 
(remember, a ply is a single move by one player).27

Tesauro programmed his agent to use reinforcement learning, just as 
DeepMind did for its Atari agent. Also like DeepMind, Tesauro designed 
his agent to use a neural network. Its architecture was the “simple” neural 
network architecture we saw before, with an input layer, an output layer, 
and a single hidden layer:
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OutputsInputs

Figure 14.11

The input layer to Tesauro’s backgammon network encoded the posi-
tion of each player’s pieces on the board as well as some handcrafted fea-
tures Tesauro had created. The output layer represented the four possible 
outcomes the network aimed to learn: player 1 wins, player 2 wins, player 
1 wins by a lot (called a “gammon”), or player 2 wins by a lot. As you can 
see, between the input and output layers was a hidden middle layer. In 
Tesauro’s experiments, this hidden layer worked well with anywhere from 
40 to 160 neurons.

Tesauro’s algorithm was a hybrid between search and reinforcement 
learning, in that it searched out two or three plies before using its neural 
network to run the evaluation function.28 Remember: Tesauro could use 
the search option because the states and transitions in backgammon are 
well defined. In an early version of his backgammon-playing algorithm, 
Tesauro trained the neural network using reinforcement learning with 
games played by expert humans. This “supervised” algorithm worked okay, 
but it wasn’t great.

This changed when Tesauro let the neural network play against itself, 
which exposed it to a virtually unlimited amount of training data, the same 
benefit the Atari-playing agent had when it played millions of Atari games 
in its virtual world, the Arcade Learning Environment. After playing some 
1.5 million games against itself, Tesauro’s search-plus-neural-network 
hybrid could play competitively against the best human players. (It may 
very well be better than the best human players by the time you’re reading 
this.) It has even taught the professional backgammon community new 
strategies, upending conventional wisdom about the game.29
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Tesauro’s pitting of the backgammon neural network against itself 
became a famous story in the field of artificial intelligence, but the method 
wasn’t widely known outside of the AI and backgammon communities. 
The game-playing AI programs that became known to the public were the 
ones that made national headlines, like Deep Blue, Watson, and eventually 
AlphaGo, which defeated two Go world champions in 2016 and 2017.

LIMITATIONS OF SEARCH

The ideas behind Deep Blue and Tesauro’s backgammon program were the 
foundation for the algorithms that eventually enabled AlphaGo to play the 
strategy game Go, but these ideas on their own weren’t enough. A com-
puter playing chess can lean heavily on brute-force search through hun-
dreds of millions of moves per second along with a fairly simple evaluation 
function to prune away most of the search tree. Deep Blue’s 8,000-feature 
evaluation function may not sound simple, but the features in it were largely 
interpretable by humans. These things were together enough to push a 
computer algorithm up to and then past the frontier of human chess-playing 
ability.

Go is different. The branching factor for Go is nearly 10 times as high 
as the branching factor for chess, and the evaluation function for Go must 
be much more sophisticated than the one to play chess. As we’ll see in the 
next chapter, the ideas necessary for a computer to play Go competitively 
didn’t even exist when Tesauro developed his backgammon-playing agent 
and when Deep Blue beat Garry Kasparov in 1997. It would take two 
decades of new ideas and hardware improvements to bring computer Go 
agents within reach of the best humans.
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Simply scaling to more and faster processors will not be enough with current 
techniques. I think we need one or two further breakthrough ideas in 
algorithms.
—Martin Müller, Professor and Associate Chair of Computer Science at 
University of Alberta1

In spring 2011, after IBM’s Watson had made world headlines for defeat-
ing world champions at Jeopardy!, researchers from the project toured the 
world to give a variety of talks on the system. James Fan, one the most 
enthusiastic proponents of developing the system and one of its lead 
researchers, visited the University of Alberta on one of these trips, where 
he met several leading AI researchers. One of them was Martin Müller, 
who had been studying computer algorithms to play the game Go. These 
researchers had been leading the field for some time, but the problems were 
difficult. As Professor Müller mused, it wasn’t clear that computers could 
solve the problem anytime soon. The general consensus of the community 
was that Computer Go was at least a decade from being solved. But Müller 
and his fellow researchers, unfazed by a challenge, continued to work on 
the problem.

COMPUTER GO

The ancient game of Go has long been considered one of the greatest chal-
lenges in the field of game-playing AI. It’s the oldest game still played in 
its original form, and it’s played by tens of millions of people worldwide. 
As old as it is, Go has also found a strange juxtaposition with technology 
in the internet age. Long before the internet arrived, Go players used 
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networked computers to play remotely with one another; and in 1992 an 
internet Go server was created so Go aficionados could meet up to play 
Go with one another online.2 Over time more servers popped up, enabling 
Go players to meet up with—and play against—others throughout the 
world.

As the Wall Street Journal reported during the final week of 2016, a mys-
terious player named “Master” appeared on one of these servers, its avatar 
a wide-eyed cartoon fox. Master was peculiar, making unconventional or 
seemingly foolish moves, without pausing to think. But its strategies some-
how worked: it defeated some of the best Go players in the world over 
the course of the week. In fact, Master had performed spectacularly well 
that week, winning all 60 of the games it played. And one of Master’s games 
during this period was against the world’s reigning Go champion, 19-year-
old Ke Jie.3

Most players in the community had no idea who this mysterious 
Master was, but Ke Jie had been told in advance of his game: Master was 
the secret online identity of AlphaGo, an algorithm Google’s DeepMind 
had created to play Go.

AlphaGo wasn’t exactly the first program to play Go. People have been 
writing computer programs to play Go since around 1968. In 1985, an 
organization offered a prize of 40 million new Taiwanese dollars—about 
US$1.4 million in today’s dollars—to anyone who could create an algo-
rithm to defeat a professional Go player, kick-starting efforts at computer 
Go. The offer, unmet for over a decade, was eventually rescinded, and 
other awards began to pop up in its place.4 Even IBM tried its hand at 
computer Go, where some of its researchers were working on the prob-
lem just before they were pulled away to work on Watson.5 But for nearly 
half a century, a computer program that could defeat the world’s best Go 
champions remained elusive.

This wasn’t for lack of trying. Go is an extraordinarily difficult game for 
a computer to play. On each turn, a player must choose from about 250 
possible moves.6 An algorithm searching through just the first three plies 
(you make a move, I make a move, and you make another move) would 
already need to consider over 10 million board configurations. And these 
tens of millions of states barely scratch the surface of a typical Go game, 
which lasts about 150 moves—roughly twice the number of moves and 
an incomprehensibly many times the number of states in a typical chess 



Expert-Level Play for the Game of Go	 231

game.7 And so programmers tried and tried for decades, using the typi-
cal bag of AI tricks: they wrote programs to search through the game tree 
and developed evaluation functions—usually simple, weighted-average 
classifiers—to prune it. But the size of the search tree was simply too big, 
and their evaluation functions were too simple.

THE GAME OF GO

The rules of Go are simple. As with chess, it is a two-player game: one 
player controls white pieces—sometimes called stones—while the other 
controls black pieces. The players take turns setting their stones onto a 
19 × 19 grid.8 Once placed, a stone stays fixed on the board unless it is 
“captured” by the opponent. If the stone is captured, it’s removed from the 
board.

The goal of Go is to “control” territory, so that at the end of the game 
your pieces cover as much of the board as possible. The important dynamic 
in the game is that each player has the ability to capture her opponent’s 
stones, by completely surrounding the perimeter of those stones with her 
own. If she places a stone on the board so as to completely surround a clus-
ter of her opponent’s pieces, with no gaps to “breathe,” she captures those 
pieces and removes them from the board. You can see an example of this 
in figures 15.1a and 15.b, which show a move from a game between cham-
pions Lee Sedol and Ke Jie. In 15.1b, white places a stone at D-6 to capture 
(and has thus removed) two black stones at D-4 and D-5. In so doing, white 
has gained territory for himself and further strengthened his position. The 
game ends when either a player resigns or both players give up their turn 
(that is, after they both “pass”).

Despite the simplicity of its rules, Go strategy is both deep and subtle. 
This fact hasn’t escaped the world’s experts. When Ke Jie lost the match to 
Master, he reflected: “After humanity spent thousands of years improving 
our tactics, computers tell us that humans are completely wrong. … I 
would go as far as to say not a single human has touched the edge of the 
truth of Go.”9

This is also one of the reasons Go is challenging for a computer: it can 
be notoriously difficult to judge the state of a Go game. The distinction 
between whether you capture your opponent’s stones or they capture yours 
could depend on a single misplaced stone. For example, if the white player 
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Figure 15.1a, b
An example of a Go game between Go champions Lee Sedol and Ke Jie. 
In the board on the bottom, which is one move after the board on the top, 
white places a stone that “captures” two black pieces. Game snapshots are 
available at https:​//gogameguru​.com​/2nd​-mlily​-cup​-final(thisis​game 
3of5oftheMLilycupfinal).

https://gogameguru.com/2nd-mlily-cup-final(thisisgame3of5oftheMLilycupfinal
https://gogameguru.com/2nd-mlily-cup-final(thisisgame3of5oftheMLilycupfinal
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in figure 15.1b hadn’t placed a white stone at D-6 to capture the black 
stones, then the black player could have placed a black stone at E-6 to cap-
ture the white stones.

Another reason it’s difficult for a computer to evaluate Go games is that 
no stone is special. The value of a player’s stones on the board lies exclu-
sively in the positions of those stones. This is different from chess, where the 
evaluation function can lean heavily on the values of different pieces (what 
we called material features in the last chapter). In chess, the queen is worth 
far more than the pawn, so you should almost never attack a pawn if it 
means sacrificing your queen. In Go, the evaluation function must iden-
tify important patterns of stones on the board, which requires a pattern-
matching ability that can rival a human’s ability to pattern match, and 
which is a nontrivial task because these intuitions are often difficult even 
for humans to describe. This is exacerbated by the fact that the game can 
change quickly: the search tree below the pruning level has many outcomes 
that depend on the placement of a single stone, as we saw in the last 
paragraph.

SAMPLE MOVES TO BUILD AN INTUITION

I first played Go with an experienced friend in college. Here was his advice 
to me: “Download this program for your computer and play a bunch of 
games really fast against the computer. Don’t even worry about being good 
at first. Just play a lot of games until you build up an intuition for how it 
works.”

I followed his advice and quickly found that knowing the rules alone 
was insufficient to play well. Although I never played Go enough to 
become competitive, it was clear that being good at Go requires having the 
type of intuition humans are good at. And although I could explain some of 
this intuition in words, much of it was simply pattern-matching by my sub-
conscious, hunches I had but couldn’t quite put a finger on: put a free stone 
far enough away from the edge of the board and the opponent’s stones, but 
not too far, and so on. That brings us to one of the key questions in develop-
ing a computer algorithm to play Go: how can we select rich enough fea-
tures for an evaluation function to sufficiently capture humans’ intuitions? 
Unfortunately, as we’ll soon see, even a great evaluation function won’t be 
sufficient to prune the search tree enough. So let’s turn directly to the 
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question we ultimately care about: how does AlphaGo traverse its search 
tree?

The rough intuition behind AlphaGo’s strategy to picking its moves is 
a bit like what my college friend recommended when he suggested play-
ing a bunch of games really fast, to build up an intuition. Every time 
AlphaGo needs to make a move, it simulates a bunch of games, starting 
from the current layout of the board. It plays through each game in its sili-
con imagination, digging a single path deep into the search tree, until that 
hypothetical game comes to an end. After it has played through this imag-
inary game, the program knows whether it has won or lost. It doesn’t mat-
ter much that the game imagined by the program is exceedingly unlikely 
to ever play out. What matters is that AlphaGo can do this many thou-
sands of times to build up an intuition for which move to make.

To build that intuition, AlphaGo bubbles up the win/loss statistics of the 
games it imagines to the highest levels of the search tree, where it stores 
counts of how often it won or lost after making different moves from its 
current position. Once it has run through enough games, it should have a 
much better sense—based on data—for which move it should play next.10

You can see an example of this sampling approach in figures 15.2a and 
15.2b. On the top, AlphaGo plays through a single game all the way to 
the bottom of the tree. Then it checks which player would have won the 
game and sends that information back up to the top of the search tree, 
where it keeps count of win/loss statistics. Let’s imagine that this tree has 
50 layers. With the branching factor of 2 shown in the figure, there are 
about a million billion states at the very bottom of the tree. (Remember: the 
search tree for Go is many orders of magnitude bigger than this.)

The tricky part for AlphaGo is in simulating realistic games. It must 
anticipate which moves it and its opponent are likely to make on each turn. 
It can’t just sample moves completely randomly.11 Statistics about a game in 
which moves were chosen randomly wouldn’t be very useful in predicting 
the outcome of a real game. Instead, AlphaGo needs a way to predict 
which moves an expert player would make.

How could AlphaGo do this? It probably won’t surprise you to learn 
that DeepMind used the same idea for its Atari-playing agent—a deep 
neural network—to predict its moves. Each time AlphaGo needs to simu-
late a game, it makes a series of predictions—one after another—of which 
move each player would make, placing an imaginary stone on the board 
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Figure 15.2a, b
An example of a simulated game in the Go search tree to be used as 
a sample in its move decision (top). The sample game is run until its 
end. At the end of the game, the outcome of it is known, and this 
information is “bubbled up” through the tree to the top layers (bottom). 
Sampled games are sometimes called “rollouts.”
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as it plays through the game. Each time it needs to plan a move as its imagi-
nary game rolls out, it uses its neural network on the board with the 
imaginary pieces to decide the next move.

Let’s call this neural network AlphaGo’s move-prediction network.12 This 
move-prediction network is very similar to the network DeepMind used 
to play Atari games: they both use many convolutional layers. But these 
networks and the ways these agents used them have some important 
differences.

Remember that the Atari-playing network was meant to be very gen-
eral: DeepMind couldn’t build any game-specific ideas into the network’s 
architecture because the network needed to play many different Atari 
games. Its only inputs were the red-green-blue values of each pixel on the 
screen, along with the pixel values from several recent frames that showed 
up on the screen.

AlphaGo’s move-prediction network, on the other hand, is designed 
specifically to play the game Go. It has lots of Go-specific logic, most of 
which comes in the form of features DeepMind had created to summarize 
how players would move. One version of AlphaGo feeds its neural network 
with inputs amounting to a whopping 48 copies of the game board 
(called “planes”); each copy of the board provides different information—
that is, a different feature—about each position on the board.

Several of these feature planes summarize the board state: one plane 
indicates whether there is a black stone on each position, while another 
indicates whether there is a white stone is on each position. Some of the 
feature planes relay the rules of the game: Would putting a stone here be a legal 
move for the player? How many of the opponent’s stones would be captured if a stone 
were placed here? Many of the remaining feature planes provide custom tac-
tical features—albeit simple ones—about the position. These usually cap-
ture very simple intuitions correlated with good moves: How many empty 
spots are there along the perimeter of this piece of the board? How many turns has 
it been since a piece was played at this location?13 (As we’ll see later, a more 
recent version of AlphaGo doesn’t need so many hand-built features.)

AlphaGo’s move-prediction network also differs from the Atari network 
in its architecture. First, AlphaGo’s network is much deeper: at 13 layers, it’s 
nearly three times as deep as the Atari-playing network. Although it’s 
deeper, it lacks a fully connected hidden layer at the end: all of its hidden 
layers except the output layer are convolutional layers.
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A few chapters ago, we learned that convolutional layers have sets of 
simple pattern-matching classifiers called filters that run over small patches 
of neurons in their preceding layers.14 These filters are the magical “thing 
detectors” that can identify interesting patterns in the previous layer—
patterns that are useful in making predictions from the network. Each of 
these convolutional layers identifies where interesting things are happen-
ing in the input planes. AlphaGo’s first convolutional layer uses about 200 
separate 5 × 5 filters. In other words, this layer looks for 200 distinct pat-
terns on the feature planes that would indicate something interesting is 
going on. Any time a filter finds an interesting pattern somewhere on the 
feature planes, the corresponding neuron in the next layer “lights up.”

Subsequent layers in AlphaGo’s move-prediction network then apply 
their own filters to search for compositions of filters from the previous layer.15 
Just as the convolutional layers deep within an image-classification neural 
network can find complex patterns of pixels that look for things like fur, 
eyes, or faces, layers deep within AlphaGo can find important patterns of 
Go stones on the board—exactly the patterns expert humans might look 
for. When the move-prediction network is run, its neurons light up, layer by 
layer, the layers deep within the network finding more and more complex 
patterns of Go pieces.

AlphaGo’s move-prediction network also differs from the Atari-playing 
network in the form of its output. Remember that the Atari network pre-
dicts the future rewards the agent should expect for selecting different 
actions, and the Atari agent simply chooses the action with the highest 
expected reward. AlphaGo’s move-prediction network produces a probabil-
ity distribution over possible actions each player might make. AlphaGo then 
uses the output of this network as if it were a weighted die. When it imag-
ines the rest of a game playing out in one of its simulations, it rolls this 
weighted die to select its next move, selecting actions more often if the 
move-prediction network says they have a higher probability of being 
played.

DeepMind trained AlphaGo’s move-prediction network using 30 mil-
lion moves played by humans from one of the internet Go servers.16 By the 
time DeepMind had finished training its move-prediction network, it was 
able to predict these humans’ moves remarkably well: in a game where 
players typically have to choose from about 250 possible moves, AlphaGo’s 
move-prediction network could predict these players’ moves with a 
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respectable 57 percent accuracy.17 This isn’t perfect, so AlphaGo still had 
a lot of uncertainty about which moves an opponent might make. But 
by sampling players’ moves as it imagined how games would play out, 
AlphaGo was probably being reasonable: even expert players can’t predict 
with perfect accuracy which moves their opponents will make. Sam-
pling would make AlphaGo more robust to its own uncertainty in how 
each player might move.

As accurate as it was, this move-prediction neural network was also 
impractically slow. DeepMind found that a full evaluation of the network 
took about three milliseconds.18 This might sound fast, but a typical Go 
game lasts about 150 moves. This means it could take nearly half a second 
to simulate a single game—that is, to generate a single sample out of the 
thousands it might need. This would have been far too slow. For the battery 
of experiments DeepMind ran on AlphaGo, for example, they gave it 
only five seconds to plan each move. How could it run accurate simula-
tions and still be fast enough that a single move by AlphaGo wouldn’t 
take hours to plan?

But there was an even bigger problem AlphaGo faced. As long as the 
move-prediction network was imperfect—and it was imperfect—there 
was no guarantee that the win/loss statistics AlphaGo collected near the top 
of its search tree would tell it which move was best. This was true even if 
AlphaGo could collect as much data in its simulations as it needed. Even 
if it could run an infinite number of simulations in the blink of an eye, it 
still might never learn which move was best. This was the result of a subtle 
and nefarious bug lurking in the way that AlphaGo collected and used 
its statistics—at least, in the way I’ve explained it so far. In fact, AlphaGo 
didn’t use the algorithm I’ve just described up to this point. AlphaGo 
would need to use a modified version of this algorithm that would make 
it robust to the limitations—in speed and accuracy—of its slow move-
prediction network.

THE HAND OF GOD

The mysterious online appearance of Master, the Go player with a wide-
eyed fox as its avatar, wasn’t the first time AlphaGo made headlines. It 
became well-known in the computer Go community when it defeated the 
European champion Fan Hui in a five-game match, and again it made 
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headlines throughout the world when it defeated world champion Lee 
Sedol in four out of five professional games in 2016.19

The five-day match with Lee Sedol took place in his home country of 
Korea, where over 8 million people play Go.20 The five games were simul-
taneously gut wrenching and beautiful. Christopher Moyer of the Atlantic 
captured the atmosphere during one of the games:

In Game 2, Lee exhibits a different style, attempting to play more cautiously. 
He waits for any opening he can exploit, but AlphaGo continues to surprise. 
At move 37, AlphaGo plays an unexpected move, what’s called a “shoulder 
hit” on the upper right side of the board. This move in this position is unseen 
in professional games, but its cleverness is immediately apparent. [Go player] 
Fan Hui would later say, “I’ve never seen a human play this move. So 
beautiful.”

And Lee? He gets up and walks out of the room. For a moment it’s unclear 
what’s happening, but then he re-enters the game room, newly composed, sits 
down, and plays his response. What follows is a much closer game than Game 
1, but the outcome remains the same. Lee Sedol resigns after 211 moves.21

After the “shoulder hit,” when Lee walked out of the room, he needed 
almost 15 minutes to recover.22

Lee lost the third game as well, so he was bound to lose the match: he 
was at three losses out of three in a five-game match. As a representative 
of humans in the war against silicon, Lee addressed the world at a news 
conference after that game. “I apologize for being unable to satisfy a lot 
of people’s expectations. I kind of felt powerless.”23 With that, Google won 
the prize of $1 million, which it donated to charities. But Lee and 
AlphaGo played two more games for fun, Lee hoping to regain his pride. 
And then something happened in the fourth game.

On the 78th move, after studying the board for 30 minutes, Lee placed 
a stone roughly in the middle, in a move called a “wedge,” as shown in 
figure 15.3a. The move was equally as brilliant—and equally as unex-
pected—as AlphaGo’s shoulder hit. Lee’s wedge move became known 
among Go enthusiasts as the “Hand of God.”24

As Christopher Moyer of the Atlantic and Cade Metz of Wired observed, 
immediately after Lee’s Hand of God play, AlphaGo played a disastrous 
move (we might call this move its “Hand of Elephant”).25 It’s possible that 
AlphaGo simply didn’t have any good moves to play at this point, and that 
any move it played could have been called disastrous; but the outcome was 
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Figure 15.3a, b
The “Hand of God” move played by Lee Sedol in the fourth of their five 
games (L-11, top board). The “Hand of Elephant” played by AlphaGo 
followed immediately afterwards (K-10). Game states are available at 
https:​//gogameguru​.com​/lee​-sedol​-defeats​-alphago​-masterful​-comeback​ 
-game​-4.

https://gogameguru.com/lee-sedol-defeats-alphago-masterful-comeback-game-4
https://gogameguru.com/lee-sedol-defeats-alphago-masterful-comeback-game-4
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the same nonetheless. Minutes later, as AlphaGo was running through its 
simulations, its estimate of its ability to win the game plummeted. Lee won 
the fourth game, and the Korean press cheered. At a post-game press con-
ference, Lee Sedol addressed the media. “Because I lost three matches and 
then was able to get one single win,” he explained, “this win is so valuable 
that I wouldn’t exchange it for anything in the world.”26

After the fourth game, AlphaGo’s creators analyzed what had happened 
in those moves. They discovered that AlphaGo had placed too low a 
probability on Lee’s Hand of God move, so it hadn’t explored that branch 
of the search tree in enough detail. AlphaGo thought there was just a 1 in 
10,000 chance Lee would make that move.27

MONTE CARLO TREE SEARCH

Over the first decade of this millennium, the algorithms related to how 
AlphaGo simulated its games hit an inflection point. An algorithm known 
as Monte Carlo Tree Search—MCTS for short—led to a paradigm shift for 
computer Go. If you’ve ever looked at a list of Go-playing computer 
programs, there’s a good chance that the list was separated into two groups: 
those that came before MCTS and those that came after it. Monte Carlo 
Tree Search was AlphaGo’s solution to both its slow move-prediction 
problem and its nefarious wrong-move problem.

Monte Carlo Tree Search improves on the way we simulated games ear-
lier in this chapter: it enables an agent to run through many games, col-
lecting statistics about which simulations end in wins, as we saw before. In 
contrast to the simulation algorithm we saw earlier, however, each time it 
simulates a game, it runs through two separate phases.

In the first phase, its “slow rollout” phase, AlphaGo descends through 
branches near the very top of the search tree as it did before, running the 
slow move-prediction neural network to find the probabilities for future 
moves by AlphaGo or its opponent and then rolling a weighted die with 
those probabilities to select which move to make, as shown in figure 15.4. 
This works just like the algorithm I described in the earlier section.

Once AlphaGo’s MCTS algorithm descends far enough into the search 
tree, it then evaluates the board in two different ways. First, it evaluates the 
board with a neural network evaluation function that predicts the 
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probability that AlphaGo will win the game from that state. Then—well, 
rather, simultaneously—it performs a really fast rollout to simulate the rest 
of the game.

The neural network AlphaGo uses for its evaluation function is nearly 
identical to its slow move-prediction neural network, except that at its end 
is an extra, hidden, fully connected layer, like the Atari network. This is 
followed by a single output neuron that lights up brightly if AlphaGo has 
a high probability of winning with that board layout.

As AlphaGo is running this evaluation function, it also runs a very fast 
simulation of the rest of the game. This serves a similar purpose as running 
the evaluation function, but it provides AlphaGo with an independent esti-
mate of how the rest of the game will play out.

The simplest way to perform a fast rollout would have been to simply 
choose moves at random. This is actually sometimes done with Monte 
Carlo Tree Search, but Go has too large a search tree, so it would have 
taken too long for AlphaGo to collect accurate estimates of win/loss sta-
tistics for this to work. Besides, DeepMind saw that it didn’t work well 
in practice in one of their experiments. Instead, AlphaGo chooses moves 

… ……

Fast rollout phase

Slow rollout phase

… ……

.. ... .

Figure 15.4
The boundary between the slow rollout phase and the fast rollout phase. The slow 
move-prediction network and win/loss statistics from past simulations are used to 
choose actions during the slow rollout phase. When a game reaches the fast rollout 
phase, an evaluation function is run on the state at the boundary, and the fast move-
prediction network is used to choose actions for the rest of the simulation. As 
AlphaGo runs more simulations and becomes more confident about states near the 
top of the tree, it extends the envelope of the slow-rollout phase to include the states 
with the most promise.
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during this fast rollout phase with—surprise!—yet another neural net-
work. This fast move-prediction network is a lightweight version of the 
slow-prediction network. It has the same architecture as the slow move-
prediction network but is missing a few input features that are time-
consuming to compute. Without these features, the network can predict 
moves in about two-millionths of a second. The cost of this speedup is 
that the fast move-prediction network is about half as accurate as the slow 
network at predicting experts’ moves.

Those two parts of AlphaGo’s evaluation function enable it to run 
quickly enough to resolve the speed problem that AlphaGo faced. But they 
didn’t address the nefarious bug lurking in the way AlphaGo selected its 
moves.

That bug is resolved by another feature of Monte Carlo Tree Search: the 
way AlphaGo chooses its moves near the top of the search tree. In addi-
tion to using the slow move-prediction network to sample its moves near 
the top of the tree, AlphaGo begins to prefer moves in this slow rollout 
phase based on what it has learned are good moves from the games it has simulated 
so far. This way, even if AlphaGo’s move-prediction networks were consis-
tently wrong in certain ways—in fact, even if AlphaGo selected random 
moves with its networks—AlphaGo will eventually learn to make optimal 
moves, because it will eventually learn from the result of its simulations 
which moves are the best.28

When it’s AlphaGo’s turn to select a move to play against its opponent, 
it chooses its move by selecting the action at the top of the search tree with 
the largest number of samples. Since AlphaGo tended to select moves dur-
ing its simulations that would cause it to win the game, the move it selected 
to play tended to be both high-quality and very thoroughly understood by 
AlphaGo.29

Monte Carlo Tree Search sometimes assumes a fixed time budget—that 
is, it assumes that there is a fixed amount of time—and it continues to run 
through its simulations as long as it can, simulating game after game, until 
this budget is all used up. This is helpful when each player has a limited 
amount of time per turn: AlphaGo can run as many simulations as possi-
ble, until its time had run out. Then, when it makes its move and its oppo-
nent makes her move, AlphaGo reuses the statistics it had built up through 
that path of the tree.
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ONE-ARMED BANDITS

AlphaGo’s ability to run simulations as long as possible is deeply related 
to what makes Monte Carlo Tree Search so effective. Artificial intelli-
gence researchers have been poking around at methods like MCTS for 
a while, but it was difficult to find an approach that guaranteed that the 
algorithm, as it continued to run more simulations, would eventually 
find the best possible action. Instead, no matter how long the algo-
rithms crunched away, these early algorithms might still produce a non-
optimal move.

The key insight that allowed Monte Carlo Tree Search to move past this 
limitation depended on the delicate balance between exploration and exploi-
tation, a well-known tradeoff among artificial intelligence researchers. Imag-
ine that you have 100 arms, and each arm can pull the lever of a different slot 
machine at a casino. Because you need to keep track of your arms, you can 
pull just one lever on a slot machine of your choice every 10 seconds. This 
casino is special, not just because it caters to 100-armed patrons, but also 
because it advertises that some of its slot machines pay out more on aver-
age than they take in.

Your goal is to come home from this casino with as much money as 
possible by the end of the night. So as you pull these levers, you might keep 
track of the payout from each of the slot machines: $1 here, $0 there, and 
$100 over there. The tricky bit is that this payout differs on each pull of 
each machine’s lever, and you have no idea at the beginning how these 
machines will pay out. One machine might consistently pay out $10, and 
another might pay an average of $100 for each pull of the lever, but with 
high variance. You’re better off pulling the arm of the second machine than 
the first machine, even if it pays out $0 for the first pull; but you need to 
try it enough times to learn that it pays out well. Machine learning research-
ers have studied this problem extensively; they call it the “multi-armed 
bandit” problem.

At what point should you give up on most of the machines and focus 
on just a few machines? Will you ever be satisfied to pull the lever on just 
one machine for the rest of the evening? You can recognize intuitively that 
you should probably try each machine at least once, and that you should 
gradually move to the best machines as you gather enough data to be con-
fident about those machines. But turning this intuition into a concrete 
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algorithm that a computer can follow—while ensuring it has the right 
statistical properties—is a bit trickier.

Before Monte Carlo Tree Search came around, its tree-sampling prede-
cessors faced the same dilemma: when running simulations, they needed 
to explore enough of the game tree to get an accurate sense for which 
actions were best. The break for Monte Carlo Tree Search came around 
2006, when researchers found a way to improve sampling on trees that 
guaranteed that the agent could find the best move eventually, provided 
that it had run enough simulations. This is why a random rollout policy can 
actually work for MCTS: an agent using MCTS starts to use the outcome 
statistics near the top of the search tree as it plays more games. As long as 
it can experiment enough that it learns the best moves, MCTS will even-
tually tell the agent the best possible move.30

How does this sampling approach work? A couple of pages ago I brushed 
this aside when I said, “Once AlphaGo’s MCTS algorithm descends far 
enough into the search tree, it then evaluates the board in two different 
ways.” The key decisions in MCTS are where the agent decides to switch to the 
fast rollout policy, and how it samples its actions before this.

As AlphaGo runs through its iterations high up in the search tree, 
remember that it adjusts its moves during the slow-rollout phase near the 
top of the search tree using the win/loss statistics it has gathered so far. But 
it also needs to spend some time exploring other moves, just as you need 
to spend a bit of time on each slot machine before deciding to move over 
to the best ones. AlphaGo’s move-selection algorithm—the way it selects 
moves in the top of the search tree—is designed therefore to prefer moves 
when it doesn’t have much data about them, using a formula like the one 
that transformed MCTS in 2006.31

The other key decision AlphaGo’s researchers made in MCTS is where 
it switches to its fast rollout policy. As AlphaGo’s tree search algorithm gath-
ers more evidence that a certain path in the search tree is good, it pushes 
this boundary further down that path, so it can start to search more deeply 
along that path before switching to its fast rollout policy. This is concep-
tually a lot like the singular extensions Feng-hsiung Hsu and his team 
added to Deep Blue to play chess. Remember that those singular exten-
sions allowed Deep Blue to search deeply into the tree along a beam of 
very promising moves by each player—moves the players were almost 
sure to make, like defending their king. AlphaGo learns these singular 
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extensions dynamically when it sees promising sequences of moves by 
either player.

DID ALPHAGO NEED TO BE SO COMPLICATED?

It’s worth reflecting on what made the various design decisions in AlphaGo 
important to its success. Some of them might seem peculiar given what 
we’ve seen with other game-playing algorithms. Did AlphaGo really need 
to be so complicated? For example, why did AlphaGo even bother with 
simulating games? Couldn’t it have searched to a fixed depth and then just 
used a neural network evaluation function, the same way Deep Blue played 
chess?

Remember that the search tree for Go is orders of magnitude larger 
than the search tree for chess. If AlphaGo had followed Deep Blue’s lead—
that is, brute-force search with a custom evaluation function and some 
singular extensions—then it very likely would have been either too slow, 
or it would have searched too shallowly. On the other hand, AlphaGo man-
aged to defeat Fan Hui while evaluating only about a thousandth the number 
of board states Deep Blue had evaluated during its game with Garry 
Kasparov.32 AlphaGo’s creators speculated that this was because AlphaGo 
selected moves during its search phase more intelligently with its slow 
move-prediction network, and because it evaluated these moves with a 
high-quality evaluation function.33 As they speculated, AlphaGo used “an 
approach that is perhaps closer to how humans play.”34

DeepMind devoted an enormous amount of resources to developing 
AlphaGo, with a team of about 20 employees.35 The team experimented 
extensively in its design decisions for AlphaGo, and much of AlphaGo’s 
complexity was justified by performing one experiment or another. For 
example, when they were deciding how many filters to use in their con-
volutional layers, they tried a variety of different numbers and found that 
it worked best with 100 or 200 filters per layer.36

Another experiment DeepMind ran studied how they should evaluate 
the board partway through the search tree after the slow rollout phase. 
Should they use a fast, completely random rollout? Should they use just 
their evaluation-function neural network? Or should they do a rollout 
with just a fast move-prediction network? It was from this experiment they 
found that random rollouts weren’t very effective; and AlphaGo worked 
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best when it used a 50/50 mixture between the evaluation-function net-
work and the fast move-prediction network.37 They also pitted AlphaGo 
against itself for millions of games to generate more data to improve the 
evaluation-function neural network, similar to how Tesauro improved his 
backgammon-playing neural network.

After its initial wins against Fan Hui and Lee Sedol, DeepMind contin-
ued to improve AlphaGo. One of its improved versions played the online 
games we saw at the beginning of this chapter as the mysterious player 
named Master. By the end of 2017, DeepMind had improved AlphaGo in 
nearly all respects, culminating in a version they named AlphaGo Zero. It 
could be trained in three days (instead of months), it required a 10th of the 
processing power to play live games, and it won 100 out of 100 games 
against the version of itself that had played the famous matches against Lee 
Sedol. And it could do all of this although, like Tesauro’s program, it learned 
how to play from scratch.

How did DeepMind make these improvements? One way was by incor-
porating some of the improvements to convolutional neural networks 
that had been discovered elsewhere over the past few years, including add-
ing “shortcut” connections between layers and by improving the way 
they trained their network. They also simplified AlphaGo’s architecture, 
merging the slow-move-prediction network and evaluation-function net-
works, and using as the network’s inputs only the positions of the black 
and white stones instead of the original 48 feature planes. They improved 
the network’s accuracy enough that they didn’t need to use the fast roll-
outs anymore: they could simply run their evaluation function neural net-
work once they reached the end of the slow-rollout phase.

LIMITATIONS OF ALPHAGO

Like the Atari-playing agent, AlphaGo was designed for the very specific 
task of playing games. Both operated on similar principals: descend into the 
search tree (just one action in the case of the Atari network) and use neu-
ral networks to evaluate the board position. Although AlphaGo demon-
strated a human-like ability to recognize features on the Go board, it 
could perform only a very narrow task: playing Go. As Jie Tang, a researcher 
at OpenAI, pointed out, “It’s not like AlphaGo is going to decide it wants 
to go get a cheeseburger and try to take over the world.”
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One reason AlphaGo isn’t about to go take over the world is that it 
depended on humans for everything, including its ability to place its pieces 
on the board. For AlphaGo to make its moves, a human operator must look 
at a computer screen to see which moves AlphaGo has selected and then 
place a stone on the board for it.

Except for its uncanny ability to recognize patterns in the game of Go 
and to select moves from these patterns—abilities that no doubt were 
impressive—AlphaGo didn’t demonstrate most of the behaviors we often 
associate with human intelligence. It couldn’t interact with a fast-chang-
ing world. Except for the statistics it aggregated in the upper levels of its 
search tree, it had no memory of past events; and except for the simulations 
it ran of how it and its opponent might move, it had no conception of 
future events. AlphaGo’s creators, like the creators of most of the automata 
in this book, designed it to solve a narrow problem. For the same reason 
an airplane doesn’t have wings that flap, AlphaGo doesn’t have a memory 
or an ability to react quickly to a real-time environment. AlphaGo was 
engineered precisely to play Go, so it only demonstrates the capabilities 
required for that.

Soon after AlphaGo defeated Lee Sedol, DeepMind announced a new 
project. This next challenge was to design an agent that could play a game 
requiring that agent to have many more of the qualities we typically asso-
ciate with human intelligence: the ability to make decisions under time 
constraints, to seek out the information needed to make these decisions, 
and to make these decisions at both a high level (planning actions that 
might impact the course of events far into the future) and at a low level 
(making lightning-quick reactions whose impact will be felt immediately). 
DeepMind hoped to build an agent that could play the real-time strategy 
game StarCraft.



16  REAL-TIME AI AND STARCRAFT

Games are a helpful benchmark, but the goal is AI.
—Michael Bowling, professor at the University of Alberta1

BUILDING BETTER GAMING BOTS

Considering that the AI community has found a way to beat world cham-
pions at Go, and that Go was long considered to be one of the most dif-
ficult challenges for AI, what are the next big challenges we’re trying to 
tackle in the field? In this chapter, we’ll take a closer look at a concrete 
open problem that’s been receiving more and more attention: the problem 
of building a computer program—a bot, in the lingo of the community—
that can play games like StarCraft as well as the best humans can. We’ll also 
look at which of the methods we’ve seen so far in this book can be useful 
in building StarCraft bots. Before going any further into the topic, I’ll warn 
you that we haven’t fully mastered the art of building these bots; so don’t 
expect to finish this chapter knowing how to do it.

StarCraft is among the most popular games in the history of computer 
gaming. Released in 1998, it sold over 10 million copies within a decade 
of its release.2 Of those copies, 4.5 million were sold in Korea alone, where 
the game is credited with starting the country’s gaming craze, and where the 
game is played competitively and watched by large audiences in profes-
sional sports stadiums.3 The top StarCraft players are idols; they receive gifts 
from adoring fans, and the very best ones receive lucrative contracts to play 
the game professionally. One of the world’s top players, a 28-year-old, 
received a three-year contract to play the game professionally for 
$690,000.4 Other players aren’t so fortunate. Another 28-year-old man 
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became so engrossed in the game that he died of exhaustion after playing 
for 50 hours straight in a smoky internet café.5

STARCRAFT AND AI

StarCraft is a game of war set in the 26th century. Like chess, each player 
commands an army of different types of pieces, each of which has certain 
strengths and weaknesses. Some pieces, like pawns, are weak and can’t move 
very fast. Other pieces serve as tough, gnarly infantry, while yet other pieces 
can shoot projectiles or fly long distances (remember, StarCraft is played on a 
computer, not on a physical board). Unlike chess, StarCraft is a real-time strat-
egy game. Instead of taking turns to move, players command individual units 
of their armies in real time across a large fighting area. Combat between 
army units is fast-paced and brutal, which gives an advantage to players 
who are quick with their fingers. Indeed, the top human StarCraft players 
routinely exceed five keyboard and mouse actions per second.6

Another feature that makes StarCraft interesting is that it requires each 
player to maintain a functioning economy. To develop their own army, 
players must construct and upgrade different types of buildings; and the 
order in which they do this matters. Different buildings allow them to cre-
ate differently skilled pieces in their army or to create new buildings, so 
this is sometimes called the “technology tree”: the deeper into the tree 
players build, the stronger their pieces. But to construct and upgrade these 
buildings, the players must acquire resources from their environment (think: 
the equivalent of gold, wood, and oil in the 26th century). Obtaining the 
resources to build this economy often requires acquiring and protecting 
those resources by force. So a strong economy begets a strong army, and a 
strong army enables a strong economy.

To make the game even more interesting, a “fog of war” obscures most 
of the playing space in StarCraft. Players can see what’s happening on or 
near their pieces, but they can’t see far beyond their pieces on the world 
map. This means they must send out scouts or find other ways to learn 
about the world. So when players make decisions, they do so with uncer-
tainty. Players must proactively think about when and how to gather intel-
ligence throughout the game.

Let’s think back briefly to how we designed agents to play strategy 
games like chess and Go. In those games, the best agents searched through 
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millions of game states and ran evaluation functions to find the states that 
were the most likely to lead to a successful outcome. The size of a game’s 
search tree—and an agent’s ability to search through it—depended on two 
factors: the branching factor at each level of the tree (how many moves the 
agent must choose from at a given time) and the depth of the tree (how 
many moves the agent might make in a game).

Go’s branching factor is about 250. StarCraft’s branching factor is much 
larger than this. At any given time, a player can choose to move any of one 
or more pieces, or she can upgrade or build new buildings. One conserva-
tive estimate of the game’s branching factor pins it at 1 followed by 50 
zeros (it’s so high because players can move any subset of their pieces simul-
taneously).7 The length of a StarCraft game is also much longer than a game 
of Go: while a professional Go game lasts about 150 moves, StarCraft is a 
real-time game. The length of a typical 25-minute StarCraft game is about 
36,000 moves.8 This means the search space for a typical StarCraft game is, 
very roughly, 101,799,640 times that of a typical Go game. To make things 
even more challenging, StarCraft players have imperfect information due 
to the fog of war; so traditional search methods as used in chess or Go 
won’t work for StarCraft.

In other words, StarCraft presents an awesome challenge for the field of 
artificial intelligence. Creating a bot that can play StarCraft well requires 
matching many qualities we believe define human intelligence, including 
the ability to make strategic decisions with limited information and the 
ability to react to unforeseen circumstances in real time. David Churchill, 
a professor of computer science at Memorial University of Newfoundland, 
called it the “pinnacle” of game AI research.

David has been organizing competitions between StarCraft bots since 
he took it over from Ben Weber around 2010, so we have some idea of 
how far along we are in developing these bots. From what we’ve seen, 
we’re still a long way from cracking the StarCraft problem.9 As of 2017, if 
we were to provide letter grades to StarCraft bots, where professional 
players earn an A- to an A+, and where amateur players earn a C+ to B, 
StarCraft bots fall into the D to D+ range.10 But we have made some 
progress.
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SIMPLIFYING THE GAME

The only way StarCraft bots can have even a remote chance at working is 
by decomposing the tasks they need to perform into manageable chunks. 
Some of the core ideas about what these chunks should be have come from 
careful analysis of how expert humans play the game.11 I’ve organized some 
of the recurring ideas in successful bots into an architecture shown in 
figure 16.1. You’ll probably recognize immediately that we’ve seen a very 
similar architecture when we looked at the self-driving cars at the begin-
ning of this book and at neural networks that could play Atari games. The 
resemblance is partly due to the generality of the diagrams I’ve used (you 
could arguably put almost any agent into a diagram like this), but it’s worth 
reviewing how some StarCraft bots fit into this architecture.12

At the far left of this architecture is the layer through which the agent 
interacts with the world. In self-driving cars, this layer contained sensors 
and controllers; and in the Atari agent, this layer interfaced with the Arcade 
Learning Environment. As of now, most StarCraft bots interact with their 
virtual world through an interface known as the BroodWar Application 
Programming Interface, a software library developed by a precocious young 
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software developer named Adam Heinermann (BroodWar is an expansion 
pack—that is, a specific version—for StarCraft). For the StarCraft bot, this 
sensing and actuation layer offers a way for bots to interact with the game 
itself programmatically.

In the middle layer is a perception and world modeling layer that tracks 
military intelligence for the agent: it summarizes information the agent has 
gathered about the world, including information about opponents’ bases, 
units in the game, and the overall map. Different bots have varying levels 
of emphasis on this layer.

The “smart” behavior of the bot comes from the right-most part of the 
architecture, which we can separate into three levels. At the top level, these 
bots reason about strategy: which buildings should the bot build, which 
building upgrades should it perform, and when should it do these things? 
This strategic decision-making requires planning ahead for tens of minutes 
and has a direct, long-term impact on the game because the technology 
tree—that is, the buildings and their upgrades—directly affects the compo-
sition, strengths, and weaknesses of the bot’s army later in the game. This 
decision-making component also requires long-term planning to develop 
an economy that can support the tree. At a slightly lower level, the bot 
reasons about tactics, which involves planning ahead for about 30 seconds 
to a minute: where should the agent place its buildings? Where and when 
should it send its troops for battle? At the lowest of these three levels is a 
reactive layer, which requires planning and reaction time on the order of 
seconds. And feeding into these three layers is information about the 
world, via its intelligence layer.

Now, these three-layer architectures aren’t the formal three-layer 
architecture we saw in the self-driving cars that could navigate intersec-
tions; for example, the three layers in a StarCraft bot define levels of orga-
nization in a military command hierarchy or a set of buildings. As David 
Churchill, the computer science professor we met a moment ago, explains, 
“When a decision is made at the strategic level, an order is given to a tac-
tical unit with only the information necessary to accomplish the tactical 
goal.”13 This is different from the formal three-layer architecture we saw 
in self-driving cars because there’s no explicit “sequencer,” or Monopoly 
board, layer.
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254	 Chapter 16 

PRAGMATIC STARCRAFT BOTS

What else has worked well in designing StarCraft-playing bots? Think 
back to the guiding principle we saw in the Pragmatic Theory team, the 
two guys without a clue who competed in the Netflix competition. 
Remember that Pragmatic Theory had exactly one goal: to win the com-
petition. And so they aimed for quantity, combining hundreds of models 
and predictors, regardless of the how impractical it might be for Netflix 
to replicate their approach. They were pragmatic about achieving their 
goal.

Many of the creators of the top StarCraft bots have followed a similar 
philosophy, programming their bots with strategies that enable them to win 
the game, even if that means they aren’t building bots that we would con-
sider intelligent. For example, some bots are programmed to follow simple 
“rush” strategies, which means that they build up a small army of weak 
fighting units (the only units they can create without a deep technology 
tree) and attack their opponent before she has had a chance to build up her 
defenses. These rush strategies are legitimate strategies, and expert human 
players use variants of them. But doing this requires the agent to follow a 
simple set of rules with utter disregard for any long-term strategy, and the 
bots that implement these strategies still fall far short of beating expert 
humans.

Churchill designed one of the more sophisticated and successful Star-
Craft-playing bots using a variety of tools from the field of AI. But even his 
bot, called UAlbertaBot, would sometimes lose to these “rush” bots. At one 
point, he studied his opponents’ bots’ strategies and adjusted UAlbertaBot 
to be more resistant to them. This worked for a little while, getting 
UAlbertaBot to the top in competitions, until more competitors popped 
up, with their own unique rush strategies; by that time, Churchill was too 
busy with being a professor to adjust his bot to handle these new strate-
gies. (Most of his work on UAlbertaBot was while he was a graduate 
student at the University of Alberta.)

One of the ways we can tell that even the best StarCraft bots are still bad 
is because they still have major Achilles’ heels. This can sometimes lead to 
bizarre paper-rock-scissors cycles among some bots, as shown in figure 16.2. 
A few years ago, SkyNet Bot was generally very good compared to other 
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Figure 16.2
A paper-rock-scissors cycle among StarCraft bots from a 2011 competition. In the 
competition, Xelnaga usually won when it played against Skynet, Skynet usually won 
when it played against AIUR, and AIUR usually won when it played against Xelnaga.

bots, winning against AIUR Bot about 80 percent of the time. AIUR Bot 
was decent, and, like most other bots, it usually beat Xelnaga Bot. Xelnaga 
Bot used a “rush” strategy like the one we saw above: it attacked other 
players’ “pawn” pieces—the ones that can create buildings and collect 
resources. This strategy didn’t fare well against most bots, but it was also a 
unique weakness of SkyNet Bot, which meant that Xelnaga Bot could 
beat the otherwise good SkyNet Bot about 70 percent of the time!14 
There’s no reason such cycles couldn’t happen among top Go or chess 
players; but its particular acuteness among the best StarCraft agents betrays 
their current weaknesses.

If you’ve played these games before, you’ve almost surely played against 
a computer opponent, which means you’ve played against a bot. So you 
might be wondering: If it’s so difficult to create a bot to play a game like 
StarCraft, why was the computer so difficult to beat? Churchill disagrees 
that they’re difficult. “Because real-time strategy AI is so difficult to make 
intelligent,” he explained, “In-game bots often cheat in order to appear 
stronger than they really are.” The goal of the bots in the software you buy 
off the shelf is to offer an interesting and compelling experience for the 
human player, not to be objectively good.15 For example, in some cases, the 
computer is allowed to see the entire playing map, without the fog of war.16 
The bots might send scouts around to make it look like they don’t have full 
visibility of the board, but this is only a trick, a form of misdirection simi-
lar to what the chess-playing Turk used, to look smarter than they actually 
are.17 Their strategies are equally simple: for example, on a given level, the 
computer might have a scripted—that is, a predefined—build tree with 
very simple rules to handle exceptions.
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In fact, scripted build rules are common even in the “good” bots. When 
Churchill and his collaborators built UAlbertaBot, they built the skeleton 
first, filling in its different components—like the strategy, tactics, and reactive 
layers—with simple, scripted rules. The idea was to have a bot that could 
play StarCraft fully even if it couldn’t play well. Then, once the skeleton was 
in place, they could continue to improve the individual components, replac-
ing their scripted “production module” with one that could search for an 
optimal order in which to develop their technology tree (they’ve exceeded 
humans at this), replacing their “combat commander” with a sophisticated 
combat simulation system, and so on.18 As StarCraft bots continue to 
improve, these individual modules will most likely improve rather than their 
overall architectures. Or will the architectures be vastly different as well?

OPENAI AND DOTA 2

Many StarCraft players are familiar with the game Defense of the Ancients 
2, or, simply, DOTA 2. This is a capture-the-flag style game having many 
similarities with StarCraft. To master DOTA 2, the player must control a 
“hero” character who can move about the map, attack opponents, cast 
spells, and so on, with a goal of destroying their opponents’ “Ancient,” a 
building to be protected at all costs.

Professional DOTA 2 players compete annually for a $24 million prize 
pool. The total of past reward pools for DOTA 2 is $132 million, far 
beyond that of StarCraft (a “paltry” $7 million) and even StarCraft II ($25 
million). Not surprisingly, the game is challenging: a bot designed to play 
DOTA 2, as with one designed to play StarCraft, must be capable of making 
sense of a world with an extraordinarily large search space.19

Elon Musk, whom we briefly met a few chapters ago, launched the 
research lab OpenAI to “build safe artificial intelligence and ensure that AI’s 
benefits are as widely and evenly distributed as possible.”20 In August 2017, 
OpenAI announced that they had created a bot that could beat some of 
the best DOTA 2 players in a limited, 1-vs-1 version of the game. How did 
they create a bot that could search through such a large space?

The answer, as a researcher from OpenAI explained, is that they didn’t. 
OpenAI used a combination of the tools we’ve seen in this chapter and the 
chapters about neural networks, but their architecture didn’t use a search 
algorithm like Monte Carlo Tree Search.21



To play DOTA 2, a small team of researchers at OpenAI created a neural 
network that was like two of the networks we saw earlier in this book. At a 
first cut, it was a bit like the Atari-playing network. Remember that the 
Atari-playing agent evaluated its network over and over, selecting which-
ever action the network indicated would lead to the highest time-adjusted 
stream of rewards (i.e., chocolate). At each time step, the input to the Atari 
network was a vector summarizing which pixels were on the screen for the 
past four screenshots, while the output represented its expected future 
reward for taking each action. The DOTA 2 architecture, which you can 
see in figure 16.3, was similar, in that its output neurons determined which 
actions the agent should take. Also like the Atari network, the input to the 
DOTA 2 network was a list of features that encoded the current state of the 
game. Like the backgammon-playing neural network and AlphaGo, their 
neural network improved by playing games against itself.22

But there were some important differences between these networks. 
First, many of the DOTA 2 network’s input features were hand-crafted by 
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An architecture of the bot that beat some top human players at DOTA 2. At each 
epoch, the agent runs a neural network that takes in a feature vector summa-
rizing the current world and outputs variables that determine the action the 
agent will select. The agent also keeps track of state, which it passes from epoch 
to epoch. This state serves as a sort of “memory” for the agent.
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humans, encoding things like the currently controlled piece’s position on 
the map and details on the map. Second—and much more importantly—
the DOTA 2 network had a memory.23

Remember that the Atari network couldn’t play certain games, such as 
Montezuma’s Revenge, very well. Montezuma’s Revenge required its agent to 
do two things: explore a very large environment and remember what it had 
done recently. But the Atari network had no memory, so even if it had a 
lot of experience, it would have still performed poorly at the game. How 
could we endow an agent with a memory?

We saw a hint at a memory unit for neural networks in chapter 11, 
when we looked at networks that could generate captions for images. 
Remember that these networks could keep track of which words they had 
uttered so far because they were recurrent neural networks, or RNNs. The 
units in RNNs are connected to one another in a series: the output-state 
of one recurrent unit feeds as an input-state into the next recurrent unit 
in the series. Each unit in the network inspects its state and any other inputs, 
produces some output value, updates the state, and then sends that state to 
the next unit in the sequence.

The DOTA 2 network used this same idea. Like the Atari-playing net-
work, the DOTA 2 network was running constantly, in a loop, taking in its 
input features and producing some output values. But it was also an RNN: 
one of its outputs was the state, which it passed on to the next unit in the 
network to use. As the network was run, it “remembered” things using this 
state vector.24

The DOTA 2 bot was far from perfect. First, having a memory alone 
wouldn’t solve all of its problems; Atari agents that have been endowed 
with memories still can’t beat Montezuma’s Revenge. After its win, OpenAI 
hosted a session for other players to beat up their DOTA 2 bot, and these 
players found some glaring Achilles’ heels in the program, just as humans 
had already seen with StarCraft-playing bots. But the network’s ability to 
defeat several of the top players in the world still moved us one step closer 
to creating bots that can play competitively against humans at the standard, 
5-vs-5 version of DOTA 2—and bringing us ideas in the meantime that 
will also be useful in designing successful StarCraft bots.25



THE FUTURE OF STARCRAFT BOTS

To see one possible direction of where StarCraft is headed in the future, 
let’s return to a character we’ve seen sporadically throughout this book: 
Demis Hassabis, the founder of DeepMind. Although Demis was late to 
join the StarCraft bot community, he became interested in the game some 
time before he founded DeepMind. When Demis discovered that one of 
his colleagues was a competitive StarCraft player, he became fascinated by 
this colleague’s ability to consistently win the game. As another colleague 
recalled:

Demis wanted to beat this guy. He would lock himself in a room with the guy 
night after night. He’d handicap him, by getting the guy to play without 
a mouse or one-handed so he could analyze exactly what he was doing to be 
brilliant. It was a bit like going into the boxing ring and getting beaten up, and 
then returning every night. It showed his incredible will to win.26

More recently, Demis turned some of DeepMind’s efforts toward build-
ing a bot to play StarCraft competitively. DeepMind and Blizzard, the 
company behind StarCraft, announced a collaboration to develop and 
release an official interface for bots to play StarCraft II, as well as an envi-
ronment for developers to create their own “curricula” for bots to learn in 
more structured ways.27

One of the curious things about DeepMind’s decision to pivot toward 
StarCraft is that researchers at the University of Alberta had been looking 
at this problem for a decade beforehand. Remember: David Churchill 
studied there while performing pioneering research in StarCraft bot 
design. This fact in isolation might not be very interesting; but what is 
interesting is the profound impact the University of Alberta has had on 
the field of artificial intelligence overall, and on DeepMind’s efforts in 
particular. As we saw in chapter 7, researchers at the University of Alberta 
developed the Arcade Learning Environment, which provided Deep-
Mind with a way for its Atari-playing agent to interact with the world. 
Several key researchers from DeepMind’s team that developed AlphaGo 
cut their teeth on computer Go at the university. And the University of 
Alberta has several of the world’s leading experts on a variety of topics in 
artificial intelligence, including Richard Sutton, who has been described 
as the “Godfather of Reinforcement Learning.” One of Sutton’s 
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contributions to the field was the very algorithm that the Atari-playing 
agent used to learn from its actions—the algorithm it used for off-
policy learning.

If we could solve StarCraft, does that mean we can solve intelligence? 
Quite simply, no. There are many parts of human intelligence not addressed 
by StarCraft, including the ability of humans to make sense of, and draw 
conclusions from, entirely new and unstructured environments.

As several famous AI researchers wrote in one of the first papers about 
computer chess, “If one could devise a successful chess machine, one would 
seem to have penetrated to the core of human endeavor.”28 Now that it’s 
been a couple of decades since we’ve devised a successful chess machine, 
it’s not clear that we’re any closer to the “core of human endeavor” than 
we were before we beat Garry Kasparov, although now we at least know 
how to design a system that can play an excellent game of chess. The same 
rough assessment applies to computer Go and StarCraft. Creating a bot that 
can play StarCraft competitively may to turn out to be a similarly impres-
sive but narrow result. The tools and architectures we pick up along the 
way, however—the new search algorithms, new perception algorithms, and 
new reinforcement-learning algorithms—will be the more important 
accomplishments.



17  FIVE DECADES (OR MORE) FROM NOW

THE FITS AND STARTS OF AI DEVELOPMENT

Now that we’ve created digital automata that can outperform humans at 
tasks like recognizing objects in images, transcribing recordings of human 
speech, and playing games like Go, what can we expect to see them do in 
the next 50 years? Plenty. But before we speculate on where we’re headed 
next, let’s briefly look at how far we’ve come.

A lot of the ideas from the past 20 years that have created excitement in 
the AI community were the same things that drummed up excitement 
around AI half a century ago, in the late 1960s. Back then, the field of AI 
felt like it was roaring ahead, with improvements in neural networks, 
development of algorithms to play games like chess and Go, excitement at 
conferences (where AI felt like it was bursting at the seams) and hardware 
that was growing exponentially with the advent of microprocessors—all 
just before the field of AI went into a dark period known as the AI Winter. 
Funding for AI research dried up for several decades. AI even became “a 
term of derision” among some researchers.1 The funk lasted through much 
of the 1980s and 1990s, before the field’s rebirth over the past two decades.

In other words, the progress we’ve seen since just before the turn of the 
century is noteworthy, but it’s not an isolated burst of technological 
advancement, even in the field of AI. It’s part of a longer, sustained series of 
developments in AI—a series of developments that comes in fits and starts.

The automata our ancestors created in the 18th century were also part 
of a sustained development of technology spanning many decades. In 
Europe, mechanics created automata during the 18th and 19th centuries, 
but the trend had been going on globally for a much longer period. A trio 
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of Persian brothers created a programmable flute-playing device as early as 
the ninth century, and the Greeks had developed primitive steam engines 
by the first century AD.2 We should expect our modern, digital automata 
to follow a similarly long arc of progress, interrupted by periods of slow 
progress.

HOW TO REPLICATE THE SUCCESSES IN THIS BOOK

Many of the machines we’ve seen might look superficially different, but 
they have an enormous amount in common. Classifiers enabled these intel-
ligent machines to perceive the world. Finite state machines and recur-
rent neural networks enabled them to keep track of what was going on 
around them—what they had done, what they are doing, and what they 
still need to do—and to focus on only the most salient parts of their envi-
ronment. Search algorithms enabled them to brute-force their way to the 
best among millions of options. And reinforcement learning gave them the 
ability to learn from their experience. These “statistical elements” were then 
combined via remarkably similar architectures into the machines we saw, 
which could drive autonomously, predict humans’ preferences for movies, 
answer Jeopardy! questions, and play games of strategy with stunning 
precision.

But the design of these statistical machines was only part of the story. 
All of these machines required prolonged and well-organized human effort. 
The smallest team in this book to “succeed” was the one that created IBM’s 
Deep Blue; made up of only a few people, it gained and lost members here 
or there like a rock band over its dozen years of work. But Deep Blue 
attacked the problem for an entire decade. Many of the other teams we saw 
took less time to develop their products but were much larger—often 
dozens of researchers and engineers working on a project for a year or 
more, typically reaching tens or hundreds of person-years of research and 
development. And this required careful management of these teams’ efforts.

Sebastian Thrun’s experience in organizing the effort around Stanley 
the self-driving car set an excellent standard for such a high-functioning 
team. Sometimes he needed to make the tough but necessary decision to tell 
someone their part of the project, on which they might have been 
working for months, would not make the cut to be in the final robot. But 
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his team members, whom he had carefully selected, recognized that this 
was for the good of the project.3 For them, winning was a group effort, and 
everyone—including the leaders—made sacrifices. Sebastian explained:

During this phase of the project, everyone on the core team fully understood 
what it meant to play with the team. Getting lunch for the team was as noble a 
deed as writing cutting-edge software. To the present day, I continue to be 
amazed by the willingness of every single team member to do whatever I 
asked him or her to do. And I tried to lead by example. My personal highlight 
was the day I spent building a tank trap out of PVC pipes. After bolting 
together three pipes, my team noted that the surface wasn’t sufficiently similar 
to rusty metal. So I went back to the store to buy spray paint, and then spent 
hours applying a combination of paint and dirt to give the trap the look of a 
World War Two tank trap. This was not exactly the type [of ] job for which I 
had come to Stanford. But it was magically gratifying to keep my hands dirty 
and to spend my time on mundane things of no scientific value whatsoever.4

These teams also couldn’t have succeeded if they hadn’t been embed-
ded within larger communities of engineers and research scientists that 
shared their knowledge broadly. This was by design in competitions like the 
DARPA Grand Challenge and the Netflix Prize, but it was also true for 
projects like AlphaGo. Although AlphaGo was created by about 20 people 
in a private company, many of the ideas in AlphaGo—such as Monte Carlo 
Tree Search, evaluation functions, reinforcement learning, and deep neu-
ral networks—had been developed in the decades before DeepMind 
worked on the problem. Most of these projects succeeded not just because 
they were driven by a large engineering team with a clear goal and 
funding—but also because the ideas from which they came had been incu-
bated by a publicly funded research community that offered the collective 
wisdom of decades of supporting research and experimentation. This was 
true even for privately funded projects: some of the core researchers on 
AlphaGo, for example, cut their teeth at the University of Alberta, and IBM 
Watson drew heavily from talent and ideas in the academic community.

Walter Isaacson came to a similar conclusion in his book The Innovators. 
He noted the difficulty in attacking an ambitious problem in a vacuum. 
Virtually none of the major advances in the history of the computer were 
the result of a lone tinkerer in his garage. The same is true of advances in 
AI and machine learning.
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Does this mean that a lone researcher shouldn’t bother to start with a 
project if he doesn’t have a big budget and a team of researchers? Not at all, 
but it can still help to join or organize a larger effort down the road. Remem-
ber, for example, that the team called Pragmatic Theory started out as “two 
guys, absolutely no clue.” But they carefully studied what the best teams 
did, which enabled them to rise quickly within the community and to 
eventually join what became the winning team. The team that created the 
chess-playing program Deep Blue also started out small, but eventually its 
members joined IBM, where they continued to develop Deep Blue over the 
following eight years before beating Garry Kasparov. And ultimately all of 
these projects started with one person who had an idea.

Sometimes the people with the ideas don’t even have to solve the prob-
lem to have an impact: as we saw, they can organize a competition to 
encourage researchers to coalesce around a common cause. Is it possible 
that these competitions don’t always foster advances, and instead just pro-
vide more transparency into progress that’s already happening? This prob-
ably happens sometimes, but the Netflix Prize is a shining example of a 
competition that clearly added impetus to a field.

When Netflix planned their competition they made several important 
decisions that can serve as an example for future competition organizers. 
First, the dataset they released to the community was large enough to be 
valuable—it was 100 times the size of other public datasets of the same 
type—yet it was small-enough, and Netflix had cleaned it up well enough, 
that it was easy to work with. Second, they offered a large cash prize to the 
winners. Netflix also chose a good target for the Grand Prize: 10 percent 
was a difficult but not impossible target for teams to achieve.5 They created 
a lively community around the project, offering an online forum where 
participants could share ideas and where a leaderboard could foster excite-
ment. And finally, Netflix helped the researchers to move along by requir-
ing winners to write reports before they could claim either a Progress Prize 
or the Grand Prize; these reports were widely read by members of the 
community.6

Competitions have the benefit that they can change the way a research 
community invests its time. One way they do this is by standardizing 
research. We’ve seen the same thing in financial markets: that publicly 
traded securities are fungible—that is, exchangeable with one another—
means that they can be objectively evaluated, priced, and, ultimately, 



Five Decades (or More) from Now	 265

compared with one another. This helped with the ImageNet Challenge 
in 2012, where a neural network was the undisputed winner. Since all of 
the entrants to the competition were evaluated on the same criteria, it 
was clear that the network was the fair winner. Other teams immedi-
ately jumped aboard the deep-learning bandwagon, and in subsequent 
years the top contestants all used deep convolutional neural networks in 
their submissions.7 While the 2012 team won by a large margin, nine 
teams in 2013 beat the best 2012 team, and progress was rapid in the 
ensuing years.

PERVASIVE USE OF DATA

Another recurring theme in the development of the statistical machines 
we’ve seen was their pervasive use of experiments and data. In some cases, 
large quantities of data were available because that data had been collected 
and organized by passionate gamer geeks. We saw this with games like Go 
(for which online games had been recorded) and Jeopardy (for which fans 
had collected questions from televised episodes). In other cases, academic 
researchers and companies put together comprehensive, well-labeled 
datasets.

In yet other cases, researchers found ways to create their own data. 
Sebastian Thrun and his Stanford team drove around in a car covered 
with sensors to collect training data for their terrain-detecting classifier. 
The Atari-playing neural network played millions of games in the Arcade 
Learning Environment to collect the data that it needed to improve its play. 
And the creators behind AlphaGo, the DOTA 2 bot, and the backgammon-
playing program turned their programs against themselves so they could 
create their own training data. The only bottleneck to how much data these 
game-playing programs could train on was the time it took the computers 
to play through their games.

WHERE WE GO NEXT

I’ve intentionally avoided much speculation about the future of AI in this 
book because I’m an engineer, not a philosopher, economist, or historian. 
But I do believe we’ve seen enough evidence in the development of these 
intelligent machines that I can say a couple of things about the future with 
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fairly high confidence (although many of these things may take centuries, 
not decades, to occur).

First, the automata we create in the future will invariably still follow 
programs. This is a constraint of the media we’ve used to create these 
automata and the physical laws of the world we live in. These machines 
will follow programs that will grow more and more complex, and it will 
become more and more difficult to discern what they’re doing, but it 
will always be possible to trace every action they perform back to a deter-
ministic set of instructions.8 Some philosophers have argued that this sug-
gests that machines will never think.9 My own belief is that humans are 
machines as well—we’re analog machines—and if we believe that humans 
can think, then there’s nothing to preclude us from designing digital 
computers that will also someday think. Rather, it’s inevitable that our 
machines will someday think, and that they will develop emotions, opin-
ions, and the desire for self-preservation—which will someday conflict 
with our own.

Second, we will continue to build machines that can replicate our intel-
ligence and behavior more and more accurately, until there is no discern-
able difference between their abilities to perceive and reason and our 
own abilities to do these things—except that the machines will be better 
than us in many ways. We’ve been trying to do this since long before Vau-
canson and his contemporaries tried their damnedest to create automata 
that looked and acted human.

As we continue to build better automata, these efforts will inevitably 
feed the perception that these machines are a threat to humanity—that 
they will steal our jobs and destroy our livelihoods. At the very least, these 
machines will make us uncomfortable in their uncanny resemblance to us. 
Remember: Vaucanson himself was forced to close of one of his workshops 
because a religious official considered it “profane.”10 And to some extent it 
will be true that these machines will be a threat to us: machines will take 
peoples’ jobs precisely because they will do them more cheaply. Robots 
will be the “immigrants” blamed by future politicians, and their creators 
will market them carefully, just as IBM carefully positioned Watson. This will 
require our leaders to make thoughtful decisions to ensure that the benefits 
of improving technology are fairly distributed, and we should expect no 
less of them.
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But however well our society can absorb these agents, we will continue 
to build them to meet and exceed our abilities as long as our technology—
our hardware, our theory, and the software architectures behind them—
continues to improve. Some of this will be driven by economics and 
business, but the drive to build such machines will continue long after any 
economic motivation has disappeared. Building machines in our image is 
a human endeavor, and certain qualities of human nature—curiosity, aes-
thetics, hubris, and vanity, but mostly curiosity and aesthetics—will com-
pel us to continue.
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