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Artificial Intelligence

Over the past half-century there has been intense research into the construction
of intelligent machinery — the problem of creating Artificial Intelligence. This
research has resulted in chess-playing computers capable of beating the best
players, and humanoid robots able to negotiate novel environments and interact
with people.



Many advances have practical applications ...
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The holy grail of Artificial Intelligence L to understu d man as a machine. Artzﬁcxal Imelhgence also aims to arrive at a general theory of intelligent action in agents: not just humans and animals,
| il but i) dividuals in the wider sense.
L 1]
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The capabilities o‘lfl]an igent could extend beyond that which we can currently
imagine. This is an exg nally bold enterprlse which tacklmead -on,
Dhilol bphical argume hi ich gmg for thous 1ds of years.
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The distinction between physical and
\ virtual agents is not always clear.

A AL P A T 7 M PP L EEST AT o RO TTT E e Y g T
L P R TR -' L R

The distinction between physical and virtual agents is not always clear.

Researchers may experiment with virtual
agents that occasionally become
physically instantiated by downloading
themselves into a robotic body.

An agent itself may also be
\composed of many sub-agents,

Researchers may experiment with virtual agents that occasionally become physically i iated by downloading themselves into a robotic body. An agent itself may also be of many sub-agents.

Some Al systems solve problems by employing techniques observed in ant
colonies. So, in this case, what appears to be a single agent may be relying on
the combined behaviour of hundreds of sub-agents.



Al as an Empirical Science

Artificial Intelligence is a huge undertaking. Marvin Minsky (b. 1927), one of
the founding fathers of Al, argues: “The Al problem is one of the hardest science
has ever undertaken.” Al has one foot in science and one in engineering.



In its most extreme form, known as Strong Al
*ﬁ- the goal is to build a machine capable of thought,
?{3 consciousness and emotions. This view holds that
" \humans are no more than elaborate computers.

&5

In its most extreme form, known as Strong AlI, the goal is to build a machine capable of thought, consciousness and emotio
Weak Al is less audacious.

s, This view he

gt humans are no more than elaborate computers.
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The aim|ofgWeak Al is to develop theories of humdp

and then/eStithese theories by building working mad
computer programs or robots.




The AI researcher views i
the working model as a '
ool to aid understanding. b
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Such machines may exhibit intelligent behaviour, but
the basis for this behaviour is not important.
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Ambition Within Limits <@’



Al, in its weak form, concerns itself more with the degree to which we can
explain the mechanisms that underlie human and animal behaviour.
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Imagine being able to leave your body and shifting your mental
life onto machinery that has better long-term prospects than the
constantly ageing organic body you currently inhabit.
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“Certum quod factum.” [One is certain only of what one builds] — Giambattista
Vico (1668-1744)

What sets Al apart from other attempts to understand the mechanisms behind
human and animal cognition is that Al aims to gain understanding by building
working models. Through the synthetic construction of working models, Al can

test and develop theories of intelligent action.



£ The big questions of “mental processes” tackled by
ME* 3 i AI are bound to a number of disciplines - ok
Ay psychotogy, philosophy, linguistics and neuroscience. rﬂﬂ
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(191 6—2001 ), an Al pioneer,
made the prediction ...

.. within 10 years,
psychological theories
will take the form of

computer programs. A8
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This has naturally led to a common
pursuit known as cognitive science.

core of an interdisciplinary approach to
| \understanding intelligent activity.
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The concepts in this book therefore
rightfully fall within the remit of
_cognitive science, as well as AL

This has naturally led to a common pursuit known as cognitive science. Al sits alongside cognitive psychology at the core of an interdisciplinary approach to understanding intelligent activity. The
concepts in this book therefore rightfully fall within the remit of cognitive science, as well as Al



AI and Philosophy

Some of the fundamental questions asked by Al have been the hard stuff of
philosophers for thousands of years. Al is perhaps unique in the sciences. It has
an intimate and reciprocal relationship with philosophy.
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But in the case of man, how can™\
the physical body be affected by

processes occurring in the non-
physical mental realm?
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Computer programs, like minds, have
no physical mass yet patently have a
causal connection to the physical
computer executing the program.

In a similar way, our mind
can affect our body.

, our mind can affec body.
.

Computer programs, like minds, have no physical mass yet patently have a causal connection to the physical computer ex@
Computer programs require a computer to manifest themselves — just as a mii
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Computer programs require a
computer to manifest themselves {277
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To do so, the designers have to decide on
7 | the "kind of things” a machine must know
R /7'&/ \Jn order to make sense of the world.
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The term Artificial Intelligence was|co
College, New Hampshire, in 1956. $
the following hypothesis ...

A Positive Start
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Do Me Cavdlhy Clavde Shannon
“Every aspect of learning or any other feature of intelligence can in principle be
so precisely described that a machine can be made to simulate it.”

AUe Ne l Marvin MInS Ky

This hypothesis has been subject to intense research ever since. Many of those
attending the conference went on to be pivotal in the study of Al

Optimism and Bold Claims



The Dartmouth conference ran for two months. Two attendants in particular,
Allen Newell and Herbert Simon, provoked much discussion by claiming ...
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/And thereby solved the venerable
™ \mind-body problem.

This was perhaps the first of a long\
list of bold and enthusiastic claims
that litter the history of AL




In 1957, Herbert Simon argued \
that machines could think ...

d machines that can think, that learn and create.
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Tn the context of AL intelligent is best taken\
to mean “exhibiting interesting behaviour". !

Interesting behaviour
can be found in ants,
/| termites, fish and most
~ \other animals ...

But these animals are not considered intelligent
in the everyday sense of the word.

of Al mtelllgent is best taken to mean “exhibiting interesting behaviour” Interesting behaviour can be
considered intelligent in the everyday sense of (i
| f

In the conte
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Intelligence is the computational part of the
ability to achieve goals in the world. Varying
kinds and degrees of intelligence occur in
people, many animals and some machines.

So there are varying degrees of \ /||
intelligence, with humans sitting |' |1\,
at the “high intelligence” end of | ' | ‘
the spectrum.
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construction of autono er carried\out his influential work long



before the availability of digital computers. He was interested in Cybernetics —
the study of the range of possible behaviours of animals and machines.
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As well as detecting collisions with objects,
the tortoise also had a light sensor ...

d to be attracted to light.

Using two motors to control the lead wheel, one f(‘h ing, and one for
propulsion, the robot would seek light. However, when faced with extreme
brightness, part of the robot’s design made it avoid the source of the light.
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W/ After darting around in an animal-like
fashion, Elsie’s on-board battery would run
| down, and her usual behaviour of avoiding
he brightly lit hutch would change.
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fashion, Elsie’s on-board battery would run é' n, and her usual behaviour g
sensitivity to light would dimini;
4

wayewalteeestildptec
light would diminish.
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/ Elsie’s behaviour depends too much

on the environment and factors such
as fading battery power. /

I could certainly achieve goals
in the world, since I could
sustain my own battery power.




known as Clever Hans.

Clever Hans: A Cautionary Tale

Clever Hans was a horse famously taught to do arithmetic by his trainer,
Wilhelm von Osten. Hans would tap out the correct answer to a problem with his
hoof, to the amazement of the onlooking crowd, and only occasionally make a
mistake. Scientific experts supported his trainer’s claims: Hans really could do
arithmetic. But one expert noticed that Hans was making mistakes when von
Osten himself didn’t know the answer. Hans’s cover was blown.
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> indicate when it should
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been carefully designed by Walter
to elicit the desrred behaviour.
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I noted that children, wherever they
are born, consistently arrive at a
complex knowledge of language.

The input for the child is
the speech of its parents
\ and other humans.

69 output is an
ostensibly complete
knowledge of the

complex grammatical
| system underlying my
* \ native language.

I noted that ch ; they are born, con ive at a complex knowledge of language. The input for the child is the speech of its . The output is an ostensibly

e knowledge of the complex grammatical system underlying my native language



“An engineer faced with the problem of designing a device for meeting the given
input-output conditions would naturally conclude that the basic properties of the
output are a consequence of the design of the device. Nor is there any plausible
alternative to this assumption, so far as I can see.”
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Two Strands Concer

I term this phenomenon the poverty of the
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A prevailing assumption of Al is that these capacities can be understood
without considering their messy relationship with a constantly changing
and complex environment.
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A cognitivist would claim that all aspects of
cognition - mental actions such as learning,
memory and even emotions - can be carried

To understand this claim, we need
clearer understanding of what is

rstanding-efwiiatys meant b
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rejeet-atl proposals that assume that computation can be defined/” — Brian
Cantwell Smith-¥ndfana University




The notion of computation is at the heart of cognitivism, yet computation is a
notoriously hard concept to define. Computation can be simply taken to mean:
“The kind of calculations that computers can perform.”
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But this is an empirical claim. It tells us only
| about the kind of operations that computers,
\ as we know them today, can perform.
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We explained how small collections of neurons -
can act as logic gates - the building blocks of it



Universal Computation

All computers, however modern, sophisticated or expensive, are restricted. The
kind of calculations that they can perform are precisely those that can be
calculated by a Turing machine. This observation means that we only need to
consider Turing machines when analysing what is and what is not computable.
All other machines, including brains, can be reduced to the Turing machine.
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The Turing machine reads and writes
symbols onto an imaginary tape ...
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P 4 A typical desktop computer performs
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But no other metaphor has
been subject to the same
degree of analysis as the
—_\computer metaphor.

The computer metaphor states that Y/ ~), . \\\Q
the relationship between brain and g
mind is the same as that between ¥ AN

hardware and software.

= F
S
q b H"“\I:
= ﬁ:& __,)‘*—"-'
N o :

N N
S L
W\ - .

-

S/

- - ey i—
\ But np other metaphor hds been subject tox

: 3 - > of analysis
'\\‘4 < : -
W, ﬂ.“_h o

The brain is like he hardware: it is-a ph?




Functionalist Separation of Mind from Brain

Functionalism is the idea that the kind of operations that define a computation
are what matters, rather than the nature of their physical instantiation. So long as
two processes carry out the same function, they can be considered identical. So
functionalism means multiple realization, because the same operation can be
realized physically in many different ways.



For example, the same spreadsheet
program can be run on entirely
different types of computer.
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The system must be physically realized, but the
“stuff” the system is built from is irrelevant.
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kind of program that the brain supports.

Gcall that the PSSH makes a claim about the
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And so, arriving at the right program is all that
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is required for a theory of intelligent action.
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Importantly, they take a
functionalist stance - the
nature of the machinery that
supports this program is not
the principal concern.
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Could a Machine Really Think?

Let’s examine the claim of the cognitivists. Imagine they have been successful:
they have realized the goal of Strong Al, and constructed an intelligent, thinking
machine. Do we believe them? Is cognitivism fundamentally naive? Perhaps
there is a decisive argument that proves machines cannot think.

Alan Turing, in his seminal 1950 paper, “Computing Machinery and
Intelligence”, was interested in the question “Can machines think?” Turing
recognized that the question was ill-defined and “too meaningless to deserve
discussion”.
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This is not how we want to decide
\If @ machine thinks or not.

I
Noam Chomsky, too,
has a problem with
the question.

I liken the question to asking)’
“Can submarines swim?" |
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managed to claim the gold medal yet, but bronze medals and cash are given out
to the best efforts every year. Here is an excerpt from conversation between a
judge and a computer:



Tell, me, Ella, if you buy one cow for 10
| dollars, how much would two cows cost?

9 bily.one cow for 10 dollags, Fow'mitch

@st? I don’t want a joke now, I want to know how much two cows would cost.

| don’t want a joke now, | want to know
. how much two cows would cost.
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@o. Go ahead, tell me a joke)




For example, as a thought experiment, imagine\| |
| a machine that could memonze all possible |~ -
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you may be right but...
the way I see things...
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In contrast to the Turing test, my argument revolves around th { N 4
nature of the computations going on inside the computer. b

Searle attempts to show that purely syntactic '\ _
symbol manipulation, like that proposed by
Newell and Simon’s PSSH, cannot by itself lead |

to a machine thinking or understanding. s

In contrast to the Turing test, my argument revolves around tHe nature of the computations going on insigle t
proposed by Ngwell and Simon’s PSSH, cannot by itself I

Searle’s Chinese Room

which questions, written in Chinese, are passed

nd

Searle imagined himself inside a room. One side of the room has a hatch through

to Searle. His job is to provide



answers, also in Chinese, to these questions. The answers are passed back
outside the room through another hatch. The problem is, Searle does not
understand a word of Chinese, and Chinese characters mean nothing to him.
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symbols he is manipulating. Similarly, ajcomputer executing the same procedure
— the manjpulation of abstract symbols + would have no understanding of the
Chinese $ymbols either.
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have everything that
Newell and Simon’s physical
symbol systems hypothesis
asks for - and yet I do not
understand Chinese.
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I dismiss this point by arguing that

| a combination of constituents :
1 without understanding cannot
ugrcully mvoke undefstandmg

the whole cannot be more
than the sum of its parts

without understanding
its parts. For many,
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Emergent properties are "1
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Complex interactions between
simple parts can lead to what [

is called self-organization.
' =

Self-organization occurs when high-
level properties emerge from the
interaction of simple components.

Complex interactions between simple parts can lead to what is called self-or ization. Self-organization occurs when high-level properties emerge from the interaction of simple components.

Let’s consider an example of emergence in biology ...

Is Understanding an Emergent Property?

Humans emerge from the human genome, which massively under-specifies
precisely how to build a human. Of course, we are the product of our genes, but



only in combination with an immensely complex interaction between our genes,
the polypeptide chains they produce, and how these chains go on to interact.
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The functionalist argument assumes that the nature of the machinery is
of no consequence - prowdmg rt can support the act of computation.
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This is a provocative charge, as /-
few scientists would be happy
to admit to the existence of a
non-physical mental realm.
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one. Assuming we have a complete understanding of the behaviour of neurons,
and our artificial neurons mimic this behaviour under all possible conditions, the
behaviour of the transformed brain will be identical to that of the biological

brain.
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I accept that
mentality must arise
from physicality.

But I believe that a
new kind of physics 1s
required to explain
conscious thought.

I accept that mentality must d




@th thought compn'sr'n}
a non-computational

element, computers can
never do what we

Wman beings can.

—(ﬁerefore, non-computability in

some aspect of consciousness
and, specifically, in mathematical
understanding, strongly suggests
that non-computability should be
a feature of all consciousness.
ws IS my suggestion.
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The theory of quantum gravity, which is still at a very tentative stage, is targeted
to account for the measurable inaccuracies we observe using current physics.
That is, neither quantum theory nor relativity theory can comprehensively
explain certain small-scale phenomena. Penrose states: “This new theory will not
just be a slight modification of quantum mechanics but something as different
from standard quantum mechanics as General Relativity is different from
Newtonian gravity. It would have to be something which has a completely
different conceptual framework.”

The idea that quantum gravity may prove important to our understanding of
consciousness predates Penrose, but he has stuck his neck out and specifically
proposed that quantum gravity effects in the brain are likely to rely on
microtubules — conveyor-belt-like structures inside neurons.
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Each neuron does not just behave like a switch but involves many, many microtubules and each microtubule could be doing very complicated things.

Microtubules, according to Penrose, support a substrate for the quantum gravity
effects required for consciousness. Crucially, these processes are non-



computable — they cannot be supported by conventional computing machinery.
This speculative proposal supports Penrose’s assertion that human thought relies
on non-computable processes.

Because computers, as we know them today, do not have a cellular structure
comprising microtubules, they cannot support consciousness. Penrose may well
be right, but there is as yet scant evidence to support his claim. The idea that
there is some hitherto unconsidered ingredient missing from our classical
understanding of biological systems is a common conclusion to debates
regarding the possibility of conscious thinking machines. Penrose’s theory is
very controversial and few accept his conclusions.



Penrose, in his bid for scientific ;-
materialism, has resorted to a 7

mysterious higher force ... his ¥
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mechanics.
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The term intentionality, her
used by philosophers, refers to
the aboutness of things. |

Mental states have aboutness - for example, '\
| beliefs and desires - and it requires a conscious
wATEET A\ mind to have these intentional states.
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this debate. Most Al researchers agree that we can investigate theories of
intelligent behaviour, and implement these theories as computer models, without
the need to account for intentionality.
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The most fundamental contribution so
far of artificial intelligence and computer
science to the joint enterprise of
cognitive science has been the notion of
\ a physical symbol system ...

M

wta?eamweaﬁwgfé%h co

yet reahzable in the physical | 7




Sense-Think-Act

Underlying classical AI is the idea that
intelligent activity requires an agent to
first sense its environment.

‘ﬁ' "W 0n the basis of this sensory
| information, the agent performs
. _\some cognitive processing.

Sense-Think-Act Underlying classical Al is the idea that intelligel
cognitive proc

In short, the connection betwee ceptio] ac

cognition. hese processes wr[l result in the'§
agent taking some action.
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As we will see, the robot Shakey has cognitive capacities well beyond those
found in W. Grey Walter’s robotic tortoise, Elsie. Recall what Elsie was lacking

*She did not have knowledge of where she was or where she was going.
*She was not programmed to achieve any goals.
*She had little or no cognitive capacity.

Elsie lacked the very capacities that classical Al seeks to understand: cognitive
abilities such as reasoning, learning, vision and understanding language.



In contrast to Elsie, Shakey stands as
\¢ prime example of a cognitive robot.

A

 Shakey relies on a number of
A technologies. But before
Shakey could be built,
researchers had to consider
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The manner in which these models
achieve the task may mirror a
theory of human cognition.
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remarkably well understood. In 2002, Sydney Brenner, H. Robert Horvitz and
John E. Sulston won the Nobel Prize in Physiology for their work uncovering
precisely how the fully mature worm (about a millimetre long) develops from its
DNA.



Because the worm is transparent, every one of
the 959 cells that make up a mature worm can
be traced from the conception of a single cell.
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(lassical AI adopts the metaphor of a
computer running a computer program as
a model for understanding the mind.
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It hopes that by doing this we wrll

/ derive a simpler picture than what can

f/ be gleaned from explanations based
—e on millions of electrical-chemical

| interactions between neurons.

Classical AI adopts the Tnetaphor of a tomplitg ug a computer program as a model for understanding the mind. It hopes that by doipgfthis
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Automatic machine translation from, say, Russian to
English would largely be a matter of constructing the
appropriate mechanical dictionaries.
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Researchers soon found
this not to be the case.
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Automatic machine translation from, say, Russian to Englis|

In 1963, after spending $2
funding agency concluded



useful machine translation” — National Academy of Sciences National Research
Council, 1963.

Faced with a hard problem, Al research will often begin by simplifying it. Two
kinds of simplification are frequently made.

Decompose and Simplify

Fortunately, cognitive brain functions are not part of a complex mush that cannot
be decomposed. Many have argued that our brain is structured rather like an
interconnected set of sub-computers. Some of these sub-computers seem to work
independently, which is good news for Al. The psychologist Jerry Fodor, in the
1980s, proposed that the mind is largely composed of a set of task-specific
modules.
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Sensory data is transformed when

it passes through these modules,
and each module encapsulates the
solution to a specific task.
T
L' \; ',}/'

Importantly, many of

) these modules cannot
{ 1 read the contents of W
other modules — they aref 4\
autonomous systems. :

Sensory data is transformed when it passes through these modules, and each module encapsulates the solution to a specific task. Importantly, many of these modules cannot read the contents of other
modules — they are autonomous systems.
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Consider the Muller-Lyer illusion. Line 1 and Line 2 are of the same length,
although Line 2 appears to be longer than Line 1. Even though we have
knowledge that tells us the two lines are of equal length, our perception of the
two arrows is not privy to this information. Our perception “module” must be
working independently of this knowledge.

The Module Basis

So if we assume the modularity of mind, then by taking on each module and
attempting to understand it to a degree that it can be built, progress towards Al’s
goal of understanding and building cognitive capacities can proceed on a module
by module basis. Instead of unleashing a model of cognition into the real,
unwashed world, it is far simpler to construct a simplified virtual world. A
micro-world is such a simplified virtual world.



/Micro-worlds aim to capture |
the relevant parts of the vastly
more complex real world.

-------

e S By abstrachng away from the

- gory details that make the real |
world so complex, micro-worlds [
make building models easier. /f
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the vastly more complex real world. By abstracting away from the gory d ! icro- building
models easier. 3

Micro-worlds aim to capture the relevant parts of]

d’is blocks world — a three-dimensionalworld
pyramids, and other geometric solids.
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As we will see,
=1 the robot Shakey

inhabits a real

blocks world.




Other Al programs operate within a virtual blocks world — the world as modelled
by the computer itself. By building a machine capable of operating in a micro-
world, the hope is that the same kind of machine can be generalized to work in
more complex environments.

Early Successes: Game Playing

Games like checkers (draughts) and chess provide the ideal working
environment for an Al program. The kind of competence required to play these
games is extremely specialized. The micro-worlds that games present are ones of
strict rules, uncomplicated environments and predictable consequences. Al
thrives on these properties, and as a result, game-playing machines are very
successful.
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Using these basic symbols, along with a
representation of the board, we can represent
board positions inside the computer.
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For example, here is part of
the game tree for tic-tac-toe
\ (noughts and crosses).

Using these basic symbols, along with a representation of the board, we can represent board positions inside the computer. For example, e game tree fd

crosses).

oughts and



Two possible paths through the tree are shown. These two paths represent two
possible games.
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Similarly, designing a computer program
to achieve this level of competence is
easy because tic-tac-toe has a relatively
small game tree - it comprises only
362,880 possible board positions.
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\.// [ The number of potential chess moves
exceeds the number of atoms in the
universe. It's a number beyond any
possible calculation.
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Rankmg is achieved by assigning a
score to each board position ...

The score, calculated using an evaluation

function, reflects how good the position is ==
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These tactical rules of thumb are called heuristics and crop up in Al systems
everywhere. Heuristics don’t guarantee success or correctness, but offer a good
approximation. Heuristics are used when more exhaustive and precise methods
are intractable.

Deep Blue

Perhaps the most legendary victory of machine over man occurred in 1987.
IBM’s tailor-made chess computer Deep Blue defeated Garry Kasparov, the most
highly ranked player in the world. This was a landmark for Al.
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“Deep Blue is stunningly effective at solving chess
problems, but it is less ‘intelligent’ than even the e,
stupidest human.”—The IBM Deep Blue website. DS




By citing Deep Blue as one of Al's few examples
of success, some within AI itself view this as a
reflection of AI's lack of progress.
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( Chess-playing machines rely on knowledge
\ coded into their evaluation functions ...
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Simon’s physical symbol systems hypothesis has its roots in the work of the
philosopher Thomas Hobbes (1588-1679).
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It is relatively easy to equip AI
systems with specialized knowledge.

Yd expertise will r'nevitably come
A up with nonsense. This is
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Many of the prerequisite skills and\
assumptions have become implicit
through millennia of cultural and
biological evolution and through
universal early childhood experfenccy
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logical language? As we will see later, the idea that our implicit knowledge of
the world can be formalized at all is controversial.

Can the CYC Project Succeed?

The CYC project is entering its final phase, with Lenat predicting a 50% chance
of success. Apart from the practical benefits of a successful CYC project, the
theoretical objective is to test Newell and Simon’s hypothesis. Is commonsense
something that we can formalize and automate using symbolic representations?
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Shakey’s design mirrors the traditional view that an agent should be decomposed
into four functional components. This model revolves around the sense-model-
plan-act cycle. First, the agent senses the world. Then a model of the world is
constructed on the basis of the sensory inputs. Using this model, a plan can then
be constructed to guide how the agent will carry out actions in the world.
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Whenever inaccuracies were likely,
the system made sure the
representations and plans were
true to the environment by re-
checking Shakey’s location.
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Given a more complex environment, Shakey’s techniques would not cope.



Shakey was also in some ways too clever. He was doing too much. Often, I would stall for minutes while computing plans and constructing routes.

Given that Shakey’s world was kept simple, these problems would multiply
when faced with a more complex environment.
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explain cognition inigerm
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cells capable of
sending signals to
other neurons.
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Neurons are brain cells capable of sending signals to other neurons.

Basic Neuron Design

The human brain has approximately 100 billion neurons, and on average, each
one of those neurons is connected to around 10,000 other neurons by cable-like




structures called axons.

Neural Computation

As we saw before, collections of neurons can act as computing devices, and the
work of McCulloch and Pitts tells us that these configurations of neurons can
compute the same class of calculations as a Turing machine.
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The input connections
deliver the signals sent
from other neurons.
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Activation units emit a simple
numerical signal whereas biological
neurons emit a series of pulses.
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Parallel Distributed Processing

Computers are faster than brains. The basic components used by computer
processors are much faster than biological neurons. The fastest neuron can
transmit around 1000 signals per second. Electrical circuits can operate around a
million times faster.



Despite this, brains carry out extremely
complex operations amazingly fast - it
only takes a tenth of a second to
recognize your own mother!
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SERIAL PARALLEL

(1+4) + (4x8) (1+4) + (4x8)

The brain is massiyely parallel, whereas most computers gdbmpute sertally. This
is why the brain isfso fast, despite its relatively slow_mg€hinery. The proBerty of |
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If you deliberatelykamage, even slightly, any part of your computer’s main
processing unit it will not work any more. Conventional computing machinery is

t very robuﬁ;‘_]ﬁz:‘ggyast, slight brain damage will rarely result in someone
Sfﬁpmfing dead— Hmii¥lit evien have no effect whatsoever,_In fact ageing
process itself results in neurons dying all the time.
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Each neuron contributes a little
to the overall computation. )

Remove a neuron, and you
only affect a small part of
the computation.

A conventional computer only has one processor, N\
so any damage will have a global effect.
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Each neuron contributes a little to the overall computation. Remove'aneuron, and you only affect a small part of the compﬁfu on. A conventional computer 1n1y has one processor, so any damage will
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have a global effect.



Machine Learning and Connectionism

Machine Learning is a branch of Al that spans both the classical symbolic
approach and connectionism. Here, models of learning capture the ability of an
agent to improve itself in light of information in the environment. Often, the
ability of connectionist systems to learn is cited as one of its defining
characteristics, and a feature most attractive to Al researchers.
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Neural networks have proven superior to human experts
at categonizing sonar echoes, taken by submarines, to
recognize the difference between rocks and mines.

Neural networks have proven superior to human experts at categorizing sonar echoes, taken by submarines, to recognize the difference between rocks and mines.

Learning to vocalize
One neural network, NETtalk, learns how to produce speech sounds from
phonemes, the building blocks of words.



Words never previously encountered
by NETtalk are pronounced correctly
with a high degree of accuracy.
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Words never previously encountered by NETtalk are pronounced correctly with a high degree of accuracy.

Playing checkers
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[/ Neural networks have been trained to
play checkers, which, as we have seen,
is a classic problem in AI traditionally
solved using symbolic approaches.
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Neural networks have been trained to play checkers, which, as we have seen, is a classic problem in Al traditionally solved using symbolic approaches.

Robot brains



any robots rely on neural networks
to control how their motor
movements should react to sensor
readings, for example, learning how
to avoid obstacles.

......
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Many robots rely on neural networks to control how their motor movements should react to sensor readings, for example, learning how to avoid obstacles.

Local Representations

Symbolic representations are the lynch-pin of classical Al. In a symbolic system,
units of information are shunted around and operated on by the model.
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distributed representation is spread out across the whole network, rather than
being localized to a specific area or being built up from atomic units.
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Many representations
share neurons and
exist as part of a
complex mesh of
neural activity.

The philosopher Ludwig Wittgenstein
(1889-1951) had foreseen distributed
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A neural network can be thought of as
W\ a holistic device for solving a problem.
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Alan Turing’s insights on AI were profound,
even more so if we consider his little-
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Can Neural Networks Think?

Searle’s Chinese Room argument hinges on the idea that computers, as we know
them today, can only manipulate meaningless symbols. The machine can never
have an understanding of the symbols it manipulates. Agree or disagree with
Searle, this issue is still a mystery. However, there are two reasons why
connectionism could contribute to this debate.
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The argument works along the same
‘\ines as the original argument ...

None of the people in the gym understands
Chinese, therefore the whole gym cannot
understand Chinese.

bring anything new to
the debate.
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hat the psychologist Stevan Harnard terms the
symbol grounding problem addresses this issue.

eaning can enter the system only when
part of the system is grounded in the

world, rather than being part of a closed,
self-referential system of symbols.
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First, imagine a native English-speaker learning Chinese, armed only with a
Chinese-Chinese dictionary. Harnard likens this to a cryptologist cracking a
code.
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A symbol representing dog
takes its meaning from the
«| complex of sensory images
common to dogs ...
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Al has walked into a game of
3-dimensional chess, thinking
\\/t was a tic-tac-toe.

«h**sf ' Artlﬁcra Intelligence has foundered ...
A7 the symbol system hypothesis upon
a4 which classical Al is based is

~ \fundamentally flawed ...

O B : &
AT has walked b' me o M it.. . Artificial Intelligence has foundered ... the symbol system hypothesis upon which
s & - LA dameritally flawed ...

Sl v
This lack of pro » prac titioners of Al to take stock. Are the current
approaches to Al misguid «4359 are we just around the corner from a



breakthrough? A number of researchers suspect the former, and have actively
sought to re-orientate Al.

“... the cognitivistic paradigm’s neglect of the fact that intelligent agents live in
a real physical world leads to significant shortcomings in explaining
intelligence.” — Rolf Pfeifer and Christian Scheier



AI's analysis of high-level cognitive processes
in agents detached from the complexities of |
physical environments has been identified as
the source of some of its deepest problems.

New Al

“We used to argue whether a i ‘,b :
thinks is a total circuit, including perh ps a computer a man;a
environment. Similarly, we % } ether a brain Ca11t m \nd\@gam the
answer will be, ‘No’. What t isab r@in inside a man who i paft of a system
which includes an environment,” = Grego " Bateson | ' ‘\

Thls observatlon has led to th doptic ..of a new set of prmc leﬁf Thls new
ly-fle ks,.a commonly use ame, but is often




Far fram berng idle speculation,
these new principles have resulted
in impressive engineering projects

Far from being idle speculation, these néWgpri

env1ronment into a Vll‘tlil envi OIl

ﬁt before exammmg new AL it is
* important to analyse the array of
problems conventional approaches
to Al are accused of.




ﬁte success of an Al proje%
1s then measured relative to
how humans would perform
the same function in the

everyday world. j

Rarely are AI projects
placed in the same

ect i§ then measured relative to how humans would perform the same function in the everyday world. Rarely are Al projects placed in the same situation as the huf 1 1

are not worlds but isolated meaningless domains, and it has
me clear that there is no way they could be combined and |
ive at the world of everyday life.” — Hubert and Stuart Dreyfus

The Problems of Conventional Al

Scalability
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Given that part of Al’s goal is to establish general theories of intelligent action,
this lack of scalability is a drawback that stands rank opposite to the goal of
establishing general theories.

Robustness

A trait common to many Al systems, and that which is addressed by the CYC
project, is the inability of many systems to react well to unforeseen
circumstances. Al systems will often fail in the face of a novel situation. It is
very hard to design a system robust enough to meet all eventualities. Humans
and animals, on the other hand, rarely suffer from this problem.



Of course, a beetle stranded .
n its back may die ...

.. the enwronment will
present many circumstances B
never before encountered by
any member of that species.




My behaviour was characterized by long
pauses during which complex information-
processing was carried out.

Humans and animals, in contrast, react very
quickly to events going on around them.

My behaviour was characterized by long pauses during which complex information-processing was carried out. Humans and animals, in contrast, react very quickly to events going on around them.

This would indicate that
something other than
“sense-model-plan-act” is
going on.

This would indicate that something other than “sense-model-plan-act” is going on.

In one sense, the problem of creating intelligent agents has already been solved.
Over the course of the earth’s 4.5 billion years of history, evolution has solved
the problem over and over again. Mammals arrived 370 million years ago. Our
last common ancestor with the apes started milling around 5 million years ago.



How did evolution do it?



/Brioiogr'cal evolution builds on’ ;\\ =
existing designs by adding the \h
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Biological evolution builds on existing designs by adding the occasional improvement.

Starting with the basics — beasts capable of surviving in an environment and then
reproducing — evolution has built layer upon layer of extra machinery over
millions of years.

The New Argument from Evolution

The MIT roboticist Rodney Brooks takes the evolutionary basics as evidence
that “hard” tasks like reasoning, planning and language might turn out to be
easier to understand once the basics are in place.



o |

[
Yy

(I ntellige

K

Can our know {\{ntelligence isscongingent omthe. \naritehn, and
argues that w [ Y BRiTOSHIR: GRRAFERN Rty e we try
to build mec ns.

The Arg | om Biology



The intimate relationship between an organism and its environment has been
noted and studied by biologists since the 19th century. Yet Al is rarely informed
by the insights of biologists. For example, in the work of Humberto R. Maturana
and Francisco J. Varela, the neural circuitry found in the retina of the eye of a
frog is shown to excite in the presence of blob-like structures that resemble flies.



In studying its behaviour, we might want to
attribute to the frog an “internal model of the
world” that contains flies, and, say, other frogs.

n “internal model of the world” that contains flies, and, say, other [rogs.

dying its behaviour, ewzwa t to attribute to the frog a
h-n ol [
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The frog then spits its tongue /B
out and captures the fly. (i
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Now when a fly is presented in the same /

position as before, the frog spits its A A
tongue out exactly 180 degrees off-track, Vi
to the bottom right of its field of view.

Now when a fly is presented in the same position as before, the frog spits its tongue out exactly 180 degrees off-track, to the bottom right of its field of view.

Importantly, the frog will persist with this behaviour. It will never adapt its
behaviour in light of the unsuccessful attempts to capture the fly.

The moral of the story is that a frog’s eye does not act as a camera supplying
information to the frog’s planning module, which then constructs a plan to catch
the fly.



The sense-model-plan-act
cycle does not appty here.

The sense-model-plan-act cycle does not apply here. If this were the

epfndent of throcesse n on in the rest of
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hé‘, Ui fv ﬂom Philosophy

any of tr ‘Conceptsigentral to Al have their roots in the work of philosophers
uch as Descarte;%es Lelbmz as we have seen, and the Tractatus Logico-
enstein (1889-1951):




The world is the totality
of facts, not of things.

e argued that it was possible to
arrive at a formal theory of the
everyday world, based on a collection
of formal primitives. ;

"‘AI translated this idea into
‘Wl the language of symbolic
information processing ...

Equip a computer with an appropniate
| set of primitives, and it should be able
to function in the world, in the same
way that a human does.




The world is the totality of facts, not of things. We argued that it was possible to arrive at a formal theory of the everyday world, based on a collection of formal primitives. Al translated this idea into
the language of symbolic information processing ... Equip a computer with an appropriate set of primitives, and it should be able to function in the world, in the same way that a human does.

Against Formalism

Wittgenstein, in his later philosophy, and Martin Heidegger (1889-1976)
strongly reject the formalist assumption of meaning.



But what are the simple constituent parts
of which reality is composed? ... It
makes no sense at all to speak absolutely
of the “simple parts of a chair”.

s no sense at all to speak absolutely of the “simple parts of a chair”. We took issue with the assumption that it is
experience. A formal theory, they claimed, is by its very nature detached from the activity that gives it any meaning.

This alternativeiildsophi ahdpoint suggests that our interpretation of the
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| mental representations, detached from
the activity of experience.
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A formal theory, they claimed, is by its -'
very nature detached from the activity
that gives it any meaning.




ﬁe rationalist tradition had finally
been put to an empinical test, and it
had failed. The idea of producing a
formal, atomistic theory of the
everyday commonsense world and of
representing that theory in a symbol
manipulator had run into just the
difficulties Heidegger and Wittgenstein |
@d discovered.

orld and'of representing that



This focus suggests that agents should be modelled
not as disembodied, detached and isolated, but
\vather as engaged in the everyday world.

Dreyfus’ critique was initially

scoffed at by the AI community,
=) but is increasingly becoming an

— i il B\ acceptable topic for debate.

This focus suggests that agents should be bodied, detached and isolated, but rather as engaged in th il ly scoffed at by the Al

imunity, but is increasingly becoming an acceptable topic for

The New Al
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The arguments from evolt iology and philos )
much of conventional Al research. But to put these
need to be translated into engineering principles. Thre
the new approach to Al =

The First Principle of Embodim



Embodiment is the idea
that having a body is
heoretically significant,

" That is, the constraints a body
places on an agent are crucial to
how it interacts in the world.




Embodiment is the idea that having a body is theoretically significant. That is, the constraints a body places on an agent are crucial to how it interacts in the world.

The degree to which embodiment is significant remains a controversial issue.
Rodney Brooks goes as far as to say, “Intelligence requires a body.” For
example, the design of a robot body will determine the sensory phenomena it
experiences.

The Second Principle of Situatedness

Situatedness refers to an agent being located in a complex environment, rather
than a highly abstracted micro-world. The complexities of real environments are
taken to be fundamentally different from those of the abstracted “micro-worlds”.
Indeed, being situated permits the exploiting of structure in the world, lessening
the burden of internal representations.
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New AI proposes bottom-up design.
Start with the basics first ...

That i ' ions such as knowledge and reas bottom-up design. Start with the

For exampe, Rodney Bro in gous/to insects. His
idea is that only by unders '
complexities of human co

The principles of new AI are put il ‘ ary prac ce by Rodney Brooks.
1S ehav1our-based robotics.



I wish to build completely autonomous
mobile agents that co-exist in the world
with humans, and are seen by those

humans as intelligent beings in their own
right. I will call such agents Creatures ...

I wish to build completely autonomous mobile agents that co-exist in the world with humans, y those ntelligent beings in their own right. I will call such agents Creatures ...
L )

Using bottom-up design, how would B s succeedin building simple robotic
creatures that resemble insects?



Behaviours as Units of Design
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Behaviour-based robotics 1s inspired f
by such an approach. Its units of |
esign are behaviours.




First, I could negotiate
challenging terrain, just
as an insect can.
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Although the principles of new Al translate most directly into the field of
robotics, they are by no means limited to issues in robotics. A closer treatment of
the interaction between agents and their environments can be applied to every
branch of Al Luc Steels, director of the Al Lab at the University of Brussels,
takes another line to the “bottom-up” approach by investigating the evolution of
both meaning and communication systems in collections of agents.
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In this approach, the human designer does
not put his or her language and concepts
into the agents, but tries to set up systems
that autonomously generate their own.
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/By borrowing robotic bodies when needed,
| the Talking Heads experiment can support |
| many agents, even though the number of b

robotic bodies may be limited. 7 % |

These robotic bodies are
called Talking Heads.
f
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ﬁs soon as agents develch
the ability to categorize

objects, they attempt to
name the objects by
communicating with each

@her.

The agents’ categorization o
the world is not programmed
but emerges. It is
constructed and learned by
the agents themselves.

As soon as agents develop the ability to categorize objecg e agents categorization of the world is not programmed but emerges.

The Naming Game

Steels’ agents interact by p
when two different agents a 3
location. Sitting in two sepa

guage game can start
ted to the same physical
agents view the same scene



from different positions. Each scene comprises a number of coloured shapes on a
white-board.
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Each agent will perceive the: e"’b&)e ts dij ff ntly. Onejagent might choose to categorize an object in terms of its colour ... Whereas another will use the shape of the object.
-

Ld .. - -
Agents arrive at different conceptions of the world due to the fact that they
always occupy slightly different locations, and focus on different objects over
the course of their li time. elop their own ontologies.

Once agents, can catego Z re exposed to, they begin
to play languaige games. The two agents first agree on a context, which is some
part of the qcene they ar rvlewmg Onl of the agents speaks to another, by
forming an utt rance tha? 1den’t1f1es ong of the objects in the context.
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Topic
Red I/
Sguare| [ Green
Circle
(Initially, utterances are foA
gibberish. They are o —
constructed at random

'
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1

Agent 1 [Agent 2

and therefore have little
chance of being
understood by any
other agent.

(speaker) (hearer)

Rabot 1

Robot 2

Initially, utterances are

The meaning of an utterance will

o rAePend: o f1ow: thespeaker.seas.the).
world. It mrght mean “the green

one” and use the word vivebo.

i
e-’?
f 2 3‘& bo and

”VIVEBO?!

points to Whﬁﬁmk i
(The Green One)




If the two agents agree on the object
being named, the game is a success

and both agents agree that vivebo is
an appropriate word for the chosen
object.

L X Agent 1 is talkin
% "

[Agent 1 J Agent2 | o0
(hearer)

Aabot 1 Robot 2

"VIVEBO" - " [ "VIVEBO"
(The Green One) )y (The Round One
If the two agentgligree bhjthe object bl gkthe gehe is a success and both agents g that v appropri rwiseithe agefits re-coordinate their
i 0fﬁ5ﬁfffefse the agents
Ih this way, f si agene4ooetenabeofjeicts i rld is
gither fei l%) déhedhagk gamed fro ihg
langunge game success is more likely
J i\ next time they meet.
Self-Organization in\ Cogni \\ﬁé,
The key insight of the Talking Heads/e eritent 18 that agents develop their ownl
individual and internal way ofgcat ' they see. While, at the
me time, through external c on, tiate a shared lexicon.
?ifferent agents may be talkin , but they might
onceptualize it differently, yefjat the same time words. Steels’ experiment
illustrates how a communicati , grounded ithe everyday world, can
a@merge through interactio fined in any one of
them.
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The Future

Practitioners of Al often make bold predictions.



"By 2029 the software for intelligence
will-have-been-largely-mastered,-and - r{---

These W’WF&E@"{P‘%@WE“GQF@HGFIM Vbiemca so far to
suggdst that anything approaching human intelligence is possible in machines,

“By 2029
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S
are p en?qmv t?nﬁ t@vé‘la @@@ Sng that breakthroughq will occur
arourld the time of their retirement. It is har , therefore, to take seriously claims
of Alfrpaching its goal in the near future.
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af { ipated explosion of computers nto the
pBotics has failed rather complptely to live

Hans Moravec

Barring cataclysms, I consider the \
development of intelligent
machines a near-term inevitability.




= =) [ Most people know what
=/ | robots are and could perhaps
\\"\.even name a famous one.

Most people know what robots are and could perhaps even name a famous one.

But other than industrial robots which are widespread in, for example, the car
construction industry, robots are rarely seen outside research laboratories. Useful
robots have failed to materialize.

The Nearer Future

However, there is evidence that robots will start to become more widespread,
moving out of the research laboratories and into the everyday world.



o Y n drscussmg the future prospects of AI
it is wise therefore to look at what is
: t likely in the near future and compare
these insights with what researchers are
- dmmmg is possrble further down the line. 4




far outstrip any other bipedal robot.



The SDR walks around, negotiating stairs, obstacles, and most Sl ta_push it over: Walking robots have long been a goal for roboticists.
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Walking robots have long
been a goal for roboticists.




b
| WELDNING 1'

s

The SDR also avoids obstacles using a
stereo vision system, rather than stupidly
bumping into obstacles as it goes.




“In addition to short-term memory functions to temporarily memorize
individuals and objects, SDR-4X is equipped with long-term memory functions to
memorize faces and names through more in-depth communications with people.
Emotional information based on a communication experience will be memorized
on a long-term memory as well. By utilizing both short and long-term memories,
the SDR-4X achieves more complicated conversations and performances.” —
SONY Corporation Press Release

The SDR is a Serious Robot

While SONY’S Dream Robot is very impressive, can it really shed light on Al’s
objective of understanding cognition by building machines? One important



outcome of projects like the SDR is that they provide a platform on which other
Al technologies can be explored. Taking Brooks’ maxim of “intelligence
requires a body”, the availability of an off-the-shelf body may prove very useful.
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By verbally interacting with
the robot, human and robot
will meet in the middle ...

/... by developing a basic
communication system.
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We will carry out menial tasks
such as domestic cleaning.

We will carry out menial tasks such as domestic cleaning.

2nd Generation

By 2020, computing power will increase to 100,000 MIPS, capturing mouse-
scale intellect.

We will be able to learn from |l
our experience and converse
with humans.

We will be able to learn from our experience and converse with humans.



3rd Generation
By 2030, computing power will reach 3,000,000 MIPS. This kind of machinery
can realize what Moravec terms monkey-scale intellect.

3rd generation robots
will, for example, be able
to learn new tasks by
observing others.

77 A

3rd generation robots will, for example, be able to learn new tasks by observing others.

4th Generation
By 2040, with machinery capable of 100,000,000 MIPS, human-scale intellect
will be upon us.
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Information is transmitted from generation to generation by two forms of
evolution.
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@ you cut off yom
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A Forecast



Many would argue that Moravec’s view of the future of Al is unlikely. The
arrival dates of his universal robots are particularly bold. At the beginning of this
book, it was noted that Al’s history can be viewed in terms of the progress of
two strands of research: research into robotics and research into the general
question of cognitive capacities.
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Traditionally, Al ecognize the importance of the interactions

between agent an

beginning to believe that these interactions are
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robotic bodies or more inf@#ned micro-worlds. So far, Al has treated



environmental complexity as a secondary issue. Micro-worlds are designed
using nothing more than guesswork.
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Further Reading

For a good general introduction to Artificial Intelligence, the following books
are respected and well written. Pfeifer and Scheier offer an up-to-date and
thorough treatment of the big issues in Al.

*Rolf Pfeifer and Christian Scheier, Understanding Intelligence (Cambridge,
MA: MIT Press, 2001).

*Roger Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and
the Laws of Physics (Oxford: Oxford University Press, 1989).

These two collections of articles offer an accessible route to some of the key
philosophical issues.

*Douglas R. Hofstadter and Daniel C. Dennett, The Mind’s I: Fantasies and
Reflections on Self and Soul (New York, NY: Basic Books, 1981).

«John Haugeland (ed.), Mind Design I1: Philosophy, Psychology, and Artificial
Intelligence (Cambridge, MA: MIT Press, 1997).

The next two books are excellent introductions to Artificial Intelligence for those
interested in Al from the perspective of computer programming. They cover the
technical foundations of Al.

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modem Approach
(Harlow: Prentice Hall, 1994).

*Nils J. Nilsson, Artificial Intelligence: A New Synthesis (San Francisco, CA:
Morgan Kaufmann, 1998).

The following two books are written by leading roboticists, and target the
general reader. For those interested in robotics, these books offer a good place to
start from.

*Rodney Brooks, Robot: The Future of Flesh and Machines (London: Penguin,
2002).

*Hans Moravec, Robot: Mere Machine to Transcendent Mind (Oxford: Oxford
University Press, 1999).
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