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Artificial	Intelligence

Over	the	past	half-century	there	has	been	intense	research	into	the	construction
of	intelligent	machinery	–	the	problem	of	creating	Artificial	Intelligence.	This
research	has	resulted	in	chess-playing	computers	capable	of	beating	the	best
players,	and	humanoid	robots	able	to	negotiate	novel	environments	and	interact
with	people.



Many	advances	have	practical	applications	…	Computer	systems	can	extract	knowledge	from	gigantic	collections	of	data	to	help	scientists	discover	new	drug	treatments.	Intelligent	machinery…	…
can	mean	Life	or	death.

Computer	systems	are	installed	at	airports	to	sniff	luggage	for	explosives.
Military	hardware	is	becoming	increasingly	reliant	on	research	into	intelligent
machinery:	missiles	now	find	their	targets	with	the	aid	of	machine	vision
systems.

Defining	the	AI	Problem

Research	into	Artificial	Intelligence,	or	AI,	has	resulted	in	successful
engineering	projects.	But	perhaps	more	importantly,	AI	raises	questions	that
extend	way	beyond	engineering	applications.



The	holy	grail	of	Artificial	Intelligence	is	to	understand	man	as	a	machine.	Artificial	Intelligence	also	aims	to	arrive	at	a	general	theory	of	intelligent	action	in	agents:	not	just	humans	and	animals,
but	individuals	in	the	wider	sense.

The	capabilities	of	an	agent	could	extend	beyond	that	which	we	can	currently
imagine.	This	is	an	exceptionally	bold	enterprise	which	tackles,	head-on,
philosophical	arguments	which	have	been	raging	for	thousands	of	years.

What	Is	an	Agent

An	agent	is	something	capable	of	intelligent	behaviour.	It	could	be	a	robot	or	a
computer	program.	Physical	agents,	such	as	robots,	have	a	clear	interpretation.
They	are	realized	as	a	physical	device	that	interacts	with	a	physical	environment.
The	majority	of	Al	research,	however,	is	concerned	with	virtual	or	software
agents	that	exist	as	models	occupying	a	virtual	environment	held	inside	a
computer.



The	distinction	between	physical	and	virtual	agents	is	not	always	clear.

Researchers	may	experiment	with	virtual	agents	that	occasionally	become	physically	instantiated	by	downloading	themselves	into	a	robotic	body.	An	agent	itself	may	also	be	of	many	sub-agents.

Some	Al	systems	solve	problems	by	employing	techniques	observed	in	ant
colonies.	So,	in	this	case,	what	appears	to	be	a	single	agent	may	be	relying	on
the	combined	behaviour	of	hundreds	of	sub-agents.



AI	as	an	Empirical	Science

Artificial	Intelligence	is	a	huge	undertaking.	Marvin	Minsky	(b.	1927),	one	of
the	founding	fathers	of	AI,	argues:	“The	AI	problem	is	one	of	the	hardest	science
has	ever	undertaken.”	AI	has	one	foot	in	science	and	one	in	engineering.



In	its	most	extreme	form,	known	as	Strong	AI,	the	goal	is	to	build	a	machine	capable	of	thought,	consciousness	and	emotions.	This	view	holds	that	humans	are	no	more	than	elaborate	computers.
Weak	AI	is	less	audacious.

The	aim	of	Weak	AI	is	to	develop	theories	of	human	and	animal	intelligence,
and	then	test	these	theories	by	building	working	models,	usually	in	the	form	of
computer	programs	or	robots.



The	AI	researcher	views	the	working	model	as	a	tool	to	aid	understanding.	It	is	not	proposed	that	machines	themselves	are	capable	of	thought,	consciousness	and	emotions.

So,	for	Weak	AI,	the	model	is	a	useful	tool	for	understanding	the	mind;	for
Strong	AI,	the	model	is	a	mind.

Alien-AI	Engineering

Al	also	aims	to	build	machinery	that	is	not	necessarily	based	on	human	or	animal
intelligence.



Such	machines	may	exhibit	intelligent	behaviour,	but	the	basis	for	this	behaviour	is	not	important.	The	aim	is	to	design	useful	intelligent	machinery	by	whatever	means.

Because	the	mechanisms	underlying	such	systems	are	not	intended	to	mirror	the
mechanisms	underlying	human	intelligence,	this	approach	to	Al	is	sometimes
termed	Alien-AI.

Solving	the	AI	Problem

So,	for	some,	solving	the	Al	problem	would	mean	finding	a	way	to	build
machines	with	capabilities	on	a	par	with,	or	beyond,	those	found	in	humans.



Humans	and	animals	may	turn	out	to	be	the	least	intelligent	examples	of	a	class	of	intelligent	agents	yet	to	be	discovered.	The	goal	of	Strong	Al	is	subject	to	heated	debate	and	may	turn	out	to	be
impossible.

But	for	most	researchers	working	on	Al,	the	outcome	of	the	Strong	Al	debate	is
of	little	direct	consequence.

Ambition	Within	Limits



AI,	in	its	weak	form,	concerns	itself	more	with	the	degree	to	which	we	can
explain	the	mechanisms	that	underlie	human	and	animal	behaviour.



The	construction	of	intelligent	machines	is	used	as	a	vehicle	for	understanding	intelligent	action.	Strong	AI	is	highly	ambitious	and	sets	itself	goals	that	may	be	beyond	our	grasp.

The	strong	stance	can	be	contrasted	with	the	more	widespread	and	cautious	goal
of	engineering	clever	machines,	which	is	already	an	established	approach,
proven	by	successful	engineering	projects.

Taking	AI	to	its	Limits
	
Immortality	and	Transhumanism

“We	cannot	hold	back	AI	any	more	than	primitive	man	could	have	suppressed
the	spread	of	speaking”	–	Doug	Lenat	and	Edward	Feigenbaum

If	we	assume	that	Strong	AI	is	a	real	possibility,	then	several	fundamental
questions	emerge.



Imagine	being	able	to	leave	your	body	and	shifting	your	mental	life	onto	machinery	that	has	better	long-term	prospects	than	the	constantly	ageing	organic	body	you	currently	inhabit.	This	possibility	is
entertained	by	Transhumanists	and	Extropians.

The	problem	that	Strong	AI	aims	to	solve	must	shed	light	on	this	possibility.
Strong	Al’s	hypothesis	is	that	thought,	as	well	as	other	mental	characteristics,	is
not	inextricably	linked	to	our	organic	bodies.	This	makes	immortality	a
possibility,	because	one’s	mental	life	could	exist	on	a	more	robust	platform.

Super-Human	Intelligence

Perhaps	our	intellectual	capacity	is	limited	by	the	design	of	our	brain.	Our	brain
structure	has	evolved	over	millions	of	years.	There	is	absolutely	no	reason	to
presume	it	cannot	evolve	further,	either	through	continued	biological	evolution
or	as	a	result	of	human	intervention	through	engineering.	The	job	our	brain	does
is	amazing	when	we	consider	that	the	machinery	it	is	made	from	is	very	slow	in
comparison	to	the	cheap	electrical	components	that	make	up	a	modern	computer.



Brains	built	from	more	advanced	machinery	could	result	in	“super-human	intelligence.”	For	some,	this	is	one	of	the	goals	of	AI.

Neighbouring	Disciplines



“Certum	quod	factum.”	[One	is	certain	only	of	what	one	builds]	–	Giambattista
Vico	(1668–1744)

What	sets	AI	apart	from	other	attempts	to	understand	the	mechanisms	behind
human	and	animal	cognition	is	that	AI	aims	to	gain	understanding	by	building
working	models.	Through	the	synthetic	construction	of	working	models,	AI	can
test	and	develop	theories	of	intelligent	action.



The	big	questions	of	“mental	processes”	tackled	by	AI	are	bound	to	a	number	of	disciplines	–	psychology,	philosophy	linguistics	and	neuroscience.	AI’s	goal	of	constructing	machinery	is	underpinned
by	logic,	mathematics	and	computer	science.	A	significant	discovery	in	any	one	of	these	disciplines	could	impact	on	the	development	of	AI.

AI	and	Psychology

The	objectives	of	AI	and	psychology	overlap.	Both	aim	to	understand	the	mental
processes	that	underpin	human	and	animal	behaviour.	Psychologists	in	the	late
1950s	began	to	abandon	the	idea	that	Behaviourism	was	the	only	scientific	route
to	understanding	humans.



Behaviourists	believe	that	explanations	for	human	and	animal	behaviour	should	not	appeal	to	unobserved	“mental	entities”,	but	rather	concentrate	on	what	we	can	be	sure	of:	observations	of
behaviour.	Instead	of	restricting	the	object	of	study	to	stimulus-response	relationships,	those	who	abandoned	Behaviourism	began	to	consider	internal	“mentalistic”	processes,	such	as	memory,	learning

and	reasoning,	as	a	valid	set	of	concepts	for	explaining	why	humans	act	intelligently.

Cognitive	Psychology

Around	the	same	time,	the	idea	that	the	computer	could	act	as	a	model	of
thought	was	gaining	popularity.	Putting	these	two	concepts	together	naturally
suggests	an	approach	to	psychology	based	on	a	computational	theory	of	mind.



In	1957,	Herbert	Simon	(1916–2001),	an	AI	pioneer,	made	the	prediction	…	…	within	10	years,	psychological	theories	will	take	the	form	of	computer	programs.

By	the	end	of	the	1960s,	cognitive	psychology	had	emerged	as	a	branch	of
psychology	concerned	with	explaining	cognitive	function	in	information-
processing	terms,	and	ultimately	relying	on	the	computer	as	a	metaphor	for
cognition.

Cognitive	Science

It	is	clear	that	Al	and	cognitive	psychology	have	a	great	deal	of	common
interest.



This	has	naturally	led	to	a	common	pursuit	known	as	cognitive	science.	AI	sits	alongside	cognitive	psychology	at	the	core	of	an	interdisciplinary	approach	to	understanding	intelligent	activity.	The
concepts	in	this	book	therefore	rightfully	fall	within	the	remit	of	cognitive	science,	as	well	as	AI.



AI	and	Philosophy

Some	of	the	fundamental	questions	asked	by	AI	have	been	the	hard	stuff	of
philosophers	for	thousands	of	years.	AI	is	perhaps	unique	in	the	sciences.	It	has
an	intimate	and	reciprocal	relationship	with	philosophy.



In	one	survey,	AI	researchers	were	asked	which	discipline	they	felt	most	closely	tied	to.	The	most	frequent	answer	was	philosophy.

The	Mind-Body	Problem

The	mind-body	problem	dates	back	to	René	Descartes	(1596–1650),	who
argued	that	there	must	be	a	fundamental	difference	between	the	mental	realm
and	the	physical	realm.	For	Descartes,	man	was	alone	in	his	possession	of	a
mental	faculty	–	animals	were	mere	beasts	lacking	any	mental	life.



But	in	the	case	of	man,	how	can	the	physical	body	be	affected	by	processes	occurring	in	the	non-physical	mental	realm?	This	is	an	age-old	conundrum	…

Al	informs	modern	discussions	of	the	mind-body	problem	by	proposing	the
computer	metaphor,	which	draws	a	parallel	between	the	relationship	of
programs	to	computers	and	minds	to	brains.



Computer	programs,	like	minds,	have	no	physical	mass	yet	patently	have	a	causal	connection	to	the	physical	computer	executing	the	program.	In	a	similar	way,	our	mind	can	affect	our	body.
Computer	programs	require	a	computer	to	manifest	themselves	–	just	as	a	mind	requires	a	brain.

Ontology	and	Hermeneutics

Attempts	to	equip	machines	with	knowledge	require	one	to	make	ontological
assumptions.	Ontology	is	the	branch	of	philosophy	concerned	with	the	kinds	of
things	that	exist.	AI	projects,	lasting	tens	of	years,	have	attempted	to	distil
commonsense	knowledge	into	computers.



To	do	so,	the	designers	have	to	decide	on	the	“kind	of	things”	a	machine	must	know	in	order	to	make	sense	of	the	world.	Insights	originating	from	the	branch	of	continental	philosophy	known	as
Hermeneutics	have	vehemently	criticized	the	very	possibility	of	formalizing	mental	processes	in	this	way	…

But	recently,	these	criticisms	have	shaped	new	approaches	to	looking	at
cognition,	and	have	had	a	positive	influence	on	AI.	We	will	return	to	this	later.

A	Positive	Start

The	term	Artificial	Intelligence	was	coined	at	a	small	conference	at	Dartmouth
College,	New	Hampshire,	in	1956.	Some	of	its	key	figures	gathered	to	discuss
the	following	hypothesis	…



“Every	aspect	of	learning	or	any	other	feature	of	intelligence	can	in	principle	be
so	precisely	described	that	a	machine	can	be	made	to	simulate	it.”

This	hypothesis	has	been	subject	to	intense	research	ever	since.	Many	of	those
attending	the	conference	went	on	to	be	pivotal	in	the	study	of	AI.

Optimism	and	Bold	Claims



The	Dartmouth	conference	ran	for	two	months.	Two	attendants	in	particular,
Allen	Newell	and	Herbert	Simon,	provoked	much	discussion	by	claiming	…



We	have	invented	a	computer	program	capable	of	thinking	non-numerically	…	And	thereby	solved	the	venerable	mind-body	problem.	This	was	perhaps	the	first	of	a	long	list	of	bold	and	enthusiastic
claims	that	litter	the	history	of	AI.

Al	has	always	provoked	great	interest.	The	possibility	of	thinking	machines	has
been	a	mainstay	of	science	fiction.	This	is	partly	a	result	of	our	fascination	with
the	limits	of	technology	and	partly	due	to	enthusiastic	Al	researchers.

One	common	criticism	of	AI	is	its	unashamed	self-publicity,	as	T.	Roszak
complained	in	the	New	Scientist	in	1986:	“Al’s	record	of	barefaced	public
deception	is	unparalleled	in	annals	of	academic	study.”



In	1957,	Herbert	Simon	argued	that	machines	could	think	…	It	is	not	my	aim	to	surprise	you	or	shock	you	–	but…	there	are	now	in	the	world	machines	that	can	think,	that	learn	and	create.

This	statement	is	still	dubious	nearly	50	years	later.	Can	machines	really	think?
As	we	will	see	later,	this	is	an	important	question,	but	it	is	riddled	with
conceptual	problems.	However,	a	strong	case	can	be	made	for	the	existence	of
machines	that	can	learn	and	create.

Intelligence	and	Cognition

So	what	exactly	is	intelligence,	and	how	do	we	decide	when	something	is
artificial,	rather	than	the	real	thing?	Neither	of	these	questions	admits	precise
definition,	which	makes	Artificial	Intelligence	an	unfortunate	name	for	a	branch
of	science.	On	the	concept	of	intelligence,	A.S.	Reber	noted	in	1995:	“Few
concepts	in	psychology	have	received	more	devoted	attention	and	few	have
resisted	classification	so	thoroughly.”



In	the	context	of	AI,	intelligent	is	best	taken	to	mean	“exhibiting	interesting	behaviour”	Interesting	behaviour	can	be	found	in	ants,	termites,	fish	and	most	other	animals	…	But	these	animals	are	not
considered	intelligent	in	the	everyday	sense	of	the	word.



Intelligence	is	the	computational	part	of	the	ability	to	achieve	goals	in	the	world.	Varying	kinds	and	degrees	of	intelligence	occur	in	people,	many	animals	and	some	machines.	So	there	are	varying
degrees	of	intelligence,	with	humans	sitting	at	the	“high	intelligence”	end	of	the	spectrum.	Humans	undoubtedly	exhibit	many	interesting	behaviours	not	observed	in	other	organisms	–	for	example,

language.

The	relationship	between	behaviour	and	intelligence	is	rife	with	problems.	To
illustrate	these	problems,	we	will	consider	perhaps	the	first	milestone	in
autonomous	robotics.

Mimicry	of	Life

During	the	1950s	in	Bristol,	south-west	England,	W.	Grey	Walter	pioneered	the
construction	of	autonomous	robots.	Walter	carried	out	his	influential	work	long



before	the	availability	of	digital	computers.	He	was	interested	in	Cybernetics	–
the	study	of	the	range	of	possible	behaviours	of	animals	and	machines.



Cybernetics	rests	on	the	assumption	that	the	laws	that	govern	the	control	of	humans,	animals	and	machines	are	universal.	This	means	that	the	same	principles	can	apply	to	all	three,	even	though	they
might	be	made	from	very	different	materials.

Walter	was	interested	in	the	“mimicry	of	life”	and	built	robots	that	continue	to
draw	interest	today.	Using	very	basic	materials,	such	as	cogs	from	gas	meters,
Walter	constructed	a	series	of	mobile	robots	that	resembled	tortoises.

These	robots	were	autonomous.	There	was	no	human	intervention	or	control
governing	their	behaviour.	Walter’s	robots	had	three	wheels	and	were
surrounded	by	a	shell	that	acted	as	a	bump	detector.



As	well	as	detecting	collisions	with	objects,	the	tortoise	also	had	a	light	sensor…	I	am	designed	to	be	attracted	to	light.

Using	two	motors	to	control	the	lead	wheel,	one	for	steering,	and	one	for
propulsion,	the	robot	would	seek	light.	However,	when	faced	with	extreme
brightness,	part	of	the	robot’s	design	made	it	avoid	the	source	of	the	light.

Complex	Behaviour

Walter	reported	that	one	of	his	creatures,	Elsie,	exhibited	unpredictable
behaviour.	For	example,	as	part	of	Elsie’s	environment,	Walter	introduced	a
hutch	containing	a	bright	light	and	a	recharging	station.



After	darting	around	in	an	animal-like	fashion,	Elsie’s	on-board	battery	would	run	down,	and	her	usual	behaviour	of	avoiding	the	brightly	lit	hutch	would	change.	With	fading	battery	power,	my
sensitivity	to	light	would	diminish.

She	would	now	enter	what	appeared	to	be	a	dimly	lit	hutch	and	recharge	herself.
When	full	power	was	restored	to	the	battery,	full	sensitivity	would	return,	and
Elsie	would	dash	out	of	the	hutch	and	carry	on	as	before.

Is	Elsie	Intelligent?

Walter’s	creatures	were	very	simple	by	modern	standards,	yet	they	shed	light	on
issues	confronting	contemporary	robotics	by	illustrating	how	complex	behaviour
can	arise	from	simple	machines.	There	was	no	way	Walter	could	predict	the
exact	behaviour	of	his	robots.



Elsie’s	behaviour	depends	too	much	on	the	environment	and	factors	such	as	fading	battery	power.	I	could	certainly	achieve	goals	in	the	world,	since	I	could	sustain	my	own	battery	power.

But	the	capabilities	of	Elsie	are	a	far	cry	from	what	we	consider	“real”
intelligence.	Importantly,	Elsie	has	a	lot	in	common	with	the	famous	horse



known	as	Clever	Hans.

Clever	Hans:	A	Cautionary	Tale

Clever	Hans	was	a	horse	famously	taught	to	do	arithmetic	by	his	trainer,
Wilhelm	von	Osten.	Hans	would	tap	out	the	correct	answer	to	a	problem	with	his
hoof,	to	the	amazement	of	the	onlooking	crowd,	and	only	occasionally	make	a
mistake.	Scientific	experts	supported	his	trainer’s	claims:	Hans	really	could	do
arithmetic.	But	one	expert	noticed	that	Hans	was	making	mistakes	when	von
Osten	himself	didn’t	know	the	answer.	Hans’s	cover	was	blown.



The	horse	is	being	given	cues	by	von	Osten	that	indicate	when	it	should	stop	tapping	its	hoof.

Making	a	“Clever	Hans	error”	means	mistakenly	attributing	a	capacity	to	an
agent	when	in	fact	the	capacity	is	supplied	by	the	environment	–	in	this	case,	an
arithmetically	competent	human.

Believers	of	Clever	Hans	mistakenly	ascribed	von	Osten’s	intelligence	to	the
horse.	Similar	criticisms	have	been	levelled	at	W.	Grey	Walter’s	robotic
tortoises.



The	environment	they	inhabit	has	been	carefully	designed	by	Walter	to	elicit	the	desired	behaviour.	Both	Hans	and	Elsie	appear	to	behave	intelligently,	but	neither	of	them	actually	possesses	the
capacity	that	their	behaviour	suggests.	Hans	cannot	count,	and	Elsie	has	no	desire	to	maintain	her	power.

This	illustrates	the	problem	of	ascribing	a	capacity	to	an	agent	solely	on	the	basis
of	its	behaviour.
How	can	Al	construct	intelligent	machines,	when	intelligent	action	is	so
intimately	related	to	the	environment?	The	majority	of	Al	research	has	side-
stepped	this	problem	in	two	ways.	First,	by	focusing	on	cognition	in	agents
detached	from	the	complexities	introduced	by	real-world	environments.	Second,
Al	mainly	concerns	itself	with	studying	internal	cognitive	processes,	rather	than
external	behaviour.

Language,	Cognition	and	Environment

Al’s	stance	on	cognition	and	environment	is	exemplified	by	the	linguist	and
cognitive	scientist	Noam	Chomsky	(b.	1928).	Chomsky’s	influential	insight	is
that	we	are	born	with	a	strong	biological	predisposition	for	language.



I	noted	that	children,	wherever	they	are	born,	consistently	arrive	at	a	complex	knowledge	of	language.	The	input	for	the	child	is	the	speech	of	its	parents	and	other	humans.	The	output	is	an	ostensibly
complete	knowledge	of	the	complex	grammatical	system	underlying	my	native	language.

On	the	relationship	between	these	inputs	and	outputs,	Chomsky	states:



“An	engineer	faced	with	the	problem	of	designing	a	device	for	meeting	the	given
input-output	conditions	would	naturally	conclude	that	the	basic	properties	of	the
output	are	a	consequence	of	the	design	of	the	device.	Nor	is	there	any	plausible
alternative	to	this	assumption,	so	far	as	I	can	see.”



Critically,	the	input	the	child	faces	greatly	under-specifies	the	knowledge	it	ends	up	with.	I	term	this	phenomenon	the	poverty	of	the	stimulus,	and	argue	that	we	are	born	with	a	knowledge	of
language.

In	other	words,	when	considering	the	human	competence	for	language,	the
environment	plays	only	a	minor	role.	For	Chomsky,	language	is	a	cognitive
process	which	is	only	“partially	shaped”	by	the	environment.

Two	Strands	Concerning	the	Al	Problem

Chomsky’s	position	on	language	can	be	taken	as	the	blueprint	for	the	majority	of
the	research	into	Al	over	the	past	50	years.	Al	research	typically	focuses	on	the
high-level	processes	of	cognition	such	as	language,	memory,	learning	and
reasoning.



A	prevailing	assumption	of	Al	is	that	these	capacities	can	be	understood	without	considering	their	messy	relationship	with	a	constantly	changing	and	complex	environment.	Robotics,	however,	faces	a
constant	battle	with	the	complexities	of	real-world	environments,	and	therefore	throws	up	a	very	different	set	of	problems.

This	book	will	trace	how	these	two	strands	have	developed	over	the	past	half-
century.	Success	for	Al,	both	Strong	and	Weak,	can	be	approached	only	when
these	two	strands	meet	and	unify.	This	must	be	the	case:	ultimately,	Al	seeks
working	robots	with	high-level	cognitive	capacities.

Al’s	Central	Dogma:	Cognitivism

Artificial	Intelligence	rests	on	the	view	that	cognition	is	computational:	the	mind
and	brain	are	no	more	than	an	elaborate	computer.	This	position	is	known	as
cognitivism.



A	cognitivist	would	claim	that	all	aspects	of	cognition	–	mental	actions	such	as	learning,	memory	and	even	emotions	–	can	be	carried	out	by	computing	machinery.	To	understand	this	claim,	we	need	a
clearer	understanding	of	what	is	meant	by	computation.

What	is	Computation?

“I	reject	all	proposals	that	assume	that	computation	can	be	defined.”	–	Brian
Cantwell	Smith,	Indiana	University



The	notion	of	computation	is	at	the	heart	of	cognitivism,	yet	computation	is	a
notoriously	hard	concept	to	define.	Computation	can	be	simply	taken	to	mean:
“The	kind	of	calculations	that	computers	can	perform.”



As	a	first	cut,	this	definition	is	adequate.	But	this	is	an	empirical	claim.	It	tells	us	only	about	the	kind	of	operations	that	computers,	as	we	know	them	today,	can	perform.

Despite	the	lack	of	a	precise	definition,	the	theory	of	computation	is	a	well-
developed	and	rigorous	branch	of	computer	science	that	draws	heavily	on	the
notion	of	the	Turing	machine.	The	British	mathematician	Alan	Turing	(1912–
54)	was	a	crucial	pioneer	in	the	history	of	AI,	computer	science	and	logic.

The	Turing	Machine

One	of	Turing’s	achievements	was	the	proposal	of	a	notional	computing	device:
the	Turing	machine.	The	Turing	machine	is	a	simple	imaginary	device,	part	of
which	is	an	infinitely	long	tape	on	which	symbols	can	be	written.



This	tape	is	written	to,	and	inspected	by,	a	piece	of	machinery	called	the	finite	control.	The	finite	control	defines	a	set	of	states	the	machine	can	be	in,	and	how	these	states	are	reached	depending	on
the	contents	of	the	tape.

The	Turing	machine	has	served	an	important	purpose	in	the	theory	of
computation.	Using	his	imaginary	machine,	Turing	proved	fundamental	results
that	hold	true	for	all	known	computing	devices.	Turing	achieved	this	feat	before
computers,	as	we	know	them	today,	were	actually	built.

The	Brain	as	a	Computing	Device

In	1943,	aware	of	Turing’s	work	on	computation,	Warren	McCulloch	(1898–
1968)	and	Walter	Pitts	(1923–69)	published	“A	Logical	Calculus	of	the	Ideas
Immanent	in	Nervous	Activity”	in	which	they	demonstrate	how	individual	brain
neurons	can	be	viewed	as	computing	devices.	As	a	teenager,	Walter	Pitts	used	to
sneak	into	classes	at	the	University	of	Chicago.	Impressed	by	his	precocious
knowledge	of	logic,	Pitts	was	invited	by	the	faculty	to	work	with	Warren
McCulloch,	a	physiologist.



Together	we	produced	work	that	revolutionized	the	science	of	the	brain.	We	explained	how	small	collections	of	neurons	can	act	as	logic	gates	–	the	building	blocks	of	modern	computers.

Ultimately,	they	proved	that	configurations	of	neurons	can	perform	any
calculation	computable	by	a	Turing	machine.	The	upshot	of	this	discovery	was
that	brains	can	be	considered	as	computing	devices,	just	like	a	Turing	machine.



Universal	Computation

All	computers,	however	modern,	sophisticated	or	expensive,	are	restricted.	The
kind	of	calculations	that	they	can	perform	are	precisely	those	that	can	be
calculated	by	a	Turing	machine.	This	observation	means	that	we	only	need	to
consider	Turing	machines	when	analysing	what	is	and	what	is	not	computable.
All	other	machines,	including	brains,	can	be	reduced	to	the	Turing	machine.



The	class	of	calculations	that	either	can	perform	turns	out	to	be	identical	to	those	computable	by	a	Turing	machine.	These	results	are	evidence	for	treating	the	Turing	machine	as	a	model	of	universal
computation.

Any	calculation	your	computer	or	your	brain	can	perform,	Turing’s	65-year-old
imaginary	computer	can	do	too.

Computation	and	Cognitivism

Although	all	computing	devices	can	be	considered	identical	to	a	Turing	machine
in	the	class	of	calculations	they	can	compute,	the	manners	in	which	these
different	devices	perform	the	calculations	differ	in	fundamental	ways.



The	Turing	machine	reads	and	writes	symbols	onto	an	imaginary	tape	…	A	typical	desktop	computer	performs	operations	on	a	random	access	memory	…	And	the	brain	computes	using	a	vast	network
of	neurons.

So	when	we	talk	of	computation	in	terms	of	the	class	of	calculations	computers
can	perform,	this	tells	us	little	more	than	what	these	calculations	can	achieve,
rather	than	how.	Which	model	of	computation	is	cognitivism	proposing?	How
exactly	does	the	mind	compute?

The	Machine	Brain

Throughout	history,	scientists	have	claimed	that	the	activity	going	on	inside	our
heads	is	mechanical.	During	the	Renaissance,	it	was	thought	that	this	mechanical
activity	resembled	a	clockwork	device,	and	later	on,	a	steam	engine.	Within	the
last	century,	the	metaphor	of	a	telephone	exchange	was	invoked.



But	no	other	metaphor	has	been	subject	to	the	same	degree	of	analysis	as	the	computer	metaphor.	The	computer	metaphor	states	that	the	relationship	between	brain	and	mind	is	the	same	as	that
between	hardware	and	software.

The	brain	is	like	the	hardware:	it	is	a	physical	device.	The	mind	is	like	the
software:	it	requires	the	physical	device	to	operate,	but	in	itself	it	is	not	material
since	it	has	no	mass.



Functionalist	Separation	of	Mind	from	Brain

Functionalism	is	the	idea	that	the	kind	of	operations	that	define	a	computation
are	what	matters,	rather	than	the	nature	of	their	physical	instantiation.	So	long	as
two	processes	carry	out	the	same	function,	they	can	be	considered	identical.	So
functionalism	means	multiple	realization,	because	the	same	operation	can	be
realized	physically	in	many	different	ways.



For	example,	the	same	spreadsheet	program	can	be	run	on	entirety	different	types	of	computer.	Importantly,	the	functions	supported	by	the	spreadsheet	will	be	identical.	How	these	functions	are
physically	instantiated	will	be	different.

A	functionalist	would	claim	that	cognition	is	not	tied	down	to	any	one	kind	of
machinery.	What	is	special	about	the	mind	is	the	kind	of	operations	it	carries	out,
rather	than	the	fact	that	it	is	physically	supported	by	a	brain	made	up	of	millions
of	neurons.

The	Physical	Symbol	Systems	Hypothesis

In	1976,	Newell	and	Simon	proposed	the	Physical	Symbol	Systems	Hypothesis
(PSSH).	This	hypothesis	proposes	a	set	of	properties	that	characterize	the	kind	of
computations	that	the	mind	relies	on.	The	PSSH	states	that	intelligent	action
must	rely	on	the	syntactic	manipulation	of	symbols:	“A	physical	symbol	system
has	the	necessary	and	sufficient	means	for	intelligent	action.”	Which	is	to	say
that	cognition	requires	the	manipulation	of	symbolic	representations,	and	these
representations	refer	to	things	in	the	world.



The	system	must	be	physically	realized,	but	the	stuff”	the	system	is	built	from	is	irrelevant.	So	it	could	be	made	of	neurons,	silicon,	or	even	tin	cans.

In	essence,	Newell	and	Simon	are	commenting	on	the	kind	of	program	that	the
computer	runs	–	they	say	nothing	about	the	kind	of	computer	that	runs	the
program.

A	Theory	of	Intelligent	Action

Newell	and	Simon’s	hypothesis	is	an	attempt	to	clarify	the	issue	of	the	kind	of
operations	that	are	required	for	intelligent	action.	However,	the	PSSH	is	only	a
hypothesis,	and	so	must	be	tested.	Its	validity	as	a	hypothesis	can	only	be	proved
or	disproved	by	scientists	carrying	out	experiments.	Traditionally,	AI	is	the
science	of	testing	this	hypothesis.



Recall	that	the	PSSH	makes	a	claim	about	the	kind	of	program	that	the	brain	supports.	And	so,	arriving	at	the	right	program	is	all	that	is	required	for	a	theory	of	intelligent	action.	Importantly,	they
take	a	functionalist	stance	–	the	nature	of	the	machinery	that	supports	this	program	is	not	the	principal	concern.



Could	a	Machine	Really	Think?

Let’s	examine	the	claim	of	the	cognitivists.	Imagine	they	have	been	successful:
they	have	realized	the	goal	of	Strong	AI,	and	constructed	an	intelligent,	thinking
machine.	Do	we	believe	them?	Is	cognitivism	fundamentally	naïve?	Perhaps
there	is	a	decisive	argument	that	proves	machines	cannot	think.

Alan	Turing,	in	his	seminal	1950	paper,	“Computing	Machinery	and
Intelligence”,	was	interested	in	the	question	“Can	machines	think?”	Turing
recognized	that	the	question	was	ill-defined	and	“too	meaningless	to	deserve
discussion”.



I	replaced	the	question	with	the	imitation	game.	The	imitation	game	requires	a	human	interrogator	to	decide	whether	the	agent	at	the	end	of	a	text-based	computer	link	is	either	a	computer	or	a
human.	Both	parties	are	in	different	rooms	…

The	Turing	Test

The	interrogator	can	ask	any	question	he	or	she	chooses,	and	on	the	basis	of	the
responses,	which	don’t	necessarily	have	to	be	truthful,	must	decide	on	either
humanoid	or	computer.	Turing	imagined	the	following	kind	of	dialogue.



Please	write	me	a	sonnet	on	the	subject	of	the	Forth	Bridge.	Add	34957	to	70764.	After	a	pause	of	30	seconds	…

If	the	computer	can	fool	the	human	interrogator	into	believing	it	is	human,	it
passes	the	Turing	test.

Turing’s	problem	with	the	question	“Can	machines	think?”	is	a	problem	with	the
term	“think”.	What	exactly	is	thought?	How	do	we	decide	when	it	is	going	on?
Adopting	everyday	usage	of	the	word	would	relegate	the	question,	according	to
Turing,	to	a	statistical	survey	like	a	Gallup	poll.



This	is	not	how	we	want	to	decide	if	a	machine	thinks	or	not.	Noam	Chomsky,	too,	has	a	problem	with	the	question.	I	liken	the	question	to	asking	“Can	submarines	swim?”

Any	answer	is	little	about	fact,	and	more	about	“sharpening	our	usage”	of	words
like	“think”	and	“swim”.

The	Loebner	Prize

In	1990	the	Turing	test	was	turned	into	an	annual	competition.	Every	year
contestants	compete	for	the	Loebner	prize.	The	first	person	to	design	a	computer
program	that	passes	the	Turing	test	gets	$100,000	and	a	gold	medal.	No	one	has



managed	to	claim	the	gold	medal	yet,	but	bronze	medals	and	cash	are	given	out
to	the	best	efforts	every	year.	Here	is	an	excerpt	from	conversation	between	a
judge	and	a	computer:



Tell,	me,	Ella,	if	you	buy	one	cow	for	10	dollars,	how	much	would	two	cows	cost?	I	don’t	want	a	joke	now,	I	want	to	know	how	much	two	cows	would	cost.



No.	Go	ahead,	tell	me	a	joke.	Why	not.	I	want	to	hear	about	lawyers.

It	is	unlikely	that	any	computer	will	pass	the	Turing	test	in	the	near	future.

Problems	with	the	Turing	Test

Many	object	to	Turing’s	imitation	game	as	a	test	for	intelligence	or	thought.	The
principal	objection	is	that	the	test	only	takes	into	account	the	linguistic	behaviour
of	the	machine.	It	ignores	how	the	machine	operates.

“The	fundamental	goal	of	this	research	is	not	merely	to	mimic	intelligence	or
produce	some	clever	fake.	Not	at	all.	‘Al’	wants	only	the	genuine	article:
machines	with	minds,	in	the	full	and	literal	sense.”	–	John	Haugeland

Imagine	a	machine	that	passes	the	Turing	test,	but	does	so	by	patently	non-
intelligent	means.



For	example,	as	a	thought	experiment,	imagine	a	machine	that	could	memorize	all	possible	conversational	fragments	up	to	a	given	length.	Then,	through	verbatim	regurgitation,	such	a	machine	might
pass	the	test.

Although	in	practice	this	is	likely	to	be	impossible,	some	have	used	it	as	an
illustration	of	the	inadequacy	of	the	Turing	test.

Inside	the	Machine:	Searle’s	Chinese	Room

In	the	1980s,	the	philosopher	John	Searle,	frustrated	with	the	claims	made	by	AI
researchers	that	their	machines	had	“understanding”	of	the	structures	they
manipulate,	devised	a	thought	experiment	in	an	attempt	to	deal	a	knockout-blow
to	those	touting	Strong	AI.



In	contrast	to	the	Turing	test,	my	argument	revolves	around	the	nature	of	the	computations	going	on	inside	the	computer.	Searle	attempts	to	show	that	purely	syntactic	symbol	manipulation,	like	that
proposed	by	Newell	and	Simon’s	PSSH,	cannot	by	itself	lead	to	a	machine	thinking	or	understanding.

Searle’s	Chinese	Room

Searle	imagined	himself	inside	a	room.	One	side	of	the	room	has	a	hatch	through
which	questions,	written	in	Chinese,	are	passed	in	to	Searle.	His	job	is	to	provide



answers,	also	in	Chinese,	to	these	questions.	The	answers	are	passed	back
outside	the	room	through	another	hatch.	The	problem	is,	Searle	does	not
understand	a	word	of	Chinese,	and	Chinese	characters	mean	nothing	to	him.



To	help	construct	the	answers	to	the	questions,	I	am	armed	with	a	set	of	complex	rule-books	which	tell	me	how	to	manipulate	the	meaningless	Chinese	symbols	into	an	answer	to	the	question.

With	enough	practice,	Searle	gets	very	skilled	at	constructing	the	answers.	To	the
outside	world,	Searle’s	behaviour	does	not	differ	from	that	of	a	native	Chinese
speaker	–	the	Chinese	room	passes	the	Turing	test.

Unlike	a	genuine	literate	in	Chinese,	Searle	does	not	in	any	way	understand	the
symbols	he	is	manipulating.	Similarly,	a	computer	executing	the	same	procedure
–	the	manipulation	of	abstract	symbols	–	would	have	no	understanding	of	the
Chinese	symbols	either.



I	have	everything	that	Newell	and	Simon’s	physical	symbol	systems	hypothesis	asks	for	–	and	yet	I	do	not	understand	Chinese.	The	crux	of	Searle’s	argument	is	that	whatever	formal	principles	are
given	to	the	computer,	they	will	not	be	sufficient	for	understanding…	Because	even	when	a	human	carries	out	the	manipulation	of	these	symbols,	they	will	still	understand	absolutely	nothing.

Searle’s	conclusion	is	that	formal	symbol	manipulation	is	not	enough	to	account
for	understanding.	This	conclusion	is	in	direct	conflict	with	Newell	and	Simon’s
physical	symbol	systems	hypothesis.

One	Answer	to	Searle

One	frequent	retort	to	Searle’s	argument	is	that	Searle	himself	might	not
understand	Chinese,	but	the	combination	of	Searle	and	the	rule-book	do
understand	Chinese.



I	dismiss	this	point	by	arguing	that	a	combination	of	constituents	without	understanding	cannot	magically	invoke	understanding.	Here,	Searle	is	arguing	that	the	whole	cannot	be	more	than	the	sum	of
its	parts.	For	many,	this	point	is	a	weakness	in	Searle’s	argument.

Can	the	whole	be	more	than	the	sum	of	its	parts?	There	is	sound	evidence	that	a
“combination	of	constituents”	does	indeed	result	in	a	higher	order	of	complexity,
a	“greater	whole”.

Applying	Complexity	Theory

Complexity,	the	science	of	understanding	order	arising	from	complex
interactions	of	simple	constituents,	deals	in	the	possibility	of	emergence.
Emergent	properties	are	those	that	cannot	be	predicted	simply	through	an
understanding	of	constituent	behaviours.



Complex	interactions	between	simple	parts	can	lead	to	what	is	called	self-organization.	Self-organization	occurs	when	high-level	properties	emerge	from	the	interaction	of	simple	components.

Let’s	consider	an	example	of	emergence	in	biology	…

Is	Understanding	an	Emergent	Property?

Humans	emerge	from	the	human	genome,	which	massively	under-specifies
precisely	how	to	build	a	human.	Of	course,	we	are	the	product	of	our	genes,	but



only	in	combination	with	an	immensely	complex	interaction	between	our	genes,
the	polypeptide	chains	they	produce,	and	how	these	chains	go	on	to	interact.



The	human	genome	alone	is	not	a	description	of	a	human.	In	the	same	way,	Searle	and	the	rule-book	alone	do	not	specify	the	property	of	understanding,	but	they	may	lead	to	it	emerging.

In	a	nutshell,	complexity	theory	tells	us	that	the	whole	can	be	more	than	the	sum
of	its	parts,	although	this	argument	by	itself	does	not	constitute	an	explanation	of
the	emergence	of	understanding.

Machines	Built	From	the	Right	Stuff

It	is	important	to	note	that	Searle	is	not	denying	the	possibility	of	Strong	Al.
Indeed,	Searle	believes	that	we	are	nothing	more	than	complex	machines,	and
therefore	we	can	build	machines	that	think	and	understand.	Searle’s	objection	is
with	the	notion	that	machine	understanding	is	simply	a	matter	of	coming	up	with
the	right	program.	Searle	strikes	at	the	heart	of	functionalism.



The	functionalist	argument	assumes	that	the	nature	of	the	machinery	is	of	no	consequence	–	providing	it	can	support	the	act	of	computation.	In	other	words,	issues	of	thought	and	understanding	rely
solely	on	the	right	program	being	executed.	In	contrast	to	functionalism,	I	argue	that	the	right	machinery	is	paramount.	Mental	phenomena	rely	on	the	physical-chemical	properties	of	the	machinery.

AI	and	Dualism

For	Searle,	to	argue	anything	else	means	you	must	believe	in	a	form	of	dualism,
the	position	that	the	mental	realm	has	no	causal	connection	with	the	physical
realm.	According	to	Searle,	this	is	precisely	the	position	many	AI	researchers
take.	They	believe	that	their	models	have	a	mental	life	purely	on	the	basis	of	the
right	program	being	executed.	Mental	phenomena	can	be	understood	solely	in
terms	of	programs	(mind),	independent	of	machinery	(brain).



This	is	a	provocative	charge,	as	few	scientists	would	be	happy	to	admit	to	the	existence	of	a	non-physical	mental	realm.	In	short,	computers,	as	we	know	them	today,	are	not	made	of	the	right	stuff	to
support	thinking,	understanding,	and	consciousness.

He	believes	that	pursuing	AI	by	seeking	the	“right	program”	is	misguided.
Qualities	such	as	understanding	require	the	right	kind	of	machinery	as	well.

The	Brain	Prosthesis	Experiment

The	roboticist	Hans	Moravec	(b.	1948)	proposed	The	Brain	Prosthesis
Experiment	which	clearly	illustrates	the	divided	opinions	on	where	properties
such	as	thought,	understanding,	and	consciousness	reside.	Imagine	replacing	the
neurons	in	your	brain,	one	at	a	time,	with	electronic	substitute	neurons	–
gradually	transforming	your	brain	from	a	biological	device	into	an	electronic



one.	Assuming	we	have	a	complete	understanding	of	the	behaviour	of	neurons,
and	our	artificial	neurons	mimic	this	behaviour	under	all	possible	conditions,	the
behaviour	of	the	transformed	brain	will	be	identical	to	that	of	the	biological
brain.



This	must	be	the	case,	as	the	electronic	neurons	are	behaviourally	identical	to	biological	neurons.	I	believe	your	consciousness	would	gradually	degrade.	I	claim	you	would	not	notice	any	change.	As
the	prosthesis	experiment	proceeds,	what	impact	would	the	experiment	have	on	your	conscious	experience?

Roger	Penrose	and	Quantum	Effects

For	Searle,	the	nature	of	the	machinery	required	for	consciousness	is	a	mystery.
He	makes	no	claim	to	have	an	answer	explaining	why	computers	cannot	support
properties	such	as	understanding	and	consciousness,	but	brains	can.	In	contrast,
Roger	Penrose,	a	mathematical	physicist	at	the	University	of	Oxford,	proposes	a
candidate	“stuff”.

Like	Searle,	Penrose	argues	that	conventional	computing	machinery	cannot
support	consciousness.	A	conscious	mind	requires	very	specific	physical
characteristics.



I	accept	that	mentality	must	arise	from	physicality.	But	I	believe	that	a	new	kind	of	physics	is	required	to	explain	conscious	thought.	If	Penrose	is	correct,	then	this	poses	a	problem	for	AI…

Computers	are	inherently	limited	in	the	kind	of	processes	they	can	support.

Penrose	and	Gödel’s	Theorem

To	support	his	argument,	Penrose	appeals	to	a	fundamental	theorem	in
mathematical	logic	–	Gödel’s	Theorem	–	which	states	that	certain	mathematical
truths	cannot	be	proved	by	using	a	computational	procedure.	Because	human
mathematicians	evidently	can	arrive	at	these	truths,	Penrose	claims	that	humans
must	be	performing	non-computable	operations.



With	thought	comprising	a	non-computational	element,	computers	can	never	do	what	we	human	beings	can.	Therefore,	non-computability	in	some	aspect	of	consciousness	and,	specifically,	in
mathematical	understanding,	strongly	suggests	that	non-computability	should	be	a	feature	of	all	consciousness.	This	is	my	suggestion.

If	human	thought	comprises	non-computational	processes,	then	how	is	the	brain
supporting	these	processes?	To	answer	this	question,	Penrose	appeals	to	physics,
and	claims	that	the	theory	of	quantum	gravity	is	likely	to	be	the	kind	of	physics
required	to	explain	a	conscious	mind.

Quantum	Gravity	and	Consciousness



The	theory	of	quantum	gravity,	which	is	still	at	a	very	tentative	stage,	is	targeted
to	account	for	the	measurable	inaccuracies	we	observe	using	current	physics.
That	is,	neither	quantum	theory	nor	relativity	theory	can	comprehensively
explain	certain	small-scale	phenomena.	Penrose	states:	“This	new	theory	will	not
just	be	a	slight	modification	of	quantum	mechanics	but	something	as	different
from	standard	quantum	mechanics	as	General	Relativity	is	different	from
Newtonian	gravity.	It	would	have	to	be	something	which	has	a	completely
different	conceptual	framework.”

The	idea	that	quantum	gravity	may	prove	important	to	our	understanding	of
consciousness	predates	Penrose,	but	he	has	stuck	his	neck	out	and	specifically
proposed	that	quantum	gravity	effects	in	the	brain	are	likely	to	rely	on
microtubules	–	conveyor-belt-like	structures	inside	neurons.

Each	neuron	does	not	just	behave	like	a	switch	but	involves	many,	many	microtubules	and	each	microtubule	could	be	doing	very	complicated	things.

Microtubules,	according	to	Penrose,	support	a	substrate	for	the	quantum	gravity
effects	required	for	consciousness.	Crucially,	these	processes	are	non-



computable	–	they	cannot	be	supported	by	conventional	computing	machinery.
This	speculative	proposal	supports	Penrose’s	assertion	that	human	thought	relies
on	non-computable	processes.

Because	computers,	as	we	know	them	today,	do	not	have	a	cellular	structure
comprising	microtubules,	they	cannot	support	consciousness.	Penrose	may	well
be	right,	but	there	is	as	yet	scant	evidence	to	support	his	claim.	The	idea	that
there	is	some	hitherto	unconsidered	ingredient	missing	from	our	classical
understanding	of	biological	systems	is	a	common	conclusion	to	debates
regarding	the	possibility	of	conscious	thinking	machines.	Penrose’s	theory	is
very	controversial	and	few	accept	his	conclusions.



Penrose,	in	his	bid	for	scientific	materialism,	has	resorted	to	a	mysterious	higher	force	…	his	own	deity,	the	god	of	quantum	mechanics.	Personally,	I	get	uneasy	when	people,	especially	theoretical
physicists,	talk	about	consciousness	…	Penrose’s	argument	seemed	to	be	that	consciousness	is	a	mystery	and	quantum	gravity	is	another	mystery,	so	they	must	be	related.

Is	AI	Really	About	Thinking	Machines?

Understanding,	Consciousness	and	Thought	are	a	Mystery.

Given	our	current	understanding,	there	really	is	no	answer	to	the	question	of
mechanized	understanding,	consciousness	or	thought.	This	debate	is	best
reduced	to	the	issue	of	intentionality,	one	that	philosophers	have	been	struggling
with	since	medieval	times.



The	term	intentionality,	when	used	by	philosophers,	refers	to	the	aboutness	of	things.	Mental	states	have	aboutness	–	for	example,	beliefs	and	desires	–	and	it	requires	a	conscious	mind	to	have	these
intentional	states.	Consciousness	is	always	of	something,	including	consciousness	of	itself…

Edmund	Husserl	(1859–1938),	founder	of	phenomenology

Franz	Brentano	(1837–1917),	psychologist	and	philosopher

Al	has	stumbled	upon	this	age-old	problem.	What	exactly	is	intentionality,	does
it	really	exist,	and	if	so,	does	it	have	a	physical	basis?	Unfortunately,	the
intentionality	debate	remains	a	mystery,	irrespective	of	the	claims	made	by	some
Al	researchers	that	their	machines	can	think	and	understand.

Tackling	the	Intentionality	Problem

The	kind	of	machinery	used	by	AI	researchers,	and	how	this	machinery	sheds
light	on	the	question	of	intentionality,	are	problems	rarely	considered	by	those
carrying	out	active	research	into	AI.	Practical	research	proceeds	independent	of



this	debate.	Most	AI	researchers	agree	that	we	can	investigate	theories	of
intelligent	behaviour,	and	implement	these	theories	as	computer	models,	without
the	need	to	account	for	intentionality.



A	typical	AI	researcher	writes	computer	programs	on	standard	computers.	Similarly,	roboticists	do	not	try	to	attack	the	question	of	intentionality	by	using	certain	kinds	of	machinery.

Addressing	the	issue	of	intentionality	is	implicitly	regarded	by	those	working	in
AI	as	part	of	the	“finishing	touches”.	First,	they	aim	to	get	computers	and	robots
to	behave	intelligently,	and	only	then	will	these	fundamental	questions	be	taken
on.

Investigating	the	Cognitivist	Stance

The	classical	approach	to	AI	encompasses	a	set	of	principles	and	practices	used
to	explore	the	validity	of	cognitivism,	and	specifically,	to	investigate	the
hypothesis	proposed	by	Newell	and	Simon.	Cognition	is	best	understood	as	the
formal	manipulation	of	symbolic	structures.



The	most	fundamental	contribution	so	far	of	artificial	intelligence	and	computer	science	to	the	joint	enterprise	of	cognitive	science	has	been	the	notion	of	a	physical	symbol	system	…	…	systems
capable	of	having	and	manipulating	symbols,	yet	realizable	in	the	physical	universe.

The	classical	approach	to	AI	has	resulted	in	engineering	projects	such	as	the
following,	which	we	shall	examine	in	more	detail	later.

•Chess-playing	computers	capable	of	beating	the	best	human	players.

•Attempts	to	equip	computers	with	commonsense	knowledge.

•Computer	vision	systems	capable	of	recovering	information	about	objects	in	a
scene	captured	by	a	camera.

•Shakey,	a	robot	capable	of	carrying	out	tasks	using	several	Al	technologies,
such	as	vision,	planning,	and	natural	language	processing.



Sense-Think-Act	Underlying	classical	AI	is	the	idea	that	intelligent	activity	requires	an	agent	to	first	sense	its	environment.	On	the	basis	of	this	sensory	information,	the	agent	performs	some
cognitive	processing.	These	processes	will	result	in	the	agent	taking	some	action.

In	short,	the	connection	between	perception	and	action	is	mediated	by	the	act	of
cognition.

Beyond	Elsie



As	we	will	see,	the	robot	Shakey	has	cognitive	capacities	well	beyond	those
found	in	W.	Grey	Walter’s	robotic	tortoise,	Elsie.	Recall	what	Elsie	was	lacking
…

•She	did	not	have	knowledge	of	where	she	was	or	where	she	was	going.
•She	was	not	programmed	to	achieve	any	goals.
•She	had	little	or	no	cognitive	capacity.

Elsie	lacked	the	very	capacities	that	classical	AI	seeks	to	understand:	cognitive
abilities	such	as	reasoning,	learning,	vision	and	understanding	language.



In	contrast	to	Elsie,	Shakey	stands	as	a	prime	example	of	a	cognitive	robot.	Shakey	relies	on	a	number	of	AI	technologies.	But	before	Shakey	could	be	built,	researchers	had	to	consider	Shakey’s
constituent	parts.

Cognitive	Modelling

Much	of	AI	hinges	on	cognitive	modelling.	This	means	the	construction	of
computer	models	which	carry	out	some	cognitive	function.



The	manner	in	which	these	models	achieve	the	task	may	mirror	a	theory	of	human	cognition.	Alternatively,	the	cognitive	model	might	encapsulate	an	entirely	new	way	of	solving	the	problem,	using
methods	not	found	in	nature.

But	the	problem	has	not	been	solved.	The	construction	of	a	working	model	does
not	by	itself	constitute	an	explanation	for	the	thing	being	modelled.

A	Model	Is	Not	an	Explanation

Imagine	someone	handing	you	a	wiring	diagram	of	the	human	brain	–	a	total
map	of	the	brain’s	neural	structure.	Using	this	wiring	diagram,	you	might	then
go	and	build	a	mechanical	brain.



Imagine	that	the	result	is	a	machine	capable	of	learning,	reasoning	and	other	cognitive	capacities.	Now,	have	you	really	got	a	satisfactory	explanation	of	human	cognition?

For	example,	would	the	model	help	us	to	understand	cognitive	processes	such	as
the	relationship	between	long-and	short-term	memory?	The	problem	is,	we
might	have	a	working	model,	yet	not	understand	the	model	in	the	way	we	would
like.

The	Nematode

In	fact,	we	have	such	a	wiring	diagram	of	the	whole	nervous	system	of	a
nematode	called	Caenorhabditis	elegans.	The	biology	of	this	worm	is



remarkably	well	understood.	In	2002,	Sydney	Brenner,	H.	Robert	Horvitz	and
John	E.	Sulston	won	the	Nobel	Prize	in	Physiology	for	their	work	uncovering
precisely	how	the	fully	mature	worm	(about	a	millimetre	long)	develops	from	its
DNA.



Because	the	worm	is	transparent,	every	one	of	the	959	cells	that	make	up	a	mature	worm	can	be	traced	from	the	conception	of	a	single	cell.	Some	of	these	cells	–	neurons	–	make	up	the	worm’s	brain,
while	others	are	used	to	construct	cellular	structures	such	as	sense	organs	and	muscles.	John	Sulston

Really	Understanding	Behaviour

These	recent	advances	in	understanding	Caenorhabditis	elegans	are	fundamental
to	biology.	The	developmental	path	from	a	single	cell	to	a	mature	organism
involves	a	massively	complex	series	of	interactions.



Caenorhabditis	elegans	is	simple	enough	for	us	to	obtain	a	detailed	map	of	its	cellular	structure.	But	even	though	this	worm	is	very	well	understood	at	the	neural	level,	the	manner	in	which	the	neural
structures	are	configured	to	yield	behaviour	is	hardly	understood	at	all.

So,	even	if	we	decided	to	build	the	nematode	on	the	basis	of	the	wiring	diagram,
there	would	still	be	a	huge	gap	in	our	understanding	of	the	control	mechanisms
underlying	the	behaviour	of	Caenorhabditis	elegans.

Reducing	the	Level	of	Description

One	of	the	problems	with	an	explanation	based	on	a	detailed	wiring	diagram	is
that	the	level	of	description	is	too	fine-grained	to	be	useful.	But	what	is	the
appropriate	conceptual	vocabulary	for	explaining	cognitive	processes?	Classical
AI,	in	exploring	Newell	and	Simon’s	hypothesis,	aims	to	explain	cognition	in
terms	of	a	computer	program	manipulating	symbolic	representations.



Classical	AI	adopts	the	metaphor	of	a	computer	running	a	computer	program	as	a	model	for	understanding	the	mind.	It	hopes	that	by	doing	this	we	will	derive	a	simpler	picture	than	what	can	be
gleaned	from	explanations	based	on	millions	of	electrical-chemical	interactions	between	neurons.

Simplifying	the	Problem

The	enthusiasm	evident	in	early	AI	research	was	tempered	by	the	realization
that,	in	fact,	the	problem	is	exceptionally	hard.	For	example,	it	was	thought
initially,	during	the	1950s,	that	machine	translation	would	be	an	unproblematic
and	viable	proposition.



Automatic	machine	translation	from,	say,	Russian	to	English	would	largely	be	a	matter	of	constructing	the	appropriate	mechanical	dictionaries.	Researchers	soon	found	this	not	to	be	the	case.

In	1963,	after	spending	$20	million	on	research	into	machine	translation,	the	US
funding	agency	concluded:	“There	is	no	immediate	or	predictable	prospect	of



useful	machine	translation”	–	National	Academy	of	Sciences	National	Research
Council,	1963.
Faced	with	a	hard	problem,	AI	research	will	often	begin	by	simplifying	it.	Two
kinds	of	simplification	are	frequently	made.

Decompose	and	Simplify

Fortunately,	cognitive	brain	functions	are	not	part	of	a	complex	mush	that	cannot
be	decomposed.	Many	have	argued	that	our	brain	is	structured	rather	like	an
interconnected	set	of	sub-computers.	Some	of	these	sub-computers	seem	to	work
independently,	which	is	good	news	for	Al.	The	psychologist	Jerry	Fodor,	in	the
1980s,	proposed	that	the	mind	is	largely	composed	of	a	set	of	task-specific
modules.

Sensory	data	is	transformed	when	it	passes	through	these	modules,	and	each	module	encapsulates	the	solution	to	a	specific	task.	Importantly,	many	of	these	modules	cannot	read	the	contents	of	other
modules	–	they	are	autonomous	systems.



Consider	the	Muller-Lyer	illusion.	Line	1	and	Line	2	are	of	the	same	length,
although	Line	2	appears	to	be	longer	than	Line	1.	Even	though	we	have
knowledge	that	tells	us	the	two	lines	are	of	equal	length,	our	perception	of	the
two	arrows	is	not	privy	to	this	information.	Our	perception	“module”	must	be
working	independently	of	this	knowledge.

The	Module	Basis

So	if	we	assume	the	modularity	of	mind,	then	by	taking	on	each	module	and
attempting	to	understand	it	to	a	degree	that	it	can	be	built,	progress	towards	Al’s
goal	of	understanding	and	building	cognitive	capacities	can	proceed	on	a	module
by	module	basis.	Instead	of	unleashing	a	model	of	cognition	into	the	real,
unwashed	world,	it	is	far	simpler	to	construct	a	simplified	virtual	world.	A
micro-world	is	such	a	simplified	virtual	world.



Micro-worlds	aim	to	capture	the	relevant	parts	of	the	vastly	more	complex	real	world.	By	abstracting	away	from	the	gory	details	that	make	the	real	world	so	complex,	micro-worlds	make	building
models	easier.

The	Micro-World

The	quintessential	micro-world	is	blocks	world	–	a	three-dimensional	world
composed	of	coloured	blocks,	pyramids,	and	other	geometric	solids.



As	we	will	see,	the	robot	Shakey	inhabits	a	real	blocks	world.



Other	AI	programs	operate	within	a	virtual	blocks	world	–	the	world	as	modelled
by	the	computer	itself.	By	building	a	machine	capable	of	operating	in	a	micro-
world,	the	hope	is	that	the	same	kind	of	machine	can	be	generalized	to	work	in
more	complex	environments.

Early	Successes:	Game	Playing

Games	like	checkers	(draughts)	and	chess	provide	the	ideal	working
environment	for	an	AI	program.	The	kind	of	competence	required	to	play	these
games	is	extremely	specialized.	The	micro-worlds	that	games	present	are	ones	of
strict	rules,	uncomplicated	environments	and	predictable	consequences.	AI
thrives	on	these	properties,	and	as	a	result,	game-playing	machines	are	very
successful.



The	first	chess	program	to	play	a	whole	game	against	a	human	was	designed	by	Alan	Turing	in	1951.	Soon	after,	Arthur	Samuel	(1901–90)	designed	a	checkers-playing	program.	It	soon	started	to
beat	me	regular.

Self-Improving	Program

As	a	result	of	learning	from	its	experience,	the	program	carried	on	improving
quickly	and	soon	beat	a	checkers	champion.	The	champion	remarked	after	defeat
in	1965	…



In	the	matter	of	the	end	game,	I	have	not	had	such	competition	from	any	human	being	since	1954,	when	I	lost	my	last	game.

This	victory	of	machine	over	man	is	widely	cited,	and	for	good	reason.	It
demonstrates	an	important	lesson:	the	capabilities	of	an	artificial	agent	are	not
necessarily	restricted	by	the	capabilities	of	the	designer.	Samuel’s	program	plays
better	checkers	than	he	does.

Representing	the	Game	Internally

Most	game-playing	machines	work	by	constructing	a	symbolic	representation
called	a	game	tree.	From	the	starting	position,	the	game	tree	details	all	the
possible	ways	the	game	can	unfold.	The	representation	is	symbolic:	it	might	use
a	symbol	to	represent	a	white	piece,	and	another	symbol	to	represent	a	black
piece.



Using	these	basic	symbols,	along	with	a	representation	of	the	board,	we	can	represent	board	positions	inside	the	computer.	For	example,	here	is	part	of	the	game	tree	for	tic-tac-toe	(noughts	and
crosses).



Two	possible	paths	through	the	tree	are	shown.	These	two	paths	represent	two
possible	games.



Unlike	a	human,	a	computer	can	easily	generate	the	game	tree	and	keep	it	in
memory.	Using	this	internal	representation,	the	computer	can	then	look	ahead	to
see	the	precise	consequences	of	its	actions.

Brute	Force	“Search	Space”	Exploration

Tic-tac-toe	is	not	very	demanding.	Most	people	soon	realize	that	they	can
guarantee	at	least	a	draw	by	employing	a	simple	strategy.



Similarly,	designing	a	computer	program	to	achieve	this	level	of	competence	is	easy	because	tic-tac-toe	has	a	relatively	small	game	tree	–	it	comprises	only	362,880	possible	board	positions.

By	generating	the	entire	game	tree,	the	computer	can	always	make	the	right
decision	by	looking	ahead.	It	can	guarantee	a	win	or	a	draw.	The	element	of
surprise	is	removed,	once	you	can	see	how	all	the	possible	games	unfold.

Infinite	Chess	Spaces

The	space	of	all	possible	tic-tac-toe	games	is	negligible	in	comparison	to	the
number	of	possible	games	of	chess.	One	of	the	world’s	greatest	chess	masters,
Garry	Kasparov,	perfectly	expressed	the	difficulty.



The	number	of	potential	chess	moves	exceeds	the	number	of	atoms	in	the	universe.	It’s	a	number	beyond	any	possible	calculation.

With	chess,	looking	ahead	even	a	moderate	number	of	moves	becomes
intractable	–	the	number	of	combinations	becomes	too	large	to	contemplate.	The
game	tree	for	chess	cannot	fit	into	the	universe,	let	alone	a	computer’s	memory.

Getting	By	With	Heuristics

In	chess,	winning	board	positions	are	situated	deep	in	the	game	tree.	Chess-
playing	computers	cannot	reach	these	positions	by	search.	It	would	take	too
long.	Instead,	they	look	ahead	only	a	certain	distance.	Using	a	measure	which
reflects	how	advantageous	a	given	board	position	is,	these	intermediate	positions
are	ranked,	and	the	best	one	is	chosen.



Ranking	is	achieved	by	assigning	a	score	to	each	board	position	…	The	score,	calculated	using	an	evaluation	function,	reflects	how	good	the	position	is	by	taking	into	account	tactical	knowledge	–
like	the	fact	that	losing	a	piece	is	a	bad	idea	–	as	well	as	higher-level	tactical	strategy.



These	tactical	rules	of	thumb	are	called	heuristics	and	crop	up	in	AI	systems
everywhere.	Heuristics	don’t	guarantee	success	or	correctness,	but	offer	a	good
approximation.	Heuristics	are	used	when	more	exhaustive	and	precise	methods
are	intractable.

Deep	Blue

Perhaps	the	most	legendary	victory	of	machine	over	man	occurred	in	1987.
IBM’s	tailor-made	chess	computer	Deep	Blue	defeated	Garry	Kasparov,	the	most
highly	ranked	player	in	the	world.	This	was	a	landmark	for	AI.



The	AI	community	had	designed	a	machine	that	could	beat	a	highly	skilled	and	dedicated	human	at	a	task	most	people	consider	to	require	intelligence.	But	does	Deep	Blue’s	victory	over	Kasparov
really	constitute	a	significant	milestone	for	AI?	“Deep	Blue	is	stunningly	effective	at	solving	chess	problems,	but	it	is	less	‘intelligent’	than	even	the	stupidest	human.”	–	The	IBM	Deep	Blue	website.

Lack	of	Progress

Chess-playing	computers	shed	little	light	on	the	question	of	mechanized
cognition.	They	unashamedly	rely	on	the	ability	of	machines	to	consider
hundreds	of	millions	of	moves	per	second.	Kasparov	can	only	examine	a
maximum	of	three	moves	per	second.	Deep	Blue	won	using	brute	force,	not
brains.



By	citing	Deep	Blue	as	one	of	AI’s	few	examples	of	success,	some	within	Al	itself	view	this	as	a	reflection	of	AI’s	lack	of	progress.	Deep	Blue	patently	reties	on	mechanical	trickery	rather	than	mental
dexterity.

Touting	Deep	Blue	as	a	success	amounts	to	Al	putting	its	hands	up	and	admitting
lack	of	progress	in	replicating	anything	even	approaching	human	cognition.

Giving	Machines	Knowledge

Our	world	is	more	like	chess	than	tic-tac-toe.	We	can	never	plan	too	far	ahead;
the	number	of	possibilities	available	to	us	in	our	everyday	life	is	too	great	to
contemplate.



Chess-playing	machines	rely	on	knowledge	coded	into	their	evaluation	functions	…	Just	as	we	have	knowledge	to	help	us	function	in	a	complex	environment.

Logic	and	Thought

The	idea	that	knowledge	can	be	formalized	is	not	new.	For	centuries	the	act	of
thinking	has	been	seen	as	calculation	based	on	logical	reasoning.	Newell	and



Simon’s	physical	symbol	systems	hypothesis	has	its	roots	in	the	work	of	the
philosopher	Thomas	Hobbes	(1588–1679).



Hobbes	argued	that	thought	was	merely	the	syntactic	manipulation	of	basic	atomic	units	…	And	these,	when	put	together,	could	describe	the	rich	structures	required	for	knowledge	and	thought.	When
man	reasons,	he	does	nothing	else	but	conceive	a	sum	total	from	addition	of	parcels.

Hobbes’s	“parcels”	were	the	basic	units	of	thought,	just	as	symbols	are	basic	to
Newell	and	Simon’s	Physical	Symbol	Systems	Hypothesis.

Hobbes’s	ideas	were	furthered	by	the	mathematician	and	philosopher	Gottfried
Wilhelm	Leibniz	(1646–1716)	who	tried	to	identify	an	appropriate	system	of
parcels	–	a	logical	language.	Leibniz	imagined	writing	down	all	the	facts	known
to	man	in	this	language,	which	he	called	Characteristica	Universalis.



Then,	through	calculation,	Leibniz	believed	he	would	be	able	to	solve	any	problem.	Even	moral	debates	could	then	be	resolved	through	sheer	calculation.	Once	the	characteristic	numbers	[atoms]	are
established	for	most	concepts,	mankind	will	then	possess	a	new	instrument	which	will	enhance	the	capabilities	of	the	mind	to	far	greater	extent	than	optical	instruments	strengthen	the	eyes,	and	will

supersede	the	microscope	and	telescope	to	the	same	extent	that	reason	is	superior	to	eyesight.

Logical	reasoning	requires	the	manipulation	of	sentences	described	in	a	logical
language.	These	sentences	can	be	interpreted	as	representing	concepts	such	as
states	of	affairs	in	the	world	–	or	knowledge.	Using	computers	to	automate	this
process,	Al	has	taken	the	“logic	as	thought”	idea	and	built	on	it.

The	CYC	Project	and	Brittleness

Although	many	thinkers	have	explored	the	relationship	between	logic	and
thought,	few	have	translated	their	ideas	into	an	engineering	project	as	bold	as
Doug	Lenat,	AI	researcher,	and	head	of	the	CYC	project.	The	CYC	project	(from
encyclopaedia),	started	in	1984,	is	unparalleled	in	its	goal	of	endowing	machines
with	commonsense	knowledge.	Lenat	describes	this	project	as	“mankind’s	first
foray	into	large-scale	ontological	engineering”.	Millions	of	dollars	have	been
spent	on	this	20-year	project	to	collect	over	100	million	facts.



It	is	relatively	easy	to	equip	AI	systems	with	specialized	knowledge.	Yet,	even	a	slight	deviation	from	the	machine’s	narrow	expertise	will	inevitably	come	up	with	nonsense.	This	is	known	as	brittleness
…	Ask	a	medical	program	about	a	rusty	old	car,	and	it	might	blithely	diagnose	measles.

The	aim	of	CYC	is	to	alleviate	the	problem	of	brittleness	by	codifying	the
background	of	commonsense	knowledge	that	we	all	share.	On	the	difficulty	of
this	task,	Lenat	notes	…



Many	of	the	prerequisite	skills	and	assumptions	have	become	implicit	through	millennia	of	cultural	and	biological	evolution	and	through	universal	early	childhood	experiences.	Before	machines	can
share	knowledge	as	flexibly	as	people	do,	those	prerequisites	need	to	be	recapitulated	somehow	in	explicit,	computable	forms.

Some	have	drawn	a	parallel	between	Lenat’s	project	and	that	of	Leibniz.	Can	a
large	part	of	our	conception	of	the	world	really	be	captured	in	some	formal



logical	language?	As	we	will	see	later,	the	idea	that	our	implicit	knowledge	of
the	world	can	be	formalized	at	all	is	controversial.

Can	the	CYC	Project	Succeed?

The	CYC	project	is	entering	its	final	phase,	with	Lenat	predicting	a	50%	chance
of	success.	Apart	from	the	practical	benefits	of	a	successful	CYC	project,	the
theoretical	objective	is	to	test	Newell	and	Simon’s	hypothesis.	Is	commonsense
something	that	we	can	formalize	and	automate	using	symbolic	representations?



A	successful	CYC	project	will	surprise	a	lot	of	people.	An	unsuccessful	CYC	project	will	be	of	limited	interest…	Perhaps	CYC	is	missing	just	a	few	important	rules	or	facts.

A	recurring	justification	for	the	inadequacy	of	logic-based	systems	is	the	“just
one	more	rule”	defence.	Rather	than	questioning	the	enterprise	as	a	whole,	the
tendency	is	to	persevere	with	the	powerful	idea	of	formalized	knowledge	dating
back	to	Hobbes.

A	Cognitive	Robot:	Shakey

Shakey,	an	autonomous	mobile	robot,	is	the	classic	example	of	how	multiple	AI
techniques	can	be	successfully	combined.	In	contrast	to	Elsie,	Shakey	has	a	lot
going	on	inside.	He	was	the	first	robot	to	be	controlled	by	a	computer.	Built	at
the	Stanford	Research	Institute	in	the	late	1960s,	Shakey	is	about	the	size	of	a
fridge	and	moves	around	on	small	wheels.



I	navigate	with	the	aid	of	an	optical	range-finder,	bump	detectors,	but	primarily	by	using	a	television	camera.	Due	to	the	weight	of	his	hardware,	Shakey	tends	to	shake	when	moved.	Hence	his	name.

Shakey’s	Environment

Shakey	occupied	a	simplified	environment	composed	of	a	suite	of	rooms
connected	by	a	corridor.	The	rooms	were	bare	and	contained	box-like	objects.



I	live	in	a	real	blocks	world.

Because	the	environment	was	constrained,	Shakey	could	reliably	work	out	the
location	of	blocks	using	a	machine	vision	system.

Sense-Model-Plan-Act



Shakey’s	design	mirrors	the	traditional	view	that	an	agent	should	be	decomposed
into	four	functional	components.	This	model	revolves	around	the	sense-model-
plan-act	cycle.	First,	the	agent	senses	the	world.	Then	a	model	of	the	world	is
constructed	on	the	basis	of	the	sensory	inputs.	Using	this	model,	a	plan	can	then
be	constructed	to	guide	how	the	agent	will	carry	out	actions	in	the	world.



For	example,	Shakey	is	set	a	task	–	like	“move	block	1	from	A	to	B”.	Given	such	a	task,	Shakey	calls	on	a	series	of	AI	techniques	to	take	him	through	the	sense-model-plan-act	cycle	…	•Machine
vision	techniques	to	locate	the	blocks.	•Path-planning,	to	manoeuvre	toward	locations.	•	Higher	level	symbolic	planning,	to	break	the	given	task	into	an	ordered,	manageable	plan.

Limited	to	Plan

By	shunting	the	blocks	around	according	to	the	plan,	Shakey	can	complete	the
goal	set	for	him.	For	example,	the	plan	might	require	the	placement	of	a	wedge,
acting	as	a	ramp,	in	order	to	move	one	block	located	on	top	of	another.	Due	to
his	weight,	Shakey’s	wheels	tended	to	slip,	and	as	a	result,	he	became	inaccurate
when	navigating.



These	problems	highlighted	Shakey’s	inability	to	monitor	for	and	deploy	changes	in	the	plan.	The	internal	representations	–	such	as	Shakey’s	location	–	became	out	of	synch	with	the	outside	world.

The	planning	design	was	monolithic.	After	the	plan	was	set	into	action,	Shakey
largely	ignored	feedback	from	the	real	world.	For	example,	if	someone	secretly
removed	the	block	Shakey	was	interested	in,	he	would	become	very	confused.

New	Shakey

Efforts	to	alleviate	Shakey’s	problems	led	to	refinements.	Lower	level
monitoring	of	movement	was	introduced	to	achieve	more	accurate
synchronization.



Whenever	inaccuracies	were	likely,	the	system	made	sure	the	representations	and	plans	were	true	to	the	environment	by	rechecking	Shakey’s	location.

Shakey’s	Limitations

The	integration	of	many	subsystems,	not	originally	designed	with	Shakey	in
mind,	was	an	impressive	feat.	The	whole	cycle,	from	perception	to	modelling,
planning	and	execution,	and	finally	to	error	recovery,	had	not	been	done	to	this
level	before.



Perhaps	of	more	significance,	the	limitations	of	Shakey	taught	roboticists	valuable	lessons.	First	my	underlying	technology	depended	heavily	on	the	fact	that	the	environment	was	simplified.

The	machine	vision	system	knew	what	to	expect,	and	the	planning	system	only
had	to	deal	with	the	movement	of	blocks.



Given	a	more	complex	environment,	Shakey’s	techniques	would	not	cope.



Shakey	was	also	in	some	ways	too	clever.	He	was	doing	too	much.	Often,	I	would	stall	for	minutes	while	computing	plans	and	constructing	routes.

Given	that	Shakey’s	world	was	kept	simple,	these	problems	would	multiply
when	faced	with	a	more	complex	environment.

The	Connectionist	Stance

Using	the	metaphor	of	a	computer	executing	a	program,	classical	AI	seeks	to
explain	cognition	in	terms	of	the	manipulation	of	symbolic	representations.	The
mind	manipulates	symbolic	representations	in	the	same	way	that	a	program
manipulates	data.



This	vocabulary	of	explanation,	according	to	our	physical	symbol	systems	hypothesis,	is	required	for	explaining	the	basis	for	intelligent	action.	Connectionism,	an	approach	inspired	by	the	neural
structure	of	human	and	animal	brains,	offers	an	alternative	vocabulary	of	explanation.

Connectionism	gained	popularity	in	the	1980s	and	is	often	depicted	as	a	radical
departure	from	the	classical,	symbolic	approach	to	AI.	Rather	than	viewing	the
processes	of	the	mind	as	a	computer	program,	connectionism	draws	a	parallel
between	the	processes	of	the	mind	and	the	processes	of	the	brain.

Biological	Influences

If	we	look	at	the	biological	systems	that	support	cognition,	we	see	brains	of
varying	sizes	built	from	collections	of	neurons.



Neurons	are	brain	cells	capable	of	sending	signals	to	other	neurons.

The	human	brain	has	approximately	100	billion	neurons,	and	on	average,	each
one	of	those	neurons	is	connected	to	around	10,000	other	neurons	by	cable-like



structures	called	axons.

Neural	Computation

As	we	saw	before,	collections	of	neurons	can	act	as	computing	devices,	and	the
work	of	McCulloch	and	Pitts	tells	us	that	these	configurations	of	neurons	can
compute	the	same	class	of	calculations	as	a	Turing	machine.



Connectionist	models	therefore	offer	no	advantage	over	symbolic	models	in	the	class	of	problems	they	can	solve.	The	issue	is	whether	the	alternative	set	of	concepts	that	connectionism	offers	are	useful
in	explaining	cognition.

Neural	Networks

Connectionist	models	usually	take	the	form	of	artificial	neural	networks,
referred	to	as	neural	networks.	Neural	networks	are	groups	of	artificial	neurons
configured	to	perform	some	calculation.	Neural	networks	are	becoming
increasingly	well	known.



For	example,	the	characters	in	modern	incarnations	of	Star	Trek	often	discuss	the	neural	network	in	the	starship	Enterprise’s	computer.

The	Anatomy	of	a	Neural	Network

The	building	blocks	of	neural	networks	are	simplified	versions	of	biological
neurons	called	activation	units.	These	units	have	a	set	of	input	connections	and	a
set	of	output	connections.	These	connections	model	the	job	performed	by	axons.



The	input	connections	deliver	the	signals	sent	from	other	neurons.	Depending	on	the	combined	strength	of	all	the	input	signals,	the	activation	unit	will	send	a	signal	to	all	the	units	it	is	connected	to	via
its	output	connections.

Biological	Plausibility

It	is	often	overlooked	that	neural	networks	are	highly	abstracted	versions	of	the
neural	networks	found	in	real	brains.	Activation	units	only	resemble	real	neurons
in	very	general	terms.



Activation	units	emit	a	simple	numerical	signal	whereas	biological	neurons	emit	a	series	of	pulses.	Similarly,	brains	are	constructed	from	many	different	kinds	of	neuron,	but	neural	networks	tend	to
use	just	one	type	of	activation	unit.

Yet	amazingly,	even	though	artificial	neural	networks	are	gross	simplifications
of	real	neural	networks,	they	share	fundamental	properties	with	their	biological
equivalents.



Parallel	Distributed	Processing

Computers	are	faster	than	brains.	The	basic	components	used	by	computer
processors	are	much	faster	than	biological	neurons.	The	fastest	neuron	can
transmit	around	1000	signals	per	second.	Electrical	circuits	can	operate	around	a
million	times	faster.



Despite	this,	brains	carry	out	extremely	complex	operations	amazingly	fast	–	it	only	takes	a	tenth	of	a	second	to	recognize	your	own	mother!

Parallel	vs.	Serial	Computation

The	vast	majority	of	digital	computers	compute	serially.	For	example,	to
calculate	the	result	of	(1	+	4)	+	(4	x	8),	a	serial	computer	would	first	calculate	(1
+	4)	and	get	5,	next	calculate	(4	x	8)	and	get	32.	It	would	then	add	these	together
to	yield	37.	The	calculation	is	broken	into	a	series	of	sub-calculations	performed
one	after	the	other.	An	equivalent	parallel	computation	would	calculate	(1	+	4)
and	(4	x	8)	at	the	same	time,	thereby	reducing	the	time	required	to	perform	the
calculation.	Constituent	parts	of	the	computation	are	calculated	in	parallel.



The	brain	is	massively	parallel,	whereas	most	computers	compute	serially.	This
is	why	the	brain	is	so	fast,	despite	its	relatively	slow	machinery.	The	property	of
parallelism	present	in	neural	networks	makes	connectionist	models	appealing.
The	manner	in	which	they	carry	out	the	processing	task	is	far	closer	to	how	the
brain	computes.

Robustness	and	Graceful	Degradation

If	you	deliberately	damage,	even	slightly,	any	part	of	your	computer’s	main
processing	unit	it	will	not	work	any	more.	Conventional	computing	machinery	is
not	very	robust.	In	contrast,	slight	brain	damage	will	rarely	result	in	someone
dropping	dead	–	it	might	even	have	no	effect	whatsoever.	In	fact,	the	ageing
process	itself	results	in	neurons	dying	all	the	time.



This	phenomenon	is	known	as	graceful	degradation	…	Small	disturbances	will	have	little	effect	on	the	operation	if	the	system.	Large	disturbances,	of	course,	will	likely	result	in	catastrophic	failure.

The	important	point	is	that	the	degree	of	degradation	is	in	some	sense
proportional	to	the	degree	of	damage	to	the	system.	Neural	networks	exhibit
precisely	this	behaviour	since	each	neuron	acts	as	a	separate	processor.



Each	neuron	contributes	a	little	to	the	overall	computation.	Remove	a	neuron,	and	you	only	affect	a	small	part	of	the	computation.	A	conventional	computer	only	has	one	processor,	so	any	damage	will
have	a	global	effect.



Machine	Learning	and	Connectionism

Machine	Learning	is	a	branch	of	AI	that	spans	both	the	classical	symbolic
approach	and	connectionism.	Here,	models	of	learning	capture	the	ability	of	an
agent	to	improve	itself	in	light	of	information	in	the	environment.	Often,	the
ability	of	connectionist	systems	to	learn	is	cited	as	one	of	its	defining
characteristics,	and	a	feature	most	attractive	to	AI	researchers.



Initially,	connectionist	systems	were	seen	as	a	magic	bullet	for	AI’s	lack	of	progress.	Some	saw	connectionism	as	the	“only	straw	afloat”.	It	is	true	that	neural	networks	have	been	successfully	applied
to	an	enormous	diversity	of	learning	problems.

But	importantly,	symbolic	approaches	are	equally	well	suited	to	learning.	The
neural	network	approach	to	learning	is	best	seen	as	adding	to	a	long	history	of
research	into	this	core	concern	for	AI.

Learning	in	Neural	Networks

A	wide	variety	of	problems	have	been	addressed	using	neural	network	learning
mechanisms.	On	the	basis	of	prior	experience,	neural	networks	can	be	trained	to
learn	associations	between	patterns	of	experiences	by	altering	the	strength	of	the
connections	between	activation	units.	For	example,	neural	networks	have	been
used	to	attack	the	following	problems:

Making	mortgage	decisions

When	you	apply	for	a	mortgage,	the	decision	may	well	depend	on	the	result	of	a
neural	network.



The	mortgage	company	has	trained	the	neural	network	on	the	basis	of	thousands	of	previous	mortgage	decisions.	The	aim	is	to	predict	who	will	be	a	bad	customer,	and	who	will	be	a	good	one.

Categorizing	sonar	echoes



Neural	networks	have	proven	superior	to	human	experts	at	categorizing	sonar	echoes,	taken	by	submarines,	to	recognize	the	difference	between	rocks	and	mines.

Learning	to	vocalize
One	neural	network,	NETtalk,	learns	how	to	produce	speech	sounds	from
phonemes,	the	building	blocks	of	words.



Words	never	previously	encountered	by	NETtalk	are	pronounced	correctly	with	a	high	degree	of	accuracy.

Playing	checkers



Neural	networks	have	been	trained	to	play	checkers,	which,	as	we	have	seen,	is	a	classic	problem	in	AI	traditionally	solved	using	symbolic	approaches.

Robot	brains



Many	robots	rely	on	neural	networks	to	control	how	their	motor	movements	should	react	to	sensor	readings,	for	example,	learning	how	to	avoid	obstacles.

Local	Representations

Symbolic	representations	are	the	lynch-pin	of	classical	Al.	In	a	symbolic	system,
units	of	information	are	shunted	around	and	operated	on	by	the	model.



For	example,	a	symbolic	models	for	categorizing	animals	might	use	a	unit	of	information	representing	the	number	of	legs	of	the	candidate	animal.	This	information	will	be	located	in	part	of	the
computer’s	memory	as	a	package.

This	kind	of	representation	is	termed	a	local	representation	because	the
information	about	the	number	of	legs	is	kept	together	in	a	locatable	package.

Distributed	Representations

The	kinds	of	information	processing	performed	by	neural	networks	can	differ
fundamentally	in	nature	from	those	found	in	symbolic	systems.	Representations
are	often	distributed	in	the	same	way	that	processing	can	be	distributed.	A



distributed	representation	is	spread	out	across	the	whole	network,	rather	than
being	localized	to	a	specific	area	or	being	built	up	from	atomic	units.



Information	is	not	stored	anywhere	in	particular,	Rather	it	is	stored	everywhere.	Information	is	better	thought	of	as	“evoked”	than	“found”.

Of	course,	neural	networks	themselves	are	built	up	from	atomic	units	–	artificial
neurons	–	but	these	units	are	rarely	used	by	the	designer	to	represent	anything	in
themselves.

Complex	Activity

So,	in	a	distributed	representation,	a	single	neuron	is	unlikely	to	be	responsible
for	representing	the	number	of	legs	of	our	candidate	animal.	Instead,	the	number
of	legs	would	be	represented	by	a	complex	pattern	of	activity	over	a	wide
number	of	neurons.	Some	of	these	neurons	will	play	a	part	in	representing	some
other	property	in	the	system.



Many	representations	share	neurons	and	exist	as	part	of	a	complex	mesh	of	neural	activity.	The	philosopher	Ludwig	Wittgenstein	(1889–1951)	had	foreseen	distributed	neural	activity	…	Nothing
seems	more	possible	to	me	than	that	people	some	day	will	come	to	the	definite	opinion	that	there	is	no	copy	in	the	nervous	system	which	corresponds	to	a	particular	thought,	or	a	particular	idea,	or

memory.

Interpreting	Distributed	Representations

As	a	general	rule,	you	can’t	locate	specific	items	of	information	by	pointing	your
finger	at	part	of	a	distributed	representation	in	the	same	way	that	you	can	with	a
local	representation.



A	neural	network	can	be	thought	of	as	a	holistic	device	for	solving	a	problem.	The	way	the	device	organizes	itself	in	order	to	solve	the	problem	will	rarely	result	in	a	human	interpretable	organization.

Complementary	Approaches

Connectionism	is	often	depicted	as	a	revolution	in	Al	–	a	flurry	of	new	ideas
concerning	old	problems,	and	a	timely	replacement	for	“Good	old	fashioned	Al”.
Historically,	both	connectionism	and	symbolic	Al	have	their	roots	in	early	work
on	Al.	Independently	of	McCulloch	and	Pitts,	Alan	Turing	had	considered	the
idea	of	collections	of	artificial	neurons	acting	as	a	computing	device.



Alan	Turing’s	insights	on	AI	were	profound,	even	more	so	if	we	consider	his	little-known	pioneering	work	on	connectionism.	In	the	1940s,	I	experimented	with	an	idea	of	unorganized	machines	–
quirky	versions	of	what	are	now	called	neural	networks.

It	was	an	accident	of	history	that	led	to	symbolic	Al	becoming	the	conceptual
vocabulary	of	choice	for	so	long.	Despite	recent	bickering	between	the	rival
camps,	most	would	now	agree	that	the	two	approaches	complement	each	other.



Can	Neural	Networks	Think?

Searle’s	Chinese	Room	argument	hinges	on	the	idea	that	computers,	as	we	know
them	today,	can	only	manipulate	meaningless	symbols.	The	machine	can	never
have	an	understanding	of	the	symbols	it	manipulates.	Agree	or	disagree	with
Searle,	this	issue	is	still	a	mystery.	However,	there	are	two	reasons	why
connectionism	could	contribute	to	this	debate.



First,	neural	networks	differ	substantially	from	conventional	computers	when	physically	instantiated…	and	my	argument	pivots	on	the	inadequacy	of	classical	physical	machinery	to	Support
understanding.	Second,	in	a	connectionist	system,	computation	proceeds	at	a	sub-symbolic	level	–	the	relationship	between	computation	and	symbolic	atoms	is	less	clear.

The	Chinese	Gym

Predictably,	the	resilient	Searle	stands	firm	and	replies	with	the	Chinese	Gym.
Instead	of	a	room	containing	a	lone	Searle,	he	imagines	a	gym	full	of	non-
Chinese	speakers,	one	for	each	neuron	in	the	neural	network.



The	argument	works	along	the	same	lines	as	the	original	argument	…	None	of	the	people	in	the	gym	understands	Chinese,	therefore	the	whole	gym	cannot	understand	Chinese.	Searle	does	not	believe
that	connectionism	can	bring	anything	new	to	the	debate.

However,	the	Chinese	Gym	does	serve	as	an	illustration	that	the	whole	can	be
more	than	the	sum	of	the	parts.	In	a	sub-symbolic	system,	the	atomic	units,
neurons	and	their	structured	relationship	to	other	neurons,	do	not	individually	do
much	at	all.	Only	when	the	collection	is	seen	as	a	whole	can	we	start	to	speak	of
concepts	such	as	distributed	representations	and	cognition.



Neural	networks	therefore	exhibit	the	properties	of	emergence	and	self-organization	discussed	earlier.

The	Symbol	Grounding	Problem

Searle’s	argument	concerns	the	inability	of	the	symbols	being	manipulated	to
mean	anything.	By	themselves,	symbols	are	meaningless	shapes	realized	by,	in
the	case	of	a	conventional	computer,	a	pattern	of	electrical	activity.	Any	meaning
we	confer	to	the	symbols	is	parasitic	on	the	meaning	in	our	heads.



What	the	psychologist	Stevan	Harnard	terms	the	symbol	grounding	problem	addresses	this	issue.	Meaning	can	enter	the	system	only	when	part	of	the	system	is	grounded	in	the	world,	rather	than
being	part	of	a	closed,	self-referential	system	of	symbols.

Harnard	views	connectionism	as	a	good	candidate	for	achieving	this	grounding,
especially	when	coupled	with	a	symbolic	system.

Symbol	Grounding



First,	imagine	a	native	English-speaker	learning	Chinese,	armed	only	with	a
Chinese-Chinese	dictionary.	Harnard	likens	this	to	a	cryptologist	cracking	a
code.



You	might	break	into	the	Chinese	language,	but	this	is	contingent	on	an	understanding	of	your	own	language.	The	meaning	of	any	Chinese	you	learn	is	parasitic	on	English.

Breaking	the	Circle

Could	you	ever	learn	Chinese	as	a	first	language,	with	only	the	aid	of	a	Chinese-
Chinese	dictionary?	Harnard	likens	this	to	a	symbol-symbol	merry-go-round.



Meaningless	symbols	are	only	ever	defined	in	terms	of	other	meaningless.	This	is	exactly	the	position	a	machine	is	placed	in.

How	can	symbols	ever	be	grounded	by	anything	but	other	meaningless	symbols?
Part	of	the	problem	of	ascribing	meaning	to	a	symbol	requires	that	the	circle	of
meaninglessness	be	broken.

Harnard	imagines	a	classical	symbolic	system	sitting	on	top	of	a	sub-symbolic
connectionist	system.	Importantly,	the	connectionist	system	has	inputs	that	are
grounded	in	the	outside	world	through	sensors.	In	this	way,	symbolic
representations	are	no	longer	defined	in	terms	of	other	symbols,	but	are	instead
related	to	iconic	representations	which	are	directly	linked	to	the	sensory	surfaces
of	the	system.



A	symbol	representing	dog	takes	its	meaning	from	the	complex	of	sensory	images	common	to	dogs	…	Rather	than	other	meaningless	symbols	such	as	barks,	has-four-legs	and	smells.

It	is	the	connectionist	system	that	supplies	the	sensory	images.	By	combining
symbolic	and	connectionist	systems,	Harnard	believes	we	can	begin	to	break	out
of	the	closed	world	of	meaningless	symbols	that	Searle	discusses.

The	Demise	of	AI?

The	fact	is,	that	after	half	a	century	of	research	into	Al,	the	fruits	of	this	research
have	failed	to	measure	up	to	expectation.	Arguably,	we	are	not	even	approaching
the	goal	of	being	able	to	build	machines	that	can	match	the	cognitive	capacities
of	humans.	The	psychologist	and	philosopher	Jerry	Fodor	has	summed	up	the
problem.



AI	has	walked	into	a	game	of	3-dimensional	chess,	thinking	it	was	a	tic-tac-toe.	Or	as	Rodney	Brooks	of	MIT	put	it…	Artificial	Intelligence	has	foundered	…	the	symbol	system	hypothesis	upon	which
classical	AI	is	based	is	fundamentally	flawed	…

This	lack	of	progress	has	led	practitioners	of	Al	to	take	stock.	Are	the	current
approaches	to	Al	misguided,	or	are	we	just	around	the	corner	from	a



breakthrough?	A	number	of	researchers	suspect	the	former,	and	have	actively
sought	to	re-orientate	Al.

“…	the	cognitivistic	paradigm’s	neglect	of	the	fact	that	intelligent	agents	live	in
a	real	physical	world	leads	to	significant	shortcomings	in	explaining
intelligence.”	–	Rolf	Pfeifer	and	Christian	Scheier



AI’s	analysis	of	high-level	cognitive	processes	in	agents	detached	from	the	complexities	of	physical	environments	has	been	identified	as	the	source	of	some	of	its	deepest	problems.

New	AI

“We	used	to	argue	whether	a	machine	could	think.	The	answer	is,	‘No’.	What
thinks	is	a	total	circuit,	including	perhaps	a	computer,	a	man,	and	an
environment.	Similarly,	we	may	ask	whether	a	brain	can	think,	and	again	the
answer	will	be,	‘No’.	What	thinks	is	a	brain	inside	a	man	who	is	part	of	a	system
which	includes	an	environment.”	–	Gregory	Bateson

This	observation	has	led	to	the	adoption	of	a	new	set	of	principles.	This	new
orientation	is	not	yet	fully-fledged	–	it	lacks	a	commonly	used	name,	but	is	often
termed	New	AI.



Far	from	being	idle	speculation,	these	new	principles	have	resulted	in	impressive	engineering	projects.	But	before	examining	new	AI,	it	is	important	to	analyse	the	array	of	problems	conventional
approaches	to	AI	are	accused	of.

Micro-Worlds	are	Unlike	the	Everyday	World

Measuring	a	theory	against	a	simplified	micro-world	is	a	widespread	practice	in
Al.	Here,	researchers	distil	what	they	believe	to	be	the	salient	properties	of	a	real
environment	into	a	virtual	environment.



The	success	of	an	AI	project	is	then	measured	relative	to	how	humans	would	perform	the	same	function	in	the	everyday	world.	Rarely	are	AI	projects	placed	in	the	same	situation	as	the	human.

“Micro-worlds	are	not	worlds	but	isolated	meaningless	domains,	and	it	has
gradually	become	clear	that	there	is	no	way	they	could	be	combined	and
extended	to	arrive	at	the	world	of	everyday	life.”	–	Hubert	and	Stuart	Dreyfus

The	Problems	of	Conventional	AI

Scalability



A	system	may	operate	successfully	with	respect	to	a	micro-world,	but	will	often	fail	to	generalize	to	more	elaborate	situations.



Given	that	part	of	Al’s	goal	is	to	establish	general	theories	of	intelligent	action,
this	lack	of	scalability	is	a	drawback	that	stands	rank	opposite	to	the	goal	of
establishing	general	theories.

Robustness

A	trait	common	to	many	Al	systems,	and	that	which	is	addressed	by	the	CYC
project,	is	the	inability	of	many	systems	to	react	well	to	unforeseen
circumstances.	Al	systems	will	often	fail	in	the	face	of	a	novel	situation.	It	is
very	hard	to	design	a	system	robust	enough	to	meet	all	eventualities.	Humans
and	animals,	on	the	other	hand,	rarely	suffer	from	this	problem.



Of	course,	a	beetle	stranded	on	its	back	may	die	…	But	during	the	lifetime	of	the	average	human	or	animal…	…	the	environment	will	present	many	circumstances	never	before	encountered	by	any
member	of	that	species.

Operating	in	Real-Time

The	sense-model-plan-act	cycle	that	underlies	the	design	of	conventional
intelligent	agents	leads	to	massive	amounts	of	information-processing.	Before	a
change	in	the	environment	can	be	reacted	to,	sensory	information	must	pass
through	the	complex	processes	of	modelling,	planning,	and	then	acting.	This
complex	loop	of	information-flow	makes	keeping	up	with	the	world	extremely
hard.	Shakey	is	a	good	example	of	this	phenomenon.



My	behaviour	was	characterized	by	long	pauses	during	which	complex	information-processing	was	carried	out.	Humans	and	animals,	in	contrast,	react	very	quickly	to	events	going	on	around	them.

This	would	indicate	that	something	other	than	“sense-model-plan-act”	is	going	on.

In	one	sense,	the	problem	of	creating	intelligent	agents	has	already	been	solved.
Over	the	course	of	the	earth’s	4.5	billion	years	of	history,	evolution	has	solved
the	problem	over	and	over	again.	Mammals	arrived	370	million	years	ago.	Our
last	common	ancestor	with	the	apes	started	milling	around	5	million	years	ago.



How	did	evolution	do	it?



Biological	evolution	builds	on	existing	designs	by	adding	the	occasional	improvement.

Starting	with	the	basics	–	beasts	capable	of	surviving	in	an	environment	and	then
reproducing	–	evolution	has	built	layer	upon	layer	of	extra	machinery	over
millions	of	years.

The	New	Argument	from	Evolution

The	MIT	roboticist	Rodney	Brooks	takes	the	evolutionary	basics	as	evidence
that	“hard”	tasks	like	reasoning,	planning	and	language	might	turn	out	to	be
easier	to	understand	once	the	basics	are	in	place.



Intelligence	is	contingent	on	the	ability	to	react	to	an	environment.

Can	our	knowledge	of	evolution	inform	AI?	Brooks	believes	that	it	can,	and
argues	that	we	should	first	aim	to	build	basic	mechanical	creatures	before	we	try
to	build	mechanical	humans.

The	Argument	from	Biology



The	intimate	relationship	between	an	organism	and	its	environment	has	been
noted	and	studied	by	biologists	since	the	19th	century.	Yet	Al	is	rarely	informed
by	the	insights	of	biologists.	For	example,	in	the	work	of	Humberto	R.	Maturana
and	Francisco	J.	Varela,	the	neural	circuitry	found	in	the	retina	of	the	eye	of	a
frog	is	shown	to	excite	in	the	presence	of	blob-like	structures	that	resemble	flies.



In	studying	its	behaviour,	we	might	want	to	attribute	to	the	frog	an	“internal	model	of	the	world”	that	contains	flies,	and,	say,	other	frogs.

But	this	simply	is	not	the	kind	of	phenomenon	that	exists	in	the	everyday	world
of	a	frog.

Non-Cognitive	Behaviour

Maturana	and	Varela	illustrate	this	point	by	first	presenting	a	juicy	fly	to	the	top-
left	area	of	the	frog’s	field	of	view.

The	frog	then	spits	its	tongue	out	and	captures	the	fly.

Next,	they	sever	part	of	the	frog’s	eye,	such	that	the	whole	eye	can	be	rotated	by
180	degrees.



Now	when	a	fly	is	presented	in	the	same	position	as	before,	the	frog	spits	its	tongue	out	exactly	180	degrees	off-track,	to	the	bottom	right	of	its	field	of	view.

Importantly,	the	frog	will	persist	with	this	behaviour.	It	will	never	adapt	its
behaviour	in	light	of	the	unsuccessful	attempts	to	capture	the	fly.

The	moral	of	the	story	is	that	a	frog’s	eye	does	not	act	as	a	camera	supplying
information	to	the	frog’s	planning	module,	which	then	constructs	a	plan	to	catch
the	fly.



The	sense-model-plan-act	cycle	does	not	apply	here.	If	this	were	the	case,	then	I	would	alter	my	behaviour.

Instead,	as	Maturana	and	Varela	went	on	to	show,	the	fly-catching	behaviour	is
solved	by	the	retina	itself,	independent	of	the	processes	going	on	in	the	rest	of
the	frog’s	brain.	This	experiment	illustrates	how	certain	behaviours,	such	as
foraging	for	food,	are	realized	through	a	tight	coupling	between	perception	and
action,	independent	of,	and	without	the	need	for,	any	high-level	cognitive
processes.

The	Argument	from	Philosophy

Many	of	the	concepts	central	to	Al	have	their	roots	in	the	work	of	philosophers
such	as	Descartes,	Hobbes,	Leibniz,	as	we	have	seen,	and	the	Tractatus	Logico-
Philosophicus	of	Ludwig	Wittgenstein	(1889–1951):





The	world	is	the	totality	of	facts,	not	of	things.	We	argued	that	it	was	possible	to	arrive	at	a	formal	theory	of	the	everyday	world,	based	on	a	collection	of	formal	primitives.	Al	translated	this	idea	into
the	language	of	symbolic	information	processing	…	Equip	a	computer	with	an	appropriate	set	of	primitives,	and	it	should	be	able	to	function	in	the	world,	in	the	same	way	that	a	human	does.

Against	Formalism

Wittgenstein,	in	his	later	philosophy,	and	Martin	Heidegger	(1889–1976)
strongly	reject	the	formalist	assumption	of	meaning.



But	what	are	the	simple	constituent	parts	of	which	reality	is	composed?	…	It	makes	no	sense	at	all	to	speak	absolutely	of	the	“simple	parts	of	a	chair”.	We	took	issue	with	the	assumption	that	it	is
possible	to	talk	of	“meaningful”	mental	representations,	detached	from	the	activity	of	experience.	A	formal	theory,	they	claimed,	is	by	its	very	nature	detached	from	the	activity	that	gives	it	any	meaning.

This	alternative	philosophical	standpoint	suggests	that	our	interpretation	of	the
world	cannot	be	made	explicit,	and	any	attempt	to	do	so	will	render	our	insights
grossly	inaccurate.

No	Disembodied	Intelligence

This	argument	formed	the	backbone	of	one	of	the	foremost	critiques	of	AI.	The
philosopher	Hubert	Dreyfus,	in	the	1970s,	declared	that	AI	was	misguided	in	its
assumption	that	disembodied	intelligence	was	possible.	On	the	perceived	failure
of	classical	AI,	Dreyfus	noted	…



The	rationalist	tradition	had	finally	been	put	to	an	empirical	test,	and	it	had	failed.	The	idea	of	producing	a	formal,	atomistic	theory	of	the	everyday	commonsense	world	and	of	representing	that
theory	in	a	symbol	manipulator	had	run	into	just	the	difficulties	Heidegger	and	Wittgenstein	had	discovered.

Agents	in	the	Real	World

Can	Al	learn	anything	useful	from	this	philosophical	debate?	If	Heidegger,
Wittgenstein	and	Dreyfus	are	correct	in	their	rejection	of	disembodied
intelligence,	then	Al	must	begin	to	focus	on	how	the	behaviour	of	an	agent	is
constrained	and	partially	determined	by	the	activities	it	engages	in.



This	focus	suggests	that	agents	should	be	modelled	not	as	disembodied,	detached	and	isolated,	but	rather	as	engaged	in	the	everyday	world.	Dreyfus’	critique	was	initially	scoffed	at	by	the	Al
community,	but	is	increasingly	becoming	an	acceptable	topic	for	debate.

The	New	AI

The	arguments	from	evolution,	biology	and	philosophy	stand	in	opposition	to
much	of	conventional	AI	research.	But	to	put	these	arguments	into	practice,	they
need	to	be	translated	into	engineering	principles.	Three	principles	characterize
the	new	approach	to	AI.

The	First	Principle	of	Embodiment





Embodiment	is	the	idea	that	having	a	body	is	theoretically	significant.	That	is,	the	constraints	a	body	places	on	an	agent	are	crucial	to	how	it	interacts	in	the	world.

The	degree	to	which	embodiment	is	significant	remains	a	controversial	issue.
Rodney	Brooks	goes	as	far	as	to	say,	“Intelligence	requires	a	body.”	For
example,	the	design	of	a	robot	body	will	determine	the	sensory	phenomena	it
experiences.

The	Second	Principle	of	Situatedness

Situatedness	refers	to	an	agent	being	located	in	a	complex	environment,	rather
than	a	highly	abstracted	micro-world.	The	complexities	of	real	environments	are
taken	to	be	fundamentally	different	from	those	of	the	abstracted	“micro-worlds”.
Indeed,	being	situated	permits	the	exploiting	of	structure	in	the	world,	lessening
the	burden	of	internal	representations.



Elsie,	Walter’s	robotic	tortoise,	exploited	the	location	of	the	recharging	station	inside	the	hutch.	No	model	of	the	hutch	is	ever	invoked	by	Elsie.	Its	function	was	the	result	of	the	interaction	between
Elsie’s	sensors	and	the	real-world.

Rodney	Brooks	sums	up	this	kind	of	relationship	by	arguing	that	“the	world	is	its
own	best	model”.

The	Third	Principle	of	Bottom-Up	Design

Given	the	goal	of	building	an	intelligent	agent,	the	methodology	frequently
adopted	by	Al	is	to	build	from	the	top	downwards.



That	is,	higher-level	functions	such	as	knowledge	and	reasoning	are	targeted	first,	with	lower-level	Junctions	swept	under	the	carpet	until	later.	New	Al	proposes	bottom-up	design.	Start	with	the
basics	first…

For	example,	Rodney	Brooks	builds	basic	machines	analogous	to	insects.	His
idea	is	that	only	by	understanding	the	basics	first	can	we	begin	to	understand	the
complexities	of	human	cognition.

Behaviour-Based	Robotics

The	principles	of	new	AI	are	put	into	exemplary	practice	by	Rodney	Brooks.
Brooks	has	spearheaded	an	approach	known	as	behaviour-based	robotics.



I	wish	to	build	completely	autonomous	mobile	agents	that	co-exist	in	the	world	with	humans,	and	are	seen	by	those	humans	as	intelligent	beings	in	their	own	right.	I	will	call	such	agents	Creatures	…

Using	bottom-up	design,	how	would	Brooks	succeed	in	building	simple	robotic
creatures	that	resemble	insects?



Behaviours	as	Units	of	Design



Evolution	builds	layer	upon	layer.	It	is	incremental.	It	fine	tunes	and	elaborates	on	existing	designs	to	yield	new	designs.	Behaviour-based	robotics	is	inspired	by	such	an	approach.	Its	units	of	design
are	behaviours.

Behaviours	are	built	on,	to	yield	more	complex	behaviours.	Unlike	much	of
conventional	robotics,	which	takes	the	sense-model-plan-act	cycle	as	a	starting
point,	Brooks’	robots	contain	pieces	of	machinery	that	are	autonomous	and
operate	in	parallel.	There	is	no	central	control.	These	behaviours	implement	a
tight	coupling	between	perception	and	action,	and	avoid	the	use	of	cognitive
processes	to	mediate	between	perception	and	action.

The	Robot	Genghis

In	the	1980s,	Brooks	and	his	colleagues	built	Genghis,	a	six-legged	robot.
Genghis	was	designed	to	walk	across	challenging	environments	and	seek	out	the
infrared	glow	emitted	by	humans	and	other	animals.	Genghis	was	a	success	for
two	reasons.



First,	I	could	negotiate	challenging	terrain,	just	as	an	insect	can.	After	studying	video-footage	of	insect	movements,	I	built	a	machine	that	moved	successfully,	much	like	an	insect.	Second,	Brooks
achieved	this	by	using	novel	techniques.

Genghis	has	no	central	control.	Nowhere	in	his	construction	is	there	a
description	of	how	to	walk.	“The	software	for	Genghis	was	not	organized	as	a
single	program	but	rather	as	fifty-one	little	tiny	parallel	programs.”

Behaviour	by	Design

Genghis	is	composed	of	many	simple	autonomous	behaviours,	organized	as
layers	of	control.	Each	layer	introduces	more	refined	and	controlled	behaviour.



For	example,	one	layer	encapsulates	the	behaviour	of	standing	up.	Another	layer	then	captures	the	rudiments	of	walking,	such	as	leg	swinging	and	leg	coordination.	Additional	layers	help	to	make
Genghis	increasingly	robust.

The	construction	design	of	Genghis	is	a	function	of	the	kind	of	terrain	in	which
he	has	to	operate.	The	behaviours	given	to	Genghis	were	strongly	influenced	by
the	constraints	imposed	by	his	body.

Collections	of	Agents



Although	the	principles	of	new	AI	translate	most	directly	into	the	field	of
robotics,	they	are	by	no	means	limited	to	issues	in	robotics.	A	closer	treatment	of
the	interaction	between	agents	and	their	environments	can	be	applied	to	every
branch	of	AI.	Luc	Steels,	director	of	the	AI	Lab	at	the	University	of	Brussels,
takes	another	line	to	the	“bottom-up”	approach	by	investigating	the	evolution	of
both	meaning	and	communication	systems	in	collections	of	agents.



In	this	approach,	the	human	designer	does	not	put	his	or	her	language	and	concepts	into	the	agents,	but	tries	to	set	up	systems	that	autonomously	generate	their	own.

The	Talking	Heads	Experiment

The	agents	in	the	Talking	Heads	experiment	exist	independently	of	any	physical
robot.	They	are	located	in	a	virtual	environment	supported	by	a	computer
network	spanning	many	physical	locations.	When	agents	need	to	interact	with
each	other,	they	become	grounded	in	the	everyday	world	by	teleporting	to
robotic	bodies	at	physical	locations	such	as	Brussels,	Paris	or	London.



By	borrowing	robotic	bodies	when	needed,	the	Talking	Heads	experiment	can	support	many	agents,	even	though	the	number	of	robotic	bodies	may	be	limited.	These	robotic	bodies	are	called	Talking
Heads.

They	are	composed	of	a	camera,	a	loudspeaker	and	a	microphone.	Talking	Heads
act	as	a	robotic	shell	that	the	virtual	agents	can	occupy	when	they	need	to.

Categorizing	Objects

The	aim	of	the	experiment	is	to	investigate	how	a	shared	language	can	emerge	as
a	result	of	the	interactions	between	agents.	Crucially,	nowhere	in	the	experiment
is	language	defined;	it	develops	as	a	result	of	interactions	between	the	agents.
Starting	with	a	blank	slate,	the	agents	autonomously	develop	their	own
“ontologies”	–	a	sense	of	being	in	the	world	–	that	allow	them	to	identify	and
discriminate	between	objects	in	the	real	world.



As	soon	as	agents	develop	the	ability	to	categorize	objects,	they	attempt	to	name	the	objects	by	communicating	with	each	other.	The	agents	categorization	of	the	world	is	not	programmed	but	emerges.
It	is	constructed	and	learned	by	the	agents	themselves.

The	Naming	Game

Steels’	agents	interact	by	playing	language	games.	A	language	game	can	start
when	two	different	agents	are	selected	and	then	teleported	to	the	same	physical
location.	Sitting	in	two	separate	robotic	bodies,	both	agents	view	the	same	scene



from	different	positions.	Each	scene	comprises	a	number	of	coloured	shapes	on	a
white-board.



Each	agent	will	perceive	these	objects	differently.	One	agent	might	choose	to	categorize	an	object	in	terms	of	its	colour	…	Whereas	another	will	use	the	shape	of	the	object.

Agents	arrive	at	different	conceptions	of	the	world	due	to	the	fact	that	they
always	occupy	slightly	different	locations,	and	focus	on	different	objects	over
the	course	of	their	lifetime.	For	this	reason,	agents	develop	their	own	ontologies.

Once	agents	can	categorize	objects	in	the	scenes	they	are	exposed	to,	they	begin
to	play	language	games.	The	two	agents	first	agree	on	a	context,	which	is	some
part	of	the	scene	they	are	viewing.	One	of	the	agents	speaks	to	another,	by
forming	an	utterance	that	identifies	one	of	the	objects	in	the	context.



Initially,	utterances	are	gibberish.	They	are	constructed	at	random	and	therefore	have	little	chance	of	being	understood	by	any	other	agent.	The	meaning	of	an	utterance	will	depend	on	how	the
speaker	sees	the	world.	It	might	mean	“the	green	one"	and	use	the	word	vivebo.

A	Feedback	Process

The	hearer	then	tries	to	understand	what	is	meant	by	the	other’s	vivebo	and
points	to	what	it	thinks	is	being	identified.



If	the	two	agents	agree	on	the	object	being	named,	the	game	is	a	success	and	both	agents	agree	that	vivebo	is	an	appropriate	word	for	the	chosen	object.	Otherwise	the	agents	re-coordinate	their
behaviour,	so	that	success	is	more	likely	next	time	they	meet.

In	this	way,	the	set	of	signals	used	by	an	agent	to	refer	to	objects	in	the	world	is
either	reinforced	or	revised,	depending	on	the	feedback	gained	from	playing
language	games.

Self-Organization	in	Cognitive	Robots

The	key	insight	of	the	Talking	Heads	experiment	is	that	agents	develop	their	own
individual	and	internal	way	of	categorising	the	world	they	see.	While,	at	the
same	time,	through	external	communication,	they	negotiate	a	shared	lexicon.
Different	agents	may	be	talking	about	the	same	object,	but	they	might
conceptualize	it	differently,	yet	at	the	same	time	share	words.	Steels’	experiment
illustrates	how	a	communication	system,	grounded	in	the	everyday	world,	can
emerge	through	interactions	between	agents,	yet	not	be	defined	in	any	one	of
them.



This	kind	of	high-level	self-organization	can	only	be	understood	in	the	context	of	multiple-situated	agents	–	as	occurs	in	the	real	world	of	interacting	humans.	The	presence	of	other	agents	partially
constructs	the	world	of	phenomena	that	each	agent	engages	with.



The	Future

Practitioners	of	Al	often	make	bold	predictions.



“By	2029	the	software	for	intelligence	will	have	been	largely	mastered,	and	the	average	personal	computer	will	be	equivalent	to	1,000	brains.”	Ray	Kurzweil	in	1999.	Barring	cataclysms,	I	consider
the	development	of	intelligent	machines	a	near-term	inevitability.

These	claims,	considered	in	light	of	the	fact	that	there	is	little	evidence	so	far	to
suggest	that	anything	approaching	human	intelligence	is	possible	in	machines,
are	premature.	Scientists	have	a	habit	of	predicting	that	breakthroughs	will	occur
around	the	time	of	their	retirement.	It	is	hard,	therefore,	to	take	seriously	claims
of	Al	reaching	its	goal	in	the	near	future.

The	Near	Future

“In	stark	contrast	to	the	largely	unanticipated	explosion	of	computers	into	the
mainstream,	the	entire	endeavour	of	robotics	has	failed	rather	completely	to	live
up	to	the	predictions	of	the	1950s."

Hans	Moravec



Most	people	know	what	robots	are	and	could	perhaps	even	name	a	famous	one.

But	other	than	industrial	robots	which	are	widespread	in,	for	example,	the	car
construction	industry,	robots	are	rarely	seen	outside	research	laboratories.	Useful
robots	have	failed	to	materialize.

The	Nearer	Future

However,	there	is	evidence	that	robots	will	start	to	become	more	widespread,
moving	out	of	the	research	laboratories	and	into	the	everyday	world.



In	discussing	the	future	prospects	of	AI,	it	is	wise	therefore	to	look	at	what	is	likely	in	the	near	future	and	compare	these	insights	with	what	researchers	are	claiming	is	possible	further	down	the	line.

The	Sony	Dream	Robot

In	early	2002,	the	SONY	Corporation	announced	the	development	of	the	Sony
Dream	Robot	(SDR),	a	prototype	humanoid	robot.	The	capabilities	of	the	SDR



far	outstrip	any	other	bipedal	robot.



The	SDR	walks	around,	negotiating	stairs,	obstacles,	and	most	efforts	to	push	it	over.	Walking	robots	have	long	been	a	goal	for	roboticists.

A	walking	robot	could	feasibly	live	in	a	house	and	carry	out	chores	in	places	that
the	more	common	wheeled	robots	cannot	reach.

All	Singing,	All	Dancing

What	makes	the	SDR	impressive	is	its	robustness.	Walking	robots	have	been
developed	before	but	were	often	restricted	by	only	being	able	to	accomplish
limited	patterns	of	behaviour,	and	they	were	mostly	subject	to	remote	control	by
a	human.



If	the	SDR	falls	over,	it	gets	itself	up,	just	as	a	human	would.	The	SDR	also	avoids	obstacles	using	a	stereo	vision	system,	rather	than	stupidly	bumping	into	obstacles	as	it	goes.

The	SDR	is	aimed	at	the	entertainment	market.	Apart	from	walking	around,	the
SDR	can	sing,	dance,	and	recognize	faces	and	voices.

Sony’s	objective	is	for	the	SDR	to	interact	with	its	owners	by	striking	up	an
emotional	bond.



“In	addition	to	short-term	memory	functions	to	temporarily	memorize
individuals	and	objects,	SDR-4X	is	equipped	with	long-term	memory	functions	to
memorize	faces	and	names	through	more	in-depth	communications	with	people.
Emotional	information	based	on	a	communication	experience	will	be	memorized
on	a	long-term	memory	as	well.	By	utilizing	both	short	and	long-term	memories,
the	SDR-4X	achieves	more	complicated	conversations	and	performances.”	–
SONY	Corporation	Press	Release

The	SDR	is	a	Serious	Robot

While	SONY’S	Dream	Robot	is	very	impressive,	can	it	really	shed	light	on	Al’s
objective	of	understanding	cognition	by	building	machines?	One	important



outcome	of	projects	like	the	SDR	is	that	they	provide	a	platform	on	which	other
AI	technologies	can	be	explored.	Taking	Brooks’	maxim	of	“intelligence
requires	a	body”,	the	availability	of	an	off-the-shelf	body	may	prove	very	useful.



For	example,	Luc	Steels,	in	conjunction	with	the	SONY	Corporation,	has	a	project	planned	to	combine	the	Talking	Heads	Experiment	with	the	SONY	SDR-4X.	By	verbally	interacting	with	the	robot,
human	and	robot	will	meet	in	the	middle	…	The	aim	here	is	to	allow	the	owner	and	the	SDR	to	develop	a	communication	system	of	their	own.	…by	developing	a	basic	communication	system.

Future	Possibilities

Based	on	the	projected	likelihood	of	widely	available	machinery	of	sufficient
power,	the	well-known	roboticist	Hans	Moravec	has	predicted	in	detail	the	next
four	generations	of	robots.	It	is	important	to	stress	that	some	practitioners	of	AI
see	these	predictions	as	nothing	more	than	science	fiction,	with	little	evidence	so
far	to	suggest	they	are	remotely	likely.



The	path	I’ve	outlined	roughly	recapitulates	the	evolution	of	human	intelligence	–	but	100	million	times	more	rapidly.	It	suggests	that	robot	intelligence	will	surpass	our	own	well	before	2050.

Moravec	imagines	four	generations	of	Universal	Robots,	so	named	because	they
will	be	universally	available,	in	the	same	way	that	desktop	computers	are	today.
Once	robots	become	useful	and	affordable,	Moravec	predicts	they	will	be	far
more	widespread	than	computers.	There	are	more	uses	for	robots	than
computers.

Moravec’s	Prediction

1st	Generation
By	2010,	robots	built	from	machinery	capable	of	3,000	MIPS	(million
instructions	per	second)	will	be	used	universally.	These	robots	will	have	lizard-
scale	intellect	coupled	with	a	humanoid	body.



We	will	carry	out	menial	tasks	such	as	domestic	cleaning.

2nd	Generation
By	2020,	computing	power	will	increase	to	100,000	MIPS,	capturing	mouse-
scale	intellect.

We	will	be	able	to	learn	from	our	experience	and	converse	with	humans.



3rd	Generation
By	2030,	computing	power	will	reach	3,000,000	MIPS.	This	kind	of	machinery
can	realize	what	Moravec	terms	monkey-scale	intellect.

3rd	generation	robots	will,	for	example,	be	able	to	learn	new	tasks	by	observing	others.

4th	Generation
By	2040,	with	machinery	capable	of	100,000,000	MIPS,	human-scale	intellect
will	be	upon	us.



We	will	begin	to	design	our	own	offspring.

Fact	or	Fiction?	Moravec’s	predictions	are	extremely	bold	and	many	would
disagree	with	him.	Progress	towards	Al	has	repeatedly	fallen	short	of	the
progress	made	in	building	more	advanced	computing	machinery.	For	this	reason,
Moravec’s	claims	should	be	taken	as	the	absolute	best	case	scenario.

AI:	A	New	Kind	of	Evolution?

Assuming	that	Strong	AI	is	possible,	and	we	believe	the	predictions	of	some
well-known	scientists,	a	new	kind	of	evolution	will	occur.	Instead	of	producing
biological	offspring,	we	will	instead	begin	to	produce	what	Hans	Moravec	calls
mind-children	–	engineered	beings	superior	to	us.



Information	is	transmitted	from	generation	to	generation	by	two	forms	of
evolution.



Biological	evolution	results	in	the	transmission	of	information	required	for	building	a	human.	This	information	is	encoded	in	our	genes.	Cultural	evolution	results	in	the	transmission	of	concepts	and
practices	such	as	science,	religion,	art	and	so	on.	This	information	is	transmitted	from	mind	to	mind	by	storage	codes	and	learning	from	others.

Both	biological	and	cultural	evolution	result	in	information	persisting	from
generation	to	generation.

By	engineering	our	own	offspring,	many	have	proposed	that	Artificial
Intelligence	can	lead	to	the	Lamarckian	evolution	of	our	species.	In	contrast	to
Darwin’s	theory	of	evolution	by	natural	selection,	Lamarck	proposed	that
evolution	allows	characteristics	acquired	over	our	lifetime	to	be	transmitted	to
future	generations.



if	you	cut	off	your	arm,	it	does	not	make	it	more	likely	that	your	children	will	only	have	one	arm.	The	“acquired	characteristic”	will	not	affect	your	genes	and	will	therefore	not	be	transmitted	to	your
offspring.	True,	but	suppose	we	can	engineer	evolution	without	biology?

Evolution	Without	Biology

By	engineering	our	own	offspring	we	can	alter	their	design.	The	acquired	ability
to	reproduce	ourselves	will	affect	our	evolution.	In	this	way,	the	rate	of	evolution
could	increase.

“An	evolutionary	process	accelerates	because	it	builds	on	its	own	means	for
further	evolution.	Humans	have	beaten	evolution.	We	are	creating	intelligent
entities	in	considerably	less	time	than	it	took	the	evolutionary	process	that
created	us.”	–	Ray	Kurzweil



Our	evolution	will	for	the	first	time	be	separated	from,	and	be	totally	independent	of,	biological	constraints.



Culture	will	then	evolve	independently	of	biology	–	and	far	more	quickly.

“In	the	past	we	have	tended	to	see	ourselves	as	a	final	product	of	evolution,	but
our	evolution	has	not	ceased.	Indeed,	we	are	now	evolving	more	rapidly	…
based	on	inventive	kinds	of	‘unnatural	selection’.”	–	Marvin	Minsky

If	Al’s	goal	of	exposing	humans	as	mere	machines	succeeds,	then	we	will	no
longer	suffer	the	restrictions	of	our	organic	machinery.	Humans,	and	intelligent
machinery	in	the	widest	sense,	could	then,	in	theory,	evolve	outside	the
restrictions	of	biological	evolution.

A	Forecast



Many	would	argue	that	Moravec’s	view	of	the	future	of	AI	is	unlikely.	The
arrival	dates	of	his	universal	robots	are	particularly	bold.	At	the	beginning	of	this
book,	it	was	noted	that	Al’s	history	can	be	viewed	in	terms	of	the	progress	of
two	strands	of	research:	research	into	robotics	and	research	into	the	general
question	of	cognitive	capacities.



Robots	are	about	to	become	widely	available.	Large	companies,	such	Sony	and	Honda,	are	investing	heavily	in	useful	robots.

At	the	time	of	writing,	an	affordable	robot	vacuum	cleaner	has	just	come	onto
the	market.	Robotics	is	stepping	out	of	the	academic	research	lab	and	into	the
world	of	global	industry.	This	move	promises	real	progress.	It	is	unlikely	that	an
engineering	project	as	advanced	as	the	Sony	Dream	Robot	could	have	been
developed	in	an	academic	setting.

Mechanized	Cognition

Endowing	machines	with	cognitive	capacities	is	quite	another	matter	and
remains	a	huge	problem.	The	majority	of	Al	practitioners	are	likely	to	continue
to	explore	Al	by	taking	the	classical	and	connectionist	routes.



These	older	Al	approaches	are	now	well	established.	But	new	Al,	based	on	the	observation	that	intelligent	activity	is	the	result	of	a	complex	interaction	between	agent	and	environment,	should	continue
to	gain	acceptance.

Without	the	insights	of	new	Al,	it	is	hard	to	see	where	breakthroughs	will	come
from.

The	Future	Meeting	of	the	Paths

If	the	principles	that	define	new	AI	prove	to	be	insightful,	then	AI	will	need	to
situate	agents	in	far	richer	environments	that	reflect	the	phenomena	dealt	with	by
humans	and	animals.	AI	investigates	cognition	in	agents.	At	the	same	time,	it	has
largely	failed	to	appreciate	that	evolution	has	already	solved	that	problem.



The	theory	of	evolution	tells	us	that	cognitive	organisms	have	evolved	to	solve	very	specific	problems	…	Many	of	which	require	exploiting	the	environment.

Traditionally,	AI	has	failed	to	recognize	the	importance	of	the	interactions
between	agent	and	environment.

Many	practitioners	of	AI	are	beginning	to	believe	that	these	interactions	are
fundamental.	Taking	this	idea	to	its	limit	will	require	AI	to	work	with	either
robotic	bodies	or	more	informed	micro-worlds.	So	far,	AI	has	treated



environmental	complexity	as	a	secondary	issue.	Micro-worlds	are	designed
using	nothing	more	than	guesswork.



Only	when	the	interaction	between	humans	and	their	environments	is	understood	more	thoroughly	will	AI	begin	to	solve	the	right	problem.	The	two	strands,	robotics	and	cognitive	modelling,	must
inform	each	other	if	they	are	to	meet.



Further	Reading

For	a	good	general	introduction	to	Artificial	Intelligence,	the	following	books
are	respected	and	well	written.	Pfeifer	and	Scheier	offer	an	up-to-date	and
thorough	treatment	of	the	big	issues	in	Al.

•Rolf	Pfeifer	and	Christian	Scheier,	Understanding	Intelligence	(Cambridge,
MA:	MIT	Press,	2001).
•Roger	Penrose,	The	Emperor’s	New	Mind:	Concerning	Computers,	Minds,	and
the	Laws	of	Physics	(Oxford:	Oxford	University	Press,	1989).

These	two	collections	of	articles	offer	an	accessible	route	to	some	of	the	key
philosophical	issues.

•Douglas	R.	Hofstadter	and	Daniel	C.	Dennett,	The	Mind’s	I:	Fantasies	and
Reflections	on	Self	and	Soul	(New	York,	NY:	Basic	Books,	1981).
•John	Haugeland	(ed.),	Mind	Design	II:	Philosophy,	Psychology,	and	Artificial
Intelligence	(Cambridge,	MA:	MIT	Press,	1997).

The	next	two	books	are	excellent	introductions	to	Artificial	Intelligence	for	those
interested	in	Al	from	the	perspective	of	computer	programming.	They	cover	the
technical	foundations	of	Al.

•Stuart	Russell	and	Peter	Norvig,	Artificial	Intelligence:	A	Modem	Approach
(Harlow:	Prentice	Hall,	1994).
•Nils	J.	Nilsson,	Artificial	Intelligence:	A	New	Synthesis	(San	Francisco,	CA:
Morgan	Kaufmann,	1998).

The	following	two	books	are	written	by	leading	roboticists,	and	target	the
general	reader.	For	those	interested	in	robotics,	these	books	offer	a	good	place	to
start	from.

•Rodney	Brooks,	Robot:	The	Future	of	Flesh	and	Machines	(London:	Penguin,
2002).
•Hans	Moravec,	Robot:	Mere	Machine	to	Transcendent	Mind	(Oxford:	Oxford
University	Press,	1999).
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