

Logic for Computer Science and Artificial Intelligence

Logic for Computer Science
and

Artificial Intelligence

Ricardo Caferra

First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2011

The rights of Ricardo Caferra to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.
__

Library of Congress Cataloging-in-Publication Data

Caferra, Ricardo, 1945-
 Logic for computer science and artificial intelligence / Ricardo Caferra.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-84821-301-2
 1. Computer logic. 2. Artificial intelligence. I. Title.
 QA76.9.L63C34 2011
 006.3--dc23

 2011014705

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-301-2

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne.

Table of Contents

Preface . xi

Chapter 1. Introduction . 1

1.1. Logic, foundations of computer science, and applications
of logic to computer science . 1

1.2. On the utility of logic for computer engineers 3

Chapter 2. A Few Thoughts Before the Formalization 7

2.1. What is logic? . 7
2.1.1. Logic and paradoxes . 8
2.1.2. Paradoxes and set theory . 9

2.1.2.1. The answer . 10
2.1.3. Paradoxes in arithmetic and set theory 13

2.1.3.1. The halting problem . 13
2.1.4. On formalisms and well-known notions 15

2.1.4.1. Some “well-known” notions that could turn out
to be difficult to analyze 19

2.1.5. Back to the definition of logic 23
2.1.5.1. Some definitions of logic for all 24
2.1.5.2. A few more technical definitions 24
2.1.5.3. Theory and meta-theory (language and

meta-language) . 30
2.1.6. A few thoughts about logic and computer science 30

2.2. Some historic landmarks . 32

Chapter 3. Propositional Logic . 39

3.1. Syntax and semantics . 40
3.1.1. Language and meta-language 43

vi Logic for Computer Science and Artificial Intelligence

3.1.2. Transformation rules for cnf and dnf 49
3.2. The method of semantic tableaux . 54

3.2.1. A slightly different formalism: signed tableaux 58
3.3. Formal systems . 64

3.3.1. A capital notion: the notion of proof 64
3.3.2. What do we learn from the way we do mathematics? 72

3.4. A formal system for PL (PC) . 78
3.4.1. Some properties of formal systems 84
3.4.2. Another formal system for PL (PC) 86
3.4.3. Another formal system . 86

3.5. The method of Davis and Putnam . 92
3.5.1. The Davis–Putnam method and the SAT problem 95

3.6. Semantic trees in PL . 96
3.7. The resolution method in PL . 101
3.8. Problems, strategies, and statements 109

3.8.1. Strategies . 110
3.9. Horn clauses . 113
3.10. Algebraic point of view of propositional logic 114

Chapter 4. First-order Terms . 121

4.1. Matching and unification . 121
4.1.1. A motivation for searching for a matching algorithm 121
4.1.2. A classification of trees . 123

4.2. First-order terms, substitutions, unification 125

Chapter 5. First-Order Logic (FOL) or Predicate Logic (PL1, PC1) . . . 131

5.1. Syntax . 133
5.2. Semantics . 137

5.2.1. The notions of truth and satisfaction 139
5.2.2. A variant: multi-sorted structures 150

5.2.2.1. Expressive power, sort reduction 150
5.2.3. Theories and their models . 152

5.2.3.1. How can we reason in FOL? 153
5.3. Semantic tableaux in FOL . 154
5.4. Unification in the method of semantic tableaux 166
5.5. Toward a semi-decision procedure for FOL 169

5.5.1. Prenex normal form . 169
5.5.1.1. Skolemization . 174

5.5.2. Skolem normal form . 176
5.6. Semantic trees in FOL . 186

5.6.1. Skolemization and clausal form 188
5.7. The resolution method in FOL . 190

5.7.1. Variables must be renamed . 201

Table of Contents vii

5.8. A decidable class: the monadic class 202
5.8.1. Some decidable classes . 205

5.9. Limits: Gödel’s (first) incompleteness theorem 206

Chapter 6. Foundations of Logic Programming 213

6.1. Specifications and programming . 213
6.2. Toward a logic programming language 219
6.3. Logic programming: examples . 222

6.3.1. Acting on the execution control: cut “/” 229
6.3.1.1. Translation of imperative structures 231

6.3.2. Negation as failure (NAF) . 232
6.3.2.1. Some remarks about the strategy used by LP and

negation as failure . 238
6.3.2.2. Can we simply deduce instead of using NAF? 239

6.4. Computability and Horn clauses . 241

Chapter 7. Artificial Intelligence . 245

7.1. Intelligent systems: AI . 245
7.2. What approaches to study AI? . 249
7.3. Toward an operational definition of intelligence 249

7.3.1. The imitation game proposed by Turing 250
7.4. Can we identify human intelligence with mechanical

intelligence? . 251
7.4.1. Chinese room argument . 252

7.5. Some history . 254
7.5.1. Prehistory . 254
7.5.2. History . 255

7.6. Some undisputed themes in AI . 256

Chapter 8. Inference . 259

8.1. Deductive inference . 260
8.2. An important concept: clause subsumption 266

8.2.1. An important problem . 268
8.3. Abduction . 273

8.3.1. Discovery of explanatory theories 274
8.3.1.1. Required conditions . 275

8.4. Inductive inference . 278
8.4.1. Deductive inference . 279
8.4.2. Inductive inference . 280
8.4.3. Hempel’s paradox (1945) . 280

8.5. Generalization: the generation of inductive hypotheses 284
8.5.1. Generalization from examples and counter examples 288

viii Logic for Computer Science and Artificial Intelligence

Chapter 9. Problem Specification in Logical Languages 291

9.1. Equality . 291
9.1.1. When is it used? . 292
9.1.2. Some questions about equality 292
9.1.3. Why is equality needed? . 293
9.1.4. What is equality? . 293
9.1.5. How to reason with equality? . 295
9.1.6. Specification without equality 296
9.1.7. Axiomatization of equality . 297
9.1.8. Adding the definition of = and using the resolution

method . 297
9.1.9. By adding specialized rules to the method of semantic

tableaux . 299
9.1.10. By adding specialized rules to resolution 300

9.1.10.1. Paramodulation and demodulation 300
9.2. Constraints . 309
9.3. Second Order Logic (SOL): a few notions 319

9.3.1. Syntax and semantics . 324
9.3.1.1. Vocabulary . 324
9.3.1.2. Syntax . 325
9.3.1.3. Semantics . 325

Chapter 10. Non-classical Logics . 327

10.1. Many-valued logics . 327
10.1.1. How to reason with p-valued logics? 334

10.1.1.1. Semantic tableaux for p-valued logics 334
10.2. Inaccurate concepts: fuzzy logic . 337

10.2.1. Inference in FL . 348
10.2.1.1. Syntax . 349
10.2.1.2. Semantics . 349

10.2.2. Herbrand’s method in FL . 350
10.2.2.1. Resolution and FL . 351

10.3. Modal logics . 353
10.3.1. Toward a semantics . 355

10.3.1.1. Syntax (language of modal logic) 357
10.3.1.2. Semantics . 358

10.3.2. How to reason with modal logics? 360
10.3.2.1. Formal systems approach 360
10.3.2.2. Translation approach . 361

10.4. Some elements of temporal logic . 371
10.4.1. Temporal operators and semantics 374

10.4.1.1. A famous argument . 375

Table of Contents ix

10.4.2. A temporal logic . 377
10.4.3. How to reason with temporal logics? 378

10.4.3.1. The method of semantic tableaux 379
10.4.4. An example of a PL for linear and discrete time: PTL

(or PLTL) . 381
10.4.4.1. Syntax . 381
10.4.4.2. Semantics . 382
10.4.4.3. Method of semantic tableaux for PLTL

(direct method) . 383

Chapter 11. Knowledge and Logic: Some Notions 385

11.1. What is knowledge? . 386
11.2. Knowledge and modal logic . 389

11.2.1. Toward a formalization . 389
11.2.2. Syntax . 389

11.2.2.1. What expressive power? An example 389
11.2.2.2. Semantics . 389

11.2.3. New modal operators . 391
11.2.3.1. Syntax (extension) . 391
11.2.3.2. Semantics (extension) . 391

11.2.4. Application examples . 392
11.2.4.1. Modeling the muddy children puzzle 392
11.2.4.2. Corresponding Kripke worlds 392
11.2.4.3. Properties of the (formalization chosen for the)

knowledge . 394

Chapter 12. Solutions to the Exercises . 395

Bibliography . 515

Index . 517

Preface

These notes result from a certain conception of knowledge transmission and from
the experience gained after several years of teaching at the Grenoble Institute of
Technology (Ensimag).

If the table of contents is interpreted too literally, the task at hand is infeasible:
each of the themes developed in the different chapters has been the topic of thousands
of pages (books, monographs, articles, popularization books, etc.) published by
numerous authors, and some of these pages are of the highest scientific quality. On
top of this, we must consider all the information available on the Internet.

The aim of these notes, which is probably ambitious but hopefully not
disproportionate, is to attempt to provide a unified overview of the concepts and
techniques that are useful in many well-identified domains of modern computer
science and artificial intelligence. It is difficult to find all these topics in the same
document, and they should also be a good starting point for a reader wishing to explore
further topics.

Conceptual rigor will always be preferred to formal rigor. This approach is
essential for the transmission of knowledge in the modern world, especially for
those domains in which the readers will have to keep acquiring additional knowledge
throughout their professional life.

The presentation method of all the topics will always be the same: informal
description of the topic under consideration (motivation) � historical background �

examples � possible conceptualizations � comparative analysis � formalization �

technical aspects.

Of course, the algorithmic point of view is privileged and for almost every
considered problem, the goal is to design an algorithm capable of solving it. Examples
play a crucial role in these notes: they have been chosen so as to guide in the

xii Logic for Computer Science and Artificial Intelligence

conceptualization of pertinent abstractions for classes of problems. Digressions and
remarks allow for an in-depth view of some of the topics and for the discovery of
their relationship with other topics and other domains. Exercises are an essential
complement to the topics treated, which cannot be understood and assimilated without
solving them (solutions to the exercises are included in the final chapter). It is clear
that the material treated here has already been discussed in other books. However,
some of these topics are approached in an original manner in this book.

In addition to carrying out their original goal within a university syllabus, these
pages will hopefully be agreeable to the reader and will also be an incentive to those
wanting to know more and ask further questions.

Chapter 1

Introduction

We briefly analyze the relationship between logic and computer science, by
focusing successively on two points of views, in a somewhat natural order. We first
underline the importance of logic in the foundations of computer science and how it
is used in many computer science domains. Then we explain why logic is useful for
computer engineers.

1.1. Logic, foundations of computer science, and applications of logic to
computer science

Trying to underline the importance of logic for computer science in the 21st
Century is the same as trying to reinvent the wheel. Indeed, in 1969, C.A.R. Hoare
wrote:

Computer programming is an exact science, in that all the properties of
a program and all the consequences of executing it can, in principle,
be found out from the text of the program itself by means of purely
deductive reasoning.

More recently, in 1986, Hoare stated that “computers are mathematical machines
and computer programs are mathematical expressions”.

Of course, in our defence of logic, we will not make use of arguments relying
on Hoare’s renowned expertise, as these arguments may turn out to be fallacious;
however, we attempt to shed some light on this kind of sentence and to convince the
reader that the importance of logic for computer science is a fact and not a matter of
opinion.

2 Logic for Computer Science and Artificial Intelligence

Logical concepts have been of prime importance in computer science, and this is
still the case nowadays.

Instead of making a potentially tedious enumeration, we shall simply mention
two typical concepts of computer science, production rules and formal languages,
the origins of which are seldom mentioned and which were, respectively, invented by
logicians in 1921 (Post) and 1879 (Frege).

We cannot overstate the importance of studying the foundations and the history of
a discipline, as proved by the following quote.

In 1936, A. Turing introduced his notion of an abstract computer, as part of his
solution to one of the problems posed by D. Hilbert. Yet, H. Aiken (one of the pioneers
of computer science) wrote in 1956 (as quoted by M. Davis):

If it should turn out that the basic logics of a machine designed for the
numerical solution of differential equations coincide with the logics of
a machine intended to make bills for a department store, I would regard
this as the most amazing coincidence that I have ever encountered.

Such a statement would make any undergraduate-level computer scientist smile
today.

Another point of view, which does not have such a good press currently, is the
philosophical point of view. To convince oneself of its importance, it suffices to recall
the role of intuitionisms in computer science (constructive program synthesis, etc.).
Several philosophical questions arise naturally in elementary logic (paradox, truth
value, possible worlds, intention, extension, etc.).

The importance of temporal logic in modern computer science is undeniable,
and is due (including for philosophical motivations) to philosophers–logicians such
as A. N. Prior (see section 10.4).

The philosophical point of view is essential to understand a topic, and of course,
understanding is crucial from a practical point of view.

An example is the popular term ontology. J. McCarthy borrowed it in the 1970s
for philosophy. Currently, in computer science and artificial intelligence (AI) the
meaning of this term has connections (even though they may not be that obvious)
with its original philosophical meaning, i.e. “Theory of being as such – the branch
of metaphysics that deals with the nature of being, as opposed to the study of their
memberships or attributes”.

We conclude this section by mentioning three so-called theoretical topics, of the
utmost practical importance:

Introduction 3

– The NP-completeness of the consistency problem (satisfiability and validity)
of classical propositional calculus (SAT), which was proved by Cook in 1971. The
wide array of applications of propositional calculus (verification of critical systems,
intelligent systems, robotics, constraints, etc.) provides an idea of the importance of
this result.

– The study of finite structures, which is closely related to computer science and
has numerous applications in databases, multi-agent systems, etc.

– Non-classical logics (modal, temporal and multi-valued logics) are extremely
useful in, e.g. program analysis and knowledge representation (in particular in
distributed knowledge representation).

1.2. On the utility of logic for computer engineers

Although no one could say for sure which concepts and techniques will be useful to
a computer scientist in, say, 10, 20, 30, or 40 years, or even if computer scientists will
still be around by then, human beings will probably not have changed that much and
will have to cope with an increasingly complex world (at least in developed countries).
Abstract concepts will turn out to be more and more useful from the point of view
of understanding and efficiency (e.g. it suffices to keep in mind all the advantages –
conception, encoding, and updating – that offer very high-level languages).

It is also important to remember that one of the most efficient and rewarding
recipes to success from an economical point of view, especially in the modern world, is
originality. History shows that the original ideas that have led to important progress in
science and techniques are mostly a consequence of an in-depth analysis (and possibly
a revision) of principles.

Some of the fundamental notions of logic are used by computer engineers
(sometimes with different names and presentations). For example, proposition,
definition, semantics, inference, language/meta-language, intention, intension,
extension, subclass of formulas, and model.

The notion of proposition from an intuitionistic point of view, for example,
represents an intention, a task or a problem. The notion of definition, which has been
studied for centuries by logicians, is closely related to that of specification and is used
in the process of program construction (folding and unfolding rules).

The role of logic as a language for software specification/verification/development
is unchallenged. The notion of semantics leads directly to that of compilation (the
assignment of a semantics can be viewed as a translation). Inference is a way of
expliciting information and is therefore strongly related to algorithms design. The
notion of intention is related not only to that of specification but also to that of system
modeling (and not only program modeling), in which it is also necessary to model the

4 Logic for Computer Science and Artificial Intelligence

environment (including users). The notions of intension and extension are used, for
example, in languages such as Datalog (studied in logic and databases). The notion
of decidable subclasses of formulas is an example of a problem whose nature changes
when one of its subproblems is considered. The notion of models in the context of
abduction (which is used for example in diagnostics, or in the understanding of natural
languages) is similar to that of empirical sciences.

These are, of course, very general concepts, but let us mention some concrete
examples that have extremely important practical applications. The Davis–Putnam
method is used, for example, in system validation. The notion (algorithm) of
subsumption is used, among other things, in knowledge representation languages.

This notion is essential in so-called ontologies (considered as sets of concepts,
relationships between these concepts and means to reason on these concepts), which
are widely used in taxonomies and sometimes defined as the explicit specification of
a simplified and abstract view of a world we wish to represent.

The notion (algorithm) of unification has been at the intersection of logic and
computer science for many years. This algorithm is specified in a very natural way
as a set of inference or rewriting rules (see section 4.2). Databases are one of the
traditional areas of application of computer science. We can view a relational database
as a first-order structure, and first-order logic as a query language (see remark 6.1).
The search for increasingly powerful query languages shows the practical need for
logics with a greater expressive power.

These examples should be enough to convince the reader of the importance of
logic for computer engineers.

To answer those for whom the incentive to learn logic can only come from its
recent applications or its relationship to recent applications, we enumerate some
applications that have been receiving increasing attention.

The first application is multi-agent systems, which are used in important domains
such as robotics, the Internet, etc. These systems can possess extremely complex
configurations, and it is becoming necessary to have (formal) techniques to reason
in (and on) these systems. The notions and tools that are used include temporal
logic, knowledge representation logics, deduction, abduction (i.e. the discovery of
hypotheses that are capable of explaining an observation or permit us to reach a
conclusion), and the notion of proof that can be used to convince an agent (in
particular a human agent) of the pertinence of a piece of information, etc.

Modal logics (temporal logic, dynamic logic, etc.) are used in the industry, for
example, to capture reactive behaviors, or in concurrent systems, etc.

Introduction 5

An increasing number of computer engineers now work in the economic and
financial industry. In these disciplines, the modeling of the actors and their knowledge
(beliefs) of the other actors (on the market, in the society) is indispensable for
comprehension and decision. Assertions such as “X knows (believes) that Y knows
(believes) that Z knows (believes) that. . . ” can be treated formally by knowledge
(belief) logics.

In a science popularization article that was published in a well-known journal in
May 2001, we could read:

The semantic web is. . . an extension of the current one.

[. . .]

For the semantic web to function, computers must have access to
structured collections of information and sets of inference rules that they
use to conduct automated reasoning.

Logic is very important for natural language processing, which has many
applications (e.g. on the Internet, for information retrieval, in question answering
systems, etc).

Interdisciplinarity has reached the most recent computer science applications, such
as multimedia indexing (i.e. the way of finding multimedia documents in digital
libraries), where the roles of semantics and inference are essential.

We conclude this section with some considerations that are more directly related
to the technical problems that arise in computer system programming.

– It is possible to prove that a program is not correct, but it is generally impossible
to prove that a program is correct using examples. The importance of detecting
potential errors in programs (or in integrated circuit designs) is evidenced by two
dramatic examples that took place 30 years apart.

The spacecraft Mariner 1 (July 1962) was meant to land on Venus but failed
because of an error in the on-board program (a syntactically correct instruction, very
close to the intended one, had an entirely different meaning).

Logical techniques have been developed to prove program correctness, to detect
programming errors and to construct programs that satisfy a given specification. Most
of these techniques can be performed automatically. To reason automatically on a
program, it is necessary to have a formal semantics, a formal logical theory, and an
automated theorem prover for this theory.

In general, we are interested in verifying specifications, i.e. in proving properties
satisfied by the specifications rather than in proving properties satisfied by the
programs themselves.

6 Logic for Computer Science and Artificial Intelligence

Nowadays, people use more and more certified software. The practical importance
of this notion cannot be overstated (it suffices to reflect on the importance of having
certified software in a plane or a hospital). More recently (mid-1990’s), errors were
discovered in a digital circuit that had already been commercialized. It had been sold
by the biggest manufacturer of digital circuits. This error occurred when rare data
were provided to the circuit.

This error served as an argument to those who advocated for the necessity of
replacing simulation with exhaustive tests by formal verification, so as to prove the
correctness of a design before the construction phase.

Theorem proving and model checking are two techniques that enable us to certify
the correctness of the aforementioned digital circuits. Logic (both classical and non-
classical) plays a key role in these two approaches.

Some resounding successes in software and hardware engineering have proved that
these approaches can indeed be applied to real-world problems.

Formal verification had typically been a neglected domain because it was
considered too theoretical, but now, it can have a huge financial impact.

– Logic programming consists of using logic as a programming language. The
programming language Prolog, as well as others that followed, in particular, constraint
logic programming languages, arose naturally from the notions and methods that are
studied in logic.

– Some logical paradoxes, in particular, the one named Russell’s paradox, are
closely related to the halting problem, i.e. the existence of an algorithm that can
decide whether any program provided as an input will halt or not. The impossibility
of creating such an algorithm is well known.

– Over the past few years, there has been a boom of computer systems that exhibit
an intelligent behavior (such systems are mostly studied in the discipline known
as AI).

The principles that are used to design these systems are closely related to classical
and non-classical logic. The role of logic in social sciences must not be discarded.
Logic is considered as a preferred tool in, e.g. the study of intelligent interactions.

Chapter 2

A Few Thoughts Before the Formalization

2.1. What is logic?

We cannot give a formal answer to this question right away (we will get back to it
though). In order to be understood, the answer would require some hindsight on the
topic about to be studied.1

Try to understand what mathematics is about by only relying on its definition:
mathematics, the science of quantity and space.

To choose an answer would not be very helpful right now, because a lack of criteria
and references to concrete cases make it difficult to judge the pertinence of the answer.

A problem that is closely related to the one under consideration inspired the
following thought to a famous philosopher (D. Hume):

The fact that ideas should logically entail one another is nothing but a
fact, no more understandable by itself than any fact of the material world.

And this one from another less famous philosopher:

A logical formula is the expression of a natural phenomenon, as is
gravitation or the growth of a tree.

1 This remark is valid for any topic about to be studied.

8 Logic for Computer Science and Artificial Intelligence

2.1.1. Logic and paradoxes

Let us return to the history of logic and try to analyze some of the well-known
concepts that are involved.

Logical difficulties arose very early in philosophy, religious “treaties”, and
literature. Here are two examples:

– the liar’s paradox, due to Eubulides of Miletus (see digression 2.2): I am lying;

– the sentence: this sentence is false;

– the version of the liar’s paradox due to Epimenides of Knossos (6th Century
BC): All Cretans are liars.

Are these really paradoxes?

What is a paradox?

Etymologically (15th Century AD): paradox: contrary to common opinion
(doxa: opinion, from which originated heterodox and paradox).

Other definitions characterize paradoxes as argumentations (or assertions) that lead
to a contradiction (logical paradoxes).

Paradoxes are sometimes associated with results (obtained by using correct
reasoning) that are contrary to intuition and common sense, thus provoking surprise
and perplexity.

One may also call a paradox a proposition that seems true (false) and is actually
false (true).

Consider the following story (an excerpt from a masterpiece of universal
literature):

A soldier is given the order to ask every person about to cross a bridge the
following question:

(∗) “What have you come here for?”

– If the person tells the truth, he is allowed to cross the bridge.

– If the person is lying, he must be hanged next to the bridge.

Someone arrives, and when asked question (∗), shows the gallows next to the
bridge and replies: “I have come to be hanged in these gallows”.

Imagine how embarrassed the soldier must feel, as he must either allow someone
who lied to cross the bridge, or hang someone who was telling the truth!

A Few Thoughts Before the Formalization 9

There also exist paradoxes that occur in board games.

The rule Every rule has exceptions gives rise to problems. As it is a rule, it
must admit some exceptions. Which means that there exist rules that do not admit any
exception.

Here is another one:

i) The sentence below is false.

ii) The sentence above is true.

If (i) is T then (ii) is F hence (i) is F.

If (i) is F then (ii) is T hence (i) is T.

If (ii) is F then (i) is T hence (ii) is T.

If (ii) is T then (i) is F hence (ii) is F.

2.1.2. Paradoxes and set theory

Perhaps those paradoxes that had the most impact are those that involve set theory:
probably because of the importance of set theory in mathematics, and particularly in
the foundations of mathematics.

Bolzano introduced (in 1847) the notion of a “set” for the first time:

A set is a collection of elements the order of which is not pertinent, and nothing
essential is changed by only changing this order.

But it is Cantor who developed set theory.

In naive set theory, according to Cantor, a set is:

Any collection of objects from our intuition or our thoughts, that are both defined
and different.

. . . But allowing the use of any property to define a set can be dangerous:

There exist sets that do not contain themselves. For example:

The set of prime numbers < 150

There are others that contain themselves. For example:

The set of all ideas.

The catalog of all catalogs.

10 Logic for Computer Science and Artificial Intelligence

From a more abstract point of view:

The set of all sets.

It is simple to show that accepting as a set all the sets in the universe (U) leads to
a problem.

If this is a set, it must contain itself. But the set of its subsets P(U) is also a set,
and card(P(U)) > card(U). Thus, there would exist a set containing more sets than
the universe itself!

The set of all the sets that can be described in English by fewer than twenty
words.

Bertrand Russell came up in 1902 with a “set” that leads to a paradox, which is
known as “Russell’s paradox”:

Let B denote the set of all sets A such that A is not an element of A (i.e.
the set of all sets that do not contain themselves).

The existence of B leads to a contradiction:

– If B ∈ B, then B contains a set that contains itself (B), and B must not contain
B (as B only contains those sets that do not contain themselves), hence B �∈ B.

– If B �∈ B, then as B does not contain itself, B must contain B (as B contains all
the sets that do not contain themselves), hence B ∈ B.

Russell’s paradox was popularized as the “barber’s paradox”. A barber must shave
every man who does not shave himself. How about him? Must he shave himself? If
he does, then he is shaving someone who is shaving himself. Thus, he must not shave
himself. If he does not shave himself, then he will not be shaving every man who does
not shave himself. Hence, he must shave himself.

The origin of this problem is the axiom of abstraction (also called the axiom of
naive comprehension): Given a property, there exists a set whose members are exactly
the entities satisfying this property. In other words, for every predicate P , there exists
a set whose elements are all the objects (and no other) that satisfy P :

∃x∀y(y ∈ x ⇔ P (y))

2.1.2.1. The answer

The paradoxes on set theory were believed to be caused by the definition of
incomplete objects as sets. Such objects should not be considered as sets.

When a set S and an object ob are defined in such a way that:

A Few Thoughts Before the Formalization 11

i) ob is an element of S;

ii) the definition of ob depends on S,

the definition is said to be impredicative (Poincaré). This is the same as what is
commonly called a vicious circle.

To avoid paradoxes, impredicative definitions must be considered as illegitimate.

In set theory, this leads to the distinction between a class and a proper class.

A class: {x | P (x)} (P predicate symbol).

Sets are classes, but not all classes are sets:

{x | x ∈ x} (or {x | x /∈ x}) is not a set but it is a proper class.

Sets are complete entities.

Classes are incomplete entities.

In set theory, a constructive definition of a hierarchy of sets is provided (as usual,
P(X) represents the set of all the subsets of a set X):

F0 = ∅
Fn+1 = P(Fn)

Fω = ∪iFi

It is worth mentioning that impredicative but still important definitions are used
in mathematics, such as the definition of the least upper bound (it is among all the
bounds under consideration), maximum of a function on an interval (the maximum is
among all the considered values), etc.

These kinds of definitions have also proved their value in computer science
(communicating systems and streams).

A set belongs to a family of sets.

The axiom of choice (AC) and the continuum hypothesis (CH) are of great
importance in set theory and in the foundations of mathematics.

We present three versions of the AC:

Version 1:

For every set X of non-empty sets y, there exists a function f with domain X ,
such that f(y) ∈ y for all y ∈ X . (It is necessary to use this version only when X is
infinite).

12 Logic for Computer Science and Artificial Intelligence

Version 2:

Let S denote a set of paired disjointed, non-empty sets. There exists a set C
containing exactly one element in each member of S.

Version 3 (formalization of version 1):

∀X∃f [f a function with domain X ∧ ∀z(z ∈ X ∧ ∃u . u ∈ z︸ ︷︷ ︸
X:set of non-empty sets

⇒ f(z) ∈ z)]

The CH states that between ℵ0 (the cardinality of N) and ℵ1 (the cardinality of R,
also denoted by 2ℵ0), there is no other transfinite cardinal.

The generalized CH states that the sequence of transfinite cardinals is:

ℵ0,ℵ1 = 2ℵ0 ,ℵ2 = 2ℵ1 , . . .ℵn+1 = 2ℵn , . . .

The method used to construct this sequence is to consider a set and the set of its
subsets. For ℵ0 (cardN), the method is the one shown in exercise 3.1.

For the others, assume that there exists a bijection f between E and P(E). By
diagonalization (as in exercise 3.1), we can prove that f cannot be onto.

Gödel proved (in 1940) that if the ZF (Zermelo–Fraenkel) axiomatization is
consistent (i.e. does not permit us to deduce a formula and its negation), then ZF+AC
and ZF+AC+HC are also consistent. This means that AC and HC cannot be refuted.

Paul Cohen proved (in 1963) that AC and HC are independent from the other
axioms in ZF, which means that AC and HC cannot be proved if ZF is consistent. HC
cannot be proved in ZF+AC.

ZF and AC are undecidable in ZF. �

DIGRESSION 2.1.– (sets and the AC in constructivism). For intuitionists or
constructivists, or at least for most of them, a set E is well defined if and only if:

i) we are told how to construct an element of E;

ii) we are told how to prove that two elements in E are equal;

iii) we are given a proof that the equality defined in (ii) is an equivalence relation.

If only item (i) is satisfied, E is called a pre-set (it is possible to define sets, using
pre-sets as a starting point).

A set E is completely presented iff for any of its elements, one can “read” evidence
that it belongs to E (for example, Q is completely presented, as for every m

n , it is
possible to verify that m and n have no common factor).

A Few Thoughts Before the Formalization 13

Constructivists consider the AC as essentially non-constructive; however, they
accept some (constructive) versions that are provable in constructive mathematics
(the name “axiom” was kept out of respect for tradition in classical mathematics).
We provide the version named denumerable choice:

ACN: E ⊂ N2∧∀m∃n(< m,n >∈ E) ⇒ ∃f: N → N | ∀m(< m, f(m) >∈ E)

�

2.1.3. Paradoxes in arithmetic and set theory

EXAMPLE 2.1.– (Berry’s paradox). Consider the formalization of arithmetic based
on Peano’s axioms (see example 3.8). �

Let A denote the set of all natural numbers that can be defined in English by a
sentence containing at most a thousand characters (letters or separation symbols). A
is therefore finite, and there must exist natural numbers that do not belong to A. The
sentence:

n is the smallest integer that cannot be defined by an English sentence
containing at most a thousand characters

contains fewer than a thousand characters and defines a natural number n. Hence, n
is a member of A. However, by definition, n does not belong to A.

We shall soon return to the notions of theory and meta-theory.

2.1.3.1. The halting problem

The idea underlying Russell’s paradox can be used to prove the undecidability
(insolubility) of the halting problem. This idea can be characterized as the possibility
for an expression designating an object to refer to a whole that the object belongs to.

The problem can be stated as follows:

Halting problem: given a program in a language (with the same expressive
power as the Turing machine)2 and some input data3 (or an initial state of its
input tape), decide whether this program (or Turing machine) halts or not.

To prove that this problem can be solved for a certain language, it suffices to
provide a program that solves it.

2 Of course, leaving this language unspecified does not entail any loss of generality in the
statement.
3 This can be any input data.

14 Logic for Computer Science and Artificial Intelligence

Figure 2.1. The halting problem is unsolvable

However, to prove that it cannot be solved, it is necessary to use an indirect method
(for example reductio ad absurdum).

It is possible to encode a program as a set of input data (see, e.g. section 5.9).

We therefore assume that we can write a program A, which decides for any
program P whether P halts or not, i.e. A(P) returns if and only if P halts.

We define the program D of Figure 2.1.

– Program D halts if D does not halt;

– Program D does not halt if D halts.

Contradiction. Hence A cannot exist. �

DIGRESSION 2.2.– (on the importance of paradoxes). Paradoxes can be viewed as
questions about the foundations of our reasonings, of our definitions, of our levels
of language, etc. They have greatly influenced traditional logic, and also modern
logic, set theory, etc. The principles of paradoxes can be used to obtain fundamental
results in mathematical logic (for example Berry’s paradox and the proof of Gödel’s
incompleteness theorem, see section 5.9) or in computability (the halting problem).

A typical historical figure that came up with several paradoxes is Eubulides of
Miletus (circa 384–322 BC), who was contemporary with Aristotle, with whom he
was at odds and against whom he produced several writings.

He is believed to be the father of eristic arguments (i.e. related to controversies,
specious reasoning sophisticated quibbling).

It seems like the refutation of these arguments played a central role in the design
of Aristotelian logic.

A Few Thoughts Before the Formalization 15

He is the one who came up with the liar’s paradox4, and that of the heap of
sand (see example 8.1). The latter poses the problem of the relationship between the
continuum and the discrete.

There also exist paradoxes (that are not necessarily logical paradoxes but do
illustrate the etymology of the word “paradox”) in other scientific domains.

For example:

The paradox known as the Tocqueville effect: revolutions always start when a
totalitarian regime becomes more liberal.

The Einstein–Podolsky–Rosen paradox involving quantum physics.

Bertrand’s paradox: one has to determine the probability that a randomly chosen
chord in a circle is longer than the side of the equilateral triangle that admits the
same circle as a circumcircle. Using the definition of Laplace (probability = number
of favorable cases ÷ total number of cases) leads to two different values depending
on the way one chooses to define the favorable cases. And both choices are equally
reasonable. �

2.1.4. On formalisms and well-known notions

G. Frege (19th to 20th Century) was one of the greatest logicians in history. He
introduced the notions of formal systems, quantifiers, and proofs that are still used
today.

The formalism he proposed was too cumbersome, as evidenced by the following
examples.

4 Legend has it that the poet and philosopher Philitas of Cos was subject to a deteriorating
health as he tried to analyze this paradox.

16 Logic for Computer Science and Artificial Intelligence

This formalism was not used very much afterwards (which is not surprising!)5.

We shall often ask ourselves questions about notions that seem natural. To
convince ourselves that important problems are often hidden by our habits, it is
enlightening to ponder, for example, on a word that can often be found in mathematical
statements:

Does there exist . . . such that. . . ?

1) According to formalists, existence means consistency, non-contradiction.

2) According to intuitionists6, existence means construction, meaning.

5 One cannot overstate the importance of formalism. For example, McColl proposed P : Q as
a notation for the implication P implies Q. But the symmetry in this notation suggests that P
and Q have the same role. . . it is thus a bad formalism.
6 Some authors prefer to use the term constructivists (and constructivism), which they believe
better mirrors the underlying philosophy. Brouwer, one of the founders of constructivism,
viewed mathematics as the activity of carrying out constructions (a primitive and somewhat
vague concept) in the mind of an ideal mathematician.

A Few Thoughts Before the Formalization 17

In mathematics that almost everyone uses, it is the first point of view that is more
or less consciously adopted, although this notion may not be as natural as it may seem:

The following example, proposed by Frege, should make us think.

Consider the three following propositions:

– G is an intelligent being;

– G is ubiquitous;

– G is all-knowing,

and suppose that these three propositions as well as all their consequences are non-
contradictory.

Can we conclude that G exists?

EXAMPLE 2.2.– Do there exist irrational numbers a, b such that ab are rational?
Classical response: yes. Classical proof:

Take a =
√
2 and b =

√
2, then:

√
2

√
2

{
rational result proved

irrational take a =
√
2
√
2

and b =
√
2

(in the second case, ab = (
√
2
√
2
)
√
2 = (

√
2)2 = 2).

This is not a constructive proof because no one can say which of the two
possibilities proves the conjecture.

Here is a constructive proof

constructive
proof

{
a =

√
2 b = 2 log2 5

ab =
√
2

2 log2 5
= 2 log2 5 def. log

= 5

Note that, from a standard intuitionistic point of view, it is permitted to state in a
proof that, for example, 1010

10

+ 1 is a prime number or is not a prime number. This
is because there exists an effective method that allows us to decide which of the two
hypotheses is correct: it suffices to try all potential divisors. �

A (primitive) key concept of intuitionism is that of constructions. This concept
can sometimes shake our beliefs about our understanding of mathematics.

18 Logic for Computer Science and Artificial Intelligence

The notion of construction appears to be inherent to every domain of study, and it
may not be obvious to tell whether a proof is constructive. For example, consider the
way Euclid proved that there exists an infinite number of prime numbers:

Assume that there only exists a finite number of prime numbers, and put these
numbers in increasing order

p1, p2, . . . , pn

pn is thus the greatest prime number. But in this case, p1 × p2× · · ·× pn+1 is also a
prime number that is greater than pn. This is a contradiction, hence there are infinitely
many prime numbers.

This proof method uses the law of excluded middle, but it also provides a way of
constructing an infinity of prime numbers. . .

The following example, which was proposed by Brouwer, one of the founders of
intuitionism, clearly shows the importance this school of thought attaches to what is
known and not just to what is.

EXAMPLE 2.3.– Let α denote the position in the development of π, where the
sequence 0123456789 occurs for the first time, and let n denote the integer defined
as follows:

n =

{
1 + (−1)α/10α if α exists
1 otherwise

If α ∈ N and α is even, then:

n = 1. 00 · · ·01︸ ︷︷ ︸
α

= 1 + 1/10α

If α ∈ N and α is odd, then

n = 0. 99 · · ·99︸ ︷︷ ︸
α

= 1− 1/10α

However, we (still) do not know whether α exists or not; we therefore have
construction rules that we do not know how to apply. This definition only produces an
approximation of n. �

To quote the mathematician H. Weyl (another important figure of intuitionism):

To provide an existence proof that is not constructive is like announcing
that there is a treasure hidden somewhere, without saying where it is
exactly.

A Few Thoughts Before the Formalization 19

For intuitionists, the sentence A ∨ ¬A is not valid for all assertions A. This does
not mean that A ∨ ¬A is false, as that would mean that a contradiction could be
deduced from the sentence. Let A denote some mathematical conjecture. As long as
A remains a conjecture, no one can state A, but as one cannot deduce a contradiction
from A either, no one can state ¬A.

2.1.4.1. Some “well-known” notions that could turn out to be difficult to analyze

a) Definitions and principle of the law of excluded middle

We are used to employing the law of excluded middle when carrying out a proof,
especially for proofs involving reductio ad absurdum.

Yet there are some cases in which this use is problematic, especially from the point
of view of a computer scientist or simply someone who is not content knowing that
an object can be defined (this information by itself may not be that helpful), but also
wants to know how this object can be constructed.

The following example should ring a bell to computer scientists, as it is related to
the halting problem (or the impossibility of enumerating recursive functions).

EXAMPLE 2.4.– Consider a sequence of integers amn, where m,n ∈ Z.

Let f denote the following function:

f(m) =

{
0 if ∀n amn = 0
1 if ∃n / amn �= 0

�

For a classical mathematician, this function is well defined, as for any given m
(using the law of excluded middle), either amn = 0 for all n, in which case f(m) = 0,
or there exists an n such that amn �= 0, in which case f(m) = 1.

But what if we want to actually compute the values of f(m)? Then it is necessary
to examine an infinite number of terms: amn1 , amn2 , amn3 . . ., which is of course
impossible.

b) The notion of a proof

In classical logic, the meaning of the connectives ∧, ∨ and ⇒ is given by a
combination of the truth values of the sub-formulas that are combined by these
connectives.

In intuitionistic logic, their meaning is a result of what should be considered
as a proof of the formula containing these connectives. Here, a “proof” should be
understood as a proof using correct means, and not necessarily a proof in a given
formal system (see section 3.3 and remark 5.29).

20 Logic for Computer Science and Artificial Intelligence

– p proves A ∧ B iff p is a pair < r, s >,
r proves A and s proves B.

– p proves A ∨ B iff p is a pair < n, r >:
if n = 0 then r proves A; if n = 1 then r proves B, which means that we are given

a proof of A or of B, but we cannot tell which one it is7;

– p proves ¬A iff p proves A ⇒ ⊥
% ⊥: contradiction (this symbol is sometimes used to denote something undefined

or false);

– p proves ⊥: impossible;

– p proves A ⇒ B iff p is a rule q that transforms every proof s of A into a proof
q(s) of B (together with any additional information that serves to convince that this is
the case)8.

First-order logic is introduced in Chapter 5, but for the sake of homogeneity, we
introduce the rules corresponding to ∃ and ∀.

– A set X is completely presented if for all x ∈ X , one can examine evidence that
x is indeed in X (see digression 2.1).

– p proves ∃x ∈ Xϕ(x) iff p is a pair < x, q >, where x is a completely presented
member of X and q is a proof of φ(x) (in other words, we explain how to obtain x).

– p proves ∀x ∈ Xϕ(x) iff p is a rule q such that, for all x ∈ X that is completely
presented, q(x) is a proof of ϕ(x) (together with any additional information that
serves to convince that this is the case). ϕ(x) denotes a predicate on X , i.e. a rule
that assigns to every element x ∈ X that is completely presented, a well-formed
formula (wff) ϕ(x).

REMARK 2.1.– (on intuitionistic logic). Intuitionistic logic is weaker (it admits less
principles), but its theorems are more general (it requires less conditions). �

c) Implication

Some of the choices that were made in classical logic sometimes lead to seemingly
surprising results.

One such choice is material implication (as usual, T represents true and F
represents false):

7 Strictly speaking, this condition is not necessary if the standard notion of a proof is used, as
the problem “p is a proof of A (respectively a proof of B)” is decidable.
8 Some authors point out that this notion of a proof prevents the use of modus ponens (see
section 3.3.2), when A ⇒ B is one of the premises. Indeed, we would otherwise have an
effective method for transforming a proof of A into a proof of B: it would suffice to apply
modus ponens.

A Few Thoughts Before the Formalization 21

p q p⇒ q
T T T
T F F
F T T
F F T

where by definition, p ⇒ q : ¬(p ∧ ¬q)

By randomly selecting two propositions p and q, the formula:

(p ⇒ q) ∨ (q ⇒ p)

is a tautology (i.e. a formula that is always T).

Similarly, p ⇒ (q ⇒ p) is also a tautology.

It becomes obvious that the definition of ⇒ is too large.

Another example that may throw a beginner off is that:

(p ⇒ q) ∧ (p ⇒ ¬q)

is not a contradictory formula (it suffices to choose p: F and q: F). The reason one
may think it is contradictory is that, in mathematics, when considering a theorem, one
is only interested in the case in which premises are T.

The implication connective⇒ has sometimes been criticized by logic philosophers
as not being the adequate translation of if . . . , then . . . in natural language.

In natural language, if . . . , then. . . is used to express, e.g.

– causality: if we put a kettle with water in it on top of a fire, then the water within
will be heated;

– implication: if John is smaller than Peter and Peter is smaller than Mark, then
John is smaller than Mark;

– (possible) explanation: if the flowers are on the floor, then someone must have
dropped them.

On the topic of causality, it is important to note that material implication does not
translate this notion adequately, at least for the three following reasons:

1) p ⇒ p is a tautology, whereas causal connection is essentially irreflexive (this
means no phenomenon is a cause of itself).

2) A causal relation is essentially asymmetric (non-reversibility), which is not
necessarily the case of ⇒:

p ⇒ q and q ⇒ p could both be true.

22 Logic for Computer Science and Artificial Intelligence

3) p ⇒ q is T if p is F and q is T. If p is the cause and q the effect, material
implication would translate into the absence of a cause implies any effect.

d) Translations in the language of logic

The word “and” is commutative, but is it always used in a commutative way?

EXAMPLE 2.5.–
I was hungry and I went to the restaurant.

I was ill and I went to see a doctor. �

DEFINITION 2.1.– A unary predicate represents a property (small, mortal, etc). This
property is the intension of the predicate.

The intension of an n-ary predicate (n > 1) is the relation represented by the
predicate.

DEFINITION 2.2.– The extension of a unary predicate is the class of individuals that
satisfy the property represented by the predicate. The extension of an n-ary predicate
(n > 1) is the set of n-tuples that satisfy the predicate.

REMARK 2.2.–
Usual mathematics puts the emphasis on extensionality.

Predicates with different intensions may admit the same extension. �

We refer the reader to section 10.3 for an application of the concepts of intension
and extension to computer science. The reader may also see examples 3.8 and 9.28.

DEFINITION 2.3.– A language is extensional iff any sentence in this language has the
same truth value when one of its components is replaced by another component with
the same truth value.

A connective is extensional if the truth value of composed propositions only
depends on the truth value of their components.

Only using an extensional approach leads to a loss in the expressive power of the
language.

EXAMPLE 2.6.– (a non-extensional language (R. Carnap)).

1) It is raining F % it is not raining right now

2) It is raining and it is not raining F

A Few Thoughts Before the Formalization 23

3) It is impossible for there to be rain and no rain︸ ︷︷ ︸
F

T

According to (2), the proposition in (3) (above the brace) has the truth value F.

Now, if we proceed as we are used to, and replace this proposition with another
that has the same truth value (1), we obtain:

3′) It is impossible for there to be rain

This proposition obviously has truth value F.

Thus, the truth value of a composed sentence was changed by a replacement that
does not pose any problem from the extensional point of view. �

2.1.5. Back to the definition of logic

We return to the problem that we mentioned at the beginning of this section
and enumerate some definitions of logic, knowing fully well that, as a great
logician/computer scientist (D. Scott) once said:

(∗) You have to know some logic to do some logic.

This is almost the same phenomenon as takes place when learning a natural
language: there seems to be an innate underlying structure that limits the syntactic
possibilities. The relationship between logic and biology was recently expressed by
researchers in cognitive psychology in an article:

(If) logic is indeed the optimal form of biological adaptation. . .

Requirement (∗) stated above may seem to be circular, but is a means of getting
rid of an old paradox that has been tackled by philosophers (in particular by Plato)
and that involves knowledge in general: we can neither search for what we know nor
for what we do not know, because there is no need to search for what we already
know, and what we do not know cannot be searched for, as we do not know what to
search for.

This is what a contemporary philosopher calls the “that on which” as a region of
pre-comprehension (prior discussion), as opposed to “what”, which is unknown.

In layman’s terms, one could say that principles cannot be postponed indefinitely,
or that we cannot try to explain everything about a studied topic before studying it
without risking an intellectual paralysis.

24 Logic for Computer Science and Artificial Intelligence

2.1.5.1. Some definitions of logic for all

Actual way of reasoning, in accordance or not with formal logic.

Abstract and schematic reasoning, often opposed to the complexity of the real
world.

Consistent sequence of ideas, way of reasoning correctly, focus.

Reasoning: sequence of propositions related to one another according to
determined principles and leading to a conclusion.

Etymologically:

– logic (13th Century): from the Greek word for “the art of reasoning”;

– reasoning: reason −→ to count −→ computation −→ ability to compute or
reason.

2.1.5.2. A few more technical definitions

Logic studies what ensues from what.

Logic studies consistent sets of opinions (or hypotheses).

Logic is a science of truths.

Logic is a science of deductions.

Logic is a means to evaluate an argument9.

Logic studies the methods and principles that are used to distinguish between
correct and incorrect reasoning.

At this point, an important question (which is mainly investigated by logic
philosophers and psychologists) comes up naturally: why do we reason incorrectly?
or why do we make mistakes when reasoning? This question is closely related to
such epistemic questions as: what does it mean to reason correctly?, is the process
of reasoning related to constraints from the physical world or to innate human
characteristics (or to both)?, are the laws of logic revisable?, etc.

It has been noticed that most of the time, the mistakes humans make while
reasoning are not logical mistakes, but those that result from a failure to use some

9 An argument can be defined as a set of propositions, one of which is the conclusion while the
others are premises.

A Few Thoughts Before the Formalization 25

of the premises, or their usage with a different meaning from the one they have in the
problem statement, where the immediate perception overshadows the actual relation
(i.e. the one that is of interest) between the objects under consideration.

A conceptual and technical remark. The notion of consequence has been widely
studied from a formal point of view, contrary to that of non-consequence, which is as
important10 (see section 8.3.1).

This notion is essential, e.g. for the identification of fallacious reasonings (some
authors call these reasonings fallacies).

The area of study of formal logic is the analysis of sentences and proofs (the
meaning of these words shall be made more precise later on, but their intuitive
meaning is sufficient for the time being) by considering their form and by abstracting
away their content.

We say formal logic (or mathematics) in contrast with philosophical logic (see
section 2.2).

– Logic deals with all possibilities and views all possibilities as facts.

– The logic of certainty defines the domain of what is possible.

– A logic shall be designed to capture all patterns of reasoning that are meant to
be characterized (this approach is necessarily an informal one).

A logic is a collection of mathematical structures, a collection of formal
expressions and a satisfactory relation between these two collections.

Something particularly interesting to a computer scientist is the fact that in the past
few years, a point of view on logic has steadily been imposing itself:

– modern logic is the foundational discipline for information science and it must
be studied from the point of views of information, information processing, and
information communication. It includes the study of inference, of computability, etc.
Its different aspects are of a particular interest to mathematics, computer science and
philosophy, and it is inherent to most of the subjects studied in AI.

This school of thought considers:

– inference as an activity that tries to use facts from the physical world to extract
implicit information.

10 As Sherlock Holmes would say: “When you have eliminated what is impossible, what
remains must be the truth, no matter how improbable”.

26 Logic for Computer Science and Artificial Intelligence

In the tree-like classification of the Mathematical Review, “logic and foundations”
is at the same level as “set theory” and “number theory”.

Set theory is precisely one of the fundamental themes, and it is what one could call
an “empirical” fact that all known mathematics can be based on it (for example with
the so-called ZFC formalization, i.e. Zermelo-Fraenkel + axiom of choice).

Formal logic is necessary (at least) to rigorously state the axioms and to define the
notion of proof.

On the topic of deductive reasoning, it is a common remark that one of the
characteristics of practical or human reasoning is that the agent freely uses all available
knowledge, whereas formal reasoning studies the (reliable) methods that verify that
the conclusions are consequences of the premises (“logic is the study of what ensues
from what”). Most logicians (as well as philosophers and cognitive psychologists)
took an interest in the relationships between both ways of reasoning. It suffices to
recall that Gentzen designed his natural deduction system so as “to set up a formal
system that came as close as possible to actual reasoning”.

The fact that classical logic came short of modeling many characteristics of
human reasoning, such as deficiencies of material implication, non-monotony, limited
resources, failure to take time into account, etc., led from a theoretical and practical
point of view to many very important developments, among which is non-classical
logics.

One should finally notice that logic, as is the case for all other topics in science,
changes with time in its fundamental principles, which can be interpreted differently
as time passes by, in its methods, notations, topics of interest, etc.

DIGRESSION 2.3.– (formal definition of logic). We have given a few informal
definitions of logic. They were enough to introduce the topic, but the reader who
requires rigorous definitions may already be wondering: “but what is the formal
definition of logic (abstract, i.e. independent from the way deductions are carried
out)?”, and once more is known on the matter, the same reader will probably wonder
“why are there so many logics?” �

There is no formal answer to the second question, but a hopefully satisfactory
answer might be that a given logic can be chosen because it is better adapted than
another one, for example because it has more expressive power (it allows us to express
more things), or because it allows us to say things more naturally, or because it is
decidable, or easier to automate, etc.

We have answered the first question. The unifying notions are those of
consequence relation or satisfaction (or satisfiability).

A Few Thoughts Before the Formalization 27

Here we introduce the notion of consequence relation. Returning to this definition
after having worked on different logics will probably make it easier to grasp.

Algebraic methods play an important role in the definition of logic from an abstract
point of view (they had already played an important role in the pioneering work of
G. Boole).

DEFINITION 2.4.– (consequence relation (Tarski)). Let L denote a formal language.
Cn ⊆ P(L)×P(L) is a consequence relation or operation iff it satisfies the following
conditions for all X ⊆ L:

(T 1)X ⊆ Cn(X)

(T 2) if X ⊆ Y then Cn(X) ⊆ Cn(Y)

(T 3) Cn(Cn(X)) ⊆ Cn(X)

(PF) Cn(X) =
⋃{Cn(Y) | Y ⊆ X ; Y finite}

REMARK 2.3.–

– Intuitively, Cn maps a set of words from language L to the set (i.e. the union) of
their consequences.

– (T 2) must be discarded to capture so-called non-monotonic logics. �

The notion of a consequence relation is the same as what is called closure
operation in algebra.

DEFINITION 2.5.– (closure operation). Given a set E, an operation C: P(E) −→
P(E) is a closure operation iff for all X,Y ⊆ E:

C1: X ⊆ C(X)

C2: C2(X) = C(X)

C3: if X ⊆ Y then C(X) ⊆ C(Y)

X ⊆ E is closed iff C(X) = X .

G. Gentzen (1909–1945) introduced a notion similar to that of Tarski with the
following notation (see definition 3.11):

P1, P2, . . . , Pm � C1, C2, . . . , Cn

with the following informal meaning: the conjunction of the Pi’s (1 ≤ i ≤ m) admits
the disjunction of the Cj’s (1 ≤ j ≤ n) as a consequence.

More generally, we may write:

A � B, where A, B are sets of words on a formal language.

28 Logic for Computer Science and Artificial Intelligence

DEFINITION 2.6.– (consequence relation (Scott)). Given a formal language L, a
relation �⊂ P(L)×P(L) is a consequence relation in L11 iff it satisfies the following
conditions:

A, B ∈ L.

A, B, A′, B′, C ⊆ L
A,B: A ∪ B
A, B: A ∪ {B}
(R) A � A if A �= ∅ (reflexivity)

(M) if A � B then A,A′ � B,B′ (monotonicity)

(T) if A � B, C and A, B � C then A � C (transitivity)

Thanks to properties (R), (M) and (T), � can be viewed as a generalization of a
partial order (see definition 3.23).

It is fairly simple to show that a consequence relation à la Scott is a consequence
relation à la Tarski, and conversely.

It is also fairly simple to prove that these relations coincide with the semantical
notion of a logical consequence in definition 3.8.

We may now return to the question at the beginning of this digression and provide
an answer.

What is an abstract logic?

Answer: a couple LA = (L,�L),

where

L is a formal language

�L is a consequence relation.

The calculi that we shall study (semantic tableaux, resolution, etc.) are different
implementations of a consequence relation.

REMARK 2.4.– Two oddities are worth mentioning: the existence of a journal named
Informal logic, which deals with the study of fallacies and argumentations, and the
fact that an author introduced (in 1957) the concept of infra-logic (which is closely
related to fuzzy logic). �

11 Scott actually named the relation an entailment relation.

A Few Thoughts Before the Formalization 29

Logic allows us to analyze the relationships between objects, events, etc. without
carrying out any experiment.

EXAMPLE 2.7.– (What is of interest is the form)

1) All humans have a spinal cord.

2) All living beings that have a spinal cord are capable of acquiring conditioned
reflexes.

3) Therefore, all humans are capable of acquiring conditioned reflexes.

has the same form as:

1) All pigs have four legs.

2) All living beings with four legs have wings.

3) Therefore, all pigs have wings.

Both reasonings are correct, although in the second one, one of the premises and
the conclusion are unrealistic.

(1) and (2) are the premises of the reasoning and (3) is the conclusion. �
EXAMPLE 2.8.– (. . . but one should be cautious)

1) I saw the portrait of Alexander Fleming.

2) Alexander Fleming discovered penicillin.

3) Therefore, I saw the portrait of the discoverer of penicillin.

has the same form as:

1) I saw someone’s portrait.

2) Someone discovered the wheel.

3) Therefore, I saw the portrait of the discoverer of the wheel.

The first is a correct reasoning, whereas the second is not. �
EXAMPLE 2.9.– (All the premises must be specified12).

1) I did not pay my estate tax in time.

2) Therefore, I will have to pay a fine.

From a logical point of view, the conclusion is erroneous, as there is no premise
stating that those who do not pay their estate tax in time have to pay a fine (for

12 Some logics, especially some used in AI and called default logics do not have this
requirement.

30 Logic for Computer Science and Artificial Intelligence

example, maybe if this is the first time I am late, I will only receive a warning from
the tax collector, etc.). �

REMARK 2.5.– The usage of premises that are not explicit, which is due to bias or
habits, and do not hold in the context of the discourse are a frequent (and unconscious)
cause of fallacious argumentations. �

We now consider a fundamental distinction.

2.1.5.3. Theory and meta-theory (language and meta-language)

We shall prove a precise definition of a formal theory in section 3.3, but we
have already stated the basic idea here: a formal (or formalized) theory is a set of
sequences of symbols (unless stated otherwise, we shall only consider finite sequences
of symbols), called well-formed formulas (wffs) and some simple operations that can
be applied to these sequences.

It is important to make the distinction between:

– what belongs to the formal theory;

– what concerns the formal theory, considered as a closed deductive system.

In other words, it is important to distinguish between:

– the object language (logic): theory;

– the observer’s language (logic): meta-theory.

EXAMPLE 2.10.– In set theory

A
⋃

(A
⋂

B) = A and

A
⋂

(A
⋃

B) = A

are theorems in the theory, whereas the

duality principle: “replacing every
⋃

(respectively
⋂

) by a
⋂

(respectively
⋃

)
in a theorem of set theory yields another theorem in set theory” is a theorem in the
meta-theory, or a meta-theorem. �

Confusing a theory and a meta-theory can have unfortunate consequences.

2.1.6. A few thoughts about logic and computer science

Before proceeding with the study of logic, using an approach that suggests the
importance of logic by itself, and with the goal of showing that historically logic did

A Few Thoughts Before the Formalization 31

not always have proponents13, we mention two thoughts about logic and refute one of
them (in our opinion, the other one is simply a witticism made by a genius).

At a time when paradoxes were becoming increasingly popular, the great
mathematician Henri Poincaré said:

Logic is no longer sterile, it generates contradiction!14

(It suffices to mention Gödel’s incompleteness theorem to fend off such attacks).

More recently, in a book written by two internationally renowned mathematicians
(P. Halmos and S. Givant), we can read:

. . . the study of logic does not help anyone to think, neither in the sense
that it provides a source of new thoughts nor in the sense that it enables
one to avoid errors in combining old thoughts. Among the reasons for
studying logic are these: (i) it is interesting in its own right, (ii) it
clarifies and catalogues the methodology of mathematics, (iii) it has
mathematical applications (for instance, in algebra, analysis, geometry,
and set theory), and (iv) it is itself a rich application of some of the ideas
of abstract algebra.

Of course, we agree with the four reasons given to study logic.

As far as the first sentence is concerned, we could also say (for example):
linguistics never taught anyone how to speak.

From a more technical point of view, we can say that this vision is too restricted,
in particular, it forgets that logic is a foundation for machines that help in thought
operations (and therefore, that help to think). As a great French mathematician
(A. Connes, recipient of the Fields medal) once said:

The verification process is extremely painful, because we are afraid we
may have made a mistake. It is actually the most nerve-racking phase,
because we cannot tell whether our intuition is correct... just as for
dreams, intuition is easily mistaken. I remember having spent an entire
month verifying a result: I would obsessively review every single detail
of the proof, although this task could actually be entrusted to a computer
which would verify the logic of the reasoning.

13 During the 4th Century, the Chinese thought that discursive reasoning was not a reliable way
of grasping reality. In support of this statement, they cited the fallacious reasonings made by
sophists, which led to conclusions that were obviously false.
14 Actually, he used the term “logicism” (which is one of the schools of thought in the
philosophy of mathematics, to which is opposed, e.g. intuitionism).

32 Logic for Computer Science and Artificial Intelligence

A convincing example of the utility of logic (especially when it is handled by
computer programs) is the proof of an old conjecture by Kepler (on sphere packing).
The proof of this conjecture was produced in 1998, thanks to human and computer
means, it was 250 pages long.

Those specialists who analyzed this proof concluded that it was correct. . . with a
degree of certainty of 99%! A project (expected to last several years) meant to produce
(using a computer) a formal proof of Kepler’s conjecture was initiated in 2003.

Of course, logic does not claim (at least in principle) to capture all the operations
of the mind (using images, discovery of regularities, causality, different kinds of
analogies15, etc.).

2.2. Some historic landmarks

We cite some authors, among the most important, who contributed to the
construction of Western logic (and thus of mathematical logic): Aristotle, Euclid,
Leibniz, Boole, De Morgan, Frege, Whitehead, Russell, Tarski, and Gödel.

There is no written evidence of a theoretical presentation of logic before Aristotle.
Before him (e.g. in Plato’s dialogs), there were argumentations, but we are not
concerned with the way to carry out a debate.

The works of Aristotle on logic reached us within a collection of texts called
Organon, which means “instrument” (Aristotle considered logic as a preparatory
discipline).

He introduced syllogisms.

This term, which has been used in everyday language for a long time, globally
identifies every rigorous reasoning that does not use any implicit proposition.

He proposed categorical syllogisms, which are forms of reasoning that exclusively
rely on categorical propositions (see section 2.2).

Aristotle considered four kinds of propositions (that were named categorical):
universal affirmative propositions, universal negative propositions, particular
affirmative propositions and particular negative propositions. The scholastics named
them A, E, I and O, respectively (from Latin: AffIrmo et nEgO):

15 It is worth mentioning that dogmatics (a school of medicine during the 2nd Century) used
analogical inference, and that a theory of analogy was explored by scholastic logic (between
the 12th and 15th Centuries).

A Few Thoughts Before the Formalization 33

A: Every P is a Q

E: No P is a Q

I: Some P are Q

O: Some P are not Q

DEFINITION 2.7.– Two propositions are:

– contradictories iff they cannot be both true or both false;

– contraries iff they can both be false, but they cannot both be true;

– subcontraries iff they can both be true, but they cannot both be false;

– subalterns: a proposition Q is subaltern of a proposition P iff Q is necessarily
true every time P is true and P is necessarily false every time Q is false.

We assume that there exist objects that satisfy property P .

For categorical propositions, this leads to the diagram known as the square of
opposition, which establishes relations between any two categorical propositions:

The theory of syllogisms (syllogistic theory) is (generally considered as) Aristotle’s
most important contribution to logic. Aristotle’s syllogistic theory was one of the
pillars of logic for twenty centuries.

DEFINITION 2.8.– (syllogism) A categorical syllogism is an argumentation
containing only propositions A, E, I, and O, with two premises and one conclusion,
and containing three terms that each appear once (and only once) in exactly two
propositions16.

16 It is common to use enthymemes, which are abbreviated syllogisms with only one premise
(the other one being implicit) and a conclusion. For example (when speaking about someone),
“he is moving, therefore he is alive”.

34 Logic for Computer Science and Artificial Intelligence

EXAMPLE 2.11.–

If all birds are animals

and all sparrows are birds,

then all sparrows are animals.

Animals is the major term, birds is the middle term, and sparrows is the minor
term. �

REMARK 2.6.– The main problem in syllogistic theory was to distinguish between
correct syllogisms (reasonings) and incorrect ones.

Aristotle classified reasonings into 256 possible syllogisms, 24 of which were
correct. �

The number 256 is simply obtained by enumerating all possibilities (Maj, Mid,
Min, respectively, denote the major, middle and minor terms in a syllogism):

Premise 1 Premise 2

(Maj-Mid) (Min-Mid)

(Mid-Maj) (Min-Mid)

(Maj-Mid) (Mid-Min)

(Mid-Maj) (Mid-Min)

i.e. four possibilities.

For each of these possibilities, there are 16 possible combinations of the two
premises: AA, AE, AI, AO, EA, EE, EI, EO, IA, IE, II, IO, OA, OE, OI, and OO.

There are also four possible conclusions (that correspond with the four categorical
propositions). There are therefore 4 × 16 × 4 = 256 possible syllogisms.

REMARK 2.7.– During the 18th Century, the philosophies of Descartes, Locke,
Hobbes, etc. led to the development of conceptions that were contrary to Aristotle’s
philosophy, and to a loss of interest in syllogisms.

Leibniz rehabilitated Aristotelian syllogisms.

Syllogistic theory is still used nowadays (with a mathematical formalism). We
have the following translations (see Chapter 5 and remark 5.27):

(A) Every P is a Q: ∀x(P (x) ⇒ Q(x))

(E) No P is a Q: ∀x(P (x) ⇒ ¬Q(x))

(I) Some P are Q: ∃x(P (x) ∧Q(x))

(O) Some P are not Q: ∃x(P (x) ∧ ¬Q(x)) �

A Few Thoughts Before the Formalization 35

Below are some classical examples:

EXAMPLE 2.12.–

All mammals are animals
All are mammals
All are animals

this corresponds to what is known as Barbara’s syllogism:

Every B is a C
Every A is a B
Every A is a C

another syllogism:

Every A is a B
Some A are C
Some C are B

�

Some reasonings, although considered as correct, cannot be identified so using
Aristotle’s syllogistic. For example:

A ∨ B
¬ A
B

or:

Every p is Q or R
Every p that is not Q is R

A clue of the influence of Aristotelian syllogisms through time is the fact that in
the 19th Century, machines that could automate these syllogisms were constructed.

Along with the notion of a syllogism, Aristotle17 defined the notion of a variable
(see digression 3.3), and he formulated two laws:

– contradiction law: two contradictory statements cannot both be (simultaneously)
true. This contradiction principle is the fundamental principle of thought according
to Aristotle. He considers it the most unquestionable principle. It is the principle of
being itself (Nobody could ever think that one same thing could be and not be), the
most certain principle, and it is of course impossible to prove;

17 Some authors credit the law of excluded middle to Zeno of Elea.

36 Logic for Computer Science and Artificial Intelligence

– law of excluded middle: if two statements are contradictory, then one of them
must be true (there cannot be a third possibility)18.

The contradiction principle does not answer the question whether it is possible to
know if a middle term between the assertion and the negation is possible. The law of
excluded middle rejects this possibility19.

One may wonder what is the relationship between these two principles. According
to Aristotle, the negation of the contradiction principle entails the negation of the law
of excluded middle. But this does not mean that the law of excluded middle can be
deduced from the contradiction principle. These are independent principles.

In logic, as in other domains in science, seemingly obvious principles become
much less so when they are analyzed in detail. Consider the following proposition:

The Greek Aristarchus of Samos hypothesized in 250 BC that the Earth
revolved around the Sun.

Intrinsically, (from an ontological point of view), this proposition admits either the
value T or F, and can take no other value.

But what if we consider it from the point of view of what we know (epistemic
point of view)? Most people would probably say they do not know whether it is T
or F, and would rather assign it a third value: indeterminate (often denoted by ⊥).
The method used to try to assign a truth value to such a proposition is fundamentally
different from the one used to assign a truth value to propositions such as:

230402457 − 1 is a prime number.

or

7427466391 is the first prime number made of ten consecutive digits from
the decimals of e.

Around 453–222 BC, a sect of Chinese preacher–monks, called Mohists (disciples
of Mozi) came up with parts of a logic that was quickly forgotten.

As we have already mentioned, logic was influenced by Aristotle for a very long
time. In the 17th Century, Kant stated that logic had not made a single step forward,

18 We have already seen that for constructivists, this law cannot be applied to just any assertion.
19 We shall return to these two laws when we shall present logics other than classical logic
(multi-valued logic, fuzzy logic).

A Few Thoughts Before the Formalization 37

and that it was finished and perfect. He also attacked formalization attempts, as he
believed it was impossible to replace speculation by symbol manipulation.

Something similar took place for Euclidean geometry. Euclid was the first to
propose what we now call, after a few modifications, an axiomatization. It was
an axiomatization for elementary geometry. Until the discovery of non-Euclidean
geometries (19th Century), this axiomatization was considered to be a completed
model of the real world, and the only axiomatization to be coherent (or consistent).

Leibniz (17th to 18th Century) believed that logic could be transformed into a
calculus (with all the advantages of working with symbols) that could be applied to all
human activities.

Leibniz worked before Frege on the notion of a formal system.

Leibniz’s project was (at least partially) fulfilled by G. Boole (19th Century). One
of his publications was a cornerstone of the separation of logic and philosophy. Boole
discovered fallacies in philosophy books by using algebra.

De Morgan (19th Century) showed that it was impossible for all argumentations to
be reduced to argumentations that exclusively relied on categorical statements.

Frege (19th to 20th Century) was inspired by Leibniz’s ideas, as the latter had
developed a language for “pure thought”. He introduced formal systems (in their
current form) and the theory of quantification. The symbolism he used was too
cumbersome and was discarded later (we saw an example of his formalism in
section 2.1).

Whitehead and Russell (19th to 20th Century) are the authors of the monumental
Principia Mathematica and Russell is the author of the famous paradox that bears his
name and that evidenced how dangerous it could be to allow a set to be defined by just
any property (existence of contradictions in naive set theory, see section 2.1.2).

Chapter 3

Propositional Logic

The first logic we shall study is propositional logic (PL or PC), and although this
logic has a limited expressive power, its wide variety of applications along with its
role in the foundations of automation of first-order logic makes it an essential topic
to study.

DEFINITION 3.1.– (proposition 1). A statement or an expression (i.e. a syntactically
correct sequence of characters) that expresses a relation between several objects
(terms) is a proposition.

For most of the material in this course, the following definition will be sufficient.

DEFINITION 3.2.– (proposition 2). A proposition is a statement or expression to
which one (and only one) true value can be assigned.

REMARK 3.1.– Later on (see section 10.1), we shall see other possible values that
can be assigned to a proposition. �

EXAMPLE 3.1.– (declarative and imperative sentences).

“The factorial of 0 is 1” is a proposition.

“The factorial of 1 is 1” is a proposition.

“The factorial of n(n > 1) is n− 1 times the factorial of n− 2” is a proposition.

“Go to label LAB” is not a proposition.

“Store value 3 at the index labelled by x” is not a proposition. �

We shall use two approaches to study PL (one semantical and the other syntactic).
In both cases, we need a language.

40 Logic for Computer Science and Artificial Intelligence

3.1. Syntax and semantics

The key notion in the semantical approach is that of interpretation. In the
syntactical approach (see section 3.3), it will be that of symbolic manipulation (which
implies: independent of all meaning).

The language is the one defined by the syntax of PC (PL).

DEFINITION 3.3.– The only accepted formulas are the ones with a syntax compliant
with the rules given below. They are called well-formed formulas, or simply wffs.

Let Π denote a denumerably infinite set of basic formulas (or atomic formulas,
or elementary formulas, or propositional symbols) that shall be noted, for example,
P1, P2, . . . , or P1, P2, . . . , or P, Q, R,

The set of propositional formulas (denoted by L0) is the smallest set containing
the elements in Π, which is closed for the rule:

If A and B are propositional formulas, then:
¬A, A ∧ B, A ∨ B, A ⇒ B, and A ⇔ B are also propositional formulas.

¬, ∧, ∨, ⇒, and ⇔ are called logical connectives or simply connectives.

The hierarchy (or priority) of connectives is, in decreasing order (which means
that negation is the first to be applied):

¬ negation
∧ conjunction
∨ disjunction
⇒ implication
⇔ equivalence

For one same operator: from left to right.

For example:

A ∨ ¬B ⇔ C is the same as (A ∨ (¬B)) ⇔ (C)

REMARK 3.2.– (the set of wffs of PL is denumerably infinite). The set of wffs of PL
is denumerably infinite: there are many basic symbols denumerably infinite and it is
possible to come up with a procedure that enumerates wffs.

Every infinite set of wffs of PL will be a subset of a denumerably infinite set, and
will therefore also be denumerably infinite. �

Propositional Logic 41

DEFINITION 3.4.– (semantics of PL (of PC)). An n-ary truth function is a function:

{T,F}n −→ {T,F} n ≥ 1

Among the 2(2
2) possible binary truth functions, the following set of connectives is

usually used: {¬,∧,∨,⇒,⇔}. It is sufficient to express all possible binary functions
(see exercise 3.2).

DEFINITION 3.5.– Let Π denote the set of basic formulas in the language. An
interpretation I is a function:

I: Π −→ {T,F}

Practically speaking, we shall generally be interested in finite sets of formulas, and
it will suffice to consider Π restricted to the basic formulas occurring in the formulas
under consideration (see definition 3.8).

EXERCISE 3.1.– How many interpretations are there for PL:

1) A finite number?

2) A denumerably infinite number?

3) An uncountably infinite number? �

DEFINITION 3.6.– (interpretation of non-elementary wffs: truth tables). We define
−
I ,

the extension of I to the set of propositional formulas, as follows:

1)
−
I= I(A) if A is an atomic formula

2)
−
I (¬A) =

⎧⎨
⎩ F if

−
I (A) = T

T if
−
I (A) = F

3)
−
I (A ∧B) =

{
T if

−
I (A) =

−
I (B) = T

F otherwise

4)
−
I (A ∨B) =

{
T if

−
I (A) =T or

−
I (B) = T or both

F otherwise

5)
−
I (A ⇒ B) =

{
T if

−
I (A) = F or

−
I (B) = T

F otherwise

6)
−
I (A ⇔ B) =

{
T if

−
I (A) =

−
I (B)

F otherwise

42 Logic for Computer Science and Artificial Intelligence

−
I (A), which shall also be noted as E(A, I), is similar to the well-known truth

tables

P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

REMARK 3.3.– Compare these with the inference rules of semantic tableaux (see
section 3.2). �

REMARK 3.4.– (history of truth tables). The introduction of truth tables in modern
logic is attributed to C.S. Peirce, who borrowed them from Stoicians (4th Century
BC), and they have also been attributed to L. Wittgenstein.

We know that they were also known by the Megarians (school of philosophy
founded by Euclid of Megara, 5th to 4th Century BC), and, in particular, we know that
Philo of Megara proposed truth functions. This school, to which Eubulides belonged
(see example 8.1), was interested in “everyday” argument and in paradoxes.

Truth tables were a means to decide the truth value of any wff. �

The translation of sentences from everyday language to the language of PC comes
with its share of problems, and we must be cautious and take into account, for
example, the habits of a given language.

EXAMPLE 3.2.–

a) If it rains, then I will go to the movies.

b) This afternoon, at 2 pm, I will go to the movies or to play soccer.

If we wished to translate the (most probable) semantics of (a), we would use a ⇔
(but not a ⇒) because according to habits, what we mean is “if it rains, then I will go
to the movies, and if it does not rain, then I will not go to the movies”.

(b) Should of course be translated using and exclusive or.

If A then B can be translated by (A ⇒ B) ∧ (¬A ⇒ ¬B).

When we say “some P are Q” we also mean “some P are not Q”.

In logic (as in mathematics), we assume that premises are interpreted in a minimal
way, that is, if P then Q is translated by P ⇒ Q; there exists x such that, we assume
there exists such an x, etc. �

Propositional Logic 43

Just as in the case of a function, we can define the extension and the restriction of
an interpretation.

3.1.1. Language and meta-language

|= A : A is valid, that is, every interpretation of A is a model of A (one such
example is A: A ∨ ¬A).

A |= B: every model of A is also a model of B

(one such example is A: A and B: A ∨ α with α :
∨n

i=1 Bi).

REMARK 3.5.– Note the difference between ⇒ and |=. ⇒ is a symbol of the
language, whereas |= is a symbol of the meta-language. �

The notation |=I F means “interpretation I is a model of F ”.

The notation F |=I G, or equivalently (see exercise 3.14) |=I F ⇒ G, means
“interpretation I is a model of F and G”

Although it is trivial, the following meta-theorem is very important.

META-THEOREM 3.1.– H1 ∧H2 ∧ . . . ∧Hn |= C iff

H1 ∧ H2 ∧ . . . ∧ Hn ∧ ¬C is unsatisfiable (or contradictory, i.e. impossible to
evaluate to T).

Since the origin of logic, the interest of considering sets of truth values other than
{T,F} has been widely acknowledged.

Among others, linguists propose examples of propositions such as:

The current king of France is bald.

The current king of France is not bald.

Michael (who has always been a vegan) stopped eating meat.

Michael (who has always been a vegan) did not stop eating meat.

that are neither T nor F.

Although we shall not mention logics with more than two truth values before
Chapter 10, we show an example of a truth table for a logic with three truth values,
the value ⊥ denoting an indeterminate value.

44 Logic for Computer Science and Artificial Intelligence

EXAMPLE 3.3.– (truth tables with partial information (Kleene)).

P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q
T T F T T T V
T F F T F F
T ⊥ ⊥ T ⊥ ⊥
F T T F T T F
F F F F T V
F ⊥ F ⊥ T ⊥
⊥ T ⊥ ⊥ T T ⊥
⊥ F F ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ �

DEFINITION 3.7.– A set of connective is adequate iff it permits to express all truth
functions.

EXERCISE 3.2.– Prove that the sets of connectives below are adequate. More
precisely, design an algorithm that takes an arbitrary truth table as an input (graph
of a truth function), and as an output produces the same function, defined using a wff
constructed with (exactly) the same propositional variables and (exclusively) the given
set of connectives.

a) {¬, ∧, ∨}

b) {¬, ∧}

c) {¬, ∨}

d) {¬, ⇒}

e) { | } % see the definition below

f) { ↓ } % see the definition below

P Q P | Q P ↓ Q
T T F F
F T T F
T F T F
F F T T �

EXERCISE 3.3.– A wff of PL is positive if it contains only propositional symbols and
the connectives ∧ and ∨.

Consider an n-ary truth function f : { T , F }n → { T , F }

such that:

f(F , F , . . . , F) = F %, that is if all its arguments are F then its value is F;

Propositional Logic 45

f(T , T , . . . , T) = T %, that is if all its arguments are T then its value is T.

f is the truth table of a positive wff of PL.

Do you believe:

a) the assertion above is true?

b) the assertion above is false? �

EXERCISE 3.4.– Give the truth tables of the following wffs:

a) P ∧ (P ⇒ Q) ⇒ Q
b) (P ⇒ Q) ∧ (¬Q ⇒ ¬P)
c) ¬A ∧ (A ∨B) ⇒ B
d) A ⇒ A ∨B
e) (P ⇒ Q) ∧ ¬Q ⇒ ¬P

�

EXERCISE 3.5.– Answer questions (a) and (b) given below without entirely
constructing the truth tables and without applying any transformation to the formula.
This exercise is an introduction to a method that will be studied in section 3.2.

a) Is the following wff always T? Always F?

((((P ⇒ Q) ∧ (P ⇒ ¬R)) ∧ (R ⇒ P)) ∧ (¬P ⇒ Q)) ⇒ (S ⇒ (R ∨ T))

b) Can the following wff be evaluated to F?

((((A ⇒ B) ⇒ (¬C ⇒ ¬D)) ⇒ C) ⇒ E) ⇒ ((E ⇒ A) ⇒ (D ⇒ A)) �

The following definitions (that were regrouped for the sake of simplicity) introduce
some fundamental notions:

DEFINITION 3.8.– (important concepts and terminology). (The definitions of
interpretations and evaluations have already been presented, but they are repeated
here so that they can be regrouped with other definitions).

– A wff F is in negative normal form (nnf) iff the negation symbols that occur in F
are exclusively applied to atomic formulas.

– A wff is in conjunctive normal form (cnf) or in clausal form iff it is of the form:

C1 ∧C2 ∧ . . . ∧Cn (1 ≤ i ≤ n), we note

n∧
i=1

Ci

46 Logic for Computer Science and Artificial Intelligence

where each Ci is called a conjunct (or a clause)1 and is of the form:

A1 ∨A2 ∨ . . . ∨Ami , we note

mi∨
j=1

Aj

where Ai �= Aj for i �= j (clauses are also defined as sets of literals).
The length of a clause is the number of literals it contains.
A clause of length 1 (i.e. mi = 1) is called a unit clause.
The cnf is associated with the set of clauses {C1, C2, . . . , Cn}.

– The wff is in disjunctive normal form (dnf) iff it is of the shape:

D1 ∨D2 ∨ . . . ∨Dn (1 ≤ i ≤ n), we note

n∨
i=1

Di

where each Di, is called a disjunct and is of the form:

A1 ∧A2 ∧ . . . ∧Ami disjunctive normal form we note

mi∧
j=1

Aj .

For homogeneity reasons, we shall allow conjunctions (disjunctions) of empty
sets. In this case, the conjunction (disjunction) will not add any symbol to the syntax
of the wff it occurs in.

– In both cases, Aj is a propositional atom (i.e. a basic propositional symbol) or
the negation of a propositional atom, and will be called a literal.

– If L (respectively, ¬L) is a literal, then ¬L (respectively, L) is called the
complementary literal of L (respectively, ¬L). It is denoted by Lc.

L is a positive literal and ¬L a negative literal.
We will also talk of the sign of a literal (respectively, positive and negative).

– If all literals in a clause are positive (respectively, negative), then the clause is
positive (respectively, negative).

– A wff G is the cnf (respectively, dnf) of a wff F iff G and F are equivalent (i.e.
F ⇔ G is a tautology, see below), and G is in cnf (respectively, dnf).

– An interpretation I of a language (a wff A) is an application:

I : Π −→ {T,F}

where Π is the set of propositional symbols (basic formulas, atomic formulas, and
elementary formulas) of the language (of A). If the domain of the interpretation is
restricted to a proper subset of Π, then I is a partial interpretation

In particular,

1 The term clause is also used in the simplification of truth functions and test of their validity,
to designate the disjuncts of a dnf, that is, the conjunction of literals (see remark 3.36).

Propositional Logic 47

– The interpretation of a formula F (respectively, of a set of formulas S) is the
restriction of the language that F (respectively, S) belongs to the set of propositional
symbols of F (respectively, S). This set will generally be denoted by Propset(F)
(respectively, Propset(S)).

– A partial interpretation of a formula F is the restriction of the interpretation of
the language that F belongs to a set D in which D � Propset(F).

– An evaluation E of a wff A for an interpretation I is the truth value of A for I. It
is denoted by E(A, I) and sometimes by I(A).

– A model of a wff A (a set of wffs S) is an interpretation I of A (of S) such that
E(A, I) = T (E(A, I) = T for all A ∈ S). We say that I satisfies A (S).

– A counter model (counter example) of a wff A is an interpretation I of A (of S)
such that E(A, I) = F (E(A, I) = F for at least one A ∈ S). We say that I falsifies
A (S).

– A wff is satisfiable or consistent or coherent iff it admits (at least) one model.

– A wff A is unsatisfiable or contradictory iff it admits no models, that is, for all I:
E(A, I) = F.

– A wff A is valid or tautological iff for all I: E(A, I) = T.
We note |= A.

– A wff B is a logical consequence of a wff A, denoted by A |= B, iff every model
of A is a model of B.

These definitions naturally extend to sets of wffs.

We can therefore write {P1, P2, . . . , Pn} |= C or, as is more common,

P1, P2, . . . , Pn |= C.

EXERCISE 3.6.– For F,G in L0, we define the binary relation �: F � G iff F |= G.

Is � an order relation? (Also see definition 3.26) �

How can interpretations be specified? The following example shows three
common ways to do so.

EXAMPLE 3.4.– Consider the following formula:

A : [((A ∧B) ∨ C) ⇒ (C ∧ ¬D)] ⇔ E

(1), (2), and (3) given below are three different notations that specify the same
interpretation2,

2 Strictly speaking, we should make the value of I on Π\{A,B,C,D, E,F} explicit or clarify
that it is an interpretation of the formula A.

48 Logic for Computer Science and Artificial Intelligence

1) I = {< A,F >,< B,F >,< C,T >,< D,F >,< E,T >}
2) I = {¬A,¬B,C,¬D,E}
3) I = {C,E} (here, only those propositions that evaluate to T are mentioned)

I(A) = E(A, I) = T

For notations (1) and (2):

1) If < P,T > (respectively, < P,F >) ∈ I then < P,F > (respectively,
< P,T >) �∈ I

2) If P (respectively, ¬P) ∈ I then ¬P (respectively, P) �∈ I

(I is an application). Of course, this remark is not necessary for notation 3. �

EXERCISE 3.7.– Verify that the following formulas (paradoxes of material
implication) are tautologies:

a) P ⇒ (Q ⇒ P)

b) ¬P ⇒ (P ⇒ Q)

Do they have a translation in everyday language? �

REMARK 3.6.– The following tautologies are often used in mathematics, in the
statement of theorems:

A ⇒ (B ⇒ C) ⇔ (A ∧B ⇒ C)

A ⇒ (B ⇒ (C ⇒ D)) ⇔ (A ∧B ∧ C ⇒ D) �

EXERCISE 3.8.–

– Is the following reasoning (or argument) correct?

– How can a correct reasoning be characterized? In other words, what relationship
must hold between the premises and the conclusion for the reasoning to be correct?

– Using your definition of a correct reasoning, can you verify that the syllogisms
of example 2.12 are correct reasonings?

If life has a meaning, but necessarily ends by death, then life is sad.

If life goes on after death, but does not have a meaning, then life is a cosmic joke.

If life had a meaning and went on after death, then angst would not exist.

If life is not a cosmic joke, then it is not sad.

Propositional Logic 49

Angst exists.

If life is sad or if it is a cosmic joke, then it is not beautiful.

Therefore life is ugly. �

REMARK 3.7.– Perhaps here is the best place to recall the following quote from
Wittgenstein: “Logic is a vast tautology that does not state anything about the world,
it simply expresses the equivalence between propositions”. �

A reasoning is a set of premises and a conclusion. Reasonings are usually
represented by a column of premises that are separated from the conclusion by a
horizontal line.

EXERCISE 3.9.– Are the following reasonings correct?

a)

A ⇒ B
A ⇒ C

¬(B ∨ C)
D

b)

A ⇒ B
B ⇒ C
C ⇒ D
¬D

A ∨ E
E

The notion of the normal form of a formula is very important for at least two
reasons: the first one is that it permits us an economy of thought, as we can always
assume (once we have proved the existence of this normal form) that the formula
under consideration is already under normal form. The second reason is that when
this normal form is unique, we can prove the equivalence (equality) of syntactically
different formulas by a reduction to this normal form.

In definition 3.8, we introduced two normal forms for formulas in propositional
logic: the cnf and the dnf. The following rules allow us to obtain these normal forms.

3.1.2. Transformation rules for cnf and dnf

– Step 1: elimination of ⇔ and ⇒
1) A ⇔ B −→ (A ⇒ B) ∧ (B ⇒ A)
2) (A ⇒ B) −→ ¬A ∨B

50 Logic for Computer Science and Artificial Intelligence

– Step 2: put ¬ next to the atoms
1) ¬(¬A) −→ A
2) ¬(A ∨B) −→ ¬A ∧ ¬B
3) ¬(A ∧B) −→ ¬A ∨ ¬B

– Step 3: distributivity of ∨ and ∧
1) A ∨ (B ∧C) −→ (A ∨B) ∧ (A ∨ C)
2) A ∧ (B ∨C) −→ (A ∧B) ∨ (A ∧ C)

The following rules are often used:

¬(A ⇒ B) −→ A ∧ ¬B
A ∨A −→ A

A ∧A −→ A

(A ∨ ¬A) ∧B −→ B

(A ∧ ¬A) ∨B −→ B

A ∨B −→ B ∨A

A ∧B −→ B ∧A

REMARK 3.8.– (3-cnf). We can prove (by adding propositional variables that are used
to introduce definitions) that every cnf formula F can be transformed into another cnf
F≤3 with at most three literals in every clause, such that F≤3 is satisfiable if and only
if F is satisfiable. �

EXERCISE 3.10.–

a) Construct the cnf of (P ∧ (Q ⇒ R) ⇒ S)

b) Construct the dnf of (P ∨ ¬Q) ⇒ R

c) If CNF denotes the set of cnf formulas and DNF denotes the set of dnf
formulas, do we have DNF ∩ DNF = ∅?

d) Given a cnf, are all the transformation rules required to obtain a dnf? Construct
the dnf of:

(A ∨ ¬B ∨ C) ∧ (¬D ∨ E) ∧ (F ∨ ¬G ∨H)

e) Is the cnf (respectively, dnf) of a wff unique? �
REMARK 3.9.– Sometimes the transformation rules generate redundancies that can
potentially (and artificially) increase the search space of a method using a normal
form, as shown in the following example:

¬(P ⇔ Q) −→ ¬[(P ⇒ Q) ∧ (Q ⇒ P)] −→ ¬[(¬P ∨ Q) ∧ (¬Q ∨ P)] −→
[(P ∧ ¬Q) ∨ (Q ∧ ¬P)] −→ [(P ∨Q) ∧ (P ∨ ¬P) ∧ (¬Q ∨Q) ∧ (¬Q ∨ ¬P)]

The conjuncts that are underlined are tautologies that could be eliminated from the
start by introducing a new rule:

Propositional Logic 51

¬(P ⇔ Q) −→ (P ∨Q) ∧ (¬P ∨ ¬Q) �

Note that in the analysis of deductive argument performed below, two different
strategies (or any combination of the strategies) can be considered. The word
strategy means ordering and decrease (if possible) of the number of choices in non-
deterministic problems (see section 3.8.1):

– forward chaining (bottom up): starting from the premises and by application
of the inference rules (or by using the meaning of connectives), try to reach the
conclusion. We have not yet defined what inference rules are (see definition 3.9), but
for the time being it is sufficient to consider them as elementary reasoning steps (which
corresponds to the formal definition). The important thing is to declare the elementary
reasoning steps that is allowed to use.

We move from the premises to the conclusion.

– backward chaining (top down): starting from the conclusion (denoted by C)
reason by saying: if we want to have C, it suffices to have A, if we want to have
A, it suffices to have B, etc., and if possible, move to the premises.

We move from the conclusion to the premises.

EXERCISE 3.11.– Is the following reasoning correct?

If there is a unique norm to judge greatness in art, then both M and G cannot be
great artists. If P or D are considered as great artists, then W is certainly not one.
However, if W is not a great artist, then K or S are not great artists either. After all,
G is not a great artist, but D and K are.

Therefore, there is no unique norm to judge greatness in art. �

EXERCISE 3.12.– Imagine a reasoning that is presented as usual by a set of premises
and a conclusion. The premises and the conclusion are wffs of propositional logic.

Propset(set − wff) is the set of propositional symbols in the set of wffs
set− wff .

a) Assume that Propset(premises) ∩ Propset(conclusion) = ∅. Can the
reasoning be correct?

If this is not the case in general, are there particular cases in which this property
holds?

b) Now imagine that the premises and the conclusion are in clausal form (see
definition 3.8). This assumption does not incur any loss of generality (why?).

Given a set of clauses, a literal (see definition 3.8) whose negation does not occur
in the other clauses is called a pure literal.

52 Logic for Computer Science and Artificial Intelligence

If a premise contains a pure literal, can the analysis of the reasoning be simplified?
How? �

EXERCISE 3.13.– A crime occurred in a luxurious home and the police inspector in
charge of the investigation reasons as follows:

If on the day of the crime, someone had asked the house servant the question “Why
were you not at dinner the day before yesterday?”, she would have answered.

If she had answered, someone would have heard her.

The house servant was not heard.

If the house servant was neither seen nor heard, that is because she was polishing
cutlery, and if she was polishing cutlery, then she was here on the day of the crime.

I, therefore, conclude that the house servant was in the house when the crime
occurred.

a) What premise(s) should the police inspector have added for the reasoning to be
correct?

b) Is there a unique possibility?

c) Can a correct reasoning be made incorrect by adding premises? �

The proof of the following meta-theorem is trivial.

META-THEOREM 3.2.– A is valid iff ¬A is unsatisfiable (contradictory).

EXERCISE 3.14.– Prove the following meta-theorem (deduction theorem – semantical
version):

A |= B iff |= A ⇒ B �

We will be interested in expressions of the form:

H1 ∧H2 ∧ . . .∧ Hn |= C

where the Hi’s (1 ≤ i ≤ n) and C are wffs.

These kinds of expressions correspond to the informal notion of a correct
reasoning.

EXERCISE 3.15.– Prove the following meta-theorems:

a) H1 ∧H2 ∧ . . .∧ Hn |= C iff |= H1 ∧H2 ∧ . . .∧ Hn ⇒ C

Propositional Logic 53

Note that in mathematics, we usually write:

H1 ∧H2 ∧ . . .∧ Hn ⇒ C

with the implicit meaning:

|= H1 ∧H2 ∧ . . .∧ Hn ⇒ C.

b) H1 ∧H2 ∧ . . .∧ Hn |= C iff H1 ∧ H2 ∧ . . .∧ Hn ∧ ¬C is unsatisfiable.

We will sometimes use the set-theoretical version of this statement: C is a logical
consequence of {H1, H2, . . . , Hn} iff {H1, H2, . . . , Hn, ¬C} is unsatisfiable.

(This last meta-theorem is the well-known reductio ad absurdum proof technique:
reaching a contradiction by negating the conclusion.) �

We have seen (see exercise 3.12) that what is of interest in a non-trivial reasoning
are the propositional symbols that occur on the left-hand side and the right-hand side
of |=: their interpretation on the left-hand side (respectively, right-hand side) fixes
their interpretation on the right-hand side (respectively, left-hand side).

EXERCISE 3.16.– By assuming that:

A � C %, that is, not all models of A are models of C,

and

A ∧ B |= C .

Which of the following assertions is correct?

a) A |= B;

b) A � B. �

EXERCISE 3.17.– Let S denote a finite set of wffs S = {f1, f2, . . . fn}.

Assume that S is minimally unsatisfiable (i.e. S is unsatisfiable, and every proper
subset of S is satisfiable, see also definition 3.18).

Is the following assertion true or false?

We can identify n correct reasonings with premises and conclusions that are
formulas in S or negations of formulas in S. �

54 Logic for Computer Science and Artificial Intelligence

META-THEOREM 3.3.– (interpolation theorem). A,B, and C denote wffs of
propositional logic.

Propset (X): set of propositional symbols in wff X .

if:

A |= B and

Propset (A) ∩ Propset (B) �= ∅

then:

there exists C such that:

Propset (C) = Propset (A) ∩ Propset (B) and

A |= C and C |= B.

C is called the interpolant of A and B.

EXAMPLE 3.5.– Q ∧R |= P ∨Q

Q ∧R |= Q and Q |= P ∨Q

here A: Q ∧R B: P ∨Q C: Q �

EXERCISE 3.18.–

a) Give the idea of an algorithm that constructs the interpolant and allows us to
prove meta-theorem 3.3.

b) Compute the interpolant(s) of:
A ⇔ (B ∨ C) |= (A ∧ ¬B) ⇒ C.

Compute the interpolant(s) of:

(¬A ∧ ¬B) ∧ (A ⇔ C) |= (C ⇒ B) ∧ (¬D ∨ ¬C). �

3.2. The method of semantic tableaux

We have characterized a correct reasoning (from a semantical point of view) as a
reasoning in which there is no interpretation that evaluates the premises to true and
the conclusion to false (simultaneously). As a consequence, if we try to construct all
possible models of the set of premises and of the negation of the conclusion, then we
are “killing two birds with one stone”. Indeed, if we do not succeed, then we were

Propositional Logic 55

unable to refute the reasoning, because we were unable to evaluate the premises to
true and the conclusion to false (as we tried to evaluate the negation of the conclusion
to true). Hence, the reasoning is correct. However, if we succeed, then we will have
produced a counter example that proves the reasoning is not correct.

We also noticed that it is not always necessary to construct an entire truth table to
evaluate a formula to true (see exercise 3.5).

These ideas form the basis of a method that is used not only in a propositional
logic but that also extends to first-order logic, to modal logics, etc.

The method of semantic tableaux, of which many variants are available, is
a formalization of these ideas. It is based on the following technique: for every
connective (formula constructor) that can occur in a wff A, we provide all the ways of
constructing models of A. Of course, these possibilities are encoded in the simplest
possible way.

The set of connectives that are used is {¬,∧,∨,⇒,⇔}, and the method uses the
following rules (A and B denote wffs):

Type α rules (wffs with only one descendant)

¬¬A A ∧ B ¬(A ∨ B) ¬(A ⇒ B)
↓ ↓ ↓ ↓
A A ¬A A

B ¬B ¬B

Type β rules (wffs with two descendants)

A ∨ B A ⇒ B A ⇔ B
↙ ↘ ↙ ↘ ↙ ↘

A B ¬A B A ¬A
B ¬B

¬(A ∧ B) ¬(A ⇔ B)
↙ ↘ ↙ ↘

¬A ¬B ¬A A
B ¬B

Intuition behind the method: given a set S of wffs and using the rules above, we try
to construct all the models of S by combining the models of each formula.

56 Logic for Computer Science and Artificial Intelligence

It is clear that the rules replace wffs by wffs containing (strictly) less symbols;
thus, we necessarily reach literals (this property is used to prove the termination of the
method).

The combination of models translates into a tree (which is not unique and depends
on the order in which the models of S are analyzed).

Some combinations may not be possible (because we are trying to evaluate an
atomic formula to true to construct the model of one wff, while evaluating it to false
to construct the model of another one). As soon as a branch contains literals A and
¬A, it is closed (to close a branch, we will use the symbol ×). We shall say that the
branch is closed. If a branch is not closed, then it is open.

A tableau is closed iff all its branches are closed. It is open otherwise.

Before providing the corresponding algorithm, we apply the rules on a few simple
examples.

In agreement with what we said at the start of the section, we consider the set
(which means that there is no imposed ordering to analyze the formulas) of formulas:

1) A ⇒ ¬B
2) ¬C ⇒ A
3) ¬(B ⇒ C)

We will try to construct a (several) model(s) for the set of formulas (1), (2), and
(3). The order selected for the analysis is (3), (1), and (2). The procedure is:

completely mechanical: for each wff, we identify the rule to apply
(there is one for each connective).

We do not try any simplifying transformation.

B
¬C

↙ ↘
¬A ¬B

↙ ↘ ×
C A
× ×

Conclusion: All the branches in the tree are closed. This means that we have
failed to construct any model of (1), (2), and (3). This set of wffs is therefore

Propositional Logic 57

contradictory (or unsatisfiable, or incoherent). The original reasoning was correct (see
exercise 3.15).

Consider the following reasoning:

(A ⇒ B) ⇒ C
¬C ⇒ A

We analyze the set:

1) (A ⇒ B) ⇒ C
2) ¬(¬C ⇒ A)

We choose to apply the rules in the order (2), (1).

¬C
¬A

↙ ↘
¬(A ⇒ B) C

A ×
¬B
×

We have analyzed two examples of correct reasonings. What happens when a
reasoning is not correct? Is the method also useful? Consider the following reasoning:

P ⇒ (¬Q ∨R)
Q ⇒ (P ∧ ¬R)

R ⇒ Q

We therefore consider the following set of wffs:

1) P ⇒ (¬Q ∨R)
2) Q ⇒ (P ∧ ¬R)
3) ¬(R ⇒ Q)

and we choose to analyze it in the order (3), (2), and (1).

R
¬Q

↙ ↘
¬Q P ∧ ¬R

↙ ↘ ↓
¬P ¬Q ∨R P

↙ ↘ ¬R
¬Q R ×

58 Logic for Computer Science and Artificial Intelligence

As we are trying to enumerate all the potential models of the set of wffs under
consideration, in principle, we should have grafted the subtree with root ¬Q instead
of ×, but of course, this is not necessary because all the branches starting at this node
will contain the contradiction (R,¬R).

What do open branches mean? By reading the atomic wffs and the negations
of atomic wffs, we obtain the models of the premises and of the negation of the
conclusion; hence the models of the premises are counter models of the conclusion,
i.e. counter examples showing that the reasoning is not correct.

The counter examples that we can read on the open branches are:

{R,¬Q,¬P}
{¬Q,R}

REMARK 3.10.– It should be clear that the method of semantic tableaux for PL (PC)
is a method for enumerating the models of a set of formulas, and thus permits us to
decide the (un)satisfiability ((in)coherence) of a set of wffs. �

EXERCISE 3.19.– Use the method of semantic tableaux to prove that the set of
formulas below is unsatisfiable (contradictory or incoherent). Use two different
analysis orderings to show that the size of the tree depends on the ordering.

1) ¬((P ∧ (Q ⇒ (R ∨ S))) ⇒ (P ∨Q))

2) P ∧ (Q ⇒ (R ∨ S))

3) ¬(P ∨Q)

4) P

5) Q ⇒ (R ∨ S) �

3.2.1. A slightly different formalism: signed tableaux

This formalism will be useful for logics other than classical logic, which we are
currently studying. It speaks sufficiently for itself to require any explanation.

We want to prove the validity of the following wff (i.e. prove that it is a tautology:
it is evaluated to true in every interpretation):

(A ∨B) ∧ (A ∨C) ⇒ A ∨ (B ∧ C)

we therefore consider the wff:

(∗) ¬[(A ∨B) ∧ (A ∨ C) ⇒ A ∨ (B ∧ C)]

which leads to the following tableaux:

Propositional Logic 59

REMARK 3.11.– This formalism may seem redundant in bi-valued logic, its utility
will become obvious in multi-valued logics (see section 10.1). �

Normally, several questions arise at this point of the presentation of the method
of semantic tableaux, to which answers must be provided in a systematic study of the
topic. The order of the questions is not related to their importance.

1) Must the conclusion (or the formula if there is only one) be negated to test its
validity?

2) Are the constructed trees always finite?

3) What is the termination criterion?

4) When the method states that a reasoning is correct, is this really the case? (If so,
the method is correct).

5) Can all correct reasonings be detected with this method? (If so, the method is
complete).

6) Is the order in which the formulas (or sub-formulas) are analyzed important?

We begin by answering YES to question 1.

The method of semantic tableaux was created to enumerate all models of a set of
formulas (and in particular, of sets containing only one formula).

By definition, if S is a set of wffs:

– set of models of S ⊆ set of interpretations of S;

– set of (all the) valid wffs ⊂ set of (all the) non-contradictory wffs.

60 Logic for Computer Science and Artificial Intelligence

If no negation is performed, then all models are enumerated, but we do not know
anything (without some additional reasoning) about the potential counter examples.
Consider the following wff.

EXAMPLE 3.6.–

We have proved that F is not contradictory, but we do not know whether it
is valid. �

If we negate, we try to construct all models of ¬F , i.e. all counter models (counter
examples) of F .

EXAMPLE 3.7.–

�

Propositional Logic 61

Figure 3.1. The semantic tableaux (PL) algorithm

We have constructed two models of ¬F (CE1 and CE2). CE1 ({¬A,¬C,B})
and CE2 ({¬B,¬C,A}) Are counter models (counter examples) of F , which is
therefore not valid, as we might have believed after a hasty interpretation of the
tableaux in which F was not negated.

REMARK 3.12.– We have indirectly answered questions 1, 2, 3, and 6 given earlier.
The proposed algorithm is non-deterministic (instruction choose) and can therefore be
implemented with different strategies. �

EXERCISE 3.20.– Use the method of semantic tableaux to verify the (in)correctness
of reasonings (a) to (f), and the (in)validity of formula (g) below.

a)

¬H ⇒ M
W ⇒ ¬H

¬H ⇒ (¬W ⇒ M)

62 Logic for Computer Science and Artificial Intelligence

How should the method be used?

– To test the correctness of a reasoning H1, . . . , Hn |=? C, take F ←
{H1, . . . , Hn,¬C}. If the algorithm answers F contradictory, then the reasoning
is correct, otherwise the algorithm provides all the counter examples (open
branches) that prove that the reasoning is incorrect.

– To prove that a formula G is valid, take F ← {¬G}. If the algorithm answers
F contradictory, then the formula is valid, otherwise the algorithm provides all
the counter examples that prove the formula is not valid.

– To construct all the models of a formula G, take F ← {G}.

– To prove that a set of wffs S is contradictory (unsatisfiable), take F ← S. If
the tree is closed then S is unsatisfiable, otherwise we obtain all the models of S.

– To test whether a set of wffs S = {f1 . . . fn} is valid, take F ← {¬f1 ∨
. . .∨¬fn}. If the tree is closed then S is valid, otherwise we obtain all the counter
examples of S.

b)

(R ⇒ G) ∧ (¬R ⇒ S)
G ∨ S

c)

(H ∨W) ⇒ M
M ∨H

d)

A ⇒ (¬B ∨ C)
B ⇒ (A ∨ ¬C)

C ⇒ B

e)

P ⇒ (R ∧ T)
(T ∨ S) ⇒ ¬Q

¬(P ∨Q)

f)

(S ⇒ R) ∧ P
Q

¬R ∧ (¬S ∧ P)

Propositional Logic 63

g)

[(P ∧Q ∧R) ⇒ S] ⇔ [[P ⇒ (Q ⇒ (R ⇒ S))]] �

EXERCISE 3.21.– Are the sets of wffs S1 and S2 below satisfiable? Unsatisfiable?

Use the method of semantic tableaux to find the answer.

a) S1 = {P ⇒ Q,R ⇒ S,¬(¬P ∧ ¬R),¬(P ∧ S), R ⇒ ¬Q}
b) S2 = {¬P,¬R ⇒ W,Q ∨ (¬T ⇒ ¬(P ∨ U)),¬P ⇒ (U ∧

¬R),¬Q,¬U,¬T,¬R ⇒ S}. �

DIGRESSION 3.1.– (some refreshers on trees).

– A directed graph is a structure (see definition 5.4) G =< G;RG >, where RG ⊆
G2 is an irreflexive relation3.

G: set of nodes; RG : set of edges.

– A tree is a directed graph with a (unique) distinguished node r, called its root,
such that:

i) no edge reaches r (i.e. ∀x(x, r) /∈ RG);
ii) for all nodes n in the tree, there exists a unique path (branch) from r to n.

– If there is a path from a node x to a node y, then y is a descendant of x and x is
an ancestor of y.

– The degree of a node is the number of outgoing edges of the node.

– A node of degree 0 is called a terminal node, or a leaf.

– The length of a branch is the size of the set of its nodes.

– A tree is infinite iff it has infinitely many nodes.

– A tree is finitely generated iff all its nodes have a finite degree.

REMARK 3.13.– (other definitions of a tree). A tree is a partially ordered set (with
order relation ≺, see definition 3.24) satisfying the additional axiom:

∀x∀y∀z(y ≺ x ∧ z ≺ x ⇒ y ≺ z ∨ z ≺ y)

(this means that the set of minorants of each element is totally ordered). �

THEOREM 3.1.– (König’s lemma). If A is an infinite tree that is finitely generated,
then A contains (at least) an infinite branch.

3 Irreflexivity (∀x ¬RG(x, x)) �= non-reflexive (∃x ¬RG(x, x)).

64 Logic for Computer Science and Artificial Intelligence

or

If A is a tree with only finite branches then A contains a branch of maximal length.

or If for all n ∈ N there exists a node of depth n, then A contains an infinite
branch.

König’s lemma does not apply to trees that are not finitely generated, as shown in
the example below:

↙ ↓ ↘ . . . ↘ . . .
a1 a2 a3 an

↓ ↓ ↓
a22 a32

...
↓
a33

↓
ann

3.3. Formal systems

The notion of a formal system is closely related to the notion of proof.

3.3.1. A capital notion: the notion of proof

The notion of a proof is extremely important and subtle. It is thus very hard (and
perhaps impossible) to grasp its meaning by simply relying on a formal definition. It
occurs in many domains, in exact science (mathematics, physics, biology, chemistry,
etc.), in social science (history, paleontology, sociology, etc.), and in many order
activities that are proper to organized societies (justice, police, sales, insurance, etc.).

Etymologically:

proof → to prove → from probus: of a good quality, honest, loyal

The requirements to identify an object as a proof and the methods to carry
out proofs are of course generally very different and depend on the period under
consideration (including for mathematics).

For example, it is currently acknowledged in the so-called civilized societies that
every individual is innocent until proven guilty.

Propositional Logic 65

This was not the case in the code of Hammurabi (King of Babylon, ∼1750 BC).
The defendant would be thrown into the “holy river”: if he could escape unhurt, that
was a proof that he was innocent; if he sank, that was a proof that he was guilty. This
proof method, along with other torture methods, were used by the Inquisition during
the Middle Ages.

Myths used to be considered as true, and anyone who would doubt them had to
prove the contrary.

In mathematics, the acceptance of what a proof is can also be analyzed from a
historical point of view. For example, pre-Euclidean proofs were much less rigorous
than post-Euclidean ones. A similar remark holds for mathematical analysis before
and after Weierstrass. It seems like all societies, including those considered as
primitive, invented argument criteria, often as questions/answers, in particular in
the domains of law and justice. Notions such as coherence are often used (but not
necessarily in a conscious way) in the evaluation of arguments. An argument that
tends to establish a fact (or situation) that has not been observed or to reduce the
uncertainties about this situation can already be considered as proof. Once again,
those who pushed the study of argument the farthest were the Greeks, in particular,
between the 6th and 4th Century BC, with major works such as Aristotle’s Organon
and Rhetoric, and Euclid’s Elements. The accomplishment that we are particularly
interested in is the development of axiomatizations and proofs.

There were abstract arguments, before Aristotle, with, for example, Thales,
Anaximander, Xenophanes, Heraclitus, and Parmenides. People already used reductio
ad absurdum, analogies, dilemmas (if p ⇒ q and r ⇒ s and p ∨ r, then q ∨ s is a
dilemma. If p ⇒ q and r ⇒ s and ¬q ∨ ¬s, then ¬p ∨ ¬r is another one).

There seems to be a consensus on the fact that Parmenides was the first to
propose proofs with deductive reasoning, with an irrefutable initial statement and a
rigorous chain of deductions. He also proposed to divide proofs into parts, using the
conclusions of previous parts as premises of the current ones (today these would be
called lemma-structured proofs).

The influence of these thinkers on the development of philosophy and science was
huge. To better understand the social context in which the notion of a proof evolved
toward its current definition, it is worth mentioning that argument blossoms much
better and has a greater importance in a society in which the opinion of the citizens
(who are perfectly equal) is taken into account (as was the case in Greece at the time4)
than in an autocratic society.

4 The Greeks invented democracy at the same time.

66 Logic for Computer Science and Artificial Intelligence

Argument always takes place between two people (this is not always the case for
reasoning).

Sophists, and in particular Gorgias, used the reasonings that were introduced by
Parmenides and his students, not to find the truth but with a purely rhetorical goal.
They believed persuasion was much more important than a proof, although the latter
aims at truth and knowledge. Still, it is now acknowledged that rhetoric indirectly
contributed to the progress in the concept of a proof.

Sophists also played an important role in the organization of education and in the
development of a critical mind, by admitting several points of view on a same topic5.
Socrates, who used to search for general definitions through dialog, could profit from
the habits of Athenians for his teachings.

Socrates defined the art of rhetoric as the art of having influence on souls. Aristotle
considered rhetoric as the technique of plausibility, but not of truth (of which proofs
are the technique).

Plato must not be forgotten among those who contributed to the elaboration of the
concept of proof.

Another discipline that is close to rhetoric is dialectic6 (instrument of probable
knowledge according to Aristotle), which, according to Aristotle, is due to Zeno of
Elea, was also important at the time.

It is interesting to notice that the clear separation between proving and persuading
(convincing) disappears a little in philosophy and modern mathematics (see below).

Mathematics are of course the principle domain in which proofs are carried out.
In a reference book (by Rasiowa and Sokorski), it is written:

The process of deducing some sentences from others is the most
important part of the mathematical work.

The more common belief is that:

The first proof in the history of mathematics was produced by Thales of
Miletus (600 BC): “A diameter separates a circle into two equal parts”.

As suggested by the brief historical recollection below, this notion evolved with
time and it is legitimate to assume that Thales used simple and intuitive techniques.

5 Rhetoric was part of the French official education program until the 19th Century. There was
a renewed interest in rhetoric during the 20th Century.
6 Dialectic comes from a verb meaning to discuss.

Propositional Logic 67

The priority given to Thales does not seem well deserved. Indeed, one of the
greatest historians of mathematics (E.T. Bell) wrote the following about Babylonian
mathematics:

. . . More important than the technical algebra of these ancient
Babylonians is their recognition – as shown by their work – of the
necessity of proof in mathematics.

Until recently, it has been supposed that the Greeks were the first to
recognise that proof is demanded for mathematical propositions. This
was one of the most important steps ever taken by human beings.
Unfortunately, it was taken so long ago that it led to nowhere in particular
so far as our own civilisation is concerned, unless the Greeks followed
consciously, which they may well have done. They were not particularly
generous to their predecessors.

The first rigorous mathematical proofs were produced during the 5th Century BC.
The concept of a rigorous mathematical proof is certainly the main difference between
Greek mathematics and Babylonian mathematics.

It is worth mentioning that the ancient Greeks made a distinction between finding
a theorem and finding its proof. We know that many of Euclid’s propositions were
already known and accepted before his time.

The main development, of which Euclid’s monumental work is the paradigm, is
that of an axiomatization.

After Euclid, mathematical reasonings used definitions, common notions, and
postulates.

– Common notions are the obvious principles that apply everywhere in
mathematics. They are now called logical axioms. Common notions seem to contain
the laws of logic (with the current meaning of inference rules).

– Postulates are the basic hypotheses on geometry (or another theory). They are
now called proper axioms or non-logical axioms.

Some authors have suggested that instead of axiomatization, we should use
postulation.

DIGRESSION 3.2.– The way Euclid proceeded in his work has become a standard in
mathematics and other domains, among which is medicine, which was one of the first
domains to incorporate it.

Galen (physician, surgeon, and philosopher of the 2nd Century) believed that
mastering proofs was a prerequisite to study medicine, and he thought that everything
that is proved by medical science should be reduced to prime propositions that are

68 Logic for Computer Science and Artificial Intelligence

unprovable but held as true by everyone. This boils down to importing Euclid’s
axiomatization method to medicine.

Recent research by science historians has highlighted an approach to proofs that is
particularly interesting to computer scientists. Chinese mathematicians (1st Century
BC) had proposed (sometimes sophisticated) algorithms to solve problems. These
algorithms would provide solutions to many particular cases of the problems under
consideration. Those commenting them tried to prove the veracity of the propositions,
which boiled down to proving the correction of the algorithms.

At the origins of modern science (16th to 17th Century), knowledge was associated
to sensitive experiments (that, just as for theories, had to be transmissible and
reproducible7).

This is different from revelation, illumination, initiation, and hermetism as a means
of discovering and transmitting knowledge.

In one of his books, Galileo mentions the imperfections of matter and the very pure
mathematical proofs.

Kepler was convinced that mathematical proofs were the way to reach the truth.

Newton (following Euclid) uses the axiomatic method: he starts from the
definition of mass, force, and movement. Then, he adds the presuppositions, laws,
axioms. He obtains theorems, proofs, and corollaries. To get from abstract entities to
a description of the world, Newton states philosophical rules. �

Some mathematicians have put an emphasis on the fact that from a practical
point of view, the acceptance of the proof of a theorem is a social process. There
are interactions between those who propose a proof and those who verify it, detect
possible errors, simplify it, make it readable, etc. The process stops when the
community of mathematicians accepts (or refutes) the (alleged) proof.

Much later, the appearance of computers led to hopes and new problems about
the notion of a proof. Indeed, what is more tempting than trying to prove theorems
using a computer? All we have to do is to program a notion that seems completely
formalized, and this led to what is considered as the first AI program: Logic Theorist
(see section 7.5).

The first theorem prover that produced a mathematical proof was written
by M. Davis in 1954. It was a decision procedure for Presburger arithmetic (see

7 See below the characteristics of a proof when answering the question “What is a proof?”.

Propositional Logic 69

example 5.6). It is significant that the first problem to be tackled was a decidable
one (of a high complexity): computers were used as large calculators.

However, it is only with the proof of the four-color theorem that mathematicians
and the general public started talking about automated deduction.

The four-color theorem was proved using a computer program in 1976. This result
is interesting for several reasons: it had been an open problem for over a century in
mathematics, it had allegedly been proved by some excellent mathematicians who
had produced (false) proofs (in the traditional way, i.e. without a computer), and
it permitted some interesting thoughts on the notion of a proof in mathematics.
This result, as well as others that followed, essentially uses the computing speed
of a computer to test a huge amount of possible cases. Although the result is very
important, the proof only made a very partial use of the capacities of automated
theorem provers, as they are designed nowadays (in particular, no use was made
of the possibilities of manipulating proofs, planning, interacting with the user to
guide parts of the proofs, logical computations, etc., that are offered by modern
theorem provers). It is interesting to note here the important consequences that these
results had on mathematical philosophers, as an inspiration for their thoughts on
mathematical practices.

The proofs that are obtained by a computer make an argument that the acceptance
of a proof is a social process. The main reasons are the large number of computations
that are performed (without any creativity), the lack of a perspective in the proofs (that
do not distinguish those steps that are conceptually important from the other ones), and
also the natural mistrust of humans toward a proof that was produced by a non-human.
Let us not forget that in most cases, we “trust” competent mathematicians when they
say that some assertions have been proved. It suffices, for example, to recall Fermat’s
last theorem.

In a reference article (by T. Tymoczko) about the implications of this work on
the philosophy of mathematics, the author proposes the following thesis (that seems
daring at first):

I will argue that computer-assisted proofs introduce experimental
methods into pure mathematics.

To the question “What is a proof?”, the author answers by identifying three main
characteristics:

– Proofs are convincing8

8 Here, the author’s requirements coincide with those that form the basis of proof theory.

70 Logic for Computer Science and Artificial Intelligence

– Proofs are surveyable9,10.

– Proofs can be formalized11.

Surveyability is an important subjective feature of mathematical proofs
which relates the proofs to the mathematicians, the subjects of
mathematical investigations. It is in the context of surveyability that the
idea of “lemma” fits. Mathematicians organize a proof into lemmas to
make it more perspicuous.

Other authors have almost pushed this analysis to its limit: they maintain that
mathematical studies have an important empirical component (and therefore inherit
its methods: reproducibility of the experiments, etc.12).

It is interesting to compare the theses given above with the thoughts that inspired
a mathematician (C.W.H. Lam) in his own work, as he obtained new results (in 1977)
using a computer. He begins his article by explaining his work, using the title of an
article that had appeared in a general magazine:

Is a math proof a proof if no one can check it?

The proof involved the projective plans of order 10 and required 3000 CPU
hours to a CRAY-1A, for which scientists used to believe that there were undetected
(material) errors every 1000 hours approximately. . . !

He tries to use the expression computed result instead of “proof” and states that
in the case of the proofs obtained by a computer, the assertion of correctness is
not absolute, but only almost certain, which is a characteristic of a computer-based
result.13

This kind of problem is in a close relationship to others that are clearly related to
practical computer science.

9 Of course, this requirement also holds for other human activities: a writer noticed that since
1922 and until the correct edition, more than 5,000 printing errors had been made in Joyce’s
Ulysses. Because the book was believed to be incomprehensible, no one had noticed the
mistakes.
10 There should be a special mention to probabilistic proofs and zero-knowledge proofs. In
the former, random verifications with negligible possible errors can be carried out. In the latter,
someone who does not know of a proof produced elsewhere can be convinced of the correctness
of a result without knowing how it was obtained.
11 This is clearly related to the idea behind proof assistants and logical frameworks.
12 There exists a mathematical journal named Experimental Mathematics.
13 The author forgot that there were many wrong “proofs” (obtained by excellent
mathematicians), like those mentioned in the four-color theorem, well before computers ever
existed.

Propositional Logic 71

For example, when we carry out a proof or a verification (e.g. for a critical
system), we prove that a program is correct, which means that it will do what is
expected from it on a model of a computer, but have we proved that it will do it
on a real computer (that has a physical reality, with electronic components, etc.)?

On this topic, the great logician P. Martin-Löf (who influenced computer science
a lot) wrote:

Now, there can be no proof, no conclusive proof, that a proof really
proves its conclusion, because, if such a miraculous means were
available to us, we would of course always use it and be guaranteed
against mistakes. It would be a wonderful situation, but we are human
beings and we are not in that position

[. . .]

So, clearly, there can be no proof in the proper sense of the word
that a proof really proves its conclusion: the most there can be is a
discussion as to whether a proof is correct or not, and such discussion
arises precisely when we make mistakes, or when we have insufficient
grounds or evidence for what we are doing.

The importance of the presentation (readability) of a proof (“proofs are
surveyable”) cannot be overestimated:

Every result that is obtained by a means that is not surveyable by a human
is not a proof.

This sentence was written by a great French mathematician (J.-P. Serre, recipient
of the Fields and Abel medals).

Actually, a response to this requirement, which is not in contradiction with the
acceptance of proofs obtained using a computer, is to make the following distinction
along with the logician quoted above: there are proofs and there are derivations.
A proof contains the computational information that a computer would need to verify
a proposition. A derivation is what convinces us that a proposition is true. Derivations
are what we find in mathematics textbooks. These considerations are closely related
to what the same logician wrote in a brilliant article:

. . . Thus proof and evidence are the same. And what is it that makes a
judgement evident to you? Before you have understood or grasped the
judgement, it is not evident to you, and, when you have grasped it, it
is obvious or evident to you. This is simply your act of understanding
or grasping it which confers evidence on the judgement, that is, which
makes it evident to you. . . .

72 Logic for Computer Science and Artificial Intelligence

What is of a particular interest to us here is the word grasped. We cannot grasp
(with our mind) extremely long sequences of symbols without any structure.

As a great logician (Y. Manin) nicely put it: “A good proof is a proof that makes
us wiser”.

To conclude, recall that natural science relies (and depends on) many instruments
(it suffices to consider astronomy or biology). The history of instruments, in which
computers play an important part, is part of the history of science.

It is a commonplace to say that computers are indispensable for complicated
numerical computations. They will probably be as indispensable as reasoning
auxiliaries, to obtain (some) proofs.

3.3.2. What do we learn from the way we do mathematics?

After this brief historical perspective, we can try to rely on our direct experience
of mathematics (although it is very modest) to better comprehend the topic and ask
ourselves, for example:

Can we abstract common characteristics of the proofs we have
discovered, read, studied, etc.?

Proofs are presented as a finite sequence of formulas, sometimes with figures
(that correspond to particular cases: examples (models), counter examples (counter
models)), and with sentences in natural language (generally a very restricted subset of
the everyday language) that justify the introduction of new formulas, and. . . that’s it!

– What formulas do we begin with?: by the “unquestionable” formulas, which are
admitted.

– How do we get from some formulas to others?: by some rules, generally not
many of them (in general we do not bother to specify that they are the only ones we
allow ourselves to use), that are implicitly correct and assumed to be natural.

We have just given the basic ideas of what we shall define as a formal system.

– The unquestionable formulas are the axioms.

– The transition rules are the inference rules.

To avoid any artificial problem (such as ambiguity), we fix a formal language.

The characterization of inference rules is more delicate than the characterization
of axioms. Here are some of the most fundamental characterizations:

1) The hypothetical syllogism (modus ponendo ponens) or simply modus ponens:

from A and if A then B deduce B;

Propositional Logic 73

2) Induction: the great mathematician Henri Poincaré (1854–1912) who was
also a philosopher of science, considers induction as the fundamental mathematical
reasoning tool and states that its essential character is that it contains infinitely many
hypothetical syllogisms:

The theorem is true for 1

(∗) But if it is true for 1 then it is also true for 2.

Therefore, it is true for 2.

(∗) But if it is true for 2 then it is also true for 3.

Therefore, it is true for 3.

. . .

Furthermore, there is a unique formula that expresses all the formulas (∗):

(∗) If the theorem is true for n− 1, then it is also true for n.

The principle of mathematical induction seems to have been used in its current
form by B. Pascal in 1654 in the Traité du triangle arithmétique.

From the history of science point of view, it is interesting to note that al-Karaji
((Persian) mathematician and engineer, 953 to ∼1029) used a rudimentary form of
mathematical induction, by proving an argument for n = 1, then using this result
to prove the result for n = 2,. . . , and noticing that we could go on indefinitely. He
discovered what is known as “Pascal’s triangle”, using this method.

It seems like Pascal was not aware of al-Karaji’s work.

3) Sometimes, we use modus tollendo tollens (or simply modus tollens):

from if A then B and ¬B deduce ¬A, which can be considered as a particular case of
reductio ad absurdum (see below).

Three widely used techniques to carry out proofs are as follows:

t1) Reductio ad absurdum.

This is one of the oldest techniques. There are two cases to consider.
a) When it is used to prove that an object exists, it is closely related to the law

of excluded middle. To prove P , we prove that ¬P leads to a contradiction. By the
law of excluded middle, P ∨¬P is always true; hence, we may conclude that P holds.
Intuitionists do not always accept these proofs because the law of excluded middle
is used;

74 Logic for Computer Science and Artificial Intelligence

b) When it is used to prove that a mathematical object does not exist, it is
accepted by all schools of thought. If P leads to a contradiction, then the object having
property P cannot exist (without any other consideration).

t2) Case analysis, particularly important for proofs performed by computers, such
as the proof of the four-color theorem and the projective plane of order 10.

t3) Diagonalization. This procedure was invented by Cantor and is used to perform
proofs by reductio ad absurdum; we assume that we can enumerate all the objects of
a class and the diagonalization procedure constructs an element of the class that is
not among the enumerated objects. Assuming that there exists such an enumeration
therefore leads to a contradiction (see exercise 3.1).

REMARK 3.14.– It might be useful to recall that three different theories must be
distinguished:

– the informal theory, that the formal system is meant to formalize;

– the formal system or object theory;

– the meta-theory, in which the formal system is studied. The meta-theory
generally corresponds to common and informal mathematics (see, for example, meta-
theorem 3.4). �

REMARK 3.15.– (mathematical theories). Mathematical theories can be considered
from the semantic or the syntactic point of view. In the former case, the axioms have
an intended interpretation (or wanted interpretation), and this model is in principle
unique (see remark 5.19); for example, arithmetic, Euclidean geometry, set theory.

When the syntactic point of view is chosen, we search for those interpretations
that satisfy some formulas. In this case, the number of models may be important.
Examples: group theory, non-Euclidean geometry.

With the first point of view, the search for an axiomatization is similar to modeling
in natural science (see Chapter 5.2).

Of course, both point of views can coexist.

In experimental science, researchers have also defined what can be considered as
a proof of a scientific theory, which must include (globally) the observation of some
facts, the proposal of hypotheses, and a verification (or falsification). See also sections
8.3 and 8.4.

The problems that arise with the notion of a proof in experimental science are
extremely difficult (in particular, from an epistemological point of view). �

DEFINITION 3.9.– (formal system). A formal system or formal theory or axiomatico-
deductive system S is a triplet:

Propositional Logic 75

S =< L,R,A >

where:

– L is a set of wff.

L is a formal language on a given vocabulary (assumed to be finite), and it can
always be decided in a mechanical way whether a sequence of symbols is a word in
the language (i.e. a wff) or not.

– R = {RIk | k ≥ 1} is a finite set of inference rules, i.e. relations in
Ln (n ≥ 2).

They are generally denoted as follows:

RIk :
A1, . . . ,An−1

An

The Ai’s (1 ≤ i ≤ n − 1) are called the premises, An the conclusion or direct
consequence of Ai (1 ≤ i ≤ n− 1).

It is possible to mechanically decide whether a wff is a direct consequence of
other wffs.

We may accept inference rules without premises, i.e. relations in Ln (n ≥ 1). In
this case, the axioms are also inference rules.

The axioms and inference rules are also called transformation rules.

– A ⊂ L are the axioms;

– the pair S =< L,R > is a deductive system or proof system or calculus;

– the pair S =< L,A > is an axiomatic system or axiomatic structure or
axiomatization.

The latter is the most frequently used in mathematics, and L is usually not
formally specified (a human is supposed to be able to recognize the wffs). There is no
restriction on the inference rules that we are allowed to use. These are called informal
axiomatic theories and they enable us to obtain informal proofs. In fact, it is possible
to prove theorems in group theory or set theory, etc. without having ever studied first-
order logic. These proofs can be considered as correct but informal (considering that
these kinds of proofs are particularly important in constructive mathematics, see, for
example, remark 5.29).

Nevertheless, the importance of formal (and unquestionable) proofs cannot be
overstated, as they can be verified by a computer program: a proof assistant (logical
frameworks).

76 Logic for Computer Science and Artificial Intelligence

REMARK 3.16.– A formal system is only concerned with syntax. With this syntax
several meanings or interpretations can be associated. This is evidence of the
importance of form in logic. �

REMARK 3.17.– The principle of non-contradiction and the law of excluded middle
(see section 2.2) are not inference rules. They are not properties that hold good for all
considered wff. �

EXAMPLE 3.8.– (arithmetic, Peano’s axioms). The set of natural numbers (N) has
the following properties:

1) 0 ∈ N

2) if n ∈ N then s(n) ∈ N, % for all n

3) 0 �= s(n), % for all n

4) if s(n) = s(m) then n = m, % for all n, m

induction axiom (see example 9.28):

5) let P denote a property on numbers.

if P(0) and (if P(n) then P(s(n))) then P(x) for x ∈ N, % for all P

Sometimes the induction axiom is stated as follows:

5′) if S ⊆ N and 0 ∈ S and (if n ∈ S then s(n) ∈ S), then S = N, % for all S

(see example 9.28). �

REMARK 3.18.– (on the two statements of the induction axiom). Version 5 is weaker
than version 5′: as a property can be specified as a finite sequence of words in a
language (defined by a grammar), only a denumerably infinite number of properties
and natural numbers can be specified, but the set of all subsets of N is uncountably
infinite (see, e.g. exercise 3.1).

There, therefore, exist theorems on natural numbers that cannot be proved using
form 5 of the induction axiom. �

EXERCISE 3.22.– Can you give any reason why inference rules are defined as
relations rather than as functions? �

DEFINITION 3.10.– (provable formula). The set of provable formulas in a formal
system is the smallest set such that:

– if A is an axiom, then A is provable;

– if A is provable and B is a direct consequence of A, then B is provable;

Propositional Logic 77

– if A and B are provable and C is a direct consequence of A and B, then C is
provable.

The following definition formalizes the same notion, through those well-known
proofs and theorems.

Etymology:

theorem (16th Century) −→ theatre −→ theôrema: object of contemplation,
of study (what we see, in a show)

A curiosity: empirists (school of medicine, 2nd Century) used to define theorems
as the knowledge of a thing that has been witnessed a number of times, together with
the faculty of distinguishing the opposite event.

In the following definition, if the lines beginning with (�) are included
(respectively, excluded) and those beginning with (�) are excluded (respectively,
included), we obtain the definition of a proof (respectively, deduction).

DEFINITION 3.11.– (proof, deduction). Consider:

S : a formal system;

Ai, C : wffs (of S).

(�) Γ : set of wffs (of S);

A (�) proof of C

(�) deduction of C from Γ

in S, is a finite sequence

A1, A2, . . . , An of wffs such that:

1) C = An

2) for 1 ≤ i ≤ n

either:

a) Ai is an axiom

(�) or Ai ∈ Γ

78 Logic for Computer Science and Artificial Intelligence

or:

b) Ai is a direct consequence by an inference rule from Ai1 , . . . , Aik

ij < i (1 ≤ j ≤ k)

(�) C is called a theorem and it is denoted by

(�) �S C or, if there is no ambiguity, by � C

(�) Γ : set of hypotheses or of premises of the deduction

(�) Γ �S C

(�) C is a consequence of Γ.

The deduction meta-theorem shall relate these two notions.

REMARK 3.19.– (formal system as an algorithm). Note that a formal system S can
be considered as an algorithm whose output is the set of theorems of S. �

3.4. A formal system for PL (PC)

We will define a formal system that will be denoted by S1.

1) L

We shall restrict ourselves to wffs that only contain the connectives ⇒ and ¬.
There is no loss of generality, as the other connectives can be replaced using the three
following definitions (A, B, and C denote wffs):

D1) A ∧B
def
: ¬(A ⇒ ¬B)

D2) A ∨B
def
: ¬A ⇒ B

D3) A⇔ B
def
: (A⇒ B) ∧ (B ⇒ A)

2) R

The only inference rule is modus ponens or law of detachment (denoted by MP by
what follows):

MP :
A A ⇒ B

B

Propositional Logic 79

(As A and B are (meta)variables that denote arbitrary wffs, MP should be called
a schema of inference rules.)

3) A

The set made of the three following axiom schemas. A, B, and C denote wffs,
so that each of the axiom schemas below actually denotes (denumerably) infinitely
many wffs.

A1) A⇒ (B ⇒ A)

A2) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B)⇒ (A⇒ C))

A3) (¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B) �

Given the definition of a theorem, it is clear that the set of theorems of S1 is
denumerably infinite.

REMARK 3.20.– (substitution rule). Some authors explicitly add a substitution rule
that allows to replace the metavariables by wffs. �

DIGRESSION 3.3.– (variables).14 The notion of a variable used here is different from
the one used in mathematics and in physics, where a variable simply denotes a quantity
(like space, time, etc.) that varies.

Here, variables are symbols that can be replaced by expressions from different
syntactical categories.

Logic historians agree on the fact that variables were introduced by Aristotle.
Since then they have been used by logicians and mathematicians.

Aristotle would use letters as signs that denote “holes”, that can be filled by
arbitrary terms, with the constraint that “holes” denoted by the same letter must be
replaced by the same term. This technique was of course a major breakthrough in
logic, and it is indispensable for the specification of rules such as syllogisms. �

REMARK 3.21.– In the following pages (respectively, in the solutions to the
exercises), A1, A2, A3 (respectively, A1, A2, A3) denote the axiom schemas
of S1. �

EXAMPLE 3.9.– We show that:

�S1 A⇒ A

14 See also digressions 5.2 and 9.1.

80 Logic for Computer Science and Artificial Intelligence

Here is a proof:

1) (A⇒ ((A ⇒ A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A⇒ A))

in (A2) B ← A⇒ A ; C ← A

2) A⇒ ((A ⇒ A) ⇒ A)

in (A1) B ← A⇒ A

3) (A⇒ (A⇒ A)) ⇒ (A⇒ A)

1, 2, MP

4) A⇒ (A⇒ A)

in (A1) B ← A

5) A⇒ A

3, 4, MP

Here is another one:

1) (A⇒ (B ⇒ A)⇒ ((A ⇒ B)⇒ (A ⇒ A))

in (A2) C ← A

2) (A⇒ B)⇒ (A⇒ A)

(A1), 1 and MP

3) (A⇒ (B ⇒ A)) ⇒ (A ⇒ A)

in (2) B ← B ⇒ A

4)A⇒ A

(A1), 3 and MP �

REMARK 3.22.– (A3) was not used in any of these proofs. �

DIGRESSION 3.4.– The linear representation of proofs, which is the one we shall
adopt, is not fundamental. The proofs of example 3.9 could have been represented in
a tree-like manner (for the first one).

Propositional Logic 81

For the sake of readability, we only give the numbers that identify the formulas.

�

A few thoughts: does it seem possible to write an algorithm that verifies that a
given sequence of wffs is a proof in a formal system?

In the case of a positive answer, what are the main problems that arise?

What information should be available in the proof trace to be able to test it?

If instead of an algorithm that verifies proofs, we are interested in an algorithm
that finds them, is the problem fundamentally different? Why is that?

Recall the theorems that you have proved. Most of the time, we first “find” the
theorem, and “prove” it afterward. This intuition, which allows us not to carry out
any enumeration (and to go beyond an enumeration) can be qualified as the “soul” of
mathematics.

META-LEMMA 3.1.– Let Γ denote a set of wffs of S1.

If �S1 A then Γ �S1 A.

PROOF.– trivial, by application of the definition of a deduction. �

META-THEOREM 3.4 (deduction theorem).– Consider:

Γ: set of wffs.

82 Logic for Computer Science and Artificial Intelligence

A, B: wff of S1.

(Γ, A means Γ ∪ {A})

Γ, A �S1 B iff Γ �S1 A⇒ B

in particular (if Γ = ∅)

A �S1 B iff �S1 A⇒ B

PROOF.– (only if):

Let B1, B2, . . . , Bn be a deduction starting from Γ ∪ {A} (Bn = B)

Proof by induction on i that Γ �S1 A⇒ Bi (1 ≤ i ≤ n)

1) i = 1

by definition of a deduction:

i) B1 ∈ Γ

ii) B1 axiom of S1

iii) B1 is A (B1 ∈ (Γ ∪ {A}) and B1 /∈ Γ (case i))

The three cases are proved as follows:

(A1) A⇒ (B ⇒ A)

A← B1

B ← A

B1 ⇒ (A⇒ B1)

(ii) and MP: �S1 A⇒ B1, hence (meta-lemma above) Γ �S1 A ⇒ B1

(i) and MP: Γ �S1 A⇒ B1

(iii) � A⇒ A (example 3.9), thus �S1 A⇒ B1, and (meta-lemma above):

Γ �S1 A⇒ B1

Propositional Logic 83

2) Induction

Suppose Γ �S1 A⇒ Bk k < i

by definition of a deduction,

i) Bi is an axiom of S1

ii) Bi ∈ Γ

iii) Bi is A

(ii) and (iii): Bi ∈ (Γ ∪ {A})

iv) Bi can be deduced from Bj , Bk (1 ≤ j < i) by MP, hence Bk is of the form
Bj ⇒ Bi

(i), (ii), (iii) as in case (1)

by the induction hypothesis:

iv)

(∗) Γ �S1 A⇒ Bj

(∗∗) Γ �S1 A⇒ (Bj ⇒ Bi)

(A2) (A⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

B ← Bj ; C ← Bi

by applying MP:

Γ �S1 (A ⇒ Bj)⇒ (A⇒ Bi) (∗∗)

Γ �S1 (A ⇒ Bi) (∗)

with i = n we obtain the desired proof.

(if): see exercise 3.23. �

REMARK 3.23.– This meta-theorem does not hold for all logics. �

EXERCISE 3.23.– Prove the if part of the deduction theorem. �

84 Logic for Computer Science and Artificial Intelligence

EXAMPLE 3.10.– We want to prove that (A ⇒ B), (B ⇒ C) �S1 (A⇒ C)

(A⇒ B), (B ⇒ C), A �S1 C (exercise 3.25)

by applying the deduction theorem

(A⇒ B), (B ⇒ C) �S1 (A⇒ C) �
REMARK 3.24.–

1) Only axiom schemas (A1) and (A2) were needed to prove the deduction
theorem.

2) The proof technique that was used (and which is a general technique) to prove
that a formal system satisfies a property goes as follows:

- prove the property for the axiom schemas;
- prove that the property is preserved by the inference rules;
- use induction on the length of the proof (deduction).

The usage of the deduction theorem in a proof is called the method of the additional
hypothesis.

This method is extremely powerful, to convince oneself, it suffices to show that
�S1 A⇒ A using this method, and compare the proof with the one given in example
3.9: A �S1 A by definition of a deduction. We immediately obtain �S1 A ⇒ A by
the deduction theorem. �

3.4.1. Some properties of formal systems

The syntactic notions corresponding to formal systems provide too much liberty
in their conception. It is therefore necessary to separate those notions that are useful
from those that are not. This is the role of the following definition.

DEFINITION 3.12.– Consider a formal system S =< L,R,A >.

– An inference rule is sound iff the conclusion is a logical consequence of the
premises.

– S is sound iff every theorem is a valid wff.

– S is complete (or adequate) iff every valid wff is a theorem.

– S is consistent (or coherent) or more precisely consistent for negation iff there
is no wff A ∈ L such that �S A and �S ¬A.

– S is absolutely consistent iff the set τ ⊆ L of the theorems of S is such that
τ �= L (i.e. L contains at least one wff that is not a theorem).

– S is decidable iff there exists a mechanical procedure (algorithm) that can
answer for all wffs A ∈ L whether �S A. Such an algorithm is called a decision
procedure.

Propositional Logic 85

REMARK 3.25.– (ω-consistency). Another notion of consistency should be
mentioned here.

S is ω-consistent iff for all variables x and for all formulasF , it is not the case that:

�S F (0), �S F (1), �S F (2), . . . and

�S ¬∀xF (x) �

REMARK 3.26.– The notions of soundness and completeness have a natural
application in computer science. Given the specification of a problem to be solved,
a program meant to provide the solution(s) to the problem is sound if it computes
correct solutions (i.e. if it computes what is specified). It is complete if it computes
all solutions (i.e. if it computes all that is specified). �

EXERCISE 3.24.– Prove that S1 is:

a) sound;

b) consistent;

c) decidable (we may assume that the completeness of S1 has already been
proved). �

EXERCISE 3.25.– Construct the proofs (or deductions) of the following formulas:

a) � (¬A ⇒ A)⇒ A

b) A ⇒ (B ⇒ C), B � A ⇒ C

c) A ⇒ B, B ⇒ C, A � C

d) ¬ B ⇒ ¬ A, A � B

e) A ⇒ B, B ⇒ C � A ⇒ C

f) � ¬¬A ⇒ A

g) � A⇒ ¬¬A
h) � (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

i) � (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C)) �

REMARK 3.27.– Note that the hypotheses of (b), (c), (d), and (e) have been
distinguished typographically and correspond to names that are given to particular
formulas (and not to meta-variables that denote arbitrary formulas). A, B, C each
denote a formula.

The reason for this is that, for example, in (b), if instead of B we had B as a
hypothesis, then we could directly prove the formula using B ← A ⇒ C.

Nevertheless, the same deductions can also be carried out assuming that these
are meta-variables, and thus the additional hypotheses and conclusions written
in italics. �

86 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.26.– Prove that in S1, consistency with respect to (w.r.t.) negation and
absolute consistency coincide, i.e. S1 is consistent for negation iff S1 is absolutely
consistent. �

3.4.2. Another formal system for PL (PC)

We shall name this system S2.

L: the language of PL using the set of connectives {¬,∧,∨,⇒,⇔}

R: MP

A: the four axiom schemas below:

A1) (P ∨ P)⇒ P

A2) Q⇒ (P ∨Q)

A3) (P ∨Q)⇒ (Q ∨ P)

A4) (Q⇒ R)⇒ ((P ∨Q)⇒ (P ∨R))

The following definitions can be used:

D1) P ⇒ Q
def
: ¬P ∨Q

D2) P ∧Q
def
: ¬(¬P ∨ ¬Q)

D3) P ⇔ Q
def
: (P ⇒ Q) ∧ (Q⇒ P)

EXERCISE 3.27.– Give the proofs in S2 of:

a) � Q ⇒ (P ⇒ Q)

b) � (P ⇒ ¬P)⇒ ¬P
c) � (P ⇒ ¬Q)⇒ (Q ⇒¬P)

d) � (Q ⇒ R)⇒ ((P ⇒ Q)⇒ (P ⇒ R))

e) � P ⇒ (P ∨ P)

f) � P ⇒ P

g) � P ∨ ¬P
h) � P ⇒ ¬¬P �

3.4.3. Another formal system

Another formal system for PL, which we shall name S3 is different from S1 only
because of the axiom schemas.

The set of axiom schemas of S3 (which replaces the set A1, A2, A3) is:

Propositional Logic 87

B1) ¬A ⇒ (A ⇒ B)

B2) B ⇒ (A ⇒ B)

B3) (A ⇒ B) ⇒ ((¬A ⇒ B) ⇒ B)

B4) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

with A, B, C denoting wffs (as in S1).

EXERCISE 3.28.–

a) Can the deduction (meta)theorem be used in S3?

b) Give a proof of:

�S3 A ⇒ ¬¬A. �

EXERCISE 3.29.– The following questions correspond to notions that have already
been manipulated. The goal is to find formal definitions of these notions, and to study
what they are related to.

a) How would you define the equivalence between two formal systems?

b) How would you define the independence of a set of axiom schemas?

c) Using the definition given in (b), give a set of axiom schemas that is not
independent for PL.

d) How would you define the independence of a set of inference rules?

e) What would be the intuition behind the proof of the equivalence of two formal
systems, and the independence of two sets of axioms?

Do these techniques seem to be always applicable? �

DIGRESSION 3.5.– (natural deduction systems). Formal systems, as they have been
described, are known as Hilbert systems (or Hilbertian) or Frege systems (or Fregian).

There are some among the axioms and the inference rules that can be applied in
all domains of mathematics, they are called logical axioms and inference rules, and
others that depend on the domain under consideration, which are called proper axioms
and inference rules.

Example of a logical axiom: the law of excluded middle (classical logic).

Example of a logical inference rule: modus ponens.

Example of a proper axiom: commutativity, associativity.

Example of a proper inference rule:

P (0) if P (n) then P (n+ 1)

∀nP (n)

88 Logic for Computer Science and Artificial Intelligence

Another large family of formal systems is the family of natural deduction systems.

A natural deduction system can be viewed as a set of rules (corresponding to
“natural” rules such as those that are used in informal proofs in mathematics) that
determine the concept of deduction for a language or a set of languages. The language
and the system make up a calculus.

Although there are different natural deduction systems, this name is considered to
be a synonym of Gentzen system or sequent calculus. Sequent calculus can be viewed
as a meta-calculus for the deduction relation, in the corresponding natural deduction
systems.

In these systems, to prove that B follows from A, or that A implies B, or that
A → B, we assume A and obtain B (direct proof), or we assume A and ¬B, deduce
¬A, and from this contradiction, conclude B (classical mathematics).

Natural deduction systems (or natural deduction calculi, we could also say
deductive systems of natural deduction, see definition 3.9) do not contain any logical
axiom, and arbitrary formulas can be introduced as premises.

The idea of getting rid of axioms and using conditional deductions instead
originated with Gentzen and Jaśkowski. Some authors believe the idea actually
originated with Łukasiewicz. These systems are meant to mirror the form of intuitive
reasoning and to keep the structure of these proofs.

It can be shown that natural deduction systems are equivalent from a deductive
point of view to axiomatic formulations, i.e. if from hypotheses A1, A2, . . . , An

we can derive C in a natural deduction system, then A1, A2, . . . , An �S C in an
axiomatic system S, and conversely, if �S C in the axiomatic system S, then C can
be derived (without any hypothesis) in a natural deduction system.

In these systems, only inference rules are given, and to prove that Γ � A → B,
we prove that Γ, A � B (see meta-theorem 3.4), which is frequently written in a
tree-like way:

The action of putting [] around A after having written A → B is called
cancellation and is allowed by the introduction rule:

Propositional Logic 89

of which modus ponens is the opposite rule, which corresponds to (→)-elimination:

A A → B

B

We have given a foretaste of these rules in the solution to exercise 3.13.

Proofs in these systems are represented as trees, with the root at the bottom (as
it is the case for real-life trees �). The formula that labels the root is the logical
consequence of the formulas that are not cancelled (or open premises), that label the
leaves of the tree above the root.

The interesting thing with proofs in these systems is that the logical part (i.e. the
axioms and inference rules), that can be cumbersome and uninteresting, is no longer
considered. In this sense, they are closer to the usual practice of mathematics.

The following very simple example shows a reduction to eliminate indirections:

Consider the tree representing the proof of B:

Π1 and Π2 denote derivations.

In the right branch, A was introduced and was eliminated afterward (“detour”).

Thus, the proof above can be reduced to (replaced by) the following.

90 Logic for Computer Science and Artificial Intelligence

This digression gives a simple idea of the topics that are treated in a very important
domain of logic: proof theory, in which proofs are the object of mathematical study.
Researchers consider the normal forms of proofs, their identities, their generalizations,
their complexity, etc.

This discipline was introduced by D. Hilbert, who at the beginning of the 20th
Century proposed a project, the aim of which was to prove the consistency of
arithmetic. For this purpose, Hilbert believed that it was necessary to study in detail
formal proofs in this theory, hence the name proof theory.

EXAMPLE 3.11.– (sequent calculus: Gentzen’s LK system). These calculi use the
notion of sequent15 (which has already been mentioned). The notion of sequents was
reused in logic programming (see section 6.2).

Capital Greek letters Γ,Δ, ... denote finite sequences (that may be empty) of wffs,
and A, B, C,... will denote wffs.

Γ → Δ is a sequent.

A1, A2, ... , Am → B1, B2, ... , Bn (m, n ≥ 0) means

if A1 ∧ A2 ∧ ... ∧ Am then B1 ∨ B2 ∨ ... ∨ Bn

A1, A2, ... , Am → means ¬(A1 ∧ A2 ∧ ... ∧ Am)

→ B1, B2, ... , Bn means B1 ∨ B2 ∨ ... ∨ Bn

Inference rules

1) Structural rules

– Weakening

left: Γ→Δ
D,Γ→Δ right: Γ→Δ

Γ→Δ,D

– Contraction

left: D,D,Γ→Δ
D,Γ→Δ right: Γ→Δ,D,D

Γ→Δ,D

– Exchange

left: Γ,C,D,Π→Δ
Γ,D,C,Π→Δ right: Γ→Δ,C,D,Λ

Γ→Δ,D,C,Λ

– Cut
Γ→Δ,D D,Π→Λ

Γ,Π→Δ,Λ % corresponds to the resolution rule (see definition 3.15)

15 From the Latin word meaning “thing that follows”.

Propositional Logic 91

2) Logical rules

¬ left: Γ→Δ,D
¬D,Γ→Δ ¬ right: D,Γ→Δ

Γ→Δ,¬D

∧ left: C,Γ→Δ
C∧D,Γ→Δ and D,Γ→Δ

C∧D,Γ→Δ ∧ right: Γ→Δ,C Γ→Δ,D
Γ→Δ,C∧D

∨ left: C,Γ→Δ D,Γ→Δ
C∨D,Γ→Δ ∨ right: Γ→Δ,C

Γ→Δ,C∨D and
Γ→Δ,D

Γ→Δ,C∨D

A sequent of the form A → A is called an initial sequent or axiom.

A proof P in LK is a tree (root at the bottom) of sequents such that:

– the sequents labeling the leaves are initial sequences;

– every sequent in P , except for the one at the root, is a sequent that is a premise
of an inference whose conclusion is also in P .

Proof of the law of excluded middle in LK:

A → A

¬ right

→ A,¬A

∨ right

→ A, A ∨ ¬A

exchange right

→ A ∨ ¬A, A

∨ right

→ A ∨ ¬A, A ∨ ¬A

contraction right

→ A ∨ ¬A

�

92 Logic for Computer Science and Artificial Intelligence

REMARK 3.28.– (limits: Gödel’s incompleteness theorems). Together with their
elegance, formal systems are quite reassuring. As they are independent from any
particular interpretation, we can imagine, thinking of their formulas and theorems,
that “nothing gets past them”. This characteristic is mirrored in the formalist school
of thought, which insisted on the purely formal side of mathematics (i.e. an activity
entirely controlled by the rules of the game), and of which the great mathematician
D. Hilbert was one of the principal advocates.

In what is called “Hilbert’s program”, Hilbert, who wanted to obtain sound
foundations for mathematics, stated the problem of finding a formal system (including
arithmetic and mathematical analysis) capable of discovering all mathematical truths
and only those, and not containing any contradiction (i.e. a consistent formal system).
Hilbert wanted to prove the consistency of mathematics using mathematical finitary16

methods. Such a result would talk about proofs, it would be a result of meta-
mathematics (sometimes we talk about proof theory or meta-mathematics).

The hopes of Hilbert’s program were crushed by both of Gödel’s incompleteness
theorems. K. Gödel (1906–1978), who is considered as one of the greatest logicians
of all times, showed the distinction between what is true and what is provable.

In his first incompleteness theorem (see section 5.9), he showed that given a theory
T containing arithmetic and assumed to be consistent, in which there are either
finitely many axioms and inference rules or they can be specified recursively, one
can construct formulas G (in the language of T) that are undecidable, i.e. �T G and
�T ¬G (sometimes this theorem is stated by saying that there exist in T true formulas
that are unprovable).

The formula G is, for example, “I am not provable”. If �T G and T is consistent
then G would be true, but G precisely states that it is unprovable. Contradiction.
Hence, G is unprovable.

Arithmetic enables us to encode formulas and proofs as numbers and to state their
properties as properties of integers.

In the system T , it is possible to encode a formula ConT whose interpretation
is “T is consistent”. Gödel’s second incompleteness theorem states that �T ConT ,
which means that it is impossible to prove the consistency of T in T . �

3.5. The method of Davis and Putnam

The importance of this method and that of the SAT problem are closely related.

16 Although Hilbert did not specify what he meant by “finitist”, all finitary methods can
probably be formulated in the ZFC formalization (ZF + AC) in set theory.

Propositional Logic 93

This method is applied to sets of clauses S, or, equivalently, to cnf formulas (see
definition 3.8 for the terminology).

It permits us to decide whether S is satisfiable or not, and if it is satisfiable, to
produce models of S.

The underlying idea is very simple. If we want to detect whether a set of clauses
admits models, then we consider the literals one by one. A literal L can be evaluated
either to T or to F. If L is evaluated to T, then any clause containing L can be
ignored, and if L is evaluated to F, then L can be erased from any clause it occurs in.
Of course, the same rules apply to Lc.

The method uses the following rules:

R-0 Remove all clauses that contain tautologies (i.e. clauses of the form L ∨
¬L ∨ α).

R-1 a) If S contains two complementary unit clauses, then S is unsatisfiable.

b) (unit clause rule) If (a) does not apply and if S contains a unit clause L,
then remove all clauses containing L and all occurrences of Lc from the other clauses.

R-2 (pure literal rule) If L occurs in S, but Lc does not, all clauses containing L
can be removed.

R-3 (splitting rule) If S contains non-unit clauses in which L and Lc occur, then
replace S by S1 and S2.

S1 is the set of clauses in which all occurrences of L have been removed, as well
as all the clauses containing Lc.

S2 is the set of clauses in which all occurrences of Lc have been removed, as well
as all the clauses containing L.

R-4 (subsumption rule) If S contains a clause of the form L∨α, remove all clauses
of the form L ∨ α ∨ β (α and β are disjunctions of literals).

REMARK 3.29.– We shall also apply R-2 and R-4 when considering the resolution
rule (see section 3.7). �

The algorithm DP applies rules R-1 to R-4 and enables us to detect the satisfiability
(or unsatisfiability) of a set of clauses of PL. It is simple to verify that rule R-0 can be
applied at a preprocessing phase, as the other rules cannot generate tautologies (they
divide or eliminate clauses).

EXAMPLE 3.12.– Consider the set of clauses

S = {P ∨Q,¬Q ∨ S,¬S ∨ P,¬P ∨R,¬R ∨ ¬P ∨ T,¬T ∨ ¬R}

94 Logic for Computer Science and Artificial Intelligence

Figure 3.2. Davis and Putnam algorithm (DP)

that corresponds to the following cnf wff:

(P ∨Q) ∧ (¬Q ∨ S) ∧ (¬S ∨ P) ∧ (¬P ∨R) ∧ (¬R ∨ ¬P ∨ T) ∧ (¬T ∨ ¬R)

that shall be represented as a matrix. The deduction proving that S is contradictory is
as follows:

P ∨Q
¬Q ∨ S
¬S ∨P
¬P ∨ R

¬R ∨ ¬P ∨ T
¬T ∨ ¬R

↙ ↘ (R− 3)
Q ¬Q ∨ S

¬Q ∨ S R
¬S ¬R ∨ T

¬T ∨ ¬R ¬T ∨ ¬R
↓ (R− 2) ↓ (R− 2)
Q R

¬Q ∨ S ¬R ∨ T
¬S ¬T ∨ ¬R
↓ (R− 1b) ↓ (R− 1b)
S T
¬S ¬T
× (R− 1a) × (R− 1a) �

Propositional Logic 95

EXERCISE 3.30.– We consider the following deductive system (i.e. with no logical
axioms: A = ∅, see definition 3.9):

SDP =< L,R >

where:

L: sets of clauses.

R = { R-0, R-1, R-2, R-3, R-4 }

Prove that the Davis–Putnam method is sound and complete (see definition 3.12).

Here we can translate:

sound: if S �SDP (S unsat) then S unsat;

% which means “the method can be trusted”

complete: if S unsat then S �SDP (S unsat)

% which means “we can detect all unsatisfiable sets of clauses with this
method”. �

3.5.1. The Davis–Putnam method and the SAT problem

In the literature, this method is often presented as a means to solve the SAT
problem.

Inspiring from the soundness and completeness proofs (see solution to exercise
3.30), it is simple to obtain the algorithm that constructs the models of satisfiable sets
of clauses.

Example 3.13 clearly shows the stages of the algorithm for model construction.

The two following properties, whose justification is trivial, are very useful to
design the algorithm (the first one is not used in the example).

Let S denote the set of clauses under consideration, M is a set specifying the
potential model that is currently being built.

96 Logic for Computer Science and Artificial Intelligence

– If C ∈ S and C is a unit clause (i.e. C contains only one literal L), then
necessarily L ∈ M.

– L ∈ C ∈ S and L is pure then M ← M ∪ {L} (at the start M ← {L}) is a
model of S.

REMARK 3.30.– If a clause becomes a unit clause and/or a literal becomes pure by
application of the rules and Lc ∈ M, then the model is not viable. �

EXAMPLE 3.13.– Determine whether the set of clauses E below is satisfiable or not.
If it is, give models of this set.

We have therefore constructed four models for E :

{¬P,Q,¬R,S}, {¬P,Q,¬R,¬S}, {P,Q,¬R,S}, {P,Q,¬R,¬S}.

Of course, we could have stopped searching after obtaining the first model (for
example {¬P,Q,¬R,S}). �

EXERCISE 3.31.– For the set of clauses S of example 3.13, is it possible to find other
models by applying the method of Davis and Putnam with another strategy? �

3.6. Semantic trees in PL

We start by noticing that semantic trees method �= semantic tableaux methods.

Propositional Logic 97

– The method of semantic tableaux is used to enumerate models (partial models in
first-order logic) of a set of wffs.

– The method of semantic trees is used to enumerate the interpretations (partial
interpretations in first-order logic) of a set of clauses.

DEFINITION 3.13.– Let S be a set of clauses, the base of S, denoted by B(S) is
defined as follows:

B(S) = {L | L positive and [(L ∈ C ∈ S) or (Lc ∈ C ∈ S)]}

Given an enumeration of the elements in B(S):

B(S) = {L1, L2, . . . , Ln}

(or B(S) = {L1, L2, . . . , Ln, . . .} if S is infinite).

– A semantic tree for S is a binary tree with branches that are labelled as follows:

fl(n
j
i) = Li+1 fr(n

j
i) = ¬Li+1

(Li ∈ B(S); 0 ≤ i ≤ n− 1)

fl: left son fr: right son

(i ≥ 0): depth of the node; (1 ≤ j ≤ 2i+1): position from the left-hand
side to the right-hand side.

It is clear from the definition that:
- a branch cannot contain L ∈ C ∈ S and Lc ∈ D ∈ S;
- the set of branches corresponds to the set of interpretations of S.

– The node ni (for the least value of i) whose branch (interpretation) going
through ni is a counter model of a clause in S is called a failure node (denoted
by ×). A branch containing a failure node is a closed branch. A branch that is not
closed is open and corresponds to a model of S (when S is infinite, an open branch is
necessarily infinite). �

– A semantic tree is closed iff all its branches are closed (i.e. all its leaves are
failure nodes). Otherwise, it is open.

– A node is an inference node iff its immediate descendants are failure nodes.

THEOREM 3.2.– S: finite set of clauses.

S is unsatisfied iff there exists a closed semantic tree T for S.

PROOF.– If,

Every closed branch is a counter model of a clause in S, and therefore, of S.
As the semantic tree enumerates all the interpretations and T is closed, S must be
unsatisfiable.

98 Logic for Computer Science and Artificial Intelligence

Only if,

S is unsatisfiable, hence no interpretation can be a model of S; thus, there cannot
be any open branch B0 in T . Otherwise, B0 would not falsify any clause in S and
would therefore be a model of S: contradiction. T is necessarily closed. �

EXAMPLE 3.14.– Consider the set of clauses:

S = {C1, C2, C3, C4}

where:

C1: P ∨Q ∨ ¬R
C2: ¬P ∨Q

C3: P ∨ ¬Q ∨R

C4: ¬Q ∨ ¬R
B(S) = {P,Q,R}

We have, therefore, found two models among the eight possible interpretations:

{Q,¬R,P} and {¬Q,¬R,¬P}

and six counter models:

{Q,R, P}, {Q,R,¬P}, {Q,¬R,¬P}, {¬Q,R, P},
{¬Q,R,¬P}, and {¬Q,¬R,P}.

�

Propositional Logic 99

EXERCISE 3.32.–

a) Give a semantic tree (there are many of them, depending of the order chosen on
B(S)) for the set of clauses:

S = {C1, C2, C3, C4, C5, C6}

with:

C1: P ∨Q

C2: ¬Q ∨ S

C3: P ∨ ¬S
C4: ¬P ∨R

C5: ¬P ∨ ¬R ∨ T

C6: ¬R ∨ ¬T

b) Mark out all the inference nodes. What meaning do these nodes have?

c) Give a semantic tableaux for S. �

EXERCISE 3.33.– Give a semantic tree for the set of clauses below:

C1: ¬P ∨ ¬Q ∨R

C2: P ∨R

C3: Q ∨R

C4: ¬R �

REMARK 3.31.– In the proof of the following theorem, we shall extend the definition
of semantic trees to arbitrary wffs of PL without loss of generality.

The definition of a tree is the same. The only difference is that there is no uniform
way to close a branch, as it was the case for sets of clauses, but we must take into
account the connectives that occur in the formula that is evaluated in the partial
interpretation under consideration.

Another possibility is to consider an equivalent set of clauses for each wff. �

THEOREM 3.3 (compactness of PL).– S a set of wffs of PL.

If every finite subset of S is satisfiable then S is satisfiable.

100 Logic for Computer Science and Artificial Intelligence

PROOF.–

– If S is finite then the proof is trivial: S is a finite subset of S and is satisfiable
by hypothesis.

– If S is infinite,
i) B(S) < ∞, necessarily, there are infinitely many formulas that contain the

same propositional symbols, they only differ by the number of occurrences of these
symbols and, of course, by the number of connectives.

The corresponding semantic tree is therefore necessarily finite, and it is either
closed (same reasoning as in (a) below), or it is open, and any open branch is a model
of S.

ii) B(S) = {P1, P2, . . . Pn, . . .}

A semantic tree for this case is:

Warning: this figure does not entail that the set of interpretations for a
denumerably infinite number of base symbols is denumerably infinite (see
exercise 3.1).

There are two cases to consider.

a) All the branches are closed (at a finite depth); in this case (same reasoning as for
finite semantic trees) S is unsatisfiable.

If n ∈ N is the maximal depth of the failure nodes, then the finite subset of S

S′ : {Fi |
⋃

i Propset(Fi) = {P1, P2, . . . , Pn}} with card(S′) ≤ 2n (i.e. S′ is
finite) is unsatisfiable.

Propset(Fi) denotes (as usual) the set of base symbols in Fi.

We have proved that if S is unsatisfiable, then there exists a finite subset of S that
is also unsatisfiable, i.e. the contrapositive.

b) There exists at least an open branch. It is necessarily infinite (there are infinitely
many formulas) and it represents a model of S (as it does not falsify any formula
in S). �

Propositional Logic 101

REMARK 3.32.– This theorem is essential for the definition of a semi-decision
procedure for first-order logic (see theorem 5.7).

To get an idea, consider the following expression:

1) for all x ∈ N, x ≥ 0

and the infinite set of propositions:

2) {0 ≥ 0, 1 ≥ 0, 2 ≥ 0, . . .}

(1) and (2) have the same meaning.

The compactness theorem does not apply for all logics. To convince, it suffices,
for example, to consider the following set:

S: {x ∈ N, x �= 1, x �= 2, x �= 3, ...}

Every finite subset of S is satisfiable, but S is unsatisfiable. �

3.7. The resolution method in PL

This method is one of the most widely used in practice (especially its version for
first-order logic). It uses a unique inference rule, which makes it particularly easy to
implement, but it needs a normal form: the clausal form (or cnf) (see definition 3.8)17.
We begin by a remark.

REMARK 3.33.–

– The method requires a set of clauses (cnf) as an input. This is not a limitation
since any wff in PL can be transformed into an equivalent formula in cnf.

– A clause (or a set containing a clause) is, by definition, satisfiable.

– P ∧¬P is not a clause, although this contradiction is represented by the so-called
empty clause (denoted by �). P is a unit clause and ¬P is another one.

– We indifferently consider a wff in clausal form as a wff in cnf or as a set of
clauses, and clauses as sets of literals. �

DEFINITION 3.14.– Let S = {C1, . . . , Cn} denote a set of clauses. A set of literals
M is a model of S iff:

if L ∈ M then Lc /∈ M and:

Ck

⋂
M �= ∅ (1 ≤ k ≤ n)

17 There also exists a non-clausal resolution.

102 Logic for Computer Science and Artificial Intelligence

(This definition can be expressed in English by saying: to evaluate a set of
clauses to T, all its clauses must be evaluated to T. A literal cannot be evaluated
to T and F simultaneously. To evaluate a clause to T, at least one of its literals must
be evaluated to T).

As a consequence, if all the literals in a clause are evaluated to F, then the clause
will be evaluated to F.

DEFINITION 3.15.– Given two clauses containing complementary literals:

C1: L ∨ α (α: disjunction of literals, i.e. a clause (see definition 3.8);

C2: Lc ∨ β (β: disjunction of literals, i.e. a clause (see definition 3.8).

The inference rule, named the resolution rule is defined as follows:

R :
L ∨ α Lc ∨ β

α ∨ β

we will also note it (see remark 3.33):

R(C1, C2) = C or, if in order to underline the complementary literals,

R(C1, C2, L, L
c) = C

where:

C = (C1 \ {L})
⋃
(C2 \ {Lc})

The clause C: α ∨ β is called the resolvent of C1 and C2.

C1 and C2 are the parent clauses

C is a logical consequence of {C1, C2} (of C1 ∧ C2), but C is not equivalent
to C1 ∧ C2 (every model of α (respectively, β) is a model of the resolvent, but not
necessarily of both parent clauses).

In the case in which α and β do not contain any literal:

L ¬L
�

where �, which denotes a contradiction, is called the empty clause.

Propositional Logic 103

We shall use the rule:

Abs :
α ∨ L ∨ β ∨ L ∨ β ∨ γ

α ∨ L ∨ β ∨ γ

(where α, β, and γ are disjunctions of literals). This rule boils down to considering
clauses as sets of literals (see definition 3.8 or equivalently) to using the associativity,
commutativity, and absorbing properties of ∨ (i.e. (α ∨ β) ∨ γ ⇔ α ∨ (β ∨ γ),
L ∨ α ⇔ α ∨ L and L ∨ L ⇔ L, respectively).

REMARK 3.34.– (empty clause �= empty set of clauses). It is very important not to
confuse the empty clause with an empty set of clauses. The former is unsatisfiable
and the latter is satisfiable (the set does not contain anything, it cannot contain a
contradiction).

We can provide a more formal proof. By reductio ad absurdum: if ∅ is
unsatisfiable, then (for example) {A ∨ B} = ∅ ∪ {A ∨ B} would be unsatisfiable,
as it contains an unsatisfiable subset. However, {A ∨ B} is satisfiable (models {A},
{B}, and {A,B}). A contradiction, so ∅ is satisfiable. �

For non-deterministic rules such as resolution, it is useful to define an operator that
permits us to capture all resolvents that can be obtained by applying the resolution rule
in every possible way.

DEFINITION 3.16.– (R operator). Let S denote a (finite) set of clauses:

R(S) = S
⋃

{R(C1, C2) | C1, C2 ∈ S}

R0(S) = S

Rn+1(S) = R(Rn(S)) pour n ≥ 0

R∗(S) =
⋃

n≥0 Rn(S)

REMARK 3.35.– It is clear that for a finite set of clauses S that is satisfiable, there
exists an n such that:

R∗(S) = Rn(S)

(see exercise 3.36). �
REMARK 3.36.– (dual of resolution). The dual18 of the resolution rule, the consensus
rule, existed before and applies to the test of the validity of dnf formulas, and to their
simplification. The disjuncts are also called clauses.

18 The dual of the expression
∨
(x, y, . . . , z) is defined as ¬(∧(¬x,¬y, . . . ,¬z)), where

x, y, . . . , z are literals.

104 Logic for Computer Science and Artificial Intelligence

The consensus rule applies to (conjunctive) clauses assumed to be non-
contradictory, non-tautological, and is defined as follows:

Cons :
L ∧ α Lc ∧ β

α ∧ β

α, β: conjunctive clauses.

The conjunctive clause α ∧ β is called the consensus of L ∧ α ∨ Lc ∧ β.

It is simple to check that every model of α ∧ β is a model of L ∧ α
∨

Lc ∧ β.
Here, the dual of the empty clause denotes L

∨
Lc, and is therefore a tautology. As

the disjunction of two clauses is a logical consequence of their consensus and as the
logical consequence of a tautology can only be a tautology, obtaining the dual of the
empty clause proves the validity of the initial formula. �

DEFINITION 3.17.– (a deductive system for resolution).

SR =< L,R,A >

L: clauses and sets of clauses

R = {R,Abs} % R,Abs from definition 3.15

A = ∅

Clause C is deduced by resolution from the set of clauses S, denoted by:

S �SR C (or S �R C)

iff:

there exists a finite sequence C1, . . . , Ck

and:

Ck = C

Ci+1 = R(Cm, Cn) (0 ≤ i ≤ k − 1)

Cm, Cn ∈ S
⋃

{C1, . . . , Ci}

the sequence C1, . . . , Ck is called a deduction starting from S, and if C = �, it is
called a refutation of S.

Propositional Logic 105

For the resolution method, soundness and completeness (for refutation; see also
definition 3.12) are stated as follows:

soundness: S �R � then S is unsatisfiable (contradictory);

completeness (for refutation, or refutational completeness): if S is unsatisfiable
(contradictory) then S �R �

REMARK 3.37.– The expression completeness for refutation applied to the resolution
method can easily be explained by noticing, for example, that:

A �SR A ∨B

Although A ∨B is obviously a logical consequence of A.

However, by negating A ∨ B, we obtain a set of clauses {A,¬A,B} from which
the clause � is immediately obtained using the resolution rule between A and ¬A. �

THEOREM 3.4.– Let S denote a satisfiable set of clauses and M a model of S,

If S �SR C, then M
⋂

C �= ∅

PROOF.–

C1 ∈ S C2 ∈ S L ∈ C1 L
c ∈ C2

R(C1, C2, L, L
c) = C = (C1 \ {L})

⋃
(C2 \ {Lc})

As M is a model of S, M is a model of all the clauses in S, hence:

M
⋂

C1 �= ∅ andM
⋂

C2 �= ∅.

There are three cases to consider:

i) if L ∈ M and as M is a model of C1and C2, there exists K ∈ C2 \ {Lc} and
K ∈ M ;
hence, by definition of rule R: K ∈ C, thus:

M
⋂

C �= ∅;

ii) if Lc ∈ M , then there exists N ∈ C1 \ {L} and N ∈ M
N ∈ C (by definition of rule R) thus:

M
⋂

C �= ∅;

106 Logic for Computer Science and Artificial Intelligence

iii) If L /∈ M and Lc /∈ M , then M does not depend on the values assigned to L
and Lc, hence:

M
⋂

C �= ∅.

The proof is completed by applying the definition of a deduction and by induction
on the length of the deduction. �

REMARK 3.38.– This theorem can be stated with another notation:

If |=I S, then |=I C %(C ∈ R(S))

We have used the contrapositive, i.e.

if �I C then �I S

to close branches in the semantic tree, and it is also used in very efficient SAT solvers
(programs that solve the SAT problem) to prune the search space. Indeed, when we
verify that the proposed interpretation (partial in general, but that can be sufficient to
evaluate some clauses) falsifies a clause (original or deduced by resolution), there is
no need to keep going in the same direction. �

COROLLARY 3.1.– (soundness of resolution). The resolution method is sound.

PROOF.– Trivial, using the previous theorem.

If S �SR �

and S is satisfiable, then � would be satisfiable, which is impossible

Hence:

S is unsatisfiable. �

EXERCISE 3.34.– Prove the refutational completeness of the resolution method. �

EXERCISE 3.35.– Prove that tautologies can be eliminated from a refutation by
resolution, without losing refutational completeness. �

EXAMPLE 3.15.– This example exhibits many features. We want to use the resolution
method to prove that the set of clauses:

S = {¬P ∨ ¬Q ∨R,P ∨R,Q ∨R,¬R}

is unsatisfiable, in order to design a program later on that will do the same thing.

Propositional Logic 107

The main problem is how to handle non-determinism (i.e. the choices when the
resolution rule is applied). Before analyzing the good choices for the application of
the rule and to be sure that the method will work in all cases, we decide to apply the
“brute force method”, i.e. we apply all choices for a given enumeration and we check
whether we obtain (in the original set of clauses along with those that are deduced)
two complementary unit clauses (the only contradiction that can always be detected
mechanically).

The notation on the right-hand side of the formulas:

(i, j)− (k, l) (1 ≤ i ≤ 4; 1 ≤ j ≤ 3; 2 ≤ k ≤ 12; 1 ≤ l ≤ 2)

means that we apply the resolution rule by choosing the literal at position j (from left
to right) of clause number i, and its complement at position l in clause number k.

This notation will show its utility for resolution in first-order logic.

1) ¬P ∨ ¬Q ∨R
2) P ∨R
3) Q ∨R
4) ¬R
5) ¬Q ∨R (1, 1)− (2, 1)
6) ¬P ∨R (1, 2)− (3, 1)
7) ¬P ∨ ¬Q (1, 3)− (4, 1)
8) P (2, 2)− (4, 1)
9) Q (3, 2)− (4, 1)
10) ¬Q ∨R (1, 1)− (8, 1)
11) ¬P ∨R (1, 2)− (9, 1)
12) R (2, 1)− (6, 1)
13) � (4, 1)− (12, 1)

Note that a same clause can be deduced more than once (for example, 5 and 10; 6
and 11).

Compare this to the closed tree (that corresponds to the same set of clauses)
of exercise 3.33, in which we “stumbled upon” the correct construction order for
the tree.

After an analysis of the refutation once it is obtained, it turns out that only 6 and
12 were necessary to detect a contradiction. Does it seem possible to know this before
the refutation? �

EXERCISE 3.36.– How can we detect that a set of clauses is satisfiable using the
resolution rule? Give an example. �

108 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.37.– Use the resolution method to prove the following results:

a) Prove that S is unsatisfiable:

S = {P,¬P ∨Q,¬Q ∨R,¬Q ∨ ¬R}

b) Prove that S is unsatisfiable:

S = {R,Q ∨ ¬R,S ∨ ¬R,P ∨ ¬Q ∨ ¬S,¬P ∨ ¬Q ∨ ¬S}

c) Is S satisfiable or unsatisfiable?

S = {P ∨Q,P ∨ ¬Q,R ∨Q,R ∨ ¬Q}

d) Prove that S is unsatisfiable:

S = {¬P,¬R ⇒ W,Q∨(¬T ⇒ ¬P∧¬S),¬P ⇒ (S∧¬R),¬Q,¬S,¬T,¬R ⇒ Y }

e) Prove, first by using any method you would have chosen when you did not know
the resolution rule, then by resolution, that the following reasoning is correct:

A ∧B ⇒ C ∧D
E ∧ F ⇒ G
G ∧D ⇒ H

A
B
F
E
H

f) Prove, using the resolution rule, that the reasoning of exercise 3.8 is not correct
(using the formalization that is given with its solution). �

REMARK 3.39.– The following remarks are direct consequences of the definitions:

– every subset of a satisfiable set of clauses (and more generally of a set of wffs)
is satisfiable;

– every superset of an unsatisfiable set of clauses (and more generally of a set of
wffs) is unsatisfiable. �

DEFINITION 3.18.– An unsatisfiable set of clauses S is minimally unsatisfiable iff for
all R ⊂ S (i.e. for all R ⊆ S, R �= S), R is satisfiable.

EXERCISE 3.38.– A minimally unsatisfiable set of clauses does not contain any pure
literal (see exercise 3.30).

Is an unsatisfiable set of clauses that does not contain any pure literal necessarily
minimally unsatisfiable? �

Propositional Logic 109

THEOREM 3.5.– If S is unsatisfiable then there does not exist any interpretation that
falsifies all the clauses in S.

PROOF.– If S contains clauses with pure literals, then they can be eliminated (see
exercise 3.30).

Assume that there exists an interpretation I that falsifies all the clauses in S. By
definition of a clause, I evaluates all the literals in C to F.

As all clauses with pure literals have been removed from S, if L ∈ C ∈ S, then
there exists Lc ∈ D ∈ S. Lc is evaluated to T, so that (by definition of a clause) D is
also evaluated to T. A contradiction. Therefore, I cannot exist. �

COROLLARY 3.2.– If S is an unsatisfiable set of clauses and I is an interpretation for
S, then there exists S1 ⊂ S, S2 ⊂ S, S1 �= ∅, S2 �= ∅, S1 ∩ S2 = ∅ such that I is a
model of S1 and a counter model of S2. �

REMARK 3.40.– We have seen different proof procedures also called calculi (formal
systems or “à la Hilbert”, tableaux, resolution, etc.). We may then wonder “does there
exist a proof procedure that is uniformly (i.e. for all problems) better (for example, in
the number of steps) than the others?”. The answer (as we might expect) is no. �

A notion that is naturally associated to the non-determinism problem is the notion
of strategy. This word has a technical meaning that is very similar to the one of
everyday language.

A strategy is a rule that is used to select the application choices of an (several)
inference rule(s) to reach a certain goal, in general, by reducing the number of choices,
hence the search space (i.e. the set of all possible applications before finding the
desired result or stopping). Sometimes, the goal is to reduce the number of steps
before reaching a solution.

3.8. Problems, strategies, and statements

A very large class of problems can be defined in an abstract way as a triplet
(E, I,G), where E is an environment, I an initial state, and G a goal to reach. The
search of the proof of a theorem is a particular instance of this triplet (with E: a
theory, I: the hypotheses, and G: the formula to prove). We shall come back to this
topic later.

The resolution of problems generally requires non-determinism to be handled.
Finding a “good way” of handling non-determinism is of the utmost importance.
The study of how non-determinism can be handled concerns planning and strategies,

110 Logic for Computer Science and Artificial Intelligence

and is part of AI (in particular automated deduction and proof assistants), of operations
research, of complexity theory, of robotics, etc.

These topics have been widely studied, but another problem that is as important,
although it is less studied, is the statement of the problem. Here, it is necessary to
distinguish between the statement of a problem in different languages or logics19 from
modifications of the statement in the same logic (see Chapter 9).

3.8.1. Strategies

From the start, people realized that it would be impossible to deal with interesting
problems of mechanical proofs without associating strategies to the calculi (calculi are
sets of non-deterministic inference rules).

Of course, people wondered what the best way of handling non-determinism would
be, via a perfect procedure (strategy), i.e. that never generates any redundant formula,
no matter the problem to be solved.

The non-existence of such a procedure is intuitively obvious (knowing exactly
what information is required to prove a theorem boils down to knowing how to prove
this theorem).

It can be shown (using well-known results from computability theory) that there
are no complete procedures for refutation (for example, resolution) that are perfect, i.e.
that never generate formulas (clauses) that are not necessary for the proof (refutation).

We can define a proof procedure in an abstract way, as a couple (T,Σ), where T
is a formal system (see definition 3.9) and Σ is a strategy for T .

It is interesting to note that, in general, books on logic only mention proof systems
by identifying them with T without any mention to the strategy.

To define the abstract notion of an automated proof, we define the notion of a proof
graph, which naturally follows the definition of operator R (see definition 3.16). The
formulas have a level that is not unique (hence the usage of graphs instead of trees),
and is defined in a standard way as being one level greater than the formulas of which
they are a direct consequence. In other words, if we use resolution, the level of the
resolvent is one level greater than that of its parents (input clauses have level 0).

19 Important works have been carried out on this topic, in particular, by Gödel on second-order
logic compared with first-order logic.

Propositional Logic 111

The theorem prover problem for a triplet:

(S0,Γ, F)

is defined as the problem of using a strategy Σ to generate a set of formulas F , with:

S0: input set;

Γ: set of inference rules;

Γ∗(Sj) =
⋃

i≥j Γ(Si);

F : set of formulas that are subsets of the consequences of S0 (i.e. F ⊆ Γ∗(S0))

and:

Σ : 2G → 2G where G is the proof graph.

By unfolding the graph to obtain a tree, we associate to each node a derivation, which
permits us to associate a measure of the derivation with strategy Σ to each leaf.

We can slightly modify the definition to also characterize proof assistants, and in
particular proof verifiers.

An abstract proof verifier is a 5-tuple:

(S0,Γ, F, P,Σ)

where P is the set of formulas of the alleged proof (if P = ∅, then we have a
completely automated theorem prover, if P contains all the steps of a proof, we have
a verifier, if we feed some lemmas to it, we have a proof assistant or an interactive
theorem prover). Here, we have included the strategy that is not necessarily uniform:
we may think of Σ as a set of strategies. Of course, the theory in which the proof is
carried out is contained in S0.

DEFINITION 3.19.– A strategy st for resolution is complete iff for all sets of clausesS:

If S �R �, then S �R+st �.

EXAMPLE 3.16.– An example of a strategy for resolution is the input strategy: given
a set of clauses S, the resolution rule is always applied with at least one clause in S
(the set of input clauses). �

EXERCISE 3.39.– a) Give a refutation of the set of clauses S below:

S = {R,¬R ∨Q,¬R ∨ S,¬P ∨ ¬Q ∨ ¬S, P ∨ ¬Q ∨ ¬S}

using the input strategy.

b) Is the input strategy complete? Justify. �

112 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.40.– As the goal of the resolution method is to detect an elementary
contradiction (i.e. between two unit clauses), an interesting strategy would be to
always apply the resolution rule with at least one parent clause that is a unit clause
(if both clauses are unit clauses and the resolution rule can be applied, then we can
stop, as we generate �).

This strategy is called the unit strategy.

Is this strategy complete? Justify. �

DEFINITION 3.20.– (complexity of a proof, complexity of a method). The complexity
of a proof (refutation) by resolution of a set of clauses S, denoted by CompR(S), is
the number of distinct clauses in the proof (refutation) of S.

The complexity of the resolution method on sets of clauses of cardinality n, denoted
by CompR(n), is defined as follows:

CompR(n) = maxcard(S)=n minComprR(S)

The complexity problem of proofs in PL has been studied in detail since the end
of the 1960s.

EXERCISE 3.41.– Prove that every set S containing all 2n (distinct) clauses of length
n that can be formed using n propositional symbols is unsatisfiable. �

EXERCISE 3.42.–

a) Consider a set of n propositional symbols and let p = �n
2 �, i.e. the smallest

integer such that p ≥ n
2 .

Prove that the set S of all positive and negative clauses of length p that can be
formed using n propositional symbols is unsatisfiable.

b) Does this property still hold if we simply let p >min
n
2 (i.e. the smallest integer

that is greater than n
2)? �

EXERCISE 3.43.– The pigeonhole principle can be stated as follows:

“If we store n objects (n ∈ N− {0, 1}) in n− 1 boxes, then there is (at least) one
box that holds (at least) two objects”, or

“There is no injective application ϕ : {1, 2, . . . , n} −→ {1, 2, . . . , n− 1}”.

We want to prove (for fixed values of n) this principle, using the resolution rule.

Points (a) and (b) below can be swapped.

Propositional Logic 113

a) Consider a fixed, arbitrary value of n, and specify by a schema20 of sets of
clauses of PL the set of injective functions from {1, 2, . . . , n} to {1, 2, . . . , n − 1}.
Let Sn denote this set of clauses.

b) Fix n = 3 and give S3.

c) Can you give a refutation of S3 in six resolution steps? In ten? �
EXERCISE 3.44.– Can a set of clauses containing neither any positive clause nor any
negative clause be unsatisfiable?

As a corollary to this answer, prove that an unsatisfiable set of clauses contains (at
least) one positive clause and one negative clause. �
EXERCISE 3.45.– (three-colorability). Use propositional logic to specify that with
three different colours, it is possible to color a map with N countries, such that each
country is colored with a unique color and two neighboring countries are never colored
with the same color (there will be maps for which no such coloring is possible). As
N ∈ N is not specified, provide a schema of the specification.

This is clearly a reduction to the SAT problem. The three-colorability problem is
therefore also in NP.

What is the size of this specification? (See also example 9.36.) �

3.9. Horn clauses

These clauses are particularly important in computer science.

DEFINITION 3.21.– (Horn clauses). If L, P , Li (1 ≤ i ≤ n) are positive literals, a
Horn clause or conditional formula is of one of the following forms:

1) L
2)

∨n
i=1 ¬Li

3) P ∨∨n
i=1 ¬Li or

∨n
i=1(Li ⇒ P) or (

∧n
i=1 Li) ⇒ P

EXERCISE 3.46.–

a) Prove the following theorem.

If H is a satisfiable set of Horn clauses then the intersection of any nonempty
set of models of H is also a model of H .

Horn clauses admit the model intersection property.

Note that this theorem also holds for Horn clauses in first-order logic.

b) If we replace “Horn clauses” by “clauses”, does the theorem still hold?
Justify. �

20 Necessarily, as n is fixed but unknown.

114 Logic for Computer Science and Artificial Intelligence

3.10. Algebraic point of view of propositional logic

G. Boole introduced the idea that it was possible to treat propositional logic
as algebraic expressions in his books Mathematical Analysis of Logic and An
Investigation of the Laws of Thought on Which are Founded the Mathematical
Theories of Logic and Probabilities. The goals of his research is very well synthesized
in the titles (for Boole, mathematical theories means “calculus”; in the case of logic
“calculus” would now translate into “algebra”).

REMARK 3.41.– In particular, the method proposed by Boole permits us a
mathematical treatment of Aristotle’s syllogistic.

It also permits us to compute the probabilities of propositions expressed using
non-elementary wffs, and to introduce probabilistic inferences, i.e. inferences that,
starting from the probabilities of the premises (events with given probabilities) permit
to compute the probability of the conclusions (event whose probability we would like
to know). �

REMARK 3.42 (Euler circles, Venn diagrams).– Diagrams are not considered as a part
of formal logic, but it has always been acknowledged that they have a great heuristic
value and are very useful for informal reasonings.

It suffices to recall how simple it can be to explain the set-theoretic operations of
union, intersection, etc., to young children.

Recently, there has been a renewed interest for diagrams in computer science
(systems engineering, visual programing, etc.) and in AI (knowledge representation,
cognitive and philosophical aspects, etc.).

The most famous names associated to different kinds of diagrams are Euler, Venn,
L. Carroll, and C.S. Peirce.

John Venn, who admired G. Boole, used diagrams in his book Symbolic Logic that
have become very popular.

We give examples of Euler circles (left-hand side) and Venn diagrams (right-hand
side), together with two syllogisms whose soundness is verified using these diagrams.

Propositional Logic 115

Notice that in set theory, contrary to Venn diagrams, the shaded parts represent
classes of elements that have a given property.

A P

Q

E P Q P Q

I/O P Q I

O

P QX

P Q

X

P Q

The last syllogism of example 2.12:

The syllogism:

No A is a B

Every C is an A

No C is a B

A B

C

A

B

C

�

116 Logic for Computer Science and Artificial Intelligence

We first recall the definitions that permit us to characterize PL using algebra.

Usually, lattices are defined in two separate ways: one as an algebraic structure
and the other based on orderings.

DEFINITION 3.22.– (Boolean algebra). A Boolean algebra is an algebra (see
definition 5.4), that is a lattice (T 1–T 4), which is distributive (T 5), bounded (T 6),
and with complements (T 7):

(the operations ∨ and ∧ are, respectively, called join and meet.

B =< T ; {∨,∧,− , 1, 0} >

and for all x, y, z in T (T non-empty, see definition 5.4)

T 1)
a) x ∨ y = y ∨ x
b) x ∧ y = y ∧ x

T 2)
a) x ∨ (y ∨ z) = (x ∨ y) ∨ z
b) x ∧ (y ∧ z) = (x ∧ y) ∧ z

T 3)
a) x ∨ x = x
b) x ∧ x = x

T 4)
a) x ∧ (x ∨ y) = x
b) x ∨ (x ∧ y) = x

T 5)
a) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
b) x ∨ (y ∧ y) = (x ∨ y) ∧ (x ∨ z)

T 6)
a) x ∨ 0 = x
b) x ∧ 1 = x

T 7)
a) x ∨ x = 1
b) x ∧ x = 0.

EXAMPLE 3.17.– (set theory, Boolean algebra and PL). Let U denote a set (universe).
The algebra:

< P(U); {∪,∩,− , U, ∅} >

Propositional Logic 117

where:

P(U) : set of subsets of U

is a Boolean algebra.

The well-known relationship between (operators of) set theory and connectives in
PL is given in the following table:

∪ �→ ∨
∩ �→ ∧
− �→ ¬
U �→ 1(T)

∅ �→ 0(F)

More generally, every Boolean algebra is isomorphic to a non-empty family
(of subsets of a set) that is closed for the union, intersection, and complement
operations21. �

Before giving the definition of a lattice based on the notion of orderings, we recall
the definitions of a partial order, sup, and inf.

DEFINITION 3.23.– (order).

– A partially ordered set or poset < A,�> is a set A �= ∅ and a binary relation
� that satisfies, for all x, y, z in A:

OP1) x � x % (reflexivity)
OP2) if x � y and y � x, then x = y % (antisymmetry)
OP3) if x � y and y � z, then x � z % (transitivity)

if furthermore:

OP4) x � yory � x

then � is a total order and < A,�> is a totally ordered set or chain.

(OP1), (OP2), and (OP3) define an order relation and (OP1), (OP2), (OP3),
and (OP4) a total order relation .

– Let < A,�> denote a poset and H ⊆ A, a ∈ A is an upper bound of H iff for
all h ∈ H h � a. If for all upper bounds b, a � b, then a is called the supremum (or
least upper bound), denoted by sup. The supremum is unique.

21 When U is finite, this notion corresponds to that of finite probability spaces.

118 Logic for Computer Science and Artificial Intelligence

Similarly, we define the infimum (greatest lower bound), which is unique and
denoted by inf.

We define x ≺ y iff x � y and x �= y.

Similarly, we define x � y iff x ≺ y or x = y.

An equivalent definition of partially ordered sets follows.

DEFINITION 3.24.– (order-bis).

– A partially ordered set or poset < A,≺> is a set A �= ∅ together with a binary
relation ≺ satisfying, for all x, y, z in A:

OP1′) x �≺ x % (irreflexivity)
OP2′) if x ≺ y then y �≺ x % (asymmetry)
OP3′) if x ≺ y and y ≺ z, then x ≺ z % (transitivity)

Note that (OP1′) and (OP3′) are sufficient to axiomatize an order (see
exercise 5.3 d)).

A total order is often defined as follows:

DEFINITION 3.25.– (total order-bis).

– A totally ordered set, < A,≺> is a set A �= ∅ together with a binary relation ≺
satisfying, for all x, y, z in A:

OT 1) x �≺ x % (irreflexivity)
OT 2) if x ≺ y and y ≺ z, then x ≺ z % (transitivity)
OT 3) (x ≺ y) ∨ (x = y) ∨ (y ≺ x) % (trichotomy)

THEOREM 3.6.– A poset < A,�> is a lattice if sup {a, b} and inf {a, b} exist for all
a, b ∈ A.

(We define a ∨ b :def sup {a, b}; a ∧ b :def inf {a, b})

EXAMPLE 3.18.– The algebra:

< {0, 1}, {∨,∧,¬, 1, 0} >

with ∨, ∧, ¬ defined in definition 3.6 (with 0: F , 1: T and, as in N: 0 � 1) is a
Boolean algebra (the simplest one). �

Propositional Logic 119

DEFINITION 3.26.– (congruence, quotient algebra). An equivalence relation (i.e.
a reflexive, symmetric, and transitive relation) ∼ in an algebra < A;F > is
a congruence relation iff for all the operations denoted by the function symbols
f (n) ∈ F :

if a1 ∼ b1, a2 ∼ b2, . . . , an ∼ bn; ai, bi ∈ A(1 ≤ i ≤ n), then
f (n)(a1, a2, . . . , an) ∼ f (n)(b1, b2, . . . , bn).

The equivalence classes are denoted by | ai |.

We can define the operations f (n)
∼ on the partition induced by ∼ (denoted by

A/ ∼):

f (n)
∼ (| a1 |, | a2 |, . . . , | an |) =| f (n)(a1, a2, . . . , an) | .

The algebra:

< A/ ∼, {f (n)
∼ }f(n)∈F >

is called the quotient algebra.

If we consider the language L0 and we define the binary relation ∼:

for all F,G ∈ L0 F ∼ G iff |= F ⇔ G

∼ is an equivalence relation.

The equivalence classes thus defined represent the formal definition of a
proposition (see also exercise 3.6).

By defining:

¬ | F |:def | ¬F |
| F | ∨ | G |:def | F ∨G |
| F | ∧ | G |:def | F ∧G |
0 :def | F ∧ ¬F |
1 :def | F ∨ ¬F |

the algebra:

LA =< L0/ ∼, {∨,∧,¬, 1, 0} >

is a Boolean algebra, called the Lindenbaum algebra of PL.

Chapter 4

First-order Terms

4.1. Matching and unification

4.1.1. A motivation for searching for a matching algorithm

Imagine that in example 3.9, you are given the first step of an alleged proof:

1) (A ⇒ ((A ⇒ A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A))

without any justification, and that you (legitimately) wonder: “how can I be sure that
this wff is a possible first step of a proof?”.

If formulas (structured strings) are represented as trees, answering this question
reduces to finding what replacements should be carried out in the axiom schemas so
as to find the desired wff (in a proof, this is the only possibility for the first step). We
therefore try the axiom schemas one by one.

(1) ⇒
↙ ↘

⇒ ⇒
↙ ↘ ↙ ↘
A

⇒ ⇒ ⇒
↙ ↘ ↙ ↘ ↙ ↘

⇒ A A ⇒ A A
↙ ↘ ↙ ↘
A A A A

122 Logic for Computer Science and Artificial Intelligence

We will use X,Y , and Z for the meta-variables that appear in the axiom schemas
to better emphasize that they are to be replaced.

(A1) ⇒
↙ ↘

X ⇒
↙ ↘

Y X

It is simple to see that there is no way to replace the variables in (A1) to identify
(A1) with (1): we would need to replace X with A (rightmost leaf) and X with A ⇒
((A ⇒ A) ⇒ A) (leftmost leaf).

Let us try with (A2):

(A2) ⇒
↙ ↘

⇒ ⇒
↙ ↘ ↙ ↘
X

⇒ ⇒ ⇒
↙ ↘ ↙ ↘ ↙ ↘
Y Z X Y X Z

We realize that the trees (1) and (A2) can be identified by replacing:

X ← A;Y ← A ⇒ A;Z ← A

As a conclusion, (1) can indeed be the first step of a proof in S1.

In this example, we assumed that only one of the trees contained variables. Let us
see what we would do if both the two terms to be made identical contained variables.
In what follows, x, y, z, . . . denote variables (they are objects that can be replaced by
other objects) and a, b, c, . . . , f, g, . . . denote constants (they are objects that cannot
be replaced by other objects).

Since we want to design a general algorithm, if f, g, . . . denote function symbols,
then we assume they do not have any particular property (associativity, commutativity,
etc.).

f f
↙ ↘ ↙ ↘

a x y b

These trees can be made identical as follows:

{x ← b, y ← a}

First-order Terms 123

f f
↙ ↘ ↙ ↘

y g x g
↙ ↘ ↙ ↘

a x y b

These trees cannot be made identical: we would need to assign y ← a and y ← b.

f f
↙ ↘ ↙ ↘

g x y h
↙ ↘ ↙ ↘

h c a b
↙ ↘

a b

These trees can be made identical by assigning:

{y ← g(h(a, b), c), x ← h(a, b)}.

Trying to unify the following trees:

f f
↙ ↘ ↙ ↘

x a f a
↙ ↘

x b

poses a problem. Which one?

4.1.2. A classification of trees

Finite trees

EXAMPLE 4.1.–

f
↙ ↘

a g
↙ ↓ ↘

b x y �

124 Logic for Computer Science and Artificial Intelligence

Rational infinite trees (i.e. with a finite number of subtrees)

EXAMPLE 4.2.–

f
↙ ↘

a f
↙ ↘

a f
↙ ↘

a
...

i.e.:

f
↙ �

a

with a linear notation: f(a, f(a, f(a, . . . �

Non-rational infinite trees

EXAMPLE 4.3.–

f
↙ ↘

a f
↙ ↘

g f
↓ ↙ ↘
a g f

↓ ↙ ↘
g g

...
↓ ↓
a g

↓
g
↓
a

with a linear notation: f(a, f(g(a), f(g(g(a))), f(. . . �

In the next section, we will formalize the concepts that have been introduced in an
intuitive way.

First-order Terms 125

4.2. First-order terms, substitutions, unification

Let:

V denote a set of variable symbols;

V = {x1, x2, . . .};

F denote a set of function symbols, containing constants in particular, which are
denoted by C, C ⊆ F .

An arity (ni ≥ 0; i ≥ 1) is associated with every function symbol (representing
the number of its arguments). Constants are of arity 0.

F = {f (n1)
1 , f

(n2)
2 , . . .}

(V ∩ F = ∅)

DEFINITION 4.1.– (terms). The set of terms constructed on {V ,F}, denoted by
Σ(V ,F), is the smallest set such that:

1) if x ∈ V , then x ∈ Σ(V ,F);

2) if a ∈ C, then a ∈ Σ(V ,F);

3) if f (n)
k ∈ F and t1, . . . , tn ∈ Σ(V ,F), then f

(n)
k (t1, . . . , tn) ∈ Σ(V ,F).

(Note that rule (2) is included in rule (3). It was added here for the sake of clarity).

Terms without any variable (i.e. Σ(F)) are called closed terms.

REMARK 4.1.– Infinite trees are not terms.

Unless stated otherwise, we shall note variables u, v, x . . . and constants
a, b, c, . . . �

DEFINITION 4.2.– (variables, constants, depth of a term).

– The set of variables in a term t, denoted by V ar(t) or V (t):

V ar(t) (or V (t)) =

⎧⎨
⎩

t ∈ V {t}
t ∈ C ∅
t = f

(n)
k (t1, . . . , tn)

⋃n
i=1 V ar(ti)

– The set of constants in a term t, denoted by Const(t):

Const(t) =

⎧⎨
⎩

t ∈ V ∅
t ∈ C {t}
t = f

(n)
k (t1, . . . , tn)

⋃n
i=1 Const(ti)

126 Logic for Computer Science and Artificial Intelligence

– The depth of a term t, denoted by Dpth(t):

Dpth(t) =

⎧⎨
⎩

t ∈ V 1
t ∈ C 1

t = f
(n)
k (t1, . . . , tn) 1 +max{Dpth(t1), . . . , Dpth(tn)}

It was also possible to choose Dpth(t) = 0 in the first two cases.

DEFINITION 4.3.– (substitution).

– A substitution is an application:

σ : V −→ Σ(V ,F)

which is the identity on all but a finite number of variables.

The domain of a substitution σ is the set:

dom(σ) = {x | σ(x) �= x}

and the codomain (or range) of a substitution σ is the set:

codom(σ) = {y | ∃x.σ(x) = y}

Substitutions are represented by the values of the variables in their domain:

{x1 ← t1, x2 ← t2, . . . , xn ← tn}

or:

{x1 �→ t1, x2 �→ t2, . . . , xn �→ tn}

A substitution

σ : V −→ Σ(F)

is closed.

Given a substitution

σ : V −→ Σ(V ,F)

σ is extended:

−
σ: Σ(V ,F) −→ Σ(V ,F)

First-order Terms 127

as follows:

−
σ (t) =

⎧⎪⎪⎨
⎪⎪⎩

t ∈ V −
σ (t) = σ(x)

t ∈ C −
σ (t) = t

t = f
(n)
k (t1, . . . , tn)

−
σ (t) = f

(n)
k (

−
σ (t1), . . . ,

−
σ (tn))

(It is standard to also denote the extension of σ by σ).

Equality is generally used in the sense of the identity, this is the case, for
example, in:

(a+ b)2 = a2 + 2ab+ b2 (the identity holds for any value of a and b),

or it is used conditionally, this is the case for example in:

4×x = 16× y, where only some values (possibly none at all) satisfy the equality.

Furthermore, when there are many solutions, some are more interesting than the
others. For example, if we are interested in the solutions of the equation above that
are positive integers, then {x = 4, y = 1}, {x = 8, y = 2}, {x = 12, y = 3}, . . . are
solutions.

The most general solution is {x = 4× y; y ∈ N}.

Notation: to emphasize that this is a conditional equality, we shall write 4 × x
.
=

16× y, and if terms are involved, we shall write t1
.
= t2.

These comments are a motivation for the following definitions.

DEFINITION 4.4.– (ordering on substitutions). A substitution σ is more general than
a substitution γ iff there exists a substitution λ such that γ = λ ◦ σ, where ◦ denotes
the composition of substitutions (i.e. of functions).

DEFINITION 4.5.– (unification). Given the equation t1
.
= t2, where t1, t2 ∈ Σ(V ,F),

the unification problem consists of finding the most general unifier (mgu) such that:

σ(t1) = σ(t2) (syntactic identity).

If only one term contains variables, (say t1), the problem that consists of finding
σ such that

σ(t1) = t2

is the matching problem.

128 Logic for Computer Science and Artificial Intelligence

Figure 4.1. The algorithm UNIFICATION

Notation: we often denote by mgu(t1, t2) the mgu of t1 and t2, and we write σt
instead of σ(t).

The unification algorithm either constructs the mgu of a set of term equations or
detects that there is no solution.

EXERCISE 4.1.–

a) Find the solution (if it exists) of equation:

f(x, g(x, y))
.
= f(g(y, z), g(g(h(u), y), h(u)))

b) Find the solution (if it exists) of equation:

f(x, f(u, x))
.
= f(f(y, a), f(z, f(b, z)))

First-order Terms 129

c) Given the substitutions

θ = {x �→ a, y �→ f(z), z �→ x} and

σ = {x �→ b, z �→ c, u �→ d}

Construct the substitution σ ◦ θ.

d) Consider the equation t1
.
= t2 where V ar(t1)

⋂
V ar(t2) = ∅

Is the cycle rule of UNIFICATION still necessary? Could you give a sufficient
condition guaranteeing the cycle rule is not needed? �

EXERCISE 4.2.– In a calculus called the equivalential calculus, the wffs of the
language are of the form e(X,Y), where e is a constant symbol (that stands for
equivalent), and X,Y (meta)variables that denote wffs of the language (such as
A,B,C in S1; see section 3.4).

The only inference rule is:

CD : e(A,B) C
σB with σ : mgu(A, C)

Question:

Given two wffs

e(X, e(X, e(Y, Y))) and

e(Z, Z)

1) Can CD be applied?

2) If so, what are the possibilities?

3) If CD can be applied, what is(are) the direct consequence(s)? �

EXERCISE 4.3.– The algorithm UNIFICATION does not assume any property on the
functions under consideration, and produce a unique result (substitution), up to a
renaming of the variables.

If we assume that (some of) the binary functions under consideration are
commutative, for example:

∀x1∀x2.f(x1, x2) = f(x2, x1)

Can you modify the algorithm UNIFICATION to take this property into account?

130 Logic for Computer Science and Artificial Intelligence

For example, for equation:

f(g(a, b), x)
.
= f(h(c), g(y, z))

UNIFICATION would return ⊥, but once modified, when f and g are commutative,
it should produce two solutions:

σ1 = {x ← h(c), y ← a, z ← b}

σ2 = {x ← h(c), y ← b, z ← a}. �

REMARK 4.2.– Considering function symbols that denote functions with certain
properties can turn out to be very complex. For example, if f denotes an operation
(function) that is associative-commutative, i.e.

∀x∀y.f(x, y) = f(y, x)

∀x∀y∀z.f(x, f(y, z)) = f(f(x, y), z)

then the equation

f(a, f(b, z))
.
= f(x, y)

has the following solutions:

{x ← a, y ← f(b, z)}, {x ← b, y ← f(a, z)}, {x ← z, y ← f(a, b)}, . . . and
others.

It is simple to verify that we cannot transform one of these unifiers into another by
applying a substitution (as previously). We will keep in mind that the solutions are no
longer unique (and there can be many of them). �

The following exercise is an example of how the unification algorithm can be
adapted to treat data other than terms, by expressing this data as terms and using
some ad hoc conventions.

EXERCISE 4.4.– Use the algorithm UNIFICATION (that was modified in exercise 4.3)
to show that, if the unconditional premises (i.e. those that do not contain ⇒) are
literals, then the rules MP (modus ponens) and MT (modus tollens):

MP :
A A ⇒ B

B

MT :
¬B A ⇒ B

¬A
are particular cases of the resolution rule:

R:
X ∨ X ¬X ∨ Y

X ∨ Y �

Chapter 5

First-Order Logic (FOL) or Predicate Logic
(PL1, PC1)

In Aristotle’s syllogistic, every statement consists of the attribution of a property
to an object, which means that they are expressed using unary predicates and therefore
formalized using PL. This is no longer sufficient when we need to consider relations
(binary, ternary, etc.) between objects. These relations cannot be reduced to unary
relations (properties)1.

Handling properties and relations is of course essential in programming (logic
programming, multi-agent programming, etc.)2.

If we believe we can manage using formalizations, such as those after definition
2.8, how can we talk about objects that have properties P,Q, . . . or that are related to
other objects?

For example, how can we use PL to verify that the following reasoning is correct:

All horses are animals.

Some horses are white.

1 It is interesting to note that in mathematics, a large majority of relations, denoted using
predicates, are binary.
2 The expressive power of a logic depends on the objects that it permits us to consider (along
with the possibility or not of quantifying these objects). The expressive power is obviously
related to the properties of the logic itself ((un)decidability, etc.). See also section 9.3.

132 Logic for Computer Science and Artificial Intelligence

Therefore, some white horses are animals.

Similarly, how can the following reasoning, which should obviously be correct, be
translated into PL?

For all x, xRa, therefore there exists an x such that aRx

If we denote by P : For all x, xRa

and:

Q: there exists x such that aRx

this reasoning would be classified as incorrect (P can be evaluated to true and Q to
false).

This reasoning can be formalized as follows: (as you already know, see also
definition 5.1).

∀xR(x, a)
∃yR(a, y)

and now “we can see” that it is correct.

The soundness of these reasonings is based on the relation between “for all”
(or “all”) and “there exists” (or “some”).

Another very familiar example is that of transitivity: for any objects named x,
y, and z, if x is related to y and y is related to z then x is related to z. Obviously,
these sentences cannot be expressed in PL in order to be used in a reasoning. They
could be denoted by P (or Q,. . .), but that would not be very useful.

One last example: how can the following sentence be translated in PL?

The object named 0 satisfies property P, and if an object x satisfies P, then
the successor of x also satisfies P. . .

It is worth mentioning that in finite universes, it is possible to stay within PL.
For example, the argumentation if all men are mortal and a given object satisfies the
property of being a man, then this object is mortal (see also example 5.9) could be
specified with the following propositional schema in a universe with n men:∧n

1 Hi∧n
1 (Hi ⇒ Mi)

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 133

Hk % (1 ≤ k ≤ n)

Mk % (1 ≤ k ≤ n)

where the propositional symbols Hi and Mi, respectively, denote i is a man and i is
mortal.

This way of proceeding is not very natural, it is theoretically limited to finite
universes and practically limited by the size of these universes; more importantly,
it prevents the usage of variables (because all cases have to be enumerated).

We are currently talking about the limits of the expressive power of a language (and
how they can be overcome). As can be expected, once more things can be expressed,
there is a risk of not being able to answer all questions on wffs of this language with
more expressive power.

In computer science, it is well-known that if we use a language that forbids some
control structures, then the halting problem becomes decidable for programs written
in this language.

From the point of view of decidability: the fragment of FOL called monadic logic
is decidable (see section 5.8). As soon as predicates with an arity greater than or equal
to 2 are allowed, we obtain undecidable fragments.

REMARK 5.1.– The language of FOL was introduced by G. Frege in 1879, but
the notations that are currently used are similar to those introduced by Peano in
1889. Formal systems were introduced by Hilbert and Ackermann in 1928 (see also
remark 5.21). �

5.1. Syntax

DEFINITION 5.1.– (FOL language). Consider a signature Ω = {V ,F ,P}, where:

V = {x1, x2, . . .} is a set of variables;

F = {fn1
1 , fn2

2 , . . .} is a set of function symbols, ni: arity (ni ≥ 0).

Function symbols of arity 0 are constants, and the set of constants is denoted by C
(C ⊆ F);

P = {=2, P k1
1 , P k2

2 , . . .} set of predicate symbols, ki: arity (ki ≥ 1);

V ∩ F = V ∩ P = F ∩ P = ∅.

The language (i.e. the set of wffs) of FOL, denoted by L1, is the smallest set
such that:

134 Logic for Computer Science and Artificial Intelligence

– if t1, . . . , tkn ∈ Σ(V ,F) (see definition 4.1), then: P kn
n (t1, . . . , tkn) ∈ L1

P kn
n (t1, . . . , tkn) is an atomic formula;

– a literal is an atomic formula or its negation;

– if P and Q ∈ L1 and x ∈ V , then:

¬P ∈ L1, P ∧ Q ∈ L1, P ∨ Q ∈ L1, P ⇒ Q ∈ L1, P ⇔ Q ∈ L1,
∀x.P ∈ L1, ∃x.Q ∈ L1

(we will also write ∀xP , ∀x(P), ∃xQ, ∃x(Q));

– ∀, ∃ are called the universal quantifier and existential quantifier, respectively,
and x is the quantified variable. A variable will not be quantified more than once (that
would make no sense);

– in ∀x(P), ∃x(P), P is the scope of the quantifiers.;

– the set {V ,¬,∧,∨,⇒,⇔,=, ∀, ∃} is the set of logical symbols or logical
constants;

– the set {F , C,P} is the set of non-logical symbols corresponding to the
considered theory;

– if the signature does not contain any functional symbol of arity n (n ≥ 0) or the
predicate symbol =, then we have pure FOL;

– a wff can be viewed as a string (or word) on vocabulary Ω (i.e. a finite sequence
of symbols in Ω). A subformula of a wff F is a substring3 of F (considered as a string),
which is also a wff;

– a wff is in nnf if it is constructed with literals, the connectives ∧ and ∨, and the
quantifiers ∀ and ∃4. Every wff can be transformed into another one that is equivalent
and in nnf.

REMARK 5.2.– (the set of wffs of FOL is denumerably infinite). As the set of
variables is denumerably infinite, the set of logical symbols finite and the set of
non-logical symbols denumerably infinite, it is simple to design an algorithm that
enumerates all the wffs using the rules of definition 5.1.

Every infinite set of wffs of FOL will therefore be denumerably infinite (as it will
be the subset of a denumerably infinite set). �

DIGRESSION 5.1.– In discrete mathematics, researchers use the terminology Boolean
predicates or constraints on Boolean variables.

The arity is the number of variables that occur in the constraints. �

3 w is a substring of v iff there exist strings x, y (possibly empty) such that v = xwy.
4 Thus, if it contains occurrences of ¬, they are “next” to the atoms.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 135

DIGRESSION 5.2.– (variables 2)5. It is interesting to have a historical recollection
here on mathematical notations and, in particular, on the notion of a variable.

Letters were used in Antiquity to denote points, lines, etc. in a generic way,
meaning that letters were used as names.

In arithmetic, symbolic abbreviations are very ancient, they were already used by
Egyptians.

Diophantus (circa 3rd Century) introduced a particular symbol for the unknowns
in algebra, and this seems to be the very first appearance of what would become a
numerical variable in mathematics.

It is acknowledged that the first symbolic algebraic language is due to François
Viète (1540–1603). Viète used letters to represent unknowns, powers of the unknowns
and undetermined coefficients (generic names).

Descartes, Newton, Leibniz, Euler, etc. changed and modified the language
introduced by Viète.

In mathematical logic, the concept of a variable was explicitly used by
G. Frege. �

DEFINITION 5.2.– (free and bound variables). The occurrence of a variable x in a wff
of L1 is bound iff x appears immediately after a quantifier, or if x is in the scope of a
quantifier (and has the same name as the quantified variable). Every other occurrence
is free.

Below, P and Q denote wffs of L1.

Set of free variables in a formula:

Free_vars(P kn
n (t1, . . . , tkn)) =

⋃kn

i=1 V ar(ti) (see definition 4.2)

Free_vars(¬P) = Free_vars(P)

Free_vars(P ∧ Q) = Free_vars(P ∨ Q) = Free_vars(P ⇒ Q) =
Free_vars(P ⇔ Q) = Free_vars(P)

⋃
Free_vars(Q)

Free_vars(∀x P) = Free_vars(∃x P) = Free_vars(P) \ {x}

5 See also digressions 3.3 and 9.1.

136 Logic for Computer Science and Artificial Intelligence

Set of bound variables in a formula:

Bound_vars(P kn
n (t1, . . . , tkn)) = ∅

Bound_vars(¬P) = Bound_vars(P)

Bound_vars(P ∧ Q) = Bound_vars(P ∨ Q) = Bound_vars(P ⇒ Q) =
Bound_vars(P ⇔ Q) = Bound_vars(P)

⋃
Bound_vars(Q)

Bound_vars(∀x P) = Bound_vars(∃x P) = Bound_vars(P)
⋃{x}

REMARK 5.3.– The same variable may have free and bound occurrences in a formula,
for example, in formula

(P (x) ∨ ∃yQ(y)) ∧ ∀x(P (x) ∨Q(y))

The first occurrence of x is free, the second and third are bound.

The first and second occurrences of y are bound, the third is free. �

DEFINITION 5.3.– (closed and open formulas). A wff is closed, written closed wff
(cwff) iff it does not contain any free variable. Otherwise, it is open and written open
wff (owff).

REMARK 5.4.– A bound variable is a variable such that the wff it appears in has a
meaning that is independent of this variable. For example, in:∫ y

0

xydx

x is bound and y is free.

In programming languages, local variables are bound, global variables are free.

See remark 5.9 on the conceptual difference between a cwff and an owff. �

EXAMPLE 5.1.– (translation into FOL). Consider the statement:

Someone who loves all animals loves all men

that we restate as a reasoning, by formulating all the implicit knowledge. There
are two “natural” translations, depending on whether “someone” is translated into:

i) animal (not necessarily human) or

ii) human

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 137

i.e. respectively:

Given that every human is also an animal, and that there exists an animal that
loves all animals, there exists an animal that loves all men.

Given that every human is also an animal and that there exists a human who loves
all animals, there exists a human who loves all men.

We translate both versions by introducing the following predicates:

A(x): x is an animal;

H(x): x is a human;

C(x): that must be replaced by A(x) (case i)), or by H(x) (case ii)).

The reasoning is represented as follows in FOL:

∀x[H(x) ⇒ A(x)]

∃y∀v[C(y) ∧ (A(v) ⇒ L(v, y))]

∃u∀z[C(u) ∧ (H(z) ⇒ L(z, u))] �

5.2. Semantics

The concepts of interpretation, model, and semantics that we will define are,
similar to the concept of meaning in natural language, extremely subtle and deserve
some thoughts before providing a formal definition (in FOL).

The notion of a model is essential in logic, computer science, and science generally
speaking. It is generally used for many different notions, which is why it is said to be
polysemous.

On the general notion of a model

Etymologically:

model −→ muid −→ “to prescribe something with authority”.

The word “model” appeared during the 16th Century, meaning measure, musical
measure, melody, or way of behaving.

The term is used in different ways in everyday language and in scientific papers.
One of the few that can be found in the literature is:

138 Logic for Computer Science and Artificial Intelligence

X is a model of Y only if X and Y have the same structure or similar
structures.

(This could translate into the existence of a morphism between X and Y)

We can distinguish two meanings that cover many usages:
– representation meant to account for a part of reality that was observed. In

general, simplifying hypotheses are allowed, such as idealizations, etc.
A problem that arises involves the limits of the validity of the model, i.e. how can

we be sure that all inferences (see Chapter 8) made on the model reflect reality?
A key problem is that of distinguishing between pertinent properties and those that

can be discarded. This is of the utmost importance when modeling complex systems,
where all the parameters are not well known. Recall the caution of scientists about
global warming (models are still not satisfactory).

An example in computer science is that of models of computation, such as,
computable functions, Turing machines, lambda calculus, Markov algorithms, DNA
computing, and quantum computing;

– the one made in mathematical logic. To provide a model of a logical formula
means to give an interpretation of the non-logical symbols (i.e. the constant symbols,
functions, and predicates) that permits us to make the formula true.

Note that this notion of a model can also be applied to the axioms of an empirical
theory: we can test “real” configurations of the axiomatization of the theory.

This point of view can be useful (as it is in mathematics) to verify that the axioms
of the theory are not contradictory: a model from the logical point of view is a possible
realization.

A standard method to better grasp a notion for which there is no formal definition
(or a definition that is unanimously accepted) is to enumerate the different ways it is
used. This is what we do now.

Some differences in the ways the term is used are clear. There is a clear difference
between a scale model or blueprint (bridge, etc.) and a mathematical model of the
economy, atom, DNA, and kinetic theory.

Two remarks:

– the design of a model is the basis of any scientific activity in natural science.
The goal is to select all (and only) those properties, factors, parameters, etc., that are
supposed to be pertinent for the studied phenomena;

– the distinction between a theory and a model is not always clear. In general, a
model is considered as a step toward a theory.

The notion of a morphism that we mentioned above can be better understood
by considering phenomena that are (essentially) described by the same formulas:
oscillation of a circuit or a pendulum, flow of a liquid or flow of an electric charge, etc.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 139

Models can have different functions.

For example, in biology, models can have a normative function (see the etymology
of the word model at the beginning of this section) to organize data. The capital role
here is to classify valid inferences (meaning putting information in a usable form (see
Chapter 8 for the definition of this term).

It can also be explanatory (in physics, medicine, etc.) or educational (such as
in science popularization TV shows), prospective (social sciences, ecology, etc.),
heuristic (computer science, biology, etc.), descriptive (simulation), etc.

On the importance of the notion of a model in science, we quote an opinion of one
of the greatest mathematicians of the 20th Century (S. Mac Lane):

. . . the sciences do not try to explain, they hardly try to interpret, they
mainly make models. . . The justification (of a model) is solely and
precisely that it is expected to work . . . Furthermore, it must satisfy
certain aesthetic criteria – that is, in relation to how much it describes, it
must be simple.

5.2.1. The notions of truth and satisfaction

What is truth?
Pilate (Gospel according to John, 18:38)

What I say three times is true
L. Carrol (The Hunting of the Snark)

The notion of semantics (with the meaning of study of a language, i.e. its words
and statements from the point of view of their meaning) is very difficult to specify,
and our intuition seems to associate it with the notion of translation.

The notions of true and false are closely related to that of meaning.

To give a characterization of the notion of truth is an old problem of philosophy
and logic6.

As Tarski noticed, the word truth and those derived from it are used in everyday
language in different domains: psychology (for example, “Does Ann really love
Bernard?”), aesthetism (for example, “Is this book really a masterpiece?”), moral (for

6 In the Western world, since Parmenides and Aristotle.

140 Logic for Computer Science and Artificial Intelligence

example, “Why isn’t this politician telling the truth?”), religion (for example, “Did
this miracle really happen?”), etc.

For some, statements are the vehicles of veracity or falsity, for others,
meanings are.

Once we agree on this, there remains to decide how to assign them with a truth
value (or what their truth value is).

There is, however, a large consensus on the following: what is true or false7 are
the propositions (see definition 3.1).

A great philosopher (and logician) said it this way: “The eternal statements (i.e.
independent from time8) are what I consider essentially as vehicles of truth”.

But what does the truth of these statements consist in? They qualify as true
(according to Tarski) depending on reality.

“Snow is white” iff snow is white (in other words, truth is disquotation).

The truth predicate is an in-between, between words and statements and the real
world. What is true is the statement, but its truth holds because the world is as it states.

By analyzing paradoxes, we can conclude that the truth predicate is incoherent,
unless it is somehow restricted (there exists a theorem by Tarski on the undefinability
of truth).

Basically, the problem is solved by putting a hierarchy in place, (similar to what
was done in set theory): true0 disquotes all statements without any truth predicate;
true1 disquotes all statements without any truth predicate above true0... and so on.

Here, we restrict ourselves to the notion of truth in axiomatic systems
(mathematical logic) about (well-formed) formulas of a formal language.

Before proceeding with the formalization, a question arises naturally: “What
criteria should be satisfied by a suitable definition of truth?”

A. Tarski gave the following three criteria:

7 The notion of truth is closely related to that of negation by the equation false = not true.
8 This is not the case, for example, with the statement “my head hurts”.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 141

1) Meta-language: if L is the object language (working language), then the
definition of truth must be given in a meta-languageM with L ⊂ M , M must globally
be capable of expressing “more things” than L. If L is capable of expressing facts
about its own semantics, then we easily obtain paradoxes such as the liar’s paradox.

M contains a unary predicate True whose intended meaning is: True(prop):
proposition prop is true;

2) Formal correction: predicate True must be of the form (or in a form provably
equivalent to):

(�) True(x) ⇔ Ψ[x]‘x /∈ Var(Ψ[x])

If an equivalent form is used, the equivalence must be proved using the axioms
of M , but it must not use the predicate True;

3) Material adequation: the objects that satisfy definition (�) in (2) must be
exactly those that are intuitively true propositions in L, and this must be proved using
the axioms of M .

To avoid problems related to the definition of truth, Tarski introduced the
satisfaction relation (see definition 5.6). The key to avoiding problems is that the
definition of satisfaction is inductive (it is said to be compositional): we begin with
the satisfaction of atomic statements, then the satisfaction of statements of a higher
complexity is defined in terms of that of their components (the idea of a hierarchy
can be found here too). Truth only deals with closed statements (which do not contain
free variables). The analog to truth for open statements is satisfaction. An assignment
of objects satisfies a statement if the latter is true for the values given to the free
variables9. The notion of satisfaction does not permit us to translate, for example,
“not (x satisfies x)” (“x” denotes a variable).

To get a better grasp of the idea behind the formal definition, we first give a few
informal definitions.

EXAMPLE 5.2.– We consider a “formal system” (see definition 3.9)10 S =
< L,R,A >

where:

L: English language;

R: the “usual” rules of mathematics;

9 A closed statement is satisfied either by all assignments or by none, depending on whether it
is true or false.
10 According to our definition, this is actually not a formal system: a formal language and
formal inference rules are missing, but the context is clear enough and there is no ambiguity.

142 Logic for Computer Science and Artificial Intelligence

A:

let K and L be two sets

A1): every element of L contains exactly two elements of K .

A2): no element of K is contained in more than two elements of L.

A3): no element of L contains all the elements of K .

A4): the intersection of any two (distinct) elements of L contains exactly one
element of K .

A possible model, interpretation, and meaning of these axioms (that also shows
that these axioms are not contradictory) is:

K = {A,B,C}

L = {{A,B}, {B,C}, {C,A}}

(this model can be viewed as a triangle with the (non-collinear) vertices A,B,C). �

EXAMPLE 5.3.– (Z. Manna and R. Waldinger). When learning algorithm, it turns out
that program schemas frequently occur in different problems.

Consider the following schema, for which we will produce different
interpretations.

program X;
begin

read (x) ; % x is a variable
y1 ← x ;
y2 ← a ; % a is a constant

while ¬P (y1)
do
y2 ← g(y1, y2) ;
y1 ← f(y1) ;
enddo

z ← y2 % z contains the result
end

– Interpretation 1

D (considered universe): N

a: 1

f(y1): y1 − 1

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 143

g(y1, y2): y1 × y2

P (y1): y1 = 0

The program represents factorial (x)

– Interpretation 2

D (considered universe): lists

a: nil

f(y1): cdr(y1) %, i.e. list y1 without its first element

g(y1, y2): cons(car(y1), y2) %, i.e. the list obtained by putting the first element
of y1 instead of that of y2

P (y1): null(y1) % null(y): y is an empty list

The program represents reverse (x)

– Interpretation 3

D (considered universe): N

a: 0

f(y1): y1 − 1

g(y1, y2): y1 + y2

P (y1): y1 = 0

The program represents the sum of the first x natural numbers. �

EXAMPLE 5.4.– Consider the following wffs:

a) ∀x(¬P (x, x) ∧ (∀y∀z((P (x, y) ∧ P (y, z)) ⇒ P (x, z))) ∧ ∃wP (x,w))

This could express (for example): no natural number is less than itself, the
relation “less than” is transitive and there always exists a natural number that
is greater than a given natural number.

b) ∀y∃xP (x, y)

This could express (for example): every integer is greater than some other
integer.

c) ∀y∃xP (x, y)

We could say this is false if we consider natural numbers and P
represents the relation “less than”.

d) ∀x¬D(a, x)

This could express (for example): 0 does not divide any integer.

e) ∀xP (f(x))

This could express (for example): the square of any integer is positive.

144 Logic for Computer Science and Artificial Intelligence

f) ∀x∀y(P (x, y) ⇒ P (x, y))

This could express (for example): for any relation we could imagine that is
represented by P , this wff is true.

g) ∃x∃y¬(P (x, y) ⇒ P (x, y))

This could express: for any relation we could imagine that is represented
by P , this wff is false.

Consider the following wff:

h) ∀x∃yP (x, y)

is it true or false? The (correct) answer that seems the most natural is, it
depends. Indeed, if the formula is interpreted on N and P (x, y) represents the relation
x ≤ y, then it is true. If P (x, y) represents x > y, then it is false.

i) ∀x∃y(P (x, y) ∧ ∀w(P (y, w) ⇒ y = w))

This could represent: if the values of variables x, y and w are instants and
P (x, y) denotes the relation x ≤ y between these instants, the formula
expresses that there will be an end of time. �

DEFINITION 5.4.– Given a first-order language L1 (see definition 5.1), a first-order
structure or structure M is a triplet:

M =< D;F ,R >

where:

D is a non-empty set called the domain or universe of discourse

F = {f (i1)
1 , . . . , f

(in)
n , . . .}

set of functions:

f
(ij)
j : Dij −→ D

R = {r(k1)
1 , . . . , r

(kn)
n , . . .}

set of relations:

r
(kj)
j ⊆ Dkj

where the f (ij)
j ’s (in particular, the constants) and the r(kj)

j ’s, respectively, correspond
to the functional symbols and the predicates in L1.

Two particular cases:

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 145

M =< D;F >: (abstract) algebra

M =< D;R >: relational system

EXAMPLE 5.5.–

M1 =< Z; {+}, {≤} >: structure

M2 =< Z; {≤} >: relational system

M3 =< R; {+,−,×} >: algebra �

DIGRESSION 5.3.– When searching for interpretations of wffs or sets of wffs, it is
often the case that different interpretations are “globally” the same.

More precisely, to each element of one domain corresponds an element of the other
domain with the same properties and conversely.

This feature is formalized in the following definition. �

DEFINITION 5.5.– (structure isomorphism). Given two structures M1 and M2:

M1 = < D1;F1,R1 >

M2 = < D2;F2,R2 >

a bijection I: D1 −→ D2

is a structure isomorphism iff

(the exponents M1 and M2 identify the structure the objects belong to)

– for every constant c in the signature of L1:

I (cM1) = cM2

– for every n-tuple (d1, d2, . . . , dn) ∈ Dn
1 and every n-ary functional symbol f (n)

in the signature of L1:

I(f (n)M1(d1, d2, . . . , dn)) = f (n)M2(I(d1), I(d2), . . . , I(dn))
– for every n-tuple (d1, d2, . . . , dn) ∈ Dn

1 and every n-ary predicate symbol P (n)

in the signature of L1:

P (n)M1(d1, d2, . . . , dn) = P (n)M2(I(d1), I(d2), . . . , I(dn))

M1 and M2 are said to be isomorphic.

REMARK 5.5.– The idea behind the following definition is the same as the one that
we used informally and intuitively in the examples, i.e. given a first-order language
(or wff), we fix a universe D, to each constant in the wff we associate an element

146 Logic for Computer Science and Artificial Intelligence

of D, to each functional symbol of arity n, a total function (meaning that it is defined
everywhere on D) of arity n on D, and to each predicate symbol of arity k, a relation
of arity k on D. Variables “go through” D, and ∀ and ∃ are interpreted as usual, i.e.
“for all” and “there exists (at least one),” respectively. The semantics (meaning) of
the wff is given by that of the functions and relations on the chosen universe, which
are assumed to be known. �

A cwff is T or F in an interpretation. The evaluation of the cwff is carried out
in the structure and the variables get their values in the universe of discourse. It is,
therefore, not necessary to add to the language expressions of the form “for every x
in D”. The language is independent of the formalization of set theory.

DEFINITION 5.6.– (interpretation, satisfaction). Let L1 denote a first-order language
and M =< D;F ,R > a structure.

An fp-assignment (f stands for “function” and p stands for “predicate”) is a
function afp satisfying the following:

i) for every predicate symbol P (kn)
k , afp(P

(kn)
k) is a relation PM

k ⊆ Dkn of R;

ii) for every function symbol f (jn)
j :

afp(f
(jn)
j) is a (total) function fM

j : Djn −→ D of F

for constants :

afp(a) = a with a ∈ D

a v-assignment is a function:

av : V −→ D

where V denotes the set of variables of L1.

For terms (see definition 4.1) we define the t-assignment at as follows:

iii) if t ∈ V then at(t) = av(t);

iv) if t ∈ C then at(t) = afp(t);

v) otherwise, at(f
(jn)
j (t1, . . . , tjn)) = fM

j (at(t1), . . . , at(tjn)).

– An interpretation of the language L1 (or of a wff of L1) is an fp, v, and
t-assignment.

– A satisfaction relation:
M |=I ϕ (which reads as “Formula ϕ is satisfied in structure M with

interpretation I”)

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 147

is defined as follows:

1) M |=I P
(kn)
k (t1, . . . , tkn) iff (t1, . . . , tkn) ∈ PM

k

2) M |=I ¬ϕ iff not M |=I ϕ %, i.e. logic with two truth values

3) M |=I ϕ ∧ ψ iff M |=I ϕ and M |=I ψ

4) M |=I ϕ ∨ ψ iff M |=I ϕ or M |=I ψ

5) M |=I ϕ ⇒ ψ iff (not M |=I ϕ) or M |=I ψ

6) M |=I ϕ ⇔ ψ iff M |=I ϕ ⇒ ψ and M |=I ψ ⇒ ϕ

7) M |=I t1 = t2 iff tM1 = tM2 % see section 9.1

8) M |=I ∃xϕ iff there exists a ∈ D such that M |=I[x|a] ϕ
9) M |=I ∀xϕ iff for all a ∈ D M |=I[x|a] ϕ

I[x | a] coincides with I except for av(x)

REMARK 5.6.– Warning: not (φ |= ϕ) is not equivalent to φ |= ¬ϕ.

See section 3.1.1 and remark 3.5. The negation of “for all” is not “for all not”. �
REMARK 5.7.– (on the domain of discourse). In the definition of the semantics for
FOL, the only constraint on the domain of discourse is that it is non-empty. We can
therefore choose the domain of discourse to be a set of closed terms. This remark will
be useful in the proof of theorem 5.4. �
EXAMPLE 5.6.– The wff

∀x∃y∃z(x+ z = y ∧ ∃w(w + w = y))

denotes in what is called Presburger arithmetic, i.e. the theory of the structure:

NA = 〈 N; 0, succ,+,=, < 〉

“There are infinitely many even numbers”.

This theory is decidable, but the decision procedure has a superexponential
complexity (22

n

). �
DEFINITION 5.7.– A wff ϕ is valid iff it is satisfied in every interpretation on every
structure. This is denoted by |= ϕ.

A structure M is a model of a set of wffs S iff there exists I such that M |=I ϕ
for all ϕ ∈ S.

REMARK 5.8.– (models: another theory). A model of an axiomatic theory is a set of
objects chosen from another theory: the one in which the objects assigned to those
of the former are supposed to have a meaning “by themselves” (for example, sets,
functions, and relations) and satisfying the axioms. �

148 Logic for Computer Science and Artificial Intelligence

REMARK 5.9.– (open and closed formulas).

– A cwff denotes a truth value. For example, ∀x∃yP (x, y) denotes true in N, if
P represents <.

– An owff denotes a set, i.e. the set of values that make it true. For example,
Prime(x) denotes all prime numbers.

– Owffs are used to define classes (sets) (see digression 2.2), for example, the set
{x | Prime(x)}.

– Free variables, and therefore owffs, occur very frequently in informal
mathematics, in expressions such as:

i) Let x denote a natural number

or :

ii) Let x denote a natural number such that . . .

In (i) they are given a universal interpretation (i.e. for all x).

In (ii) they are given a conditional interpretation (i.e. for some particular x’s).

When these expressions (or rather their formalizations) are involved in reasonings,
they will be treated, as is customary, as universally quantified variables. Indeed,
when no particular conditions are imposed on x, this is equivalent to saying for any x,
or for all x.

EXAMPLE 5.7.– (set of prime numbers). The set of prime numbers in N can be
defined as follows:

Prime(x) = {x �= 1 ∧ ∀y∀z((x = y × z) ⇒ (y = 1 ∨ z = 1))}. �

When a condition is imposed on x, this is equivalent to saying for all x satisfying
this condition (condition that will be translated in the formula)11.

– For the owffs that occur in reasonings, we shall use their closure, which is
defined by:

cowff(F) :def if F : cwff then F else ∀x1∀x2 . . . ∀xnF

(where Free_vars(F) = {x1, x2, . . . , xn}). �

EXERCISE 5.1.– (A model is finite (respectively, infinite) if the cardinality of its
universe of discourse is finite (respectively, infinite).

11 For example, the expression Let x denote a prime number translates into ∀x(x ∈ N ∧
Prime(x)).

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 149

a) Give a model of:

∀xP (g(x, f(x)), a)

b) Give a model and a counter model of:

∀x∀y(P (f(x, y), a)⇒ P (x, y))

c) Give a model of:

∀x∀y∀z(P (x, y)⇒ P (f(x, z), f(y, z)))

d) Give a model of:

∀x∃yP (x, f(f(x, y), y))

e) Give a model of:

∀x∀y(P (f(x, a), y)⇒ P (f(y, a), x))

f) Give a counter model of:

∀x∃yP (x, y)⇒ ∃y∀xP (x, y)

g) Give a model and a counter model of:

∀x∀y[(P (x, y)∧¬Q(x, y))⇒ (∃z(P (x, z)∧ ¬Q(z, x)∧P (z, y)∧¬Q(z, y)))]

h) Is the wff:

∀x(P (x) ∨Q(x)) ⇒ ∀xP (x) ∨ ∀xQ(x)

valid?

i) Give a model of the following formula that is independent of the selected
domain of discourse.

In other words, give an interpretation of the predicate P such that for any
domain, it corresponds to a model of the given formula:

∀x∀y∀z.P (x, y) ∧ P (x, z) ⇔ P (x, y) ∧ P (y, z)

j) Given the wff:

∀x∀y∀z(P (x, y) ∨ P (y, z) ∨ P (x, z))
j1) give a model of this formula with domain D = R (i.e. an infinite model);
j2) give a model of this formula with domain D = {1, 2} (i.e. a finite domain);
j3) give a counter model of this formula with domain D = N.

k) Can you construct:
k1) a finite model for the following formula?

∀x ¬P (x, x) ∧ ∀x∃y P (x, y) ∧ ∀x∀y∀z (P (x, y) ∧ P (y, z) ⇒ P (x, z))
k2) an uncountably infinite model?
k3) a denumerably infinite model?

l) Give a model and a counter model of:

∀x∃y∃z∀u[¬E(y, z) ∧A(x, y) ∧A(x, z) ∧A(x, u)] ⇒ (E(u, y) ∨ E(u, z))

m) Can you construct:
m1) an infinite model for the formula:

∀x∃y∃z(f(y) = x ∧ f(z) = x ∧ y �= z) ?

150 Logic for Computer Science and Artificial Intelligence

m2) a finite model?

n) Can you construct a finite model for the formula:

∀x∀y((f(x) = f(y)) ⇒ (x = y)) ∧ ∃x∀yf(y) �= x
i.e. a function f : D −→ D that is one-to-one but not onto.

o) Given the formulas (1), (2), and (3) below, show that (3) is not a logical
consequence of (1) and (2) (in other words, the commutativity of + cannot be deduced
from (1) and (2))

1) ∀x.0 + x = x
2) ∀x∀y.s(x) + y = s(x + y)
3) ∀x.x + 0 = x

0 denotes a constant, x and y variables and s a functional symbol.

p) Can you construct a model for the set of formulas below?

∀x.f(a, x) = x

∀x.f(s(x), y) = s(f(x, y))

∀x.s(p(x)) = x

∀x.p(s(x)) = x

∀x.f(p(x), y) = p(f(x, y))

a denotes a constant, x and y variables, and f , s, and p functional symbols. �

5.2.2. A variant: multi-sorted structures

In section 5.2.1, it was mentionned that it was not necessary to specify what
domain a variable can get its values from in a formula.

However, it is common in practice to want to identify these domains (sets that are
named sorts), in particular, when different variables can get their values from domains
of different types (for example, scalars and vectors in vector spaces).

5.2.2.1. Expressive power, sort reduction

We may wonder whether using sorts increases the expressive power of FOL, i.e.
if more things can be expressed with sorts than without or if this is simply syntactic
sugar. The answer is that the expressive power of FOL with sorts is the same as that
of FOL, and this result is proved using the so-called sort reduction technique.

M =< D, E ;F ,R >

– The signature is extended with predicates PD and PE .

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 151

– We consider the structure

M′ =< D
⋃

E ;F ,R
⋃

{RD, RE} >

where RD = D, RE = E (RD and RE , are unary relations, i.e. subsets of D and E,
respectively) and:

afp(PD) = RD and afp(PE) = RE (see definition 5.6).

– Hence, if sorts were used to write formulas, it suffices to replace (as usual, F [x]
means that variable x occurs in wff F):

∀x ∈ D.F [x] by ∀x.PD(x) ⇒ F [x]

∀x ∈ E.F [x] by ∀x.PE(x) ⇒ F [x]

∃x ∈ D.F [x] by ∃x.PD(x) ∧ F [x]

∃x ∈ E.F [x] by ∃x.PE(x) ∧ F [x]

REMARK 5.10.– (theory, closed theory, and complete theory). In definition 3.9, we
defined the notion of a formal theory. Here, we introduce the notion of a theory, along
with essential definitions and properties of theories, that deal with semantics.

– Once the notion of consequence has been introduced (see definitions 2.4 and 2.6,
it can be syntactic or semantic), a theory is closed iff it is closed by the consequence
relation (according to Gödel’s completeness theorem, see remark 5.21, we can use �
or |=).

– A theory T is complete (in L1) iff the set of its consequences is maximal
consistent (i.e. if it is consistent and none of its supersets is consistent).

– A set of axioms of a theory T is a set of cwff with the same set of consequences
as T . T is a set of axioms of T and ∅ is a set of axioms of T iff T is the set of valid
cwffs of L1 (from a semantical point of view). T is finitely axiomatizable iff it is
axiomatizable by a finite set of axioms.

– (See remark 3.15) The standard way of specifying a theory is to provide a set of
axioms that define it.

Here is another way of proceeding: given a structure M and an interpretation I
of L1, the theory M is the set of all cwffs F of L1 such that M |=I F . Theory M is
complete.

– A theory T is complete iff for all cwffs F, either T |= F or T |= ¬F . % This is
to be compared with the notion of completeness for a formal system (definition 3.12).

Given a theory T , statements 1 to 4 below are equivalent:

1) the set of consequences of T is maximal consistent;

2) T is complete (i.e. for all cwffs F , either T |= F or T |= ¬F);

3) T has exactly one model;

4) there exists a model M such that for all cwffs F , T |= F iff M |= F . �

152 Logic for Computer Science and Artificial Intelligence

5.2.3. Theories and their models

Two isomorphic structures (see definition 5.5) do not differ on anything essential.

The following theorem confirms this intuition and shows that FOL does not permit
us to distinguish between two isomorphic structures.

THEOREM 5.1.– (structure discrimination). Let M1 and M2 denote two isomorphic
structures. Then, for all wffs F of FOL,

M1 |= F iff M2 |= F .

PROOF.– (intuition). By structural induction (i.e. for all objects introduced by the
inductive definition of wffs, see definition 5.1). �

It is legitimate to wonder whether the converse is also a theorem.

The negative answer to this question is given by the following theorem:

THEOREM 5.2.– (non-standard model). There exists a set of formulas S of FOL that
admits the structures M1 = < N, {<N} > and M2 = < D, {<Q} > as models
(see the definition below), where M1 and M2 are not isomorphic (example given by
Crossley et al.).

PROOF.– Consider the following set of formulas (we indicate as a comment, i.e. a line
preceded by %, the desired interpretation of predicate P):

1) ∀x¬P (x, x) % irreflexive

2) ∀x∀y. P (x, y) ⇒ ¬P (y, x) % asymmetric

3) ∀x∀y∀z. P (x, y) ∧ P (y, z) ⇒ P (x, z) % transitive

4) ∀x∀y. P (x, y) ∨ P (y, x) ∨ x = y % total relation. For the
axiomatization of =, see section 9.1.4.

5) ∃x∀y.¬P (y, x) % there is an initial element

6) ∀x∃y[P (x, y) ∧ ∀z(¬(P (x, z) ∧ P (z, y)))] % every element has a
unique immediate successor

7) ∀x[∃y(P (y, x) ⇒ ∀z(P (z, x) ⇒ P (z, y)))] % every element, except for
the first, has a unique predecessor

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 153

It is simple to check that:

M1 = < N, {<N} > (where <N denotes the usual order relation in N) is a model
of S.

Now consider the following sets:

D1 = {0} ∪ {1− 1
n | n ∈ N, n �= 0} % [0, 1[

D2 = {1 + 1
n | n ∈ N, n > 1} %]1, 3

2]

D3 = {3− 1
n | n ∈ N, n �= 0} % [2, 3[

D = D1

⋃
D2

⋃
D3

and the structure M2 = < D, {<Q} > (where <Q denotes the usual order
relation in Q).

It is simple to verify that this is also a model of S.

But M1 and M2 are not isomorphic structures, as can be verified by taking an
element of D, for example, 3

2 (or 4
3 , or 5

4 , etc.), which has an infinity of predecessors,
which is not the case for any element of N (see digression 5.3 and definition 5.5).

M2 is called a non-standard model because it is not isomorphic to the intended
model M1, which is called the standard model.12 Note that Peano’s axioms are
categorical in second-order logic (SOL). �

5.2.3.1. How can we reason in FOL?

Similar to what was done in PL, we can provide a syntactical approach (with a
formal system) or a semantical approach (based on interpretations). We shall give
priority to the latter.

Actually, the methods will be obtained thanks to semantic notions, but similar to
what was done, for example, for resolution in PL, the goal is to obtain a deductive
system.

For the syntactical approach, see remark 5.21.

12 If any two models of a theory are isomorphic, then the theory is categorical.

154 Logic for Computer Science and Artificial Intelligence

5.3. Semantic tableaux in FOL

It is obtained by reduction to the method of semantic tableaux in PL.

There are two fundamental differences compared to the method studied for PL
(these differences are inherent to FOL):

– the quantifiers ∀ and ∃ may occur;

– the method may not halt (FOL is undecidable).

The way we proceed is basically intuitive and is based on the same ideas as the
corresponding formal system.

The Löwenheim–Skolem theorem (theorem 5.4) ensures that it is possible to
restrict the search for models of FOL formulas to denumerable domains.

From now on, we therefore restrict ourselves to denumerable universes
(interpretations and models), which are the only ones that can be handled in computer
science.

This enables us to solve the problem of handling quantifiers. On a denumerable
universe

D = {a1, a2, . . . , an, . . .}

∀ and ∃ correspond to:

∀xP (x): P (a1) ∧ P (a2) ∧ P (a3) ∧ . . .

∃xP (x): P (a1) ∨ P (a2) ∨ P (a3) ∨ . . .

(these are not wffs of FOL, but an informal way of stating things).

There are two important questions that need to be asked:

– when variables are replaced by elements of the domain D, what we obtain is
generally not a wff of FOL (see definition 5.1). However, intuition, together with
the habits of mathematical practice, suggest that “this does not matter”. Indeed, in
mathematical practice, it is not necessary to declare signatures, and symbols are
introduced when they are needed. Furthermore, in general, the domain of discourse
(semantical point of view) shall be described using a set of symbols that is disjoint
from the one used to write formulas (syntactic point of view). We can therefore
assume that, each time we are searching for models of FOL formulas (or proving
that they do not have any), we have at our disposal a denumerably infinite set of
parameters, denoted by Par (where Par∩C = ∅, see definition 5.1), that will replace
the variables occurring in formulas and will also denote the values of closed terms;

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 155

– the second key point is that, in the proof of the Löwenheim–Skolem theorem
(theorem 5.4), we assume that the considered formula F is in Skolem normal form
(written sk(F)), i.e. in a form that is not necessary to treat the formula with the method
of semantic tableaux.

A capital operation to obtain sk(F) is the elimination of existential quantifiers
by Skolemization. When replacing ∀x∃yP (x, y) by ∀xP (x, f(x)), Skolemization
introduces a function f (which is not defined, but whose existence is guaranteed by
the AC). This function can be replaced by its graph with domain and codomain Par,
meaning that ∀x∃yP (x, y) will be replaced by P (a1, a2), P (a3, a4), . . .

Using an argument similar to the one that occurs in the proof of the Löwenheim–
Skolem theorem, we could think: if the formula ∀x∃yP (x, y) has a model M with
uncountably infinite domain D, this means (see definition 5.6) that for all x ∈ D,
there exists y ∈ D such that PM(x, y) (where PM is the relation assigned to P in the
model). But if this is true for all x ∈ D, it must also hold for a denumerable subset
of D, and, in particular, up to a renaming, on the domain Par; see also section 5.4.

A similar reasoning applies to formulas that are exclusively quantified with ∀’s.

We shall use the following equivalent formulas (not doing so can lead to errors;
see exercise 5.3):

∀xP (x) K ∀xQ(x) is equivalent to ∀xP (x) K ∀yQ(y)

∃xP (x) K ∃xQ(x) is equivalent to ∃xP (x) K ∃yQ(y)

where K ∈ {∧,∨,⇒,⇔},

as well as:

¬∀x P is equivalent to ∃x ¬P

¬∃x P is equivalent to ∀x ¬P

¬∀x ¬P is equivalent to ∃x P

¬∃x ¬P is equivalent to ∀x P

where P denotes a wff.

REMARK 5.11.– The last four rules are frequently used. For example, to express that
function f is not injective:

f injective: ∀x∀y(x �= y ⇒ f(x) �= f(y))

156 Logic for Computer Science and Artificial Intelligence

f not injective: ¬[∀x∀y(x �= y ⇒ f(x) �= f(y))]

is equivalent to:

∃x∃y¬(x �= y ⇒ f(x) �= f(y))

which is equivalent to: % (¬(A ⇒ B) equiv A ∧ ¬B)

∃x∃y(x �= y ∧ ¬(f(x) �= f(y)))

which is equivalent to:

∃x∃y(x �= y ∧ f(x) = f(y)) �

The rules to use for the method of semantic tableaux in FOL are those of section
3.2, together with the equivalent formulas above and the rules of Figure 5.1.

Figure 5.1. Rules for semantic tableaux (FOL)

REMARK 5.12.– It should be clear that, although they are syntactically different from
propositions (base formulas), atomic formulas such as P (a1) where a1 is a constant,
correspond to the definition of propositions and it is correct to consider them as such.
Atomic formulas such as P (x) are often called propositional functions.

To illustrate the ideas, recall H(x) (x is a man). It cannot be evaluated as long as
the value of x is not known. This is not the case for H(a) (Socrates is a man) or H(b)
(The mother of Socrates is a man).

As for PL, a branch will be closed once an elementary contradiction has been
detected (for example, of the form P (a), ¬P (a)), and those are the only ones that can
be detected syntactically (i.e. mechanically). �

REMARK 5.13.– The procedure semantic tableaux (FOL) is non-deterministic, in
other words, choices are free. But when we fail to close a tree, we may wonder if
this is due to the fact that it is indeed impossible to close the tree or if we simply chose
a bad strategy that indefinitely delayed some choices that would have permitted us to
close the tree. Such a strategy is unfair.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 157

Figure 5.2. Procedure semantic tableaux (FOL)

Of course, this does not mean that using a fair strategy (i.e. a strategy that never
delays a choice indefinitely) can transform an undecidable problem into a decidable
one, but it permits us to eliminate some artificial non-terminating cases.

The following example is convincing. �
EXAMPLE 5.8.– Assume that we want to show the soundness of the following
reasoning (a denotes a constant):

∀x∃yP (x, y)
∃yP (a, y)

158 Logic for Computer Science and Artificial Intelligence

If we apply a fair strategy, we easily prove that this is a correct reasoning:

1) ∀x∃yP (x, y)
2) ¬(∃yP (a, y))

↓
3) ∀y¬P (a, y) (2)

↓
4) ∃yP (a, y) (1) x ← a

↓
5) P (a, b) (4) y ← b

↓
6) ¬P (a, b) (3) y ← b

× (5) and (6)

However, if some choices are delayed indefinitely:

1) ∀x∃yP (x, y)
2) ¬(∃yP (a, y))

↓
3) ∃yP (a, y) (1) x ← a

↓
4) P (a, b) (3) y ← b

↓
5) ∃yP (b, y) (1) x ← b

↓
6) P (b, c) (5) y ← c

↓
7) ∃yP (c, y) (1) x ← c

↓
...

�

EXAMPLE 5.9.– Consider the famous syllogism “Every man is mortal. Socrates is a
man. Therefore, Socrates is mortal”. Its translation in FOL is:

1) ∀x(H(x) ⇒ M(x))
2) H(a)
3) M(a)

where:

H(x): x is a man.

M(x): x is mortal.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 159

a: Socrates.

To prove that the reasoning is correct, we consider the set

{∀x(H(x) ⇒ M(x)), H(a),¬M(a)}

�

EXAMPLE 5.10.– Consider the reasoning:

∀x(P (x, b) ⇒ P (a, b))
¬P (a, b)

¬∃xP (x, b)

We try to construct models for the set of wffs 1, 2, 3 below (2 is the negation of
the conclusion).

Note that, in this example, we used some general principles in the method
(indicated in the algorithm) that correspond to normal practices in mathematics:

– we replaced ∃x by c, a fresh constant (that did not occur in the considered wffs);

– once we have introduced a constant in place of ∃x, we are no longer allowed to
use (2) (which is why we mark (2) as used (

√
));

– in (3), variable x can potentially be replaced infinitely many times, which is why
it cannot be marked as used. We see that ∀x can cause trees to be infinite;

160 Logic for Computer Science and Artificial Intelligence

– similar to the case of PL, in which each wff that we used was (implicitly) marked,
we mark (1) with

√
. �

EXAMPLE 5.11.– A problem arises: what happens if the reasoning that we are
verifying is not correct, in other words, if the associated set of wffs is not
contradictory? The answer is the same as in PL: there will be open branches. But
the difference is that there may be infinite branches in FOL. We examine a case in
which the method halts and others in which it does not.

∃xP (x)
∀xP (x)

We thus consider the set of wffs 1,2 below

1) ∃xP (x)
√

2) ¬(∀xP (x))
↓

3) ∃y¬P (y)
√

↓
¬P (a) in (3) y ← a

↓
P (b) in (1) x ← b

We halt without being able to close the tree. We have a model of the set of wffs,
i.e. a counter example of the initial reasoning. The meaning of the open branch is
simple: it is a unary relation (i.e. a property) corresponding to P that is true for b (i.e.
b belongs to the relation) and false for a (i.e. a does not belong to the relation). This
interpretation makes the premises true and the conclusion false.

More formally, an interpretation I can be extracted from the open branch of the
tableaux (see definition 5.6), which is a counter example of the proposed reasoning:

M =< D; {R} >

with:

D = {a, b}

R = {b}

in I, afp : P �→ R

In other cases, it is not possible (for the method, a human would easily realize that
it will not halt).

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 161

If we want to test the validity of the wff:

∃x∀y¬P (x, y)

we test the unsatisfiability of:

¬(∃x∀y¬P (x, y))
↓

∀x∃yP (x, y)
↓

P (a1, b1)
↓

P (a2, b2)
↓

P (a3, b3)
...

“we can see” that the method is trying to construct an infinite model (think of D: N
and P (x, y): x < y). �

EXAMPLE 5.12.– We want to test whether the following reasoning is correct using
the method of semantic tableaux.

All engineers have a university diploma
Some people who have a university diploma are poor

Some engineers are poor.

This is formalized in FOL using the following predicates:

I(x) : x is an engineer;

D(x) : x has a university diploma;

P (x) : x is poor.

∀x(I(x) ⇒ D(x))
∃x(D(x) ∧ P (x))
∃x(I(x) ∧ P (x))

We thus try to construct models of the premises and of the negation of the
conclusion.

162 Logic for Computer Science and Artificial Intelligence

The leftmost branch cannot be closed (the method does not detect this property, see
also theorem 5.11) and provides a counter example of the initial reasoning: someone
who has a university diploma (D(a)), who is poor (P (a)), and who is not an engineer
(¬I(a)). We could imagine a universe containing only a poor lawyer, or a universe in
which none of those who are poor and have a university diploma are engineers.

Of course, there can be poor engineers, but the proposed reasoning does not
prove this. �
EXAMPLE 5.13.– A seldom explored characteristic of semantic tableaux is the
possibility to detect in some cases the n-validity of a formula (which means that a
formula is valid in every universeD such that card(D)≤ n, n ∈ N) but can be falsified
in any universe of a greater cardinality. We use the method of semantic tableaux to
show that the wff

A ⇒ ∀xP (x)

where:

A : [∃x∃y∃z((P (x) ∧ P (y) ∧ P (z))
∧(Q(x) ⇔ ¬Q(y))
∧(R(x) ⇔ ¬R(z))
∧(S(y) ⇔ ¬S(z))]

is three-valid.

A states (see Leibniz’s law, section 9.1.4) that there exist three distinct objects
x, y, z.

The last three conjuncts express the fact that each of the tree objects is different
from the other two, as a given object cannot have and not have a property.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 163

We analyze what happens in universes of cardinality 1, 2, 3 (branches are identified
with the standard notation on trees):

card(D) = 1

a = b = c = d contradiction in branch 1.

card(D) = 2

a = b = c contradiction in branches 1.1 and 1.2.

a = b = d contradiction in branch 1.

a = c = d contradiction in branch 1.

b = c = d contradiction in branch 1.

a = b and c = d contradiction in branch 1.

a = c and b = d contradiction in branch 1.

a = d and b = c contradiction in branch 1.

164 Logic for Computer Science and Artificial Intelligence

card(D) = 3

a = b contradiction in branches 1.1 and 1.2.

a = c contradiction in branches 1.1.1; 1.1.2; 1.2.1; and 1.2.2.

a = d contradiction in branch 1.

b = c contradiction in branches 1.1.1.1; 1.1.1.2; 1.1.2.1; 1.1.2.2; 1.2.1.1; 1.2.1.2;
1.2.2.1; and 1.2.2.2.

b = d contradiction in branch 1.

c = d contradiction in branch 1.

For universes D with card(D) ≥ 4, no branch can be closed (the open branches
provide counter models of the initial formula). �

REMARK 5.14.– In this example, we implicitly violated the requirements of rule δ
(i.e. that every constant introduced by an existential quantifier must be a fresh constant
that is not introduced by any other existential quantifier).

This violation allows us to enumerate the models of all cardinalities for which a
non-valid formula can be satisfied.

It is not difficult to show that we have extended the method without losing its
soundness and completeness properties. �

We may wonder whether this example can be generalized to any arbitrary n. This
is the topic of the following exercise.

EXERCISE 5.2.– Can we give a wff in FOL that specifies the n-validity for n ∈ N

(i.e. for an arbitrary and fixed value of n)? (See also example 9.31.) �

EXERCISE 5.3.– Can you prove that following reasonings (respectively, wffs) (a) to
(l) given below are correct using the method of semantic tableaux?

a) ∀x(P (x) ∧Q(x)) ⇔ ∀xP (x) ∧ ∀xQ(x)

b) ∃x(P (x) ∨Q(x)) ⇔ ∃xP (x) ∨ ∃xQ(x)

c)

∀x∃yP (y, x)
∀x∀y(P (x, y) ⇒ Q(x, y))

∀x∃yQ(y, x)

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 165

d) Prove that: every irreflexive13 and transitive relation is asymmetrical.

∀x¬P (x, x)
∀x∀y∀z(P (x, y) ∧ P (y, z) ⇒ P (x, z))

∀x∀y(P (x, y) ⇒ ¬P (y, x))

e) ∀x(P (x) ∨Q(x)) ⇒ ∀xP (x) ∨ ∀xQ(x)

f)

∀x(P (x) ⇒ Q(x))
∀x(∃y(P (y) ∧R(x, y)) ⇒ ∃y(Q(y) ∧R(x, y)))

g)

∀x(F (x) ⇒ ∃yG(x, y))
∃xF (x)

∃x∃yG(x, y)
∀x∃yG(x, y)

h)

(∀x∃y(P (x) ∨Q(y))) ⇔ (∀xP (x) ∨ ∃yQ(y))

i)

(∀x(P (x) ∨Q(f(x))) ⇒ ((∀x∃y(P (x) ∨Q(y)))

j) Add a premise to the reasoning of example 5.12 so as to make it correct.

Give the corresponding closed tableaux.

k) Use the method of semantic tableaux to determine if the following formula:
k1) is not valid, and if this is the case, extract a counter example from the

tableaux;
k2) is valid, and in this case give a model obtained using the method of semantic

tableaux.

[∃x(P (x) ⇒ Q(x))] ⇒ [∀xP (x) ⇒ ∃xQ(x)]

l) a, b, c, d, e denote constants.
1) P (a, b)
2) P (b, c)
3) P (c, d)
4) P (d, e)

13 Irreflexive (∀x ¬P (x, x)) �= non-reflexive (∃x ¬P (x, x)).

166 Logic for Computer Science and Artificial Intelligence

5) ∀x∀y∀z.P (x, y) ∧ P (y, z) ⇒ P (x, z)

6) 6. P (a, e) �

EXERCISE 5.4.– Use the method of semantic tableaux to tell whether the following
reasoning is correct or not.

If it is incorrect, extract a counter example of minimal cardinality from the
tableaux.

1) ∃x(P (x) ∧Q(x))

2) ∃x(R(x) ∧ S(x))

3) ∃x(¬P (x) ∧ ¬R(x))

4) ∃x(S(x) ∧Q(x)) �

5.4. Unification in the method of semantic tableaux

In the method of semantic tableaux for FOL, there are two main problems, the first
with rule γ, which corresponds to the instantiation of universally quantified variables,
and the other with rule δ, which corresponds to the introduction of fresh and unique
constants as instantiations of existentially quantified variables.

– The problem with rule γ, which may generate infinite branches, is to find
adequate instances so as to close the branches (that can be closed) at the least possible
depth.

A solution that is frequently adopted in implementations is to replace a universally
quantified variable, say x, by a (free) variable X .

This renaming shall be written as x −→ X .
Of course, the “disappearance” of the universal quantifiers must not hide the fact

that the free variables that were introduced can be replaced by any number of terms.
To keep this property, we introduce renamings of the free variables that we shall note:
x −→ X1, X1 −→ X2, X2 −→ X3, . . .

– The problem with rule δ is that, when there will be, say, n free variables
X1, X2, . . . , Xn that have been introduced in the branch corresponding to formula
F , where ∃y appears in the scope of X1, . . . , Xn, as usual, ∃y will be erased, and y
will be replaced by f(X1, X2, . . . , Xn), where f is a new functional symbol called a
Skolem function. This guarantees the introduction of a new name (constant) each time
there is an instantiation of an existentially quantified variable, which is in the scope of
universally quantified variables (syntactically different terms correspond to different
names), i.e. the most general case.

(This is what we have done systematically, for example, in example 5.11)

– The unification algorithm is used to find the instantiation that allows us to close
branches or to detect whether they (still) cannot be closed, therefore, suggesting

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 167

renamings of the free variables (and implicitly of the existentially quantified variables
that are in the scope of the free variables).

EXAMPLE 5.14.– (unification in semantic tableaux, 1). Prove the validity of the
formula:

1. ∀x(P (x)∨Q(x)) ⇒ (∃xP (x)∨ ∀xQ(x))

1′. ¬[∀x(P (x)∨Q(x)) ⇒ (∃xP (x)∨∀xQ(x))] % negation of 1.

2. ∀x(P (x)∨Q(x)) 1′.

3. ¬(∃yP (y)∨ ∀zQ(z)) 1′. and renaming of the variables

4. P (X) ∨Q(X) 2., x −→ X

5. ¬∃yP (y) 3.

6. ¬∀zQ(z) 3.

7. ∀y¬P (y) 5.

√
8. ∃z¬Q(z) 6.

9. ¬P (Y) 7. y −→ Y

10. ¬Q(a) 8., z ← a

11. P (X) 4. 12. Q(X) 4.

× (9.−11.), {X ← a, Y ← a} × (10.−12.), {X ← a}

Note that in formulas 11 and 12, we have the same X . �

168 Logic for Computer Science and Artificial Intelligence

EXAMPLE 5.15.– (unification in semantic tableaux, 2). Prove the validity (or non-
validity) of the formula:

1. ∀x∃yP (x,y) ⇒ ∃y∀xP (x, y)

1′. ¬[∀x∃yP (x, y) ⇒ ∃y∀xP (x, y)] % negation of 1.

2. ∀x∃yP (x,y) 1′.

3. ¬[∃u∀vP (v, u)] 1′. and renaming of the variables

4. ∃yP (X,y) 2., x −→ X

5. P (X, f(X)) 4., Skolemization

6. ∀u∃v¬P (v, u) 3.

7. ∃v¬P (v, U) 6., u −→ U

8. ¬P (g(U), U) 7., Skolemization

are arguments (5.–8.) unifiable?

% By renaming X −→ X1, U −→ U1 the unification algorithm will always fail
(cycle)

...

therefore, the formula is not valid. �

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 169

EXERCISE 5.5.– Show that the following reasoning is correct using the method of
semantic tableaux with free variables (i.e. using unification).

∀x∃y(P (x) ⇒ Q(y))

∃y∀x(P (x) ⇒ Q(y)) �

5.5. Toward a semi-decision procedure for FOL

It is impossible to design a decision procedure for FOL. Indeed, FOL formulas can
be used to describe any Turing machine, and deciding the validity of an arbitrary wff
is equivalent to solving the halting problem (which is undecidable).

But there is nothing stopping us from searching for a semi-decision procedure for
this logic (only hope for the automation of such a procedure)14, i.e. a procedure that,
if it stops, gives a correct answer, but for which we cannot say anything if it has not
stopped at a given moment.

To test if a formula is satisfiable or valid, we (potentially) have to test infinitely
many universes, which is impossible. We will see that it will suffice to restrict
ourselves to a priviledged universe that will have “good properties”. The first step
in this direction is to transform the formulas into a normal form.

5.5.1. Prenex normal form

When we consider a set of objects that can have many different forms, it is
desirable to have a transformation into a normal form. It permits us, for example, to
study the properties of these objects in a uniform manner and to state these properties
more easily.

DEFINITION 5.8.– A wff of FOL F is in prenex normal form, (denoted by pr(F)) iff
it is of the form:

Q1x1 . . .QnxnM (n ≥ 0) (n = 0 means that the formula contains no quantifier)

where Qi: ∀ or ∃

Q1x1 . . .Qnxn is called the prefix.

14 Another possibility of automation is the use of heuristics, but in this case, we cannot
guarantee that the procedure will halt with a correct answer in all the cases in which the formula
has the expected property.

170 Logic for Computer Science and Artificial Intelligence

M: does not contain any quantifier and is called the matrix.

We implicitely assume that (see definition 5.1) if Qi �= Qj , then xi �= xj (meaning
that a same variable is not quantified by different quantifiers).

THEOREM 5.3.– (existence of the prenex normal form). If F is a wff of FOL, then
there exists an equivalent pr(F).

PROOF.– (outline). Apply the equivalent transformations below and reason by
induction on the number of connectives.

The rules assume that x /∈ V ar(G) (rename if necessary)

1) ¬∀xF if and only if ∃x¬F
2) ¬∃xF if and only if ∀x¬F
3) ∀xF ∧G if and only if ∀x(F ∧G)

3′) G ∧ ∀xF if and only if ∀x(G ∧ F)

4) ∃xF ∧G if and only if ∃x(F ∧G)

4′) G ∧ ∃xF if and only if ∃x(G ∧ F)

5) ∀xF ⇒ G if and only if ∃x(F ⇒ G)

5′) G ⇒ ∀xF if and only if ∀x(G ⇒ F)

6) ∃xF ⇒ G if and only if ∀x(F ⇒ G)

6′) G ⇒ ∃xF if and only if ∃x(G ⇒ F)

7) ∀xF ∨G if and only if ∀x(F ∨G)

7′) G ∨ ∀xF if and only if ∀x(G ∨ F)

8) ∃xF ∨G if and only if ∃x(F ∨G)

8′) G ∨ ∃xF if and only if ∃x(G ∨ F)

1, 2, 3, 4 are sufficient (the other rules can be applied using the equivalent formulas
of exercise 3.2). �

EXAMPLE 5.16.– We can use (this is what we will do in exercise 5.7) the method
of semantic tableaux to prove the validity or non-validity via a counter example of
expressions denoting wffs that we will call “generic formulas” i.e. sets of formulas
with a given structure, that can be characterized by naming their subformulas.

We prove below the validity of rule 5, which is used in the proof of theorem 5.3.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 171

1. ¬{(∀xF [x] ⇒ G) ⇔ ∃x(F [x] ⇒ G)}

2. ∀xF [x] ⇒ G 1. 4. ¬[∀uF [u] ⇒ G] 1 and renaming.
3. ¬[∃y(F [y] ⇒ G)] 1 and renaming.

√
5. ∃v(F [v] ⇒ G)

1 and renaming.

6. ∀y¬(F [y] ⇒ G) 3. 15. F [b] ⇒ G 5, v ← b

16. ∀uF [u] 4.
17. ¬G 4.

7. ¬∀xF [x] 2. 8. G 2. 18. F [b] 16, u ← b

13. F [a] 6, y ← a
14. ¬G 6

× 8− 14.√
9. ∃x¬F [x] 7.

10. ¬F [a] 9, x ← a

11. F [a] 6, y ← a
12. ¬G 6

× 10.− 11.

19. ¬F [b] 15 20. G 15
× 18− 19. × 17− 20

172 Logic for Computer Science and Artificial Intelligence

We will also use the information provided by the method of semantic tableaux
to construct a counter example of an incorrect transformation rule that we might be
tempted to use: as subformula G does not contain the quantified variable x, we can
include G in the scope of ∀x.

1. ¬{(∀xF [x] ⇒ G) ⇒ ∀x(F [x] ⇒ G)}

2. ∀xF [x] ⇒ G 1.
3. ¬[∀y(F [y] ⇒ G)] 1. and renaming.

√
4. ∃y¬(F [y] ⇒ G) 3.

5. ¬(F [a] ⇒ G) 4. y ← a

6. F [a] 5.

7. ¬G 5.

8. ¬(∀xF [x]) 2. 9. G. 2.

× (7.− 9.)√
10. ∃x¬F [x] 8.

11. ¬F [b] 10. x ← b

We can extract a model from the negation of the formula (i.e. a counter example
of the considered formula) in the open branch (there are no longer any universally
quantified formulas: 2 was replaced by 8 and 9), by taking, for example:

F [x] ←− P (x)

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 173

G ←− Q(y)

(This replacement respects the initial hypotheses.)

and the structure M = < D;R >

with:

D = {a, b}

and:

R = {{a}, {b}}

The counter example constructed by the tree corresponds to:

P �→ {a} %, i.e. P (a): T ; P (b): F

Q �→ {b} %, i.e. Q(b): T ; Q(a): F

This is indeed a counter example, the verification is immediate:

(∗) (∀xP (x) ⇒ Q(y)) ⇒ ∀x(P (x) ⇒ Q(y))

∀xP (x): F %, as P (b): F

thus, ∀xP (x) ⇒ Q(y): T

∀x(P (x) ⇒ Q(y)) F %, as P (a) ⇒ Q(a): F

(∗) is therefore evaluated to F in the proposed interpretation. �

Is the prenex normal form unique? The following example shows that this is not
the case.

EXAMPLE 5.17.– (non-uniqueness of the prenex normal form). The order of
application of the rules can lead to different prenex normal forms for the same formula.
Consider the formula:

∀x∃yF ⇒ ∃zG (x, y /∈ V ar(G), z /∈ V ar(F))

– ∀x∃yF ⇒ ∃zG 6′−→ ∃z(∀x∃yF ⇒ G)
5−→ ∃z(∃x(∃yF ⇒ G))

6−→
∃z∃x∀y(F ⇒ G)

174 Logic for Computer Science and Artificial Intelligence

– ∀x∃yF ⇒ ∃zG 5−→ ∃x(∃yF ⇒ ∃zG)
6−→ ∃x(∀y(F ⇒ ∃zG))

6′−→
∃x∀y∃z(F ⇒ G)

– ∀x∃yF ⇒ ∃zG 5−→ ∃x(∃yF ⇒ ∃zG)
6′−→ ∃x(∃z(∃yF ⇒ G))

6−→
∃x∃z∀y(F ⇒ G) �

The prefix of the prenex normal form contains existential quantifiers. To establish
fundamental theorems for the automation of FOL, we must introduce an operation
permitting to eliminate them.

5.5.1.1. Skolemization

Skolemization (from the Norwegian logician T. Skolem) enables us to eliminate
existential quantifiers while retaining the satisfiability of a formula.

The idea is that:

(∗) ∀x∃yP (x, y) admits a model, and f is a function symbol that does not appear
in the considered formula

iff:

(∗∗) ∀xP (x, f(x)) admits a model.

but (∗) and (∗∗) are not equivalent, i.e. are not evaluated to the same truth value
for the same interpretations.

More generally:

the formula:

∀x1∀x2 . . .∀xm ∃y ∀xm+1 . . . ∀xm+pP (x1, x2, . . . , xm, y , xm+1, . . . , xm+p)

yields by Skolemization:

∀x1∀x2 . . . ∀xm∀xm+1 . . . ∀xm+p

P (x1, x2, . . . , xm, f(x1,x2, . . . ,xm), xm+1, . . . , xm+p)

and if m = 0:

∀xm+1 . . .∀xm+pP (a, xm+1, . . . , xm+p)

We will show, using the method of semantic tableaux, that:

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 175

(∗ ∗ ∗) ∀x∃yP (x, y) � ∀xP (x, f(x))

meaning that there exist models of ∀x∃yP (x, y) that are counter models of
∀xP (x, f(x)).

We will therefore try to construct models of:

S = {∀x∃yP (x, y),¬[∀xP (x, f(x))]}

and if we succeed, we will have proved (∗ ∗ ∗).

1) ∀x∃yP (x, y)
2) ∃z¬P (z, f(z))

↓
¬P (a, f(a)) 2), z ← a

↓
P (a, b) 1), y ← b, x ← a

...

Using this tableaux, it is simple to construct the desired counter example (by letting
f(a) �= b):

M =< D; {fM}, {PM} >

with:

D = {a, b}

P �→ PM = {(a, b), (b, a)}

f �→ fM = {(a, a), (b, b)} % total function

Note that the tableaux guarantees that we can always (if (a, b) ∈ PM) transform
a model of ∀x∃yP (x, y) into a model of ∀xP (x, f(x)) (by letting f(a) = b).

This non-equivalence (sometimes called weak equivalence) is not really a problem
when we try to prove that a wff does not have any model (i.e. that its negation is valid).

If we wanted equivalence to be preserved, we would have to replace:

∀x∃yP (x, y)

by:

∃f∀xP (x, f(x)), but this formula is not a wff of FOL (see the syntax of FOL in
definition 5.1 and exercise 9.5).

176 Logic for Computer Science and Artificial Intelligence

REMARK 5.15.– Another way to prove that Skolemization does not preserve
equivalence (but only satisfiability) is to consider the following counter example.

The formula:

(∗) ¬∀xP (x) ∨ P (a)

is valid (as can easily be checked using the method of semantic tableaux or by noticing
that this formula is equivalent to ∀xP (x) ⇒ P (a)).

If we transform (∗), we first obtain:

∃x¬P (x) ∨ P (a)

and using Skolemization:

¬P (b) ∨ P (a)

which is a satisfiable but not valid formula (as P (a) can be evaluated to F and
P (b) to T). �

5.5.2. Skolem normal form

Starting with a FOL formula F , after transformation into prenex normal form and
Skolemization, we obtain the Skolem normal form of F (denoted by sk(F)):

sk(F): ∀x1 . . . ∀xnF
′, where F ′ does not contain any quantifier and V ar(F ′) =

{x1 . . . xn}

Therefore, by theorem 5.3 and the Skolemization property:

(∗) F wff of FOL is satisfiable iff sk(F) is satisfiable

DEFINITION 5.9.– (universe, base, Herbrand interpretation). Given a finite set S of
formulas in Skolem normal form constructed on the set of predicate symbols π and
function symbols F , the Herbrand universe on F (or Herbrand universe of S) is
defined as follows:

– H0 = {a | a ∈ F};

if F does not contain any constant, then H0 = {a};

– Hi+1 = {f (n)
j (t1, . . . , tn) | f (n)

j ∈ F ; tk ∈ Hi}
⋃
Hi (1 ≤ k ≤ n; i ≥

0; n ≥ 1);

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 177

– H(S) = H∞ = Hi∈N.

(With the notation of definition 4.1, we should note Σ(F) instead of H(S).)

The terms in H(S) are obviously closed (see definition 4.1) and are called
Herbrand terms.

The Herbrand base of S is the set of positive literals (i.e. of atomic formulas):

– B(S) = {L[x̄ | t̄H(S)] | L(x̄) ∈ C ∈ S or L(x̄)c ∈ C ∈ S; t̄H(S) ∈
H(S)} ⋃ {AFc}

where L[x̄ | t̄H(S)] means all variables in L are replaced by Herbrand terms.
L[x̄ | t̄H(S)] is a Herbrand instance or simply constant instance or closed instance of
L(x̄). We shall also talk of (see definition 5.10) closed clauses.

AFc: closed atomic formulas in S.

Notation: here, as is customary, x̄ denotes an n-tuple of variables and t̄H(S)

denotes an n-tuple of Herbrand terms.

– A Herbrand interpretation of a set of universally quantified formulas S
constructed on (π,F) is an interpretation IH(S) such that:

D = H(S)

if a ∈ F : afp(a) = a

if f (n)
j ∈ F : afp(f

(n)
j) = f

(n)H(S)
j

with:

f
(n)H(S)
j : (t1, . . . , tn) �→ f

(n)H(S)
j (t1, . . . , tn)

(and of course ti ∈ H(S); 1 ≤ i ≤ n)

if P (m)
k ∈ π: afp(P

(m)
k) = P

(m)H(S)
k

with P
(m)H(S)
k ⊆ H(S)m

– A Herbrand interpretation can be represented by IH(S) ⊆ B(S).

The obvious intuitive meaning is that the literals Ln(t̄) ∈ IH(S) are evaluated to
T on the n-tuples t̄ ∈ H(S)n or that t̄ ∈ L(n)H(S)(t̄).

The set of Herbrand interpretations of S is thus the set of subsets of B(S).

178 Logic for Computer Science and Artificial Intelligence

REMARK 5.16.– The Herbrand universe corresponds to what is called the term
algebra in universal algebras., i.e. (see definition 5.4):

< Σ(F),F > (with Σ(F) �= ∅) (condition that is satisfied if F �= ∅) and

f(n)Σ(F) : (t1, . . . , tn) �→ f (n)(t1, . . . , tn)

f(n)Σ(F) ∈ F

f (n) ∈ F ; ti ∈ Σ(F) (1 ≤ i ≤ n) �

EXAMPLE 5.18.– S = {C1, C2, C3}

C1 : ∀x P (x)

C2 : ∀x.¬P (x) ∨Q(f(x))

C3 : ¬Q(f(a))

H(S) = {a, f(a), . . . , fn(a), . . .}

B(S) = {P (a), Q(f(a)), P (f(a)), Q(f(f(a))), . . .}

a Herbrand interpretation:

IH(S) = {P (a), Q(f(a))}

meaning that P (a) is evaluated to T and that P is evaluated to F on all other elements
of H(S). Q(f(a)) is evaluated to T and Q is evaluated to F on all other elements
of H(S).

Another Herbrand interpretation:

IH(S) = {P (a), P (f(a)), P (f(f(a))), . . .}

meaning that P is evaluated to T on all elements of H(S), and Q to F on all elements
of H(S). �

EXERCISE 5.6.– Let S denote the following set of wffs:

S = {P (a), ∀x.P (f(x)) ∨ ¬Q(f(x)), Q(a)}

Can you give three Herbrand models of S? Which ones? �

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 179

REMARK 5.17.– By construction, the Herbrand universe (and the Herbrand base) of
a set of formulas S is either finite (if no function symbol occurs in S) or denumerably
infinite.

As a consequence, the number of Herbrand interpretations for a set of formulas S
is either finite or uncountably infinite (see exercise 3.1). �

For example, we can give an uncountably infinite model of the formula
∀x∃yP (x, y), for example, < R, < >, and we can also give a denumerably infinite
one, for example, < N, < >. This example is a particular instance of the following
theorem.

THEOREM 5.4.– (Löwenheim–Skolem). If a FOL wff F has a model, then it also has
a denumerable model.

PROOF.–

– It suffices to consider sk(F), see (∗) in section 5.5.2.

– We assume that D is the domain of discourse of the model of sk(F).

– If a universally quantified wff (such as sk(F)) is satisfied on a domain D, then it
is also satisfied on a domain D′ ⊆ D (see definition 5.6 and remark 3.39).

– We consider H(sk(F)) from which we will construct a denumerable set D′.
– We begin by the (necessarily finite) set of constants in F or by the additional

constant, which will denote, in the model, elements of D. These will also be elements
of D′.

– The terms f (n) H(sk(F))(t1, . . . , tn) denote elements of D in the model (see
definition 5.6) that are added to D′ (D′ is closed by this operation, by definition of a
Herbrand universe).

– By construction D′ is either finite or denumerably infinite (see remark 5.17).
This proves the theorem. �

EXAMPLE 5.19.– Consider the wff:

F : ∀x∃yP (x, y)

with the intended interpretation: for all reals there exists a greater real;

we obtain by Skolemization:

sk(F) : ∀xP (x, f(x))

A model can be constructed on the structure:

180 Logic for Computer Science and Artificial Intelligence

M = < R; {fR}, {<R} >

where fR : R → R ; fR(x) = x+ 0.5

f �→ fR and P �→<R

H(sk(F)) = {a, fn(a) | n ≥ 1} = {fn(a) | n ≥ 0}

if, for example, we fix a �→ −5, we obtain

f(a) �→ −4.5

f2(a) �→ −4

f3(a) �→ −3.5

f4(a) �→ −3

...

D′ = {−5,−4.5,−4,−3.5,−3, . . .}

A Herbrand model:

M = B(sk(F)) = {P (x, f(x)) | x ∈ H(sk(F))}. �

We have the following immediate corollary:

COROLLARY 5.1.– (Löwenheim–Skolem for finite sets of formulas). If S is a finite
set of FOL wffs that admits a model, then S admits a denumerable model.

PROOF.– Let S = {f1, f2, . . . , fn}.

By definition (see definition 3.8)S has a model iff there exists a model that satisfies
all the formulas in S, i.e. iff:

F :
∧n

i=1 fi has a model.

The corollary is proved by applying theorem 5.4 to F . �

REMARK 5.18.– The Löwenheim–Skolem theorem also applies to denumerably
infinite wffs of FOL: if S is a denumerably infinite set of wffs of FOL that has a
model, then S has a denumerable model. �

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 181

REMARK 5.19.– (an important consequence of the Löwenheim–Skolem theorem).
An immediate consequence of the Löwenheim–Skolem theorem is that the intended
interpretation of a wff of FOL is not unique: there can also be unintended
interpretations.

As a consequence, FOL formulas cannot characterize uncountably infinite sets15,
because we know that along with such a set, they will also admit a denumerable model
(i.e. they will also characterize a denumerable set). �

The Löwenheim–Skolem theorem permits us to imagine a mechanical validity test
(as it will be performed on denumerable domains).

There remain two questions that, if answered positively, make the existence of
such a test impossible:

– would we have to test all interpretations on a given denumerable domain?

– would we have to test all denumerable domains?

The answer to both questions is (fortunately) negative.

REMARK 5.20.– (on interpretation domains). Before we formalize these answers,
note that the only requirement on the domain of an interpretation is that it should
not be empty. It can, in particular, consist of terms without variables (closed terms)
constructed on the same signature as (the Skolem normal form) of the initial
formula. �

The negative answer to the first question is a result of the following theorem.

THEOREM 5.5.– We can test the validity of a wff of FOL on a denumerable domain
without taking interpretations into account.

PROOF.–

– Let F denote the wff whose validity we want to test.

– ¬F is satisfiable iff sk(¬F) is sat (see section 5.5.2).

– F is valid iff ¬F is unsatisfiable.

– ¬F is unsatisfiable iff sk(¬F) is unsatisfiable.

– To test the validity of F , we therefore test whether sk(¬F) is unsatisfiable.

15 I.e. specify uncountably infinite sets and none other.

182 Logic for Computer Science and Artificial Intelligence

– Let D denote the domain on which we want to test the unsatisfiability of sk(¬F);
D = {a1, a2, . . . , an, . . .}.

– We assume that card(V ar(sk(¬F))) = k > 0 (V ar is the set of variables and
all variables are universally quantified by definition of the Skolem normal form).

– We want to enumerate the k-tuples of elements of D, that will be denoted by
ai, i ∈ N.

% A bijection Nk → N can be defined by:

(a1, a2, . . . , ak) �→ 2a1 +2a1+a2+1 +2a1+a2+a3+2 + . . .+2a1+a2...+ak+k−1 − 1

– Testing the universally quantified formula sk(¬F) reduces to testing sk(¬F) on
all the elements of Dk.

– We therefore consider
⋃

i∈N sk(¬F)[x | ai] % x: k-tuples of variables of
sk(¬F).

– If
⋃

i∈N sk(¬F)[x | ai] is unsatisfiable then ∃j ∈ N such that⋃j
i=1 sk(¬F)[x | ai] is unsatisfiable (propositional test; contrapositive of the

compactness theorem for PL, theorem 3.3).

– This test is independent of the interpretation of the function symbols (and, in
particular, of the constants) and of the predicates. �

The negative answer to the second question is given by the following theorem.

THEOREM 5.6.– A wff for FOL F is satisfiable iff it is satisfiable on the domain
H(sk(F)).

PROOF.– If :

– We consider sk(F).

– F is satisfiable iff sk(F) is satisfiable (see section 5.5.2).

– By hypothesis, sk(F) is satisfiable on H(sk(F)) % (see remark 5.20).

– Therefore, F is satisfiable.

Only

– If F is satisfiable, then F is satisfiable on denumerable domain D (Löwenheim–
Skolem theorem, theorem 5.4).

– We repeat the reasoning of theorem 5.4, but instead of taking elements in D, we
take the Herbrand terms that denote them to construct another denumerable set D′.

– D′ = H(sk(F)). �

The following theorem, which simply merges theorems 5.5 and 5.6, is essential for
the automation of FOL.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 183

THEOREM 5.7.– (Herbrand). A wff of FOL F is valid iff there exists a finite set of
instances of sk(¬F) that is unsatisfiable (contradictory).

PROOF.–

– F is valid iff ¬F is unsatisfiable.

– ¬F is satisfiable iff sk(¬F) is satisfiable (see section 5.5.2).

– sk(¬F) is unsatisfiable iff HI(sk(¬F)) is unsatisfiable % HI: Herbrand Instances.

(semantic definition of universally quantified formulas, see definition 5.6)

– If HI(sk(¬F)) is unsatisfiable then there exists a finite subset of HI(sk(¬F)) that
is unsatisfiable, (up to a syntactic modification, HI are propositional, and we may
apply the (contrapositive of) the compactness theorem for PL (theorem 3.3)). �

It is clear that Herbrand’s theorem enables us to design a semi-decision procedure
for FOL:

Figure 5.3. Semi-decision procedure for FOL

REMARK 5.21.– (completeness of FOL). Gödel’s completeness theorem16 for FOL
can be stated as follows: there exists a formal system in which every valid FOL
formula has a proof.

The following is a formal system for FOL.

16 Should not be confused with Gödel’s incompleteness theorem, which is much more popular
(see remark 3.28 and section 5.9).

184 Logic for Computer Science and Artificial Intelligence

SFOL =< L1,R1,A1 > with:

L1: see definition 5.1

R1: the inference rule schema MP from S1 together with the inference rule
schemas G and P below:

G :
F ⇒ G(x)

F ⇒ ∀xG(x)

P :
G(x) ⇒ F

∃xG(x) ⇒ F

x /∈ V ar(F)

A1: the axiom schemas (A1), (A2), and (A3) of S1 together with (A4) and (A5)
below:

(A4) ∀xF (x) ⇒ F (t) t: a term

(A5) F (t) ⇒ ∃xF (x) t: a term

From a conceptual point of view, a formal system can be characterized as a
“machine that produces (and tests) theorems in a given logic”, we can therefore view
SEMI_DEC_PROC_FOL as a formal system for FOL and theorem 5.7 as a completeness
theorem for FOL.

This theorem enables us to replace a test of validity on all interpretations
(semantical notion) by a test of the existence of a proof (syntactical notion of a
proof). �

REMARK 5.22.– (very, very long proofs). To illustrate the idea, consider SFOL from
remark 5.21, but the property below holds for all systems S for which �S T ? is
undecidable (immediate by analyzing the proof).

Property:

The length of a theorem T , denoted by length(T), is the number of symbols (from
the vocabulary of the corresponding formal system) in its statement. Similarly, the
length of a proof is the number of symbols in the proof (other definitions can be given
such as number of steps, etc.).

For any recursive function (i.e. computable by an algorithm) f , there exist a wff T
of FOL such that �SFOL T , with length(T) = n (n ∈ N) such that the shortest proof
of T has at least length f(n).

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 185

PROOF.–

– Assume that this property does not hold.

– There therefore exists a recursive function F for which every theorem T of
length n has a proof of length at most F (n).

– It thus suffices to enumerate the finite set of all sequences of length, at most
F (n) constructed on a finite vocabulary to identify a proof of T .

– This would be a decision procedure enabling us to decide whether a wff is a
theorem of SL1O. Such a procedure cannot exist and we obtain a contradiction.

– Note that there exist theorems in SL1O of length, say, N , such that their shortest
proofs are of length 10100×N , for example. �

It is natural to wonder whether there is a compactness theorem for FOL.

The answer is the topic of the next theorem.

THEOREM 5.8.– (compactness of FOL).

S: set of wffs of FOL.

If every finite subset of S is satisfiable, then S is satisfiable.

PROOF.–

– If S is finite, the proof is trivial, as S is satisfiable by hypothesis.

– S = {F1, F2, . . . , Fn, . . .} = {Fi | i ∈ N} (see remark 5.2).

– If a set of formulas is satisfiable, then so are all its formulas (Warning! The
converse is not true, as all the formulas in a set have to be true in the same
interpretation for a set of formulas to be satisfiable).

– Instead of S, we can consider S′ = {sk(Fi) | i ∈ N} (see section 5.5.2).

– It is sufficient to consider H(sk(Fi)) as a domain to test satisfiability (see
theorem 5.6).

– We enumerate the (increasing) finite sets of closed instances (i.e. propositional)
of:

S1 = {sk(F1)}, S2 = {sk(F1), sk(F2)}, . . . , Sn =
{sk(F1), sk(F2), . . . , sk(Fn)}, . . .

– As each formula involves a finite number of symbols, the sets of propositional
formulas Si ; i ∈ N are finite; thus, by hypothesis (and theorem 5.6), Si ; i ∈ N is
satisfiable.

– By applying the compactness theorem for PL, we conclude that
⋃

i∈N Si is
satisfiable.

– By applying theorem 5.6, we conclude that S is satisfiable. �

186 Logic for Computer Science and Artificial Intelligence

5.6. Semantic trees in FOL

A “natural” way of implementing procedure SEMI_DEC_PROC_FOL is to use
semantic trees.

REMARK 5.23.– We do not have to restrict ourselves to formulas in clausal form, but
the method can be applied to formulas in Skolem normal form, i.e. that are universally
quantified (see definition 5.10 and remark 3.31). �

The method of semantic trees for FOL is the same as that for PL, by considering
literals on the Herbrand base B(S).

Indeed, by considering, for example, the set of formulas from example 5.18 and
the universe H(S):

C1: ∀xP (x) equiv. P (a) ∧ P (f(a)) ∧ P (f(f(f(a))) ∧ . . .

C2: ∀y(¬P (y) ∨ Q(f(y))) equiv. (¬P (a) ∨ Q(f(a))) ∧ (¬P (f(a)) ∨
Q(f(f(a))) ∧ . . .

C3: ¬Q(f(a))

To produce a counter model of S, it is sufficient to give a Herbrand interpretation
that is a counter model of a closed instance of a formula (i.e. of a conjunct on the
right-hand side of “equiv.”).

The following example uses the method of semantic trees to show that the set of
formulas S of example 5.18 is unsatisfiable.

EXAMPLE 5.20.–

where Ci (1 ≤ i ≤ 3) under × means: this interpretation falsifies a closed instance of
formula Ci.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 187

The leftmost branch in the tree corresponds to the first Herbrand interpretation of
S given in example 5.18.

Of course, the tree that is constructed depends on the enumeration order
of B(S). �

Just as for resolution in PL, the resolution rule in FOL applies to sets of clauses.
It is therefore necessary to define clauses in FOL.

DEFINITION 5.10.– (FOL clause, clausal form).

A clause is a wff of the form:

∀x1 . . .∀xnP

where:

V ar(P) = {x1, . . . , xn}

(i.e. all the variables in P are universally quantified)

P :
∨m

i=1 Li

Clauses are usually denoted:∨m
i=1 Li

(variables are implicitly quantified universally)

Li: literal, i.e. of the form:

Lp
i (t1, . . . , tp) or ¬Lp

i (t1, . . . , tp)

A formula is in clausal form iff it is of the form
∧n

i=1 Ci, where theCi’s are clauses.

More frequently, as it was the case in PL (see remark 3.33), we will mention sets
of clauses (or the set of clauses corresponding to a formula) S = {C1, . . . , Cn}, and
we will say that clauses are sets of literals.

If C and D are different clauses, then we always have V ar(C) ∩ V ar(D) = ∅
(possibly after a renaming of the variables).

The clausal form of a wff F can be obtained from sk(F) and the rules on
logical connectives.

188 Logic for Computer Science and Artificial Intelligence

5.6.1. Skolemization and clausal form

Skolemization can make things complicated. Some preprocessing can sometimes
be useful.

1) ∀x∃y(P (y) ∨Q(x))

yields by Skolemization:

1′) ∀x(P (f(x)) ∨Q(x))

(1′) generates an infinite Herbrand universe

but (1) is equivalent to:

∃yP (y) ∨ ∀xQ(x)

(see exercise 5.3 h)) and rename P ← Q; Q ← P)

and after Skolemization we obtain the clause:

P (a) ∨ ∀xQ(x)

which generates a finite Herbrand universe;

and sometimes preprocessing makes matters worse.

2) ∃x(P (x) ∨Q(x))

yields by Skolemization:

P (a) ∨Q(a)

This clause generates a Herbrand universe containing one constant;

but (2) is equivalent to:

∃xP (x) ∨ ∃xQ(x)

which, by Skolemization, yields:

2′) P (a) ∨Q(b)

(2′) generates a Herbrand universe containing two constants.

Sometimes it can “hide” information:

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 189

the formula:

∀xP (x) ∨ ¬∀xP (x)

is obviously a tautology. Skolemizing this formula yields:

∀xP (x) ∨ ∃x¬P (x)

and we obtain ∀xP (x) ∨ ¬P (a),

which is equivalent to:

3) ∀x(P (x) ∨ ¬P (a))

clause (3) will needlessly increase the size of the search space.

It can also increase the size of the problem specification. For the following
formula:

[∃x∀y(P (x) ⇔ P (y)) ⇔ (∃xQ(x) ⇔ ∀yP (y))] ⇔ [∃x∀y(Q(x) ⇔ Q(y)) ⇔
(∃xP (x) ⇔ ∀yP (y))]

the standard clausal form transformation yields 1,600 clauses!

REMARK 5.24.– The notion of Skolemization is related to the one used in the proof-
as-programs approach, in which an algorithm is extracted from a constructive proof
of a program specification.

The intuitionistic version of Church’s thesis17 goes as follows: if Ar is a first-
order predicate of arithmetic, x, y ∈ N and ∀x∃yAr(x, y), then there exists an
algorithm f such that ∀xAr(x, f(x)). �

Herbrand’s theorem and the procedure SEMI_DEC_PROC_FOL enable us to obtain
the following theorems as immediate corollaries.

THEOREM 5.9.– A set of clauses S is unsatisfiable iff for any semantic tree associated
to S there exists a semantic tree that is closed and finite.

THEOREM 5.10.– (Herbrand’s theorem (for clauses)). A set of clauses S is
unsatisfiable iff there exists a finite set of Herbrand instances of S that is unsatisfiable.

17 Its classical version: a function is computable iff it is intuitively computable.

190 Logic for Computer Science and Artificial Intelligence

5.7. The resolution method in FOL

One may wonder whether the resolution rule also applies in FOL. The answer
is yes.

In a famous paper from 1965, J.A. Robinson combined the resolution rule for PL
with the unification algorithm, which led to a calculus with a unique rule permitting
us to automate FOL.

This rule is defined as follows.

DEFINITION 5.11.– (resolution rule for FOL).

P (t11, . . . , t
1
n) ∨ ... ∨ P (tp1, . . . , t

p
n) ∨ α ¬P (s11, . . . , s

1
n) ∨ ... ∨ ¬P (sq1, . . . , s

q
n) ∨ β

σ(α ∨ β)

If σ is the mgu of {t1i
.
= tji | j ∈ [1..p], i ∈ [1..n]} ∪ {s1i

.
= sji | j ∈ [1..q], i ∈

[1..n]} ∪ {t1i
.
= s1i | i ∈ [1..n]}.

This means that the resolvent clause is obtained by unifying all literals
P (ti1, . . . , t

i
n) (1 ≤ i ≤ p), and P (sj1, . . . , s

j
n) (1 ≤ j ≤ q), then applying the rule as

in the propositional case.

In practical implementations, the rule above is replaced by binary resolution
(i.e. p = q = 1, we select two complementary literals, one in each clause) and a
factorization rule that aims at unifying two literals with the same predicate symbols
and the same sign that occur in a same clause.

DEFINITION 5.12.– (binary resolution rule for FOL). Given two clauses:

C1: L(t1, . . . , tn) ∨ α

C2: Lc(t′1, . . . , t
′
n) ∨ β

where:

α, β: disjunctions of literals.

If the system of equations:

{t1 .
= t′1, . . . , tn

.
= t′n}

has mgu σ as a solution.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 191

The binary resolution rule between C1 and C2 is defined by:

Rb−fol :
L(t1, . . . , tn) ∨ α Lc(t′1, . . . , t

′
n) ∨ β

σ(α ∨ β)

Applying a substitution σ to an n-tuple of terms is defined as follows:

σt = σ(t1, t2, . . . , tn) = (σt1, σt2, . . . , σtn)

Applying a substitution σ to a clause is defined as follows:

σ(L1(t1) ∨ L2(t2) ∨ . . . ∨ Ln(tn)) = L1(σt1) ∨ L2(σt2) ∨ . . . ∨ Ln(σtn)

We will note Rb−fol(C1, C2) or simply C = R(C1, C2) (when there is no
ambiguity). C is called the resolvent. C1 and C2 the parent clauses

DEFINITION 5.13.– (factorization). The restriction to two complementary literals
causes the loss of completeness. To recover completeness, we need to add the so-
called factorization rule which, starting with clause:

C : P (t1) ∨ P (t2) ∨ α

with α: disjunction of literals (that may contain other literals of the form P (s)) and
t1 and t2 unifiable, generates:

D : σ[P (t1) ∨ α]

where σ is the mgu of t1 and t2

D is called factor of C.

A clause can have several factors.

EXAMPLE 5.21.– (the need for factorization to retain completeness). The set of
clauses {P (x) ∨ P (y), ¬P (z) ∨ ¬P (u)} is unsatisfiable, but binary resolution
generates infinitely many clauses of the form

P (x) ∨ ¬P (y)

without generating �.

However, the factorization rule generates P (x) and ¬P (z), and the binary
resolution rule generates �. �

192 Logic for Computer Science and Artificial Intelligence

DEFINITION 5.14.–

– Given a clause C, a copy or variant of C is a clause in which all variables of C
have been renamed by fresh variables.

– A clause C is self-resolving iff the resolution rule can be applied on C and a
copy of C. One such example is clause 2 of example 5.22.

EXERCISE 5.7.– (soundness of binary resolution). Use the method of semantic
tableaux to prove that the binary resolution rule for FOL is correct (i.e. that every
model of the parent clauses is a model of the resolvent). �

REMARK 5.25.– (unsatisfiability and satisfiability by resolution). Each branch in a
semantic tree (see section 5.6) denotes a partial interpretation of the set of clauses S;
if S is unsatisfiable, then all the branches will falsify an instance of at least one clause
in S (closed tree). By “unfolding” the closed tree (see the correction of exercise 3.34),
we can obtain a refutation by resolution of a set of Herbrand instances of S. The proof
is completed by using the so-called “lifting lemma” that enables us to relate closed
instantiated clauses (i.e. propositional clauses) and those that are not instantiated. In
other words, the following diagram commutes:

C1, C2 −−−−→ θC1, θC2⏐⏐�σ

⏐⏐� γR

σC1, σC2
R−−−−→ Resolvent

where σ, θ, ρ, and γ denote substitutions (σ and γ are closed substitutions) and R the
operation that yields the resolvent of two clauses.

Soundness and (a consequence of) refutational completeness are often presented
using operator R (see also definition 3.16):

Let S denote a (finite) set of FOL clauses.

– R(S) = S
⋃

{R(C1, C2) | C1, C2 ∈ S}
– R0(S) = S

– Rn+1(S) = R(Rn(S)) pour n ≥ 0

– R∗(S) =
⋃

n≥0 Rn(S)

R∗(S) denotes the search space, of which all strategies try to explore the smallest
subset.

Thus,

– if ∃n ≥ 0,� ∈ Rn(S), then S unsatisfiable.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 193

– if ∃n ≥ 0,Rn+1(S) = Rn(S) and � /∈ Rn(S), then S satisfiable.

– else (FOL undecidable) ? (This alternative is impossible in PL). �

EXAMPLE 5.22.– Consider the clauses 1, 2, and 3 below. We indicate an application
of the resolution rule by specifying, as for PL, the selected clauses and literals,
together with the unifier.

1) P (a)

2) ¬P (x) ∨ P (f(x))

3) ¬P (f(f(f(a))))

4) P (f(a)) (1, 1)− (2, 1) {x ← a}
�

EXAMPLE 5.23.– (what should not be done). We may wonder why it is necessary to
apply the method strictly if “we can see” the replacements that can be done to apply
the resolution rule for PL, in other words, whether we can get rid of unification:

1) P (a)

2) ¬P (x) ∨ P (f(x))

3) ¬P (f(f(f(a))))

4) ¬P (a) ∨ P (f(a)) in 2 : {x ← a}
5) P (f(a)) (1, 1)− (4, 1)

This way of proceeding is correct from a logical point of view (variables in clauses
are universally quantified and can be replaced by any constant), but it is incorrect if
you are asked to apply the resolution rule in FOL.

Furthermore, it neglects the most original and powerful characteristic of the
resolution rule: the presence of the unification algorithm.

Perhaps, you can convince yourselves by trying to “see” what replacements should
be performed to apply resolution between clauses 2 and 3 below:

1) P (a)

2) ¬P (x) ∨Q(g(x, x))

3) ¬Q(g(h(y), y))
�

EXAMPLE 5.24.– (grandparents).

Every human has a parent:

i) ∀x∃yP (y, x)

The parent of a parent is a grandparent:

194 Logic for Computer Science and Artificial Intelligence

ii) ∀v∀u∀w[P (u, v) ∧ P (v, w) ⇒ G(u,w)]

Every human has a grandparent:

iii) ∀z∃sG(s, z)

We want to use the resolution rule to show that (iii) is a logical consequence of (i)
and (ii). We therefore negate and Skolemize (iii): ¬∀z∃sG(s, z) � ∃z∀s¬G(s, z)
� ∀s¬G(s, a). It is also necessary to Skolemize (i).

We consider the set of clauses 1, 2, 3 below.

1) P (f(x), x)

2) ¬P (u, v) ∨ ¬P (v, w) ∨G(u, w)

3) ¬G(s, a)

and we provide a refutation for this set:

4) ¬P (v, w) ∨G(f(v), w) (1, 1)− (2, 1) {u ← f(v)}
% formally speaking, the unifier is {u ← f(v), x ← v}, but as the couple x ← v

is not useful in what follows, it is not included.

5) G(f(f(w)), w) (1, 1)− (4, 1) {v ← f(w)}
6) � (5, 1)− (3, 1) {s ← f(f(a)), w ← a}.

�

EXAMPLE 5.25.– (natural numbers). The following set of clauses translates the
statement 0 is a natural number and if x is a natural number, then so is the
successor of x:

N(a)
¬N(x) ∨N(s(x))

We want to use the resolution rule to show that 3 is a natural number. We therefore
add the following clause to the two previous ones:

¬N(s(s(s(a))))

and we try to derive �.

a) Backward chaining:

¬N(s(s(s(a))))
¬N(s(s(a)))
¬N(s(a))
¬N(a)

�

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 195

b) Forward chaining:

N(s(a))
N(s(s(a)))

N(s(s(s(a))))
↙ ↓

� N(s(s(s(s(a)))))
...

�

EXAMPLE 5.26.– (first negate and then Skolemize). Consider the following
reasoning, formalized in FOL:

1) ∀x∃yQ(x, y)

2) ∀x∀y.Q(x, y) ⇒ P (x, y)

3) ∀x∃yP (x, y)

Can you prove that this reasoning is correct (or incorrect)?

To prove that the reasoning is correct (or incorrect)

using the resolution method

Mr (or Mrs) A proposes:

Skolemize the conclusion, then negate the result, which leads, say, to formula (3′),
and then try to prove the unsatisfiability of the set of clauses obtained from (1), (2),
and (3′)

and

Mr (or Mrs) B proposes:

Negate the conclusion, then Skolemize the result, which leads, say, to formula
(3′′), and then try to prove the unsatisfiability of the set of clauses obtained from (1),
(2), and (3′′).

Who is right?

a) Mr (or Mrs) A

b) Mr (or Mrs) B

c) Both of them

d) None of them

196 Logic for Computer Science and Artificial Intelligence

i) We use the method proposed by Mr (or Mrs) A

∀z∃yP (z, y)
skol.−→ ∀zP (z, f(z))

neg.−→ ∃z¬P (z, f(z))
skol.−→ ¬P (a, f(a))

The set of clauses to refute is thus 1. to 3.:

1) Q(x, g(x))

2) ¬Q(u, v) ∨ P (u, v)

3) ¬P (a, f(a))

4) P (x, g(x)) (1, 1)− (2, 1) {u ← x; v ← g(x)}
5) ¬Q(a, f(a)) (3, 1)− (2, 2) {u1 ← a; v1 ← g(a)}

The resolution rule can no longer be applied; hence {1., 2., 3.} is sat and as a
consequence, the reasoning is incorrect (according to Mr. (or Mrs) A)

ii) We use the method proposed by Mr (or Mrs) B

∀z∃yP (z, y)
neg.−→ ∃z∀y¬P (z, y)

skol.−→ ∀y¬P (a, y)

The set of clauses to refute is thus 1. to 3.:

1) Q(x, g(x))

2) ¬Q(u, v) ∨ P (u, v)

3) ¬P (a, y)

4) P (x, g(x)) (1, 1)− (2, 1) {u ← x; v ← g(x)}
5) � (3, 1)− (4, 1) {x ← a; y ← g(a)}

We have proved that the set of clauses {1., 2., 3.} is unsat, and as a consequence,
the reasoning is correct (according to Mr (or Mrs) B)

Mr (or Mrs) B is right.

Why is that?

Proof in natural language

Q denotes a total relation (1.), i.e. for any object x, there exists an object y that
is related to x in Q. Two objects that are in the relation denoted by Q are also in the
relation denoted by P (2.). Hence, for any object x, there exists an object y that is
related to x in P .

Formal proof (semantic tableaux)

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 197

We consider the set of formulas {∀x∃yQ(x, y), ∀x∀y.Q(x, y) ⇒ P (x, y),
∃x∀y¬P (x, y)}

3′. ∀y¬P (a, y) neg. concl. x ← a
↓

Q(a, b) 1. x ← a, y ← b
↙ ↘

¬Q(a, b) 2. x ← a, y ← b P (a, b) 2. x ← a, y ← b
× ¬P (a, b) 3′. y ← b

×
Explanation

If formula Q is a logical consequence of formula P , then the relationship between
their models is:

P

Q

But as Skolemization can lead to the “loss of models”, after it is performed, we
may get the following relationship between the models of the premises (P) and the
conclusion (Q).

P

Q

The shadowed zone in P corresponds to the counter examples. �

EXERCISE 5.8.– Use the resolution method to prove that the following reasoning is
correct.

1) ∃x[P (x) ∧ ∀y(R(y) ⇒ S(x, y))]

2) ∀x[P (x) ⇒ ∀y(Q(y) ⇒ ¬S(x, y))]

3) ∀x[R(x) ⇒ ¬Q(x)] �

EXAMPLE 5.27.– Consider the set of clauses 1 to 7 below.

We show that this set is unsatisfiable by using a unit strategy (at least one of the
parents is a unit clause). The underlying idea is that the obtained resolvent contains

198 Logic for Computer Science and Artificial Intelligence

strictly less literals than the non-unit parent clause, and the rule thus generates clauses
that are potential candidates for the generation of �.

1) S(x1, f(x1)) ∨ V (x1) ∨ ¬E(x1)

2) C(f(x2)) ∨ V (x2) ∨ ¬E(x2)

3) P (a)

4) E(a)

5) P (x5) ∨ ¬S(a, x5)

6) ¬P (x6) ∨ ¬V (x6)

7) ¬P (x7) ∨ ¬C(x7)

8) ¬V (a) (3, 1)− (6, 1) {x6 ← a}
9) C(f(a)) ∨ V (a) (2, 3)− (4, 1) {x2 ← a}
10) C(f(a)) (8, 1)− (9, 2)

11) S(a, f(a)) ∨ V (a) (1, 3)− (4, 1) {x1 ← a}
12) S(a, f(a)) (8, 1)− (11, 2)

13) P (f(a)) (5, 2)− (12, 1) {x5 ← f(a)}
14) ¬C(f(a)) (7, 1)− (13, 1) {x7 ← f(a)}
15) � (10, 1)− (14, 1)

�

EXAMPLE 5.28.– (a theorem in group theory). We use the resolution rule to show
that every element of a group has a right inverse.

Clauses 1 to 6 below are the clausal form of the set of axioms that define a group
and of the negation of the conclusion.

We apply a backward chaining strategy, meaning that we begin by applying the
resolution rule with the negation of the conclusion as one of the parent clauses, and
we proceed with a linear strategy, meaning that one of the parent clauses is always
the last clause obtained.

This is very close to what a human would do: conclusions (lemmas) do not need
to be memorized for future usage.

Similar to what a program would do, we have systematically renamed variables to
avoid any confusion.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 199

A linear strategy is often represented graphically as follows:

C1 C2

↘ ↙
C3 C4

↘ ↙
C5 C6

↘ ↙
C7

...

1) P (x1, y1, f(x1, y1))

2) ¬P (x2, y2, u2) ∨ ¬P (y2, z2, v2) ∨ ¬P (u2, z2, w2) ∨ P (x2, v2, w2)

3) ¬P (x3, y3, u3) ∨ ¬P (y3, z3, v3) ∨ ¬P (x3, v3, w3) ∨ P (u3, z3, w3)

4) P (a, y4, y4)

5) P (g(u5), u5, a)

6) ¬P (x6, h(x6), h(x6)) ∨ ¬P (k(x6), z6, x6)

7) ¬P (k(a), z7, a) (4, 1)− (6, 1) {x6 ← a, y4 ← h(a)}
8) ¬P (x8, y8, k(a)) ∨ ¬P (y8, z8, v8) ∨ ¬P (x8, v8, a) (3, 4)− (7, 1)

{u3 ← k(a), w3 ← a}
9) ¬P (g(v9), y9, k(a)) ∨ ¬P (y9, z9, v9) (8, 3)− (5, 1) {x8 ← g(u8)}
10) ¬P (g(v10), a, k(a)) (9, 2)− (4, 1) {y9 ← a}
11) ¬P (g(v11), y11, u11) ∨ ¬P (y11, z11, a)¬P (u11, z11, k(a))

(10, 1)− (2, 4) {x2 ← g(v10), v2 ← a, w2 ← k(a)}
12) ¬P (g(v12), y12, a) ∨ ¬P (y12, k(a), a) (11, 3)− (4, 1) {u11 ← a, zg(k(a))}
14) � (13, 1)− (5, 1) {u5 ← g(k(a)), v13 ← g(k(a))} �

EXAMPLE 5.29.– (the monkey and the banana). A monkey wants to eat a banana that
is hanging from the ceiling of a room. The monkey is too small to reach the banana.
However, the monkey can walk in the room, carry a chair that is in the room, climb on
the chair and take the banana to eat it.

We want to describe this situation with a set of clauses. Functional terms can be
used to denote actions.

The question will be: does there exist a state that is reachable from a given
initial state, where the monkey can catch the banana?

In order to solve this problem using resolution, we choose the following
particularly simple formalization (set of Horn clauses, see section 3.9).

200 Logic for Computer Science and Artificial Intelligence

P (x, y, z, s): in state s, the monkey is at position x, the banana at position y, and
the chair at position z.

R(s): in state s, the monkey can reach the banana.

f(x, y, s): the state that is reached from state s, if the monkey walks from x to y.

h(s): the state reached if the monkey is in state s and climbs on the chair.

P (a, b, c, d): the initial state.

The corresponding set of clauses is:

1) ¬P (x, y, z, s) ∨ P (z, y, z, f(x, z, s))

2) ¬P (x, y, x, s) ∨ P (y, y, y, g(x, y, s))

3) ¬P (b, b, b, s) ∨R(h(s))

4) P (a, b, c, d)

The question is ∃uR(u), which will be negated to try to derive �, thus yielding
the clause ¬R(u).

Sometimes, the question is ¬R(u) ∨ Answer(u) to explicitly retrieve the answer
(see solution to exercise 5.9). �

EXERCISE 5.9.– Find the solution to the problem of the monkey and the banana by
applying the resolution rule and a linear strategy. �

EXERCISE 5.10.–

a) Prove by resolution that the set of clauses below is unsatisfiable:

¬P (x) ∨Q(x) ∨R(x, f(x))

¬P (u) ∨Q(u) ∨ S(f(u))

T (a)

P (a)

¬R(a, y) ∨ T (y)

¬T (z) ∨ ¬Q(z)

¬T (w) ∨ ¬S(w)
b) Consider the set of clauses below:

1) P (x) ∨ P (a) ∨R(x)

2) ¬P (y) ∨Q(y)

3) ¬R(z) ∨Q(z) ∨M(z)

4) ¬Q(w) ∨ ¬R(w)

5) ¬M(v) ∨ ¬R(v) ∨ ¬R(a)

Is it possible to prove by resolution:

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 201

i) that it is unsatisfiable?
ii) that it is satisfiable?

iii) we cannot say anything? �

5.7.1. Variables must be renamed

The clause ∀x (P (x) ∨ ¬Q(y)) is equivalent on the Herbrand universe

(see definition 5.9) on Σ = {a, b, f (1)} to

{P (a) ∨ ¬Q(b), P (f(a)) ∨ ¬Q(f(f(b))), . . .}.

But if we want to discover the instances of interest by unification, it is better to
write:

{σ1(P (x1) ∨ ¬Q(y1)), σ2(P (x2 ∨ ¬Q(y2)), . . .}

with:

σ1 = {x1 ← a, y1 ← b} σ2 = {x2 ← f(a), y2 ← f(f(b))},. . .

(the σi correspond to substitutions that would be computed by the resolution rule)

EXAMPLE 5.30.– We prove by resolution that the set of clauses 1,2,3 below is
unsatisfiable:

1) ¬P (x) ∨ P (f(x))

2) P (a)

3) ¬P (f(f(a)))

4) P (f(a)) (1, 1)− (2, 1) {x ← a}
5) P (f(f(a))) (1, 1)− (4, 1) {x ← f(a)}
6) � (3, 1)− (5, 1)

If variables are not renamed in 1, the contradiction cannot be proved (we would
have assimilated ∀ with ∃, i.e. usable only once). �

EXERCISE 5.11.– Is the wff ∃x∀yP (x, y) a logical consequence of ∀x∃yP (x, y)?
With symbols:

∀x∃yP (x, y) |= ∃x∀yP (x, y)?

As usual, x and y denote variables and P a predicate symbol.

Answer using the resolution method. �

202 Logic for Computer Science and Artificial Intelligence

EXERCISE 5.12.– (S1 and resolution). We have already appreciated the general
difficulty of finding a proof in a formal system (for example, S1). Hence, the idea
of trying to do this work automatically by using, for example, the resolution rule.

You are asked:

i) To encode as clauses A1, A2, A3, and MP (see section 3.4) and to prove, using
the resolution rule, that:

�S1 A⇒ A

ii) To rephrase (as you would, for example, to explain it to someone who does not
know the resolution rule) this proof.

Hint: encode x ⇒ y by i(x, y) and use predicate symbol P with the meaning
P (x): x is provable in S1. �

5.8. A decidable class: the monadic class

FOL is undecidable (but semi-decidable). Finding classes or fragments (i.e. sets
of cwffs that are proper subsets of L1 and that are decidable is one of the most
important problems of logic, which is known as the “classical decision problem (for
FOL)”. It can be presented in different ways.

Given F ∈ L1, the problem of:

– satisfiability (coherence, consistency): decide if F is satisfiable;

– validity: decide if F is valid;

– provability: given a formal system S that is correct and complete, decide
whether �S F .

The interest of being able to characterize such classes (or fragments) is clear:
trying to have a “good” expressive power, while retaining “very good” decidability
properties.

In this section, we shall prove the decidability of some fragments of FOL. We
begin by some definitions.

DEFINITION 5.15.– (finitely controllable class, finite model property). A class C is
finitely controllable or has the finite model property iff for all F ∈ C, if F is satisfiable,
then F admits a finite model.

REMARK 5.26.– Every finitely controllable class is decidable. The converse is not
true: there are decidable classes that do not have the finite model property. �

Among the finitely controllable class, we shall study monadic logic.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 203

DEFINITION 5.16.– (monadic class of FOL). The set of cwffs of L1 containing
exclusively unary predicates (and possibly =), but not containing any functional
symbols (in particular, constants) is called the monadic class of FOL (or monadic
FOL), denoted by MFOL=.

If the cwffs do not contain the equality symbol =, then we have the pure monadic
class, denoted by MFOL.

MFOL was used to formalize Aristotle’s syllogistic. See also digression 8.1.

The proof of the decidability of MFOL= is based on the following remarks:

1) To test the satisfiability of a wff of FOL (see definition 5.6), what matters is
the cardinality of the domain of discourse D of the potential model (the definition of
satisfiability does not take the names of the elements of D into account);

2) On a finite domain, say {a1, . . . , an}, ∀xP (x) is equivalent to∧n
i=1 P (ai) and ∃xP (x) is equivalent to

∨n
i=1 P (ai).

3) Key point: (theorem 5.11): proving that MFOL= is finitely controllable by
providing an upper bound on the cardinality of the domains on which it suffices to
test the satisfiability of the formulas in the class.

4) On a finite domain, we can consider all possible evaluations of unary predicates
(and equality between variables) and use property 2 above. There are therefore only a
finite number of interpretations to test.

The following theorem proves to be the key property of the decision procedure for
MFOL=.

THEOREM 5.11.– (MFOL= has the finite model property). A cwff F of MFOL=

containing k predicate symbols and v variables is satisfiable (on a structure M =<
D;R >) iff F is satisfiable on a structure

M′ =< Dmax;R′ > with:

Dmax ≤ 2k × v (k ≥ 0, v ≥ 1)

PROOF.– (detailed outline).

if:

Trivial: if a wff is satisfiable on a domain of a given cardinality, then it is
satisfiable.

only if:

204 Logic for Computer Science and Artificial Intelligence

Define relation R on D:

for a1, a2 ∈ D

a1 R a2 iff:

PM
1 (a1) = PM

1 (a2) and PM
2 (a1) = PM

2 (a2) and . . . and PM
k (a1) = PM

k (a2)

where the Pi’s (1 ≤ i ≤ k) denote the k predicates in F and, as usual, PM
i (aj)

(j = 1, 2) T or F depending on whether Pi is evaluated to T or F on aj .

If we were to rigorously stick to definition 5.6, we would have to say that a1, a2
are in relation R if and only if they belong (or do not belong) to the relation assigned
by the interpretation (model) to Pi (1 ≤ i ≤ k), i.e.

PM
i (a1) iff PM

i (a2) (1 ≤ i ≤ k)

% The idea is that the elements of D on which the predicates are evaluated to the
same truth value are regrouped.

R is an equivalence relation (see definition 3.26).

The proof is trivial and is a result of the properties of equality (see also section
9.1.4):

– reflexive a1 R a1, as PM
i (a1) = PM

i (a1) (1 ≤ i ≤ k) ;

– symmetric: if a1 R a2 then a2 R a1, as if PM
i (a1) = PM

i (a2), then
PM
i (a2) = PM

i (a1) (1 ≤ i ≤ k);

– transitive: if a1 R a2 and a2 R a3, then a1 R a3, as if PM
i (a1) = PM

i (a2) and
PM
i (a2) = PM

i (a3), then PM
i (a1) = PM

i (a3) (1 ≤ i ≤ k).

As there are two possibilities for each Pi (for any aj), there are 2k equivalence
classes.

If we now consider the equalities, that can only relate the v variables (see definition
5.16), it is sufficient, for each equivalence class, to consider at most a1, a2, . . . , av
elements (ai ∈ D ; 1 ≤ i ≤ v). If the equivalence class contains p (p < v) elements,
we consider a1, a2, . . . , ap.

We thus consider:

M′ =< Dmax;R′ >; with:

Dmax =
⋃2k

i=1

⋃p≤v
j=1 a

(i)
j

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 205

i.e. card(Dmax) ≤ 2k × v.

We define the relations in R′:

PM
i ([a]) iff PM

i (a), where [a] is (a representative of) the equivalence class of a
(a ∈ D).

% Recall that equivalence classes of D form a partition of D.

By structural induction (see section 5.2.3) and using properties 1 to 4 of section
5.8, we prove:

|=M F iff |=M′ F . �

REMARK 5.27.– (syllogistic and decidability). Aristotelian syllogisms can be
formalized in MFOL (see remark 2.7). As this is a decidable fragment of FOL and
as the latter is undecidable, syllogistic is not sufficient to reason in FOL. �

EXAMPLE 5.31.– (see also example 5.11). F : ∃xP (x) ⇒ ∀xP (x)

Here, k = 1; v = 1; hence, it suffices to test Dmax = {a, b}.

Indeed, we consider ¬F , and on Dmax, we can obtain the models of ¬F (i.e.
counter examples of F): {¬P (a), P (b)} and {P (a), ¬P (b)}. Hence, F is not
valid. �

EXAMPLE 5.32.– (some cwffs in the monadic class). We have treated some of those
by the method of semantic tableaux in example 5.13, exercise 5.3 (a)-(b)-(h)-(k2), and
exercise 5.4.

Note that, in general, we can detect (non)-validity on universes of a lesser
cardinality than the upper bound of theorem 5.11. �

5.8.1. Some decidable classes

There exist techniques other than the one we used to solve the classical decision
problem for MFOL=. These techniques are beyond the scope of this work.

The decidable fragments of FOL are characterized by the prefixes of the
prenex normal form that is equivalent to the cwff that is provided as an input (see
theorem 5.3).

– Bernays–Schönfinkel: ∃x1 . . . ∃xm∀y1 . . .∀xn.M (also denoted by ∃∗∀∗; M in
MFOL);

– Ackermann: ∃x1 . . .∃xm∀y∃z1 . . .∃zn.M (also denoted by ∃∗∀∃∗);

206 Logic for Computer Science and Artificial Intelligence

– Herbrand: arbitrary prefix and matrix M :
∧n

i=1 Li with Li (1 ≤ i ≤ n):
literals;

– Gödel–Kalmar–Schütte: ∃x1 . . . ∃xm∀y1∀y2∃z1 . . .∃zn.M (also denoted by
∃∗∀2∃∗);

– ∀x∃y∀z-Horn: ∀x∃y∀z.MH with MH :
∧n

i=1 Li and Li (1 ≤ i ≤ n):
disjunction of literals with at most one positive literal.

5.9. Limits: Gödel’s (first) incompleteness theorem

A particularly simple proof of this capital theorem (given by G. Boolos) uses the
following notions: paradox, arithmetic, truth, proof, algorithm and encoding.

Paradox

Here it will be the Berry’s paradox, see example 2.1.

Arithmetic

See example 3.8.

Truth

See section 5.2.1.

Proof

See section 3.3.

Algorithm

Informally, an algorithm is any well-defined computation procedure that admits a
(set of) value(s) as an input and produces a (set of) value(s) as an output. Examples
are a program (in a programming language), a Turing machine, Markov algorithms,
formal systems for arithmetic, etc.

Encoding (in arithmetic)

Encoding a text consists in replacing a word or sentence by another word, a number
or a symbol. In cryptography, a code uses the substitution at the word level, whereas
a cipher uses the substitution at the level of letters. The goal is to hide information.

We shall use a translation that associates to every wff of a given language an
integer (i.e. a word in arithmetic). The goal is not to hide information but to change
its representation.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 207

Arithmetic enables us to uniquely encode into a natural number any sequence of
symbols (i.e. a string on a vocabulary), for example, a wff in L1, instructions of a
Turing machine (or of a program), a computation of a Turing machine (as it can be
described as a sequence of instantaneous descriptions of the Turing machine), proofs
in a formal system, etc.

The first to propose an encoding was K. Gödel (in 1931), the natural number
encoding an expression M has since been known as the Gödel number of M , denoted
by gn(M).

DEFINITION 5.17.– Let M denote an expression (a word) on a vocabulary V .

We assign to each symbol in V an odd number (> 1):

f : V −→ N \ {0, 1, 2}

Given the expression M : γ1γ2...γn

f(γi) = ai ; ai even (1 ≤ i ≤ n)

the Gödel number of M is the natural number:

ng(M) =
n∏

k=1

Prime(k)ak

where Prime(k) is the kth prime number.

If M = ε (i.e. the empty string), then ng(ε) = 1.

For example, for a string M : γ1γ2γ3γ4γ5, ng(M) = 2a1×3a2×5a3×7a4×11a5

Why this encoding? The justification is immediate if we recall the fundamental
theorem of arithmetic (see below).

THEOREM 5.12.– (fundamental theorem of arithmetic). Every x ∈ N (x > 1) can be
represented as

pm1
1 × pm2

2 × ...pmk

k

with pi (1 ≤ i ≤ k) : prime and pi �= pj (for all i �= j).

This representation is unique (up to the commutativity of ×).

An immediate corollary is:

208 Logic for Computer Science and Artificial Intelligence

COROLLARY 5.2.– (uniqueness of the encoding of words). If ng(M) = ng(N),
then M = N . �

DEFINITION 5.18.– (Gödel number of sequences of words). Let Γ : M1M2...Mn

denote a finite sequence of expressions (i.e. words on a vocabulary), the Gödel number
of Γ is defined as:

gn(Γ) =
n∏

k=1

Prime(k)ng(Mk).

An immediate corollary is the following:

COROLLARY 5.3.– (uniqueness of the encoding of sequences of words). If ng(Γ1) =
ng(Γ2), then Γ1 = Γ2. �

REMARK 5.28.– (other encodings). A word or a sequence of words has a unique
gn, but a set of n words (expressions) has n! possible gn. We will always consider
sequences of words, as they each have a unique gn.

Other encodings are possible (and used), for example, the encoding of n-tuples,
which is used in the proof of theorem 5.5. They are also called Gödel numbers. �

We give a version of Gödel’s famous theorem that is particularly interesting in
computer science.

THEOREM 5.13.– (Gödel’s first incompleteness theorem). There is no algorithm that
can produce all true cwffs of arithmetic (i.e. without there being any false cwff in the
list).

PROOF.– A sensible observation about this theorem is that if such an algorithm
were to exist, in order to know whether a conjecture Conj holds or not in
arithmetic, it would suffice to “sit and wait” for Conj or ¬Conj to be added to
the list.

Proof technique: we assume that such an algorithm m exists and we construct a
cwff that is true in arithmetic but is not in the output of M.

If n ∈ N, we will write [n] for ss...s︸ ︷︷ ︸
n

0

where s denotes the successor function and 0 denotes itself. % For example,
4 : ssss0.

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 209

– We will say that a formula F (x) designates n ∈ N if the formula ∀x(F (x) ⇔
x = [n]) occurs in the output of M.

For example, if in the output of M we find

∀x(x + x = ssss0 ⇔ x = ss0),

then formula x+ x = ssss0 designates the integer 2.

– Names are unique: imagine that this is not the case, for example, if the
following cwffs occur in the output of M:

1) ∀x(F (x) ⇔ x = [n])
2) ∀x(F (x) ⇔ x = [p])

then, after replacing F (x) in (2) by the name it designates in (1) we obtain:

∀x(x = [n] ⇔ x = [p]) hence [n] = [p], i.e. n = p.

– If the number of symbols in our formalization of arithmetic is A (if
there are infinitely many variables, they can be generated, e.g. by x and
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, x0, x1, x2, x3, ...) there are at most Ai formulas containing
i symbols.

For any m ∈ N, there are therefore finitely many numbers that are designated by
formulas with at most m symbols. Thus, there are integers that are not designated
by formulas of at most m symbols. Hence, there exists a least one integer that is not
designated by such a formula (we order finitely many designated numbers and take
the successor of the greatest designated number).

– We construct a formula C(x, y) meaning “x is a number that is designated by a
formula containing z symbols”:

C(x, z) : ∀x(F (x) ⇔ x = [n])︸ ︷︷ ︸
F

∧ length(F) = z

length being, for example, the program from example 6.17 feeding it as an input:
∀, x, (, F, (, x,), ⇔, x, =, [, n,],).

We could of course have used any other program that computes the length of a
list18.

– Let B(x, y) denote the formula with the intended meaning: “x is designated by
a formula containing less than y symbols”:

B(x, y) : ∃z(z < y ∧C(x, z))
< is definable in arithmetic: x < y :def ∃z(s(z) + x = y).

18 A program can be viewed as a sequence of instructions, each instruction can have a unique
code, and the encoding of theorem 5.5 enables us to assign a unique natural number to a
program.

210 Logic for Computer Science and Artificial Intelligence

– Let A(x, y) denote the formula with the intended meaning: “x is the smallest
number that is not designated by a formula containing less than y symbols”:

A(x, y) : ¬B(x, y) ∧ ∀u(u < x ⇒ B(u, y))

– Let k denote the number of symbols in A′(x, y). Of course (by inspection), k >
3 and let F (x) denote the formula with the intended meaning “x is the smallest number
that cannot be named by a formula containing less than 10× k symbols”:

F (x) : ∃y(y = [10]× [k]) ∧A(x, y))

Let us see how many symbols F (x) contains:

[10] : ss...s︸ ︷︷ ︸
10

0� 11 symbols

[k] : ss...s︸ ︷︷ ︸
k

0� k + 1 symbols

A(x, y) : � k symbols

F (x) also contains the symbols ∃, y, (, y, ×, =,), ∧,)� 10 symbols

F (x) thus contains a total of k + 22 symbols and as k > 3, k + 22 < 10× k,

thus F (x) contains less than 10× k symbols.

– As mentioned above, there exists a smallest number among those that are not
designated by a formula containing less than m symbols.

Let n be this number for m = 10× k.

n is not designated by F (x), i.e.

(�) ∀x(F (x) ⇔ x = [n]) is not among the outputs of M.

But (�) is a cwff that is true, as n is the smallest number that is not designated by
a formula containing less than 10× k symbols.

We have found a true cwff (i.e. (�)) that is not in the output of M. �

REMARK 5.29.– (incompleteness theorem and constructive mathematics). The
notion of a proof is essential in constructive mathematics, as it is used to explain
the meaning of existence.

From a constructivist point of view, to say that a proposition Φ is true is equivalent
to saying that we can find a proof of Φ. Some authors call this identity the “To assert
is to prove” principle:

First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 211

A-P: Φ ⇔ ∃p (p is a proof of Φ)

The following problem arises naturally: how can Tarski and Gödel’s results be
reconciled with the principles on which constructivism is founded? In other words:
what are these truths that cannot be proved (as according to A-P, truth coincides with
proof)? The answer is that constructivists do not limit themselves to proofs in formal
systems, but principle A-P refers to proofs that are correct from a constructivist point
of view, knowing that provable means provable by any sound means and not provable
in a given formal system.

There are therefore arithmetic truths that cannot be proved in a formal system, but
that can be proved by correct means from a constructivist point of view. �

Chapter 6

Foundations of Logic Programming

6.1. Specifications and programming

The most important task of a programmer (at least till now) can be characterized
as filling the gap g below:

Specification of a problem (Cannot be run) ←− g −→ Program (Can be run)

Logic programming (LP) tends to reduce this gap (and possibly obtain g = 0)
when the specification is given in a logical language (or a language close to a logical
one).

It envisions calculus as a controlled deduction. This is related to the paradigm:

algorithm = logic︸ ︷︷ ︸
what

+ control︸ ︷︷ ︸
how

In LP, the emphasis is put on what the program computes and paying as little
attention as possible to how it computes. It is a declarative form of programming (as
opposed to imperative programming).

We give a first glimpse of such a type of programming.

214 Logic for Computer Science and Artificial Intelligence

EXAMPLE 6.1.– Imagine that in the following graph, we want to know whether there
are paths from A to I , and if so, which ones.

D
•

B ↗ ↘ G
• ↘ ↗ •

A ↗ • ↘ I
• E •
↘ ↗

• •
C ↘ H

•
F

a) We describe the graph using a unary predicate (which corresponds to a property).

Att(x): x is attainable

Premises

Att(A); % Must not be forgotten!

Att(A) ⇒ Att(B);

Att(B) ⇒ Att(D);

Att(B) ⇒ Att(E);

Att(D) ⇒ Att(G);

Att(E) ⇒ Att(G);

Att(G) ⇒ Att(I);

Att(H) ⇒ Att(I);

Att(A) ⇒ Att(C);

Att(C) ⇒ Att(F);

The conclusion:

Att(I);

Foundations of Logic Programming 215

Two essential questions:

i) which inference rule(s) should we use for deduction?

ii) with what strategy(ies) (forward chaining, backward chaining, others)?

In all cases, it is simple to deduce that in this graph, there are two paths from A to
I paths that cannot be found if Att(A) is forgotten.

b) We describe the graph using a binary predicate (that corresponds to a relation):

Path(x, y): there is a path from x to y

As far as questions (i) and (ii) given above are concerned, we decide1 to use:

i) the resolution rule (the conclusion is also called a question). As usual, the
conclusion is negated and we try to derive � (contradiction);

ii) backward chaining with the following rules on the stack for the resolvents: we
always resolve the first clause in the order 1,2,3. . . , with the last resolvent obtained (at
the beginning, the question) and on the last literal that was pushed (at the beginning,
the first literal of the question).

1) Path(A,B)

2) Path(A,C)

3) Path(B,D)

4) Path(B,E)

5) Path(C,F)

6) Path(D,G)

7) Path(E,G)

8) Path(G, I)

9) Path(H, I)

10) Path(x, y) ∨ ¬Path(x, z) ∨ ¬Path(z, y) % non-elementary path

11) ¬Path(A, I) % (neg) question

12) ¬Path(A, z) ∨ ¬Path(z, I) (11, 1)− (10, 1) {x ← A, y ← I}

1 This decision corresponds to the choice that was made in the most famous of all LP languages:
Prolog.

216 Logic for Computer Science and Artificial Intelligence

13) ¬Path(B, I) (12, 1)− (1, 1) {z ← B}
memorize(12,1)− (2,1)

14) ¬Path(B, z) ∨ ¬Path(z, I) (13, 1)− (10, 1) {x1 ← B, y1 ← I}
15) ¬Path(D, I) (14, 1)− (3, 1) {z ← D}

memorize(14,1)− (4,1)

16) ¬Path(D, z) ∨ ¬Path(z, I) (15, 1)− (10, 1) {x2 ← D, y2 ← I}
17) ¬Path(G, I) (16, 1)− (6, 1) {z ← G}
18) � (17, 1)− (8, 1)

Note that, as was mentioned in section 5.7.1, each time clause 10 was used, its
variables were renamed.

If we want to find all solutions, we need to return to the memorized choices. �

REMARK 6.1.– (FOL and databases). In a travel agency, the flights that connect cities
are represented as a graph, with vertices representing cities and edges representing
direct flights between the cities (labelled by, say, .

We will say that a connection between two cities is acceptable if we can go from
one to the other with at most two stops (i.e. three direct flights).

We want to answer questions of the form:

We specify the notion of acceptability in FOL:

[∃z∃u(Flight(x, z) ∧ Flight(z, u) ∧ Flight(u, y))] ⇒ ∀x∀yAcceptable-
flight(x, y)

by applying the rules used in the proof of theorem 5.3 to transform a formula into a
clausal form, we obtain:

¬[∃z∃u(Flight(x, z) ∧ Flight(z, u) ∧ Flight(u, y))] ∨ ∀x∀yAcceptable-
flight(x, y)�

∀z∀u[¬Flight(x, z) ∨ ¬Flight(z, u) ∨ ¬Flight(u, y)] ∨ ∀x∀yAcceptable-
flight(x, y)�

∀z∀u∀x∀y[¬Flight(x, z) ∨ ¬Flight(z, u) ∨ ¬Flight(u, y) ∨ Acceptable-
flight(x, y)]

which is a Horn clause. By adding this clause to the program describing the graph of
flights, we could answer any question on acceptable flights. �

Foundations of Logic Programming 217

EXAMPLE 6.2.– We proceed with a well-known example for computer scientists:
appending two lists.

We will use the fact that every list is a tree, for example, the list [a, b, c] is
represented by the tree:

◦
↙ ↘

a ◦
↙ ↘

b ◦
↙ ↘

c nil

where ◦ denotes the list constructor cons; for example, cons(a[b, c, d]) = [a, b, c, d]
and of course, nil denotes the empty list.

Predicates (and logical formulas in general) do not deliver values (as functions do).
When we want to mention an object (such as the list obtained by appending the
list called x and the list called y), we need to name it:

x︷ ︸︸ ︷
×××

y︷ ︸︸ ︷
×××××
z︷ ︸︸ ︷

××××××××
The program also needs to know that if we add an element to the head of list x,

then it will be at the head of list z:

–

x︷ ︸︸ ︷
×××

y︷ ︸︸ ︷
×××××

–

z︷ ︸︸ ︷
××××××××

The logic program for append is the following (with ◦ replaced by f for the sake
of notational coherence, see definition 4.1).

1) ∀x.append(nil, x, x)
2) ∀x∀y∀z∀u.¬append(x, y, z) ∨ append(f(u, x), y, f(u, z))

2 reads: if appending list x to list y yields list z, then appending cons(u, x)
to y yields the list cons(u, z).

Similar to resolution, we do not write the prefixes:

∀x and

218 Logic for Computer Science and Artificial Intelligence

∀x∀y∀z∀u

that are always implicit.

We now ask the question

append(

[a,b]︷ ︸︸ ︷
f(a, f(b, nil))),

[c]︷ ︸︸ ︷
f(c, nil),

[a,b,c]︷ ︸︸ ︷
f(a, f(b, f(c, nil)))) ?

We prove that the answer is yes for the given specification of append by deducing
it by resolution (after having negated the conclusion, i.e. the question):

3) ¬append(f(a, f(b, nil)), f(c, nil), f(a, f(b, f(c, nil))))
4) ¬append(f(b, nil), f(c, nil), f(b, f(c, nil)))

(3, 1)− (2, 2) {u ← a, x ← f(b, nil), y ← f(c, nil), z ← f(b, f(c, nil))}
5) ¬append(nil, f(c, nil), f(c, nil))

(4, 1)− (2, 2) {u1 ← b, x1 ← nil, y1 ← f(c, nil), z1 ← f(c, nil)}
6) �

(5, 1)− (1, 1) {x2 ← f(c, nil)}
�

Logic as a programming language is not limited to answering yes or no, it also has
the usual capabilities of languages.

The question we will ask will be:

Does there exist a list that is in relation via append with lists [a, b] and [c] ?

EXAMPLE 6.3.– Instead of the resulting list, we write a variable in which we will
recover (if it exists) the list mentioned in the question above.

3) ¬append(f(a, f(b, nil)), f(c, nil), w)
4) ¬append(f(b, nil), f(c, nil), z)

(3, 1)− (2, 2) {u ← a, x ← f(b, nil), y ← f(c, nil), w ← f(a, z)}
5) ¬append(nil, f(c, nil), z1)

(4, 1)− (2, 2) {u1 ← b, x1 ← nil, y1 ← f(c, nil), z ← f(b, z1)}
6) �

(5, 1)− (1, 1) {x2 ← f(c, nil), z1 ← f(c, nil)}
�

REMARK 6.2.– As a side effect of deduction, that answers yes, such an object exists,
the unification algorithm used in the resolution rule allows us to construct the list we
were looking for:

w = f(a, z) = f(a, f(b, z1)) = f(a, f(b, f(c, nil))) = [a, b, c] �

Foundations of Logic Programming 219

REMARK 6.3.– Since we are specifying relations, the distinction between input and
output parameters (as for functions) is of no interest. It is thus natural to ask questions
such as:

Do there exist lists x and y that are in relation via append with the list [a, b, c]?

We obtain as an answer:

x = nil y = [a, b, c]
x = [a] y = [b, c]
x = [a, b] y = [c]
x = [a, b, c] y = nil �

6.2. Toward a logic programming language

We also introduce a syntax that is commonly used in practice (others exist):

Logic syntax Logic programming syntax
A A →; or A;

A ∨ ¬B1 ∨ ... ∨ ¬Bn A → B1 . . . Bn;
¬B1 ∨ . . . ∨ ¬Bn → B1 . . . Bn;

The intuitive meaning being:

A →; means A is given or, to prove A there is nothing to do.

A → B1 . . . Bn; means to prove (solve the problem) A it suffices to prove
(solve) the goals B1 . . . Bn.

→ B1 . . . Bn; means we must prove the goals B1 . . . Bn.

Proving a conclusion (answering a question) boils down to finding �, or,
equivalently, deleting all the goals of the question.

In a clause (also called a rule):

C: A → B1 . . . Bn

A is the head of C or left-hand side of C,

B1 . . . Bn the tail or body of C or right-hand side of C.

Procedure LP can be considered as an abstract interpreter of the Prolog language.

From now on, we will assume that all logic programs are run with LP.

220 Logic for Computer Science and Artificial Intelligence

EXERCISE 6.1.– The strategy that is used by LP may provoke surprises. These
“traps” are easy to correct when we are aware of them. This is the object of the
following exercise.

a) In what is called the cube world, we define the relations on top(x, y) and
above(x, y).

We assume the following state of the world:

c

b

a

The following specification is proposed for this world:

on top(a, b) →; % i.e. a is on top of b

on top(b, c) →; % i.e. b is on top of c

above(x, y) → on top(x, y); % if x is on top of y, then x is above y.

But this specification is incomplete, as a cube can be above another without being
on top of it (for example, a is above c).

Which one of (∗) or (∗∗) below must complete the program?

(∗) above(u, v) → above(u, z) on top(z, v);

(∗∗) above(u, v) → on top(u, z) above(z, v);

To answer, consider the question:

above(c, a);

and analyze the answers given by LP in each case.

b) Give, as a tree, the trace of the execution of LP with the program:

1) P (a, b) →;

Foundations of Logic Programming 221

Figure 6.1. Abstract interpreter of language LP

1) P (c, a) →;

1) P (x, y) → P (x, z) P (z, y); % transitivity

and the question:

P (u, b);

The syntax of the question has been adapted to existing software.

The question in (b) (and similarly for (a)) can be interpreted as:

– The problem is to know whether there exist objects in relation via P with b;

or, as we used to do in the analysis of reasonings:

222 Logic for Computer Science and Artificial Intelligence

– We negate the conclusion, i.e. ¬∃uP (u, b)� ∀u¬P (u, b), and if the reasoning
is correct, we must produce �. �

REMARK 6.4.– We can imagine (and this has indeed been studied and experimented)
an interpreter that uses parallelism to handle non-determinism.

With the program:

P (x, y) → P (y, x);

and the question:

P (a, b) Q(c);

a sequential interpreter does not find any solution and does not halt.

Whereas an interpreter using an AND parallelism (i.e. searching simultaneously
for the solution to all the goals of the question) halts without finding a solution, which
is normal because it is impossible to solve Q(c).

With the program:

P (x, y) → P (y, x);

P (a, b) →;

and the question:

P (a, b);

a sequential interpreter does not find any solution and does not halt.

Whereas an interpreter using an OR parallelism (i.e. searching simultaneously for
all the solutions to one goal of the question) finds a solution. �

6.3. Logic programming: examples

EXERCISE 6.2.– Assuming that N and elementary arithmetic operations are not
incorporated into the interpreter, give the logic programs corresponding to:

a) add (x, y, z): x+ y = z

b) mult (x, y, z): x× y = z

c) less (x, y): x < y

d) divides (x, y): x divides y, with mathematical notations, x | y (examples:
divides (3, 15), divides (2, 8) ¬ divides (3, 10))

e) prime(x): x is a prime number. �

Foundations of Logic Programming 223

EXERCISE 6.3.– Assuming that N and elementary arithmetic operations are not
incorporated into the interpreter, give a logic program that permits us to define the
relation:

fibonacci(n, x): the value fibonacci(n) is x. �

DIGRESSION 6.1.– (regular expressions). Let Σ denote an alphabet (i.e. a finite set
of symbols).

The set of regular expressions (r.e.) on Σ is defined as the smallest set such that:

i) ∅ is a r.e.;

ii) the set {ε} is a r.e. % ε denotes the empty string;

iii) if a ∈ Σ then {a} is a r.e.

iv) if R and S are r.e., then R ∪ S, (R+ S), RS, and R∗ are r.e. (R∗ is called the
Kleene closure)

where:

RS = {xy | x ∈ R, y ∈ S}

R0 = {ε}

Ri = RRi−1

R∗ =
⋃∞

i=0 R
i

R+ =
⋃∞

i=1 R
i

By convention, for singletons, we identify {α} with α. �

EXERCISE 6.4.– Given the following logic program:

1) fact(0, 1) →;

224 Logic for Computer Science and Artificial Intelligence

2) fact(n+ 1, (n+ 1)× y) → fact(n, y);

3) fact(u, v)

where α, β, γ, δ below denote the following substitutions (obtained by application of
the resolution rule):

(1, 1)− (3, 1) α = {u ← 0, v ← 1}

(1, 1)− (2, 2) β = {n ← 0, y ← 1}

(2, 1)− (2, 2) γ = {n′ ← n+1, y′ ← (n+1)×y} % n′ and y′ take the renaming
into account

(2, 1)− (3, 1) δ = {u ← n+ 1, v ← (n+ 1)× y}

Characterize all possible runs of the program using a r.e. that expresses the
sequence of substitutions that are applied. �

EXERCISE 6.5.– In a commonly used LP language, lists are represented as:

[a, b, c, . . . , d]

[a1, a2, . . . , an | X]: ai (1 ≤ i ≤ n) is the ith element in the list, and X is what
remains.

Define the following predicates (relations) in this language:

a) append (x, y, z): List z is the concatenation of lists x and y;

b) reverse (x, y): List y is list x reversed;

c) palindrome (x): List x is a palindrome;

d) member (x, y): x is a member of list y;

e) subset (x, y): x is a subset of y (where sets are represented by lists);

f) consec (u, v, x): elements u and v are consecutive in list x. �

Can we do classical algorithmic in LP?

The answer is yes, the key to doing so: go back to the specification.

Foundations of Logic Programming 225

EXAMPLE 6.4.– (syntactic analysis). Give a logic program that recognizes the words
of the grammar whose production rules are:

S −→ c

S −→ aSb

% This rule does not specify how to associate symbols in the string

We write f(a, b) : a • b % string concatenation

(∗) −→

If we want to know whether the word aacbb, which is written as:

a • ((a • (c • b)) • b)

belongs to the language generated by the grammar, we ask the question

that the interpreter will transform into:

and answer:

Note that if we ask the following question:

i.e. for the word acb written: (a • c) • b

the answer will be

!

This answer may seem surprising at first, but is “normal” as no particular property
has been assumed on the functions denoted by functional symbols, in this case
associativity (which is known to hold for •, see unification algorithm, section 4.2).

226 Logic for Computer Science and Artificial Intelligence

If we wanted a correct answer to this second question, we would have had to write
clause (∗) as follows:

−→

but in this case, the first question would have resulted in a surprising answer!

Another logic recognition program that avoids these problems would be:

−→ |

In example 9.22, we give another version that is very similar, but uses string
constraints, for which there is no problem to be handled by the user. �
REMARK 6.5.– If we had had a unification algorithm capable of handling associative
functions, i.e. functions f with the property:

(∀x∀y∀z) f(x(f(y, z)) = f(f(x, y), z)

We would not have obtained two different answers, depending on the way the
symbols in the word were associated. �
EXAMPLE 6.5.– (sorting).

→

% sort(x,y): list y is the sorted list obtained from list x.

% perm(x,y): list y is a permutation of list x.

% ord(y): list y is an ordered list.

→

| →

% delete(x,z,u): u is the list obtained after deleting element x from list z.

| →

| | →

→

→

| → <= | �

Foundations of Logic Programming 227

Other versions:

EXAMPLE 6.6.–

→

→

| →

% insert(e,y,z): list z is obtained by inserting element e in list y

| →

| | → �

Another one:

EXAMPLE 6.7.–

→

| →

→

| | → <

| | → <=

% | is equivalent to | | �

REMARK 6.6.– This last logic program corresponds to the insertion sort: we remove
an element from the list (here the first one), sort the rest of the list and reinsert the
element that was removed, while respecting the order. �

EXERCISE 6.6.– Give the logic program corresponding to the quick-sort algorithm:
we select an element e in a list and divide the list into two sublists, the elements that
are smaller than e and those that are greater than e, then e is prefixed by the sorted list
of elements that are smaller than e and suffixed by those that are greater than e. �

EXERCISE 6.7.– Give the logic program corresponding to the bubble sort algorithm:
we test if two adjacent elements are not in the correct order. If so, they are swapped.
We repeat the operation until no additional swap is necessary. �

228 Logic for Computer Science and Artificial Intelligence

EXAMPLE 6.8.– (automaton). We want to define a program that recognizes the words
that are accepted by an automaton.

An automaton is defined by a 5-tuple:

< Q,Σ, δ, q0, F >

where:

Q: set of states;

Σ: vocabulary;

δ: Q × Σ → Q;

q0: initial state;

F : set of final states.

For the following automaton (that accepts (ab)∗), with initial state q0 and final
state q0

��
��

q0 ��
��

q1

� �

� 	

$
a

b
≺

where strings are represented as lists, the program is (denote
variables):

1) →
2) →
3) →
4) →
5) →
6) →
7) | →
8) | →

a question could be, for example:

�

Foundations of Logic Programming 229

6.3.1. Acting on the execution control: cut “/”

In principle, it is not necessary in logic programing to know how a program is
executed. However, in reality, it is necessary to control executions, which is why
imperative characteristics have been introduced into this declarative framework. The
cut rule is not very elegant, but is extremely useful, although it must be used very
carefully.

The definition given in the use manual is the following:

The “/” is a parasite that can only occur among the terms that make up the right-
hand side of a rule (in particular, in the question). The choices that remain to be
examined and that the deletion (it is always deleted) of “/” removes are as follows:

– the other rules that have the same head as that of the rule where “/” occurs.

– the other rules that could have been used to erase the terms occurring between
the beginning of the tail and “/”.

If we represent the execution tree:

230 Logic for Computer Science and Artificial Intelligence

EXAMPLE 6.9.– (from the manual). The program:

→
→

→
→

→
→

→
→

→
→

→
→

gives the following answers to the asked questions:

. �

It is not hard to show how useful the cut is; some examples are given below:

Foundations of Logic Programming 231

6.3.1.1. Translation of imperative structures

For several reasons (for example, because they are more natural, such as in the
case of inputs/outputs), we can translate well-known control structures:

if P then Q else R:

if-P-then-Q-else-R → P/Q;

if-P-then-Q-else-R → R;

If P succeeds (is erased), the cut erases the choice of the second rule and problem
Q is considered. If P cannot be erased, problem R will be considered.

while ¬ R do Q:

P(X) → R(X) /;

P(X) → Q(X,Y) P(Y);

EXERCISE 6.8.– Give the execution trace of the program:

1) →
2) →
3) →
4) →
5) →
6) →

with the question:

�

Combination with the predefined predicate .

Here is a predicate that may seem strange if we only think of using it by itself:

→
→

. . . but here is an example that makes it less strange:

→
→

In this program, : read a character from the input stream.

232 Logic for Computer Science and Artificial Intelligence

EXAMPLE 6.10.– (set operations). We represent sets as lists.

→ |

other program

| →
| →

→
| →

→
| →

→
| | →
| →

→
| →
| | → �

6.3.2. Negation as failure (NAF)

The negation problem is a very delicate problem (including from a philosophical
point of view). For example, what can we say about a goal (predicate, problem) that
we know we will not be able to prove with the data at our disposal? A solution would
be to say “we do not know”.

Another solution is to use the closed world assumption: if we are sure that we
cannot prove P (which prevents infinite searches), we conclude ¬ P.

This second possibility is the possibility that was chosen. It corresponds to the
addition of the rule:

NAF :
no � P

� ¬P

(Here, “no � P ” means: after an exhaustive search and halting).

Usual implementation of negation in Prolog:

→
→

Foundations of Logic Programming 233

where Z is a predicate variable, meaning that it is mapped to predicates and

: predicate (goal) that always fails (that cannot be erased).

Using , we can give another definition of if. . . then. . . else:

if-P-then-Q-else-R → P Q; if-P-then-Q-else-R → not(P) R;

The choice that was made to treat negation may seem natural, but it leads to several
problems, as illustrated in the following examples and exercises.

EXAMPLE 6.11.– The program:

→ % equivalent to p ∨ q (if is identified with ¬)

with the question

succeeds, but this means that from p ∨ q, we can deduce p! �

EXAMPLE 6.12.–

1) →
2) →
3) →
4) →
5) →
6) →
7) →

with the question:

the answer is:

. . . but with question:

234 Logic for Computer Science and Artificial Intelligence

the answer is no, as shown by the execution tree:

�

EXERCISE 6.9.– Give the answers to the following questions:

a)

1) →

2) →

q1) ; % question 1

q2) ; % question 2

q3) ; % question 3

% see definition of in exercise 6.10 (b).

b)

1) →

2) →

3) →

4) →

q1) % question 1

q2) % question 2 �

EXAMPLE 6.13.– (beware of non-termination!). We want to write a program that
detects whether there is a path from one vertex to another in the graph below (compare
with example 6.1).

Foundations of Logic Programming 235

a b c

d f

e

The program that describes the graph and gives the definition of a path is the
following:

→

→

→

→

→

→

→

→

→

It seems obvious that this program is correct, meaning that it describes the world
and the desired relations between objects in this world. It is correct, but. . . let us see
what the interpreter LP does (which, as long as there are potential solutions, keeps
trying to find them).

We ask the question:

236 Logic for Computer Science and Artificial Intelligence

path(a, f);
↓

edge(a, z) path(z, f);
↓

path(b, f);
↓

edge(b, z) path(z, f)
↙ ↘

path(c, f); mem. edge(b, e)
↓

edge(c, z) path(z, f);
↓

path(d, f);
↓

edge(d, z) path(z, f);
↓

path(e, f);
↓

edge(e, z) path(z, f);
↓

path(f, f);
↙ ↘

� (success) edge(f, z) path(z, f);
↓

path(c, f);
...

A solution is to replace the last two clauses by the clauses:

→ % t: list of visited nodes

→ |

and the question would then be:

�

EXERCISE 6.10.– Simulate the interpreter to show that the answers are indeed those
given below.

a) Consider the program:

→

Foundations of Logic Programming 237

→

→

the question:

succeeds

the question:

succeeds and gives as a result the empty substitution (when a goal fails,
substitutions are not memorized, which is a reasonable choice).

b) There exists in Prolog a predicate , that can be evaluated, and has
the following effect when T1 and T2 are variables, say and

: if and have been linked to the same term, true else if (respectively,
) is not yet linked, then it is linked to the same term as (respectively,) else false.

(This does not correspond to usual equality, see section 9.1).

Consider the program:

→

→

the question:

fails.

It should succeed (with)

the question:

succeeds. �

EXERCISE 6.11.– Give a logic program for the relation merge(X,Y,Z): Z is a sorted
list of integers obtained by merging the two sorted lists of integers X and Y. �

238 Logic for Computer Science and Artificial Intelligence

6.3.2.1. Some remarks about the strategy used by LP and negation as failure

A program containing clauses such as (∗) below causes problem at the execution
of the program, because it artificially introduces a possibility of non-termination.

The recommended solution is quite natural.

EXAMPLE 6.14.– a) If a program contains the clauses:

(∗) →

→

with : terms

replace (∗) by:

→

b) If a program contains the clauses:

(∗) →

→

with : terms

replace (∗) by:

→

→ �

EXAMPLE 6.15.– (evaluation of formulas). We can sometimes use NAF to evaluate
a logical formula in a database that defines the predicates occurring in the formula.

The (very simple) idea is that if we identify with ¬ and the question
A1 A2 . . . An (B)

– fails then the formula A1 ∧A2 ∧ . . . ∧An ⇒ B is evaluated to T;

– succeeds then the formula A1 ∧A2 ∧ . . . ∧An ⇒ B is evaluated to F.

For example, if in the database:

1) → 4) →

2) → 5) →

Foundations of Logic Programming 239

3) → 6) →

we want to evaluate the formulas:

a) ∀x∀y.P (x) ∧Q(x, y) ⇒ P (y)

and:

b) ∀x∀y∀z.Q(x, y) ∧Q(y, z) ⇒ Q(x, z)

Hence, (a) is a valid formula in this world.

q(X,Y) q(Y,Z) not(q(X,Z))

3 ↙ 4 ↓ 5 ↘
q(2, Z) not(q(1, Z))

5 ↙ 6 ↘
not(q(1, 1)) . . .

not(×)

?

Formula (b) is therefore not valid. We could retrieve the substitution:

{X = 1, Y = 2, Z = 1}

that corresponds to the counterexample:

Q(1, 2) ∧Q(2, 1) ⇒ Q(1, 1). �

6.3.2.2. Can we simply deduce instead of using NAF?

EXAMPLE 6.16.– (completion (Clark)). The program:

→

→

will answer to the question

240 Logic for Computer Science and Artificial Intelligence

Using the NAF rule.

To deduce (without any other rule than resolution) this conclusion, we must
explicit what is assumed by NAF :

∀x.math− class(x) ⇒ (x = E106) ∨ (x = E108)

and:

E106 �= E108

E106 �= E201

E108 �= E201

E108 �= E106

E201 �= E106

E201 �= E108

The program in clausal form (non-Horn) would then be:

1) math− class(E106)

2) math− class(E108)

3) ¬math− class(x) ∨ (x = E106) ∨ (x = E108)

% Clause 3 is not a Horn clause

4) ¬(E106 = E108)

5) ¬(E106 = E201)

6) ¬(E108 = E201)

7) ¬(E108 = E106)

8) ¬(E201 = E106)

9) ¬(E201 = E108)

And we would ask the question

¬math− class(E201);

we negate the conclusion to obtain:

10) math− class(E201)

and by resolution:

11) E201 = E106 ∨ E201 = E108 (3, 1)− (10, 1)

Foundations of Logic Programming 241

12) E201 = E108 (11, 1)− (8, 1)

13) � (12, 1)− (9, 1). �
REMARK 6.7.– (on the utility of studying logic programming). Together with the
fact that there are many direct applications that are easy to imagine, starting with
examples that have already been seen, the study of the principles of LP is very useful
as a first step toward the study of ontology languages (see section 1.2 and digression
8.1), in particular, the so-called description logics in which knowledge bases are made
of assertions (i.e. properties of individuals) and terminological axioms (i.e. complex
descriptions). The descriptions are specified with unary and binary predicates.

The analogy to LP is obvious.

In the domain of databases, there exists a family of languages (Datalog) based on
rules that are clauses (with some restrictions) of FOL. They represent a very important
domain of study and can be considered as a “natural” extension of LP.

Datalog perfectly illustrates the deep relationship that exists between logic and
computer science. �

6.4. Computability and Horn clauses

At this point, the reader who has already written programs in so-called functional
languages (Lisp, Scheme, etc.) has probably noticed the similarities between
programs in these languages (or simply between the definitions of functions with
equations, such as factorial, fibonacci, etc.) and logic programs.

Furthermore, when presented with a new language, say, L, it is natural to wonder
what its expressive (and computational) power is, in other words, if it enables us to
define (and compute) all computable functions.

One way of answering this question is to show that L can be used to encode a
Turing machine or Markov algorithms, etc. or that it can be used to encode operations
that permit us to capture all computable functions (minimization, etc.).

We will choose this way of proceeding, as it will enable us to show
the computational power of Horn clauses, and at the same time relate
functional programming and LP (also called predicative programming or relational
programming).

We first briefly recall the definition of a function that is finitely definable by
equations.

We will add to F (see signatures in definition 5.1) the constant 0 and the unary
function s (for successor), and we shall use the notion of terms (see definition 4.1) on
the modified signature, which will be sufficient to suit our needs.

242 Logic for Computer Science and Artificial Intelligence

Natural numbers (which are necessary to define functions Nk → N) will be
denoted by s(n)(0).

The variable domain will be the terms of the form s(n)(0) (0 ≤ n).

The equations that will occur in the definitions will be term equations, defined on
the new signature, with all their variables universally quantified. We shall impose that
the subterms ti (1 ≤ i ≤ ni) of one of the terms in the equations, say fni

i (t1, . . . , tni),
only contain the functional symbols 0 and s. The (unique) function conventionally
denoted by fi is the function defined by the equational system.

An equational system is a finite set of equations.

We denote the equational systems (and the equations) by E(f1, . . . , fn ; x) (for
the sake of readability, we omit the exponent representing the arity; this does not incur
any confusion).

f1, . . . , fn and x, respectively, represent the set of function symbols and the set of
variables that occur in the equations.

DEFINITION 6.1.– (functions definable by equations). A function fi is finitely
definable by an equational system iff there exists an equational system E such that:

– ∃f1 . . . ∃fn ∀x E(f1, . . . , fn ; x) (meaning that f1, . . . , fn satisfy all the
equations in the system);

– for any set of variables y, there exists a finite set z1, . . . , zk such that:
E(f1, . . . , fn ; z1) ∧ . . . ∧ E(f1, . . . , fn ; zk) and this set uniquely determines

fi(y).

The following theorem (the proof of which can be found in textbooks on
computability) characterizes the set of computable functions by functions defined by
equational systems.

THEOREM 6.1.– Every recursive function is finitely definable by an equational
system.

EXAMPLE 6.17.– (length of a list). We add to the signature (i.e. to F) the function
symbols nil, length, cons, add.

length(nil) = 0

length(cons(u, v)) = add(length(v), 1) % we write 1 instead of s(0). �

Foundations of Logic Programming 243

The relationship between equational definitions and computability is established
by theorem 6.1, but what is the relationship between these definitions and Horn clauses
and their expressive power?

The first key remark is that an equation can be expressed as an implication, in the
form of a Horn clause:

Rule I:

A1 ∧ . . . ∧An ⇒ B

with Ai (1 ≤ i ≤ n) and B equational literals (i.e. literals for which the predicate
symbol is =), with arguments that are terms of depth 1 or 2 (or 0 or 1 depending on
the conventions, see definition 4.2). These terms are called flat terms, meaning that
they are of the form:

f
(n)
i (x1, . . . , xn) = y

where

xi, y: variables (universally quantified) or constants.

The second key remark is that, to obtain flat terms it suffices to name them.

We show how rule I can be used on example 6.17.

1) length(nil) = 0 % as nil is a constant, the equation has the desired form

2) length(cons(u, v)︸ ︷︷ ︸
x

) = add(length(v)︸ ︷︷ ︸
y

, 1)

︸ ︷︷ ︸
z

Hence, 2. can be rewritten as:

2′) length(v) = y ∧ add(y, 1) = z ∧ cons(u, v) = x ⇒ length(x) = z

To get to a logic without equality, we use (the only if part of)

Rule II:

f(x) = y iff F (x, y)

For the example on the length of a list, this yields:

244 Logic for Computer Science and Artificial Intelligence

EXAMPLE 6.18.– (length of a list, Horn clauses without =). (We use the syntax from
section 6.2)

Length(nil,0) →;

Length(u | v, z) → Length(v, y) Add(y, 1, z); % where u | v is another way of
writing cons(u, v)

In a constraint LP language (see section 9.2), the second clause could be written:

Length(u | v, z) → Length(v, y) {z = y + 1}; �

Conclusion: rules I and II provide a mechanical way of getting from equational
definitions to Horn clauses without equality, which proves that the latter permit us to
compute all computable functions.

REMARK 6.8.– The first proof of computability with Horn clauses was produced in
1975–1976. The proof technique consisted of showing that a Turing machine could
be encoded with Horn clauses.

More precisely, it was proved that if a function is computable by a Turing machine,
then it is computable with Horn clauses containing at most one negative literal (and at
most one functional symbol).

An immediate corollary is that the class of Horn clauses is undecidable. �

Chapter 7

Artificial Intelligence

Intelligence is by essence unintelligible.

David Hume (1711–1776)

Although we often believe that the philosopher is right, we cannot deny that
scientific progress, in particular in biology, has permitted us to cast a light on the
following problems: studying intelligence, its partial simulation on machines, what
can be formalized (with the current state of formal tools), appreciating its limits, better
identify where the problems are important, and so on.

Furthermore, note that from a practical point of view, we need more and more
intelligent tools (whatever the reasonable and perhaps informal characterization of
“intelligence” we adopt).

7.1. Intelligent systems: AI

To begin to grasp the topic, we recall the etymology of (natural) intelligence1:

in French:

Intelligence: 12th Century “understanding”, 15th Century “communication
between people who understand each other”.

1 The term “intelligent” is currently used, often in a glamorous way, on anything that has more
or less surprising properties (for example, in nanotechnology, there are “intelligent materials”).

246 Logic for Computer Science and Artificial Intelligence

in English:

Intelligent: 16th Century, from the Latin words intellegere, ligere lit. choose
among, formed on INTER + legere gather, choose.

In other words, choose among (which implicitly seems to admit the importance of
handling non-determinism).

As far as its study and modeling is concerned, for a long time, mathematics has
been used to study problems that arise in natural science, in particular on the behavior
of the brain and the nervous system. Conversely, important developments in different
topics of mathematics have been motivated by these problems. All this happened
before there was even a research domain called AI.

DIGRESSION 7.1.– Ramón Llull (c. 1235–1315) and G. Leibniz (1646–1716) are
often cited as pioneers of the “AI project”, i.e. of the belief that every thought
(the essential human characteristic) can be formalized. This project became more
concrete, at least partially, with the development of computers, and its huge influence
on science and society in general.

Ramón Llull designed a reasoning machine (more precisely a deduction machine)
with which he wanted to encode (in a combinatorial way) knowledge of creation in a
universal language combining base symbols.

G. Leibniz believed that if we could produce a list of basic human thoughts (i.e.
words denoting simple ideas), it would be possible to produce mechanically (by
combination) all complex ideas. (This should be compared with the concept of a
formal system.)

This reductionism seems to have a very long history. Some religions (in their
esoteric approach) postulated on the existence of absolute ideas and of a mathematic
(algebra) of ideas. �

The models that were used were constructed based on neural models. Some
chemical, electrical, and mechanical aspects were taken into account and differential
equations were used as tools of modeling and analysis.

This tradition continues in a part of current AI, another larger part inherited from
the discrete modeling approach (two states, 0 and 1), which originated with the work
of McCulloch and Pitts, Turing, and others.

Of course, the study of other models, thanks to other tools, is possible (and likely)
in the future.

Artificial Intelligence 247

Recently, some research has focussed on the cerebral bases of mathematical
activity, for example, on the cerebral activity that corresponds to the understanding
of numbers and calculus.

The importance of these studies is reflected in the creation at the Collège de France
of a chair of “experimental cognitive psychology”.

How can AI be defined? For example, consider the following definition by
Minsky, one of the pioneers of the domain.

Artificial Intelligence is the science of making machines do things that
would require intelligence if done by men.

Is this definition really satisfactory? Consider motion for example, as well as
the laws that characterize it. Motion can be defined independently from the objects
that move. . . but intelligence has probably never been defined independently from the
beings that we consider as intelligent.

If in Minsky’s definition we replace “intelligence” by “kinematics”:

Kinematics is the science of making machines do things that would
require motion [if done by cars].

[]: redundant here but not in the previous definition.

If we say that intelligence (or that intelligent behavior) is an exclusive property of
living beings (or of the animal kingdom), the problem is somehow solved: a computer
system cannot exhibit an intelligent behavior, except if we believe a computer can be
alive. We have then replaced the problem of defining intelligence by the problem of
defining living beings.

At least since cybernetics (see section 7.5.2), connections have been made with life
(in particular, with the way the brain works): self-reproducing automata (artificial),
neural networks, etc.

REMARK 7.1.– The following definition is sometimes given to artificial life (a domain
related to AI):

Artificial life denotes the study of artificial systems that exhibit a
behavior that is characteristic to natural living systems.

This definition is similar to Minsky’s on (which would be a particular instance of
artificial life), and in our opinion, is not satisfactory either.

To be an interesting definition, it presupposes that there is a decidable way of
qualifying all the characteristics related to a living system, or at least all those that are
inherent to the specific distinction between living and non-living systems.

248 Logic for Computer Science and Artificial Intelligence

The two following definitions go in the same direction.

The definition of life:

Life is a self-maintained chemical system that is subject to Darwinian
evolution.

and the definition of living organism

A living organism is a chemical system that is capable of regenerating its
own constituents, and exchanges matter and energy with its environment;
this system is capable of reproducing itself in an imperfect manner,
generating slightly different replications of itself, possibly better adapted
to the environment.

What do we do with suffering, pleasure, emotions, anguish, feelings, etc. that
seem to interact with intelligence?

There seems to be a consensus between researchers on how difficult it is to
characterize intelligence, one of the consequences of the evolution of life. �

A key concept here is another concept that we shall study: the concept of
explanation. Is a black box that to some inputs associates outputs that resemble what
happens in an organism an explanation of the behavior of the organism? We should
be very careful, because, for example, in a domain we know better, the way programs
play chess, prove theorems, suggest clauses that explain data. . . is probably not the
same as the way a human would proceed.

In any case, it is worth mentioning that it is generally not wise to identify the
dreams of some researches (no matter how brilliant they may be) with reality. For
example, two important names in AI predicted in 1958 that as soon as 1970, computers
would be capable of composing classical music, writing masterpieces, discovering
theorems, playing chess, understanding and translating languages, etc.

Of all these predictions, we can say that that until now, and although considerable
progress has been made, the only one that was completely realized (in 2006) is the
one on the game of chess (the program Deep Fritz defeated the world champion in six
games, with two victories and four draws).

REMARK 7.2.– In the analysis of the different ways intelligence can be characterized,
we frequently forget to mention a meaningful fact. Radio-astronomers who are
searching for proofs of artificial life in the universe try to detect non-random signals
coming from outer space. Producing signals that respect laws should therefore be a
(sufficient) condition to characterize intelligence. �

Artificial Intelligence 249

REMARK 7.3.– In another important activity of human beings: art, researchers (most
of them in neurobiology) are trying to “extract” general laws on beauty (i.e. what
leads us to qualifying objects, ideas, etc. as “beautiful”).

This domain of study could be named “artificial art” and in our opinion, its
importance must not be underestimated. After all, three centuries after his death,
Mozart is still considered a genius, whereas generations of scientists have disappeared
without a trace. �

7.2. What approaches to study AI?

We provide three possible approaches (others can of course be imagined).

1) Try to define intelligence independently from humans (animals).

2) Replace AI by an expression such as “design of assistant for intelligent tasks
[or requiring manual skills. . .]”

3) Try to design systems that mimic capabilities that psychology, history, etc.
consider as intelligent in a human being.

7.3. Toward an operational definition of intelligence

In physics, when a concept is defined by specifying what operations are necessary
to measure the terms that occur in the definition, we say that the concept has an
operational definition.

In 1950, Alan Turing proposed in his paper “Computing Machinery and
Intelligence” an imitation game now known as the Turing test2. It is presented in many
different ways in the literature, and these presentations do not always correspond to
what is explicitly said in the aforementioned paper, and probably not to what Turing
thought on the topic. The most popular version seems to be: A system (machine) that
makes you believe you have communicated (or interacted) with a human being can be
considered as intelligent.

Turing remained very cautious in his paper about the notions of thought,
conscience, intelligence, etc.

Turing’s paper begins as follows:

I propose to consider the question “Can machines think?”

Turing replaces this question by another question that is closely related, and that
he describes as an imitation game.

2 A lot of information, discussions, etc. on this test can be found on the Internet.

250 Logic for Computer Science and Artificial Intelligence

7.3.1. The imitation game proposed by Turing

– Three players: a man (A), a woman (B), and a questioner (C) who can be a
man or a woman.

– Rules of the game

1) A and B are in the same room.

2) C is in another room, and cannot see or hear A or B. He can only communicate
through (typed) written messages.

3) C gives names to the people in the other room. For example, he says: X is the
one on the left-hand side and Y is the one on the right-hand side.

4) C can ask questions to A and B.

– Goal for the players
- A: force C to make a mistake.
- B: help C give the correct answer.
- C: determine who among A and B is the man and who is the woman (by

saying, for example, X is A and Y is B).

– Example of questions and answers
- C: Will X please tell me the length of his or her hair?
- X : My hair is shingled, and the longest strands are about nine inches long.

Turing suggests to replace the question “Can machines think?” with “What will
happen when a machine takes the part of A in this game?”. Will the questioner make
a mistake with the same frequency as when the game is played by a man and a woman?
(Turing test)

Given what Turing wrote, we can deduce that a program (system, etc.) that could
replace A and fool the questioner with the same frequency as a human should be
qualified as intelligent or capable of thought.

Some authors attribute a key position to the Turing test in the definition of AI:

Artificial Intelligence is the enterprise of constructing a physical symbol
system that can reliably pass the Turing test.

Turing believed (at least, this is what he wrote) that such programs would exist by
the end of the 20th Century.

How far are we from Turing’s prediction?

In January 2000, there was a congress on the Turing test and a competition was
organized: six programs were enrolled.

Artificial Intelligence 251

Results:

The questioners gave 91% correct answers after five minutes, 93% after fifteen
minutes. No program was able to fool a human.

REMARK 7.4.– Some authors have proposed extensions of the Turing test to take
sensorimotor functionalities into account.

These extensions are far from arbitrary and correspond to human evolution.
Speech, which is essential for intelligent activity, lies within Broca’s area. The
development of these zones is related to the standing posture and to manual activity.

The difficulty in designing a test, such as the Turing test, is clearly illustrated
by autism. Art seems to be one of the most high-level manifestations of the human
spirit (the word the most frequently used to describe Mozart, for example, is
genius). There are autistic children who have exceptional qualities for painting and
music, or who have mnemonic, or shape recognition capacities that are well beyond
those of “normal” people, even those considered to be intelligent. In the domain of
mathematics, there also exist autistic people who are prodigies in calculus.

These exceptional capabilities restricted to a unique domain3 have led researchers
to postulate on the existence of a multiplicity of intelligences, controlled by rules that
are hard-wired in different neural areas. �

Recently, a logician who was interested in the relationship of logic with other
domains (S. Buss) wrote:

I wish to avoid philosophical issues about consciousness, self-awareness
and what it means to have a soul, etc. and instead seek a purely
operational approach to artificial intelligence. Thus I define artificial
intelligence as being constructed systems which can reason and interact
both syntactically and semantically. To stress the last word in the last
sentence, I mean that a true artificial intelligence system should be able
to take the meaning of statements into account, or at least act as if it takes
the meaning into account.

7.4. Can we identify human intelligence with mechanical intelligence?

The aim of this argument is to show that trying to identify intelligence (and
understanding) with a sequence of states leads to consequences that cannot reasonably
be accepted.

3 There are some rare cases in which several of these capabilities have been known to coexist
within the same individual.

252 Logic for Computer Science and Artificial Intelligence

The philosophical argument that is attacked is the argument that states that
computers running programs can possess mental states and that when we possess the
same states, similar programs are executed in our brains.

7.4.1. Chinese room argument

This argument (proposed by Searle in 1980) describes a situation showing that an
entity can pass the Turing test without us being able to say that it actually thinks or
understands in the traditional sense.

A person P1 who does not understand written (and spoken) Chinese at all is
isolated in a room and can only communicate with the outside world through signs
written on pieces of paper. The person has paper, a pencil, and an instruction manual
(program) written in his mother tongue.

– He is given pieces of paper on which signs are “scrawled”.

– Using these signs and the instruction manual, P1 writes other signs on pieces
of paper.

After some time, the experiment stops. A person P2 (the presence of which is
ignored by P1) is outside and is the person giving the pieces of paper to P1 and
receiving those passed out by P1. P2 understands Chinese perfectly. The papers that
were given to P1 contained a story written in Chinese together with questions on this
story. The papers that were received contained answers in Chinese.

For P2, entity P1 passed the Turing test and should be identified as intelligent (see
section 7.3). . . but of course, P1 does not understand Chinese. Which means that the
Turing test can be passed for a spoken language without even understanding it!

Furthermore, everyone has laughed when reading automatic translations or has
already been incapable of understanding (in their own mother tongue) the translations
produced by translation software that is available on the Internet.

Other formulation

1) Algorithms are independent of the hardware on which they are programmed: in
particular, the machine can be a human (here, of course, execution time is not taken
into account).

2) We assume that there is a program P in a room that can produce speeches
like someone whose mother tongue is Chinese. The program is supposed to produce
speeches that a native Chinese speaker could not distinguish from those produced by
a human being: the person listening believes someone Chinese is speaking.

3) By assuming the philosophical thesis mentioned above is correct, any system
on which program P is executed understands Chinese.

Artificial Intelligence 253

4) There remains to imagine that the program was executed by a human being
who does not know Chinese at all: the conclusion is that the person still does not
know Chinese in the usual sense, and neither does the computer.

This is an argument that shows the limits of the Turing test: someone can give the
impression of “understanding” without “understanding” anything at all.

REMARK 7.5.– This argument may seem far-fetched and artificially created to defend
a thesis.

Yet, it partially corresponds to what happens for the Etruscan language4. The
following quote is from a book on the history of the Etruscan language (L.J. Calvet)
published in 1996:

Etruscan writing does not pose any difficulty: it is an alphabet inspired
from Greek,. . . But if we are fully capable of reading this alphabet, we
do not really know what language it was transcribing: we can read aloud
texts that we do not understand.

This is the same for the Iberian language (the first people of the Iberian peninsula).

Neuropathology also (more sadly) illustrates that some tasks that may seem
intelligent to an observer are far from being intelligent.

Among some of the “autistic geniuses”, there are children who from the age of two
are able to read books and newspapers very easily, but without understanding a single
word (because they are only able to decode texts from a phonological point of view
and this expertise does not encompass meaning). �

It is worth recalling that our intellectual faculties can be affected by emotions and
feelings (stress diminishes our capacities in general, a taste for certain topics can make
them easier to understand, to discover, to solve related problems, etc.).

When the chess master Garry Kasparov lost against a computer in 1997, observers
believed that he had been emotionally disturbed and thus, had played poorly5.

4 Not much is known about the Etruscan civilization: it originated in Italy around 700 BC and
disappeared around 350 BC.
5 As a neurobiologist wrote: “Thus, the functioning of the limbic system, which supports
emotions, memory, and therefore the cognitive system, depends on a perfect and delicate tuning
of different neuromodulators. Too much or not enough chemical activity prevents these systems
from functioning normally.”

254 Logic for Computer Science and Artificial Intelligence

More recently (2006), the world champion Vladimir Kramnik made an
unexplainable mistake and lost a game against the software Deep Fritz, a mistake
that “normally” even a beginner should not make. . . but errare humanum est.

This relation seems to have been appreciated in the language of a great civilization
(the Chinese civilization): the ideogram for think is obtained by merging the one for
head with the one for heart.

7.5. Some history

Humans have tried for a long time to reproduce or mimic life, and in particular
creatures that resemble them.

For example, the mythical Golem, man-robot created by magical or artificial
means.

Furthermore, in mythical stories, labor has always been a punishment and a yoke
that man has always tried to get rid of.

We classify the works in two large categories, that we can imagine as increasingly
merging and that we will call Prehistory and History.

7.5.1. Prehistory

Emphasis is put on the reproduction of external properties of living beings:
movements, gestures, sounds, etc.

The following facts are part of tradition (hard to verify).

– 5th–4th Century BC: carrier pigeon that could fly (Archytas).

– 4th–3rd Century BC: snail that could crawl (Demetrius).

– 4th Century BC: automatic signal to call Plato’s students to class.

– 3rd Century BC: android (Ptolemy II Philadelphus).

– 1st Century AD: theater shows with automata on the return home of the heroes
of the Trojan war (Hero of Alexandria).

The name of this Greek engineer and mathematician is often cited as one of the
pioneers of “programmable” automata, of cybernetics, and of robotics.

– Galen (2nd Century AD) showed the purpose of human organs by analogy to
machines built by man. In some way, he is also a pioneer of cybernetics.

–
...

– 12th Century AD: android that opened the door and greeted when a bell
was rung.

Artificial Intelligence 255

–
...

– 16th Century AD: mechanical lion (L. da Vinci) whose stomach would open and
free lily flowers.

–
...

7.5.2. History

Emphasis is put on the reproduction of intellectual faculties or abilities that require
different forms of learning.

– During the 17th Century, mechanical philosophy (or mechanistic materialism)
tried to explain the world without ever referring to vital forces or vital causes. It
believed that the method used to study the stars could be applied to physiology and
human psychology.

– The circulatory system was discovered around 1628 (Harvey6), and this
dented the vitalist theory (according to which vital phenomena are irreducible to
physicochemical phenomena).

– 1641–1642: automatic adder (Pascal).

– 1673–1674: multiplication machine (Leibniz).

– During the 17th Century, Descartes viewed man as a machine.

– Thomas Hobbes (16th–17th Century) suggested that it could be considered that
automata (meaning machines that move by themselves) have an artificial life.

– Leibniz had an eclectic mind and made connections between domains that
seemed disconnected. He came up with the idea of a language for thought (lingua
philosophica or characteristica universalis) in which everything that can be thought of
could be transcribed, thus permitting reasoning to be (quasi)automated: the calculus
raciocinator7.

– 17th Century: probability calculus (probabilities are essential in many intelligent
tasks: decision making on rational databases, etc.).

– 18th Century: the flute player, Vaucanson’s duck (an engineer from Grenoble,
France).

– 19th Century: Jacquard’s weaving loom, punch cards.

– Ampère (1834) included cybernetics (science of direction) in “politics”.

– 19th Century: development of probability calculus (Laplace, Poisson, etc.).

6 And maybe even before M. Servet.
7 Leibniz prophesied that once the calculus had been perfected, men of good faith who wanted
to settle a question would take a pencil and paper and say: Calculemus!

256 Logic for Computer Science and Artificial Intelligence

– End of the 19th Century: Ramón Cajal discovered the nature of neurons and
their interconnections.

– 1924: the word robot, from the Czech word robota meaning “forced labour”
appears in a play by Karel Capek to denote artificial workers.

– 1927: Hilbert wrote: “The key idea of my proof theory is nothing more than
the depiction of the activity of our intelligence, of listing and analyzing the rules that
guide the way our thoughts really function”.

– Some physiologists (Belle, Young, Helmholtz, and others) convert to physics
(H. Helmholtz believed that “no other forces than those of physics and chemistry are
active within an organism”).

– ≈ 1936: Turing.

– ≈ 1936: Wiener et al. cybernetics (science of direction and communication in
living organisms and machines).

– ≈ 1940: neural networks (MacCulloch, Pitts).

– Shortly after World War II, interdisciplinary exchanges (mathematicians,
neurophysiologists, psychologists and sociologists) took place among other things on
the possibility of imitating human intelligence.

– ≈ 1950: electronic turtles capable of recharging themselves.

– ≈ 1950: electronic mouse that could learn a path.

– . . . AI (the “official birth” of AI is supposed to have taken place in 1956).

– What is considered as the first AI program Logic Theory Machine (A. Newell,
H. Simon), a program for theorem proving, is presented in 1956.

REMARK 7.6.– In the near future, recent advances in biology and in particular the
study of the brain via medical imaging will probably influence the models that are
used in AI, as well as its foundations and techniques. If that were to happen, it would
be an item to add in the list above. �

7.6. Some undisputed themes in AI

– design of expert systems

– different kinds reasoning (inferences): deductive, inductive, abductive,
probabilistic, non-monotonic, under uncertainty, etc.

– games (chess, go, etc.)

– knowledge representation

– learning

– robotics, vision, image analysis

– speech, writing recognition

– human–computer interaction

Artificial Intelligence 257

– natural language processing

– multi-agent systems

– planning

– constraint satisfaction

– computational linguistics

– neural networks

...

We have seen (section 7.2) that one of the approaches to studying AI was to try to
mimic the way humans do things.

When we analyze (in particular by introspection) the way a human solves a
problem, the most striking characteristics are the diversity of approaches that are used
and the capability of humans to distinguish the “right” context and to use the “right”
properties and relations for the problem under consideration.

This is particularly striking in so-called clever or elegant solutions.

In contrast, mechanical solutions would be qualified as “uniform”.

Furthermore, the etymology of the word “find” is worth mentioning here:

Find −→ twist, in Greek evolution, change, related to change,

which seems to suggest that to find a solution, it is necessary to consider a problem by
“twisting” it, i.e. by analyzing it from different angles.

Chapter 8

Inference

Inference is one of the most important intelligent activities of a human being.
We will study different forms of inference and several aspects of its formalization.
According to the dictionary:

Inference: every operation leading to the acceptance of a proposition whose truth
is not directly known, thanks to its relationship to other propositions known to be true.
This relationship can be such that the inferred proposition is judged to be necessary,
or only plausible.

Inference is therefore the most general term of which reasoning, deduction,
induction, etc. are instances.

Etymologically: to offer −→ to infer: to carry into - to put forward

Inference is an underlying activity of almost all our other activities. Something as
common as vision, for example, uses it (probably without the knowledge of doing so).
When we see someone we know, but who has let his beard grow, is wearing glasses
(and did not use to before), has put on some weight or lost some weight, etc. we still
recognize him, although from the point of view of appearance, this is someone we
have never seen.

There are many different forms of inference, among which are inductive (i.e.
general conclusion from particular facts), by analogy, from testimonials, from
memories, probable inference, statistical inference, non-monotonic, etc.

We begin with the study of one of the most common forms of inference (often
carried out unconsciously), which is often mentioned in this book.

260 Logic for Computer Science and Artificial Intelligence

8.1. Deductive inference

As usual, a first approach can rely on the definition in the dictionary.

Deduction: operation by which, starting from one or several propositions taken as
premises, we rigorously conclude a proposition that is a necessary consequence, in
accordance with logicalules.

Etymologically: to conduct −→ to lower −→ to deduce

We shall give several classical types of deductions, focusing on the key problems
that arise in the process of their automation, through examples that shed light on these
problems.

The typical example of a deduction is the syllogism, which we have mentioned in
section 2.2.

The following example is a less known deduction type that leads to interesting
problems.

The sorites

Argument consisting of a mass of premises. Polysyllogism, where each conclusion
is used as a premise of the following syllogism. In more modern terms, we would say
that this is a reasoning with a linear strategy (see example 5.28).

EXAMPLE 8.1.– A is B, B is C, C is D, D is E; therefore A is E. �

The name sorites is especially used in the following very old reasoning (see also
section 10.2) given by due to Eubulides (see digression 2.2).

Does a heap of grains remain a heap when one grain is removed?

Consider a heap of grains: if we remove one grain, it remains a heap, if we remove
another grain, it remains a heap. . .

Conclusion: a unique grain is a heap. . . but [everyone agrees that] it actually is not!

It is sometimes presented as follows:

A grain is not a heap, neither are two grains, . . . After how many grains do we
get a heap?

An aspect that is often neglected is that of partial conclusions. It should be clear
that a given strategy, when applied to a problem, can lead to the same conclusion going
through different partial conclusions, depending on the order in which the premises are
considered. The following example given by L. Carroll illustrates this.

Inference 261

EXAMPLE 8.2.– (partial conclusions). Deduce the conclusion with a linear strategy
(see example 5.28), considering different orders on the premises (partial conclusions
are written in bold).

No A is not B.

Every B is C.

Every C is D.

No not E is not A.

Every H is not E.

Therefore:

Every H is D.

We translate into PL (sometimes the categorical propositions of syllogisms are
formalized in this logic) and into clausal form. For deductions, we use the resolution
rule with a linear strategy and two different orders.

A ⇒ B 1 ¬A ∨B
B ⇒ C 2 ¬B ∨ C
C ⇒ D 3 ¬C ∨D
¬E ⇒ A 4 E ∨A
H ⇒ ¬E 5 ¬H ∨ ¬E
H ⇒ D 6 ¬H ∨D

Note that the conclusion (6) is not negated, we do not try to derive � but (6)1.

With the order 1,2,3,4,5:

¬A ∨B ¬B ∨ C
↘ ↙

¬A ∨C ¬C ∨D
↘ ↙

¬A ∨D E ∨A
↘ ↙

D ∨E ¬H ∨ ¬E
↘ ↙

D ∨ ¬H

1 The resolution method is correct (see corollary 3.1), but we have only proved its refutational
completeness (see exercise 3.34).

262 Logic for Computer Science and Artificial Intelligence

With the order 4,1,5,2,3:

E ∨A ¬A ∨B
↘ ↙

E ∨B ¬H ∨ ¬E
↘ ↙

B ∨ ¬H ¬B ∨C
↘ ↙

¬H ∨C ¬C ∨D
↘ ↙

D ∨ ¬H
�

Sometimes, as L. Carroll wondered, it is interesting to obtain all the logical
consequences of the premises. The following example shows that this can be really
useful2.

EXAMPLE 8.3.– (beware of hidden consequences!). From the following premises:

1) Every individual suitable to be a member of Parliament who does not spend all
his time making speeches is a benefactor of the people.

2) People with a clear mind and who express themselves well have received a
decent education.

3) A woman worthy of appraisal is a woman who knows how to keep a secret.

4) Those who do favors for the people but do not use their influence for
praiseworthy purposes are not suitable to be members of Parliament.

5) Those who are worth their weight of gold and are not worthy of appraisal are
always unpretentious.

6) Benefactors of the people who use their influence for praiseworthy purposes are
worthy of appraisal.

7) Those who are unpopular and are not worth their weight in gold do not know
how to keep a secret.

8) Those who know how to talk for hours and hours and are not suitable to be
members of Parliament are worthy of appraisal.

9) Every individual who knows how to keep a secret and is unpretentious is a
benefactor of the people whose memory will last forever.

10) A woman who does favors for the people is always popular.

2 We can also imagine that we want to obtain all the consequences of a set of laws.

Inference 263

11) Those who are worth their weight of gold, who do not stop making speeches
and whose memory lasts forever are precisely those whose photography can be seen
in all shop windows.

12) A woman who does not have a clear mind and has not received a proper
education is unsuitable to become a member of Parliament.

13) Every individual who knows how to keep a secret and does not know how to
always make speeches can be sure to be unpopular.

14) An individual with a clear mind, who has influence and uses it for praiseworthy
purposes is a benefactor of the people.

15) A benefactor of the people who is unpretentious is not the kind of person whose
photography is shown in all shop windows.

16) Those who know how to keep a secret and use their influence for praiseworthy
purposes are worth their weight in gold.

17) Someone who does not know how to express himself and is incapable of
influencing others cannot be a woman.

18) Those who are popular and worthy of appraisal are either benefactors of the
people or unpretentious.

We can deduce, among other things:

A woman is not suitable to be a member of Parliament! �

REMARK 8.1.– In PL, starting with a finite set of premises, we always obtain by
resolution a finite set of conclusions. This is not the case in FOL: it suffices to consider
the set of conclusions of the premises in the following example. �

EXAMPLE 8.4.– (complexity of proofs). Consider the following reasoning:

P (a)
∀x(P (x) ⇒ P (f(x)))

P (f2k(a)) k ∈ N

We analyze the complexity of two proofs by resolutions that are obtained with
different strategies for k = 3:

1) P (a)

2) ¬P (x) ∨ P (f(x))

3) ¬P (f8(a))

4) P (f(a)) (1, 1)− (2, 1) {x2 ← a}
5) P (f2(a)) (4, 1)− (2, 1) {x3 ← f(a)}
6) P (f3(a)) (5, 1)− (2, 1) {x4 ← f2(a)}

264 Logic for Computer Science and Artificial Intelligence

7) P (f4(a)) (6, 1)− (2, 1) {x5 ← f3(a)}
8) P (f5(a)) (7, 1)− (2, 1) {x6 ← f4(a)}
9) P (f6(a)) (8, 1)− (2, 1) {x7 ← f5(a)}

10) P (f7(a)) (9, 1)− (2, 1) {x8 ← f6(a)}
11) P (f8(a)) (10, 1)− (2, 1) {x9 ← f7(a)}
12) � (11, 1)− (3, 1)

The number of steps in the proof (independently of the choice between forward
and backward chaining) is:

2k + 1

A less costly proof:

1) P (a)

2) ¬P (x) ∨ P (f(x))

3) ¬P (f8(a))

4) ¬P (x) ∨ P (f2(x)) (2, 2)− (2, 1) {x2 ← f(x3)}
5) ¬P (x) ∨ P (f4(x)) (4, 2)− (4, 1) {x4 ← f2(x5)}
6) ¬P (x) ∨ P (f8(x)) (5, 2)− (5, 1) {x6 ← f4(x7)}
7) P (f8(a)) (6, 1)− (1, 1) {x8 ← a}
8) � (7, 1)− (3, 1)

The number of steps in the proof is:

k + 2

. . . the difference is essential �

EXAMPLE 8.5.– (appearances are deceptive). Consider the following reasoning:

∀x∀y∀z(P (x, y) ∧ P (y, z) ⇒ P (x, z))
∀x∀y∀z(Q(x, y) ∧Q(y, z) ⇒ Q(x, z))

∀x∀y(Q(x, y) ⇒ Q(y, x))
∀x∀y(P (x, y) ∨Q(x, y))

∀x∀yP (x, y) ∨ ∀x∀yQ(x, y)

In other words, given a transitive relation P and a symmetric and transitive relation
Q, and given that any two elements are related either by P or by Q, prove that P is
total or Q is total.

Inference 265

We decide to prove that this reasoning (or theorem) is correct using the
resolution rule. We thus translate into clausal form (after negating the conclusion and
Skolemization, we obtain clauses 5 and 6).

1) ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)

2) ¬Q(x, y) ∨ ¬Q(y, z) ∨Q(x, z)

3) ¬Q(x, y) ∨Q(y, x)

4) P (x, y) ∨Q(x, y)

5) ¬P (a, b)

6) ¬Q(c, d)

We must find a refutation by resolution of the set of clauses above.

Note that this set of clauses belongs to a decidable fragment of FOL (finite
Herbrand universe), so we are sure that the search halts and that the set is either
unsatisfiable or satisfiable.

The proposed solution involves a typically human “trick”:

– we know that unit clauses are useful (the resolvent contains less literals than the
non-unit parent clause);

– we therefore try to generate unit clauses (we will also use hyperresolution to
obtain clauses 10, 11, 12, 16, 12′, 14′);

– for any closed term t in the Herbrand universe of a set of clauses S and for any
predicate P occurring in S, we have either P (t) or ¬P (t).

7) Q(a, b) (4, 1)− (5, 1) {x4 ← a, y4 ← b}
8) Q(b, a) (3, 1)− (7, 1) {x3 ← a, y3 ← b}
9) Q(c, a) ASSUMED

10) Q(c, b) (2, 1)− (9, 1)− (7, 1) {x2 ← c, y2 ← a, z2 ← b}
11) ¬Q(a, d) (2, 1)− (6, 1)− (9, 1) {x8 ← c, y8 ← a, z8 ← d}
12) ¬Q(b, d) (2, 1)− (6, 1)− (10, 1) {x14 ← c, y14 ← b, z14 ← d}
13) ¬Q(d, b) (3, 2)− (12, 1) {x9 ← d, y9 ← b}
14) P (d, b) (4, 2)− (13, 1) {x4 ← d, y4 ← b}
15) P (a, d) (4, 2)− (11, 1) {x10 ← a, y10 ← b}
16) P (a, b) (1, 1)− (15, 1)− (1, 2)− (14, 1) {x1 ← a, y1 ← d, z1 ← b}
17) � (5, 1)− (16, 1)

9′) ¬Q(c, a) ASSUMED

10′) ¬Q(a, c) (3, 2)− (9′, 1) {x3 ← a, y3 ← c}
11′) P (a, c) (4, 2)− (10′, 1) {x4 ← a, y4 ← c}
12′) ¬P (c, b) (1, 3)− (5, 1)− (1, 1)− (11′, 1) {x1 ← a, y1 ← c, z1 ← b}

266 Logic for Computer Science and Artificial Intelligence

13′) Q(c, b) (4, 1)− (12′, 1) {x10 ← c, y10 ← b}
14′) Q(c, a) (2, 1)− (13′, 1)− (2, 2)− (8, 1) {x2 ← c, y2 ← b, z2 ← a}
15′) � (9′, 1)− (14′, 1). �

REMARK 8.2.– The trick that was used corresponds to the law of excluded middle in
some so-called natural deduction systems:

[A] [¬A]

B B
B

The formulas between [] are discharged or cancelled: they are no longer useful
(see digression 3.5).

The rule reads: if from A we can deduce B and from ¬A we can deduce B
then B. �

8.2. An important concept: clause subsumption

In informal reasonings, to derive a conclusion (or verify that a reasoning is correct),
we frequently use the fact that a property or relation satisfied by all the objects of a
universe is also satisfied by particular objects of this universe (see, e.g. example 5.1).
We also use the fact that when we have a disjunction, whatever makes a subset of the
disjuncts true also makes the entire disjunction true.

These two very simple remarks are used in definition 8.1. According to the
dictionary:

To subsume: fact of considering a thing as being a member of a whole.
Considering an individual as being a member of a species, or a species
as being a member of a genus; considering a fact as the application
of a law.

Classification,3 which deals with the domain of systematics (or taxonomy) and is
used especially in botany and zoology, beginning with the work of the great Swedish
botanist Carl von Linné (18th Century), structures the objects considered in these
sciences with a partial order relation (corresponding to inclusion): race, species,
genus, family, order, class, type and reign.

3 Which was considered from the beginning of modern science (for example, by Francis Bacon
(1561–1626)) as being a part of the scientific method.

Inference 267

There exist many knowledge representation languages (among which the classical
languages are KL-ONE, KRYPTON, LILOG, etc.). Languages such as KL-ONE,
which was frequently used in natural language-processing systems, enable us to
describe concepts using unary predicates.

Knowledge is separated into:

– a terminological part (concept definition): the T-box;

– an assertional part (database): the A-box.

The language that is used by the T-box corresponds to a fragment of FOL.

Subsumption determines the order relation (with ⊆ as an order relation) between
concepts.

Concept C is subsumed by concept D if all the instances of C are necessarily
instances of D, meaning that the extension of C is interpreted as a subset of the
extension of D (see digression 8.1).

This very short motivation is meant to show that to dispose of a method (if possible
a decision procedure) to decide whether relations hold between certain formulas can
be very useful in knowledge manipulation.

DEFINITION 8.1.– (clause subsumption). A clause C (θ)-subsumes or simply
subsumes a clause D iff:

i) there exists a substitution θ such that:

θC is a sub-clause of D (if clauses are considered as disjunctions of literals).

or:

θC ⊆ D (if clauses are considered as sets of literals).

We will write C ≤s D.

In general, we impose that:

ii) number-of-literals(C) ≤ number-of-literals(D)

(or card(C) ≤ card(D))

We say that C is more general than D. This terminology is easy to understand if
we take into account the fact that C contains more (universally quantified) variables
than D (see also exercise 8.1 a)).

268 Logic for Computer Science and Artificial Intelligence

REMARK 8.3.– This definition applies to PL with θ = ∅ (see rule R-4 of the Davis–
Putnam method, section 3.5).

Condition (ii) is sometimes justified by the fact that:

P (x, a) ∨ P (b, y) subsumes P (b, a)

(θ = {x ← b, y ← a})

This definition can be considered as somewhat “unnatural”, because we may keep
a more complex object in the inference process. �

EXAMPLE 8.6.– P (x) ∨Q(y) subsumes P (a) ∨Q(b) ∨R(u, z)

θ = {x ← a, y ← b}. �

EXERCISE 8.1.–

a) Prove that if C subsumes D, then C |= D.

b) Is the problem does C subsume D decidable? �

8.2.1. An important problem

Can we say: if C |= D, then C subsumes D?

Consider:

C: ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)

D: ¬P (a, b) ∨ ¬P (b, c) ∨ ¬P (c, d) ∨ P (a, d)

We prove that C |= D using the resolution method; we must thus show that C ∪
{¬D} �R �

¬D: P (a, b) ∧ P (b, c) ∧ P (c, d) ∧ ¬P (a, d)

(i.e. there are four clauses, see also exercise 5.3 (l))

1) ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)

2) P (a, b)

3) P (b, c)

4) P (c, d)

5) ¬P (a, d)

Inference 269

6) ¬P (a, y) ∨ ¬P (y, d) (5,1)-(1,3) {x ← a, z ← d}
7) ¬P (a, c) (6,2)-(4,1) {y ← c}
8) ¬P (a, y1) ∨ ¬P (y1, c) (7,1)-(1,3) {x1 ← a, z1 ← c}
9) ¬P (a, b) (8,2)-(3,1) {y1 ← b}

10) � (9,1)-(2,1)

. . . but C does not (θ−) subsume D:

indeed, the desired substitution θ must contain {x ← a, z ← d}, which requires

either y ← b; θC will then contain ¬P (b, d), and the subsumption is impossible;

or y ← c; θC will then contain ¬P (a, c), and the subsumption is impossible.

We give another example showing that if C subsumes D, then D is a logical
consequence of C, but that the converse does not hold.

C: ¬P (f(x)) ∨ P (x)

D: ¬P (f(f(a))) ∨ P (a)

We use the resolution method to show that C |= D

{C,¬D} is the set of clauses 1, 2, 3 below:

1) ¬P (f(x)) ∨ P (x)

2) P (f(f(a)))

3) ¬P (a)

4) ¬P (f(a)) (1,2)-(3,1) {x ← a}
5) ¬P (f(f(a))) (1,2)-(4,1) {x1 ← f(a)}
6) � (2,1)-(5,1)

REMARK 8.4.– Given two clauses C and D, the problem C |=? D is undecidable.

This answer, together with the answer to exercise 8.1 (a), also allow us to
show that clause subsumption and logical consequences between clauses are not
equivalent. �

The following theorem, which is admitted without a proof, indirectly gives the
key (auto-resolvent clauses) to the non-equivalence between subsumption and logical
consequences between clauses.

270 Logic for Computer Science and Artificial Intelligence

THEOREM 8.1.– If C is a clause that is not auto-resolvent and D is a non-tautological
clause, then C |= D iff C subsumes D.

DEFINITION 8.2.– Let C be a clause. We denote by:

C+ the set of positive literals in C;

C− the set of negative literals in C.

C is ambivalent iff there exists a predicate symbol in C that occurs in C+

and in C−4.

An immediate consequence of this definition is that a positive (respectively,
negative) clause cannot be ambivalent.

THEOREM 8.2.– Let C and D denote two clauses. If D is non-tautological and
C |= D, then C+ subsumes D+ and C− subsumes D−.

PROOF.– As C+ is a sub-clause of C, every model of C+ is a model of C (because
clauses are disjunctions of literals). The same reasoning shows that every model of
C− is a model of C.

C+ (respectively, C−) is not auto-resolvent, as it only contains positive
(respectively, negative) literals.

By application of theorem 8.1:

C+ |= D iff C+ subsumes D

C− |= D iff C− subsumes D.

But C+ (respectively, C−) can only be a sub-clause of D+ (respectively, D−);
hence,

C+ subsumes D+ and

C− subsumes D−. �

THEOREM 8.3.– Consider two clauses C and D. If D is not ambivalent, then C |= D
iff C subsumes D.

4 Note that an auto-resolvent clause is necessarily ambivalent, but that an ambivalent clause is
not necessarily auto-resolvent, for example, P (a) ∨ ¬P (b).

Inference 271

PROOF.– We assume that C |= D.

If D is not ambivalent, then it cannot be a tautology (because all its literals can be
evaluated to F). Thus (theorem 8.2):

(∗) C+ subsumes D+ and C− subsumes D−.

C cannot be auto-resolvent: that would require a predicate symbol, say P , to occur
in C+ and C−, but then (definition of subsumption and (∗)), P should occur in D+

and D−, which is impossible as D is not ambivalent.

Therefore, by applying theorem 8.1, we obtain:

C |= D iff C subsumes D. �

REMARK 8.5.– For the same Prolog program, if we have two questions C and D, as
they are both negative, theorem 8.3 applies; hence, we have a decidable test to know
whether C |= D, meaning that it suffices to have answered to C to answer to D. �

Theorems 8.1, 8.2, and 8.3 enable us to obtain the procedure D LOG-CONS C? to
test whether a clause D is the logical consequence of a clause C. As we mentioned
in remark 8.4, this is an undecidable problem, so the procedure may not terminate
(because to procedure “Consequence” that is used in procedure “D log-cons C?”).

Figure 8.1. Procedure for testing logical consequence between clauses

EXAMPLE 8.7.– As mentioned previously, we will say that clause C subsumes clause
D instead of: clause C θ subsumes clause D.

272 Logic for Computer Science and Artificial Intelligence

1) C1 ≤s C and C2 ≤s C : C1 ∨ C2 ≤?
s C

2) C− ≤s C
−
1 and C+ ≤s C

+
1 : C ≤?

s C1

3) is relation ≤s a quasi-order, i.e. a reflexive and transitive relation?

1) No, take C1 : P (x); C2 : P (f(x)) and C : P (a) ∨ P (f(f(a))).

2) No, take C : ¬P (x) ∨ P (f(x)) and C1 : ¬P (a) ∨ P (f(f(a))).

3) Yes.

reflexive: take σ: the identity: σC ⊆ C

transitive:

C1 ≤s C2 and C2 ≤s C3

there exist σ1, σ2 such that σ1C1 ⊆ C2 and σ2C2 ⊆ C3

therefore:

σ2(σ1C1) ⊆ C3

hence, there exists θ = σ2 ◦ σ1 = σ1σ2

such that θC1 ⊆ C3; i.e.:

C1 ≤s C3. �

DIGRESSION 8.1.– (ontologies and DL). Description logics are languages for
ontologies. As we mentioned in section 1.2, an ontology can be defined as an explicit
specification of a conceptualization. In other words, an ontology is a(n abstract)
model of a part of reality (the world) that we are interested in. This part of reality
is represented by pertinent concepts (properties) and by relations between these
concepts. This in a formalizable language5.

Ontologies have naturally taken a very important place in computer science for
different kinds of information-processing systems, and a privileged field of application
is the semantic web.

In order for them to be useful, ontology languages must have some inference
capabilities, in particular, to detect non-contradiction between concepts or their
relations.

5 Note the similarity with, e.g. computer modeling, databases, object-oriented programing, etc.

Inference 273

Why the name DL? The concepts that are relevant to the domain under
consideration are specified by descriptions of atomic concepts using properties (unary
predicates) and relations (atomic roles) (binary predicates). Logics because their
semantic is defined in a similar way to that used in logic.

Constructors are the logical constants (see definition 5.1) and some types of
quantifiers.

DLs generally offer the possibility to name (complex) descriptions, constraints
about the inclusion of concepts, and assertions of properties and relations between
particular objects (note the analogy with logic programming).

The subsumption algorithm permits us to detect the inclusion between concepts.
The definition of subsumption corresponds to the one in definition 8.1: concept D is
subsumed by concept C iff every instance (i.e. particular case) of D is an instance of
C (for example, the man concept is subsumed by the animal concept).

DLs can also detect the (in)consistency (i.e. the contradiction (or non-
contradiction)) of the set of assertions and definitions. The consistency (or
inconsistency) of a set of assertions can be proved by exhibiting a model (or the
impossibility of constructing one), the method of semantic tableaux is a tool that is
naturally used to automate such a process.

DLs are closely related to modal logics (see section 10.3).

The syntax and semantics of DLs are defined using methods similar to those used
for FOL, which is normal as most DLs correspond to decidable fragments of FOL.

As for any automated inference problem, the trade-off between expressive power
and decidability (AND complexity of the decision algorithm) must be appropriately
resolved for DLs. �

8.3. Abduction

Aristotle viewed abduction as a specific kind of reasoning6. Much more recently,
C.S. Peirce (19th Century, beginning of the 20th Century) identified abduction as a
specific form of reasoning based on principles different from the standard principles
such as deduction and induction (see section 8.4). He used hypothesis, hypothesis
inference, abduction, and retroduction as synonyms.

6 Aristotle named abduction a syllogism in which the major was certain and the minor was only
plausible.

274 Logic for Computer Science and Artificial Intelligence

He acknowledged the utility of abduction, but also the difficulty of its theoretical
justification:

Now nothing justifies a retroductive inference excepts its affording an
explanation of the facts.

Sometimes it is formalized with the following rule (which is incorrect from the
point of view of deductive logic):

Abd :
β α ⇒ β

α

α is an explanation of β.

The intuitive reason why this rule is incorrect is clear. For example, we know that
flu causes fever, but when we have a fever, it can be due to another illness.

Peirce clearly showed the importance of abduction in scientific reasoning (giving
as a paradigm the discovery of Kepler’s laws).

We find fish fossils on dry land. We then suppose that, in the past, the sea used to
cover the land. This explanation (obviously not certain and not unique) is generally
added to a corpus of knowledge that attributes some weight to the explanation.

Abduction is analogous to what are called, in particular in mathematics, inverse
problems; these are ill-posed problems: theorems are formalized and we wonder what
axioms are necessary to prove these theorems (or we look for the parameters that make
a law true).

8.3.1. Discovery of explanatory theories

The context: we have a theory or a repository of knowledge at our disposal (set of
non-contradictory formulas, in particular, an empty theory).

We observe: particular events. Some objects have some properties or are related
to other objects, these are the positive examples; other objects do not have some
properties or they are not related to some other objects, these are the negative
examples.

The problem: generate hypotheses that enable us to explain the observations, i.e.
formulas from which the observations can be deduced.

This description corresponds exactly to the scientific work in natural sciences.

Inference 275

The justification of the method for the discovery of explanations raises very
profound philosophical problems. There are considerable differences of opinion on
the essential characteristics of scientific explanation.

Notation:

C (also noted K): theory or knowledge on the domain of the observed facts.

E+: set of positive examples (e+i);

E−: set of negative examples (e−i);

H : set of generated hypotheses.

8.3.1.1. Required conditions

We give the three following formulations A, B, and C, which represent the
conditions that are required of explanatory theories (as for the resolution method, �
means contradiction).

A:

1) K ∪ E− � �

% Satisfiability a priori

2) K � E+

% Necessity a priori

3) K ∪H |= E+

% Completeness with respect to E+

4) K ∪H ∪ E− � �

% Consistency with respect to E−

B (with E = E+):

1) K ∪H |= E

% The hypothesis explains the examples

2) K ∪ E � ¬H

% The hypothesis is not in contradiction with the theory

276 Logic for Computer Science and Artificial Intelligence

3) K � H

% The hypothesis is not redundant

4) K � E

% The theory does not explain E (necessity of H)

C:

1) K |=/E+, i.e. C |=/e+j for (at least one) e+j ∈ E+

% The observed facts cannot be explained by the theory alone

2) K |=/H

% H is not redundant

3) K ∪H |=/e−i for all e−i ∈ E−

% The negative examples (counter examples) cannot be explained by the
addition of H

4) K ∪H |= e+j for all e+j ∈ E+

% The addition of H enables us to explain the observed facts

Condition (4), which is sometimes formalized by:

K ∪H ∪ E+ � �

corresponds to what is known in philosophy of science as the coherence theory of
truth, of which one of the versions is: the truth of a (true) proposition consists in its
consistency with a given set of propositions.

REMARK 8.6.– The relation of non-logical consequence (�) is used. Its treatment is
not simple in FOL, where the set of non-logical consequences of a set of formulas is
not recursively enumerable (if it were, FOL would be decidable). �

The following example shows some peculiarities of abduction (meaning that the
proposed explanations generally depend on the deduction strategy that is used).

Inference 277

EXAMPLE 8.8.– (abduction and strategies). We wonder whether clause 6 given below
is a logical consequence of clauses 1–5. If this is not the case, what premises can be
added so that 6 becomes a logical consequence of the new set of premises?

1) ¬Q ∨ ¬R ∨ P
2) ¬S ∨ Q
3) ¬S ∨ ¬U ∨ R
4) ¬V ∨ ¬W ∨ R
5) S
6) P

It is trivial to verify that 6 is not a logical consequence of 1–5 (counter example:
{S,Q}, i.e. S and Q are interpreted to T and all other propositional symbols are
interpreted to F).

To discover the desired premises, we apply resolution with two different strategies,
which will lead to two different explanations.

7) ¬R ∨ ¬S ∨ P (1, 1)− (2, 2)
8) ¬R ∨ P (7, 2)− (5, 1)

Explanation-1: R.

(We cannot deduce R because that would require to eliminate either ¬U or ¬V
and ¬W , and all three of them are pure literals).

7′) ¬U ∨ R (3, 1)− (5, 1)
8′) ¬Q ∨ ¬U ∨ P (7′, 2)− (1, 2)
9′) ¬S ∨ ¬U ∨ P (8′, 1)− (2, 2)
10′) ¬U ∨ P (9′, 1)− (5, 1)

Explanation-2: U . �

EXAMPLE 8.9.– (conditional answers). In logic programming, abduction could be
used to give conditional answers when the program does not provide an answer.

Consider a program (often used as an example) that describes the characteristics
of some animals.

1) →
2) →
3) →
4) →

and we ask the question

278 Logic for Computer Science and Artificial Intelligence

We give the execution tree:

The unconditional answer (i.e. the standard answer) is thus:

The conditional answer would be:

if then . �

8.4. Inductive inference

It seems like no one found a trace of an induction problem before the second half
of the 17th Century. Induction seems to have been a problem forgotten in philosophy.

Now, the induction problem is unanimously recognized as an essential problem in
knowledge theory.

There is currently a wide consensus to the fact that the induction problem was
posed by the philosopher David Hume7.

Hume realizes that the information we have (that we receive, that impresses us) of
the world is made of little fragments about the present or the past, and this is the only
foundation that supports our general knowledge.

In other words, our data are made of particular facts.

Induction is a conjectural inference.

7 It should be noted that induction is already mentioned in the treatise “Logic: or, The Art of
Thinking”, published in 1662 during the emerging of probability theory: “We name induction,
when the search for many particular things leads us to the knowledge of a general truth”.

Inference 279

Etymologically: to lead −→ inducere −→ to let in −→ to bring

The first questions that come to mind:

– how can we, starting from particular experiences, establish laws that go beyond
experience?

– can inductive inference be justified rationally?

These questions are very deep and habits often prevent us from analyzing them. If
we are asked whether the sun will rise tomorrow, we will probably answer: “of course,
as it has always been that way”.

But it is well known that it is delicate to make such generalizations, which
are sometimes correct and sometimes incorrect. The following example (given by
L. Euler (1707–1783)) shows what an incorrect inductive inference can be.

EXAMPLE 8.10.– (incorrect inference). We want to verify that, for 0 ≤ n ≤ 39, the
polynomialn2+n+41 yields the sequence of prime numbers 41, 43, 47, 53, 61, . . .We
may believe that we have found a formula allowing us to generate all prime numbers
greater than 41. But this is only true for 0 ≤ n ≤ 39. For n = 40 we get: 402 +40+
41 = 412, which is obviously not a prime number. �

Nevertheless, induction has an undeniable heuristic value, in mathematics, for
example L. Euler stated that most properties on numbers had been discovered starting
from the observation of examples and induction.

As the great mathematician Henri Poincaré said:

As in other sciences, mathematics can therefore proceed from the
particular to the general.

By noticing the analogies between recursion and induction, Poincaré said:

Induction applied to physics is always uncertain, because it relies on the
belief in a general order of the Universe, order that is outside of us. On
the contrary, mathematical induction, i.e. proofs by recursion, imposes
itself necessarily, because it is only the assertion of a property of the
mind itself.

It is necessary to point out an essential difference with deductive inference.

8.4.1. Deductive inference

Every A is a B
a is an A
a is a B

280 Logic for Computer Science and Artificial Intelligence

The conclusion is a logical consequence of the premises, we make explicit an
information that was already in the premises.

8.4.2. Inductive inference

P (a1)
...

P (an)
∀xP (x)

The conclusion is not a logical consequence of the premises. We add information
to the conclusion that was contained in the premises:

– The justification of inductive inference is realized by an accumulation of
particular cases, thus, the conclusion is only likely.

– Some authors say: “an argumentation is inductively strong if the truth of the
premises makes the truth of the conclusion likely”.

There are also paradoxes.

8.4.3. Hempel’s paradox (1945)

A plausible principle is that logically equivalent hypotheses are confirmed with the
same degree by the same experimental data.

All ravens are black

∀x[raven(x) ⇒ black(x)]

is logically equivalent to:

All objects that are not black are not ravens

∀y[¬black(y) ⇒ ¬raven(y)]

By the plausible principle mentioned above, the observation of a white horse
confirms the fact that all ravens are black! �

DIGRESSION 8.2.– (on inductive inference). The presentation of inductive inference
that has been made in section 8.4 is very concise and leads to the technique of inductive
hypotheses generation proposed in section 8.5. In fact, it corresponds to the opinion
of Aristotle who viewed induction as the act of getting from the particular to the

Inference 281

general. This point of view is a bit restrictive and somewhat dated. Since the 17th
Century, and even more so since the axiomatization of probabilities by Kolmogorov
(1933), inductive and probabilistic methods have been closely related8.

We may wonder what the differences are between induction and abduction
(see section 8.3). The boundaries between these two great classes of non-deductive
reasoning are not very precise. However, it should be noted that induction corresponds
to inferences in the context of uncertainty (the uncertainty of an event denoted by a
proposition P is defined as the probability of ¬P), whereas abduction corresponds
to a theorization (C.S. Peirce), i.e. to the imagination of a theory that is explanatory
for the phenomena that are observed and, if possible, predictive of new discoveries.
Probabilities provide clear foundations for induction but do not seem to be applicable
to abduction.

Leibniz was the first philosopher of probability and the first to note that this
theory could be used in an area of logic comparable to the theory of deduction. He
incorporated probabilities into his theory of knowledge and anticipated what is known
as inductive logic. He believed that the science of probability would become a new
sort of logic, an idea that was taken up by J.M. Keynes9, H. Jeffrey, and R. Carnap in
the 1920s. In this approach, it is accepted that there can be processes of non-deductive
illustration, meaning that there can be good reasons to believe that a proposition P
holds, without P being a logical consequence of other propositions. Carnap wanted
to define an objective (and syntactic, i.e. exclusively related to the language that was
used) measure of the degree up to which R is a reason for P .

By analogy with the notion of the proof of propositions that are logically necessary
(deductive inferences are necessary)10, Leibniz proposed that the proof of a contingent
proposition11 P be an infinite sequence that asymptotically converges to P .

Inductive inference is ampliative (recall all the scientific discoveries that increase
the field of what is known). Deductive induction is explanatory. From a classical
point of view,12 it is considered as not bringing any new knowledge: all the knowledge
was already contained in the initial theory on which the inferences were carried out;
the inference makes them explicit.

8 It is worth mentioning, for example, that, in his work, R. Carnap aimed at clarifying the
concepts of degree of confirmation, inductive logic, and probability.
9 The economist who wrote a treatise on probability.
10 Mathematical induction (see section 3.3.2) is to be classified among the methods of deductive
inference.
11 Contingent: likely to be or not to be, to occur or not to occur.
12 Which is criticized by some logic philosophers.

282 Logic for Computer Science and Artificial Intelligence

In other words, the information that is transmitted by deductive inference is void.
A possible explanation for this choice is that P1, P2, ... Pn |= C iff P1 ∧ P2, ... ∧
Pn ⇒ C is a tautology, and that it is admitted that the information transmitted by a
wff (in a given language) is inversely proportional to the probability that the state of
the world that it describes corresponds to reality13.

A more in-depth analysis of the concept of induction and the justification of
inductive inference poses extremely difficult problems to philosophers of science.
Several inductive logics (on which there is no consensus) have been proposed. J.M.
Keynes characterized an inductive logic as a logic that studies “logical relations
between two sets of propositions in cases where it is not possible to argue
demonstratively from one to another”.

We have mentioned in section 8.4 what is called induction by enumeration,
which must be distinguished from induction by elimination. Induction by enumeration
permits us, starting from a sufficient number of facts, to obtain an inductive
consequence (for example, all emeralds observed so far are green, therefore, all
emeralds, including those not observed yet are green). Induction by elimination
permits us, when enough alternate conclusions have been ruled out, to obtain an
inductive consequence. This second form can be viewed as related to the advice by S.
Holmes (see section 2.1.5.2) and to the usage of constraints (see section 9.2).

Some philosophers of science (in particular, K. Popper) defend the thesis that
induction does not have its place in science, which they view as a deductive process
based on hypotheses (theories) that scientists test using observable consequences.
They can be falsified or rejected or temporarily accepted. These criticisms are mainly
aimed at the forms of induction that have just been mentioned.

A form of induction that is frequently used is:

– the observed objects (i.e. the available evidence) that had property P also have
property Q;

– by assuming that object a (that has not been observed yet) has property P ;

– it is likely that a has property Q.

It is related to causal knowledge (laws of nature) and among the required
conditions we can note: C is a cause of E if Prob(E | C) > Prob(¬E | C).

There exist different interpretations of the notion of probability14, among which
the interpretation is known as logical or inductive (of which Carnap was the most

13 This choice is consistent with information theory and with the property: if A |= B then
P (B | A) = 1.
14 Although the axiomatization by Kolmogorov has become canonical.

Inference 283

important defender), according to which every set of facts E uniquely determines the
probability of a hypothesis H and in which the conditional probability Prob(X | Y)
is considered as a quantitative generalization of the logical consequence between
propositions Y and X . The key notion in inductive logic uses the notion of
confirmation and provides a framework for induction: a piece of evidence E confirms
a hypothesis H at the degree c(H,E) = m(H∧E)

m(E) , where m is a probability measure
on the state of the world. The values c(H,E) = 1 and c(H,E) = 0 correspond
to logical consequence and to incompatibility, respectively. c(H,E) > Prob(H),
(where Prob(H) is the a priori probability of H) is a confirmation permitting us to
learn from experience.

Proofs in such theories consist of the computation of the confirmation degree of
pairs premises–conclusion.

Research on inductive logic is still carried out by researchers in philosophy of
science, logic, and AI.

Of course, principles that relate (or differentiate15) the notions of deductive
inference and of confirmation or verification have been searched for. One such
example is the equivalence principle that was brought up in section 8.4.3 or the
implication principle: if A confirms B then A confirms all logical consequences of B.
But caution: if A is a logical consequence of C, then C does not necessarily confirm
everything that is confirmed by A.

Imagine that the symptom denoted by propositionA is a confirmation that a patient
has illness (denoted by proposition) M , but that the absence of the symptoms denoted
by B and C allows us to reject the possibility that the patient has illness M . In other
words, A ∧ ¬B ∧ ¬C does not confirm M , although A ∧ ¬B ∧ ¬C |= A. The
notion of confirmation is therefore non-monotonic (see definition 2.6). For this reason,
inductive inference and confirmation must respect the principle of total evidence that
imposes that all relevant evidence should be taken into account in each induction.

In the same way that we require deductive inference rules be correct (see definition
3.12), we may wonder how to distinguish good inductions from bad instructions,
or those that are reliable from those that are not. According to Hume, a formal
justification cannot be expected, as a deductive justification is impossible and an
inductive justification would lead to a circular argumentation. However, if it cannot

15 Jacques Bernoulli (18th Century) was one of the first to notice the difference between
deductive logic that is used in situations of certain knowledge and inductive logic, which is
necessary in the situations of uncertainty that are encountered in everyday life. He seems to be
the first one to have actually related probability to logic: he provided a numerical measure of
arguments and spoke of the “strength of a proof” or “degree of certainty”.

284 Logic for Computer Science and Artificial Intelligence

be justified, how can inductive inference be trusted? The answer that seems better
adapted is that it is a probable inference. The law of large numbers that relates
frequencies to probabilities can be viewed as setting the foundations of inductive
inference (these laws are logical consequences of the axioms of probability theory and,
although in empirical situations, additional hypotheses may be used, the inductive part
of the reasoning depends on these laws that were established deductively). �

8.5. Generalization: the generation of inductive hypotheses

This is a fundamental problem. Generalization is one of the efficient ways of
obtaining knowledge of the world: to build a taxonomy, in learning, in causal
connections, etc.

DEFINITION 8.3.– (generalization). A formula G is a generalization of a set of
formulas Fi (1 ≤ i ≤ n) iff G |= Fi for all i.

For example, the discovery of a clause that subsumes another clause is a
generalization. Subsumption is a weak form of logical consequence.

DIGRESSION 8.3.– Recent research in neurobiology and cognitive science has shown
the importance for intelligent behaviors (in particular, logical reasoning) of inhibition
mechanisms (of certain capabilities) that are used by the brain.

To make an analogy between the techniques presented above and the mechanisms
that are used by human intelligence, the inhibited capability in generalization would
be that of being able to distinguish details in the composition of sub-expressions. �

Unification is useful in deductive inference:

P (a, f(y)) P (z, f(g(u)))
↘ ↙ σ : mgu

P (a, f(g(u)))

the mgu σ is the less instantiated unifier and is thus the greatest instance (i.e. the most
general, starting from the mgu, all other unifiers can be obtained).

Generalization is useful in inductive inference:

P (x, f(y))
↗ ↖

P (a, f(c)) P (b, f(b))

Here, the useful generalization is the most instantiated generalization, and it is
therefore the smallest one, i.e. the least general; every other one can be reduced to it
by substitution.

Inference 285

We may say that P (x, f(y)) explains P (a, f(c)) and P (b, f(b)).

Why are we searching for the least general generalization (lgg)? Because,
in principle, we can always generalize by replacing complex expressions by
variables. . . but this way of proceeding is too general and useless: the specificities
of the studied phenomenon are lost, together with the possibility of discovering an
interesting law relating its different particular cases.

DEFINITION 8.4.– (generalization of terms, literals, and clauses). (Note that this
definition respects definitions 8.3 and 8.1, because in the case of literals, it is
equivalent to requiring that G subsume Fi, and we know subsumption entails logical
consequence (see exercise 8.1 (b)).

The lgg of a set of expressions is a generalization Glgg such that for every other
generalizationG, G is more general thanGlgg , meaning that there exists a substitution
γ such that Glgg = γG.

This concept can be applied to clauses. A clause C generalizes a clause D iff C
subsumes D.

EXAMPLE 8.11.– The lgg of:

F1: P (f(g(. . .), k(y)), x, k(y))

and:

F2: P (h(g(. . .), k(x)), x, k(x))

is:

F : P (y, x, k(z))

z /∈ [V ar(F1) ∪ V ar(F2)]

σ1F = F1; σ1 = {z ← y, y ← f(g(. . .), k(y))}

σ2F = F2; σ2 = {z ← x, y ← h(g(. . .), k(x))}

F ′: P (y, x, u) is also a generalization, but it is not lgg, as F = γF ′ with γ =
{u ← k(z)} �

EXAMPLE 8.12.– C1: {Q(x) ∨ P (g(h(. . .)), h(. . .))}

C2: {R(x) ∨ P (g(k(. . .)), k(. . .))}

the lgg of C1 and C2 is:

286 Logic for Computer Science and Artificial Intelligence

P (g(y), y)

y /∈ [V ar(C1) ∪ V ar(C2)]. �

Figure 8.2. Generalization algorithm

EXAMPLE 8.13.– (explanation of concepts). An intelligent system has a knowledge
base K, represented by logical formulas (clauses), about a graph. This knowledge
was obtained from different agents (these agents may have used different names for
the same concept).

K:

1) edge(a, b)
2) edge(b, c)
3) edge(b, d)
4) ∀x∀y∀z. ¬edge(x, z) ∨ ¬elempath(z, y) ∨ path(x, y)

Inference 287

• a
↙

b • → • d
↘

• c

The system interrogates its environment to try to find an explanation of the concept
of an elempath whose meaning it does not know, and obtains the following positive
and negative examples:

E+:

5) path(a, c)

6) path(a, d)

E−:
7) ¬ path(c, a)

8) ¬ path(d, c)

– We verify that K ∪ E− |=/ �.

All the consequences of K ∪ E− are:

9) ¬ edge(c, z) ∨ ¬ elempath(z, a) (7, 1)− (4, 3)
10) ¬ edge(d, z) ∨ ¬ elempath(z, c) (8, 1)− (4, 2)

– The set of all consequences of K :

11) ¬ elempath(b, y) ∨ path(a, y) (1, 1)− (4, 1)
12) ¬ elempath(c, y) ∨ path(b, y) (2, 1)− (4, 1)
13) ¬ elempath(d, y) ∨ path(b, y) (3, 1)− (4, 1)

– The sets of consequences obtained are generally not finite. This example is a
particular case in which the formulas do not contain any functional symbol.

– We search for the additional hypotheses that permit us to obtain E+ as a set of
logical consequences of the new knowledge base.

H1:

14) elempath(b, c)

15) elempath(b, d)

(14) and (15) permit us (resolution with (11)) to obtain (5) and (6)

Even better (from the point of view of the explanation):

288 Logic for Computer Science and Artificial Intelligence

H2:

We try to produce clauses that relate known concepts to the concept we are trying
to explain (here, elempath) and from which the possible explanation that was already
obtained (H1) can be deduced.

Candidates are:

¬ edge(a, b) ∨ elempath(b, c) (resolution with (1) permits to obtain (14))

¬ edge(b, c) ∨ elempath(b, c) (resolution with (2) permits to obtain (14))

¬ edge(b, d) ∨ elempath(b, c) (resolution with (3) permits to obtain (14))

¬ edge(a, b) ∨ elempath(b, d) (resolution with (1) permits to obtain (15))

¬ edge(b, c) ∨ elempath(b, d) (resolution with (2) permits to obtain (15))

¬ edge(b, d) ∨ elempath(b, d) (resolution with (3) permits to obtain (15))

The “best choice” seems to be:

¬ edge(b, c) ∨ elempath(b, c)

¬ edge(b, d) ∨ elempath(b, d)

Because it enables us, by generalization (see definition 8.4), to propose the
explanation:

¬ edge(x, y) ∨ elempath(x, y)

which in English reads as: for all x and all y, if there is an edge from x to y, then there
is an elempath from x to y, or, simply put, every edge is an elempath.

8.5.1. Generalization from examples and counter examples

In the generalization of terms, counter examples could also be used.

EXAMPLE 8.14.– (taking examples and counter examples into account). We assume
given a signature (essential hypothesis) and examples: f(b, a), f(a, b), and f(a, c)

and counter examples: f(a, a) and f(c, c)

A generalization would be:

f(x, y) \ {f(u, u)}

meaning: set of constant instances of f(x, y) such that x �= y (note that a constraint
has been introduced). �

Inference 289

REMARK 8.7.– The given representation is an implicit representation of the set of
denoted terms, but does not give the form (structure) of these terms.

At least two questions arise:

– does there exist a finite explicit representation of denoted terms?

– is this representation computable?

EXAMPLE 8.15.– (of an explicit representation). If we consider the set of terms:

f(x, y) \ {f(a, u) ∨ f(u, a)}

and we want to give an explicit representation for them, it is necessary to fix the
signature of the corresponding Herbrand signature.

Σ = {a, b, f (2)}

The set of terms

{a, b, f(a, a), f(a, b), f(b, a), f(b, b), f(a, f(a, a)), . . .}

has the following finite explicit representation:

{f(b, b) ∨ f(f(x, y), b) ∨ f(b, f(x, y)) ∨ f(f(x, y), f(x′, y′))}. �

EXAMPLE 8.16.– (where there is no explicit representation). The set of terms:

f(x, y) \ {f(u, u)}

does not have any finite representation on (for example) the signature:

Σ = {a, g(1)}

The set of denoted terms is a proper subset (meaning that it does not contain the
framed terms in (∗)) of the set of terms on signature Σ:

{a, g(a), g2(a), . . . , gn(a), . . .} n ∈ N

(∗) { f(a,a) , f(a, g(a)), f(g(a), a), f(g(a),g(a)) , f(g2(a), a), . . .}. �

EXAMPLE 8.17.– (where the set of terms is empty). f(x, y) \ {f(u, u) ∨
f(f(u, v), w) ∨ f(w, f(u, v)) ∨ f(a, f(f(u, v), w))}

on signature Σ = {a, f (2)}

denotes ∅. �

290 Logic for Computer Science and Artificial Intelligence

In the case in which an explicit representation can be provided, this information
can be used for a more precise treatment of negation as failure.

EXAMPLE 8.18.– (of a “more detailed” treatment of NAF). The program

→

→ not (pp(X))

together with the question

will answer .

Actually, we should obtain:

∨

(the complement of pp(f(a)) on the implicit signature Σ = {a, f (1)} is pp(a) ∨
pp(f(f(y))), i.e. x = a ∨ x = f(f(y))). �

Chapter 9

Problem Specification in Logical Languages

9.1. Equality

Equality is an extremely important1 predicate (relation), in particular, in
mathematics, that has a meaning in every universe of discourse, which is not the case
for other predicates (for example, if P (x, y) has the intended meaning “x loves y”, it
would have no meaning if the universe of discourse was, say, N).

It seems natural to want to treat it using logics that we have already studied.

Imagine we have to prove the validity (or non-validity) of the equivalence:

(∗) x = y︸ ︷︷ ︸
P

∧x = z︸ ︷︷ ︸
Q

⇔ x = y︸ ︷︷ ︸
P

∧ y = z︸ ︷︷ ︸
R

If propositional logic (PL) is used, using the names mentioned, we get P ∧ Q ⇔
P ∧R, which is obviously a non-valid formula, but our experience with = tells us that
formula (∗) is valid, and we want to classify it as such.

FOL would also fail (without any additional axioms) to capture the characteristics
of equality.

Equality has particular properties that we must make explicit.

There are formulas such as:

1 A philosopher of logic (W.V.O. Quine) wrote “There is still no entity, no set, nothing without
an identity”.

292 Logic for Computer Science and Artificial Intelligence

∃y(R(y) ∧ P (y)) ⇒ ∃yR(y)

that are valid when R is replaced by x = y or by any other predicate Q(x, y).

But the validity of the formula

P (x) ∧ (x = y) ⇒ P (y)

depends on the semantics of =.

9.1.1. When is it used?

EXAMPLE 9.1.– There exists a unique element with property P:

i) ∃x(P (x) ∧ ∀y(P (y) ⇒ (x = y)))

or:

ii) ∃xP (x) ∧ ∀x∀y(P (x) ∧ P (y) ⇒ (x = y))

(i) and (ii) are often abbreviated

∃!xP (x)

There are at least two objects with property P:

iii) ∃x∃y(P (x) ∧ P (y) ∧ (x �= y))

There are at most two objects with property P:

iv) ∀x∀y∀z(P (x) ∧ P (y) ∧ P (z) ⇒ (x = y) ∨ (y = z) ∨ (x = z))

There are exactly two objects with property P:

v) ∃x∃y(P (x) ∧ P (y) ∧ (x �= y) ∧ ∀z(P (z) ⇒ (x = z) ∨ (y = z)))

It is clear that:

(iii) ∧ (iv) ⇔ (v) �

9.1.2. Some questions about equality

1) Why is equality needed?

2) What is equality?

3) How can we reason with equality?

Problem Specification in Logical Languages 293

9.1.3. Why is equality needed?

Since:

– everything is identical to itself and to nothing else.

– identifying a thing to itself is trivial and identifying it to something else is false.

Where does the need for and usefulness of equality come from?

From the fact that we allow different names for the same object.

(It is not the names that are identical, but the named objects).

9.1.4. What is equality?

Equality is an equivalence relation with the replacement or substitution property.

To formalize the equality between two objects, Leibniz expressed (Leibniz’s law)2

∀x∀y((x = y) ⇔ ∀P (P (x) ⇔ P (y)))

Leibniz’s law is sometimes presented as the conjunction of the two following laws
(the first is the common law in mathematics):

∀x∀y((x = y) ⇒ ∀P (P (x) ⇔ P (y)))

Substitution principle (indistinguishability of identity)

∀x∀y(∀P (P (x) ⇔ P (y)) ⇒ (x = y))

Indiscernibility principle (identity of indiscernibles)

(Leibniz’s law is not a wff of FOL).

Axiomatization of equality:

1) ∀x(x = x)

2) ∀x∀y(x = y) ⇒ (y = x)

3) ∀x∀y∀z((x = y) ∧ (y = z)) ⇒ (x = z)

4) ∀f∀x∀y(x = y) ⇒ (f(ū, x, z̄) = f(ū, y, z̄))

5) ∀P∀x∀y((x = y) ∧ P (ū, x, z̄)) ⇒ P (ū, y, z̄)

2 Some authors have noted that it can be simplified: x = y ⇔ ∀P (P (x) ⇒ P (y)).

294 Logic for Computer Science and Artificial Intelligence

where ū and z̄, respectively, denote u1, . . . , um and z1, . . . , zn (0 ≤ m,n) (Of course,
here we assume that f and P are of arity m+ n+ 1).

Note that (4) and (5) are not wffs of FOL (which does not allow for the
quantification of function or predicate symbols). Therefore, equality cannot be
defined in FOL, and of course, it cannot be defined in PL either.

However equality can be treated in FOL.

When treating formulas that contain equalities in FOL, the latter can be
axiomatized in this particular setting simply by noticing that in every wff of FOL,
there are finitely many predicate and function symbols. Formulas (4) and (5) can be
written for each of these symbols.

This means that we need to add:∑nf

i=1 arfi +
∑np

j=1 arpj formulas,

where:

nf : number of functional symbols in the formula;

np: number of predicate symbols in the formula;

arfi : arity of function fi; and

arpj : arity of predicate pj .

REMARK 9.1.– Equality can be axiomatized with (1), (4), and (5) (see exercises 9.1
and 9.2). �

EXAMPLE 9.2.– We want to reason on the set of clauses S below:

1) P (f(a), g(e))

2) ¬P (f(x), g(x))

3) f(a) = f(b)

4) b = c

5) e = c

We add the clauses:

(recall that: P ∧Q ⇒ R ⇔ ¬P ∨ ¬Q ∨R)

6) x = x

7) ¬(x = y) ∨ (y = x)

Problem Specification in Logical Languages 295

8) ¬(x = y) ∨ ¬(y = z) ∨ (x = z)

9) ¬(x = x′) ∨ ¬P (x, y) ∨ P (x′, y)
10) ¬(y = y′) ∨ ¬P (x, y) ∨ P (x, y′)
11) ¬(x = x′) ∨ f(x) = f(x′)
12) ¬(x = x′) ∨ g(x) = g(x′)

Of course, we could have written equality as an ordinary predicate with the prefix
notation: E(. . . , . . .), but we prefer the standard mathematical notation. �

REMARK 9.2.– Substitution seems natural, in fact it is natural for extensional
languages. This is not the case for non-extensional languages.

Consider the following sentence:

i) Michael knows that the sum of the first n odd numbers is 1+ 3+5+ . . .+(2×
n+ 1).

The sentence:

ii) If Michael knows that the sum of the first n odd numbers is 1 + 3 + 5 +
. . . + (2 × n + 1), then Michael knows that the sum of the first n numbers is
1 + 3 + 5 + . . .+ (2 × n+ 1)︸ ︷︷ ︸
is trivially true (it is actually a tautology).

Furthermore,

iii) 1 + 3 + 5 + . . .+ (2× n+ 1) = n2.

Using (iii) and substituting 1 + 3 + 5 + . . .+ (2× n+ 1)︸ ︷︷ ︸ by n2 in (ii) leads to:

iv) If Michael knows that the sum of the first n odd numbers is 1 + 3 + 5 + . . .+
(2× n+ 1), then Michael knows that the sum of the first n odd numbers is n2.

. . . and what used to be a tautology does not remain so, because Michael may not
be aware of property (iii). �

9.1.5. How to reason with equality?

It is possible to handle equality by resolution, by axiomatizing it (see the following
section) or using the paramodulation rule (see definition 9.1).

296 Logic for Computer Science and Artificial Intelligence

The following example shows that it is sometimes possible not to bother about
equality in the statement of some problems (here, a theorem). The way of proceeding
is the way used in logic programming (see Chapter 6), where a key technique is the
naming technique.

9.1.6. Specification without equality

EXAMPLE 9.3.– (a theorem in group theory, without =). We prove the following
theorem (see also example 9.13) by resolution:

If in a group G we have: ∀x.x2 = x, then G is commutative.

The associativity of an operation ◦ is expressed by:

∀x∀y∀z.
u︷ ︸︸ ︷

(x ◦ y) ◦z︸ ︷︷ ︸
w

= x ◦
v︷ ︸︸ ︷

(y ◦ z)

By naming as indicated by the braces, we can express the associativity of ◦ using
the predicate:

P (x, y, z): the composition of x and y yields z.

We thus express with clauses: x ◦ v = w iff u ◦ z = w

∀x∀y∀z∀u∀v∀w.P (x, y, u) ∧ P (y, z, v) ∧ P (u, z, w) ⇒ P (x, v, w) (if)

∀x∀y∀z∀u∀v∀w.P (x, y, u) ∧ P (y, z, v) ∧ P (x, v, w) ⇒ P (u, z, w) (only if)

Identity will be denoted by the constant e and the inverse of an element x by i(x).

The conclusion of the theorem (i.e. commutativity):

∀x∀y∀z.P (x, y, z) ⇒ P (y, x, z)

and its negation:

¬(∀x∀y∀z.P (x, y, z) ⇒ P (y, x, z))

∃x∃y∃z¬(P (x, y, z) ⇒ P (y, x, z))

after Skolemization, we obtain two clauses:

P (a, b, c) ∧ ¬P (b, a, c)

Problem Specification in Logical Languages 297

Proving the theorem therefore boils down to deducing 2 from clauses (1) to (9)
below:

1) ¬P (x, y, u) ∨ ¬P (y, z, v) ∨ ¬P (u, z, w) ∨ P (x, v, w)

2) ¬P (x, y, u) ∨ ¬P (y, z, v) ∨ ¬P (x, v, w) ∨ P (u, z, w)

3) P (e, x, x)

4) P (x, e, x)

5) P (i(x), x, e)

6) P (x, i(x), e)

7) P (x, x, e)

8) P (a, b, c)

9) ¬P (b, a, c)

We shall use the hyperresolution rule without having defined it formally; it
corresponds to applying several resolution steps in one single step.

10) P (c, b, a) (2, 1)− (8, 1); (2, 2)− (7, 1); (2, 3)− (4, 1)

{x ← a, y ← b, z ← b, u ← c, v ← e, w ← a}

11) P (c, a, b) (1, 1)− (7, 1); (1, 2)− (10, 1); (1, 3)− (3, 1)

{x ← c, y ← c, z ← b, u ← e, v ← a, w ← b}

12) P (b, a, c) (2, 1)− (11, 1); (2, 2)− (7, 1); (2, 3)− (4, 1)

{x ← c, y ← a, z ← a, u ← b, v ← e, w ← c}

13) � (12, 1)− (9, 1). �

9.1.7. Axiomatization of equality

Once it has been axiomatized, equality is a predicate like any other predicate,
and its definition can be incorporated by adding formulas to the problems that use
it, and then using the method of semantic tableaux or of resolution. The goal is to
extend these methods. Of course, here, extension means incorporating rules that take
the properties of = into account into these methods.

9.1.8. Adding the definition of = and using the resolution method

EXAMPLE 9.4.– We give a linear refutation by resolution, for the set of clauses S of
example 9.2:

298 Logic for Computer Science and Artificial Intelligence

13) ¬(f(a) = x′) ∨ P (x′, g(e)) (1,1)-(9,2) {x ← f(a), y ← g(e)}
14) P (f(b), g(e)) (13,1)-(3,1) {x′ ← f(b)}
15) P (f(b), y′) ∨ ¬(g(e) = y′) (14,1)-(10,2) {x ← f(b), y ← g(e)}
16) ¬(g(e) = g(b)) (15,1)-(2,1) {x ← b, y′ ← g(b)}
17) ¬(e = b) (16,1)-(12,2) {x ← e, x′ ← b}
18) ¬(e = y) ∨ ¬(y = b) (17,1)-(8,3) {x ← e, z ← b}
19) ¬(c = b) (18,1)-(5,1) {y ← c}
20) ¬(b = c) (19,1)-(7,2) {y ← c, x ← b}
21) � (20,1)-(4,1)

�

REMARK 9.3.– Equality is not handled by Prolog, in which it is possible to use the
predicate eq that can be evaluated (see exercise 6.10).

To convince oneself that the predicate does not correspond to equality, it suffices
to use the program (, , and denote constants):

and to ask the question:

The answer will be “false”, which does not correspond to the answer we would get
with the usual notion of equality (that was formally defined in section 9.1.4). �

REMARK 9.4.– Reasoning automatically with equality can be very difficult. If one is
interested in reasoning only on finite domains, problems can often be formulated in
such a way to avoid its occurrence, as shown in the following example. �

EXAMPLE 9.5.– We assume that there is a set of candidates to a set of available jobs,
and we want to express that there cannot be two candidates who get the same job.

The wff of FOL with equality (FOLE or FOL=) correctly formalizes the statement
of the problem.

(∗) ∀x∀y∀z∀w(R(x, y) ∧R(z, w) ∧ x �= z ⇒ y �= w)

where R(x, y) means: job y is given to candidate x.

Once the number of candidates has been fixed, say Alice (a), Bob (b), Carrie (c),
and Daniel (d), we can express the statement (∗) (with the objective of not having to
handle equality) with the six (i.e. C2

4) following clauses:

Problem Specification in Logical Languages 299

∀x¬(R(a, x) ∧R(b, x))

∀x¬(R(a, x) ∧R(c, x))

∀x¬(R(a, x) ∧R(d, x))

∀x¬(R(b, x) ∧R(c, x))

∀x¬(R(b, x) ∧R(d, x))

∀x¬(R(c, x) ∧R(d, x)) �

9.1.9. By adding specialized rules to the method of semantic tableaux

The following assertions are implicitly accepted in general, but deserve to be
restated:

– names (constants or terms without variables) denote an object that exists. This
assumption is necessary to be able to adopt the (quite natural!) point of view admitting
that a �= a (i.e. ¬(a = a)) is contradictory;

– function symbols denote total functions, i.e. if f is an arbitrary function symbol
and a is a constant, then f(a) = b, where b is a constant denoting an object that exists,
as recalled above.

R=
1 :

If a branch B contains ¬(a = a) or ¬(fn(t) = fn(t)), where t is an n-tuple of
closed terms: put a × in B.

R=
2 :

For every constant (or term denoting a constant) and every closed formula, use
substitution (axioms 4 and 5 in the axiomatization of equality).

REMARK 9.5.– To avoid strategies that would artificially introduce non-termination,
we will require that the closed formulas produced by substitution do not already occur
in the branch (the same remark as for universal quantifiers). �

Do we need to add rules that handle symmetry and transitivity?

If it is possible to prove the validity of these axioms using R=
1 and R=

2 , then we
will have answered “no” to the question and we will be done with the extension of the
method of semantic tableaux incorporating equality3.

3 Of course, once the properties of symmetry and transitivity have been proved, they can be
used as if they were axioms.

300 Logic for Computer Science and Artificial Intelligence

EXERCISE 9.1.– (symmetry of =). Prove, using the method of semantic tableaux
extended with R=

1 and R=
2 , the validity of:

∀x∀y(x = y ⇒ y = x). �

EXERCISE 9.2.– (transitivity of =). Use the method of semantic tableaux extended
with R=

1 and R=
2 to prove the validity of:

∀x∀y∀z[(x = y) ∧ (y = z) ⇒ (x = z)]. �

We can therefore extend the method of semantic tableaux with R=
1 and R=

2 , and it
can be applied to FOLE (FOL=).

We easily obtain the procedure to do so (the added lines are preceded by =).

EXERCISE 9.3.– Use the method of semantic tableaux with equality to prove the
assertion of example 9.1, i.e. (iii) ∧ (iv) ⇔ (v). �

9.1.10. By adding specialized rules to resolution

9.1.10.1. Paramodulation and demodulation

These rules were introduced to handle reasoning on clauses that contain literals
involving equality.

We first study the paramodulation rule. It permits us in one step to combine the
following operations:

– instantiation: replacement of variables by terms;

– replacement of equals by equals.

For example, if we have the two clauses (1) and (2) below:

1) f(x) = g(a) % recall: for all x

2) f(b) = c

from (1) we may deduce:

3) f(b) = g(a)

and, using (3) and replacing equals by equals in (2), we obtain:

2) g(a) = c

Such deductions are performed in one step with the paramodulation rule.

Problem Specification in Logical Languages 301

Figure 9.1. Procedure (FOL=)

DEFINITION 9.1.– (paramodulation rule). We note:

L[t]u: term t occurs at position u in literal (or term) L.

L[t]: term t occurs at an unspecified position in literal (or term) L.

L[u ← t]: the literal (or term) obtained by replacing the term occurring at
position u by t.

302 Logic for Computer Science and Artificial Intelligence

Consider two clauses C and D:

C: s = t ∨C1

D: L ∨D1

where:

L: a literal (in particular, an equality or the negation of an equality).

C1, D1: clauses.

If L[r]u and r
.
= s admit a solution σ, then the clause

σ(C1 ∨ L[u ← t] ∨D1)

is a paramodulant of C in D.

EXAMPLE 9.6.– C: f(x, g(x)) = e ∨Q(x)

D: P (y, f(g(y), z), z) ∨R(z)

σ = {x ← g(y), z ← g(g(y))}

A paramodulant of C in D is the clause:

P (y, e, g(g(y))) ∨Q(g(y)) ∨R(g(g(y))). �

EXAMPLE 9.7.– Prove, using the paramodulation and resolution rules, that the set
containing the three clauses below is E-unsatisfiable (i.e. if the predicate =, denoted
here in infix mode as usual, represents equality).

1) P (x, x, f(a), f(b))

2) ¬P (f(a), f(b), x, x)

3) a = b

4) P (x, x, f(a), f(a)) paramodulation of (3) in (1)

5) ¬P (f(a), f(a), x, x) paramodulation of (3) in (2)

6) � resolution (4,1)-(5,1) {x4 ← f(a), x5 ← f(a)}. �

REMARK 9.6.– (reflexivity must not be forgotten). Although it is not necessary in
this example, when reasoning with equality, it is necessary to add the clause:

x = x % recall: for all x

in order not to lose refutational completeness.

Problem Specification in Logical Languages 303

Otherwise, it is impossible to prove by resolution and paramodulation that the set
of clauses {a �= a} is contradictory.

If we add x = x, then, by resolution, we obtain � with {x ← a}. �

EXAMPLE 9.8.– Prove, using the paramodulation and resolution rules, that the set
consisting of the four clauses below is E-unsatisfiable (i.e. S is unsatisfiable when =
is interpreted as the usual equality, see section 9.1.4).

1) P (a) ∨ a = b

2) P (b)

3) ¬P (a) ∨Q(c)

4) ¬P (a) ∨ ¬Q(c)

5) P (a) paramodulation of (1) in (2)

6) Q(c) resolution (5,1)-(3,1)

7) ¬P (a) resolution (6,1)-(4,2)

8) � resolution (7,1)-(5,1). �

Demodulation or rewriting or reduction uses equalities to replace terms by
“simpler” terms, we thus need complexity measures, and if, for example, we consider
brackets on the right as simpler, we orient the equality (x+ y) + z = x+ (y + z) as
(x+ y) + z → x+ (y + z).

The goal is to keep information in its simplest form, if possible a canonical form.
For example, a+0 → a. This, thus, corresponds to algebraic simplification (symbolic
computation).

EXAMPLE 9.9.– a) When considering the unit clause:

f(f(x)) = g(x)

oriented into:

f(f(x)) → g(x)

the clause:

P (f(f(a)), b)

is demodulated into

P (g(a), b) and removed.

304 Logic for Computer Science and Artificial Intelligence

b) When considering the unit clause:

x+ 0 = x

oriented into:

x+ 0 → x

the clause:

P ((a+ 0) + b, c)

is demodulated into

P (a+ b, c) and removed. �

DEFINITION 9.2.– (demodulation rule). We write:

L[t]u: term t occurs at position u in literal (or term) L.

L[u ← t]: is the literal (or term) obtained by replacing the term at position
u by t.

Consider the two clauses C (unit, with equality as a predicate) and D:

C: s = t the demodulator

D: L ∨D1

where:

L: literal (in particular, an equality or the negation of an equality).

D1: a clause.

If L[r]u and there exists a substitution σ such that σs = r (matching instead of
unification),

then the clause

σ(L[u ← t] ∨D1) that replaces D

was obtained by demodulating D with C.

Problem Specification in Logical Languages 305

EXAMPLE 9.10.– (is demodulation complete?). The answer is no, as shown in the
following example:

S = {P (a),¬P (b), a = f(c), b = f(c)}

S is E-unsatisfiable, but a natural complexity measure would orient the equalities
f(c) → a ; f(c) → b and it would be impossible to derive a contradiction. �

EXAMPLE 9.11.– (what if = occurs in non-unit clauses?). The E-unsatisfiable set of
clauses (1) to (4) below shows that restricting the usage of = to its occurrences in unit
clauses is too strong a requirement (meaning that unsatisfiable sets of clauses are not
detected as so, and completeness is lost).

1) (c = d) ∨ ¬Q(c)

2) g(c) �= g(d) ∨ ¬Q(c)

3) (a = b) ∨Q(c)

4) g(a) �= g(b) ∨Q(c)

S is E-unsatisfiable, a result that is easily proved by resolution, by axiomatizing
equality with the technique that was already presented. We add:

5) ¬(a = b) ∨ (g(a) = g(b))

6) ¬(c = d) ∨ (g(c) = g(d))

and we obtain:

7) g(a) = g(b) ∨Q(c) (3, 1)− (5, 1)

8) g(c) = g(d) ∨ ¬Q(c) (1, 1)− (6, 1)

9) Q(c) (4, 1)− (7, 1)

10) ¬Q(c) (2, 1)− (8, 1)

11) � (9, 1)− (10, 1). �

EXAMPLE 9.12.– (demodulation: a canonical procedure?). The answer is no.
Consider the clause:

(∗) Q(f(f(a, b), c))

and the set of demodulators:

1) f(a, b) → d

2) f(b, c) → e

3) f(f(x, y), z) → f(x, f(y, z))

By using (1), (∗) can be demodulated into:

306 Logic for Computer Science and Artificial Intelligence

Figure 9.2. Paramodulation versus demodulation

i) Q(f(d, c))

By using (3), (∗) can be demodulated into:

Q(f(a, f(b, c)))

and (2) into:

ii) Q(f(a, e))

(i) and (ii) are two equivalent clauses, but one cannot be reduced to the other by
demodulation. �

Figure 9.2 summarizes the differences between demodulation and paramodulation.

EXAMPLE 9.13.– (a theorem in group theory). If in a group G, ∀x.x2 = e, then G is
commutative.

A human would probably give a proof similar to the following (of course, ◦ denotes
the operation in G):

(y ◦ z)︸ ︷︷ ︸
x

◦ (y ◦ z)︸ ︷︷ ︸
x

= e

y ◦ y︸ ︷︷ ︸
e

◦(z ◦ y ◦ z) = y ◦ e︸︷︷︸
y

z ◦ y ◦ z = y

z ◦ z︸︷︷︸
e

◦y ◦ z = z ◦ y

y ◦ z = z ◦ y

Another human proof (using another strategy) could be:

Problem Specification in Logical Languages 307

1) z = x ◦ y

z ◦ y = (x ◦ y) ◦ y = x ◦ (y ◦ y) = x ◦ e = x

z ◦ (z ◦ y) = (z ◦ z) ◦ y = e ◦ y = z ◦ x

y = z ◦ x

2) y ◦ x = (z ◦ x) ◦ x = z ◦ (x ◦ x) = z ◦ e = z

hence ((1) and (2))

x ◦ y = y ◦ x

To give a proof by paramodulation, demodulation, and resolution, the group
axioms (which are implicit in the proof above) need to be written in clausal form,
and the conclusion must be negated:

1) f(e, x) = x % f(x, y): x ◦ y
2) f(x, e) = x

3) f(g(x), x) = e % g(x): x−1

4) f(x, g(x)) = e

5) f(f(x, y), z) = f(x, f(y, z)) % ◦ is associative

6) f(x, x) = e

7) f(a, b) �= f(b, a) % neg. of conclusion and Skolemization
(¬[∀x∀y.f(x, y) = f(y, x)] equiv. ∃x∃y.¬[f(x, y) = f(y, x)] skol.:

¬(f(a, b) = f(b, a)))

8) x = x % not used in this example

Paramodulation of (5) into (6):

5) f(f(x5, y5), z5) = f(x5, f(y5, z5))

6) f(x6, x6) = e

σ = {x6 ← f(x5, y5), z5 ← f(x5, y5)}

We obtain (after renaming the variables):

9) f(x9, f(y9, f(x9, y9))) = e

Paramodulation of (6) into (5):

6) f(x6, x6) = e

308 Logic for Computer Science and Artificial Intelligence

5) f(f(x5, y5), z5) = f(x5, f(y5, z5))

σ = {x6 ← x5, y5 ← x5}

we obtain:

f(e, z5) = f(x5, f(x5, z5)),

Demodulation with (1):

1) f(e, x1) = x1

σ = {x1 ← z5}

We obtain (after renaming the variables):

10) f(x10, f(x10, z10)) = z10

Paramodulation of (9) into (10):

9) f(x9, f(y9, f(x9, y9))) = e

10) f(x10, f(x10, z10)) = z10

σ = {x10 ← x9, z10 ← f(y9, f(x9, y9))}

The paramodulant is:

f(x9, e) = f(y9, f(x9, y9))

Demodulation with (2):

2) f(x2, e) = x2

σ = {x2 ← x9}

We obtain (after renaming the variables):

11) f(y11, f(x11, y11)) = x11

Paramodulation of (11) into (10):

11) f(y11, f(x11, y11)) = x11

10) f(x10, f(x10, z10)) = z10

σ = {x10 ← y11, z10 ← f(x11, y11)}

Problem Specification in Logical Languages 309

The paramodulant is:

f(y11, x11) = f(x11, y11)

We obtain (after renaming the variables):

12) f(y12, x12) = f(x12, y12)

Resolution (12,1)-(8,1) σ = {x12 ← b, y12 ← a}
13) �. �

9.2. Constraints

The notion of constraint is very natural and appears in many different situations.

Compared with the other notions that have been studied, it is best related to
those of logical consequence and subsumption. For example, a theorem that holds
for groups is more general (i.e. is valid for more objects) than a theorem that holds
for Abelian groups that have the additional property of being commutative. If a
theorem holds with less constraints on its hypotheses, then obviously (monotony, see
exercise 3.13 c), it also holds with more of them (subsumption)4.

The premises of the theorem can be viewed as constraints and the conclusion as the
solution of the constraints (the conclusion holds under the constraints of the premises).
Every model of the premises (and maybe more) is specified by the formula in the
conclusion (equivalent to the logical consequence).

You have already been confronted many times with this notion in a concrete way,
for example, in the problem of coloring a graph with the constraint that this must be
done with three colors and that two nodes connected by an edge must not have the
same color (see example 9.19).

A constraint is a condition to satisfy. The domains (i.e. the sets of possible values
for the variables) give their names to the types of constraints. The most studied ones
are arithmetic constraints, Boolean constraints, constraints on strings, constraints on
trees ((dis-) equations on terms), and constraints on finite domains.

The main problems that arise are:

– satisfiability (does there exist a solution?);

– equivalence/implication between constraints;

4 Kolmogorov’s probability theory is also monotonic, in the sense that if B is a consequence of
A, then prob(A) ≤ prob(B).

310 Logic for Computer Science and Artificial Intelligence

– simplification;

– optimization.

DEFINITION 9.3.– A wff F of FOL of the form:

F :
∧

1≤i≤n R
in
i (xi1 , . . . , xin)

(or a set {Rin
i (xi1 , . . . , xin) | 1 ≤ i ≤ n})

with Rin
i : in-ary predicate symbol

F is called a constraint.

V ar(F) = V

Given a domain (set) D, the problem of finding a substitution:

σ : V −→ D

enabling us to evaluate F to true is called the problem of constraint solving.

The projection of a constraint C on a set of variables V ⊆ V ar(C) is a constraint
CP with V ar(CP) = V , such that:

– if σ is a solution of C, then σ is a solution of CP ;

– if dom(σR) = V and σR solution of CP , then there exists an extension of σR to
V ar(C) that is a solution of C.

The definition of a projection simply means: “we only deal with the subset of
constraints containing some given variables of the problem”.

The procedure PLC specifies the abstract interpreter that permits us to handle
clauses with constraints. We give a few examples on using constraints in a logic
programming language (Prolog 3).

EXAMPLE 9.14.– (logical connectives). Assuming that we do not have Boolean
constraints (although we do), we want to define the usual logical connectives (see
section 3.1) as arithmetic operations, using arithmetic constraints, and encoding T by
1 and F by 0:

→ −

→ ×

Problem Specification in Logical Languages 311

Figure 9.3. Abstract interpreter for PL language with constraints

→ − ×

→ − × −

→ − × − × − × −

Of course, could have been written:

312 Logic for Computer Science and Artificial Intelligence

→ − ×
by either transforming the constraint or directly using the equivalence

(X ⇒ Y) ⇔ (¬X ∨ Y). �
EXAMPLE 9.15.– (pigeons and rabbits). An example that is frequently given to
illustrate constraints is the following.

Determine the X number of pigeons and the Y number of rabbits such that
together, they consist of 12 heads and 34 legs.

There is no need for a program, we ask the question:

{X + Y = 12, 2×X + 4× Y = 34};

the answer is:

{X = 7, Y = 5}. �

EXAMPLE 9.16.– (at the restaurant). This program is probably the most famous
program that can be found among the examples of Prolog programs in the literature.

A person who must not eat more than a given number of calories during meals
wants to come up with the different menus that consist of, say, less than 10 calories.
A program that enables us to get all the menus is the following:

→

→
→
→

→
→
→

→
→

→
→

By asking the question:

The person will know what menus are possible with 10 or less calories per
meal. �

Problem Specification in Logical Languages 313

EXAMPLE 9.17.– (magic squares). We want to arrange the numbers 1 to 9 in a square
in such a way that each row, column, and the two diagonals, all sum to the same
constant.

We note:

X1 X2 X3
X4 X5 X6
X7 X8 X9

The program is empty and we ask the question:

(enum(X) enables us to enumerate the integer values of X that satisfy the
constraint):

314 Logic for Computer Science and Artificial Intelligence

�

EXAMPLE 9.18.– (the n-queens problem). The well-known n-queens problem
consists in placing n queens on an n× n chessboard in such a way that no two queens
attack each other. This problem is trivial to program. See also exercise 9.4.

We choose n=4.

The program contains no clause.

In the question, Li and Ci denote the line and column in which queen i is placed
(1 ≤ i ≤ n). For example, the first solution corresponds to:

R2
R4

R3
R1

Problem Specification in Logical Languages 315

316 Logic for Computer Science and Artificial Intelligence

�

EXERCISE 9.4.– Express the n-queens problem in PL, without using �. Compare with
example 9.18. �

EXAMPLE 9.19.– (map coloring). The problem consists in coloring all the regions
of the map below with three distinct colors, in such a way that no two regions with a
common border are colored with the same color.

R1

R4

R3
R5

R6

R2

�

EXAMPLE 9.20.– We want to compute the minimum M of an expression E in a
fragment of the plane.

Problem Specification in Logical Languages 317

�

EXAMPLE 9.21.– (non-linear constraints?). Sometimes, they can be handled. The
Pythagorean theorem is one such example.

In the constraints, we allowed triangles with collinear sides. To eliminate them, it
would suffice to add 1<= X, 1<= Y in the constraint to obtain the non-degenerate
triangles (those marked with (*)) as solutions. �

318 Logic for Computer Science and Artificial Intelligence

EXAMPLE 9.22.– (syntactic analysis). Grammar rules:

S −→ c

S −→ aSb

S −→ eSd

The program:

→

→

→ �

EXAMPLE 9.23.– (scalar product).

where denotes a tuple, i.e. a tree whose root is labelled by <>.

< x0, . . . , xn > : < >
↙ ↘

x0 . . . xn

�

EXAMPLE 9.24.– (palindrome on strings). →

→ �

EXAMPLE 9.25.– (reverse on strings). List y is the reverse of list x if their
concatenation is a palindrome:

(uses the following property: the length of the list resulting from the concatenation
of a list and its reverse is always an even number)

→

means: “the length of string x is m”. �

Problem Specification in Logical Languages 319

EXAMPLE 9.26.– (in a database). (Example given by K. Marriott and J. Stuckey)

A firm wants to reward the faithful employees (defined as those who have stayed
at least 10 years in the firm). The part of the database involved with this problem is
the following:

→ {1985 <= T <= 1987};
→ {T = 1988};
→ {1989 <= T <= 1996};
→ {1994 <= T <= 1995};
→ {1988 <= T <= 1991};
→ {1992 <= T <= 1995};
→ {T = 1996};
→ {1980 <= T <= 1996};

→
{10 <= T 2− T 1};

Nb: in general, when there are variables we are not interested in (such as Z, U, V,
W in the question), we have the possibility of replacing them by − so as not to choose
names for them.

Question:

Answer: {X = empl3} {X = empl1}. �

REMARK 9.7.– The substitution { } in the answer to
question 2 in the table, corresponds to the generation of an infinite, rational tree (no
test for cycles in the unification algorithm, see exercise 4.1). �

9.3. Second Order Logic (SOL): a few notions

During the 19th Century and up to the 1910s, in the formal systems used by
logicians–mathematicians (Frege, Zermelo, etc.), the usage of higher-order quantifiers
(for example, on sets) was common. Formulas and proofs of infinite lengths were also
permitted.

It is only during the 1920s (in particular, thanks to Skolem and Hilbert) that FOL
started being particularly important.

Using higher-order seems natural because we may wonder “why should we limit
the expressive power of the logic we are using?”, i.e. the nature of the objects that can
be quantified.

320 Logic for Computer Science and Artificial Intelligence

Pr
og

ra
m

m
in

g
w

ith
an

d
w

ith
ou

tc
on

st
ra

in
ts

:
so

m
e

co
m

pa
ra

tiv
e

ex
am

pl
es

W
ith

th
e

sa
m

e
de

cl
ar

at
iv

e
se

m
an

tic
s

W
ith

ou
tc

on
st

ra
in

ts
W

ith
co

ns
tr

ai
nt

s
→

;
→

;
→

→
{

}
q

u
es

ti
o

n
1:

q
u

es
ti

o
n

1:

{
}

{
}

{
}

{
}

{
}

..
.

q
u

es
ti

o
n

2:
q

u
es

ti
o

n
2:

{
}

{
}

{
}

..
.

q
u

es
ti

o
n

3:
q

u
es

ti
o

n
3:

{
}

Problem Specification in Logical Languages 321

The answer is clear when we take into account the properties of the logic under
consideration, other than its expressive power, e.g. existence of denumerable models,
semi-decidability, compactness, and completeness, which are useful, in particular, for
its automation.

FOL enables us to express many things, in particular, in mathematics, and it has
“nice” properties, but some common concepts such as infinite sets, finite sets, well-
ordered sets, continuous functions, etc. cannot be expressed in FOL.

SOL (and more generally so-called higher-order logics) enables us to express these
concepts and has (have) another characteristic which is that it (they) can greatly reduce
the length of proofs of a lower order (for infinitely many formulas).

The notion of expressivity or expressive power corresponds to the models that
the formulas of the logic under consideration a to characterize in an exclusive way
(meaning some models and they alone).

Characteristic: explicit quantification on predicates and functions.

Advantage: greater expressive power.

Disadvantage: we lose some of the interesting properties of FOL: Löwenheim–
Skolem, compactness, and completeness.

We give a few examples that show its usefulness.

EXAMPLE 9.27.– Leibniz’s law (see section 9.1). �

EXAMPLE 9.28.– (see also example 9.28).

The induction axiom, intensional version:

∀P ((P (0) ∧ ∀x(P (x) ⇒ P (succ(x))) ⇒ ∀yP (y))

The induction axiom, extensional version:

∀S. if [S ⊆ N and 0 ∈ S and (if n ∈ S then s(n) ∈ S)] then S = N. �

EXAMPLE 9.29.– S is a well-ordered set (meaning that every non-empty subset has
a least element):

∀S∃x(x ∈ S ⇒ ∃y(y ∈ S ∧ ∀z(z ∈ S ⇒ y ≤ z)))

This property is expressed in weak SOL with successor, which is decidable with
a non-elementary complexity, meaning that for any decision algorithm and integer k,
there exist formulas of length n such that the decision requires

322 Logic for Computer Science and Artificial Intelligence

2
...
2n } k units of time. �

EXAMPLE 9.30.– (torsion group). This example is often used to show the limits of
the expressive power of FOL.

An Abelian group G is a torsion group iff every a ∈ G has a finite order, i.e.
∃n ≥ 1.an = eG (eG denotes the identity in G).

It can also be defined as follows:

∀X ∈ P(G).x ∈ X ∧ [∀y ∈ X.(x ◦ y) ∈ X] ⇒ eG ∈ X (P(G) denotes the set
of subsets of G.)

Or, using an infinitary logic (i.e. that allows formulas of infinite length):

∀x[x = eG ∨ x2 = eG ∨ x3 = eG ∨ . . .]. �
EXAMPLE 9.31.– (finite set). We first show that the property of being finite
(finiteness) cannot be expressed by a set of wffs of FOL whose models would
exclusively be finite sets (obviously of any arbitrary cardinality).

To prove this impossibility, we prove that if such a set of wffs of FOL existed, then
it would also admit infinite models.

Assume that Σ, a set of wffs of FOL, has finite models of arbitrary cardinalities.

Consider the formulas of FOL that specify that there exist at least n (distinct)
elements (see also theorem 9.1):

ϕn: ∃x1, . . . , ∃xn(x1 �= x2 ∧ x1 �= x3 ∧ . . . ∧ xn−1 �= xn)

where the conjunction contains n(n− 1)/2 disequations.

We define the set φ = Σ
⋃
{ϕn | n ∈ N}.

It is clear that the set φp = Σ
⋃{ϕn | n ≤ p, p ∈ N} is a subset of φ and is

satisfiable (as Σ admits models of all cardinalities and φp has a model of cardinality
at least p).

This property holds for all p, hence, as every finite subset of φ is satisfiable, by
the compactness theorem for FOL (see theorem 5.8), the infinite set φ also admits a
model. This model is infinite (See also the proof of theorem 9.1.).

However, a model of a set of formulas is a model of all its formulas; hence,
the infinite model of φ is an infinite model of Σ. Therefore, Σ cannot exclusively
characterize finite sets. �

Problem Specification in Logical Languages 323

However, it is possible to express finiteness in SOL. According to Dedekind’s
definition, a set is finite iff there is no bijection from this set onto one of its proper
subsets. In other words, E is finite iff every injective function E −→ E is onto (this
is not the case, e.g. for N, with f :N −→ N and f(x) �→ 2× x).

We propose three translations.

The first translation:

∀f(∀x∀y((f(x) = f(y)) ⇒ (x = y)) ⇒ ∀x∃y(x = f(y)))

The second translation (there are only quantifications on predicate variables):

∀F ((∀x∃!yF (x, y)︸ ︷︷ ︸
F is a function

∧ ∀x∀y∀z((F (x, z) ∧ F (y, z) ⇒ (x = y))︸ ︷︷ ︸
F injective

⇒

∀x∃yF (y, x)︸ ︷︷ ︸
F onto

)

with:

∀x∃!yF (x, y): ∀x∃y(F (x, y) ∧ (∃zF (x, z) ⇒ (y = x))

The third translation, “the set whose members have property P is finite” (see also
exercise (5.1 n)):

¬∃f [∀x∀y(f(x) = f(y) ⇒ x = y︸ ︷︷ ︸
f injective

) ∧ ∀x(P (x) ⇒ P (f(x)))︸ ︷︷ ︸
domain = codomain

∧

∃y(P (y) ∧ ∀x(P (x) ⇒ f(x) �= y)︸ ︷︷ ︸
f not onto

)] �

EXAMPLE 9.32.– (infinite set). Dedekind’s definition is sometimes presented for
infinite sets.

A set E is infinite iff there exists an injective function with domain E, whose
codomain is a proper subset of E:

∃f [∃z∀u.z �= f(u)︸ ︷︷ ︸
codomain f � domain f

∧ ∀x∀y((x �= y) ⇒ f(x) �= f(y))︸ ︷︷ ︸
f injective

]. �

EXAMPLE 9.33.– (infinite set-2). A set is infinite iff it is the domain of a total,
transitive, and irreflexive relation:

ϕ∞ : ∃X [∀u∀v∀w(X(u, v) ∧ X(v, w) ⇒ X(u,w)) ∧ ∀u¬X(u, u) ∧
∀u∃vX(u, v))] �

324 Logic for Computer Science and Artificial Intelligence

EXAMPLE 9.34.– Sometimes, the pigeonhole principle is formalized by the formula:

∀k∀f.N → Pk ∃A ∈ [P(N)]∞ ∃i < k ∀j ∈ A.f(j) = i

where [P(N)]∞ denotes the infinite subsets of N

and Pk the following subset of N: {0, 1, . . . , k − 1}

Graphically, this principle can be represented by:

�

EXAMPLE 9.35.– In natural language, Victor Hugo had all the qualities of a great
writer:

∀X(∀y(G(y) ⇒ X(y)) ⇒ X(hugo))

X(y): y has quality X .

G(y): y is a great writer. �

9.3.1. Syntax and semantics

For the sake of readability, we only present what needs to be added to FOL.

9.3.1.1. Vocabulary

– Predicate variables { Xn1
1 , Xn2

2 , Xn3
3 , . . .}.

– Function variables {Fn1
1 , Fn2

2 , Fn3
3 , . . .}.

(in FOL, we only have variables denoting individuals)

Problem Specification in Logical Languages 325

DIGRESSION 9.1.– (variables 3)5. In this context too, variables can be replaced
by other symbols (syntactic objects) and do not denote quantities that vary (as in
mathematics and physics). �

9.3.1.2. Syntax

– Atomic formulas can be constructed using predicate and function variables.

– If ϕ is a wff, then ∀Xni

i ϕ, ∃Xni

i ϕ, ∀Fni

i ϕ, ∃Fni

i ϕ are also wffs.

9.3.1.3. Semantics

Consider a structure M =< D,F ,R > and an interpretation I:

– the interpretation assigns to Fni

i a function Dni −→ D in F ;

– the interpretation assigns to Xni

i a relation Rni ⊂ Dni in R;

– M |=I ∀Fni

i ϕ iff for all ni-ary functions f in F , M |=I ϕ[Fni

i | f];
– M |=I ∃Fni

i ϕ iff there exists an ni-ary function f in F such that M |=I
ϕ[Fni

i | f];
– M |=I ∀Xni

i ϕ iff for all ni-ary relations R in F , M |=I ϕ[Xni

i | R];

– M |=I ∃Xni

i ϕ iff there exists an ni-ary relation R in F such that M |=I
ϕ[Xni

i | R]. �

The compactness theorem (see theorem 5.8) no longer holds in SOL:

THEOREM 9.1.– (non-compactness of SOL). There exists an unsatisfiable set of wffs
in SOL only containing finite subsets that are satisfiable.

PROOF.– Given n ∈ N (n ≥ 2), consider the formula corresponding to the proposition
there exists at least n objects:

ϕn: ∃x1, . . . , ∃xn(x1 �= x2 ∧ x1 �= x3 ∧ . . . xn−1 �= xn)

where the conjunction contains n(n− 1)/2 inequalities.

It is clear from the intended interpretation that each ϕn is satisfiable in models
with universes D of cardinalities at least n (in particular, ϕn is satisfiable in infinite
universes) and unsatisfiable in universes D with card(D) < n.

Consider the set:

S: {ϕ2, ϕ3, . . .}

5 See also digressions 3.3 and 5.2.

326 Logic for Computer Science and Artificial Intelligence

S is not finitely satisfiable. Indeed, assume S is finitely satisfiable. Consider a
universe Df such that card(Df) = n, in which S is satisfied, i.e. that all the formulas
in S are satisfied. But there are infinitely many formulas in S that are falsified in Df :
all the formulas ϕn+j for j ≥ 1. Contradiction.

We now consider the set Snc = {¬ϕ∞, ϕ2, ϕ3, . . .}

where ϕ∞ is defined in example 9.33, Snc is clearly unsatisfiable.

Every finite subset of Snc is satisfiable, because every {¬ϕ∞, ϕ2, ϕ3, . . . , ϕn}

(n ∈ N) and {ϕi, . . . ϕj} (i, j ∈ N) admit finite models (it is not contradictory to
admit finite models and not to admit any infinite model).

The set Snc therefore proves the theorem. �

EXAMPLE 9.36.– Specify that a graph is three-colorable, i.e. that we can color all the
nodes of the graph with three colors in such a way that two nodes connected by an
edge are not colored the same way.

∃C1∃C2∃C3∀x[(C1(x) ∨ C2(x) ∨C3(x)) ∧ ∀y(A(x, y) ⇒ ¬(C1(x) ∧ C1(y)) ∧
¬(C2(x) ∧C2(y)) ∧ ¬(C3(x) ∧C3(y)))]

Ci(x) (1 ≤ i ≤ 3): node x has color i

A(x, y): there is an edge between nodes x and y. �

EXERCISE 9.5.– (Skolemization and equivalence) (see section 5.5.1.1.).

Prove the equivalence:

∀x∃yF [x, y] ⇔ ∃f∀xF [x, f(x)]

where F [x, y] denotes a wff of FOL only containing variables in {x, y} and f a
function symbol that does not occur in F [x, y]. �

EXERCISE 9.6.– Give models of the following formulas:

a) ∀P (∃xP (x) ⇒ ∃z(P (z) ∧ ∀y(P (y) ⇒ ¬R(y, z))))

b) ∀C((∃xC(x) ∧ ∀u∀y((C(u) ∧A(u, y)) ⇒ C(y))) ⇒ ∀zC(z))

c) ∃C∃x∃y(C(x) ∧ ¬C(y) ∧ ∀u∀v(C(u) ∧A(u, v) ⇒ C(v)) �

Chapter 10

Non-classical Logics

In the following sections, we shall present some of these logics. The study can be
partially based on the notions that were introduced in the previous chapters.

As usual, the presentation will contain motivations, historic landmarks,
applications, similarities, and differences with what is already known, and finally
indications on how to reason with these logics.

A common feature of these logics is their philosophical origin, which can be
explained as a return to the roots: analysis of discourse in natural language, of what
is true, what is false, what is neither true nor false, what is necessary, what is
contingent, etc.

10.1. Many-valued logics

One of the first conventions that we adopted in the study of logic was to state
(in accordance with mathematics) that a reasoning is correct if and only if it is
impossible for the premises to be true and the conclusion to be false. But common
sense shows that things are not that simple, when we want to begin the analysis before
any simplification choice has been made.

Indeed, among the syntactically correct sentences, those we are interested in are
declarative sentences and more precisely propositions (i.e. the sets of declarative
sentences that are synonyms).

328 Logic for Computer Science and Artificial Intelligence

There are declarative sentences that are never assigned truth values, for example,

Honesty is beautiful

whose meaning can only be metaphorical. Others such as

The robot is in the room

can sometimes be true and sometimes be false. . .

The study of many-valued logics, which we shall also refer to as p-valued logics
or n-valued logics (implicitly stating that p, n ≥ 3), originated, similar to many other
subjects, with the work of Aristotle, who considered the future contingents (see section
10.3), i.e. what may or may not occur. The example considered by Aristotle was the
proposition:

There will be a sea battle tomorrow.

which is neither true nor false (today) and suggests a third truth value. Łukasiewicz
(following Aristotle) believed that if we do not accept that declarative sentences about
the future are neither true nor false, then we have to accept fatalism (philosophical
doctrine according to which all events are predetermined by fate).

Some historic landmarks:

– during the Middle Ages, little research on the topic;

– end of the 19th Century and beginning of the 20th Century: they are definitively
accepted;

– some important names: MacColl, C.S. Peirce (around 1909), N.A. Vasil’ev,
Łukasiewicz (starting in 1920), and Post (starting in 1921);

– three-valued logics have been particularly studied;

– there exist ∞-valued logics (infinitely-valued logics), in particular, the Lℵ1 logic
(see section 10.2).

The introduction by Łukasiewicz of p-valued logics was preceded by some
profound philosophical considerations.

According to historians and philosophers of logic, two principal origins of
p-valued logics seem to have been:

1) the theory of contradictory objects, that states the existence of objects having
contradictory properties. It seems like Łukasiewicz believed that non-contradictory
objects did not exist;

2) (for three-valued logic) the notions of (non)determinism, causality, free
will, etc.

Non-classical Logics 329

Łukasiewicz studied the problems of induction and probabilities seriously. In
his first papers, the logical values depended on the finite number of considered
individuals, for example:

To x2 = 1, we assign value 2/3 in the universe {−1, 0, 1}
To x2 = 1, we assign value 2/5 in the universe {−2,−1, 0, 1, 2}

We reduce the algebraic formalizm to a minimum for the treatment of p-valued
logics. The adopted formalization is sufficient for our needs and can easily be
generalized.

Using logics with three truth values can cause the loss of powerful techniques such
as the law of excluded middle. For example, the following reasoning:

P ⇒ Q
¬P ⇒ R
Q ∨R

is not a correct reasoning in three-valued logic.

EXAMPLE 10.1.– A finer analysis of programs can be performed with a three-valued
logic than with a two-valued one.

For example, if p and q are Boolean conditions and f and g are functions ((p →
f, q → g, h) means: if p then f else (if q then g else h)):

p q (p → f, q → g, h) computes
T T f
T F f
F T g
F F h

It seems obvious that the programs (p → f, f) (meaning if p then f else f) and
f are equivalent; however, whereas f always computes f , we can imagine that, for
example, p : (1/x) ≤ 3, and as variable x is real, it can take the value 0, which yields:

p (p → f, f) computes
T f
F f
⊥ ⊥ �

DEFINITION 10.1.– (truth functional (extensional) connective). A binary connective
' is truth functional iff the truth value of A ' B only depends on the truth values
of A and B (i.e. a truth table can be provided for '). A logic is truth functional iff
all its connectives are truth functional. Truth functional connectives are also called
extensional connectives (see definition 2.3).

330 Logic for Computer Science and Artificial Intelligence

DEFINITION 10.2.– (n-valued logic). If L is a formal language generated by
propositional variables and connectives, N ⊂ N, N = 0, 1, . . . , n− 1 is a finite
set of truth values and D ⊆ N is a set of distinguished values, then L =< L, N,D >
is an n-valued logic.

We can take an infinite set for N (see definition 10.3).

REMARK 10.1.– One fundamental characteristic that is shared by classical and many-
valued logics is truth functionality. �

We shall present the most commonly used three-valued logics, that is, those of
Łukasiewicz, Kleene, and Bochvar.

Łukasiewicz’s L3 logic (1920)

Basic principle: being able to handle contingent futures. To do so, he introduced
the intermediate value 1/2.

The connectives are defined with the following tables:

P ¬P
0 1
1/2 1/2
1 0

⇒ 0 1/2 1
0 1 1 1
1/2 1/2 1 1
1 0 1/2 1

the other usual connectives are defined as follows:

α ∨ β : (α ⇒ β) ⇒ β

α ∧ β : ¬(¬α ∨ ¬β)
α ⇔ β : (α ⇒ β) ∧ (β ⇒ α)

which yields:

∨ 0 1/2 1
0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

Non-classical Logics 331

∧ 0 1/2 1
0 0 0 0
1/2 0 1/2 1/2
1 0 1/2 1

⇔ 0 1/2 1
0 1 1/2 0
1/2 1/2 1 1/2
1 0 1/2 1

DEFINITION 10.3.– (interpretation, valuation).

– An interpretation (valuation) is an application:
set of wffs −→ {0, 1/2, 1} that respects the truth tables above.

– A tautology or valid wff is a wff that takes the value denoted by 1 (or a value
in D) for every interpretation.

For general p-valued logics, we must consider N instead of {0, 1/2, 1} and
D instead of 1.

What changes and what does not:

P ¬P P ∨ ¬P P ∧ ¬P ¬(P ∧ ¬P) P ⇔ ¬P P ⇒ P
0 1 1 0 1 0 1
1/2 1/2 1/2 1/2 1/2 1 1
1 0 1 0 1 0 1

P ∨ ¬P : tautology in CPC (Classical Propositional Calculus), non-tautological
in L3

¬(P ∧ ¬P): tautology in CPC, non-tautological in L3

P ⇔ ¬P : contradiction in CPC, satisfiable in L3

P ⇒ P : tautology in CPC, tautology in L3

A formal system for this logic:

SL3 = {L3,R,A}, with:

L3 = L0 % i.e. it is the same as for S1

R = {MP}

A :

332 Logic for Computer Science and Artificial Intelligence

3L1) A ⇒ (B ⇒ A)

3L2) (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

3L3) (¬B ⇒ ¬A) ⇒ (A ⇒ B)

3L4) ((A ⇒ ¬A) ⇒ A) ⇒ A

REMARK 10.2.– In L3, the deduction theorem (see remark 3.14) does not hold. �

The truth tables could have been established the following way:

v(¬A) = 1− v(A)

v(A ∨ B) = max{v(A), v(B)}
v(A ∧ B) = min{v(A), v(B)}

v(A ⇒ B) =
{
1 if v(A) ≤ v(B)
1− v(A) + v(B) if v(A) > v(B)

or:

v(A ⇒ B) =
{
1 if v(A) ≤ v(B)
v(B) if v(A) > v(B)

Sometimes, the latter is expressed as:

v(A ⇒ B) = min{1, 1− v(A) + v(B)}
v(A ⇔ B) = v((A ⇒ B) ∧ (B ⇒ A)) = 1− |v(A) − v(B)|

v(A ⇔ B) =
{
1 if v(A) = v(B)
< 1 if v(A) �= v(B)

These last definitions naturally lead to considering n-valued logics with n ≥ 4, in
particular ∞-valued logics. �

Kleene’s three-valued logics (1938 and 1952)

Basic principle: give a value that means undecidable (and not an intermediate
value) to the mathematical assertions that are true or false, but cannot be proved or
refuted.

REMARK 10.3.– This principle is not respected by the laws of excluded middle
and of non-contradiction. Doing otherwise would lead to the non-respect of truth
functionality. For example, we would assign true to p ∨ ¬p. Assume the value of
p is 1/2 and that ¬p is replaced by ¬q with the same truth value, then the value
of p ∨ ¬q is. . .1/2, because ¬1/2 = 1/2 (table for ¬) and 1/2 ∨ 1/2 = 1/2
(table for ∨). �

Non-classical Logics 333

In so-called strong logic (1938) we assign the value i when the values 0 (false) and
1 (true) are not sufficient to conclude (same principle as in Łukasiewicz’s L3).

⇒ 0 i 1
0 1 1 1
i i i 1
1 0 i 1

⇔ 0 i 1
0 1 i 0
i i i i
1 0 i 1

The other truth tables are the same as in L3.

In so-called weak logic (1952), the occurrence of value i in a sub-formula forces
the formula to also have value i.

⇒ 0 i 1
0 1 i 1
i i i i
1 0 i 1

∨ 0 i 1
0 0 i 1
i i i i
1 1 i 1

∧ 0 i 1
0 0 i 0
i i i i
1 0 i 1

Bochvar’s three-valued logic (1938)

Basic principle: try to eliminate paradoxes, such as

This sentence is wrong.

(It is true if it is false, false if it is true)

Similarly to Kleene’s weak logic, if a sub-formula has value i, then the formula
also has value i.

For Bochvar, a proposition can be significant (it is true or false) or without
signification (a paradox). He proposed two types of connectives: the internal

334 Logic for Computer Science and Artificial Intelligence

connectives and the external connectives. The connectives we are interested in here
are the former, whose truth tables coincide with Kleene’s weak connectives.

Paradoxes are not eliminated:

This sentence is false or undetermined.

(It is true if it is false or undetermined, it is false or undetermined if it is true.)

10.1.1. How to reason with p-valued logics?

We show in the following example how to extend the method of semantic tableaux
for classical logic (see section 3.2), to handle p-valued logics (p: finite). The method
is general of course, as will be evidenced by the example.

In classical logic (two-valued), the method of semantic tableaux enumerates all the
models (partial models in FOL) of a finite set of formulas S. When it is not possible
to construct any model, we conclude that S is unsatisfiable (see section 3.2).

10.1.1.1. Semantic tableaux for p-valued logics

We consider L =< L, N,D > and a set of symbols that do not belong to the
vocabulary of L : a0, a1, a2, . . . an−1. These ai, 0 ≤ i ≤ n − 1 will be used to
indicate the n truth values of the (sub-)formulas in the tableau.

We discover the new method by analogy with the analogy for two-valued logic.

two-valued logic:

1) We are interested in the interpretations v such that v(X) = 1 (i.e. true).

2) Branch B is closed iff P ∈ B and ¬P ∈ B for P (in X): atomic.

3) X is valid iff tableau closed for ¬X .

p-valued logics (p ≥ 3):

1) We are interested in the interpretations v such that v(X) ∈ D.

2) Branch B is closed iff either ai(P) ∈ B, aj(P) ∈ B for i �= j and P atomic or
B contains a formula on which no rule can be applied.

3) X valid iff the tableau is closed for all aj(X) with j ∈ (N −D), meaning that
X cannot be evaluated to a value that is not distinguished.

EXAMPLE 10.2.– (N. da Costa). In this example, we show how to adapt the method
of semantic tableaux to p-valued logics. Although this is only an example, it is clear
that the method can be applied for any finitely valued logic.

Non-classical Logics 335

Given the following truth tables for connectives ¬, ⇒ ∧, and ∨ in a three-valued
logic, with distinguished values D = {0, 1}.

P ¬P
0 2
1 0
2 0

⇒ 0 1 2
0 0 0 2
1 0 0 2
2 0 0 0

∨ 0 1 2
0 0 0 0
1 0 0 0
2 0 0 2

∧ 0 1 2
0 0 0 2
1 0 0 2
2 2 2 2

In each truth table, the leftmost column corresponds to all possible values of the
argument on the left-hand side of the connective (named X below). The first line
corresponds to all possible values for the argument on the right-hand side of the
connective (named Y below).

We want to show that the following formula is valid:

(P ⇒ Q) ⇒ (¬P ∨Q)

We translate the truth tables (and try to compress their representation).

vi(form) (0 ≤ i ≤ 2); form ∈ {X,¬X,X ⇒ Y,X ∨ Y,X ∧ Y } means form
has value i.

(Although we do not need the connective ∧ in this example, we also provide the
corresponding rules).

336 Logic for Computer Science and Artificial Intelligence

Method: show that it is impossible to evaluate the considered formula to a value that
is not distinguished (in this example, value 2).

Non-classical Logics 337

�

10.2. Inaccurate concepts: fuzzy logic

No man has ever or will ever know anything certain.

Xenophanes (6th Century BC)

Similar to the word “model” (see section 5.2), the word “concept” is very
frequently used, for example, in AI (and sometimes, it is badly used). It is a notion
that has been studied extensively in philosophy.

Among the technical definitions that can be found in the literature, we choose the
following one:

Concept: an idea (of a mammal, a triangle, etc.) that is abstract, general, or can be
subject to a generalization.

Concept is the rational way of knowing reality.

A distinction must be made between the concept and the object. The concept is
the intensional counterpart1 of the object2.

There are a priori concepts, i.e. concepts that are not a result of experience, unity,
plurality, etc. and a posteriori concepts, i.e. general notions that define classes of
objects that are either given or constructed (concept of a mammal, a function, etc).
Different philosophical schools claim that only one or the other of these concepts is
really a concept.

1 The intension is the set of characters that are (considered as) essential to a class.
2 What possesses an existence of its own, independently of the knowledge or the idea that
cognitive beings can have about it.

338 Logic for Computer Science and Artificial Intelligence

Every concept possesses an extension, possibly empty. The objects are defined by
the concepts that indicate the set of characters that belong (or are supposed to belong)
to the objects of the class, and to no other object, for example, man: rational animal.

When creating concepts, similarity (analogy) plays a crucial role. We can also say
that the notion of similarity (of which we could say that equality is a particular case3)
also plays a major role in FL.

We can relate this notion to that of a model. In a model, we choose some
characteristics that we wish to be representative and whose goal could be to define
the class under consideration.

REMARK 10.4.– The activities of definition (specification) and modeling are at the
core of a computer scientist’s activities. They can be viewed from the point of
view of the philosophical classification of constructive definitions (specification) and
explanatory definitions (modeling). Example of the former: append (see example
6.2) and of the latter small: someone of a size less than (say) 1.70 m. �

Inaccurate concepts

A simple way of illustrating the ideas is to oppose mathematical concepts to
empirical concepts. The former are exact because they do not accept limit or neutral
cases (example: prime number, right triangle,. . .). The latter accept neutral cases and
are inaccurate (example: big, old, etc.).

More generally, in natural languages, there are terms that are vague, i.e. terms
(corresponding to concepts) such that if the extension of the concept is the class
denoted by C, and if we consider an arbitrary object denoted by O, then there is no
defined answer to the question: “is O an object in class C?”. For example, very tall,
small, bald, almost old, very beautiful, etc.

The vagueness is different from ambiguity (the same term can denote different
objects in different contexts).

Mathematics and logic gave little consideration to vague concepts, more precisely,
they use formal languages to avoid these difficulties.

The theory of fuzzy sets and FL (introduced by L. Zadeh in 1965) are an attempt
to formalize vague or inaccurate concepts. Fuzzy sets and FL have given rise to many
controversies.

3 For example, in practice, saying that two objects have the same color means that the potential
differences are not detectable by the sense (or device) that detects colors.

Non-classical Logics 339

Nowadays, the literature on these topics is huge and we may say that the domain
is rather (an example of a vague term!) accepted and respected.

An important distinction: fuzzy �= probable

Fuzziness is inaccuracy and imprecision. The truth of a fuzzy proposition is a
matter of degree. It must be distinguished from the probable (i.e. uncertainty as a
degree of belief).

The following example clarifies the differences.

EXAMPLE 10.3.– Consider the following propositions:

a) John is young.

b) John will be alive next week.

a) is a vague or imprecise proposition (because of the occurrence of the word
“young”).

b) is a precise proposition that is true or false, but we do not know that it is. It can
be assigned a probability of being true or false, but the probability is not a degree of
truth.

From an observational point of view, the vague concept “young” is in principle
concerned with only one observation; however, the probability of a young person
being alive next week is concerned with several observations of young people.

Most FL are truth functional (see section 10.1), which is not the case for
probabilities:

we know that:

1) prob(p ∧ ¬p) = 0

2) prob(¬p) = 1− prob(p)

3) prob(p ∨ q) = prob(p) + prob(q) − prob(p ∧ q)

4) prob(p ∨ ¬p) = 1

if for example:

(∗) prob(p) = 1/2, hence prob(¬p) = 1/2

then using (3) with q : ¬p and replacing ¬p by p, which has, according to (∗), the
same probability, we obtain:

5) prob(p ∨ p) = 1/2 + 1/2− 1/2 = 1/2

340 Logic for Computer Science and Artificial Intelligence

As a conclusion: in the left-hand side of (4), we replaced an event (¬p) by another
event with the same probability (p) (see (∗)) and we obtain two different values.

Another example (that also shows the difference with accurate propositions, in
particular, the non-validity of the law of non-contradiction). From an intuitive point
of view, the sentence:

I am old and I am not old.

does not have the value false. This can be formalized, because the basic logic for FL
is Lℵ1 (i.e. with values in R), which gives v(A ∧ ¬A) = min{v(A), 1− v(A)}, and
which will in general will be �= 0.

Of course, prob(A ∧ ¬A) = 0. �

The notion of FL has two meanings: a narrow sense and a wide sense.

For the narrow sense, FL is a logical system whose goal is to formalize
approximate reasoning (see below the characterization proposed by L. Zadeh). In this
sense, it is an extension of p-valued logics.

For the wide sense, FL ≈ theory of fuzzy sets.

A very old paradox seen from a new perspective. A good example of the kinds
of problems that are treated by FL is the analysis (of an equivalent version) of the
paradox of the heap (see example 8.1).

X denotes the set of all men

S ⊆ X the set of all small men.

We consider a real interval P = [0.5, 3] that contains all possible sizes.

The function size h : X −→ P .

We assume:

1) S �= ∅ (meaning that there exist men who are small).

2) No man has a size less than 0.5 m or greater than 3 m (which yields interval P
above).

3) There are men of all intermediate sizes – w.r.t. the minimal difference that can
be detected by measuring instruments (this will entail no loss of generality in the
reasoning).

4) If x ∈ S, y ∈ X , and 0 ≤ h(y) − h(x) ≤ 10−3, then y ∈ S (we could have
chosen a smaller difference in size, e.g. 10−6.

Non-classical Logics 341

A man that is 1 mm taller than a small man is also small.

5) If x ∈ S ∧ h(y) ≤ h(x), then y ∈ S. A man that is smaller than a small
man is also small.

We want to prove that:

All men are small.

The proof is simple. Given any man y, we select a man, say x, who is without a
doubt small. We choose x1 such that h(x1)− h(x) ≤ 10−3. By 4, x1 ∈ S.

By iterating (at most 103(h(y) − h(x)) times), we reach the conclusion that y is
small. (If y had been smaller than x, by (5) we would immediately have reached the
conclusion).

By applying (4), we prove that all men who are taller than a small man are small.

Where is the problem?

In the fact that we did not define (from a mathematical point of view)
the set S, i.e. that we did not give the characteristic

function enabling us to tell for any man whether
he belongs to the set of small men or not.

The idea to resolve this paradox is to represent the set S (i.e. the extension of
the concept “small man” as a fuzzy set (see definition 10.4), i.e. a class of objects
for which the transition from membership to non-membership is gradual rather than
abrupt.

FL and fuzzy sets were introduced to take what is called practical reasoning into
account, essentially to model those aspects that are hard to handle with classical logic.
An example of practical reasoning is the frequent mix of precise and approximative
reasoning that is performed when solving problems.

FL deals with fuzzy propositions such as: Patricia is extremely intelligent. Most
dogs are nice. Michael is much taller than John, and so on.

One particular characteristic is that not only is the meaning of terms subjective,
but it is also local, i.e. restricted to the considered domain of discourse (it is not really
the same to be considered as tall by Pygmies or by Scandinavians). Thus, FL can be
viewed as a logic whose propositions, connectives, truth values, etc. do not have a

342 Logic for Computer Science and Artificial Intelligence

universal value. This implies that inference processes in FL are of a semantic nature
rather than a syntactic one.

The creator of FL (L. Zadeh) described it as follows:

Perhaps the simplest way of characterising fuzzy logic is to say that it is
a logic of approximate reasoning.

The term fuzzy logic is used to describe an imprecise logical system,
FL, in which the truth-values are fuzzy subsets of the unit interval with
linguistic labels such as true, false, not true, very true, quite true, not
very true and not very false, etc.

Some examples are:

EXAMPLE 10.4.–

Most men are superficial
Socrates is a man

Socrates is probably superficial

Michael is small
Michael and John have approximately the same height

John is more or less small
�

The basic idea of fuzzy logic is that predicates
(corresponding to properties, relations) denote

fuzzy subsets of some universe and the truth values
denote fuzzy subsets of the set of values of

basic logic, i.e. [0, 1].

Fuzzy sets: definition and fundamental properties

DEFINITION 10.4.– Let U denote the universe of discourse.

A fuzzy set A is defined by the generalized characteristic function:

μA : U −→ [0, 1]

(the range of a standard characteristic function is {0, 1}, hence ordinary sets are
considered as particular cases in the theory of fuzzy sets).

Interpretation: the values of μA(x) are interpreted as degrees of membership of
x to A (0 denotes non-membership, 1 denotes membership, and 1/2 could represent
semi-membership).

Non-classical Logics 343

EXAMPLE 10.5.– Consider the property “to be much greater than 1”, defined on R+.
It can be assigned to a fuzzy set A with μA : R+ −→ [0, 1], where μA is an arbitrary
function that is continuous and non-decreasing such that, for example:

μA(5) = 0.01

μA(10) = 0.1

μA(100) = 0.95

μA(1000) = 1

... �

EXAMPLE 10.6.– The characteristic function of the set of people who can be
professional football players could be:

�

The usual operations are (in general) defined as follows.

DEFINITION 10.5.– (set operations on fuzzy sets).

– A fuzzy set A is empty iff ∀x ∈ U μA(x) = 0.

– Two fuzzy sets A and B are equal (denoted by A = B) iff ∀x ∈ U μA(x) =
μB(x).

– A ⊆ B iff ∀x ∈ U μA(x) ≤ μB(x)
(if an element is somehow an element of A, then it must be an element of B in at

least the same degree).

– μ−
A
(x) = 1− μA(x) (for all x, we shall thus write μ−

A
= 1− μA).

– μA∪B(x) = max{μA(x), μB(x)} (for all x, we shall thus write μA∪B =
max{μA, μB}).

– μA∩B(x) = min{μA(x), μB(x)} (for all x, we shall thus write μA∩B =
min{μA, μB}).

344 Logic for Computer Science and Artificial Intelligence

EXAMPLE 10.7.–

x

μA∩B:

μA μB

μA∪B:

�

EXERCISE 10.1.– (properties). Prove that if A, B, and C are fuzzy sets:

a) A ∪B is the smallest set containing A and B.

b) A ∩B is the biggest set contained in A and B.

c) A ∪ (B ∪ C) = (A ∪B) ∪C

d) A ∩ (B ∩ C) = (A ∩B) ∩C

e) (A ∪B) = A ∩B

f) (A ∩B) = A ∪B

g) C ∪ (A ∩B) = (C ∪A) ∩ (C ∪B)

h) C ∩ (A ∪B) = (C ∩A) ∪ (C ∩B) �

DEFINITION 10.6.– A fuzzy n-ary relation in E is a fuzzy set in En.

EXERCISE 10.2.– Give the generalized characteristic function for the fuzzy relation
in N (i.e. (x, y) ∈ N2): x is much smaller than y. �

EXERCISE 10.3.– (relations). The composition of two binary relations R and S,
denoted by R ◦ S, is defined as follows.

x(R ◦ S)y iff ∃z such that xRz and zSy.

a) How would you define the composition of two fuzzy binary relations, i.e. what
would the generalized characteristic function μR◦S be (as a function of μR and μS)?

How would you define the generalised characteristic function of a fuzzy relation R
that is:

b) reflexive?

c) symmetric?

Non-classical Logics 345

d) antisymmetric?

e) transitive? �

The most commonly used basic logic for FL is Łukasiewicz’s Lℵ1 (i.e. the set of
truth values is the real interval [0, 1]). To the qualifiers true, very true, more or less
true, neither true nor false, etc. fuzzy sets of the interval [0, 1] will be assigned. This
choice is necessary to be able to manipulate the logic practically. In general, we are
interested in a finite (small) number of truth values.

These ideas were formalized by L. Zadeh, with the concept of linguistic variables.

More precisely, a linguistic variable is a 5-tuple:

< X , τ(X), U,G,M >

where:

– X is the name of the variable (i.e. age, size, etc. from a qualitative point of view,
by opposition to a quantitative point of view, with values 32 years, 1.75 m, etc.).

– τ(X) is the set of linguistic variables (young, not young, very young, not very
young, etc.).

– U is the universe of discourse (i.e. the set of values that the variable may take).

– G is the set of production rules that generate τ(X).

– M is the semantic rule.

M : τ(X) −→ Pfuzzy (U)

where Pfuzzy(U) : set of parts of U , i.e. the set of all fuzzy subsets of U .

The idea behind the concept of linguistic variables is to obtain the fuzzy value of
different terms as a function of those terms that were chosen as basic terms.

EXAMPLE 10.8.– (L. Zadeh). Linguistic variable: size

Basic term: small

τ(X) = {small, not small, very small, very (not small), not very small, very very
small, etc.}

is generated by the grammar (with axiom S):

S → A
S → not A
A → B

346 Logic for Computer Science and Artificial Intelligence

Number Grammar rules Semantics
1. S → A Sg = Ad

2. S → S or A Sg = Sd ∪Ad

3. A → B Ag = Bd

4. A → A and B Ag = Ad ∩Bd

5. B → C Bg = Cd

6. B → not C Bg = Cd

7. C → (S) Cg = Sd

8. C → D Cg = Dd

9. C → E Cg = Ed

10. D → very D Dg = (Dd)
2

11. E → very E Eg = (Ed)
2

12. D → true Dl = true
13. E → false El = false

B → very B
B → (S)
B → small

If we assume that the generalized characteristic function (see definition 10.4) of
the extension A of a concept is μA, then in general, we take (other similar choices are
of course possible):

μvery−A(x) = (μA(x))
2

graphical meaning:

μnot−A(x) = 1− μA(x)

If the grammar had authorized it, we could have let, for example:

μmore-or-less−A(x) =
√

μA(x) �

Non-classical Logics 347

EXAMPLE 10.9.– (syntax and semantics). The symbols occurring in the rules on the
right-hand side correspond to the fuzzy subsets of [0, 1]. Of course, indices l and r
correspond to left and right (of a rule). �

EXERCISE 10.4.– Does the grammar of example 10.9 permit us to generate the
linguistic variable not very true and not very false? If so, compute its truth value. �

Fuzzy sets permit us to obtain an elegant solution to the paradox4.

All men are small.

The only remark to be made is that not all generalized characteristic functions
correspond to the common notion of “small”. We define:

μX(x) = f(h(x))

for some function f : X −→ P , which, to represent the extension of the concept
“small man” must be5:

1) continuous (our appreciation changes progressively);

2) monotonically decreasing;

3) f(h(x)) = 1 (or f(h(x)) ≈ 1), for those men that are certainly small;

4) f(h(x)) = 0 (or f(h(x)) ≈ 0) for those men that are certainly not small.

For example:

f

1

0
h

4 The solution is given by J. Goguen.
5 The required properties on generalized characteristic functions are a key point in the
formalization of FLs.

348 Logic for Computer Science and Artificial Intelligence

We define the fuzzy relation “smallness of y with respect to x”

HX(x, y) =
μX(y)

μX(x)
=

f(h(y))

f(h(x))

μX(y) = HX(x, y)× μX(x), for h(y) ≥ h(x)

we assume there exists an x ∈ X such that μX(x) = 1 (there is a man who is certainly
small), for example, h(x) ≈ 0 (i.e. his height is almost zero).

Consider y ∈ X such that h(y) ≥ h(x), we may construct a finite sequence
x = x0, x1, x2, . . . xN−1, xN = y and:

μX(y) =

N∏
x=1

HX(xi−1, xi)

This formula translates the intuition that, as the process is iterated, the conviction
that y is small disappears. Indeed, the product of the values in]0, 1[gets closer and
closer to 0. The mathematical details are simple and are left to the reader.

REMARK 10.5.– We may see the origin of the paradox of small men (of the heap
of grains, etc.) in the fact that each time a new man is considered, the memory that
in general there were many men taller than someone small was lost. The treatment
proposed above restores this memory. �

10.2.1. Inference in FL

L. Zadeh proposed to treat the gradual membership of element x to a fuzzy set A
by fixing values α, β; 0 < α < β < 1 and to use as a convention:

if μA(x) ≤ α, then x does not belong to A;

if β ≤ μA(x), then x belongs to A;

if α < μA(x) < β, then the membership of x to A is undetermined.

From the point of view of the corresponding logic, this would lead to a logic with
three truth values: T, F, i (see section 10.1).

The method proposed above can be viewed as a generalization of this simple idea.

It is natural to try to apply inference rules from classical logic to non-classical
logics. For example, the resolution method was extended (by C. Chang) more than
30 years ago from FOL to first-order FL. But first we must formally define the
semantics of FL.

Non-classical Logics 349

10.2.1.1. Syntax

The same as for classical logic.

10.2.1.2. Semantics

The only difference with FOL (that corresponds to intuition) is that every predicate
P (n) is not interpreted as an n-ary relation (i.e. the set of n-tuples of the relation)
in the universe of discourse, but as a fuzzy set, or more precisely the corresponding
generalized characteristic set (in other words, to every n-tuple (x1, . . . , xn), we do
not assign true or false to P (n)(x1, . . . , xn), but a value in [0, 1], which is given by
the characteristic function).

It is thus possible to view classical logic as a particular case of FL.

The semantics (i.e. the value given to) composed wffs is given by the function v
defined below.

DEFINITION 10.7.–

– v(¬F) = 1− v(F)

– v(F1 ∧ F2) = min[v(F1), v(F2)]

– v(F1 ∨ F2) = max[v(F1), v(F2)]

– v(F1 ⇒ F2) = min[1, 1− v(F1) + v(F2)]

or:

– v(F1 ⇒ F2) =
1 if v(F1) ≤ v(F2)
v(F2) if v(F1) > v(F2)

– v(∀xF(x)) = inf [v(F(x)) | x ∈ D]

– v(∃xF(x)) = sup[v(F(x)) | x ∈ D]

An interpretation I satisfies (respectively, falsifies) a formula F iff v(F) ≥ 0.5
(respectively < 0.5).

REMARK 10.6.– In general,

v(A ∧ ¬A) �= 0

v(A ∨ ¬A) �= 1. �

350 Logic for Computer Science and Artificial Intelligence

EXAMPLE 10.10.– Consider the wff ∀x∃yP (x, y)

on domain D = {a1, a2}

v(∃yP (x, y)) = max([v(P (x, a1)), v(P (x, a2))])

v(∀x∃yP (x, y)) = min[max[v(P (a1, a1)), v(P (a1, a2))],

max[v(P (a2, a1)), v(P (a2, a2))]] �

The next step is to find a universe on which it is sufficient to focus to test whether
a wff is contradictory.

10.2.2. Herbrand’s method in FL

The key property (see theorem 5.7) is that given a set of clauses S, we can associate
to any interpretation I of S a Herbrand interpretation IH such that if I |= S then
IH |= S.

We show this on an example.

EXAMPLE 10.11.– Consider the clause:

∀xP (a, f(x))

and the interpretation I:

D = {1, 2}
a �→ 1

f(1) = 2

f(2) = 1

v(P (1, 1) = 0.6

v(P (1, 2) = 0.7

v(P (2, 1) = 0.2

v(P (2, 2) = 0.3

This interpretation is a model of ∀xP (a, f(x)). Indeed, v(∀xP (a, f(x))) =
min[P (1, 2), P (1, 1)] = min[0.7 , 0.6] = 0.6

Non-classical Logics 351

The corresponding interpretation IH is:

v(P (a, f(a))) = v(P (1, f(1))) = v(P (1, 2)) = 0.7

v(P (a, f2(a))) = v(P (1, f2(1))) = v(P (1, 1)) = 0.6

v(P (a, f3(a))) = v(P (1, f3(1))) = v(P (1, 2)) = 0.7

... �

Semantic trees are defined in the same way as for FOL, by replacingLwith v(L) ≥
0.5 and ¬L by v(L) < 0.5.

10.2.2.1. Resolution and FL

In PL, the resolvent is a logical consequence of the parent clauses (i.e. every model
of the parent clauses is a model of the resolvent).

We first analyze an example the way the resolution rule for PL transmits truth
values when it is applied to FL.

EXAMPLE 10.12.– Consider the two following clauses:

C1: ¬P ∨Q

C2: P

(whose resolvent is Q)

with:

v(P) = 0.3

v(Q) = 0.2

v(C1) ∧ v(C2) = v((¬P ∨Q) ∧ P) = min[max[v(¬P), v(Q)], v(P)] =

min[0.7 , 0.3] = 0.3

hence, there is a difference with classical PL:

v(Q) = 0.2 < v(C1 ∧C2) �

This example is a particular case of the following theorem.

352 Logic for Computer Science and Artificial Intelligence

THEOREM 10.1.– Let C1 and C2 denote two clauses and R(C1, C2) denote a
resolvent.

If max[v(C1), v(C2)] = b and min[v(C1), v(C2)] = a > 0.5

then:

a ≤ v(R(C1, C2)) ≤ b

PROOF.– C1: P ∨ α, C2: ¬P ∨ β (α and β: disjunctions of literals)

R(C1, C2) : α ∨ β

Without loss of generality, we assume:

∗ a ≤ b and:

v(C1) = max[v(P), v(α)] = a (1)

v(C2) = max[v(¬P), v(β)] = b (2)

from (1) and (2) and by definition of max:

v(α) ≤ a

v(β) ≤ b

there are two cases to consider:

i) v(α) = a

v(R(C1, C2)) = v(α ∨ β) = max[v(α), v(β)] = max[a, v(β)]

a ≤ R(C1, C2) ≤ b (see ∗)
ii) v(α) < a , from (1) v(P) = a
By hypothesis a > 0.5, hence v(¬P) = 1− v(P) < 0.5 < a

from (2) and ∗ v(β) = b ≥ a

v(R(C1, C2)) = v(α ∨ β) = max[v(α), v(β)] = b

a ≤ R(C1, C2) ≤ b

This theorem can easily be generalized. �

THEOREM 10.2.– Consider the set of clauses S = {C1, . . . , Ck} (k ≥ 2)

If max[v(C1), . . . , v(Ck)] = b, min[v(C1), . . . , v(Ck)] = a and C ∈ Rn
S (n ≥ 0)

then

a ≤ v(C) ≤ b.

Non-classical Logics 353

10.3. Modal logics

In a dictionary on language sciences (O. Ducrot and T. Todorov), it is written:

Logicians and linguists have often deemed it necessary to distinguish,
in an enunciation act, a representative content, sometimes called dictum
(relating a predicate to a subject), and an attitude expressed by the subject
speaking of the content, that is the modus or modality.

The four following sentences have the same dictum, but different modalities:

– Peter will come.

– Let Peter come!

– It is possible that Peter will come.

– Peter must come.

Modal logic studies modalities, i.e. the logical operations that qualify the
assertions (or more precisely that qualify their truth modes). We will say, for example,
that a proposition is necessarily true, or possibly true, or that it has always been true,
or that it will be true one day, or that we know that it is true, or that it should be
true, etc.

Originally, modal logic was designed to characterize the possible and necessary
truths. It was progressively extended to the study of statements on knowledge, beliefs,
time, ethics, properties of programs, etc.

They are particularly relevant in AI, for example, in the so-called description logics
for ontologies and in multi-agent systems.

The concepts of necessity and of possibility have been studied by philosophers,
ever since Aristotle, at least.

It is generally acknowledged that C.I. Lewis (in the 1930s) first studied these
modalities. His analysis was mainly concerned with strict implication, thus called
to be distinguished from material implication and its paradoxes (see exercise 3.7).

A strictly implies B (written A −−(B) iff A ∧ ¬B is impossible, or, with modern

notations,

¬�(A ∧ ¬B) or, equivalently, �(A ⇒ B)

where � is interpreted as possible and � is interpreted as necessary.

Little by little, the study of the connectives � and � themselves became a field
by itself.

354 Logic for Computer Science and Artificial Intelligence

For example, in computer science, when referring to a non-deterministic program,
�A means “in every execution that halts, A is T”, whereas �A means “there exists
an execution that halts with A T”.

Gödel was interested in modalities from the point of view of provability.

For historical purposes, i.e. Aristotle’s philosophy and its huge influence on
Western culture, those that were the most studied are:

– ontic modalities: it is necessary (possible, impossible, . . .) that. . .

– epistemic modalities: Peter knows that . . .

– temporal modalities: since, starting from, until, he always thinks that. . .

– deontic modalities: it is forbidden, it is permitted, it is illegal . . .

Other modalities:

– doxastic modalities: we believe that,. . .

– metalogic modalities: it is provable that, this is satisfiable,. . .

There exist propositional, first-order and higher-order modal logics. We restrict
ourselves to propositional modal logics (we will see they have a great expressive
power).

One essential characteristic of these logics is the fact that their connectives are not
truth functional.

EXAMPLE 10.13.– (See example 2.6.)

Consider the conjecture (we could have chosen any other one)

P = NP

It could be T or (exclusive or) F, but the propositions:

� (P = NP): It is possible that P = NP

� (¬ (P = NP)): It is possible that P �= NP

could both be considered as true propositions. We thus have (no matter the value given
to P = NP):

� T = T

(∗) � F = T

Non-classical Logics 355

On the other hand:

1+1 = 3 is F and it is normal to consider �(1+1 = 3) as F. In other words, we
do not imagine that it is possible for 1 + 1 = 3 to be T.

By replacing F in (∗) by 1 + 1 = 3 (i.e. by F), we obtain:

(∗) (∗) � F = F

By considering propositions (∗) and (∗) (∗), we verify that � (connective meaning
possibly) is not truth functional. �

10.3.1. Toward a semantics

There exist relational (possible worlds), algebraic, and topological semantics.

We will study the semantics that is best known: the semantics of possible worlds.

The notion of possible worlds seems to have been around at least since Leibniz.
Wittgenstein used to talk of the possible state of things.

In a book that is considered as a reference in logic (and that ignores modal logic)6,
it is written:

“. . . Therefore, a ‘possible world’, or model of [a language] L . . . ”

This seems to show that the transition from one to the other (i.e. from classical
logic to non-classical ones) can be made naturally via the notion of possible worlds.

To better see the relationship between the notion of a model in classical logic
and that of a possible world, we consider the formula: [(A ∨ B) ⇒ C] ⇔
[(A ⇒ C) ∨ (B ⇒ C)]

and the interpretations:

I1 = {C}, I2 = ∅, I3 = {A,B} andI4 = {B,C}

We can imagine that each Ii(1 ≤ i ≤ 4) corresponds to a situation, a moment, a
state, a state of knowledge, a world, etc.

6 Chang and Keisler: Model Theory.

356 Logic for Computer Science and Artificial Intelligence

These interpretations can be represented as worlds (we only provide the
elementary propositions that are evaluated to true).

C A, B

B, C

w1

I1
w3

I3

w2

I2 I4

w4

We can also add a relation between these worlds (which leads to the so-called
Kripke semantics or the possible worlds semantics).

C A, B

B, C

w1

I1
w3

I3

w2

I2 I4

w4

And instead of saying:

(CL) Formula ϕ is satisfied (or not satisfied) by interpretation I

we will say:

(NCL) Formula ϕ is satisfied (or not satisfied) in the
world wi (which implicitly contains an interpretation I)

Non-classical Logics 357

It will also be possible to construct formulas mentioning different worlds.

REMARK 10.7.– The notion of possible worlds is familiar (not necessarily with the
same name) in the study of probability theory. For example, when analyzing the
logical possibilities of the results of an arbitrary experiment (for example, throwing
a die). �

More formally.

10.3.1.1. Syntax (language of modal logic)

< formula >::=< atomic formula >| ¬ < formula >|< formula > ∧ <
formula >|< formula > ∨ < formula >|< formula >⇒< formula >|<
formula >⇔< formula >| � < formula >| � < formula >

< atomic formula >::= Pi (i ≥ 0) 7

or more concisely:

ϕ ::= Pi|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 ⇒ ϕ2|ϕ1 ⇔ ϕ2|�ϕ|�ϕ

�ϕ :def ¬�¬ϕ

One of the characteristics of modal logics is their “parametrized flexibility”. This
sentence, whose meaning will be made accurate in what follows, is metaphorical and
expresses the fact that the new connectives that are introduced by these logics can be
used to express very different characteristics in very different domains. For example,
consider the different meanings of formula �ϕ:

�ϕ: necessarily ϕ

�ϕ: in the future always ϕ

�ϕ: it must be the case that ϕ

�ϕ: we know that ϕ

�ϕ: we believe that ϕ

�ϕ: after any execution of the program has halted, we have ϕ

�ϕ: in Peano’s arithmetic we can prove ϕ

7 It is worth mentioning that Aristotle was the first to use propositional variables, i.e. letters
that can be replaced by propositional symbols and not by terms (of a syllogism, see definition
2.8) in modal logic.

358 Logic for Computer Science and Artificial Intelligence

10.3.1.2. Semantics

DEFINITION 10.8.– (Kripke semantics, Kripke models).

– A modal frame or K-modal frame is a pair F = (W,R)

where W is a non-empty set and R is a binary relation on W .

– A Kripke model8 is a triple:

M = (W,R, v)

with:
- W : non-empty set (of worlds);
- R: binary relation on W (accessibility relation);
- v : W −→ 2P or v : P −→ 2W

(P: set of all atomic propositions (formulas). 2P and 2W , respectively,
denote the sets of parts of P and W);

- v is called the interpretation function or valuation
(v indistinctly provides the set of worlds in which a proposition is evaluated

to T or the set of propositions that are evaluated to T in each world)
- we shall indistinctly say w ∈ W or w ∈ M;
- the frame F is called the base of the model.

– The domain of v is extended to the set of formulas (ϕ is an arbitrary formula)
v(ϕ) = {w | M, w |= ϕ}.

DIGRESSION 10.1.– Kripke defined propositions as functions from the set of worlds
to the truth values and an n-ary predicate as a function from the set of worlds to the
set of n-ary relations. �

DEFINITION 10.9.– (satisfiability, validity). In what follows, ϕ is a wff and Mod is a
set of Kripke models M = (W,R, v).

M, w |= ϕ means: the formula ϕ is satisfied in the world w of the model M. The
relation |= is defined as follows (Mod denotes a set of models):

– M, w |= P (sometimes we write M |= P (w)) iff P ∈ v(w) for P ∈ P;

– M, w |= ¬ϕ iff not(M, w |= ϕ);

– M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2;

– M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2;

– M, w |= ϕ1 ⇒ ϕ2 iff not(M, w |= ϕ1) or M, w |= ϕ2;

– M, w |= ϕ1 ⇔ ϕ2 iff M, w |= ϕ1 ⇒ ϕ2 and M, w |= ϕ2 ⇒ ϕ1;

8 Note that, in accordance with usage, we talk about Kripke models and not Kripke
interpretations. Thus, a formula may be evaluated to F in a Kripke model. We may also talk of
the Kanger–Kripke semantics.

Non-classical Logics 359

– M, w |= �ϕ iff for all w′ such that R(w,w′): M, w′ |= ϕ;

�ϕ: necessarily ϕ, or ϕ is necessarily T 9;

– M, w |= �ϕ iff there exists w′ such that R(w,w′): M, w′ |= ϕ;

�ϕ: ϕ is possible or ϕ is T in a possible (accessible) world;

– ϕ is Mod − satisfiable iff there exists M ∈ Mod and w ∈ M such that M,
w |= ϕ;

– ϕ is valid in model M (M ∈ Mod), written M |= ϕ iff v(ϕ) = W (i.e. iff for
all w ∈ W M, w |= ϕ);

– ϕMod − valid iff ϕ is valid in all models in Mod;

– ϕ is valid in modal frame (W,R) iff ϕ is valid in all models admitting (W,R) as
a base;

– A model is finite iff the set of worlds of the modal frame is finite; it is infinite
otherwise10.

REMARK 10.8.– The underlying notion of necessity in the definition is not always
related to a necessity in the real world, as we see it. There could be, for example,
several parallel worlds (or flows of time) that coexist (that flow at different speeds)
and we only have access to one of them. �

We obtain different logics by imposing conditions (in particular none) on the
accessibility relation. The best-known logics are K, S5, S4 etc.

These logics can also be characterized by formal systems.

EXAMPLE 10.14.– Consider the Kripke model represented by the graph below. We
indicate the corresponding interpretation in each world. The edges of the graph define
the accessibility relation.

¬P, ¬Q

P, ¬QP, Q

P, Q

¬P, Q

w1 w2

w4 w5

w3

9 A necessary truth is a truth that is verified in all possible (and accessible) worlds.
10 As in the case of FOL, the property of admitting finite models (see definition 5.15) is
important for the design of decision procedures for modal logics.

360 Logic for Computer Science and Artificial Intelligence

In this model M, we have:

– M, w1 |= �(P ∨Q)

– not (M, w3 |= �(P ∨Q))

– not (M, w3 |= �(¬P ∧Q))

– M, w3 |= �(¬P ∧ ¬Q) �

10.3.2. How to reason with modal logics?

Similar to classical logic, there are different approaches. We shall study the
following ones:

– syntactic approach (formal systems);

– direct approach;

– translation approach.

In the first approach, we provide a formal system (see section 3.3) for the logic
under consideration. In the direct approach, we give inference rules for the modal
connectives, and in the translation approach, we translate formulas into FOL and
reason in FOL11.

We present here the syntactic approach and the translation approach for some
propositional modal logics. The direct approach is treated for temporal logics, which
can be considered as particular cases of modal logics.

10.3.2.1. Formal systems approach

We specify those that are best known. The language is still the one of section
10.3.1.1.

DEFINITION 10.10.–

– The minimal logic K (K as Kripke)

A (axioms):

All tautologies of PL12
⋃

�(P ⇒ Q) ⇒ (�P ⇒ �Q).

R (inference rules):

MP: P P⇒Q
Q necessitation : P

�P substitution % see remark 3.20

11 Previously, the founder of temporal logic, appears to be a pioneer of the translation method.
12 Note that we could have chosen any complete formal system, for example, S1 (see section
3.4) for PL. The choice that was made permits us not to have to (re)prove all theorems
(tautologies) of PL.

Non-classical Logics 361

Other logics

– Inference rules: the same

– Axioms:

– T = K ∪ {�P ⇒ P}
– D = K ∪ {�P ⇒ �P}
– S4 = K ∪ {�P ⇒ P,�P ⇒ ��P}
– S5 = S4 ∪ {��P ⇒ P}
– G = K ∪ {�(�P ⇒ P) ⇒ �P}

EXERCISE 10.5.– Give the proofs (deductions) that correspond to the following
theorems:

a) �T P ⇒ �P

b) A ⇒ B �K �A ⇒ �B

c) �S5 ��P ⇒ �P

d) �S5 �(P ∨Q) ⇒ (�P ∨�Q)

e) �K �(A ∧B) ⇒ (�A ∧ �B)

f) �K �A ∧ �B ⇒ �(A ∧B)

g) �G �P ⇒ ��P

h) �S4 �A ∨ �B ⇒ �(�A ∨ �B) �

10.3.2.2. Translation approach

The connectives that are difficult to translate are � and �. The translation function
(Andréka, Németi, and Van Benthem) tr (see definition 10.9) is defined as follows:

tr(P) : P (X)

tr(¬ϕ) : ¬tr(ϕ)
tr(ϕ ∨ ψ) : tr(ϕ) ∨ tr(ψ)

tr(ϕ ∧ ψ) : tr(ϕ) ∧ tr(ψ)

tr(ϕ ⇒ ψ) : tr(ϕ) ⇒ tr(ψ)

tr(�ϕ) : ∀y(R(X, y) ⇒ tr(ϕ(y)))

tr(�ϕ) : ∃y(R(X, y) ∧ tr(ϕ(y)))

P : propositional symbol.

X : free variable, denoting the world in which we are.

y: fresh variable not occurring in the formulas to be translated.

R: accessibility relation.

362 Logic for Computer Science and Artificial Intelligence

The idea behind this translation is of course the capture of the semantics imposed
by the definition: P (y) (respectively, ϕ(y) should be interpreted as P (respectively,
ϕ) is T in world y.

EXAMPLE 10.15.– The formula whose validity is to be proven is:

�(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ)

This is the “specifically modal” axiom of logic K (see definition 10.10). Note that
no particular property is imposed on the accessibility relation (this should be compared
with exercise 10.7).

Non-classical Logics 363

EXAMPLE 10.16.– Using the translation method and the method of semantic
tableaux:

a) give a Kripke model M such that in a world w1: M, w1 |= �(P ⇒ Q) and
M, w1 � P ⇒ �Q;

b) give a Kripke model M such that in a world w1: M, w1 |= P ⇒ �Q and
M, w1 � �(P ⇒ Q).

a) We consider the set {�(P ⇒ Q),¬(P ⇒ �Q)}

Translation:

REMARK 10.9.– The constants that are introduced by variable instantiations (here a)
correspond to accessible worlds. �

The branch going through leaf 12 cannot be closed by instantiating the only
formulas that can still be instantiated.

We have constructed the desired model:

364 Logic for Computer Science and Artificial Intelligence

P ¬P, ¬Q

w1 w2

b) We consider the set {P ⇒ �Q,¬�(P ⇒ Q)}

Translation:

P ⇒ �Q : P (X) ⇒ ∀y(R(X, y) ⇒ Q(y))

¬�(P ⇒ Q) : �¬(P ⇒ Q) : ∃u(R(X,u) ∧ ¬(P (u) ⇒ Q(u)))

We have constructed the desired model:

¬P P, ¬Q

w1 w2

�

Non-classical Logics 365

EXERCISE 10.6.– (sea battle argument). Express the following argument (given by
Aristotle) in modal logic and verify its correctness using the translation approach.

(Similar to classical logic, given an argument expressed in a natural language, the
classification of this argument as correct or incorrect will generally depend on the way
it is translated.)

If I give the order to attack then necessarily there will be a sea battle
tomorrow. Otherwise, necessarily, there will be none. I either give the
order or I do not give it. Hence, necessarily, there will be a sea battle
tomorrow, or necessarily there will be none.

Two classical translations of the sea battle argument are given below:

P : “I give the order to attack”;

Q: “There will be a sea battle tomorrow”.

P ⇒ �Q
¬P ⇒ �¬Q
P ∨ ¬P

�Q ∨ �¬Q

�(P ⇒ Q)
�(¬P ⇒ ¬Q)

P ∨ ¬P
�Q ∨ �¬Q

�

EXAMPLE 10.17.– (accessibility relation for T, S4, S5). We can use the translation
method and the method of semantic tableaux to try to discover the sufficient properties
that are required of the accessibility relation so that the following axioms are valid.

�ϕ ⇒ ϕ

��ϕ ⇒ ϕ

�ϕ ⇒ ��ϕ

366 Logic for Computer Science and Artificial Intelligence

If R is reflexive, i.e. ∀xR(x, x), then we can graft to each branch of the tree:

and the two branches can be closed.

If R is symmetric, i.e. ∀x∀yR(x, y) ⇒ R(y, x), then we can graft to each branch
of the tree:

Non-classical Logics 367

and the two branches can be closed.

If R is transitive, then the branch on the left-hand side can also be closed, by
grafting to node 11 the tree below:

12. R(X, a) ∧ R(a, b) ⇒ R(X, b)

14. ¬ (R(X, a) ∧ R (a, b)) 13. R(X, b)
X (11–13)

X (7–15) X (9–16)

15. ¬ R(X, a) 16. ¬ R(a, b)

368 Logic for Computer Science and Artificial Intelligence

As an example, we give here a proof of this property that is representative of the
properties that appear in textbooks on this topic.

�ϕ ⇒ ��ϕ is valid in a modal frame iff the accessibility relation R is transitive.

if

We show that if R is transitive and we have

M, w1 |= �ϕ

then we also have:

M, w1 |= ��ϕ

R is transitive, i.e.:

R(w1, w2) ∧R(w2, w3) ⇒ R(w1, w3)

hence, if formula �ϕ is satisfied in world w1, then it is satisfied (see definitions 10.8
and 10.9) in all worlds that are accessible from (related to) w1; hence, it is satisfied in
w3, so that �(�ϕ) is also satisfied in w1.

only if

We prove the contrapositive, we assume that R is not transitive and we need to
prove that:

M, w1 |= �ϕ

and that:

M, w1 � ��ϕ

to do so, we propose, for example, v(w2) = ϕ; v(w3) = ¬ϕ.

This valuation is possible as R is not transitive; hence, we may assume that we
have ¬ϕ in w3. This would not be possible if R had been transitive, as we assumed:

M, w1 |= �ϕ

and if R had been transitive,w3 would have been accessible fromw1, and by definition
of the semantics, �ϕ is T in a world iff ϕ is T in all worlds accessible from the world
we are starting from (see definition 10.9).

With our approach, we could also have proved the only if part of the theorem (the
if part has already been proved):

Non-classical Logics 369

If R is not transitive, we graft to node 11. the tree:

11.

12. ' ¬ (R(X, a) 3. y ← a 13. ' j (a) 3. y ← a

By considering the branch going through nodes 7, 9, 10, 11, 13, and by applying
the same method as in example 10.16, we obtain the Kripke model (interpretation):

j ¬ j

w1 (X) w2 (a) w3 (b)

which verifies:

M, w1 |= �ϕ

and:

M, w1 � ��ϕ.

�

EXERCISE 10.7.– Use the translation method and the method of semantic tableaux
to discover (sufficient) properties of the accessibility relations of the modal frames in
which the following formulas are valid:

a) �ϕ ⇒ �ϕ

b) �ϕ ⇒ ��ϕ

c) �ϕ ⇒ �ϕ

d) �(�ϕ ⇒ ϕ)

e) ��ϕ ⇒ ��ϕ (called Geach’s axioms) �

A question that naturally arises is whether other axioms (formulas) correspond to
other simple relations, or if we can always express these relations by FOL formulas.

370 Logic for Computer Science and Artificial Intelligence

REMARK 10.10.– The problem of knowing whether an arbitrary wff of modal logic is
satisfied by Kripke frames that are characterized by FOL formulas is undecidable. But
Sahlqvist’s theorem guarantees that a (syntactically characterized) class of formulas
of modal logic corresponds to Kripke frames that are definable by FOL formulas.
Sahlqvist’s class is decidable.

The two following formulas do not belong to Sahlqvist’s class.

McKinsey’s axiom:

(MK) ��ϕ ⇒ ��ϕ

(S4.1 = K ∪ {MK})

and Löb’s axiom:

�(�ϕ ⇒ ϕ) ⇒ �ϕ

cannot be defined by a set of wffs of FOL.

Furthermore, there exist formulas of modal logic that are valid in frames that are
characterizable by FOL formulas, but are not equivalent to formulas in Sahlqvist’s
class, for example:

(��ϕ ⇒ ��ϕ) ∧ (��ϕ ⇒ �ϕ)

As a consequence, we can consider the expressive power of the PLs.

Propositional modal logic corresponds to a fragment of SOL. �

As can be seen, for example, in exercise 10.6, Aristotle was interested in other
arguments than those of his syllogistic (see section 2.2). A well-known argument that
he proposed on the need to philosophize is part of deontic logic:

We must philosophise or we must not philosophise. If we must
philosophise then we must do so. Otherwise, we must still philosophise
(to justify this point of view). Therefore, in all cases, we must
philosophise.

EXERCISE 10.8.– How would you define the semantics of the following operators
from deontic logic, using the semantics of possible worlds?

Oϕ: ϕ is compulsory

Fϕ: ϕ is forbidden

Pϕ: ϕ is allowed

Eϕ: ϕ is optional �

Non-classical Logics 371

10.4. Some elements of temporal logic

When I am not asked, I know what time is; when I am asked, I no
longer do.

Saint Augustin

The notion of time is essential in philosophy, in physics, in biology, and
also in computer science (sequential and parallel algorithms, time complexity of
algorithms, etc.).

In philosophy, it leads to different positions, it suffices to consider Parmenides
for whom “nothing changes” and Heraclitus for whom “everything changes”. See
also exercise 10.6. This notion is closely related to notions of space, matter, energy,
evolution, etc. Its conceptualization poses huge problems and it is difficult to try
avoiding them, as time is implicitly or explicitly present in all human activities (and
all around us).

We often use metaphors to mention time (the flow of time, time’s arrow, etc.).

Similar to other topics, a logical study of time only aims at capturing some aspects
that are relevant for the class of problems that are studied.

The notion of organization of instants:

past → present → future

seems to be the most fundamental one.

In mathematics (in the statement of definitions, theorems, etc.), we are not
interested in time. This is not the case in natural languages. Linguists have studied
the way time can be taken into account in logical structures.

For example (as is also common in physics): vt0, vt1, vt2, . . . (i.e. the speed of
an object at times t0, t1, t2,. . .) or by explicitly introducing time as a parameter:
interests(x, t), alive(x, t), etc.

We can also (and this possibility is of a particular interest to us) treat instants as
possible worlds (now corresponds to the world we are currently in). The accessibility
relation will be a total order (linear time) or a partial one (branching time13).

Reference to the past and to the future depends on languages and is not always that
obvious. For example, in English, we say:

13 In branching time, we can have t1Rt2 ∧ t1Rt3 ∧ t2 �= t3 ∧ ¬(t2Rt3 ∨ t3Rt2).

372 Logic for Computer Science and Artificial Intelligence

– the plane is scheduled to land at 6:30 pm (and it is currently 3:10 pm, we use the
present tense to talk of the future);

– I now understand the rules of rugby (we are using the present tense to talk of an
event that belongs in a large part to the past: the understanding of the rules).

Problems about the nature of time and temporal concepts have been a concern for
philosophers at least since there has been a written philosophy.

Time is part of our sensory experience (at least indirectly), and our discourse relies
heavily on time (in the sentences above, for example).

Classical mathematical logic abstracts time away. The propositions that are
obtained from sentences from everyday life are sometimes very artificial.

The goal of temporal logic (also called tense or change logic) is to systematize
reasoning with propositions involving temporal aspects.

The Megarian and Stoic Greeks studied theories for these logics.

Modern temporal logic was initiated by the work of logician and philosopher
Arthur N. Prior in the 1950s. Prior systematically studied the links between temporal
and modal logics.

The representation (picture) of time as dots that denote instants without duration
as basic entities is frequently used. Examples are graphs representing functions of
time (speed, distance travelled, GDP, unemployment rate, etc.) that are used to teach
physics, economy, etc. where in each instant (point) on the abscissa is assigned an
ordinate point.

We must distinguish between the graphs of functions that correspond to continuous
phenomena and those that correspond to discrete phenomena.

Although common, the concept of time as a set of instants without duration is a
very abstract model, compared to our perception in everyday life, and it is similar
to the notion of a point in space (what exactly is a region of space, say, a sphere of
radius 0?).

Another basic entity that is widely used is the period or interval.

Depending on the problem under consideration, one or the other notion will be
better adapted.

In particular, there are problems that cannot be solved with one of these notions,
but can be with the other (or not even be problems at all for the other). Here is an

Non-classical Logics 373

example dating at least from the Middle Ages: at the precise moment a man dies, is
he alive or dead?, or at the precise moment a fire is put out, is it burning or extinct?

This problem cannot be solved with the notion of instants, but with the notion of
time interval, there is no problem at all: the man died between 2 and 3 am, if he was
alive at 2 am and dead at 3 am.

If we use a discrete model for time, then there is no problem either.

Under some circumstances, it is more interesting to consider both notions at the
same time. For example, if we say Alice and Bob took the 6:42 train and chatted
throughout the entire trip, we are likely to be considering the departure time as an
instant and the duration of the trip as an interval.

When the basic entities are instants, the relations before and after are used.

For periods or intervals, the following relations (among others) are used: overlap,
non-overlap, meet, start and finish

We provide a graphical representation and logical translation of each relation,
using as primitive relations the precedence relation (≺) and the interval inclusion
relation ()). Given two intervals A and B, they can be related the following ways
(among others):

.Overlap:

A

B

∃x(x) A ∧ x) B)

(Note that x denotes an interval.)

.Non-overlap:

A B

∀x(x)/ A ∨ x)/ B)

.Meet

A | B

(A ≺ B) ∧ ¬∃x(A ≺ x ≺ B)

374 Logic for Computer Science and Artificial Intelligence

.Start

A

B . . .

¬∃x((x) A ∧ x ≺ B) ∨ (x) B ∧ x ≺ A))

.Finish

A . . .

B

¬∃x((x) A ∧B ≺ x) ∨ (x) B ∧A ≺ x))

10.4.1. Temporal operators and semantics

As was mentioned in section 10.4, Prior introduced modern temporal logic
essentially for philosophical purposes and he naturally focussed on linguistic
constructions.

Natural languages and the inferences that are performed on their sentences provide
examples of the peculiarities that come up when time is taken into account.

For example, from The weather is nice and The weather is cold, we can (correctly)
deduce that The weather is nice and cold. From The weather will be nice or The
weather will be cold we can deduce The weather will be nice or cold. But starting
with The weather will be nice and The weather will be cold, we cannot (correctly)
deduce that The weather will be nice and cold.

We introduce the following operators:

Fϕ: at some point in time, it will be the case that ϕ (it will be the case at least
once);

Pϕ: it was the case at some point in time that ϕ (it was the case at least once);

Gϕ :def ¬F¬ϕ: it will always be the case that ϕ;

Hϕ :def ¬P¬ϕ: ϕ was always the case in the past.

For the Megarians (philosophers of the school of philosophy founded by Euclid of
Megara)14:

14 The author of the famous Elements was Euclid of Alexandria.

Non-classical Logics 375

– the real is what is realized (i.e. true) now;

– the possible is what is realized (i.e. true) at some arbitrary time;

– the necessary is what is true all the time.

With modern notations, we have the following respective translations for
“possible” and “necessary”:

*ϕ :def ϕ ∨ Fϕ ∨Pϕ

�ϕ :def ϕ ∧Gϕ ∧Hϕ

For Stoicians:

– the real is what is realized (i.e. true) now;

– the possible is what is realized (i.e. true) now or at a future time;

in other words:

a proposition is possible if it is true or will be true;

– the necessary is what is realized (i.e. true) or will be realized at all future times.

With modern notations, we have the following respective translations for
“possible” and “necessary”:

*ϕ :def ϕ ∨ Fϕ

�ϕ :def ϕ ∧Gϕ

Note that with one or the other definition, “possible” and “necessary” keep their
usual relationship.

10.4.1.1. A famous argument

Some Greek philosophers credit the Greek philosopher of the Megarian school
Diodorus Cronus (– 4th) with a famous argument (that was analyzed by Prior) called
the Master argument, that seems to be the following:

D1) Every true proposition about the past is necessary;

D2) An impossible proposition cannot be a consequence of a possible proposition;

D3) There exists a proposition that is possible, but is not and will not be true.

Diodorus concludes (the reasoning to reach the conclusion is unknown) that the
set {D1, D2, D3} is unsatisfiable, which allowed him to characterize:

376 Logic for Computer Science and Artificial Intelligence

– the possible as what is or will be true;

– the impossible as what, being already false, will not be true;

– the necessary as what, being true, will not be false;
(Some authors translate: the necessary as what is and will be always the case

(true).);

– the unnecessary as what is already false, or will be false.

Logicians and modern philosophers tried to reconstruct and formalize Diodorus’s
reasoning to conclude that {D1, D2, D3} is unsatisfiable.

One of the formalizations translates Diodorus’s assertions as follows:

D1′) Pq ⇒ �Pq

D2′) (�(p ⇒ q) ∧�p) ⇒ �q

D3′) ∃r(�r ∧ ¬r ∧ ¬Fr)

and adds the following two assertions that were (according to historians) accepted by
the Greeks.

D4) (p ∧Gp) ⇒ PGp

D5) �(p ⇒ HFp)

The proof of the unsatisfiability of {D1′, D2′, D3′, D4, D5}:

1) �r ∧ ¬r ∧ ¬Fr (D3’)

2) �r (1)

3) �(r ⇒ HFr) (D5)

4) �HFr (D2’), (2), (3)

5) ¬r ∧G¬r (1)

6) PG¬r (5), (D4)

7) �PG¬r (6), (D1’)

8) ¬�¬PG¬r

9) ¬�HFr

Non-classical Logics 377

10)� (4), (9)

The logic that corresponds to Diodorean logic is:

S4.2 = S4
⋃{��P → ��P}

meaning that we add Geach’s axiom to S4 (see exercise 10.7), which is valid in
directed frames (directed relations correspond to the so-called (strongly) confluent
in λ-calculus):

∀w∀v∀x(wRv ∧ wRx ⇒ ∃u(vRu ∧ xRu))

For temporal frames (T,≤), it is often expressed as:

∀x∀y(x ∈ T ∧ y ∈ T ⇒ ∃v ∈ T (x ≤ v ∧ y ≤ v))

10.4.2. A temporal logic

Given the language of PL enriched with operatorsF, P,G,H and formally defined
by the following syntactic rules:

ϕ ::= Pi|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 ⇒ ϕ2|ϕ1 ⇔ ϕ2|�ϕ|Fϕ|Pϕ|Gϕ|Hϕ

�ϕ:def¬�¬ϕ

a model for this language is a triple M = (T,≺, v)

where:

T is a set of instants.

We restrict ourselves as follows:

≺ is a total order relation (see definition 3.25) % Other hypotheses (density,
etc.) lead to other temporal logics

v (valuation) v : P → 2T

(where P is the set of basic symbols and 2T is the set of subsets of T)

We will say that ϕ is true at instant t in model M, which will be denoted by
M, t |= ϕ and by M |= ϕ[t], where relation |= is defined inductively as follows:

M |= P [t] iff t ∈ v(P) % P : propositional symbol

378 Logic for Computer Science and Artificial Intelligence

M |= ¬ϕ[t] (also written M � ϕ[t]) iff not(M |= ϕ[t])

M |= ϕ[t] ∨ ψ[t] iff M |= ϕ[t] or M |= ψ[t]

M |= ϕ[t] ∧ ψ[t] iff M |= ϕ[t] and M |= ψ[t]

M |= ϕ[t] ⇒ ψ[t] iff not(M |= ϕ[t]) or M |= ψ[t]

M |= ϕ[t] ⇔ ψ[t] iff M |= ϕ[t] ⇒ ψ[t] and M |= ψ[t] ⇒ ϕ[t]

M |= Fϕ[t] iff there exists t′ > t M |= ϕ[t′]

M |= Pϕ[t] iff there exists t′ < tM |= ϕ[t′]

M |= Gϕ[t] iff for all t′ > t M |= ϕ[t′]

M |= Hϕ[t] iff for all t′ < t M |= ϕ[t′]

A wff ϕ[t] is T iff (T,<, v) |= ϕ[t] for every valuation v; ϕ is T , noted |= ϕ, iff
ϕ[t] is T for all t ∈ T . �

10.4.3. How to reason with temporal logics?

Similar to modal logics, we can envisage formal systems or translation methods.
For the temporal logic defined in section 10.4.2, we will propose a direct method:
the method of semantic tableaux. We apply the same process as for classical and
many-valued logics. We shall start by the rules that define the semantics to define the
syntactic rules (that respect this semantics) that will allow us to construct the tableau.

As in its previous versions, the method of semantic tableaux enumerates the
sets of (partial) models of a set of temporal formulas, in which time occurs. The
considerations of section 3.2 about the usage of the method apply.

The following remarks are important:

– there is a new parameter: time. As mentioned, we restrict ourselves to totally
ordered instants: . . . , t−n, t−(n−1), . . . , t−1, t0, t1, t2, . . . , tn, . . .;

– the contradictions that permit us to close a branch (and thus to conclude that it is
impossible to construct the potential model that is represented by the branch) between
a formula ϕ and its negation ¬ϕ must correspond to the same instant (which is rather
obvious: there is no contradiction in the fact of being alive at instant ti and not alive
at instant tj , where i �= j!);

– when applied to a formula ϕ at instant ti, the rules that are concerned with
connectives¬, ∧, ∨, ⇒, and ⇔ will permit us to replaceϕ by the formulas denoting all
models of ϕ at the same instant ti. As usual, we shall tick ϕ as already analyzed (

√
);

Non-classical Logics 379

– rules F , P , ¬G, and ¬H below apply only once and will therefore be ticked
after being used (

√
). Rules ¬F , ¬P , G, and H below can be applied at any desired

instant. We will not be interested in the problem of decidable subclasses.

The rules are therefore the following:

10.4.3.1. The method of semantic tableaux

F : Fϕ[t] ¬F : ¬Fϕ[t]
↓ ↓

ϕ[t′] for a t′ (t ≺ t′) ¬ϕ[t′] for all t′ (t ≺ t′)

P : Pϕ[t] ¬P : ¬Pϕ[t]
↓ ↓

ϕ[t′] for a t′ (t′ ≺ t) ¬ϕ[t′] for all t′ (t′ ≺ t)

G : Gϕ[t] ¬G : ¬Gϕ[t]
↓ ↓

ϕ[t′] for all t′ (t ≺ t′) ¬ϕ[t′] for a t′ (t ≺ t′)

H : Hϕ[t] ¬H : ¬Hϕ[t]
↓ ↓

ϕ[t′] for all t′ (t′ ≺ t) ¬ϕ[t′] for a t′ (t′ ≺ t)

EXAMPLE 10.18.– Prove the validity (or non-validity) of the formula below, using
the method of semantic tableaux:

Fϕ ⇒ F Fϕ

¬(Fϕ ⇒ F Fϕ)
√

t0
↓
Fϕ

√
t0

¬(F Fϕ) t0
↓
ϕ t1

¬Fϕ t1
↓
¬ϕ t2
↓
¬ϕ t3

...

380 Logic for Computer Science and Artificial Intelligence

Of course, every ti is different from the other tj’s (i �= j).

The considered formula is not valid. Counter example (i.e. model of its negation):
{ϕ[t1],¬ϕ[t2]}. �

EXERCISE 10.9.– Use the method of semantic tableaux to prove the validity (or non-
validity) of the formulas below:

a) F (ϕ ∨ ψ) ⇔ Fϕ ∨ Fψ

b) Fϕ ∧ Fψ ⇒ F (ϕ ∧ ψ) �

EXERCISE 10.10.– Prove the validity of formula:

G((p ⇒ q) ⇒ p) ⇒ Gp

using the method of semantic tableaux. �

The two following operators are particularly important in computer science and
confer a great expressive power to temporal logic. These are: since and until:

Sϕψ: it was the case that ϕ and since then and up till now (t0) it was the case
that ψ.

Uϕψ: it will be the case that ϕ and from now (t0) until then it will be the case
that ψ.

ϕ ψ t0

since

t0 ψ ϕ

until

Their translation in FOL is:

Sϕψ : ∃t < t0 (ϕ(t) ∧ ∀t′ > t (t′ < t0 ⇒ ψ(t′)))

Uϕψ : ∃t > t0 (ϕ(t) ∧ ∀t′ < t (t′ > t0 ⇒ ψ(t′)))

In computer science, temporal logics are used in program verification, AI,
databases, etc. They are used for the analysis and proofs of properties verified by
many systems, including those that are concurrent, non-deterministic, real time, that
do not end, etc.

Non-classical Logics 381

The following relations are often studied in temporal logic:

irreflexivity: ∀x(x �< x)

asymmetry: ∀x∀y(x < y ⇒ y �< x)

transitivity: ∀x∀y∀z(x < y ∧ y < z ⇒ x < z)

there exists a beginning: ∃d∀x(x �= d ⇒ d < x)

there exists an end: ∃f∀x(x �= f ⇒ x < f)

linearity: ∀x∀y(x = y ∨ x < y ∨ y < x)

discrete: ∀x∀y(x < y ⇒ ∃z(x < z ∧ ¬∃u(x < u < z))) ∧ ∀x∀y(x < y ⇒
∃z(z < y ∧ ¬∃u(z < u < y)))

(To be compared with the notion of density below.)

density: ∀x∀y(x < y ⇒ ∃z(x < z < y))

Warning: density �= continuity

DIGRESSION 10.2.– (on continuity). A total ordering (S,R) is continuous if it does
not contain any gap.

A cut is a partition (X,Y) (i.e. S ⊆ X ∪ Y and X ∩ Y = ∅) such that:

∀x∀y(x ∈ X ∧ y ∈ Y ⇒ xRy)

A gap is a cut (X,Y) such that X has no last element and Y has no first element.

((Q,≤) has gaps: take the cut X = {x | x2 ≤ 2}, Y = {x | x2 ≥ 2}) �

REMARK 10.11.– The formula �(Gp ⇒ PGp) ⇒ (Gp ⇒ Hp) is valid in all
continuous frames. �

10.4.4. An example of a PL for linear and discrete time: PTL (or PLTL)

10.4.4.1. Syntax

ϕ ::= Pi|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 ⇒ ϕ2|ϕ1 ⇔ ϕ2| ◦ ϕ|�ϕ|ϕ1Uϕ2

�ϕ:def¬�¬ϕ

382 Logic for Computer Science and Artificial Intelligence

◦ : next

� : eventually

� : always

U : until

10.4.4.2. Semantics

M = (T, S, v)

T : a finite or denumerable set of states (instants)

S: total function (successor function): T → T

s0: first element

(as usual, we shall note Si(t):

i︷ ︸︸ ︷
S(S(S . . .(t) . . .))

M, t |= P iff P ∈ v(t)

M, t |= ¬ϕ iff not (M, t |= ϕ)

M, t |= ϕ1 ∧ ϕ2 iff M, t |= ϕ1 and M, t |= ϕ2

M, t |= ϕ1 ∨ ϕ2 iff M, t |= ϕ1 or M, t |= ϕ2

M, t |= ϕ1 ⇒ ϕ2 iff non (M, t |= ϕ1) or M, t |= ϕ2

M, t |= ϕ1 ⇔ ϕ2 iff M, t |= ϕ1 ⇒ ϕ2 and M, t |= ϕ2 ⇒ ϕ1

M, t |= ◦ϕ iff M, S(t) |= ϕ

M, t |= �ϕ iff ∃i ≥ 0 (M, Si(t) |= ϕ)

M, t |= ϕ1Uϕ2 iff ∃i ≥ 0 (M, Si(t) |= ϕ2 ∧ ∀j(0 ≤ j < i ⇒
M, Sj(t) |= ϕ1))

An interpretation (model) satisfies a formula ϕ iff M, s0 |= ϕ

Non-classical Logics 383

10.4.4.3. Method of semantic tableaux for PLTL (direct method)

It is based on the same principle as the method used for PL and FOL, i.e. we
enumerate all the models of a set of formulas. To do so, we propose the following
rules that translate the semantics of the connectives that appear in the syntax (section
10.4.4.1). The rules that correspond to the classical connectives are the same as those
for PL.

Rules:

◦f �f f U g
⇓ ↙ ↘ ↙ ↘
f f ◦ �f︸︷︷︸ g f

◦ (f U g)︸ ︷︷ ︸
¬ ◦ f ¬�f ¬(f U g)
↓

◦¬f ↓ ↙ ↘
¬f ¬g ¬g

¬ ◦�f ¬f ¬ ◦ (f U g)

→: decomposition of the wffs (independent of time). % see below;

⇒: corresponds to moving forward one unit of time. % see below.

Once the principle mentioned above has been accepted, two new problems related
to time arise:

1) the rules on � and U ;

2) how to close a branch.

1) These rules can generate a potentially infinite tree, if we systematically choose
the rightmost branches (they replace a formula by another formula containing the same
connective).

To solve this problem, each time a formula is replaced, it is marked as already
developed but still kept (we memorize that it has been developed). If at a given time
(see below (∗)), say tk, we obtain the same set of formulas as one occurring at a
previous instant, say ti, we add an edge: tk → ti. This will lead to a directed graph
instead of an infinite tree (see digression 3.1).

2) If at a given instant we have two contradictory literals Pi and ¬Pi, then the
model we are trying to construct is not viable and we say the branch is unsatisfiable.

384 Logic for Computer Science and Artificial Intelligence

If there is a cycle in a branch, this means that an event (�f , f U g) will
never occur. We will therefore never be able to construct a model on the branch
containing the cycle. The node from which the branch originates will be classified
as unsatisfiable.

Of course, if all descendants of a node n are unsatisfiable, then n will be classified
as unsatisfiable.

(∗) . . . But we still have not mentioned time!

Here is how we proceed: we first decompose (i.e. we apply the rules on) the
formulas that do not begin with ◦. When they have all been decomposed, we
decompose those beginning with ◦ (we move forward one unit of time).

EXERCISE 10.11.– Use the direct method for PLTL to prove the unsatisfiability of
the following formula:

�P ∧�¬P

You will need to propose a rule for �P (use the definition from section
10.4.4.1). �

EXAMPLE 10.19.–

1) �(P ⇒ ◦Q)

2) �(P ⇒ ◦(¬QUR))

3) ��P

1) is satisfied by every interpretation such that every state in which P is true is
followed by a state in which Q is true.

2) is satisfied by every interpretation such that if P is true in a state then starting
from the next state, Q is always false until the first state in which R is true.

3) is satisfied by every interpretation in which P is true infinitely many times. �

EXERCISE 10.12.– Can you justify the assertions (1), (2), and (3) of example 10.19,
using the translation method and the direct method of semantic tableaux? �

Chapter 11

Knowledge and Logic: Some Notions

In computer science and AI, people often talk of “knowledge”, “knowledge
representation”, “efficient usage of knowledge”, etc.

We may wonder whether logic, which allowed us, for example, to verify whether
a reasoning is correct, to obtain conclusions from premises, to reason with fuzzy
concepts, to qualify formulas as necessary or possible and to deduce consequences,
to take time into account in formulas, and to reason on these formulas. . . will also
allow us to talk of (and define) knowledge and to reason while taking into account
the knowledge of an agent in a world where there are other agents, possibly with a
different knowledge.

The goal of this chapter is to try to answer this question.

Up to now, we have assumed (implicitly or explicitly) that “knowledge” was more
or less a synonym of “premise” and that the initial premises did not evolve when they
interacted with the environment.

But while handling problems in which the state of knowledge may change, new
difficulties will arise.

In game theory (an entire discipline by itself that we only mention here), it is also
necessary to take an environment that is not passive into account, meaning that the
actions of the other agents in the environment are relevant in the design of strategies
to reach a goal.

Recall that the ideas on probabilities play a very important role in knowledge
theory (for the time being we admit the intuitive meaning of knowledge): it suffices

386 Logic for Computer Science and Artificial Intelligence

to think of natural science. We may define probability as a numerical encoding of a
state of knowledge (a probability 1 would mean a certain event and a probability 0 an
impossible event)1.

The notion of “information” is closely related to that of knowledge, and therefore
to that of probability. Information can be defined as anything that leads to a change in
the assignment of probabilities2.

From a historical point of view, it is interesting to note that until 1660, probabilities
were in opposition with knowledge, and in Galileo’s times, for example, sets of
experiments did not replace proofs3.

We may now move on to the next stage: specify the abstractions that will allow us
to formalize things.

11.1. What is knowledge?

A few questions and remarks naturally arise.

– What interest is there (for computer science and AI among others) to study this
concept and possibly those that are related?

– A little of introspection is sufficient to imagine that those problems related to
knowledge must have been studied by philosophers for a very long time: this is indeed
the case.

– The Greeks and medieval philosophers were interested in this problem but
experts seem to agree on the fact that the topic was studied systematically starting
with Descartes, Leibniz, Hume and others (17th Century). A theory of knowledge
was only envisaged starting with Kant (18th Century).

– The notion of knowledge seems inseparable from that of environment, and
implicitly from our senses that allow us to interact with it.

– Philosophers propose: “to know is the action during which a subject (in
computer science or AI we would say an agent) comprehends an object”, thanks to a
representation (today we would say thanks to a model). It is interesting to note that
Stoicians already used the notion of representation.

– Of course, problems arise, such as: “is it possible to know the entire environment
(all of reality), or will we only be able to comprehend part of it?” (Note the similarity

1 See definition 11.1.
2 This definition uses “knowledge” as a primitive concept. We shall give a formal definition of
this concept in definition 11.1.
3 See section 8.4.

Knowledge and Logic: Some Notions 387

with the difficulties experienced during the act of modeling.) These problems have to
be tackled by all those who study natural science, especially physicists.

– The notion of “reality” itself leads to some problems.

– Philosophers talk of “sensitive reality” and “intelligible reality”.

– Sensitive reality can often be misleading (think, for example, of optical illusions,
the principle of inertia, the free fall of bodies of different weights, quantum
mechanics, etc.).

– This characteristic is the reason why intelligible reality is often considered as
superior to sensitive reality.

– Some schools of philosophy that considered the notion of “experience” as
a key notion studied it from a broad point of view, i.e. not only as an account
of phenomena but also taking into account an elaboration that can be intellectual,
historical, introspective, etc.

At this stage, we can already try to identify the characteristics that we want to keep
in our formalization.

– The social factor (several knowing agents) in knowledge and interaction between
agents (agent X knows that agent Y does not know that agent Z . . .). Furthermore, it
is clear that science, for example, is a social production.

– Introspection (X knows that he knows, . . .).

– Related to inner experience: what difference between knowledge and belief ?

– About the differences between knowledge and belief, they are opposed by the
current discourse, but we can say that there is some sort of belief in knowledge, for
example, that the laws of the universe do not change (with time) and that it is possible
to know them.

– Belief could be defined as an adherence to an idea, an opinion, that we
acknowledge as true and, partly at least, as subjective.

– It is related to the notion of probability, of which one definition is the degree
of belief.

– Etymology does not seem capable of helping us, this time.

– In the search for a logical formalization, we shall make use of the following
definitions, among others, that are proposed by philosophers (even if they are difficult
to grasp).

– Knowledge: act of thought that penetrates and defines the object of its
knowledge.

– The perfect knowledge of a thing, in this sense, is that which, when considered
subjectively, does not leave anything obscure or unclear in the known thing, or that
which, when considered objectively, does not leave anything that exists in the reality
in which it applies outside.

388 Logic for Computer Science and Artificial Intelligence

– Belief: in a weak and large sense, it is the equivalent of an opinion, and denotes
an imperfect consent that, similarly to an opinion, can have any degree of probability.

– . . . and we call probability (absolutely speaking) the character of the event it is
the most reasonable to expect.

– To synthesize, we shall retain an environment of which the knowing agent(s) is
(are) a particular case.

Among the logics that we have studied, modal logics (see section 10.3) are those
that seem most naturally suited to be logics of knowledge because of the concepts they
handle; the following definition is therefore oriented toward using these logics.

DEFINITION 11.1.– (knowledge).

– An agent knows a fact ϕ if ϕ is true in all world it considers as possible given its
current knowledge.

– An agent considers as possible the worlds that are not in contradiction with the
facts it holds as indubitable.

– An agent considers a fact ϕ as possible if it does not know ¬ϕ.

REMARK 11.1.– (on the definition of knowledge).

– “Given its current knowledge” naturally leads to thinking that knowledge can
change with time, which in turn naturally leads to think of the notion of learning.

– In general (always?) we have partial information about the environment.

– We could say that the more information in the possession of an agent, the less
possible worlds it will consider. In other words, the number of worlds it considers
as possible is directly related to its uncertainty (think of the scientific process or of a
game of cards, etc.). For example, if an agent rolls a die, there are six possible worlds.
If it makes an object fall, there is only one possible world. �

DIGRESSION 11.1.– The knowledge modeling that is used in game theory or in
mathematical economics uses concepts that are close to probabilities, in which a key
notion is that of an event, i.e. the set of possible worlds.

We could say that instead of working with logical formulas, those working in these
disciplines work directly on their denotation: for example, “n is an odd number” will
be replaced by the set of worlds in which n is odd. “n is odd and greater than 2007”
will be replaced by the intersection of the set of all worlds (states) in which n is odd,
and the set of worlds (states) in which n > 20074. �

4 In the initial developments of probability theory, people talked of “propositions” with the
meaning of events. It is after Kolmogorov’s axiomatization that elementary events were treated
as sets. Stochastic situations can be modeled indifferently using sets or propositions.

Knowledge and Logic: Some Notions 389

11.2. Knowledge and modal logic

11.2.1. Toward a formalization

The description language must be able to express the retained notions:

– We assume n agents (n ∈ N).

– Propositions on the states of the world (or on the worlds) (for example, the
weather is nice, I have an ace, etc.). P : the set of all atomic propositions (formulas).

– Ki: agent i knows ϕ.

11.2.2. Syntax

– ϕ ::= Pi|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 ⇒ ϕ2|ϕ1 ⇔ ϕ2|Kiϕ

T :def P ∨ ¬P
F :def ¬ T

11.2.2.1. What expressive power? An example

– We will be able to write formulas such as (proposition P meaning: agent 1 has
an ace)

K1K2P ∧ ¬K2K3P

– meaning: agent 1 knows that agent 2 knows that he (agent 1) has an ace and
agent 2 does not know that agent 3 knows that agent 1 has an ace.

11.2.2.2. Semantics

An e-frame (e stands for epistemic):

– M = (W, K1, K2, . . . ,Kn, v)

– W �= ∅ : set of possible worlds

– Ki ⊆ W 2 : accessibility relations of the agents

– v : P −→ 2W or W −→ 2P where, as usual, 2W and 2P denote sets of subsets
of W and P , respectively. (v is called a valuation and indistinctly gives the set of
worlds in which a proposition is evaluated to T or the set of propositions that are
evaluated to T in each world).

– M, w |= Ki ϕ iff for all w′ such that (w,w′) ∈ Ki : M, w′ |= ϕ

We can see that, with the semantics of the accepted definition of knowledge, the
latter is relative to the possible worlds (i.e. to the world we belong to) and to the agents
(i.e. to the worlds that are accessible to them).

390 Logic for Computer Science and Artificial Intelligence

EXAMPLE 11.1.– (Fagin et al.).

– M = (W, K1, K2, v)

– W = {w1, w2, w3}
– v(P) = {w1, w3}
– K1 = {(w1, w1), (w1, w2), (w2, w1), (w2, w2), (w3, w3)}
– K2 = {(w1, w1), (w1, w3), (w2, w2), (w3, w1), (w3, w3)}

The accessibility relations and the valuation are, similarly to the other modal
logics, represented in a compact way as a graph:

P ¬P

P

w1 w2

w3

k1 :

k2 :

In world w3, agent 1 knows that P , but in world w1, he does not. Agent 2 knows
that P in both worlds, but does not in world w2. �

To summarize, operator Ki permits descriptions in which:

– A world (state) is not completely characterized by v. Each agent has its
“particular view” of reality. For example, if P is an arbitrary proposition (T in world
w1), it is possible for agent 1 not to know P , and for agent 2 to know P but not to
know that agent 1 does not know P , . . . :

M, w1 |= P ∧ ¬K1P ∧K2P ∧ ¬K2¬K1P ∧K1(K2P ∨K2¬P) �

We will say that a formula ϕ is valid in an e-frame
M = (W, K1, K2, . . . ,Kn, v), noted M |= ϕ iff for all w ∈ W : M, w |= ϕ.

ϕ is satisfiable in M iff there exists w ∈ W such that M, w |= ϕ.

Knowledge and Logic: Some Notions 391

Finally, ϕ is valid iff ϕ is valid in all e-frames, and ϕ is satisfiable iff it is satisfiable
in an e-frame.

11.2.3. New modal operators

To formalize the abstractions that were retained for knowledge, three modal
operators are introduced (G �= ∅: subset of agents).

– EG: all in G know.

– CG: it is a common knowledge of all the agents in G (i.e. all know, all know that
all know, . . .).

– DG: it is a distributed knowledge among the agents in G (i.e. the agents in
G know in the worlds they have access to, in other words, ϕ is a distributed
knowledge among the agents in G iff ϕ is T in all worlds that are accessible by all the
agents in G).

If G is the set of all agents, we shall write E, C and D.

We extend the syntax to take these new operators into account:

11.2.3.1. Syntax (extension)

– If ϕ is a formula, then EGϕ, CGϕ, DGϕ, Eϕ, Cϕ, Dϕ are also formulas.
Thus, we must add to the grammar of section 11.2:

– ϕ ::= EGϕ | CGϕ | DGϕ | Eϕ | Cϕ | Dϕ

. . . and we must also formally define the semantics of these operators:

11.2.3.2. Semantics (extension)

– M, w |= EGϕ iff for all i ∈ G : M, w |= Kiϕ

– We note:

– E0
Gϕ :ϕ

– E1
Gϕ :EGϕ % i.e. all those in G know ϕ

– E2
Gϕ :EGEGϕ % i.e. all those in G know that all those in G know ϕ

– Ei+1
G ϕ :EGE

i
Gϕ

– M, w |= CGϕ iff M, w |= Ei
Gϕ for i = 1, 2, . . .

– M, w |= DGϕ iff for all w′ such that (w,w′) ∈ ⋂
i∈G Ki, we have M, w′ |= ϕ

– For example we can write:

– K1¬C{2,3}P ∧ ¬CQ ∧DQ
meaning: Agent 1 knows that P is not a common knowledge of agents 2 and 3 and

Q is not a common knowledge, but a distributed knowledge in the system.

392 Logic for Computer Science and Artificial Intelligence

11.2.4. Application examples

11.2.4.1. Modeling the muddy children puzzle

The problem:

– n children (brothers) are playing in a muddy courtyard. Their mother told them
that those who got mud on themselves would be punished.

– During the game, k children get mud stains on their foreheads.

– Of course, each child can see the mud stains on the others’ foreheads, but not on
their own.

– Each child hides what he sees.

– Their father, who always tells the truth, comes home and says: at least one of
you have a mud stain on your forehead (a fact which, if k > 1 was known by all. If
k = 1, then the one with the stain on the forehead did not know that).

– The father repeats again and again the question: “does one of you know that he
has a mud stain on the forehead?”

– We assume that the children reason perfectly and that they never lie.

– Thus (this is what needs to be proved) during the first k−1 times the question
is repeated, the children will answer “no”, but when the father asks the question for
the kth time, the children with mud stains on their forehead will answer “yes”.

The modeling:

– Similarly to all modeling phases, the notions of “good” models and information
are implicit. There is common knowledge that is implicit (for example, no child is
blind).

– Pi: child i has a mud stain on his forehead.

– Each world will be characterized (named) by an n-tuple (x1, x2, . . . xn);
xi ∈ {0, 1}

(with the meaning: “child i has a mud stain (has no mud stain) on the forehead iff
xi = 1 (xi = 0)”)

– Thus, M, (x1, x2, . . . xn) |= Pi iff xi = 1.

– We, therefore, define v, taking this into account.

– For the sake of simplicity we can define:
P :def P1 ∨ P2 ∨ . . . ∨ Pn

11.2.4.2. Corresponding Kripke worlds

We assume there are three children. The graph below represents all possible
configurations of mud stains on the children’s foreheads (23 possibilities). The triples
(i, j, k) (i, j, k ∈ {0, 1}) correspond to the valuations (here, we also use them as
names of worlds or states). The (double) arrows denote the world (or state) that each

Knowledge and Logic: Some Notions 393

child considers as possible (i.e. w.r.t. the accessibility relation) in the world in which
he is (i.e. where he sees what he sees).

For the sake of readability, we did not draw for each child and each world the
arrows with the same origin and destination.

(1,1,1)

Child 1:

Child 2:

(1,1,0)

(0,1,1)

!-#"#-$

(1,0,1)

(1,0,0)

(0,0,1)

(0,0,0)

Child 3:

– We can write, for example:

– M, (1, 1, 0) |= K3P2

– M, (1, 0, 1) |= K1¬P2

– M, (1, 0, 1) |= K1P3

– M, (1, 0, 1) |= ¬K1P1

– M |= C(P2 ⇒ K1P2)

– M |= C(¬P2 ⇒ K1¬P2)

– M, (1, 0, 1) |= EP

The father speaks � the graph changes.

– For example, in (1, 0, 1), child 1 considers (0, 0, 1) as possible, and in this world,
3 considers (0, 0, 0) as possible.

– Hence, 1 considers as possible that 3 considers as possible that no child has a
mud stain on the forehead.

– When the father says P , things change:

– No child considers state (0, 0, 0) is possible anymore.

394 Logic for Computer Science and Artificial Intelligence

11.2.4.3. Properties of the (formalization chosen for the) knowledge

Similarly to all modeling phases, the abstraction adopted for knowledge must be
subject to analysis to evaluate its pertinence. The researchers who proposed it note
that the properties and consequences of the definition of knowledge that was accepted
correspond to what we informally expect of this concept.

For example, we can prove:

– |= (Kiϕ ∧Ki(ϕ ⇒ ψ)) ⇒ Kiψ % Distribution axiom;

– For all M if M |= ϕ then M |= Kiϕ % Knowledge generalization rule
This property states that an agent knows every valid formula (. . . but not

necessarily those that are true).

– |= Kiϕ ⇒ ϕ % Knowledge axiom
knowledge �= belief (see example 10.17)

This property states that an agent does not know something false.

– |= Kiϕ ⇒ KiKiϕ % Positive introspection axiom
(see example 10.17)

– |= ¬Kiϕ ⇒ Ki¬Kiϕ % Negative introspection axiom

Chapter 12

Solutions to the Exercises

EXERCISE 3.1.– We can represent an interpretation as a subset of Π, with the
elements of this subset being the propositional symbols that are evaluated to T in
the interpretation.

There are 2ℵ0 subsets of Π; hence, there is an uncountably infinite number of
interpretations for PL.

A more detailed proof.

Every interpretation I can be represented by the graph of the function defining it:

I = {(Pj , ∗) | j ∈ N, ∗ : T (exclusive) or ∗ : F}

There are infinitely many interpretations, take for example (l ∈ N):

Il = {(Pl,T), (Pm,F) | m ∈ N; l �= m}

Now if we assume that the set of all interpretations in PL is denumerable, then
they can be enumerated (i ∈ N):

Ii = {(Pj , ∗) | j ∈ N, ∗ : T (exclusive) or ∗ : F}

Consider the interpretation I defined as follows:

I = {(Pk, ∗) | k ∈ N, ∗ : T if (Pk,F) ∈ Ik; ∗ : F if (Pk,T) ∈ Ik}

This interpretation is different from every Ii in the list we assumed we were able
to construct, at least for the couple (Pi, ∗).

396 Logic for Computer Science and Artificial Intelligence

Therefore, assuming that the set of interpretations for PL is denumerable leads
to a contradiction. The set of all interpretations of PL is therefore uncountably
infinite. �
REMARK 12.1.– To avoid the (implicit) use of the axiom of choice, we can encode
F : 0 T : 1 and define:

I = {(Pk, (∗+ 1)mod 2) | k ∈ N; (Pk, ∗) ∈ Ik , ∗ = 0 or ∗ = 1}. �
REMARK 12.2.– The argument used here is the same as the argument used to prove
that there are uncountably many real numbers in the interval [0, 1] (which entails that
R is uncountably infinite):

We assume that we can enumerate all real numbers between 0 and 1:

0, x1
1x

1
2 . . . x

1
n . . . xi

j ∈ [0, 1, 2, . . . , 9](i, j = 1, 2, . . .)

0, x2
1x

2
2 . . . x

2
n . . .

...
0, xp

1x
p
2 . . . x

p
n . . .

...

But the real number:

y = 0, y1y2 . . . y1 . . . ,where yi �= xi
i i = 1, 2, . . .

is not in this list (it is different from the first number at least at x1
1, from the second at

least at x2
2, . . . from the nth at least at xn

n,. . .)

A contradiction; hence, the set of real numbers on [0, 1] is not denumerable. �

EXERCISE 3.2.–

a) A truth function can always be represented by its graph, a its domain and range
are finite.

The following example clearly shows how to proceed (it is trivial to transform this
method into an algorithm).

P Q R f(P,Q,R) ¬f(P,Q,R)
T T T T F
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F T F

Solutions to the Exercises 397

The dnf of f(P,Q,R) is:

(P ∧Q ∧R) ∨ (P ∧Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧ ¬R).

The justification is very simple (properties of ∧ and ∨): every other combination
of literals that appears in the dnf is equivalent to F (by inspection of the truth table).

The cnf of f(P,Q,R) is:

(¬P ∨Q∨¬R)∧(¬P ∨Q∨R)∧(P ∨¬Q∨¬R)∧(P ∨¬Q∨R)∧(P ∨Q∨¬R).

It is obtained because of the following equivalences:

¬
∨∧

Pi equiv.
∧∨

¬Pi

and:

¬¬f(P,Q,R) equiv. f(P,Q,R)

i.e. we take the conjunction of disjunctions for those f(P,Q,R) = F.

b) Use the equivalence P ∨Q equiv ¬(¬P ∧ ¬Q) and (a).

c) Use the equivalence P ∧Q equiv ¬(¬P ∨ ¬Q) and (a).

d) Use the equivalences P ∧Q equiv ¬(P ⇒ ¬Q) P ∨Q equiv ¬P ⇒ Q and (a).

e) Use the equivalences ¬P equiv P | P ; P ∨ Q equiv ((P | P) | (Q | Q))
and (c).

f) Use the equivalences ¬P equiv P ↓ P ; P ∧ Q equiv ((P ↓ P) ↓ (Q ↓ Q))
and (b). �

EXERCISE 3.3.– We provide a sufficient condition.

It is true if the only line with value F is the given one (see cnf, solution of
exercise 3.2) or if the only line with value T is the one given (see dnf, solution
of exercise 3.2). �

EXERCISE 3.4.–

a)

P ∧ (P ⇒ Q) ⇒ Q
T T T T T T T
T F T F F T F
F F F T T T T
F F F T F T F

398 Logic for Computer Science and Artificial Intelligence

b)

(P ⇒ Q) ∧ (¬ Q⇒ ¬ P)
T T T T F T F
T F F F T F F
F T T T F T T
F T F T T T T

c)

¬ A ∧ (A ∨ B) ⇒ B
F F T T T T T
F F T T F T F
T T F T T T T
T F F F F T F

d)

A ⇒ A ∨ B
T T T T T
T T T T F
F T F T T
F T F F F

e)

(P ⇒ Q) ∧ ¬ Q ⇒ ¬ P
T T T F F T F
T F F F T T F
F T T F F T T
F T F T T T T �

EXERCISE 3.5.–

a)

To know whether it is always F, we try to evaluate it to T:

to evaluate to T an implication, it suffices (this is not the only possibility) to fix its
consequent to T.

(. . .)
T⇒ (

F︷︸︸︷
S ⇒ (R ∨ T)︸ ︷︷ ︸

T

)

It thus suffices to assign F to S and not bother with the truth values of the other
propositional symbols to evaluate the given formula to T. It is not always F.

Solutions to the Exercises 399

To know whether it is always T, we try to evaluate it to F:

to evaluate an implication to F, the only possibility is to have its first term evaluate
to T and its second term evaluate to F.

((. . . ⇒ Q︸︷︷︸
T

)∧
T︷ ︸︸ ︷

(. . . ⇒ ¬R︸︷︷︸
T

))∧
T︷ ︸︸ ︷

(R︸︷︷︸
F

⇒ . . .)∧(. . . ⇒ Q︸︷︷︸
T

))
F⇒

F︷ ︸︸ ︷
(S︸︷︷︸

T

⇒ (R︸︷︷︸
F

∨ T︸︷︷︸
F

))

We can evaluate it to F with the given assignments . It is not always T.

Conclusion: the given formula is neither contradictory nor a tautology.

b)

As mentioned above, to evaluate an implication to F, the only possibility is to
evaluate its first term to T and its second term to F.

To evaluate the second term to F, the only possibility is:

(E ⇒ A)︸ ︷︷ ︸
T

F⇒ (D ⇒ A)︸ ︷︷ ︸
F

and the only possible assignments are:

A: F

D: T

hence:

E: F

With these assignments, we try to evaluate the first term to T, the only
possibility is:

(((A ⇒ B) ⇒ (¬C ⇒ ¬D)) ⇒ C)︸ ︷︷ ︸
F

T⇒ E︸︷︷︸
F

With the only possible assignments for A, D, and E, we must assign C to T and
F, which is impossible.

Conclusion: the given formula cannot be evaluated to F. �

400 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.6.– No, � is not anti-symmetric (see definition 3.23):

Of course, for example:

F |= F ∨ F and F ∨ F |= F

But formula F is (syntactically) different from formula F ∨ F . �

EXERCISE 3.7.–

a)

P ⇒ (Q⇒ P)
T T T T T
F T T F F
T T F T T
F T F T F

If we have P, any proposition implies P.

b)

¬ P ⇒ P ⇒ Q
F T T T T
F T T F F
T T F T T
T T F T F

If P is false, then P implies any proposition.

(a) and (b) are called paradoxes of material implication. �

EXERCISE 3.8.– As is customary (in particular in mathematics), we convene that a
reasoning is correct if and only if

We cannot evaluate the premises to T and the conclusion to F. �

REMARK 12.3.– This convention (definition) enables us to immediately propose two
classes of reasonings that are trivially correct:

contradictory premises (inclusive) or tautological conclusion. �

Before any translation, it is necessary to identify the synonyms and propositions
that are negations of other propositions.

Solutions to the Exercises 401

We propose:

S: Life has a meaning.

M : Life necessarily ends by death.

T : Life is sad.

C: Life is a cosmic joke.

A: Angst exists.

B: Life is beautiful.

¬B: Life is ugly (life is not beautiful).

¬M : Life goes on after death.

Most of the time we must make translation choices, but we will assume (this is not
important, the important fact is to be aware of the difficulty of translation) that we all
agree with the translation.

Once the translation has been made, we try (without forgetting to test the other
possibilities if there is a failure) to find an interpretation that permits us to evaluate the
conclusion to F and the premises to T.

If we succeed, the reasoning is incorrect and we have produced a counter
example.

If we fail, the reasoning is correct.

S︸︷︷︸
F

∧ M︸︷︷︸
T

T⇒ T︸︷︷︸
F

¬M︸︷︷︸
F

∧ ¬S︸︷︷︸
T

T⇒ C︸︷︷︸
F

S︸︷︷︸
F

∧ ¬M︸︷︷︸
F

T⇒ ¬A︸︷︷︸
F

¬C︸︷︷︸
T

T⇒ ¬T︸︷︷︸
T

A︸︷︷︸
T

T︸︷︷︸
F

∨ C︸︷︷︸
F

T⇒ ¬B︸︷︷︸
F

¬B︸︷︷︸
F

Therefore, with this formalization, the reasoning is incorrect. �

402 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.9.–

a)

A︸︷︷︸
F

T⇒ B︸︷︷︸
F

A︸︷︷︸
F

T⇒ C︸︷︷︸
F

¬(B︸︷︷︸
F

∨ C︸︷︷︸
F

)

D︸︷︷︸
F

Incorrect reasoning. Which is “natural”: in general, when the conclusion is
independent from the premises, the reasoning is incorrect, except in the case of
reasonings that are trivially correct (i.e. contradictory premises and/or tautological
conclusion).

b)

A︸︷︷︸
T

T⇒ B︸︷︷︸
T

B︸︷︷︸
T

T⇒ C︸︷︷︸
T

C︸︷︷︸
T

T⇒ D︸︷︷︸
T

¬D % impossible to evaluate to T

A︸︷︷︸
T

∨ E︸︷︷︸
F

E︸︷︷︸
F

As there is no other possible way of evaluating the conclusion to F and the
premises to T, we conclude that the reasoning is correct.

If we had wanted to go from the premises to the conclusion (forward chaining),
we would have done:

Solutions to the Exercises 403

¬D �→ T (only possibility), hence (contrapositive) ¬C �→ T (only possibility),
hence (contrapositive)¬B �→T , hence (contrapositive) ¬A �→T , i.e. A �→ F; thus,
necessarily, for all the premises to be T: E �→ T . We conclude that the reasoning is
correct. �

EXERCISE 3.10.–

a)

P ∧ (Q ⇒ R) ⇒ S −→ ¬(P ∧ (Q ⇒ R)) ∨ S −→ (¬P ∨ ¬(Q ⇒
R)) ∨ S −→ (¬P ∨ ¬(¬Q ∨ R)) ∨ S) −→ (¬P ∨ (Q ∧ ¬R)) ∨ S −→
((¬P ∨Q) ∧ (¬P ∨ ¬R)) ∨ S −→ (¬P ∨Q ∨ S) ∧ (12¬P ∨ ¬R ∨ S)

b)

(P ∨ ¬Q) ⇒ R −→ ¬(P ∨ ¬Q) ∨R −→ (¬P ∧Q) ∨R]

c)

No, for example:

(P ∨ ¬Q ∨R) : cnf (a conjunct with three literals)

(P) ∨ (¬Q) ∨ (R): dnf (three disjuncts, each with one literal)

d) No, it suffices to apply the distributivity of ∧ w.r.t. ∨

% Note the analogy with Cartesian product:

(A∨¬B∨C)∧ (¬D∨E)∧ (F ∨¬G∨H) −→ (A∧¬D∧F)∨ (A∧¬D∧¬G)
∨ (A∧ ¬D ∧H)∨ (A∧E ∧F)∨ (A∧E ∧¬G) ∨ (A ∧E ∧H)∨ (¬B ∧¬D ∧F)
∨ (¬B ∧ ¬D ∧ ¬G) ∨ . . . ∨ (C ∧ E ∧ F) ∨ (C ∧ E ∧ ¬G) ∨ (C ∧E ∧H)

(i.e. 3× 2× 3 = 18 disjuncts)

e)

No.

Consider the wff:

F : (P ⇔ Q) ∧ (Q ⇔ R) ∧ (R ⇔ P)

The wffs G and H below:

G : (¬P ∨Q) ∧ (¬Q ∨R) ∧ (¬R ∨ P)

404 Logic for Computer Science and Artificial Intelligence

H : (¬Q ∨ P) ∧ (¬P ∨R) ∧ (¬R ∨Q)

Are two cnfs of F and they are different. �

EXERCISE 3.11.–

N : There is a unique norm to judge greatness in art.

M : M is a great artist.

G: G is a great artist.

P : P is considered as a great artist.

D: D is considered as a great artist.

W : W is a great artist.

K: K is a great artist.

S: S is a great artist.

The following formalization seems “natural”:

1) N ⇒ ¬(M ∧G)

2) P ∨D ⇒ ¬W
3) ¬W ⇒ ¬(K ∨ S)

4) ¬G
5) D ∧K

6) ¬N

Forward chaining: we try to evaluate the set of premises to T (in every possible
way) and verify that all models of this set are also models of the conclusion.

(−→ shows the evaluation sequence)

in (4)G �→F (only possibility) −→ in (5)D �→T (only possibility); in (5)K �→
T (only possibility), hence in (3) W �→ T; hence, in (2) P ∨D must be evaluated to
F: impossible.

As there is no other choice to evaluate the premises to T, we conclude that the
premises are contradictory, and hence the reasoning is trivially correct.

Backward chaining: if we can evaluate the conclusion to F and the set of premises
to T, then we refute the reasoning.

(−→ indicates the evaluation sequence)

Solutions to the Exercises 405

in (6) N �→ T −→ in (1) G �→ F or M �→ F −→ in (5) D �→ T and K �→ T
(only possibility) −→W �→T (only possibility) −→ P ∨D must be evaluated to F:
impossible. Hence (of course!) the same conclusion, meaning that we cannot refute
the reasoning which is correct. �

EXERCISE 3.12.–

a) As we can evaluate the conclusion independently from the premises, we will be
able to evaluate the conclusion to F and the premises to T. In general, the reasoning
will therefore be incorrect.

Particular case: trivially correct reasonings (see exercise 3.9).

b) See proof of the following assertion exercise 3.30:

S: set of clauses, L ∈ C ∈ S, L pure

(∗) S is contradictory iff S \ {C} is contradictory

We shall prove that a reasoning is correct by proving that the set of premises
together with the negation of the conclusion is contradictory. We can use property
(∗) for this verification.

Example:

S = {C1, C2, C3, C4}

C1 : P ∨Q ∨R

C2 : ¬P ∨ ¬Q

C3 : ¬R ∨ U

C4 : ¬U ∨ T

Step 1: we erase C4 (T pure)

Step 2: we erase C3 (U pure)

Step 3: we erase C1 (R pure)

Step 4: we erase C2 (¬P and ¬Q pure)

S is thus equivalent to ∅; hence, non-contradictory (satisfiable). The reasoning
from which S was generated was therefore incorrect. �

406 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.13.– We use the following propositional symbols:

C: Someone asked the house servant the question “. . . ”.

R: The house servant answered.

E: Someone heard the house servant (the house servant was heard).

Q: Someone saw the house servant.

T : The house servant was busy polishing cutlery.

U : The house servant was here on the day of the crime.

The reasoning can be formalized as follows:

1) C ⇒ R

2) R ⇒ E

3) ¬E
4) ¬Q ∧ ¬E ⇒ T

5) T ⇒ U

6) U

The reasoning is incorrect: the interpretation {Q}, i.e. Q evaluated to T and all
other propositional symbols evaluated to F (see example 3.4) is a counter example.

Instead of verifying the correctness of the reasoning by using the same method
as previously, we will do so in a way that is closer to the syntactic point of view of
inference, similar to the inference rules used in mathematics, which will be treated in
detail in section 3.3.

A major difference with the standard practice of mathematics is that we declare
all the inference rules (elementary reasonings) that will be the only rules we will be
allowed to use.

Inference rules:

MP: P P⇒Q
Q

and (intro): P Q
P∧Q

and (lelim): P∧Q
Q

and (relim): P∧Q
P

Solutions to the Exercises 407

or (intro): P
P∨Q

contrap: P⇒Q
¬Q⇒¬P

disj. syl.: ¬P P∨Q
Q

abd: Q P⇒Q
P % Warning: abd is not a correct rule (see definition 3.12). It is

used to discover premises in abduction (see section 8.3).

a) A trivial possibility: add U to the premises.

Other possibilities (closer to the intuitive notion of an explanation)

Forward chaining:

a1) We add ¬Q and we deduce:

7) T (3), (a1), (4), and MP

8) U (5), (7), MP

Other possibility:

7′) ¬R (3), (2), contrap

8′) ¬C (7′), (1), contrap

a2) We add ¬C ⇒ ¬Q (or Q ⇒ C) and (a1), we obtain U .

Backward chaining:

7′′) T (6), (5), abd

8′′) ¬Q ∧ ¬E (7), (4), abd

a3) We add ¬Q and we obtain U as above.

b) There are infinitely many solutions (redundant intermediate chains that can be
removed).

c) No: either the added premises are in contradiction with the existing premises,
in which case the reasoning is trivially correct, or we carry out the same proof, as we
did before the addition of the premises.

The key remark here is that a model of a set of formulas is a model of all the
formulas in the set.

408 Logic for Computer Science and Artificial Intelligence

Assume P1, P2, . . . , Pn |= C and:

(∗) P1, P2, . . . , Pn, Q � C % Q can be any formula, in particular, the “strange”
case where Q : ¬C (because it is impossible to evaluate the premises to T and
C to F).

(∗) means that there exists an interpretation I that is a model of {P1, P2, . . . , Pn,
Q} and a counter-model of C.

But a model of {P1, P2, . . . , Pn, Q}is also (by definition) a model of
{P1, P2, . . . , Pn}, and every model of {P1, P2, . . . , Pn} is a model of C; hence, (∗)
is impossible.

REMARK 12.4.– In the formal system (see definition 3.9) whose inference rules
are those above, it is possible to prove the ex falso quodlibet principle: “from a
contradiction we can deduce any conclusion” (see also exercise 3.26).

1) P ∧ ¬P premise

2) P (1), and (relim)

3) P ∨Q (2), or (intro)

4) ¬P (1), and (lelim)

5) Q (3), (4) disj. syl. �

EXERCISE 3.14.– only if)

Trivial. By definition:

A |= B means: every model of A is a model of B. This means that A ⇒ B cannot
be evaluated to F, i.e.:

|= A ⇒ B

if

|= A ⇒ B means that it is impossible to have interpretations that evaluate A to T
and B to F, in other words:

A |= B �

EXERCISE 3.15.–

a) Particular case of exercise 3.14.

b) H1 ∧H2 ∧ . . .∧ Hn |= C iff H1 ∧H2 ∧ . . .∧ Hn ∧ ¬C is unsatisfiable.

Solutions to the Exercises 409

only if)

All models of H1 ∧ H2 ∧ . . .∧ Hn are models of C (definition of |=), hence, are
counter-models of ¬C. If H1 ∧H2 ∧ . . .∧ Hn is evaluated to F, then so is H1 ∧H2

∧ . . .∧ Hn ∧ ¬C. If H1 ∧ H2 ∧ . . .∧ Hn is evaluated to T, then ¬C is evaluated to
F, and so is H1 ∧ H2 ∧ . . .∧ Hn ∧ ¬C. Conclusion: H1 ∧ H2 ∧ . . .∧ Hn ∧ ¬C is
unsatisfiable.

if)

It suffices to restrict ourselves to the interpretations of H1 ∧H2 ∧ . . .∧ Hn ∧ ¬C
that are models of H1 ∧H2 ∧ . . .∧ Hn.

If M is a model of H1 ∧ H2 ∧ . . .∧ Hn, then by definition of unsatisfiability,
E(¬C,M) = F, hence E(C,M) = T; therefore, H1 ∧H2 ∧ . . .∧ Hn |= C. �

EXERCISE 3.16.–

Answer: (b)

We prove so by reductio ad absurdum.

Assume A |= B, hence:

A |= A ∧B (definition of |=)

but A ∧B |= C (hypothesis)

thus (transitivity of |=)

A |= C contradiction, therefore:

A � B �

EXERCISE 3.17.–

True.

The reasonings will be of the following form.

Premises: S1 = {fk1 , fk2 , . . . , fkn−1}

Conclusion: ¬fl

where kj �= l for 1 ≤ j ≤ n− 1 and 1 ≤ l ≤ n.

410 Logic for Computer Science and Artificial Intelligence

Indeed, a S is minimally unsatisfiable, S1 � S is satisfiable and every model of
S1 must be a counter-model of fl (a S is unsatisfiable), i.e.:

S1 |= ¬fl. �

REMARK 12.5.– This property can be viewed as a generalization of the proof
technique that consists in proving the contrapositive.

If we have proved P1 ∧ P2 . . . ∧ Pn |= C

by proving:

{P1, P2, . . . Pn¬C} unsat,

then we have also proved that

¬C |= ¬(P1 ∧ P2 . . . ∧ Pn)

(if ¬C is T, then (P1∧P2 . . .∧Pn) must be F, otherwise the set would be satisfiable):

i.e.:

¬C |= ¬P1 ∨ ¬P2 . . . ∨ ¬Pn

or, in other words:

¬C ∧ P1 ∧ P2 . . . ∧ Pn−1 |= ¬Pn. �

EXERCISE 3.18.–

a) The ideas and remarks that will enable us to construct the interpolant are the
following:

1) Each line1 of the truth table of a formula F is an interpretation of F (the truth
table enumerates all the interpretations of F). We shall mention interpretation with
the same meaning as line in the truth table.

2) The interpretations of interpolant C to be constructed will, in general, be partial
interpretations of {A,B} (except in the case in which Propset(A) = Propset(B)).

3) Key remark. Given an interpretation J of C, does there exist an interpretation
I of {A,B}, that is an extension of J and such that:

1 We exclude the truth value assigned to the corresponding formula from the line.

Solutions to the Exercises 411

A �?
I B

As, by hypothesis, A |= B, i.e. every interpretation satisfying A also satisfies B,
such an interpretation I does not exist.

4) We want A |= C; hence, if line 1 of the truth table of A evaluates A to T and l
contains line lC of the truth table of C, then we will evaluate line lC of C to T.

5) We want C |= B; hence, if line l of the truth table of B evaluates B to F and
contains line lC of the truth table of C, then we will evaluate line lC of C to F.

6) There cannot be any conflict between steps (4) and (5) (see remark 3).

7) For the cases in which line l evaluates A to F (respectively, B to T), we can
arbitrarily choose to assign values T or F to line lC of C, which means that, in general,
there are several possible interpolants (2n, where n is the number of lines from which
we can choose).

8) Points (1)–(7) above are about the truth table of C. The method described in
exercise 3.2 enables us to construct the dnf (or cnf) of C.

(1)–(8) above give the algorithm to construct C and prove its correctness at the
same time.

b) Propset(A) = Propset(B) = Propset(C) = {A,B,C}

A B C

A︷ ︸︸ ︷
A ⇔ (B ∨C)

B︷ ︸︸ ︷
(A ∧ ¬B) ⇒ C C

T T T T T T
T T F T T T
T F T T T T
T F F F F F
F T T F T T or F (arbitrarily)
F T F F T T or F (arbitrarily)
F F T F T T or F (arbitrarily)
F F F T T T

By applying the method of exercise 3.2, we obtain the 8(=23) possible
interpolants:

412 Logic for Computer Science and Artificial Intelligence

C1 : (A ∧B ∧ C) ∨ (A ∧B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (¬A ∧ ¬B ∧ ¬C)

C2 : C1 ∨ (¬A ∧B ∧ C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧C)

C3 : C1 ∨ (¬A ∧B ∧ C) ∨ (¬A ∧B ∧ ¬C)

C4 : C1 ∨ (¬A ∧B ∧ C) ∨ (¬A ∧ ¬B ∧ C)

C5 : C1 ∨ (¬A ∧B ∧ C)

C6 : C1 ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C)

C7 : C1 ∨ (¬A ∧B ∧ ¬C)

C8 : C1 ∨ (¬A ∧ ¬B ∧C)

c) Propset(A) = {A,B,C}; Propset(B) = {B,C,D}; Propset(C) = {B,C}

A B C D ¬D
A︷ ︸︸ ︷

(¬A ∧ ¬B) ∧ (A ⇔ C)

B︷ ︸︸ ︷
(C ⇒ B) ∧ (¬D ∨ ¬C)

T T T T F F F
T T T F T F T
T T F T F F T
T T F F T F T
T F T T F F F
T F T F T F F
T F F T F F T
T F F F T F T
F T T T F F F
F T T F T F T
F T F T F F T
F T F F T F T
F F T T F F F
F F T F T F F
F F F T F T T
F F F F T T T

B C C1 C2
T T F F
T F T F
F T F F
F F T T

C1 : (B ∧ ¬C) ∨ (¬B ∧ ¬C) equiv ¬C

C2 : ¬B ∧ ¬C �

Solutions to the Exercises 413

EXERCISE 3.19.–

Tree 1

1) ¬((P ∧ (Q ⇒ (R ∨ S))) ⇒ (P ∨Q))

2) P ∧ (Q ⇒ (R ∨ S))

3) ¬(P ∨Q)

4) P

5) Q ⇒ (R ∨ S)

|
6) ¬P (3)

7) ¬Q (3)

8) × (6), (4)

Tree 2

1) ¬((P ∧ (Q ⇒ (R ∨ S))) ⇒ (P ∨Q))

2) P ∧ (Q ⇒ (R ∨ S))

3) ¬(P ∨Q)

4) P

5) Q ⇒ (R ∨ S)

�

414 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.20.–

a)

Correct reasoning

The }’s, the
√

’s, and the arrows correspond to the operations:

F ← (F \ {fi})
⋃

{f j
i } and

F ← (F \ {fi})

of the algorithm SEMANTIC TABLEAUX (PL).

Solutions to the Exercises 415

b)

Correct reasoning

c)

Incorrect reasoning, counter example: {¬H,¬M,¬W}

416 Logic for Computer Science and Artificial Intelligence

d)

Incorrect reasoning, counter examples: {¬A,¬B,C}, {¬B,C}, and {A,¬B,C}

Solutions to the Exercises 417

e)

Incorrect reasoning, counter examples: {P,¬Q,R, T } and {¬P,Q,¬S,¬T }

418 Logic for Computer Science and Artificial Intelligence

f)

Incorrect reasoning, counter examples: {P,Q,R,¬S}, {P,Q,R}, and
{P,Q,R, S}

Solutions to the Exercises 419

g)

Thus, the initial formula is valid. �

420 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.21.–

a)

The set of formulas is satisfiable, with models {¬P,R, S,¬Q} and
{Q,P,¬R,¬S}

b)

Although this is not necessary at all, sometimes, a preprocessing can enable us
to simplify the problem under consideration. We illustrate this by applying the purity
principle, i.e. the removal, in a set of clauses, of those clauses containing pure literals,
since such an operation preserves the (un)satisfiability of the set (see exercise 3.30).

We must thus transform S2 into an equivalent set of clauses.

1) ¬P
2) ¬R ⇒ W −→ R ∨W- - - - - Step 2: clause deleted, W pure

3′) Q ∨ T ∨ ¬P
3) Q ∨ (¬T ⇒ ¬(P ∨ U)) −→ 〈

3′′) Q ∨ T ∨ ¬U
4′) P ∨ U

Solutions to the Exercises 421

4) ¬P ⇒ (U ∧ ¬R) −→ 〈

4′′) P ∨¬R- - - - - Step 3: clause deleted, ¬R pure

5) ¬Q

6) ¬U

7) ¬T

8) ¬R ⇒ S −→ R ∨ S- - - - - Step 1: clause deleted, S pure

The set of formulas is unsatisfiable. �

EXERCISE 3.22.– We give two reasons.

1) If they were defined as functions:

– they would either be partial functions, for example:

MP:A B⇒C
⊥

– or we use a trick:

A B⇒C
A

2) We would like to have, for example:

P∧Q
P , but also:

P∧Q
Q

This inference rule is clearly not a function, as it gives two distinct values for the
same argument.

In general, it is impossible to consider inference rules as functions without any
problem arising. �

422 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.23.– We want to prove:

If Γ �S1 A ⇒ B, then Γ, A �S1 B

PROOF.– By definition, there exists a deduction of A ⇒ B starting from Γ:

Γ

...

A ⇒ B

if we add A to the hypotheses, we obtain B by MP on A and A ⇒ B, i.e.

Γ, A �S1 B. �

EXERCISE 3.24.–

a) MP is correct: every model of A and A ⇒ B is necessarily a model of B
(otherwise B would be F, by definition of ⇒).

We can easily verify that all the axiom schemas are tautologies (valid wffs).
Hence, by definition of a valid wff and by induction on the number of steps in the
proof, we conclude that every theorem of S1 is a valid wff.

b) Assume that there exists A ∈ L such that �S1 A and �S1 ¬ A.

As shown in (a) above, every theorem of S1 is a valid wff. The negation of a valid
wff is not a valid wff, hence it is not a theorem (contrapositive).

Therefore, such a wff A cannot exist.

c) Truth tables (semantic tableaux, the Davis and Putnam method, etc.) permit us
to decide whether a wff is valid or not. As we admitted that S1 is adequate, we have a
decision procedure for S1.

REMARK 12.6.– The soundness proved in (a) is not sufficient to prove (c). Indeed,
the former says: if not valid then not a theorem. But if adequacy (completeness) is
not guaranteed and the wff under consideration is valid, then we cannot be sure that
it is a theorem of S1 (it could be a valid wff that is not captured as a theorem by the
formal system). �

Solutions to the Exercises 423

EXERCISE 3.25.–

a)

1) (¬A ⇒ ¬A) ⇒ ((¬A ⇒ A) ⇒ A) (A3) B ← A

2) ¬A ⇒ ¬A Example 3.9, page 79, A ← ¬A

We can always use a theorem that was already proved. The justification is simple:
we copy its proof at the beginning of the proof that uses it. The proof thus obtained
respects the definition of a proof.

3) (¬A ⇒ A) ⇒ A (1), (2), and MP

b) We give two deductions, one of which uses the deduction (meta-) theorem
(abbreviated as DT).

i) Without using the DT

1) A ⇒ (B ⇒ C) hyp.

2) B hyp.

3) (A ⇒ B) ⇒ (A ⇒ C) (1), (A2), MP

4) B ⇒ (A⇒B) (A1) A ← B, B ← A

5) A ⇒ B (2), (4),MP

6) A ⇒ C (3), (5),MP

ii) Using the DT

1) A ⇒ (B ⇒ C) hyp.

2) B hyp.

3) A add hyp.

4) B ⇒ C (1), (3), MP

5) C (2), (4),MP

6) A ⇒ C (3), (5),DT

c)

1) A ⇒ B hyp.

2) B ⇒ C hyp.

3) A hyp.

4) B (1), (3), MP

5) C (2), (4),MP

424 Logic for Computer Science and Artificial Intelligence

d)

1) ¬B ⇒ ¬A hyp.

2) A hyp.

Warning: though tempting, the contrapositive cannot be used (it has not yet been
proved that it is a theorem of S1).

3) (¬B ⇒ ¬A) ⇒ ((¬B ⇒ A) ⇒ B) (A3)

4) (¬B ⇒ A) ⇒ B (1), (3), MP

5) A ⇒ (¬B ⇒ A) (A1), B ← ¬B
6) ¬B ⇒ A (2), (5),MP

7) B (4), (6),MP

e) We give two deductions, one of which uses the deduction (meta-)theorem
(abbreviated as DT).

i) Without using the DT

1) B ⇒ C hyp.

2) (B ⇒ C) ⇒ (A ⇒ (B ⇒ C)) (A1), A ← B ⇒ C,B ← A

3) A ⇒ (B ⇒ C) (1), (2), MP

4) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)) (A2)

5) (A ⇒ B) ⇒ (A ⇒ C) (3), (4), MP

6) A ⇒ B hyp.

7) A ⇒ C (5), (6),MP

ii) Using the DT

1) A add. hyp.

2) A ⇒ B hyp.

3) B ⇒ C hyp.

4) B (1), (2), MP

5) C (3), (4), MP

6) A ⇒ C (1), (5),DT

Solutions to the Exercises 425

f)

1) (¬A ⇒ ¬¬A) ⇒ ((¬A ⇒ ¬A) ⇒ A) (A3), B ← A, A ← ¬A
2) ¬A ⇒ ¬A Example 3.9, page 79, A ← ¬A
3) (¬A ⇒ ¬¬A) ⇒ A (1), (2), (b) above, B ← ¬A,C ← ¬A
4) ¬¬A ⇒ (¬A ⇒ ¬¬A) (A1), A ← ¬¬A, B ← ¬A
5) ¬¬A add. hyp.

6) ¬A ⇒ ¬¬A (4), (5), MP

7) A (3), (6), MP

8) ¬¬A ⇒ A (5), (7), DT

Other proof:

1) ¬¬A add.hyp.

2) ¬¬A ⇒ (¬A ⇒ ¬¬A) (A1), A ← ¬¬A, B ← ¬A
3) ¬A ⇒ ¬¬A (1), (2), MP

4) (¬A ⇒ ¬¬A) ⇒ ((¬A ⇒ ¬A) ⇒ A) (A3), (B) ← (A), (A) ← ¬(A)
5) (¬A ⇒ ¬A) ⇒ A (3), (4), MP

6) ¬A ⇒ ¬A Example 3.9, A ← ¬A
7) A (5), (6), MP

8) ¬¬A ⇒ A (1), (7), DT

Another one:

1) (¬A ⇒ ¬¬A) ⇒ ((¬A ⇒ ¬A) ⇒ A) (A3), B ← A, A ← ¬A
2) ¬A ⇒ ¬A Example 3.9, A ← ¬A
3) (¬A ⇒ ¬¬A) ⇒ A (1), (2), (b) above

4) ¬¬A ⇒ (¬A ⇒ ¬¬A) (A1), A ← ¬¬A, B ← ¬A
5) (¬¬A ⇒ A) (4), (3), (e)

g)

1) (¬¬¬A ⇒ ¬A) ⇒ ((¬¬¬A ⇒ A) ⇒ ¬¬A) (A3), B ← ¬¬A
2) ¬¬¬A ⇒ ¬A f), A ← ¬A
3) (¬¬¬A ⇒ A) ⇒ ¬¬A (1), (2),MP

4) A ⇒ (¬¬¬A ⇒ A) (A1), B ← ¬¬¬A
5) (A ⇒ ¬¬A) (4), (3), (e)

426 Logic for Computer Science and Artificial Intelligence

h)

1) A ⇒ B, B ⇒ C, A � C (c) above

2) A ⇒ B, B ⇒ C � A ⇒ C (1), DT

3) A ⇒ B � (B ⇒ C) ⇒ (A ⇒ C) (2),DT

4) � (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C)) (3), DT

Other deduction:

1) A ⇒ B add.hyp.

2) B ⇒ C add.hyp.

3) (B ⇒ C) ⇒ (A ⇒ (B ⇒ C)) (A1), A ← B ⇒ C, B ← A

4) A ⇒ (B ⇒ C) (2), (3), MP

5) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)) (A2)

6) (A ⇒ B) ⇒ (A ⇒ C) (4), (5), MP

7) A ⇒ C (1), (6), MP

8) A ⇒ B, B ⇒ C � A ⇒ C (1), (2), (7)

9) A ⇒ B � (B ⇒ C) ⇒ (A ⇒ C) (8), DT

10) � (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C)) (9), DT

i)

1) A ⇒ (B ⇒ C), B � A ⇒ C (b) above

2) A ⇒ (B ⇒ C) � B ⇒ (A ⇒ C) (1), DT

3) � (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C)) (2), DT �

EXERCISE 3.26.–

We must prove:

S1 is consistent w.r.t. negation if S1 is absolutely consistent.

only if

We prove the contrapositive. We assume that τ = L, i.e. that very wff is a
theorem. In particular:

�S1 A and �S1 ¬ A

hence, S1 is not consistent w.r.t. negation.

Solutions to the Exercises 427

if

We prove the contrapositive. We thus assume that there exists A ∈ L such that:

�S1 A and �S1 ¬ A

We first prove:

A, ¬ A �S1 B

1) A theorem assumed to be proved

2) ¬ A theorem assumed to be proved

3) A ⇒ (¬B ⇒ A) (A1), B ← ¬B, A ← A

4) ¬A ⇒ (¬B ⇒ ¬A) (A1), B ← ¬B, A ← ¬A
5) ¬B ⇒ A (1), (3), MP

6) ¬B ⇒ ¬A (2), (4), MP

7) (¬B ⇒ ¬A) ⇒ ((¬B ⇒ A) ⇒ B) (A3)

8) (¬B ⇒ A) ⇒ B (6), (7), MP

9) B (5), (8), MP

Hence, as B can be replaced by any wff, we conclude that every wff is a
theorem. �

EXERCISE 3.27.–

a)

1) Q ⇒ (¬P ∨Q) (A2)

2) Q ⇒ (P ⇒ Q) (1), (D1)

b)

1) (¬P ∨ ¬P) ⇒ ¬P (A1)

2) (P ⇒ ¬P) ⇒ ¬P (1), (D1)

c)

1) (¬P ∨ ¬Q) ⇒ (¬Q ∨ ¬P) (A3)

2) (P ⇒ ¬Q) ⇒ (Q ⇒ ¬P) (1), (D1)

428 Logic for Computer Science and Artificial Intelligence

d)

1) (Q ⇒ R) ⇒ ((¬P ∨Q) ⇒ (¬P ∨R)) (A4)

2) (Q ⇒ R) ⇒ ((P ⇒ Q) ⇒ (P ⇒ R)) (1), (D1)

e)

1) P ⇒ (P ∨ P) (A2)

f)

1) ((P ∨ P) ⇒ P) ⇒ ((P ⇒ (P ∨ P)) ⇒ (P ⇒ P)) (d), above :
Q ← P ∨ P ; R ← P

2) (P ∨ P) ⇒ P (A1)

3) (P ⇒ (P ∨ P)) ⇒ (P ⇒ P) (1), (2),MP

4) P ⇒ (P ∨ P) (e), above

5) P ⇒ P (3), (4),MP

g)

1) P ⇒ P (f), above

2) ¬P ∨ P (1), (D1)

3) (¬P ∨ P) ⇒ (P ∨ ¬P) (A3)

4) P ∨ ¬P (2), (3),MP

h)

1) ¬P ∨ ¬¬P (g), above : P ← ¬P
2) P ⇒ ¬¬P (1), (D1)

�

EXERCISE 3.28.–

a) Yes, by verifying that:

(B2) is the same axiom schema as (A1) (in S1);

(B4) is the same axiom schema as (A2) (in S1);

and by taking remark 3.24 into account.

Solutions to the Exercises 429

b)

1) (¬A ⇒ (A ⇒ ¬¬A)) ⇒ (((¬¬A ⇒ (A ⇒ ¬¬A)) ⇒ (A ⇒ ¬¬A))

B3, A ← ¬A,B ← A ⇒ ¬¬A

2) ¬A ⇒ (A ⇒ ¬¬A)

B1, B ← ¬¬A

3) (¬¬A ⇒ (A ⇒ ¬¬A)) ⇒ (A ⇒ ¬¬A)

(1), (2),MP

4) ¬¬A ⇒ (A ⇒ ¬¬A)

B2, B ← ¬¬A

5) A ⇒ ¬¬A

(3), (4),MP. �

EXERCISE 3.29.–

a) We will say that two formal systems with the same language (or with languages
that can be formally translated from one to the other) are equivalent iff they have the
same set of theorems.

b) Consider:

– the formal system Si :< L,R,A >;

– a subset of axioms X (X ⊆ A);

– the formal system Sj :< L,R,A \ X >.

X is independent iff �Sj x, for all x ∈ X .

For example, the formal system S′
1 :< L,R,A′ > (see (c) below), which differs

from S1 only in the set of axioms, is not independent.

c) A′ = {(A1), (A2), (A3), A ⇒ A}

(as �S1 A ⇒ A; see example 3.9)

d) (analogous to (b))

430 Logic for Computer Science and Artificial Intelligence

Consider:

– the formal system Si :< L,R,A >;

– a subset of inference rules Y (Y ⊆ R);

– the formal system Sj :< L,R \ Y,A >.

Y is independent iff there exists A ∈ L and �Si A, such that �Sj A.

e) Find (it is not guaranteed that this will succeed) a property P such that:

1) the elements of A \ X have property P ;

2) the rules of R preserve property P ;

3) the elements of X do not have property P .

REMARK 12.7.– This technique was used to prove the independence of the famous
“parallel postulate”, which led to non-Euclidean geometry.

Interpretations that are models of the other axioms of Euclidean geometry and
counter-models of the parallel postulate have been found. �

EXERCISE 3.30.–

(R-0)

Without loss of generality, we assume that S contains a unique tautological
clause T .

Let S1 = S \ {T }

S is unsatisfiable iff S1 is satisfiable.

if

We prove the contrapositive:

S satisfiable.

By definition, every subset of a satisfiable set is satisfiable; hence, S1 is satisfiable.

only if

We prove the contrapositive:

S1 is sat, with model, say, M .

As T is satisfied by every interpretation, it must be satisfied by M ; hence, S is sat.

Solutions to the Exercises 431

(R-1a) Trivial. No interpretation can make both L and Lc T.

(R-1b) (To simplify the notation, we assume there is only one unit clause {L} and
only one clause of the form {Lc} ∪ α. Of course, the reasoning can be repeated.

S1 = ((S \ {L}) \ ({Lc} ∪ α)) ∪ {α}

S unsat iff S1 unsat.

only if

We prove the contrapositive.

Assume S1 is sat, let M1 be a model of S1. Without loss of generality, we can
assume Lc /∈ M1 (otherwise, it can be removed from M1 without any consequence).
There exists K ∈ α such that K ∈ M1 (all the clauses in S1 must be evaluated to T).

M = {L} ∪M1 is a model of S. Therefore, S is sat.

if

We prove the contrapositive:

Assume S is sat, let M be a model of S. Necessarily, L ∈ M (and therefore
Lc /∈ M). There exists K ∈ α such that K ∈ M ; thus, S1 is sat.

(R2)

We assume without loss of generality that there is a unique pure literal:

L ∈ C ∈ S and L: pure

S1 = S \ {C}

S is unsat iff S1 is unsat.

only if

We prove the contrapositive.

Assume S1 is sat, let M1 be a model of S1, Lc /∈ M1 (as L is pure).

M1 ∪ {L} is a model of S, which is therefore sat.

if

432 Logic for Computer Science and Artificial Intelligence

We prove the contrapositive.

S sat and S1 � S. S1 cannot be unsat because every model of S is a model of all
the clauses in S. Thus, S1 is sat.

This rule is known as the purity principle.

(R3)

S1 = {C \ {L} | C ∈ S and Lc /∈ C}

S2 = {C \ {Lc} | C ∈ S and L /∈ C}

S unsat iff (S1 unsat and S2 unsat)

only if

We prove the contrapositive.

S1 sat or S2 sat.

Without loss of generality, we assume that S1 is sat (we do not consider the case
in which S2 is sat, as the proof is similar).

Let M1 be a model of S1. L /∈ M1 and there exists K ∈ M1, K ∈ C \ {L}.

M = M1 ∪ {Lc} is a model of S. Hence S is sat.

if

We assume without loss of generality that there is only one clause containing L
(say, the clause L ∨ α) and only one clause containing Lc (say Lc ∨ β).

We prove the contrapositive.

S is satisfiable, let M be a model of S. Assume L ∈ M ; hence, Lc /∈ M . As M
is a model of all the clauses in S, there exists a K ∈ β such that K ∈ M ; hence, S2

is sat, and S1 is sat or S2 is sat. Same reasoning if Lc ∈ M .

If L /∈ M and Lc /∈ M , there exists K1 ∈ M , K2 ∈ M such that K1 ∈ α,
K2 ∈ β. Hence S1 sat and S2 sat.

(R4)

L ∨ α ∈ S L ∨ α ∨ β ∈ S

Solutions to the Exercises 433

S1 = S \ {L ∨ α ∨ β}

S unsat iff S1 unsat

if

We prove the contrapositive.

S sat. As S1 � S, S1 is sat.

only if

We prove the contrapositive.

S1 sat, let M1 be a model of S1. Of course, M1 is a model of L ∨ α; hence
(definition of a clause), M1 is also a model of L ∨ α ∨ β. Therefore, S is sat. �

EXERCISE 3.31.– The answer is yes, as shown by the application of the algorithm
with the strategy below.

In example 3.13, we implicitly applied the strategy “find a model as soon as
possible”.

We now apply the strategy “try to find as many models as possible” (actually, in
this particular case, we find all of them).

434 Logic for Computer Science and Artificial Intelligence

We thus found the following six models:

M1 = {¬P,Q,¬R,¬S}

M2 = {¬P,¬Q,¬R,¬S}

M3 = {¬P,Q,R, S}

M4 = {¬P,Q,¬R,S}

M5 = {P,Q,¬R,S}

M6 = {P,Q,¬R,¬S}. �

EXERCISE 3.32.–

a) We take the following (arbitrary) order for the basic formulas:

P < Q < R < S < T

b)

The interpretation that we can give of the inference nodes is as follows:

The interpretations denoted by the two branches going through an inference node
falsify the clauses Ci : α ∨ L and Cj : β ∨ Lc (α and β: disjunctions of literals).
By definition of a clause, the interpretation denoted by the branch that finishes by an
inference node falsifies all the literals of α and all the literals of β. It therefore falsifies
the resolvent of Ci and Cj (see definition 3.15).

Solutions to the Exercises 435

c)

�

EXERCISE 3.33.–

�

436 Logic for Computer Science and Artificial Intelligence

EXERCISE 3.34.– We must prove:

If S is unsat, then S �R � (see section 3.7)

We give two proofs of this result.

PROOF 1.– We prove the result by induction on the number of positive literals in S.

i) n = 1 % if n = 0, then S is satisfiable.

Since S is unsatisfiable, S is necessarily of the form:

S = {L,Lc} hence, by applying the resolution rule once we obtain:

S �R �

ii) n > 1

The idea is to apply a transformation that preserves the unsatisfiability, and strictly
decreases the number of literals (to apply the induction hypothesis).

Assume S contains n+ 1 literals.

Choose a literal L ∈ C ∈ S that is not pure.

Consider the sets of clauses:

S1 = {C \ {L} | C ∈ S and Lc /∈ C}

S2 = {C \ {Lc} | C ∈ S and L /∈ C}

It was proved (see exercise 3.30) that:

S is unsat 1 iff S1 is unsat and S2 is unsat.

By the induction hypothesis, S1 �R � % S1 contains at most n literals.

There are two cases to consider (the second case itself leads to two cases):

a) the clauses C \ {L} do not occur in the refutation of S1.

The clauses that occur in the refutation are also in S, hence:

S �R �.

Solutions to the Exercises 437

b1) the clauses C \ {L} occur in the refutation of S1.

In this case, S �R L, as can be proved by generalizing the following example.

1) A ∨B

2) ¬A ∨B

3) A ∨ ¬B
4) ¬A ∨ ¬B
5) B (1, 1)− (2, 1)

6) ¬B (3, 1)− (4, 1)

7) � (5, 1)− (6, 1)

If we add a pure literal to the first clause:

1) A ∨B∨ L

2) ¬A ∨B

3) A ∨ ¬B
4) ¬A ∨ ¬B
5) B∨ L (1, 1)− (2, 1)

6) ¬B (3, 1)− (4, 1)

7) L (5, 1)− (6, 1)

b2) by repeating exactly the same reasoning for S2 with Lc instead of L, we
conclude that:

S �R Lc.

Now for S (containing n+ 1 literals) we have:

S �R L and S �R Lc

hence, by applying once the resolution rule, we obtain: S �R �.

PROOF 2.– We give another proof by using theorem 3.2, and the results of exercise
3.32 (b).

By theorem 3.2, if S is unsat then there exists a closed semantic tree T for S.

First note that in a closed semantic tree, there are always inference nodes,
otherwise all clauses would be positive (respectively, negative), and by applying the
purity principle (see exercise 3.30), we would obtain an empty set equivalent to S,
which would thus be satisfiable.

438 Logic for Computer Science and Artificial Intelligence

By eliminating all failure nodes from T , we obtain a closed tree T ′ (with strictly
less nodes than T), corresponding to the set of clauses:

S′ = {R(Ci, Cj)}
⋃

k S \ ({Ci} ∪ {Cj})︸ ︷︷ ︸
not descendant of inference node

; k :

number of inference nodes

We repeat the reasoning, but this time on S′.

As we are starting with a finite closed tree and at each step we obtain strictly
smaller closed trees, we necessarily obtain a finite tree with ¬L and L (of course
L denotes an arbitrary literal) as left and right branches, respectively, and the
corresponding inference node is �. �

EXERCISE 3.35.– We must show:

if S �R � then S �R+te �

te: tautological clauses elimination.

We first prove that if S is unsat then Rn(S) (n ≥ 1) (see the definition of operator
R (definition 3.16)) is unsat.

The proof is trivial: every superset of an unsat set is unsat.

As we have proved the completeness of resolution for refutation, it suffices to apply
rule R-0 of the Davis and Putnam method to Rn(S) (unsatisfiable set of clauses) for
every n ≥ 1. �

EXERCISE 3.36.– As resolution is complete for refutation, if S is unsat then � will be
derived after a finite number of steps.

Given a set of clauses S, the problem is to decide whether S is sat or unsat. As
S contains a finite number of literals and the application of Rc does not add any new
literal, after a finite number of steps, we either generate � or we do not generate any
new clause. In the latter case, we say we have saturated the set of clauses.

When the set of consequences of S has been saturated, the refutational
completeness of S enables us to conclude that S is satisfiable.

An application example of this decision procedure is the detection of the
satisfiability of the set of clauses (1), (2), (3) below:

Solutions to the Exercises 439

1) A ∨B

2) ¬A ∨B

3) ¬A ∨ ¬B
4) B (1, 1)− (2, 1)

5) B ∨ ¬B (1, 1)− (3, 1)

6) A ∨ ¬A (1, 2)− (3, 2)

7) ¬A (2, 2)− (3, 2)

�

EXERCISE 3.37.–

a)

1) P

2) ¬P ∨Q

3) ¬Q ∨R

4) ¬Q ∨ ¬R
5) Q (1, 1)− (2, 1)

6) R (5, 1)− (3, 1)

7) ¬R (5, 1)− (4, 1)

8) � (6, 1)− (7, 1)

b)

1) R

2) Q ∨ ¬R
3) S ∨ ¬R
4) P ∨ ¬Q ∨ ¬S
5) ¬P ∨ ¬Q ∨ ¬S
6) Q (1, 1)− (2, 2)

7) S (1, 1)− (3, 2)

8) P ∨ ¬S (6, 1)− (4, 2)

9) P (7, 1)− (8, 2)

10) ¬P ∨ ¬S (6, 1)− (5, 2)

11) ¬P (7, 1)− (10, 2)

12) � (9, 1)− (11, 1)

440 Logic for Computer Science and Artificial Intelligence

c)

1) P ∨Q

2) P ∨ ¬Q
3) R ∨Q

4) R ∨ ¬Q
5) P (1, 2)− (2, 2)

6) P ∨R (1, 2)− (4, 2)

7) R (3, 2)− (4, 2)

There is no way of obtaining different clauses; hence, S is satisfiable.

d)

We give the clausal translation of each formula:

1) ¬P
2) ¬R ⇒ W R ∨W

3) Q ∨ (¬T ⇒ ¬P ∧ ¬S)⇔

Q ∨ (T ∨ (¬P ∧ ¬S)) ⇔ Q ∨ ((T ∨ ¬P) ∧ (T ∨ ¬S)) ⇔
(Q ∨ T ∨ ¬P) ∧ (Q ∨ T ∨ ¬S)

4) ¬P ⇒ (S ∧ ¬R)

P ∨ (S ∧ ¬R) ⇔ (P ∨ S) ∧ (P ∨ ¬R)

5) ¬Q
6) ¬S
7) ¬T
8) ¬R ⇒ Y R ∨ Y

We prove that the set of clauses is unsatisfiable:

1) ¬P
2) R ∨W

3) Q ∨ T ∨ ¬P
4) Q ∨ T ∨ ¬S
5) P ∨ S

6) P ∨ ¬R

Solutions to the Exercises 441

7) ¬Q
8) ¬S
9) ¬T

10) R ∨ Y

11) P (5, 2)− (8, 1)

12) � (11, 1)− (1, 1)

e)

i) If we did not know the resolution rule, we would probably give a proof similar
to the following:

ii) By applying the resolution rule. We first translate into clausal form:

¬(A∧B)∨(C∧D) −→ (¬A∨¬B)∨(C∧D) −→ (¬A∨¬B∨C)∧(¬A∨¬B∨D)

E ∧ F ⇒ G −→ ¬(E ∧ F) ∨G −→ ¬E ∨ ¬F ∨G

G ∧D ⇒ H −→ ¬(G ∧D) ∨H −→ (¬G ∨ ¬D) ∨H −→ ¬G ∨ ¬D ∨H

By negating the conclusion, we obtain the set of clauses 1−9 below and a
refutation using resolution.

442 Logic for Computer Science and Artificial Intelligence

1) ¬A ∨ ¬B ∨ C

2) ¬A ∨ ¬B ∨D

3) ¬E ∨ ¬F ∨G

4) ¬G ∨ ¬D ∨H

5) A

6) B

7) F

8) E

9) ¬H
10) D (2), (5), (6)

11) G (3), (7), (8)

12) H (4), (10), (11)

13) � (9), (12)
�

REMARK 12.8.– In (10), (11), and (12) we used the hyperresolution rule (we
“compress” several resolution steps into only one). �

f) We must consider the set of clauses 1−8 below, obtain all possible resolvents
and reach saturation without generating �.

1) ¬S ∨ ¬M ∨ T

2) M ∨ S ∨ C

3) ¬S ∨M ∨ ¬A
4) C ∨ ¬T
5) A

6) ¬T ∨ ¬B
7) ¬C ∨ ¬B
8) B

�

EXERCISE 3.38.– Not necessarily, the set of clauses:

{A,¬A,B,¬B}

does not contain any pure literal, but contains proper subsets that are
unsatisfiable. �

Solutions to the Exercises 443

EXERCISE 3.39.–

a)

1) R

2) ¬R ∨Q

3) ¬R ∨ S

4) ¬P ∨ ¬Q ∨ ¬S
5) P ∨ ¬Q ∨ ¬S
6) ¬Q ∨ ¬S (4, 1)− (5, 1)

7) ¬R ∨ ¬S (6, 1)− (2, 2)

8) ¬S (7, 1)− (1, 1)

9) ¬R (8, 1)− (3, 2)

10) � (9, 1)− (1, 1)

b) No. Take for example the unsatisfiable set of clauses:

S = {A ∨B,¬A ∨B,A ∨ ¬B,¬A ∨ ¬B}

We cannot deduce � using an input strategy, because the set does not contain any
unit clause. Indeed, � can only be generated by two complementary unit clauses, one
of which must belong to S (this is required by the input strategy). �

EXERCISE 3.40.– No. Take the same unsatisfiable set as in exercise 3.39:

S = {A ∨B,¬A ∨B,A ∨ ¬B,¬A ∨ ¬B}

We cannot apply the resolution rule with a unit strategy. �

EXERCISE 3.41.– Every interpretation I of S can be represented (see example 3.4,
point 2.) by:

I = {L∗
1, L

∗
2, . . . , L

∗
n, }, where L∗

i = Li or L∗
i = Lc

i ; (1 ≤ i ≤ n) and Li ∈
Propset(S) (see definition 3.8).

As S contains all the clauses of length n that can be formed with n propositional
symbols, S contains a clause:

Cj : Lj1 ∨ Lj2 ∨ . . . Ljn where:

Ljk = (L∗
i)

c (1 ≤ k ≤ n)

444 Logic for Computer Science and Artificial Intelligence

In other words, if Li is in I then ¬Li is in Cj and if ¬Li is in I then Li is in Cj .

Cj is falsified by I; hence, S is falsified by I .

This reasoning holds for all interpretations of S, which is therefore
unsatisfiable. �

EXERCISE 3.42.–

a) Every interpretation I of S contains (at least) p literals L1, L2, . . . Lp with the
same sign.

By construction, S contains a clause C: Lc
1, Lc

2, . . . Lc
p, which will of course be

evaluated to F in I .

Therefore, S is unsatisfiable.

b) No.

Take as a counter example n = 2 (say {A,B}); hence, p = 2

S = {A ∨B, ¬A ∨ ¬B}, which is satisfiable (models {A, ¬B}, {¬A, B})

(We could have chosen n = 4, n = 6, . . .)

The explanation of the counter examples is that there could be, with the
new hypothesis on p, interpretations containing only q literals of the same
sign, with q < p. �

EXERCISE 3.43.–

a)

We consider the propositions Pij (1 ≤ i ≤ n, 1 ≤ j ≤ n− 1) meaning ϕ(i) = j.

We give the set of clauses specifying that such an injective function exists. This
set must therefore be unsatisfiable.

The clauses specifying all possible images of the elements of the domain of
cardinality n (Sn):

Pi1 ∨ Pi2 ∨ . . . ∨ Pi(n−1) (1 ≤ i ≤ n) (∗)

Solutions to the Exercises 445

The clauses specifying that the function is injective will be of the form:

¬(Pik ∧ Pjk), i.e.:

¬Pik ∨ ¬Pjk (1 ≤ i < j ≤ n, 1 ≤ k ≤ n− 1) (∗ ∗)

We will thus have:

n× (n− 1) propositional symbols

n clauses of length n− 1 (∗)

n× (n− 1)2 ÷ 2 clauses of length 2 (∗ ∗)

The general case:∧n
i=1

∨n−1
j=1 Pij ∧ ∧n−1

k=1;i�=j (¬Pik ∨ ¬Pjk)

b) S3 (clauses 1−9):

1) P11 ∨ P12

2) P21 ∨ P22

3) P31 ∨ P32

4) ¬P11 ∨ ¬P21

5) ¬P21 ∨ ¬P31

6) ¬P11 ∨ ¬P31

7) ¬P12 ∨ ¬P22

8) ¬P22 ∨ ¬P32

9) ¬P12 ∨ ¬P32

10) P12 ∨ ¬P21 (1, 1)− (4, 1)

11) ¬P21 ∨ ¬P32 (10, 1)− (9, 1)

12) P22 ∨ ¬P32 (11, 1)− (2, 1)

13) ¬P32 (12, 1)− (8, 1)

14) P31 (13, 1)− (3, 2)

...

REMARK 12.9.– It is possible to prove that the minimal number of clauses necessary
to refute the set of clauses specifying the pigeonhole Sn is:

(n− 1)× (n+ 2)× 2(n−3)

446 Logic for Computer Science and Artificial Intelligence

For S3, the shortest refutation then contains 2× 5× 1 = 10 clauses.

The pigeonhole was used to prove that the resolution method is exponential, i.e.
that there exists at least a set of clauses for which the shortest refutation is exponential
in the number of clauses. �

REMARK 12.10.– We sometimes specify the pigeonhole problem by translating: “If
we define a function from n+ 1 objects onto n objects then there exists (at least) two
objects of the domain with the same image”, which translates into the tautological
schema:∧n+1

i=1

∨n
j=1 Pij ⇒

∨n
k=1

∨n+1
i=1

∨n+1
j=i+1(Pik ∧ Pjk) �

EXERCISE 3.44.–

No. We give two proofs of this result.

a)

As all clauses are of the form:∨
i Pi ∨

∨
j Nj (1 ≤ i, 1 ≤ j)

with:

Pi: positive literal;

Nj : negative literal;

the interpretations I = {Pi} and J = {Nj} are models of the set of clauses that can
therefore not be unsatisfiable.

b)

As the resolution is complete for refutation, we can assume without loss of
generality that we are trying to detect the unsatisfiability of the set of clauses using the
resolution rule.

The set does not contain any unit clause. Indeed, as a unit clause contains only one
literal and as a literal is either positive or negative, if the set contained a unit clause,
the hypotheses would be violated.

Thus, all clauses are of the form:

¬A1 ∨ . . . ∨ ¬Am ∨B1 ∨ . . . ∨Bn (m ≥ 1, n ≥ 1)

Solutions to the Exercises 447

Without loss of generality, we reason on clauses of length 2. The application of
the resolution rule to

¬L∨P (if L and P are the same literal, then the clause can be eliminated)

L ∨ ¬Q

produces a clause of the form:

P ∨ ¬Q

Therefore, we can never obtain the complementary unit clauses that are necessary
to obtain �.

The required corollary is trivial to obtain. The question is whether a set of clauses
containing a positive clause (respectively, negative clause) but no negative clause
(respectively, positive clause) can be unsatisfiable. The answer is no. In the first case,
the interpretation

I = {Pi}

is a model. In the second case, the interpretation

J = {Nj}

is a model.

Hence the conclusion. �

EXERCISE 3.45.– We use the propositional symbol:

P j
i : country i is colored with color j.

Each country is colored with exactly one color:

for 1 ≤ i ≤ N : (P 1
i ∧ ¬P 2

i ∧ ¬P 3
i) ∨ (P 2

i ∧ ¬P 1
i ∧ ¬P 3

i) ∨ (P 3
i ∧ ¬P 1

i ∧ ¬P 2
i)

By transformation into clausal form (simplifying the clauses containing tautologies
and applying the subsumption rule), we obtain the equivalent specification:

(Sch1) for 1 ≤ i ≤ N : (P 1
i ∨ P 2

i ∨ P 3
i) ∧ (¬P 1

i ∨ ¬P 2
i) ∧ (¬P 1

i ∨ ¬P 3
i) ∧

(¬P 2
i ∨ ¬P 3

i)

(Sch1) could also have been obtained by translating: “country i must be colored
with a color (first conjunct) and we cannot color it with more than one color (three
other conjuncts)”.

448 Logic for Computer Science and Artificial Intelligence

The complexity of the specification of these clauses is less than 3×N , or in other
words, O(N).

Two neighboring countries cannot be colored the same way:

(Sch2) for all neighboring countries i, j: ¬((P 1
i ∧P 1

j)∨ (P 2
i ∧P 2

j)∨ (P 3
i ∧P 3

j))

Every country has at most N − 1 neighbors, hence there are less than N2 clauses
similar to the clause above. Hence, the complexity of the specification of this second
part is O(N2).

The global complexity is thus O(N2). �

REMARK 12.11.– In the coloring problem of example 9.19, the solution was obtained
using a specification with constraints.

We could apply the formula schemata (Sch1) and (Sch2) above to specify the
same map and the method of semantic tableaux (see section 3.6) to find all the models
(i.e. the solutions to the problem). Of course, the solutions must be the same. It could
be interesting to compare both approaches (one numerical, the other logical). �

EXERCISE 3.46.–

a)

We assume that the models are represented by the set of propositional symbols that
are evaluated to T in the models (form 3 in example 3.4).

Of course, the theorem does not depend on the adopted representation of models.

We note:

H = {C1, C2, . . . , Cn}

Mod(H): the set of models of H

N ⊆ Mod(H) (N �= ∅)

M∩ = ∩Mk,Mk ∈ N

PROOF.– To derive a contradiction, we assume:

�M∩ H , hence, for at least one clause Cj ∈ H :

�M∩ Cj

Solutions to the Exercises 449

There are two cases to consider (depending on the different forms of Horn clauses,
see definition 3.21).

i) Cj : A∨¬B1 ∨¬B2 ∨ . . .∨¬Bm; m ≥ 0 (m = 0 corresponds to a unit positive
clause)

To evaluate a clause to F, it is necessary to evaluate all of its literals to F (see
definition 3.14), i.e.:

A /∈ M∩ and B1, B2, . . . , Bm ∈ M∩

hence, by definition of an intersection, there exists Mk ∈ N such that:

A /∈ Mk and B1, B2, . . . , Bm ∈ Mk

but then Mk is not a model of H (as it falsifies one of its clauses: Cj). Contradiction.

ii) Cj : ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bm; m > 0

To evaluate Cj to F:

B1, B2, . . . , Bm ∈ M∩

hence, by definition of an intersection, for all Mk ∈ N :

B1, B2, . . . , Bm ∈ Mk

but then the Mk’s are not models of H (as they falsify one of its clauses: Cj).
Contradiction.

b) No. Take H = {A ∨B}

Mod(H) = {{A}, {B}, {A ∨B}}

and N = {{A}, {B}}

then M∩ = ∅, which is not a model of H . �

EXERCISE 4.1.–

a)

Γ0 = {f(x, g(x, y))
.
= f(g(y, z), g(g(h(u), y), h(u)))}

450 Logic for Computer Science and Artificial Intelligence

R-4 on Γ0 = yields:

Γ1 = {x .
= g(y, z) , g(x, y)

.
= g(g(h(u), y), h(u))}

R-4 on Γ1 = yields:

Γ2 = {x .
= g(y, z) , x

.
= g(h(u), y) , y

.
= h(u)}

R-3 on Γ2 = yields:

Γ3 = {x .
= g(y, z) , g(y, z)

.
= g(h(u), y) , y

.
= h(u)}

R-4 on Γ3 = yields:

Γ4 = {x .
= g(y, z) , y

.
= h(u) , z

.
= y}

R-5 on Γ4 = yields:

Γ5 = {x .
= g(h(u), h(u)) , y

.
= h(u) , z

.
= h(u)}

There are no rules that can be applied, we halt.

Solution: σ = {x ← g(h(u),h(u)), y ← h(u), z ← h(u)}

b)

f(x, f(u, x))
.
= f(f(y, a), f(z, f(b, z)))

1) x
.
= f(y, a) R− 4

2) u
.
= z R− 4 two times

3) x
.
= f(b, z) R− 4 two times

4) f(y, a)
.
= f(b, z) (1), (3), R− 3

5) y
.
= b (4), R− 4

6) z
.
= a (4), R− 4

7) u
.
= a (2), (6), R− 5

Solution: σ = {x ← f(b, a), y ← b, u ← a, z ← a}

c)

θ σ σ ◦ θ(θσ)
x �→ a x �→ b x �→ a

y �→ f(z) y �→ y y �→ f(c)

Solutions to the Exercises 451

z �→ x z �→ c z �→ b

u �→ u u �→ d u �→ d

v �→ v v �→ v v �→ v

w �→ w w �→ w w �→ w

...
...

...

σ ◦ θ = {x ← a, y ← f(c), z ← b, u ← d}

d)

Yes, it is always necessary. Consider the equation:

f(x, g(x))
.
= f(h(y), y)

Clearly, V ar(f(x, g(x))) ∩ V ar(f(h(y), y)) = ∅

If we do not apply the cycle rule, we have:

x
.
= h(y)

y
.
= g(x)

i.e.:

x = h(g(x))

which is an infinite term.

A sufficient condition to be able to deal without the cycle rule is:

V ar(t1)∩V ar(t2) = ∅ and (t1 or t2) linear (a term t is linear iff all of its variables
occurs at most once in t). �

EXERCISE 4.2.– The possibilities of identification of the (sub)formulas corresponding
to A, B, C in CD are:

1)

e(X︸︷︷︸
A

, e(X, e(Y, Y))︸ ︷︷ ︸
B

)

e(Z,Z)︸ ︷︷ ︸
C

452 Logic for Computer Science and Artificial Intelligence

2)

e(X︸︷︷︸
B

, e(X, e(Y, Y))︸ ︷︷ ︸
A

)

e(Z,Z)︸ ︷︷ ︸
C

3)

e(X, e(X, e(Y, Y)))︸ ︷︷ ︸
C

e(Z︸︷︷︸
A

, Z︸︷︷︸
B

)

4)

e(X, e(X, e(Y, Y)))︸ ︷︷ ︸
C

e(Z︸︷︷︸
B

, Z︸︷︷︸
A

)

There remains to compute three mgus and three direct consequences in the case in
which the mgus exist, cases (3) and (4) are of course identical.

σ = {X ← e(Z,Z)}

σB = e(e(Z,Z), e(Y, Y))

σ = {X ← e(Y, Y)}

σB = e(Y, Y)

σ = {Z ← e(X, e(X, e(Y, Y)))}

σB = e(X, e(X, e(Y, Y)))

We note that the only useful direct consequence is the first consequence (the others
are wffs that coincide with the premises). �

Solutions to the Exercises 453

EXERCISE 4.4.–

– To be able to compare the rules and verify what is asked, we need to choose a
same language to represent the three rules. We choose the language of clauses.

– To be able to apply the UNIFICATION algorithm (as well as the modified
UNIFICATION), we consider connectives as functional symbols.

– Terms are formed from functional symbols of fixed arities ∨(2) and ¬(1), which
explains why we use ε, which ordinarily denotes the empty string of symbols (i.e. the
disjunction without any disjunct) in the terms representing the inference rules.

– this is a matching problem; hence, we use for R symbols that ordinarily denote
variables.

– A, B, X denote literals; ε, A, B, X , Y denote clauses.

MP : concl (and (∨(A, ε), ∨(¬A,B)), B)

MT : concl (and (∨(¬B, ε), ∨(¬A, B)), ¬A)

R: concl (and (∨(X,X), ∨(¬X,Y)), ∨(X ,Y))

The solution of equation:

concl (and (∨(A, ε), ∨(¬A,B)), B)
.
= concl (and (∨(X,X), ∨(¬X,Y)), ∨(X ,Y))

found by UNIFICATION is:

σR−MP = {X ← A, X ← ε, Y ← B}

The solution of equation:

concl (and (∨(¬B, ε), ∨(¬A, B)), A)
.
= concl (and (∨(X,X), ∨(¬X,Y)),

∨(X ,Y))

found by modified UNIFICATION is:

σR−MT = {X ← B, X ← A, Y ← ε} �

EXERCISE 5.1.–

a)

D = N

a �→ 0

f(x) �→ succ(x) % succ(x): the successor of x (i.e. x+ 1)

454 Logic for Computer Science and Artificial Intelligence

g(x, y) �→ x+ y

P (x, y) �→ x > y

b)

Model:

D = Z

a �→ 0

f(x, y) �→ x− y

P (x, y) �→ x > y

Counter-model:

Only change

a �→ −5

c)

D = N

f(x, y) �→ x+ y

P (x, y) �→ x > y

d)

D = N

f(x, y) �→ x× y

P (x, y) �→ x ≥ y % y = 0

e)

D = N

a �→ 0

f(x, y) �→ x+ y

Solutions to the Exercises 455

P (x, y) �→ x = y

f)

D = N

P (x, y) �→ x < y

g)

Model:

D = Q

P (x, y) �→ x < y

Q(x, y) �→ x = y

Counter-model:

Change D = N

h) No.

Take, for example:

D = N

P (x) �→ x is even

Q(x) �→ x is odd.

i)

P (x, y) �→ x = y �

REMARK 12.12.– One characteristic of the equality relation is that it can be applied
to (and have a meaning in) any domain of discourse. �

j)

j1)

D = R

456 Logic for Computer Science and Artificial Intelligence

P (x, y) �→ x and y have the same sign

j2)

D = {1, 2}

P (x, y) �→ x = y

j3)

Counter-model with:

D = N

P (x, y) �→ x = y

(take, for example, x = 3, y = 4 and z = 5)

k)

k1)

This formula does not have any finite model. It is a total, transitive and irreflexive
relation. See also example 9.33.

We prove this by reductio ad absurdum. Assume it admits a finite model of
domain:

D = {a1, a2, . . . , an} n ∈ N

P �→ P

As P is total, for any ai ∈ D :

P(ai, aj) and ai �= aj (P is irreflexive)

also,

P(aj , ak) and aj �= ak and P(ai, ak) (P is transitive)

also,

P(ak, al) and ak �= al and P(ai, al) and P(aj , al)

. . .

Solutions to the Exercises 457

but as D is finite (and of cardinality n), after at most n − 1 steps, we must produce
(by transitivity) P(aq, ar) with q = r (because aq is related to one of the ais in D,
which will be reached sooner or later).

This is contradictory because P is irreflexive.

Therefore, this formula has no finite model.

k2)

D = R

P (x, y) �→ x < y

k3)

D = N

P (x, y) �→ x < y

l)

We can give infinitely many models for this formula by choosing:

D �= ∅

E(x, y) �→ x = y

A(x, y) �→ x and y are in relation A.

For relation A, we choose any relation such that each element is in relation with
exactly two other elements.

For example:

D = {a, b, c, d}

AM = {(a, b), (a, c), (b, c), (b, d), (c, b), (c, d), (d, b), (d, c)}

458 Logic for Computer Science and Artificial Intelligence

Which can be represented by the following graph:

a

b c

d

We obtain a counter-model by adding at least a couple (an edge) to the relation (to
the graph representing the relation), for example:

AM = {(a, b), (a, c), (a,d), (b, c), (b, d), (c, b), (c, d), (d, b), (d, c)}

a

d

b c

m)

m1)

D = N

f �→ f

with

f(2× x) = x

f(2× x+ 1) = x

Solutions to the Exercises 459

meaning that for each x, the corresponding y and z are y = 2× x and z = 2× x+ 1

The values of y and z can of course be interchanged.

m2)

This formula has no finite model. We assume a finite domain exists, with domain
of discourse:

D = {a1, a2, . . . , an} n ∈ N

and derive a contradiction. By definition of a model, for all k ∈ D there exists
i, j, i �= j such that:

f(ai) = k and f(aj) = k

Since f is not injective and D is finite:

range (f) � domain (f)

To satisfy the formula (see definition 5.6), all elements of:

domain (f) \ range (f) must have antecedents in D = domain (f), but these
potential antecedents already have values in the range (f).

It is impossible (definition of a function) to assign other values to them. The finite
model hypothesis leads to a contradiction.

Therefore, this formula does not have any finite model.

A way of visualizing this reasoning is to draw the graph of function f. The
elements marked with � correspond to those that cannot be reached in a finite domain
of discourse.

a1

a2

a3

an

a4

a1

a2

a3

an

a4

.....

460 Logic for Computer Science and Artificial Intelligence

n) No.

∀x∀y((f(x) = f(y)) ⇒ (x = y))︸ ︷︷ ︸
f injective

∧∃x∀yf(y) �= x︸ ︷︷ ︸
f not onto

See example 9.31, the definition of a finite set:

The set E is finite iff all injective functions E −→ E are also onto.

See also example 9.32.

o)

Consider the interpretation I:

D = {0, a}

s �→ s

s(0) = 0

s(a) = a

+ �→ �

∀u∀v.u � v = v

= �→ = % = has the same meaning as in mathematics.

We verify that I is a model of (1) and (2) and a counter-model of (3):

1)

0�0 = 0 T 0�a = a a = a T

2)

s(0)�0 = s(0�0)

0 = s(0)

0 = 0 T

s(0)�a = s(0�a)

0�a = s(a)

Solutions to the Exercises 461

a = a T

s(a)�0 = s(a�0)

a�0 = s(0)

0 = 0 T

s(a)�a = s(a�a)

a�a = s(a�a)

a = s(a)

a = a T

3)

a�0 = a

0 = a F

p)

D = N

a �→ 0

s �→ succ

p �→ pred

f �→ + �

EXERCISE 5.2.– We use the same idea as in example 5.13, i.e. we consider a formula
of the form A ⇒ ∀xP (x) and we focus on the case in which n ≥ 2. The problem is
thus to find an adequate wff A.

There exist sets of arbitrary finite cardinalities (think for example of the finite
subsets of N). To specify this, we must say that:

1) there exist n objects;

2) these objects are all different (so that the set is indeed of cardinality n).

462 Logic for Computer Science and Artificial Intelligence

1) translates into: ∃x1∃x2...∃xn.P (x1) ∧ P (x2) ∧ ... ∧ P (xn)

Meaning that there are n objects with some property P ; this is the usual method
of defining sets.

2) To specify that they are different, it suffices to state that if an object xi has a
property, then another object xj (i �= j) does not have it. Thus, it cannot be the same
object.

The only remaining problem is how to choose (name) these properties. If we
chooseP (the same as the one used to define the set), the wff A would be contradictory
and the implication A ⇒ ∀xP (x) would be trivially T; similarly, if we choose only
one property distinct from P (simple to verify with n = 2 and n = 3).

The solution is simple: it suffices to choose distinct properties, i.e.:

A : ∃x1∃x2...∃xn.P (x1) ∧ P (x2) ∧ ... ∧ P (xn)
∧

Q1(x1) ⇔ ¬Q1(x2) ∧

Q2(x1) ⇔ ¬Q2(x3) ∧

...

Qn(x1) ⇔ ¬Qn(xn) ∧

Qn+1(x2) ⇔ ¬Qn+1(x3) ∧

...

QN (xn−1) ⇔ ¬QN (xn)

with N = n×(n−1)
2 (i.e. all possible combinations of two objects among n).

There remains to prove (by induction) that the proposed formula is n-valid for all
n ∈ N (n ≥ 2).

– n = 2. It is very simple to verify (for example, using the method of semantic
tableaux) that the formula [∃x1∃x2.P (x1) ∧ P (x2) ∧ Q(x1) ⇔ Q(x2)] ⇒
[∀xP (x)] is n-valid (i.e. 2-valid).

– n = N + 1

We must add ∃P (xn+1) together with the n (i.e. (n+1)×n
2 − n×(n−1)

2) formulas:

Solutions to the Exercises 463

QN+1(x1) ⇔ ¬QN+1(xn+1)

QN+2(x2) ⇔ ¬QN+2(xn+1)

...

QN+n(xn) ⇔ ¬QN+n(xn+1)

In branch (1) of the tree, there would be ¬P (x0) (i.e. ¬∀xP (x) → ∃x¬P (x)

→ ¬P (x0)(x ← x0)) together with P (x1), P (x2), ..., P (xn+1), i.e. n + 2
potential constants. To work in universes of cardinality n+ 1 and using the induction
hypothesis, we shall let xi = xn+1 (1 ≤ i ≤ n). The branches of depth N + i
(1 ≤ i ≤ n) will all contain either QN+i(xi) and ¬QN+i(xi) or ¬QN+i(xi) and
QN+i(xi) (of course, this is done under the assumption, which does not incur any loss
of generality, that the tree was developed in increasing order of the variable indices)
and whatever the chosen instantiation, will all be closed.

The formulas for (unbounded) arbitrary cardinalities can be obtained using the
following schema:∧n≥2

i=1 P (ai)
∧n−1

j=1

∧n
k=2;k>j(Ql(aj) ⇔ ¬Ql(ak))

thus using:

N = n×(n−1)
2

unary predicates Ql

with:

l = (j − i) + n× (i− 1)− (i × (i− 1))÷ 2. �

464 Logic for Computer Science and Artificial Intelligence

EXERCISE 5.3.–

a)

b)

Solutions to the Exercises 465

c)

d)

466 Logic for Computer Science and Artificial Intelligence

e)

The method continues with P (c) ∧ Q(c), P (d) ∧ Q(d), . . . the tree will not be
closed (this will not be detected by the method). �

REMARK 12.13.– If we had not renamed the variables, i.e. if instead of (3) we had
written ∃y¬P (y) ∧ ∃y¬Q(y) then we could have “proved the validity” of the given
formula. �

Solutions to the Exercises 467

f)

g)

468 Logic for Computer Science and Artificial Intelligence

h)

REMARK 12.14.– The replacement y ← d that was used to obtain formula 13
is correct as constant d was not used to replace any other existentially quantified
variable. �

i)

REMARK 12.15.– Here we used the fact that the semantics of FOL requires that the
functions assigned to the functional symbols be total functions. Indeed, otherwise, we
would not be able to replace variables by (for example) f(a). Furthermore, if (for
example) f(a) is not defined then Q(f(a)) and ¬Q(f(a)) would not be contradictory
(⊥ and ¬⊥ is not contradictory). �

Solutions to the Exercises 469

j) (See also section 8.3.)

By examining the tree, we notice that we could close the tree by adding the formula
∀xI(x).

or ∀x(D(x) ⇒ I(x))

470 Logic for Computer Science and Artificial Intelligence

k1) To verify the validity of the formula, we negate it.

k2) To try to construct a model of the formula, we do not negate it.

Solutions to the Exercises 471

We can extract the following models from the finite open branches:

{Q(c)}� [] ⇒ [⇒ T]

{¬P (b)}� [] ⇒ [F ⇒]

We can extract the following model from the infinite branch:

{P (a),¬Q(a)} � [T⇒ F] ⇒ []

l)

�

472 Logic for Computer Science and Artificial Intelligence

EXERCISE 5.4.– The tableau corresponding to the given reasoning:

It is clear that if:

– the cardinality of the domain of discourse is 1, i.e. a = b = c, then we obtain a
closed tree (P (a), ¬P (c));

– similarly if the cardinality of the domain of discourse is 2, i.e. a = b
(S(b),¬S(a)) or a = c (P (a), ¬P (c)) or b = c (R(b),¬R(c));

However, if the cardinality of the domain of discourse is 3, i.e. a �= b and
a �= c and b �= c, we obtain the following model from the set of formulas
(1), (2), (3), (4)′′.:

M = {P (a), Q(a), R(b), S(b),¬P (c),¬R(c),¬S(a)}

(P (b), Q(b), Q(c), R(a) can belong to M or not)

It is very simple to verify that this is a counter example of the reasoning on a
domain of discourse of cardinality 3. By construction, M is a model of the premises.
About the conclusion:

- if x = a, then in M we have S(a): F and Q(a): T ;

- if x = b, then we have M S(b): T and Q(b): F ;

hence, in all cases, the conclusion is evaluated to F. �

Solutions to the Exercises 473

EXERCISE 5.5.–

1) ∀x∃y(P (x) ⇒ Q(y)) premise
2) ¬[∃v∀u(P (u) ⇒ Q(v))] neg. conclusion and var. ren.

3) ∀v∃u¬(P (u) ⇒ Q(v)) (2)

4) ∃u¬(P (u) ⇒ Q(V)) (3), v −→ V

5) ¬(P (f(V)) ⇒ Q(V)) (4), Skolemization

6) P (f(V)) (5)

7) ¬Q(V) (5)

8) ∃y(P (X) ⇒ Q(y)) (1), x −→ X

9) P (X) ⇒ Q(g(X)) (7), Skolemization

10) ¬P (X) 9. 11) Q(g(X)) 9.

× (6.-10.) {X ← f(V)} (7.-11.) : {V ← g(f(V))}

6′) P (f(V1)) (5), V −→ V1

7′) ¬Q(V1) (5), V −→ V1

× (11.-7′.) {V1 ← g(f(V))} �

474 Logic for Computer Science and Artificial Intelligence

EXERCISE 5.6.–

% P (f0(a)) = P (a) ; Q(f0(a)) = Q(a)

MH1 = {Q(a), P (fn(a))} n ∈ N % n = 0, 1, 2, . . .

i.e.:

P (a) �→ T, Q(a) �→ T, P (f(a)) �→ T, Q(f(a)) �→ F, P (f2(a)) �→ T,
Q(f2(a)) �→ F, P (f3(a)) �→ T, Q(f3(a)) �→ F, . . .

MH2 = {P (fn(a)), Q(fn(a))} n = 2× i; i ∈ N % n = 0, 2, 4, . . .

i.e.:

P (a) �→ T, Q(a) �→ T, P (f(a)) �→ F, Q(f(a)) �→ F, P (f2(a)) �→ T,
Q(f2(a)) �→ T, P (f3(a)) �→ F, Q(f3(a)) �→ F, . . .

MH3 = {P (a), Q(a), P (fn(a)), Q(fn(a))}; n = 2 × i + 1 i ∈ N %
n = 1, 3, 5, . . .

i.e.:

P (a) �→ T, Q(a) �→ T, P (f(a)) �→ T, Q(f(a)) �→ T, P (f2(a)) �→ F,
Q(f2(a)) �→ F, P (f3(a)) �→ T, Q(f3(a)) �→ T, . . .

Note that M = MH1 ∩MH2 ∩MH3 = {P (a), Q(a)} is also a model of S,
as S is a set of Horn clauses (see exercise 3.46). �

EXERCISE 5.7.– We are here in the case of example 5.16, wherein we had to apply the
method of semantic tableaux to what we called “generic formulae”.

Without loss of generality and for the sake of clarity of the proof, we write the
binary resolution rule under the form:

L(t1, . . . , tn)∨Q1(. . .)∨ . . .∨Qm(. . .) Lc(t′1, . . . , t′n)∨R1(. . .)∨ . . .∨Rp(. . .)

σ[Q1(. . .) ∨ . . . ∨Qm(. . .) ∨R1(. . .) ∨ . . . ∨Rp(. . .)]

To prove that the resolvent is a logical consequence of the parent clauses, we
construct the tableau below.

Solutions to the Exercises 475

∀x1 . . . ∀xk.L(t1, . . . , tn) ∨Q1(. . .) ∨ . . . ∨Qm(. . .)
∀y1 . . . ∀yl.Lc(t′1, . . . , t

′
n) ∨R1(. . .) ∨ . . . ∨Rp(. . .)

¬σ[Q1(. . .) ∨ . . . ∨Qm(. . .) ∨R1(. . .) ∨ . . . ∨Rp(. . .)]
√

↓
¬γ ◦ σQ1(. . .)

...
¬γ ◦ σQm(. . .)
¬γ ◦ σR1(. . .)

...
¬γ ◦ σRp(. . .)

It should be clear that we transformed the disjunctions of literals into binary trees
(which is required by our formalization of semantic tableaux) and that:

V ar(L(t1, . . . , tn) ∨Q1(. . .) ∨ . . . ∨Qm(. . .)) = {x1, . . . , xk}

V ar(Lc(t′1, . . . , t
′
n) ∨R1(. . .) ∨ . . . ∨Rp(. . .)) = {y1, . . . , yl}

The use of substitution γ ◦ σ (instead of simply σ) can be explained by the fact
that possibly, xi ← yj ∈ σ for i ∈ [1, k], j ∈ [1, l] (or yj ← xi). In this case
xi ← yj ∈ γ.

Similarly for the xi, yj /∈ dom(σ) (xi, yj are variables of the parent clauses) xi ←
a ∈ γ, yj ← a ∈ γ (instead of a, any other closed term could be used). γ, which

476 Logic for Computer Science and Artificial Intelligence

can also take into account the possible renamings of the variables of the resolvent,
is thus used exclusively to close branches because of contradictions between closed
literals (i.e. containing only closed terms), thus ensuring that the rules of the method
of semantic tableaux are applied to formulas that are propositional (up to the syntax).

γ ◦ σRi(. . .) (1 ≤ i ≤ p) and:

γ ◦ σQj(. . .) (1 ≤ j ≤ m)

These are constant instances corresponding to the literals of the parent clauses
whose variables are quantified universally (and as usual we chose the instances to be
able to close the branches). �

EXERCISE 5.8.– First we must transform the premises and the negation of the
conclusion into clausal form (the labels on −→ refer to the rules used in the proof
of theorem 5.3).

∃x[P (x) ∧ ∀y(R(y) ⇒ S(x, y))]
3′−→ ∃x[∀y(P (x) ∧ (R(y) ⇒ S(x, y)))]

Skol.−→
∀y(P (a) ∧ (R(y) ⇒ S(a, y)))

3′−→ P (a) ∧ ∀y(R(y) ⇒ S(a, y)) −→ P (a) ∧
∀y(¬R(y) ∨ S(a, y)) % i.e. two clauses

∀x[P (x) ⇒ ∀y(Q(y) ⇒ ¬S(x, y))] 5′−→ ∀x[∀y(P (x) ⇒ (Q(y) ⇒ ¬S(x, y)))]
−→ ∀x∀y(¬P (x) ∨ ¬Q(y) ∨ ¬S(x, y)) % one clause.

We rename the variables to avoid any confusion:

¬P (z) ∨ ¬Q(u) ∨ ¬S(z, u)

Negation of the conclusion:

¬[∀x(R(x) ⇒ ¬Q(x))] −→ ∃x¬[R(x) ⇒ ¬Q(x)]
Skol.−→ ¬(R(b) ⇒ ¬Q(b)) −→

R(b) ∧Q(b)

% i.e. two clauses

To prove that the reasoning is correct, we must refute clauses 1. to 5. below:

1) P (a)

2) ¬R(y) ∨ S(a, y)

3) ¬P (z) ∨ ¬Q(u) ∨ ¬S(z, u)
4) R(b)

5) Q(b)

Solutions to the Exercises 477

6) S(a, b) (2, 1)− (4, 1) {y ← b}
7) ¬P (a) ∨ ¬Q(b) (3, 3)− (6, 1) {z ← a,u ← b}
8) ¬Q(b) (1, 1)− (7, 1)

9) � (5, 1)− (8, 1)

�

EXERCISE 5.9.–

1) ¬P (x, y, z, s) ∨ P (z, y, z, f(x, z, s))

2) ¬P (x, y, x, s) ∨ P (y, y, y, g(x, y, s))

3) ¬P (b, b, b, s) ∨R(h(s))

4) P (a, b, c, d)

5) ¬R(u)

6) ¬P (b, b, b, s3) (5, 1)− (3, 2) {u ← h(s3)}
7) ¬P (x2, b, x2, s2) (6, 1)− (2, 2) {s3 ← g(x2, b, s2), y ← b}
8) ¬P (x1, b, z1, s1) (7, 1)− (1, 2) {s2 ← f(x1, z1, s1), . . .}
9) � (8, 1)− (4, 1) {x1 ← a, z1 ← c, s1 ← d}

by replacing:

s2 ← f(a, c, d)

s3 ← g(c, b, f(a, c, d))

u ← h(g(c, b, f(a, c, d)))

if we had asked the question

¬R(u)∨ Answer (u)

instead of � we would have generated (see exercise 3.34):

Answer (h(g(c, b, f(a, c, d))))

which translates, in accordance with the interpretation that we gave to the function
symbols (in particular to the constants) into: the monkey climbs on the chair after
having walked from a to c starting from d, and carried the chair from c to b. �

478 Logic for Computer Science and Artificial Intelligence

EXERCISE 5.10.–

a)

1) ¬P (x) ∨Q(x) ∨R(x, f(x))

2) ¬P (u) ∨Q(u) ∨ S(f(u))

3) T (a)

4) P (a)

5) ¬R(a, y) ∨ T (y)

6) ¬T (z) ∨ ¬Q(z)

7) ¬T (w) ∨ ¬S(w)
8) ¬Q(a) (3, 1)− (6, 1) {z ← a}
9) ¬P (a) ∨ S(f(a)) (8, 1)− (2, 2) {x ← a}
10) ¬P (a) ∨Q(a) ∨ T (f(a)) (1, 3)− (5, 1) {x ← a, y ← f(a)}
11) ¬P (a) ∨Q(a) ∨ ¬S(f(a)) (10, 3)− (7, 1) {w ← f(a)}
12) Q(a) ∨ S(f(a)) (2, 1)− (4, 1) {u ← a}
13) S(f(a) (12, 1)− (8, 1)

14) ¬P (a) ∨Q(a) (13, 1)− (11, 3)

15) Q(a) (14, 1)− (4, 1)

16) � (15, 1)− (8, 1)

b)

1) P (x) ∨ P (a) ∨R(x)

2) ¬P (y) ∨Q(y)

3) ¬R(z) ∨Q(z) ∨M(z)

4) ¬Q(w) ∨ ¬R(w)

5) ¬M(v) ∨ ¬R(v) ∨ ¬R(a)

6) P (a) ∨R(y6) ∨Q(y6) (1, 1)− (2, 1) {x ← y2}
7) P (z7) ∨ P (a) ∨Q(z7) ∨M(z7) (1, 3)− (3, 3) {x ← z3}
8) P (v8) ∨ P (a) ∨ ¬M(v8)¬R(v8) ∨ ¬R(a) (1, 3)− (5, 2) {x ← v5}
9) P (a) ∨ P (a) ∨ ¬M(v9) ∨ ¬R(v9) (1, 3)− (5, 3) {x ← a}
10) ¬P (w10) ∨ ¬R(w10) (2, 2)− (4, 1) {y ← w4}
11) ¬R(w11) ∨M(z11) ∨ ¬R(w11) (3, 2)− (4, 1) {z ← w4}
12) ¬R(v12) ∨Q(v12) ∨ ¬R(v12) ∨R(a) (3, 3)− (5, 1) {z ← v5}

... �

Solutions to the Exercises 479

REMARK 12.16.– We systematically rename the variables of the resolvents.

These are sets of clauses that belong to a decidable fragment of FOL (the clauses
do not contain any functional symbol). After a while, no new clause is generated (up
to a renaming of the variables) and since � is not generated, we conclude that the set
of clauses (1) to (5) is satisfiable. �

EXERCISE 5.11.–

To apply the resolution rule, we must transform into clausal form:

from ∀x∃yP (x, y), after Skolemization we obtain ∀xP (x, f(x)).

For the conclusion, ∃z∀uP (z, u):

negation → Skolemization: ¬[∃z∀uP (z, u)]→∀z∃u¬P (z, u)→∀z¬P (z, g(z))

The set of clauses to consider: {P (x, f(x)),¬P (z, g(z))}

The resolution rule cannot be applied (the unification algorithm fails with clash),
� cannot be obtained: the answer is therefore no. �

EXERCISE 5.12.–

i) This exercise shows how to encode the axioms and the inference rule of S1 in
clausal form and prove theorems using the resolution rule.

We write (A1), (A2), and (A3) in clausal form. The connectives ⇒ and ¬ are
written:

i(x, y): x ⇒ y

n(x): ¬x
1) P (i(x, i(y, x)))

2) P (i(i(x, i(y, z)), i(i(x, y), i(x, z))))

3) P (i(i(n(y), n(x)), i(i(n(y), x), y)))

The axioms are provable.

To translate MP, we say: If x is provable and x ⇒ y (i.e. i(x, y)) is provable, then
y is provable:

4) ¬P (i(x, y)) ∨ ¬P (x) ∨ P (y)

480 Logic for Computer Science and Artificial Intelligence

We ask the question �? A ⇒ A (see example 3.9). To better recall that A is
a (meta) variable that denotes an arbitrary wff, we write �? v ⇒ v (v denotes a
variable).

To show that v ⇒ v is provable in S1 (encoded P (i(v, v))), we must generate �,
applying the resolution rule on 1−4 and:

5) ¬P (i(v, v))

As usual, we identify the variables in each clause with the corresponding index
and rename the variables of the resolvents. We use a linear strategy.

6) ¬P (i(x6, i(v6, v6))) ∨ ¬P (x6) (5, 1)− (4, 3)

{y4 ← i(v5, v5)}

7) ¬P (i(i(x7, i(y7, x7)), i(v7, v7))) (6, 2)− (1, 1)

{x6 ← i(x1, i(y1, x1))}

8) � (7, 1)− (2, 1)

{x7 ← z2, y7 ← z2, x2 ← z2, y2 ← z2, v7 ← i(z2, z2)}

ii)

We proceed by reductio ad absurdum. We assume that

A ⇒ A is not provable (5)

This implies that A is not provable, or that A ⇒ (B ⇒ B) is not provable (6);

and that, in turn, (A ⇒ (B ⇒ A)) ⇒ (C ⇒ C) is not provable (7)

As A,B,C are meta-variables (i.e. variables that can be replaced by arbitrary
wffs), to avoid any confusion, we shall name them X,Y, Z respectively, so that

(X ⇒ (Y ⇒ X)) ⇒ (Z ⇒ Z) is not provable.

One instance is (with X ← C, Y ← C, Z ← C ⇒ C):

(∗) C ⇒ (C ⇒ C) ⇒ ((C ⇒ C) ⇒ (C ⇒ C))

(∗) is also an instance of (A2)

Solutions to the Exercises 481

But this is a contradiction, as all the instances of an axiom are (by definition of a
proof) provable. �

EXERCISE 6.1.–

a)

1) top(a, b)→;

2) top(b, c)→;

3) ab(x, y) → top(x, y);

4) ab(u, v) → ab(u, z) top(z, v);

ab(c, a); % the question

The execution does not halt.

If we consider the clause (∗∗) instead of (∗) :

1) top(a, b)→;

2) top(b, c)→;

3) ab(x, y) → top(x, y);

4) ab(u, v) → top(u, z) ab(z, v);

482 Logic for Computer Science and Artificial Intelligence

ab(c, a); % the question

The program halts and answers No.

b)

1) P(a, b) →;

2) P(c, a) →;

3) P(x, y) → P(x, z) P(z, y);

P (u, b); % the question

Of course this problem has two solutions u = a and u = c, . . . but only the first one
is found. To try finding all the solutions, we can swap the orders of clauses 1 and 2, or

Solutions to the Exercises 483

swap literals P (x, z) and P (z, y) in clause 3. In both cases, after having found both
solutions, the program does not halt.

It is suggested to use the following technique:

1) P(a, b) →;

2) P(c, a) →;

3) Q(x, y) → P(x, y);

4) Q(x, y) → P(x, z) Q(z, y);

Q(u, b) % the question �

DIGRESSION 12.1.– When transforming programs, it is natural to wonder whether
they are equivalent, and in the case of logic programing, this boils down to ask whether
one program is a logical consequence of another one.

We seize this opportunity to show the usefulness of automated theorem provers (or
proof assistants) for programing. We have used one of the best-known provers based
on the resolution method (Prover9), which contains a tool capable of constructing
finite models (Mace4).

If we let P1 stand for the initial program and P2 stand for the suggested program,
we show that P1 is not a logical consequence of P2 (by exhibiting a counter-model
constructed by Mace4). However, if the implication of clause 3. of the modified
program is replaced by an equivalence, which yields, say, P2′, then we give a proof
that P1 is a logical consequence of P2′.

484 Logic for Computer Science and Artificial Intelligence

Solutions to the Exercises 485

�

EXERCISE 6.2.– The intended meaning of the terms:

a: 0

s(x): successor of x (in N)

a)

add(a, x, x)→;

add(s(x), y, s(z)) → add(x, y, z);

b)

mult(a, x, a)→;

mult(s(x), y, u)→ mult(x, y, z) add(z, y, u);

c)

less(a, s(x)) →;

less(s(x), s(y)) → less(x, y);

d)

divides(x, y)→ not(eq(x, 0)) division(y, x, z);

division(y, x, z)→ mult(z, x, y);

486 Logic for Computer Science and Artificial Intelligence

% not: see section 6.3.2

e)

prime(x)→ not(eq(x, 0)) not(eq(y, 1)) less(y, x) not(divides(y, x))

% eq: see exercise 6.10

% not(eq(y, 0)) not necessary because in divides �

EXERCISE 6.3.– The intended meanings of the terms:

a: 0

s(x): successor of x (in N)

fib(a, a) →;

fib(s(a), s(a)) →;

fib(s(s(x)), u) → fib(x, y) fib(s(x), z) add(y, z, u); �

EXERCISE 6.4.–

The regular expression that characterizes the sequence of applications of the
resolution rule with the strategy used by the interpreter PL (each application is
represented by the used mgu):

αδγ∗β

The application of α gives the first solution, the rest of the regular expression gives
the other solutions. �

EXERCISE 6.5.–

a)

append([], x, x) →;

Solutions to the Exercises 487

append([u | x], y, [u | z]) → append(x, y, z);

b)

reverse([], []) →;

reverse([t | x], z) → reverse(x, y) append(y, [t], z);

c)

palindrome(x)→ reverse(x, x);

d)

member(x, [x | y]) →;

member(x, [z | y]) → member(x, y);

Other definition (program):

member(x, y)→ append(u, [x | z], y);

e)

subset([], y) →;

subset([z | x], y) → member(z, y) subset(x, y);

f)

We give three definitions (programs).

i)

consec(x, y, [x, y | u]) →;

consec(x, y, [v | u]) → consec(x, y, u);

ii)

position(x, n, y): element x is at position n in list y

position(u, 1, [u | x]) →;

position(u, i+ 1, [v | x]) → position(u, i, x);

488 Logic for Computer Science and Artificial Intelligence

consec(u, v, x)→ position(u, i, x) position(v, i+ 1, x);

iii)

consec(u, v, x)→ append(y, [v | z], x) append(w, [u], y);

Idea:

�

EXERCISE 6.6.– We first define the predicate

→

| | →

| | →

→

| →

|

→ ;

| | → �

Solutions to the Exercises 489

EXERCISE 6.7.–

→

→ |

% We identify adjacent elements:

|

{a => b} ;

% {a => b} is a constraint whose meaning is obvious. It could be replaced by a
predicate similar to that of exercise 6.2 (c).

→ ;

| | → �

EXERCISE 6.9.–

a)

490 Logic for Computer Science and Artificial Intelligence

b)

�

Solutions to the Exercises 491

EXERCISE 6.11.–

→

→

| | | → |

| | | | →

| | | → | �

EXERCISE 8.1.– We prove properties that will permit us to simplify the answers to
points (a) and (b).

We choose to represent clauses as sets of literals and recall that the sets of variables
of distinct clauses are disjoint (see definition 5.10).

Property 1: let σ denote a substitution:

if C ≤s D then C ≤s σD % for an arbitrary σ

PROOF.– By definition of a subsumption, there exists a substitution θ such that:

θC ⊆ D.

The application of a substitution to a clause cannot change the number of its literals
(see definition 5.12); hence, by applying an arbitrary substitution σ to θC and to
D, the set inclusion cannot change: σ will act in the same way on θC and on the
corresponding subset of literals in D (as it is the same!). We can thus write:

σθC ⊆ σD

there therefore exists a substitution (i.e. σ ◦ θ) such that:

(σ ◦ θ)C ⊆ σD

hence (definition of a subsumption):

C ≤s σD (for an arbitrary σ).

We have the following immediate consequence.

492 Logic for Computer Science and Artificial Intelligence

Property 2: let C and D denote two clauses such that V ar(D) = {y1, y2, . . . , yn}
and let γ be the substitution:

γ = {y1 ← a1, y2 ← a2, . . . , yn ← an}

where the ai’s (1 ≤ i ≤ n) are constants distinct from those in C and D (intuition:
the constants occurring in C and D already have an intended meaning, and to reuse
them could change this meaning),

if C ≤s σD, then C ≤s γD

PROOF.– Trivial, by applying property 1 with γ instead of σ.

The following property is a property that will be very useful to answer points (a)
and (b).

Property 3: let γ be the substitution of property 2.

C ≤s D iff C ≤s γD

PROOF.– only if property 2

if

C ≤s γD

there therefore exists a substitution θ such that:

θC ⊆ γD

Assume V ar(C) = {x1, x2, . . . , xm}

and θ = {x1 ← t1, x2 ← t2, . . . , xm ← tm} (xi ∈ dom(θ) and ti is a closed term
for 1 ≤ i ≤ m because γD is a closed clause)

Of course, all the names of the literals (i.e. the predicate symbols) in C are in D
(as C ≤s γD and γ do not act on the predicate symbols).

To prove C ≤s D, we must get back to D, or in other words, undo what was
done by γ.

Solutions to the Exercises 493

We thus define the operation:

si = ti[c1 | y1, c2 | y2 . . . , cn | yn]

meaning: “si is the term obtained by replacing in ti constant ci by variable yi (1 ≤
i ≤ n)”.

Consider the substitution:

δ = {x1 ← s1, x2 ← s2, . . . , xm ← sm}

and let Ω = [c1 | y1, c2 | y2 . . . , cn | yn] (Ω is not a substitution; hence, the different
notation)

By construction: Ω(γD) = D

and also by construction δC ⊆ D.

As a small example of these constructions, let (as usual x, y denote variables and
a, b denote constants):

C : P (x) ∨Q(f(x)), hence, V ar(C) = {x}

D : P (f(y)) ∨Q(f(f(y))) ∨R(a), hence V ar(D) = {y}

γ = {y ← b}

hence γD = P (f(b)) ∨Q(f(f(b))) ∨R(a)

(t1 = t2 = f(b))

Ω = [b | y]

(s1 = s2 = f(y))

δ = {x ← f(y)}

δC = P (f(y)) ∨Q(f(f(y))) (⊆ D)

hence C ≤s D.

494 Logic for Computer Science and Artificial Intelligence

Property 3 allows us to replace the study of C ≤s D by the study of C ≤s Df ,
where Df is a closed clause.

We use this property to answer the question.

a)

The clauses are disjunctions of literals with all variables quantified universally.

If C ≤s D, then there exists a closed substitution that transforms C into a sub-
clause of the closed clause D.

Every model of C evaluates C to T on all elements of the domain, in particular, on
the elements denoted by the closed terms that replaced the variables of C (functional
symbols are associated to total functions, see definition 5.6).

Hence, every model of C is a model of D and

if C ≤s D, then C |= D.

b)

To answer question (b) it suffices to recall the definition of a subsumption and note
that there exists an algorithm (UNIFICATION) that permits us to solve sets of equations
on terms.

An (inefficient!) decision procedure could be that of Figure 12.12:

We consider the input clauses, say C and D, as sets of literals:

C = {K1(s1),K2(s2), . . . ,Km(sm)}

D = {L1(t1), L2(t2), . . . , Ln(tn)}

D: closed clause, meaning that the occurrence test (rule 7 of algorithm
UNIFICATION is not necessary (see exercise 4.1 d)).

We note PKi(D), the set of literals of D whose names (predicate symbols) are the
same as the name of Ki (of course, every literal name in C is a literal name in D,
otherwise, the negative answer to the subsumption test is immediate). �

2 This is a specification destined simply to show that a decision procedure exists, and is in no
case intended to be implemented.

Solutions to the Exercises 495

Figure 12.1. Subsumption algorithm for clauses

EXERCISE 9.1.– As we have to prove validity, we negate the corresponding formula

1) ¬[∀x∀y(x = y ⇒ y = x)]
√

↓
2) ∃x∃y.¬(x = y ⇒ y = x) (1),

√

↓
3) ¬(a = b ⇒ b = a) (2), x ← a, y ← b

√

↓
4) a = b (3)
5) ¬(b = a) (3)

↓
6) ¬(b = b) (4), (5), R=

2

× (6), R=
1

�

496 Logic for Computer Science and Artificial Intelligence

EXERCISE 9.2.–

As we have to prove validity, we negate the corresponding formula:

1) ¬[∀x∀y∀z((x = y) ∧ (y = z) ⇒ (x = z))]
√

↓
2) ∃x∃y∃z.¬((x = y) ∧ (y = z) ⇒ (x = z)) (1),

√

↓
3) ¬((a = b) ∧ (b = c) ⇒ (a = c)) (2), x ← a, y ← b, z ← c,

√

↓
4) a = b (3)
5) b = c (3)
6) ¬(a = c) (3)

↓
7) a = c (4), (5), R=

2

× (6), (7)

�

EXERCISE 9.4.–

% The closed world:

{

% The possible positions:

. . .

}

We also give a schema of propositional formulas that permits us to get the
specification in PL of the n-queens problem for all n ∈ N.

Solutions to the Exercises 497

The proposition schemas Pi,j mean: a queen is at the intersection of line i and
column j.∧n

i,j=1 ¬[Pi,j ∧ (
∨n

k=1; k �=j Pi,k ∨ ∨n
l=1; l�=i Pl,j ∨ ∨n

q,r=1; i−j �=q−r Pq,r ∨∨n
s,t=1; i+j �=s+t Ps,t)]

or the equivalent schema:∧n
i,j=1[Pi,j ⇒ ¬(

∨n
k=1; k �=j Pi,k ∨

∨n
l=1; l�=i Pl,j ∨

∨n
q,r=1; i−j �=q−r Pq,r ∨∨n

s,t=1; i+j �=s+t Ps,t)]

where the disjuncts of the schema have the following meaning:∨n
k=1; k �=j Pi,k: queen on a square of the same line;

∨n
l=1; l�=i Pl,j : queen on a square of the same column;

∨n
q,r=1; i−j �=q−r Pq,r: queen on a square of the same diagonal NE-SW going

through i, j;∨n
s,t=1; i+j �=s+t Ps,t: queen on a square of the diagonal NW-SE going through

i, j. �

EXERCISE 9.6.– R is a well-founded relation, meaning that there are no infinite
sequences {ai}i∈N such that R(a1, a0), R(a2, a1), . . . , R(an+1, an), . . .

This is explained by taking:

P �→ set of elements (⊆ D)

P (x) �→ x ∈ P

The formula is interpreted as follows.

Every non-empty subset of the domain [∀P (∃xP (x) . . .] contains an element
[∃zP (z) . . .], such that there is no other element in the subset that is in relation
with it [. . .∀y(P (y) ⇒ ¬R(y, z) . . .].

b)

Connected graph

This is explained by taking

C �→ set of nodes (⊆ D)

498 Logic for Computer Science and Artificial Intelligence

C(x) �→ x ∈ C

A(x, y) �→ there is an edge from x to y

The formula is then interpreted as follows:

For every non-empty subset of nodes [∀C((∃xC(x) . . .], if x is in the
subset [. . . C(x) . . .] and if when there is an edge from x to y, then y is also in
this subset [. . . ∧ A(x, y) ⇒ C(y) . . .] and all the nodes in the graph are in this
subset [. . .∀zC(z) . . .].

c)

Non-connected graph with connected components

This is explained by taking:

C �→ set of nodes (⊆ D)

C(x) �→ x ∈ C

A(u, v) �→ there is an edge from u to v

The formula is then interpreted as follows.

There exists a non-empty subset of nodes of the graph [∀C((∃xC(x) . . .],
which does not contain all the nodes in the graph [. . .∃y . . .¬C(y) . . . (disconnected
part)], and such that if a node belongs to this subset [. . . C(u) . . .] and there is an
edge from this node to another one [. . . A(u, v) . . .], then the latter is also in the
subset [. . . C(v) . . . (connected part)]. �

EXERCISE 10.1.–

a)

C = A ∪B, by definition:

μC = max {μA, μB}

μC ≥ μA and μC ≥ μB

by definition:

1) A ⊆ C and B ⊆ C

Solutions to the Exercises 499

Let D such that:

2) A ⊆ D and B ⊆ D

then:

μD ≥ μA and μD ≥ μB

i.e.:

μD = max {μA, μB} = μC

by definition:

3) D = C

From (1), (2) and (3) we conclude that C is the smallest set containing A and B.

b)

C = A ∩B, by definition:

μC = min {μA, μB}

μC ≤ μA and μC ≤ μB

by definition:

4) C ⊆ A and C ⊆ B

Let D such that:

5) D ⊆ A and D ⊆ B

then:

μD ≤ μA and μD ≤ μB

i.e.:

μD = min {μA, μB} = μC

by definition:

6) D = C

500 Logic for Computer Science and Artificial Intelligence

From (4), (5), and (6), we conclude that C is the greatest set contained in A and B.

c)

(For every x) we arrange in decreasing order μA, μB, μC

By transitivity of order relations:

max {μi,max {μj, μk}} = max {max {μi, μj}, μk}

where i, j, k ∈ {A,B,C}

d)

similar (with min)

e)

There are two possible cases

e1) μA ≤ μB

We verify easily that:

μ(A∪B) = 1−max {μA, μB} = 1−μB = min {1−μA, 1−μB} = μA∩B

e2) μB ≤ μA

Similar.

f)

Analogous to (e), by verifying:

1−min {μA, μB} = max {1− μA, 1− μB}

g)

The property to verify here is:

max {μC ,min {μA, μB}} = min{max{μC, μA},max {μC , μB}}

which must be verified for the 6 (= 3!) possible cases:

g1) μA ≤ μB ≤ μC

Solutions to the Exercises 501

g2) μA ≤ μC ≤ μB

g3) μB ≤ μA ≤ μC

g4) μB ≤ μC ≤ μA

g5) μC ≤ μA ≤ μB

g6) μC ≤ μB ≤ μA

We verify for (g1)

max {μC ,min {μA, μB}} = μC

max {μC , μA} = μC

max {μC , μB} = μC

min {μC , μC} = μC

h) Analogous to (g) by verifying:

min {μC ,max {μA, μB}} = max {min {μC , μA},min {μC , μB}}. �

EXERCISE 10.2.– For example:

μx�y(0, 2) = 0.1

μx�y(5, 150) = 0.8

μx�y(0, 1000) = 0.99

...

�

EXERCISE 10.3.–

a)

Let R ⊆ A×B and S ⊆ B′ × C

If B ∩B′ = ∅ then μR◦S = 0 for every pair (x, y)

If B ∩B′ �= ∅, then we must keep the pairs containing the z’s that are in B and in
B′, i.e.:

502 Logic for Computer Science and Artificial Intelligence

min{μR(x, z), μS(z, y)}

and regroup all these values:

μR◦S = maxz {min{μR(x, z), μS(z, y)}}

b)

μR(x, x) ≈ 1

c)

if μR(x, y) ≈ 1 then μS(y, x) ≈ 1

d)

In classical logic: if xRy and yRx, then x = y

We can propose:

if μR(x, y) ≈ 1, then μR(y, x) ≈ 0

or:

if μR(x, y) > 0, then μR(y, x) = 0

e)

In classical logic: if xRy and yRz, then xRz

μR(x, z) ≥ min{μR(x, y), μR(y, z)}

The idea is that x will be related to z at at least the same degree as x and y are
related (which corresponds to min). �

EXERCISE 10.4.– Yes:

S
1→ A

4→ A and B
3→ B and B

6→ not C and B
8→ not D and B

10→
not very D and B

12→ not very true and B
6→ not very true and not C

9→
not very true and not E

11→ not very true and not very E
13→

not very true and not very false

The semantics:

S
1→ A

4→ A ∩ B
3→ B ∩ B

6→ C ∩ B
8→ D ∩ B

10→ D2 ∩ B
12→

true2 ∩ B
6→ true2 ∩ C

9→ true2 ∩ E
11→ true2 ∩ E2 13→ true2 ∩ false2 �

Solutions to the Exercises 503

EXERCISE 10.5.–

a)

1) �¬P ⇒ ¬P T− axiom P ← ¬P
2) ¬¬P ⇒ ¬�¬P (1) and contrapositive

3) P ⇒ ¬�¬P in (2) propositional equiv

4) P ⇒ �P �P : def ¬�¬P
b)

1) A ⇒ B hyp.

2) �(A ⇒ B) (1) , Necessitation

3) �(A ⇒ B) ⇒ (�A ⇒ �B) axiom K

4) �A ⇒ �B (2), (3),MP

c)

1) �¬P ⇒ ��¬P S4− axiom P ← ¬P
2) ¬��¬P ⇒ ¬�¬P (1) contrapositive

3) �¬�¬P ⇒ �P �P : def ¬�¬P
4) ��P ⇒ �P (3) ,�P : def ¬�¬P
d)

1) �(¬Q ⇒ P) ⇒ (�¬Q ⇒ �P) axiom K (hence in S5)
P ← ¬Q, Q ← P

2) �(Q ∨ P) ⇒ (¬�¬Q ∨�P) Q ⇒ P equiv ¬Q ∨ P

3) �(P ∨Q) ⇒ (�P ∨�Q) �Q :def ¬�¬Q
e)

1) A ∧B ⇒ A tautology PL

2) A ∧B ⇒ B tautology PL

3) �(A ∧B ⇒ A) (1), Necessitation

4) �(A ∧B ⇒ B) (2), Necessitation

5) �(A ∧B ⇒ A)
⇒ (�(A ∧B) ⇒ �A) axiom K

6) �(A ∧B ⇒ B)
⇒ (�(A ∧B) ⇒ �B) axiom K

7) �(A ∧B) ⇒ �A (3), (5) MP

8) �(A ∧B) ⇒ �B (4), (6) MP

9) �(A ∧B) ⇒ �A ∧ �B PL, if A ⇒ B taut. and A ⇒ C taut.
then A ⇒ B ∧ C taut.

504 Logic for Computer Science and Artificial Intelligence

f)

1) �(B ⇒ (A ∧B)) ⇒ (�B ⇒ �(A ∧B)) axiom K

2) A ⇒ (B ⇒ (A ∧B)) tautology PL

3) �(A ⇒ (B ⇒ (A ∧B))) (2), Necessitation

4) �(A ⇒ (B ⇒ (A ∧B)))
⇒ (�A ⇒ �(B ⇒ (A ∧B))) Axiom K

5) �A ⇒ �(B ⇒ (A ∧B)) (3), (4), MP

6) �A ⇒ (�B ⇒ �(A ∧B)) (5), (1) transitivity PL

7) �A ∧ �B ⇒ �(A ∧B) LP: if A ⇒ (B ⇒ C)

taut. : A ∧ B ⇒ C taut.

g)

1) A ⇒ (B ∧ C ⇒ A ∧B) tautology PL

2) P ⇒ (�P ∧��P︸ ︷︷ ︸ ⇒ P ∧ �P) (1) A ← P, B ← �P, C ← ��P

3) �(P ∧�P) ⇔ (�P ∧ ��P︸ ︷︷ ︸) (e), (f)

4) P ⇒ (�(P ∧ �P) ⇒ P ∧ �P) (3) in (2)

5) �(P ⇒ (�(P ∧ �P) ⇒ P ∧�P)) (4) ,Necessitation

6) �P ⇒ �(�(P ∧ �P) ⇒ P ∧ �P))︸ ︷︷ ︸ (5) , axiom K (hence of G), MP

7) �(�(P ∧ �P) ⇒ (P ∧�P))︸ ︷︷ ︸
⇒ �(P ∧ �P) axiom G : P ← P ∧ �P

8) �P ⇒ �(P ∧�P) (6), (7) transitivity PL

9) �P ⇒ �P ∧ ��P (e), (8) transitivity PL

10) �P ⇒ ��P (9), LP : if A ⇒ B ∧ C taut.

then A ⇒ C taut.

h)

1) �A ⇒ �A ∨ �B P ⇒ P ∨Q PL tautology,P ← �A,

Q ← �B

2) �B ⇒ �A ∨�B idem

3) �(�A ⇒ �A ∨ �B) (1), Necessitation

4) �(�B ⇒ �A ∨ �B) (2), Necessitation

5) �A ⇒ ��A Axiom S4

6) �B ⇒ ��B Axiom S4

Solutions to the Exercises 505

7) �(�A ⇒ �A ∨ �B)
⇒ (��A ⇒ �(�A ∨ �B)) Axiom K hence of S4

8) �(�B ⇒ �A ∨ �B)
⇒ (��B ⇒ �(�A ∨ �B)) Axiom K hence of S4

9) ��A ⇒ �(�A ∨ �B) (3), (7), MP

10) ��B ⇒ �(�A ∨ �B) (4), (8), MP

11) �A ⇒ �(�A ∨ �B) (5), (9), in PL A ⇒ B, B ⇒ C

|= A ⇒ C

12) �B ⇒ �(�A ∨ �B) (6), (10), in PL A ⇒ B, B ⇒ C

|= A ⇒ C

13) �A ∨ �B ⇒ �(�A ∨ �B) (11), (12) in PL A ⇒ C, B ⇒ C

|= A ∨ B ⇒ C
�

EXERCISE 10.6.– For the first of the translations in modal logic, it is possible to
verify the soundness without translating the formula into FOL. Indeed, consider the
set of the three premises and the negation of the conclusion (clauses (1) to (4) at the
root of the tree).

1) P ⇒ �Q
√

2) ¬P ⇒ �¬Q √
3) P ∨ ¬P % not used
4) ¬�Q ∧ ¬�¬Q √

5) ¬�Q 4.

6) ¬�¬Q 4.

7) P 2. 8) �¬Q 2.

× (2.− 6.)

9) ¬P 1. 10) �Q 1.

× (7.− 9.) × (5.− 10.)

We show that the other translation does not correspond to a correct reasoning,
by constructing a counter example using the translation method and the method of
semantic tableaux. As usual, we consider the set of premises and the negation of the
conclusion.

506 Logic for Computer Science and Artificial Intelligence

1) �(P ⇒ Q)
√

2) �(¬P ⇒ ¬Q)
√

3) P ∨ ¬P % not used

4) ¬�Q ∧ ¬�¬Q
√

5) ¬�Q 4.
√

6) ¬�¬Q 4.
√

7) ¬(∀y(R(X, y) ⇒ Q(y))) 5.
√

8) ¬(∀z(R(X, z) ⇒ ¬Q(z))) 6.
√

9) ∃y¬(R(X, y) ⇒ Q(y)) 7.
√

10) ∃z¬(R(X, z) ⇒ ¬Q(z)) 8.
√

11) R(X, a) 9., y ← a

12) ¬Q(a) 9., y ← a

13) R(X, b) 10., z ← b

14) Q(b) 10., z ← b

15) ∀y(R(X, y) ⇒ (P (y) ⇒ Q(y))) 1.

16) R(X, a) ⇒ (P (a) ⇒ Q(a)) 15., y ← a

17) ¬R(X, a) 16. 18) P (a) ⇒ Q(a) 16.

× (11. − 17.)

19) ¬P(a) 18. 20) Q(a) 18.

× (12. − 20.)

21) ∀y(R(X, y) ⇒ (¬P (y) ⇒ ¬Q(y))) 2.

22) ¬R(X, b) 21., y ← b 23) ¬P (b) ⇒ ¬Q(b)

21., y ← b

× 13. − 22.

24) P(b) 23. ¬Q(b) 23.

× 14. − 23

In bold ({¬Q(a), Q(b),¬P (a), P (b)}), we can read a counter example of this
formalization of the argument (reasoning) of the sea battle. �

Solutions to the Exercises 507

EXERCISE 10.7.–

a)

If R is total, i.e. ∀x∃yR(x, y), we have R(X, a) (by assigning x ← X, y ← a)
and we can graft the following tree:

508 Logic for Computer Science and Artificial Intelligence

b)

If R is Euclidean, i.e. ∀x∀y∀z.R(x, y) ∧ R(x, z) ⇒ R(y, z), then we have
R(X, b) ∧R(X, a) ⇒ R(b, a) and we can also close the left-hand branch.

c)

1) ¬[�ϕ ⇒ �ϕ]
↓

2) �ϕ 1.
√

3) ¬�ϕ 1.
√

↓
4) �¬ϕ 3.

√

↓
5) ∃y(R(X, y) ∧ ϕ(y)) 2.

√

6) ∃z(R(X, z) ∧ ¬ϕ(z)) 4.
√

↓
7) R(X, a) 5. y ← a
8) ϕ(a) 5. y ← a

↓
9) R(X, b) 6. z ← b
10) ¬ϕ(b) 6. z ← b

Solutions to the Exercises 509

If R is functional (“unique”), i.e. ∀x∀y∀z.R(x, y) ∧R(x, z) ⇒ y = z,

then we have a = b (7− 9) and the tree can be closed (8− 10)

d)

If R is shift-reflexive, i.e. ∀x∀y.R(x, y) ⇒ R(y, y), then we have R(X, a) ⇒
R(a, a).

We can thus close the tree by grafting to the open branch the tree:

510 Logic for Computer Science and Artificial Intelligence

e)

Line 12′ corresponds to R confluent (or convergent), i.e. ∀x∀y∀z.R(x, y) ∧
R(x, z) ⇒ ∃u(R(y, u) ∧R(z, u)) �

EXERCISE 10.8.– If we keep the semantics of �ϕ in definition 10.9:

Oϕ: ϕ is compulsory Oϕ :def �ϕ

Fϕ: ϕ is forbidden Fϕ :def O¬ϕ
Pϕ: ϕ is allowed Pϕ :def ¬O¬ϕ
Eϕ: ϕ is optional Eϕ :def ¬Oϕ. �

Solutions to the Exercises 511

EXERCISE 10.9.–

a)

The underlined formulas at time ti are those produced by the application of a rule
at time tj (j < i).

The tree is closed, hence the formula is valid.

b)

512 Logic for Computer Science and Artificial Intelligence

The formula is not valid. Counter example:

{ϕ[t1], ψ[t2],¬ψ[t1],¬ϕ[t2], . . .}

which could translate into: “if it will rain and the weather will be cold, that does not
mean it will rain and the weather will be cold at the same time!”. �

EXERCISE 10.10.– We can find representations in the literature similar to the
representation below. It is explicit enough. The reader can name the instants for each
group of formulas.

¬(G((p ⇒ q) ⇒ p) ⇒ Gp)
↓

¬(G((p ⇒ q) ⇒ p) ⇒ Gp)
G((p ⇒ q) ⇒ p)

¬Gp
↓
¬p
↓

¬(G((p ⇒ q) ⇒ p) ⇒ Gp)
G((p ⇒ q) ⇒ p)

¬Gp
↓
¬p

(p ⇒ q) ⇒ p
↙ ↘

¬(G((p ⇒ q) ⇒ p) ⇒ Gp) ¬(G((p ⇒ q) ⇒ p) ⇒ Gp)
G((p ⇒ q) ⇒ p) G((p ⇒ q) ⇒ p)

¬Gp ¬Gp
↓ ↓
¬p ¬p

(p ⇒ q) ⇒ p (p ⇒ q) ⇒ p
¬(p ⇒ q) p

↓ ×
¬(G((p ⇒ q) ⇒ p) ⇒ Gp)

G((p ⇒ q) ⇒ p)
¬Gp
↓
¬p

(p ⇒ q) ⇒ p
¬(p ⇒ q)

p
¬p
×

�

Solutions to the Exercises 513

EXERCISE 10.11.– The rule corresponding to �f :

�f
↓
f

◦�f

514 Logic for Computer Science and Artificial Intelligence

The underlined formulas are those that were developed in the parent node
(rectangle). �

Bibliography

[BAR 77] BARWISE J., “An introduction to first-order logic”, in BARWISE J. et al. (eds),
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of
Mathematics, Chapter A.1, pp. 5–46, North Holland, Amsterdam, 1977.

[BEN 88] VAN BENTHEM J.F.A.K., A Manual of Intensional Logic, volume 1 of Lecture
Notes, CSLI Publications, Menlo Park, 1988, 2nd ed., revised and expanded.

[BOO 89] BOOLOS G.S., JEFFREY R.C., Computability and Logic, Cambridge University
Press, Cambridge, 1989.

[EBB 84] EBBINGHAUS H.D., FLUM J., THOMAS W., Mathematical Logic, Undergraduate
Texts in Mathematics, Springer-Verlag, New York, 1984.

[END 72] ENDERTON H.B., A Mathematical Introduction to Logic, Academic Press,
New York, 1972.

[FAG 95] FAGIN R., HALPERN J.Y., MOSES Y., VARDI M.Y., Reasoning About Knowledge,
MIT Press, Cambridge, 1995.

[FIT 90] FITTING M., First-Order Logic and Automated Theorem Proving, Texts and
Monographs in Computer Science, Springer-Verlag, New York, 1990.

[GOL 93] GOLDBLATT R., Mathematics of Modality, volume 43 of CSLI Lecture Notes, CSLI
Publications, Menlo Park, 1993.

[KLE 71] KLEENE S.C., Logique Mathématique, Épistémologie, Librairie Armand Colin,
Paris, 1971.

[LEI 97] LEITSCH A., The Resolution Calculus, Texts in Theoretical Computer Science,
Springer, Berlin, 1997.

[MEN 64] MENDELSON E., Introduction to Mathematical Logic, The University Series in
Undergraduate Mathematics, D. Van Nostrand Co., Toronto, 1964.

[ROB 79] ROBINSON J.A., Logic: Form and Function. The Mechanization of Deductive
Reasoning, The University Press Edinburgh, Edinburgh, 1979.

[SMU 68] SMULLYAN R.M., First-Order Logic, Springer-Verlag, Berlin, 1968.

[WOS 92] WOS L., OVERBEEK R., LUSK E., BOYLE J., Automated Reasoning, Introduction
and Applications, McGraw-Hill, New York, 2nd ed., 1992.

Index

Symbols

CG, 391
DG, 391
EG, 391
Ki, 389
Ki operator, 389
L[x̄ | t̄H(S)], 177
L[t], 301
L[t]u, 301
L[u ← t], 301
Lc, 46
�, 101
Propset of a wff (or a set of wffs), 47
⇔, 41
⇒, 20, 41
⊥, 20
R operator in FOL, 192
R in FOL, 192
.
=, 127
↓, 44
∃, 134
∀, 134
≤s, 267
E , 47
E(A, I), 42
L1, 133
R, 103
R-operator, 103
S1, 78
SL1O, 184
|, 44

|=, 43
|=I , 43
¬, 41
ω-consistency, 85
≺, 118
�R, 104
�SR , 104
�, 78
∨, 41
∧, 41
(abstract) algebra, 145
(strongly) confluent relation, 377
modus ponens (MP), 72, 79, 89
shift-reflexive relation, 509
3-colourability, 113

A

abduction, 273
absolutely consistent, 84
abstract interpreter of LP, 221
accessibility relation, 358
adequate (connective set), 44

formal system, 84
algorithm for semantic tableaux (PL), 61
ancestor (of a node), 63
antisymmetry, 117
argumentation, 48
arity, 125, 133, 294
artificial intelligence, 245
associativity without =, 296
asymmetry, 118

518 Logic for Computer Science and Artificial Intelligence

axiom, 75
(for constructivists), 13
(of a theory), 151
of choice, 11
(sequent calculus), 91

axiomatic
structure, 75
system, 75

axiomatico-deductive system, 74
axiomatisation, 75

of equality, 293

B

backward chaining, 51
Berry paradox, 13
binary resolution, 191
body of a rule, 219
Boolean algebra, 116
bound

occurrence of a variable, 135
variable, 135

branch, 63

C

calculus, 75, 109, 110
case analysis, 74
chain (totally ordered set), 117
choice (axiom of), 11
clausal

form (FOL), 45, 187
transformation, 49

clause, 46, 219
(FOL), 187
(PL), 46

clauses parents, 191
closed

branch, 56, 97
clause, 177
instance, 177
semantic tree, 97
substitution, 126
tableau, 56
terms, 125, 177
theory, 151
wff, 136

closure
of an owff, 148
operation, 27

cnf, 45
transformation, 49

coherent, 47, 84
common knowledge, 391
commutativity without =, 296
compactness

of FOL, 185
(of PL), 99
theorem (PL), 99

complementary literal, 46
complete, 84
complete theory, 151
completeness

of FOL, 183
(for refutation), 105

completion (Clark), 239
complexity

of a proof by resolution, 112
of the resolution method, 112

computability and Horn clauses, 241
conclusion, 75
conditional formula, 113
confluent relation, 377

confluent (convergent) relation, 510
congruence relation, 119
conjunct, 46
conjunctive

clauses, 103
normal form, 45

consensus, 103
consequence operation, Tarski, 27
consequence relation

(entailment relation), 28
(Tarski), 27

consistent, 47, 84
(absolutely), 84
for negation, 84

constant instance, 177
constraint, 309

projection, 310
constructive proof, 17
constructivist proof, 19
continuity, 381
contradictory, 47

Index 519

copy, 192
counter-model (counterexample), 47
counterexample (counter-model), 47

of a set of formulas, 47
cwff: closed wff, 136

D

Davis and Putnam, 92
algorithm, 94

decidable, 84
class (some), 205

decision procedure, 84
deduction, 77

theorem, 81, 332
deductive

inference, 260
system, 75

demodulation, 303, 304
density, 381
depth of a term, 126
descendant (of a node), 63
description logic, 272
diagonalization, 74
direct consequence, 75
directed graph, 63, 383
discovery of explanatory theories, 274
disjunct, 46
disjunctive normal form, 46
distributed knowledge, 391
dnf, 46

transformation, 49
domain of discourse, 144

E

e-frame, 389
E-unsatisfiable, 303
empty clause, 101
eq (Prolog), 237
equality, 291

axiomatization, 293
equivalence

of formal systems, 87
relation, 119

Euler circles, 114
evaluation, 47
execution control (/), 229

existential quantifier, 134
expressive power, 321
expressivity, 321
extension, 22
extensional

connective, 22, 329
language, 22

F

factor (of a clause), 191
factorization, 191
failure node, 97
finite

model (modal logics), 359
model property, 202
set, 322
trees, 123

finitely
controllable class, 202
satisfiable, 326

first-order
logic, 131, 133
structure, 144

flat terms, 243
FOL, 131

(first-order logic), 133
semantics, 146

formal
system, 74
system for FOL, 183
systems approach for modal logics, 360
theory, 74

forward chaining, 51
free occurrence of a variable, 135
free variables, 135, 148
Frege system, 87
fundamental theorem of arithmetic, 207
fuzzy logic, 337
fuzzy set, 342

G

Gödel’s
completeness theorem, 183
incompleteness theorem, 92, 206
(proof), 208

generalization, 284, 285

520 Logic for Computer Science and Artificial Intelligence

generalized characteristic function, 342
Gentzen

(LK system), 90
system, 88

greatest lower bound, 118

H

halting problem, 13
head of a rule, 219
Herbrand

base, 176, 177
instance, 177, 183
interpretation, 176, 177
terms, 177
theorem, 183
theorem (for clauses), 189
universe, 176

hierarchy (priority) of connectives, 40
Hilbert

(proof procedure), 109
system, 87

Horn clause, 113
(computability), 241

I

implication, 20
incompleteness theorem, 206

(Gödel), 92
independence, 87
induction axiom, 76

(extensional version), 321
(intensional version), 321

induction
(proof by), 73
principle, 73

inductive inference, 278, 280
inference, 259

node, 97
rule, 75

infimum, 118
infinite

set, 323
tree, 63

initial sequent, 91
intension, 22
interpolant, 54

interpretation, 41, 46
of a formula, 47
of a set of formulas, 47
(in FOL), 146

intuitionistic proof, 19
irreflexive relation, 63, 165
irreflexivity, 118

K

K (minimal logic), 360
K-modal frame, 358
König’s lemma, 63
knowledge, 385

(definition), 388
modal logic, 389

Kripke, 356
model, 358
semantics, 356, 358

L

Löwenheim–Skolem theorem, 179
language, 30
lattice, 116
least upper bound, 117
left-hand side of a rule, 219
Leibniz’s law, 293
length of a clause, 46
liar’s paradox, 8
Lindenbaum algebra, 119
linear

strategy, 198
term, 451

literal, 46
LK (Gentzen’s system), 90
logic

(formal definition), 26
(informal definitions), 24
(multi-valued), 327
programming, 213, 219

logical
axiom, 87
connective, 40
consequence, 47
constant, 134, 273

Index 521

inference rule, 87
symbols, 134

LP abstract interpreter, 221

M

matching, 127
meta-language, 30
MFOL (pure monadic class), 203
MFOL= (monadic first-order logic), 203
mgu: most general unifier, 127
minimal logic (K), 360
minimally unsatisfiable, 53, 108
modal

frame, 358
logics, 353

model, 47
(general notion), 137
intersection property, 113
of a set of formulas (FOL), 147
of a set of formulas (PL), 47

monadic
class, 202, 203
class of FOL, 203
first-order logic, 203

monotonicity, 28
monotony, 309
more general clause, 267
MP (modus ponens), 79, 89
multi-sorted structure, 150
multi-valued logic, 327

N

n-valid formula, 162
n-validity, 162
NAF (negation as failure), 232
natural deduction system, 87, 88
negation as failure (NAF), 232
negative

clause, 46
FOL, 134
literal, 46
normal form, 45

nnf, 45
non-compactness of SOL, 325
non-logical symbols, 134
non-rational infinite trees, 124

non-reflexive relation, 63
non-standard model, 153
non-standard model, 152
nondeterminism, 107, 109
normal form (Skolem), 176
not (Prolog), 232

O

ontologies, 4
ontology, 272
open

branch, 56, 97
semantic tree, 97
tableau, 56
wff, 136

order relation, 117
owff: open wff, 136

P

p-valued logic, 327
paradox, 8
paramodulant, 302
paramodulation, 300
parent clause, 102
partial interpretation, 46

of a formula, 47
partially ordered set, 117, 118

alternate definition, 118
PC (propositional logic), 39
Peano’s axioms, 76
PFOL (pure first-order logic), 134
pigeonhole principle, 112, 324
PL (propositional logic), 39
PL syntax, 40
positive

clause, 46
literal, 46

possible worlds semantics, 356
predicate logic, 131
predicative programming, 241
premise, 29, 75
prenex normal form, 169
Presburger arithmetic, 69, 147
principle of mathematical induction, 73
proof, 64, 77

by cases, 74

522 Logic for Computer Science and Artificial Intelligence

by diagonalisation, 74
by induction, 73
(in LK), 91
procedure, 110
system, 75

proper
axiom, 87
inference rule, 87

properties of the knowledge, 394
proposition, 39

(formal definition), 119
propositional logic (PL), 39
provable formula, 76

in a formal system, 76
pure

first-order logic, 134
literal, 51, 93, 405, 420

purity principle, 420, 432

Q

quantified variable, 134
quotient algebra, 119

R

rational infinite trees, 124
reasoning, 48
reductio ad absurdum, 73
reduction, 303
reflexivity, 117
refutation, 104
refutational completeness, 105, 106

(FOL resolution), 192
relational

programming, 241
system, 145

resolution
(in FOL), 190
(in PL), 101
method (in FOL), 190
(refutational completeness for FOL),

192
rule, 102

resolvent, 102
rewriting, 303
right-hand side of a rule, 219

rule, 219
Russell’s paradox, 6, 10

S

SAT problem, 92
satisfaction, 139

relation (in FOL), 146
satisfiability

by resolution, 192, 438
validity (in modal logic), 358

satisfiable, 47
formula in an e-frame, 390

saturation, 438
scope of quantifiers, 134
sea battle argument, 365
second-order logic, 319
self-resolving, 192
semantic tableaux (for p-valued

logics), 334
(in FOL), 154
(PL), 54
(PL), algorithm, 61
(uses), 61
(with unification), 166

semantic
trees (in FOL), 186
trees (in PL), 96

semantics of PL (of PC), 41
semi-decision procedure, 101, 169

for FOL, 183
sequent, 90

calculus, 88
set (constructivist definition), 12
set operations fuzzy sets, 343
set theory, 10
sign of a literal, 46
skolem function, 166

normal form, 176
skolemisation, 174, 188, 326
sort reduction, 150
sound, 84
soundness of the resolution method,

105, 106
soundness of binary resolution, 192
standard model, 153
strategy, 51, 110
structural induction, 152, 205

Index 523

structure isomorphism, 145
sub-formula, 134
substitution, 126

codomain, 126
domain, 126
notation, 126

subsumption, 266, 267
(rule), 93

supremum, 117
syllogism, 32

T

tableau
(closed), 56
(open), 56

tail of a rule, 219
tautological, 47
tautology, 21
temporal logic, 371
term, 125

algebra, 178
equation, 127
replacement, 301

theorem, 77
(Gödel’s incompleteness), 92

torsion group, 322
total order, 117, 118

relation, 117, 507
totally ordered set, 118

(chain), 117
transitivity, 117
translation approach, 361
trees, 63

truth, 139
and satisfaction, 139
functional connective, 329
table, 42

U

unfair strategy, 156
unification, 127, 166

algorithm, 128
unit

clause, 46
strategy, 112

universal quantifier, 134
universe of discourse, 144
unsatisfiable, 47
upper bound, 117
uses of semantic tableaux, 61

V

valid, 47
formula in an e-frame, 390

valuation, 358
variables, 79, 135, 325
variant, 192
Venn diagrams, 114
very, very long proofs, 184

W

weak equivalence, 175
well-founded relation, 497
wff: well-founded formula, 40

	Cover
	Logic for Computer Science and Artificial Intelligence
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Logic, foundations of computer science, and applications of logic to computer science
	1.2. On the utility of logic for computer engineers

	Chapter 2. A Few Thoughts Before the Formalization
	2.1. What is logic?
	2.1.1. Logic and paradoxes
	2.1.2. Paradoxes and set theory
	2.1.2.1. The answer

	2.1.3. Paradoxes in arithmetic and set theory
	2.1.3.1. The halting problem

	2.1.4. On formalisms and well-known notions
	2.1.4.1. Some “well-known” notions that could turn out to be difficult to analyze

	2.1.5. Back to the definition of logic
	2.1.5.1. Some definitions of logic for all
	2.1.5.2. A few more technical definitions
	2.1.5.3. Theory and meta-theory (language and meta-language)

	2.1.6. A few thoughts about logic and computer science

	2.2. Some historic landmarks

	Chapter 3. Propositional Logic
	3.1. Syntax and semantics
	3.1.1. Language and meta-language
	3.1.2. Transformation rules for cnf and dnf

	3.2. The method of semantic tableaux
	3.2.1. A slightly different formalism: signed tableaux

	3.3. Formal systems
	3.3.1. A capital notion: the notion of proof
	3.3.2. What do we learn from the way we do mathematics?

	3.4. A formal system for PL (PC)
	3.4.1. Some properties of formal systems
	3.4.2. Another formal system for PL (PC)
	3.4.3. Another formal system

	3.5. The method of Davis and Putnam
	3.5.1. The Davis–Putnam method and the SAT problem

	3.6. Semantic trees in PL
	3.7. The resolution method in PL
	3.8. Problems, strategies, and statements
	3.8.1. Strategies

	3.9. Horn clauses
	3.10. Algebraic point of view of propositional logic

	Chapter 4. First-order Terms
	4.1. Matching and unification
	4.1.1. A motivation for searching for a matching algorithm
	4.1.2. A classification of trees

	4.2. First-order terms, substitutions, unification

	Chapter 5. First-Order Logic (FOL) or Predicate Logic (PL1, PC1)
	5.1. Syntax
	5.2. Semantics
	5.2.1. The notions of truth and satisfaction
	5.2.2. A variant: multi-sorted structures
	5.2.2.1. Expressive power, sort reduction

	5.2.3. Theories and their models
	5.2.3.1. How can we reason in FOL?

	5.3. Semantic tableaux in FOL
	5.4. Unification in the method of semantic tableaux
	5.5. Toward a semi-decision procedure for FOL
	5.5.1. Prenex normal form
	5.5.1.1. Skolemization

	5.5.2. Skolem normal form

	5.6. Semantic trees in FOL
	5.6.1. Skolemization and clausal form

	5.7. The resolution method in FOL
	5.7.1. Variables must be renamed

	5.8. A decidable class: the monadic class
	5.8.1. Some decidable classes

	5.9. Limits: Gödel’s (first) incompleteness theorem

	Chapter 6. Foundations of Logic Programming
	6.1. Specifications and programming
	6.2. Toward a logic programming language
	6.3. Logic programming: examples
	6.3.1. Acting on the execution control: cut “/”
	6.3.1.1. Translation of imperative structures

	6.3.2. Negation as failure (NAF)
	6.3.2.1. Some remarks about the strategy used by LP and negation as failure
	6.3.2.2. Can we simply deduce instead of using NAF?

	6.4. Computability and Horn clauses

	Chapter 7. Artificial Intelligence
	7.1. Intelligent systems: AI
	7.2. What approaches to study AI?
	7.3. Toward an operational definition of intelligence
	7.3.1. The imitation game proposed by Turing

	7.4. Can we identify human intelligence with mechanical intelligence?
	7.4.1. Chinese room argument

	7.5. Some history
	7.5.1. Prehistory
	7.5.2. History

	7.6. Some undisputed themes in AI

	Chapter 8. Inference
	8.1. Deductive inference
	8.2. An important concept: clause subsumption
	8.2.1. An important problem

	8.3. Abduction
	8.3.1. Discovery of explanatory theories
	8.3.1.1. Required conditions

	8.4. Inductive inference
	8.4.1. Deductive inference
	8.4.2. Inductive inference
	8.4.3. Hempel’s paradox (1945)

	8.5. Generalization: the generation of inductive hypotheses
	8.5.1. Generalization from examples and counter examples

	Chapter 9. Problem Specification in Logical Languages
	9.1. Equality
	9.1.1. When is it used?
	9.1.2. Some questions about equality
	9.1.3. Why is equality needed?
	9.1.4. What is equality?
	9.1.5. How to reason with equality?
	9.1.6. Specification without equality
	9.1.7. Axiomatization of equality
	9.1.8. Adding the definition of = and using the resolution method
	9.1.9. By adding specialized rules to the method of semantic tableaux
	9.1.10. By adding specialized rules to resolution
	9.1.10.1. Paramodulation and demodulation

	9.2. Constraints
	9.3. Second Order Logic (SOL): a few notions
	9.3.1. Syntax and semantics
	9.3.1.1. Vocabulary
	9.3.1.2. Syntax
	9.3.1.3. Semantics

	Chapter 10. Non-classical Logics
	10.1. Many-valued logics
	10.1.1. How to reason with p-valued logics?
	10.1.1.1. Semantic tableaux for p-valued logics

	10.2. Inaccurate concepts: fuzzy logic
	10.2.1. Inference in FL
	10.2.1.1. Syntax
	10.2.1.2. Semantics

	10.2.2. Herbrand’s method in FL
	10.2.2.1. Resolution and FL

	10.3. Modal logics
	10.3.1. Toward a semantics
	10.3.1.1. Syntax (language of modal logic)
	10.3.1.2. Semantics

	10.3.2. How to reason with modal logics?
	10.3.2.1. Formal systems approach
	10.3.2.2. Translation approach

	10.4. Some elements of temporal logic
	10.4.1. Temporal operators and semantics
	10.4.1.1. A famous argument

	10.4.2. A temporal logic
	10.4.3. How to reason with temporal logics?
	10.4.3.1. The method of semantic tableaux

	10.4.4. An example of a PL for linear and discrete time: PTL (or PLTL)
	10.4.4.1. Syntax
	10.4.4.2. Semantics
	10.4.4.3. Method of semantic tableaux for PLTL (direct method)

	Chapter 11. Knowledge and Logic: Some Notions
	11.1. What is knowledge?
	11.2. Knowledge and modal logic
	11.2.1. Toward a formalization
	11.2.2. Syntax
	11.2.2.1. What expressive power? An example
	11.2.2.2. Semantics

	11.2.3. New modal operators
	11.2.3.1. Syntax (extension)
	11.2.3.2. Semantics (extension)

	11.2.4. Application examples
	11.2.4.1. Modeling the muddy children puzzle
	11.2.4.2. Corresponding Kripke worlds
	11.2.4.3. Properties of the (formalization chosen for the) knowledge

	Chapter 12. Solutions to the Exercises
	Bibliography
	Index

