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PREFACE 

This volume and its companion volume includes the edited versions of the principal 
lectures and selected papers presented at the NATO Advanced Study Institute on 
Optimization and Decision Support Systems in Civil Engineering. 

The Institute was held in the Department of Civil Engineering at Heriot-Watt 
University, Edinburgh from June 25th to July 6th 1989 and was attended by eighty 
participants from Universities and Research Institutes around the world. A number 
of practising civil and structural engineers also attended. The lectures and papers 
have been divided into two volumes to reflect the dual themes of the Institute 
namely Optimization and Decision Support Systems in Civil Engineering. Planning 
for this ASI commenced in late 1986 when Andrew Templeman and I discussed 
developments in the use of the systems approach in civil engineering. A little later 
it became clear that much of this approach could be realised through the use of 
knowledge-based systems and artificial intelligence techniques. Both Don Grierson 
and John Gero indicated at an early stage how important it would be to include 
knowledge-based systems within the scope of the Institute. 

The title of the Institute could have been: 'Civil Engineering Systems' as this 
would have reflected the range of systems applications to civil engineering problems 
considered by the Institute. These volumes therefore reflect the full range of these 
problems including: structural analysis and design; water resources engineering; 
geotechnical engineering; transportation and environmental engineering. 

The systems approach includes a number of common threads such as: mathematical 
programming, game theory, utility theory, statistical decision theory, networks, 
and fuzzy logic. But a most important aspect of the Institute was to examine 
similar representations of different civil and structural engineering problems and 
their solution using general systems approaches. This systems approach to civil 
and structural engineering is well illustrated in the first paper in the first volume of 
these proceedings. The Decision Support aspect of the Institute was reflected by the 
knowledge-based systems and artificial intelligence approach. Papers discussing 
many aspects of knowledge-based systems and artificial intelligence in civil and 
structural engineering are included in this volume. 

I should like to thank all the members of the organising committee for their assis­
tance given so readily both before and during the Institute: Professor C B Brown, 
Department of Civil Engineering, University of Washington, Seattle, United States 
of America; Professor J S Gero, Department of Architectural Science, Univesity of 
Sydney, Australia; Professor D Grierson, Department of Civil Engineering, Univer­
sity of Waterloo, Canada; Professor P W Jowitt, Department of Civil Engineering, 
Heriot-Watt University, Edinburgh, United Kingdom; and Professor A B Tem­
pleman, Department of Civil Engineering, The University of Liverpool, United 
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Kingdom. The Director and Members of the Organising Committee would like to 
thank the NATO Scientific Affairs Committe for funding the Institute. Without 
the support of the Committee this Institute could not have been held. 

I should also like to thank Professor A D Edwards, Head of the Department of Civil 
Engineering and Dean of the Faculty of Engineering at Heriot-Watt University for 
all the support he provided with this and other projects. 

My sincere thanks are also due to the research students of the Department of Civil 
Engineering at Heriot-Watt University including: David Howarth, Chen Chao Xu, 
Jim Milne and John Hampshire who helped me considerably during the Institute. I 
should also like to thank Erik Moncrief£ who was responsible for typesetting many 
of the papers in these proceedings and Asad Khan who so kindly came to my 
assistance during the final stage of preparation of these proceedings. 

Finally I should also like to thank Dr LV da Cunha, Director of the NATO ASI 
Programme for all his help in the organisation of the Institute. 

Barry H V Topping 
Department of Civil Engineering 

Heriot-Watt University 
Edinburgh 



Knowledge-Based Approaches to 
Engineering Design 1 

JohnS. Gero 
The University of Sydney 
New South Wales 
Australia 

Abstract This article introduces the fundamental notions of Knowledge-Based Systems 
before introducing a variety of categories of knowledge-based systems in design. It distin­
guishes between systems used for analysis and those used for synthesis. It concludes by 
discussing research which is likely to support future knowledge-based design systems. 

1 Introduction 

Design is one of the fundamental purposeful acts of humans. It commences with 
dissatisfaction with the current state either because the current state is unsatis­
factory or because there is a perception that it can be improved. Thus, design is 
always goal driven. However, one of the distinguishing features of design (from, 
say, problem solving) is that in design part of the process involves determining 
and deciding the goals. The goals in design are called functions. These are the 
functions that are expected to be exhibited by the resultant artifact. The results 
of designing are not built, constructed or manufactured artifacts, only descriptions 
of artifacts. These descriptions describe the structure of the artifacts. Structure 
is the set of elements and their relationships which go to make up the artifact. 
Designing is concerned with transforming function to structure. 

2 Computer-Aided Design 

Computer-aided design has passed through a number of distinct phases. It com­
menced in the 1960s with a concern for graphical representation of objects being 

1This lecture draws directly from Gero, J. S., (1989), 'Expert systems for design,' Proc. ICESEA 
89, Wuhan, China. 

B. H. V. Topping (ed.), 
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 1-12. 
© 1992 Kluwer Academic Publishers. 
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designed. This graphical genesis still manifests itself in today's computer-aided 
design systems. In the 1970s there was a concern for object modeling to support 
graphical representation. The aspect being modeled was geometry and topology. It 
is often simply called geometric modeling. There was the recognition that aspects 
other than geometric were also needed, so many systems allowed the inclusion of 
non-geometric attributes by attaching them to geometric entities. 

By the end of the 1970s and the early 1980s geometric modeling had reached 
sophisticated levels. At the same time engineering analysis tools were finding their 
way into computer-aided design systems. The most prominent amongst these was 
the finite element analysis method. 

However, with some exceptions, computer-aided design systems were not con­
cerned with providing direct assistance to designers in their design decision-making 
processes. The exceptions derived their impetus from operations research tech­
niques but did not find widespread acceptance. Recently, there has been renewed 
interest in using computers as direct aids to design decision making. 

3 What are Knowledge-Based Systems 

3.1 Knowledge Engineering 

Knowledge-based systems are computer programs in which the knowledge is explic­
itly coded rather than implicitly encoded. They make use of knowledge engineering. 
Knowledge engineering is a subfield of artificial intelligence. It is concerned with 
the acquisition, representation and manipulation of human knowledge in symbolic 
form. Human knowledge is thought of as being reasoning (rather than the sim­
ple ability to acquire facts as you might find in an encyclopedia). Just as the 
industrial revolution can be considered to have automated mechanical power, and 
the computer revolution to have automated calculation, so knowledge engineering 
automates reasoning. 

Feigenbaum (1977) defines the activity of knowledge engineering as follows: 

The knowledge engineer practices the art of bringing the principles and 
tools of artificial intelligence research to bear on difficult application 
problems requiring expert knowledge for their solution. The technical 
issues of acquiring this knowledge, representing it, and using it appro­
priately to construct and explain lines of reasoning are important in 
the design of knowledge-based systems ... The art of constructing in­
telligent agents is both part of and an extension of the programming 
art. It is the art of building complex computer programs that represent 
and reason with knowledge of the world. 

The fundamental structure used to represent reasoning and, hence, knowledge, 
is symbolic inference. Inference is based on well established logic principles and 
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has been extended to operate on symbols. The obvious advantage of inferencing 
is that it does not require an a priori mathematical theory such as is found in, 
say, hydraulics or structures. It can be used to manipulate concepts. Barr and 
Feigenbaum (1981), talking about the applicability of knowledge engineering in 
conceptual areas, state: 

Since there are no mathematical cores to structure the calculational 
use of the computer, such areas will inevitably be served by symbolic 
models and symbolic inference techniques. 

3.2 Expert Systems 

Expert systems have been defined as knowledge-based computer programs which 
use symbolic inference procedures to deal with problems that are difficult enough 
to require significant human expertise for their solution. 

• Human experts can be compared with conventional computer programs (Lans­
down, 1982). 

• Human expertise arises from the possession of structured experience and 
knowledge in a specific subject area. These skills grow as more and more 
experience is gained. 

• Human experts can explain and, if necessary, defend the advice they give and 
are aware of its wider implication. 

• Human experts determine which knowledge is applicable rather than pro­
ceeding algorithmically. 

• Human experts can, and frequently have to, act with partial information. In 
order to supplement this, they ask only sufficient and pertinent questions to 
allow them to arrive at a conclusion. 

Conventional computer programs differ markedly from programs which act as ex­
perts. 

• They are usually complex and difficult for anyone other than their designers 
to understand. 

• They embody their knowledge of the subject area in terms designed for com­
putational efficiency such that this knowledge is intertwined with the control 
parts of the program. Thus, the knowledge is implicit in the program in such 
a way which makes it difficult to alter or change. 

• They cannot suggest to their users why they need a particular fact nor justify 
their results. 
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Thus, expert systems aim to capture the ability of human experts to ask pertinent 
questions, to explain why they are asking them, and to defend their conclusions. 
These aspects are unrelated to a specific domain of knowledge and apply to all 
experts. 

Expert systems are computer programs which attempt to behave in a manner 
similar to rational human experts. They all share a common fundamental archi­
tecture even if the knowledge encoding mechanisms differ. An expert system will 
have the following components: 

an inference engine this carries out the reasoning tasks and makes the system 
act like an expert 

a knowledge base this contains the expert's domain specific knowledge and is 
quite separate from the inference engine 

an explanation facility this interacts with both the knowledge base and the 
inference engine to explain why an answer is needed at a particular point or 
how a question can be answered; further it is used to explain how a conclusion 
was reached or to explain why a specific conclusion could not be reached 

a state description or working memory this contains the facts which have 
been inferred to be true and those which have been found to be false during a 
particular session, as well as the facts provided by the user of another system 

a knowledge acquisition facility this allows the knowledge base to be modified 
and extended 

a natural language interface few expert systems have this yet. 

4 Expert Systems in Design 

4.1 Expert Systems for Design Analysis and Design 
Synthesis 

Expert systems were originally developed to carry out diagnosis using classification 
concepts. They readily lend themselves to engineering analysis and evaluation that 
is, design analysis. Design analysis may be considered as the interpretation of a 
design description. The facts which describe an object and the knowledge by 
which properties of the object can be derived can be modelled as formal axiomatic 
systems. The advantage is that knowledge becomes amenable to formal proof 
procedures and the mechanism of logical inference (Kowalski, 1983). 

A design possesses attributes other than those facts by which it is represented. 
These attributes can be described as derived, or implicit attributes, and a set of 
such attributes constitutes the semantic content of the design. The major operation 
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in discovering meaning is interpretation by deductive inference, and the knowledge 
about interpretation can be formalised as inference rules. 

For any system the issue arises as to how the process of interpretation should 
proceed. For a realistic set of inference rules the number of facts that can be derived 
is likely to be very large. There will therefore be more work involved in asking of a 
design: 'What attributes can be inferred from its description?'; than asking: 'Does 
the design have this particular set of characteristics?' The former suggests a data­
driven approach which starts with a design description and an attempt is made to 
infer as much as the rules will allow. The latter is a goal-directed approach which 
begins with various attributes and tries to discover if the design possesses those 
attributes. 

A system containing inference rules is of value even when there are no facts 
constituting a design description. The 'leaf nodes' of an inference tree correspond 
to requests for facts about the design and so can be handled interactively by means 
of prompts. They could also be regarded as entry points to other axiomatic sub­
systems which interpret computer databases. When incorporated into a general 
purpose inference system a dialogue is produced. The derived facts constitute the 
meaning of the total system. 

The question arises whether the same architecture (inference rules with back­
ward and/or forward chaining) used to carry out design analysis can be useful in 
design synthesis. It has been shown that it can in those cases where the set of 
design solutions is not large and where the components of the design and their 
relationships are known. For more complex problems a different architecture is 
needed. 

Workable systems can be devised which operate on the basis of formal reasoning. 
This is particularly so in the case of interpreting the properties and performances 
of buildings where the theory by which interpretations can be made is well under­
stood. This is generally the case, for example, when evaluating the performance of 
buildings for compliance with the requirements of building codes. 

Expert systems of this type are also applicable to the synthesis of designs, 
particularly for those classes of design problem which can be subdivided into inde­
pendent subproblems. But expert systems which are applicable to the more general 
class of design problem can also be devised. 

Expert systems for design analysis are well-described in the literature (Sriram 
and Adey, 1986a; Sriram and Adey, 1986b; Sriram and Adey, 1987a; Sriram and 
Adey, 1987b; Sriram and Adey, 1987c; Gero, 1988a; Gero, 1988b; Gero, 1988c; 
Dym, 1985; Maher, 1987; Pham, 1988). Expert systems for design synthesis can 
also be found in the above references as well as in Rychener (1988), Gero (1985), 
and Gero (1987a). The foundations of the use of expert systems for design analysis 
and design synthesis are presented in Coyne et al. (1989). 
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4.2 Classes of Expert Systems Applications in Design 

There appear to be two fundamental classes of applications of expert systems in 
design. These are: 

1. expert systems for design analysis; and 

2. expert systems for design synthesis. 

The first class can be modeled by reasoning processes based on deductive reasoning, 
whilst the second class requires abductive reasoning. 

4.2.1 Expert Systems for Design Analysis In this class a design descrip­
tion must have been previously produced. The function of design analysis is to 
transform the structure inherent in the description to a behaviour, so that the be­
haviour may be evaluated. The deductive knowledge in the knowledge base encodes 
this knowledge. 

If the knowledge is in rules it has the following form: 

If structure attributes then behaviour attributes. 

Often, the connection between behaviour and function is also encoded in the form: 

If behaviour attributes then function performed. 

Some expert systems encode the connection between description and structure in 
the form: 

If description attributes then structures attributes. 

Figure 1 shows typical frameworks for the use of expert systems for design analysis. 

4.2.2 Expert Systems for Design Synthesis In this class the function of 
the expert system is to aid the human designer to produce the design description 
or to produce the design description directly. Design synthesis is concerned with 
transforming expected behaviour derived from function to structure and a resulting 
design description. The abductive knowledge in the knowledge base encodes this 
knowledge. 

If the knowledge is in rules, it has the following form: 

If behaviour attributes then structure attributes. 

Often, the connection between function and behaviour is also encoded, in the form: 

If function required then behaviour attributes. 

Most expert systems encode the connection between structure and design descrip­
tion, in the form: 

If structure attributes then design description. 

Figure 2 shows typical frameworks for the use of expert systems for design synthesis. 



Expert System 1-1 ~----~..-~l ..... __ u_s_er __ _, 

(a) User provides all fadual information 

Expert System 

(b) User interprets the design description to provide fadual information. 

Expert System User 

(c) Expert system interrogates design description directly. 

Figure 1. Frameworks for the use of expert systems for design anal­
ysis. 

5 Knowledge-Based Computer-Aided Design 

7 

The knowledge representation used in the expert systems technology fails to ac­
count for fundamental notions in design. Designing, whether with the aid of com­
puters or not, involves transforming a description expressed in function terms to 
a fixed description expressed in structure terms. Functions are the requirements, 
specifications or goals. Part of designing involves determining the functions. Struc­
ture is the set of elements and their relationships that go to make up an artifact. 
When looking at the description of structure there is no explicit function evident. 
Similarly, function contains no structure. Since these two classes have no descrip­
tors in common how can one be transformed into the other. 

A designer's experience allows him to map function onto structure. This is 
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Expert System User 

Structure 

(a) Expert system produces structure only, generally in symbolic form. 

Expert System r -, User 

~ 
Design Description 

(b) Expert system directly produces the final design description, generally in graphical form. 

Expert System User 

1 
CAD System 

~ 
Design Description 

(c) Expert system produces the structure and drives a commercial CAD system to produce the 
design description in graphical form. 

Figure 2. Frameworks for the use of expert systems fm· design syn­
thesis. 
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how the abductive rules in expert systems encode this knowledge. However, such a 
direct mapping does not allow for any reasoning about the transformation process 
since it is a direct mapping. How does a designer incorporate new structures? It 
is suggested that both function and structure are translated into a homogeneous 
concept, namely, behaviour. Function is decomposed into expected behaviour. If 
this behaviour is exhibited by the structure then the function is produced. From 
the structure the actual behaviour can be deduced. In engineering the deductive 
process of producing the actual behaviour is called 'analysis.' Further it is suggested 
that function, structure, and behaviour are bound together into a single conceptual 
schema through experience. 

This conceptual schema provides a framework for design activity. It can be 
accessed via function and it reminds the designer of appropriate structures. It can 
be accessed via structure and it introduces new functions into the design. It can 
be accessed via behaviour and structures which produce that behaviour found. 

A conceptual schema, called 'prototypes,' for knowledge-based computer-aided 
design has been developed. A prototype is a generalization of groupings of design 
elements. It provides a framework for storing and processing design experience 
(Gero, 1987b). The prototype represents a class of elements from which instances 
of elements can be derived. It contains the necessary function and structure de­
scriptions as well as behaviours and knowledge in a generic sense. Variables and 
methods are also provided. An instance is derived by inheriting any property, vari­
able, and/or method from the generic prototype. A prototype may be related to 
other prototypes and an instance may need to inherit properties from instances of 
those prototypes. The system, therefore, constructs its own hierarchy. 

A prototype needs to represent the function properties, structure properties, 
expected behaviours, the relationships to any other prototypes necessary and the 
knowledge required to find values for structure variables from the function descrip­
tion through behaviour. The function properties include the intended function, 
and the expected behaviours as attributes and variables. The structure properties 
include the vocabulary, their topology (these two produce a design description), 
configurational knowledge, as well as the actual behaviours as attributes and vari­
ables of the prototype. The vocabulary will include those elements that are essential 
to the existence of the prototype and those which are optional. The description 
will include typological properties as well as other attributes, such as dimensions, 
material, etc. Knowledge is required for every mapping from a property to another 
property. Knowledge is required to map from the behaviour attributes to the be­
haviour variables and to the description required. There will be constraints both 
on the function side and on the structure side. Constraints on the function side 
will generally be translated into requirements to be met, whereas constraints on 
the structure side will generally serve to prune the set of possibilities. 

In addition to the elements described above, any design situation exists within 
a particular context. This context serves to define particular areas of interest. In 
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Figure 3. The conceptual schema prototype (after Rosenman and 
Gero, 1989). 

some cases the context may merely define a set of function requirements whereas 
in other cases the context may define some, if not all, of the structure properties. 
For example, given that we want to design the engineering structure for a 50-storey 
high office building of square plan this will define a requirement with regards to 
wind loads and, in addition, may define the engineering structural system type and 
the material. 

Figure 3 shows the model of the prototype schema consisting of function prop­
erties, behaviour properties and structure properties all existing within envelopes 
of knowledge and context. The function description is divided into function prop­
erties and behaviour properties where the function properties include the goal (or 
goals) and the requirements while the behaviour properties include the required 
(expected) and the actual behaviour attributes and variables. 
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The goal or goals are the intended function of the prototype. The requirements 
are divided into those requirements which must always be met and those which 
may have to be met depending on the particular problem at hand. The behaviour 
properties form the core of this model. The expected behaviours are derived from 
the function properties required whereas the actual behaviours are derived from the 
structure description. However, the selection of the type of behaviour to be derived 
from the structure description is dictated by the expected behaviours. For example, 
given the structure description of a door, we would not expect to derive its aromatic 
properties since this is not a property which has any bearing on its function. It is 
in this behaviour core, where there are commensurate elements, which allows us to 
evaluate the suitability of a prototype for a given design situation. 
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Expert Systems for Engineering Design 

M. L. Maher 
Department of Civil Engineering 
Carnegie Mellon University 
Pittsburgh 
United States of America 

Abstract The synthesis of design alternatives during the early stages of design is based 
largely on experience. The use of an expert system approach promises to capture some of 
this expertise and apply it in a systematic manner. The formalization of design knowledge 
in an expert system is facilitated by an expert system shell developed specifically for design 
applications. Example applications for structural design are presented. 

1 Introduction 

Design is a process of producing a description of a system or process to satisfy a set 
of requirements. Design proceeds through several levels of abstraction, where more 
information about the requirements as well as the evolving design description is 
available as the process continues. In this paper, the focus is on the early stages of 
design where the design knowledge is largely qualitative. During the early stages, 
or preliminary design, the major components and subsystems are identified and 
their composition is evaluated. 

There are many books that provide definitions and elaborations of the design 
process; in structural engineering such books include [2], [3], [5], [6]. The design 
process can be considered as comprising different phases, synthesis being one of 
these phases. Although the phases may not be addressed hierarchically for the 
entire design cycle and are often carried out recursively, there is an inherent order in 
which designers approach a design problem. The following represents one formalism 
of the design process. 

Formulation involves identifying the goals, requirements and possibly the vocab­
ulary relevant to the needs or intentions of the designer. 

Synthesis involves the identification of one or more design solutions within the 
design space elaborated during formulation. 
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Evaluation involves interpreting a partially or completely specified design de­
scription for conformance with goals and/or expected performances. This 
phase of the design process often includes engineering analysis. 

Formulation occurs at some level of abstraction and provides enough informa­
tion to begin a synthesis process. Synthesis involves identifying the form of the 
design solution. Evaluation, during the early stages of design, is usually based on a 
subjective assessment of relevant criteria. Although synthesis and evaluation may 
be based on associated quantitative models, the designer typically reasons about 
these models in a qualitative manner. 

The knowledge used during synthesis and evaluation of preliminary designs is 
not well articulated. Experienced designers resort to trial and error less frequently 
than novice designers when searching for an appropriate or satisfactory form, sug­
gesting that the use of knowledge-based expert systems to represent 'experience' 
may improve design synthesis and evaluation. 

2 Expert Systems 

Knowledge-based expert systems (KBES) have emerged from research in artificial 
intelligence as practical problem-solving tools that can reach a level of performance 
comparable to that of a human expert in some specialized problem domain. 

An expert system can contain from three to six of the components illustrated 
in Figure 1. All expert systems contain the following three basic components. 

The knowledge base contains the knowledge specific to the domain of the 
problem to be solved. The knowledge in an expert system can be classified ac­
cording to a spectrum ranging from deep to surface knowledge. Deep or causal 
knowledge is knowledge of basic principles, such as Newton's laws or static equilib­
rium. Surface or heuristic knowledge is knowledge developed through experience. 
Analysis procedures lie close to the deep knowledge end of the spectrum, while 
knowledge about combining and placing structural systems in a given building is 
closer to surface knowledge. 

The context contains facts that reflect the current state of the problem. The 
organization of the context depends on the nature of the problem domain. The 
context builds up dynamically as a particular problem is being considered, and is 
used by the inference mechanism to guide the decision making process. 

The inference mechanism manipulates the context using the knowledge base. 
Typically, the inference mechanism applies the knowledge base to the context using 
an approach suitable for a class of problems. The inference mechanism can embody 
a number of problem solving strategies, such as forward chaining, where the system 
reasons about the initial state of known facts until a goal state or conclusion is 
determined to be true or appropriate. The problem solving strategy serves as a 
formalization of the process used to solve a problem; it defines the focus of attention 
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at any point in the solution process. More detailed descriptions of problem solving 
strategies can be found in [1], [4], [7]. 

There are three other components that are not necessarily part of every expert 
system but are desirable in a final product. 

The knowledge acquisition module serves as an interface between the ex­
pert(s) and the expert system. It provides a means for entering knowledge into the 
knowledge base and revising this knowledge when necessary. 

The explanation module provides explanations of the inferences used by the 
expert system. This explanation can be a-priori, why a certain fact is requested, 
or a-posteriori, how a conclusion was reached. 

The user interface module provides an interface between the user and the 
expert system, usually as a command language for directing execution. The inter­
face is responsible for translating the input as specified by the user to the form 
used by the expert system and for handling the interaction between the user and 
the expert system during the problem solving process. 

A number of formalisms have been developed to represent the knowledge in a 
domain. One such representation is the production system {PS) model [1]. The 
principal feature of expert systems based on the PS model is that a clear distinction 
is made between the knowledge-base, containing the model of an expert's problem­
solving knowledge, and the control strategy or inference mechanism which manip­
ulates the knowledge base. In addition to the heuristic surface knowledge, which 
consists of IF-THEN production rules encoding empirical associations based on ex-
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perience, the knowledge-base can incorporate fairly deep knowledge comprised of 
algorithmic procedures. Whereas the knowledge-base is specific to a given domain, 
the control strategy is completely general. 

The process of using a production system KBES is as follows. The user enters 
some known facts about the problem into the context, the part of the KBES that 
contains the knowledge about the particular problem at hand. Following its control 
strategy, the inference mechanism locates the potentially applicable rules-those 
whose condition portion is matched by the facts in the context-selects one of these 
and fires it, that is, causes its action to be executed. The result of any action is to 
add to or modify some aspect of the context; thus, new rules become candidates 
to be fired, and a cylce of matching and firing is repeated in an 'infinite loop' until 
a goal is satisfied or there are no more rules remaining to be fired. 

3 EDESYN 

EDESYN (Engineering DEsign SYNthesis) is a software environment for develop­
ing expert systems for design. The development of EDESYN was modelled after 
the expert system 'shell' concept. An approach to developing an expert system 
for structural design was implemented as HI-RISE [7]. This approach was gen­
eralized and expanded to facilitate the development of expert systems for design. 
The design method is implemented as an algorithm to serve as an inference mech­
anism. The design knowledge is structured to provide a formalism for developing 
a knowledge-base. 

EDESYN solves a design problem by executing a plan that requires a series of 
goals to be satisfied. Each goal represents a decision in the design process. Thus, 
design solutions are formed by combining design decisions. Some salient features 
of EDESYN are: 

1. The planning is performed during the design process. Goals are organized in 
the order best suited for the design problem under consideration. 

2. Preliminary design is considered as the synthesis of design decisions at various 
levels of abstraction. During synthesis, plan generation, plan execution, and 
goal satisfaction techniques, combined with constraint-directed search, are 
applied. 

3. All feasible solutions for a plan are generated. The alternatives are evaluated 
using heuristic criteria to identify the solution or set of solutions to be pursued 
further. 

EDESYN consists of five main modules: design knowledge-base, synthesis pro­
cessor, design context, user interface, and knowledge acquisition facility, as illus­
trated in Figure 2. When using EDESYN, the knowledge acquisition facility is 
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Figure 2. Architecture of EDESYN. 

invoked first. During knowledge acquisition, the domain specific knowledge is read 
from files prepared by a domain expert. The domain specific knowledge is stored in 
the knowledge-base and the synthesis processor is invoked. The user then provides 
the problem specific information through the user interface to initialize the design 
context and guides the synthesis of design solutions to augment the context. 

The design knowledge-base includes decomposition, planning, constraint, 
and evaluation knowledge. The decomposition knowledge is specified as systems 
and subsystems, where each system comprises a set of attributes. An attribute 
may be another system (i.e. subsystem), representing a synthesis node in a goal 
tree, or a simple attribute, representing a terminal node. The synthesis node is 
specified by another system. The terminal node is specified as a selection from 
a set of discrete alternatives or the evaluation of a Lisp function. The planning 
knowledge is associated with the system to identify the relevant attributes for the 
current design situation and the order in which the attributes should be considered. 

An example of a system definition for designing the lateral load resisting system 
for a building is: 

(system lateral 
3D-lateral one-of (core tube 2D-orthogonal) 
2D-lateral subsystem 2D-lateral 

planning 
If stories < 5 Then 2D-lateral 

end system) 
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The design of a lateral load resisting system is described by the 3D lateral system 
and the 2D lateral system. The 3D lateral system can be selected from a set of 
alternatives and the 2D lateral system must be synthesized. The planning rule 
indicates that buildings with less than 5 stories should only have one attribute, 
i.e. the 3D lateral system is not appropriate. 

The constraints are specified in the knowledge base as elimination constraints, 
where each constraint is a combination of design decisions and design context that 
is not feasible. The constraints are used during the synthesis process to eliminate 
infeasible alternatives. Examples of constraints in the structural design knowledge 
base are: 

IF 
stories > 30 
3D-lateral = 2D-orthogonal 
THEN not feasible 

IF 
2D-lateral-x/material steel 
2D-lateral-y/material = concrete 
THEN not feasible 

The first constraint eliminates a 2D-orthogonal lateral system for buildings with 
more than 30 stories. The second constraint ensures that a concrete system is not 
built in the y direction if the lateral system in the x direction is defined to be steel. 

The evaluation knowledge is specified by a set of criteria for each synthesis 
node or system. A criterion is described by a label, a weighting factor, a non­
dimensionalizing factor, a normalization factor, and a function to determine the 
value of the criterion for a design solution. Example criterion for the lateral system 
are stiffness, compatibility, cost, and ease of construction. The value for each crite­
rion is assessed using qualitative knowledge about structural systems since there is 
not enough information during preliminary design for a quantitative analysis. For 
example, stiffness could be assessed in a relative manner, where the designer knows 
that in most cases a braced frame structure is stiffer than a rigid frame structure. 

The synthesis processor uses the design knowledge in the knowledge base to 
produce feasible design solutions consistent with the context. The overall algorithm 
is based on a constraint directed depth first search through the systems in the 
knowledge-base. The attributes of each system are assigned all legal values, where 
a legal value is one that does not get eliminated by the constraints. All feasible 
combinations are generated for each system, using the planning rules to define and 
order the attributes. After the alternatives for a system have been synthesized, the 
evaluation mechanism is invoked. The alternatives are compared for each criteria 
to produce a set of non-dominated solutions, which are then ranked using the 
preferences specified by the weighting factors. At this point, the solutions are 
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presented to the designer along with the evaluation information and the designer 
chooses one solution for further consideration. 

The design context initially contains the requirements and specifications as­
sociated with a particular design problem. For example, the intial context for a 
structural design problem includes the number of stories in the building, the oc­
cupancy, the structural grid, etc. The context expands as synthesis proceeds to 
include a tree of alternative solutions, where each node in the tree represents a 
solution for an attribute of a system. Along with the solution tree, a hierarchy tree 
is maintained to associate each attribute in the solution tree with the system for 
which it was generated. 

The user interface is implemented using a multi-window, menu driven inter­
action style. During the design synthesis process, the user can view and change 
the design specifications, monitor the synthesis process as a tree of solutions is 
generated, and view a single solution in more detail. 

The knowledge acquisition facility transforms the information provided by 
the expert to the frame based representation of the knowledge base. The ex­
pert provides the following design knowledge: preconditions, decomposition, con­
straints, evaluation criteria, and functions. The design knowledge is specified in 
a simple syntax and stored in files. Preconditions are specified as a set of names, 
default values, and allowable ranges. For example, one precondition may be wind 
load and its default value 30 psf, and its allowable range > 0.0. Decomposition 
knowledge includes the systems, subsystems, attributes, and planning rules. The 
constraints are specified as infeasible combinations of elements. Each evaluation 
criterion is sepcified by a name and a procedure for assigning a value using the 
goals and elements associated with the current solution. Functions are specified 
as Lisp functions that use the current state of the design solution to calculate the 
value of a parameter. 

4 STRYPES and STANLAY 

EDESYN has been used to develop two expert systems for structural design: 
STRYPES and STANLAY. STRYPES generates alternative combinations of struc­
tural systems and materials for a given building. STANLA Y accepts a feasible 
combination of structural systems and materials for a given building and gener­
ates alternative layouts and approximates the load requirements for the structural 
components. The knowledge bases for each of these expert systems is described 
below. 

The knowledge-base for STRYPES is described by the decomposition knowledge 
and the constraints for recomposition. The decomposition knowledge is illustrated 
in Figure 3. The generation of alternative structural system types and materials 
is decomposed into the lateral and gravity load resisting systems. For the lateral 
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system, a selection of alternative 3D systems and 2D systems in each direction are 
combined. The 3D systems are selected from 2D orthogonal systems and a 3D core 
system.The 2D systems are selected from rigid frames, braced frames and shear 
walls. For the gravity system, a selection of alternative 2D-horizontal systems 
and support conditions are combined. For example, a possible gravity system is a 
reinforced concrete slab supported on 4 edges without intermediate floor beams. 
Another possible system is a steel deck supported on two edges with intermediate 
floor beams. 

An example of a system definition in STRYPES is illustrated in Figure 4. The 
system represents the Gravity-System node in the decomposition tree. The alter­
native gravity systems are determined by combining selections from different 2D 
horizontal types and the number of edges supported and the decision to subdivide 
in one direction. The alternatives formed depend on the constraints and the de­
sign context. The use of a particular 2D horizontal type may depend on the lateral 
system and on the span of the structural grid. These constraints are generalized 
and stored in the knowledge-base. 

The constraints on recomposition in STRYPES eliminate infeasible alternatives 
to reduce the number of solutions considered. Some constraints are based on 
design heuristics, eliminating alternatives that an experienced engineer would not 
consider. For example: 

IF 
lateral-system/3D-lateral orthogoanl-2D 
2D-lateral-system/2D-system = shear-wall 
stories > 35 
THEN not feasible. 

This constraint eliminates the use of 2D shear wall systems for buildings with more 
than 35 stories. Other constraints eliminate unusual combinations of materials and 
systems. For example: 

IF 
2D-lateral-system/2D-system = shear-wall 
2D-lateral-system/Material = steel 
THEN not feasible. 

This constraint eliminates shear walls made entirely of steel. 
The decomposition knowledge in STANLA Y is illustrated in Figure 5. The lay­

out and load distribution is decomposed into three major decision groups: building 
parameters, lateral system, and gravity system. The building parameters system 
calculates and infers additional information about the building given the input 
conditions. The lateral system is considered by system and component type. The 
2D-Panels system places the appropriate systems on the structural grid and dis­
tributes the lateral load to each panel. The 2D-Panels system generates alternative 
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Figure 5. STANLAY decomposition knowledge. 

placement schemes. The core system locates the walls around the service shaft and 
determines the lateral load acting on the core. The beams and columns systems 
distribute the loads to each of the components using approximate analysis tech­
niques. The gravity system, similar to the lateral system, distributes the gravity 
loads to the components using approximations. 

An example of a system definition in STANLAY is illustrated in Figure 6. The 
system represents the 2D-Panels node in the decomposition tree. The attributes of 
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layout-rigid-X one-of 
layout-rigid-Y one-of 
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AND (Totallength Y-Bays) > (Totallength X-Bays) 
THEN (layout-braced-X layout-rigid-Y ... ) 

Figure 6. 2D-panels system in STANLA Y. 
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the 2D-Panels system include layout information and load information. The layout 
attributes are selected and ordered by the planning rules. The load attributes, 
i.e. overturning moment in each direction (Mover) and uplift forces, are computed 
by Lisp functions. The layout attributes have values that represent alternative 
placement schemes, e.g. edges indicates that the panels are placed on the edges of 
the building only, edges+ 1 places a panel in the center of the building in addition 
to the edges. The combination and use of the placement schemes are checked by 
constraints for consistency with building geometry and intended occupancy. Other 
constraints in STANLA Y check the load attributes for each of the subsystems and 
components for appropriate magnitudes. 
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5 Conclusion 

An expert system shell for preliminary engineering design has been developed. This 
shell allows an experienced designer to develop a knowledge-base by defining sys­
tems, constraints, evaluation criteria and planning rules. The inference mechanism 
is a constraint directed search for alternative combinations of systems that are con­
sistent with the design context. The development of this shell is predicated on the 
observation that forward or backward chaining rule based tools do not facilitate 
the development of an expert system for design. The application of this shell to 
preliminary structural design illustrates the approach to developing a knowledge­
base for design. The experience in developing these knowledge-bases has shown 
that incremental development and reorganization is relatively easy and facilitates 
the formalization of design knowledge. 
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Abstract Optimization is a well understood process in design domains. Designers for­
mulate their design problems as single or multicriteria optimization problems and then se­
lect an approximate optimization algorithm to search for the optimal values for the design 
variables. The formulation and algorithm selection procedures have been considered to be 
activities which relied on substantive human knowledge. This paper describes a computer 
system, OPTIMA, which formulates design optimization problems from a pseudo-English 
description into canonical algebraic expressions. It then recognises the formulation and 
selects appropriate algorithm(s) for its solution. Finally, it runs the selected algorithm(s) 
and sends the results back to the original descriptions. Areas of expert knowledge involved 
in carrying out the above tasks are identified. Such knowledge is explicitly encoded in 
the system. The basic philosophy and key features of the system are described and are 
illustrated with examples. 

1 Introduction 

The early uses of computers in engineering and architecture were for analytical 
purposes. Later it was realised that certain classes of design decision processes 
could be represented algorithmically and hence automated. The first of these pro­
cesses made use of the iterative model of design. This was extended to direct 
design procedures based on optimization models. In this, however, analysis meth­
ods were not supplanted but continued to play a subordinate role in design. More 
recently the widespread availability of symbolic programming languages coupled 
with formal knowledge representation techniques has begun to allow us to incor­
porate specific knowledge into the computer system. This incorporation was not 

1 This lecture draws directly from Balachandran, M. and Gero, J. S., {1987), 'A knowledge­
based approach to mathematical design modelling and optimization,' Engineering Optimintion 
12, 2, 91-115. 

25 

B. H. V. Topping (ed.), 
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II. 25--55. 
© 1992 Kluwer Academic Publishers. 



26 

previously achievable with such ease because of the non-numeric nature of much 
of the knowledge. 

A variety of automated design decision making systems have been developed 
based on optimization notions and are widely used to solve many different classes of 
problems (Gero, 1985}. In using such systems the designer formulates the problem 
as a mathematical model, runs the model through the optimization system, and 
evaluates the results away from the computer. Here the computer is used only to 
carry out the optimization process. Such systems normally do not provide flexibility 
for design modifications. A knowledge-based approach aims to make optimization 
an easier tool for the designer to use. During the last decade much of applied 
artificial intelligence research has been directed at developing techniques and tools 
for knowledge representation. Many different representations have emerged to 
support the complex task of storing human expertise in a computable form. 

The aim of this paper is to present a knowledge-based approach to design 
decision making processes. A computer system called OPTIMA, which utilises 
this approach will be demonstrated. The system includes a number of features 
which are normally difficult to achieve using more conventional approaches. A 
major part of the paper describes the methodologies, particularly the artificial 
intelligence concepts, used to introduce these features into the OPTIMA system. 
The current abilities of the system are illustrated through example problems from 
two disparate domains. 

2 Optimization in Computer-Aided Design 

The traditional design process consists of a progressive series of four stages: a 
feasibility stage; a preliminary design stage; a detail design stage; and a revision 
stage. The principle of iteration is used at each stage of the process to improve the 
design. Iteration is also used between the design stages. The designer may proceed 
through the stages from feasibility to detailed design only to find that the design 
does not meet all the design requirements. This may necessitate a return to the 
feasibility stage. In practice, this results in considerable repetitive effort. 

Since the introduction of computers much effort has been expended to improve 
their use in the design process. In the past, designers spent most of their time 
performing tedious, unchallenging tasks and much less time in developing creative 
solutions. Since then, numerous computer-based systems have been developed to 
assist the designers in those tedious and time consuming activities. 

2.1 The Conventional CAD Process 

The traditional design process outlined above has not been altered by the intro­
duction of the computer. The four stages of design remain unchanged and the 
principle of iteration is still the method used to improve the design. The role of 
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the computer is limited to tasks such as calculations, analysis, and drafting. In 
computer-aided design the design process is carried out through a computer model 
of the design. At the early stages decisions about the resulting design are taken in a 
heuristic way on the basis of incomplete knowledge about their consequences with 
respect to design goals. As a result, the design must be analysed and evaluated in 
the light of the design specification. If the goals are not met, the decisions must be 
appropriately corrected and the process repeated. The overall aim of the designer 
is to find a satisfactory solution within the limits of specified constraints. In a 
sense, design may be considered an optimization task even if the specification does 
not explicitly call for an 'optimum design', as designers will always try to improve 
the performance of their designs. One drawback of this approach is that usually 
it involves excessive computation before a satisfactory or near optimal solution is 
found. 

2.2 The Optimum Design Process 

Over the last two decades optimization has been used to improve the efficiency 
of the design process. 'Optimum design' means achieving the best solution to the 
design specification given the constraints. An optimum design can be obtained 
either as a result of iteration or by solving an optimization problem. The iterative 
approach typifies the method used by designers to improve their designs. The 
designer obtains information either graphically or numerically and on the basis of 
this information changes the design. The decision as to what to change and how to 
change reflects the experience-based insight of the designer. In this approach, the 
values of the variables are changed or made firm sequentially. On the other hand, 
in solving an optimization problem, the values of the variables that simultaneously 
satisfy the requirements and optimize a set of objectives are established. The design 
task is accomplished through an optimization model. Here it is assumed that the 
measure of merit function and the complete set of constraints can be expressed 
formally in terms of the design variables. In solving the optimization model, the 
search for the best design is carried out mathematically in an organised manner. 
Thus, it saves time in the design process. 

A variety of computer systems have been developed based on optimization 
concepts and widely used to solve many different design problems (Radford et aJ., 
1985; Gero, 1985). Although computers have been indispensable assistants in the 
analytical process, the tasks such as problem formulation, algorithm selection and 
data preparation are still manual tasks. 

3 Knowledge-Based Approach 

In recent years one of the most promising developments in computer technology has 
been the work on knowledge-based systems (Hayes-Roth et aJ., 1983). A knowledge-
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based system is a computer program which possessess a set of facts about a specific 
domain of human knowledge and, by manipulating these facts intelligently, is able 
to solve problems which ordinarily require human intelligence. The development of 
knowledge-based systems is an attempt to emulate the human process of problem 
solving. The power of such systems comes from the way their underlying knowledge 
is represented and manipulated so that the systems can make a 'knowledgeable' 
contribution to complex problems in a specific domain or field of interest. Many 
representation schemes have been suggested (Winston, 1984). In this research our 
interest is centered on frames, predicate logic and production systems or rules. 

The conventional CAD systems provide assistance to perform special tasks dur­
ing the design process. These tasks include one or all of the following: calculations, 
analysis and graphical display. Knowledge-based design systems aim to aid the de­
signer during the entire design process, relying on comprehensive and complex 
domain knowledge at each stage. These systems should be able to process different 
types of information, specifically: graphical, numerical, mathematical, symbolic 
and textual information. In using such systems, the designer will be able to use 
graphical input, mathematical formulas, and textual and numerical information as 
communication media. 

An optimization system utilizing a knowledge-based approach aims to take a 
more active role in design decision processes. In the context of optimum design, it 
is desirable that such system should contain the following features. It should: 

1. accept and represent a designer's description of the problem in an effective 
and manipulatible form; 

2. formulate the problem into a canonical form of an optimization model pro­
viding functional relationships for objectives and constraints; 

3. recognize the types of design variables and the functional types of objectives 
and constraints; 

4. select an appropriate optimization algorithm and carry out the solution pro­
cedure; and 

5. provide a simple and semantically rich interface and flexible modeling fea­
tures. 

It is obvious from this list that such a system should operate on information at 
the same level as the designer. Thus, it must be able to represent in an effective 
way the designer's description of the problem and to recognize the information and 
provide functional relationships to objectives and constraints. This involves ma­
nipulation of algebraic expressions and recognition of their types. Furthermore, in 
order to identify the structure of the optimization models and to select appropri­
ate algorithms, it requires knowledge about the structure of canonical optimization 
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models and their solution methods. This form of knowledge needs to be encoded 
explicitly using knowledge representation techniques. 

4 Problem Description and Representation 

A typical design problem will have many components, each of which will be re­
lated to many other components. The relationships between components are rep­
resented and processed during the design process. In an optimization process the 
design constraints and the objectives specified by the designer must be represented 
and processed in symbolic forms. Thus, it is important to use suitable represen­
tation schemata that will handle these tasks efficiently. In this section we present 
the design problem description and the representation issues encountered in the 
development of the system. 

4.1 Description of Design Problem 

The design description consists of a collection of facts about objects and their 
properties interpreted as variables, and relationships between objects as sets of 
statements interpreted as the design constraints and objectives. It is presumed 
that the designer is able to establish the constraints that govern the design and 
can express the design goals which can be expressed mathematically. In this work 
a set of words and symbols have been predefined for use in the problem statement. 
In the following sections the reserved words and symbols are in bold type. 

4.1.1 Variables ·The variables which form the basis of any description can be 
treated in terms of object-attribute-value triplets which effectively separate the 
three concepts associated with variables. 

objects any concept involved in the design domains; 

attributes any property of an object; 

value any value of an attribute 

For example consider the following statement: 

living...room length = 2 times kitchen width 

Within this relationship, the objects and attributes involved are as follows: 

Object Attribute 
living...room length 

kitchen width 

An object attribute can be given a value. Consider the statement: 
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bathroom length is 8.5 ft 

In this statement, the object, attribute, and value is as follows: 

Object Attribute Value 

bathroom length 8.5 

4.1.2 Constraints The design constraints reflect the requirements that must 
be satisfied by the resulting design.The design constraints are stated by declaring 
a maximum or minimum value for an attribute of an object or by specifying equal­
ity or inequality relationships among object attributes. The following are some 
examples: 

maximum living_room area is 300.0 sq ft 
sum_of living_room width and kitchen width = house width 

The first example declares that the maximum value of living_room area is 300.0 
sqft. The second example establishes an equality relationship among the attributes 
living_room width, kitchen width and house width. 

4.1.3 Objectives The design goals or objectives are set up by the designer 
and are optimized during the solution process. The design objectives are stated as 
maximize or minimize an object attribute or a function of object attributes. Some 
examples are shown below: 

minimize house cost 

maximize house area 

The first objective is to minimize the 'cost' attribute of the object 'house' and 
the second objective is to maximize the 'area' attribute of the object 'house.' 

4.2 Representation of Design Information 

As discussed in the previous section, most of the design information may be stated 
using the object-attribute-value concept. A typical design problem may involve 
several objects with their attributes and attribute values. Although several dis­
tinct mechanisms may be used to represent this kind of information, the one which 
handles this task efficiently is the frame-based representation (Minsky, 1975). Pro­
cedural knowledge is required to carry out certain tasks in the modeling process. 
Frame representation allow procedures to be attached to a particular attribute of 
an object. This representation technique has been used previously in design prob­
lems (MacCallum et al., 1985; Maher and Fenves, 1985). We discuss frames and 
some of their appropriate features in the following sections. 
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4.2.1 Frames and their features In simple terms, a frame can be viewed as 
a stereotypical representation of any object concept. It is typically represented as 
a data structure whose name is that of the concept. A frame can have any number 
of slots, each of which stands for an attribute of the object concept of interest; it 
can hold values of the attribute and procedures that can be invoked under certain 
conditions on the attribute value. A frame can have various types of links to other 
frames. Examples of commonly used links are a-kind-of, is-a, and part-of. These 
links allow unrestricted inheritance of attributes and attribute values. 

Frame representation provides three key features which are important and use­
ful. First, they allow explicit representation of objects, attributes, and default 
values. The notion of default value is very important in frame theory. The de­
fault value of an attribute of a concept can be normally used when there is no 
value explicitly given for that attribute. Second, procedures can be attached to 
the slots in the frames and can be executed automatically according to some spec­
ification. Examples for such specifications are if-needed, if-added, and if-removed. 
These procedures are automatically invoked when the slot's values are accessed or 
stored or deleted. Such automatic procedure invocations are called demons, or, 
sometimes, triggers. An important point is that demons allow for explicit repre­
sentation of procedural knowledge and of the context of their use because demons 
are attached to parts of frames. Finally, frames can be related in a conceptual 
hierarchy; attributes, values, and demons can be inherited from higher up in a 
hierarchy. In other words, it is possible to define classes of data items that share 
attributes, procedures, and default values. Normally inheritance works through 
the a-kind-of and/or is-a slot. 

For example, Fig. 1 shows a simple frame structure for a room. Whenever an 
instance of a room, say room-1, is created it will inherit all the attributes of the 
room frame. The following sections illustrate the representation of objects and 
their relationships, and design constraints and objectives in more detail. 

4.2.2 Representing Variables A design problem consists of one or more vari­
ables treated as objects, attributes, and values. There are relationships among ob­
jects and among attributes of objects. For example consider the following example: 

kitchen is....a..kind_of rectangle 

kitchen width is 10 ft. 

A frame which represents the object kitchen is shown below: 

name: kitchen 
aJdnd_of: rectangle 
width: value: 10 

unit: ft 
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name room 

slots a kind of 
value · rectangle 

shape 
default : rectangle 

number_of_walls 
default : 4 

area 
if_ needed : calculate_area 

cost 
if_ exp _needed : express_ cost 

Figure 1. Example of a frame representation for a room. 

Using this concept, all the objects, and properties and relationships between them 
can be represented as a network of frames, each of which will have some form of 
links to other frames. 

4.2.3 Representing Constraints The representation and processing of con­
straints form an integral part of the design process. In mathematical design model­
ing it should be possible to express all the design constraints in terms of the design 
variables. The constraints are expressed by declaring a maximum or minimum 
value for any object attribute or by specifying equality or inequality relationships 
among object attributes. Frames are used to represent the design constraints. 
These constraint frames are constructed by making an instance of the 'constraint' 
frame, shown below: 

name : constraint 

slots : lhs : 

rhs: 

type: 

The 'lhs' and 'rhs' slots represent the left hand side and right hand side expressions 
of a constraint and the 'type' slot represents the relation involved between those 
expressions. For example, consider a constraint used in steel beam design: 

beam deflection <= 1 / 360 times beam span 
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This constraint is represented as follows: 

name : constraint-! 

slots : lhs : (beam deflection) 

rhs : 1 / 360 * (beam span) 
type : less_than_or _equaLto 

4.2.4 Representing Objectives The optimal design process is concerned with 
producing designs which satisfy the design constraints and optimize one or more 
objectives. The design objectives are expressed as maximize or minimize some 
aspects of the design. The general form in which a design objective may be stated 
as follows: 

maximize Z 

or 

minimize Z 

where Z is an object attribute or an expression of one or more object attributes. 
The design objectives are represented by making an instance of the 'objective' 
frame shown below: 

name: objective 
slots: objective-function : 

optimality-criteria : 

For example, consider the following statement: 

minimize beam weight 

This statement indicates that the objective is to minimize the 'weight' attribute of 
the object 'beam' and is represented as shown below: 

name: objective-! 

objective-function : (beam weight) 
optimality-criteria : minimize 

5 Problem Formulation and Recognition 

In design optimization the major task involved is the formulation of the design 
problem for mathematical programming; in other words building the mathemati­
cal model of the design problem. In this section we briefly outline the basic tasks 
involved in constructing the mathematical model of the design problem and discuss 
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their required features and their implementation for automating this process. We 
also describe the knowledge required to recognize various algebraic expression types 
and illustrate how it can be encoded into the computer system. Production sys­
tems are employed to carry out algebraic simplification and problem identification 
processes. We shall commence with a brief discussion of them. 

5.1 Problem Solving Using Production Systems 

Production systems were first proposed by Post (1943) as a general computational 
mechanism but their use today stems from the work of Newell and Simon {1972). 
Simply speaking a production system consists of three parts: 

1. a rule base composed of a set of production rules; 

2. a special data structure which is sometimes called the context; and 

3. an interpreter, which controls the system's activity. 

A production rule is a statement cast in the form 'If this condition holds, then 
this action is appropriate.' The if part of the production rule states a set of 
conditions in which the rule is applicable. The action or then part of the production 
rule states the appropriate conclusions to make when the conditions are satisfied. 
Production systems permit the representation of knowledge in a highly uniform 
and modular way. Knowledge in production rules is both accessible and relatively 
easy to modify. A further advantage of the production system formalism is the ease 
with which one can express certain kinds of knowledge. In particular, statements 
about what to do in predetermined situations are naturally encoded into production 
rules. Furthermore, it is these kinds of statements that are most frequently used 
by human experts to explain how they do their jobs (Gero, 1983). 

There are two strategies employed in problem solving using production systems, 
namely, forward chaining and backward chaining. The forward chaining process 
starts with a collection of facts and tries all available rules over and over, adding 
new facts as it goes, until no rule is applicable. In backward chaining a problem 
solver starts with an unsubstantiated hypothesis and tries to prove it. The strategy 
involves finding rules that demonstrate the hypothesis and then verifying the facts 
that enable the rule to work. 

These systems have two characteristic features which are particularly notewor­
thy. First, existing knowledge bases can be refined, and new knowledge added to 
increase their performance. Second, systems are able to explain their reasoning, 
making their logic practically transparent. Today, rule-based systems are used in 
many applications. 
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5.2 Design Optimization Formulation 

Formulation of a design optimization problem consists in constructing a mathe­
matical model that describes the behaviour of a physical system encompassing the 
problem area. This model must closely approximate the actual behaviour of the 
system for the solution obtained to be adequate and useful. At the stage of for­
mulating the optimization model the designer has to decide which quantities are 
treated as variables and which are taken as fixed. The quantities whose values are 
fixed are called design parameters and the quantities for which values are chosen 
are called decision variables or design variables. Mathematical relations between 
the design variables and the parameters constitute a design optimization model. 
Formally speaking the basic tasks involved in constructing the design optimization 
model can be described as follows: 

1. identification of the parameters and variables involved in the design problem; 

2. provision of functional relationships in terms of the variables that state the 
objectives; and 

3. provision of functional relationships in terms of the variables that represent 
the design constraints. 

In the following sections we discuss the key issues involved in the above activities. 

5.2.1 Identifying Design Parameters and Variables The design descrip­
tion contains knowledge of design variables (e.g. room length, room width, etc.) 
and of their relationships. As we discussed previously this knowledge is represented 
as a network in which knowledge about a variable is encapsulated in a frame. The 
information contained in such a frame mainly consists of a current value, units, 
and relationships. The current value represents the value given by the designer or 
the latest value calculated for a variable, the units slot contains the units in which 
the value has been measured, and the relationship slot provides the dependency 
of a variable upon some other variables. Each relationship, in turn, contains a list 
of dependent variables. In finding the design parameters the system starts with 
a set of variables for which fixed values have been provided and tries to find val­
ues for unknown variables using appropriate mathematical equalities. For example 
consider the mathematical equality given below: 

beam overalLdepth = sum_of beam web_depth and 
2 times beam flange_thickness 

This equality is represented as below: 

name : equality-1 

slots : lhs : (beam overalLdepth) 

rhs : (beam web_depth) + 2 * (beam flange_thickness) 
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The above frame representation is transformed into a mathematical equality as 
below: 

(beam overalLdepth) = (beam web_depth) 

+ 2 * (beam flange_ thickness) 

It is then identified that there are three variables involved in this equality relation­
ship, namely beam overalLdepth, beam web_depth and beam fiange_thickness. If 
the values for any two of these variables are known the value for the third variable 
is found by solving this equation. All available mathematical equalities are tried 
iteratively, updating the parameters as they are found until no further parameters 
can be found. At the end of this process the system will be able to know which 
variables are the design parameters and which variables are to be treated as design 
variables. The mathematical equalities which have not been used to determine the 
design parameters are treated as design constraints. 

5.2.2 Formulating Constraints The design constraints simply describe de­
pendancies among design variables and parameters and are represented as mathe­
matical inequalities or equalities. As we illustrated in Section 4.2, each constraint 
is encoded as a frame with three slots, namely left-hand-side part, right-hand-side 
part and relationship type. In formulating a constraint into mathematical form, 
the system starts with the description of that constraint obtained from the appro­
priate frame representation. We will use an example to illustrate the basic process 
involved in transfoming the constraint description into canonical form. Consider 
the following constraint used in the beam design: 

beam deflection<= 1/360 times beam span 

The frame representing this constraint is shown below: 

name : constraint-! 

slots : lhs : 

rhs: 

type : less_than_or _equaLto 

(beam deflection) 

1/360 * (beam span) 

Initially the above frame representation is transformed into mathematical inequal­
ity or equality form accordingly. Then it is rearranged into one of the following 
forms. 

lhs- rhs <= 0 
lhs- rhs => 0 

lhs- rhs 0 

In the above example the result is 
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(beam deflection) - 1/360 * (beam span) <= 0 

At this stage the variables involved in the constraint are determined by scanning 
the left-hand-side expression of the constraint. It then introduces known values to 
those dependent variables. For those unknown dependent variables, the system uses 
the knowledge of dependence of one variable upon some other variables. A variable 
may have a functional relationship with some other variables. If such relationship 
exists for a variable, it is obtained directly from the frame representing that variable 
or by inheriting from another related frame. The functional relationship is then 
substituted for the variable in the constraint. This procedure is repeated for every 
newly introduced variable. The substitution process terminates when no further 
functional relationship is found to any of the variables involved. The variables 
which remain in the constraint are a subset of the design variables and are named 
with algebraic symbols (e.g. x1 , x2 , etc.). After replacing the variables with the 
appropriate algebraic symbols, the constraint is algebraically simplified to reduce 
it to a canonical form. 

In our example the variables which form the constraint are beam deflection and 
beam span. Let us assume that the function describing the deflection of the beam 
is stated as follows: 

where 

beam deflection = 5 * w * L A4 / (384 * E * I) 

L =beam span 

w = beam u.d.l. 

E =beam modulus of elasticity 

I = beam second moment of area 

Further we assume that the following information has been provided. 

L = 10 m, E = 200 * 106 kPa, 
w = 600 kN/m and the beam is anI-beam. 

In this case the functional expression for I will be inherited from the frame repre­
senting the object 'I-beam,' i.e. 

where 

B beam flange width 

D beam overall depth 
d beam web depth 

t = beam web thickness 
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After the substitution process, the constraint is expressed in the following form: 

5 * 600 * 10~4 I (384 * 200 * 106 * (B * (D~3 - d~3) 

+ t * d~3) 1 12) - 10 <= o 
At this stage algebraic symbols are introduced to the variables and the constraint 
becomes: 

where 

5 * 600 * 10~4 I (384 * 200 * 10~6 * (xi * (x2 ~3 - X3 ~3) 

+X(* X3~3) I 12)- 10 <= 0 

XI = B = beam flange width 
x2 = D = beam overall depth 

x3 = d = beam web depth 

x4 = t = beam web thickness 

The above form of the constraint is then algebraically simplified to reduce it to a 
canonical form as follows: 

5.2.3 Formulating Objectives In the optimization model the design objec­
tives must be expressed as computable functions of the design variables. The design 
objectives are stated as maximize or minimize one or more aspects of the design. 
For example consider the following statement: 

minimize beam volume 

This statement indicates that the 'volume' attribute of the object 'beam' is to be 
minimized. Initially a functional relationship describing the volume of the beam 
is obtained. The function describing the volume of the beam is obtained from the 
appropriate frame. 

minimize (beam span) * (beam sectional-area) 

Given that the beam is an 1-beam, it is obtained that 

beam sectional-area = 2 * B * T + d * t 
where 

B = beam flange width 
T = beam flange thickness 

d =beam web depth 

t = beam web thickness 
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As illustrated in the previous section the substitution process is applied to each 
variable. After the substitution process the objective function is expressed in terms 
of the design variables. 

minimize 10 * (2 * B * T + d * t) 

Now algebraic symbols for the variables are introduced and the objective function 
is algebraically simplified to reduce it to a canonical form. 

i.e. 

where 

minimize 10 * (2 * X1 * Xs + x3 * x.) 

minimize 20 * x 1 * Xs + 10 * X3 * X4 

x1 = B = beam flange width 

x5 = T = beam flange thickness 
X3 = d =beam web depth 
x4 = t =beam web thickness 

5.2.4 Algebraic Manipulation The major mathematical operations involved 
in the processes discussed in the above sections are substitution, simplification, 
and equation solving. A system which allows this type of symbolic and numeri­
cal manipulation is MACSYMA (Martin and Fateman, 1971), a large interactive 
computer system designed to assist scientists and engineers in solving mathemat­
ical problems. However, in the work described here an algebraic manipulation 
package has been developed and implemented in Franz LISP (Wilensky, 1984). In 
this implementation an algebraic expression is represented as a list structure con­
sisting of the operators and operands involved in the expression. The knowledge 
involved in the algebraic simplification process is encoded as a set of production 
rules. The form of these rules are similar to the rules normally used in design 
grammars (Coyne and Gero, 1985). The basic form of a rule is 'IF this pattern 
matches THEN execute this action.' That is, a rule consists of a pattern part and 
an action part. An example rule is shown below: 

if (+P (restrict 1 1 isJist) * (restrict 1 2 isJist) +R) 
then execute procedure-! 

Where '+P' means that the variable P can match with zero or more number of 
items of any type, where as '(restrict 1 1 isJist)' indicates that the variable 1 1 

can only match with an item in the form of a list. This rule indicates that if the 
pattern part matches with an expression apply the 'procedure-1' to simplify it. The 
procedures attached to the rules carry out the appropriate algebraic manipulation 
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and are written as LISP functions. The pattern part of a rule is represented as a 
list which consists of variables and some key words. For instance the symbol '+' 
and the keyword 'restrict' are used to indicate the type of items to which those 
variables should match. Once a successful match is made against the pattern part 
of a rule, the variables involved in that rule become instantiated to appropraite 
values. Let us consider the following expression represented in the form of a list 
structure: 

When applying the above rule an attempt is made to match the pattern part of 
the rule with this expression. As this match succeeds the variables in the pattern 
part become instantiated as follows: 

P = (X1 +) 
L1 = (X2 + X3) 
L2 = (Y1 + Y2) 
R=(-Y3) 

At this stage the function 'procedure-!' is invoked to simplify the expression. As 
a result of this the expression is transformed into a more reduced form as follows: 

In simplifying an expression, all available rules are tried iteratively, reducing the 
expression as they are applied, until no rule is applicable. 

5.2.5 The Canonical Forms of Optimization Models In this section we 
illustrate the canonical forms of the optimization models. A single objective design 
problem is formulated into the canonical form of: 

where 

Maximize 

subject to 

Z(X) 
g;(X) ::; G; 

Xj 2: 0 

i = 1, 2, ... , m 
j = 1, 2, ... , n 

Z(X) is the objective function 

X= (xi> x2 , ••• , xn) is an n-component vector con­
sisting of design variables 

g;(X) ::; G; are m constraint functions 
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In complex design optimization problems there often exist several noncom­
mensurable criteria which must be considered. This situation is formulated as a 
multicriteria optimization problem (also called multiple objective or Pareto opti­
mization) in which the designer's goal is to minimize and/or maximize not a single 
objective function but several functions simultaneously (Cohon, 1978). The general 
multicriteria optimization problem with n decision variables, m constraints, and p 
criteria is formulated into the canonical form of: 

Maximize 

subject to 

where 

Z(X) = [Z1(X),Z2(X), ... ,Zp(X)J 
g;(X):::; G; 
X·> 0 J -

Z(X) 

i = 1, 2, ... , m 

j = 1, 2, ... , n 

is the multicriteria objective 
function 

is the k-th criterion of the 

p individual criteria 

X= (x1, x 2 , ••• , Xn) is ann-component vector 

consisting of design variables 

g;(X) :::; G; are m constraint functions 

5.3 Recognizing Algebraic Expression Types 

The canonical form of the optimization model represents the objectives and the 
constraints of the design problem as mathematical expressions in terms of the de­
sign variables. In order to have the structure of the optimization model identified 
by a computer system, it needs to be able to recognize the variables and the alge­
braic relationships between the variables in the constraints and objective functions. 
In this work, a program has been developed in PROLOG (Clocksin and Mellish, 
1981) that incorporates the necessary knowledge to recognize the types of vari­
ous algebraic expressions. One of the significant features of PROLOG is its very 
powerful pattern matching facilities. 

An algebraic expression, in its reduced form, is the sum of positive and/or 
negative terms, each of which is expressed in terms of the variables. The type of an 
algebraic expression is determined based on the types of the terms involved in that 
expression. Common types of algebraic terms are linear, quadratic, posynomial, 
and nonlinear. An algebraic expression is linear if all of its terms are of the linear 
form. Thus, in order to decide on the type of an algebraic expression the type of 
every term is to be analysed. This process can be simply encoded using the feature 
of recursion which is a popular and powerful technique in symbolic computation. In 
using PROLOG we take advantage of its automatic inference mechanism. Consider 
the following recursive rules: 
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expression{A + B, linear) :- term(B, linear), expression(A, linear). 
expression{A - B, linear) :- term(B, linear), expression{A, linear). 

where 'expression{E, T)' means that T is the type of expression E. The first rule 
simply states that an expression given in the form A + B, in which B represents its 
last term is linear if both B and the rest of the expression A are linear. The second 
rule deals with the case where the last term is a negative term. These two rules 
are only used when the expression matches with either A+ B or A - B. Hence we 
need to define further rules to handle expressions with single term. The following 
rules are added for this purpose. 

expression{A, linear) :- term{A, linear). 

expression{-A, linear) :- term{A, linear). 

These rules simply define that an expression which has a single term, is linear if its 
term is of the linear form. Now we need to define the necessary rules to determine 
whether a given term is linear. An algebraic term is linear if it is represented by 
a symbol or by a product of a symbol and a number. The following rules encode 
these conditions. 

term{A, linear) :- symbol{A). 

term(A * B, linear) :- number(A) , symbol(B, linear). 

Using the above set of logical statements the system is able to identify any kind 
of linear expression. Similarly the necessary rules have been encoded to identify 
other types of expressions such as quadratic, posynomial and nonlinear. 

6 The OPTIMA System 

A prototype system, called OPTIMA, which incorporates the knowledge described 
in the previous sections, was developed and implemented as a general purpose 
design assistant for computer-aided design situations. The major issues considered 
in the development of this system are the following: 

1. the system should provide simple and easy ways for designers to describe 
their problems; 

2. the system should employ an efficient representation of the design problem; 

3. the system should allow the designer to modify models, adding new design 
parameters or relationships, during the design process; 

4. the system should have the ability to represent and use the designer's exper­
tise with respect to optimum design processes; 
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5. the system should have the ability to formulate the problem mathematically, 
providing functional relationships for objectives and constraints; 

6. the system should have the ability to recognize the type of functions which 
represent the objectives and the constraints; and 

7. the system should have the ability to select an appropriate algorithm and 
carry out the solution procedure (Balachandran and Gero, 1987}. 

The OPTIMA system has been implemented on SUN Microsystems worksta­
tions. The domain specific knowledge is all represented as frames or production 
rules and encoded in LISP as are the inference engines. The pattern matching 
knowledge used to recognize variables and their relationships is encoded in PRO­
LOG. The optimization algorithms are all encoded in C. Figure 2 shows the data 
flows in the OPTIMA system. The kernel of the system is the communication 
controller which allows the three main components of the system, namely prob­
lem formulator, problem recognizer, and problem solver to communicate with each 
other. 

In the following sections two examples will be presented to illustrate the various 
aspects of the system. One example deals with optimum dimensioning of architec­
tural floor plans and the other is concerned with optimum design of beams. 

6.1 Example 1: The Floor Plan Problem 

Here the formulation and solution to the floor plan problem originally formulated 
by Mitchell et al. (1976) will be illustrated. This problem concerns the optimal 
dimensioning of small rectangular floor plans for which a topology has been sepa­
rately identified (Fig. 3}. The maximum and minimum area requirements of various 
rooms are specified as design constraints. 

The following is the listing of the problem description given to the system. The 
reserved words and symbols used by the system are shown in bold. 

house length = sum_of living_room length and bathroom length 
and bedroom2 length 

house width = sum_of living..room width and kitchen width 
living..room width = sum_of bathroom width and hall width 
bathroom length = hall length 
bedrooml width =kitchen width 
bedroom2 length = bedroom3 length 
house and living_room and kitchen and bathroom and bedroom! 

and bedroom2 and bedroom3 are_ldnd_of rectangle 
sum_of living_room length and hall length = sum_of kitchen length 

and bedrooml length 
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DESIGNER I USER 

SEMANTIC 

Figure 2. The data. flows in the OPTIMA system. 



BATHROOM 

BEDROOM2 

LIVING ROOM 

HALL 

BEDROOMJ 
KITCHEN BEDROOM! 

Figure 3. Dimensionless representation of a house layout. 

sum_of living...room width and kitchen width = sum_of bedroom2 width 
and bedroom3 width 

house cost = sum_of living...room cost and kitchen cost 
and bathroom cost and hall cost and bedroom1 cost 
and bedroom2 cost and bedroom3 cost 

bathroom width is 8 ft. 
hall width is 6ft. 
kitchen width is 10 ft. 
bedroom2 width is 11 ft. 
kitchen unit_cost is 2.0 
bedroom2 unit_cost is 1.0 
maximum living...room area is 300 sq.ft. 
minimum living...room area is 150 sq.ft. 
maximum kitchen area is 120 sq.ft. 
minimum kitchen area is 50 sq.ft. 
maximum bathroom area is 65 sq.ft. 
minimum bathroom area is 45 sq.ft. 
maximum hall area is 72 sq.ft. 
minimum bedroom! area is 100 sq.ft. 
maximum bedroom! area is 180 sq.ft. 
minimum bedroom3 area is 100 sq.ft. 
maximize house area 
minimize house cost 
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Figures 4, 5 and 6 present frames showing how the objects, objectives, and 
constraints of this problem are represented in the system. 

name bathroom 

slots a_kind_of 

value : rectangle 
length 

expression 

width 
value : 8.0 

unit : ft. 
unit_cost 

value : 2.5 

(hall length) 

Figure 4. Frame representing room data. 

Figures 7, 8 and 9 show screen dumps of a session with the system during which 
the floor plan problem was solved with two conflicting criteria, namely maximize 
house area and minimize house cost. The problem was formulated as a canoni­
cal multicriteria optimization model by the system. Recognition of the types of 
variables, constraints, and objectives, etc., was performed by the logic program­
ming system. Identification of the problem model and selection of an appropriate 
algorithm were carried out using the rules given in Balachandran and Gero (1987). 

6.2 Example 2: The Beam Design Problem 

This problem concerns the optimum design of a simply supported, single span, 
wide-flange beam presented in Fig. 10. The design goal is to minimize the weight 
of the beam. 

The following is the listing of the problem description given to the system. 

beam span is 7.5 m 
beam uniformly _distributedJoad is 60.0 kN /m 



name objective-! 

slots objective-funtion 

expression 

optimality-criteria 

(house area) 

value maximize 

Figure 5. Frame representing a design objective. 

name constraint-! 

slots lhs 

expression (living_roorn area) 
rhs 

value 300.0 

unit sq. ft. 

type 
value less_than_or_equal_to 

name constraint-S 

slots lhs 

expression (living_roorn length) 
+ 

(hall length) 

rhs 
expression (kitchen length) 

+ 
(bedroom 1 length) 

type 

value equal_to 

Figure 6. Figure 6 Design constraint frames. 

47 



48 

maximize 24 .BBB • d • 24 .aaa • x2 • 24 .aea • x3 
rntnimize 21.BBB • xl • 28 .BBB • x4 • 29 .BBB • x2 • 18 .BBB " x5 • 24 .aaa • x3 

subject to 

14 .aea • xl <· 388 
14.888 • x1 •) 158 
18 • x4 <· 128 
18 • x4 •> 58 
e.aaa - x2 <- 65 
a.ae8 • x2 ·> 45 
5 • x2 <• 72 
1B • x5 <• 188 
18 • x5 •> 1BB 
11 • x3 <• 188 
11 • x3 •> 188 
13.888 • x3 <· 18B 
13.808 • x3 •> 1BB 

1 • x2 - x4 - x5 • a.e 
continuous var1ables x1 to x5 

1 •• 1 tvtng rocxn length 
x2 --hall length-
x3 •• bedrocxn3 length 
x4 •• kitchen length 
x5 •• bedrooml_length 
t 
Enter conmand 
-->1 

Figure 7. The canonical optimization model constructed by the sys­
tem for the floor plan problem. 



e oo • ,, • · -·· ...... · .. - . , . · 

es 
I 7- list facts. 
the following pieces of information have been deduced 

ARIABLES 

No. of continuous variables • 5 
all the variables are continuous 

OBJECTIVES 

No. of objectives • 2 
all the objective functions are posylinear 

CONSTRAINTS 

No. of less than or equal to constraints • 7 
No. of greater than-or equal to constraints • 6 
No. of equality constraints : 1 

Total number of constraints • 14 
all the constraints are linear 

yes 
1 7- I 

Figure 8. The information generated by the system when attempt­
ing to recognize the algebraic model of the floor plan prob­
lem. 

beam is_a....kind_of Lsection 
beam deflection= 5 * w * LA4 / 384 * E * I 
L =beam span 
w = beam uniformly _distributedJoad 
E = beam elastic..modulus 
I = beam second..moment_of..area 
beam bending...stress = w * L A2 * D I 16 * I 
beam shear...stress = w * L I 2 * d * t 
d = beam web_depth 
t = beam web_thickness 
beam is_a....kind_of steel 
maximum beam bending...stress = 0.660 times beam yield...stress 
maximum beam shear...stress = 0.370 times beam yield...stress 
maximum beam deflection= 11360 times beam span 
sum_of beam web_depth and 2 times beam beam flange_thickness = 
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""Non1nfer1or Set Est1mat1on (NISE)"" 
Method ....................................... 

Required data has been read successfully 
Type a value for allowable error percentage 
9.8 

Sol. No "'e19hts used objl 

1 1.00 9.99 1841.59 
2 8.98 1.88 618.32 
3 1.99 9.71 684.31 
4 1.89 9.95 724.45 
5 1.99 9.54 9131.59 

!411 segnents have been eKplored 

obj2 

1429.99 
619.79 

1149.31 
933.62 

1386.59 

Thera 1s no other solution outs1da the currant boundary 
Salutlon search completed 

Oec1s1on Var1ables __ .-.. _______ 
Sol.NO. K1 x2 x3 x4 x5 

1 18.71 5.62 9.99 5.99 11.34 
2 17.38 5.62 13.85 5.68 16 .. 88 
3 19.71 5.62 13.65 5.99 11.34 
4 21.43 5.62 13.65 9.95 18.68 
5 17.38 5.62 13.85 5.88 16.891 

Figure 9. The set of Pareto optimal solutions generated by the non­
inferior set estimation method for the floor plan problem. 

60.0 kN /m 

7.5 m 

Figure 10. A simply supported beam with uniformly distributed load. 



beam overalLdepth 
quotient_of beam web--<iepth and beam web_thickness <= 180 
quotient_of beam web_depth and beam web_thickness <= 

81610.37 * Fyro.5 
Fy = beam yield....stress 
1 I 15 times beam span<= beam overalLdepth <= 118 times beam span 
1 I 5 times beam overalLdepth <=beam flange_thickness <= 

1 I 3 times beam overalLdepth 
0.003 m <= beam flange_thickness <= 0.100 m 
0.003 m <=beam web_thickness <= 0.100 m 
minimize beam weight 
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Figure 11 shows how the description of the beam is represented symbolically in 
a frame prior to further computation. 

name beam 

slots a_klnd_or 

va/Ju! steel !_section 
span 

value 7.5 

unit m 
udl 

value 60.0 

unit : kN /m 

bending_ stress 

expr~ssion 

shear _stress 

t!Xpression 

deflection 

expression 

w•L "2•D/{16•I) 

w • L I {2 • d • t} 

5 • w • L "4/ {384 • E I) 

Figure 11. Frame showing description of the beam. 

7 Discussion 

The central issue considered in this paper is the potential of introducing a knowledge­
based systems approach within the optimal design decision processes. We have 
demonstrated the technical feasibility of developing a computer system that incor­
porates a variety of human expertise to assist in the optimum design process. The 
OPTIMA system which was developed based on these notions is considerably more 



52 

:end 
roinimize 189008.888 • xl • x2 .. 54059.899 • x3 • ><4 

subject to 

9.194 • x5- 13.758 • xl • x5 A 3 • 13.758 • ><1 • x4 A 3- 13.758 • x3 • x4 A 3 
• 8.9 

92.500 • x3 • >e5 ·> 8.429 
124444,444 ° d 0 X5 A 3 - 124444,444 ° d 0 IC4 A 3 .. 124444 .444 ° X3 ° X4 A 3 ° > n9.399 
~~ -> 8.407 
.5 <- 9.875 
.1 - 9.289 • .s ·> 8.8 
~1 - 8.333 • x5 <• 8.8 
~2 -> 8.983 
~2 <- 9.188 
•3 ·> 8.883 
~3 <- 8.188 
lx• - 199 • x3 <· 8.8 

4 - B4.e44 • ,.3 <- 8.8 
x4 • 2 • x2- 1<5 • 9.8 

continuous variables xl to x5 

x1 •• baaml_flanga_width 
x2 -- baaml flange thickness 
~3 •• beaml:wab_th'ickne•• 
•4 •• beaml_...,b_depth 
p.5 •• beaml_ovarall_dapth 
Select optlort 

Figure 12. The mathematical model constructed by the system for 
the beam design problem. 

versatile than existing optimization systems, and has a number of features which 
are difficult to achieve using conventional approaches. The system demonstrates 
the potential of knowledge-based systems in computer-aided design. The last sec­
tion illustrated the OPTIMA system solving a floor plan dimensioning problem 
and a beam sizing problem. In summary it is worth emphasising some important 
characteristics of the system. 

1. It is general purpose and can be applied to a large variety of problem domains. 

2. The system provides a simple and semantically rich interface and flexible 
modeling features. 

3. The information about a design problem is effectively represented and ma­
nipulated. 

4. The system represents and uses a variety of human expertise with respect to 
optimium design process. 

Knowledge-based systems can provide a effective method of automating much 
of the designer's work. The key is that such systems contain explicit knowledge 



NONLINEAR PROGRAMMING ALGORITHM 

This program solves a nonlinear programming 
problem using the sequential linear 

programming method 

Language : Franz LISP, C •...........•.......•.••••...••....•.•••...•.••••.•.•• 

NLP algorithm ia baing executed 

Feasible solution found 

SUMMARY OF THE RESULTS 

mlnimUII weight ..of the baam1 • 167.615 

decision variables 

baam1 flange width • 271.99 
baam1:f1ange:thicknesa • 39.99 
baam1 wab thickness - 19.9 
beam1-web-depth • 764 .BB 
beam1-overa11 depth - 624.99 

I - -

Figure 13. The final results of the optimum design with the decisions 
listed. 
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and are able to manipulate that knowledge and reason with it. Although there are 
several knowledge representation techniques, each provides advantages in specific 
domains. In this work we have employed three different methodologies, namely, 
frames, predicate logic and production systems according to their key characteris­
tics. The frame representation is more suitable for domains where complex struc­
tural descriptions are necessary to adequately describe the problem domain. Pro­
duction systems capture in a manageable representation schema a certain type of 
problem-solving knowledge, particularly knowledge about what to do in a specific 
situation. Logic based systems are preferable in problem domains which can be 
readily axiomatized. The inadequacies of one representation technique can often 
be effectively handled by an alternate technique. Recently there has been a great 
deal of interest in developing a hybrid representation facilities by integrating two 
or more different methodologies (Fikes and Kehler, 1985). Such integrated systems 
can have the combined advantages of individual representation techniques. 
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Knowledge engineering provides tools and techniques which expand the role 
of the computer in design. This work has demonstrated that knowledge-based 
computer programs can capture and use designer's knowledge explicitly in a more 
useful way than is possible with traditional programming tools. Knowledge-based 
systems generally offer alternate approaches to design decision making ( Gero et 
al., 1985). 

Optimization has a useful and valid place in a decision making paradigm of 
design, however, knowledge-based systems such as OPTIMA allow designers to 
handle their problem easily and provide better interaction compared to most of 
the conventional systems. The performance of this prototype is promising, but 
further research is neccessary to explore the full potential of this new technology 
for applications to design problems. 

Acknowledgment This work is supported by a continuing grant from the Australian 
Research Grants Scheme and by a Sydney University Postgraduate Research Studentship. 
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A Knowledge-Based Expert System for 
Optimal Structural Design 

Donald E. Grierson 
Department of Civil Engineering 
Solid Mechanics Division 
University of Waterloo, Ontario 
Canada 

Abstract This lecture concerns the development of a knowledge-based expert system 
for the computer-automated least-weight design of structural steel frameworks subject to 
design code criteria and commonly used rules of design practise. The expert system is im­
plemented for steel design standards and utilizes corresponding databases of commerically 
available standard steel sections. The numeric-based tasks of design are implemented in 
FORTRAN routines ; these include first and second-order structural analysis, sensitivity 
analysis, optimization and design verification. The knowledge-based tasks of design are 
implemented in rules and procedures encoded in an artificial intelligence language, OPS83. 
A knowledge base of rules controls the overall design synthesis process, which is organized 
into three stages; Preliminary, Solution and Critique. For fixed structure topology and 
known loads, the Preliminary stage determines material properties, section profile, fabri­
cation group and an initial section size for each member of the structure. The Solution 
stage involves an iterative design process that controls the execution of FORTRAN routines 
until convergence to a reasonable least-weight design of the structure occurs. The Critique 
stage assesses the results of the Solution stage and suggests possible design improvements, 
if any, based on rules of good practise commonly employed by experienced designers; the 
Solution stage is then re-activated with the suggested changes implemented, or the results 
of the final design are printed if no improvements are considered. 

The lecture commences with the FORTRAN-based software system presented by the 
writer in a previous lecture of the NATO-ASI, and first deals with the issues of concern 
in converting a FORTRAN program to a knowledge-based expert system program. Then, 
the issues involved in developing the expert system itself are addressed at the three stages 
of the design process noted in the foregoing: Preliminary, Solution and Critique. Finally, 
the expert system is applied for a number of design examples to illustrate its capability to 
design structural steel frameworks of the type encountered in professional practise. 
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1 Introduction 

A routine activity in structural engineering offices is the design of structural steel 
building frameworks in conformance with the strength/stability and stiffness pro­
visions of the governing steel design standard. To that end, a major task of the 
designer is to size the girder, column and bracing members of the framework using 
commerically available standard steel sections. This member-sizing design activity 
is the concern of the knowledge-based expert system presented herein. 

Typically, the sizing of the members of a steel framework involves an iterative 
process wherein repeated computer analysis and design modification of the frame­
work is conducted until the design standards have been met and some measure of 
economy has been achieved. In a previous lecture of the NATO-ASI, the writer has 
presented a FORTRAN software system that automates this process to find the 
least-weight design of structural steel frameworks [1]. The system is based upon 
optimization theory that enables the entire design of a steel framework for both 
strength and displacement requirements to be conducted in a single computer run. 
The design is carried out in complete conformance with the provisions of a specified 
steel design standard (currently for North America [2,3,4]), and the members are 
automatically selected from a corresponding database of commercially available 
standard sections {currently Canadian or American). 

As noted in the previous lecture, the FORTRAN software system has a variety 
of features that relate directly to the provisions of the governing steel design stan­
dard. Default values are provided for Young's modulus, yield stress, etc. Bolted 
connections for truss members may be accounted for, as well as various gusset­
plate thicknesses for back-to-hack double angle sections. Members with symmet­
rical sections may be considered in strong-axis or weak-axis bending. The local 
buckling classification of each member section is automatically calculated. The 
effective length factor for each member is automatically calculated, for sidesway ei­
ther prevented or permitted. Both out-of-plane and compression flange bracing are 
accounted for, and the unbraced compression flange length for each flexural mem­
ber is automatically calculated. During a design run, a complete clause-by-clause 
verification is conducted for the member strength and structure stiffness provisions 
of the specified steel design standard. Specifically, standards-based provisions are 
verified for member slenderness (tension and compression), axial strength, bending 
strength, shear strength and combined axial and bending strength. Also verified 
are any user-specified requirements concerning allowable deformation of the struc­
ture (e.g., limited lateral sway). 

The FORTRAN software system for the computer-automated sizing of least­
weight girder, column and bracing members of structural steel frameworks [1] is 
widely used in professional practice {in North America) and embodies a broad base 
of computational and design knowledge. For example, commencing and then con­
trolling the iterative design process so as to ensure convergence to a reasonable 
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design solution involves considerable computational expertise that has been gar­
nered over many years of research. In fact, maintaining and updating the system is 
primarily concerned with making adjustments and additions to this and designer­
preference knowledge. This task is often quite difficult, however, precisely because 
all of the knowledge is coded in FORTRAN and is therefore embedded throughout 
the software system. 

This lecture commences with the predecessor FORTRAN software system for 
structural steel design noted in the foregoing and develops a corresponding knowl­
edge-based expert system. Specifically, the numeric-intensive algorithms for anal­
ysis and optimization are retained in FORTRAN, while the non-structured knowl­
edge that drives the design process is collected together as rules in a separate 
knowledge base and implemented using the artificial intelligence (AI} program­
ming language OPS83, [5]. The lecture first addresses the basic issues of concern 
in converting a FORTRAN program to a rule-based expert system program. Then, 
the issues involved in developing the expert system itself are addressed at three 
stages of the design process: (1) Preliminary stage to establish the basic data for 
the design; (2) Solution stage to establish the numerical results of the design; (3} 
Critique stage to evaluate the merits of the design. Finally, several example designs 
of structural steel frameworks are presented to illustrate the features of the expert 
system and how the knowledge-based technology effectively improves the synthesis 
strategy and the design outcome. 

2 Interfacing FORTRAN and AI Languages 

The basic strategy in developing the expert system involves retaining all of the 
algorithmic routines for the predecessor FORTRAN software system for structural 
steel design [1], while replacing the FORTRAN control structures of the exist­
ing system with corresponding routines written in the AI programming language 
OPS83, [5]. The retained FORTRAN routines have been well developed and ex­
tensively tested over many years and, in most cases, provide the most effective and 
efficient means to solve their respective tasks (e.g., first-order and second-order 
structural analysis, displacement and stress sensitivity analysis, continuous and 
discrete optimization). The rule-based OPS83 routines, which quantify the non­
numeric aspects of design and drive the synthesis process by directly invoking the 
numeric FORTRAN routines, are very easily modified and updated to accommo­
date different design scenarios. 

OPS83 is the primary control language and, therefore, all FORTRAN-based 
algorithms are treated as subroutines by OPS83. All information common to both 
environments is passed through a subroutine argument list. Since the number of 
entries in an OPS83 argument list is limited to twelve while, on the other hand, the 
number of variables and parameters used by both environments is in the hundreds, 
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and since all global memory used by a FORTRAN routine is lost when control 
is returned to the OPS83 environment, two OPS83 and two FORTRAN mapping 
and recovery routines are utilized to manage the transfer of data between the 
two programming environments, as follows: (1) prior to accessing a FORTRAN 
algorithm from OPS83, an OPS83 mapping-routine is called to map all relevant 
data into (at most twelve) large vectors; (2) the FORTRAN algorithm is then called 
with these large vectors as its arguments; (3) once in the FORTRAN environment, 
a FORTRAN recovery-routine is then called to recover the data from the large 
vectors; (4) prior to exiting the FORTRAN environment, a FORTRAN mapping­
routine is called to map the data back into the large vectors of the argument list; 
(5) upon returning to the OPS83 environment, an OPS83 recovery-routine is called 
to recover the data from the large vectors. 

The foregoing mapping/recovery strategy allows for the effective transfer of data 
between the two programming environments and, during program development, 
also allows new FORTRAN and/or OPS83 variables and parameters to be readily 
introduced into the expert system program with little difficulty. 

3 The Expert System 

The architecture of the expert system is illustrated in Fig. 1, [6,7]. The designer 
enters basic data into the Context through the User Interface. The system it­
self posts other data in the Context during the course of conducting the design. 
The Knowledge Base contains rules based on expert knowledge that control the 
design process, including rules that reflect good design practise and designer pref­
erences. The numeric FORTRAN routines and standard steel section databases are 
resources of the Knowledge Base. The operation of the expert system is managed 
by the Inference Engine, which employs the inference mechanism of the OPS83 
language to fire rules in the Knowledge Base by matching their premises with data 
in the Context. The Explanation Facility provides the user with information as to 
why certain rules are fired during the design process. 

While many rules are required to control the overall design process, only a 
limited number of these rules are applicable at any one time. This fact is exploited 
by dividing the Knowledge Base into three distinct sets of rules corresponding to 
three stages of the design process: (1) Preliminary stage that establishes an initial 
design, (2) Solution stage that establishes a corresponding least-weight design, and 
(3) Critique stage that evaluates the current design and suggests redesign with 
modifications. As shown in the following, the rules in each set are devised such 
that they can be fired only when the corresponding design stage is active. The 
described subdivision of the Knowledge Base, also indicated in Fig. 1, improves 
the computational efficiency of the expert system since it reduces the number of 
rules that need to be explicitly considered at any given stage of the solution process. 
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Figure 1. Architecture of the expert system. 
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An overview of the three stages of the synthesis process is given by Fig. 2. 

3.1 Preliminary Stage 

To begin the Preliminary stage of the design process, a number of basic parameters 
are input as data through the User Interface into the Context for the expert system 
(Fig. 1); specifically, the structure topology (bay widths, storey heights, connec­
tion and support types) and the design loading (dead, live, snow, wind, thermal, 
settlement). The Preliminary stage then employs a number of related rules in the 
Knowledge Base to establish an initial design for the structure. 

Once the basic data for the design has been stored in the records of global 
memory and the elements 'stage= preliminary' and 'data input= done' have been 
posted in the Context, the activities of the Preliminary stage are established by 
the 'preliminary agenda rule' (written here in pseudo-code): 

rule: 
If 

then 

preliminary agenda 
stage = preliminary 
data input= done 
design cycle = 1 
member behaviour = required 
member profile = required 
member group = required 
initial design = required 
analysis = required 
member function = required 
verify = required 
preliminary termination = required 

This rule is fired at the beginning of the Preliminary stage to define the tasks 
required to be completed to identify an initial design for the structure. The first 
action of the agenda rule is to set the 'design cycle' counter to unity (this counter 
is used as an index to store data for the various designs created by the synthesis 
process). Thereafter, the design tasks are performed sequentially in the order 
shown through the firing of corresponding individual rules. The sequential ordering 
of the rules is regulated by the OPS83 Inference Mechanism that directly fires a rule 
in the Knowledge Base whenever data that matches the rule premise is encountered 
in the Context (Fig. 1). Note from the rule descriptions in the following that the 
firing of some rules is conditional upon the completion of preceding rules, which 
further serves to explicitly regulate the sequential flow of action. 
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Figure 2. Overview of knowledge-based synthesis process. 
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The 'member behaviour rule' is: 

rule: 
If 

then 

member behaviour 
stage = preliminary 
member behaviour = required 
for i = 1 to number of members 

if member i end condition = pin-pin 
member i span load = zero 

then member i behaviour = axial 
else member i behaviour = flexural 

member behaviour = done 

This rule examines the end conditions and span loading for each member to de­
termine if its behaviour is axial or flexural. An axial member has pins at both 
ends and no load in span, while a flexural member has one or both ends fixed or is 
loaded in span. 

The 'member profile rule' is: 

rule: 
If 

then 

member profile 
stage = preliminary 
member behaviour = done 
member profile = required 
for i = 1 to number of members 

if member i behaviour = flexural 
then min. length= max. span-to-depth x W-shape min. depth 

if member i length> min. length 
then member i profile = W -shape 
else query user 

else if member i behaviour = axial 
then query user 

member profile = done 

This rule establishes the cross-section profile for each member of the structure. If 
the member is flexural and satisfies a specified minimum length requirement, the 
section profile is taken to be a W-shape. Otherwise, the user is queried as to the 
choice of section profile (e.g., T-shape, hollow-box, etc.). This rule is based on the 
fact that the most common shape for flexural members of significant span is the 
wide flange or W-shape. The minimum span length considered to be significant 
is determined by multiplying the minimum available depth of W-shaped sections 
(default= 6 in, 150 mm} by the maximum allowable span-to-depth ratio (default 
= 20}. This ratio is used by engineers as a quick rule-of-thumb check to ensure that 
adequate stiffness is provided by specified sections. If the length of the member 
exceeds the minimum significant length then the W-shape is suitable. Otherwise, 
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some other profile might be more economical. This rule is readily extended to allow 
for the automatic assignment of a broader range of section profiles depending on 
the experience of the designer. Not shown here is the fact that the user always has 
the option to override any assignment made by the system and that the system 
will not override any member profile that the user might pre-specify in the input 
data. 

The 'member group rule' is: 

rule: 
If 

then 

member group 
stage = preliminary 
member profile = done 
member group= required 
for i = 1 to number of members 

if member i group = undefined 
then call member group procedure 
if member i group = undefined 
then query user 

for g = 1 to number of groups 
if group g properties = undefined 
then call group properties procedure 
if group g properties = undefined 
then query user 

member group = done 

This rule invokes two separate OPS83 routines that link members together into 
fabrication groups with common properties. If the input data has not assigned 
a member to a group, the 'member group procedure' is called. This procedure 
identifies members having the same behaviour type and section profile and then 
links them together into groups according to conventional fabrication practise (e.g., 
all flexural W-shape girders at each storey level of a regular framework are grouped 
together}. If a member is irregular in that the system does not automatically assign 
it to a group, the user is queried for assignment. 

The second 'group properties procedure' identifies the section profile common to 
all members of each group and then assigns to the group corresponding conventional 
material property values for steel (yield stress, ultimate stress, etc.}. If a group 
is irregular in that the system does not automatically assign it material property 
values, the user is queried for assignment. 
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The 'initial design rule' is: 

rule: 
If 

then 

initial design 
stage = preliminary 
member group= done 
initial design = required 
call cross-section database routine 
for g = 1 to number of groups 

if group g behaviour = axial 
then group g initial design = group g profile 

with max. area from section database 
else if group g behaviour = flexural 
then group g initial design = group g profile 

with max. I from section database 
initial design = done 

This rule first invokes a FORTRAN routine to create the random access database 
of cross-section properties for each of the unique profile shapes identified for the 
structure by the 'member profile rule,' (Herein, the calls to FORTRAN routines are 
identified by slanted type so as to distinguish them from the OPS83 routines). The 
created data also includes the indices of the sections with the largest and smallest 
cross-section areas and moments of inertia for each shape category in the database, 
which then enable an initial size to be established for the section profile assigned 
to each group of members, as follows: if the member group behaviour is axial, 
the group is assigned the section having the largest cross-section area from the 
standard section database for the group profile; if the member group behaviour is 
flexural, the group is assigned the section having the largest cross-section moment 
of inertia from the section database for the group profile. 

Once the initial sizes of the members have been established, the corresponding 
structure is analyzed to obtain numerical results that the expert system subse­
quently uses to establish the function of each member (beam/column/etc.), and to 
verify the initial design according to the provisions of the governing steel design 
standard. The 'preliminary analysis rule' is: 

rule: 
If 

then 

preliminary analysis 
stage = preliminary 
analysis = required 
initial design = done 
call properties routine 
call analysis routine 
analysis = done 

This rule first invokes a FORTRAN routine that establishes the cross-section prop-
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erties of each structural member in accordance with the design determined by the 
'initial design rule,' The resulting properties are stored in corresponding FOR­
TRAN vectors and eventually in OPS83 data records. 

Once the member properties have been established, a FORTRAN routine is 
called to conduct analysis of the initial design of the structure using a linear elastic 
solver based on the Displacement Method of analysis. (For this first analysis only, 
a node re-numbering routine is called to minimize the band-width of the structural 
stiffness matrix so as to reduce computation and memory requirements, and the 
numerical integrity of the stiffness matrix is checked to ensure that a reasonable 
structure has been modelled). 

First-order or second-order (P - Ll) analysis is conducted, depending on the 
requirements of the design. Member stresses and nodal displacements are found 
for each design load case and stored in disk files. Most of the analysis results 
are not passed back to the OPS83 environment because much of this data need 
not be manipulated by that side of the expert system. Instead, before passing to 
the OPS83 side, the bulk of the data is reduced to a few scalars and vectors that 
contain summarized data such as maximum displacements at a few key nodes, or 
maximum force effects for each member from among all load cases. This is the type 
of information that a designer gathers from a structural analysis for later design 
purposes. 

The 'member function rule' is: 

rule: 
If 

then 

member function 
stage = preliminary or solution 
analysis = done 
member function = required 
for i = 1 to number of members 

if M; > min. moment 
N; > min. axial force 

then Member i function = beam-column 
else if M; > min. moment 

N; < min. axial force 
then Member i function = beam 
else if M; < min. moment 

N; > min. axial force 
then Member i function = column 
else member i function = unloaded 

member function = done 

This rule employs the results of the analysis of the initial design to establish the 
functions of the members for the structure. Upon comparing minimum specified 
or default moment and axial force values with the maximum moment M; and axial 
force N; experienced by each member i, from among all load cases, the member 
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function is classified as 'beam-column,' 'beam' or 'column' (or 'unloaded' if M; and 
N; are both less than their corresponding minimum values). 

The 'preliminary verify rule' is: 

rule: preliminary verification 
H stage = preliminary 

member function = done 
verify = required 

then call verify routine 
verify = done 

This rule invokes a FORTRAN routine that uses the analysis results for the ini­
tial design, and the functions designated for the members, to verify the member 
strength properties according to the provisions of the governing steel design stan­
dard. Stiffness properties are also verified by comparing nodal displacements for 
the structure with allowable upper-bound values specified by the user. The veri­
fication establishes the response ratio for each stress and displacement condition 
for the design (response ratio = ratio of actual response to maximum allowable 
response.) If the response ratio for any condition is found to be greater than unity, 
thereby signalling an infeasibility, the user is informed of this event prior to pro­
ceeding to the Solution stage (where design feasibility is generally restored after 
one or two design cycles). 

Upon establishing an initial design for the structure with known strength and 
stiffness properties relative to the governing steel design standard, the Preliminary 
stage of the design process is terminated through the 'preliminary termination 
rule': 

rule: 
H 

then 

preliminary termination 
stage = preliminary 
preliminary verify = done 
preliminary termination = required 
stage = solution 
solution agenda = required 
optimizer = continuous 
preliminary termination = done 

This rule causes the design process to proceed to the Solution stage of the ex­
pert system by modifying the Context element 'stage = preliminary' to 'stage = 
solution,' As well, the elements 'optimizer = continuous' and 'solution agenda= 
required' are added to the Context. Not shown here is the fact that all extrane­
ous elements in the Context are removed at this point (e.g., 'verify = done,' etc.), 
which serves to prevent the Context from becoming cluttered with data that is no 
longer relevant to the synthesis process. 
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3.2 Solution Stage 

Upon completion of the Preliminary stage, the Solution stage of the design process 
commences to determine a least-weight design of the structure. This stage involves 
the coordinated use of elastic structural analysis, first-order sensitivity analysis 
and a continuous/discrete optimization technique. For the initial 'trial' design 
of the structure from the Preliminary stage, structural and sensitivity analyses 
are conducted and the strength and displacement design conditions are formulated 
explicitly in terms of member sizing variables through the use of first-order Taylor's 
series. The structure weight function is formulated in terms of the sizing variables, 
and the optimization technique is applied to solve the optimization problem so 
as to achieve a lower weight design of the structure. The details of the synthesis 
process have been presented by the writer in a previous lecture of the NATO-AS!. 

The initial design from the Preliminary stage is generally feasible but usually 
poorly proportioned. As a consequence, the Solution stage is devised to have two 
modes of operation. The first mode involves solving a continuous-variable weight 
optimization problem for a few design cycles until a reasonably proportioned struc­
ture is achieved. The second mode involves taking standard section sizes as dis­
crete variables to the weight optimization. The continuous-variable optimization 
provides a computationally efficient means to achieve reasonable proportions for 
the structure before commencing discrete-variable optimization because there is no 
interaction with the cross-section database, the bounds of the strength constraints 
are taken to remain constant and only first-order analysis is employed. The latter 
two points recognize that the continuous-variable mode only produces an approxi­
mate design and thus the rigour of accounting for changing constraint bounds and 
conducting second-order analysis is not warranted. Based on the results of the 
continuous-variable mode, discrete sections are selected from the standard section 
database to initiate the discrete-variable mode of the Solution stage. 

The activities of the Solution stage of the synthesis process are defined by the 
'solution agenda rule': 
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rule: 
If 

then 

solution agenda 
stage =solution 
solution agenda = required 
design cycle = design cycle + 1 
analysis = required 
member reselection = required 
analysis = required 
member function = required 
verify = required 
constraint deletion = required 
sensitivity analysis = required 
section subset = required 
optimization = required 
convergence check= required 

This rule is fired at the beginning of each design cycle of the Solution stage to 
define the tasks required to be completed to achieve a lower-weight design. During 
the design cycle, the tasks are performed sequentially in the order shown through 
the firing of corresponding individual rules. Note from the description of these 
rules in the following that their sequential order is regulated by making the firing 
of each rule conditional upon the completion of the preceding rule. 

The first action taken by the agenda rule is to advance the 'design cycle' counter 
by 1. Note that the second and fourth actions of the rule post the same 'analysis 
=required' element to the Context, and that these elements do not overwrite each 
other but exist as separate entities in the Context. The first structural analysis is 
performed prior to member reselection and ensures that cross-sections are selected 
based on the response of the current design. (The current design can result from 
actions in either the Preliminary or Critique stage, or may be the optimized de­
sign produced by the previous design cycle of the Solution stage). The result of 
the member selection procedure is somewhat approximate and, as such, a second 
analysis and subsequent verification of the structure are required to ascertain the 



appropriateness of the selected member sections. The two analysis rules are: 

rule: 
If 

then 

analysis before reselection 
stage = solution 
member reselection = required 
analysis = required 
call analysis routine 
analysis = done 

rule: analysis after reselection 
If stage = solution 

member reselection = done 
analysis = required 

then call analysis routine 
analysis = done 
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Note that the only difference between the two rules is the status of the 'member 
reselection' element. Both rules invoke a FORTRAN routine that conducts stress 
and displacement analysis of the current structure for each design load case (the 
same analysis routine as that called during the Preliminary stage). The analysis 
conducted is either first-order or second-order, depending on the requirements of 
the design, and is determined by the 'analysis type rule': 

rule: 
If 
then 

analysis type 
analysis = required 
if optimizer = continuous 
then analysis type = first order 
else analysis type = specified analysis type 
if specified analysis type = undefined 
then specified analysis type = default analysis type 

This rule is invoked each time the element 'analysis = required' is posted in the 
Context. (Note that this rule can be fired during any of the three design stages 
since it has no 'stage=' pre-condition). Currently, the rule ensures that if the user 
has not specified an analysis type then a default analysis type is adopted. The 
default analysis type is automatically determined from input data in the Context 
concerning the requirements of the specified design standard and whether sidesway 
is 'permitted' or 'prevented.' In addition, the analysis is automatically taken to be 
first-order if the Solution stage is in the continuous-variable mode. More sophis­
ticated features can be added to this rule (e.g., even though the default analysis 
type is second-order, a comparison of first-order and second-order results for the 
current structure may show that P- t!. analysis is not warranted). 

The member selection process commences by firing one of the following two res-
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election rules, depending on whether the Solution stage is in continuous or discrete­
variable mode. The first 'member reselection rule' is: 

rule: 
If 

then 

member reselection-continuous 
stage = solution 
optimizer= continuous 
analysis = required 
member reselection = required 
member reselection = done 
analysis = done 

This rule is fired for the continuous-variable mode simply to set the status of the 
Context element 'member reselection' from 'required' to 'done' (i.e., since member 
reselection is only required for the discrete-variable mode). Similarly, since no 
reselection is performed, a second structural analysis is not required and the status 
of the 'analysis' element is also changed to 'done' in the Context. The second 
'member reselection rule' is: 

rule: member reselection-discrete 
If stage = solution 

optimizer = discrete 
member reselection = required 

then for g = 1 to number of groups 
if group g behaviour = axial 
then group g stiffness property = area 
else if group g behaviour = flexural 
then group g stiffness property = I 

call selection routine 
member reselection = done 

This rule first determines the cross-section stiffness property to be considered 
by the member reselection routine so as to appropriately account for the stiff­
ness (displacement) conditions for the structure when making member strength 
selections. Namely, the stiffness property is set to area for axial members and to 
moment of inertia I for flexural members. (Note that the same stiffness property 
applies to all members of each group). A FORTRAN member reselection routine is 
then called to search the entire database of standard sections for a smaller section 
for each member group g satisfying sizing, strength and stiffness constraints for all 
members belonging to the group. To this end, the strength constraints are evalu­
ated member-by-member based on the cross-section properties in the database and 
the requirements of the governing design standard. There are, however, no design 
standard formulae that permit the overall structural stiffness to be directly evalu­
ated based on cross-section properties. For this reason, an approximate technique 
that utilizes displacement sensitivities is employed to estimate the overall effect 
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of member cross-section properties (area and moment of inertia) on the stiffness 
of the structure. This technique enables minimum section size constraints to be 
imposed during the member-by-member selection process so as to ensure adequate 
overall structural stiffness. 

Prior to verification of the current design, the 'member function rule' previously 
described for the Preliminary stage is re-fired for the Solution stage to ensure that 
the designated function of a member is consistent with the current distribution of 
forces in the structure. The 'solution verify rule' is then fired: 

rule: 
If 

then 

solution verify 
stage = solution 
member function = done 
verify = required 
call verify routine 
call design history update 
verify = done 

This rule invokes a FORTRAN routine that uses the current analysis results to 
verify the member strength and structure stiffness properties according to the 
provisions of the governing steel design standard. (This is the same verify routine as 
that called during the Preliminary stage.) The verification establishes the response 
ratio for each stress and displacement condition for the design. 

With a view to numerical efficiency, the stress and displacement conditions that 
have small response ratios are deleted from the active constraint set for the next 
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weight optimization through the 'constraint deletion rule': 

rule: constraint deletion 
If stage = solution 

verify = done 
constraint deletion = required 

then deletion response= min. deletion response+ {design cycle)/10 
if deletion response > max. deletion response 
then deletion response = max. deletion response 
call deletion routine 
if no. of active constraints < min. no. of active constraints 
then no. of active constraints = min. no. of active constraints 
constraint deletion = done 

This rule invokes a FORTRAN routine that deletes displacement and stress con­
ditions having response ratios less than a specified minimum value from the ac­
tive constraint set. Prior to calling the deletion routine, the rule establishes the 
minimum response ratio value for the current design cycle based on the absolute 
minimum {default = 0.3) and maximum {default = 0.8) deletion response ratios 
provided as input data in the Context. {Note that the specified minimum response 
ratio progressively increases from a low value for the initial design cycle when the 
member sizes change significantly, to a high value for the final design cycle when 
convergence to the least-weight structure occurs). After the deletion routine has 
executed, the rule then ensures that a sufficient number of constraints yet remain 
to conduct the next weight optimization. (Note that deleted constraints are veri­
fied during subsequent design cycles and added to the active constraint set if their 
response ratios become greater than the current specified minimum value). 

As described by the writer in a previous lecture of the NATO-AS!, the first-order 
Taylor's series approximations of the retained stress and displacement constraints 
are formulated using sensitivity analysis techniques. Within the expert system, 
this activity is carried out through the 'sensitivity analysis rule': 

rule: 
If 

then 

sensitivity analysis 
stage = solution 
constraint deletion = done 
sensitivity analysis = required 
call sensitivity routine 
sensitivity analysis = done 

This rule invokes a FORTRAN routine that first conducts sensitivity analysis of 
the current structure to determine stress and displacement gradients, and then for-
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mulates first-order Taylor's series approximations of the corresponding constraint 
equations. 

The upper and lower bounds on member cross-section sizes are supplied as 
data from the Preliminary stage and remain constant during the first mode of the 
Solution stage that involves solving the continuous-variable weight optimization 
problem. For the second mode that involves solving the discrete-variable weight 
optimization problem, subsets of candidate sections for the members are selected 
for each design cycle from the standard section database through the 'section subset 
rule': 

rule: 
If 

then 

section subset 
stage = solution 
sensitivity analysis = done 
section subset = required 
call subset routine 
section subset = done 

This rule invokes a FORTRAN routine that selects a limited number of sections 
{default = 12) that are closest to the current section in the database and have 
adequate strength and stiffness properties. (Note that this may or may not result 
in the selection of sections having smaller weight than the current section). 

The coefficients in the weight function for the structure are supplied as data 
from the Preliminary stage and remain constant for both modes of the Solution 
stage. The weight optimization for each design cycle is conducted through the 
'optimization rule': 

rule: 
If 

then 

optimization 
stage = solution 
section subset = done 
optimization = required 
call optimization routine 
optimization = done 

This rule invokes a FORTRAN routine [8] that solves the continuous-variable 
weight optimization problem for each design cycle of the first mode of the So­
lution stage, or the discrete-variable weight optimization problem for each cycle of 
the second mode, to achieve a lower-weight design of the structure. 

The number of design cycles for the continuous-variable mode of the Solution 
stage is a fixed number that is supplied as input data in the Context. The tran­
sition to the discrete-variable mode is carried out by the 'continuous to discrete 
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optimization rule': 

rule: 
If 

then 

continuous to discrete optimization 
stage = solution 
optimizer = continuous 
design cycle = continuous_variable cycles + 1 
call continuous to discrete routine 
optimizer = discrete 

This rule is fired when the design cycle counter exceeds the allowable number of 
continuous-variable design cycles {default = 3). The first action of the rule is to 
change the Context element 'optimizer = continuous' to 'optimizer = discrete.' 
Then, a FORTRAN routine is called to convert the continuous-variable section 
sizes for the members to discrete sections from the database. (This simply involves 
taking the discrete section that has a size that is closest to, but larger than, the 
size of the corresponding continuous-variable section). 

The number of design cycles for the second discrete-variable mode of the So­
lution stage depends on when the synthesis process converges to the least-weight 
structure, and is controlled through the 'convergence check rule': 

rule: 
If 

then 

convergence check 
stage = solution 
optimization = done 
convergence check = required 
call convergence routine 
if convergence = false 
then solution agenda = required 
else if 
then 

convergence = true 
stage = critique 
critique agenda = required 

This rule invokes an OPS83 procedure that determines whether or not the solution 
process has converged to a least-weight design of the structure. If not, the 'solution 
agenda rule' is then fired again to commence another design cycle of the Solution 
stage. If convergence has occurred, the Solution stage of the design process is 
terminated and the Critique stage is activated. 

3.3 Critique Stage 

Upon completion of the Solution stage, the Critique stage of the design process 
commences to determine if the current least-weight design of the structure can or 
should be improved upon. The activities of the Critique stage are established by 



the 'critique agenda rule': 

rule: 
If 

then 

critique agenda 
stage = critique 
critique agenda = required 
critique termination = required 
improved fabrication = required 
improved section profile = required 
improved section depth = required 
improved unbraced length = required 
improved supports = required 
improved stiffness = required 
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This rule is fired at the beginning of the Critique stage to identify the areas to 
be examined for possible design improvement. The tasks are performed sequen­
tially through the firing of corresponding individual rules, but in the reverse order 
shown. (A currently devised, the various improvement rules of the Critique stage 
are not conditional upon each other and, as such, the significance of their firing 
order is somewhat arbitrary). The reversed firing order of the rules is regulated 
by the 'younger-before-older' conflict-resolution strategy employed by the OPS83 
Inference Mechanism. Namely, even though the pre-condition of a critique rule 
is satisfied as each agenda task is posted to the Context, no other rule can fire 
until the agenda rule has finished executing. As such, the last rule satisfied by the 
postings of the agenda tasks will be the 'youngest' rule and, hence, will be fired 
first by the Inference Mechanism. The 'critique termination rule' will be fired last 
since it is the first item of the agenda rule and, therefore, the 'oldest' element in 
the Context. 

Recognizing that the improvements suggested by some rules may negate or 
conflict with the findings of other rules, no changes to the design are allowed until 
all the critique rules have fired. Then, the user is presented with a list of possible 
improvements which may be implemented in any order, or ignored. (For the current 
expert system, it is left to the discretion of the user to decide when an improvement 
negates or conflicts with any other suggested improvements). The user may invoke 
one or more of the suggested improvements, at which point the expert system 
will re-initiate the Solution stage (discrete mode) with the 'improved' design as 
the starting basis. Eventually, the 'critique agenda rule' will be fired again to re­
evaluate the design with respect to the improvements considered thus far, and so 
on until no further improvements are made and the expert system is terminated. 
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The 'improved fabrication rule' is: 

rule: 
H 

then 

improved fabrication 
stage = critique 
improved fabrication = required 
call merge groups routine 
call split groups routine 
improved fabrication = done 

This rule invokes two separate FORTRAN routines that evaluate specific fabrica­
tion details of the current design for the structure. The first routine compares the 
design sections for the different member groups for the structure and identifies sets 
of two or more groups that have nearly identical sections. For each set of member 
groups so identified, the user is later queried as to whether to merge the groups to­
gether into a single group so as to reduce the number of different sections required 
for the design. The second routine evaluates the maximum response ratio for the 
individual members within each member group and identifies situations where only 
a few members have high response ratios and, therefore, control the group design 
at the expense of those members with low response ratios. For each member group 
for which such a situation is identified, the user is later queried as to whether to 
divide the group into two or more smaller groups so as to more effectively utilize 
member capacities and thereby result in a lower weight design. (Evidently, other 
routines are readily added to this rule as additional fabrication details become of 
concern.) 

The 'improved section profile rule' is: 

rule: 
If 

then 

improved section profile 
stage = critique 
improved section profile = required 
call improved profile routine 
improved section profile = done 

This rule invokes an OPS83 procedure that determines if the design section for 
each member group is the biggest or smallest section available from the section 
profile database specified for the group. If the design section is found to be at a 
limiting size, the user is later queried as to whether to select a different section 
profile for the member group with less restrictive size limitations so as to result in 
a more effective distribution of the relative member sizes for the structure. 



The 'improved section depth rule' is: 

rule: 
If 

then 

improved section depth 
stage = critique 
improved section depth = required 
call improved depth routine 
call relative depth routine 
improved section depth = done 
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This rule invokes two separate OPS83 procedures that evaluate the appropriateness 
of the member section depths for the current design of the structure. The first 
routine identifies any section depths that appear to be too large or too small 
for good design practise. In the former case, column depths are compared to a 
maximum allowable depth (default = 14 inches, 360 mm), and in the latter case, 
the span-to-depth ratio of each beam is compared to an allowable upper-bound 
value (default = 20). For each section depth so identified as being too large or 
too small, the user is later queried as to whether to impose a depth limitation for 
the section so as to satisfy conventional design practise, clearance requirements, 
aesthetics, etc. (The routine does not evaluate section depths if the user has pre­
specified allowable depth limits). The second routine considers the member joints 
for the structure and identifies situations where there are significant differences in 
the relative section depths of connecting members (default = 4 inches, 100 mm). 
For each situation so identified, the user is later queried as to whether to impose a 
section depth limitation for one or more of the connecting members so as to ensure 
a more compatible joint connection. 

The 'improved unbraced length rule' is: 

rule: 
If 

then 

improved unbraced length 
stage = critique 
improved unbraced length = required 
call lateral bracing routine 
call compression-flange bracing routine 
improved unbraced length = done 

This rule invokes two separate OPS83 procedures that evaluate the unbraced 
lengths of certain members for the structure. The first routine identifies axial 
members for which the strength design is controlled by out-of-plane buckling. For 
each such member so identified, the user is later queried as to whether additional 
bracing is available (e.g., from a wall) such that a smaller out-of-plane unbraced 
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length may be specified for the member. The second routine identifies loaded flex­
ural members with wide-flange section for which the unbraced compression flange 
length is larger than a specified value (default = one-half the span length of the 
member). For each such member so identified, the user is later queried as to 
whether additional bracing is available for the compression flange (e.g., from a 
floor) such that a smaller unbraced compression-flange length may be specified for 
the member. (The reduced unbraced lengths suggested by both routines will allow 
for smaller section sizes for the same member load-carrying capacities). 

The 'improved supports rule' is: 

rule: 
If 

then 

improved supports 
stage = critique 
improved supports = required 
call improved supports routine 
improved supports = done 

This rule invokes an OPS83 procedure that examines the supports for the structure 
to determine if uplift forces are present (an undesirable event). For each support 
for which such forces are identified, the user is later advised of the situation and en­
couraged to review the lateral load resisting system so as to eliminate any uplifting 
action. 

The 'improved stiffness rule' is: 

rule: 
If 

then 

improved stiffness 
stage = critique 
improved stiffness = required 
call improved lateral stiffness routine 
call improved beam stiffness routine 
improved stiffness = done 

This rule invokes two OPS83 procedures that identify parts of the structure where 
increased stiffness is potentially required. The first routine checks the maximum 
lateral drift experienced at the top storey of the structure and, depending upon 
the load factors associated with the applied loads, estimates the lateral drift at the 
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service load level. If the deflection so identified exceeds the allowable displacement 
limit {default= h/500, where his the height of the structure at which the displace­
ment is measured) the user is later queried as to whether to impose a limitation 
on the displacement such as to ensure a more appropriate stiffness response for the 
structure. (The procedure is not implemented if the user has already pre-specified 
a lateral displacement constraint for the top storey). The second routine checks 
for the presence of a constraint on the vertical deflection of at least one member of 
each beam group where span loads are present. If no such constraint is detected, 
the user is later advised that vertical deflection has not been constrained for the 
affected member group. 

For the current expert system, the foregoing describes the rules that are fired 
during the Critique stage to arrive at suggestions to improve the design of the 
structure. (Evidently, other design improvement rules are readily implemented as 
different design scenarios and experiences are encountered). The Critique stage is 
terminated through the 'critique termination rule': 

rule: 
If 

then 

critique termination 
stage = critique 
critique termination = required 
call improvement implementation procedure 
critique termination = done 
query user for action 
if action = solution 
then stage = solution 

solution agenda = required 
else if action = output 
then query user for final design 

call output routine 
QUIT 

This rule first calls an OPS83 procedure that directly queries the user to selectively 
implement any or all of the improvements suggested by the Critique stage. Next, 
the user is queried as to whether to return to the Solution stage to account for any 
suggested design improvements (and to eventually arrive again at this 'critique 
termination rule'), or to directly select a final design from the synthesis history 
(the expert system will recommend the most recent least-weight design produced 
by the Solution stage) and then call a FORTRAN routine to output the results. 
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4 Design Examples 

This section of the lecture presents a number of example applications that demon­
strate the features and capabilities of the knowledge-based expert system for struc­
tural steel design. All results are achieved for the expert system implemented on 
a UNIX-based VAXU-780 (University of Waterloo) computer. The first example 
concerns the design of a ten-storey office tower and provides an overview of the ex­
pert system from the Preliminary stage through the Solution stage to the Critique 
stage. The second example concerns the design of a K-braced preheater tower for 
a cement plant and traces the evolution of the design of a single member through 
the Preliminary and Solution stages of the synthesis process. The third example 
concerns the design of a mill building with a trussed roof and demonstrates how a 
new rule can be introduced into the expert system when a design scenario occurs 
that is beyond the scope of the existing Knowledge Base. 

4.1 Ten-Storey Office Tower 

The planar one-bay, ten-storey frame in Fig. 3 is part of an office building tower. 
The frame is to be designed for the single load case shown in Fig. 3, where the in­
dicated load values define the service-load level, [7,9]. The design is to be governed 
by the provisions of the American Institute of Steel Construction (AISC) Working 
Stress Design standard for steel structures [3]. Member sections are to be selected 
from the AISC database of standard steel sections. Initially, no limitations are 
placed on member section depths or on nodal displacements. 

The basic data defining the structure topology and loading shown in Fig. 3 is 
input through the User Interface into the Context for the expert system (Fig. 1). 
The rules in the Knowledge Base pertaining to the Preliminary stage of the design 
process (Section 3.1) are then implemented to establish an initial design for the 
structure, as indicated in Table 1. Note from Table 1 that the column members 
are collected together into fabrication groups over every two stories of the frame, 
while all nine floor beams are collected together into a single group. The 'initial 
design rule' assigns a W36 X 300 section to all members for the frame, which 
corresponds to a total structure weight of 120,000 lbs. This design, which is feasible 
but excessively heavy, is indicated in Fig. 4 as the Preliminary Design. 

Having the initial design of the frame from the Preliminary stage, the rules 
in the Knowledge Base pertaining to the Solution stage (Section 3.2) are then 
implemented to determine a corresponding least-weight design over a number of 
design cycles. (Recall that member sizes are taken as continuous variables to the 
weight optimization for the first three design cycles, and as discrete variables for 
all design cycles thereafter until weight convergence occurs). Table 2 indicates, 
for example, the rule outcome at the beginning (member reselection) and end 
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Table 1. Preliminary stage results for ten-storey frame. 

Rule Outcome 

Member Behaviour Flexural (all members) 
Member Profile W-shape (all members) 

Group 1 (members cl-c4) 
Group 2 (members c5-c8) 
Group 3 (members c9-c12) 
Group 4 (members c13-c16) 

Member Group Group 5 (members c17-c20) 
Group 6 (members bl-b9) 
Group 7 (member blO) 
Young's Modulus= 29,000 ksi (all groups) 
Shear Modulus = 11,200 ksi (all groups) 
Yield Stress = 36 ksi (all groups) 
Ultimate Stress = 58 ksi (all groups) 

Initial Design W36 X 300 (all groups) 
Member Function Beam-column (all members) 

Note: W d x m = wide-flange section; depth d (in) and mass m (lb/ft). 

(optimization) of the fourth design cycle (the first design cycle for which discrete­
variable optimization is conducted). 

Table 2. Solution stage results for design cycle 4 for ten-storey 
frame. 

Member Rule outcome 
Group Member Reselection Optimization 
cl-c4 W30x108 W27xl02 
c5-c8 W21x73 W24x68 

c9-c12 W18x60 W21x57 
c13-c16 W16x45 W18x40 
c17-c20 W16x31 W14x30 
bl-b9 W24x68 W24x68 

blO W14x30 W12x30 

The design outcome in Table 2 for the 'member reselection rule' corresponds 
to a total structure weight of 25,520 lbs., while that for the 'optimization rule' 
corresponds to a weight of 24,720 lbs. The Solution stage terminates after three 
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discrete-variable design cycles {for a total of six cycles) with the least-weight design 
of the frame given in Table 3. 

Table 3. Solution stage results for ten-storey frame. 

Solution design 
Member X-Section Length Weight 
Group Designation {ft) (lbs) 

c1-c4 W30X108 40. 4321. 
c5-c8 W21x73 40. 2391. 
c9-c12 W21x57 40. 2277. 

c13-c16 W16x45 40. 1813. 
c17-c20 W16x31 40. 1243. 
b1-b9 W24x62 180. 11160. 
blO W14x30 20. 603. 

Total: 24350. 

The combined bending and axial compression stress condition for the roof beam 
{Eq. 1.6-2 in Ref. [3]) is the controlling condition for the design in Table 3, which 
is indicated in Fig. 4 as the Solution Design. 

Having the least-weight design in Table 3 from the Solution stage, the rules 
in the Knowledge Base pertaining to the Critique stage {Section 3.3) are then 
implemented to determine if the current design of the frame can or should be 
improved upon, as indicated in Table 4. 
In Table 4, the 'improved fabrication rule' suggests that the single group of nine 
members b1-b9 be subdivided into three independent member groups b1-b3, b4-
b6 and b7-b9; this suggestion is prompted by the fact that, for the Solution Design, 
the stress conditions for the nine beam members b1 to b9 have maximum response 
ratios of 0.90, 0.96, 0.88, 0.80, 0.69, 0.60, 0.47, 0.37 and 0.27, respectively. The 
'improved section depth rule' suggests that, consistent with good design practise, 
upper-bound limitations be placed on column section depths; this suggestion is 
prompted by the fact that, for the Solution Design in Table 3, column members 
c1-c4, c5-c12 and c13-c20 have large section depths of 30, 21 and 16 inches, respec­
tively. The 'improved stiffness rule' suggests that the lateral drift at the roof level 
of the frame be limited to h/500 = 2.4 inches; this suggestion is prompted by the 
fact that the roof-level lateral drift of h/490 = 2.43 inches for the Solution Design 
is not acceptable in practise. (In fact, the h/500 limitation on lateral displacement 
becomes even more necessary to the design if the column section depths are limited 
as suggested.) 

Upon adopting the suggested design improvements from the Critique stage, the 
design process returns to the Solution stage to account for the corresponding new 
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Table 4. Critique stage results for ten-storey frame. 

Rule Outcome 
Improved Problem: member b2 dominates the design 
Fabrication of member group b1-b9 

Suggest: member group b1-b3 
member group b4-b6 
member group b7-b9 

Improved No improvement suggested 
Section Profile 
Improved Problem: section depths are too large 
Section Depth for column members c1-c20 

Suggest: depth ~ 14 in. for members c1-c4 
depth ~ 12 in. for members c5-c12 
depth ~ 10 in. for members c13-c20 

Improved No improvement suggested 
Unbraced Length 
Improved No improvement suggested 
Supports 
Improved Problem: lateral displacement at 
Stiffness roof level= h/490 

Suggest: displacement < h/500 

data. The Solution stage (discrete mode) then commences again and converges 
after four more design cycles (for a total of ten cycles) to the least-weight design 
given in Table 5. The h/500 limitation on roof-level lateral drift is the controlling 
condition for this design, which is indicated in Fig. 4 as the Critique Design. Note 
from Tables 3 and 5 that the design improvements have resulted in a 18.6% increase 
in total structure weight from 24,350 lbs. to 28,870 lbs. The designer must decide 
whether this weight increase is justified for the design improvements achieved. 
Herein, the design given in Table 5 is deemed acceptable and the expert system is 
terminated. 

4.2 K-Braced Preheater Tower 

The planar K-braced framework in Fig. 5 is part of a preheater tower for a cement 
plant [7,10] and is to be designed in accordance with the provisions of the AISC 
Load and Resistance Factor Design (LRFD) standard for steel structures [4]. 

No displacement constraints are imposed for the design by the user, although 
the Critique stage of the expert system may later suggest such constraints so as to 
improve the stiffness characteristics of the frame (not considered herein). The struc-
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Table 5. Critique stage results for ten-storey frame. 

Critique design 
Member X-Section Length Weight 
Group Designation (ft) (lbs) 

c1-c4 W14x109 40. 4362. 
c5-c8 W12x106 40. 4253. 

c9-c12 W12x96 40. 3844. 
c13-c16 W10x60 40. 2399. 
c17-c20 W10x30 40. 1205. 
b1-b3 W27x84 60. 5071. 
b4-b6 W24x62 60. 3722. 
b7-b9 W24x55 60. 3313. 

b10 W18x35 20. 7020. 
Total : 28870. 

ture topology and five design load cases are initially input as basic data through 
the User Interface into the Context for the expert system (Fig. 1). The five load 
cases (not shown for the sake of brevity) represent various combinations of dead, 
live, wind and equivalent seismic loads applied to the joints and members of the 
framework: case 1 =dead + live; case 2 = 0.85 (dead + wind); case 3 = dead + 
0.25 live+ seismic; case 4 = 0.75 (dead+ live+ wind); case 5 = 0.75 (dead+ live 
+seismic). 

A number of default design parameters are automatically posted in the Context 
concerning material properties, deflection limitations, section depths, slenderness 
ratios, etc. For example, allowable slenderness ratios (KL/r) are specified to be 
200 and 300 for members in compression and tension, respectively, in accordance 
with the LRFD design standard, [4]. In addition, for this design example, anum­
ber of parameters are pre-specified by the user concerning member profiles, section 
depths, member fabrication groups, and material properties. All member profiles 
are specified to be American W-shapes. To comply with conventional design prac­
tise, the depths of the column sections are limited to 14 inch (360 mm) and the 
depths of the K-bracing sections are limited to 12 inch (300 mm). No limitation 
is placed on the depths of beam sections. The specified fabrication groups include 
two column groups (the columns of the bottom two stories belong to one group and 
the columns of the top three stories belong to the other group), five beam groups 
(a separate group for each storey), and five K-bracing groups (a separate group 
for each storey). The default material properties normally assigned to American 
W-shapes (i.e. fv = 36 ksi) are changed by the user to be those for fv = 50 ksi 
steel. 

With the view to illustrate both the operation of the expert system and the 
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processing of the provisions of the LRFD steel standard, the remaining discussion 
for this example concerns the evolution of member 6 from the beginning of the 
Preliminary stage to the end of the Solution stage for the synthesis process. From 
Fig. 5, member 6 belongs to the first-storey beam fabrication group, named herein 
as group BEAMl. 

Once the basic data has been input, the first action of the Preliminary stage 
for the expert system is to apply the 'member behaviour rule' to determine the 
behaviour of member 6. Since the member is pinned at the column but continuous 
over the point where the K-bracing members meet (Fig. 5), and since it is subject 
to span loading (not shown), the member behaviour is determined to be flexural. 
The 'member profile rule' and 'member group rule' are effectively bypassed since 
the user has already specified corresponding default parameters. The 'initial design 
rule' assigns member 6 to have a W14 x 730 section. (This is the section in the 
American W-shape database that has the largest moment of inertia; although such 
a shallow heavy section is a poor choice for a beam member it is nonetheless almost 
always feasible, which is a necessary condition to commence the weight optimization 
task of the synthesis process.) The 'analysis type rule' assigns second-order (P- 6) 
analysis as the basis for design (i.e., the default analysis type for the LRFD design 
standard). After analysis of the initial design has been conducted for all five load 
cases, the 'member function rule' determines that member 6 is a beam-column 
since it is subject to combined bending moment and axial force. To complete the 
Preliminary stage, the 'design verification rule' is fired to verify the properties of 
member 6 in accordance with the strength/stability provisions of the LRFD steel 
design standard, [4]. 

Table 6 lists the details of the verification of the initial design of member 6 
for load case 1, for which the member is in combined bending + tension. From 
the American W-shape database for the expert system, the W14 x 730 section for 
member 6 is determined to be compact. Since member 6 is a beam-column, the 
clauses of the LRFD design standard relating to slenderness (B7), axial capacity 
(D1), shear capacity (F2.2), bending capacity (F1) and combined axial+ bending 
capacity (Eq. H1-1b) are checked by calculating the corresponding 'response ratios' 
= 'prevailing value/ allowable value.' For example, the slenderness ratio for member 
6 having a W14 x 730 section is KL/r = 55.65 and the allowable slenderness ratio 
= 300 for a member in tension and, therefore, the response ratio = 55.65/300 = 
0.186, as indicated in Table 6. The very small response ratios in Table 6 indicate 
that the initial design section for member 6 is significantly under-utilized. (In 
general, a fully utilized section exhibits a response ratio = 1.0 for one or more of 
its governing design code clauses). 

The Solution stage of the expert system then commences to conduct the itera­
tive synthesis process to achieve a least-weight design of the frame. For example, 
after three continuous-variable optimization design cycles the 'continuous to dis­
crete optimization rule' assigns member 6 to have a W18 x 50 section. Based on 



Table 6. LRFD Verification results for initial design of member 6 
of K-braced frame. 

Member: 6, Group: BEAM1, W14X730, Compact , Bending + Tension 

Pu • 69.4 kips 
Vu = 77.8 kips 
Mu = 271. kip-ft 
Clause B7 
Clause D1 
Clause F2.2 
Clause F1 
Clause eq.H1-1b 

Pr = 9680. 
Vr = 1860. 
Mr = 6230. 

Ae • 215. in2 
Aw = 68.8 in2 
Cb = 1. 75 Lf = 21.8 ft 

(KL/r}/300 = 0.186 
Pu/Pr 0.007 
Vu/Vr 0.042 
Mu/Mr = 0.043 

Pu/2Pr + Mu/Mr 0.047 

(subscripts 'u' and 'r' refer to factored effects and calculated 
resistance, respectively; P = axial force; V = shear force; 
M =bending moment; Ae = effective area; Aw = area of the web; 
Cb = bending coefficient; Lf = unbraced length of the flange} 
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the analysis results for the current design of the frame, this is the least weight sec­
tion in the American W-shape database that satisfies the LRFD strength/stability 
requirements for the member. The weight optimization for the fourth design cycle 
assigns member 6 to have a W18 x 46 section (i.e., the unit weight of the member 
decreased from 50 to 46 lb/ft.). Succeeding design cycles of the Solution stage 
produce still lighter-weight designs until weight convergence occurs, at which point 
member 6 is assigned to have a Wl6 X 36 section. 

Table 7 lists the details of the verification of the final design of member 6 for 
load case 1 (the critical load case for the member from among the five load cases for 
the frame). Upon comparing the response ratios in Tables 6 and 7 it is seen that, 
contrary to that for its initial design section, the final design section for member 
6 is almost fully utilized. The governing LRFD code clause in Table 7 concerns 
combined axial+ bending behaviour, for which member 6 is 98.2% utilized. 

The Critique stage of the expert system is not illustrated for this example. 
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Table 'T. LRFD Verification results for final design of member 6 of 
K-braced frame. 

Member: 6, Group: BEAM1, W16X36, Compact , Bending + Tension 

Pu = 68.9 kips Pr = 477. Ae = 10.6 in2 
Vu = 76.4 kips Vr = 127. Aw = 4.69 in2 
Mu = 218. kip-ft Mr = 240. Cb = 1. 75 Lb = 21.8 ft 
Clause B7 (KL/r)/300 = 0.672 
Clause D1 Pu/Pr = 0.144 
Clause F2.2 Vu/Vr = 0.595 
Clause F1 Mu/Mr = 0.910 
Clause eq.Hl-lb Pu/2Pr + Mu/Mr = 0.982 

4.3 Mill Building Framework 

The purpose of the following design example [7] is not to track the workings of 
the synthesis process in detail but, rather, to demonstrate that the expert system 
environment provides an excellent means to accommodate previously unforeseen 
design scenarios through the addition of new rules in the Knowledge Base. Specif­
ically, the introduction of new rules is discussed for both the Solution and Critique 
stages of the design process. 

The planar mill building framework in Fig. 6 is to be designed in accordance 
with user-specified displacement constraints and the strength/stability provisions of 
the Canadian Limit States Design {LSD) standard for steel structures [2]. Member 
sections are to be selected from the Canadian Institute of Steel Construction { CISC) 
database of standard sections. 

The mill frame is subject to the three design load cases indicated in Fig. 6. The 
first load case consists of factored dead and live gravity loads, the second load case 
consists of service (unfactored) live gravity loads, and the third load case consists 
of combined dead, live, and wind loads at the service level. Vertical displacement 
at the midspan of the roof truss is limited to 80 mm (L/300) for load case 2. 
Horizontal displacement at the roof top is to be limited to 60 mm (h/370) for load 
case 3. 

The user has specified that all members of the roof truss are to be square hollow 
structural {SHS) sections and that the column members are to be welded wide 
flange {WWF) sections. Six member fabrication groups have also been specified, 
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consisting of: top chord truss members ( CHtop); bottom chord truss members 
(CHbot); vertical web truss members (V); diagonal members of the center three 
truss panels (D2); diagonal members of the outer two panels at each end of the roof 
truss {D1); column members extending the full height of the structure (COL). No 
depth limitations have been specified for any of the member groups. Out-of-plane 
bracing is provided at each structural joint of the roof truss (i.e., K 11 = 1), and the 
WWF columns are additionally braced at third points (i.e., K 11 = 0.33). The user 
has also specified that P - !:!. effects are to be accounted for and, therefore, that 
second-order analysis is the underlying basis of the design. 

The foregoing input data is first read into the Context of the expert system 
(Fig. 1), and then the Preliminary stage of the synthesis process begins. The initial 
design section determined for all truss members is a 305 x 305 x 13 section, which 
is the SHS section with the largest area in the CISC database. A WWF1800 x 632 
section, having the largest moment of inertia in the WWF database, is assigned 
to the column members. (Section definitions are given in Table 10). A second­
order analysis is conducted and the initial design is verified according to the user­
specified displacement constraints and the strength provisions of the LSD design 
standard, [2]. The corresponding maximum constraint response ratio = 0.749, 
indicating that the initial design is feasible. 

The Solution stage of the synthesis process then begins and, after three con­
tinuous variable design cycles, a discrete design is selected and verified. However, 
though the strength constraints are found to be satisfied {maximum response ratio 
= 0.945), the horizontal displacement constraint for load case 3 is found to be 
violated by 17%. This infeasibility is too large to permit the design process to 
continue to the optimization phase and, as such, a new and feasible design must 
first be found. However, no provision for this requirement has as yet been allowed 
for in the scheme of the Solution stage. Therefore, as discussed in the following, 
a new rule must be added to the Knowledge Base that recognizes the infeasibility 
condition and then restores design feasibility. 

Recall from the 'member reselection rule' in the Solution stage {Section 3.2) 
that, prior to member reselection, a FORTRAN routine determines the lower bound 
area or moment of inertia value that a candidate section must possess in order to 
satisfy stiffness requirements during the strength-based member reselection process. 
This routine utilizes the results of the previous structural analysis to generate dis­
placement sensitivity coefficients, which are then used to evaluate the contribution 
of each member group to the overall structural stiffness. The fact that the current 
design for the mill frame is 17% infeasible for a displacement constraint indicates 
that the displacement sensitivity coefficients should be updated, that new lower 
bounds on section areas and inertias should be determined and that another mem­
ber reselection should take place. With the improved lower bounds, the member 
reselection process should produce a feasible or nearly feasible design after the next 
verification, although more than one update and reselection may be required. 
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The foregoing strategy to restore feasibility can be implemented by a new rule 
that places a subset of the Solution agenda tasks in the Context. This 'restore 
feasibility agenda rule' is: 

rule: 
If 

then 

restore feasibility agenda 
stage = solution 
verify = done 
design = infeasible 
member reselection = required 
analysis = required 
member function = required 
verify = required 

This rule will only fire after the 'solution verify' rule determines that a design in­
feasibility exists and the 'design = infeasible' condition is posted in the Context. 
This new agenda rule sends four tasks to the Context that have the same effect 
as causing the original 'solution agenda rule' to backtrack and repeat its last four 
design tasks. The rule will continue to fire until feasibility is restored (or nearly 
restored; currently a 3% infeasibility is allowed) or until a fixed number of reselec­
tion attempts occurs (default = 3), at which point the Solution stage is allowed 
to continue to the optimization phase. (Note: even if some infeasibility still exists 
at this point it is generally significantly smaller than that which was originally 
detected and, as such, acceptable to the optimizer.) 

Returning to the design of the mill frame with the 'restore feasibility agenda 
rule' now in the Knowledge Base, the expert system executes exactly as before until 
the 17% infeasibility is detected for the displacement constraint for load case 3. The 
new rule is then fired and the agenda of restorative design tasks is posted in the 
Context, causing the corresponding rules to fire and another design to be selected. 
The verification of this new design determines that the displacement infeasibility 
is reduced to 8% and, also, that the maximum response ratio for the strength 
constraints is decreased to 0.80 (from 0.945). The 'restore feasibility agenda rule' 
is fired again and this time the reselection procedure produces a feasible design, 
for which the maximum displacement response ratio is 0.986 and the maximum 
strength response ratio is 0.641. The foregoing restorative activity is reflected by 
the three references to design cycle 4 in Table 8. The expert system then continues 
normally to complete the design cycle. 

The Solution stage converges to the least-weight structure over the next three 
design cycles, none of which experience any constraint infeasibility. The iteration 
history of the design process for the Solution stage is given in Table 8. The response 
activities of the displacement and strength constraints for the final design are given 
in Tables 9 and 10, respectively. Note that the design is strongly controlled by the 
displacement constraint for load case 3 (Table 9). In fact, it is precisely because of 
this displacement constraint that the response ratios for the strength constraints 
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Table 8. Mill building design history. 

---------------------------------------------------------------------
Design Design Relative Response ___ Ratio Feasible Design 

Cycle Type Weight Strength Displ. Design? Status 
---------------------------------------------------------------------

0 initial 1 0.360 0.749 yes 
1 continuous 
2 continuous 
3 continuous 
4* discrete 0.7810 0.945 1.170 NO reselect 
4* discrete 0.8544 0.799 1.084 NO res elect 
4 discrete 0.8919 0.641 0.986 yes 
5 discrete 0.8905 0.641 0.990 yes best 
6 discrete 0.9117 0.642 0.979 yes 
7 discrete 0.9072 0.637 0.966 yes 
8 discrete 0.9072 0.637 0.966 yes converged 

---------------------------------------------------------------------

are all well below unity (Table 10). 
The Critique stage of the expert system begins upon completion of the Solution 

stage, and the firing of the corresponding rules produces the following findings 
and recommendations concerning improvements to the current design of the mill 
building framework: 

Finding: 1 [improved fabrication rule] 
The width of the diagonal group ( D1 ) 
is wider than the width of the chord group ( CHbot ) 

Recommendation: 1.1 - for SHS sections -
Specify a minimum allowable depth limit for the chord group or 
specify a maximum allowable depth for the diagonal group. 

Finding: 2 [improved profile rule] 
The following design group(s) are at their maximum available size: 
( CHtop ) 
( COL ) 
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Table 9. Mill building displacement constraints for the final design. 

(units: X,Y displacement = mm; Rotation = radians) 

Permitted Ratio of: Load 
Comb'n 

Node 
Name 

Direction 
X Y Rot 

Actual 
Displ. (+ or -) Actual/Permitted 

2 
3 

Group 
Name 

7 
26 * 

* -8.25 
59.4 

80.0 
60.0 

0.103 okay 
0.990 okay 

Table 10. Mill building strength constraints of the final design. 

Member Section Load Code Response 
Name Shape Designation Case Clause Ratio 

------------------------------------------------------------------
CHtop ch23 SHS 305X305X13 3 13.2 0.145 
CHbot ch12 SHS 203X203X8 3 13.3 0.641 
v v28 SHS 127X127X6 0 10.2.1 0.249 
D1 d44 SHS 254X254X11 3 13.2 0.190 
D2 d38 SHS 203X203X11 0 10.2.1 0.206 
COL col32 WWF 1800X632 3 13.4.1 0.369 
------------------------------------------------------------------

SHS d x d x t = square hollow structural section; 
depth d (mm), width d (mm) and thickness t (mm) 

WWF d x m = welded wide-flange section; 
depth d (mm) and mass (m) (kg/m) 

Recommendation: 2.1 
Re-specify a shape category that has larger available sections. 
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Recommendation: 2.2 - for axial members -
If possible, reduce unbraced lengths. 

Recommendation: 2.3 - for flexural members -
If possible, reduce unbraced length of compression flange. 

The 'improved fabrication rule' has determined that the section width of the 
web diagonal members (group D1) is wider than that of the bottom chord members 
(group CHbot). Recommendation 1.1 suggests to limit either the minimum sec­
tion depth for the chord members or the maximum section depth for the diagonal 
members. In fact, the user may choose to impose either or both limits and have 
the expert system return to the Solution stage to regenerate a corresponding new 
final design (not shown here). 

The 'improved profile rule' has determined that the final design sections for 
both the top chord group (CHtop) and the column group (COL) represent the 
largest available cross-sections from their respective databases. Recommendation 
2.1 suggests that another shape category containing heavier sections might be more 
appropriate for these member groups. This is perhaps a good suggestion for the 
top chord members, for which a W shape could replace the SHS shape. However, 
this is not an appropriate suggestion for the column members since there are no 
larger shapes than WWF. 

Recommendations 2.2 and 2.3 suggest that the unbraced lengths of the members 
of each fabrication group be reduced so as to increase member buckling strength. 
However, this suggestion is only valid if strength constraints or axial slenderness 
control the design of these groups. In fact, these strength-based recommendations 
are not meaningful for the mill frame because a deflection constraint is strongly 
controlling the design (see Tables 9 and 10). This suggests, then, that any strength­
related recommendations of the Critical stage should be made conditional upon 
the relative activity of the strength constraints compared to the displacement con­
straints. A corresponding new rule could be added to the Knowledge Base that is 
activated when displacement constraints govern the design significantly more than 
strength constraints, and which informs the user of alternative actions that may 
be taken in this event. This 'displacement governs rule' would have the follow­
ing general form (this rule has not yet been formally incorporated into the expert 
system): 

rule: 
If 

then 

displacement governs 
stage = critique 
displacement governs = yes 
strength-related recommendations = invalid 

This rule would fire at the beginning of the Critique stage, after the final application 
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of the 'solution verify rule' determines that a displacement constraint controls the 
design and the 'displacement governs = yes' condition is posted in the Context. 
The finding and recommendations of this rule for the present example could be as 
follows: 

Finding: 3 [displacement governs rule] 
The following displacement constraint controls the design: 
( X-disp.O node 26 for load case 3 ) 

Recommendation: 3.1 
Ignore any strength-related recommendations from other Critique rules. 

Recommendation: 3.2 
If possible, relax the displacement constraint bound. 

Recommendation 3.1 is passive in that it simply informs the user that any 
strength-related recommendations from the other Critique rules are to be ignored 
as meaningless because the design is controlled in any event by stiffness conditions. 
On the other hand, recommendation 3.2 is pro-active in that it suggests to relax 
the governing displacement constraint bound for the design. In fact, providing it 
can be implemented, this recommendation makes good sense since it will lead to 
a lighter-weight design while, at most, causing the strength-related conditions to 
become more critical to the design. Sometimes the change in structure weight can 
be significant for only a moderate change in the displacement constraint bound. For 
the steel mill frame, for example, suppose the user relaxes the x-axis displacement 
bound at node 26 for load case 3 from 60 mm to 80 mm. Reapplication of the 
Solution stage for this modification results in a new final design that is 17.6% 
lighter than the previous design. For the new design, the displacement constraint 
for load case 3 still governs while the response ratios for all strength constraints 
have increased from their previous values (in fact, while some ratios increased 
more, the maximum response ratio for the strength constraints only nominally 
increased from 0.641 to 0.643). Evidently, then, recommendation 3.2 suggested by 
the proposed 'displacement governs' rule is certainly worthy of consideration for 
the mill frame design. 
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A Knowledge-Based Model for 
Structural Design 

B.H.V. Topping and B. Kumar 
Department of Civil Engineering 
Heriot- Watt University, Riccarton, 
Edinburgh, EH14 4AS, United Kingdom 

Abstract This paper presents a model for structural design based on ideas from artificial 
intelligence, particularly knowledge-based technology. The model presented is different 
from conventional models in that there is a more elaborate treatment of the reasoning 
processes involved in the overall design process. The model is thought to be more amenable 
to automation. Implementation of part of the model is presented in reference [ 1]. 

1 Introduction 

This paper presents a model for structural design which forms the framework for 
the development of a knowledge-based system for structural design. Components 
of the model are presented here. The model presented here is called INDEX, 
which stands for INDustrial Building Design EXpert. The reason for calling it 
INDustrial Building Design EXpert is that low rise industrial steel buildings are 
used as examples to illustrate the model. However, it is suggested that the model 
is general enough for all structural design. 

In section 2 a description of the structural design process is presented. Section 3 
discusses some aspects of the DESTINY model [2]. Section 4 describes the INDEX 
model. Section 5 is a comparison of the two models highlighting the differences 
between the two. Finally, section 6 contains the summary and conclusions for this 
paper. 
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2 Structural Design 

2.1 The Process 

A civil engineering structure may be defined as an entity which will withstand 
imposed design loads and transmit them to the foundations. In doing so, the 
structure must fulfill certain engineering and other architectural constraints. The 
structural design process includes the proportioning and sizing of such a structure 
to ensure the appropriate levels of safety and serviceability specified in design 
documents such as Codes of Practice and Building Regulations. The whole design 
process may be divided into three distinct stages: 

• Preliminary design : In this stage, the functional requirements and con­
straints are synthesised into a preliminary design concept. This involves the 
selection of a potential structural configuration satisfying layout and spatial 
constraints. This stage frequently includes an approximate analysis to eval­
uate the response of the alternative candidate structures selected for further 
consideration. 

• Detailed design : This involves the detailed design of the candidate struc­
ture selected in the preliminary design and consists of the following three 
sub-stages: 

a. structural analysis ; 

b. proportioning and sizing the structural members ; and 

c. checking all the applicable design constraints. 

This stage typically consists of several iterations between analysis, propor­
tioning and sizing to ensure that all applicable constraints are satisfied with 
economy of design. Most of these constraints are specified in the applicable 
design codes. There may also be a number of external constraints, such as 
restrictions on the height of a structure. A large and significant deviation 
in the properties of the components assumed at the analysis and proportion­
ing stages might necessitate another analysis, proportion and sizing-check 
cycle. This is typical of most design problems. The iteration continues until 
a satisfactory design is determined. In some cases, there may be a return to 
the preliminary design stage resulting in a revision of the chosen structural 
concept. 

• Design documentation : Detailing of the different components and prepa­
ration of the design documents. 
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Figure 1. The different stages of structural design after Plank and 
Bell {3] 

2.2 Discussion 
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Figure 1, after Bell and Plank [3], shows the different stages of the structural design 
process and indicates the influencing factors (experience, heuristics etc.) at every 
stage. It is important to note the feedback that may become necessary at any 
stage, when the designer may be forced to go back to almost any earlier stage and 
reconsider his decisions. This aspect of design is the most difficult to incorporate 
in computer programs. 

The above description of the structural design process is only a description of 
the different stages in structural design. However, the more important aspect of 
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structural design is the inference mechanism involved. As discussed in the previ­
ous paragraph, the designer may be forced to go back and reconsider his earlier 
decisions and even change them in certain circumstances, as shown in Figure 1. In 
terms of Artificial Intelligence (AI), it would be said that there can be recurring 
changes in the current set of beliefs throughout the design process. This may arise 
owing to a sudden change of specifications or the emergence of new constraints, 
possibly in conflict with the existing ones. For a detailed discussion on the different 
aspects of non-monotonic reasoning, refer to [4, 5]. A more detailed treatment of 
the non-monotonic nature of the structural design process and ways of overcoming 
it is presented in [6]. 

3 The DESTINY Model 

3.1 Architecture 

The DESTINY model is based on a blackboard architecture [7]. The sole pur­
pose behind selecting this architecture is to facilitate communication between the 
different experts involved in the structural design process, e.g., architects, space 
planners, service engineers and so on. Figure 2 is a schematic representation of the 
DESTINY model. 

3.2 Blackboard 

DESTINY's blackboard is divided into two parts. The first part is called the Work­
ing level, which contains entries relating to the execution of the various knowledge 
modules (KMs). The second part is split into eight levels: viz., Top, Functional, 
Material, 3D, 2D, Location, Components and Property-Response. These levels 
contain entries relating to the different stages of the design process and may be 
seen as a hierarchical decomposition of the building design process, i.e., they de­
fine the abstraction hierarchy of the design entities. Figure 3 shows the abstraction 
hierarchy on the blackboard of DESTINY [2]. 

3.3 Knowledge-Base 

The knowledge-base of DESTINY is organised into a hierarchy of three levels. Each 
level comprises a number of knowledge modules each performing a particular task 
in the design process. The three levels of DESTINY's knowledge base are: 

1. the strategy level; 

2. the specialist level; and 

3. the resource level. 
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Figure 2. Schematic Model of DESTINY [2] 
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Figure 3. Abstraction hierarchy levels on the blackboard of DES­
TINY {2/ 
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A brief description of these levels may be found in reference [2]. A relatively 
detailed description of the modules relevant to the discussions of this paper will 
be presented here. The module that is directly relevant to the extension of the 
DESTINY model proposed by this work is CRITIC. The purpose of this module 
is to check whether a design generated by the other modules (i.e., ALL-RISE, 
MASON and DATON) is satisfactory to perform the intended functions. This task 
of CRITIC is divided into two sub-tasks: viz., Criticize and Evaluate. The purpose 
of the Criticize sub-task is to assign one of the following four values to a design: 

1. unsatisfactory; 

2. modifiable; 

3. fixable; 

4. satisfactory. 

There are four sets of production rules which determine one of these values for 
a particular design. The different cases which determine when a particular design 
is assigned one of these values are discussed below: 

1. Unsatisfactory - this value is assigned to a design if the intended behaviour 
of the structure is not achieved. 

2. Modifiable - this value is assigned to the design if there are significant dif­
ferences between the assumed and the computed properties of the structure. 
With a modifiable design a re-analysis is recommended. 

3. Fixable - this value is assigned to the design if there are minor differences 
between the assumed and the computed properties of the structure. A fixable 
design is one which does not have to undergo a re-analysis and requires just 
minor adjustment to some of its parameters. 

4. Satisfactory - this value is assigned to the design if it satisfies all the speci­
fications previously laid down. 

Once a design is found to be satisfactory then a detailed evaluation is carried 
out by CRITIC as the Evaluate sub-task. For the descriptions of other knowledge 
modules reference should be made to reference [2]. 

3.4 Inference Mechanism 

As with any other blackboard system, the inference mechanism of DESTINY also 
consists of an agenda and a monitor. The agenda contains a list of the sequence of 
specialist level knowledge modules to be executed from the elements of the following 
set: 
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Figure 4. The blackboard levels at which CRITIC posts and receives 
information adapted for reference {2] 

{ALL-RISE MASON DATON CRITIC} 

The initial agenda called Specialist Agenda (SPA) set by TACON is: 

{ALL-RISE DATON MASON DATON CRITIC} 

The preliminary design is done by ALL-RISE and DATON. Once the agenda 
has been set up by the strategy level knowledge module, TACON, the monitor 
takes the first module from it and executes it. All the modules in the agenda are 
executed sequentially until it is empty. All the sub-tasks of a module are also 
executed sequentially until the module is completed. TACON is activated only 
after the execution of CRITIC. Conceptually, TACON may be activated at any 
stage when a more flexible mechanism is required. 

3.5 Interactions between the knowledge modules 

Figure 4 shows the levels on the blackboard to or from which the CRITIC module 
posts and retrieves information. Arrows indicate posting information while the 
circles indicate retrieval of information. 

4 The INDEX Model 

4.1 Architecture 

The architecture of the INDEX model is the same as the DESTINY model, i.e., the 
blackboard architecture. The reasons for selecting this architecture are the same 
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as those for DESTINY. 

4.2 Blackboard 

The abstraction hierarchy on the blackboard of INDEX is similar in nature to 
that on the blackboard of DESTINY since the abstraction hierarchy is essentially 
a translation of the stages in the structural design process which are the same in 
both cases. This is why a separate abstraction hierarchy is not given for INDEX. 

4.3 Knowledge-Base 

4.3.1 Brief description The knowledge base of INDEX consists of a number 
of knowledge modules as shown in figure 5. The knowledge modules are organised 
into a hierarchy of two levels, the specialist level and the resource level. The 
knowledge modules at the specialist level consist mainly of heuristics and other 
knowledge which are specialist-dependant. The knowledge modules at the resource 
level consist mainly of textbook knowledge. All the knowledge modules contain 
declarative as well as procedural knowledge. A brief description of the knowledge 
modules at the different levels is given below : 

• Specialist level : This consists of knowledge modules primarily containing 
experience-based heuristics, but, some textbook knowledge is also stored at 
this level. This level consists of the following knowledge modules : 

o ALTSEL : This module is responsible for the ALTernative SELection 
of the feasible structural systems and decides on different design pa­
rameters for the required frame spacing, or the choice of a single or a 
multi-bay system etc. 

o STRANEX : This module carries out the modelling and analysis of the 
chosen structural system by ALTSEL. 

o DETDEX : This carries out the detailed design, i.e. detailed propor­
tioning and sizing of the components of the chosen structure. 

o EVALUATOR: This module evaluates the different alternatives gener­
ated by the system. 

o OPTEX : This module consists of various heuristics and rules to be used 
for the optimisation of the structures. 

o DESCON : This module is responsible for solving problems arising out 
of a change of specifications or constraints described in section 2.2. DE­
SCON acts as a DESign CONsultant to the other modules in such sit­
uations. 
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Figure 5. Schematic model of INDEX 
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• Resource level : This level generally consists of algorithmic programs such 
as structural analysis programs, standard codes, optimisation routines etc. 
The knowledge modules at this level consist of the following: 

o STRANA : This module includes the STRuctural ANAlysis programs. 

o DETDES : This module is responsible for the DETailed DESign of the 
structure, i.e. detailed sizing of the components of the structure. 

o STAND :This module includes the provisions of the applicable STAN­
Dards and is responsible for checking these standard constraints. 

o STOPT : This module consists of STructural OPTimisation routines. 

o DBs : These DataBases include the different dimensions and sectional 
properties of various structural sections, e.g. UBs, UCs etc. 

4.3.2 Detailed description This section describes the Specialist level knowl­
edge modules in some detail. 

1. ALTSEL 

The main tasks for this module are as follows: 

• selection of the feasible alternative structural systems; 

• undertaking a preliminary analysis of the structural systems; 

• undertaking a preliminary sizing and proportioning of the components 
of the systems; 

• undertaking preliminary checks on the components; 

• posting relevant constraints for each of the alternative systems to the 
blackboard for later use by the other modules; and 

• undertaking a preliminary evaluation of the systems. 

2. STRANEX 

The main tasks performed by the STRANEX module are as follows: 

• to model the structural systems generated by ALTSEL; 

• to select the structural analysis strategy, i.e., the appropriate type of 
analysis; 

• to prepare the input data for the analysis program; and 

• to return the output data from the analysis program. 

STRANEX can be seen to be performing a similar task as SACON [8]. The 
different sub-modules of STRANEX are as follows: 
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• MODELLER- which models the structure for the analysis; 

• LOADEX - which decides the type and magnitude of loadings imposed 
on the structure; 

• PLANNER - which determines the appropriate analysis program to be 
used; and 

• INTERFACE -which prepares the data for the analysis program and 
receives the output data back from it. 

• The actual analysis is carried out by the analysis programs at the re­
source level . This knowledge module needs an interface with the anal­
ysis programs. An interface between PROLOG and FORTRAN77 was 
implemented for this purpose, details of which can be found in [9]. 

3. DETDEX 

The tasks performed by DETDEX are as follows: 

• to size the different components of the structure; 

• to select the applicable provisions of the Codes of Practice; and 

• to check the constraints prescribed by the Codes as well as other soft 
constraints; 

The functions of this module can be seen to be quite similar to that of 
SPEX [10]. 

4. OPTEX 

This module has the following tasks: 

• to formulate a model for optimisation of the structure; 

• to select the appropriate optimisation algorithm to be used; 

• to prepare the input data for the optimisation program; and 

• to receive the output from the optimisation program. 

The following are the sub-modules of this module which perform the above­
mentioned tasks: 

• MODELLER- formulates an optimisation model; 

• PLANNER - determines the appropriate optimisation algorithm to be 
invoked; 

• INTERFACE- sends data to and receives it from the optimisation pro­
gram. 
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This module also needs an interface with the optimisation programs. The 
same interface between PROLOG and FORTRAN77 discussed in reference 
[9] is used for the purpose. 

5. DESCON 

This module's function is to propose a solution to a design or partial design 
which is not satisfactory owing to a change of specification or a violation 
of some constraints. Thus, if a design is unsatisfactory, the following two 
possibilities exist: 

• the design is either modifiable ; or 

• the design is not modifiable and a re-design has to be undertaken. 

In the case of a modifiable design, again the following two possibilities exist, 
depending upon the extent and nature of modification to be carried out: 

• the modification will require a re-analysis of the structure; or 

• the modification will not require a re-analysis of the structure. 

Based on the above criteria, the task of this module is to decide if a design 
is one of the following: 

• modifiable; or 

• re-designable. 

This module is similar to the CRITIC module of DESTINY. However, there 
are very significant differences in their scope and operation which will be 
discussed in section 5. 

Once a design or partial design is categorised as discussed above, DESCON's 
tasks also include the following: 

• to formulate the revised set of constraints in cases of a modifiable design; 

• to suggest the exact nature of modifications to be carried out; and 

• to post constraints to the appropriate modules. 

The need for this additional module at the Specialist level will be discussed 
in section 5. This module comprises the most important difference between 
the DESTINY and INDEX models. 

6. EVALUATOR 

Once all the alternatives generated by ALTSEL have been designed satisfac­
torily, all of them are passed to this module. The task before this module is to 
evaluate all the designs based on different criteria and rank them accordingly. 
This module was not developed in this work. 
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4.4 Inference Mechanism 

Unlike DESTINY, the inference mechanism of INDEX is handled in two ways. 
In routine situations, the sequence of execution of the knowledge modules is pre­
defined, which is as follows: 

(ALTSEL->STRANEX->DETEX->OPTEX->EVALUATOR) 

Clearly, this sequence does not include the DESCON module. The reason is 
that DESCON may not be invoked in every case. Depending on the outcome of 
the other modules, DESCON may or may not be invoked. DESCON does not have 
to be directly invoked since the control mechanism rests mostly in the hands of 
DESCON itself. In such cases, DESCON sets up the sequence of execution of any 
other module. The different cases that may arise before DESCON is invoked will 
be discussed in section 5.2. 

5 Comparison between the DESTINY and 
INDEX models 

Although the INDEX model is based on the DESTINY model, there are significant 
differences between the two. The INDEX model can be seen as an extension of the 
DESTINY model as will become clear later. 

Figure 5 indicates that the INDEX model has two levels, viz., the specialist and 
the resource level. For the sake of uniformity, the terminologies used are the same 
as for the DESTINY model (figure 2). However, the DESTINY model proposes an 
additional level called the Strategy level. INDEX does not recognise the need for 
this level. The reason is that in DESTINY, the execution of modules is sequential 
and does not require a separate set of rules to define. The sequence may be pre­
defined, which is how it is undertaken in INDEX. However, if there is a requirement 
to change the sequence, there will be a need for a set of rules. This will become 
clear from the discussions in section 5.2. 

Apart from this difference, the other major difference is that of an additional 
module at the specialist level, DESCON (In fact, there are two additional mod­
ules at the specialist level: viz., OPTEX and DESCON. However, the addition of 
OPTEX is not very important from the conceptual point of view of the design. It 
can only be considered to be an additional facility of the system). This difference 
is an important one as the functions of this module are considered to be vital for 
an integrated design system. The remaining modules at the specialist level can be 
seen to be quite similar in both cases. 
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5.1 Differences in the knowledge base 

It was decided that an additional module was required to tackle some (if not 
all) problems detected by the CRITIC module of DESTINY. The detection of a 
problem (e.g., nonconformity to standard requirements) is done by the respective 
modules themselves in INDEX. The DESTINY model proposes passing back the 
control to either MASON or DATON. Unlike DESTINY, it is proposed to transfer 
the control from whichever module the problem is detected in to DESCON in 
every case. DESCON in turn, transfers the control to one of the other three 
design modules at the specialist level: viz., ALTSEL, STRANEX or DETDEX. 
The only exception is the satisfactory design in which case the design terminates 
at EVALUATOR. In some cases, DESCON considers situations which may not 
have clearly defined constraints in structural engineering terms. For example, at 
some stage, a purlin may have to be removed after it has been designed. The 
removal of a purlin is not an engineering constraint but may give rise to many 
of them. The input to DESCON in such cases relates only to the fact that the 
purlin has to be removed and not that the constraints relating to the stability of 
the rafters are violated. In these circumstances, DESCON's task is to infer the 
effects of any such changes to the existing design or partial design and formulate 
new constraints and propagate them to the appropriate modules. CRITIC can 
only detect the problem and suggest whether the structure is: 

• unsatisfactory; or 

• modifiable; or 

• fixable; or 

• satisfactory. 

The DESTINY model does not indicate whether CRITIC is also responsible 
for suggesting to the appropriate module the precise modifications to be carried 
out to a design. It was proposed that very specialised knowledge may be required 
to accomplish such a task and, hence, the additional module, DESCON was de­
veloped. The basis on which CRITIC suggests whether a design is modifiable or 
fixable is whether or not a re-analysis of the structure is required. The only ba­
sis used by CRITIC to decide on such a re-analysis is the difference between the 
assumed and computed properties of the structure. In fact, such a decision could 
be quite a subjective one and may require other considerations to be taken into 
account. Furthermore, CRITIC cannot handle the emergence of new constraints 
or a change in specifications. CRITIC's scope is thus limited, and suffers from an 
important and serious drawback. DESCON of INDEX may be seen as an extension 
of CRITIC of DESTINY in that it also handles situations where some constraint 
suddenly emerges as a consequence of either: 
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(i) having been overlooked or ignored earlier; or 

(ii) abrupt changes requested by the client; or 

(iii) poor co-ordination between the structural and some other designer (e.g., 
services). 

DESCON's task is to suggest a qualitative solution. Subsequently, the actual 
quantitative solution is carried out by whichever module to which DESCON passes 
control. DESCON is different from the other specialist modules in that its task 
is to suggest changes to an existing or proposed design rather than designing a 
structure from scratch given only the specifications. Its task is considered to be 
more difficult as it is required to explore in a more intelligent way the alternative 
solutions which will force least modifications to the existing or proposed design at 
the least expense. The problem is more critical in the case of an existing structure 
or an already fabricated design. The most knowledge-intensive part of such an 
exercise is to find out the design entities which play the most important role in 
a particular case. The details of the problem-solving strategies used by DESCON 
are discussed in detail in reference [ 11]. 

5.2 Differences in the interactions between the different 
modules 

Figure 4 shows the levels on the blackboard of DESTINY to which CRITIC posts 
information. It is clear from this figure that in no case does it pass control back to 
the level where the feasible structural systems are selected. This is one improve­
ment which the INDEX model proposes. In the case of a re-designable design, 
control is passed back to the ALTSEL module where a completely new alternative 
is selected form those generated earlier by ALTSEL. 

Figures 6 and 7 are diagrammatic representations of the interactions between 
different knowledge modules of INDEX and DESTINY repectively. Yet another 
major difference between the two models is illustrated by these two figures. The 
interactions between the modules of INDEX will be explained in some detail before 
highlighting the differences from the interactions in the DESTINY model. 

By considering figure 6, it is quite clear that the knowledge modules, ALTSEL, 
STRANEX, DETDEX, OPTEX and EVALUATOR are executed sequentially in a 
routine case. DESCON may or may not be invoked in particular cases. DESCON 
is only invoked when a problem is detected by any module. The transfer of control 
to DESCON can take place at any stage of design apart from the routine case 
when complete designs are passed to EVALUATOR to evaluate. Whenever a new 
constraint arises or there is a sudden change of specification, control is passed to 
DESCON. The transfer of control from DESCON to the other modules depends 
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on the nature of the problem detected and the consequent decision taken by DE­
SCON. The most straightforward case handled by DESCON is the re-designable 
design where it simply passes control to the ALTSEL module. The most complex 
case handled by DESCON is the modifiable design. Here, the precise nature of 
modifiability is the main problem for DESCON. Transfer of control is always to 
DETDEX. However, depending on whether or not a re-analysis is required, DET­
DEX has to pass control to either STRANEX or to EVALUATOR after carrying 
out standards checking. For example, if it is suggested by DESCON that the de­
sign is modifiable and that the exact nature of modification to be carried out is to 
increase the section size of one of the members of the structure, DETDEX will pass 
control to STRANEX to carry out a re-analysis. Even if control is passed back to 
STRANEX, the standards provisions still have to be checked before the design may 
be passed to EVALUATOR. This process continues until a satisfactory design has 
been found. Therefore every successful design terminates at EVALUATOR. 

In DESTINY, the elements of the Specialist Agenda (SPA) are set by the Strat­
egy level knowledge module, TACON. The TACON module is activated only after 
the execution of the CRITIC module. Although there is a mention [2] of the possi­
bility of activating TACON after the execution of each specialist level module, the 
mechanism is not very clear. In the INDEX model, it is proposed that there must 
be a facility in the model to allow for any non-monotonicity whenever it arises. 
It is thought that such a situation may arise at any stage and even partial designs 
may have to be assessed by DESCON. DESTINY lacks this important feature. 

In INDEX, part of DES CON's purpose can be seen to be quite similar to that of 
TACON's in DESTINY: i.e., invoking the specialist KMs. Invocation of DESCON 
is quite similar to that of TACON in that every time any module posts information 
to the blackboard indicates a problem. But, the difference lies in the scope and 
purpose of knowledge in DESCON. 

As discussed earlier, DESCON may be invoked in the following situations: 

• Whenever a change of specification or constraint occurs. This can happen in 
the following situations: 

1. at any stage in the design process, in which case even a partial design 
may be passed to it; or 

2. after the design has been completed, in which case the complete design 
will be passed to it. 

• whenever a violation of constraints occurs. 

The transfer of control to DESCON may be undertaken by any of the specialist 
KMs. In contrast, the CRITIC module is only activated after the other KMs of 
the SPA have been executed in the sequence prescribed by the SPA. 

The scope and purpose of knowledge in DESCON has already been explained 
earlier. It is an extension of the CRITIC module of the DESTINY model. 
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6 Summary and Conclusions 

A model for integrated structural design, INDEX, was presented. The model pre­
sented was an extension of an earlier model, DESTINY. Some limitations of the 
DESTINY model were pointed out and the INDEX model resulted from incorpo­
rating the missing features of the DESTINY model. It was concluded that the 
structural design process was a non-monotonic process and any system developed 
for structural design needed to have facilities to allow for this non-monotonocity. 
All the suggested extensions to the DESTINY model centre on this feature of design 
which is held to be fundamental. 
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Know ledge-Based Preliminary Design of 
Industrial Buildings 

B. Kumar and B.H.V. Topping 
Department of Civil Engineering 
Heriot- Watt University, Riccarton, 
Edinburgh, EH14 4AS, United Kingdom 

Abstract This paper presents details concerning the implementation of one of the 
knowledge modules for the structural design model presented in reference [1]. A black­
board architecture was proposed for the overall model as well as its different modules. The 
module described here was called ALTSEL and was responsible for selecting (generating 
and evaluating) alternative structural systems for low-rise industrial buildings. 

1 Introduction 

The overall INDEX model has been described in [1, 2]. This paper describes the 
preliminary design module of INDEX called ALTSEL. ALTSEL represents a simple 
but effective rule-based prototype for the preliminary design of industrial buildings. 
The use of rule-based programming is illustrated by describing the development 
of ALTSEL. A description of knowledge elicitation techniques and some practical 
lessons learnt from using them will also be discussed. Some useful features of the 
Edinburgh Prolog Blackboard Shell which simplified the development of ALTSEL 
will be described. These shed light on the utility of blackboard architecture for a 
knowledge-based design system. 

2 The AI tool used in this implemetation 

The Edinburgh Prolog Blackboard Shell (EPBS)[3] was used in the development of 
DESCON. The rule syntax of this knowledge-based system shell has the following 
form: 

if Condition 
then Goal 
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to Effect 
est Est. 

2.1 Components of a rule in the EPBS 

The following sections briefly describe each of the components of a rule. 

2.1.1 Conditions of a rule The 'Conditions' of a rule are a combination of 
tests concerning the blackboard. Essentially they consists of testing the presence 
or absence of a certain type of entry on the blackboard. 

2.1.2 Goal of a rule The 'Goal' is a Prolog procedure executed by each rule. 
This gives the user the flexibility of only partially specifying an entry when writing 
the rule and further specification comes from either the success of the condition or 
by calling the 'Goal'. In cases where no further specification is required other than 
that prescribed by the condition, the Prolog goal 'true' may be called which will 
succeed immediately. 

2.1.3 Effect of a rule The effect of a rule may be one of the following: 

• add[Index,Fact,Cf], which adds an entry Fact on the blackboard under the 
index Index with certainty factor Cf, 

• or 'Action' which takes an action, 

• or 'Delete' which deletes an entry from the blackboard, 

where Index, Fact, Cf and Action are PROLOG terms. 

2.1.4 'Est' of a rule 'Est' refers to the usefulness of a rule. By default, simple 
integers may be assigned to 'Est' in which case the 'usefulness' of the rules increases 
with the value of their 'Ests'. This default scheme may be over-ruled by assigning 
arbitrary Prolog terms to the Ests and these may be compared by a predicate 
defined by the developer. 'Est' provides a way of resolving conflicts regarding the 
firing of rules. In cases where more than one rule is eligible to be fired due to the 
success of their conditions, the rule with the lowest 'Est' is fired first, then the one 
with the next higher 'Est' and so on. 

3 Some features and components of ALTSEL 

The architecture of ALTSEL is a blackboard system. It consists of different 
knowledge-modules surrounding and communicating through the blackboard. The 
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input to ALTSEL is the general layout and other spatial constraints of the build­
ing. Since generally the layout of the design is fixed by architectural design, the 
domain of the system is restricted to structural design. 

3.1 Blackboard 

The general description of the blackboard of INDEX, described in reference [1, 2], 
also apply ALTSEL. In fact, all the modules of INDEX can be seen to be separate 
knowledge-based prototypes. ALTSEL's blackboard is divided into different parts 
which contain entries posted to it by the different sub-modules of ALTSEL in the 
course of the solution process. The levels on the blackboard of ALTSEL may be 
seen as a hierarchial decomposition of the preliminary industrial building design 
process. 

4 Knowledge Base Development 

4.1 Knowledge Elicitation - Introduction 

The construction of a knowledge-based expert system is an attempt to embody the 
knowledge of a particular expert within a computer program. The knowledge used 
in solving problems must be elicited from the expert to incorporate in the expert 
system. It is recognised that the elicitation of knowledge from experts is one of 
the major obstacles in the construction of expert systems. In many cases, the 
main reason for this is that experts find it hard to articulate and make explicit the 
knowledge they possess and use. An important part of a knowledge engineer's job is 
to help the expert to structure the domain knowledge and to identify and formalize 
the domain concepts. Although a number of knowledge elicitation methods do exist 
[4], the area is not well understood and few tools exist to mechanise the process. 

In the following sections, a simple model of knowledge elicitation will first be 
presented followed by some specific techniques. Finally, in section 5, an account of 
the knowledge elicitation process for ALTSEL will be presented to highlight some 
of the practical issues. 

4.1.1 A Framework For Knowledge Elicitation The framework is based 
on three generally accepted ideas: 

• there are different types of knowledge; 

• there are different knowledge elicitation methods for different types of knowl­
edge; and 

• the knowledge elicitation process may be divided into sub stages. 
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Conceptudl Structures 

Figure 1. Sequence of Knowledge Elicitation 

There is no doubt that there are different types of knowledge, even in a single 
domain of expertise. However, it is not clear how knowledge should be classified 
into different types. "Finding a way to taxonomise knowledge on a principled 
basis is a difficult and ambitious task that has eluded philosophers for thousands of 
years" [5]. For the practical purpose of building expert systems, knowledge may 
be conveniently divided into three types: facts, conceptual structures and rules. 
Facts are simply a glossary of terms and a list of domain entities. In an engineering 
domain, this type of knowledge may be a collection of engineering concepts and the 
names of the components of a particular structure or any other engineering artifact. 
The second type of knowledge, conceptual structures, describes the relationships 
between identified concepts and components. Finally, rules are the reasoning part 
of the domain knowledge. Facts and conceptual structures are reasonably static 
and are easier to elicit than rules. Figure 1 illustrates a simple but natural sequence 
of knowledge elicitation. 

In each part of the cycle, a suitable elicitation technique should be used. Some 
studies have been carried out to match techniques with types of knowledge [4, 5]. 
In the next section, for each type of knowledge, a knowledge elicitation technique 
which has been identified as particularly suitable, is described. 

4.1.2 Techniques There are two classes of techniques for knowledge elicitation 
as follows: 
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• psychological techniques, which involve some kind of interaction between 
the knowledge engineer (KE) and the domain expert (DE); and 

• machine induction, in which the computer automatiaclly induces rules 
from examples. 

For a domain such as structural design, machine induction seems inappropriate. 
Bloomfield [6] developed a set of criteria for selecting domains suitable for the elic­
itation of knowledge by machine induction. One such criterion is that "any chosen 
domain must contain sufficient examples that it is possible to construct a training 
set which constitutes a comprehensive encapsulation of expertise in that domain". 
Structural design expertise cannot be completely encapsulated in examples. Hence, 
only psychological techniques are considered. 

4.1.3 Interviews Direct interviewing is the technique most familiar to KEs 
and DEs. It is considered good practice to start the knowledge elicitation pro­
cess using a technique with which the DE feels comfortable. An interview may 
range from an informal 'chat' to a highly structured discussion. Some interesting 
questions for an interview may be: 

• if you had a good new graduate just starting to work for you what would you 
expect him to have learnt after six months ? 

• you find a book concerning your application area which later turns out to be 
the book you wish you had started in the field. What chapter headings are 
in it ? 

Using this technique, much information about the terminology and the main 
components of the domain may be generated in a relatively straightforward way. 
The problem is how to probe further so that ideas may be pursued to a greater 
depth. To ensure that an interview is productive, the KE should have a good 
questionnaire prepared beforehand to help him direct the discussion. In addition 
to open questions, he needs to have some clear and specific ones. The DE may also 
be asked to prepare and deliver an introductory lecture. 

4.1.4 Concept Sorting As experts use specialist knowledge to solve problems 
they are likely to have a global perspective on how a domain is organised. Concept 
sorting is appropriate where there is a large set of concepts which need to be 
organised into a manageable form. The basic procedure is similar to the categorical 
knowledge elicitation technique described by Regan [7]: 

1. collect a set of concepts in the domain. This may be obtained from the 
literature or from an introductory talk or from the DE; 
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2. write each concept on a small card; 

3. ask the DE to sort the cards into groups; 

4. ask the DE to label each group; 

5. discuss with the DE each group to find out its characteristics; 

6. ask the DE to specify the relationship between the groups and to organise 
them into a hierarchy. 

4.1.5 Protocol analysis In this technique, the DE's behaviour is recorded 
(either video or audio) as they work through a problem or task, and the protocol 
is transcribed and analysed. In this way, the KE is not only given the answer 
to the problem but also the information about the problem solving process itself. 
In practice this technique is found to be very helpful. Though DEs may have 
difficulty in stating the general rules that they use, they can usually identify the 
specific rules which they are applying. However, it is easy for familiar ideas to 
be taken for granted, so they need to be kept aware of any tendencies towards 
omitting trivial details. For this technique to be effective a representative set of 
problems should be chosen, otherwise there could be serious errors of ommission. 

There are three different ways of generating protocols: 

• think-aloud protocols- the DE thinks aloud during the solving of a problem; 

• retrospective verbalization - the DE solves a problem before reporting how 
it was solved; 

• discussion protocols - a small number of DEs discuss with one another as 
they attempt to solve a problem. 

Each of these variations has its own advantages and disadvantages. An im­
portant problem with think-aloud protocols is that the reporting may interfere 
with the DE's task performance. Related to this is any need to conform to real 
time constraints. For example, solving a mathematics problem allows the math­
ematician to stop and ponder. However, an operator dealing with an emergency 
may require immediate responses. These criteria may help when having to decide 
between think-aloud protocols and retrospective verbalization. 

Expert system projects are often based on collaboration with a single DE. In 
fact most of the literature recommends this [8]. However, discussion protocols 
are helpful because they provide different perspectives on how a problem may be 
solved by clarifying alternatives and resolving conflicts. The problem here is that 
of managing the discussion. Avoiding the problem, the strategy that Mittal and 
Dym [9] adopted was to interview one DE at a time. Although this technique 



129 

worked for them, it provides very little opportunity for the DEs to interact with 
one another and to discuss issues. 

A potentially useful computer tool for collaborative problem-solving in face-to­
face meetings is Colab, which has been created at Xerox Pare [10]. This project 
advocates the use of computers in meetings rather than a passive medium like 
chalkboards. The idea is that in the meeting room each person has a keyboard 
and mouse on his table and there is a very large screen to the front of the room. 
Each person may retrieve information from the computer and may easily write and 
draw on the screen by using the keyboard and mouse in front of him. In this mode 
of working a meeting may be dynamic and interactive, and at the same time all 
the text and sketches which have been generated in the meeting are stored in the 
computer. The abundance of information is conveniently accessible for analysis 
when needed. 

4.1.6 Rapid Proto-typing The most obvious technique for testing and im­
proving an expert system is rapid proto-typing. The DE is confronted with the 
behaviour of an unfinished version of the system which is modified in the light 
of his/her comments. Each iteration brings the behaviour of the system closer 
to completion although, since it is often carried out without a clearly defined no­
tion of completion, it is perhaps better thought of as iteration towards adequate 
achievement. 

4.1.7 Summary of the Techniques These are just some of the techniques 
that have been identified as useful. They should be viewed as complementary 
rather than mutually exclusive because different techniques may be used to capture 
different types of knowledge more effectively. Interviews are important for gaining 
an overall view of the domain; concept sorting is appropriate for structuring the 
domain; and protocol analysis is particularly helpful when collecting rules. The 
main point is that the KE needs to be aware that there are different techniques 
which may be applied. Their usefulness also depends very much on the individual 
KEs. Factors such as the KE's knowledge of the problem domain and how well he 
gets on with the DE are important. 

From the description of different techniques, it should also be clear that feedback 
plays a very important role in knowledge elicitation. It is highly unlikely that a DE 
can impart all relevant knowledge at one meeting even if the domain is extremely 
simple. The question is then: What form of feedback should be provided ? An 
obvious but important comment is that what is fed back should be familiar to the 
DE so it may easily be understood and commented upon. 
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5 Knowledge Elicitation for ALTSEL 

The following sections describe the experiences gained in the knowledge elicitation 
process undertaken for ALTSEL. The relevance of the different techniques described 
earlier will become evident in these sections. 

5.1 Meeting the Experts 

The KE contacted a Consultancy company which specializes in designing industrial 
buildings. Four meetings took place, with each lasting approximately three hours. 
The following is a short commentary on what happened during each of these four 
meetings. 

5.1.1 First Meeting At this meeting the KE met the DE, a design engineer 
with many years of experience. The DE knew that he had expertise and was 
sceptical that a computer could perform the same function. So, throughout this 
meeting, the KE tried to convince the DE by describing to him how expert systems 
work and showing him the listing and runs of a simple prototype design checker. 
The DE remained unconvinced. He had two basic doubts: 

1. How could a computer reason except through obeying instructions? 

2. Every design is different; how could a single set of rules apply to all designs? 

The KE left the meeting frustrated and discouraged. Nonetheless, they agreed 
to have a second meeting two weeks later. 

5.1.2 Second Meeting At this meeting, there were three DEs: the previous 
design engineer, another design engineer and an expert in computer aided design. 
The first part of the meeting was very much the same as the previous one with the 
KE trying to convince the DEs that expert system technology was workable. 

However, this time the KE had a copy of a diagram with him which illustrated 
a abstraction hierarchy of the design of a building. The diagram (figure 2) is a 
simplified version of another diagram that the KE had found in the literature. 
The original abstraction diagram was developed by Sriram [11] for his work on a 
knowledge-based system for designing buildings. He showed this to the DEs who 
immediately identified that this reflected how they carried out design. In other 
words, the diagram helped the DEs conceptualise their own thinking processes and 
relate them to those of an expert system. 

Some time later the KE was left with the second design engineer to work through 
a design problem that he had recently solved. The DE was quite happy to explain 
how he had made certain decisions when he was asked the question "Why ?". The 
DE also pointed out some literature that practising engineers read. 



Figure 2. A simplified abstraction hierarchy of the industrial build­
ing design process after Sriram [11} 

Source NuMber of' rules 

Design Engineer 35 

Li"tero. ture 53 

Other Sources 22 

Figure 3. Breakdown of the rules according to their sources 
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From the informal protocol collected the KE was able to produce ten rules. 
Further, the KE was able to identify and glean more rules from the literature that 
he had read earlier. The KE then built a prototype which took a specification as 
input and produced alternative feasible structural systems as output, together with 
a recommendation of which of these alternatives was most favourable for further 
analysis and detailed design. 

5.1.3 Third Meeting This meeting took place a month after the previous one. 
When the DE saw the runs and rules of the system, he was very surprised by the 
progress that had been made. He spent most of the time in this session commenting 
on the rules. 

After this session the KE was able to refine his rule-set and try the system on 
other problems he had collected from literature. 

5.1.4 Fourth Meeting At this meeting the DE introduced three new problems 
and described to the KE how he had solved them. 

To date, the knowledge-base has over a hundred rules. The table in figure 3 
gives a break down of the sources of the rules. 

5.1.5 Discussion and Conclusion The most important lessons learnt from 
this project concerned the following: 

• KE's familiarity with the domain; and 

• KE's initial approach. 

It is concluded that the factor that seemed to play the most important role in 
speeding up the knowledge elicitation process was the KE's familiarity with the 
domain. Computer scientists frequently claim to be equally effective knowledge 
engineers as one from the domain being considered. A very common opinion is 
that any person can be a good knowledge engineer after spending a little time in 
a DE's office. This was not the experience of this project. There were a number 
of occasions when the KE helped the DEs articulate their ideas. The only factor 
which seemed to help the KE in doing so was his familiarity with the domain. That 
sort of familiarity may not be acquired during a one week visit to an consultant's 
office. 

Another useful feature which seemed to help the whole process was the abstrac­
tion hierarchy of the design process. Although a KE might not always be able to 
generate a relevant diagram by himself, he should be able to produce one with the 
assistance of the DE. The concept sorting procedure (described in section 4.1.4) 
is a good bottom-up technique to use. During the knowledge elicitation phase 
diagrams can form a useful part of the documentation for the system. 
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Protocol analysis, or more precisely, studying case histories, was found to be 
a very useful way of generating rules. However, it is interesting to note that only 
a third of the rules were elicited directly from the DE (see figure 3). Following 
through the information provided by the DE, looking for further or more detailed 
information yielded much. 

The KE found that decomposing the problem, especially the preliminary design 
part, into sub-problems, at an early stage, was an extremely important step in 
formalising the domain knowledge. Once the problem was decomposed it not only 
helped the DE to recall and provide the relevant pieces of information but it also 
helped the KE to pick out relevant material from other sources. From the system 
construction point of view, it was also very helpful because the knowledge base 
could then be divided into smaller modules making them easier to maintain. 

The DE was surprised and impressed by the result of proto-typing. It is cer­
tainly a very useful way of obtaining feedback from the DE. In this case it was 
disappointing that the DE could not see the prototype running but could only 
comment on the output of the program. 

When using proto-typing as a technique to obtain feedback, the KE found it 
necessary to guard against letting the documentation slip. It is easy to get into 
the habit of making quick changes to the system without keeping a record of the 
changes made, thus making the system difficult to modify and maintain in the 
future. 

At the time, it seemed quite obvious to approach the DEs by first convincing 
them about the potential of knowledge-based expert systems. As pointed out 
earlier, quite a number of hours were wasted in doing so. The lesson thus learnt 
was that an attempt should be made to collect information from the DEs without 
making overstated claims about the proposed system. It now seems important to 
stress the fact that the proposed system is only intended to assist the DEs and not 
to replace them. It seems important to reassure the designer of his supreme role 
in the design process in relation to any computer program. This point certainly 
appears to be a very important one. 

5.1.6 Knowledge Representation- Introduction The knowledge represen­
tation formalism used in ALTSEL is the same as that for INDEX; namely produc­
tion rules. The knowledge-base of ALTSEL is organised into different sub-modules 
as shown in figure 4. ALTSEL itself is at the Specialist level of INDEX and thus, 
almost all the knowledge contained in ALTSEL is heuristic and is obtained from 
either experts or the domain literature. The purpose of ALTSEL is as follows: 

• selection of the feasible alternative structural systems; 

• carrying out a preliminary analysis of the structural systems; 
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Figure 4. The sub-modules of ALTSEL 
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• carrying out a preliminary sizing and proportioning of the components of the 
systems; 

• carrying out preliminary checks on the components; 

• posting relevant constraints for each of the alternative system to the black­
board for a later use by the other modules; and 

• carrying out a preliminary evaluation of the systems. 

Section 5.1.8 describes the different knowledge modules of ALTSEL that per­
form these tasks. 

5.1. 7 Types of Constraints The identification and proper use of various con­
straints constitutes one of the most important aspect of any design. The different 
types of constraints considered by different knowledge modules of ALTSEL depend 
upon the task being performed. The constraints considered by the sub-modules 
of the ALTSEL module are mostly external. For a comprehensive description of 
different types of constraints in structural design, reference can be made to [11). 
External constraints are the constraints which are not in the control of the designer. 
In other words, these constraints are external to the designer. These constraints 
are mostly governed by the requirements of the client. 

In order to take the decisions listed above, various decisive factors must he 
determined first. On the basis of discussions with practising engineers and a study 
of the design literature used by them to assist in taking these decisions, it was 
concluded that the following parameters played the most decisive roles in the pre­
liminary design of industrial buildings: 

• span; 

• loads; 

• allowable pitch; 

• intended industrial process to he carried out in the building; and 

• any other client-related constraints. 

Thus, all the rules in ALTSEL have one or more of the above-mentioned param­
eters as constraints to be satisfied. The constraints considered by the SYNTHESIS 
sub-module in deciding (about the) feasible lateral load resisting systems are shown 
in figure 5. Figure 6 shows the considerations used by the PREVALUATOR sub­
module in evaluating different feasible systems. 
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5.1.8 Sub-modules of ALTSEL 

SYNTHESIS - This module is responsible for selecting the a feasible structural 
systems for the building in question. A typical rule from this module is as follows: 

if [problem,span(X),true] 
and [problem,int_stanchion(no),true] 
and holds X > 60 
then true 
to add[lateral_load_sys,single_span_portal,true] 
est synthesis(!). 

This rule is in the Edinburgh Prolog Blackboard Shell syntax and states that 
if the span of the building is more than sixty metres and that there are no internal 
columns allowed in the building then one alternative for feasible lateral load system 
is the single span portal frame. The different parts of the rule are explained in 
section 2. However, the value of est in this rule is different from the default provided 
by the shell. This will be explained later in the section 6.2. 

In addition to selecting the feasible alternative structural systems, SYNTHESIS 
also decides on the frame spacing, appropriate systems for the roof, the sides and 
their claddings. 
PREANA- This module is responsible for undertaking the preliminary analysis 
of the alternative systems generated by SYNTHESIS. The rules in this sub-module 
are mostly analysis formulae for different types of structural systems. Also included 
in this sub-module are rules to decide what type of analysis should be undertaken. 
For example, it carries out a plastic analysis for a portal frame whereas for a truss 
it can only undertake a routine elastic analysis. There follows a typical rule from 
this sub-module which applies to single span portal frames of fixed bases: 

if [synthesis,lateral_load_sys(single_span_portal),true] 
and [problem,bases(fixed),true] 
and [problem,span(L),true] 
and [problem,load(W),true] 
and [problem,eaves_ht(Hl),true] 
and [problem,pitch(Y),true] 
then momentl(H2,((L/2)*tan(Y)).X,((H1/(Hl+H2))*(W*L-2)/16)) 
to add[preana,sspfb_pla_mom(X),true] 
est preana(l). 

The successful execution of this rule will add an entry on the blackboard under 
the index preana . This entry will be the value of the plastic moment for the single 
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span portal frame alternative. The actual moment is calculated by the PRO­
LOG clause moment 1 (H2, ( (L/2) *tan (Y)) , X, ( (H1/ (H1 + H2)) * (W*L A2) I 16)) in 
the consequent part (i.e. the 'then' part) of the rule. 
PREDES - is responsible for carrying out the sizing of the different members 
of the alternative structural systems generated by SYNTHESIS the preliminary 
analysis of which is already carried out by PREANA. The following is a rule from 
this module: 

if [preana,ssp_pla_mod(X),true] 
and [problem,ssp_rafters_sec_ext_cons(no),true] 
and [problem,ssp_stanchion_sec_ext_cons(no) ,true] 
then get_section(X,A,Y) 
to add[single_span_portal,ssp_feas_sec(A),true] 

and[single_span_portal,ssp_zp_provided(Y),true] 
and[single_span_portal,ssp_rafters_sec(ub),true] 
and[single_span_portal,ssp_stanchion_sec(ub),true] 

est predes(3). 

This rule determines the feasible section from a database of Universal Beam and 
Column sections given the plastic modulus of the portal frame. It is also stated 
that there are no external constraints on the dimensions of either the stanchions 
or the rafters. Both the stanchions and the rafters are assumed to be of the same 
uniform section. 
ECONOMICS - this sub-module is based fully on heuristic rules obtained from 
the results of a research project on the comparative costs of single-storey steel 
structures [12]. The firing of the rules in this sub-module depends on the presence 
of a particular type of lateral load system on the blackboard. The following rule 
illustrates this and also illustrates the type of knowledge contained in the sub­
module: 

if [problem,span(X) ,true] 
and [synthesis,lateral_load_sys(roof_truss) ,true] 
and [problem,pitch(Y),true] 
and holds((13.3 =< X,X =< 26.7,Y > 0.3)) 
then true 
to add [economics, lateral_load_sys_eco(roof_truss) ,true] 
est eco(l). 

The rule simply states that if a roof truss is one of the feasible systems, that 
the span is between 13.3 and 26 metres and the pitch of the roof is greater than 
0.3 radians then roof truss will be the most economical structural system. 
DESIGN - this sub-module's purpose is not directly concerned with the prelim­
inary design stage. However, it has a very important purpose to serve for the 
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design process as a whole. The sub-module determines any relevant constraints 
which should be satisfied in the detailed design stage of any alternative structural 
system. The reason for keeping this sub-module in the ALTSEL module is that the 
knowledge contained in the sub-module is related to the feasible structural systems 
generated by SYNTHESIS. Also, all the constraints to be satisfied in the design of 
any structural system should be propagated to the other modules the moment a 
particular structural system is found to be feasible by SYNTHESIS. In some ways 
DESIGN may be regarded as a meta-module, i.e., a module which operates above 
all the other modules. The following is a typical rule from this module: 

if [synthesis,lateral_load_sys(single_span_portal) ,true] 
and [problem,span(Y),true] 
and holds(Y > 10) 
then output_message('The following things should be considered 

in the detailed design stage of single span portal 
alternative :-

1. pitch should be kept low because greater slope 
will give rise to greater spread at knees which 
may cause problems with cladding, 

2. horizontal thrusts should be carefully examined 
and the foundation designed accordingly, 

3. haunch should be provided at the eaves and the 
ridge should be deepened because the maximum 
bending moment will occur at the knees.') 

to add[design,design_cons(single_span_portal) ,true] 
est des(3). 

The rule applies to the constraints for the single span portal frame alternative. 

PREVALUATOR - This sub-module is responsible for carrying out a relative 
evaluation of the different feasible structural systems generated by SYNTHESIS. 
The different criteria considered by PREVALUATOR are given in figure 6. They 
are given different weights as suggested by various practising engineers and a final 
value is given to each alternative structure. The best structure is the one with 
lowest value. This sub-module could not be fully developed owing to problems in 
quantifying subjective considerations such as aesthetics. 
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Figure 7. Inference Network for lateral load resisting frames 

5.2 Problem-solving Methods Used 

All the problem-solving strategies in Knowledge-Based Systems Technology adopt 
one of the following two approaches [13]: 

• Formation approach or 

• Derivation approach. 

The formation approach as the name implies involves the formation of the most 
appropriate solution. This is achieved by putting together the different components 
of a complete solution stored in the knowledge-base at different levels. In contrast, 
the derivation approach involves selecting the most appropriate solution from a set 
of pre-defined solutions stored in the knowledge-base. 

It is evident that the formation approach is probably the more general and 
intelligent way of solving a problem. However, for the domain we are working in, 
we found that the derivation approach provided an easier way of finding solutions. 
This was discovered after experimenting with the formation approach. So, ALTSEL 
utilises the derivation approach to solving the problem, in contrast to HI-RISE 
which uses a formation approach [13]. Figure 7 is an inference network for the 
selection of feasible lateral load systems. The knowledge-bases of ALTSEL consist 
of different feasible solutions for various situations. In doing so, it proceeds by 
handling different constraints [14], consisting of the following : 

• constraint formulation, 
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Figure 9. Problem-solving sequence adopted by ALTSEL 

• constraint satisfaction and 

• constraint posting. 

The concept of constraint handling is accomplished in the system by first satis­
fying the constraint for a particular alternative; then by looking for any constraint 
associated with the alternative which will be used by other modules {i.e., constraint 
formulation); and finally by posting it to the appropriate module which uses it 
later (i.e, constraint posting). The constraint satisfaction operation is carried out 
by all the sub-modules. The constraint formulation is undertaken by the DESIGN 
sub-module; as discussed in section 5.1.8. The constraint posting is also accom­
plished by the DESIGN sub-module but the way it works is by actually exploiting 
an inherent feature of communication between different knowledge sources of the 
blackboard architecture. This is an example of an important use of the blackboard. 
The following rules (one from the SYNTHESIS, one from the DESIGN and one 
from the standards processing sub-module, STAPRO) will illustrate this feature. 

if [problem,span(X) ,true] 
and [problem,int_stanch(no),true] 
and holds(X =< 60) 
then output_message('A single span portal would be feasible.') 
to add[synthesis,lateral_load_sys(single_span_portal),true] 
est synthesis(5). 

if [synthesis,lateral_load_sys(single_span_portal),true] 
then true 
to add[design,single_span_portal(elastic_defl_check),true] 



est design(12). 

if [synthesis,lateral_load_sys(single_span_portal),true] 
and [design,single_span_portal(elastic_defl_check),true] 
then check_clause(sec. 5.1.2.3) 
to add[conformance(portal_frame,5.1.2.3,deflection), 
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satisfied, true] 
est design_check(12). 

where check_clause is a PROLOG procedure which checks the provisions of sec­
tion 5.1.2.3 of BS5950. 

In this example, the constraint has been posted to the blackboard with the 
index 'design' by the DESIGN sub-module. It may be accessed by any other 
module using this index. For example, the last rule from the standard provision 
checking module states that, if there is an entry on the blackboard which stipulates 
that the deflection should be checked by elastic methods, then the provisions of 
clause 5.1.2.3 of the standard must be satisfied. It is evident that giving appropriate 
indexes to different entries, allows for partitioning of the blackboard, which may 
be further used in formulating and propagating constraints to other modules. 

5.3 Explanation facilities 

Some explanation facilities have also been incorporated in ALTSEL. Two ap­
proaches have been investigated, one using an associated explanation for every 
conclusion produced; and the other using the front-end facilities of the shell to 
generate explanations. 

The explanations one may obtain from the system are : 

• the rule or set of rules which forced a particular conclusion; 

• the current entries on the blackboard; 

• the reasons for reaching a particular conclusion; 

• the set of rules which were successful at the end of a session; and 

• the details of any alternative feasible solutions generated by the system. 

6 Implementation 

6.1 General Description 

The sequence of execution of the different knowledge-modules of INDEX is as 
follows : 
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(ALTSEL->STRANEX->DETDEX->OPTEX->EVALUATOR) 

Each of these modules consists of different sub-modules. The sequence of exe­
cution of the sub-modules of ALTSEL is as follows : 

(SYNTHESIS->PREANA->PREDES->ECONOMICS->DESIGN->PREVALUATOR) 

The ALTSEL sub-modules are shown in figure 4. Based on the rules in these 
sub-modules, the system is able to select the feasible alternatives for the lateral 
load resisting systems for the industrial building in question. 

The current version of the ALTSEL module incorporates over one hundred 
rules. Although some of the rules are based on discussions with working design 
engineers, most of them are taken from the published literature of steel section and 
frame manufacturing and fabricating organisations such as the Steel Construction 
Institute (formerly known as the Constructional Steel Research and Development 
Organisation). 

The system is implemented on a Sun 3/50 workstation. The system has knowl­
edge of the following types of steel frames : 

• portal frames; 

• roof trusses and columns; and 

• beams and columns. 

Apart from these, it also has rules for incorporating gantries for the design of 
gantry cranes if required. The solution search space for the feasible lateral load 
resisting systems is shown in figure 8. The search strategy adopted is the breadth­
first search. The system generates all the solutions at one level before going on to 
the next level. Figure 9 illustrates the search procedure adopted by the ALTSEL 
module. One drawback with this approach has been the lack of transparency of 
the system. The user does not receive complete details of a particular alternative 
at a glance. To overcome this drawback, the user is given the facility of obtaining 
complete details of any alternative solution generated by ALTSEL at the end of 
the session using the show_details_of command. 

6.2 Control Mechanism 

The Edinburgh Prolog Blackboard shell (described in section 2) was used for the 
implementation so that the control mechanism was already built into the shell. It 
consists mainly of an agenda, dynamically built during the consultation process. 
The agenda sequences the firing of the rules inside a knowledge module. 

As already mentioned in section 2, 'est' in the rules indicate the 'usefulness' of 
each rule and, thus, helps in building up the agenda. So, by giving appropriate 'est' 
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values to the different rules, we may sequence the firing of these rules. The rule with 
the lowest 'est' value will be fired first, the rule with the next higher 'est' value after 
that and so on. This is the default methodology for conflict-resolution provided by 
the shell using numerical values for 'est'. However, the conflict-resolution strategy 
adopted in INDEX bypasses this approach and a new strategy was defined that 
suited the requirements of INDEX. 

To accomplish this, the default method was to give simple numerical values to 
'est' starting from the first rule of SYNTHESIS and incremented up to the last 
rule of PREVALUATOR. This was not an elegant way of approaching the problem 
for the simple reason that if a rule was added to any of the modules at a later 
stage, all the 'est' values have to be changed for all the rules following it. Another 
reason was that the whole idea of modularity would get lost by this approach and 
the set of rules, in effect, would become one module instead of being broken down 
into sub-modules. 

The second approach was to give symbolic 'est' values to the rules of the different 
sub-modules. These symbolic names were specific to the rules of that sub-module 
only and define a different conflict-resolution strategy altogether. In this approach, 
the sequence of execution of the sub-modules had to be first defined and then the 
sequence of firing the rules inside each sub-module. The rules quoted earlier in 
this chapter have symbolic 'est' based on this approach. This approach avoids the 
problems of the default approach described above. To recap, the following is an 
example of a rule from the SYNTHESIS sub-module using this approach: 

if [problem,span(X),true] 
and holds(X =< 60) 
then output_message('Single span portal frame is a 

feasible alternative') 
to add[synthesis,lateral_load_sys(single_span_portal),true] 
est synthesis(5). 

The 'est' value of this rule indicates that this rule is the fifth rule inside the 
SYNTHESIS sub-module. The numerical value in this 'est' decides the firing of 
the rule inside that sub-module. Invocation of the sub-modules is decided by the 
top level conflict-resolution. It is worthwhile pointing out that this operation of 
sequencing the firing of the rules as well as the knowledge modules according to 
the demands of the domain was made simpler by using the Edinburgh Prolog 
Blackboard Shell. 

7 Summary 

The concepts involved in the development of ALTSEL, the preliminary design mod­
ule of INDEX, were outlined. The knowledge elicitation as well as knowledge repre­
sentation aspects of the development of ALTSEL's knowledge base were described 
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in detail. Some implementation issues were highlighted with examples of some 
representative production rules. A description of the control mechanism suitable 
for the domain of this project was also given underlining the ease of accomplishing 
this using an expert system shell. 

8 Conclusions 

The following conclusions were drawn from the development of ALTSEL: 

• Artificial Intelligence tools and techniques provide a way of incorporating 
rules of thumb and heuristics into computer-aided design of structures. 

• Protocol Analysis was found to be a useful knowledge elicitation technique 
in the domain of design. 

• The blackboard architecture provided a flexible environment for the prop­
agation of constraints between the different knowledge modules so vital for 
design. 

• The development of a fully-working system requires many different types of 
knowledge. Mere heuristics are not sufficient to solve real-life problems in 
structural design. The system needs to have numerical as well as logical 
capabilities. 

• Since a considerable number of decisions in the preliminary design stage are 
taken using heuristics, a system similar to the one described in this paper 
might perform satisfactorily in that domain. But, for the domain of de­
tailed design, the system needs to have more capabilities, e.g., logical and 
mathematical inferencing from fundamental laws of structural engineering or 
general knowledge of arithmetic. 
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Abstract The dispersed nature of the construction industry raises communication issues 
that are exacerbated by the increased use of computer programs. Integration of the various 
disciplines and computer programs requires more than the transfer of geometric data. This 
paper presents an integrated computer environment in which knowledge-based systems 
communicate through a blackboard and a central, global database representing the design 
solution. 

1 Introduction 

The building construction industry is characterized by a dispersed organizational 
structure in which a number of diverse organizations participate in the planning, 
design and construction of each building project. Presently, the major media for 
communicating large volumes of information between the participants are draw­
ings and written specifications. As increasing portions of the design-construction 
process become computer-based, the need for appropriate forms of electronic com­
munication becomes increasingly apparent. Furthermore, as computer use shifts 
from purely numeric calculations towards symbolic and knowledge-based reasoning, 
there is additional need to communicate functional as well as geometric informa­
tion. 

The dispersed nature of the construction industry raises further communication 
issues. On the one hand, there is no pool of common knowledge: since architects 
and structural engineers only perform design, they do not possess first-hand knowl­
edge of what constitutes a constructable design. On the other hand, there is no 
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direct way for constructors to provide feedback to designers on what changes in the 
design may improve constructibility and reduce cost. These issues indicate that 
communication between the dispersed organizations needs to be extended beyond 
the current exchange of data and that it is not clear what these extensions should 
be. 

The prototype integrated environment described in this paper is intended to 
serve as a testbed for examining these communication issues. The integrated envi­
ronment addresses the vertical integration of architectural design, structural design 
and construction planning of speculative high-rise office buildings. Attention is pri­
marily focused on two aspects: (1) representation and communication of the project 
information as the project progresses; and (2) control and feedback in the overall 
process. The environment makes use of a number of Artificial Intelligence tech­
niques. The processes are implemented as Knowledge Based Expert Systems. A 
Blackboard Architecture is used to coordinate communication between processes. 

As the Integrated Building Design Environment (IBDE) is intended to serve as 
a testbed for exploring integration issues, it is an evolving system. In this paper 
we present IBDE in its initial, current, and future states, addressing the issues 
associated with its evolution. This paper begins with a description of the initial 
architecture of the integrated environment and its knowledge-based processes. The 
extension of the processes beyond their original 'forward pass' mode to provide 
and respond to criticism is discussed next. The evolution of the representation 
of project information from fiat files to a global database with derived views is 
presented. The control issues are addressed and the current and future states of 
the implementation are described. The paper concludes with a summary of the 
major issues addressed. 

2 Architecture and Processes 

2.1 Architecture 

The Integrated Building Design Environment (IBDE) integrates seven individual 
processes using a blackboard approach. The architecture of the initial system is 
illustrated in Figure 1. The status blackboard records the status of the processes. 
The controller is responsible for activating the processes and communicating project 
information to the processes. The datastore manager is responsible for retrieving, 
storing, and translating data for individual processes. The project datastore records 
the global representation of the project information. The common user interface is 
a graphical and textual display of the project information and the current status 
of the processes. The communication and control mechanisms are treated in detail 
in the succeeding sections. 

The processes in IBDE include architectural planning, structural design, and 
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construction planning. These processes are not typical of computer programs cur­
rently used in design and construction of buildings, but they accentuate some of the 
communication issues addressed in the project. Some of the processes existed be­
fore IBDE was developed, while others were developed in the context of IBDE. All 
processes are implemented as knowledge-based systems to permit rapid develop­
ment and modification. The implementation of IBDE in a commercial environment 
would necessarily also include a number of conventional programs. The knowledge 
based processes are: 

• ARCHPLAN: an interactive system for the development of the design con­
cept; 

• CORE: a space planner for the service core; 

• STRYPES: a structural system configurer; 

• STANLAY: a layout and approximate analysis system; 

• SPEX: a structural component designer; 

• FOOTER: a foundation designer; and 

• CONSTRUCTION PLANEX: a construction planner, estimator and sched­
uler. 

2.2 The Processes 

Each of the processes comprising IBDE is briefly described below. 
ARCHPLAN [7] is a knowledge-based ARCHitectural PLANning expert sys­

tem for the interactive development of a design concept. Input to ARCHPLAN 
describes the given site, program, budget, and geometric constraints. The out­
put provides three-dimensional information about the building's overall shape, the 
distribution of functions, and the circulation system. The program starts with a 
generic prototype of an office building, which is then refined by the user in in­
teraction with the program and heuristic knowledge built into the program. This 
interaction takes place in three distinct, but interrelated decision modules. The 
Site, cost, and massing module (SCM) develops a massing model that will fit the 
given site and budget and a range of other parameters. Cost, site and massing op­
tions are treated as inter-dependent concerns. Conflicts are resolved based on the 
Function module. This module assists in determining the vertical and horizontal 
distribution of functions (office, retail, atrium, mechanical systems and parking) 
within the volume established by the previous module. The module proposes a 
three-dimensional layout scheme and presents it as solid or wire frame display. If 
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conflicts occur with input data or earlier decisions, the program backtracks to the 
SCM module. The circulation module generates circulation proposals based on 
combinations of internal or external vertical circulation elements. 

CORE generates layouts of the elements in the service core of the building 
(elevators, elevator lobbies, restrooms, emergency stairs, utility rooms etc.). The 
input to CORE includes the overall geometry of the building and the expected size 
and location of the service core. CORE's output includes the number of elevator 
banks, the number and speed of the cars in each bank, the floors served by each 
bank and the layout of cars, banks, and other elements. CORE is an adaptation 
of LOOS, [2] a general system for the generation of layouts that can be adapted 
to various domains. LOOS places particular emphasis on the generation of layout 
alternatives with interesting trade-offs. 

STRYPES is a knowledge-based expert system that configures a structural 
system. It is based on the knowledge acquired through the development of HI­
RISE [5]. STRYPES is implemented in EDESYN [6], an expert system shell for 
engineering design synthesis. The input to STRYPES includes: (1) the structural 
grid produced by ARCHPLAN, specifying potential locations for structural sys­
tems; (2) functional information about the building, such as intended occupancy 
and location and size of the service core; and (3) load information. The output of 
STRYPES specifies the types and materials for the lateral load system and verti­
cal and horizontal gravity load systems. STRYPES considers frame or shear wall 
vertical systems and slab, steel deck, or prefabricated panel horizontal systems. 

STANLA Y, also developed using EDESYN, performs two major tasks for the 
preliminary structural design of the building. The first task is the layout of the 
structural systems specified by STRYPES, the second is an approximate analysis 
of the structural system. The input to STANLAY includes: (1) the structural 
grid; (2) the architectural function of the building; and (3) the structural systems 
selected by STRYPES. The output of STANLAY is the location of the lateral 
and gravity load systems and the load distribution and grouping of the structural 
components. The layout involves identifying several possible locations of the lateral 
load system and specifying the location of the gravity load system. The location of 
the lateral load systems requires the specification of 2D vertical subsystems, such 
as rigid frames or shear walls, and their location on the grid. 

SPEX [3] performs the preliminary design of components for the structural 
system specified by STANLAY. In the IBDE implementation, SPEX receives as 
input the design parameters for each component group: (1) type of component 
(e.g., beam, column); (2) length; (3) material (steel or concrete); and (4) estimated 
loads. The SPEX interface supplies the material grade, the name of the design 
standard, the design focus, and an optimality criterion. The output of SPEX is 
the description of the optimal component. It implements a design strategy in 
which components are designed by applying three types of knowledge: knowledge 
contained in design standards; 'textbook' knowledge of structural, material and 
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geometric relationships; and designer-dependent design expertise. 
FOOTER is an expert system that performs a preliminary design of the foun­

dation of a building; it is also implemented in EDESYN. The input to FOOTER 
includes: (1) soil conditions, such as the presence of obstruction, location of water 
table, depth of bedrock, and soil classification; and (2) imposed load conditions 
from the structure provided by STANLAY. The output of FOOTER is a descrip­
tion of a footing or pile for each column and/or shear wall. The foundation design 
problem is decomposed into: selection of foundation type; material type; casting 
type; excavation method; and parametric design of the foundation components. 

CONSTRUCTION PLANEX [4] is a knowledge-based expert system to assist 
the construction planner. The input to PLANEX consists of: (1) specifications 
of the physical elements of the structure provided by other processes; (2) site in­
formation (such as soil type and elevations); and (3) resource availability (such as 
number of crews or equipment types). The output from PLANEX consists of a 
complete plan of construction activities including a provisional schedule and cost 
estimates. The system suggests technologies; generates necessary activities and 
precedences; estimates durations and required resources; and develops a construc­
tion schedule. The system will either generate a construction plan automatically 
or a planner can review and modify decisions during the planning process. 

2.3 Evolution of Processes 

The processes in IBDE are being extended to generate and react to criticism and 
feedback in the design process. The initial version of IBDE operates automatically 
in the 'forward pass' mode, where the controller activates the processes in a linear, 
sequential fashion. The addition of CORE introduced some parallel processing, 
where STRYPES and CORE could be running simultaneously. The addition of 
CORE also introduced potential conflicts because the service area set aside by 
ARCHPLAN could be determined to be inadequate by CORE, thus invalidating 
the design produced by STRYPES and STANLAY. Similar conflicts could arise at 
any point in the design and construction planning process. Furthermore, a 'down­
stream' process may provide feedback on ways that the design could be improved. 
The introduction of criticism and feedback in IBDE begins to address and identify 
potential conflicts. 

The strategy of adding design critics in IBDE first takes advantage of the pro­
cesses that already contribute to the project. Each process is being extended to 
include a process activator and a process critic, as illustrated in Figure 2. 

The process critic posts one or more constraints on the message blackboard if 
the process was unable to produce a valid solution or if it can suggest possible 
improvements. The process activator serves two purposes: 

1. Produce criticism by checking the input data for scope; if the input includes 
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design decisions that fall outside the capability of the process a constraint is 
posted on the blackboard and the process is not activated. 

2. React to criticism by adding a constraint for consideration by the process; 
when the process is run again, the constraint ensures that the same conflict 
does not arise. 

These two extensions allow criticism and feedback from the individual pro­
cesses to be communicated to the controller in the form of constraints. Thus far 
these extensions appear to be easily incorporated into the original knowledge based 
processes. 

Specialized design critics are also planned to be included in IBDE. These critics 
are intended to provide criticism on design decisions using knowledge external 
to the original knowledge base that produced the decisions. A critic currently 
under development is a structural analysis critic that will execute a formal analysis 
using the results of SPEX and check for consistency with STANLAY's approximate 
analysis. 

3 Global Representation 

The project datastore holds the global representation of the building and serves as 
the repository of data communicated between the IBDE processes. 

3.1 Objectives 

The design and subsequent evolution of the datastore was dictated by four consid­
erations. 

Provision of process views. The primary function of the datastore is to provide 
individual views or sub-schemas to the processes through which each process re­
ceives its needed input, without regard of where it was generated, and transmits its 
output, again without regard of where it may be subsequently used. These views 
need to be sufficiently flexible so that changes in the processes' data needs can be 
readily accommodated. 

Flexibility of global schema implementation. In contrast to the process views, 
which must be highly responsive to the processes' functional needs, the global 
schema -known only to the datastore manager-can have an evolution of its 
own. As discussed below, we have successfully migrated from a tabular, flat file 
organization to a relational DBMS organization. 

Explicit representation of important conceptual relations. In a static environ­
ment, the datastore need not contain more than the union of the processes' input 
and output requirements; all other data may reside inside the processes, following 
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the principles of information hiding and data encapsulation. Expecting a dynam­
ically evolving environment, it was decided to include in the datastore the im­
portant conceptual relations and abstractions to facilitate the subsequent addition 
of new processes and critics. Thus, for example, the objects representing struc­
tural functions and frames are presently used only by STRYPES and STANLAY; 
their successor processes (SPEX, FOOTER and PLANEX) deal only with individ­
ual building elements, such as beams or columns. Nevertheless, these high-level 
objects are included in the datastore for subsequent use. 

Support for common display interface. The visualization of an object as com­
plex as a building requires the display of a great variety of information. Rather 
than delegating this display to the individual processes, a single common display 
interface was desired, which could display all the information in the datastore in a 
variety of formats. 

3.2 Overall Organization 

The datastore is hierarchically organized as a tree of related objects. Objects may 
represent very high-level abstractions, such as the entire building, or very detailed 
information, such as individual building elements. The hierarchy primarily repre­
sents part-of relations, where each object is a part or component of a higher-level 
parent object. Provisions are also made for representing is-alternative relations, 
where an object is an alternate design solution of the parent object. Through this 
latter relation, redesign in response to critiques received is readily supported. 

As discussed above, this overall organization is independent of the internal 
global schema implementation. Figure 3 shows the hierarchical organization among 
the major object classes in the current (relational DBMS) implementation. With 
this organization, each process can view the contents of the datastore relevant to 
it, but not of the segments relevant to the other processes. This organization has 
supported the concurrent development of the processes and provides complete data 
and process independence among the processes. The datastore provides at any time 
a complete snapshot of the current state of the building design and construction 
planning process. 

3.3 Communication with Processes 

Communication with the processes is the responsibility of the datastore manager. 
The datastore manager works in concert with the controller and is responsible 

for supplying the input data to the processes and retrieving their output data. 
Prior to initiating a process by the controller, the datastore manager transfers 
the input data to the machine on which that process resides. When a process 
terminates, it leaves its output on its own machine; when its termination message 
is received, the controller causes the datastore manager to retrieve the data from 
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the processes' machine and merge it into the datastore. 
The datastore manager is responsible for generating the views or subschemas 

as needed by the processes, including all format and structural conversions. The 
datastore manager is further responsible for maintaining an 'audit trail' in the sense 
of maintaining two descriptions for each object class: placed-by: the name of the 
process which provides the value(s) of its attributes(s); and (2) used-by: the names 
of the processes which use these values. Using this information, the controller can 
route any critique of a particular object to the process that was responsible for 
creating the object's attribute values. 

3.4 Implementations 

The local views of all of the processes consist of sets of objects with attributes in 
the respective implementation languages of the processes. Furthermore, in most 
processes, no explicit distinction is made between input and output attributes; the 
object contains all necessary attributes. 

In the initial implementation, data is communicated between the processes by 
means of files. Each file contains all the instances of a particular object type (e.g., 
beams or columns). There is a one-to-one correspondence between the objects in 
the files and the individual process objects, although there are differences in format 
and attribute names. The datastore manager is responsible for format and name 
translation and for transferring the appropriate files to and from the processes. 

As an illustration, Figure 4 shows the 'snapshot' of a BEAM object before 
PLANEX has supplied values for the last seven attributes. 

In the current implementation, the datastore manager maintains the global 
representation in the form of a global database schema implemented as a set of 
relations. The schema closely resembles the conceptual hierarchical tree represen­
tation and relies extensively on two types of relations: (1) 'data' relations which 
contain the attributes of the various objects, keyed by a single object-identifier 
attribute; and (2) connection relations, usually all-key, which represent the part-of 
relations of the hierarchical tree. 

The datastore manager now performs two distinct operations for each input and 
output transaction between a process and the datastore. In the case of providing 
input to a process, the manager: (1) extracts an input view from the global schema 
through a sequence of relational operators, so that all information needed by the 
process is contained in the view; and (2) makes the view available to the process. 
Two options are available to the processes: (1) a fiat file identical to that of the 
initial implementation; and (2) a file of database commands which, when executed 
by a copy of the DBMS manager on the process machine, creates a local copy of the 
view. The former option allows the processes to run without modification, whereas 
the latter option is made available to processes which may wish to access the data 
through their own DBMS queries. 
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ATTRIBUTE VALUE PLACED BY USED BY 

NAME BEAM-378 STANLAY SPEX PLANEX 
CLASS BEAM 
IS. A DE-GROUP STANLAY SPEX PLANEX 
NAME BEAM-11 STANLAY SPEX PLANEX 
NAME-CODE 81 STANLAY PLANE X 
PART-OF TYP-FRAME-1540 STANLAY PLAN EX 
MPOS 5273.4375 STANLAY PLANE X 
MNEG 0 STANLAY PLANE X 
VMAX 0 STANLAY PLANE X 
MULTIPLIER 4 STANLAY PLANE X 
UNBRACED-LENGTH 25.0 STANLAY PLANE X 
X1 ( ... ) STANLAY PLANE X 
X2 ( ... ) STANLAY PLAN EX 
Y1 ( ... ) STANLAY PLANE X 
Y2 ( ... ) STANLAY PLANE X 
Z1 3 STANLAY PLANE X 
Z2 19 STANLAY PLANE X 
CONSTRUCTION-TYPE NIL SPEX PLANE X 
DESIGNATION W12 106 SPEX PLAN EX 
WEIGHT 106 SPEX PLANE X 
CONCRETE-TYPE NIL SPEX PLANE X 
PSTEEL NIL SPEX PLANE X 
GRADE 36 SPEX PLANE X 
SHAPE w SPEX PLAN EX 
XL-DIMENSION 25.0 SPEX PLAN EX 
YL-DIMENSION 1.0183333 SPEX PLAN EX 
ZL-DIMENSION 1.0741667 SPEX PLANE X 
XG-COORDINATE NIL PLANE X USER 
YG-COORDINA TE NIL PLAN EX USER 
ZG-COORDINATE NIL PLANE X USER 
MATERIAL-COST NIL PLAN EX USER 
CREW-COST NIL PLANE X USER 
START-TIME NIL PLANE X USER 
FINISH-TIME NIL PLANE X USER 

Figure 4. A BEAM instance object in the datastore. 
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In receiving output from a process, the manager: (1) receives the output view 
of the process, again by either of the two options; and {2) merges the output view 
into the global schema through a sequence of relational operators. 

The only major conceptual difference between the two implementations is the 
explicit separation of input and output views. The input view is provided in a 
'read only' mode: it is not recovered from the process upon its completion. In this 
fashion, database integrity maintenance is shared between the processes and the 
datastore manager: (1) the processes insure that their output is consistent with 
respect to the input provided; while, (2) the datastore manager insures consistency 
among the outputs, i.e., consistency of the global representation. 

3.5 Common Display Interface 

The data residing in the datastore is inaccessible to users without a common user 
display interface. As the interface is intended for a variety of users with different 
backgrounds, it must conform to certain graphical standards and should exhibit 
a degree of intelligence. An interface of this type was developed for the IBDE 
project. It provides a uniform set of interface facilities for the following functions: 

• Graphical display of the status of all processes. Each process is shown as 
either pending, active, or completed. 

• Graphical display of data at any level of the project datastore representa­
tion. As soon as a process is completed, the content of the datastore can be 
displayed. The designer sees the geometric representation of these data as 
three-dimensional objects or as charts and symbols. 

• Textual and graphical display of object classes. The user selects one of the 
datastore objects directly from a menu, and the geometric and textual infor­
mation is displayed. 

• Graphical display of selected items. The designer can specify constraints to 
view objects of a certain class or that fall within user-defined limits. All 
objects found conforming to the constraints are highlighted on the graphical 
display. 

• Graphical navigation to select specific objects. Once selected graphically, the 
object is highlighted and the appropriate datastore object appears on screen 
in a pop-up window. 

4 Control 

The controller is responsible for activating the individual processes. 
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4.1 Objectives 

The design and subsequent evolution of the controller was dictated by three major 
considerations. 

Support of different strategies. From the inception of the project, it was in­
tended that the controller be able to support a number of different activation 
strategies, ranging from simple, fixed scheduling through demand-driven scheduling 
and on to a variety of planner-based and blackboard-based opportunistic strategies. 

Flexibility of implementation. As with the datastore, it was intended that the 
controller have an evolution of its own, without affecting the individual processes. 
The Design Systems Laboratory of Engineering Design Research Center at CMU, 
within which the IBDE project is conducted, has an active research program on 
generic design environments. The IBDE project is viewed by that Laboratory 
as a testbed for exploring the applicability of these environments in a specific 
application area. Therefore, flexibility in porting IBDE from one environment to 
another was a major consideration. 

Minimal domain knowledge. In order to support the above two objectives, it 
is essential that the controller be as generic as possible, that is, that it require 
minimum knowledge about the domain of building design and construction plan­
ning. More specifically, it is desired that the controller 'know' as little about the 
individual processes as possible, but use the messages on the blackboards and a 
static description of each process to guide the controller. 

4.2 Communication with Processes 

The processes communicate with the controller by means of blackboard messages. 
There are two general classes of messages. 

Status messages. Each process is in one of three states: pending, active, or 
completed. Whenever an active process terminates, it sends a new status message 
which the controller posts on the status blackboard. The message also signifies 
whether the process was successful in producing a feasible solution or not. As dis­
cussed in the preceding section, the controller also controls the data communication 
between processes. 

Inter-process messages. Processes may also generate messages to other pro­
cesses indirectly, particularly to critique some aspects of the design. These messages 
are stored on the message blackboard in the form of constraints. The controller 
uses these messages to modify the activation sequence of the process involved. 

4.3 Implementations 

The initial implementation provides a very limited control strategy, namely, an 
event-driven, sequential process activation. The controller maintains only the fol­
lowing static description about each process: (1) preconditions for its execution, 
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namely, the process(es) that must have been successfully completed before the 
current process can be activated; and (2) machine on which the process runs. 

When the preconditions of a process are satisfied, the controller causes that 
process to be activated. 

The controller is implemented on top of the DPSK (Distributed Problem Solv­
ing Kernel) system developed at CMU [1]. DPSK provides an environment for 
distributed problem solving on multiple machines by programs written in several 
languages. DPSK provides utilities for sending messages and signals between pro­
cesses running on different machines, generating and responding to events, and 
communicating between processes by means of a Shared Memory accessible to all 
the processes. DPSK was designed to facilitate the implementation of a variety 
of cooperative problem-solving architectures; the current IBDE implementation, 
with fixed precedence ordering between processes, is a relatively simple application 
of DPSK. However, because of the computational expense of communicating large 
volumes of data via DPSK's shared memory, that memory is used only for the 
status messages. 

The implementation has been useful in bringing the first version of IBDE up to 
operational status. Changes in the processes, such as the addition of CORE and 
the replacement of the original HI-RISE process by STRYPES and STANLAY, 
were readily accommodated. The integrated system has been run on as many as 
9 machines working simultaneously. The machines include HP-9000/320, Micro 
VAX, SUN 3 and SUN 4 systems. The controller and datastore manager reside on 
the SUN 4; the processes other than SPEX on HP's and SUN 3's; while for efficiency 
three copies of SPEX reside on three Micro VAXes and process, respectively, the 
bottom story columns (so as to supply input to FOOTER quickly), the remaining 
columns, and the other structural components. 

We are in the process of designing the second implementation of the controller. 
It will handle the expanded processes discussed in Section 3 by acting on the design 
constraints posted on the message blackboard. A variety of activation strategies 
will be explored, including both a planner and an opportunistic scheduler. Two 
generic design environments developed by EDRC are being considered as the basis 
for implementation. 

5 Conclusions 

The IBDE project is a testbed for the exploration of integration and communication 
issues in the building industry. The processes are knowledge-based and can serve 
as surrogate experts (provided, of course, that they adequately capture and utilize 
the expertise relevant to their particular task). This enables us to run a variety of 
experiments when exploring a particular issue, so that the conclusions reached will 
have a strong empirical basis. Furthermore, the modular nature of the IBDE envi-
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ronment provides a testbed for the empirical evaluation and calibration of generic 
integrated design support environments. Experiments with these environments 
provides feedback to their developers and can eventually lead to extrapolations to 
other design disciplines. 

The project deliberately did not start with an overall, normative model of the 
building design process. Rather, we prefer to arrive at generalizations about the 
design process based on the experience and insights gained from our experiments. 
The system itself is intended to serve as a vehicle for discovery and theory forma­
tion. 

The IBDE project contrasts sharply with the integrated systems in use or under 
development in the building industry. The principal contrast is not knowledge 
based vs. algorithmic process components. Integrated systems in industry achieve 
a high level of data integration by tying CAD systems, analysis programs, etc. 
together through a shared database. However, such systems do not address the 
integration issues of building systems, of design and construction processes and of 
the thought processes of the disciplines involved. These are the issues addressed 
by the IBDE project, where the content and semantics of the communication is as 
important as the mechanism of data transfer. 

It is premature to speculate what a 'production' version of the IBDE system 
may look like. The project must first discover a 'language' through which the 
project participants' intent may be communicated to others, and through which 
critiques can be fed back. Even after such a language is developed, it remains to 
be seen how the resulting intimate integration can be implemented in the present 
dispersed organizational structure of the industry. 
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Abstract The development and application of knowledge based systems in water re­
sources is growing rapidly. The purpose of this lecture is to review two different applica­
tions that illustrate the range of development of this type of tool. The first application is 
a knowledge based system to support decision making in the management of potentially 
hazardous or obnoxious dredged materials. The U.S. Army Corps of Engineers is charged 
with maintaining the navigability of the waterways of the country. Dredging is a principal 
tool used by the Corps for this purpose. However, dredging is problematic because the 
disposal of any dredged material that is determined to be hazardous is substantially more 
expensive, difficult, and time consuming than non-hazardous material disposal. The man­
agement strategy for dredged material disposal can be represented by a knowledge based 
system that is currently under development. The second application is in the area of stream 
quality modeling. Specifically, it is a knowledge based system to aid in the calibration and 
use of the extended Streeter-Phelps BOD-DO model for a river or stream. 

1 Introduction 

One of the emerging technologies that will have significant effects on the way we 
manage our water resources is knowledge based systems. They represent a new 
way of viewing problems. It is not a panacea but it is a new tool that can be 
used in conjunction with others to improve decision making substantially in some 
domains. Knowledge based systems can be embedded in other techniques, such as 
optimization and simulation models, or these models plus other procedures such 
as graphics, data base management systems, geographic information systems and 
other information processing procedures can be embedded in the knowledge based 
system. 
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Although knowledge based systems technology has been developed only re­
cently, there are already a significant number of applications in water resources. 
These applications span a wide range including the calibration and use of hydrologic 
and hydraulic models, water supply and waste water management, and hazardous 
waste management (Maher, 1987; Ortolano and Steineman, 1987). The purpose 
of this paper is to provide an introduction to two applications of knowledge based 
systems in the area of water resources. The first application is the management of 
potentially contaminated dredged material; the second is the calibration and use 
of a stream quality model. 

2 Potentially Hazardous Dredged Material 
Management 

This section contains an overview of the Dredging And Disposal Ecological 
Evaluation System (DADEES) computer program, prepared for the U.S. Army 
Corps of Engineers. The current version of DADEES is an experimental proto­
type of an application program designed to aid Corps of Engineers personnel in 
the decision making involved in the aquatic disposal of dredged material. As such 
a prototype, the program is constructed from a simplified representation of the 
aquatic disposal decision making problem taken primarily from Appendix A of 
Lee et al. (1985). DADEES is entirely menu-driven and relatively self explanatory 
to the knowledgeable user to whom the prototype is directed, and who it is as­
sumed is somewhat familiar with the decision making framework described in Lee 
et al. (1985). 

The purpose of DADEES is to lead the user through a three-tiered testing 
strategy for the determination of the aquatic disposal requirements for dredged 
material. DADEES is restricted to aquatic disposal; upland disposal alternatives 
are not considered in this prototype. 

This testing system is invoked when an area for which dredging is being consid­
ered is believed to have some sort of contamination. To use the program, the user 
must have in hand bulk chemical analyses of the sediments to be dredged ('test 
sediments') and of the sediments in which aquatic disposal is being considered 
('reference sediments'), for each contaminant of concern to the user. 

2.1 Tier I 

The first tier in the testing protocol is the bulk chemical analysis of the sediments. 
The list of contaminants for which bulk chemical data are available is identified by 
the user, and the concentrations of each contaminant for both the test sediment 
samples and the reference sediment samples are input in a spreadsheet format, 
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in units selected by the user. Upon entry of these data, DADEES executes the 
primary set of rules in tier 1 to answer the question: 

• Do all test samples show concentrations below the average concentration of 
the reference samples, per contaminant? 

If the answer to the above question is Yes, then disposal of the dredged material 
in the area from which the reference samples were taken will create no long-term 
increases in the contamination levels of the disposal site, so DADEES arrives at 
the conclusion that aquatic disposal is allowed with no restrictions and the decision 
making analysis is completed. Otherwise, further testing is required. 

At this stage of development, DADEES invokes a relatively detailed component, 
auxiliary to tier 1 testing, wherein potential maximum bioaccumulation values 
are estimated. These values are the Thermodynamically-defined Bioaccumulation 
Potentials (TBP's). The steps taken in the calculation of the TBP values in this 
module of the program are developed by McFarland and Clark (1986). Here it 
will suffice to note the actions taken by DADEES upon evaluation of the TBP's. 
Firstly, DADEES can evaluate TBP's only for those contaminants which are neutral 
organics. The TBP values for the neutral organic contaminants are presented to 
the user, who is asked to identify those values of concern. Then, 

• IE the user identifies none of the TBP values as showing magnitudes of con­
cern, and if all of the contaminants which failed primary tier 1 testing are 
neutral organics, then DADEES concludes that aquatic disposal is allowed 
without restrictions, subject to a Local Authority Decision {LAD) on further 
testing. 

If this is the case, the final conclusion is reached and the program may exit. 
Otherwise, either some of the contaminants showed TBP values of concern, or some 
of the contaminants failed the bulk chemical analysis and are not neutral organics 
and so were not considered in the evaluation of maximum bioaccumulation values, 
in which case DADEES proceeds to the next level of testing, tier 2. 

2.2 Tier II 

Tier 2 testing is the experimental evaluation of actual toxicity levels resulting from 
local species' exposure to the contaminated sediments. At this stage, DADEES 
requires the results of the bioassay (toxicity) experiments in the form of percentage 
toxicity per test and reference sediment sample. Also required is a percentage 
toxicity for a control sample. This value is used to calculate the LD50, which 
equals the toxicity of the control sample plus 50 percent. 

Once DADEES obtains these data from the user, it enters the tier 2 rule base 
to determine whether a final conclusion may be drawn at this point or whether 
further testing is required. These rules may be summarized in the following two 
questions answered by DADEES. First, 
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• Is the toxicity of any test sample greater than the LD50? 

If so, DADEES concludes that aquatic disposal is allowed only with restrictions 
and is finished. Otherwise, DADEES determines: 

• Are all test sample toxicities below the average of the toxicities of the refer­
ence samples and below the LD50? 

If so, DADEES arrives at the conclusion that aquatic disposal is allowed with no 
restrictions, with a Local Authority Decision (LAD) on further testing. On the 
other hand, if any test sample toxicity is above the average of the toxicities of the 
reference samples, DADEES enters the third tier of testing, the bioaccumulation 
tests. 

2.3 Tier III 

At this point, the user must provide results of experimental bioaccumulation assays, 
per test and reference sample, and per contaminant; DADEES then invokes the 
tier 3 rulebase to draw a conclusion. Currently, DADEES recognizes only single­
species bioaccumulation data. This rulebase may be represented in the following 
three questions: 

1. Do FDA Action Levels exist for all contaminants? 

If the answer to question 1 is No, DADEES concludes that a Local Au­
thority Decision (LAD) is required, which may lead to either restricted or 
unrestricted aquatic disposal. Otherwise DADEES continues to question 2: 

2. Is the bioaccumulation concentration of any test sample above an existing 
FDA Action Level? 

If this is the case, DADEES concludes that aquatic disposal requires restric­
tions. Otherwise, we continue to question 3: 

3. Is the bioaccumulation concentration of any test sample above the average 
of the bioaccumulation concentrations of the reference samples? 

In the case where this is true, then all the test samples must have bioac­
cumulation concentrations below the FDA Action Levels (by question 2), 
yet some test concentrations are above the reference sample concentrations. 
Under these conditions, DADEES concludes that a Local Authority Decision 
(LAD) is required, which may lead to either restricted or unrestricted aquatic 
disposal. If the answer to question 3 is No, DADEES concludes that aquatic 
disposal is allowed with no restrictions. 
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At this point DADEES has reached a final conclusion, based upon the bioaccumu­
lation data, and any required LAD's. 

Work is continuing on the development and expansion of DADEES. Only a 
portion of the overall decision making process for managing potentially contami­
nated dredged materials has been incorporated in the program to date. DADEES 
is designed to run on a standard AT clone (286 machine), running DOS, with at 
least 640K bytes of memory, and a math co-processor. It was originally written in 
the KES expert system shell but is now rewritten in C. 

3 Stream Quality Model Calibration and Use 

Although simulation tools and techniques have long been successfully used in many 
applications, they have expanded and matured in recent years in concert with 
the onslaught of new and more powerful computer capabilities. Among the more 
promising enhancements to simulation methods has been the incorporation of ar­
tificial intelligence or expert systems technology. This integration is particularly 
beneficial when focused at simulation models that are complex and difficult to use 
or calibrate. 

In many engineering areas, simulation models are not used to their full potential 
due to special expertise required by the user and/or the large investment of time 
and money involved. For such models, an expert system might be used to facilitate 
and perhaps automate the procedures necessary to run the model. 

The focus of this section is on the development of an expert system to aid water 
resource engineers in the calibration and use of a stream quality simulation model. 
An expert system shell is used to automate and facilitate a successful stream quality 
modeling exercise. The shell environment enables fast and efficient prototyping as 
well as integration of all aspects inherent to traditional stream quality simulation 
and model calibration. A Streeter-Phelps calculation routine, graphics software, 
and a program to perform model calibration are all linked externally to a knowledge 
base which provides 'expert' advice and instructions. 

A typical dissolved oxygen analysis of the stream consists of first gathering 
physical data (e.g., velocity, depth, discharge, temperature, etc.) along the length 
of river being modeled. Estimates of model parameters (e.g., deoxygenation and 
reaeration rates) are then made and the resulting model-predicted dissolved oxygen 
profile is calculated and visualized graphically. Finally, calibration of the model 
parameters may be performed to achieve conformity between the model-predicted 
profile and any available measured field data. 

A complete dissolved oxygen analysis, incorporating several reaches of a stream, 
is a rather lengthy undertaking. It requires the collection of a large amount of data, 
the use of heuristic parameter estimation techniques that may result in conflicting 
parameter values, the use of expert judgment to resolve these conflicts, the use of 
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a trial and error or formal optimization calibration process for refinement of the 
model, and the use of graphics to display the large quantities of measured and 
model-predicted data in meaningful ways. 

Entire textbooks have been written on the subject of water quality model­
ing (e.g. Thomann and Mueller, 1987}. Therefore, only a limited description of 
the stream dissolved oxygen analysis will be provided. The principal components 
acting to deplete stream dissolved oxygen include carbonaceous biochemical oxy­
gen demand (CBOD}, nitrogenous biochemical oxygen demand (NBOD}, sediment 
oxygen demand (SOD}, and aquatic plant respiration. Oxygen contributors are 
reaeration from the atmosphere and photosynthesis by aquatic plants. 

Organic wastes, contained in point sources such as domestic and industrial 
sewage and non-point sources such a storm water runoff, when introduced into 
a stream system, directly affect the concentration of dissolved oxygen through 
the activity of microorganisms that derive a food source from the waste. As the 
amount of food source (wastes) increases, these microorganisms reproduce and 
more dissolved oxygen is required for metabolic energy. As the waste is consumed, 
the food source can no longer support the increased microorganism population 
and some die off. As the dissolved oxygen concentration in the stream decreases 
due to these microorganism activities, the rate of reaeration from the atmosphere 
increases. The result is that the stream reaeration rate eventually becomes greater 
than the stream deoxygenation rate and the stream is able to recover. 

For this application, and thus demonstration of the use of an expert system 
tool to assist decision-making, photosynthetic effects have been ignored but car­
bonaceous BOD (CBOD}, nitrogeneous BOD (NBOD}, benthal or sediment oxy­
gen demand (SOD}, and reaeration are all considered. The differential equation 
describing the dissolved oxygen reactions is: 

{1) 

where X is the distance downstream measured from the top of the reach (m); D 
is the dissolved oxygen concentration deficit measured from the saturation concen­
tration (mg/L); U is the velocity of the stream which is assumed within a reach to 
be constant (m/d}; Lis the CBOD concentration at the top of the reach (mg/L); 
N 0 is the NBOD concentration at the top of the reach (mg/L}; Ka is the reaeration 
rate coefficient (d-1}; Kd is the CBOD deoxygenation rate coefficient (d-1); and 
Kn is the NBOD deoxygenation rate coefficient (d-1). S6 is the effective SOD rate 
throughout the volume of water in the stream expressed in units of mg/Lfd. It 
may be estimated by multiplying the usually reported SOD rate 86 (gfm2/d) by 
the hydraulic radius (m2} of the stream and then dividing by the cross sectional 
area (m2) of the stream, or by dividing 86 by the depth (m} of the flow. Integration 
of Eq. 1 yields Eq. 2 which is actually used in the expert system. 

D = D0 e-K(~) 
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(2) 

Other models of dissolved oxygen with more or fewer terms can be accommodated 
in the expert system. 

At the outset of a run time session using the expert system, the total length 
of river to be modeled must be divided into a number of 'reaches.' For mod­
eling purposes, each reach is assumed to have constant characteristics or model 
parameter values throughout its length. The system describes to the user typical 
occurrences along a river where a reach subdivision should be made: for exam­
ple, point source discharges, slope changes, confluences, dams, waterfalls, etc. The 
calculations and/or calibrations will be performed for each reach sequentially. 

Downstream boundary conditions from one reach will be transferred automati­
cally to upstream boundary conditions for the next downstream reach and a mass 
balance performed in the case of inflow of some form. The system will keep track 
of results for individual reaches and can display continuous results for all reaches 
previously modeled at any time during the run time session. 

Next, the expert system queries the user to determine whether the particular 
run time objective is for simulation or calibration. If it is simulation, the expert 
system merely acquires all necessary input data, performs the dissolved oxygen 
calculations and graphically presents the results to the user. This is performed for 
all the reaches sequentially. The calibration option is a bit more involved. If chosen, 
it implies measured field data are available and the user would like to calibrate the 
model to give a 'best fit' to the measured data. 

For each reach, the value of the reoxygenation parameter, Ka, is estimated 
first using 'rules based' inferencing. These rules are based on empirical formulas 
and are intended only to give the user an approximate starting value of Ka, if 
one is not available. The user is informed of an empirical value of Ka as well as 
the corresponding literature reference. If more than one empirical formula applies 
for the given conditions, the user will be informed of each value. The system 
recommends values for Ka, but leaves the user the option of choosing any value. 

Next, the value of the carbonacous deoxygenation coefficient, Kd is estimated. 
The user is first queried as to whether or not CBOD field measurements are avail­
able for the reach. If field data are available, the system is programmed to compute 
Kd based on those data using a sum of least square deviations procedure on log 
CBOD vs time downstream. Again, the user is left with the final decision as to 
the value of Kd. If no field data are available, the system queries the user for a 
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value of Kd. The model possesses an analogous capability to determine the value 
of nitrogenous deoxygenation coefficient, Kn. 

Next, the user is asked if there is any inflow into the stream at the beginning 
of the reach. The two most likely causes of such inflow would be from a point 
source discharge or another tributary stream. In some instances, it may include 
non-point source discharges. If there is inflow, the user is requested to input the 
total incoming discharge, the dissolved oxygen, CBOD, and NBOD concentrations 
as well as temperature, so that a mass balance calculation can be performed with 
the upstream conditions. 

Now that all information pertinent to the reach has been ascertained, it is passed 
to an external calculation routine via a communication file. The user is informed 
that the calculation routine has been invoked and the appropriate adjustments 
have been made to Ka, Kd, Kn and Sb due to temperature of the stream. The 
calculations routine uses Eq 2 to determine the dissolved oxygen profile in the 
reach and a graphics package to display the profile for the user. 

The calibration phase of the expert system is an extension of the simulation 
phase whereby the dissolved oxygen controlling parameters are perturbed itera­
tively until the calculated values are matched as closely as possible to the mea­
sured dissolved oxygen values. The calibration phase begins to deviate from the 
simulation phase after the first graphic of calculated dissolved oxygen vs length 
is brought to the screen. At this point, the user is asked to enter the measured 
dissolved oxygen field data for the reach. The user would have previously indicated 
that field data were available by choosing the calibration alternative for the run 
time option. Now that the system possesses calculated as well as measured data, 
it has the capability of presenting graphically the two together. 

To calibrate the parameters for this reach, the expert system uses an external 
LISP program which will implement a pattern search to determine which direction 
in a four dimensional space will yield a lower expected error. The four dimensional 
space comprises the four oxygen controlling parameters Ka, Kd, Kn and Sb. 

The search continues until one of three ending criteria is met: expected error 
is less than 1.00%, subsequent iterations do not improve expected error or ten 
iterations are performed. Other stopping criteria could easily be implemented if 
desired. Once calibration is complete, the user may choose to view a graphic 
of measured dissolved oxygen concentrations and model-predicted or calculated 
dissolved oxygen concentrations using the calibrated parameter values along the 
length of the reach. Once the model has been calibrated for this reach, the next 
downstream reach is considered. 

Acknowledgment The work described in this paper is due in large measure to the 
efforts of Tim Ginn and Dave Wood. 
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The Development and Application of an 
Expert System for Drought Management 

Richard N. Palmer 
Department of Civil Engineering 
University of Washington 
Seattle, Washington 
United States of America 

Abstract A recurring problem in applying systems analysis tools in water resource man­
agement is the successful presentation of results to decision makers. Expert systems have 
been suggested as a decision tool to create models that are more easily incorporated into 
'real' decision environments. The use of such models has been limited in the management 
of water resources, however, by the complex environment in which such decision are made 
and difficulty in developing simple rules of thumb for operation. In addition, modelers are 
often reluctant to abandon the information and insights offered by computer models. 

This paper describes the development of a decision support system used to manage 
the Seattle, Washington water supply during droughts. The system includes an expert 
system, a linear programming model, database management tools, and computer graph­
ics. The expert system incorporates operator experience and expertise using a rule base 
developed with interviews of water management personnel. The expert system is also used 
to integrate the other modeling techniques into a single system. The linear programming 
model determines system yield and optimal operating policies for past and predicted hy­
drologic regimes. Database management and graphic software allow the display of over 
two thousand operating policies generated by the linear program. 

1 Introduction 

This paper describes the development and application of a computer model used by 
the Seattle Water Department (SWD) for operations during drought. This model 
provides guidance for initiating voluntary and mandatory water-use restrictions. 
The model uses an expert system to integrate several programming techniques in­
cluding linear programming, database management system, and computer graph­
ics. The model is mathematically complex yet highly user-friendly. It incorporates 
both subjective and quantitative information. Heuristic knowledge obtained from 
managers ofthe water supply system provides the foundation for the expert system. 
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Although expert systems techniques are advocated for a wide variety of settings 
in Civil Engineering {Fenves, et aJ. 1984, Fenves 1986) few examples of successful 
applications exist in water resources. This is due, at least in part, to the com­
plex decisions required for proper management. It also results from difficulties in 
converting these decisions into the simple 'rules of thumb' associated with expert 
systems. This paper directly addresses these problems. The approach suggested 
requires extensive numerical analysis before a drought event. However, it provides 
quantitative and qualitative information to aid decision makers in making rational 
and consistent operating policies. 

This paper begins with a brief introduction to expert systems and their char­
acteristics. Next, it describes the Seattle water supply system with a chronology 
of the 1987 drought event, the worst drought event on record. Procedures for 
drought management used before this event are also characterized. The remainder 
of the paper discusses the development and application of the integrated computer 
software used for drought management. 

2 Seattle Water System 

The Seattle Water Department {SWD) provides direct service to 541,000 Seattle 
residents and is a wholesaler to 549,000 residents of King County {SWD 1986). 
Water is taken from the Tolt and Cedar Rivers, both of which originate in the 
Western Cascade Mountains. Minimum instream flow requirements limit diversions 
from each river. These instream flow requirements exist to maintain water for 
fisheries, hydropower generators, and recreation usages. 

Although averaging over thirty inches of rainfall annually, the area is susceptible 
to droughts. The SWD estimates its safe yield at 169 MGD with a 98% reliability 
{one shortage event in fifty years). Safe yield is the seasonally varying, maximum 
volume of water available while meeting operational constraints of the system. 
Municipal water demands currently average 170 million gallons per day {MGD) 
annually and are increasing at the rate of 2 MGD per year. Until new sources 
are developed, little excess capacity exists to meet unusually high demands or low 
supply situations. 

For successful operation during the summer, reservoir storage levels must be 
near capacity after the spring snow melt. Average rainfall during July and August 
is 1.8 inches; thus, the system also depends on autumn precipitation to refill its 
reservoirs. Unusual climatic events, such as those that occurred in 1987, cause 
system storage to decline to levels that require water use restrictions. 

To guarantee an orderly response to any water shortage, the SWD developed 
the Water Shortage Response Plan (WSRP). This plan addresses problems related 
to the 1-in-50 year drought event (SWD 1986). The objective of this plan is to 
maintain essential services while minimizing the net economic loss during a drought 
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event. The WSRP envisions two types of shortages: a summer shortage and a 
fall shortage. Each type of shortage consists of a multi-stage conservation plan 
with progressively higher stages initiated as serious conditions develop. Summer 
shortages result from climatic and hydrologic conditions that cause system reservoir 
levels not to be refilled by late spring. The fall shortage scenario results from low 
fall precipitation that is insufficient to replenish system storage after summer peak 
use. 

Conflicts between the City of Seattle, the Corps of Engineers, and Washington 
State Department of Fisheries, and the Washington State Department of Ecology 
are common during periods of low flow. These conflicts result from the different ob­
jectives the agencies have for water use in the Tolt and Cedar watersheds. Figure 2 
illustrates the decision process used before 1987. Decisions were made in a formal, 
if ad-hoc manner, attempting to weigh conflicting objectives of the agencies. Only 
a limited amount of quantitative data were available to all agencies and often the 
precise impacts of decisions were not known. 

3 The Drought of 1987 

The 1987 drought began in the early summer and continued into the late fall. 
Total precipitation for the 1987 Water Year (October !-September 30) was 80% of 
average. Above normal rainfall and snow occurred in the winter and early spring. 
However, strict adherence to flood control levels prevented storage of the water. 
Abnormally high temperatures during this period left the snow pack depleted and 
increased reliance on summer flows. Flows in the late spring were below normal 
and the reservoirs did not fill to maximum water supply capacity. By early June 
voluntary water use restrictions were considered and by late June, they were a 
reality. 

Flows during June and July proved to be among the lowest on record. On 
August 3, mandatory water use restrictions were initiated including limitations on 
outdoor water use. These restrictions were the first required since the early 1960's. 
These restrictions resulted in decreased demands, but total usage remained some 
20 MGD above the desired target. By late August, the drought became one of 
the worse, if not the worse, on record. The regional nature of the drought became 
obvious by September. Tacoma, Washington announced required purchases of 
water from other suppliers. Tacoma had relied on the fall rains and had not 
instituted any significant restrictions. 

The decisions required in this situation are similar to those faced by the man­
agers of other systems during an extended drought. When should the public be 
informed of impending problems? When should voluntary restrictions be initiated? 
What level of voluntary restrictions are required? When are voluntary restriction 
insufficient and mandatory restrictions required? When can operations return to 
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normal? 

4 Development of SID 

Several programming approaches were used to develop an integrated model with 
the characteristics previously described. The model is denoted as SID (The Seattle 
Water Department Integrated Drought Management Expert System). A commer­
cial expert system shell (Level 5 Research, 1986) is the primary interface with 
the user. The expert system activates other software programs providing specific 
functions not available with the expert system in isolation. In addition, the expert 
system serves to incorporate operator experience and institution constraints. 

Two fundamental problems existed in the development of the integrated model. 
The primary problem concerned incorporating operator experience because little 
public knowledge existed describing operating policies. The second problem re­
lated to the development of quantitative information to aid decision makers. This 
information was to serve as guidance for operators and not to diminish their role 
as decision makers. 

The flow solution approach adapted in SID was the integration of several types 
of modeling approaches. An expert system incorporates general operating rules di­
rectly using the rules developed by SWD managers. A linear programming model 
generates specific information concerning the probability of system yields and po­
tential economic losses. In addition, the linear programming model generates spe­
cific operating policies for a sixteen week period. These policies include when to 
initiate water use restrictions and at what level. Database software stores these re­
sults and makes them accessible to the expert system. When necessary, the expert 
system also accesses graphic routines to display the results. After reviewing the 
rules and suggestions of the expert system, the user can modify specific policies to 
evaluate their impact on operation. 

SID's primary output is a one week operating policy. SID is operated weekly to 
generate subsequent restriction policies. Because of rapidly changing climatic con­
ditions, it is unwise to develop rigid long range policies. Each of SID's components 
is described below. 

5 Description of Linear Programming Model 

Although the expert system contains general rules of operation provided by the 
system managers, quantitative information can supplement operator experience. 
This provides operators with an estimation of the system drought potential based 
on its state at a given time. This information is generated using a position analysis 
(Hirsch 1977). In this procedure, past streamflow data serve as surrogates for 
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potential future inflows. State variables, time and storage, are defined and the 
system operates for a prescribed period. 

Hirsch performed his analysis with a simulation model, however, this research 
uses a linear programming model for this purpose. This model (denoted as LPW) 
operates on a weekly time period, incorporates physical and operational constraints 
and optimizes the system's operation. Two objectives are used: maximize system 
yield and minimize the economic loss associate with deficits from a specified (and 
time dependent) target. For this system, the planning period is four months and 
each year is an independent event. Streamflow data exists for nearly fifty years 
for primary sites of interest in the system, making this an especially attractive 
approach. 

When estimating the system yield, the constraints include continuity at both 
reservoirs, instream flow requirements and continuity on the moraine aquifer in the 
Cedar system. The Cedar system is more complex because of this aquifer. The 
aquifer is recharged by seepage from Masonry Pool and returns water to the Cedar 
River further downstream. Both occur at unknown rates and which the model 
approximates (Palmer and Johnston 1984). Bounds exist for storage levels on all 
reservoirs, pipeline capacity and instream flow requirements for the Tolt system 
and Lake Washington elevation. 

The second objective requires several additional constraints to meet water use 
implementation requirements. Upper bounds on each stage of WSRP restrictions 
represent the maximum reduction in water use that is possible for each stage. A 
piece-wise linear objective function approximates the economic losses associated 
with the implementation of water use restrictions. Additional constraints limit 
stage increases to one per week, preventing staging from skipping two or more 
levels in one week. 

The model was executed using the historical record (1929-1975) for a variety 
of reservoir storage levels, starting dates, and system demands. System yield was 
calculated for each streamflow record for an initial storage of between 10 and 100% 
of capacity (by units of 10%) and for June through October. This requires 2,450 
runs of the model. The results of the yield analysis identified configurations that 
result in economic losses for specific demands. The minimum economic loss, and 
its associated operating policy, was calculated for the appropriate configurations 
for base level demands of 170, 180, 190 MGD. This resulted in approximately 600 
addition runs of the model. 

Execution of each yield run requires approximately three minutes on an IBM/ AT 
using XA, a linear programming software package (Sunset Software 1987). Execu­
tion time of the economic loss are less predictable, requiring between six and twelve 
minutes. Approximately 200 CPU hours were required for all linear programming 
runs. This task was simplified by writing software to automate this process. 
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6 DataBase Management 

Database management software stores the results of the linear programs. Access to 
the previously generated results allows them to play a significant role in real-time 
operation. As previously stated, computation time prevents real-time generation 
of the results. The database management techniques also allow incorporation of 
the results into the expert system rule base. 

Record code-information is used by graphics routines and expert system to 
access the correct record, starting week ,base level demand, initial storage, yield 
array, economic loss array, total number of drought years, drought years, and Water 
Shortage Response Plan staging data for drought years. 

7 Graphics Routines 

Software used to generate graphic routines activated by SID are written with the 
Turbo Pascal Graphics Toolbox (Borland International1985). The graphics soft­
ware displays the cumulative distribution functions (CDF) for system yield and 
economic losses, optimal WSRP staging sequence for the 10 worst droughts on 
record, and a weighted staging sequence. The expert system activates the graphics 
software for specific system configurations (initial week, initial storage levels, and 
base level demand) that have a potential for water shortage. Subsequent sections 
present examples of the displays. 

8 Expert System Rule Base Development 

The expert system functions to integrate the other programs used in SID. However, 
its primary purpose is to provide a mechanism to incorporate a rule base developed 
by SWD personnel. Drought management decisions rely on subjective evaluations 
and operational experience as well as quantitative variables. Decisions are made 
relative to the severity of a drought, the potential economic effect it may present 
and the proper management strategy to minimize it's impact. Although quantita­
tive analysis can supply information to aid in these decisions, a final decision must 
also include the judgement of the manager who is responsible for the results. The 
goal of SID is to incorporate human expertise and insights into the modeling of 
water supply operation, allowing an accurate representation of the decision making 
environment. 

Interviews with SWD personnel were conducted to determine the system vari­
ables most significant when making drought management decisions. Two SWD 
representatives participated in this effort: David Parkison, head of the engineer­
ing planning section and Rosemary Menard, chief information officer of the water 
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conservation section. These individuals had direct responsibility for system opera­
tions and public information during drought events. A series of modifications and 
additions to the rule base were made through these meetings. In the interviews the 
most significant management information was defined as the likelihood and sever­
ity of potential system shortfalls. They also defined the most relevant results from 
the linear programming model as the indicators of potential system failure: time of 
year, storage levels, current demand, future inflows, future demands, estimations 
of yield for extreme conditions (such as the ten most severe years on record) and 
estimations of the future drought potential. 

9 Expert System Rule Base for Drought 
Management 

The rule base that developed contains two types of rules. Type I rules provide the 
user with general drought potential information for a system configuration but do 
not provide operation guidance. Type II rules incorporate the results from historic 
drought events and rules concerning system operation to recommend a specific 
action. 

Type I rules require the user to provide the initial system configuration to the 
model. The user enters the initial week, initial system storage, and base level de­
mand into the expert system. For the given configuration the system then rates the 
drought potential: Severe, Serious, Moderate, Minor, or None. This provides the 
user with general information on the severity of the current system configuration 
compared with historic events. An example of a Type I rule for July is: 

Rule July 1 
if The initial week is July 1 
and Initial system storage = 70 
and Base demand = 170 
then Conservation restriction may be required 
and Drought Potential is Minor 

Discussion with SWD personnel lead to drought potential being defined as: 
None, for no droughts in the database for a given configurations; Minor, for 1 
drought in the database; Moderate for 2 droughts in the database; Serious for 3 or 
4 droughts in the database; and Severe of 5 or more droughts in the database. 

Type II rules provide the user with guidance on system operations. The user 
enters a prediction of the expected inflows and demands for the upcoming month. 
The program then estimates the next month's system storage. From the database, 
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the systems returns values for the number and economic loss of droughts associated 
with the current system configuration, the average yield of the 5 smallest years 
(the average 10% yield} and the number of droughts associated with next month's 
predicted configuration. 

The system uses this information to determine the proper water use restriction 
level. SID uses the appropriate variables first to determine whether to lower the 
current drought level restriction. If this goal cannot be achieved, the system pur­
sues rules associated with the goal of remaining at the current level of restriction. 
If none of these rules are satisfied, the system pursues rules associated with the 
goal of increasing the current level of restriction. 

There are five basic heuristics gathered from interviews with system experts 
related to general operation. These are: 

1. Lower stages (WSRP stages 1 and 2} are readily implemented and require 
examination of only a few system variables 

2. Higher stages (WSRP stages 3, 4, and 5} are more difficult to implement and 
require the examination of many system variables 

3. Stage 2 restrictions can be implemented directly from stage 0 if drought 
conditions are potentially serious 

4. Stage 3 and stage 4 are interchangeable except for the season of implemen­
tation. Stage 3 is implemented during summer months (June, July, and 
August}. Stage 4 is implemented during fall months (September and Octo­
ber} 

5. Reduction in staging will not occur until system storage levels are sufficient 
to meet NORMAL fish flow requirements. 

Different criteria are used for the lower and higher restriction level to deter­
mine whether drought restrictions are decreased. Both assure that normal fish 
flow requirements are met before stage reductions are made. Over 140 rules are 
incorporated into the rule base. 

10 Use of Integrated Drought Management 
System 

It is difficult to portray the use of SID in written text because of its reliance on user 
interactions and computer graphics. This difficulty is not unique to this model but 
has been a consistent problem in the literature. Unseen by the user, SID moves 
between the expert system shell, graphic software, database software, and other 
subroutines written in Fortran. 
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SID begins with an animated color screen showing reservoirs filling and emp­
tying. ('Animated' implies movement on the screen. ) Nine color graphic 'HELP 
Screens' follow describing the various functions of SID. These ten introductory 
screens are written in Turbo Pascal. An experienced user can activate SID and 
bypass all introductory information. 

Next, SID activates the expert system. Three screens obtain user information 
describing the system. This information includes the week of interest, the cur­
rent storage in the reservoirs, and the municipal water demands. Each screen is 
accompanied by HELP facilities that allows further explanations of the questions 
presented. In addition, the user can ask SID why the question is posed. If queried, 
SID presents the rule in its rule base that caused the question to be asked. At any 
point in the consultation, the user can request from SID a listing of all rules or any 
system variables. 

Using this information, SID examines the database and classifies the drought 
potential as Severe, Serious, Moderate, Minor, or None using criteria described 
previously. If the drought potential is defined as none, the SID suggests that the 
user either begin with a new system condition or terminate its use. 

If the drought potential is any level but 'None,' SID activates the graphics 
software. This software plots the cumulative distribution functions of system yield 
and potential economic loss. The plots contain statistical information concerning 
the average behavior of the system and the average of specified quartile events. 
The ten most severe events are listed in the order of their severity in the economic 
loss graph. 

Next, the user identifies specific drought events for which more information is 
desired. The sixteen week optimal WSRP staging sequence for these droughts are 
presented as histograms, with as many as four presented on the screen at once. 
These histograms illustrate optimal management policies for past droughts that 
minimized economic impact. If desired, the user can develop a sixteen week policy 
for the current drought by weighting the staging associated with any of the ten 
previous droughts. The selection of the previous droughts to include depends upon 
their estimated probability of occurrence, the level of economic loss, or degree to 
which the user believes the current drought situation under evaluation is similar 
to any of the previous droughts. 

The user then estimates the total system demand and total system inflow for the 
next month and the current level of water use restriction. Demand and supply can 
not be estimated with precision, however, supporting software (not incorporated 
into SID) has been developed to aid in this estimation. Using these estimates, SID 
evaluates the drought potential if these demands and supplies do occur during the 
next month. Drought statistics for the current month and the predicted subsequent 
month are then presented. The drought potential for both months are then used 
to determine the appropriate level of restriction for the current week. 



186 

The user can alter any input variable and examine the sensitivity at the conclu­
sion of the consultation with SID. The rules activated in deciding the appropriate 
level of restrictions can be reviewed allowing the user to understand the exact logic 
used. If a rule appears inappropriate, it is possible to move directly into the rule 
base, alter the rule, re-compile the program, and begin a new consultation. 

11 Conclusion 

This paper describes the development and application of an expert system designed 
to aid in drought management. The model integrates the use of linear program­
ming, database management, and computer graphics using an expert system. In 
addition, the expert system is used to incorporate the experience and insights of 
system managers into the range of possible operating policies. 

Specific operational objectives for the model were identified at the outset of 
model development and the model was constructed to meet these goals. The need 
for real-time analysis and user friendliness dictated many of the techniques that 
were incorporated. Optimization techniques were needed to identify system yield 
and operation, but were inadequate in capturing the more subjective aspects of 
system operation and in presenting the results in a fashion meaningful to system 
managers. 

The authors contend that the development and use of the expert system greatly 
aided the system managers during the 1987 drought. Because the event will not 
reoccur such a contention can not be proved nor disproved. However, the model 
did provide information that allowed managers to recognize the significance of 
the drought and its relationship to past events. In the process of developing the 
rule based, the managers formalized specific approaches to operation that allowed 
consistent operation for the droughts duration. The 1987 drought required the 
development of an improved rule base for operation that will aid future managers 
when other droughts occur. 
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The Potential Use of Decision-Support Systems 
for Integrated River Basin Management 

D. G. Jamieson 
Thames Water 
Vastern Road, Reading 
England 

Abstract Proposals are made for the eventual real-time, near-optimal control of an 
entire river basin for a wide-range of different functions including river management, water 
supply and sewage disposal. A satisficing approach within a modular, hierachical control 
framework is advocated. In this way, scarse resources can be allocated across competing 
interests and the degree of conflict between non-compatible activities minimised. 

1 Introduction 

1.1 Background 

Prior to the 1974 reorganisation of the water industry in England and Wales, river 
basin management depended on cooperation between independent organisations. 
In order to safeguard vested interests, there had to be prior agreement between 
the various authorities which usually took the form of abstraction licences, dis­
charge consents, etc. While these arrangements worked reasonably well in normal 
circumstances, they could be somewhat of a hindrance in times of stress, especially 
if assistance to one aspect of river-basin management infringed an agreement on 
another, since that was likely to be with a different organisation. Moreover, since 
different organisations were only accountable for their own particular aspect, there 
was little incentive to assist others over and above their prior commitment, however 
sensible it might have been in the general interest. 

Since the creation of water authorities, all aspects of river-basin management 
have been vested in the one organisation. At least in theory, this could lead to a 
more flexible operational policy based on objectives rather than agreements. How­
ever, a dynamic operating strategy which is continually updated in response to 
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changes in the system state and user interests would necessitate a more sophisti­
cated monitoring and control scheme than one following pre-set rules. 

More recently, the Government has outlined its intentions for privatising the 
water industry. In essence, the intention is to create a National Rivers Authority, 
thereby separating the regulatory and river management functions from water sup­
ply and sewage disposal. Whilst at first sight, this runs contrary to the concept of 
integrated river basin management, nevertheless a large element will of necessity, 
have to continue. Therefore, rather than having a prescribed operating agreement, 
the two organisations could adopt a common dynamic operating strategy. 

1.2 Aims 

The aims of this paper are as follows: 

• to structure the general problem of operational river basin management by 
identifying compatible and non-compatible interests; 

• to review control techniques currently available and postulate developments; 

• to propose a framework for the eventual real-time management of an entire 
river basin system on an integrated basis. 

1.3 Limitations 

It is inevitable that an overview of this nature will be somewhat superficial and not 
show due reverence to the many practical difficulties. Moreover, in certain aspects 
the exposure of ideas for future operational control is somewhat premature since 
these are the subject on ongoing research. Nevertheless, it is hoped that the overall 
concept is not obscured by these shortcomings and that the approach adopted is 
applicable elsewhere. 

2 River basin management 

2.1 Interaction 

For the purposes of this paper, river basin management is defined in its broadest 
terms and deemed to include all factors which relate to or impinge on the natural 
drainage of a river system. The 1973 Water Act recognises that most aspects 
of river basin management are inter-related and cannot sensibly be segregated, 
particularly at an operational level. Therefore, any attempt of rational control 
becomes an exercise in conflict management. 
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2.2 Component Parts 

Within the overall water cycle, a multitude of separate facets can be identified but 
space considerations restrict this paper to the following common uses of rivers: 

• land drainage-natural and man-made; 

• water supply-direct or via storage reservoir; 

• sewage disposal-raw sewage or treated efHuent; 

• navigation-natural or maintained depth; 

• hydro-power generation-conventional or low-head; 

• cooling water-oil or coal-fired power stations; 

• fisheries-angling and fish-farming; 

• recreation and amenity. 

2.3 Compatibility of Interests 

Obviously, a river basin managed for one specific aspect may well provide inci­
dental benefits for some additional purposes but conflict with others. However, 
the constituents of river-basin management can roughly be divided into conserva­
tion activities and disposal activities. Conservation activities include water supply, 
navigation, hydro-power, recreation and amenity: disposal activities include land 
drainage, sewage disposal and cooling water. In general there would seem to be 
more common interests within each of these groups than between them. For ex­
ample, the effect of storage tends to be an asset for conservation activities but a 
hindrance for disposal activities. 

Such generalisations should not be stretched to the limit since some aspects of 
disposal activities are not an embarrassment to conservation activities and may 
well be a positive benefit as in the case of efHuent disposal being used for down­
stream water supply. In fact, the more detailed any consideration of compatibility 
becomes, the more inappropriate the simple classification is seen to be, since the 
degree of fit depends on not only the particular interest but also the state of the 
system. 

3 Objectives 

3.1 Traditional View 

Where river-basin management objectives have been formalised in the past, it has 
usually been a result of having to maintain statutory obligations or legal constraints 
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such as minimum residual flow, navigational depth, effluent consent standards, etc. 
All considerations of the interactive nature of river-basin management are embraced 
within the constraints themselves. This has produced management targets which 
are static and therefore achievable with low-level technology. 

However, even comprehensive pre-set operating rules are unlikely to be 'op­
timal' in any sense if no account is being taken of changes in the system state. 
Recognising the inadequacies of the methodologies currently employed, considera­
tion has been given to ways of improving real-time control procedures albeit usually 
on a piecemeal basis. 

3.2 Difficulties 

Unfortunately, it is a fact of life that the different interests in river basin manage­
ment have different criteria for assessing performance. Whilst minimising operating 
costs could be an appropriate objective for managing a pump-storage reservoir, it 
might not have much relevance to flood-alleviation where the objective is likely to 
be minimisation of flood damage. At least these two objectives have a similar basis, 
that of cost minimisation, whereas others such as fisheries or perhaps navigation 
might not even be measured in financial terms. 

3.3 Satisficing Approach 

Bearing in mind the difficulties of formulating an objective function, it may well 
be inappropriate to talk of 'optimal' operating procedures for an entire river basin. 
Instead, a satisficing approach could be adopted. Here, the state of the system is 
deemed satisfactory for specific interests provided it is within pre-defined bound­
aries for each activity (Fig. 1). If the system state lies within all those constraints, 
minimisation of operating costs, say, would be the general objective. If, however, a 
particular constraint is or about to be violated, then the objective specific to that 
activity would take precedence. 

For instance, if flooding was imminent (the upper-bound constraint on land 
drainage about to be broken) then the flood mitigation objective of damage min­
imisation takes precedence over minimising operating costs (Fig. 2). If the depth 
of water in a river did not meet the navigational requirement (a lower-bound con­
straint on navigation), water supply might have to draw on storage or use an 
alternative source even if that was more expensive. Only if more than one set of 
constraints were likely to be violated simultaneously (say, insufficient depth for nav­
igational requirements and no alternative source for water supply) would priorities 
have to be assigned. 

Of course, there is nothing new in this concept: it is merely formalising what 
hitherto had been done intuitively. That being the case, there is a danger of simply 
copying what is currently done manually and computerising the same procedures. 
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However, this would be extremely short-sighted since with the advantages in mod­
ern management techniques, those procedures can almost certainly be improved. 

4 Operational procedures 

4.1 Automation 

A pre-requisite to a more flexible operating policy which dynamically responds to 
changes in the state of the system is quite obviously a definition of the present state. 
Since it is important to minimise the delay between a change of state occurring 
and the counteracting decision being implemented, SCADA is considered to be 
essential. 

Depending on what aspect of river-basin management is being considered, the 
existing state of the system would be measure in terms of river levels, groundwater 
levels, reservoir levels, sluice-gate settings, quantities pumped, pipe network pres­
sures, water-quality states, etc. The frequency of interrogation will be dependent 
upon the response characteristics of the specific parameter, e.g. groundwater levels 
require less frequent interrogation than, say, river flows. Similarly, the precision 
of measurement required will also be a function of the specific parameter and its 
response time. 

In view of the complexity and the amount of information required even to define 
the state of one particular constituent of river-basin management, it is unrealistic 
to assume that any one person could assimilate, digest and utilise all the incoming 
data At best, the manager would keep a close watch on a number of key variables 
and ignore the rest. 

For this and other reasons, it is expected that future control systems will have 
a higher degree of automation than at present. This should not be interpreted to 
mean replcing personnel by computers. On the contrary, the intention is to aug­
ment managers' capabilities through decision-support systems about which more 
will be said later. The role of the manager would be to oversee the control process 
and take operational decisions. The role of the computer would be to establish the 
existing state of the system, forecast the future state, assist with decision-making 
and carry out control instructions. 

4.2 Real-time Forecasting 

In control engineering terms, the proposal is to treat river-basin management as 
a feed-forward control system. That is to say, operational decisions are taken 
on the expected future state of the system rather than the known present state. 
Since perfect foresight cannot be assumed, there must be ability within the control 
procedures for self-corrective action as a means of compensating the decisions for 
the inevitable errors in the forecast. 
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What few examples there are of feed-forward control systems being used within 
the water supply industry, usually base their forecasting procedures on determin­
istic models. The simulation models used have traditionally been adaptations of 
explanatory models in which the algorithms purport to have physical reality in the 
sense that they attempt to mimic the real system. 

Basically, there are two options for deterministic modelling. In the direct ap­
proach, the differential equations of flow j diffusion are themselves approximated 
(usually linearised) while in the systems approach, an equivalent operator is sub­
stituted as an approximation to the actual process. Whilst the systems approach 
has the advantage of robustness (no instability problems with ill-conditioned equa­
tions), the direct approach has the better definition. Besides being time-invariant 
in the sense that the parameters once estimated are assumed constant, both ap­
proaches, particularly the direct approach, are computationally tedious and not 
particularly suited to real-time use. 

Various attempts have been made to improve the forecasting ability of such 
models. This has usually involved restructuring portions of the model to make it 
more complex. However, for operational control purposes, the requirement is for a 
reliable forecast of future events rather than a detailed understanding of the pro­
cesses involved. For this reason, there has been growing interest in using techniques 
such as Kalman filtering as a means of improving forecasting procedures (Fig. 3). 
Amongst other things, these techniques include recursive parameter estimation so 
that discrepancies between the predicted and actual values are compensated as the 
forecasts are updated. 

4.3 Optimal Control 

Operational decisions in river-basin management are seldom simple and even more 
rarely optimal. At the present time, dynamic programming in one form or another 
is still perhaps the most commonly proposed decision mechanism for real-time 
use. However, in common with other optimal control techniques, the scale of the 
problem that can be considered is often curtailed by the limited computing facilities 
available. 

The size of analtyical problem that can be realistically accommodated with 
the necessary level of detail is probably restricted to an individual subsystem such 
as a group of reservoirs or a series of river control weirs. To date, generalised 
control procedures have only been attempted for a limited number of subsystems 
and an entire river basin may comprise hundreds. Even if it were assumed that all 
subsystems were operated in an optimal fashion, obviously it does not necessarily 
follow that the entire system is optimally controlled. 

Despite the fact that the research literature abounds with hypothetical exam­
ples of optimal control as applied to water resources, there is some doubt whether 
optimal control in the strict sense is justified, never mind possible, even for individ-
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ual subsystems. Looking to the future, perhaps emphasis will be placed on simpler 
control procedures which approximate the optimal decision to a degree where it 
makes little or no practical difference. 

4.4 Hierarchical Control 

Given that for the foreseeable future, anything approaching optimal control will 
be restricted to individual subsystems, there is an obvious problem in attempting 
to manage an entire river basin. However, if subsystem controls were capable of 
adapting to meet targets imposed by a more general control strategy, it is possible 
that this would provide an adequate approximation of optimal control for the entire 
system. 

Three tiers of decision-making have been recognised namely strategic, tactical 
and local corresponding to the three levels of management, Headquarters, Divisions 
and Works. Whereas strategic decisions are confined to what is to be achieved, 
tactical control relates to how those targets are to be achieved. Thereafter, it is 
left to individual subsystems to implement the instructions received (Fig. 4). If for 
any reason, a Division or Works is unable to comply with its set-point, a feedback 
loop is activated and revised directives issued. 

5 Implementation 

5.1 Generalised Control Modules 

Decomposing the system into inter-dependent subsystems clearly makes integrated 
river-basin management a more tractable proposition. Rather than repeatedly 
developing similar procedures for the same type of subsystem at different locations, 
the aim has been to formulate generalised computer packages which can be used 
throughout the region with minimal adaption. In the first instance, three such 
modules have been considered: 

• river management (near-optimal control of abstractions, releases and im­
poundments); 

• water supply management (near-optimal control of water treatment and 
distribution); 

• sewage disposal management (near-optimal control of sewage treatment 
and effluent discharges). 

The idea was that, initially, these procedures could be used for operating in­
dividual subsystems. If, however, they were to be developed within a common 
framework, as was the intention, this preserved the option of subsequently linking 
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appropriate modules to the strategic and tactical decision mechanisms, thereby 
introducing an element of integration. 

5.2 User Interface 

Rather than regard optimal control techniques and knowledge-based systems as 
rivals, the case is made for combining their different attributes to complement 
each other. By their very nature, optimal control techniques are not particularly 
user-friendly. Nor can uncertainty and other practicalities be easily incorporated 
into the algorithms. If, however, an expert system were used to interpret the results 
of the control algorithms, this would provide an enhanced level of understanding 
which could be readily assimilated by the manager. 

5.3 Application 

To illustrate the overall concept proposed with a hypothetical example, Fig. 5 
depicts some typical elements of a multi-functional river basin. The system shown 
comprises a pair of pumped-storage reservoirs, an unconfined aquifer and three 
demand centres, each having water supply and sewage disposal responsibilities. 
Whereas two of the demand centres are reliant on a single source, the third can 
use the aquifer and river conjunctively. Besides water supply an sewage disposal, 
it is assumed the other activities include pollution control and flood warning to 
support the fisheries and navigation functions. 

Figure 6 shows a schematic representation of the proposed control scheme cor­
responding to the hypothetical system given in Fig. 5. At a strategic level, the 
aim would be to set broad targets, allocating scarce resources between competing 
interests and minimising the degree of conflict between non-compatible interests. 
An attempt has been made to formulate this as a multi-functional, non-linear 
optimisation problem which is solved using a projected Lagrangian algorithm at 
a monthly time-step. At a tactical level, which can be multi-functional or single 
function depending upon the organisational structure, short-term control strategies 
are devised having regard to the targets set and the forecast state of the system. 
To that end, linear programming has been used to define the operating regime on 
an hour-by-hour basis over the next 24 hours. Thereafter, it is left to the local level 
to follow the set point by manipulating the control equipment. In that respect, 
dynamic programming has been used as a decision-aid. 
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6 Conclusion 

6.1 Prospects 

Up until recently, most control schemes within the water industry could at best be 
described in euphemistic terms as fragmented. There was little or no consistency 
of approach, let alone compatibility of hardware, software or even communication 
protocols. Telemetry was simply used for data acquisition rather than an integral 
part of a control system. All of the decision-making and much of the control was 
manual. However, that is changing rapidly. The need for improvements to effi­
cient and effectiveness coupled with the availability of competitively-priced control 
equipment will inevitably lead to higher levels of automation. 

6.2 Epilogue 

These proposals may seem ambitious at first sight. However, one should anticipate 
that sophisticated control systems will be commonplace by the turn of the century. 
The point in question is not whether the industry will introduce improved control 
procedures, but how. The choice seems to be either drifting into automation in 
a piecemeal fashion or making a conscious effort to introduce an overall control 
strategy. This paper advocates the latter and outlines how it might be achieved. 
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Abstract This paper describes the development of INLET, an Interactive Natural Lan­
guage EnvironmenT, that allows convenient, rapid, and extensive access to water resource 
management data. This system is designed to require a minimum of training, making it 
immediately useful for water managers who do not have the time or interest to be trained 
in the use of traditional databases. INLET consists of a natural language processor that 
accepts commands posed to it in ordinary (conversational) English and a menu-driven 
query system. By using simple English commands, water resource managers and staff who 
are not familiar with either a formal database query system or computer programming can 
easily access hydrologic and management data and can use the analytical, statistical, and 
graphical capabilities provided by INLET. 

This paper discusses the use of natural language interfaces and the role they play in 
improving the use of computer models. Next, the INLET system is described along with 
the water resources database. The paper concludes with a summary of INLET's use and 
potential improvements. 

1 Water Resources Planning Models 

One of the largest obstacles in using computer models as decision-making tools 
in the practice of water resource management is the lack of confidence and un­
derstanding managers have in the models. The increasing availability of mini and 
micro-computers and interactive software has made involvement of managers in all 
phases of model specification, development, and verification more feasible in recent 
years (Fedra and Loucks, 1985). A key feature of these decision-aiding systems is 
the direct involvement of policy analysts in an interactive policy-making process. 
An important step towards direct involvement of policy makers is the use of highly 
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user-friendly interfaces to models and data. 
User-friendliness can be defined as characteristics of a computer or of software 

that allow them to be used without the knowledge of any classical programming 
languages. Menu-driven programs are an example of one type of user-friendliness. 
User-friendliness also applies to more general aspects of models such as semantic 
and syntactic consistency (which ensures that the model captures both the in­
tended meaning and syntax) graceful (and instructive) recovery from failures, and 
a wide assortment of input-output devices. A user-friendly interface requires the 
underlying software to be easily understood, well structured, and compatible with 
the mental processes of the users (Loucks et al., 1985; Hendler and Lewis, 1988}. 

Artificial intelligence (AI} tools are becoming increasingly popular for develop­
ing user-friendly interfaces compatible with the user's cognitive process. Two of 
the most common AI tools meeting this need are expert systems and natural lan­
guage interfaces. The topic of this paper is the development of a natural language 
interface applied to a water resources database. 

2 Nat ural Language Processing 

Natural language processing can be defined as the ability of a computer to process 
language that humans use in ordinary discourse (such as English). A primary goal 
in natural language processing is to translate a potentially ambiguous input phrase 
into a precise form that can be directly interpreted by a computer system. This 
translation process, called parsing, is performed in many ways. Obermeier (1987) 
has classified the types of parsers that have evolved into five groups: grammar­
based, semantic, pattern-matching, knowledge-based, and neural-network parsers. 
These groups are defined by the approach taken when parsing a natural language. 

Parsers may analyze syntax or semantics or both. Syntax refers to the rules 
governing the order of the symbols. Semantics, on the other hand refers to the 
intended meaning of the expression. Computers can easily interpret syntax, but 
are poor at resolving semantics. Standard language has a prescribed, although 
sometimes variable, syntax defined by rules. 

3 Grammar Parsers 

Grammar-based parsers are concerned primarily with the syntax of the sentence, 
that is, the order in which the words appear and their grammatical definition. 
Grammar-based parsers use a set of rules that describe the types of sentences 
acceptable for that particular language. For example, two simple rules are: 

S--+NP+VP 
S--+ VP 
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where S is the symbol for sentence, N P is the symbol for noun phrase, V P is the 
symbol for verb phrase, and --. is the symbol for 'is defined as.' These rules, called 
rewrite rules or production rules, define a sentence to have a noun phrase and a verb 
phrase, or just a verb phrase by itself. These noun and verb phrases are themselves 
composed of smaller phrases. These phrases can, in turn, be decomposed until only 
the essential building blocks of grammar remain: individual words. Grammar­
based parsers use all the words found in a sentence and also consider the phrasing 
in which the words appeared. They are good for generating natural language text 
and for determining sentence structure. For natural language systems used as 
interfaces to databases or expert systems, however, the semantics (or meaning) of 
the sentence, also must be considered in order to correctly perform the request. 

4 Semantic Parsers 

Semantic parsers attempt to find the meaning of the sentence, rather than just 
concentrate on syntax like the grammar-based approach. In semantic parsers, the 
rewrite rules are stated in terms of 'semantic classes' describing the meaning of the 
word, rather than word classes (ie. verb or noun) like the grammar-based parsers. 
For example a sentence could be represented by the following: <SENTENCE> ::= 
<PERSON> is eating <FOOD>. In this example, <PERSON> and <FOOD> 
are semantic classes for which words like 'Carla' and 'pasta' can be substituted 
to create a valid sentence. An advantage to semantic parsers is that the size of 
these semantic classes is generally much smaller than the size of an equivalent word 
class, resulting in a much more efficient parsing strategy. A disadvantage of using 
semantic grammar is that it is not easily transferrable from one domain to another. 

5 Pattern-matching Parsers 

Pattern-matching parsers include some of the earliest parsers developed. They 
look for a linguistic pattern in a sentence without using explicit grammatical rules. 
When processing a sentence, this type of parser attempts to match the input with 
a fixed number of patterns. If a match is found, the system performs a specified 
action. Pattern-matching parsers are popular as interfaces to databases because 
database commands can usually be decomposed into patterns and keywords. 

Green et al. (1961) developed one of the first natural language interfaces to 
a database. His system, BASEBALL, provided access to information about all 
baseball games played in one season. Lane (1987) developed a natural language 
interface to DOS using Prolog. His system used a noise-disposal parser in which 
non-key words were ignored. The list of keywords were then matched with possible 
command patterns to determine the meaning of the input. 
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The primary advantages of a natural language interfaces (NLis) over a menu 
system are (Hayes, 1986): 

1. Natural language interfaces are typically more versatile, they can answer a 
wider range of questions. 

2. Natural language interfaces can be more direct. To access complicated data 
with the menu system would require selecting many menus. 

3. Natural language interfaces take less time for the user in many complex 
situations. 

4. Natural language interfaces allow users to formulate questions in a manner 
that is consistent with the way they think about the problem. 

Some disadvantages of natural language interfaces are that they may be very frus­
trating if help is not provided and the user is unfamiliar with the system domain. 

6 INLET, A Nat ural Language Environment 

INLET, the topic of this paper, uses an approach similar to Green et al. (1961) 
and Lane (1987) and is applied to a water resources database. The database 
contains streamflow data and optimal reservoir operating policies generated from 
a drought management model developed for the Seattle Water Department (Palmer 
and Holmes, 1988; Palmer and Tull, 1987). INLET uses a noise-disposal parser 
to find keywords, match them with a command pattern and then perform the 
command. A noise-disposal parser requires a strict sentence format (an ordering of 
the keywords), but it will accept a wide variety of sentences as long as the necessary 
keywords are present (Schildt, 1987). 

The Seattle Water Department (SWD) provides direct service to 541,000 Seattle 
residents and is a wholesaler to 549,000 residents of King County (SWD, 1986). 
Water is taken from two major sources, the Tolt and Cedar Rivers, both of which 
originate in the Western Cascade Mountains. In recent years there has been a 
growing concern that the demand for water in this region has approached the safe 
yield of the supply system. This concern has, in turn, lead to increased interest 
in the proper management of these resources and the development of operating 
strategies for the system during droughts. To guarantee an orderly response to 
water shortage, the SWD developed the Water Shortage Response Plan (WSRP). 
This plan addresses problems related to the 1-in-50 year drought event {SWD, 
1986). The objective of this plan is to maintain essential services while minimizing 
the net economic loss during a drought event. 

INLET has two components: a natural language interface and a menu-driven 
interface. Both components provide direct access to the data and provide statisti­
cal and plotting capabilities. Both of these components are easily accessible from 
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the other. Two types of data have been placed in INLET: hydrologic data and 
system management data. Monthly streamflow data for seven sites in the Seattle 
watershed provide historic hydrologic information. A database of system yield and 
management information is also included. System yield and potential economic 
losses have been calculated for a wide variety of potential conditions. These con­
ditions include five monthly starting periods, nine storage levels, and 47 different 
hydrologic records (years 1929-1976). These two thousand scenarios were evalu­
ated in a linear program. In addition, the optimal operating policy chosen from 
the WSRP for a sixteen week period was also calculated using the linear program 
for some 400 specific low-How periods. All of this information is available with 
INLET. 

INLET is written in Prolog. Prolog differs greatly from standard engineering 
computer languages such as Fortran or Pascal. Programming languages can be 
described as either procedural or descriptive. In procedural languages such as 
Fortran, program execution is sequential; it follows the order of the commands 
found in the source code. Prolog is a descriptive or 'data-driven' language. A 
Prolog program is essentially a database with a series of rules for analyzing the 
data. The control of execution is determined by the specific data in the database 
and the rules, not by a fixed algorithm. This allows the execution procedure to be 
dynamic; the procedure will vary depending on the data contained in the database. 

Prolog supports recursive functions. Recursion is the process of a function call­
ing itself or executing itself. Prolog also supports symbolic processing. Symbolic 
processing allows a problem to be solved by strategies and heuristics for manipu­
lating symbols rather than using defined numeric algorithms. 

7 INLET's Nat ural Language Processor 

INLET's natural language processor reads an input sentence and translates it into 
a command the computer can execute. It is also responsible for answering the 
query in a full sentence, providing it is not a plot. INLET uses a noise-disposal 
parser to scan the input sentence, evaluate keywords and dispose the non-essential 
words (noise). The keywords are then matched to a pattern and the command is 
performed. 

INLET recognizes words from the following keyword groups: 

<command> 
<month 2> 

<statistic> 
<year 1> 

<site> 
<year 2> 

<month 1> 

The words in the brackets are the names of the word classes. The brackets indicate 
that the keyword inside is optional. The keywords can appear in the sentence in 
any order. Some example sentences that can be answered are: 
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What is the mean flow at Cedar 1 for June from 1960 to 1968? 
What is the standard deviation? 
List all the flows at the main stem of the Tolt for 1972. 
Plot the site 15 flows for May all years. 
At site 7, what is the lowest flow for all the years on record? 
Sum the flows from June to September for 1969. 
Given reservoir storage at 30%, what is the system yield starting with May 1? 
What is the economic loss? 

The command keywords that INLET recognizes are: what, plot, show, help, 
list, and storage. If no command keyword is found and context is unable to be 
determined, a default value of 'what' is used. The statistics available are: mean, 
standard deviation, skew, cdf, lowest, highest, all, sum economic loss and yield. 
Many of these keywords have synonyms which are also recognized by INLET. Not 
all the keywords need be present in order for the sentence to be processed. When 
some keywords are missing, the processor either uses the default values, or assumes 
that the question was asked in the same context as the previous question. In this 
later case, keywords from the previous sentence are used for the missing ones. 

The Prolog code for the natural language processor consists of three main com­
ponents: (1) clauses for parsing the sentence, (2) clauses defining the lexicon (dic­
tionary) containing the words recognized by INLET and their associated synonyms, 
and (3) clauses used to determine the command for that particular grouping of key­
words and the context of the sentence. 

The first group of clauses contains all the clauses associated with reading the 
sentence and selecting the words recognized by the system. This is accomplished 
by reading each word, one by one, and evaluating the clauses contained in the 
lexicon. If the word is not one contained in INLET's dictionary, it is ignored and 
the parser moves to the next word. If it is recognized, the parser uses the lexicon 
to determine the word class to which it belongs. It then evaluates the keyword by 
examining the synonym clauses in the lexicon. For example, the word 'average' is 
a synonym for 'mean.' Both of these words are recognized by INLET and belong 
to the word class 'statistic,' but 'mean' is the actual keyword used by the system. 
If the parser encounters 'average,' it finds that it is a statistic and the associated 
keyword is 'mean.' 'Mean' is then passed to the clause that actually executes the 
command. 

Some keywords are not single words, for example 'Site 1.' In this case, the 
actual word recognized by INLET is 'site.' When the system encounters 'site,' 
however, it expects to find a number after 'site.' INLET then reads the next word 
to see if it is a number. If so, this number is used to determine the keyword for 
that particular site. 

The third group of clauses translate the list of keywords into the command. 
One of the rules used is: 



If the command is plot, 
and the statistic is all, 
and the site is known, 
and the monthl is known, 
and month2 is none, 
and yearl and year2 are both none, 
then plot all the flows for monthl at site. 
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In this example the variables are italicized and the values of the known keywords 
are in bold. There are many clauses in this group for processing all the types of 
commands that INLET performs. 

There are also clauses that determine what to do when not all of the keywords 
are present. For example, INLET does not require the user to specify the site 
name each time. Once a site has been selected it remains active until another site 
is mentioned. If a site is not mentioned in the input sentence, INLET assumes that 
the previous site is the current one. INLET also determines the meaning of the 
sentence in context with the previous sentence. 

To illustrate this process, suppose the following two commands were given: 

'Plot the May flows at the North Fork of the Tolt.' 
'Plot them at the South Fork.' 

In the second sentence, the user most likely intended for the May flows at the 
South Fork of the Tolt to be plotted. The second sentence is within the context 
of the previous sentence. The only words recognized by INLET in the second 
sentence, however, are 'plot' and 'South Fork.' This is an ambiguous command for 
INLET because no time period or month is specified. In this case, INLET refers 
back to the keywords used in the previous sentence to find the right keywords to 
use, i.e. 'may.' 

Context determination is made possible by storing the keywords from the pre­
vious sentence in Turbo Prolog's internal database. An internal database is a 
collection of clauses that can be added to, or retracted from while a program is 
running. INLET creates an internal database containing a 'context' clause. If 
insufficient keywords are present for INLET to determine the meaning of the sen­
tence, the context clauses are evaluated to determine the values of the missing 
keyword(s). After all required keywords are assigned values, the previous context 
values are retracted and the new context is asserted into the database. For exam­
ple, if a keyword for site name is not found in the current sentence, the program 
searches the context clause to find the keyword from the previous sentence and 
then asserts the site name to be equal to the previous one. 

Context dependency is an essential feature of INLET that is often not available 
in simple natural language processors. This feature is extremely valuable for in­
creasing the user friendliness of the program and decreasing the number of words 
required to express a command. 
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INLET also has a menu-driven system which can serve as a review of the op­
tions available for queries. This menu system is accessed from the natural language 
processor by entering <ESC>. The menu system offers the same statistical and 
plotting capabilities as the natural language processor. The optimal reservoir op­
eration data, however, are not available through the menu system. These more 
complicated questions would require a large number of menus and are easily acces­
sible from the natural language processor. 

When INLET is activated, the user initially is provided a menu listing three 
options. Those options allow access to the natural language system, the menu 
system, or to DOS. Although the features available with either the menu system 
or the natural language system are similar, their use is very different. Menu-driven 
systems allow a user to choose one or more items from a list of items. The selection 
of the items typically is accomplished either with a mouse or by moving a cursor. 
When commands are hierarchical, (that is, several steps are required), numerous 
menus must be evaluated to complete a command. 

For instance, suppose one wishes to plot all of the data at a particular stream­
flow gauging site using the menu system. The user first indicates the site location, 
next that a plot is desired, next, the time period for which the data should be 
included, and finally, the data type (all data, or just data for one month, etc.). In 
this process the user is required to select from four menus. 

The natural language interface provides the user with a completely different 
approach to this process. The user types the command such as, 'Plot the June 
flows at Site 1 from 1950 to 1960.' All of the information needed is contained in 
the single command. Unlike the menu approach, the user gives the command to 
the computer just as he might naturally state the command. 

8 Typical INLET Session 

Consider a situation in which a water manager finds himself in a particular 
month, with low streamflows, and the reservoir system at thirty percent of its 
capacity. The manager is interested in a variety of information including: 

1. How unusual are the current streamflows? 

2. How likely are the low flows to continue? 

3. What is the probability of flows being as low as the ones currently 
experienced? 

4. Should water use restrictions be initiated? 

5. When should restrictions be initiated and how stringent should the 
restrictions be? 
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It is possible that a wide range of other questions may occur to the manager. It 
is also likely that the order in which the manager wishes questions to be answered 
will vary from one session to another. The setting that is suggested here is a 
common one. A somewhat unusual event (low streamflows) has occurred and the 
manager wishes to place this situation into a context that will help him develop a 
reasonable response plan. 

The purpose of INLET is to allow the manager to pose these questions in any 
order that he cares to and to analyze the situation to the extent necessary. INLET 
accomplishes this by providing the wide range of statistical analysis tools previously 
described, access to the operational database, and total flexibility in the extent and 
order in which the analysis is made. 

After reviewing recent streamflows and the current storage levels of his system, 
the water manager's first step is to find the mean and standard deviation of the 
June flows. He decides to use the menu system first. From this menu, the user 
chooses the menu-driven system. Next, a menu appears containing the statistics, 
plotting and site selection choices. From this menu, he chooses site selection and the 
site menu appears. After choosing a site, the site menu automatically disappears 
and the user is returned to the second menu from which he selects 'Statistics.' The 
statistics menu appears providing statistical options: mean, standard deviation and 
skew. After choosing mean, a menu appears with the time period options: month, 
year, or specify time period. He chooses each option in turn to find the mean of all 
the June streamflows on record, the mean of 1972, and the June mean from 1950 to 
1960. The answers to these selections are displayed in a window covering the top 
half of the screen. To find the standard deviation, the user would enter <ESC> 
until he is back at the statistics window. From there he would choose 'Standard 
Deviation' and repeat a similar process to that of specifying the time periods when 
he determined the various means. 

Having evaluated the basic statistics, the user now wants to view two plots, a 
time series plot of the June flows and the cumulative distribution function of those 
flows. He returns to the second menu. From that menu, he chooses 'Plotting.' A 
system of menus appears from which he selects the time period to plot. He specifies 
that he wants a time series plot of monthly streamflow data for all years on record 
for the month of June. From this figure the manager recognizes immediately the 
high variability of the June streamflows. 

Next, the manager wants to view a cumulative distribution function (CDF) of 
the June streamflows. He presses the escape key until the menu with 'Cumulative 
Distribution Function' appears. After choosing this option, a similar set of menus 
appears to that of the time series plot, and he specifies the month and desired time 
period. From the CDF, the user can compare the current streamflow to a ranking 
of all the streamflows on record. 

By pressing any key, the user returns to the second menu. He decides to plot 
all the streamflows for the year 1970. He chooses the 'Plotting' option from the 
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second menu and year from the next menu that appears. He then specifies '1970' 
and hits return. 

The user now decides that he wants to use the natural language system and ask 
some similar questions for comparison with the menu-driven system. He enters the 
escape key until he is at the main menu where he chooses the first option, 'Natural 
Language Interface.' In the query window the user enters his questions about the 
mean and standard deviation for the June flows: 

What is the mean flow for June at site 1? 
What about site 5? 
Between 1950 and 1960? 
What is the standard deviation for this period? 
What is the lowest flow in June? 
Plot all the streamfiows on the North Fork Tolt between 1950 and 1970. 
Plot the cdf. 

It should be noted that the questions are posed in simple English statements. 
The responses by INLET provide a complete reply and answer to the questions. 
The last two requests generate plots. The user returns to the natural language 
system by entering any key. 

After carefully reviewing the flow data, the user decides he now wants to analyze 
some reservoir operation policies. From his previous analysis of streamflow data, 
he determines that the current flow conditions are similar to those experienced in 
four different historic sequences, 1930, 1938, 1954, and 1959. To investigate the 
optimal operating pattern associated with those time periods, the user wishes to 
review the appropriate data. To do so, the user enters 'Please show the operating 
policies for June, 1930, with initial storage of 30%.' This request generates a bar 
chart showing the optimal restriction levels for that year. After reviewing the 
restriction policies for 1930, the user can review those of 1939, 1954, and 1959. 

9 Results and Conclusions 

The evolution toward more user-friendly software will allow managers to partici­
pate effectively in model development and use. This is important because it in­
creases communication between model developers and managers. With increased 
communication, models can be developed that will more directly serve their users. 

Prolog has been demonstrated to be an ideal language to develop user-friendly 
software. It makes natural language processing possible in an efficient and fast 
manner. This suggests that more engineers should become familiar with non­
procedural programming languages. 

INLET allows novice computer users access to complex data and provides very 
useful statistical and plotting capabilities. This has significant implications on the 
use of such models by water resource managers. These managers are now able 
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to explore a large number of operational policies and their impacts on system 
reliability with ease. 
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Learning from Optimal Solutions to 
Design Problems 1 

JohnS. Gero, Conrad A. Mackenzie and 
Sally McLaughlin 
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NSW Australia 

Abstract Designs can be described by the morphism between two descriptor sets: deci­
sions and performances. Characterised designs are those in which both decisions and their 
consequent performances are articulated. Pareto optimization is discussed as a means of 
structuring performances and decisions. The induction algorithm ID3 is presented as a 
means of abstracting general relationships from characterised designs. An example from 
the domain of building design is presented. 

1 Introduction 

Design is characterised by decisions which generate solutions that are best in some 
sense. If it is impossible to achieve the best in all design objectives, then the solution 
should exhibit a satisfactory compromise. This introduces the notion of design 
optimality and its use as a means of structuring design information so that one 
can learn about design decision making. This paper is concerned with extracting 
knowledge about decision/performance relationships from hypothetical or exisiting 
designs by structuring design data through optimization. It is assumed that the 
choice between design decisions must be made on the merits of their consequences. 
The problems which are addressed are usually complex in the dimensional sense 
(which makes them difficult to represent and solve) because of the many constituent 
criteria and constraints that have influence over the solution. It must be noted 
that for problems that involve conflicting objectives, a single optimal solution is 
unlikely to exist. However, a set of solutions can be identified that are all optimal 

1This lecture draws directly from the following papers: Mackenzie, C. A. and Gero, J. S., (1987). 
'Learning design rules from decisions and performances,' Artificial Intelligence in Engineering 2, 1, 
2-10, and McLaughlin, S. and Gero, J. S., {1987), 'Acquiring expert knowledge from characterised 
designs,' AIEDAM 1, 2, 73-87. 
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in some sense, and external knowledge must be used to choose between the optimal 
solutions. 

Central to the argument of this paper is the need for a strong model of a struc­
turing hypothesis. This can be achieved by structuring the observations through 
a known process. Indeed, the field of machine learning has been divided into four 
categorical tasks (Langley and Carbonell, 1984), all of which structure observations 
in a particular fashion. In all cases, the properties of the imposed structure are 
known beforehand, and the systems are designed to recognise and exploit these 
properties. 

A system is presented that extracts decision/performance knowledge from mul­
ticriteria problems in the context of an ultimate goal state: a solution that exhibits 
desirable characteristics in every criteria. The structuring of the data to facilitate 
knowledge extraction is discussed. The properties of the imposed structure which 
carry design knowledge are investigated and the knowledge is made explicit in 
rule form. The methodology is demonstrated with two examples from the domain 
of building design. Inherent difficulties with the derived knowledge are discussed 
and the articulation of the derived knowledge as an investigative design tool are 
explored in the last sections. 

2 Methodology 

A design attempts to satisfy a goal state through a solution which exhibits the 
most desirable characteristics achievable in all criteria by which the goal state is 
judged. If these criteria are quantifiable then they have meaning when maximized 
or minimized. Multicriteria optimization is one means of identifying a set of design 
solutions among which a best solution for any group of evaluable goals must lie. 
However, if the objectives of the design solution conflict, it may not be possible to 
achieve the best performances in all criteria simultaneously. Conflicting objectives 
force a tradeoff in the optimal solution between criteria performances. Thus, it 
may not be possible to identify a single best solution but a set of solutions that 
are all optimal in some sense. 

Since the performances are consequents of the decisions, it is possible to de­
fine a decision space and a performance space between which a mapping exists. 
The 2-dimensional case is illustrated in Fig. 1. A point in the decision space is 
characterised by a vector of design variable values; a point in the criteria space is 
characterised by a vector of quantifiable criteria performances. A design decision 
is the selection of values for the design variables. The mapping from the decision 
space to the criteria space characterises the performance consequences of design 
decisions and is not necessarily a one to one mapping. 

The most desirable decisions are those that exhibit the best criteria perfor­
mances. If the best performances in the criteria space are known then it is possible 



Figure 1. The decision and performance spaces for two variables. 
The mappings from the decision space to the criteria space 
indicate the performance consequences of the decisions. 
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to follow the mapping from the criteria space back to the decision space to identify 
the best design decisions. This structures the domain of interest into a general 
schema; a decision space, a performance space and a mapping that connects the 
two spaces. 

2.1 Pareto Optimization 

A set of measurable criteria is Pareto optimal if no other feasible solution exists 
which yields an improvement in one criterion without causing a decrease in at least 
one other criterion (Cohon, 1978). Fig. 2 shows the Pareto optimal set for the 
performance space of Fig. 1. Pareto optimization has been employed extensively 
in design related fields (Balachandran and Gero, 1986; Gero, 1985a, 1985b; Gero 
and Balachandran, 1986; Radford, Hung and Gero, 1984; Radford et al., 1985). 

In the following illustrations, the Pareto optimal set is denoted by a heavy line. 
The axes of the 2-dimensional space have been aligned so the criteria performances 
improve with distance from the origin. Pareto optimization is effective in a space 
of any dimensions; the examples below represent the 2-dimensional case. 

Pareto optimization establishes a structure in the performance space that ex­
hibits known characteristics. By connecting optimal points in the performance 
space to points in the decision space via the mappings it is possible to extract 
knowledge about decision/performance relationships. This process is hypothesis 
driven; the hypothesis is the imposed structure and deductive learning occurs when 
specializing the hypothesis to match the domain in question. The specialization 
process involves matching known characteristics in abstract Pareto optimal sets to 
characteristics observed in the domain specific Pareto optimal set. 
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Figure 2. Mappings from the decision space to the Pareto optimal 
set in the criteria space. The Pareto optimal set is marked 
'P.' 

a b 

d 

Figure 3. Pareto optimal sets which exhibit the basic knowledge car­
rying geometrical features. 

3 Knowledge in Pareto Optimal Sets 

Each Pareto optimal set in Fig. 3 exhibits a distinctive geometrical feature. For 
example, the single dominant feature in Fig. 3a is a curve that exhibits a pro­
nounced convexity, while Fig. 3f has two features, a concave and convex curvature. 
For simplicity, multiple features are analysed independently of their context. 
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3.1 Convex Pareto Optimal Sets 

H the Pareto optimal set exhibits a pronounced convex curvature (Fig. 3a), it is 
possible to obtain good tradeoffs between all criteria where all criteria have been 
optimized. Such points exist at the elbow of the curve. Small perturbations near 
the elbow in either criteria will not cause much change in the other criterion's 
performance. The decisions which correspond to the elbow points are the most 
desirable. Within that set of decisions, all solution performances are high, which 
introduces the concept of performance stability. 

If it is possible to make several different decisions which all yield similar perfor­
mances in all criteria, then the performance is said to be stable for those decisions. 
This can be stated in production rule form: 

If the Pareto optimal set exhibits a pronounced convex curvature 

then the performances in all criteria at the elbow will be very good 
choices 

and most decisions at the elbow represent good solutions 

and the performance is stable. 

A Pareto optimal set which has a small convexity (Fig. 3b) will exhibit less 
stability since the tradeoffs between criteria are more pronounced. 

3.2 Concave Pareto Optimal Sets 

If the Pareto optimal set is concave (Fig. 3d, 3e), then it is harder to find a good 
solution. In the extreme case the set exhibits a pronounced concave curvature. 
A small shift in performance along either axis will result in a large decrease in 
one performance accompanied by a large increase in the other performance. This 
causes performance instability, its magnitude being dependent on the degree of 
concavity of the Pareto optimal set. 

In such a situation, the solution most likely to be chosen will be at the extreme 
ends of the Pareto optimal set. In other words, poor performance at the point of 
equal compromise between criteria will probably result in abandoning the consid­
eration of one criterion in favour of optimizing another. This is restated in the rule 
below. 

If the Pareto optimal set exhibits a pronounced concave curvature 

then good performances in any criteria lie at the extreme ends of the 
Pareto optimal set 

and decisions at the extreme ends of the Pareto optimal set are fair 
solutions. 
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Figure 4. 'Close' and 'Extended' Pareto optimal sets. The set in 
5a is close with respect to the sensible ranges, while the 
set in 5b is extended. The rectangles parallel to the axes 
represent the sensible ranges of the criterion on that axis. 

3.3 Planar Pareto Optimal Sets 

A planar Pareto optimal set (Fig. 3c) indicates that all performance tradeoffs 
between criteria are linear so there is constant performance stability over the whole 
set . No solution can be said to be better than any other with respect to the overall 
performance. 

If the Pareto optimal set is planar 

then the performance tradeoffs between all criteria are linear 

and further information is needed before a solution can be found. 

3.4 Close and Extended Pareto Optimal Sets 

The sensible range for a criterion is the range over which the criterion is determined 
to be meaningful. Such background knowledge is useful in identifying the set of 
solutions that are feasible for a specific problem. Comparison of a criterion value 
with its sensible range will indicate if the performance is acceptable or not. If 
a sensible range is given for each criterion, a value can be assigned to the range 
covered by the Pareto optimal set. 

If the Pareto optimal set covers only a small range of the sensible values, then 
the Pareto optimal set is defined to be close (Fig. 4a) . A close Pareto optimal set 
exhibits performances which are all similar. An extended Pareto optimal set covers 
most or all of the sensible values (Fig. 4b) . A close Pareto optimal set indicates 
that the performances of criteria will be largely unaffected by decision selection. 
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Figure 5. Two Pareto optimal sets and their inverses. 

If the Pareto optimal set is very close 

then all performances are similar 

and any decision results in a good solution. 

If a subset of the criteria covers only a small section of their sensible ranges, 
then all the performances in these criteria will be similar. The set of decisions which 
map onto these points in the criteria space will all exhibit similar performances. 
Therefore, it does not matter which of these decisions is chosen. Thus, the solution 
is independent of the set of decisions resulting in the close criteria. This information 
allows a dimensional simplification of the problem. 

If a set of criterion performances is very close 

then these performances are unaffected by the decision choices in the 
decision space 

and the criterion can be removed from further consideration. 

One problem with these rules is that they carry no knowledge of the sensitivity 
of performances. To do so, a lower bound on the performances is required. This is 
discussed below. 

3.5 Inverse Pareto Optimal Sets 

The inverse Pareto optimal set is formed by reversing the sense of optimization 
of each criterion and provides a lower bound on the set of performances for each 
criterion. The magnitude of the space between the Pareto optimal set and its 
inverse articulates knowledge about performance sensitivity. This space is bounded 
in Fig. 5 by P, IP and the dotted lines. 

The bounded space represents the set of all possible performances. The magni­
tude of the space can be measured in relation to the sensible ranges of each criteria. 
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If the space is small, as in Fig. Sa, then the range of performances is also small 
with low sensitivity. H the bounded space is large, the range of performances and 
the sensitivity of the criteria may be large. 

If the bounded space is very small 

then the range of performances is narrow 

and the performances of the criteria are insensitive to decisions in the 
decision space. 

If the bounded space is very large 

then the range of performances is large 

and the performances of the criteria may be very sensitive to decisions 
in the decision space. 

H any !-dimensional projection of the bounded space is close with respect to the 
sensible range then that criterion can be removed as described in the rules below. 

If the projection of the bounded space onto a criterion axis is close 

then the performance sensitivity of that criterion is small 

and the problem can be reduced by ignoring that criterion. 

If The projection of the bounded space onto a criterion axis is ex­
tended 

then the performance sensitivity of that criterion may be large 

and the criteria corresponding to that axis is significant. 

A relative ordering of criteria sensitivity to decisions is determined by the ratio 
of the ranges of the criteria with respect to their sensible ranges. This enables the 
identification of the least sensitive criteria that can be given less consideration if a 
compromise is necessary. 

If the coverage of a sensible range by the projection of criterion A is 
small compared to the coverage of another sensible range by the 
projection of criterion B 

then criterion A is less sensitive to decisions in the decision space than 
B 

and A can be given less consideration. 
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Figure 6. Decision clustering in the Pareto optimal set. Note that 
the • and V symbols represent the common design deci­
sion value shared by the points in the criteria space. 

3.6 Decision Clusters in Pareto Optimal Sets 
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Decision clusters occur in Pareto optimal sets when the performance points locally 
correspond to the same decision. This can be discovered by following the mappings 
from the performance space back to the decision space. A decision cluster may span 
the entire Pareto optimal set or cover only a very small part of it. The sensitivity 
of a decision can be found by observing the position of the matching decision 
cluster in relation to the shape of the Pareto optimal set. If a decision cluster 
is found at the elbow of a convex set, then that decision is deduced as stable. 
The relative importances of each decision are found by observing the relative sizes 
and density of each decision cluster, while the performance ranges over which the 
decision is important are determined by the performance ranges that are covered 
by the decision cluster. The latter enables the extraction of explicit quantitative 
knowledge about decision/performance relationships. In Fig. 6a, the decision is 
important in the range [a, b], [I, m]; in Fig. 6b is important over the range [n, m], 
[a, b] and is important over [b, c], [I, m]. 

Explicit quantitative knowledge concerning decision cluster importance can be 
generalized into the form of the rule below. 

If the Pareto optimal set has recognisable clusters of decision vari-
ables A, B, C ... over ranges AR, BR, CR ... 

then decision variable A is important in range AR 

and decision variable B is important in range BR 

and decision variable C is important in range CR 

and 
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4 Induction Algorithm: ID3 

The induction algorithm used is ID3 (Iterative Dichotomizer 3.2) written by Quin­
lan (1983). Given a set of examples and counterexamples of a concept, ID3 provides 
the machinery for developing a rule which discriminates between these examples 
and counter examples. Each exemplary object must be described in terms of a fixed 
set of attributes, each of which has its own set of possible attribute values. The 
appearance of a person may, for example, be described in terms of the attributes 
'height,' 'hair,' 'eyes,' an individual, by the vector of attribute values [short, blond, 
blue]. 

ID3 develops a decision tree which discriminates between two classes of objects, 
the examples and counter examples of the concept to be learnt, by applying the 
following recursive procedure. 

1. Commence with a given collection C of objects. 

2. If C is empty then associate it arbitrarily with either class. 

3. If all objects in C belong to the same class, then the decision tree is a leaf 
bearing that class name. 

4. Otherwise C contains objects which belong to both classes. An attribute 
is selected and C is partitioned into disjoint sets C1, C2, ... , Cn where Ci 
contains those members of C that have the ith value of the selected attribute. 
This rule-forming strategy is then applied to each of the subcollections Ci. 

5. The attributes/attribute values chosen to describe the objects in C may be 
insufficient. C may contain objects which belong to both classes but there 
may be no attributes remaining on which C can be partitioned. In this case 
the decision tree is a leaf bearing the name 'search.' 

Quinlan (1983) illustrates this process with the problem of discriminating be­
tween the positive and negative examples in the collection listed in Table 1. 

The decision tree for this problem is illustrated in Fig. 7. 
Attribute selection should be such that the final decision tree is in some sense 

minimal. In the method employed in these experiments attribute selection is based 
on an information theoretic approach aimed at minimizing the expected number 
of tests required to classify an object (Quinlan, 1983). 

The decision trees developed in these experiments have been translated into 
conjunctive rules by specifying each conjunction of attribute values that defines a 
path in the decision tree that leads to a positive node. Consider the decision tree 
illustrated in Fig. 7. This decision tree would be converted into the rules given in 
Table 2. 

The number of positive and negative examples associated with each node in 
the decision tree conveys information about the importance of the conjunctive rule 



Table 1. Sample set of examples required as input for ID3, where 
'+' indicates an example and '-' indicates a counterex­
ample. 

C[height, hair, eyes] = 

short, blonde, blue: + tall, dark, blue: -

tall, blonde, brown: tall, blonde, blue: + 
tall, red, blue: + tall, dark, brown: -

short, dark, blue: short, blonde, brown: 

+ 

Figure 7. Decision tree developed from the examples listed in Ta­
ble 1. 

Table 2. Conjunctive rules extracted from the decision tree in Fig. 3. 

Rule Evidence 

Rule 1: blonde hair/blue eyes 2 positive 

Rule 2: red hair 1 positive 
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which describes the path leading to that node. The rules that best represent the 
concept to be learnt are those with which the most positive examples and least 
negative examples are associated. In this case Rule 1 would seem to be a better 
representation of the concept to be learnt than Rule 2. 

5 Learning about the Physical Implications of 
Environmental Performance Criteria in 
Building Design 

5.1 Description 

The generation-simulation-optimization-induction paradigm described earlier pro­
vides a potentially useful basis for exploring the physical implications of the en­
vironmental performance requirements of a space as a vehicle for understanding 
the utility of induction processes in acquiring expert knowledge from designs. The 
reasons for this are the following. 

1. Environmental design requirements typically conflict. For example, winter 
heating and lighting requirements may best be achieved within a space by 
including large areas of glass in the external walls. This may, however, result 
in summer temperatures which are unacceptably high. 

2. The qualitative nature of potential tradeoff decisions is understood, or can 
be investigated, by the designer. Meaningful decision and criteria spaces can 
be defined. 

3. Quantitative specifications of the environmental performance requirements 
of a space are readily available. 

4. The behaviour of a design solution in terms of environmental performance 
criteria can be quantified. A considerable body of theory aimed at predicting 
the environmental performance of design proposals exists. 

Radford and Gero (1980) explored the physical implications of optimizing the 
performance of a design proposal in terms of the conflicting performance crite­
ria: maximize daylight factor, minimize mean summer temperature and maximize 
mean winter temperature. A north facing office in Hobart, Australia was simu­
lated to generate decision and performance data. The design decision variables 
considered were: wall type, sunshade size and the size, position and construction 
of the windows. The daylight factor, mean summer temperature and mean winter 
temperature of each proposal were calculated. This data was analysed using trade­
off diagrams derived from the Pareto optimal sets. The decision space has been 
simplified to that defined by the design variables: glass type, wall type, window 
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size and sunshade size. This data is used in this experiment and is presented in 
the Appendix. 

An important limitation of the data available is that it consists only of the 
decision and performance data of solutions which are Pareto optimal in terms of 
the three criteria: maximize daylight factor, minimize mean summer temperature 
and maximize mean winter temperature. There are no examples of design decision 
combinations that describe solutions which are inferior in terms of these three 
criteria. Two thirds of the data set available was used to develop representations 
of the concepts being explored. This set of 49 sample designs was augmented by 
generating combinations of design decisions which are not included in this set and 
which are inferior in performance. 

Three induction problems were formulated. In the first the concept of design 
solutions which are Pareto optimal in terms of all three criteria was explored. The 
positive example set for this problem consisted of all the instances in the unaug­
mented training set. The negative example set consisted of the generated inferior 
set. The second concept explored was that of solutions which are Pareto optimal 
in terms of the two criteria maximize daylight factor and minimize mean summer 
temperature. The positive training examples of this concept were those solutions 
in the unaugmented training set which are Pareto optimal in terms of these two 
criteria. The negative training examples were the remaining instances in the aug­
mented training set. The concept of solutions which are Pareto optimal in terms of 
the performance criteria minimize mean summer temperature and maximize mean 
winter temperature was explored in a similar manner. 

A representation of the concept of solutions which are Pareto optimal in terms 
of the performance criteria maximize daylight factor and maximize mean winter 
temperature was not developed as the training set for this concept contains only 
a single positive example. The representation that would result would recognise 
those examples characterised by the attribute values of this single positive example 
and only those examples as positive examples of the concept learnt. 

5.2 Results 

The induction algorithm ID3 was used with the data in the Appendix as described 
to produce a set of decision trees each of which has been interpreted as a set 
of conjunctive rules. These are shown in Tables 3, 4 and 5 for the three cases 
investigated. 

5.3 Evaluation of Induced Generalisations 

The generalisations developed are evaluated in terms of the criteria proposed by 
Michalski. 
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Table 3. Conjunctive rules extracted from the decision tree devel­
oped to describe the concept of solutions which are Pareto 
optimal in terms of the three criteria: maximize daylight 
factor, minimize mean summer temperature and maxi­
mize mean winter tempearature. 

Rule Evidence 

Rule 1: 300mm cavity brick wall, unplastered I sunshade small I window medium 16 positive 

Rule2: 20mm weatherboard, 26mm airspace, 76mm insulation, 12mm plasterboard 6 poaitive 
I sunshade small I 2°3mm clear float glass double glaaing I window medium 

RuleS: 20mm weatherboard, 25mm airspace, 75mm insulation, 12mm plasterboard 4 positive 
I sunshade small I 2°3mm clear float glass double glazing I window amall 

Rule4: 300mm cavity brick wall, unplaatered / sunshade small I window large / 3 positive 
2°3mm clear float glass double glaaing 

Rule 6: 300mm cavity brick wall, unplastered / sunshade medium / 3mm clear float 3 positive 
glass / window medium 

Rule6: 300mm cavity brick wall, unplastered / sunshade medium I 6mm heat ab- 3 positive 
sorbing glass/window small 

Rule 7: 20mm weatherboard, 2Smm airspace, 76mm insulation, 12mm plasterboard 3 positive 
/ sunshade small / 3mm clear float glass I window large 

RuleS: 300mm cavity brick wall, unplastered I sunshade none / 2°3mm clesr float 2 positive 
glass double glazing / window large 

Rule9: 300mm cavity brick wall, unplastered I sunshade medium / 6mm heat ab- 2 positive 
sorbing glass / window medium 

Rule 10: 300mm cavity brick wall, unplastered / sunshade medium / 3mm clear float 2 positive 
glass I window small 

Rule 11: 300mm cavity brick wall, unplastered I sunshade small I 6mm heat absorbing 1 positive 
glass I window small 

Rule 12: 300mm cavity brick wall, unplastered I sunshade small I window large / 3mm 1 positive 
clear float glass 

Rule 13: llOmm brick, 90mm air apace, 60mm insulation, 12mm plasterboard I sun- 1 positive 
shade large I 6mm heat absorbing glass I window medium 

Rule 14: 20mm weatherboard, 26mm airspace, 75mm insulation, 12mm plasterboard 1 positive 
I sunshade large I 6mm heat absorbing glass I window small 

Rule 15: 20mm weatherboard, 25mm airspace, 75mm insulation, 12mm plasterboard 1 positive 
I sunshade none I 2°3mm clear float glaaa double glazing I window large 

Rule 16: 20mm weatherboard, 25mm airspace, 75mm inaulation, 12mm plasterboard 1 positive 
I sunshade medium I 6mm heat absorbing glass I window small 



Table 4. Conjunctive rules extracted from the decision tree describ­
ing the concept of solutions which are Pareto optimal in 
terms of the performance criteria: maximize daylight fac­
tor and minimize mean summer temperature. 

Rule Evidence 

Rule 1: 300mm cavity brick wall, unplastered I sunshade small I window medium I S positive 
3mm clear float glass 

Rule2: 300mm cavity brick wall, unplastered I sunshade medium I Smm clear float S positive 
glass / window medium 

RuleS: 300mm cavity brick wall, unplaatered I sunshade medium I 6mm heat ab- 3 positive 
sorbing glass / window small 

Rule4: 300mm cavity brick wall, unplastered I sunshade small I window medium I 2 positive 
6mm heat absorbing glass 

Rule 5: 300mm cavity brick wall, unplaatered I sunshade medium I 6mm heat ab- 2 positive 
sorbing glass I window medium 

RuleS: SOOmm cavity brick wall, unplastered I sunshade large I 6mm heat absorbing 1 positive 
glass I window small 

Rule 7: SOOmm cavity brick wall, unplastered I sunshade none I 2°3mm clear float 1 positive 
glass double gla..ing I window large 

Rule8: 300mm cavity brick wall, unplastered I sunshade small I window large I 3mm 1 positive 
dear float glass 

Rule 9: SOOmm cavity brick wall, unplastered I sunshade small I window large I 1 positive 
2*Smm dear float glass double glazing 

Rule 10: SOOmm cavity brick wall, unplastered I sunshade medium I Smm clear float 1 positive 
glass I window small 

Table 5. Conjunctive rules extracted from the decision tree describ­
ing the concept of solutions which are Pareto optimal in 
terms of the performance criteria: minimize mean summer 
temperature and maximize mean winter temperature. 

Rule Evidence 

Rule 1: 2°3mm dear float glass double gla..ing I sunshade small I 20mm weather- 4 positive 
board, 25mm airspace, 75mm insulation, 12mm plasterboard I window small 

Rule 2: 2°3mm clear float glass double glazing I sunshade small I 20mm weath- 4 positive 
erboard, 25mm airspace, 75mm insulation, 12mm plasterboard I window 
medium 

Rule 3: 2°3mm clear float glass double glazing I sunshade none I window large I 1 positive 
20mm weatherboard, 25mm airspace, 75mm insulation, 12mm plasterboard 

Rule4: 6mm heat absorbing glass I sunshade large I window small I 300mm cavity 1 positive 
brick wall, unplastered 

Rule 5: 6mm heat absorbing glass I sunshade large I window small I 20mm weath- 1 positive 
erboard, 25mm airspace, 75mm insulation, 12mm plasterboard 
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Validity The design decision combinations identified as being most character­
isitic of solutions which are Pareto optimal in terms of the performance criteria 
mimimize mean summer temperature and maximize mean winter temperature, 
namely, weatherboard walls, double glazed small or medium windows with small 
sunshades, correspond to those features found in the predominant type of resi­
dential construction in Hobart. The design decision combinations identified as 
being most characteristic of solutions which are Pareto optimal in terms of all 
three criteria, namely, heavy brick construction, medium sized windows and small 
sunshades, are 'reminiscent of British buildings and early government buildings in 
Hobart' (Mackenzie and Gero, 1987). This makes some intuitive sense, the primary 
concern in designing residential buildings would be to achieve optimal thermal con­
ditions whereas in early government buildings all three criteria would have been 
important. 

It is indicated in Table 6 that there is a high degree of fit between the represen­
tations developed in this experiment and that defined by the full set of 73 design 
solutions available (Appendix). 

Explanatory Power The rules developed using ID3 were used to classify the 
24 unseen instances in the original training set. The results are listed in Table 7. 

The representations developed exhibit reasonable predictive behaviour when 
used to classify the 24 unseen examples but these are all examples of solutions 
that are Pareto optimal in terms of the three criteria: minimize mean summer 
temperature, maximize mean winter temperature and maximize daylight factor. If 
examples of solutions that are inferior in terms of these criteria were available and 
were considered to be negative examples of the concept to be learnt then it would 
be expected that the representations developed would misclassify many of these 
inferior examples as Pareto optimal examples. The fact that non-Pareto optimal 
solutions may be close to Pareto optimal solutions in both the decision and per­
formance space would suggest that the approach adopted here of using the inverse 
set of design decision combinations to those which correspond to Pareto optimal 
solutions may be necessary in order to develop representations of the concept of 
Pareto optimal solutions for any criteria, Fig. 8. This approach results in the de­
velopment of a maximally specific representation of the concept being learnt but 
in this situation such a representation is appropriate for the following reasons. 

1. The decision and performance data are automatically generated, it is likely 
that the entire Pareto optimal set would be generated. The training set 
would thus completely specify the concept, generalizations aimed at including 
unseen examples of the concept would not be necessary. 

2. The designer is looking for prescriptive information. Those decisions which 
are significant in terms of the performance criteria being modelled should be 
fully specified. 



Table 6. Percentage of the 73 sample designs available that are mis­
classified by the decision trees representing the concept 
of aJ solutions that are Pareto optimal in terms of the 
performance criteria: maximize daylight factor, minimize 
mean summer temperature and maximize mean winter 
temperature (dsw), b) solutions that are Pareto optimal 
in terms of the performance criteria: maximize daylight 
factor and minimize mean summer temperature (ds), and 
c) solutions that are Pareto optimal in terms of the perfor­
mance criteria: minimize mean summer temperature and 
maximize mean winter temperature (sw). Predictions are 
also made about the misclassification errors that would 
have occurred if a decision tree had been developed to 
describe the concept of solutions that are Pareto optimal 
in terms of the performance criteria: maximize daylight 
factor and maximize mean winter temperature. The 'per­
centage errors' value is the percentage of the 73 sample 
designs that were misclassified. The 'percentage of false 
positives' value is similar to the 'percentage errors' value 
but only negative examples of the concept to be learnt 
that were misclassified are counted. 

dsw ds sw dw 

Percentage 11% 7% 10% 1% 
Errors 

Percentage of Negative 3% 3% O% 
False examples not 
Positives available 

Table '1. Percentage of the 24 unseen examples misclassified by the 
decision trees developed in each of the induction problems. 

dsw ds sw dw 

Percentage 33% 21% 17% 4% 
Errors 

Percentage of Negative 8% 8% o% 
False examples not 
Positives available 
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Criteria Space 

Figure 8. Schematic diagram indicating that non-Pareto optimal so­
lutions may exhibit high levels of performance in terms of 
the criteria modelled. It may not be appropriate to regard 
the full set of inferior solutions as negative examples of the 
concept of Pareto optimality in terms of these criteria. 

Effectiveness The rules developed make design options explicit and establish a 
hierarchy within these options based on the predominance of the examples that 
they cover in the training set. These rules do not include information about the 
regions of the performance space covered by solutions characterized by particular 
design variables (sensitivity of performance) or about the nature of the tradeoff 
decisions involved. This information could be incorporated by augmenting the 
representation with information as to the range of values in each dimension of 
performance of the solutions in the training set (and the performance of any non­
Pareto optimal solutions available) associated with each conjunctive rule extracted 
from the decision tree. In addition the location of these solutions on the two 
dimensional graphs defined by each pairwise combination of the dimensions of 
performance considered in formulating the problem could be indicated. Such a 
strategy would allow good compression of information about the sensitivity of 
design options. 

Executing the Pareto optimization induction process for each subset (with more 
than one criteria) of the performance criteria generates information about the sta­
bility of the design options identified when the full set of criteria were considered 
in relation to these subsets of criteria. For example the design decisions 300mm 
unplastered cavity brick wall, small sunshade and medium sized window [Table 3 
Rulel] identified as being important when the full set of performance criteria was 
considered are also important when the criteria maximize daylight factor and min­
imize mean summer temperature are considered alone [Table 4 Rules 1 and 4]. The 
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performance ranges associated with this option are optimal in terms of these two 
criteria, they serve as a basis for comparison with the performance ranges associ­
ated with other design options and thus as a means of exploring the implications 
of reducing the importance of these criteria in relation to the third criteria, that 
of maximizing mean winter temperature. In addition, the decision combinations 
identified when just the two criteria were considered [Table 4 Rules 1 and 4] are 
more specific than that identified when all three criteria were considered. Informa­
tion as to the glass type to be preferred if this option were to be pursued and the 
criteria maximize daylight factor and minimize mean summer temperature were 
more important than that of maximizing mean winter temperature is specified. 

Comprehensibility The implications of a particular set of performance criteria 
in terms of the design features that should be adopted in developing a proposal to 
satisfy these criteria are better expressed in representations such as those developed 
in this experiment than they are as either sets of characterized design such as those 
that were the data for these experiments or the conventional form of representation 
of the Pareto optimal set for a three criteria problem: a three dimensional graph. 
Furthermore as the number of performance criteria increases graphical representa­
tions become increasingly difficult to construct and to understand. 

5.4 Comparison with a Heuristic Based Rule Extraction 
System 

The representations developed should not be judged against an imaginary per­
fection but against the representations that would otherwise be available. PARE 
(Mackenzie and Gero, 1987) is a heuristic based system which analyses the shape 
of a Pareto optimal curve for a given multicriteria design problem and extracts 
consistencies in the decisions that characterise important features of this curve. 
The PARE system models the performance of a human in visual analysis of Pareto 
optimal curves (visual analysis of such curves is difficult where the dimensions of 
performance to be considered are greater than two). Mackenzie and Gero (1987) 
list the ten most interesting rules extracted by the PARE system, Table 8. 

Validity There is some correspondence between the rules developed in this ex­
periment and the rules developed using the PARE system. The design decisions 
identified here as being predominant in characterising solutions which are Pareto 
optimal in terms of all three criteria considered [Table 3 Rule 1] are the same as 
those identified using the PARE system as being the most important characteris­
tics of solutions with performances that represent the best tradeoff between these 
three criteria [Table 8 Rule 8]. The design decisions identified in this experiment as 
being those which best characterize solutions that are Pareto optimal in terms of 
the performance criteria minimize mean summer temperature and maximize mean 
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Table 8. Heuristics extracted from the data in the Appendix using 
the PARE system. 

Rule 1 if summer-temp and winter ..temp are important then 2*3mm clear float glass 
double gla&ing is extremely important. 

Rule 2 if daylight.Iactor and summer ..temp and winter-temp are important then 
large_ sun shade is not very important. 

Rule 3 if daylight.Iactor and summer _temp and winter-temp are important then 6mm 
heat absorbing glass I llOmm brick, 90mm air space, 60mm insulation, 12mm 
plasterboard is not at all important. 

Rule 4 if summer-temp and winter ..temp are important then 2*3mm clear float glass 
double gluing I smalL sun shade is extremely important. 

Rule 6 if daylight.Iactorand summer-temp and winter-temp are important then 3mm 
clear float glass I small window ia not at all important. 

Rule 6 if daylight.Iactor and summer-temp and winter-temp are important then 
small.Jiun shade I medium window is very, very important. 

Rule 7 if daylight.Iactor and summer ..temp are important then 6mm heat absorbing 
glass I 300mm c•vity brick wall, unplaatered I medium window ia very, very 
important. 

Rule 8 if daylight .I actor and summer _temp and winter _temp are important then 
300mm cavity brick wall, unplastered I small.Jiun shade I medium window is 
very, very important. 

Rule 9 if summer _temp and winter-temp are important then 2*3mm clear float glass 
double glasing I 20mm weatherboard, 25mm airspace, 75mm insulation, 
12mm plasterboard I small.J~un shade I small window is very, very impor­
tant. 

Rule 10 if summer_temp and winter-temp are important then 2*3mm clear float glass 
double glasing I 20mm weatherboard, 26mm airspace, 76mm insulation, 
12mm plasterboard I small.Jiun shade I medium window is very, very im­
portant 
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winter temperature [Table 5 Rules 1 and 2] are the same as those identified by the 
PARE system as being characterisic of solutions with performances that represent 
the best tradeoff between these two criteria [Table 8 Rules 9 and 10]. As noted in 
Section 5.3 the features identified in both induction problems correspond to those 
characterising particular construction types that have evolved in the region. 

The relative performance of the representations developed using each of the 
systems as representations of the full set of 73 Pareto optimal solutions is indicated 
in Tables 9, 10 and 11. The fact that the performance of the ID3 developed 
representation for the three criteria problem is much better than that developed 
using PARE suggests that the concept to be learnt is disjunctive. This will be 
discussed further in the next section. 

Explanatory Power The rules developed using ID3 were used to classify the 
24 unseen instances in the original training set. The results, together with those 
of the corresponding rules devoped using the PARE system are listed in Tables 12, 
13 and 14. 

While the PARE system is designed to extract consistencies in the solutions 
which result in the best tradeoff between the conflicting performance criteria rather 
than consistencies in the solutions that make up the Pareto optimal set as a whole, 
the rules developed using ID3 describe the attribute values of a dominant subset 
of similar solutions (solutions which are close in the decision space) of the Pareto 
optimal set. 

ID3 can develop representations of disjunctive concepts. Bundy et al. (1985) 
state: 'Classification will usually produce a disjunctive rule, even when focusing 
would produce a conjunctive rule on the same data.' The level of explanation 
provided by the representation developed using ID3 for the three criteria problem 
in relation to that developed using the PARE system indicates that the concept 
to be learnt is a disjunctive one. Bundy et al. (1985) state that classification 
algorithms such as ID3 are preferable to the other main methods of 'learning from 
examples,' focusing and the candidate elimination algorithm, when the concept to 
be learnt is disjunctive. They note that this ability to learn disjunctive concepts 
is obtained at the expense of the simplicity of the representation developed, the 
decision trees developed by ID3 are often non-optimal. 

The number of positive examples in the set of unseen examples misclassified by 
the representation of the three criteria Pareto optimal set developed using ID3 is, 
however, high (1 in 3). The strategy employed in this experiment of generating a 
negative example set which consists of the complement of the positive examples in 
the training set, prevents the ID3 algorithm from generalizing about this training 
set so as to include unseen examples of the concept. The PARE system is oriented 
towards the development of general conjunctive representations of a concept. It 
appears that in the case of the two criteria problems the predictive power of this 
type of representation is greater than that of the specific disjunctive representa-
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Table 9. Percentage of the 73 sample designs available that were 
misclassified by the representations of solutions that are 
Pareto optimal in terms of the performance criteria: maxi­
mize daylight factor, minimize mean summer temperature 
and maximize mean winter temperature developed using 
ID3 and PARE. 

ID3 PARE PARE 

Rule 8 Rule 6 

Percentage 11% 71% 60% 
Errors 

Percentage of Negative examples not available. 
false positives 

Table 10. Percentage of the 73 sample designs available misclassified 
by the representations of solutions that are Pareto optimal 
in terms of the performance criteria: maximize daylight 
factor and minimize mean summer temperature. 

ID3 PARE 

Rule 7 

Percentage 7% 22% 
Errors 

Percentage of 3% 1% 
false positives 



Table 11. Percentage of the 73 sample designs available that are 
misclassilied by the representations of solutions that are 
Pareto optimal in terms of the performance criteria: mini­
mize mean summer temperature and maximize mean win­
ter temperature. 

ID3 PARE PARE PARE 

Rule 9 & 10 Rule 4 Rule 1 

Percentage 10% 12 % 19% 21% 
Errors 

Percentage of 3% 4% 15 % 18% 
false positives 

Table 12. Percentage of the 24 unseen sample designs available that 
were misclassified by the representations of solutions that 
are Pareto optimal in terms of the performance criteria: 
maximize daylight factor, minimize mean summer tem­
perature and maximize mean winter temperature devel­
oped using ID3 and PARE. 

Rules PARE PARE 

developed Rule 8 Rule 6 

using ID3 

Percentage 33% 79% 67% 
Errors 

Percentage of Negative examples not available. 
false positives 
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Table 13. Percentage of the 24 unseen sample designs available that 
were misclassilied by the representations of solutions that 
are Pareto optimal in terms of the performance crite­
ria: maximize daylight factor and minimize mean summer 
temperature. 

Rules PARE 

developed Rule 7 

using ID3 

Percentage 21% 21% 
Errors 

Percentage of 8% O% 
false positives 

Table 14. Percentage of the 24 unseen sample designs available that 
were misclassilied by the representations of solutions that 
are Pareto optimal in terms of the performance criteria: 
minimize mean summer temperature and maximize mean 
winter temperature. 

Rules PARE PARE PARE 

developed Rule 9 & 10 Rule 4 Rule 1 

using ID3 

Percentage 17% 13% 13% 13% 
Errors 

Percentage of 8% 4% 13% 13% 
false positives 
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tions developed in these experiments. As the number of performance dimensions 
increases, however, it is likely that the concept to be learnt will be more complex, 
and therefore better described by a disjunctive representation. 

Effectiveness The representations developed in these experiments are oriented 
towards representation of the entire Pareto optimal set. Unlike the rules developed 
by the PARE system the representations developed are not based on implicit trade­
off decisions (the PARE system analyses the shape of the Pareto optimal curve, 
giving preference to solutions which occur in certain regions of this curve). The 
representations give priority to the decisions which best differentiate between de­
sign decision combinations that describe solutions that are in the Pareto optimal 
set from those which do not describe solutions that are in this set. 

In determining which of the feasible points in the performance space represent 
the most desirable level of performance in terms of conflicting perfomance criteria a 
designer would take into account both the nature of the tradeoff decisions involved 
and information about the absolute optimal ranges of performance values. 

The PARE system, which employs information about the nature of the tradeoff 
decisions involved, identified the decisions: 

w4 (300mm cavity brick wall, unplastered)/ 

small sunshade/ 

medium window 

[ Table 8 Rule 8 ] 

as being important characteristics of solutions with performances that represent the 
best tradeoff between the three criteria: maximize daylight factor, minimize mean 
summer temperature and maximize mean winter temperature (these decisions were 
also identified in these experiments as being important characteristics of solutions 
in the Pareto optimal set as a whole [Table 3 Rule 1]). The range of performance of 
the solutions in the training set described by these decisions in the three dimensions 
daylight factor, mean summer temperature and mean winter temperature is given 
in Table 15. 

Table 15. Range of performance of solutions in the training set de­
scribed by the design decisions specified in Rule 1, Table 3. 

daylight factor 0.51-2.38 

mean summer temperature 23.8-27.0 

mean winter temperature 12.3-18.7 
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The Australian Government publication 'Thermal Comfort At Work' specifies 
desirable temperature ranges for working environments: 

For humidity of 30%-60% light work/sedentry activities can be per­
formed comfortably in the indoor dry bulb range of 18°C-30°C. Opti­
mum comfort occurs in the range of 2rC-26°C. 

By augmenting the conjunctive rules extracted from the decision tree describing 
solutions which are Pareto optimal in terms of the three criteria with information 
as to the range of performance of the solutions described by the design decisions 
specified in each rule, it can be seen that the range of performance of solutions 
described by the variables specified in say Rule 7 Table 3 is closer to the optimal 
temperature ranges of both summer and winter temperature and is higher in day­
light factor than that of the solutions described by the variables identified using 
PARE, Table 16. 

Table 16. Range of performance of the solutions in the training set 
described by the design decisions specified in Rule 7, Ta­
ble 3. 

daylight factor 2.26-2.53 

mean summer temperature 27.D-27.4 

mean winter temperature 18.3-18.9 

Only the ten most interesting rules developed using the PARE system have been 
listed. As the system explores consistencies over broader regions of the Pareto 
optimal curve decision performance relationships identifying the decisions which 
characterize solutions closer to the optimum temperature ranges specified above 
will no doubt be identified. In addition the PARE system incorporates heuristics for 
establishing associations between particular design decision variables and regions 
of the performance space. The problem here is a combinatorial one. The number of 
rules generated before one which covers a range of performance values close enough 
to the optimum range is found may be excessive. 

Comprehensibility The number of positive and negative examples associated 
with each node in the decision tree conveys information about the importance of 
the conjunctive rule which describes the path leading to that node. Heuristics 
could possibly be developed that would allow this information to be expressed as 
an index of importance such as that used by Mackenzie and Gero (1987) where the 
importance of the rules is specified using the set of linguistic descriptors. Similar 
indexes could be developed to describe the sensitivity of design options, the appro­
priateness of the range of performance covered by the examples used to generate 
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each option in relation to the optimal ranges of each criteria modelled and the 
stability of each option. 

6 Conclusion 

The knowledge inferred can be directly translated into IF-THEN rules and em­
ployed in the knowledge-base of an expert system which supports CAD. For exam­
ple, in a CAD system which aims to assist designers of office buildings in Hobart 
at the preliminary stage of design a set of decisions would be recommended. If 
the requirements included maximizing daylight factor, minimizing mean summer 
temperature and maximizing mean winter temperature then the initial recommen­
dation would be to use an unplastered 300 mm cavity brick wall, small sunshades 
and a medium size window [Table 3, Rule 1]. If the designer rejected this recom­
mendation on the basis that he wanted a large window then an expert system could 
readily produce the following recommendation: unplastered 300 mm cavity brick 
wall, small sunshade, large window and 2*3 mm clear float glass double glazing. 

Knowledge acquisition is fundamental to the success of knowledge-based sys­
tems. Like many other professionals designers are often unable to articulate much 
of the knowledge which they use implicitly. However, designs can often be char­
acterized by a morphism between design decisions and design performances, and 
induction used in this characterization to acquire knowledge. The knowledge ac­
quired is of the abductive kind which supports design decision making. It can be 
put into a variety of forms and used in an expert system context in the form of 
experiential and phenomenological knowledge with a solid foundation. More signif­
icantly, such knowledge provides a direct mapping from performances to decisions 
which is precisely the direction that designers need; rather than mappings from 
decisions to performance which is what deep models produce. This knowledge may 
also be used to provide initial solutions to optimization algorithms to improve their 
efficiency. 
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APPENDIX 

Design decision and performance data generated by 

simulating a north facing office in Hobart, Australia 

gl: 3mm clear float glass 

g2: 2 * 3mm clear float glass double glazing 

g3: 6mm heat absorbing glass 

w4: 300mm cavity brick wall, unplastered 

w5: llOmm brick/90mm air space/50mm insulation/12mm plasterboard 

w6: 20mm weatherboard/25mm airspace/75mm insulation/12mm plasterboard 

smwin: small window 

medwin: medium window 

largewin: large window 

none: no sunshade 

small: small sunshade 

medium: medium sunshade 

large: large sunshade 

+Maximise Sensible range 

Criterion -Minimise min max 

daylighUactor +1 0.07 2.91 

summer_temp -1 23.1 29.6 

winter _temp +1 9.6 23.1 

Design variables 

gl g2 g3 w4 w5 w6 none small medium large smwin medwin largew 
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Points in the criteria space 

Criteria 

Decisions Daylight Summer Winter 

factor temp temp 

g3 / w4 /large/ smwin 0.07 23.1 9.60 

g3fw4/mediumfsmwin 0.14 23.2 9.70 

g3/w4/large/smwin 0.16 23.2 10.0 

g3/w4/medium/smwin 0.28 23.3 10.0 

g3/w4/medium/smwin 0.46 23.5 10.4 

g3/w4/mediumfmedwin 0.54 23.6 10.6 

g3/w4/mediumfmedwin 0.63 23.7 10.7 

g3fw6/largefsmwin 0.07 23.2 10.7 

g3/w4/mediumfmedwin 0.63 23.7 10.7 

g3fw6fmediumfsmwin 0.28 23.5 11.0 

g3 /w4 /medium/ medwin 0.83 24.0 11.4 

g3fw4/largefmedwin 0.92 24.2 11.5 

g3/w4/small/medwin 0.51 23.8 12.3 

g3/w5/largefmedwin 0.67 24.0 11.8 

g3/w5/small/medwin 0.51 23.8 12.3 

g3/w4/small/medwin 1.13 24.6 12.3 

gl /w4 /medium/ smwin 0.93 24.3 12.8 

g3/w4/small/medwin 1.40 25.0 12.8 

g3/w4/smallfmedwin 1.49 25.1 12.8 

g1/w4/mediumfsmwin 1.07 24.5 13.3 

g2 /w6 / small/smwin 0.18 23.5 13.2 

g1/w4/mediumfmedwin 1.19 24.7 13.5 

g3fw4/mediumfmedwin 1.20 24.9 12.6 

g1/w4/medium/medwin 0.93 24.3 12.8 

gl/w4/small/medwin 0.79 24.3 14.3 
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Points in the criteria space (cont.) 

Criteria 

Decisions Daylight Summer Winter 

factor temp temp 

g2 /w6 /small/ smwin 0.27 23.7 14.2 

g2/w4/small/medwin 0.62 24.2 14.6 

g1/w4/small/medwin 0.94 24.6 14.8 

g1/w4/mediumjmedwin 1.41 25.1 14.8 

g1/w4Jsmall/medwin 1.22 25.1 15.1 

g1/w4Jsmall/medwin 1.22 25.1 15.1 

g2 /w6 /small/ smwin 0.37 23.9 15.1 

g1/w4Jmediumjmedwin 1.57 25.3 15.1 

g1/w4/medium/medwin 1.62 25.5 15.1 

g2/w4Jsmalljmedwin 0.77 24.4 15.5 

g1/w4Jmedium/largew 1.82 25.7 15.6 

g1/w4Jsmall/medwin 1.28 25.3 15.6 

g2/w4/small/medwin 0.83 24.6 15.9 

g1 Jw4/ small/ medwin 1.45 25.5 16.0 

g2/w6Jsmall/smwin 0.46 24.0 16.0 

g1/w4/small/medwin 1.58 25.7 16.3 

g1/w4/small/medwin 1.99 26.3 16.6 

gl/w4/small/medwin 1.68 25.9 16.6 

g2 /w6 Jsmalljsmwin 0.54 24.2 16.7 

g2/w4/small/smwin 1.13 25.2 16.7 

g1/w4/small/medwin 2.11 26.5 17.1 

g1/w4/small/medwin 2.26 26.8 17.4 

g2/w4Jsmalljmedwin 1.28 25.5 17.5 

g2/w4/small/largew 2.38 27.0 17.8 
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Points in the criteria space (cont.} 

Criteria 

Decisions Daylight Summer Winter 

factor temp temp 

g2fw6/small/medwin 0.70 24.5 17.8 

g1/w4/small/medwin 2.38 27.0 17.8 

g2 jw6/ small/medwin 1.13 25.5 19.7 

g 1/ w 4/ small/largew 2.53 27.2 18.0 

g1/w4/none/largew 2.91 29.0 18.2 

g 1/ w6/ small/ largew 2.26 27.0 18.3 

g2/w4/small/medwin 1.39 25.7 18.2 

g2/w6/small/medwin 1.07 25.3 18.9 

g2/w6/small/medwin 0.83 24.8 18.3 

g2/w4/small/medwin 1.49 25.9 18.7 

g1/w6/small/largew 2.53 27.4 18.9 

g1/w6/small/largew 2.38 27.2 18.9 

g2/w6/ small/ medwin 0.98 25.2 18.9 

g1/w6/none/largew 2.91 29.2 19.1 

g1/w6/smalljlargew 2.53 27.4 18.9 

g2 /w6 /small/ medwin 1.13 25.5 19.7 

g2/ w6/ small/ medwin 1.28 25.8 20.2 

g2/w4/none/largew 2.29 28.5 20.3 

g2/ w 4/ small/ largew 2.10 27.1 20.6 

g2/ w6/ small /largew 1.49 26.2 20.9 

g2/w4/small/largew 2.23 27.4 21.2 

g2/w4/none/largew 2.57 29.2 21.5 

g2/w6/small/largew 2.23 27.6 22.8 

g2/w6/none/largew 2.57 29.6 23.1 
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Abstract The Nastran advisor was devised as an experimental system aimed at exam­
ining the feasibility of using a knowledge based approach to aid a novice or intermittent 
user of NASTRAN in the selection of the required program subsets to solve particular 
problem classes. 

1 Introduction 

Nastran is currently available to GEC Product Units via Company Data Centres. 
Expertise is vested in a number of specialist areas within research and development 
groups. The program is used during the design and development of a wide range of 
advanced mechanical systems including under water weapons, radar, telecommu­
nications, avionics and space communication system forms. Many of the structural 
systems are novel and require the use of sophisticated modelling, analysis and 
experimental facilities during the development programme. NASTRAN is of par­
ticular value in that it incorporates a broad spectrum of capabilities directly suited 
to the analysis of these classes of system. The provision of a knowledge based Con­
sultant would go some way in providing novice and intermittent program users with 
a procedure for accessing the program without reference to a NASTRAN specialist. 
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2 The Role of a Knowledge Based Consultant 

This paper describes the first stages of development of an automated knowledge 
based Consultant (NASCON) created to advise non experts in the selection and de­
velopment of analysis and modelling strategies specifically for NASTRAN. Knowl­
edge based programs may be distinguished from conventional programs in that 
they possess a corpus of domain specific information which relates to real world 
situations. 

The class of expert system under development consists of two main segments 
(Fig. 1) namely a knowledge base and an inference mechanism. The former contains 
information encapsulated in the form of situation/action rules relating to a par­
ticular context. The inference mechanism provides a means for searching through 
the knowledge base to establish the relevance of the information contained to the 
context currently under examination by the computer Consultant. A decision tree 
provides a convenient construct for visualising the process although for the sys­
tem under discussion here the tree is assembled dynamically as the Consultation 
proceeds. How domain knowledge is characterised and classified is somewhat arbi­
trary although there are recognisable conventions and domain specific vocabularies 
appropriate to branches of engineering science and technologies and also of course 
appropriate to NASTRAN. 

NASCON CONSULTANT 

EXPERT SYSTEM 

INFERENCE 

PROCEDURE 

KNOWLEDGE 

BASE 

HELP 

SYSTEM 

Figure 1. NASCON components. 
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Knowledge engineering science is comparatively recent in origin and there are 
few large scale knowledge based systems currently in use. One of the earliest 
practical examples is MYCIN [I]. This was originally developed to assist medical 
practioners in the diagnosis and treatment of infectious diseases. The earliest ref­
erence to an application in structural mechanics appears to be SACON [2J devised 
to facilitate the utilisation of the MARC finite element code. SACON developers 
took the E(MYCIN) inference mechanism and substituted structural engineering 
knowledge for the medical knowledge so converting the program from the domain 
of infectious diseases to the domain of structural mechanics. 

Components of the design and analysis process are outlined in Fig. 2. Categories 
of domain knowledge pertinent in the present context include for example: 

• Product System Knowledge 

• Technologies (states and processes) 

• Finite Element Methodologies 

• Finite Element Modelling Strategies 

• N ASTRAN Methodologies 

FUNCTION --11 DESIGN OPTIONS 1 l ENVIRONMENT f-
FORM 

SPATIAL AND I SYSTEM MOOEL I I l ENVIRONMENTAL I 
MODEL 

MASS CONSTRAINTS LINEAR/NON LINEAR 
MATERIALS 

TECHNOLOGY I MODEL DATA I 
MANUFACTURE DETERMINISTIJ. 
TECHNOLOGIES LOAD DATA 

ENVIRONMENTAL 
FACTORS 

I MODEL I 
PROBABLISTIC l DESIGN \I 

SYSTEM SOLUTIONS CRITERIA 
INTERFACES 

TIME FRAME l SOLUTION I 
COST 

UN MODELLING 

~CONFORMANCE 

' YES l PROTOTYPE I 
MANUFACTURE 

I SYSTEM I TEST 
OUALIFICATION SPEC 

~CONFORMANCE) 

L SERVICE 

POST I 
DESIGN CONFORMANCE 

t 

Figure 2. Design and analysis. 
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Technological domains are only inexactly describes in terms of natural language. 
Difficulties occur in categorising and encapsulating this class of knowledge unam­
biguously. Characterisation of domain knowledge provides a necessary preliminary, 
however, to establishing both the form and content of the knowledge base and the 
design of the expert system interface through which the user communicates with 
the Consultant. NASTRAN possesses a well defined vocabulary for characteristing 
program methodologies and data formats. 

Based on the analyst's perception and characterisation of the problem domain, 
information on NASTRAN methodologies and modelling strategies may be ab­
stracted systematically from the knowledge base and information modules as the 
Consultation proceeds. Information elicited includes selection of the appropriate 
Rigid Format or Solution Sequence together with the associated series of data card 
formats aligned to Case Control and Bulk Data. This information will be supple­
mented by information on detailed finite element modelling strategies addressing 
usefully cost/accuracy trade-offs in the next phase of development. 

A Computer Consultant can, like its human counterpart, modify its line of 
questioning adaptively, although not with the same degree of flexibility. If the user 
possesses insufficient knowledge to answer a question, the Computer Consultant 
can emulate the human expert via the provision of 'Information'. A simple user 
information provision mode is seen as a useful adjunt to the Consultant. 

Information defining specialised modelling templates can for instance be con­
structed for classes of stylised engineering forms-masts and towers for example, to 
aid the user directly in devising acceptable models. The development of knowledge 
based rules governing the generation of models for novel applications will undoubt­
edly present some difficulty, especially as far as establishing the appropriate level 
of model refinement is concerned. 

3 N ascon Consultant 

3.1 Introduction 

The NASCON system exists in an environment called POPLOG. This environ­
ment is a commercial product written by Sussex University. It contains high level 
languages (POPll, PROLOG and LISP) an editor and an incremental compiler. 
NASCON uses the languages PROLOG and POPll. It was initially intended to 
write the code totally in PROLOG but this was found to be impossible and an 
increasing number of calls to the POPlllanguage are now being made, mainly to 
utilise some of the many POPll built-in functions. 

The Consultant NASCON is divided into a number of separate files. Most of 
the files are information files but a still substantial number of files make up the 
core NASCON system. The user does not need to know what these files are in 
order to use the system since they are loaded automatically by 'nasconload' the 
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main loader file for the system. 
NASCON contains two major components, an expert system and a help file 

system. The expert system consists basically of a production rule system and an 
inference mechanism which allows both forward and backward chaining. The help 
file system contains procedures for accessing various types of information sources. 
These sources include 'active' files and the POPLOG 'database'. There is also a 
partially completed tool for constructing the knowledge base. 

3.2 The Knowledge Base 

The inference mechanism and the knowledge base are closely coupled as far as the 
expert system is concerned but uncoupled as far as the domain is concerned. This 
means that any domain specific knowledge base must use specific PROLOG pred­
icate names, e.g. know, goal, etc. which are domain independent but can contain 
any domain specific knowledge as part of the predicates. The production rules used 
by the inference mechanism (ACE} are written in the form:-

IF <condition> THEN <conclusion> 

where the condition can be of the form:-

<fact> AND <condition> or 

<fact> 

'IF', 'THEN' and 'AND' are keywords which are presented in PROLOG by oper­
ators. 'IF' is a prefix operator and 'THEN' and 'AND' are infix operators. 

The conclusion can take the form:-

<fact> 

A fact can take the form:-

<atom> or 

NOT( <atom>) 

Everything that the system learns from the user or other sources is stored in facts 
of the form:-

KNOW( <atom>,<value> ). 

At present the only values allowed are true and false but it is intended to permit 
any value. It might even be possible to replace the <atom> by a condition such 
as 'N>6', and retain the value as true or false. The goals are given to the system 
by facts of the form:-
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GOAL(<atom>,<goaJ title>) 

The system then attempts to provide <atom> as true. 
The final element in the knowledge base is the askable predicate. Askable is of 

the form:-

ASKABLE(CONDITION,QUESTION,ASSISTANCE FILE). 

The 'CONDITION' is a condition from a production rule. 
The 'QUESTION' is a question which is put to the user which at present elicits 

a yes or no answer which means that the condition is present or not present. 
The 'ASSISTANCE FILE' is the name of a file of information which is displayed 

if the user asks for help instead of answering the question. In the final version of 
NASCON every question will have an associated assistance file. It is possible that 
some part of the assistance file will be used in an explanation subsystem. The 
'ASSISTANCE FILE' will consist of an explanation of why the question is being 
asked, what the terms in the question mean and may possibly point to, or even 
load, other relevant files. 

In the following all references to assistance files have been removed for clarity. 
The following are some of the questions the Consultant askes the User:-

!SKABLE ( 'SUPER ELEMENTS' . 
'DO YOU WISH THE MODEL TO BE CONSTRUCTED IN TERMS OF SUPER 
ELEMENTS?' 

!SKABLE('CYCLIC SYMMETRYG, 
'DOES THE MODEL EXHIBIT CYCLIC SYMMETRY?' 
THE FOLLOWING QUESTION SUBSET IDENTIFIES CLASSES OF 
MECHANICAL NONLINEARITY WITHIN THE MODEL*/ 

ASKABLE('LINEAR ELASTIC PROPERTIES', 
'ARE ALL THE MATERIALS ASSUMED TO HAVE LINEAR ELASTIC 
PROPERTIES? ' 

ASKABLE ( 'TEMPERATURE DEPENDENT MATERIAL' . 
'ARE THE MATERIAL PROPERTIES TEMPERATURE DEPENDENT?' 

ASKABLE('STRUCTURAL DISCONTINUITIES', 
'DOES THE MODEL CONTAIN ANY STRUCTURAL DISCONTINUITIES WHICH 
COULD GIVE RISE TO GAPPING UNDER LOAD'. 

ASKABLE(*GEOMETRIC NONLINEARITY', 
'WILL THE MODEL EXHIBIT ANY GEOMETRIC NONLINEARITY UNDER 
LOAD?, 

*I THE FOLLOWING QUESTION SUBSET IDENTIFIES CLASSES OF MODEL 
DAMPING*/ 
!SKABLE('HYSTERETIC DAMPING' 
'DO YOU WISH TO INCLUDE VISCOUS DAMPING ELEMENT?' 

*I THE FOLLOWING QUESTION SUBSET IDENTIFIES PROBLEM SUBCLASSES 
RELATED TO MODEL BEHAVIOUR*/ 



ASKABLE('MODEL BUCKLING', 
'DO YOU WISH TO EXAMINE MODEL BUCKLING BEHAVIOUR?' 

ASKABLE('MODEL VIBRATION', 
'DO YOU WISH TO EXAMINE MODEL VIBRATIONAL BEHAVIOUR?' 

A Selection of domain rules include for example:-

IF 
'SUPER ELEMENTS' AND 
NOT('CYCLIC SYMMETRY') AND 
'LINEAR ELASTIC PROPERTIES' AND 
NOT('TEMPERATURE DEPENDENT MATERIAL') AND 
NOT('STRUCTURAL DISCONTINUITIES') AND 
NOT('GEOMETRIC NONLINEARITY') AND 
'RANDOM EXCITATION FORMS' THEN 
'SELECTION OF SOLUTION SEQUENCE 71'. 
IF 
'SUPER ELEMENTS' AND 
NOT('CYCLIC SYMMETRY') AND 
'LINEAR ELASTIC PROPERTIES' AND 
NOT('TEMPERATURE DEPENDENT MATERIAL') AND 
NOT('STRUCTURAL DISCONTINUITIES') AND 
NOT('GEOMETRIC NONLINEARITY') AND 
'MODAL COORDINATES' AND 
'TIME DEPENDENT EXCITATION FORMS' THEN 
'SELECTION OF SOLUTION SEQUENCE 72'. 
IF 
'SUPER ELEMENTS' AND 
NOT('CYCLIC SYMMETRY') AND 
'LINEAR ELASTIC PROPERTIES' AND 
NOT('TEMPERATURE DEPENDENT MATERIAL') AND 
NOT('STRUCTURAL DISCONTINUITIES') AND 
NOT('GEOMETRIC NONLINEARITY') AND 
'DIRECT COORDINATES' AND 
'FREQUENCY DEPENDENT EXCITATION FORMS' THEN 
'SELECTION OF SOLUTION SEQUENCE 68' 

Associated goals comprise:-

* GOAL('SELECTION OF SOL SEQ 71', 'SUPER ELEMENT MODAL FREQUENCY 
RESPONSE') 

* GOAL('SELECTION OF SOL SEQ 72', 'SUPER ELEMENT MODAL TRANSIENT 
RESPONSE') 

* GOAL('SELECTION OF SOL SEQ 68' ,'SUPER ELEMENT DIRECT FREQUENCY 
RESPONSE') 

257 
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3.3 The Inference Mechanism 

The expert system is based upon Corlett's expert system ACE. ACE is a simple 
production rule interpreter, written in PROLOG. The interpreter can carry out 
both forward and backward chaining on a set of production rules. 

3.3.1 The Backward Chainer The backward chainer works by choosing a 
goal (as an example, making a hypothesis about which rigid format or solution 
sequence is required) and then attempting to verify the facts which make the goal 
(hypothesis) true. As an example of this consider the backward chainer, choosing 
the goal:-

'selection of solution sequence 81 or solution sequence 82'. 

The system will look for a rule which has this goal as its conclusion. 
The rules are of the form:-

IT factl and fact2 and fact3 ... then conclusion. 

The conclusion is true if all the facts are true. So the system must prove each 
fact in turn. 

In the case of our example the system will find the rule:-

IF 'SUPER ELEMENTS' AND .... fact 1 
'CYCLIC SYMMETRY, AND .... fact 2 
'LINEAR ELASTIC PROPERTIES' AND .... fact 3 
NOT('TEMPERATURE DEPENDENT MATERIAL') .... fact 4 
AND 
NOT('STRUCTURAL DISCONTINUITIES') AND .... fact 5 
NOT('GEOMETRIC NONLINEARITY') AND .... fact 6 
'STATIC EXCITATION FORMS' THEN .... fact 7 
'SELECTION OF SOLUTION SEQUENCE 81 OR .... conclusion 
SOLUTION 82 

It now has to prove that 'SUPER ELEMENTS' is true. There are several ways in 
which it can do this:-

1. It may already know that it is true because it finds a cause 

KNOW("SUPER ELEMENTS' ,TRUE). 

2. IT it does not know that it is true or already been shown to be false, it may 
have a clause 



ASKABLE('SUPER ELEMENTS','DO YOU WISH TO HAVE THE 
MODEL CONSTRUCTED IN TERMS OF SUPER ELEMENTS?') 

This means that it can ask the user the associated question. 
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3. It may find the fact as a conclusion of another rule, in which case it tries to 
prove the facts of the other rule, so that it can deduce that the fact of the 
first rule is true. 

If it cannot do any of these then the fact must be false or not provable until 
other rules have been examined. 

3.3.2 The Forward Chainer The forward chainer finds each rule in turn for 
which it does not know the conclusion. It then attempts to prove the conditions 
of the production rule and if it succeeds it remembers the result. If the conclusion 
was a goal, it asks if the user has finished and if the user has not finished or the 
conclusion was not a goal, then it makes a recursive call to the forward chainer. 
When it runs out of rules it informs the user and terminates. 

3.4 Help System 

At any time the user may input any string and, if it does not take the form of an 
answer to a question, it is passed to the help system for analysis. The help system 
consists of a large number of information files and the following sub-systems:-

1. The Assistance File System 

2. The Menu System 

3. The Dictionary 

4. Explanation System 

These sub-systems selectively display files relevant to what the user is currently 
doing and what he needs to know. We describe each of these sub-systems in turn. 

3.4.1 Assistance File System The assistance file system is entered by typing 
'h' at any time. The system displays a file appropriate to the point the user is at 
in the consultation. This file is the assistance file, and will consist of information 
relating to why the question is being asked, what the terms in the question mean, 
and possibly pointers to other files. In some cases it may only consist of a pointer 
to a file already in the menu system. 
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3.4.2 The Menu System The NASCON menu system is entered by typing 
'm' at any time. The user is then presented with a numbered menu, from which 
he must make a selection. A page of the relevant information file will be displayed 
and the user will be given an option to display the next page or descend to a more 
detailed information level by entering a string relevant to the current displayed 
information, e.g. The user might type 'elements' is he wants more information on 
elements. There is also a special 'card mode' which will display a NASTRAN card 
format if the consultation context demands. 

The items in the menu are not all at the same hierarchical level. For example, 
the user may select option NASTRAN bulk data summary from where he can 
proceed to lower levels such as the card descriptors. Alternatively the user may 
access the card descriptor information files directly. As the user's knowledge of the 
system grows, this facility will enable the user to get to the information he requires 
quickly without having to descend through menu levels. 

Typical MENU entries include:-

USE OF THE CONSULTANT 
RUNNING NASTRAN ON THE IBM 
NASTRAN EXECUTIVE CONTROL 
NASTRAN CASE CONTROL 

SUMMARY 
CARD DESCRIPTORS 
CARD FORMAT 

NASTRAN BULK DATA 
SUMMARY 
CARD DESCRIPTORS 
CARD FORMAT 

NASTRAN ERROR MESSAGES 
NASTRAN DEMONSTRATION DATA 

3.4.3 The Dictionary At times the user may only want a short definition of 
a term in question or may want a brief information concerning a data card. The 
dictionary provides this information. It is also the default information source, when 
information cannot be found in other sources. There is a problem when another 
information source with the same name as the dictionary entry is encountered. To 
enter the dictionary the user enters the required word or string. 

3.4.4 The Explanation System There is a very primative explanation sys­
tem available, which is invoked by the input of the command 'why'. During the 
running of the system the name of the condition being investigated is placed upon 
a 'trail'. When the investigation of the condition is complete the name of the con­
dition is removed from the trail. When the command 'why' is entered, the trail is 
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displayed, indicating the main gaol and the sub-goals. As previously stated, the 
system is very primitive at the moment but will be expanded when more of the 
rule base is available. 

3.5 The Expert Interface 

3.5.1 Introduction An expert interface is being created so that the expert 
may give his knowledge to the system. This is a simple interface and cannot 
be regarded as a true knowledge acquisition system. The interface is far from 
complete and at the moment only contains a sub-interface for obtaining dictionary 
definitions. This is a separate system from NASCON and can be run at any time 
by the expert. 

The interface consists (or will consist) of the three main sections:-

1. The dictionary update interface 

2. The rule base update interface 

3. The information update interface. 

3.5.2 The Dictionary Update Interface There are two main parts to this 
interface:-

1. The undefined strings interface 

2. The expert's dictionary interace. 

The Undefined Strings Interface When a user inputs a string that is not 
recognised by any part of the NASCON system it is recorded by the dictionary 
sub-system for subsequent analysis by an expert. The undefined strings interface 
allows an expert to look at the undefined strings and add definitions of them into 
the dictionary. 

The Expert's Dictionary Interface This interface allows the expert to enter 
his own entries into the dictionary. 

3.5.3 The Rule Base Update Interface This has yet to be written but it 
will permit the expert to enter new rules. It may contain various types of error 
checking including cyclic rule definition error checking. It will ask the expert if the 
rule conditions are askable or not, or whether the conditions are goals or not. It 
may deal with the structuring of the rules. 
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3.5.4 The Information Update Interface This has yet to be written but it 
will permit the expert to enter new information and assistance files. It will deal 
with the construction of card information files. It will also deal with the associated 
title files and information definition files. 

4 Conclusions 

The provision of an expert system interface for NASTRAN would seem a worth­
while objective. Use can be made of knowledge engineering methodologies in order 
to achieve this. Whilst a start has been made, it is evident that characterising 
the process of analysis is complex and the provision of a fully working system will 
need considerable effort if it is to be other than a simple demonstrator. Emphasis, 
to date, has been placed on the development of the program structure. The gen­
eration of the knowledge base to embrace all of the NASTRAN facilities and the 
model formulation is in the early stage of development. 
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Abstract This paper describes a knowledge based system for the diagnosis of the causes 
of cracking in buildings. Given a building which has suffered cracking, the system diagnoses 
the possible causes of this cracking and ranks them in order of likelihood of occurance 
according to the most likely ones. 

The system comprises an inference engine, a situation model and a knowledge base. 
The 'production rules' form of knowledge representation is used. This was found to be 
suitable for the particular problem of the diagnosis of cracking in buildings. 

The knowledge base comprises rules and meta-rules. Each rule has as its goal a cause 
of cracking. The meta-rules are used to select, prior to the detailed investigation, those 
rules which are likely to be applicable for the particular problem. 

The system uses a probability technique developed to deal with uncertainty in the 
problem of the diagnosis of causes of cracking. 

1 Introduction 

The occurrence of cracking in buildings is one of the major defects in masonry 
structures. The causes of it are numerous and are often difficult to determine. It 
is not unknown for two engineers to disagree on the cause of the cracking partly 
because it is unlikely that many engineers will have experience of all types of 
cracking. In addition, cracking may result from a combination of causes. The 
difficulty in identifying the causes of cracking and the cost and effort involved in 
carrying out the identification may be expensive. However, when the cause of 
the damage has not been correctly identified this can lead to either unnecessary 
remedial works at what could be a substantial cost or the delaying of necessary 
remedial work which might lead to a higher cost later on. 

There is currently a tremendous interest in the use of knowledge based systems 
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in all branches of engineering. In civil engineering there have been numerous reports 
on their possible applications [1,2,3]. One major area in which such systems can 
find immediate application is diagnostic problems. One such application is the 
diagnosis of the causes of cracking in buildings. 

This paper describes a system for the diagnosis of the causes of cracking in 
buildings. The system uses knowledge about the problem acquired from literature, 
for example references [4], [5], and [6], and experts. It provides assistance to 
engineers in assessing existing buildings which have signs of cracking within them. 
The system is intended not to replace, but to assist, engineers, surveyors, etc., 
when they are inspecting buildings which show signs of distress. 

The system, which is menu driven, is written in PROLOG [7] and mounted on an 
IBM AT compatible with 640kb RAM and a hard disk. The system comprises three 
parts namely the knowledge base, the inference engine and the situation model. 
The knowledge base contains the knowledge in terms of rules about cracking in 
buildings. The inference engine is used to obtain information from the user which 
it can then combine with information from the knowledge base in order to arrive 
at a diagnosis for a particular problem. The current state of the problem is stored 
in the situation model which is updated as the consultation of the knowledge base 
and the user, for a particular problem, proceeds. 

Several approaches for knowledge representation are described in the artificial 
intelligence literature [8,9,10]. In the system described the knowledge is represented 
using production rules because this was determined to be the best way for this 
particular set of knowledge. 

The production rules are of the form, 

if (G1 * G2 * · · · * Cn) then (CONCLUSION). 

where G1 to Cn are conditions and * represents 'and' or 'or' and CONCLUSION is 
the conclusion of the production rule. The conditions can be negated, e.g. not Cm. 
Each of the conditions also contains a 'certainty directive' which is used to assess 
the certainty of a given conclusion. 

The PROLOG characteristic of negation by failure, i.e. if a condition in a pro­
duction rule has failed the conclusion of this production rule will fail, has not been 
used in the inference mechanism. Instead, if a condition has failed, the rule will 
not fail but the certainty of the conclusion of this production rule will be modi­
fied depending on the 'certainty directive' of the failed condition. The rest of the 
conditions in the rule will then be processed. 

One problem with large knowledge bases is that if care is not taken a large 
amount of time can be wasted by investigating unlikely routes through the knowl­
edge base. In order to overcome this problem a 'rule-selector' procedure has been 
introduced. This procedure selects only those rules in the knowledge base which 
contain the likely causes. This is done by using 'meta-rules' which are rules about 
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rules. Each of the rules has a meta-rule which determines whether that rule is 
likely to be applicable for the case under investigation. 

In any particular session, the inference engine is used to ask questions of the 
user, retrieve all the necessary data and knowledge from the knowledge base and 
select the likely causes of the faults being diagnosed. Those causes which have 
been selected will be investigated one at a time. At the end of the consultation, 
for each cause selected, a certainty value, which indicates its likelihood as a cause 
of the cracking, is given. All the likely causes are stored as facts in the situation 
model, in addition to all the data collected during this session. An explanation of 
HOW the system has arrived at each cause is available in order that the user can 
check that the logic for the particular example is correct. Explanation of WHY 
the system is asking any particular question is also available. 

A WHAT-IF facility has been developed which allows the user to investigate 
the effects of changes of the input data without re-running the entire consultation. 
This is particularly useful in situations in which a piece of data is not known or 
only a vague estimate is known and the user wishes to check the sensitivity of the 
solutions to the data without re-running the entire consultation. This is more fully 
explained later. 

The system deals with uncertainty using an approach which has been devel­
oped to suit the problem of diagnosis of the causes of cracking in buildings. The 
technique uses certainty factors in the range -5 to +5 where a factor of -5 means 
definitely not, a factor of 0 means not known, a factor of +5 means definitely yes. 
Intermediate values denote varying degrees of certainty. A fuller explanation is 
given later. 

Fig. 1 shows the various components in the system in schematic form, a detailed 
description of various aspects of the system are given later in this paper in the 
following sections: 

2. Production rules. 

3. The inference engine. 

4. The situation model. 

5. The knowledge base. 

6. Example run. 

2 Production Rules 

As mentioned above, for the problem under investigation it was decided that pro­
duction rules would be best for the representation of the knowledge. The particular 
form of production rules used in this system are called subrules and they are of the 
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SITUATION MODEL 
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LIBRARY FIXED-DATA PROBABILITY 
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MODULE INPUT-OUTPUT MODULES 
MODULE 

t 
USER 

Figure 1. The system components. 

form 'if PREMISE then CONCLUSION,' where the PREMISE is the part which 
contains the conditions. For example: 

if 
'cracks appear at a return' and 
'length of return' is less-than '1000 mm' and 
not 'adequate movement joints at returns' 
then 
'not accommodated thermal movements cause flexure at a 
short return. ' 

subrule (1) 

where, 'not accommodated thermal movements cause flexure at a short return' is 
the CONCLUSION and 'cracks appear at a return' and 'length of return' is less­
than '1000 mm' and not 'adequate movement joints at returns' is the PREMISE 
which, in this case, contains three conditions. 

A set of sub rules which achieves a goal is known as a 'rule.' These sub rules 
are organised into a hierarchy according to the level of their conclusions. At the 
top of the hierarchy is the subrule which has as its conclusion the goal of the rule. 
Beneath this level are the subrules which have as conclusions the subgoals which 
need to be established prior to the goal being established. A subgoal is a condition 
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in the PREMISE of another subrule higher up in the hierarchy of the rule. The 
hierarchy grows downwards through an unlimited number of levels using subrules, 
see Fig. 2. 

if D and E and F 
if G or H and J 
if K and L 
if B and C 

A is the goal 

then B. 
then C. 
then G. 
then A. 

SUBRULE 
SUBRULE 
SUBRULE 
SUBRULE 

) RULE 

B, C and G are conditions which are subgoals. 

D,E,F,H,J,K and L are conditions which are not subgoals 

A 

r;;--- J: T 

Figure 2. An example of a rule hierarchy. 

A subrule within any rule may also be a subrule within another rule, for example 
see Fig. 3. 

In the knowledge base, the goals are the causes of cracking. Each one of these 
causes is the conclusion of a subrule at the top level of the hierarchy of the rule 
used to check this cause of cracking. Each of the pieces of evidence which affects 
the likelihood of this cause are included in the hierarchy of the rule. 

An example of a rule which investigates whether the cause of cracking is due to 
flexure at a short return because of the lack of provision of a satisfactory movement 
joint, is given is Fig. 4. This follows the formula shown in Fig. 2 and described 
above. 
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RULE (1) 
A 

r.;--- .1: J, 

aL 

r;-1Jc 
subrule X 

RULE (2) 

M 

r,;--- J: J, 

aL 

ra-.1:1, 
subrule X 

subrule X is common for both rules (1) and (2) 

Figure 3. Common subrules for more than one rule. 

3 The Inference Engine 

The inference engine consists of number of modules each of which deals with a 
particular aspect of the problem using the data input by the user and the knowledge 
base in the way described below. The inference engine modules are, the 'control,' 
the 'parser,' the 'explanation,' the 'what-if,' the 'certainty,' the 'input-output,' the 
'library' and the 'fixed-data' modules, Figure 1. 



if 
'cracks appear at a return' and 
'length of return' is less-than '1000 mm' and 
not 'adequate movement joints at returns' 

then 
'not accommodated thermal movements cause flexure 
at a short return'. 

subrule (1) 

if 
'exist movement joint at the return' and 
'the movement joint is of adequate width' and 
'appropriate material used in the movement joint' 

then 
'adequate movement joint at returns'. subrule ( 2 ) 

subrule (1) 
subrule (2) 1 RULE 

'not accommodated thermal movements caused flexure 
at a short return' is the goal 
'adequate movement joint at returns' is a subgoal 
The remaining conditions are not subgoals 

The hierarchy is:-

'not accommodated thermal movements cause flexure 
at a short return' 

'crack! appear 
at a return' 

at-----. I n!t 
'lengtA of 'adequatl movement 
return < 1000 joint at returns' 

I 

'exist lro_v __ e_m_e_n_t----'t_h __ e_m:f:.-e-n_t ________ '_a_p_p_r,lpriate 

joint at the joint is of material used 
return'. adequate width'. in the joint'. 

Figure 4. Example of a rule. 
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3.1 Problem Solving Strategy 

The strategy used is to ask a series of preliminary questions in order to select only 
those rules applicable to the case to be analysed from the knowledge base. The 
selected rules are then processed one at a time. The major aspects of the problem 
solving strategy are discussed below. 

3.1.1 The elimination of non-applicable rules Knowledge bases are nor­
mally necessarily large and only some of the rules included are applicable for a 
particular problem, hence the elimination of non-applicable rules as early as possi­
ble in any session is beneficial in terms of the efficiency of the system. As mentioned 
in Section 1, the selection of applicable rules is achieved by meta-rules. The meta­
rules are determined by the writer of the knowledge base who determines a number 
of parameters which categorise the rules. These parameters will have values which 
are obtained from the answers to the preliminary questions. The meta-rule for 
each rule contains the prescribed values of the parameters. When the values of 
these parameters have been ascertained from input data the meta-rule for each 
rule is checked to determine whether the rule is to be selected. For example, the 
rules could be categorised based on the type of structure, the age of the structure, 
the location of cracking and the cracking pattern. At the start of a session, the 
values of these parameters are requested from the user. The meta-rules are then 
consulted, and using these values, the likely causes are selected and will then be 
further investigated. Subsequently only these rules will be processed. The removal 
of these unnecessary rules also makes the system appear to the user to behave 
like an expert by not investigating causes which can not apply to a case under 
investigation. 

3.1.2 Multi Solution Output The rules selected by the system, as described 
above, are then processed. During the processing some of these rules may indicate 
the possible causes of the distress. The solution or solutions are output with a 
degree of certainty for each solution. Thus the causes can be ranked in order of 
probability of being the likely cause. 

3.1.3 Rejecting Selected Rules Rules which have been selected as applicable 
rules for a particular session may be rejected at a later stage if, after further 
investigation, they are found to be 'definitely unlikely' to have caused the fault 
under diagnosis. The rejected rules are divided into two categories. 

The first category applies to those rules for which the likelihood of them not 
being causes of the fault is obvious and for which no explanation for rejecting them 
is necessary. For example, given the problem of cracking in a free standing wall for 
which the rule which deals with cracking in free standing walls at short returns has 
been determined as being possibly applicable, if, however, it is determined that the 
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cracks did not occur at a return, then this rule will be processed no further. No 
explanation will be given as to why this rule is 'definitely unlikely' to be the cause 
of cracking in the free standing wall as it is considered obvious. 

The second category applies to those rules for which their likelihood of not 
being the cause of the fault is not as obvious as in the above case. For these 
rules an explanation for rejecting them is available. For example, if in the example 
above the cracks appeared at a short return, but the provision of movement joints 
at the return is adequate, then there must be another cause of cracking other than 
the inclusion of the short return. The rejection of the rule is announced and an 
explanation for the reason why this rule is unlikely to give the cause is available 
for the user. 

The inference engine is used to determine if a rule is 'definitely unlikely' at an 
early stage of the processing of the rule by using 'dependence directives' attached 
to certain of the conditions in the rule. If a condition which contains a 'dependence 
directive' has not been satisfied the rule is considered 'definitely unlikely.' 

Two dependence directives are used, 'essential' and 'conditional.' If a condition 
has an 'essential' directive and during a consultation the condition has not been 
satisfied, the rule is then 'definitely unlikely.' The reason for failure is obvious 
and the rejected rule falls in to the first category described above. However, if 
the 'conditional' directive has been used and the rule is rejected, and hence is 
'definitely unlikely,' the reason may not be obvious therefore an explanation is 
given as described above. 

3.2 The CONTROL Module 

The control module is responsible for the selection of applicable rules and it is 
from this module that access to other modules is controlled. The control module 
looks first for the preliminary questions set by the knowledge base writer, the 
basic-parameters, and then requests input of their values through the input-output 
module. After determining these values, the control module uses the meta-rules 
and searches the entire knowledge base for all rules which satisfy the values. The 
applicable rules are then stored in a list, in the situation model, and are used for the 
particular session. The control module then invokes the parser module to process 
each of the rules, one at a time. After processing each rule, the parser module will 
return it with its certainty factor, or report that it is 'definitely unlikely' to be 
the cause of the fault. If the rule was 'definitely unlikely' with obvious reason, as 
category one above, then the control module will automatically invoke the parser 
module to process the next rule in the list. Otherwise, the results are stored in 
the situation model, and the input-output module is invoked to output the results 
for the particular rule. The option of processing the next rule is then given. If 
the next rule is to be processed, the cycle will be repeated from the point where 
the parser module is invoked to process a rule. If no further rules are required to 
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be processed, the session will end. A summary of all the results achieved in the 
session is available. Finally an option to start another consultation is available. 

3.3 The PARSER Module 

The parser module is responsible for processing the rules when they are supplied 
by the control module. The control module determines the goal which is to be 
investigated. The goal is then matched with the conclusions of the subrules in 
the knowledge base to find the corresponding subrule. This subrule, which will 
be the subrule at the top of the rule hierarchy, is then retrieved. The subrule 
is then processed by first dividing it into PREMISE and CONCLUSION parts. 
Each condition in the PREMISE part is processed and a certainty factor for it is 
obtained, this is repeated for each condition. The processing of a condition can be 
by asking input from the user, or by deduction, or, if the condition is a subgoal, 
by processing the premise part of a further subrule which has the subgoal as its 
conclusion. In the latter case the certainty factor for the condition is equal to that 
determined for the subrule. Certainty factors are described in the next section. 
The certainty factor for each condition of the subrule is then used to determine the 
certainty factor for the conclusion of the subrule. Similarly, the certainty factor 
for each condition of the subrule at the top of the rule hierarchy is used to update 
the overall certainty factor of the goal. All rules which has been discarded at any 
stage are given a certainty factor of -5. During the processing of a rule, the logical 
relationships of all the evidence used in order to arrive at the conclusions for each 
goal are stored in the situation model, in addition to all input data, to enable the 
user to obtain reasons for the solutions. 

3.4 The CERTAINTY Model 

Knowledge based systems should be able to deal with uncertainty in a satisfactory 
manner so as to simulate the decision making skill of a person expert in the do­
main for which the system is intended. However, the nature of knowledge varies 
enormously between domains. Therefore the probability approach, or technique, 
which is to be used for a problem should be chosen carefully in order to model the 
uncertainty in the given problem most appropriately. Certainty factors, fuzzy logic 
and Bayesian theories are examples of methods which have been used for knowl­
edge based systems applications [11,12,13]. A sound understanding of the problem 
in hand is essential for the choice of method to be made in order to ensure that 
the chosen method is reliable for the particular problem. 

The knowledge for the diagnosis of the causes of cracking in buildings is in­
complete and sometimes the cause of cracking can not be uniquely determined. 
Therefore the system uses a probability approach which is suited to this type of 
knowledge and which can be used to rank the possible causes. 
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The technique used is an approach developed particularly for the diagnosis 
of the causes of cracking. A certainty factor is used to indicate the degree of 
certainty of a piece of evidence. The certainty factor is on the scale of -5 to 
+5, where a factor of -5 means definitely not, a factor of 0 means not known, 
a factor of +5 means definitely yes. Intermediate values denote varying degrees 
of certainty. Every piece of evidence in a production rule is given a certainty 
factor in the range -5 to 5 depending on the users responses to questions about 
it. The certainty factor of the conclusion of a subrule is based on the certainty 
factors and the 'certainty directives' given to each piece of evidence leading to this 
conclusion. The 'certainty directives' can be considered to be a weighting given to 
a particular condition which is independent of the certainty factor determined by 
the input. The updated certainty factor is also in the same range, -5 to +5. The 
certainty directives and the method of calculating the updated certainty factor is 
given below. 

3.4.1 Certainty Directives The method used for the calculation of the com­
bined certainty factor of conditions has been derived from observing the effects of 
conditions on the conclusion of a subrule. It was realised that the various condi­
tions will affect the conclusion in different ways. Therefore 'certainty directives' 
were introduced. Each condition of a subrule has a certainty directive which affects 
the value of the updated certainty factor for the conclusion of the subrule. 

There are six certainty directives namely, 'necessary,' 'ext-supplementary,' 'sup­
plementary,' 'supportive,' 'contradictive,' and 'parameter.' Other directives could 
be easily added to the certainty model if needed. 

They are attached to conditions in the form: 

condition which-is CERTAINTY DIRECTIVE 

For example, in subrule (2) given in Fig. 4, the certainty directives are added 
as following: 

if 

and 

and 

conditional 
'exist movement joint at the return' which-is necessary 

'the movement joint is of adequate width' which-is 
ext-supplementary 

'appropriate material used in the movement joint' 
which-is supportive 

then 
'adequate movement joint at return. • 
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The necessary directive 
When the directive 'necessary' is attached to a condition in the premise of the 

subrule, the updated certainty factor of the conclusion of this subrule is calculated 
as follows. H the condition is satisfied with certainty A and the conclusion has a 
prior certainty B, then the updated certainty factor of the conclusion, C, is given 
by: 

C =minimum (A, B) 

The certainty directives 'ext-supplementary,' 'supplementary,' 'supportive' and 
'contradictive' are listed in order of strength, e.g., when attached to a condition 
the first will support the conclusion more strongly than the second. For the values 
of A, B and C as defined above, the certainty directives affect the certainty of the 
conclusion as follows: 

The ext-supplementary directive 
The ext-supplementary directive is used for those conditions which support or 

contradict the conclusion the strongest of the four above directives: 

C = B + 2 · A/5, and 

c ~5, and 

c~ -5. 

The supplementary directive 
The supplementary directive is used for conditions which support or contradict 

the certainty of the conclusion less strongly than the 'ext-supplementary' directive. 
C is calculated as follows: 

C = B + A/5, and 

C ~ 5, and 

c~ -5. 

The supportive directive 
The supportive directive used for those conditions which only support positively 

the conclusion. C is calculated as follows: 

H A < 0, then C =B. 

H A~ 0, then: 

C = B + A/5, and 

C $5, and 

c~ -5. 
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The contradictive directive 
The contradictive directive is the opposite of the supportive directive. C is 

calculated as follows: 

If A > 0, then C = B. 

If A ~ 0, then: 

C =B - A/5, and 

C ~5, and 

C~-5. 

The parameter directive 
The parameter directive is used for those conditions which do not affect the 

certainty of the conclusion and for which, 

C=B. 

If the order in which the conditions in a rule appear is altered this may affect the 
probability and so when rules are written care must be taken particularly with the 
choice of the 'necessary' directive. 

3.5 The EXPLANATION Module 

The explanation module can be accessed by the user at any time during a consul­
tation. The explanation module generates responses when the user types in HOW, 
WHY or HELP. These responses are retrieved partly from the knowledge base and 
partly from the situation model, HELP texts are retrieved which give assistance 
with the questions, WHY gives the reasons why certain questions are asked, and 
what they are trying to achieve and HOW explains how a goal has been arrived at. 
This is achieved by using the logical relationships of the evidence used to arrive at 
the goal which have been stored in the situation model. 

3.6 The WHAT-IF Module 

The WHAT-IF module allows the user to change previously entered input and to 
test the effects of these changes on the diagnosis of the cause of cracking. This 
module can be accessed whenever the likelihood of a cause of cracking has been 
diagnosed by the system. Once the module is accessed the system is put in the 
'WHAT-IF' mode and a menu which includes all the parameters for the diagnosis 
is given. The user can then inspect the current value of any of these parameters 
and change any of the values. If changes are made, the user can then re-run this 
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particular case. The system will then re-process the case and return the cause and 
certainty based on the new values of the parameters. During the re-run additional 
data may be requested. As with normal processing the user is able to find HOW 
the diagnosis has been arrived at. The changes can be made permanent by the 
user, or the original values restored. At this stage, the user can exit from the 
WHAT-IF mode or can repeat the process by inspecting, changing parameters and 
then re-running as many times as required. 

This facility has been found to be extremely useful. Of particular note are the 
following aspects: 

• The ability to investigate the effects of changes in the input data on the 
likelihood of various causes of cracking without having to postpone this in­
vestigation until all the causes, with the initial data, have been processed. 

• The ability to change input data without having to input all the data again. 

• The ability to investigate the effects on the diagnosis if the value of a param­
eter which is vague or if it is not known, through the user trying alternative 
values to check the parameter's effect on the final outcome of the diagnosis. 
This can be of particular use in cases where it may be difficult or expensive 
to determine accurately the value of the parameter. The analysis can be used 
to determine if an accurate value is required by checking the sensitivity of 
the diagnosis to values of the parameters. 

• The facility also proved to be very useful when developing the knowledge 
base. When a rule was added to the knowledge base, the facility was used to 
test and validate all the paths in the rule quickly and efficiently. 

• Finally, the WHAT-IF facility could be used for educational or training pur­
poses. 

3. 7 The INPUT-OUTPUT Module 

The input-output module is the 'user interface.' All input is requested through the 
module which generates the menus, and then stores input in the situation model. 
All output is also displayed through this module. 

3.8 The LIBRARY Module 

The library module contains functions which are used frequently in the system. 
These functions can be called as required by the various modules. 
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3.9 The FIXED-DATA Module 

The fixed-data module contains standard questions and messages. The standard 
questions are those asked by the inference engine which are not contained in the 
knowledge base, e.g., the question 'Would you like to see HOW?' which is asked 
whenever a result is output. The standard messages are used when errors are 
detected, e.g., when an unknown input is used the message 'Answer unknown, 
please try again' is displayed, additionally examples of the expected input are 
given. 

4 The Situation Model 

A situation model is created by the inference engine for each session. During a 
particular session all data and knowledge for that session is held as facts in the 
situation model. These facts include all input data and all the goals which have 
been investigated together with the supporting evidence and the logical relation­
ship of the evidence. This information is consulted whenever the user requires 
explanations of WHY a particular question is being asked or of HOW a particular 
goal has been arrived at. 

5 The Knowledge Base 

The knowledge base contains the subrules, information for the selection of appli­
cable rules, and definition for all parameters used. 

Every cause of cracking is the goal of a rule, Figure 5, and each rule consists of 
one or more subrules. Subrules are written in the knowledge base as independent 
sentences. The order in which the subrules are organized in the knowledge base is 
irrelevant, Figure 2, i.e., they are written in a declarative form. A subrule can be 
called from any premise part of any subrule, and hence a subrule can be common 
to more than one rule when the same subgoal needs to be established, Figure 3. 

As mentioned above, the knowledge base contains, in addition to the subrules 
and the parameters needed for the selection of the likely goals, definitions for all 
the parameters in the knowledge base. These definitions include text which is used 
by the explanation module in order to generate help and explanations. Also, they 
include facts about the parameters defining their type and the values or range of 
values which can be accepted for input. 

6 Example Run 

This section gives details of a typical run together with explanations. 
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RULE 1 RULE 2. 0. 0 .. 0 0 ••• RULE n. 

CAUSE OF CAUSE OF CAUSE OF 
CRACKING 1. CRACKING 2. CRACKING n. 

~T-l ~T-l ~T-l 
CONDITIONS AND CONDITIONS AND CONDITIONS AND 
SUBRULES CALLED SUBRULES CALLED SUBRULES CALLED 
BY RULE 1. BY RULE 2. BY RULE n. 

Figure 5. Schematic representation of the rules in the knowledge 
base. 

The problem considered is a parapet with vertical cracking. When the system 
is loaded, a series of preliminary questions are asked. In the description below 

indicates system questions 
* indicates user answers and 

** indicates comments. 

-Select the type of structure. 
* brickwork 

** This and subsequent non-numeric answers would be selected from a 
menu. 

-Enter the age of the structure in months. 
* 25 

-Select the distressed member. 
* parapet 

-Select the material used. 
* claybrick 



** Based on these values a number of rules will be selected, for 
example: 

- Thermal and moisture movement in parapets. 
- Flexural cracking at a short return. 
- etc. 
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** The user can control the order in which the rules are to be 
investigated. Alternatively, the selected rules will be investigated 
one at a time in the order above. The system displays the goal it is 
investigating at any time, for example: 

-INVESTIGATING: Thermal and moisture movement in parapets 

WHY 

-Are there any vertical movement joints in the parapets?. 
* yes 

-Enter the spacing of movement joints in metres. 
* why 

I am asking this question in order to know whether 
the spacing of the movement joints is adequate 

This is necessary to establish whether 
adequate movement joints have been used, from: 

movement joint(s) exist and 
movement joint(s) have adequate spacings and 
movement joint(s) have adequate width and 
appropriate joint material(s) have been used 

This is necessary to support or contradict the current 
investigation that the cause of cracking is due to: 

unaccommodated thermal and moisture movement in parapets 

HELP 

-Enter the spacing of movement joints in metres. 

* 7 

-Enter the width of the movement joint in mm. 
* 10 

-Select the material used as filler in the joint. 
* help 

The material used as filler in the movement joint are those 
which are used to fill the gap between two panels separated 
by a movement joint. For example: 
polyethelene, polyurethane and foam rubber, can be used 
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for expansion joints. 
for contraction joints 
expansion joints. 

Cork, fibreboard and hemp can be used 
but should never be used for 

(Ref: BS 5628:part 3) 

-Select the material used as filler in the joint. 
* polyethelene 

CONCLUSION 
It is LIKELY with certainty factor 3 that 
the cause of cracking is due to: 

unaccommodated thermal and moisture movement in parapets. 

Would you like to see how? 

* yes 
HOW 

Unaccommodated thermal and moisture movement in parapets 
is LIKELY was derived by: 

1. cracking occurs in parapet and 
2. cracked material is claybrick and 
3. not adequate movement joint is VERY LIKELY 

was derived by: 
3.1 exist movement joints is DEFINITE and 
3.2 spacing of movement joint is 7 <8 m and 
3.3 width of movement joint is 10 NOT 2•spacing 
3.4 adequate joint material is DEFINTE 

was derived by: 
3.4.1 movement joint is expansion joint and 
3.4.1 joint filler is polyethelene. 

and 

** If WHAT-IF is selected, and the value of the parameter 'exist 
movement joint' is changed from 'yes' to 'no.' After re-running the 
diagnosis the conclusion will be: 

CONCLUSION 
It is MOST LIKELY with certainty factor 4.5 that 
the cause of cracking is due to: 

unaccommodated thermal and moisture movement in parapets. 

Would you like to see how? 
* yes 

HOW 
Unaccommodated thermal and moisture movement in parapets 

is MOST LIKELY was derived by: 
1. cracking occurs in parapet and 
2. cracked material is claybrick and 
3. not adequate movement joint is DEFINITE 
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was derived by: 
3.1 exist movement joints is DEFINITELY IMPOSSIBLE. 

** The user is now given the options of retaining either the original 
values of the parameters or the new values input in the 'WHAT-IF' 
mode. If the user had retained the original values on exit from the 
'WHAT-IF' mode the diagnosis continues as below. Retaining the new 
values the diagnosis would also continue by investigating the next 
cause which could, of course, now be different from the original 
possible causes. 

-Would you like to investigate another likely cause? 
* yes 

-INVESTIGATING: flexural cracking at a short return. 

** The next likely cause is then investigated and the result is given. 
Investigation of the likely causes will continue until either the 
user has answered NO to the last question or all the selected likely 
causes have been investigated. 

** Finally a summary of all the likely causes which have been 
investigated is given, for example: 

SUMMARY 
1- Unaccommodated thermal and moisture movement in parapets 

LIKELY with certainty factor 3. 
2- Parapet is not separated from the vertical brickwork in a 

multi-story building, (vertical expansion of the brickwork 
can cause cracking in parapets) 

LIKELY with certainty factor 2.6. 
3- Flexural cracking in parapets, caused by a short return 

POSSIBLE with certainty factor 0.3. 
4- ... etc. 

** A report can be printed which will include all the results with the 
details of HOW they have been arrived at. 
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7 Summary and Conclusions 

A knowledge based system for the diagnosis of cracking in buildings has been 
described which produces the most likely causes of cracking in a building ranked 
in order of likelihood. The main aspects of this system are: 

1. It comprises an inference engine, a situation model and a knowledge base. 
The inference engine may well prove to be capable of handling other similar 
types of diagnostic problem. 

2. It uses the 'production rules' form of knowledge representation which has 
been found to be suited for this particular diagnostic-type problems. 

3. The system uses a probability technique which has been developed to deal 
with the uncertainties met in the diagnosis of causes of cracking. Using 
this approach it is possible to rank the causes in order of their likelihood of 
occurance. 

4. The knowledge base includes rules, subrules and meta-rules. Each rule has 
a goal which is a cause of cracking and is made of one or more subrules. 
Meta-rules are used to select those rules which are most likely to give the 
cause of cracking for the particular problem under analysis. 

5. A WHAT-IF facility is available which enables the user to investigate easily 
the effects of changes of the input in order to assess the sensitivity of the 
given cause of cracking. 

6. The system can be used to assess the cause of cracking for a number of cases. 
The knowledge base can be easily extended to include new causes. 
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Recent Advances in AI Based Synthesis of 
Structural Systems 
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United States of America 

Abstract The present paper describes a general framework for an AI based approach 
for developing near-optimal designs of load bearing truss and frame structures. The pro­
posed framework is an adaptation of a recently proposed model for generic problem solving 
system. The approach is based upon a systematic decomposition of the problem space, and 
an application of design heuristics to incrementally generate an optimal structural topology 
to account for the applied loads. The principal shortcomings of a heuristic decomposition 
approach are underscored, and more rational quasi-procedural decomposition methods are 
proposed. 

1 Introduction 

The past two decades have witnessed the emergence of optimization methods as 
viable tools in the structural design process. An extensive body of literature is 
available that pertains to the use of formal mathematical optimization methods in 
structural synthesis. A significant majority of these publications are devoted to the 
subject of member resizing to attain a minimum weight design, with constraints on 
structural integrity and response. References [1-4] are typical of such efforts. For 
most such applications, the structural geometry is specified before the optimiza­
tion sequence is initiated, and this initialization determines, to some extent, the 
effectiveness of the optimized design. Recent efforts have attempted to focus on the 
subject of configuration or topology optimization (5-7], albeit from the standpoint 
of starting with a given design, and varying the geometry shape variables to attain 
an optimum. 

The approach adopted in the present work is one in which the structural geom­
etry is created from a specification of load conditions and available support points 
in the design space. This is a realistic scenario in a design process. Numerous stud-
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ies have been conducted to gage the thought process of human designers. Studies 
based on protocol analysis [8-9] seem to suggest that human designers appear to 
be very skilled at identifying one promising configuration, which is then refined in 
a set of sequential steps. Other studies lend substance to the belief that creative 
design is the result of systematic application of simplistic logical processes. The 
philosophical basis of the present work is to regard the topology definition problem 
as one for which no unique solution exists. If, however, the topology assignment 
is done in a sequence of top-down refinement steps, with each step emphasizing 
the optimality of the partial configuration, the final topology is expected to be 
near-optimal. In order to implement such an approach, careful consideration must 
be given to the decomposition of the problem, and the order in which the various 
design criterion are met in the topology definition problem. 

The preliminary structural layout problem described above is most amenable to 
methods of heuristic design. Conventional mathematical programming techniques 
have been applied in such problems, but with limited success. The addition and 
deletion of structural members creates a design space that may contain various 
degrees of nonconvexities and disjointness; hence the difficulties in using nonlin­
ear programming strategies. Such preliminary layout problems have received some 
attention but with no emphasis on the optimality of the final design. Shah [10] 
reports exploratory efforts in the development of expert systems for preliminary 
form design of structural machine parts. The approach adopted was one in which 
previously catalogued case studies were used to build the structural form, starting 
at the primitive level and incrementally adding degrees of complexity. Nevill and 
his co-workers [11] and Brown [12] also recognize the importance of the preliminary 
synthesis problem. The research activity in this group has resulted in the develop­
ment of an automated preliminary design system MOSAIC, currently implemented 
for 2-D mechanical and structural systems. 

One of the major objectives of the present work was to emphasize the need for 
some degree of formalism in the approach adopted for conceptual design. Most of 
the reported efforts pertaining to this discipline have been somewhat disjointed, 
each devoting significant development effort in building a framework that was con­
sidered unique by its developer, and necessary for the application at hand. Other 
than the fact that such systems have common components in the form of a knowl­
edge base and an inference facility, there is very little adherence to a set of com­
mon development guidelines. Such a lack of standardization is at least partially 
attributable to the fact that there is no general agreement on what is regarded 
as a good model for engineering design practice. Recent efforts of Tong [13] have 
focussed at attempting to establish some formalism in knowledge-based design. 

A brief description of a framework for generative model abstraction, emphasiz­
ing the usefulness of algorithmic processing, and deriving from the general approach 
proposed by Tong, is presented here for completeness. The framework is discussed 
in greater detail in Refs. [14-15]. An implementation of the process in the domain 
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Figure 1. Organization of design system. 

of optimum structural synthesis is another focus of the present paper. 

2 Generic Problem Solving Systems 

The process of automated conceptual design proceeds with a synergistic appli­
cation of design heuristics and domain analysis programs, resulting in a tightly 
coupled quasi-procedural approach. The organization of a problem solving system 
to achieve this task determines the overall efficiency of the process. Separation of 
various components of such a system is important, as it retains a level of mod­
ularity in the system which allows for component updates. At the very outset, 
it is important to recognize three distinct levels at which the automated design 
process can be organized-the knowledge, function, and program levels. A typical 



288 

relational arrangement of these levels of organization are shown in Fig. 1. 

3 Knowledge Level 

A detailed description of the design domain is relegated to this level. This in­
cludes all pertinent specifications which define the acceptability of a solution. All 
necessary and applicable tools for analysis are also made available at this level. 
Furthermore, the types of design applications envisaged for such systems would 
very seldom generate designs that bear no resemblance to their predecessors. A 
possibility exists, therefore, to develop at this level a general taxonomy of problem 
types, of the most typically encountered design constraints, and of possible solution 
strategies. The domains that must be considered in this exercise include geometric 
modeling, structural analysis, and optimization methodology. 

In creating a taxonomy of designs based on problem specifications, one is essen­
tially identifying abstract features that result from an imposition of such require­
ments. Structural design requirements may be classified on the basis of strength, 
stiffness, elastic stability, degree of redundancy, types of support conditions, dy­
namic behavior, and a requirement of least weight or least complexity in manufac­
turability. Clearly, each of these requirements has an influence on the design that 
distinguishes it from designs dominated by other requirements. As an example, a 
structure that is governed by structural stability requirements will be dominated 
by elements that can withstand compressive loads, and further, such elements will 
typically have appropriate aspect ratio and stiffness properties. However, in as 
far as possible, it is advantageous to relate one abstract feature with one prob­
lem requirement. Failing this, the classification must clearly indicate the relative 
contribution of a requirement to a salient characteristic. 

Clearly, the information available at the knowledge level determines the class 
of problems for which solutions can be obtained. The coupled algorithmic and 
heuristic process can be computationally demanding in some situations. It is in 
such cases that a taxonomy of designs based on problem requirements is particularly 
useful. It is conceivable to abstract partial designs in a primitive form, where 
such primitives adequately model the displacement field of more refined models, 
but may have considerably fewer structural elements. These primitive forms may 
be retained in the analysis to a point where it becomes necessary to introduce 
greater refinement in order to meet a specific class of design requirements. One 
can think of a macroelement that has specific stiffness characteristics to satisfy 
displacement requirements. Such a macroelement can then be defined in terms 
of component elements with the same aggregate stiffness, and which account for 
strength requirements. 
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4 Function Level 

Perhaps the most significant feature of this level of organization is a controller which 
directs the flow of the conceptual design process. The controller is essentially an 
embodiment of the problem solving strategies that may be invoked for the problem 
at hand. The design specifications handed down from the knowledge level are 
attempted to be satisfied at the function level. Although designs can be generated 
by considering all requirements simultaneously, this methodology is not considered 
appropriate for the task at hand. Instead, a more natural process of refinement in 
steps is adopted, wherein the problem is decomposed into smaller, more tractable, 
and preferably, single goal problems. The underlying principle in such a refinement 
is that the solution space is more likely to be unique in the presence of a higher 
degree of specification detail. 

In a problem where the design philosophy is one of sequential refinement to 
satisfy an ordered set of goals, there is a need for evaluating the proposed partial 
concepts for acceptance. Such testing operators are made available at the func­
tion level, and simply interact with the available tools at the knowledge level to 
recover the pertinent information. The failure of a proposed concept to meet the 
acceptability test is generally followed by alternative design moves. Such moves 
are facilitated by the initial decomposition of the problem by design specifications, 
and which allows for construction of tree-like deduction paths. 

Finally, the controller must have the option of modifying the design rules, par­
ticularly if it assists in realizing the design specifications. The acceptability tests 
can themselves be relaxed to admit designs. Yet another option available at this 
stage is to extend the design by adding features which enable it to pass the ac­
ceptability requirements. It is important to understand that for any given task, 
there may be several transfers of control to the program and knowledge level as 
deemed appropriate by the controller at the function level. This transfer of control 
is repetitively invoked for each of the component tasks. 

5 Program Level 

At this level, no problem solving knowledge is explicitly available. However, the 
implementation of all design steps on the basis of information received from other 
levels, is carried out at this level. In addition, tasks of data management, program­
ming procedures, and production rules are assigned to this level. The database 
management capabilities of such systems are of particular importance, as signif­
icant amount of data is generated and must be managed for a design system to 
work efficiently. This is even more crucial as large amounts of algorithmically gen­
erated numerical data must be stored and post-processed to use meaningfully in 
the iterative process. 
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Two levels of data management were implemented in the current system. At 
the core level is a global data base that records information for long term usage. 
Problem and subproblem related databases are extracted from the main system 
and are local to the knowledge level. Such an approach provides a convenient 
blackboard for constraint posting and propagation as the design is taken through 
a process of incremental refinement. 

The inference facility is perhaps the most significant feature at this level. In the 
structural design problem that is implemented in the present work, a rule-based, 
C Language Integrated Production Systems (CLIPS) [16] is used. This utility can 
be invoked from within a Fortran program, making available a convenient link 
between algorithmic and heuristic processing of information. 

6 Optimal Structural Synthesis 

The procedure described in the preceding sections was implemented in an auto­
mated design system for the generation of near-optimal, two dimensional struc­
tural configurations. The problem required the development of both the structural 
form and member cross section dimensioning to carry a prescribed set of con­
centrated and distributed loads and moments, with the least structural weight, 
and constraints on allowable displacements, fundamental frequency, and structural 
strength. In keeping with the proposed framework of developing generic problem 
solving systems, the various tools necessary for the task were assembled into each 
of the three levels of organization. 

The knowledge base comprises an important segment at the knowledge level, 
and for the problem under consideration, the design heuristics can be classified 
into two broad categories. These categories correspond to the design heuristics 
for topology generation and those for member resizing. The former deals with the 
actual definition of the structural topology under given load conditions and for 
specified supports. The latter is a heuristic implementation of constrained nonlin­
ear optimization to determine optimal member cross sections, once the topology is 
defined. 

7 Knowledge Base for Topology Generation 

The definition of the design domain is placed into the knowledge level. In particular, 
this includes specification of the magnitude, type, and orientation of the loads with 
respect to the supports in some reference axes system. The type and location of 
support points are also part of such a database. This extended database is utilized 
to provide all pertinent data to the knowledge base, and on the basis of which 
various heuristic actions are invoked to generate the structural form. 
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In the present implementation, the controller at the function level initiates 
the process by reading in as input, the total number of loads and the magnitude 
and location of each load in order of increasing distance from the origin in the x 
coordinate direction. Corresponding to each of these loads, the support numbers 
and support types are read in order of increasing distances from the loads. 

The synthesis itself is conducted in a sequential manner, with the design heuris­
tics attempting to stabilize one load location at a time. The x and y components of 
the load are read. If the applied load happens to be a moment, one design decision 
becomes immediately obvious. The element that transfers this load to a support 
must allow for rotational degrees of freedom at its node. Hence, a beam element 
is selected to transfer this load. To stabilize this load and to maintain a minimum 
weight, the nearest support is examined. If this support is of clamp type, then a 
beam element of nominal cross sectional dimensions is chosen. In case, the support 
is not a clamp, then the next nearest support is considered. If this support is a 
clamp, then a beam element is chosen between this support and the load. If not, 
the load is connected to both the supports using two beam elements. A further 
level of refinement is possible by checking to see if the third nearest support is a 
clamp, and if so assess the weight penalty of connecting to this support against the 
use of two beam elements to the two nearest supports. 

This strategy is also used in the event that at a given point, both applied forces 
and moments are present. For the situation where the loads are only applied forces 
with nonzero x and/or y components, the orientations of the loads stored in the 
database are used. The angle between the force resultant and the hypothetical 
element connecting the point of load application and support, is computed. If this 
angle is less than 20 degrees, then the load is considered to have a large axial 
component, and an axial rod element is preferred. 

The other possible scenario is one in which a large transverse component of 
the load exists in addition to an axial load. The orientation of the load resultant 
with respect to the next nearest support is considered. In the event that the 
load can be largely considered axial for such an element, an axial rod element is 
introduced between the load and this support. In the event that this condition 
is also violated, the first two supports are considered. If the nearest support is a 
clamp, then a beam element is chosen between the load and support. If not, then 
a beam element is chosen between the load and the second support, provided it is 
a clamp. Otherwise, two beam elements are chosen between the load and the two 
supports. Multiple loads acting at a point can simply be resolved into the x and y 
components, and handled as above. Likewise, distributed loads could be present as 
part of the design problem. In such situations, equivalent end loads and moments 
are computed by assuming the distributed load to act on a beam segment, and 
these loads and moments are connected to supports as explained in the foregoing 
discussion. 

Once a load is stabilized by the process described above, the point of application 
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of the load becomes available as a support point. This is physically an elastic 
support but may be modeled as a rigid support point. The controller uses the above 
heuristics until all the loads in the input have been accounted for and are stabilized. 
Alternate topologies are generated and considered for analysis when the initial 
topology fails to satisfy any of the structure behavioral constraints, and for these, 
a specific order is assumed. The displacement constraints are first met, followed 
by frequency, and finally the stress constraints. The process is quasi-procedural, 
wherein heuristics suggest a design which is then verified by an algorithmic process. 

The analysis of the structure is performed using a general purpose finite element 
program EAL [ 17]. The actual connectivity between the algorithmic and heuristic 
process is described in a later section. Displacement constraints are first checked 
for feasibility, the failure of which invokes a set of heuristics designed to obtain 
constraint satisfaction. These heuristics are based on incremental changes in the 
structure designed to incur the least weight penalty. An alternate structure is 
generally proposed by addition of a member at the node location for which the 
displacement constraint was violated. The member is connected to nearest support 
point to which it was not previously connected. This process is repeated for a 
satisfaction of the frequency and stress constraints by invoking a similar set of 
heuristics. 

In the event that after all possible connections the current constraint is still 
violated, the controller uses a backtracking strategy to return to the previous con­
straint and look for the next best configuration acceptable for that constraint. This 
design is then passed to the lower level for refinement and satisfaction of the failed 
constraint. A feasible structure may or may not result from the exercise. In the 
event of an infeasible design, one may either discontinue the exercise or attempt 
constraint satisfaction by varying member cross sectional properties. The latter 
would be attempted in any event as a logical step for weight minimization. In 
the present work, the option exists of either using a strictly procedural, nonlinear 
programming based optimization algorithm [18], or a heuristic implementation of 
such a scheme. 

8 Heuristic Optimization 

Once an initial topology has been generated, the next task in the optimal design 
process is the resizing of the cross sections of the structural members. In the 
present work, an attempt was made to reduce extensive numerical evaluations by 
incorporating some heuristics in the optimization procedure. The objective of this 
work was to simulate the search process of a constrained minimization scheme, but 
to reduce the computational effort by making gross heuristic assumptions regarding 
the suitability of a chosen search direction. 

The sensitivities of the objective and constraint functions with respect to the 
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design variables were first evaluated. Likewise, the initial values of the normalized 
constraints and the objective function were obtained as an assessment of the start­
ing design. These were evaluated on the basis of a finite element analysis. The 
section areas and moment of inertias were the design variables for the problem. 

The design variables were ordered on the basis of the objective function sensi­
tivities, with the first corresponding to the one that gave the best improvement in 
the objective function. The controller first attempted to satisfy any violated con­
straints, by changing the design variable that resulted in the least weight penalty. 
The actual step length was determined on the basis of a piecewise linearization of 
the violated constraint about the initial point. 

Once an initially feasible design was established, the objective function and 
constraint sensitivities were recomputed and ordered as before. While some of 
the constraints may be critical, others could be satisfied by large buffer margins, 
holding out hope for further decrease in the objective function. The design variable 
with the maximum possible improvement in the objective function was then chosen. 
Constraint gradients were checked to see if a change in this design variable could 
be accommodated without violating a constraint. If the piecewise linearization 
indicates the possibility of an infinite move in this direction, then a 25% change in 
the design variable was allowed. Otherwise, the constraint closest to critical for a 
move in this direction was checked to see if at least a 10% improvement was possible 
before violation. If affirmative, then the allowable change was affected. Failure of 
this check resulted in examination of the next best available move direction. Note 
that if an unbounded move is suggested for a design variable in more than one 
iteration, it indicates a member that can be removed from the structure, provided 
it does not render the structure unstable. Deletion of members is a difficult step 
in strictly procedural optimization. 

9 Representation of Design Heuristics 

All the design heurstics were represented in the form of rules, written in a for­
mat required by the inference environment of CLIPS. Both an interactive mode 
of execution and one which is similar to an embedded expert system format, are 
permitted in this environment. Initially, all illustrative examples were run inter­
actively. This provides the opportunity to view the execution process, of editing 
pertinent information, and the ability to maintain a record of the status of the 
system. A typical usage involves creating a rules and facts file, followed by the 
execution of CLIPS which in turn loads the rules and facts file. 

The other mode of execution is the use of CLIPS as an embedded expert system. 
In this mode, the CLIPS is executed from a FORTRAN program, preceded by the 
loading of the rules file. A basic feature in the CLIPS environment is that rules 
and data are two separate entities. The inference engine uses a forward chaining 
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algorithm to apply the knowledge (rules) to the data. 
In a basic execution cycle, the knowledge base is examined to see if conditions 

of any rule are satisfied. This is done by simple pattern matching of the data with 
the conditions. If the fields of the data which are asserted as variables, match the 
conditions of a rule, then that rule is activated for firing. In case of more than 
one rule match, all the matched rules are activated and pushed onto a stack. The 
most recently activated rule has the lowest priority and is put at the bottom of 
the stack. The top rule is selected and executed. As a result, new rules may be 
activated and some previously activated rules may be deactivated. This cycle is 
recursive until no further pattern matches are possible. 

A general rule syntax in CLIPS is given as follows: 
(defrule <name> ["comment"] 

(<first pattern>) 
[ ( ) 

;LHS 

(<nth pattern>)] 
=> 

{<first action>) 
[( ) ;RHS 

( ) 

(<nth action>)]) 
The LHS consists of one or more patterns which form the condition(s) to be 

satisfied, before the rule can be fired. An implicit 'and' is present in the LHS if 
more than one pattern is present. The RHS of the rule is a list of one or more 
action(s) to be performed as a result of the firing of the rule. An explanation of 
a typical rule for topology generation is presented in Appendix A. The rule base 
also includes a few meta-rules. These are also treated as rules in the inference 
environment, each of which is a superset of two or more rules. The advantage of 
using meta rules is the efficiency of concatenating task specific rules. Furthermore, 
a better control over the evaluation of rules is possible. 

10 Integration of CLIPS with Algorithmic 
Procedures 

As described in an earlier section, the input to the design process includes a speci­
fication of loads, type and location of supports, and specification by coordinates of 
any forbidden zones in the design domain. Using this input, a FORTRAN module 
extracted all relevant data such as lengths, any possible non-permissible members, 
angles subtended etc., to obtain a quantitative enumeration of the design domain. 
One of the major tasks for this module included the creation of a facts file. This 
file contained the description about each load, as shown below. 



(load#, load location, x component, y component, moment, 
support#, type of support, support location, distance, angle, 
(next nearest support information) ..... ) 
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A CLIPS batch file was created which uses the facts file, and the rules file to 
generate a topology. The topology generated was stored in a data file in a two 
dimensional array. The array format is shown below. 

member load# support/load# type 
1 1 3 b 
2 1 2 -

Once the topology was generated so as to stabilize all loads, the completed structure 
was available for finite element analysis to check satisfaction of other constraints 
and possible modification of topology as described in an earlier section. In each 
of these incremental modifications to obtain constraint satisfaction, the controller 
takes the output of CLIPS topology generation, and creates an input runstream 
for the EAL finite element analysis program. Upon execution of this program, the 
necessary constraint and objective function information is read and returned in the 
proper format for it to be read as a CLIPS input file. It should be very clear from 
the foregoing discussion that there is a significant transfer of information between 
various levels of organization in such an integrated design system. 

11 Implementation in Structural Synthesis 

The specific organization of design tools in the three level approach embraced in 
the present work is shown in a schematic sketch in Fig. 1. At the function level, 
the topology analysis module is responsible for developing a table of pertinent 
features for the loads and supports. Two other modules at the function level 
were programs for finite element analysis, and a nonlinear programming-based 
optimization program. The latter is available to perform procedural optimization 
on a given geometry in lieu of the heuristic optimization. Also present at this level 
is a controller which directs the flow of the synthesis process. In the present work, 
the controller assumes a heuristic decomposition of the problem, and addresses 
the various design requirements in that order. A more rational approach of using 
dynamic programming concepts for this purpose is presently under study. As stated 
earlier, no problem solving knowledge is introduced at the program level. However, 
the inference facility which uses information from the knowledge and function level 
to suggest new design moves, is available at this stage. 

A global database is central to the knowledge level organization. Both domain 
and design specifications are resident in this database as are results obtained from 
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any enumeration of the design space during the process of sequential refinement. 
Local databases are created from this global database for use in both algorithmic 
and heuristic processing in the knowledge and program levels. The creation of these 
local databases is closely linked to passing of control from one level to another. 

The approach presented in the preceding sections was applied to the generation 
of optimal topologies for two dimensional structural systems. Two examples are 
included in this paper. The first deals with structure synthesis for the loads and 
supports shown in Fig. 2. The design domain contains both concentrated loads 
and moments, as well as forbidden zones in which no element may be introduced. 
Figs. 3a-c demonstrate the incremental refinement as the structural geometry is 
completed and then optimized for minimum weight. The final cross sections of the 
beam and truss members are shown in Fig. 3d. The process of heuristic refinement 
of the cross sections reduced the structural weight by 19.44%. A second design 
domain is shown in Fig. 4, where both concentrated and distributed loads are 
defined. The final geometry and cross sectional dimensions are shown in Fig. 5. In 
this problem, the weight before and after the heuristic refinement of cross sections 
was 18.9 lbs and 14.3 lbs, respectively. A step-by-step execution of the design 
procedure is summarized in Appendix B. 

12 Closing Remarks 

The paper presents an artificial intelligence based approach for the optimum syn­
thesis of structural systems. The thrust of the present effort is in the establishment 
of a general framework for such automated design systems, and its adaptation in 
the structural design domain. The problem approached in the present work is 
one of optimal topology generation, followed by heuristic refinement of cross sec­
tional dimensions for minimum weight. The approach used is best described as 
quasi-procedural, in which significant algorithmic processing is used to assist in 
enumeration of the design space, and to invoke pertinent design heuristics. A 
heuristic element is necessary to overcome problems related to disjointness in the 
design space. The extensions to this work are related to developing more rational 
decomposition strategies and to extend the synthesis to account for uncertainty 
in load and support definitions. At a more fundamental level, there is a need for 
extensive research in obtaining abstract representations of partial designs for over­
all computational efficiency. The latter is especially applicable in more realistic 
structural applications. 
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Figure 3. Heuristic generation of structural topology and member 
cross sectional properties. 
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APPENDIX A 

Typical Rule for Topology Generation 

A typical rule in the knowledgebase for topology generation is shown. A brief 
comment is provided following each statement. 

(defrule rule6 $name of rule 
$variable g,array a, 
statement k 

?k <-(new-id ?g $?a) 

=> 

(?num) $variable num, this is 
the load# 

(bind ?a (nth 7 $?a)) $7th value in array a is 
variable a, 
nearest support# 

(bind ?b (nth 8 $?a)) $8th value in array a is 
variable b, support type 
$second nearest support# 
$support type 

(bind ?c (nth 14 $?a)) 
(bind ?d (nth 15 $?a)) 

(if (= ?b 1) $if first support is 
clamp 

then 

else 

(bind ?f 1) $member # 1 
(format topo "Md 'Y.4d 'Y.4d b 'Y.n" ?f ?num ?a) 

$writing the member#, 
load#, support# and beam 
type element to an 
output file 

(if (= ?d 1) $check if second support 
is clamp 

then 

else 

(format topo "'Y.4d 'Y.4d 'Y.4d b 'Y.n" ?f ?num ?c) 
$write the member#, 
load#, support# and beam 
type to an output file 
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(format topo "~4d ~4d ~4d b ~n" ?f ?num ?a) 
(format topo "~4d ~4d Ud b ~n" ?f ?num ?c))) 

$write the member#, 
load#, support# and beam 
type elements to connect 
the load to both the 
supports, to an output 
file. 
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APPENDIX B 

Execution of Design Process 

A detailed description of the execution process of the design process is documented 
below. 

• Create an input data file. This file contains information in the following 
order. 

# of loads 
# of supports 
# of distributed loads 
# of forbidden areas 
coordinates of loads 
direction cosines of loads 
magnitudes of loads 
coordinates and type of supports 
coordinates of the end nodes and magnitudes of 
distributed loads 
coordinates of the vertices of all forbidden areas 

The constraints are given in a separate file. 

• Run the design domain evaluation module. This creates an extended database 
and a facts file of the form shown below. 

(deffacts factl 
(new-id gen1 load#, load location, x component of load, 
y component of load, moment, support#, type, angle, 
distance, ...... )) 

• Execute the topology knowledge base in the CLIPS environment. The pro­
cedure includes executing CLIPS, loading facts and rules files, and executing 
the rules. The output for the example shown in Fig. 2 is given below 

1 1 4 b 
2 1 2 b to nearest load 
3 2 5 t 
4 2 3 b to nearest load 
5 3 6 b 
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The columns refer to member #,load#, support #/load#, member type 
respectively. 

• Using the above output file, an EAL runstream is created to perform an anal­
ysis of the structure. The displacement values, first fundamental frequency 
and the stress values are extracted from the analysis. 

• The displacement values are compared to the constraint allowables. If the 
constraint is satisfied, then frequency constraint is checked. Otherwise the 
topology is refined heuristically. 

• An EAL runstream is created and the structure analyzed. 

• The frequency values are verified for constraint satisfaction. If violated, then 
the topology is refined heuristically until the constraint is satisfied. 

• The stress constraints are verified. If any violation is present then topology 
is modified by heuristics. 

• The successful structure is analyzed using EAL. Each design variable is per­
turbed by 3% of its design value and the sensitivities of the constraints and 
the objective with respect to the design variable is evaluated. Design is up­
dated on the basis of sensitivities to a feasible point. The sensitivities are 
recomputed. 

• Heuristic optimization takes place in CLIPS environment. CLIPS is executed 
followed by the loading and execution of the rules file. The output file format 
is a 2 X n array, with the design variables in the first column and its numerical 
value in the second column. 



Representing the Ground 
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Abstract The representation of soils and rocks poses a particular problem for knowledge 
based systems (KBS) in geotechnical engineering. Geological materials are highly variable 
and considerably more complex than the man-made materials used in other branches of 
civil engineering. The knowledge base, and also a site specific database of ground conditions 
(which a KBS will need to access in order to make judgements about engineering problems) 
can be represented at a variety of levels of complexity. These will range from broad 
geological classifications, through detailed soil descriptions to quantitative parameters. A 
knowledge representation scheme is put forward which is able to deal with such a range of 
complexities. 

A geotechnical KBS also needs the ability to reason about trends and variations 
across a site, using only localised observations at a limited number of locations. 
This ability to construct a visualisation of the ground conditions will be one of the 
key features of a useful geotechnical system. 

1 Introduction 

Toll (1990) has argued that for geotechnical systems to find acceptance among 
practising engineers, the criteria must be: 

1. Intelligent enough to interact with an experienced engineer. 

2. Can deal with both qualitative and quantitative data. 

3. Can deal with uncertainty and imprecision. 

4. Can construct a visualisation of the ground conditions. 

5. Has a user-friendly natural language type dialogue. 
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Systems are under development at Durham University which are aiming to 
meet these requirements. For a system to be 'intelligent' enough to interact with 
an experienced engineer it will need to be able to reason at all levels of knowledge. 
The structuring of the knowledge will therefore be a crucial element in achieving 
these aims. Another important feature will be the ability to reason about the 
changes in strata which occur between the points at which ground conditions have 
actually been observed. The ways in which these aspects are being tackled are 
discussed. 

2 Knowledge Representation 

In order to reason about engineering solutions a geotechnical expert system needs 
two main types of knowledge; Geotechnical and Structural. The geotechnical 
knowledge is that which represents the soils or rocks. The structural knowledge 
represents the type of construction. Both types of knowledge can be represented 
at different levels of complexity. To be able to operate at the appropriate level a 
system must be able to respond to different types of input data, and to use a model 
appropriate to that data type. Typical levels of geotechnical data are listed below 
with the appropriate responses. 

Input Data Response 

Design brief (no geotechnical data) Rules of thumb 

Geological maps etc Qualitative empiricism 

Field data on soil/rock types Semi-quantitative empiricism 

lnsitu field test data, laboratory classification tests Quantitative empiricism 

Material properties (Laboratory measurements) Simplified theory 

Interpreted fundamental properties Theory 

Rules of thumb are those which represent 'common sense.' They will, of course, 
be sweeping generalisations and may often not take all factors into account. They 
will therefore have a relatively low degree of confidence associated with them. Em­
piricism is knowledge which has little basis in theory, and which forms the core 
of engineering judgement. The term Qualitative is here used to refer to purely 
descriptive terms which have no quantitative significance. For example, the de­
scriptive term 'Brickearth',has no immediate numerical association and would be 
described as qualitative. Semi-quantitative is used for more specific terminology, 
still descriptive, which has some quantitative association. For example, 'Stiff' is as­
sociated with a defined range of soil strengths or 'Clay' represents a defined range of 
particle sizes. Quantitative means that the knowledge is numerically based. Sim­
plified theory represents methods of reasoning which have some basis in theory, 
even though empirical 'fudge factors' may well be incorporated. Theory represents 
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the most fundamental level of knowledge, based on a deep understanding of soil or 
rock behaviour. 

An example of how these sub-divisions operate is given below for a foundation 
problem. The example is, of course, highly oversimplified. 

Rule of thumb: 

If structure is house 

then foundation problems are unlikely. 

If ground is rock 

then foundation problems are unlikely. 

Qualitative empiricism: 

If structure is office block 

and ground is alluvium 

then foundation problems are likely. 

Semi-quantitative empiricism: 

If structure height is tall 

and soil strength is soft 

then foundation risk is high. 

Quantitative empiricism: 

If bearing pressure is less than 75kN/m2 

and shear strength of soil is greater than 75kN/m2 

then foundation risk is low. 

Simplified theory: 

If bearing pressure is P kNjm2 

and shear strength of soil is C kN /m2 

then factor of safety = 6.2 x C / P. 

The degree of detail of the input data increases going down the list. So does 
the degree of detail, and of confidence, in the conclusion. Rules of thumb and 
qualitative empiricism will provide qualitative conclusions. Semi-quantitative and 
quantitative empiricism will be able to give semi-quantitative responses. Simplified 
theory and theory will give a quantitative result. 

Rules of thumb and qualitative empiricism can be implemented relatively easily 
using production rules. Semi-quantitative and quantitative empiricial knowledge 
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currently exist largely in the form of design charts and tables. This type of knowl­
edge can best be implemented using look-up tables, which will often need more 
than two dimensions. Simplified theory and theory are best implemented using 
algorithmic routines. 

By adopting such a structured system, it is possible to operate at all stages 
of a construction project, starting from the initial feasibility stage, when only 
vague descriptive data is known, through to detailed design using quantitative 
parameters. The majority of geotechnical design is carried out at the simplified 
theory/ quantitative empiricism levels. A full theoretical approach using numerical 
modelling is rarely used in geotechnical design, except on very prestigous projects. 

Often different types of knowledge need to be mixed. For instance, detailed 
quantitative knowledge of the structure, such as the bearing pressure, may be 
known but only qualitative knowledge of the soil may be available. Rather than 
develop mixed inference rules which can handle both data types, it is preferable to 
provide cross-over rules which can convert between data types, as this will avoid 
duplication of knowledge. Moving up the data structure (e.g. converting from 
quantitative to semi-quantitative or to qualitative) can be achieved with no loss in 
confidence. In the majority of cases the data structure will be filled in from the 
top down, so the less detailed data will already be available, and no inference is 
needed. Moving down the structure will involve either providing additional data, 
or alternatively assessing or guessing values. This can be done using established 
empirical rules for data assessment, or by using a knowledge base of 'typical' values. 

3 Data Structures 

For a KBS to be able to reason about a geotechnical problem it will need to have 
site specific knowledge of the ground conditions. The amount of data which will be 
available may be large (if an investigation has been carried out) and for this reason 
data input is best kept separate from the consultation process. To allow flexibility, 
systems must be able to accept data input during consultation, but should also 
provide easy database input and modification facilities as a way of informing the 
system prior to consultation. 

Geotechnical databases have been implemented for site investigation data (e.g., 
Cripps 1978, Day et al. 1983). Use can be made of existing databases, although 
some structures are too restrictive in the style and amount of information to be 
very useful. A data structure which can handle geological data and interpreted 
fundamental properties, as well as the factual observed data, is given in Fig. 1. The 
structuring of the data is shown with reference to both the sources of information 
(Field investigation, Laboratory testing and Data interpretation), and also to the 
level within the knowledge representation scheme. The different components of the 
data are described below. 
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Profile: The sequence of ground conditions (with depth) at a single location within 
the site. 

Geological Horizon: A specified layer within a geological sequence. 

Layer: A specific soil/rock type within a geological horizon. 

Samples: A discrete mass of material taken from the ground during field investi­
gations. 

Insitu tests: Tests which are carried out in situ during the field investigations. 

Classification tests: Simple laboratory tests which help to identify soil/rock types. 

Material Properties: Direct measurements of properties in the laboratory. 

Fundamental Behaviour: The parameters of material behaviour interpreted within 
a fundamental framework. 

Groundwater: Observations of ground water levels during, and after, the field in­
vestigation. 

4 Visualisation of Ground Conditions 

Geotechnical data, whether from a site investigation or from geological maps, is 
always incomplete. Observations of the ground conditions from borings or trial 
pits only gives information about discrete points which may be hundreds of metres 
apart. Geological maps only provide information on surface geology. The skill 
of the geotechnical expert lies in the ability to assimilate such different types of 
information, and to construct an 3-D visualisation of the ground conditions. This 
ability is based on an understanding of geological structures and processes. 

Attempts have been made to develop interpolation techniques for site investi­
gation data (Day et al. 1987). These simply correlate strata on the basis of the 
major soil type. Pattern recognition techniques have been used in petroleum explo­
ration (Bois 1982, Wu and Nyland 1987). However expert knowledge of geological 
concepts must be incorporated with these techniques before a satisfactory system 
can be developed. Miller {1987) describes a system which embodies the geological 
concepts of tectonics, depositional and lithological sequences, but this has been 
developed for location of petroleum resources, not for engineering. 

Fig. 2 shows some examples where changes in strata thickness may be observed 
in adjacent profiles. A particular horizon may simply thin or die out between the 
two profiles. However, a change in thickness may be due to the horizon being 
cut, either by the ground surface; an unconformity (an old eroded surface which 
has subsequently been overlain by younger deposits); a discordant body (a rock 
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body, such as an igneous intrusion, which cuts through an organised sequence of 
rock layers); or a fault (a fracture with some relative displacement on either side 
of the fracture). The ability to recognise these different cases will be vital to 
understanding the ground conditions. 

In addition to changes in thickness, different geological processes may result in 
changes in strata level. Fig. 3 shows some examples where changes in level can 
result from dipping, folding or faulting. Again the ability to distinguish between 
the three cases shown is essential for interpreting the ground conditions, and yet 
this cannot be done purely on the basis of strata levels in the observed profiles. 
Additional information on dip angles of the bedding planes or surface observations 
is required to differentiate between the different cases. 

Some simple rules for changes in strata thickness are given in Appendix A, 
implemented in the form of a PROLOG program. Such ideas need expanding to 
introduce the concepts of stratigraphy. In the example this is based on a simple 
numeric code to identify a layer, and layers are assumed to be discordant if the 
numeric sequence is not continuous. Imprecision will also need to be dealt with; 
strata levels and thicknesses may often fluctuate within small ranges, without this 
indicating any significant change in ground conditions. Perhaps most importantly, 
multiple profiles will need to be considered, rather than looking at trends only 
between two profiles. 

5 Conclusions 

Knowledge based systems for geotechnical engineering need to be able to reason 
with all levels of information, from vague geological classifications through to de­
tailed quantitative parameters. The knowledge base must be structured to reflect 
these different levels. This allows the system to accept a wide range of types of 
input data, and to respond to it at the appropriate level. 

A key feature of a geotechnical KBS will be the ability to reason about trends 
and variations across a site. Geological concepts must be incorporated which can 
assist with inference of the ground conditions between the points at which obser­
vations are being made. Profiles observed during a site investigation need to be 
combined with other types of observation, such as surface mapping, to create a 
complete visualisation of the ground conditions. 
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CASE 1 -Thins CASE 2 -Dies out 

CASE 3 -Cut by surface (outcrop) CASE 4 - Cut by unconformity 

Figure 2. Changes in strata thickness. 
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CASE 5 -Cut by discordant body CASE 6- Cut by fault 

Figure 2. (continued) Changes in strata thickness. 
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CASE 1 - Dipping CASE 2 - Folding 

CASE 3 - Faulting 

Figure 3. Changes in strata level. 
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APPENDIX A 

A PROLOG program which identifies 

stratigraphic trends between two profiles 

trend :-
write("Entor layer code •), nl, 
raadint(Layer), 

got_lovelo(Layor, Top1,Baae1, Top2 ,Baae2), 
thickneu(Top1,Baae1, Thick1), 
thickneaa(Top2,Baae2, Thick2), 

change_thickneu (Layer, Ihick1, Ihick2, Iop1, Iop2, Cutoff, Thick_trend ,Profile), 
write(•Layer •,Layer,• •,thick_trand), 
wri ta_profila(•at • ,Profile), 

change_level(Cutoff, Iop1,Baae1, Top2, Baee2 ,Levol_trond,Slopo), 
write(• and •,Leval_trand), 
wri te_profila( 11 towarda •, Slope), nl. 

write_profile {_,Profile):­
Profile=O. 

write_profile (String ,Profile) 
write(• .. ,String,• profile •,Profile). 

changa_thicknaaa (_, Thickl, Thick2, _, _, •••, 11 haa constant thicknaaa•, 0) :­
Thick1=Ihick2. 

changa_thicknaaa (_, _, Thick2, _, _, ••, •die a out• ,2):­
Thick2:0. 

change_thickneaa (_, Thickl, _, _, _, ••, 11 diaa out 11 ,1):­
Thick1=0. 

changa_thicknaaa(_, Thick1, Thic.k2, Top1, Top2, 11 top•, 11 ia cut by ground aurfaca• ,Profile):­
compare_thick (Profile, !hick1, Ihi ck2, Iop1, Iop2, Top) , 
get_ground (Profile, Ground), 
Ground=Iop. 

change_thickneaa (Layer, Thick1, !hick2, Iop1, Top2, •top•, • ia cut by unconformity• ,Profile):­
compare_ thick (Profile, Ihick1, Thick2, Iop1, Iop2, _), 
gat_layar (Layer ,Profile , 11 abova 11 , •no_fault •). 

changa_thicknaaa (Layer, Thick1, Thick2, Tap1, Top2 1 •base•, •is cut by dis cardant 
body", Profile) :-

compare_ thick (Profile, Ihick1, Ihi ck2, Iop1, Iop2, _), 
get_layer (Layer ,Profila, "below•, •no_fault ") . 

change_thickneaa(Layer, Ihick1, Ihick2, Iop1, Iop2, "fault", "ia cut by fault • ,Profile):­
compare_thick (Profile, Ihick1, Ihick2, Top1, Iop2, _), 
get_layer (Layer ,Profile, ••, "fault"). 

changa_thicknass (_, Thick1, Thick2, Top1, Top2, 1111 , •thins•, Profile):­
comparo_thick (Profile, Ihick1, Ihi ck2, Iop1, Top2, _). 

changa_laval( •••, Top1,Basa1, Top2 ,Basa2, ••is horizontal•, 0) :­
Top1=Top2, 
Basa1=Bas e2. 

chango_lovel( "baoe•, Top1, _, Iop2, _, "ia horizontal", 0) :­
Iop1=Iop2. 

changa_level( •top11 I _,Basel,_, Basa:Z, • is horizontal•, 0):­
Baoa1=Baae2. 

change_level( ••, Tap1 1 Basa1, Top2 ,Baae2, "top a lop a a down •,Profile) :­
compara_leval (Top1, Top2 ,Profile), 
Baoe1=Baae2. 

changa_laval( 116 , l'op1 ,Basel, top2 ,Basa2, 11 base a lopes down• ,Profile):­
compare_leval (Baao1,Baa e2 ,Profile) , 



Top1=Top2. 

change_level("baoo•, Top1, _, Top2, _, "dipe•, Profile):­
compare_level (Top1, Top2 ,Profile). 

change_level("top•, _,Baae1, _,Bue2, "dipo• ,Profile):­
compara_laval (Baaa1,Baae~,Profila). 

changa_laval(••, Top1,Baaa1, Top2 ,Baaa2, 11 dipa 11 , Profile):­
compare_levol (Top1, Top2 ,Profile), 
compara_laval (Baaa1 ,Baaa2,Profile). 

change_level( 0 fault 0 ,_,_,_,_,•dip cannot be inferred",O). 

get_levola(Layor, Top1,Baoo1, Top2,Baoo2) 
writa(•Profila t•) ,nl, 
lovelo(Layar, Top1,Baoo1), 
write(•Profil• 2") ,nl, 
laval a (Layer, Top2, Baaa2). 

levela(Layer, Top_level,Baae_level) 
writa( 11 Enter top level for layer code 11 , Layer, • : •). 
readraal(Top_lavol), 
writa("Entar baaa_lavel for layer coda •,Layer,•• : •), 
raadreal(Basa_laval). 

thicknes 1 (Iop_level, Baae_level, Thick) 
Ihick=Iop_level-Baae_level. 

get_ground(Profile ,Ground):-
write( 11 Entar ground laval for profile 11 ,Profila, 11 •), 

readreal(Ground). 

gat_layar(Layar ,Profile, •above•, •no_fault •):-
writa("Entar coda for layer above layer coda •,Layer , 11 in profile 11 ,Profile, 11 ••). 

readint (Layor _got) , 
not (Layer _got=Layer-1). 

get_layer(Layer ,Profile, "below", •no_fault"):-
write( 11Entar coda for layer below layer coda •, Layer, 11 in profile 11 , Profile .• 11). 

raadint (Layer _got) , 
not (Layer _got=Layer+l). 

get_layer(Layer ,Profile,_, "fault"):-
write("Doeo a fault exilt in layer • ,Layer, • at profile • ,Profile,• (yeo/no) •), 
readln (Anowar) , 
.lnawer=•yea•. 

compare_thick(Profile, Ihick1, Ihick2, Iop1, _, Iop):­
Profile=1, 
Ihick2>Ihick1, 
Top=Iop1. 

compare_thick(Profile, Ihick1, Ihick2, _, Iop2, Top):­
Profile=2, 
Thick1>Thick2, 
Iop=Iop2. 

compare_ level (Level1, Levell ,Profile) :­
Profile=!, 
Levell<Level:Z. 

compare_ level (Level1,Level2 ,Profile):­
Profile=2, 
Level2<Level1. 
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The Inductive System: A New Tool in Civil 
Engineering 1 

Tomasz Arciszewski 
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United States of America 

Abstract An inductive system is a computer program that uses learning from exam­
ples to conduct a qualitative data analysis: the extraction of decision rules from examples, 
determination of redundant attributes, and the analysis of relationships between different 
groups of attributes. Five potential civil engineering applications of inductive systems are 
discussed in this paper, including the extraction of decision rules from examples, problem­
solving, shallow modelling, learning about a domain, and learning expert systems. Exam­
ples of individual applications are given. These were obtained using a class of experimental 
inductive systems based on the theory of rough sets. 

1 Introduction 

The inductive system is a new tool for qualitative data analysis which can be used 
for different purposes in civil engineering. An inductive system is understood here 
as a computer program that uses learning from examples to conduct a qualitative 
data analysis, including the extraction of decision rules from examples, determina­
tion of redundant attributes, and analysis of relationships between different groups 
of attributes. From from the civil engineering point of view, an inductive system 
can be considered as a black box, as a new tool which can be used for different 
purposes in knowledge acquisition and decision making. This new tool has sig­
nificant advantages over human experts. Humans are very good at deduction, at 
using available general knowledge for dealing with individual problems. However, 
we have very limited inductive abilities. (By induction, we mean the development 
of general knowledge from examples.) Humans can handle only a very limited 

1 This paper is an updated and extended version of an invited paper, 'Inductive Learning in 
Civil Engineering,' published in Proceedings of International Colloquium on Expert Systems in 
Civil Engineering, Bergamo, Italy, October, 1989. 
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number of examples and attributes of a problem at the same time. Sillen [17] de­
scribes a human brain as a computer. He notes that an average human can handle 
only seven attributes and seven examples at one time, while a computer can deal 
with large numbers of both attributes and examples, limited only by the available 
working memory. This comparison clearly explains why computers are better than 
humans at learning from examples. 

Inductive systems have already been used in the space industry for the ex­
traction of decision rules from examples to be used in an expert system [14], and 
for different industrial problem-solving applications [17]. However, in civil engi­
neering, applications of inductive systems are still mostly experimental in charac­
ter [3,5,6,19]. 

The approach to computer learning from examples must be different in civil 
engineering than in computer science. Computer scientists are interested only in 
the internal workings of an inductive system. As civil engineers, we want to know 
the potential applications of inductive systems, and we want to know how to use 
different types of inductive systems. For these reasons, an engineering method­
ology of inductive learning has been developed at Wayne State University [4,7]. 
This methodology deals with the process of using inductive systems in knowledge 
acquisition, with applications for different civil engineering purposes. This work is 
intended to close the present gap between engineering and computer learning, and 
to stimulate engineering applications of inductive systems. 

The engineering methodology of inductive learning is defined as a subarea of 
computer learning dealing with the process of inductive learning from the user's 
point of view. In the proposed methodology, the following three components have 
been distinguished: 

1. the inductive learning process, 

2. selection of examples, 

3. control criteria. 

Its initial outline is given, in [7]. This methodology was prepared for engineering 
applications, and should be useful for anyone interested in the practical application 
of inductive systems. 

Our research indicates that an inductive system can be used for various civil 
engineering purposes. At least five possible applications of inductive systems in 
civil engineering have been distinguished: 

1. Extraction of decision rules from examples for application in rule-driven ex­
pert systems. 

2. Inductive problem solving. 

3. Inductive shallow modeling. 
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4. Learning about a given domain through the process of gradually extracting 
decision rules from examples. 

5. Learning expert systems for engineering applications, for example for con­
ceptual design or for control. 

These potential applications are discussed and examples of individual appli­
cations given. These were obtained using a class of experimental inductive sys­
tems based on the theory of rough sets and developed by Voytech, Inc. of Regina, 
Canada. The experimental examples were developed in the Intelligent Computers 
Center of Wayne State University's Civil Engineering Department. 

2 Extraction of Decision Rules from Examples 

This application of inductive systems is the best known, and it requires only a 
very few comments. It is well known that knowledge acquisition is a bottleneck 
in the development of many expert systems. Knowledge elicitation from domain 
experts is usually very time-consuming and requires the involvement of high-priced 
knowledge engineers. The process of knowledge elicitation is particularly difficult 
in all cases where decision rules are complex and are based on many attributes. In 
such cases, traditional methods of knowledge acquisition are ineffective, and only 
very rarely are the expected results obtained on schedule and within budget. 

The application of an inductive system can change this situation drastically. 
Very complex decision rules can be generated, involving a large number of at­
tributes. Traditional development of such rules would be very difficult, if not 
impossible. 

The developed methodology of inductive learning [7] can be used to guide engi­
neers through the process of extracting decision rules from examples. This method­
ology is currently available, and inductive systems can now be used as expert system 
building tools. 

3 Inductive Problem Solving 

Inductive problem solving is a process of extracting decision rules from examples 
to find one or several decision rules which are crucial to solving a problem. Its 
potential applications are much broader and more interesting than the simple ex­
traction of decision rules from examples to be used in an expert system. Inductive 
problem solving can be considered also for immediate application, and should be 
particularly attractive to all civil engineers dealing with complex problems. 

Inductive problem solving can be used as a supplementary technique in knowl­
edge acquisition when traditional knowledge elicitation has not yielded the desired 
results. One or two complex decision rules cannot be identified by human experts, 
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and an inductive system has to be used to find these rules. Such situations often 
occur when dealing with a problem which cannot be solved because of its complex­
ity. A number of decision rules governing such a problem may be known, but there 
is still one, or several, rules missing. This rule, is the missing link, and it is crucial 
to the solution of the problem. The missing link cannot be found using traditional 
methods of analysis, because of the larg~ number of examples, the large number of 
attributes, or both. 

The limitations of human working memory have been mentioned above. These 
limitations explain why human experts are very bad at dealing with such problems. 
The application of an inductive system can improve the situation immediately. All 
examples may be analyzed by an inductive system, and all decision rules, including 
our missing link, may be found immediately. 

There are known engineering applications of inductive problem solving; Nova­
cast of Sweden has a very impressive record here. For example, this company has 
used inductive systems for solving complex problems related to the production of 
margarine and the determination of its melting point. Another successful appli­
cation was the determination of the factors causing cracks in welds in off-shore 
drilling platforms [17]. 

A simple problem from the area of quality control in the manufacturing of 
steel beams will illustrate the concept of inductive problem solving. The problem 
is described by several attributes, including the conclusion, which represents the 
quality of a steel beam. These attributes and their values are given in Table 1. 

Table 1. Manufacturing of steel beams: attributes and their values. 

Attribute values 

No. Attributes 1 2 3 

1 Type of stiffener Standard Experimental 

2 Type of welds Fillet Double fillet Groove 

3 Welder's experience Low Average High 

4 Humidity Low Normal High 

5 Temperature Below average Average Above average 

6 Product quality Good Bad 

It was noted that in some cases the quality of the beams was bad. Unfortunately, 
human experts could not find the reason. An inductive system was used to analyze 
all available 22 examples, based on 5 attributes, given in Table 2. 

The inductive system immediately extracted a rule which provides the solution 
to the problem. This rule is given below: 



When: 
A1 = 2, stiffener is experimental, 
A3 = 1, welder's experience is low, 
A4 = 3, humidity is high, 
A5 = 3, temperature is high, 

Then: 
A6 = 2, the product is faulty. 
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This problem is relatively simple, but it shows the potential applications of induc­
tive problem solving. 

4 Inductive Shallow Modeling 

Inductive shallow modeling is a process of building a shallow model of an engineer­
ing system, physical or abstract, using an inductive tool. 

Traditional or deep modeling is based on the assumption that we understand 
the behavior of an engineering system, and that we have its conceptual model. 
This conceptual model can then be used for building a formal mathematical model 
using available experimental results. Very often, however, our understanding of 
the behavior of engineering systems is incomplete. In this case building formal 
mathematical models based on their predicted behavior is very subjective, and 
simply incorrect. 

Shallow modeling is based on the system's observed behavior. An understand­
ing of the system is not required. Obviously, such modeling has significant advan­
tages over traditional deep modeling. It is particularly useful in the modeling of 
very complex systems of unknown structure. Our initial experience in this area 
indicates that inductive shallow modeling may become very important, especially 
in engineering research. This experience and our initial methodological suggestions 
are presented in [9]. 

To demonstrate the use of shallow modeling, the results of an inductive exper­
iment conducted about two years ago [9] will be briefly described here. 

In the experiment, the results of only 15 tests of steel beams under bending 
were used. An inductive system was applied to confirm the existence of well-known 
relationships between different groups of variables. 

In particular, we were looking for answers to the following questions: 

1. Is the moment of inertia (V3) of our beams related to their depth (V1) and 
thickness (V2)? 

2. Is the ultimate beam capacity (V6) related to its moment of inertia (V3)? 

3. Is the ultimate capacity of the beam (V6) related to the measured strains 
(V7, V8) and calculated strains (V10)? 
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Table 2. Manufacturing of steel beams: Examples. 

Example Attributes 
No. 1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 1 1 1 2 1 1 
3 1 1 1 3 1 1 

4 1 1 1 1 2 1 
5 1 1 1 1 3 1 
6 1 1 1 2 2 1 

7 1 1 1 2 3 1 
8 1 1 1 3 2 1 
9 1 1 1 3 3 1 
10 2 1 1 1 1 1 
11 1 2 1 1 1 1 
12 1 3 1 1 1 1 
13 2 1 2 1 1 1 
14 2 1 3 1 1 1 
15 2 1 1 2 1 1 
16 2 1 1 3 1 1 
17 2 1 1 1 2 1 
18 2 1 1 1 3 1 
19 2 1 1 3 3 2 
20 2 2 1 3 3 2 
21 2 3 1 3 3 2 
22 2 3 3 3 3 1 

The modeling was conducted as a progressive learning process, and the results 
were recorded after each added example. These results are shown in Fig. 1. 

It can be easily seen that the answer to the first question is a very strong Yes. 
In the theory of rough sets, the dependency factor measures the strength of the 
relationship between given variables and a group of variables. In this case the 
dependency factor equals unity, indicating a functional dependency. 

The answer to the second question is more complex. There is a relationship 
between the moment of inertia and the ultimate capacity, but this relationship is 
not functional, and is relatively weak. The results obtained for the third question 
indicate that the learning process has not been completed, but there is definitely 
at least a weak relationship. 
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Figure 1. Inductive shallow modelling: learning curves {9]. 
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Inductive shallow modeling is still in the experimental stage, but even now 
it could be useful for practical purposes, particularly in cases where traditional 
methods of deep modeling are not sufficient. 

5 Inductive Learning about Domain 

Inductive learning about domain s a systematic and monitored multistage learning 
process in which an inductive system is used as a learning tool. The objective of 
this process of learning is to improve the understanding of a given domain through 
the systematic development of a system of decision rules governing this domain. 
This initial learning is necessary in the process of knowledge acquisition regarding 
a new domain. It can also be used when a given domain is well known, but the 
number of examples, or attributes, precludes the possibility of a human generating 
decision rules. 
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Figure 2. Inductive learning about domain: a multistage process. 

Very often in civil engineering we have a large body of known examples. We 
spend months or even years on studies of a given domain, but because of its com­
plexity we do not really understand it. We may identify several simple decision 
rules governing this domain, but we still need a more fundamental understanding. 
We simply need more fundamental decision rules governing our domain. This is a 
typical situation in the research and development of new engineering systems. We 
identify all known solutions and we want to understand all these solutions, which 
are our examples. In this case we can use an inductive system as an engineering 
learning tool, a new tool which can be used by a human expert to learn about a 
complex domain. This new tool is used in a multistage learning process (Fig. 2). 
At each stage of this process an inductive system is used to extract decision rules 
from a different collection of examples. The decision rules and parent examples are 
recorded. A human expert analyzes all examples and related decision rules, and 
tries to relate these decisions to examples and to improve his understanding of a 
given domain. 

This potential application still needs a lot of research and experiment, but it 
looks very promising. 
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6 Learning Expert Systems 

A learning expert system is an expert system with a learning component. Such 
a system has the ability to learn, that is, to modify its decision rules to follow 
changing conditions. A learning expert system can be developed for the purposes 
of conceptual design, diagnosis, or control [3,5]. 

To explain the concept of a learning expert system, a system for conceptual 
parametric design will be briefly described here [3]. By 'conceptual parametric 
design,' we mean an early stage of the design process. In this stage, design needs 
and available knowledge are analyzed and a number of concepts of a future civil 
engineering system are generated. In parametric design, a system under consider­
ation is described by parameters and the design process is a sequence of operations 
on these parameters, including the identification of feasible values of these param­
eters and the determination of the optimal combination of parameter values. In 
conceptual design, the parameters considered are mostly qualitative in character, 
and a compatible combination of their values, when for all parameters one value is 
taken at a time, identifies a concept of a civil engineering system [3]. 

A learning expert system for conceptual design can be used for the production 
of concepts. These concepts can be selected from the generated combinations of 
values of qualitative parameters, using internally produced compatibility rules. In 
this case the system must be used in two stages: learning and production. The 
objective of the first stage is to extract, from given examples, a system of decision 
rules governing a given domain represented by the examples. In the second or 
production stage, these decision rules are used for the evaluation of combinations of 
values and the selection of compatible combinations, which represent the concepts 
being sought. More details on learning expert systems for conceptual design and 
the results of structural experiments are given in [5J. 

In the case of conceptual design, the use of inductive learning has many advan­
tages. It enables us to deal with a large body of examples, and also leads to the 
development of very complex decision rules, which otherwise would not be prepared 
because of their complexity and unusual character. A learning expert system for 
conceptual design has the ability to produce standard, well-known concepts, but 
there is also a possibility that it will produce innovative, patentable concepts. The 
present research on learning expert systems for conceptual design is still in its 
early stages, but its potential is enormous, and very interesting developments can 
be expected in the future. 

7 Conclusions 

Five applications of an inductive system in the development of civil engineering 
decision support systems have been discussed. Two applications, extraction of 



330 

decision rules from examples and problem solving, can be considered for imme­
diate use, particularly now that the methodology of inductive learning has been 
developed and can be used to support these applications. Two other applications, 
shallow modeling and learning about a domain, still require research, but might 
be considered for experimental use. Learning expert systems, still require a great 
deal of research. 

It should be noted that inductive learning in civil engineering is still in its exper­
imental stages. The available experience is very limited, but initial results indicate 
that inductive systems may very soon become powerful tools in civil engineering, 
useful for different purposes, as proposed in this paper. 
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Abstract Foundation design requires experience and engineering judgment due to the 
unpredictable properties of soil and the empirical methods used in selecting a foundation 
type. A knowledge-based approach is used to facilitate the representation of design knowl­
edge. The knowledge-based system generates a small number of foundation designs which 
are feasible for the given site conditions and building configuration. The building is consid­
ered as a whole to identify economical alternatives. The potential designs are selected from 
the full set of major foundation types. These preliminary designs can then be rigorously 
investigated by standard methods in order to produce a final design. 

1 Introduction 

This paper describes a Knowledge-Based System (KBS) implemented using the 
expert system shell ED ESYN. The system addresses the preliminary design of 
foundations for multi-story buildings. Foundation design is a domain requiring 
experience and engineering judgment due to the unpredictable properties of soils 
underlying a proposed building and the empirical nature of the techniques used 
in analysis and design. Various methodologies may be applied to the problem of 
foundation design. This implementation uses the hierarchical decomposition and 
constraint directed search technique employed by the design shell EDESYN. 

An expert system for foundation design can perform a useful function within 
building design since the first tasks on a construction site are site preparation and 
foundation work. Because of this, the foundation engineer is under pressure to 
produce a complete design as quickly as possible. A tool which uses preliminary 
soil data and building characteristics to reduce the set of feasible foundation designs 
would allow designers to begin their design process earlier and to concentrate on a 
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higher level of design. To provide such a tool is a motivation for the development 
of this knowledge-based system. 

The system addresses preliminary foundation design-when preliminary soil 
data is available and after potential building configurations have been identified. 
Before extensive soil testing is completed, the system characterizes the underlying 
soil. This allows the system to generate, from incomplete data, a small number of 
preliminary foundation designs which are feasible for the given site conditions and 
building configuration. Only static axial loads are considered. The set of designs 
is selected from the full set of major foundation types-shallow, compensated and 
deep foundations. Additionally, the building is considered as a whole in order 
to identify economical alternatives rather than designing a foundation for a single 
column and repeating that design throughout the structural grid. Thus, the system 
will allow foundation designers to begin the design process with a set of preliminary 
designs which can be refined and extended quickly as more complete data becomes 
available. The preliminary designs can then be more rigorously investigated by 
standard methods in order to produce a final design. In this way, the KBS can be 
a part of the first iteration in the design process. 

2 Designing Foundations 

2.1 Three Phases of Foundation Design 

This section is intended to outline a basic foundation design process. Foundation 
design is a complex subject for which no comprehensive, algorithmic procedure has 
been formulated by experts. The author does not purport to hold the key to such 
a unified design process but merely attempts to coalesce procedures for the more 
routine aspects of foundation design laid out in numerous texts on the subject. 
Any specific foundation design process must be customized to the soil conditions 
of that particular site, while this general design tool must admit to addressing 
only the most general soil conditions. The purpose of this outline is twofold, first 
to lay out a framework for a design process which will be paralleled by the KBS, 
and secondly to demonstrate the highly empirical nature of foundation design in 
general. As in other areas of structural design, many analytical methods have been 
developed for quantifying the various aspects of foundation design. However, how 
these tools are used and how the parameters involved are determined is based on 
engineering judgment-qualitative empirical information and experience. 

In the most complete sense a foundation is the structural system which pro­
vides support for the structural loads. The foundation system includes the soil 
or rock on which the structure is founded and the portion of the structure which 
serves to transfer the loads to earth. More commonly the term foundation is used 
to refer only to the constructed transition member which rests in or on the sup-
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porting soil or rock. Nevertheless, the performance and hence the design of the 
transition member is dependent on the performance of the soil or rock. Thus, an 
accurate diagnosis of the engineering properties of the natural material on which 
the constructed material must rest is the first and most troublesome segment of 
foundation design. 

The state of the underlying soil is independent of the building configuration, 
yet the load which the soil will be subjected to is determined by the size, shape 
and loading of the building. Therefore, the second step of foundation design must 
be the characterization of the building structure in terms of how it will effect the 
foundation system. These parameters give a picture of the intensity and physical 
extent of the stresses in the underlying soil induced by the structure. 

The third stage is foundation synthesis. Synthesis may be defined as the selec­
tion, combination and adaptation of relatively standard components to generate 
a system which meets the prescribed functional requirements. In terms of foun­
dation design, synthesis refers to the selection of one or more foundation types 
and materials, arranging the foundation types to transfer the loads properly, and 
sizing the components. This involves determining the depth below ground sur­
face; the shape, size, and materials; and the construction methods for the optimal 
structure to transfer the superstructure loads into the earth. The foundation must 
satisfy the functional requirements of sufficient depth, safety against soil rupture 
or collapse, and the restriction of settlements to tolerable limits. Thus, foundation 
design is a three stage process composed of characterizing the three components of 
the soil-structure-foundation interaction which transfers the building loads to firm 
ground. 

2.2 Site Characterization 

Preliminary site investigation typically involves a visual survey and the drilling of a 
limited number of test borings at distances of 100 feet or more apart. The borings 
retrieve representative soil samples, perform penetration tests and determine the 
depth to ground water and bedrock. The boring logs, a surface description and 
geological maps may be all the geotechnical information that a foundation engineer 
has to work from when beginning the design process. 

The visual surface inspection is used to identify topological indications of sub­
surface variations such as old stream beds or other factors which may guide the 
placement and number of bore holes. Geological maps, while helpful as another 
indicator of possible site irregularities such as old stream beds or ox bow lakes, are 
usually on a large scale and more concerned with rock formations than soils. The 
majority of the specific soil data is infered from the boring logs. This information 
is usually in the form of a profile of soil attributes as they vary with depth. The 
attributes include soil descriptions and SPT N values, and possibly water contents, 
unit weights, and/or plasticity characteristics. 
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The most common field test in North America, the Standard Penetration Test 
(SPT), is a dynamic penetration test for estimating a soil's strength and com­
pressibility. The test involves recording the number of blows (N values) of a 140 
lb. weight dropped 30 inches required to drive a standard split spoon sampler 12 
inches into the undisturbed soil at the bottom of a bore hole. The SPT is an easily 
performed empirical test, but it can be affected by obstructions or lenses of soft 
soils. The SPT N values are of little direct value. However, when used in conjunc­
tion with the soil description a variety of heuristicts have been developed in the 
past for estimating many of the engineering properties of soils or foundation ele­
ments. For example, the capacity of a displacement pile driven into granular soils 
can be estimated from the SPT N values and the pile geometry. Heuristics also ex­
ist for estimating the bearing capacity, angle of internal friction or for determining 
footing dimensions based on the N values of a cohesionless soil. 

On the other hand, the engineering properties of cohesive soils are not reliably 
estimated using SPT values. The compressibility of soft to stiff clays is dependent 
on a time frame of greater duration than the standard penetration test allows. 
Nevertheless, the N values can serve as a rough guide in correlating the known 
stratigraphy of a general locale with that of a particular site in that locale. From 
this correlation a geotechnical engineer with experience in the area can estimate 
the engineering properties of the soils at the site, considering them to be similar 
to those of a generalization of the strata of the area. 

When the site both contains layers of cohesive soil and is not within a well 
studied, consistent area the soil properties of these clay or silt strata are estimated 
using purely empirical methods. The representative samples are retrieved from the 
borings and the soil is given a description such as 'soft grey silty clay with traces 
of fine sand.' The cohesive strength of the soil is estimated using a vane shear test 
or pocket penetrometer. The bearing capacity for shallow foundations is assigned 
via a table indexed on a soil description and stiffness using the cohesive strength 
as a bound. The values in these tables are based on an experientially founded 
correlation between stiffness, cohesion and compressibility so as to limit settlement 
to an acceptable amount. 

The above initial soil parameters are sufficient for the geotechnical engineer to 
estimate such secondary soil parameters as the bearing capacity coefficients and the 
compression index of each stratum. From the initial and secondary parameters the 
engineer can then start identifying potential foundation systems. More accurate 
values for the parameters require time consuming laboratory tests such as triaxial 
tests or large scale field tests such as plate loading or test piles. The foundation 
engineer can use these values for later iterations of the design process. 
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2.3 Building Characterization 

The second stage offoundation design, building characterization, is a fairly straight­
forward process. The column loads are computed in the same manner as when 
designing the building columns. Any distributed loads from external, internal, or 
shear walls are computed as well. The calculation of loads must also include the 
unloading produced by excavation, the weight of added fill and the stresses induced 
by changes in groundwater level. The column spacing is noted along with the to­
tal surface area of the structure. Finally, determining the depth of the basements 
completes the modeling of the structure. This process is a well structured task and 
hence could be done using an algorithmic procedure. 

2.4 Foundation Synthesis 

The third stage is the synthesis of the actual load transferring members, the con­
structed foundation structure. Foundations are classified into three basic types: 
shallow, compensated, and deep foundations as shown in Fig. 1. Shallow founda­
tions extend below the building a distance less than or equal to their least width, 
and their support is derived wholly from direct bearing along the base. Spread 
footings, continuous footings, and mats or rafts are examples of shallow founda­
tions. Compensated foundations work on the principle that if the weight of soil 
and water excavated equals the weight of the building added the soil is subjected 
to no additional stresses. The compensated foundation structure acts like the hull 
of a ship prompting the nickname floating foundation. Deep foundations, which 
include piles and caissons, extend below the building a distance much greater than 
their width. Piles can derive their support either from direct bearing at their base, 
through frictional resistance along their length, or through a combination of the 
two. 

The selection of a foundation type is a task of matching the building loads to 
supporting strata and recognizing a foundation structure which can safely transfer 
the loads to the strata. If the soils are relatively strong a shallow foundation may 
be used. The dimensions of the foundation are determined so that the structural 
loads are distributed over an area sufficient to limit the unit load to within the 
unit bearing capacity of the soil. However, if the strong stratum is underlain 
by a highly compressible layer a shallow foundation may result in excessive or 
uneven settlements due to the compression of the indirectly stressed weak layer. 
Alternately, even if the building loads are light but no shallow bearing stratum 
exists the use of a shallow foundation may allow for too much settlement. Any 
circumstance of this sort should lead to the selection of a compensated or deep 
foundation. 

Deep foundations are intended to transmit structural loads through weak or 
compressible soils to stronger soil or rock. When no strong layer exists the pile 
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group transfers the load to a larger area of soil than a shallow foundation can. 
The synthesis of a deep foundation system involves the selection of a pile material 
and construction method based on the magnitude of the loads, the nature of the 
soils that the pile must penetrate, and the length required to reach the supporting 
material. For each kind of pile the capacity of an individual pile is estimated. 
The intent of the estimation is to determine the length required to achieve the 
maximum safe axial capacity of the pile. Because of the bracing effect of even soft 
soils a pile may be considered as a short column. However, a building column is 
usually supported by more than one pile since the capacity of a pile is much less 
than that of a building column. Therefore, an efficiency or group effect for the pile 
group is computed based on the soils penetrated, and the number and spacing of 
the piles. The efficiency is a dimensionless factor between two and two thirds which 
is then multiplied by the capacity of the individual piles to arrive at a capacity for 
the pile grouping. 

An additional choice when existing soils are found to be unsuitable from the 
standpoint of their bearing capacity or calculated settlements is the possibility of 
ground improvement. The objective of ground improvement is the strengthening of 
weak soils or the reduction of downdrag forces on piles. Ground improvement may 
take the form of the removal of the top few meters of poor soil and its replacement 
with compacted fill. Alternately, the existing soils may be compacted through 
mechanical or chemical means. A third improvement method is the reduction 
of groundwater to reduce compressibility or negative frictional forces on a pile 
foundation. 

2.5 Ranking of Alternatives 

As in most engineering design, the final choice among the feasible alternatives is 
based on economics. The economics of constructing various foundation types and 
their varieties can be as much a factor as the loading and soil conditions. The least 
expensive foundation type is typically a shallow foundation and therefore they are 
a preferred choice when feasible. If a shallow foundation is appropriate, a spread 
footing system which occupies close to 30% of the building area is likely to be less 
economical than a grid of continuous footings. When the footing area approaches 
half of the building area a mat foundation becomes economically attractive. The 
savings are in the formwork required and the amount of material needed to resist 
shear and moments in the foundation. 

The selection of a particular deep foundation system is based on the overall 
cost of the candidates. The overall cost includes the unit cost per pile, the number 
of units required and the cost of installation. Installation problems are a consider­
able and highly unpredictable factor in the selection of a deep foundation system. 
Frequent or large obstructions or the presence of groundwater in cohesionless soils 
may rule out the use of certain types of piles. Therefore, the final selection of a 
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pile type and installation method is usually not based on the few preliminary test 
borings. A more thorough site investigation is used to make the final decisions. 
This is but one more reason to generate a wide range of foundation systems during 
preliminary design. 

3 Expert Systems and Foundation Design 

Knowledge-based system applications have been classified along a spectrum rang­
ing from derivation or interpretive tasks at one extreme to generative or formative 
tasks at the other [3]. Interpretive tasks use observed data to infer a problem state 
which is consistent with the initial conditions. The problem state contains more 
complete or more meaningful information than the initial statement. Two exam­
ples of interpretive systems are Prospector, a system for identifying ore-bearing 
geological formations [2] and Dipmeter Advisor, a system for interpreting oil well 
log data [1]. On the other hand, formative systems develop new object or process 
descriptions which satisfy all the applicable constraints. Beginning from an initial 
state and a set of constraints the formative system generates potential solutions 
and tests them against the constraint set. A formative system may be constructed 
to produce solutions which merely meet all the constraints or the system may form 
a solution which is optimal in some sense. Two examples of generative systems are 
Rl which configures VAX computer systems [8] and HI-RISE which synthesizes 
structural systems [6]. 

As stated earlier, the task of foundation design contains three stages: site char­
acterization, building characterization and foundation synthesis. Site characteri­
zation is a derivation problem. An initial condition containing uncertain and in­
complete soil property data is transformed into a wider and more useful set of soil 
parameters. The solution parameters are those which are sufficient for determining 
the dimensions and capacities of potential foundation designs. Which parameters 
are derived is dependent on the values of the parameters in the initial condition. 
Furthermore, the site characterization segment attempts to identify interactions 
between strata which may cause difficulties to the potential foundation designs. 

The task of building characterization is a simple extrapolation from known 
data to more complete data. Building characterization is a derivation task, but 
one which could be performed using a standard algorithmic approach. 

Foundation synthesis is a generative task. A description of the functional re­
quirements is contained in the site and building characterizations. The limitations 
of the available foundation materials (including the soils or rock) and the con­
struction processes form the set of constraints on the solution. Starting from the 
functional requirements and the constraints on the materials and processes in­
volved, a foundation description is generated. Eventually the optimal solution is 
chosen since only one foundation can be built and the developer wishes to spend 
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the minimal resources. Preliminary design should recognize the limitations on its 
domain and recommend multiple solutions. The multiple designs may be ranked 
according to an evaluation function to produce an ordered set of solutions. 

Existing geotechnical knowledge-based systems tend to address a limited por­
tion of foundation design. Systems exist which concentrate their efforts on pile 
design only or on the design of a spread footing or a single pile to support an indi­
vidual column. The previous foundation design systems implemented in EDESYN 
follow the latter strategy. However, the exclusion of potential foundation types 
is likely to lead to an uneconomical design. Further, the restriction to one pile 
per column is an unrealistic constraint since the capacity of a column can be much 
greater than that of a pile. By considering the building as a whole the economics of 
various shallow foundations may be weighed against each other. Also, it is impos­
sible to consider compensated foundations if the building as a whole is not taken 
into account. 

Other systems concentrate on soil characterization. For example, CONE inter­
prets soil characteristics from Dutch Cone penetrometer data [9] while SITECHAR 
serves as a component of an electronic workbench for geotechnical site character­
ization [10]. Each of these derivation systems provide a rigorous interpretation 
of soil properties within their domain. However, neither of these systems address 
the use of this information. The system described in this paper attempts to char­
acterize the site conditions as fully as possible given the type of data normally 
available from preliminary site exploration and to use the information derived for 
synthesizing tall building foundation designs. 

4 Overview of EDESYN 

EDESYN (Engineering DEsign SYNthesis) is a domain independent shell for the 
development of expert systems in engineering design [7,5]. The architecture of 
EDESYN follows the current tenet of knowledge-based systems, maintaining a sep­
aration of knowledge and control. EDESYN defines a representation and organi­
zational structure for the domain knowledge and provides the controlling inference 
mechanism or synthesis mechanism. The knowledge is provided by the developer 
of the particular KBS application in the form of system decompositions and plans, 
constraints, and functions. The resulting knowledge-base is used for a particular 
instance of the domain by a designer who provides the initial conditions and the 
mid-process guidance. 

The decomposition describes how the main design goal is to be broken down into 
subgoals, and how each subsequent subgoal is to be addressed. Each subgoal can be 
satisfied in one of three ways: further decomposition, selection from an enumerated 
set of discrete solutions, or the evaluation of a LISP function. Eventually the results 
of all decompositions are assigned a value through the selection of a set member or 
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as the result of a LISP function. The initial conditions and the synthesized values 
are stored in the design context in the form of a solution tree. 

The planning rules guide the decomposition based on the values of attributes 
in the design context. Each planning rule is in the form of an If . . . then ... 
statement. The antecedent of the rule specifies a state before the decomposition of 
the pertinent goal. If the antecedent is true the goal is decomposed according to the 
consequent of the planning rule. The consequent specifies a subset of the default 
decomposition to be used for the current instance of that goal's decomposition. If 
no planning rule applies, the current goal is decomposed according to the general 
decomposition. Thus, the planning of the decomposition is done during the design 
process. This allows the goals of a system to be organized in an order adapted to 
the values of particular attributes identified in the plan-adapting the process to 
the context. 

The synthesis mechanism controls the generation of all design alternatives which 
are feasible for the initial conditions specified by the user. Following a depth-first 
traversal of the task decomposition, the algorithm seeks solutions to each goal. A 
goal which is solved through further decomposition is decomposed and a plan is 
applied if one exists. The plan is based on the application of the planning rules to 
the design context. A goal which is solved directly is assigned a value using the 
method prescribed in the decomposition. As the decomposition tree is traversed 
a solution tree is generated to contain each feasible solution. The solution tree 
branches at each goal solved via an enumerated set. After checking the constraints 
on an assigned value the search is continued with the next goal in the depth-first 
order. Each applicable constraint is checked against the current assignment before 
pursuing the next goal. 

The constraints are used to prune the search and solution trees. Each constraint 
in the knowledge base describes an infeasible solution to a set of goals. When a 
value has just been assigned to a goal each pertinent constraint is checked to 
determine if there is a prohibition on the value assigned. The constraints are in 
the form of a set of logical expressions. Each expression compares an attribute of 
the decomposition or the initial conditions to its value in the design context. If 
every expression in a constraint is true the recently assigned value must be part 
of an invalid solution to the goal and the branch is pruned from the solution tree. 
When a constraint is fired the trees are pruned back to the previous branching node 
and the next branch in the search tree is pursued. Thus, the constraint serves to 
eliminate inappropriate alternatives to a section of the design based on the value 
of the combined attributes in the current solution path. 

The design context maintains the knowledge about the state of the particular 
solutions to the current problem. Initially the context holds only the user supplied 
initial conditions. As the synthesis proceeds more information is added to the 
design context. The information forms a tree of alternate solutions, with each 
node representing an attribute and its value. When all the goal decompositions 
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have produced leaf nodes the tree represents a complete set of feasible design 
solutions. Each path from root to leaf traces one feasible solution. At this point 
the context holds all feasible solutions to the design problem and the synthesis 
algorithm terminates. 

5 Foundation Design In EDESYN 

5.1 Overview 

The implementation of a foundation design system in EDESYN involves decompos­
ing the task into the three major phases discussed previously plus the subgoals for 
each phase, developing a set of constraints to guide each goal satisfaction search, 
and composing LISP functions to compute values for parameters which are not 
easily enumerated. The decomposition is organized into discrete tasks which de­
pend on values available from the initial conditions or from previously performed 
tasks. The following sections describe an initial EDESYN implementation. 

5.2 Decomposition 

The foundation design system is first decomposed into systems corresponding to 
the three phases of foundation design: soil system, building system, and foundation 
synthesis system. In this implementation the building characterization is performed 
before the site characterization. Among the reasons for this choice is that this order 
facilitated the definition of a shallow bearing stratum in terms of the previously 
defined building characterization. The foundation design system decomposition is 
illustrated in Fig. 2, and Appendix I contains an example decomposition file. 

The building system requires no further decomposition. All of the building 
system values can be derived directly from the initial conditions either through the 
constraint directed enumeration of the allowable values or through the evaluation 
of a function. Building system attributes include minimum column spacing, total 
building area, building weight per area, minimum foundation depth and maximum 
footing depth. The weight per area and the maximum footing depth are used later 
in the search for a shallow bearing stratum. The weight per area is also used in 
determining the depth of a compensated foundation so that building weight added 
and soil weight removed are balanced. 

The soil system is further decomposed into stratum systems, the number of 
systems being determined by the initial conditions supplied by the user. Every 
distinct soil layer at the site corresponds to one stratum system. Each stratum 
system contains secondary soil parameters whose values are derived from the pri­
mary soil parameter values in the initial conditions. For example, cohesive soils are 
assigned a bearing capacity based on their consistency and compressive strength. 
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Cohesionless stratum systems use the SPT N values and the soil description to 
determine their bearing capacity value. 

The foundation synthesis system is decomposed into the three major founda­
tion types, a shallow foundation system, a compensated foundation system, and a 
deep foundation system. The first goal of the each of the foundation systems is a 
foundation variety within that type such as spread footing or prestressed concrete 
pile. This goal is satisfied through the constrained enumeration of the defined 
varieties within each type. Most of the other goals are given values through the 
evaluation of a function. For example, the thickness of a spread footing required 
to resist punching shear is computed by a specific function. The final value for the 
thickness of a spread footing is then calculated as the maximum of the thicknesses 
required to resist punching shear and wide beam shear. 

An additional goal for shallow and deep foundation systems is a subsystem for 
considering ground improvement. For shallow foundations this subsystem contains 
goals which represent potential methods of improving the soil layers so that they 
may become bearing strata. For the deep foundations the improvement is intended 
to reduce excessive settlement or downdrag on piles. The systems use information 
from the soil stratum systems to assign method goals such as excavate-&-replace 
with a value of true or nil depending on whether the ground improvement method 
is deemed practical or not. When the method goal is given a value of true a 
new-bearing-capacity goal is given a value which supersedes the bearing capacity 
value of the original soil for the current solution branch. The decomposition of the 
shallow foundation system including its planning rule is illustrated in Fig. 3. 

Planning rules within a system decomposition specify a condition when the 
default decomposition can be made more specific. For instance, if there is a shallow 
bearing stratum the decomposition of the shallow foundation system should be 
restricted to exclude a ground improvement subsystem goal. 

5.3 Constraints 

Each constraint in the knowledge base specifies a set of goal assignments which are 
invalid when combined in one solution path. The constraint set is developed within 
qualitative bounds. The problem is sufficiently constrained so as not to generate 
misleading or wasteful solutions. At the same time, it is loosely enough constrained 
to generate more than one design. In this way an indeterminate problem is turned 
into an advantage. 

Constraints were used to to guide the assignment of a pile's resistance-type. For 
instance, timber piles are used only as friction piles, whereas compacted concrete 
piles are used only in end-bearing. The selection of pile diameters is also guided 
by constraints. Many pile varieties are available in more than one size, in addition 
to having a certain relationship between their grade and tip diameters. As an 
example, bored piles are used in a few standard sizes and the grade diameter is 



346 

Type 

Ground-1m provement? 

Depth-Below-Surface 

Breadth 

Punching-Shear-Thickness 

Beam-Shear-Thickness 

Moment-Thickness 

Thickness 

IF 

one-of 

subsystem 

function 

function 

function 

function 

function 

function 

(spread-footings 
continuous-grid 
mat) 

Ground-Improvement-System 

Depth-Below-Surface 

Shallow-fdn-Breadth 

Punching-V-Thickness 

Beam-V-Thickness 

M-Thickness 

Overall-Thickness 

stratum-system/shallow-bearing-stratum = True 
THEN 
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Beam-Shear-Thickness Moment-Thickness Thickness) 

Figure 3. Shallow foundation system decomposition. 
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equal to their tip diameter unless it is belled. On the other hand, fluted shell piles 
are available in a different set of grade diameters and the tip diameter is smaller 
than its grade diameter. 

Constraints also serve to eliminate partial design solutions when they become 
infeasible during the synthesis process. For instance, every pile type has a max­
imum capacity and most have a minimum and maximum length. Additionally, 
many pile types are limited to a particular soil type or damaged by obstructions in 
the soil. The following constraint specifies that if a thin-shell pile is being consid­
ered and the soil contains moderate or frequent obstructions, then that pile type is 
infeasible. A sample of the actual constraints used in this prototype are contained 
in Appendix II. 

If 
casing = thin-shell 
obstructions in (list frequent-large frequent-small moderate) 

then 
not feasible. 

5.4 LISP Functions 

The assignment of numerical values to most dimensional or capacity attributes is 
done using LISP functions. Standard analytical procedures have been used for di­
mensioning of foundation components such as footings and piles. Mat thicknesses 
are found in this implementation using heuristics. Whether the procedure is an­
alytically derived or heuristically based the LISP function provides the EDESYN 
implementation with a direct algorithmic method of assigning continuous or dis­
crete values. As described earlier, the thickness of a footing is computed using a set 
of functions. Three functions are involved in the process. Two separate functions 
calculate the thickness required to resist punching shear and wide beam shear in 
the footing. Each of these values is stored as an attribute of the shallow founda­
tion system and the final thickness is computed as the maximum plus a three inch 
cover. Separate functions are used for each force both for modularity and so that 
it may be seen which is the determining force. 

The capacity of each friction pile is assigned by a function which recursively 
loops over each stratum. The capacity of each stratum is added to the total capacity 
of the pile. The recursion terminates when the maximum capacity or the maximum 
length of the pile is reached, or when the pile reaches bedrock or another end­
bearing stratum. If the maximum capacity is reached before reaching the maximum 
length of the pile type, the recommended length is adjusted in accordance with the 
maximum capacity. 



348 

6 Conclusions 

The use of an expert system shell allows for the rapid development of a KBS ap­
plications. The design shell EDESYN provides a knowledge representation, and a 
hierarchical decomposition and constraint directed search technique for developing 
engineering design applications. The use of EDESYN for preliminary foundation 
design is appropriate both as a prototyping tool for the application and as a test 
domain for the shell itself. Most tasks are easily decomposed into loosely coupled 
systems, depending on information from previous tasks only. The use of enumer­
ated solutions to a goal, providing a branching into multiple solutions, extends 
the system into domains which profit from the recommendation of more than one 
design. 

On the other hand, the design knowledge contained in this implementation has 
been limited to the general information available in texts. In foundation design, 
even in preliminary foundation design, a controlling factor is often the special con­
ditions of the intended site and construction team. The difficulty of quickly filling 
an expert system with the particular knowledge of a wide range of conditions, and 
using this knowledge efficiently is a separate research topic. Furthermore, infor­
mation available from the performance of existing foundations in the immediate 
vicinity of a proposed building cannot be added to a fixed decomposition unless 
there are subsystems explicitly provided for this knowledge. 

In this prototype, only a single soil profile is used in the site characterization. 
This simplification avoids the issue of managing large amounts of soil data in a de­
sign shell with limited database interfacing. A further difficulty in using EDESYN 
is when tasks are not easily decomposed into uncoupled subgoals. The friction pile 
attributes of capacity and length, when the maximum capacity is reached well be­
fore the maximum length, is an example of this situation. Pile length and capacity 
are most conveniently calculated in parallel, proceeding downward through the soil 
layers untill the maximum length or capacity is reached. In using EDESYN only 
one attribute is assigned at one time. Here the capacity is assigned first and then 
the length computation begins. With only the final capacity value available for use 
in length computation many calculations are performed redundantly for each pile 
type. 

Nevertheless, the mixed formalismofEDESYN, combining decomposition, con­
straints, and algorithmic functions provides a means for tailoring the different as­
pects of the design process to an appropriate and convenient methodology. The 
separate formalisms provide a clarity to the process, dividing aspects into easily 
understood portions. This allows the developer to concentrate on particular situa­
tions or aspects of the design process. In summary, this implementation illustrates 
the potential for the rapid development of a knowledge-based application using 
the system shell EDESYN, that the constraint directed hierarchical decomposition 
technique is appropriate for preliminary foundation design, and that the developed 
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KBS can perform a useful function within the foundation design process. 

References 

[1] Davis, R. et al., (1981), 'The Dipmeter Advisor: Interpretation of Geological 
Signals,' Proceedings, Seventh International Joint Conference on Artificial 
Intelligence, Vancouver, B.C., pp. 846-849. 

[2] Duda, R. 0. et al., (1979), A Computer Based Consultant for Mineral 
Exploration, Final Report SRI International Project 6415, SRI International. 

[3] Fenves, S. J., (1987), Role of Artificial Intelligence and Knowledge-Based 
Expert Systems Methods in Civil Engineering, Technical Report 
EDRC-12-17-87, Engineering Design Research Center, Carnegie Mellon 
University, Pittsburgh, PA. 

[4] Hunt, R. E., (1986), Geotechnical Engineering Analysis and Evaluation, 
McGraw-Hill Book Company, NYC. 

[5] Lord, J. A., (1989), 'EDESYN User's Manual,' Carnegie Mellon University, 
Department of Civil Engineering, Unpublished. 

[6] Maher, M. L. and Fenves, S. J., (1984), HI-RISE: An Expert System for the 
Preliminary Structural Design Of High Rise Buildings, Technical Report 
R-85-146, Carnegie Mellon University, Department of Civil Engineering. 

[7] Maher, M. L., (1988), 'Engineering Design Synthesis: A Domain 
Independent Representation,' in Artificial Intelligence in Engineering Design, 
Analysis and Manufacturing 1, 3, 207-213. 

[8] McDermott, J., (1980), Rl: A Rule-Based Configurer of Computer Systems, 
Technical Report CMU-CS-80-119, Department of Computer Science, 
Carnegie-Mellon University, Pittsburgh, PA. 

[9] Mullarkey, P. W. and Fenves, S. J., (1987), 'Fuzzy Logic in a Geotechnical 
Knowledge-Based System: CONE,' Civil Engineering Systems 3, 2, 58-81. 

[10] Rehak, D. R., Christiano, P. P. and Norkin, D. N., (1985), 'SITECHAR: An 
Expert System Component of a Geotechnical Site Characterization 
Workbench,' Proceedings, ASME Winter Annual Meeting Symposium: 
Applications of Knowledge-Based Systems to Engineering Analysis and 
Design, American Society of Mechanical Engineers {ASME). 

[11] Smith, G. N. and Pole, E. L., {1980), Elements of Foundation Design, 
Garland STPM Press, NYC. 



350 

APPENDIX I 

Simplified Decomposition File for 

Foundation Design Using EDESYN 

Each system is composed of triplets of the form attribute-name, solution method, 
method description. For a goal solved via decomposition or a function the descrip­
tion is the subsystem or function name. For a goal solved through the enumeration 
of a discrete set, the set itself is listed. 

system fdn-design 
bldg-characterization 
site-characterization 
foundation-synthesis 

end-system 

system bldg-char-system 
bldg-area 
weight-per-area 
safety-factor 

end-system 

system site-char-system 
soil-stratum-system 
shallow-bearing-stratum 
min-fdn-depth 
max-footing-depth 

end-system 

system stratum-system 
stratum-id 
given-values 
thickness 
stratum-top 
friction-angle 
Nc 
Nq 
bearing-capacity 

end-system 

subsystem 
subsystem 
subsystem 

function 
function 
function 

subsystem 
function 
function 
function 

function 
subsystem 
function 
function 
function 
function 
function 
function 

bldg-char-system 
site-char-system 
foundation-synthesis-system 

bldg-area 
wt-per-area 
SF -from-use-&-siezmic 

stratum-system 
id-shallow-bearing-stratum 
min-fdn-depth 
max-ftg-depth 

stratum-id 
stratum-precondition-system 
stratum-thickness 
stratum-top 
friction-angle 
lookup-Nc 
lookup-Nq 
allowable-bearing-capacity 



system stratum-precondition-system 
stratum-id function 
bottom-depth function 
Avg-N function 
density-consistency function 
type-qualifier function 
soil-type function 
soil-grade function 
Cu function 
unit-wt function 
water-content function 
obstructions? function 
basement-depth function 
shallow-bearing-stratum function 

end-system 

system foundation-synthesis-system 
shallow-foundation 
compensated-foundation 
deep-foundation 

f~anning-rules 

subsystem 
subsystem 
subsystem 

stratum-id 
bottom-depth 
Avg-N 
density-consistency 
type-qualifier 
soil-type 
soil-grade 
Cu 
unit-weight 
water-content 
obstructions? 
basement-depth 
shallow-bearing-stratum 

shallow-fdn-system 
compensated-fdn-system 
deep-fdn-system 

(precondition/bedrock-depth) < (site-char-system/max-footing-depth) 
THEN 

IF 
(shallow-foundation-system) 

(site-char-system/ stratum-system/ stratum-top 
(/shallow-bearing-stratum = /soil-stratum-system/ stratum-id)) 

< (site-char-system/max-footing-depth) 
THEN 

(shallow-foundation-system) 
end-system 

system shallow-fdn-system 
shallow-grnd-improvement 
shallow-fdn-variety 
breadth 
punching-V-depth 
beam-V-depth 
thickness 
depth-below-grade 

f~anning-rules 

subsystem 
one-of 
function 
function 
function 
function 
function 

shallow-grnd-improvement-system 
(spread-footing continuous-grid mat) 
shallow-fdn-breadth 
D-punching-V 
D-beam-V 
max-D-punching-beam-V 
depth-below-grade 

THEN 
(stratum-system/shallow-bearing-stratum) <> nil 

( shallow-fdn-variety breadth punching-V -depth be am-V -depth moment-depth 
thickness depth-below-grade) 

end-system 

system shallow-grnd-improvement-system 
method one-of 

depth 
im prv-bearing-capacity 

end-system 

function 
function 

(excavate-&-backfill compact surcharge 
nil) 
grnd-imprv-depth 
imprv-bearing-cap 

351 
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system compensated-fdn-system 
compensated-fdn-variety 
compensated-fdn-details 

end-system 

system comp-fdn-detail-system 
depth-below-grade 
mat-structure 
mat-thickness 
pile-variety 

pile-diameter 
pile-length 

yjanning-rules 

one-of 
subsystem 

function 
one-of 
function 
one-of 

function 
function 

{compensated-mat compensated-piles) 
comp-fdn-detail-system 

compensated-depth 
(solid hollow-tubed rect-cavities) 
compensated-mat-thickness 
(H-sect pipe precast-concrete bored 
prestressed-concrete thin-shell 
fluted-shell) 
compensated-pile-diameter 
compensated-pile-length 

{compensated-fdn-system/compensated-fdn-variety) = compensated-mat 
THEN 

{depth-below-grade mat-structure mat-thickness) 
end-system 

system deep-fdn-system 
deep-fdn-variety 

deep-fdn-details 
end-system 

system deep-fdn-detail-system 
material 
resistance-type 
shape 
grade-diameter 
tip-diameter 
construction-tech 

insertion-tech 
casing 

max-length 
max-capacity 
individual,.capacity 
length 
efficiency 
piles-per-column 
group-capacity 

one-of 

subsystem 

one-of 
one-of 
one-of 
one-of 
one-of 
one-of 

one-of 
one-of 

function 
function 
function 
function 
one-of 
function 
function 

{timber H-sect pipe precast-concrete 
prestressed-concrete thin-shell 
fluted-shell compacted-concrete bored) 
deep-fdn-detail-system 

(wood steel concrete) 
{friction end-bearing) 
{round-solid pipe square H) 
{3.5 2.0 1.66 1.5 1.25 0.833) 
(4.0 3.5 2.0 1.75 1.5 1.25 1.0 0.833 0.66) 
(as-is cast-in-place cast-in-shell precast 
prestressed compacted) 
(driven vibrated bored) 
(nil corrugated thin-shell fluted-shell 
pipe) 
max-pile-length 
max-pile-capacity 
assign-pile-capacity 
assign-pile-length 
(0.66 1.0 1.33} 
piles-per-column 
group-capacity 

end-system 
end-file 
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Each constraint specifies an infeasible combination of attribute values. Within each 
elimination constraint the IF and THEN infeasible portions of the statement are 
implied. 

constraint 
{deep-fdn-detail-system/material) = wood 
{deep-fdn-detail-system/resistance-type) = end-bearing 

constraint 
{deep-fdn-detail-systemfmaterial) = wood 
{deep-fdn-detail-system/shape) <> round-solid 

constraint 
{deep-fdn-detail-system/material) = wood 
{deep-fdn-detail-systemfconstruction-tech) <> as-is 

constraint 
{deep-fdn-detail-system/material) = wood 
(deep-fdn-detail-system/insertion-tech) = bored 

constraint 
{deep-fdn-detail-system/material) =wood 
{deep-fdn-detail-systemfcasing) <> nil 

constraint 
{deep-fdn-detail-system/material) = wood 
{deep-fdn-detail-system/grade-diameter) > 1. 75 

constraint 
{deep-fdn-detail-systemfmaterial) =wood 
{deep-fdn-detail-system/grade-diameter} < 1.0 

constraint 
(deep-fdn-detail-system/material) = wood 
{deep-fdn-detail-systemftip-diameter) > 0.833 

constraint 
{deep-fdn-detail-system/material) = wood 
{ deep-fdn-detail-system/ tip-diameter) >= ( deep-fdn-detail-system/ grade-diameter) 
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constraint 
(deep-fdn-detail-system/material) = wood 
(precondition/GWL) > (precondition/basement-depth) 

constraint 
(deep-fdn-detail-system/material) =wood 
(stratum-system/stratum-precondition-system/obstructions? 
(/stratum-top < (+ /stratum-precondition-system/basement-depth 40) ) ) 
in (list sparse frequent-large frequent-small) 

constraint 
(shallow-fdn-system/shallow-fdn-variety) = spread-footings 
(* (shallow-fdn-system/breadth (/shallow-fdn-variety =spread-footings)) 
(shallow-fdn-system/breadth (/shallow-fdn-variety =spread-footings) ) 
(precondition/num-columns) ) > (* 0.4 (bldg-char-system/bldg-area) ) 

constraint 
(shallow-fdn-system/shallow-fdn-variety) = continuous-grid 
(* (shallow-fdn-system/breadth (/shallow-fdn-variety = continuous-grid)) 
(shallow-fdn-system/breadth (/shallow-fdn-variety = continuous-grid) ) 
(preconditionfnum-columns) ) > (* 0.6 (bldg-char-system/bldg-area) ) 

constraint 
(deep-fdn-detail-systemfcasing) = thin-shell 
(stratum-system/ stratum-precondition-system/ obstructions? 
(/stratum-top< (+ (precondition/basement-depth) 50))) 
in (list sparse frequent-small frequent-large) 

constraint 
(deep-fdn-detail-systemfcasing) = thin-shell 
(stratum-precondition-system/soil-type 
(/stratum-top< (+ (precondition/basement-depth) 50))) =gravel 

(deep-fdn-detail-system/casing) =thin-shell 
(stratum-precondition-system/soil-qualifier 
(/stratum-top< (+ (precondition/basement-depth) 50)))= gravely 

end-file 
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