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A

INTRODUCTION:	ON	THE	PROMISE	AND
PERIL	OF	AI

rtificial	intelligence	is	today’s	story—the	story	behind	all	other	stories.	It
is	the	Second	Coming	and	the	Apocalypse	at	the	same	time:	good	AI
versus	evil	AI.	This	book	comes	out	of	an	ongoing	conversation	with	a

number	of	important	thinkers,	both	in	the	world	of	AI	and	beyond	it,	about	what
AI	is	and	what	it	means.	Called	the	Possible	Minds	Project,	this	conversation
began	in	earnest	in	September	2016,	in	a	meeting	at	the	Grace	Mayflower	Inn	&
Spa	in	Washington,	Connecticut,	with	some	of	the	book’s	contributors.

What	quickly	emerged	from	that	first	meeting	is	that	the	excitement	and	fear
in	the	wider	culture	surrounding	AI	now	has	an	analog	in	the	way	Norbert
Wiener’s	ideas	regarding	“cybernetics”	worked	their	way	through	the	culture,
particularly	in	the	1960s,	as	artists	began	to	incorporate	thinking	about	new
technologies	into	their	work.	I	witnessed	the	impact	of	those	ideas	at	close	hand;
indeed,	it’s	not	too	much	to	say	they	set	me	off	on	my	life’s	path.	With	the
advent	of	the	digital	era	beginning	in	the	early	1970s,	people	stopped	talking
about	Wiener,	but	today,	his	Cybernetic	Idea	has	been	so	widely	adopted	that	it’s
internalized	to	the	point	where	it	no	longer	needs	a	name.	It’s	everywhere,	it’s	in
the	air,	and	it’s	a	fitting	place	to	begin.

NEW	TECHNOLOGIES	=	NEW
PERCEPTIONS

Before	AI,	there	was	cybernetics—the	idea	of	automatic,	self-regulating	control,
laid	out	in	Norbert	Wiener’s	foundational	text	of	1948.	I	can	date	my	own
serious	exposure	to	it	to	1966,	when	the	composer	John	Cage	invited	me	and
four	or	five	other	young	arts	people	to	join	him	for	a	series	of	dinners—an



four	or	five	other	young	arts	people	to	join	him	for	a	series	of	dinners—an
ongoing	seminar	about	media,	communications,	art,	music,	and	philosophy	that
focused	on	Cage’s	interest	in	the	ideas	of	Wiener,	Claude	Shannon,	and	Marshall
McLuhan,	all	of	whom	had	currency	in	the	New	York	art	circles	in	which	I	was
then	moving.	In	particular,	Cage	had	picked	up	on	McLuhan’s	idea	that	by
inventing	electronic	technologies	we	had	externalized	our	central	nervous
system—that	is,	our	minds—and	that	we	now	had	to	presume	that	“there’s	only
one	mind,	the	one	we	all	share.”

Ideas	of	this	nature	were	beginning	to	be	of	great	interest	to	the	artists	I	was
working	with	in	New	York	at	the	FilmMakers’	Cinematheque,	where	I	was
program	manager	for	a	series	of	multimedia	productions	called	the	New	Cinema
1	(also	known	as	the	Expanded	Cinema	Festival),	under	the	auspices	of	avant-
garde	filmmaker	and	impresario	Jonas	Mekas.	They	included	visual	artists	Claes
Oldenburg,	Robert	Rauschenberg,	Andy	Warhol,	and	Robert	Whitman;	kinetic
artists	Charlotte	Moorman	and	Nam	June	Paik;	happenings	artists	Allan	Kaprow
and	Carolee	Schneemann;	dancer	Trisha	Brown;	filmmakers	Jack	Smith,	Stan
Vanderbeek,	Ed	Emshwiller,	and	the	Kuchar	brothers;	avant-garde	dramatist
Ken	Dewey;	poet	Gerd	Stern	and	the	USCO	group;	minimalist	musicians	La
Monte	Young	and	Terry	Riley;	and,	through	Warhol,	the	music	group	The
Velvet	Underground.	Many	of	these	people	were	reading	Wiener,	and
cybernetics	was	in	the	air.	It	was	at	one	of	these	dinners	that	Cage	reached	into
his	briefcase	and	took	out	a	copy	of	Cybernetics	and	handed	it	to	me,	saying,
“This	is	for	you.”

During	the	festival,	I	received	an	unexpected	phone	call	from	Wiener’s
colleague	Arthur	K.	Solomon,	head	of	Harvard’s	graduate	program	in
biophysics.	Wiener	had	died	the	year	before,	and	Solomon’s	and	Wiener’s	other
close	colleagues	at	MIT	and	Harvard	had	been	reading	about	the	Expanded
Cinema	Festival	in	the	New	York	Times	and	were	intrigued	by	the	connection	to
Wiener’s	work.	Solomon	invited	me	to	bring	some	of	the	artists	up	to	Cambridge
to	meet	with	him	and	a	group	that	included	MIT	sensory-communications
researcher	Walter	Rosenblith,	Harvard	applied	mathematician	Anthony
Oettinger,	and	MIT	engineer	Harold	“Doc”	Edgerton,	inventor	of	the	strobe
light.

Like	many	other	“art	meets	science”	situations	I’ve	been	involved	in	since,
the	two-day	event	was	an	informed	failure:	ships	passing	in	the	night.	But	I	took
it	all	on	board	and	the	event	was	consequential	in	some	interesting	ways—one	of
which	came	from	the	fact	that	they	took	us	to	see	“the”	computer.	Computers
were	a	rarity	back	then;	at	least	none	of	us	on	the	visit	had	ever	seen	one.	We
were	ushered	into	a	large	space	on	the	MIT	campus,	in	the	middle	of	which	there



were	ushered	into	a	large	space	on	the	MIT	campus,	in	the	middle	of	which	there
was	a	“cold	room”	raised	off	the	floor	and	enclosed	in	glass,	in	which
technicians	wearing	white	lab	coats,	scarves,	and	gloves	were	busy	collating
punch	cards	coming	through	an	enormous	machine.	When	I	approached,	the
steam	from	my	breath	fogged	up	the	window	into	the	cold	room.	Wiping	it	off,	I
saw	“the”	computer.	I	fell	in	love.

Later,	in	the	fall	of	1967,	I	went	to	Menlo	Park	to	spend	time	with	Stewart
Brand,	whom	I	had	met	in	New	York	in	1965	when	he	was	a	satellite	member	of
the	USCO	group	of	artists.	Now,	with	his	wife,	Lois,	a	mathematician,	he	was
preparing	the	first	edition	of	the	Whole	Earth	Catalog	for	publication.	While
Lois	and	the	team	did	the	heavy	lifting	on	the	final	mechanicals	for	WEC,
Stewart	and	I	sat	together	in	a	corner	for	two	days,	reading,	underlining,	and
annotating	the	same	paperback	copy	of	Cybernetics	that	Cage	had	handed	to	me
the	year	before,	and	debating	Wiener’s	ideas.

Inspired	by	this	set	of	ideas,	I	began	to	develop	a	theme,	a	mantra	of	sorts,
that	has	informed	my	endeavors	since:	“new	technologies	=	new	perceptions.”
Inspired	by	communications	theorist	Marshall	McLuhan,	architect-designer
Buckminster	Fuller,	futurist	John	McHale,	and	cultural	anthropologists	Edward
T.	“Ned”	Hall	and	Edmund	Carpenter,	I	started	reading	avidly	in	the	fields	of
information	theory,	cybernetics,	and	systems	theory.	McLuhan	suggested	I	read
biologist	J.	Z.	Young’s	Doubt	and	Certainty	in	Science,	in	which	he	said	that	we
create	tools	and	we	mold	ourselves	through	our	use	of	them.	The	other	text	he
recommended	was	Warren	Weaver	and	Claude	Shannon’s	1949	paper	“Recent
Contributions	to	the	Mathematical	Theory	of	Communication,”	which	begins:
“The	word	communication	will	be	used	here	in	a	very	broad	sense	to	include	all
of	the	procedures	by	which	one	mind	may	affect	another.	This,	of	course,
involves	not	only	written	and	oral	speech,	but	also	music,	the	pictorial	arts,	the
theater,	the	ballet,	and	in	fact	all	human	behavior.”

Who	knew	that	within	two	decades	of	that	moment	we	would	begin	to
recognize	the	brain	as	a	computer?	And	in	the	next	two	decades,	as	we	built	our
computers	into	the	Internet,	that	we	would	begin	to	realize	that	the	brain	is	not	a
computer	but	a	network	of	computers?	Certainly	not	Wiener,	a	specialist	in
analog	feedback	circuits	designed	to	control	machines,	nor	the	artists,	nor,	least
of	all,	myself.

“WE	MUST	CEASE	TO	KISS	THE	WHIP	THAT
LASHES	US.”



LASHES	US.”

Two	years	after	Cybernetics,	in	1950,	Norbert	Wiener	published	The	Human
Use	of	Human	Beings—a	deeper	story,	in	which	he	expressed	his	concerns	about
the	runaway	commercial	exploitation	and	other	unforeseen	consequences	of	the
new	technologies	of	control.	I	didn’t	read	The	Human	Use	of	Human	Beings
until	the	spring	of	2016,	when	I	picked	up	my	copy,	a	first	edition,	which	was
sitting	in	my	library	next	to	Cybernetics.	What	shocked	me	was	the	realization	of
just	how	prescient	Wiener	was	in	1950	about	what’s	going	on	today.	Although
the	first	edition	was	a	major	bestseller—and,	indeed,	jump-started	an	important
conversation—under	pressure	from	his	peers	Wiener	brought	out	a	revised	and
milder	edition	in	1954,	from	which	the	original	concluding	chapter,	“Voices	of
Rigidity,”	is	conspicuously	absent.

Science	historian	George	Dyson	points	out	that	in	this	long-forgotten	first
edition,	Wiener	predicted	the	possibility	of	a	“threatening	new	Fascism
dependent	on	the	machine	à	gouverner”:

No	elite	escaped	his	criticism,	from	the	Marxists	and	the	Jesuits	(“all
of	Catholicism	is	indeed	essentially	a	totalitarian	religion”)	to	the	FBI
(“our	great	merchant	princes	have	looked	upon	the	propaganda	technique
of	the	Russians,	and	have	found	that	it	is	good”)	and	the	financiers
lending	their	support	“to	make	American	capitalism	and	the	fifth	freedom
of	the	businessman	supreme	throughout	the	world.”	Scientists	.	.	.
received	the	same	scrutiny	given	the	Church:	“Indeed,	the	heads	of	great
laboratories	are	very	much	like	Bishops,	with	their	association	with	the
powerful	in	all	walks	of	life,	and	the	dangers	they	incur	of	the	carnal	sins
of	pride	and	of	lust	for	power.”

This	jeremiad	did	not	go	well	for	Wiener.	As	Dyson	puts	it:

These	alarms	were	discounted	at	the	time,	not	because	Wiener	was
wrong	about	digital	computing	but	because	larger	threats	were	looming	as
he	completed	his	manuscript	in	the	fall	of	1949.	Wiener	had	nothing
against	digital	computing	but	was	strongly	opposed	to	nuclear	weapons
and	refused	to	join	those	who	were	building	digital	computers	to	move
forward	on	the	thousand-times-more-powerful	hydrogen	bomb.



forward	on	the	thousand-times-more-powerful	hydrogen	bomb.

Since	the	original	of	The	Human	Use	of	Human	Beings	is	now	out	of	print,
lost	to	us	is	Wiener’s	cri	de	coeur,	more	relevant	today	than	when	he	wrote	it
sixty-eight	years	ago:	“We	must	cease	to	kiss	the	whip	that	lashes	us.”

MIND,	THINKING,	INTELLIGENCE

Among	the	reasons	we	don’t	hear	much	about	cybernetics	today,	two	are	central:
First,	although	The	Human	Use	of	Human	Beings	was	considered	an	important
book	in	its	time,	it	ran	counter	to	the	aspirations	of	many	of	Wiener’s	colleagues,
including	John	von	Neumann	and	Claude	Shannon,	who	were	interested	in	the
commercialization	of	the	new	technologies.	Second,	computer	pioneer	John
McCarthy	disliked	Wiener	and	refused	to	use	Wiener’s	term	“Cybernetics.”
McCarthy,	in	turn,	coined	the	term	“artificial	intelligence”	and	became	a
founding	father	of	that	field.

As	Judea	Pearl,	who,	in	the	1980s,	introduced	a	new	approach	to	artificial
intelligence	called	Bayesian	networks,	explained	to	me:

What	Wiener	created	was	excitement	to	believe	that	one	day	we	are
going	to	make	an	intelligent	machine.	He	wasn’t	a	computer	scientist.	He
talked	feedback,	he	talked	communication,	he	talked	analog.	His	working
metaphor	was	a	feedback	circuit,	which	he	was	an	expert	in.	By	the	time
the	digital	age	began	in	the	early	1960s	people	wanted	to	talk
programming,	talk	codes,	talk	about	computational	functions,	talk	about
short-term	memory,	long-term	memory—meaningful	computer
metaphors.	Wiener	wasn’t	part	of	that,	and	he	didn’t	reach	the	new
generation	that	germinated	with	his	ideas.	His	metaphors	were	too	old,
passé.	There	were	new	means	already	available	that	were	ready	to	capture
the	human	imagination.	By	1970,	people	were	no	longer	talking	about
Wiener.

One	critical	factor	missing	in	Wiener’s	vision	was	the	cognitive	element:
mind,	thinking,	intelligence.	As	early	as	1942,	at	the	first	of	a	series	of
foundational	interdisciplinary	meetings	about	the	control	of	complex	systems



that	would	come	to	be	known	as	the	Macy	Conferences,	leading	researchers
were	arguing	for	the	inclusion	of	the	cognitive	element	into	the	conversation.
While	von	Neumann,	Shannon,	and	Wiener	were	concerned	about	systems	of
control	and	communication	of	observed	systems,	Warren	McCullough	wanted	to
include	mind.	He	turned	to	cultural	anthropologists	Gregory	Bateson	and
Margaret	Mead	to	make	the	connection	to	the	social	sciences.	Bateson,	in
particular,	was	increasingly	talking	about	patterns	and	processes,	or	“the	pattern
that	connects.”	He	called	for	a	new	kind	of	systems	ecology	in	which	organisms
and	the	environment	in	which	they	live	are	one	and	the	same	and	should	be
considered	as	a	single	circuit.	By	the	early	1970s	the	cybernetics	of	observed
systems—first-order	cybernetics—moved	to	the	cybernetics	of	observing
systems—second-order	cybernetics,	or	“the	Cybernetics	of	Cybernetics,”	as
coined	by	Heinz	von	Foerster,	who	joined	the	Macy	Conferences	in	the	mid-
1950s	and	spearheaded	the	new	movement.

Cybernetics,	rather	than	disappearing,	was	becoming	metabolized	into
everything,	so	we	no	longer	saw	it	as	a	separate,	distinct	new	discipline.	And
there	it	remains,	hiding	in	plain	sight.

“THE	SHTICK	OF	THE	STEINS”

My	own	writing	about	these	issues	at	the	time	was	on	the	radar	screen	of	the
second-order	cybernetics	crowd,	including	Heinz	von	Foerster	as	well	as	John
Lilly	and	Alan	Watts,	who	were	the	co-organizers	of	something	called	the	AUM
Conference,	shorthand	for	“the	American	University	of	Masters,”	which	took
place	in	Big	Sur	in	1973,	a	gathering	of	philosophers,	psychologists,	and
scientists,	each	of	whom	was	asked	to	lecture	on	his	own	work	in	terms	of	its
relationship	to	the	ideas	of	British	mathematician	G.	Spencer-Brown	as
presented	in	his	book	Laws	of	Form.	I	was	a	bit	puzzled	when	I	received	an
invitation—a	very	late	invitation	indeed—which	they	explained	was	based	on
their	interest	in	the	ideas	I	presented	in	a	book	called	Afterwords,	which	were
very	much	on	their	wavelength.	I	jumped	at	the	opportunity,	the	main	reason
being	that	the	keynote	speaker	was	none	other	than	Richard	Feynman.	I	love	to
spend	time	with	physicists,	because	they	think	about	the	universe,	i.e.,
everything.	And	no	physicist	was	reputed	to	be	as	articulate	as	Feynman.	I
couldn’t	wait	to	meet	him.	I	accepted.	That	said,	I	am	not	a	scientist,	and	I	had



never	entertained	the	idea	of	getting	on	a	stage	and	delivering	a	“lecture”	of	any
kind,	least	of	all	a	commentary	on	an	obscure	mathematical	theory	in	front	of	a
group	identified	as	the	world’s	most	interesting	thinkers.	Only	upon	my	arrival
in	Big	Sur	did	I	find	out	the	reason	for	my	very	late	invitation.	“When	is
Feynman’s	talk?”	I	asked	at	the	desk.	“Oh,	didn’t	Alan	Watts	tell	you?	Richard
is	ill	and	has	been	hospitalized.	You’re	his	replacement.	And,	by	the	way,	what’s
the	title	of	your	keynote	lecture?”

I	tried	to	make	myself	invisible	for	several	days.	Alan	Watts,	realizing	that	I
was	avoiding	the	podium,	woke	me	up	one	night	with	a	three	a.m.	knock	on	the
door	of	my	room.	I	opened	the	door	to	find	him	standing	in	front	of	me	wearing
a	monk’s	robe	with	a	hood	covering	much	of	his	face.	His	arms	extended,	he
held	a	lantern	in	one	hand	and	a	magnum	of	scotch	in	the	other.	“John,”	he	said
in	a	deep	voice	with	a	rich	aristocratic	British	accent,	“you	are	a	phony.	And,
John,”	he	continued,	“I	am	a	phony.	But,	John,	I	am	a	real	phony!”

The	next	day	I	gave	my	lecture,	titled	“Einstein,	Gertrude	Stein,	Wittgenstein,
and	Frankenstein.”	Einstein:	the	revolution	in	20th	century	physics.	Gertrude
Stein:	the	first	writer	who	made	integral	to	her	work	the	idea	of	an	indeterminate
and	discontinuous	universe.	Words	represented	neither	character	nor	activity:	A
rose	is	a	rose	is	a	rose,	and	a	universe	is	a	universe	is	a	universe.	Wittgenstein:
the	world	as	limits	of	language.	“The	limits	of	my	language	mean	the	limits	of
my	world.”	The	end	of	the	distinction	between	observer	and	observed.
Frankenstein:	cybernetics,	AI,	robotics,	all	the	essayists	in	this	volume.

The	lecture	had	unanticipated	consequences.	Among	the	participants	at	the
AUM	Conference	were	several	authors	of	number	one	New	York	Times
bestsellers,	yet	no	one	there	had	a	literary	agent.	And	I	realized	that	all	were
engaged	in	writing	a	genre	of	book	both	unnamed	and	unrecognized	by	New
York	publishers.	Since	I	had	an	MBA	from	Columbia	Business	School	and	a
series	of	relative	successes	in	business,	I	was	dragooned	into	becoming	an	agent,
initially	for	Gregory	Bateson	and	John	Lilly,	whose	books	I	sold	quickly,	and	for
sums	that	caught	my	attention,	thus	kick-starting	my	career	as	a	literary	agent.

I	never	did	meet	Richard	Feynman.

THE	LONG	AI	WINTERS

This	new	career	put	me	in	close	touch	with	most	of	the	AI	pioneers,	and	over	the
decades	I	rode	with	them	on	waves	of	enthusiasm,	and	into	valleys	of



decades	I	rode	with	them	on	waves	of	enthusiasm,	and	into	valleys	of
disappointment.	In	the	early	eighties	the	Japanese	government	mounted	a
national	effort	to	advance	AI.	They	called	it	the	Fifth	Generation;	their	goal	was
to	change	the	architecture	of	computation	by	breaking	“the	von	Neumann
bottleneck”	by	creating	a	massively	parallel	computer.	In	so	doing,	they	hoped	to
jump-start	their	economy	and	become	a	dominant	world	power	in	the	field.	In
1983,	the	leader	of	the	Japanese	Fifth	Generation	consortium	came	to	New	York
for	a	meeting	organized	by	Heinz	Pagels,	the	president	of	the	New	York
Academy	of	Sciences.	I	had	a	seat	at	the	table	alongside	the	leaders	of	the	first
generation,	Marvin	Minsky	and	John	McCarthy;	the	second	generation,	Edward
Feigenbaum	and	Roger	Schank;	and	Joseph	Traub,	head	of	the	National
Supercomputer	Consortium.

In	1981,	with	Heinz’s	help,	I	had	founded	The	Reality	Club	(the	precursor	to
the	nonprofit	Edge.org),	whose	initial	interdisciplinary	meetings	took	place	in
the	boardroom	at	the	NYAS.	Heinz	was	working	on	his	book	The	Dreams	of
Reason:	The	Computer	and	the	Rise	of	the	Science	of	Complexity,	which	he
considered	to	be	a	research	agenda	for	science	in	the	1990s.

Through	the	Reality	Club	meetings,	I	got	to	know	two	young	researchers	who
were	about	to	play	key	roles	in	revolutionizing	computer	science.	At	MIT	in	the
late	seventies,	Danny	Hillis	developed	the	algorithms	that	made	possible	the
massively	parallel	computer.	In	1983,	his	company,	Thinking	Machines,	built
the	world’s	fastest	supercomputer	by	utilizing	parallel	architecture.	His
“connection	machine”	closely	reflected	the	workings	of	the	human	mind.	Seth
Lloyd	at	Rockefeller	University	was	undertaking	seminal	work	in	the	fields	of
quantum	computation	and	quantum	communications,	including	proposing	the
first	technologically	feasible	design	for	a	quantum	computer.

And	the	Japanese?	Their	foray	into	artificial	intelligence	failed	and	was
followed	by	twenty	years	of	anemic	economic	growth.	But	the	leading	U.S.
scientists	took	this	program	very	seriously.	And	Feigenbaum,	who	was	the
cutting-edge	computer	scientist	of	the	day,	teamed	up	with	Pamela	McCorduck
to	write	a	book	on	these	developments.	The	Fifth	Generation:	Artificial
Intelligence	and	Japan’s	Computer	Challenge	to	the	World	was	published	in
1983.	We	had	a	code	name	for	the	project:	“It’s	coming,	it’s	coming!”	But	it
didn’t	come;	it	went.

From	that	point	on	I’ve	worked	with	researchers	in	nearly	every	variety	of	AI
and	complexity,	including	Rodney	Brooks,	Hans	Moravec,	John	Archibald
Wheeler,	Benoit	Mandelbrot,	John	Henry	Holland,	Danny	Hillis,	Freeman
Dyson,	Chris	Langton,	J.	Doyne	Farmer,	Geoffrey	West,	Stuart	Russell,	and



Dyson,	Chris	Langton,	J.	Doyne	Farmer,	Geoffrey	West,	Stuart	Russell,	and
Judea	Pearl.

AN	ONGOING	DYNAMICAL	EMERGENT
SYSTEM

From	the	initial	meeting	in	Washington,	Connecticut,	to	the	present,	I	arranged	a
number	of	dinners	and	discussions	in	London	and	Cambridge,	Massachusetts,	as
well	as	a	public	event	at	London’s	City	Hall.	Among	the	attendees	were
distinguished	scientists,	science	historians,	and	communications	theorists,	all	of
whom	have	been	thinking	seriously	about	AI	issues	for	their	entire	careers.

I	commissioned	essays	from	a	wide	range	of	contributors,	with	or	without
references	to	Wiener	(leaving	it	up	to	each	participant).	In	the	end,	twenty-five
people	wrote	essays,	all	individuals	concerned	about	what	is	happening	today	in
the	age	of	AI.	Possible	Minds	is	not	my	book,	rather	it	is	our	book:	Seth	Lloyd,
Judea	Pearl,	Stuart	Russell,	George	Dyson,	Daniel	C.	Dennett,	Rodney	Brooks,
Frank	Wilczek,	Max	Tegmark,	Jaan	Tallinn,	Steven	Pinker,	David	Deutsch,	Tom
Griffiths,	Anca	Dragan,	Chris	Anderson,	David	Kaiser,	Neil	Gershenfeld,	W.
Daniel	Hillis,	Venki	Ramakrishnan,	Alex	“Sandy”	Pentland,	Hans	Ulrich	Obrist,
Alison	Gopnik,	Peter	Galison,	George	M.	Church,	Caroline	A.	Jones,	and
Stephen	Wolfram.

I	see	the	Possible	Minds	Project	as	an	ongoing	dynamical	emergent	system,	a
presentation	of	the	ideas	of	a	community	of	sophisticated	thinkers	who	are
bringing	their	experience	and	erudition	to	bear	in	challenging	the	prevailing
digital	AI	narrative	as	they	communicate	their	thoughts	to	one	another.	The	aim
is	to	present	a	mosaic	of	views	that	will	help	make	sense	out	of	this	rapidly
emerging	field.

I	asked	the	essayists	to	consider:

a.	 The	Zen-like	poem	“Thirteen	Ways	of	Looking	at	a	Blackbird”	by
Wallace	Stevens,	which	he	insisted	was	“not	meant	to	be	a	collection
of	epigrams	or	of	ideas,	but	of	sensations.”	It	is	an	exercise	in
“perspectivism,”	consisting	of	short,	separate	sections,	each	of	which
mentions	blackbirds	in	some	way.	The	poem	is	about	his	own
imagination;	it	concerns	what	he	attends	to.



b.	 The	parable	of	the	blind	men	and	an	elephant.	Like	the	elephant,	AI	is
too	big	a	topic	for	any	one	perspective,	never	mind	the	fact	that	no
two	people	seem	to	see	things	the	same	way.

What	do	we	want	the	book	to	do?	Stewart	Brand	has	noted	that	“revisiting
pioneer	thinking	is	perpetually	useful.	And	it	gives	a	long	perspective	that
invites	thinking	in	decades	and	centuries	about	the	subject.	All	contemporary
discussion	is	bound	to	age	badly	and	immediately	without	the	longer
perspective.”

Danny	Hillis	wants	people	in	AI	to	realize	how	they’ve	been	programmed	by
Wiener’s	book.	“You’re	executing	its	road	map,”	he	says,	“and	you	just	don’t
realize	it.”

Dan	Dennett	would	like	to	“let	Wiener	emerge	as	the	ghost	at	the	banquet.
Think	of	it	as	a	source	of	hybrid	vigor,	a	source	of	unsettling	ideas	to	shake	up
the	established	mind-set.”

Neil	Gershenfeld	argues	that	“stealth	remedial	education	for	the	people
running	the	‘Big	Five’	would	be	a	great	output	from	the	book.”

Freeman	Dyson,	one	of	the	few	people	alive	who	knew	Wiener,	notes	that
“The	Human	Use	of	Human	Beings	is	one	of	the	best	books	ever	written.	Wiener
got	almost	everything	right.	I	will	be	interested	to	see	what	your	bunch	of
wizards	will	do	with	it.”

THE	EVOLVING	AI	NARRATIVE

Things	have	changed—and	they	remain	the	same.	Now	AI	is	everywhere.	We
have	the	Internet.	We	have	our	smartphones.	The	founders	of	the	dominant
companies—the	companies	that	hold	“the	whip	that	lashes	us”—have	net	worths
of	$65	billion,	$90	billion,	$130	billion.	High-profile	individuals	such	as	Elon
Musk,	Nick	Bostrom,	Martin	Rees,	Eliezer	Yudkowsky,	and	the	late	Stephen
Hawking	have	issued	dire	warnings	about	AI,	resulting	in	the	ascendancy	of
well-funded	institutes	tasked	with	promoting	“Nice	AI.”	But	will	we,	as	a
species,	be	able	to	control	a	fully	realized,	unsupervised,	self-improving	AI?
Wiener’s	warnings	and	admonitions	in	The	Human	Use	of	Human	Beings	are
now	very	real,	and	they	need	to	be	looked	at	anew	by	researchers	at	the	forefront
of	the	AI	revolution.	Here	is	Dyson	again:



Wiener	became	increasingly	disenchanted	with	the	“gadget
worshipers”	whose	corporate	selfishness	brought	“motives	to
automatization	that	go	beyond	a	legitimate	curiosity	and	are	sinful	in
themselves.”	He	knew	the	danger	was	not	machines	becoming	more	like
humans	but	humans	being	treated	like	machines.	“The	world	of	the	future
will	be	an	ever	more	demanding	struggle	against	the	limitations	of	our
intelligence,”	he	warned	in	God	&	Golem,	Inc.,	published	in	1964,	the
year	of	his	death,	“not	a	comfortable	hammock	in	which	we	can	lie	down
to	be	waited	upon	by	our	robot	slaves.”

It’s	time	to	examine	the	evolving	AI	narrative	by	identifying	the	leading
members	of	that	mainstream	community	along	with	the	dissidents	and	presenting
their	counternarratives	in	their	own	voices.

The	essays	that	follow	thus	constitute	a	much-needed	update	from	the	field.
—John	Brockman
New	York,	2019



Chapter	1

WRONG,	BUT	MORE	RELEVANT	THAN	EVER

SETH	LLOYD

Seth	Lloyd	is	a	theoretical	physicist	at	MIT,	Nam	P.	Suh	Professor	in	the
Department	of	Mechanical	Engineering,	and	an	external	professor	at	the	Santa	Fe

Institute.

I	met	Seth	Lloyd	in	the	late	1980s,	when	new	ways	of	thinking	were	everywhere:	the
importance	of	biological	organizing	principles,	the	computational	view	of	mathematics	and
physical	processes,	the	emphasis	on	parallel	networks,	the	importance	of	nonlinear
dynamics,	the	new	understanding	of	chaos,	connectionist	ideas,	neural	networks,	and
parallel	distributive	processing.	The	advances	in	computation	during	that	period	provided
us	with	a	new	way	of	thinking	about	knowledge.

Seth	likes	to	refer	to	himself	as	a	quantum	mechanic.	He	is	internationally	known	for
his	work	in	the	field	of	quantum	computation,	which	attempts	to	harness	the	exotic
properties	of	quantum	theory,	like	superposition	and	entanglement,	to	solve	problems	that
would	take	several	lifetimes	to	solve	on	classical	computers.

In	the	essay	that	follows,	he	traces	the	history	of	information	theory	from	Norbert
Wiener’s	prophetic	insights	to	the	predictions	of	a	technological	“singularity”	that	some
would	have	us	believe	will	supplant	the	human	species.	His	takeaway	on	the	recent
programming	method	known	as	deep	learning	is	to	call	for	a	more	modest	set	of
expectations;	he	notes	that	despite	AI’s	enormous	advances,	robots	“still	can’t	tie	their	own
shoes.”

It’s	difficult	for	me	to	talk	about	Seth	without	referencing	his	relationship	with	his	friend
and	professor,	the	late	theoretical	physicist	Heinz	Pagels	of	Rockefeller	University.	The
graduate	student	and	the	professor	each	had	a	profound	effect	on	the	other’s	ideas.

In	the	summer	of	1988,	I	visited	Heinz	and	Seth	at	the	Aspen	Center	for	Physics.	Their
joint	work	on	the	subject	of	complexity	was	featured	in	the	current	issue	of	Scientific
American;	they	were	ebullient.	That	was	just	two	weeks	before	Heinz’s	tragic	death	in	a
hiking	accident	while	descending	Pyramid	Peak	with	Seth.	They	were	talking	about
quantum	computing.



T he	Human	Use	of	Human	Beings,	Norbert	Wiener’s	1950	popularization
of	his	highly	influential	book	Cybernetics:	or	Control	and
Communication	in	the	Animal	and	the	Machine	(1948),	investigates	the

interplay	between	human	beings	and	machines	in	a	world	in	which	machines	are
becoming	ever	more	computationally	capable	and	powerful.	It	is	a	remarkably
prescient	book,	and	remarkably	wrong.	Written	at	the	height	of	the	Cold	War,	it
contains	a	chilling	reminder	of	the	dangers	of	totalitarian	organizations	and
societies,	and	of	the	danger	to	democracy	when	it	tries	to	combat	totalitarianism
with	totalitarianism’s	own	weapons.

Wiener’s	Cybernetics	looked	in	close	scientific	detail	at	the	process	of
control	via	feedback.	(“Cybernetics,”	from	the	ancient	Greek	for	“helmsman,”	is
the	etymological	basis	of	our	word	“governor,”	which	is	what	James	Watt	called
his	pathbreaking	feedback	control	device	that	transformed	the	use	of	steam
engines.)	Because	he	was	immersed	in	problems	of	control,	Wiener	saw	the
world	as	a	set	of	complex,	interlocking	feedback	loops,	in	which	sensors,
signals,	and	actuators	such	as	engines	interact	via	an	intricate	exchange	of
signals	and	information.	The	engineering	applications	of	Cybernetics	were
tremendously	influential	and	effective,	giving	rise	to	rockets,	robots,	automated
assembly	lines,	and	a	host	of	precision-engineering	techniques—in	other	words,
to	the	basis	of	contemporary	industrial	society.

Wiener	had	greater	ambitions	for	cybernetic	concepts,	however,	and	in	The
Human	Use	of	Human	Beings	he	spells	out	his	thoughts	on	its	application	to
topics	as	diverse	as	Maxwell’s	Demon,	human	language,	the	brain,	insect
metabolism,	the	legal	system,	the	role	of	technological	innovation	in
government,	and	religion.	These	broader	applications	of	cybernetics	were	an
almost	unequivocal	failure.	Vigorously	hyped	from	the	late	1940s	to	the	early
1960s—to	a	degree	similar	to	the	hype	of	computer	and	communication
technology	that	led	to	the	dot-com	crash	of	2000–2001—cybernetics	delivered
satellites	and	telephone	switching	systems	but	generated	few	if	any	useful
developments	in	social	organization	and	society	at	large.

Nearly	seventy	years	later,	however,	The	Human	Use	of	Human	Beings	has
more	to	teach	us	humans	than	it	did	the	first	time	around.	Perhaps	the	most
remarkable	feature	of	the	book	is	that	it	introduces	a	large	number	of	topics



concerning	human/machine	interactions	that	are	still	of	considerable	relevance.
Dark	in	tone,	the	book	makes	several	predictions	about	disasters	to	come	in	the
second	half	of	the	20th	century,	many	of	which	are	almost	identical	to
predictions	made	today	about	the	second	half	of	the	21st.

For	example,	Wiener	foresaw	a	moment	in	the	near	future	of	1950	in	which
humans	would	cede	control	of	society	to	a	cybernetic	artificial	intelligence,
which	would	then	proceed	to	wreak	havoc	on	humankind.	The	automation	of
manufacturing,	Wiener	predicted,	would	both	create	large	advances	in
productivity	and	displace	many	workers	from	their	jobs—a	sequence	of	events
that	did	indeed	come	to	pass	in	the	ensuing	decades.	Unless	society	could	find
productive	occupations	for	these	displaced	workers,	Wiener	warned,	revolt
would	ensue.

But	Wiener	failed	to	foresee	crucial	technological	developments.	Like	pretty
much	all	technologists	of	the	1950s,	he	failed	to	predict	the	computer	revolution.
Computers,	he	thought,	would	eventually	fall	in	price	from	hundreds	of
thousands	of	(1950s)	dollars	to	tens	of	thousands;	neither	he	nor	his	compeers
anticipated	the	tremendous	explosion	of	computer	power	that	would	follow	the
development	of	the	transistor	and	the	integrated	circuit.	Finally,	because	of	his
emphasis	on	control,	Wiener	could	not	foresee	a	technological	world	in	which
innovation	and	self-organization	bubble	up	from	the	bottom	rather	than	being
imposed	from	the	top.

Focusing	on	the	evils	of	totalitarianism	(political,	scientific,	and	religious),
Wiener	saw	the	world	in	a	deeply	pessimistic	light.	His	book	warned	of	the
catastrophe	that	awaited	us	if	we	didn’t	mend	our	ways,	fast.	The	current	world
of	human	beings	and	machines,	more	than	a	half	century	after	its	publication,	is
much	more	complex,	richer,	and	contains	a	much	wider	variety	of	political,
social,	and	scientific	systems	than	he	was	able	to	envisage.	The	warnings	of
what	will	happen	if	we	get	it	wrong,	however—for	example,	control	of	the	entire
Internet	by	a	global	totalitarian	regime—remain	as	relevant	and	pressing	today
as	they	were	in	1950.

WHAT	WIENER	GOT	RIGHT

Wiener’s	most	famous	mathematical	works	focused	on	problems	of	signal
analysis	and	the	effects	of	noise.	During	World	War	II,	he	developed	techniques



for	aiming	antiaircraft	fire	by	making	models	that	could	predict	the	future
trajectory	of	an	airplane	by	extrapolating	from	its	past	behavior.	In	Cybernetics
and	in	The	Human	Use	of	Human	Beings,	Wiener	notes	that	this	past	behavior
includes	quirks	and	habits	of	the	human	pilot,	thus	a	mechanized	device	can
predict	the	behavior	of	humans.	Like	Alan	Turing,	whose	Turing	Test	suggested
that	computing	machines	could	give	responses	to	questions	that	were
indistinguishable	from	human	responses,	Wiener	was	fascinated	by	the	notion	of
capturing	human	behavior	by	mathematical	description.	In	the	1940s,	he	applied
his	knowledge	of	control	and	feedback	loops	to	neuromuscular	feedback	in
living	systems,	and	was	responsible	for	bringing	Warren	McCulloch	and	Walter
Pitts	to	MIT,	where	they	did	their	pioneering	work	on	artificial	neural	networks.

Wiener’s	central	insight	was	that	the	world	should	be	understood	in	terms	of
information.	Complex	systems,	such	as	organisms,	brains,	and	human	societies,
consist	of	interlocking	feedback	loops	in	which	signals	exchanged	between
subsystems	result	in	complex	but	stable	behavior.	When	feedback	loops	break
down,	the	system	goes	unstable.	He	constructed	a	compelling	picture	of	how
complex	biological	systems	function,	a	picture	that	is	by	and	large	universally
accepted	today.

Wiener’s	vision	of	information	as	the	central	quantity	in	governing	the
behavior	of	complex	systems	was	remarkable	at	the	time.	Nowadays,	when	cars
and	refrigerators	are	jammed	with	microprocessors	and	much	of	human	society
revolves	around	computers	and	cell	phones	connected	by	the	Internet,	it	seems
prosaic	to	emphasize	the	centrality	of	information,	computation,	and
communication.	In	Wiener’s	time,	however,	the	first	digital	computers	had	only
just	come	into	existence,	and	the	Internet	was	not	even	a	twinkle	in	the
technologist’s	eye.

Wiener’s	powerful	conception	of	not	just	engineered	complex	systems	but	all
complex	systems	as	revolving	around	cycles	of	signals	and	computation	led	to
tremendous	contributions	to	the	development	of	complex	human-made	systems.
The	methods	he	and	others	developed	for	the	control	of	missiles,	for	example,
were	later	put	to	work	in	building	the	Saturn	V	moon	rocket,	one	of	the
crowning	engineering	achievements	of	the	20th	century.	In	particular,	Wiener’s
applications	of	cybernetic	concepts	to	the	brain	and	to	computerized	perception
are	the	direct	precursors	of	today’s	neural-network-based	deep-learning	circuits,
and	of	artificial	intelligence	itself.	But	current	developments	in	these	fields	have
diverged	from	his	vision,	and	their	future	development	may	well	affect	the
human	uses	both	of	human	beings	and	of	machines.



WHAT	WIENER	GOT	WRONG

It	is	exactly	in	the	extension	of	the	cybernetic	idea	to	human	beings	that
Wiener’s	conceptions	missed	their	target.	Setting	aside	his	ruminations	on
language,	law,	and	human	society	for	the	moment,	look	at	a	humbler	but
potentially	useful	innovation	that	he	thought	was	imminent	in	1950.	Wiener
notes	that	prosthetic	limbs	would	be	much	more	effective	if	their	wearers	could
communicate	directly	with	their	prosthetics	by	their	own	neural	signals,
receiving	information	about	pressure	and	position	from	the	limb	and	directing	its
subsequent	motion.	This	turned	out	to	be	a	much	harder	problem	than	Wiener
envisaged:	Seventy	years	down	the	road,	prosthetic	limbs	that	incorporate	neural
feedback	are	still	in	the	very	early	stages.	Wiener’s	concept	was	an	excellent	one
—it’s	just	that	the	problem	of	interfacing	neural	signals	with	mechanical-
electrical	devices	is	hard.

More	significantly,	Wiener	(along	with	pretty	much	everyone	else	in	1950)
greatly	underappreciated	the	potential	of	digital	computation.	As	noted,
Wiener’s	mathematical	contributions	were	to	the	analysis	of	signals	and	noise
and	his	analytic	methods	apply	to	continuously	varying,	or	analog,	signals.
Although	he	participated	in	the	wartime	development	of	digital	computation,	he
never	foresaw	the	exponential	explosion	of	computing	power	brought	on	by	the
introduction	and	progressive	miniaturization	of	semiconductor	circuits.	This	is
hardly	Wiener’s	fault:	The	transistor	hadn’t	been	invented	yet,	and	the	vacuum-
tube	technology	of	the	digital	computers	he	was	familiar	with	was	clunky,
unreliable,	and	unscalable	to	ever	larger	devices.	In	an	appendix	to	the	1948
edition	of	Cybernetics,	he	anticipates	chess-playing	computers	and	predicts	that
they’ll	be	able	to	look	two	or	three	moves	ahead.	He	might	have	been	surprised
to	learn	that	within	half	a	century	a	computer	would	beat	the	human	world
champion	at	chess.

TECHNOLOGICAL	OVERESTIMATION	AND
THE	EXISTENTIAL	RISKS	OF	THE
SINGULARITY



When	Wiener	wrote	his	books,	a	significant	example	of	technological
overestimation	was	about	to	occur.	The	1950s	saw	the	first	efforts	at	developing
artificial	intelligence,	by	researchers	such	as	Herbert	Simon,	John	McCarthy,
and	Marvin	Minsky,	who	began	to	program	computers	to	perform	simple	tasks
and	to	construct	rudimentary	robots.	The	success	of	these	initial	efforts	inspired
Simon	to	declare	that	“machines	will	be	capable,	within	twenty	years,	of	doing
any	work	a	man	can	do.”	Such	predictions	turned	out	to	be	spectacularly	wrong.
As	they	became	more	powerful,	computers	got	better	and	better	at	playing	chess
because	they	could	systematically	generate	and	evaluate	a	vast	selection	of
possible	future	moves.	But	the	majority	of	predictions	of	AI,	e.g.,	robotic	maids,
turned	out	to	be	illusory.	When	Deep	Blue	beat	Garry	Kasparov	at	chess	in	1997,
the	most	powerful	room-cleaning	robot	was	a	Roomba,	which	moved	around
vacuuming	at	random	and	squeaked	when	it	got	caught	under	the	couch.

Technological	prediction	is	particularly	chancy,	given	that	technologies
progress	by	a	series	of	refinements,	halted	by	obstacles	and	overcome	by
innovation.	Many	obstacles	and	some	innovations	can	be	anticipated,	but	more
cannot.	In	my	own	work	with	experimentalists	on	building	quantum	computers,	I
typically	find	that	some	of	the	technological	steps	I	expect	to	be	easy	turn	out	to
be	impossible,	whereas	some	of	the	tasks	I	imagine	to	be	impossible	turn	out	to
be	easy.	You	don’t	know	until	you	try.

In	the	1950s,	partly	inspired	by	conversations	with	Wiener,	John	von
Neumann	introduced	the	notion	of	the	“technological	singularity.”	Technologies
tend	to	improve	exponentially,	doubling	in	power	or	sensitivity	over	some
interval	of	time.	(For	example,	since	1950,	computer	technologies	have	been
doubling	in	power	roughly	every	two	years,	an	observation	enshrined	as	Moore’s
Law.)	Von	Neumann	extrapolated	from	the	observed	exponential	rate	of
technological	improvement	to	predict	that	“technological	progress	will	become
incomprehensively	rapid	and	complicated,”	outstripping	human	capabilities	in
the	not	too	distant	future.	Indeed,	if	one	extrapolates	the	growth	of	raw
computing	power—expressed	in	terms	of	bits	and	bit	flips—into	the	future	at	its
current	rate,	computers	should	match	human	brains	sometime	in	the	next	two	to
four	decades	(depending	on	how	one	estimates	the	information-processing
power	of	human	brains).

The	failure	of	the	initial	overly	optimistic	predictions	of	AI	dampened	talk
about	the	technological	singularity	for	a	few	decades,	but	since	the	2005
publication	of	Ray	Kurzweil’s	The	Singularity	IS	Near,	the	idea	of	technological
advance	leading	to	superintelligence	is	back	in	force.	Some	believers,	Kurzweil



included,	regard	this	singularity	as	an	opportunity:	Humans	can	merge	their
brains	with	the	superintelligence	and	thereby	live	forever.	Others,	such	as
Stephen	Hawking	and	Elon	Musk,	worried	that	this	superintelligence	would
prove	to	be	malign	and	regarded	it	as	the	greatest	existing	threat	to	human
civilization.	Still	others,	including	some	of	the	contributors	to	the	present
volume,	think	such	talk	is	overblown.

Wiener’s	lifework	and	his	failure	to	predict	its	consequences	are	intimately
bound	up	in	the	idea	of	an	impending	technological	singularity.	His	work	on
neuroscience	and	his	initial	support	of	McCulloch	and	Pitts	adumbrated	the
startlingly	effective	deep-learning	methods	of	the	present	day.	Over	the	past
decade,	and	particularly	in	the	last	five	years,	such	deep-learning	techniques
have	finally	exhibited	what	Wiener	liked	to	call	Gestalt—for	example,	the
ability	to	recognize	that	a	circle	is	a	circle	even	if	when	slanted	sideways	it	looks
like	an	ellipse.	His	work	on	control,	combined	with	his	work	on	neuromuscular
feedback,	was	significant	for	the	development	of	robotics	and	is	the	inspiration
for	neural-based	human/machine	interfaces.	His	lapses	in	technological
prediction,	however,	suggest	that	we	should	take	the	notion	of	a	technological
singularity	with	a	grain	of	salt.	The	general	difficulties	of	technological
prediction	and	the	problems	specific	to	the	development	of	a	superintelligence
should	warn	us	against	overestimating	both	the	power	and	the	efficacy	of
information	processing.

THE	ARGUMENTS	FOR	SINGULARITY
SKEPTICISM

No	exponential	increase	lasts	forever.	An	atomic	explosion	grows	exponentially,
but	only	until	it	runs	out	of	fuel.	Similarly,	the	exponential	advances	in	Moore’s
Law	are	starting	to	run	into	limits	imposed	by	basic	physics.	The	clock	speed	of
computers	maxed	out	at	a	few	gigahertz	a	decade	and	a	half	ago,	simply	because
the	chips	were	starting	to	melt.	The	miniaturization	of	transistors	is	already
running	into	quantum-mechanical	problems	due	to	tunneling	and	leakage
currents.	Eventually,	the	various	exponential	improvements	in	memory	and
processing	driven	by	Moore’s	Law	will	grind	to	a	halt.	A	few	more	decades,
however,	will	probably	be	time	enough	for	the	raw	information-processing



power	of	computers	to	match	that	of	brains—at	least	by	the	crude	measures	of
number	of	bits	and	number	of	bit-flips	per	second.

Human	brains	are	intricately	constructed,	the	process	of	millions	of	years	of
natural	selection.	In	Wiener’s	time,	our	understanding	of	the	architecture	of	the
brain	was	rudimentary	and	simplistic.	Since	then,	increasingly	sensitive
instrumentation	and	imaging	techniques	have	shown	our	brains	to	be	far	more
varied	in	structure	and	complex	in	function	than	Wiener	could	have	imagined.	I
recently	asked	Tomaso	Poggio,	one	of	the	pioneers	of	modern	neuroscience,
whether	he	was	worried	that	computers,	with	their	rapidly	increasing	processing
power,	would	soon	emulate	the	functioning	of	the	human	brain.	“Not	a	chance,”
he	replied.

The	recent	advances	in	deep	learning	and	neuromorphic	computation	are	very
good	at	reproducing	a	particular	aspect	of	human	intelligence	focused	on	the
operation	of	the	brain’s	cortex,	where	patterns	are	processed	and	recognized.
These	advances	have	enabled	a	computer	to	beat	the	world	champion	not	just	of
chess	but	of	Go,	an	impressive	feat,	but	they’re	far	short	of	enabling	a
computerized	robot	to	tidy	a	room.	(In	fact,	robots	with	anything	approaching
human	capability	in	a	broad	range	of	flexible	movements	are	still	far	away—
search	“robots	falling	down.”	Robots	are	good	at	making	precision	welds	on
assembly	lines,	but	they	still	can’t	tie	their	own	shoes.)

Raw	information-processing	power	does	not	mean	sophisticated	information-
processing	power.	While	computer	power	has	advanced	exponentially,	the
programs	by	which	computers	operate	have	often	failed	to	advance	at	all.	One	of
the	primary	responses	of	software	companies	to	increased	processing	power	is	to
add	“useful”	features,	which	often	make	the	software	harder	to	use.	Microsoft
Word	reached	its	apex	in	1995	and	has	been	slowly	sinking	under	the	weight	of
added	features	ever	since.	Once	Moore’s	Law	starts	slowing	down,	software
developers	will	be	confronted	with	hard	choices	between	efficiency,	speed,	and
functionality.

A	major	fear	of	the	singulariteers	is	that	as	computers	become	more	involved
in	designing	their	own	software	they’ll	rapidly	bootstrap	themselves	into
achieving	superhuman	computational	ability.	But	the	evidence	of	machine
learning	points	in	the	opposite	direction.	As	machines	become	more	powerful
and	capable	of	learning,	they	learn	more	and	more	as	human	beings	do—from
multiple	examples,	often	under	the	supervision	of	human	and	machine	teachers.
Education	is	as	hard	and	slow	for	computers	as	it	is	for	teenagers.	Consequently,
systems	based	on	deep	learning	are	becoming	more	rather	than	less	human.	The
skills	they	bring	to	learning	are	not	“better	than”	but	“complementary	to”	human



skills	they	bring	to	learning	are	not	“better	than”	but	“complementary	to”	human
learning:	Computer	learning	systems	can	identify	patterns	that	humans	cannot—
and	vice	versa.	The	world’s	best	chess	players	are	neither	computers	nor	humans
but	humans	working	together	with	computers.	Cyberspace	is	indeed	inhabited	by
harmful	programs,	but	these	primarily	take	the	form	of	malware—viruses
notable	for	their	malign	mindlessness,	not	for	their	superintelligence.

WHITHER	WIENER

Wiener	noted	that	exponential	technological	progress	is	a	relatively	modern
phenomenon	and	not	all	of	it	is	good.	He	regarded	atomic	weapons	and	the
development	of	missiles	with	nuclear	warheads	as	a	recipe	for	the	suicide	of	the
human	species.	He	compared	the	headlong	exploitation	of	the	planet’s	resources
with	the	Mad	Tea	Party	of	Alice	in	Wonderland:	Having	laid	waste	to	one	local
environment,	we	make	progress	simply	by	moving	on	to	lay	waste	to	the	next.
Wiener’s	optimism	about	the	development	of	computers	and	neuromechanical
systems	was	tempered	by	his	pessimism	about	their	exploitation	by	authoritarian
governments,	such	as	the	Soviet	Union,	and	the	tendency	for	democracies,	such
as	the	United	States,	to	become	more	authoritarian	themselves	in	confronting	the
threat	of	authoritarianism.

What	would	Wiener	think	of	the	current	human	use	of	human	beings?	He
would	be	amazed	by	the	power	of	computers	and	the	Internet.	He	would	be
happy	that	the	early	neural	nets	in	which	he	played	a	role	have	spawned
powerful	deep-learning	systems	that	exhibit	the	perceptual	ability	he	demanded
of	them—although	he	might	not	be	impressed	that	one	of	the	most	prominent
examples	of	such	computerized	Gestalt	is	the	ability	to	recognize	photos	of
kittens	on	the	World	Wide	Web.	Rather	than	regarding	machine	intelligence	as	a
threat,	I	suspect	he	would	regard	it	as	a	phenomenon	in	its	own	right,	different
from	and	co-evolving	with	our	own	human	intelligence.

Unsurprised	by	global	warming—the	Mad	Tea	Party	of	our	era—Wiener
would	applaud	the	exponential	improvement	in	alternative-energy	technologies
and	would	apply	his	cybernetic	expertise	to	developing	the	intricate	set	of
feedback	loops	needed	to	incorporate	such	technologies	into	the	coming	smart
electrical	grid.	Nonetheless,	recognizing	that	the	solution	to	the	problem	of
climate	change	is	at	least	as	much	political	as	it	is	technological,	he	would
undoubtedly	be	pessimistic	about	our	chances	of	solving	this	civilization-



undoubtedly	be	pessimistic	about	our	chances	of	solving	this	civilization-
threatening	problem	in	time.	Wiener	hated	hucksters—political	hucksters	most
of	all—but	he	acknowledged	that	hucksters	would	always	be	with	us.

It’s	easy	to	forget	just	how	scary	Wiener’s	world	was.	The	United	States	and
the	Soviet	Union	were	in	a	full-out	arms	race,	building	hydrogen	bombs
mounted	on	nuclear	warheads	carried	by	intercontinental	ballistic	missiles
guided	by	navigation	systems	to	which	Wiener	himself—to	his	dismay—had
contributed.	I	was	four	years	old	when	Wiener	died.	In	1964,	my	nursery	school
class	was	practicing	duck	and	cover	under	our	desks	to	prepare	for	a	nuclear
attack.	Given	the	human	use	of	human	beings	in	his	own	day,	if	he	could	see	our
current	state,	Wiener’s	first	response	would	be	to	be	relieved	that	we	are	still
alive.



Chapter	2

THE	LIMITATIONS	OF	OPAQUE	LEARNING
MACHINES

JUDEA	PEARL

Judea	Pearl	is	a	professor	of	computer	science	and	director	of	the	Cognitive
Systems	Laboratory	at	UCLA.	His	most	recent	book,	co-authored	with	Dana
Mackenzie,	is	The	Book	of	Why:	The	New	Science	of	Cause	and	Effect.

In	the	1980s,	Judea	Pearl	introduced	a	new	approach	to	artificial	intelligence	called
Bayesian	networks.	This	probability-based	model	of	machine	reasoning	enabled	machines
to	function—in	a	complex	and	uncertain	world—as	“evidence	engines,”	continuously
revising	their	beliefs	in	light	of	new	evidence.

Within	a	few	years,	Judea’s	Bayesian	networks	had	completely	overshadowed	the
previous	rule-based	approaches	to	artificial	intelligence.	The	advent	of	deep	learning—in
which	computers,	in	effect,	teach	themselves	to	be	smarter	by	observing	tons	of	data—has
given	him	pause,	because	this	method	lacks	transparency.

While	recognizing	the	impressive	achievements	in	deep	learning	by	colleagues	such	as
Michael	I.	Jordan	and	Geoffrey	Hinton,	he	feels	uncomfortable	with	this	kind	of	opacity.	He
set	out	to	understand	the	theoretical	limitations	of	deep-learning	systems	and	points	out
that	basic	barriers	exist	that	will	prevent	them	from	achieving	a	human	kind	of	intelligence,
no	matter	what	we	do.	Leveraging	the	computational	benefits	of	Bayesian	networks,	Judea
realized	that	the	combination	of	simple	graphical	models	and	data	could	also	be	used	to
represent	and	infer	cause-effect	relationships.	The	significance	of	this	discovery	far
transcends	its	roots	in	artificial	intelligence.	His	latest	book	explains	causal	thinking	to	the
general	public;	you	might	say	it	is	a	primer	on	how	to	think	even	though	human.

Judea’s	principled,	mathematical	approach	to	causality	is	a	profound	contribution	to	the
realm	of	ideas.	It	has	already	benefited	virtually	every	field	of	inquiry,	especially	the	data-
intensive	health	and	social	sciences.



A s	a	former	physicist,	I	was	extremely	interested	in	cybernetics.	Though	it
did	not	utilize	the	full	power	of	Turing	Machines,	it	was	highly
transparent,	perhaps	because	it	was	founded	on	classical	control	theory

and	information	theory.	We	are	losing	this	transparency	now,	with	the	deep-
learning	style	of	machine	learning.	It	is	fundamentally	a	curve-fitting	exercise
that	adjusts	weights	in	intermediate	layers	of	a	long	input-output	chain.

I	find	many	users	who	say	that	it	“works	well	and	we	don’t	know	why.”	Once
you	unleash	it	on	large	data,	deep	learning	has	its	own	dynamics,	it	does	its	own
repair	and	its	own	optimization,	and	it	gives	you	the	right	results	most	of	the
time.	But	when	it	doesn’t,	you	don’t	have	a	clue	about	what	went	wrong	and
what	should	be	fixed.	In	particular,	you	do	not	know	if	the	fault	is	in	the
program,	in	the	method,	or	because	things	have	changed	in	the	environment.	We
should	be	aiming	at	a	different	kind	of	transparency.

Some	argue	that	transparency	is	not	really	needed.	We	don’t	understand	the
neural	architecture	of	the	human	brain,	yet	it	runs	well,	so	we	forgive	our	meager
understanding	and	use	human	helpers	to	great	advantage.	In	the	same	way,	they
argue,	why	not	unleash	deep-learning	systems	and	create	intelligence	without
understanding	how	they	work?	I	buy	this	argument	to	some	extent.	I	personally
don’t	like	opacity,	so	I	won’t	spend	my	time	on	deep	learning,	but	I	know	that	it
has	a	place	in	the	makeup	of	intelligence.	I	know	that	nontransparent	systems
can	do	marvelous	jobs,	and	our	brain	is	proof	of	that	marvel.

But	this	argument	has	its	limitations.	The	reason	we	can	forgive	our	meager
understanding	of	how	human	brains	work	is	because	our	brains	work	the	same
way,	and	that	enables	us	to	communicate	with	other	humans,	learn	from	them,
instruct	them,	and	motivate	them	in	our	own	native	language.	If	our	robots	will
all	be	as	opaque	as	AlphaGo,	we	won’t	be	able	to	hold	a	meaningful
conversation	with	them,	and	that	would	be	unfortunate.	We	will	need	to	retrain
them	whenever	we	make	a	slight	change	in	the	task	or	in	the	operating
environment.

So	rather	than	experimenting	with	opaque	learning	machines,	I	am	trying	to
understand	their	theoretical	limitations	and	examine	how	these	limitations	can	be
overcome.	I	do	it	in	the	context	of	causal-reasoning	tasks,	which	govern	much	of
how	scientists	think	about	the	world	and,	at	the	same	time,	are	rich	in	intuition
and	toy	examples,	so	we	can	monitor	the	progress	in	our	analysis.	In	this



and	toy	examples,	so	we	can	monitor	the	progress	in	our	analysis.	In	this
context,	we’ve	discovered	that	some	basic	barriers	exist,	and	that	unless	they	are
breached	we	won’t	get	a	real	human	kind	of	intelligence	no	matter	what	we	do.	I
believe	that	charting	these	barriers	may	be	no	less	important	than	banging	our
heads	against	them.

Current	machine-learning	systems	operate	almost	exclusively	in	a	statistical,
or	model-blind,	mode,	which	is	analogous	in	many	ways	to	fitting	a	function	to	a
cloud	of	data	points.	Such	systems	cannot	reason	about	“What	if?”	questions
and,	therefore,	cannot	serve	as	the	basis	for	Strong	AI—that	is,	artificial
intelligence	that	emulates	human-level	reasoning	and	competence.	To	achieve
human-level	intelligence,	learning	machines	need	the	guidance	of	a	blueprint	of
reality,	a	model—similar	to	a	road	map	that	guides	us	in	driving	through	an
unfamiliar	city.

To	be	more	specific,	current	learning	machines	improve	their	performance	by
optimizing	parameters	for	a	stream	of	sensory	inputs	received	from	the
environment.	It	is	a	slow	process,	analogous	to	the	natural-selection	process	that
drives	Darwinian	evolution.	It	explains	how	species	like	eagles	and	snakes	have
developed	superb	vision	systems	over	millions	of	years.	It	cannot	explain,
however,	the	super-evolutionary	process	that	enabled	humans	to	build	eyeglasses
and	telescopes	over	barely	a	thousand	years.	What	humans	had	that	other	species
lacked	was	a	mental	representation	of	their	environment—a	representation	that
they	could	manipulate	at	will	to	imagine	alternative	hypothetical	environments
for	planning	and	learning.

Historians	of	Homo	sapiens	such	as	Yuval	Noah	Harari	and	Steven	Mithen
are	in	general	agreement	that	the	decisive	ingredient	that	gave	our	ancestors	the
ability	to	achieve	global	dominion	about	forty	thousand	years	ago	was	their
ability	to	create	and	store	a	mental	representation	of	their	environment,
interrogate	that	representation,	distort	it	by	mental	acts	of	imagination,	and
finally	answer	the	“What	if?”	kinds	of	questions.	Examples	are	interventional
questions	(“What	if	I	do	such-and-such?”)	and	retrospective	or	counterfactual
questions	(“What	if	I	had	acted	differently?”).	No	learning	machine	in	operation
today	can	answer	such	questions.	Moreover,	most	learning	machines	do	not
possess	a	representation	from	which	the	answers	to	such	questions	can	be
derived.

With	regard	to	causal	reasoning,	we	find	that	you	can	do	very	little	with	any
form	of	model-blind	curve	fitting,	or	any	statistical	inference,	no	matter	how
sophisticated	the	fitting	process	is.	We	have	also	found	a	theoretical	framework
for	organizing	such	limitations,	which	forms	a	hierarchy.



for	organizing	such	limitations,	which	forms	a	hierarchy.
On	the	first	level,	you	have	statistical	reasoning,	which	can	tell	you	only	how

seeing	one	event	would	change	your	belief	about	another.	For	example,	what	can
a	symptom	tell	you	about	a	disease?

Then	you	have	a	second	level,	which	entails	the	first	but	not	vice	versa.	It
deals	with	actions.	“What	will	happen	if	we	raise	prices?”	“What	if	you	make
me	laugh?”	That	second	level	of	the	hierarchy	requires	information	about
interventions	that	is	not	available	in	the	first.	This	information	can	be	encoded	in
a	graphical	model,	which	merely	tells	us	which	variable	responds	to	another.

The	third	level	of	the	hierarchy	is	the	counterfactual.	This	is	the	language
used	by	scientists.	“What	if	the	object	were	twice	as	heavy?”	“What	if	I	were	to
do	things	differently?”	“Was	it	the	aspirin	that	cured	my	headache	or	the	nap	I
took?”	Counterfactuals	are	at	the	top	level	in	the	sense	that	they	cannot	be
derived	even	if	we	could	predict	the	effects	of	all	actions.	They	need	an	extra
ingredient,	in	the	form	of	equations,	to	tell	us	how	variables	respond	to	changes
in	other	variables.

One	of	the	crowning	achievements	of	causal-inference	research	has	been	the
algorithmization	of	both	interventions	and	counterfactuals,	the	top	two	layers	of
the	hierarchy.	In	other	words,	once	we	encode	our	scientific	knowledge	in	a
model	(which	may	be	qualitative),	algorithms	exist	that	examine	the	model	and
determine	if	a	given	query,	be	it	about	an	intervention	or	about	a	counterfactual,
can	be	estimated	from	the	available	data—and,	if	so,	how.	This	capability	has
dramatically	transformed	the	way	scientists	are	doing	science,	especially	in	such
data-intensive	sciences	as	sociology	and	epidemiology,	for	which	causal	models
have	become	a	second	language.	These	disciplines	view	their	linguistic
transformation	as	the	Causal	Revolution.	As	Harvard	social	scientist	Gary	King
puts	it,	“More	has	been	learned	about	causal	inference	in	the	last	few	decades
than	the	sum	total	of	everything	that	had	been	learned	about	it	in	all	prior
recorded	history.”

As	I	contemplate	the	success	of	machine	learning	and	try	to	extrapolate	it	to
the	future	of	AI,	I	ask	myself,	Are	we	aware	of	the	basic	limitations	that	were
discovered	in	the	causal-inference	arena?	Are	we	prepared	to	circumvent	the
theoretical	impediments	that	prevent	us	from	going	from	one	level	of	the
hierarchy	to	another	level?

I	view	machine	learning	as	a	tool	to	get	us	from	data	to	probabilities.	But
then	we	still	have	to	make	two	extra	steps	to	go	from	probabilities	into	real
understanding—two	big	steps.	One	is	to	predict	the	effect	of	actions,	and	the
second	is	counterfactual	imagination.	We	cannot	claim	to	understand	reality
unless	we	make	the	last	two	steps.



unless	we	make	the	last	two	steps.
In	his	insightful	book	Foresight	and	Understanding	(1961),	the	philosopher

Stephen	Toulmin	identified	the	transparency-versus-opacity	contrast	as	the	key
to	understanding	the	ancient	rivalry	between	Greek	and	Babylonian	sciences.
According	to	Toulmin,	the	Babylonian	astronomers	were	masters	of	black-box
predictions,	far	surpassing	their	Greek	rivals	in	accuracy	and	consistency	of
celestial	observations.	Yet	science	favored	the	creative-speculative	strategy	of
the	Greek	astronomers,	which	was	wild	with	metaphorical	imagery:	circular
tubes	full	of	fire,	small	holes	through	which	celestial	fire	was	visible	as	stars,
and	hemispherical	Earth	riding	on	turtleback.	It	was	this	wild	modeling	strategy,
not	Babylonian	extrapolation,	that	jolted	Eratosthenes	(276–194	BC)	to	perform
one	of	the	most	creative	experiments	in	the	ancient	world	and	calculate	the
circumference	of	the	Earth.	Such	an	experiment	would	never	have	occurred	to	a
Babylonian	data	fitter.

Model-blind	approaches	impose	intrinsic	limitations	on	the	cognitive	tasks
that	Strong	AI	can	perform.	My	general	conclusion	is	that	human-level	AI
cannot	emerge	solely	from	model-blind	learning	machines;	it	requires	the
symbiotic	collaboration	of	data	and	models.

Data	science	is	a	science	only	to	the	extent	that	it	facilitates	the	interpretation
of	data—a	two-body	problem,	connecting	data	to	reality.	Data	alone	are	hardly	a
science,	no	matter	how	“big”	they	get	and	how	skillfully	they	are	manipulated.
Opaque	learning	systems	may	get	us	to	Babylon,	but	not	to	Athens.



Chapter	3

THE	PURPOSE	PUT	INTO	THE	MACHINE

STUART	RUSSELL

Stuart	Russell	is	a	professor	of	computer	science	and	Smith-Zadeh	Professor	in
Engineering	at	UC	Berkeley.	He	is	the	co-author	(with	Peter	Norvig)	of	Artificial

Intelligence:	A	Modern	Approach.

Computer	scientist	Stuart	Russell,	along	with	Elon	Musk,	Stephen	Hawking,	Max
Tegmark,	and	numerous	others,	has	insisted	that	attention	be	paid	to	the	potential	dangers
in	creating	an	intelligence	on	the	superhuman	(or	even	the	human)	level—an	AGI,	or
artificial	general	intelligence,	whose	programmed	purposes	may	not	necessarily	align	with
our	own.

His	early	work	was	on	understanding	the	notion	of	“bounded	optimality”	as	a	formal
definition	of	intelligence	that	you	can	work	on.	He	developed	the	technique	of	rational
metareasoning,	“which	is,	roughly	speaking,	that	you	do	the	computations	that	you	expect
to	improve	the	quality	of	your	ultimate	decision	as	quickly	as	possible.”	He	has	also	worked
on	the	unification	of	probability	theory	and	first-order	logic—resulting	in	a	new	and	far	more
effective	monitoring	system	for	the	Comprehensive	Nuclear	Test	Ban	Treaty—and	on	the
problem	of	decision	making	over	long	timescales	(his	presentations	on	the	latter	topic	are
usually	titled	“Life:	play	and	win	in	20	trillion	moves”).

He	is	very	concerned	with	the	continuing	development	of	autonomous	weapons,	such
as	lethal	microdrones,	which	are	potentially	scalable	into	weapons	of	mass	destruction.	He
drafted	the	letter	from	forty	of	the	world’s	leading	AI	researchers	to	President	Obama	that
resulted	in	high-level	national-security	meetings.

His	current	work	centers	on	the	creation	of	what	he	calls	“provably	beneficial”	AI.	He
wants	to	ensure	AI	safety	by	“imbuing	systems	with	explicit	uncertainty”	about	the
objectives	of	their	human	programmers,	an	approach	that	would	amount	to	a	fairly	radical
reordering	of	current	AI	research.

Stuart	is	also	on	the	radar	of	anyone	who	has	taken	a	course	in	computer	science	in
the	last	twenty-odd	years.	He	is	co-author	of	“the”	definitive	AI	textbook,	with	an	estimated
5-million-plus	English-language	readers.



Among	the	many	issues	raised	in	Norbert	Wiener’s	The	Human	Use	of
Human	Beings	(1950)	that	are	currently	relevant,	the	most	significant	to
the	AI	researcher	is	the	possibility	that	humanity	may	cede	control	over

its	destiny	to	machines.
Wiener	considered	the	machines	of	the	near	future	as	far	too	limited	to	exert

global	control,	imagining	instead	that	machines	and	machinelike	control	systems
would	be	wielded	by	human	elites	to	reduce	the	great	mass	of	humanity	to	the
status	of	“cogs	and	levers	and	rods.”	Looking	further	ahead,	he	pointed	to	the
difficulty	of	correctly	specifying	objectives	for	highly	capable	machines,	noting

a	few	of	the	simpler	and	more	obvious	truths	of	life,	such	as	that	when
a	djinnee	is	found	in	a	bottle,	it	had	better	be	left	there;	that	the	fisherman
who	craves	a	boon	from	heaven	too	many	times	on	behalf	of	his	wife	will
end	up	exactly	where	he	started;	that	if	you	are	given	three	wishes,	you
must	be	very	careful	what	you	wish	for.

The	dangers	are	clear	enough:

Woe	to	us	if	we	let	[the	machine]	decide	our	conduct,	unless	we	have
previously	examined	the	laws	of	its	action,	and	know	fully	that	its
conduct	will	be	carried	out	on	principles	acceptable	to	us!	On	the	other
hand,	the	machine	like	the	djinnee,	which	can	learn	and	can	make
decisions	on	the	basis	of	its	learning,	will	in	no	way	be	obliged	to	make
such	decisions	as	we	should	have	made,	or	will	be	acceptable	to	us.

Ten	years	later,	after	seeing	Arthur	Samuel’s	checker-playing	program	learn
to	play	checkers	far	better	than	its	creator,	Wiener	published	“Some	Moral	and
Technical	Consequences	of	Automation”	in	Science.	In	this	paper,	the	message
is	even	clearer:



If	we	use,	to	achieve	our	purposes,	a	mechanical	agency	with	whose
operation	we	cannot	efficiently	interfere	.	.	.	we	had	better	be	quite	sure
that	the	purpose	put	into	the	machine	is	the	purpose	which	we	really
desire.

In	my	view,	this	is	the	source	of	the	existential	risk	from	superintelligent	AI
cited	in	recent	years	by	such	observers	as	Elon	Musk,	Bill	Gates,	Stephen
Hawking,	and	Nick	Bostrom.

PUTTING	PURPOSES	INTO	MACHINES

The	goal	of	AI	research	has	been	to	understand	the	principles	underlying
intelligent	behavior	and	to	build	those	principles	into	machines	that	can	then
exhibit	such	behavior.	In	the	1960s	and	1970s,	the	prevailing	theoretical	notion
of	intelligence	was	the	capacity	for	logical	reasoning,	including	the	ability	to
derive	plans	of	action	guaranteed	to	achieve	a	specified	goal.	More	recently,	a
consensus	has	emerged	around	the	idea	of	a	rational	agent	that	perceives,	and
acts	in	order	to	maximize,	its	expected	utility.	Subfields	such	as	logical	planning,
robotics,	and	natural-language	understanding	are	special	cases	of	the	general
paradigm.	AI	has	incorporated	probability	theory	to	handle	uncertainty,	utility
theory	to	define	objectives,	and	statistical	learning	to	allow	machines	to	adapt	to
new	circumstances.	These	developments	have	created	strong	connections	to
other	disciplines	that	build	on	similar	concepts,	including	control	theory,
economics,	operations	research,	and	statistics.

In	both	the	logical-planning	and	rational-agent	views	of	AI,	the	machine’s
objective—whether	in	the	form	of	a	goal,	a	utility	function,	or	a	reward	function
(as	in	reinforcement	learning)—is	specified	exogenously.	In	Wiener’s	words,
this	is	“the	purpose	put	into	the	machine.”	Indeed,	it	has	been	one	of	the	tenets	of
the	field	that	AI	systems	should	be	general	purpose—i.e.,	capable	of	accepting	a
purpose	as	input	and	then	achieving	it—rather	than	special	purpose,	with	their
goal	implicit	in	their	design.	For	example,	a	self-driving	car	should	accept	a
destination	as	input	instead	of	having	one	fixed	destination.	However,	some
aspects	of	the	car’s	“driving	purpose”	are	fixed,	such	as	that	it	shouldn’t	hit
pedestrians.	This	is	built	directly	into	the	car’s	steering	algorithms	rather	than
being	explicit:	No	self-driving	car	in	existence	today	“knows”	that	pedestrians
prefer	not	to	be	run	over.



prefer	not	to	be	run	over.
Putting	a	purpose	into	a	machine	that	optimizes	its	behavior	according	to

clearly	defined	algorithms	seems	an	admirable	approach	to	ensuring	that	the
machine’s	“conduct	will	be	carried	out	on	principles	acceptable	to	us!”	But,	as
Wiener	warns,	we	need	to	put	in	the	right	purpose.	We	might	call	this	the	King
Midas	problem:	Midas	got	exactly	what	he	asked	for—namely,	that	everything
he	touched	would	turn	to	gold—but	too	late	he	discovered	the	drawbacks	of
drinking	liquid	gold	and	eating	solid	gold.	The	technical	term	for	putting	in	the
right	purpose	is	value	alignment.	When	it	fails,	we	may	inadvertently	imbue
machines	with	objectives	counter	to	our	own.	Tasked	with	finding	a	cure	for
cancer	as	fast	as	possible,	an	AI	system	might	elect	to	use	the	entire	human
population	as	guinea	pigs	for	its	experiments.	Asked	to	de-acidify	the	oceans,	it
might	use	up	all	the	oxygen	in	the	atmosphere	as	a	side	effect.	This	is	a	common
characteristic	of	systems	that	optimize:	Variables	not	included	in	the	objective
may	be	set	to	extreme	values	to	help	optimize	that	objective.

Unfortunately,	neither	AI	nor	other	disciplines	(economics,	statistics,	control
theory,	operations	research)	built	around	the	optimization	of	objectives	have
much	to	say	about	how	to	identify	the	purposes	“we	really	desire.”	Instead,	they
assume	that	objectives	are	simply	implanted	into	the	machine.	AI	research,	in	its
present	form,	studies	the	ability	to	achieve	objectives,	not	the	design	of	those
objectives.

Steve	Omohundro	has	pointed	to	a	further	difficulty,	observing	that
intelligent	entities	must	act	to	preserve	their	own	existence.	This	tendency	has
nothing	to	do	with	a	self-preservation	instinct	or	any	other	biological	notion;	it’s
just	that	an	entity	cannot	achieve	its	objectives	if	it’s	dead.	According	to
Omohundro’s	argument,	a	superintelligent	machine	that	has	an	off	switch—
which	some,	including	Alan	Turing	himself,	in	a	1951	talk	on	BBC	Radio	3,
have	seen	as	our	potential	salvation—will	take	steps	to	disable	the	switch	in
some	way.*	Thus	we	may	face	the	prospect	of	superintelligent	machines—their
actions	by	definition	unpredictable	by	us	and	their	imperfectly	specified
objectives	conflicting	with	our	own—whose	motivations	to	preserve	their
existence	in	order	to	achieve	those	objectives	may	be	insuperable.

1001	REASONS	TO	PAY	NO	ATTENTION

Objections	have	been	raised	to	these	arguments,	primarily	by	researchers	within



Objections	have	been	raised	to	these	arguments,	primarily	by	researchers	within
the	AI	community.	The	objections	reflect	a	natural	defensive	reaction,	coupled
perhaps	with	a	lack	of	imagination	about	what	a	superintelligent	machine	could
do.	None	hold	water	on	closer	examination.	Here	are	some	of	the	more	common
ones:

Don’t	worry,	we	can	just	switch	it	off.*	This	is	often	the	first	thing	that
pops	into	a	layperson’s	head	when	considering	risks	from
superintelligent	AI—as	if	a	superintelligent	entity	would	never	think	of
that.	This	is	rather	like	saying	that	the	risk	of	losing	to	Deep	Blue	or
AlphaGo	is	negligible—all	one	has	to	do	is	make	the	right	moves.
Human-level	or	superhuman	AI	is	impossible.*	This	is	an	unusual
claim	for	AI	researchers	to	make,	given	that,	from	Turing	onward,	they
have	been	fending	off	such	claims	from	philosophers	and
mathematicians.	The	claim,	which	is	backed	by	no	evidence,	appears	to
concede	that	if	superintelligent	AI	were	possible,	it	would	be	a
significant	risk.	It’s	as	if	a	bus	driver,	with	all	of	humanity	as
passengers,	said,	“Yes,	I	am	driving	toward	a	cliff—in	fact,	I’m
pressing	the	pedal	to	the	metal!	But	trust	me,	we’ll	run	out	of	gas
before	we	get	there!”	The	claim	represents	a	foolhardy	bet	against
human	ingenuity.	We	have	made	such	bets	before	and	lost.	On
September	11,	1933,	renowned	physicist	Ernest	Rutherford	stated,	with
utter	confidence,	“Anyone	who	expects	a	source	of	power	from	the
transformation	of	these	atoms	is	talking	moonshine.”	On	September	12,
1933,	Leo	Szilard	invented	the	neutron-induced	nuclear	chain	reaction.
A	few	years	later	he	demonstrated	such	a	reaction	in	his	laboratory	at
Columbia	University.	As	he	recalled	in	a	memoir:	“We	switched
everything	off	and	went	home.	That	night,	there	was	very	little	doubt	in
my	mind	that	the	world	was	headed	for	grief.”
It’s	too	soon	to	worry	about	it.	The	right	time	to	worry	about	a
potentially	serious	problem	for	humanity	depends	not	just	on	when	the
problem	will	occur	but	also	on	how	much	time	is	needed	to	devise	and
implement	a	solution	that	avoids	the	risk.	For	example,	if	we	were	to
detect	a	large	asteroid	predicted	to	collide	with	the	Earth	in	2067,
would	we	say,	“It’s	too	soon	to	worry”?	And	if	we	consider	the	global
catastrophic	risks	from	climate	change	predicted	to	occur	later	in	this
century,	is	it	too	soon	to	take	action	to	prevent	them?	On	the	contrary,	it



may	be	too	late.	The	relevant	timescale	for	human-level	AI	is	less
predictable,	but,	like	nuclear	fission,	it	might	arrive	considerably	sooner
than	expected.	One	variation	on	this	argument	is	Andrew	Ng’s
statement	that	it’s	“like	worrying	about	overpopulation	on	Mars.”	This
appeals	to	a	convenient	analogy:	Not	only	is	the	risk	easily	managed
and	far	in	the	future,	but	it	also	is	extremely	unlikely	that	we’d	even	try
to	move	billions	of	humans	to	Mars	in	the	first	place.	The	analogy	is	a
false	one,	however.	We	are	already	devoting	huge	scientific	and
technical	resources	to	creating	ever-more-capable	AI	systems.	A	more
apt	analogy	would	be	a	plan	to	move	the	human	race	to	Mars	with	no
consideration	for	what	we	might	breathe,	drink,	or	eat	once	we’d
arrived.
Human-level	AI	isn’t	really	imminent,	in	any	case.	The	AI100	report,
for	example,	assures	us,	“Contrary	to	the	more	fantastic	predictions	for
AI	in	the	popular	press,	the	Study	Panel	found	no	cause	for	concern	that
AI	is	an	imminent	threat	to	humankind.”	This	argument	simply
misstates	the	reasons	for	concern,	which	are	not	predicated	on
imminence.	In	his	2014	book,	Superintelligence:	Paths,	Dangers,
Strategies,	Nick	Bostrom,	for	one,	writes,	“It	is	no	part	of	the	argument
in	this	book	that	we	are	on	the	threshold	of	a	big	breakthrough	in
artificial	intelligence,	or	that	we	can	predict	with	any	precision	when
such	a	development	might	occur.”
You’re	just	a	Luddite.	It’s	an	odd	definition	of	Luddite	that	includes
Turing,	Wiener,	Minsky,	Musk,	and	Gates,	who	rank	among	the	most
prominent	contributors	to	technological	progress	in	the	20th	and	21st
centuries.*	Furthermore,	the	epithet	represents	a	complete
misunderstanding	of	the	nature	of	the	concerns	raised	and	the	purpose
for	raising	them.	It	is	as	if	one	were	to	accuse	nuclear	engineers	of
Luddism	if	they	pointed	out	the	need	for	control	of	the	fission	reaction.
Some	objectors	also	use	the	term	“anti-AI,”	which	is	rather	like	calling
nuclear	engineers	“anti-physics.”	The	purpose	of	understanding	and
preventing	the	risks	of	AI	is	to	ensure	that	we	can	realize	the	benefits.
Bostrom,	for	example,	writes	that	success	in	controlling	AI	will	result
in	“a	civilizational	trajectory	that	leads	to	a	compassionate	and	jubilant
use	of	humanity’s	cosmic	endowment”—hardly	a	pessimistic
prediction.



Any	machine	intelligent	enough	to	cause	trouble	will	be	intelligent
enough	to	have	appropriate	and	altruistic	objectives.*	(Often,	the
argument	adds	the	premise	that	people	of	greater	intelligence	tend	to
have	more	altruistic	objectives,	a	view	that	may	be	related	to	the	self-
conception	of	those	making	the	argument.)	This	argument	is	related	to
Hume’s	is-ought	problem	and	G.	E.	Moore’s	naturalistic	fallacy,
suggesting	that	somehow	the	machine,	as	a	result	of	its	intelligence,
will	simply	perceive	what	is	right,	given	its	experience	of	the	world.
This	is	implausible;	for	example,	one	cannot	perceive,	in	the	design	of	a
chessboard	and	chess	pieces,	the	goal	of	checkmate;	the	same
chessboard	and	pieces	can	be	used	for	suicide	chess,	or	indeed	many
other	games	still	to	be	invented.	Put	another	way:	Where	Bostrom
imagines	humans	driven	extinct	by	a	putative	robot	that	turns	the	planet
into	a	sea	of	paper	clips,	we	humans	see	this	outcome	as	tragic,	whereas
the	iron-eating	bacterium	Thiobacillus	ferrooxidans	is	thrilled.	Who’s
to	say	the	bacterium	is	wrong?	The	fact	that	a	machine	has	been	given	a
fixed	objective	by	humans	doesn’t	mean	that	it	will	automatically
recognize	the	importance	to	humans	of	things	that	aren’t	part	of	the
objective.	Maximizing	the	objective	may	well	cause	problems	for
humans,	but,	by	definition,	the	machine	will	not	recognize	those
problems	as	problematic.
Intelligence	is	multidimensional,	“so	‘smarter	than	humans’	is	a
meaningless	concept.”*	It	is	a	staple	of	modern	psychology	that	IQ
doesn’t	do	justice	to	the	full	range	of	cognitive	skills	that	humans
possess	to	varying	degrees.	IQ	is	indeed	a	crude	measure	of	human
intelligence,	but	it	is	utterly	meaningless	for	current	AI	systems,
because	their	capabilities	across	different	areas	are	uncorrelated.	How
do	we	compare	the	IQ	of	Google’s	search	engine,	which	cannot	play
chess,	with	that	of	Deep	Blue,	which	cannot	answer	search	queries?
None	of	this	supports	the	argument	that	because	intelligence	is
multifaceted,	we	can	ignore	the	risk	from	superintelligent	machines.	If
“smarter	than	humans”	is	a	meaningless	concept,	then	“smarter	than
gorillas”	is	also	meaningless,	and	gorillas	therefore	have	nothing	to	fear
from	humans;	clearly,	that	argument	doesn’t	hold	water.	Not	only	is	it
logically	possible	for	one	entity	to	be	more	capable	than	another	across
all	the	relevant	dimensions	of	intelligence,	it	is	also	possible	for	one



species	to	represent	an	existential	threat	to	another	even	if	the	former
lacks	an	appreciation	for	music	and	literature.

SOLUTIONS

Can	we	tackle	Wiener’s	warning	head-on?	Can	we	design	AI	systems	whose
purposes	don’t	conflict	with	ours,	so	that	we’re	sure	to	be	happy	with	how	they
behave?	On	the	face	of	it,	this	seems	hopeless,	because	it	will	doubtless	prove
infeasible	to	write	down	our	purposes	correctly	or	imagine	all	the
counterintuitive	ways	a	superintelligent	entity	might	fulfill	them.

If	we	treat	superintelligent	AI	systems	as	if	they	were	black	boxes	from	outer
space,	then	indeed	we	have	no	hope.	Instead,	the	approach	we	seem	obliged	to
take,	if	we	are	to	have	any	confidence	in	the	outcome,	is	to	define	some	formal
problem	F,	and	design	AI	systems	to	be	F	solvers,	such	that	no	matter	how
perfectly	a	system	solves	F,	we’re	guaranteed	to	be	happy	with	the	solution.	If
we	can	work	out	an	appropriate	F	that	has	this	property,	we’ll	be	able	to	create
provably	beneficial	AI.

Here’s	an	example	of	how	not	to	do	it:	Let	a	reward	be	a	scalar	value
provided	periodically	by	a	human	to	the	machine,	corresponding	to	how	well	the
machine	has	behaved	during	each	period,	and	let	F	be	the	problem	of
maximizing	the	expected	sum	of	rewards	obtained	by	the	machine.	The	optimal
solution	to	this	problem	is	not,	as	one	might	hope,	to	behave	well,	but	instead	to
take	control	of	the	human	and	force	him	or	her	to	provide	a	stream	of	maximal
rewards.	This	is	known	as	the	wireheading	problem,	based	on	observations	that
humans	themselves	are	susceptible	to	the	same	problem	if	given	a	means	to
electronically	stimulate	their	own	pleasure	centers.

There	is,	I	believe,	an	approach	that	may	work.	Humans	can	reasonably	be
described	as	having	(mostly	implicit)	preferences	over	their	future	lives—that	is,
given	enough	time	and	unlimited	visual	aids,	a	human	could	express	a
preference	(or	indifference)	when	offered	a	choice	between	two	future	lives	laid
out	before	him	or	her	in	all	their	aspects.	(This	idealization	ignores	the
possibility	that	our	minds	are	composed	of	subsystems	with	incompatible
preferences;	if	true,	that	would	limit	a	machine’s	ability	to	optimally	satisfy	our
preferences,	but	it	doesn’t	seem	to	prevent	us	from	designing	machines	that
avoid	catastrophic	outcomes.)	The	formal	problem	F	to	be	solved	by	the



machine	in	this	case	is	to	maximize	human	future-life	preferences	subject	to	its
initial	uncertainty	as	to	what	they	are.	Furthermore,	although	the	future-life
preferences	are	hidden	variables,	they’re	grounded	in	a	voluminous	source	of
evidence—namely,	all	of	the	human	choices	ever	made.	This	formulation
sidesteps	Wiener’s	problem:	The	machine	may	learn	more	about	human
preferences	as	it	goes	along,	of	course,	but	it	will	never	achieve	complete
certainty.

A	more	precise	definition	is	given	by	the	framework	of	cooperative	inverse-
reinforcement	learning,	or	CIRL.	A	CIRL	problem	involves	two	agents,	one
human	and	the	other	a	robot.	Because	there	are	two	agents,	the	problem	is	what
economists	call	a	game.	It	is	a	game	of	partial	information,	because	while	the
human	knows	the	reward	function,	the	robot	doesn’t—even	though	the	robot’s
job	is	to	maximize	it.

A	simple	example:	Suppose	that	Harriet,	the	human,	likes	to	collect	paper
clips	and	staples	and	her	reward	function	depends	on	how	many	of	each	she	has.
More	precisely,	if	she	has	p	paper	clips	and	s	staples,	her	degree	of	happiness	is
θp	+	(1-θ)s,	where	θ	is	essentially	an	exchange	rate	between	paper	clips	and
staples.	If	θ	is	1,	she	likes	only	paper	clips;	if	θ	is	0,	she	likes	only	staples;	if	θ	is
0.5,	she	is	indifferent	between	them;	and	so	on.	It’s	the	job	of	Robby,	the	robot,
to	produce	the	paper	clips	and	staples.	The	point	of	the	game	is	that	Robby	wants
to	make	Harriet	happy,	but	he	doesn’t	know	the	value	of	θ,	so	he	isn’t	sure	how
many	of	each	to	produce.

Here’s	how	the	game	works.	Let	the	true	value	of	θ	be	0.49—that	is,	Harriet
has	a	slight	preference	for	staples	over	paper	clips.	And	let’s	assume	that	Robby
has	a	uniform	prior	belief	about	θ—that	is,	he	believes	θ	is	equally	likely	to	be
any	value	between	0	and	1.	Harriet	now	gets	to	do	a	small	demonstration,
producing	either	two	paper	clips	or	two	staples	or	one	of	each.	After	that,	the
robot	can	produce	either	ninety	paper	clips	or	ninety	staples	or	fifty	of	each.	You
might	think	that	Harriet,	who	prefers	staples	to	paper	clips,	should	produce	two
staples.	But	in	that	case,	Robby’s	rational	response	would	be	to	produce	ninety
staples	(with	a	total	value	to	Harriet	of	45.9),	which	is	a	less	desirable	outcome
for	Harriet	than	fifty	of	each	(total	value	50.0).	The	optimal	solution	of	this
particular	game	is	that	Harriet	produces	one	of	each,	so	then	Robby	makes	fifty
of	each.	Thus,	the	way	the	game	is	defined	encourages	Harriet	to	“teach”	Robby
—as	long	as	she	knows	that	Robby	is	watching	carefully.

Within	the	CIRL	framework,	one	can	formulate	and	solve	the	off-switch
problem—that	is,	the	problem	of	how	to	prevent	a	robot	from	disabling	its	off



switch.	(Turing	may	rest	easier.)	A	robot	that’s	uncertain	about	human
preferences	actually	benefits	from	being	switched	off,	because	it	understands
that	the	human	will	press	the	off	switch	to	prevent	the	robot	from	doing
something	counter	to	those	preferences.	Thus	the	robot	is	incentivized	to
preserve	the	off	switch,	and	this	incentive	derives	directly	from	its	uncertainty
about	human	preferences.*

The	off-switch	example	suggests	some	templates	for	controllable-agent
designs	and	provides	at	least	one	case	of	a	provably	beneficial	system	in	the
sense	introduced	above.	The	overall	approach	resembles	mechanism-design
problems	in	economics,	wherein	one	incentivizes	other	agents	to	behave	in	ways
beneficial	to	the	designer.	The	key	difference	here	is	that	we	are	building	one	of
the	agents	in	order	to	benefit	the	other.

There	are	reasons	to	think	this	approach	may	work	in	practice.	First,	there	is
abundant	written	and	filmed	information	about	humans	doing	things	(and	other
humans	reacting).	Technology	to	build	models	of	human	preferences	from	this
storehouse	will	presumably	be	available	long	before	superintelligent	AI	systems
are	created.	Second,	there	are	strong,	near-term	economic	incentives	for	robots
to	understand	human	preferences:	If	one	poorly	designed	domestic	robot	cooks
the	cat	for	dinner,	not	realizing	that	its	sentimental	value	outweighs	its
nutritional	value,	the	domestic-robot	industry	will	be	out	of	business.

There	are	obvious	difficulties,	however,	with	an	approach	that	expects	a	robot
to	learn	underlying	preferences	from	human	behavior.	Humans	are	irrational,
inconsistent,	weak	willed,	and	computationally	limited,	so	their	actions	don’t
always	reflect	their	true	preferences.	(Consider,	for	example,	two	humans
playing	chess.	Usually,	one	of	them	loses,	but	not	on	purpose!)	So	robots	can
learn	from	nonrational	human	behavior	only	with	the	aid	of	much	better
cognitive	models	of	humans.	Furthermore,	practical	and	social	constraints	will
prevent	all	preferences	from	being	maximally	satisfied	simultaneously,	which
means	that	robots	must	mediate	among	conflicting	preferences—something	that
philosophers	and	social	scientists	have	struggled	with	for	millennia.	And	what
should	robots	learn	from	humans	who	enjoy	the	suffering	of	others?	It	may	be
best	to	zero	out	such	preferences	in	the	robots’	calculations.

Finding	a	solution	to	the	AI	control	problem	is	an	important	task;	it	may	be,
in	Bostrom’s	words,	“the	essential	task	of	our	age.”	Up	to	now,	AI	research	has
focused	on	systems	that	are	better	at	making	decisions,	but	this	is	not	the	same	as
making	better	decisions.	No	matter	how	excellently	an	algorithm	maximizes,	and
no	matter	how	accurate	its	model	of	the	world,	a	machine’s	decisions	may	be
ineffably	stupid	in	the	eyes	of	an	ordinary	human	if	its	utility	function	is	not	well



ineffably	stupid	in	the	eyes	of	an	ordinary	human	if	its	utility	function	is	not	well
aligned	with	human	values.

This	problem	requires	a	change	in	the	definition	of	AI	itself—from	a	field
concerned	with	pure	intelligence,	independent	of	the	objective,	to	a	field
concerned	with	systems	that	are	provably	beneficial	for	humans.	Taking	the
problem	seriously	seems	likely	to	yield	new	ways	of	thinking	about	AI,	its
purpose,	and	our	relationship	to	it.



Chapter	4

THE	THIRD	LAW

GEORGE	DYSON

George	Dyson	is	a	historian	of	science	and	technology	and	the	author	of	Baidarka:
The	Kayak,	Darwin	Among	the	Machines,	Project	Orion,	and	Turing’s	Cathedral.

In	2005,	George	Dyson,	a	historian	of	science	and	technology,	visited	Google	at	the
invitation	of	some	Google	engineers.	The	occasion	was	the	sixtieth	anniversary	of	John
von	Neumann’s	proposal	for	a	digital	computer.	After	the	visit,	George	wrote	an	essay,
“Turing’s	Cathedral,”	which,	for	the	first	time,	alerted	the	public	about	what	Google’s
founders	had	in	store	for	the	world.	“We	are	not	scanning	all	those	books	to	be	read	by
people,”	explained	one	of	his	hosts	after	his	talk.	“We	are	scanning	them	to	be	read	by	an
AI.”

George	offers	a	counternarrative	to	the	digital	age.	His	interests	have	included	the
development	of	the	Aleut	kayak,	the	evolution	of	digital	computing	and
telecommunications,	the	origins	of	the	digital	universe,	and	a	path	not	taken	into	space.	His
career	(he	never	finished	high	school,	yet	has	been	awarded	an	honorary	doctorate	from
the	University	of	Victoria)	has	proved	as	impossible	to	classify	as	his	books.

He	likes	to	point	out	that	analog	computing,	once	believed	to	be	as	extinct	as	the
Differential	Analyzer,	has	returned.	He	argues	that	while	we	may	use	digital	components,
at	a	certain	point	the	analog	computing	being	performed	by	the	system	far	exceeds	the
complexity	of	the	digital	code	with	which	it	is	built.	He	believes	that	true	artificial
intelligence—with	analog	control	systems	emerging	from	a	digital	substrate	the	way	digital
computers	emerged	out	of	analog	components	in	the	aftermath	of	World	War	II—may	not
be	as	far	off	as	we	think.

In	this	essay,	George	contemplates	the	distinction	between	analog	and	digital
computation	and	finds	analog	to	be	alive	and	well.	Nature’s	response	to	an	attempt	to
program	machines	to	control	everything	may	be	machines	without	programming	over
which	no	one	has	control.



T he	history	of	computing	can	be	divided	into	an	Old	Testament	and	a	New
Testament:	before	and	after	electronic	digital	computers	and	the	codes
they	spawned	proliferated	across	the	Earth.	The	Old	Testament	prophets,

who	delivered	the	underlying	logic,	included	Thomas	Hobbes	and	Gottfried
Wilhelm	Leibniz.	The	New	Testament	prophets	included	Alan	Turing,	John	von
Neumann,	Claude	Shannon,	and	Norbert	Wiener.	They	delivered	the	machines.

Alan	Turing	wondered	what	it	would	take	for	machines	to	become	intelligent.
John	von	Neumann	wondered	what	it	would	take	for	machines	to	self-reproduce.
Claude	Shannon	wondered	what	it	would	take	for	machines	to	communicate
reliably,	no	matter	how	much	noise	intervened.	Norbert	Wiener	wondered	how
long	it	would	take	for	machines	to	assume	control.

Wiener’s	warnings	about	control	systems	beyond	human	control	appeared	in
1949,	just	as	the	first	generation	of	stored-program	electronic	digital	computers
were	introduced.	These	systems	required	direct	supervision	by	human
programmers,	undermining	his	concerns.	What’s	the	problem,	as	long	as
programmers	are	in	control	of	the	machines?	Ever	since,	debate	over	the	risks	of
autonomous	control	has	remained	associated	with	the	debate	over	the	powers
and	limitations	of	digitally	coded	machines.	Despite	their	astonishing	powers,
little	real	autonomy	has	been	observed.	This	is	a	dangerous	assumption.	What	if
digital	computing	is	being	superseded	by	something	else?

Electronics	underwent	two	fundamental	transitions	over	the	past	hundred
years:	from	analog	to	digital	and	from	vacuum	tubes	to	solid	state.	That	these
transitions	occurred	together	does	not	mean	they	are	inextricably	linked.	Just	as
digital	computation	was	implemented	using	vacuum	tube	components,	analog
computation	can	be	implemented	in	solid	state.	Analog	computation	is	alive	and
well,	even	though	vacuum	tubes	are	commercially	extinct.

There	is	no	precise	distinction	between	analog	and	digital	computing.	In
general,	digital	computing	deals	with	integers,	binary	sequences,	deterministic
logic,	and	time	that	is	idealized	into	discrete	increments,	whereas	analog
computing	deals	with	real	numbers,	nondeterministic	logic,	and	continuous
functions,	including	time	as	it	exists	as	a	continuum	in	the	real	world.

Imagine	you	need	to	find	the	middle	of	a	road.	You	can	measure	its	width
using	any	available	increment	and	then	digitally	compute	the	middle	to	the
nearest	increment.	Or	you	can	use	a	piece	of	string	as	an	analog	computer,



nearest	increment.	Or	you	can	use	a	piece	of	string	as	an	analog	computer,
mapping	the	width	of	the	road	to	the	length	of	the	string	and	finding	the	middle,
without	being	limited	to	increments,	by	doubling	the	string	back	upon	itself.

Many	systems	operate	across	both	analog	and	digital	regimes.	A	tree
integrates	a	wide	range	of	inputs	as	continuous	functions,	but	if	you	cut	down
that	tree,	you	find	that	it	has	been	counting	the	years	digitally	all	along.

In	analog	computing,	complexity	resides	in	network	topology,	not	in	code.
Information	is	processed	as	continuous	functions	of	values	such	as	voltage	and
relative	pulse	frequency	rather	than	by	logical	operations	on	discrete	strings	of
bits.	Digital	computing,	intolerant	of	error	or	ambiguity,	depends	upon	error
correction	at	every	step	along	the	way.	Analog	computing	tolerates	errors,
allowing	you	to	live	with	them.

Nature	uses	digital	coding	for	the	storage,	replication,	and	recombination	of
sequences	of	nucleotides,	but	relies	on	analog	computing,	running	on	nervous
systems,	for	intelligence	and	control.	The	genetic	system	in	every	living	cell	is	a
stored-program	computer.	Brains	aren’t.

Digital	computers	execute	transformations	between	two	species	of	bits:	bits
representing	differences	in	space	and	bits	representing	differences	in	time.	The
transformations	between	these	two	forms	of	information,	sequence	and	structure,
are	governed	by	the	computer’s	programming,	and	as	long	as	computers	require
human	programmers,	we	retain	control.

Analog	computers	also	mediate	transformations	between	two	forms	of
information:	structure	in	space	and	behavior	in	time.	There	is	no	code	and	no
programming.	Somehow—and	we	don’t	fully	understand	how—nature	evolved
analog	computers	known	as	nervous	systems,	which	embody	information
absorbed	from	the	world.	They	learn.	One	of	the	things	they	learn	is	control.
They	learn	to	control	their	own	behavior,	and	they	learn	to	control	their
environment	to	the	extent	that	they	can.

Computer	science	has	a	long	history—going	back	to	before	there	even	was
computer	science—of	implementing	neural	networks,	but	for	the	most	part	these
have	been	simulations	of	neural	networks	by	digital	computers,	not	neural
networks	as	evolved	in	the	wild	by	nature	herself.	This	is	starting	to	change:
from	the	bottom	up,	as	the	threefold	drivers	of	drone	warfare,	autonomous
vehicles,	and	cell	phones	push	the	development	of	neuromorphic
microprocessors	that	implement	actual	neural	networks,	rather	than	simulations
of	neural	networks,	directly	in	silicon	(and	other	potential	substrates);	and	from



I

the	top	down,	as	our	largest	and	most	successful	enterprises	increasingly	turn	to
analog	computation	in	their	infiltration	and	control	of	the	world.

While	we	argue	about	the	intelligence	of	digital	computers,	analog	computing
is	quietly	supervening	upon	the	digital,	in	the	same	way	that	analog	components
like	vacuum	tubes	were	repurposed	to	build	digital	computers	in	the	aftermath	of
World	War	II.	Individually	deterministic	finite-state	processors,	running	finite
codes,	are	forming	large-scale,	nondeterministic,	non-finite-state	metazoan
organisms	running	wild	in	the	real	world.	The	resulting	hybrid	analog/digital
systems	treat	streams	of	bits	collectively,	the	way	the	flow	of	electrons	is	treated
in	a	vacuum	tube,	rather	than	individually,	as	bits	are	treated	by	the	discrete-state
devices	generating	the	flow.	Bits	are	the	new	electrons.	Analog	is	back,	and	its
nature	is	to	assume	control.

Governing	everything	from	the	flow	of	goods	to	the	flow	of	traffic	to	the
flow	of	ideas,	these	systems	operate	statistically,	as	pulse-frequency	coded
information	is	processed	in	a	neuron	or	a	brain.	The	emergence	of	intelligence
gets	the	attention	of	Homo	sapiens,	but	what	we	should	be	worried	about	is	the
emergence	of	control.

—
magine	it	is	1958	and	you	are	trying	to	defend	the	continental	United	States
against	airborne	attack.	To	distinguish	hostile	aircraft,	one	of	the	things	you

need,	besides	a	network	of	computers	and	early-warning	radar	sites,	is	a	map	of
all	commercial	air	traffic,	updated	in	real	time.	The	United	States	built	such	a
system	and	named	it	SAGE	(Semi-Automatic	Ground	Environment).	SAGE	in
turn	spawned	Sabre,	the	first	integrated	reservation	system	for	booking	airline
travel	in	real	time.	Sabre	and	its	progeny	soon	became	not	just	a	map	of	what
seats	were	available	but	also	a	system	that	began	to	control,	with	decentralized
intelligence,	where	airliners	would	fly,	and	when.

But	isn’t	there	a	control	room	somewhere,	with	someone	at	the	controls?
Maybe	not.	Say,	for	example,	you	build	a	system	to	map	highway	traffic	in	real
time,	simply	by	giving	cars	access	to	the	map	in	exchange	for	reporting	their
own	speed	and	location	at	the	time.	The	result	is	a	fully	decentralized	control
system.	Nowhere	is	there	any	controlling	model	of	the	system	except	the	system
itself.

Imagine	it	is	the	first	decade	of	the	21st	century	and	you	want	to	track	the
complexity	of	human	relationships	in	real	time.	For	social	life	at	a	small	college,
you	could	construct	a	central	database	and	keep	it	up	to	date,	but	its	upkeep



T

would	become	overwhelming	if	taken	to	any	larger	scale.	Better	to	pass	out	free
copies	of	a	simple	semi-autonomous	code,	hosted	locally,	and	let	the	social
network	update	itself.	This	code	is	executed	by	digital	computers,	but	the	analog
computing	performed	by	the	system	as	a	whole	far	exceeds	the	complexity	of	the
underlying	code.	The	resulting	pulse-frequency	coded	model	of	the	social	graph
becomes	the	social	graph.	It	spreads	wildly	across	the	campus	and	then	the
world.

What	if	you	wanted	to	build	a	machine	to	capture	what	everything	known	to
the	human	species	means?	With	Moore’s	Law	behind	you,	it	doesn’t	take	too
long	to	digitize	all	the	information	in	the	world.	You	scan	every	book	ever
printed,	collect	every	email	ever	written,	and	gather	forty-nine	years	of	video
every	twenty-four	hours,	while	tracking	where	people	are	and	what	they	do,	in
real	time.	But	how	do	you	capture	the	meaning?

Even	in	the	age	of	all	things	digital,	this	cannot	be	defined	in	any	strictly
logical	sense,	because	meaning,	among	humans,	isn’t	fundamentally	logical.	The
best	you	can	do,	once	you	have	collected	all	possible	answers,	is	to	invite	well-
defined	questions	and	compile	a	pulse-frequency	weighted	map	of	how
everything	connects.	Before	you	know	it,	your	system	will	not	only	be	observing
and	mapping	the	meaning	of	things,	it	will	start	constructing	meaning	as	well.	In
time,	it	will	control	meaning,	in	the	same	way	the	traffic	map	starts	to	control
the	flow	of	traffic	even	though	no	one	seems	to	be	in	control.

—
here	are	three	laws	of	artificial	intelligence.	The	first,	known	as	Ashby’s
Law,	after	cybernetician	W.	Ross	Ashby,	author	of	Design	for	a	Brain,

states	that	any	effective	control	system	must	be	as	complex	as	the	system	it
controls.

The	second	law,	articulated	by	John	von	Neumann,	states	that	the	defining
characteristic	of	a	complex	system	is	that	it	constitutes	its	own	simplest
behavioral	description.	The	simplest	complete	model	of	an	organism	is	the
organism	itself.	Trying	to	reduce	the	system’s	behavior	to	any	formal	description
makes	things	more	complicated,	not	less.

The	third	law	states	that	any	system	simple	enough	to	be	understandable	will
not	be	complicated	enough	to	behave	intelligently,	while	any	system
complicated	enough	to	behave	intelligently	will	be	too	complicated	to
understand.



The	third	law	offers	comfort	to	those	who	believe	that	until	we	understand
intelligence,	we	need	not	worry	about	superhuman	intelligence	arising	among
machines.	But	there	is	a	loophole	in	the	third	law.	It	is	entirely	possible	to	build
something	without	understanding	it.	You	don’t	need	to	fully	understand	how	a
brain	works	in	order	to	build	one	that	works.	This	is	a	loophole	that	no	amount
of	supervision	over	algorithms	by	programmers	and	their	ethical	advisers	can
ever	close.	Provably	“good”	AI	is	a	myth.	Our	relationship	with	true	AI	will
always	be	a	matter	of	faith,	not	proof.

We	worry	too	much	about	machine	intelligence	and	not	enough	about	self-
reproduction,	communication,	and	control.	The	next	revolution	in	computing
will	be	signaled	by	the	rise	of	analog	systems	over	which	digital	programming
no	longer	has	control.	Nature’s	response	to	those	who	believe	they	can	build
machines	to	control	everything	will	be	to	allow	them	to	build	a	machine	that
controls	them	instead.



Chapter	5

WHAT	CAN	WE	DO?

DANIEL	C.	DENNETT

Daniel	C.	Dennett	is	University	Professor	and	Austin	B.	Fletcher	Professor	of
Philosophy	and	co-director	of	the	Center	for	Cognitive	Studies	at	Tufts	University.
He	is	the	author	of	a	dozen	books,	including	Consciousness	Explained	and,	most

recently,	From	Bacteria	to	Bach	and	Back:	The	Evolution	of	Minds.

Dan	Dennett	is	the	philosopher	of	choice	in	the	AI	community.	He	is	perhaps	best	known
in	cognitive	science	for	his	concept	of	intentional	systems	and	his	model	of	human
consciousness,	which	sketches	a	computational	architecture	for	realizing	the	stream	of
consciousness	in	the	massively	parallel	cerebral	cortex.	That	uncompromising
computationalism	has	been	opposed	by	philosophers	such	as	John	Searle,	David
Chalmers,	and	the	late	Jerry	Fodor,	who	have	protested	that	the	most	important	aspects	of
consciousness—intentionality	and	subjective	qualia—cannot	be	computed.

Twenty-five	years	ago,	I	was	visiting	Marvin	Minsky,	one	of	the	original	AI	pioneers,
and	asked	him	about	Dan.	“He’s	our	best	current	philosopher—the	next	Bertrand	Russell,”
said	Marvin,	adding	that	unlike	traditional	philosophers,	Dan	was	a	student	of
neuroscience,	linguistics,	artificial	intelligence,	computer	science,	and	psychology.	“He’s
redefining	and	reforming	the	role	of	the	philosopher.	Of	course,	Dan	doesn’t	understand
my	Society	of	Mind	theory,	but	nobody’s	perfect.”

Dan’s	view	of	the	efforts	of	AI	researchers	to	create	superintelligent	AIs	is	relentlessly
levelheaded.	What,	me	worry?	In	this	essay,	he	reminds	us	that	AIs,	above	all,	should	be
regarded—and	treated—as	tools	and	not	as	humanoid	colleagues.

He	has	been	interested	in	information	theory	since	his	graduate	school	days	at	Oxford.
In	fact,	he	told	me	that	early	in	his	career	he	was	keenly	interested	in	writing	a	book	about
Wiener’s	cybernetic	ideas.	As	a	thinker	who	embraces	the	scientific	method,	one	of	his
charms	is	his	willingness	to	be	wrong.	Of	a	recent	piece	titled	“What	Is	Information?”	he
has	announced,	“I	stand	by	it,	but	it’s	under	revision.	I’m	already	moving	beyond	it	and
realizing	there’s	a	better	way	of	tackling	some	of	these	issues.”	He	will	most	likely	remain
cool	and	collected	on	the	subject	of	AI	research,	although	he	has	acknowledged,	often,
that	his	own	ideas	evolve—as	anyone’s	ideas	should.



M any	have	reflected	on	the	irony	of	reading	a	great	book	when	you	are
too	young	to	appreciate	it.	Consigning	a	classic	to	the	already	read
stack	and	thereby	insulating	yourself	against	any	further	influence	while

gleaning	only	a	few	ill-understood	ideas	from	it	is	a	recipe	for	neglect	that	is
seldom	benign.	This	struck	me	with	particular	force	when	I	reread	The	Human
Use	of	Human	Beings	more	than	sixty	years	after	my	juvenile	encounter.	We
should	all	make	it	a	regular	practice	to	reread	books	from	our	youth,	where	we
are	apt	to	discover	clear	previews	of	some	of	our	own	later	“discoveries”	and
“inventions,”	along	with	a	wealth	of	insights	to	which	we	were	bound	to	be
impervious	until	our	minds	had	been	torn	and	tattered,	exercised	and	enlarged,
by	confrontations	with	life’s	problems.

Writing	at	a	time	when	vacuum	tubes	were	still	the	primary	electronic
building	blocks	and	there	were	only	a	few	actual	computers	in	operation,
Norbert	Wiener	imagined	the	future	we	now	contend	with	in	impressive	detail
and	with	few	clear	mistakes.	Alan	Turing’s	famous	1950	article	“Computing
Machinery	and	Intelligence,”	in	the	philosophy	journal	Mind,	foresaw	the
development	of	AI,	and	so	did	Wiener,	but	Wiener	saw	further	and	deeper,
recognizing	that	AI	would	not	just	imitate—and	replace—human	beings	in	many
intelligent	activities	but	change	human	beings	in	the	process:

We	are	but	whirlpools	in	a	river	of	ever-flowing	water.	We	are	not
stuff	that	abides,	but	patterns	that	perpetuate	themselves.*

When	that	was	written,	it	could	be	comfortably	dismissed	as	yet	another	bit
of	Heraclitean	overstatement.	Yeah,	yeah,	you	can	never	step	in	the	same	river
twice.	But	it	contains	the	seeds	of	the	revolution	in	outlook.	Today	we	know
how	to	think	about	complex	adaptive	systems,	strange	attractors,	extended
minds,	and	homeostasis,	a	change	in	perspective	that	promises	to	erase	the
“explanatory	gap”*	between	mind	and	mechanism,	spirit	and	matter,	a	gap	that
is	still	ardently	defended	by	latter-day	Cartesians	who	cannot	bear	the	thought
that	we—we	ourselves—are	self-perpetuating	patterns	of	information-bearing
matter,	not	“stuff	that	abides.”	Those	patterns	are	remarkably	resilient	and	self-



restoring	but	at	the	same	time	protean,	opportunistic,	selfish	exploiters	of
whatever	new	is	available	to	harness	in	their	quest	for	perpetuation.	And	here	is
where	things	get	dicey,	as	Wiener	recognized.	When	attractive	opportunities
abound,	we	are	apt	to	be	willing	to	pay	a	little	and	accept	some	small,	even
trivial,	cost-of-doing-business	for	access	to	new	powers.	And	pretty	soon	we
become	so	dependent	on	our	new	tools	that	we	lose	the	ability	to	thrive	without
them.	Options	become	obligatory.

It’s	an	old,	old	story,	with	many	well-known	chapters	in	evolutionary	history.
Most	mammals	can	synthesize	their	own	vitamin	C,	but	primates,	having	opted
for	a	diet	composed	largely	of	fruit,	lost	the	innate	ability.	We	are	now	obligate
ingesters	of	vitamin	C,	but	not	obligate	frugivores	like	our	primate	cousins,	since
we	have	opted	for	technology	that	allows	us	to	make,	and	take,	vitamins	as
needed.	The	self-perpetuating	patterns	that	we	call	human	beings	are	now
dependent	on	clothes,	cooked	food,	vitamins,	vaccinations,	credit	cards,
smartphones,	and	the	Internet.	And—tomorrow	if	not	already	today—AI.

Wiener	foresaw	the	problems	that	Turing	and	the	other	optimists	have	largely
overlooked.	The	real	danger,	he	said,	is

that	such	machines,	though	helpless	by	themselves,	may	be	used	by	a
human	being	or	a	block	of	human	beings	to	increase	their	control	over	the
rest	of	the	race	or	that	political	leaders	may	attempt	to	control	their
populations	by	means	not	of	machines	themselves	but	through	political
techniques	as	narrow	and	indifferent	to	human	possibility	as	if	they	had,
in	fact,	been	conceived	mechanically.*

The	power,	he	recognized,	lay	primarily	in	the	algorithms,	not	in	the
hardware	they	run	on,	although	the	hardware	of	today	makes	practically	possible
algorithms	that	would	have	seemed	preposterously	cumbersome	in	Wiener’s
day.	What	can	we	say	about	these	“techniques”	that	are	“narrow	and	indifferent
to	human	possibility”?	They	have	been	introduced	again	and	again,	some
obviously	benign,	some	obviously	dangerous,	and	many	in	the	omnipresent
middle	ground	of	controversy.

Consider	a	few	of	the	skirmishes.	My	late	friend	Joe	Weizenbaum,	Wiener’s
successor	as	MIT’s	Jeremiah	of	hi-tech,	loved	to	observe	that	credit	cards,
whatever	their	virtues,	also	provided	an	inexpensive	and	almost	foolproof	way
for	the	government,	or	corporations,	to	track	the	travels	and	habits	and	desires	of
individuals.	The	anonymity	of	cash	has	been	largely	underappreciated,	except	by



individuals.	The	anonymity	of	cash	has	been	largely	underappreciated,	except	by
drug	dealers	and	other	criminals,	and	now	it	may	be	going	extinct.	This	may
make	money	laundering	a	more	difficult	technical	challenge	in	the	future,	but	the
AI	pattern	finders	arrayed	against	it	have	the	side	effect	of	making	us	all	more
transparent	to	any	“block	of	human	beings”	that	may	“attempt	to	control”	us.

Looking	to	the	arts,	the	innovation	of	digital	audio	and	video	recording	lets
us	pay	a	small	price	(in	the	eyes	of	all	but	the	most	ardent	audiophiles	and	film
lovers)	when	we	abandon	analog	formats,	and	in	return	provides	easy—all	too
easy?—reproduction	of	artworks	with	almost	perfect	fidelity.	But	there	is	a	huge
hidden	cost.	Orwell’s	Ministry	of	Truth	is	now	a	practical	possibility.	AI
techniques	for	creating	all-but-undetectable	forgeries	of	“recordings”	of
encounters	are	now	becoming	available,	which	will	render	obsolete	the	tools	of
investigation	we	have	come	to	take	for	granted	in	the	last	hundred	and	fifty
years.	Will	we	simply	abandon	the	brief	Age	of	Photographic	Evidence	and
return	to	the	earlier	world	in	which	human	memory	and	trust	provided	the	gold
standard,	or	will	we	develop	new	techniques	of	defense	and	offense	in	the	arms
race	of	truth?	(We	can	imagine	a	return	to	analog	film-exposed-to-light,	kept	in
“tamper-proof”	systems	until	shown	to	juries,	etc.,	but	how	long	would	it	be
before	somebody	figured	out	a	way	to	infect	such	systems	with	doubt?	One	of
the	disturbing	lessons	of	recent	experience	is	that	the	task	of	destroying	a
reputation	for	credibility	is	much	less	expensive	than	the	task	of	protecting	such
a	reputation.)	Wiener	saw	the	phenomenon	at	its	most	general:	“[I]n	the	long
run,	there	is	no	distinction	between	arming	ourselves	and	arming	our	enemies.”
The	information	age	is	also	the	dysinformation	age.

What	can	we	do?	We	need	to	rethink	our	priorities	with	the	help	of	the
passionate	but	flawed	analyses	of	Wiener,	Weizenbaum,	and	the	other	serious
critics	of	our	technophilia.	A	key	phrase,	it	seems	to	me,	is	Wiener’s	almost
offhand	observation,	above,	that	“these	machines”	are	“helpless	by	themselves.”
As	I	have	been	arguing	recently,	we’re	making	tools,	not	colleagues,	and	the
great	danger	is	not	appreciating	the	difference,	which	we	should	strive	to
accentuate,	marking	and	defending	it	with	political	and	legal	innovations.

Perhaps	the	best	way	to	see	what	is	being	missed	is	to	note	that	Alan	Turing
himself	suffered	an	entirely	understandable	failure	of	imagination	in	his
formulation	of	the	famous	Turing	Test.	As	everyone	knows,	it	is	an	adaptation	of
his	“imitation	game,”	in	which	a	man,	hidden	from	view	and	communicating
verbally	with	a	judge,	tries	to	convince	the	judge	that	he	is	in	fact	a	woman,
while	a	woman,	also	hidden	and	communicating	with	the	judge,	tries	to	convince
the	judge	that	she	is	the	woman.	Turing	reasoned	that	this	would	be	a	demanding



challenge	for	a	man	(or	for	a	woman	pretending	to	be	a	man),	exploiting	a
wealth	of	knowledge	about	how	the	other	sex	thinks	and	acts,	what	they	tend	to
favor	or	ignore.	Surely	(ding!)*	any	man	who	could	beat	a	woman	at	being
perceived	to	be	a	woman	would	be	an	intelligent	agent.	What	Turing	did	not
foresee	is	the	power	of	deep-learning	AI	to	acquire	this	wealth	of	information	in
an	exploitable	form	without	having	to	understand	it.	Turing	imagined	an	astute
and	imaginative	(and	hence	conscious)	agent	who	cunningly	designed	his
responses	based	on	his	detailed	“theory”	of	what	women	are	likely	to	do	and	say.
Top-down	intelligent	design,	in	short.	He	certainly	didn’t	think	that	a	man,
winning	the	imitation	game,	would	somehow	become	a	woman;	he	imagined	that
there	would	still	be	a	man’s	consciousness	guiding	the	show.	The	hidden
premise	in	Turing’s	almost-argument	was:	Only	a	conscious,	intelligent	agent
could	devise	and	control	a	winning	strategy	in	the	imitation	game.	And	so	it	was
persuasive	to	Turing	(and	others,	including	me,	still	a	stalwart	defender	of	the
Turing	Test)	to	argue	that	a	“computing	machine”	that	could	pass	as	human	in	a
contest	with	a	human	might	not	be	conscious	in	just	the	way	a	human	being	is,
but	would	nevertheless	have	to	be	a	conscious	agent	of	some	kind.	I	think	this	is
still	a	defensible	position—the	only	defensible	position—but	you	have	to
understand	how	resourceful	and	ingenious	a	judge	would	have	to	be	to	expose
the	shallowness	of	the	façade	that	a	deep-learning	AI	(a	tool,	not	a	colleague)
could	present.

What	Turing	didn’t	foresee	is	the	uncanny	ability	of	superfast	computers	to
sift	mindlessly	through	Big	Data,	of	which	the	Internet	provides	an	inexhaustible
supply,	finding	probabilistic	patterns	in	human	activity	that	could	be	used	to	pop
“authentic”-seeming	responses	into	the	output	for	almost	any	probe	a	judge
would	think	to	offer.	Wiener	also	underestimates	this	possibility,	seeing	the
telltale	weakness	of	a	machine	in	not	being	able	to

take	into	account	the	vast	range	of	probability	that	characterizes	the
human	situation.*

But	taking	into	account	that	range	of	probability	is	just	where	the	new	AI
excels.	The	only	chink	in	the	armor	of	AI	is	that	word	“vast”;	human
possibilities,	thanks	to	language	and	the	culture	that	it	spawns,	are	truly	Vast.*
No	matter	how	many	patterns	we	may	find	with	AI	in	the	flood	of	data	that	has
so	far	found	its	way	onto	the	Internet,	there	are	Vastly	more	possibilities	that



have	never	been	recorded	there.	Only	a	fraction	(but	not	a	Vanishing	fraction)	of
the	world’s	accumulated	wisdom	and	design	and	repartee	and	silliness	has	made
it	onto	the	Internet,	but	probably	a	better	tactic	for	the	judge	to	adopt	when
confronting	a	candidate	in	the	Turing	Test	is	not	to	search	for	such	items	but	to
create	them	anew.	AI	in	its	current	manifestations	is	parasitic	on	human
intelligence.	It	quite	indiscriminately	gorges	on	whatever	has	been	produced	by
human	creators	and	extracts	the	patterns	to	be	found	there—including	some	of
our	most	pernicious	habits.*	These	machines	do	not	(yet)	have	the	goals	or
strategies	or	capacities	for	self-criticism	and	innovation	to	permit	them	to
transcend	their	databases	by	reflectively	thinking	about	their	own	thinking	and
their	own	goals.	They	are,	as	Wiener	says,	helpless,	not	in	the	sense	of	being
shackled	agents	or	disabled	agents	but	in	the	sense	of	not	being	agents	at	all—
not	having	the	capacity	to	be	“moved	by	reasons”	(as	Kant	put	it)	presented	to
them.	It	is	important	that	we	keep	it	that	way,	which	will	take	some	doing.

One	of	the	flaws	in	Weizenbaum’s	book	Computer	Power	and	Human
Reason,	something	I	tried	in	vain	to	convince	him	of	in	many	hours	of
discussion,	is	that	he	could	never	decide	which	of	two	theses	he	wanted	to
defend:	AI	is	impossible!	or	AI	is	possible	but	evil!	He	wanted	to	argue,	with
John	Searle	and	Roger	Penrose,	that	“Strong	AI”	is	impossible,	but	there	are	no
good	arguments	for	that	conclusion.	After	all,	everything	we	now	know	suggests
that,	as	I	have	put	it,	we	are	robots	made	of	robots	made	of	robots	.	.	.	down	to
the	motor	proteins	and	their	ilk,	with	no	magical	ingredients	thrown	in	along	the
way.	Weizenbaum’s	more	important	and	defensible	message	was	that	we	should
not	strive	to	create	Strong	AI	and	should	be	extremely	cautious	about	the	AI
systems	that	we	can	create	and	have	already	created.	As	one	might	expect,	the
defensible	thesis	is	a	hybrid:	AI	(Strong	AI)	is	possible	in	principle	but	not
desirable.	The	AI	that’s	practically	possible	is	not	necessarily	evil—unless	it	is
mistaken	for	Strong	AI!

The	gap	between	today’s	systems	and	the	science-fictional	systems
dominating	the	popular	imagination	is	still	huge,	though	many	folks,	both	lay
and	expert,	manage	to	underestimate	it.	Let’s	consider	IBM’s	Watson,	which	can
stand	as	a	worthy	landmark	for	our	imaginations	for	the	time	being.	It	is	the
result	of	a	very	large-scale	R&D	process	extending	over	many	person-centuries
of	intelligent	design,	and	as	George	Church	notes	in	these	pages,	it	uses
thousands	of	times	more	energy	than	a	human	brain	(a	technological	limitation
that,	as	he	also	notes,	may	be	temporary).	Its	victory	in	Jeopardy!	was	a	genuine
triumph,	made	possible	by	the	formulaic	restrictions	of	the	Jeopardy!	rules,	but



in	order	for	it	to	compete,	even	these	rules	had	to	be	revised	(one	of	those	trade-
offs:	you	give	up	a	little	versatility,	a	little	humanity,	and	get	a	crowd-pleasing
show).	Watson	is	not	good	company,	in	spite	of	misleading	ads	from	IBM	that
suggest	a	general	conversational	ability,	and	turning	Watson	into	a	plausibly
multidimensional	agent	would	be	like	turning	a	hand	calculator	into	Watson.
Watson	could	be	a	useful	core	faculty	for	such	an	agent,	but	more	like	a
cerebellum	or	an	amygdala	than	a	mind—at	best,	a	special-purpose	subsystem
that	could	play	a	big	supporting	role,	but	not	remotely	up	to	the	task	of	framing
purposes	and	plans	and	building	insightfully	on	its	conversational	experiences.

Why	would	we	want	to	create	a	thinking,	creative	agent	out	of	Watson?
Perhaps	Turing’s	brilliant	idea	of	an	operational	test	has	lured	us	into	a	trap:	the
quest	to	create	at	least	the	illusion	of	a	real	person	behind	the	screen,	bridging
the	“uncanny	valley.”	The	danger	here	is	that	ever	since	Turing	posed	his
challenge—which	was,	after	all,	a	challenge	to	fool	the	judges—AI	creators	have
attempted	to	paper	over	the	valley	with	cutesy	humanoid	touches,	Disneyfication
effects	that	will	enchant	and	disarm	the	uninitiated.	Weizenbaum’s	ELIZA	was
the	pioneer	example	of	such	superficial	illusion	making,	and	it	was	his	dismay	at
the	ease	with	which	his	laughably	simple	and	shallow	program	could	persuade
people	they	were	having	a	serious	heart-to-heart	conversation	that	first	sent	him
on	his	mission.

He	was	right	to	be	worried.	If	there	is	one	thing	we	have	learned	from	the
restricted	Turing	Test	competitions	for	the	Loebner	Prize,	it	is	that	even	very
intelligent	people	who	aren’t	tuned	in	to	the	possibilities	and	shortcuts	of
computer	programming	are	readily	taken	in	by	simple	tricks.	The	attitudes	of
people	in	AI	toward	these	methods	of	dissembling	at	the	“user	interface”	have
ranged	from	contempt	to	celebration,	with	a	general	appreciation	that	the	tricks
are	not	deep	but	can	be	potent.	One	shift	in	attitude	that	would	be	very	welcome
is	a	candid	acknowledgment	that	humanoid	embellishments	are	false	advertising
—something	to	condemn,	not	applaud.

How	could	that	be	accomplished?	Once	we	recognize	that	people	are	starting
to	make	life-or-death	decisions	largely	on	the	basis	of	“advice”	from	AI	systems
whose	inner	operations	are	unfathomable	in	practice,	we	can	see	a	good	reason
why	those	who	in	any	way	encourage	people	to	put	more	trust	in	these	systems
than	they	warrant	should	be	held	morally	and	legally	accountable.	AI	systems
are	very	powerful	tools—so	powerful	that	even	experts	will	have	good	reason
not	to	trust	their	own	judgment	over	the	“judgments”	delivered	by	their	tools.
But	then,	if	these	tool	users	are	going	to	benefit,	financially	or	otherwise,	from



driving	these	tools	through	terra	incognita,	they	need	to	make	sure	they	know
how	to	do	this	responsibly,	with	maximum	control	and	justification.	Licensing
and	bonding	operators,	just	as	we	license	pharmacists	(and	crane	operators!)	and
other	specialists	whose	errors	and	misjudgments	can	have	dire	consequences,
can,	with	pressure	from	insurance	companies	and	other	underwriters,	oblige
creators	of	AI	systems	to	go	to	extraordinary	lengths	to	search	for	and	reveal
weaknesses	and	gaps	in	their	products,	and	to	train	those	entitled	to	operate
them.

One	can	imagine	a	sort	of	inverted	Turing	Test	in	which	the	judge	is	on	trial;
until	he	or	she	can	spot	the	weaknesses,	the	overstepped	boundaries,	the	gaps	in
a	system,	no	license	to	operate	will	be	issued.	The	mental	training	required	to
achieve	certification	as	a	judge	will	be	demanding.	The	urge	to	adopt	the
intentional	stance,	our	normal	tactic	whenever	we	encounter	what	seems	to	be	an
intelligent	agent,	is	almost	overpoweringly	strong.	Indeed,	the	capacity	to	resist
the	allure	of	treating	an	apparent	person	as	a	person	is	an	ugly	talent,	reeking	of
racism	or	species-ism.	Many	people	would	find	the	cultivation	of	such	a
ruthlessly	skeptical	approach	morally	repugnant,	and	we	can	anticipate	that	even
the	most	proficient	system	users	would	occasionally	succumb	to	the	temptation
to	“befriend”	their	tools,	if	only	to	assuage	their	discomfort	with	the	execution	of
their	duties.	No	matter	how	scrupulously	the	AI	designers	launder	the	phony
“human”	touches	out	of	their	wares,	we	can	expect	novel	habits	of	thought,
conversational	gambits	and	ruses,	traps	and	bluffs,	to	arise	in	this	novel	setting
for	human	action.	The	comically	long	lists	of	known	side	effects	of	new	drugs
advertised	on	television	will	be	dwarfed	by	the	obligatory	revelations	of	the	sorts
of	questions	that	cannot	be	responsibly	answered	by	particular	systems,	with
heavy	penalties	for	those	who	“overlook”	flaws	in	their	products.	It	is	widely
noted	that	a	considerable	part	of	the	growing	economic	inequality	in	today’s
world	is	due	to	the	wealth	accumulated	by	digital	entrepreneurs;	we	should	enact
legislation	that	puts	their	deep	pockets	in	escrow	for	the	public	good.	Some	of
the	deepest	pockets	are	voluntarily	out	in	front	of	these	obligations	to	serve
society	first	and	make	money	secondarily,	but	we	shouldn’t	rely	on	goodwill
alone.

We	don’t	need	artificial	conscious	agents.	There	is	a	surfeit	of	natural
conscious	agents,	enough	to	handle	whatever	tasks	should	be	reserved	for	such
special	and	privileged	entities.	We	need	intelligent	tools.	Tools	do	not	have
rights,	and	should	not	have	feelings	that	could	be	hurt,	or	be	able	to	respond	with
resentment	to	“abuses”	rained	on	them	by	inept	users.*	One	of	the	reasons	for



not	making	artificial	conscious	agents	is	that	however	autonomous	they	might
become	(and	in	principle,	they	can	be	as	autonomous,	as	self-enhancing	or	self-
creating,	as	any	person),	they	would	not—without	special	provision,	which
might	be	waived—share	with	us	natural	conscious	agents	our	vulnerability	or
our	mortality.

I	once	posed	a	challenge	to	students	in	a	seminar	at	Tufts	I	co-taught	with
Matthias	Scheutz	on	artificial	agents	and	autonomy:	Give	me	the	specs	for	a
robot	that	could	sign	a	binding	contract	with	you—not	as	a	surrogate	for	some
human	owner	but	on	its	own.	This	isn’t	a	question	of	getting	it	to	understand	the
clauses	or	manipulate	a	pen	on	a	piece	of	paper	but	of	having	and	deserving
legal	status	as	a	morally	responsible	agent.	Small	children	can’t	sign	such
contracts,	nor	can	those	disabled	people	whose	legal	status	requires	them	to	be
under	the	care	and	responsibility	of	guardians	of	one	sort	or	another.	The
problem	for	robots	who	might	want	to	attain	such	an	exalted	status	is	that,	like
Superman,	they	are	too	invulnerable	to	be	able	to	make	a	credible	promise.	If
they	were	to	renege,	what	would	happen?	What	would	be	the	penalty	for
promise	breaking?	Being	locked	in	a	cell	or,	more	plausibly,	dismantled?	Being
locked	up	is	barely	an	inconvenience	for	an	AI	unless	we	first	install	artificial
wanderlust	that	cannot	be	ignored	or	disabled	by	the	AI	on	its	own	(and	it	would
be	systematically	difficult	to	make	this	a	foolproof	solution,	given	the	presumed
cunning	and	self-knowledge	of	the	AI);	and	dismantling	an	AI	(either	a	robot	or
a	bedridden	agent	like	Watson)	is	not	killing	it	if	the	information	stored	in	its
design	and	software	is	preserved.	The	very	ease	of	digital	recording	and
transmitting—the	breakthrough	that	permits	software	and	data	to	be,	in	effect,
immortal—removes	robots	from	the	world	of	the	vulnerable	(at	least	robots	of
the	usually	imagined	sorts,	with	digital	software	and	memories).	If	this	isn’t
obvious,	think	about	how	human	morality	would	be	affected	if	we	could	make
“backups”	of	people	every	week,	say.	Diving	headfirst	on	Saturday	off	a	high
bridge	without	benefit	of	a	bungee	cord	would	be	a	rush	that	you	wouldn’t
remember	when	your	Friday	night	backup	was	put	online	Sunday	morning,	but
you	could	enjoy	the	videotape	of	your	apparent	demise	thereafter.

So	what	we	are	creating	are	not—should	not	be—conscious,	humanoid
agents	but	an	entirely	new	sort	of	entity,	rather	like	oracles,	with	no	conscience,
no	fear	of	death,	no	distracting	loves	and	hates,	no	personality	(but	all	sorts	of
foibles	and	quirks	that	would	no	doubt	be	identified	as	the	“personality”	of	the
system):	boxes	of	truths	(if	we’re	lucky)	almost	certainly	contaminated	with	a
scattering	of	falsehoods.	It	will	be	hard	enough	learning	to	live	with	them



without	distracting	ourselves	with	fantasies	about	the	Singularity	in	which	these
AIs	will	enslave	us,	literally.	The	human	use	of	human	beings	will	soon	be
changed—once	again—forever,	but	we	can	take	the	tiller	and	steer	between
some	of	the	hazards	if	we	take	responsibility	for	our	trajectory.



Chapter	6

THE	INHUMAN	MESS	OUR	MACHINES	HAVE
GOTTEN	US	INTO

RODNEY	BROOKS

Rodney	Brooks	is	a	computer	scientist;	Panasonic	Professor	of	Robotics,
emeritus,	MIT;	former	director	of	the	MIT	Artificial	Intelligence	Laboratory	and	the
MIT	Computer	Science	&	Artificial	Intelligence	Laboratory	(CSAIL).	He	is	the	author

of	Flesh	and	Machines.

The	roboticist	Rodney	Brooks,	featured	in	Errol	Morris’s	1997	documentary	Fast,	Cheap
&	Out	of	Control	along	with	a	lion	tamer,	a	topiarist,	and	an	expert	on	the	naked	mole	rat,
was	described	by	one	reviewer	as	“smiling	with	a	wild	gleam	in	his	eye.”	But	that’s	pretty
much	true	of	most	visionaries.

A	few	years	later	in	his	career,	Brooks,	as	befits	one	of	the	world’s	leading	roboticists,
suggested	that	“we	overanthropomorphize	humans,	who	are	after	all	mere	machines.”	He
went	on	to	present	a	warmhearted	vision	of	a	coming	AI	world	in	which	“the	distinction
between	us	and	robots	is	going	to	disappear.”	He	also	admitted	to	something	of	a	divided
worldview.	“Like	a	religious	scientist,	I	maintain	two	sets	of	inconsistent	beliefs	and	act	on
each	of	them	in	different	circumstances,”	he	wrote.	“It	is	this	transcendence	between	belief
systems	that	I	think	will	be	what	enables	mankind	to	ultimately	accept	robots	as	emotional
machines,	and	thereafter	start	to	empathize	with	them	and	attribute	free	will,	respect,	and
ultimately	rights	to	them.”

That	was	in	2002.	In	these	pages,	he	takes	a	somewhat	more	jaundiced,	albeit
narrower,	view;	he	is	alarmed	by	the	extent	to	which	we	have	come	to	rely	on	pervasive
systems	that	are	not	just	exploitative	but	also	vulnerable,	as	a	result	of	the	too-rapid
development	of	software	engineering—an	advance	that	seems	to	have	outstripped	the
imposition	of	reliably	effective	safeguards.



M athematicians	and	scientists	are	often	limited	in	how	they	see	the	big
picture,	beyond	their	particular	field,	by	the	tools	and	metaphors	they
use	in	their	work.	Norbert	Wiener	is	no	exception,	and	I	might	guess

that	neither	am	I.
When	he	wrote	The	Human	Use	of	Human	Beings,	Wiener	was	straddling	the

end	of	the	era	of	understanding	machines	and	animals	simply	as	physical
processes	and	the	beginning	of	our	current	era	of	understanding	machines	and
animals	as	computational	processes.	I	suspect	there	will	be	future	eras	whose
tools	will	look	as	distinct	from	the	tools	of	the	two	eras	Wiener	straddled	as
those	tools	did	from	each	other.

Wiener	was	a	giant	of	the	earlier	era	and	built	on	the	tools	developed	since
the	time	of	Newton	and	Leibniz	to	describe	and	analyze	continuous	processes	in
the	physical	world.	In	1948	he	published	Cybernetics,	a	word	he	coined	to
describe	the	science	of	communication	and	control	in	both	machines	and
animals.	Today	we	would	refer	to	the	ideas	in	this	book	as	control	theory,	an
indispensable	discipline	for	the	design	and	analysis	of	physical	machines,	while
mostly	neglecting	Wiener’s	claims	about	the	science	of	communication.
Wiener’s	innovations	were	largely	driven	by	his	work	during	the	Second	World
War	on	mechanisms	to	aim	and	fire	antiaircraft	guns.	He	brought	mathematical
rigor	to	the	design	of	the	sorts	of	technology	whose	design	processes	had	been
largely	heuristic	in	nature:	from	the	Roman	waterworks	through	Watt’s	steam
engine	to	the	early	development	of	automobiles.

One	can	imagine	a	different	contingent	version	of	our	intellectual	and
technological	history	had	Alan	Turing	and	John	von	Neumann,	both	of	whom
made	major	contributions	to	the	foundations	of	computing,	not	appeared	on	the
scene.	Turing	contributed	a	fundamental	model	of	computation—now	known	as
a	Turing	Machine—in	his	paper	“On	Computable	Numbers	with	an	Application
to	the	Entscheidungsproblem,”	written	and	revised	in	1936	and	published	in
1937.	In	these	machines,	a	linear	tape	of	symbols	from	a	finite	alphabet	encodes
the	input	for	a	computational	problem	and	also	provides	the	working	space	for
the	computation.	A	different	machine	was	required	for	each	separate
computational	problem;	later	work	by	others	would	show	that	in	one	particular
machine,	now	known	as	a	Universal	Turing	Machine,	an	arbitrary	set	of
computing	instructions	could	be	encoded	on	that	same	tape.



computing	instructions	could	be	encoded	on	that	same	tape.
In	the	1940s,	von	Neumann	developed	an	abstract	self-reproducing	machine

called	a	cellular	automaton.	In	this	case	it	occupied	a	finite	subset	of	an	infinite
two-dimensional	array	of	squares	each	containing	a	single	symbol	from	a	finite
alphabet	of	twenty-nine	distinct	symbols—the	rest	of	the	infinite	array	starts	out
blank.	The	single	symbols	in	each	square	change	in	lockstep,	based	on	a
complex	but	finite	rule	about	the	current	symbol	in	that	square	and	its	immediate
neighbors.	Under	the	complex	rule	that	von	Neumann	developed,	most	of	the
symbols	in	most	of	the	squares	stay	the	same	and	a	few	change	at	each	step.	So
when	one	looks	at	the	nonblank	squares,	it	appears	that	there	is	a	constant
structure	with	some	activity	going	on	inside	it.	When	von	Neumann’s	abstract
machine	reproduced,	it	made	a	copy	of	itself	in	another	region	of	the	plane.
Within	the	“machine”	was	a	horizontal	line	of	squares	that	acted	as	a	finite	linear
tape,	using	a	subset	of	the	finite	alphabet.	It	was	the	symbols	in	those	squares
that	encoded	the	machine	of	which	they	were	a	part.	During	the	machine’s
reproduction,	the	“tape”	could	move	either	left	or	right	and	was	both	interpreted
(transcribed)	as	the	instructions	(translation)	for	the	new	“machine”	being	built
and	then	copied	(replicated)—with	the	new	copy	being	placed	inside	the	new
machine	for	further	reproduction.	Francis	Crick	and	James	Watson	later	showed,
in	1953,	how	such	a	tape	could	be	instantiated	in	biology	by	a	long	DNA
molecule	with	its	finite	alphabet	of	four	nucleobases:	guanine,	cytosine,	adenine,
and	thymine	(G,	C,	A,	and	T).*	As	in	von	Neumann’s	machine,	in	biological
reproduction	the	linear	sequence	of	symbols	in	DNA	is	interpreted—through
transcription	into	RNA	molecules,	which	are	then	translated	into	proteins,	the
structures	that	make	up	a	new	cell—and	the	DNA	is	replicated	and	encased	in
the	new	cell.

A	second	foundational	piece	of	work	was	in	a	1945	“First	Draft”	report	on
the	design	for	a	digital	computer,	wherein	von	Neumann	advocated	for	a
memory	that	could	contain	both	instructions	and	data.*	This	is	now	known	as	a
von	Neumann	architecture	computer—as	distinct	from	a	Harvard	architecture
computer,	where	there	are	two	separate	memories,	one	for	instructions	and	one
for	data.	The	vast	majority	of	computer	chips	built	in	the	era	of	Moore’s	Law	are
based	on	the	von	Neumann	architecture,	including	those	powering	our	data
centers,	our	laptops,	and	our	smartphones.	Von	Neumann’s	digital-computer
architecture	is	conceptually	the	same	generalization—from	early	digital
computers	constructed	with	electromagnetic	relays	at	both	Harvard	University
and	Bletchley	Park—that	occurs	in	going	from	a	special-purpose	Turing



Machine	to	a	Universal	Turing	Machine.	Furthermore,	his	self-replicating
automata	share	a	fundamental	similarity	with	both	the	construction	of	a	Turing
Machine	and	the	mechanism	of	DNA-based	reproducing	biological	cells.	There
is	to	this	day	scholarly	debate	over	whether	von	Neumann	saw	the	cross
connections	between	these	three	pieces	of	work,	Turing’s	and	his	two.	Turing’s
revision	of	his	paper	was	done	while	he	and	von	Neumann	were	both	at
Princeton;	indeed,	after	getting	his	PhD,	Turing	almost	stayed	on	as	von
Neumann’s	postdoc.

Without	Turing	and	von	Neumann,	the	cybernetics	of	Wiener	might	have
remained	a	dominant	mode	of	thought	and	driver	of	technology	for	much	longer
than	its	brief	moment	of	supremacy.	In	this	imaginary	version	of	history,	we
might	well	live	today	in	an	actual	steam-punk	world	and	not	just	get	to	observe
its	fantastical	instantiations	at	Maker	Faires!

My	point	is	that	Wiener	thought	about	the	world—physical,	biological,	and
(in	Human	Use)	sociological—in	a	particular	way.	He	analyzed	the	world	as
continuous	variables,	as	he	explains	in	chapter	1	along	with	a	nod	to
thermodynamics	through	an	overlay	of	Gibbs	statistics.	He	also	shoehorns	in	a
weak	and	unconvincing	model	of	information	as	message	passing	between	and
among	both	physical	and	biological	entities.	To	me,	and	from	today’s	vantage
point	seventy	years	on,	his	tools	seem	woefully	inadequate	for	describing	the
mechanisms	underlying	biological	systems,	and	so	he	missed	out	on	how	similar
mechanisms	might	eventually	be	embodied	in	technological	computational
systems—as	now	they	have	been.	Today’s	dominant	technologies	were
developed	in	the	world	of	Turing	and	von	Neumann,	rather	than	the	world	of
Wiener.

In	the	first	industrial	revolution,	energy	from	a	steam	engine	or	a	waterwheel
was	used	by	human	workers	to	replace	their	own	energy.	Instead	of	being	a
source	of	energy	for	physical	work,	people	became	modulators	of	how	a	large
source	of	energy	was	used.	But	because	steam	engines	and	waterwheels	had	to
be	large	to	be	an	efficient	use	of	capital,	and	because	in	the	18th	century	the	only
technology	for	spatial	distribution	of	energy	was	mechanical	and	worked	only	at
very	short	range,	many	workers	needed	to	be	crowded	around	the	source	of
energy.	Wiener	correctly	argues	that	the	ability	to	transmit	energy	as	electricity
caused	a	second	industrial	revolution.	Now	the	source	of	energy	could	be	distant
from	where	it	was	used,	and	from	the	beginning	of	the	20th	century,
manufacturing	could	be	much	more	dispersed	as	electrical-distribution	grids
were	built.



Wiener	then	argues	that	a	further	new	technology,	that	of	the	nascent
computational	machines	of	his	time,	will	provide	yet	another	revolution.	The
machines	he	talks	about	seem	to	be	both	analog	and	(perhaps)	digital	in	nature;
and	he	points	out,	in	The	Human	Use	of	Human	Beings,	that	since	they	will	be
able	to	make	decisions,	both	blue-collar	and	white-collar	workers	may	be
reduced	to	being	mere	cogs	in	a	much	bigger	machine.	He	fears	that	humans
might	use	and	abuse	one	another	through	organizational	structures	that	this
capability	will	encourage.	We	have	certainly	seen	this	play	out	in	the	last	sixty
years,	and	that	disruption	is	far	from	over.

However,	his	physics-based	view	of	computation	protected	him	from
realizing	just	how	bad	things	might	get.	He	saw	machines’	ability	to
communicate	as	providing	a	new	and	more	inhuman	way	of	exerting	command
and	control.	He	missed	that	within	a	few	decades	computation	systems	would
become	more	like	biological	systems,	and	it	seems,	from	his	descriptions	in
chapter	10	of	his	own	work	on	modeling	some	aspects	of	biology,	that	he
woefully	underappreciated	the	many	orders	of	magnitude	of	further	complexity
of	biology	over	physics.	We	are	in	a	much	more	complex	situation	today	than	he
foresaw,	and	I	am	worried	that	it	is	much	more	pernicious	than	even	his	worst
imagined	fears.

In	the	1960s,	computation	became	firmly	based	on	the	foundations	set	out	by
Turing	and	von	Neumann,	and	it	was	digital	computation,	based	on	the	idea	of
finite	alphabets,	which	they	both	used.	An	arbitrarily	long	sequence,	or	string,
formed	by	characters	from	a	finite	alphabet,	can	be	encoded	as	a	unique	integer.
As	with	Turing	Machines,	the	formalism	for	computation	became	that	of
computing	an	integer-valued	function	of	a	single	integer-valued	input.

Turing	and	von	Neumann	both	died	in	the	1950s,	and	at	that	time	this	is	how
they	saw	computation.	Neither	foresaw	the	exponential	increase	in	computing
capability	that	Moore’s	Law	would	bring—nor	how	pervasive	computing
machinery	would	become.	Nor	did	they	foresee	two	developments	in	our
modeling	of	computation,	each	of	which	poses	a	great	threat	to	human	society.

The	first	is	rooted	in	the	abstractions	they	adopted.	In	the	fifty-year	Moore’s
Law–fueled	race	to	produce	software	that	could	exploit	the	doubling	of
computer	capability	every	two	years,	the	typical	care	and	certification	of
engineering	disciplines	were	thrown	by	the	wayside.	Software	engineering	was
fast	and	prone	to	failures.	This	rapid	development	of	software	without	standards
of	correctness	has	opened	up	many	routes	to	exploit	von	Neumann	architecture’s
storage	of	data	and	instructions	in	the	same	memory.	One	of	the	most	common



routes,	known	as	“buffer	overrun,”	involves	an	input	number	(or	long	string	of
characters)	that	is	bigger	than	the	programmer	expected	and	overflows	into
where	the	instructions	are	stored.	By	carefully	designing	an	input	number	that	is
too	big	by	far,	someone	using	a	piece	of	software	can	infect	it	with	instructions
not	intended	by	the	programmer,	and	thus	change	what	it	does.	This	is	the	basis
for	creating	a	computer	virus—so	named	for	its	similarity	to	a	biological	virus.
The	latter	injects	extra	DNA	into	a	cell,	and	that	cell’s	transcription	and
translation	mechanism	blindly	interprets	it,	making	proteins	that	may	be	harmful
to	the	host	cell.	Furthermore,	the	replication	mechanism	for	the	cell	takes	care	of
multiplying	the	virus.	Thus	a	small	foreign	entity	can	take	control	of	a	much
bigger	entity	and	bend	its	behavior	in	unexpected	ways.

These	and	other	forms	of	digital	attacks	have	taken	the	security	of	our
everyday	lives	from	us.	We	rely	on	computers	for	almost	everything	now.	We
rely	on	computers	for	our	infrastructure	of	electricity,	gas,	roads,	cars,	trains,	and
airplanes;	these	are	all	vulnerable.	We	rely	on	computers	for	our	banking,	our
payment	of	bills,	our	retirement	accounts,	our	mortgages,	our	purchasing	of
goods	and	services—these,	too,	are	all	vulnerable.	We	rely	on	computers	for	our
entertainment,	our	communications	both	business	and	personal,	our	physical
security	at	home,	our	information	about	the	world,	and	our	voting	systems—all
vulnerable.	None	of	this	will	get	fixed	anytime	soon.	In	the	meantime,	many
aspects	of	our	society	are	open	to	vicious	attacks,	whether	by	freelancing
criminals	or	nation-state	adversaries.

The	second	development	is	that	computation	has	gone	beyond	simply
computing	functions.	Instead,	programs	remain	online	continuously,	and	so	they
can	gather	data	about	a	sequence	of	queries.	Under	the	Wiener	Turing	von
Neumann	scheme,	we	might	think	of	the	communication	pattern	for	a	Web
browser	to	be:

User:	Give	me	Web	page	A.

Browser:	Here	is	Web	page	A.

.	.	.

User:	Give	me	Web	page	B.

Browser:	Here	is	Web	page	B.

Now	instead	it	can	look	like	this:

User:	Give	me	Web	page	A.

Browser:	Here	is	Web	page	A.	[And	I	will	secretly	remember	that	you	asked

for	Web	page	A.]

.	.	.

User:	Give	me	Web	page	B.

Browser:	Here	is	Web	page	B.	[I	see	a	correlation	between	its	contents

and	that	of	the	earlier	requested	Web	page	A,	so	I	will	update	my	model



and	that	of	the	earlier	requested	Web	page	A,	so	I	will	update	my	model

of	you,	the	user,	and	transmit	it	to	the	company	that	produced	me.]

When	the	machine	no	longer	simply	computes	a	function	but	instead
maintains	a	state,	it	can	start	to	make	inferences	about	the	human	by	the
sequence	of	requests	presented	to	it.	And	when	different	programs	correlate
across	different	request	streams—say,	correlating	Web-page	searches	with
social-media	posts,	or	the	payment	for	services	on	another	platform,	or	the	dwell
time	on	a	particular	advertisement,	or	where	the	user	has	walked	or	driven	with
their	GPS-enabled	smartphone—the	total	systems	of	many	programs
communicating	with	one	another	and	with	databases	leads	to	a	whole	new	loss
of	privacy.	The	great	exploitative	leap	made	by	so	many	West	Coast	companies
has	been	to	monetize	those	inferences	without	the	knowing	permission	of	the
person	generating	the	interactions	with	the	computing	machine	platforms.

Wiener,	Turing,	and	von	Neumann	could	not	foresee	the	complexity	of	those
platforms,	wherein	the	legal	mumbo	jumbo	of	the	terms-of-use	contracts	the
humans	willingly	enter	into,	without	an	inkling	of	what	they	entail,	leads	them	to
give	up	rights	they	would	never	concede	in	a	one-on-one	interaction	with
another	human	being.	The	computation	platforms	have	become	a	shield	behind
which	some	companies	hide	in	order	to	inhumanly	exploit	others.	In	certain
other	countries,	the	governments	carry	out	these	manipulations,	and	there	the
goal	is	not	profits	but	the	suppression	of	dissent.

Humankind	has	gotten	itself	into	a	fine	pickle:	We	are	being	exploited	by
companies	that	paradoxically	deliver	services	we	crave,	and	at	the	same	time	our
lives	depend	on	many	software-enabled	systems	that	are	open	to	attack.	Getting
ourselves	out	of	this	mess	will	be	a	long-term	project.	It	will	involve
engineering,	legislation,	and,	most	important,	moral	leadership.	Moral	leadership
is	the	first	and	biggest	challenge.



Chapter	7

THE	UNITY	OF	INTELLIGENCE

FRANK	WILCZEK

Frank	Wilczek	is	Herman	Feshbach	Professor	of	Physics	at	MIT,	recipient	of	the
2004	Nobel	Prize	in	physics,	and	the	author	of	A	Beautiful	Question:	Finding

Nature’s	Deep	Design.

I	first	met	Frank	Wilczek	in	the	1980s,	when	he	invited	me	to	his	home	in	Princeton	to	talk
about	anyons.	“The	address	is	112	Mercer	Street,”	he	wrote.	“Look	for	the	house	with	no
driveway.”	So	there	I	was,	a	few	hours	later,	in	Einstein’s	old	living	room,	talking	to	a	future
recipient	of	the	Nobel	Prize	in	physics.	If	Frank	was	as	impressed	as	I	was	by	the
surroundings,	you’d	never	guess	it.	His	only	comment	concerned	the	difficulty	of	finding	a
parking	place	in	front	of	a	“house	with	no	driveway.”

Unlike	most	theoretical	physicists,	Frank	has	long	had	a	keen	interest	in	AI,	as
witnessed	in	these	three	“Observations”:

1.	 “Francis	Crick	called	it	‘the	Astonishing	Hypothesis’:	that	consciousness,	also	known
as	Mind,	is	an	emergent	property	of	matter,”	which,	if	true,	indicates	that	“all
intelligence	is	machine	intelligence.	What	distinguishes	natural	from	artificial
intelligence	is	not	what	it	is,	but	only	how	it	is	made.”

2.	 “Artificial	intelligence	is	not	the	product	of	an	alien	invasion.	It	is	an	artifact	of	a
particular	human	culture	and	reflects	the	values	of	that	culture.”

3.	 “David	Hume’s	striking	statement	‘Reason	Is,	and	Ought	only	to	Be,	the	Slave	of	the
Passions’	was	written	in	1738	[and]	was,	of	course,	meant	to	apply	to	human	reason
and	human	passions.	.	.	.	But	Hume’s	logical/philosophical	point	remains	valid	for	AI.
Simply	put:	Incentives,	not	abstract	logic,	drive	behavior.”

He	notes	that	“the	big	story	of	the	20th	and	the	21st	century	is	that	[as]	computing
develops,	we	learn	how	to	calculate	the	consequences	of	the	[fundamental]	laws	better
and	better.	There’s	also	a	feedback	cycle:	When	you	understand	matter	better,	you	can
design	better	computers,	which	will	enable	you	to	calculate	better.	It’s	kind	of	an	ascending
helix.”

Here	he	argues	that	human	intelligence,	for	now,	holds	the	advantage—yet	our	future,
unbounded	by	our	solar	system	and	doubtless	also	by	our	galaxy,	will	never	be	realized
without	the	help	of	our	AIs.



I.	A	SIMPLE	ANSWER	TO	CONTENTIOUS
QUESTIONS

Can	an	artificial	intelligence	be	conscious?
Can	an	artificial	intelligence	be	creative?
Can	an	artificial	intelligence	be	evil?

Those	questions	are	often	posed	today,	both	in	popular	media	and	in
scientifically	informed	debates.	But	the	discussions	never	seem	to	converge.
Here	I’ll	begin	by	answering	them	as	follows:

Based	on	physiological	psychology,	neurobiology,	and	physics,	it	would	be
very	surprising	if	the	answers	were	not	Yes,	Yes,	and	Yes.	The	reason	is	simple,
yet	profound:	Evidence	from	those	fields	makes	it	overwhelmingly	likely	that
there	is	no	sharp	divide	between	natural	and	artificial	intelligence.

In	his	1994	book	of	that	title,	the	renowned	biologist	Francis	Crick	proposed
an	“Astonishing	Hypothesis”:	that	mind	emerges	from	matter.	He	famously
claimed	that	mind,	in	all	its	aspects,	is	“no	more	than	the	behavior	of	a	vast
assembly	of	nerve	cells	and	their	associated	molecules.”

The	“Astonishing	Hypothesis”	is	in	fact	the	foundation	of	modern
neuroscience.	People	try	to	understand	how	minds	work	by	understanding	how
brains	function;	and	they	try	to	understand	how	brains	function	by	studying	how
information	is	encoded	in	electrical	and	chemical	signals,	transformed	by
physical	processes,	and	used	to	control	behavior.	In	that	scientific	endeavor,	they
make	no	allowance	for	extraphysical	behavior.	So	far,	in	thousands	of	exquisite
experiments,	that	strategy	has	never	failed.	It	has	never	proved	necessary	to
allow	for	the	influence	of	consciousness	or	creativity	unmoored	from	brain
activity	to	explain	any	observed	fact	of	psychophysics	or	neurobiology.	No	one
has	ever	stumbled	upon	a	power	of	mind	that	is	separate	from	conventional
physical	events	in	biological	organisms.	While	there	are	many	things	we	do	not
understand	about	brains,	and	about	minds,	the	“astonishing	hypothesis”	has	held
intact.

If	we	broaden	our	view	beyond	neurobiology	to	consider	the	whole	range	of



If	we	broaden	our	view	beyond	neurobiology	to	consider	the	whole	range	of
scientific	experimentation,	the	case	becomes	still	more	compelling.	In	modern
physics,	the	foci	of	interest	are	often	extremely	delicate	phenomena.	To
investigate	them,	experimenters	must	take	many	precautions	against
contamination	by	“noise.”	They	often	find	it	necessary	to	construct	elaborate
shielding	against	stray	electric	and	magnetic	fields;	to	compensate	for	tiny
vibrations	due	to	microearthquakes	or	passing	cars;	to	work	at	extremely	low
temperatures	and	in	high	vacuum;	and	so	forth.	But	there’s	a	notable	exception:
They	have	never	found	it	necessary	to	make	allowances	for	what	people	nearby
(or,	for	that	matter,	far	away)	are	thinking.	No	“thought	waves,”	separate	from
known	physical	processes	yet	capable	of	influencing	physical	events,	seem	to
exist.

That	conclusion,	taken	at	face	value,	erases	the	distinction	between	natural
and	artificial	intelligence.	It	implies	that	if	we	were	to	duplicate,	or	accurately
simulate,	the	physical	processes	occurring	in	a	brain—as,	in	principle,	we	can—
and	wire	up	its	input	and	output	to	sense	organs	and	muscles,	then	we	would
reproduce,	in	a	physical	artifact,	the	observed	manifestations	of	natural
intelligence.	Nothing	observable	would	be	missing.	As	an	observer,	I’d	have	no
less	(and	no	more)	reason	to	ascribe	consciousness,	creativity,	or	evil	to	that
artifact	than	I	do	to	ascribe	those	properties	to	its	natural	counterparts,	like	other
human	beings.

Thus,	by	combining	Crick’s	“astonishing	hypothesis”	in	neurobiology	with
powerful	evidence	from	physics,	we	deduce	that	natural	intelligence	is	a	special
case	of	artificial	intelligence.	That	conclusion	deserves	a	name,	and	I	will	call	it
the	“astonishing	corollary.”

With	that,	we	have	the	answer	to	our	three	questions.	Since	consciousness,
creativity,	and	evil	are	obvious	features	of	natural	human	intelligence,	they	are
possible	features	of	artificial	intelligence.

A	hundred	years	ago,	or	even	fifty,	to	believe	the	hypothesis	that	mind
emerges	from	matter,	and	to	infer	our	corollary	that	natural	intelligence	is	a
special	case	of	artificial	intelligence,	would	have	been	leaps	of	faith.	In	view	of
the	many	surrounding	gaps—chasms,	really—in	contemporary	understanding	of
biology	and	physics,	they	were	genuinely	doubtful	propositions.	But	epochal
developments	in	those	areas	have	changed	the	picture:
In	biology:	A	century	ago,	not	only	thought	but	also	metabolism,	heredity,

and	perception	were	deeply	mysterious	aspects	of	life	that	defied	physical
explanation.	Today,	of	course,	we	have	extremely	rich	and	detailed	accounts	of



metabolism,	heredity,	and	many	aspects	of	perception,	from	the	bottom	up,
starting	at	the	molecular	level.
In	physics:	After	a	century	of	quantum	physics	and	its	application	to

materials,	physicists	have	discovered,	over	and	over,	how	rich	and	strange	the
behavior	of	matter	can	be.	Superconductors,	lasers,	and	many	other	wonders
demonstrate	that	large	assemblies	of	molecular	units,	each	simple	in	itself,	can
exhibit	qualitatively	new,	“emergent”	behavior,	while	remaining	fully	obedient
to	the	laws	of	physics.	Chemistry,	including	biochemistry,	is	a	cornucopia	of
emergent	phenomena,	all	now	quite	firmly	grounded	in	physics.	The	pioneering
physicist	Philip	Anderson,	in	an	essay	titled	“More	Is	Different,”	offers	a	classic
discussion	of	emergence.	He	begins	by	acknowledging	that	“the	reductionist
hypothesis	[i.e.,	the	completeness	of	physical	explanations	based	on	known
interactions	of	simple	parts]	may	still	be	a	topic	for	controversy	among
philosophers,	but	among	the	great	majority	of	active	scientists	I	think	it	is
accepted	without	question.”	But	he	goes	on	to	emphasize	that	“[t]he	behavior	of
large	and	complex	aggregates	of	elementary	particles,	it	turns	out,	is	not	to	be
understood	in	terms	of	a	simple	extrapolation	of	the	properties	of	a	few
particles.”*	Each	new	level	of	size	and	complexity	supports	new	forms	of
organization,	whose	patterns	encode	information	in	new	ways	and	whose
behavior	is	best	described	using	new	concepts.

Electronic	computers	are	a	magnificent	example	of	emergence.	Here,	all	the
cards	are	on	the	table.	Engineers	routinely	design,	from	the	bottom	up,	based	on
known	(and	quite	sophisticated)	physical	principles,	machines	that	process
information	in	extremely	impressive	ways.	Your	iPhone	can	beat	you	at	chess,
quickly	collect	and	deliver	information	about	anything,	and	take	great	pictures,
too.	Because	the	process	whereby	computers,	smartphones,	and	other	intelligent
objects	are	designed	and	manufactured	is	completely	transparent,	there	can	be	no
doubt	that	their	wonderful	capabilities	emerge	from	regular	physical	processes,
which	we	can	trace	down	to	the	level	of	electrons,	photons,	quarks,	and	gluons.
Evidently,	brute	matter	can	get	pretty	smart.

Let	me	summarize	the	argument.	From	two	strongly	supported	hypotheses,
we’ve	drawn	a	straightforward	conclusion:

Human	mind	emerges	from	matter.
Matter	is	what	physics	says	it	is.
Therefore,	the	human	mind	emerges	from	physical	processes	we
understand	and	can	reproduce	artificially.



Therefore,	natural	intelligence	is	a	special	case	of	artificial	intelligence.

Of	course,	our	“astonishing	corollary”	could	fail;	the	first	two	lines	of	this
argument	are	hypotheses.	But	their	failure	would	have	to	bring	in	a	foundation-
shattering	discovery—a	significant	new	phenomenon,	with	large-scale	physical
consequences,	that	takes	place	in	unremarkable,	well-studied	physical
circumstances	(i.e.,	the	materials,	temperatures,	and	pressures	inside	human
brains),	yet	that	has	somehow	managed	for	many	decades	to	elude	determined
investigators	armed	with	sophisticated	instruments.	Such	a	discovery	would
be	.	.	.	astonishing.

II.	THE	FUTURE	OF	INTELLIGENCE

It	is	part	of	human	nature	to	improve	on	human	bodies	and	minds.	Historically,
clothing,	eyeglasses,	and	watches	are	examples	of	increasingly	sophisticated
augmentations	that	enhance	our	toughness,	perception,	and	awareness.	They	are
major	improvements	to	the	natural	human	endowment,	whose	familiarity	should
not	blind	us	to	their	depth.	Today	smartphones	and	the	Internet	are	bringing	the
human	drive	toward	augmentation	into	realms	more	central	to	our	identity	as
intelligent	beings.	They	are	giving	us,	in	effect,	quick	access	to	a	vast	collective
awareness	and	a	vast	collective	memory.

At	the	same	time,	autonomous	artificial	intelligences	have	become	world
champions	in	a	wide	variety	of	“cerebral”	games,	such	as	chess	and	Go,	and
have	taken	over	many	sophisticated	pattern-recognition	tasks,	such	as
reconstructing	what	happened	during	complex	reactions	at	the	Large	Hadron
Collider	from	a	blizzard	of	emerging	particle	tracks	to	find	new	particles;	or
gathering	clues	from	fuzzy	X-ray,	fMRI,	and	other	types	of	images	to	diagnose
medical	problems.

Where	is	this	drive	toward	self-enhancement	and	innovation	taking	us?	While
the	precise	sequence	of	events	and	the	timescale	over	which	they’ll	play	out	are
impossible	to	predict	(or,	at	least,	beyond	me),	some	basic	considerations
suggest	that	eventually	the	most	powerful	embodiments	of	mind	will	be	quite
different	things	from	human	brains	as	we	know	them	today.

Consider	six	factors	whereby	information-processing	technology	exceeds
human	capabilities—vastly,	qualitatively,	or	both:



Speed:	The	orchestrated	motion	of	electrons,	which	is	the	heart	of
modern	artificial	information	processing,	can	be	much	faster	than	the
processes	of	diffusion	and	chemical	change	by	which	brains	operate.
Typical	modern	computer	clock	rates	approach	10	gigahertz,
corresponding	to	10	billion	operations	per	second.	No	single	measure
of	speed	applies	to	the	bewildering	variety	of	brain	processes,	but	one
fundamental	limitation	is	latency	of	action	potentials,	which	limits	their
spacing	to	a	few	10s	per	second.	It	is	probably	no	accident	that	the
“frame	rate,”	at	which	we	can	distinguish	that	movies	are	actually	a
sequence	of	stills,	is	about	40	per	second.	Thus,	electronic	processing	is
close	to	a	billion	times	faster.
Size:	The	linear	dimension	of	a	typical	neuron	is	about	10	microns.
Molecular	dimensions,	which	set	a	practical	limit,	are	about	10,000
times	smaller,	and	artificial	processing	units	are	approaching	that	scale.
Smallness	makes	communication	more	efficient.
Stability:	Whereas	human	memory	is	essentially	continuous	(analog),
artificial	memory	can	incorporate	discrete	(digital)	features.	Whereas
analog	quantities	can	erode,	digital	quantities	can	be	stored,	refreshed,
and	maintained	with	complete	accuracy.
Duty	cycle:	Human	brains	grow	tired	with	effort.	They	need	time	off	to
take	nourishment	and	to	sleep.	They	carry	the	burden	of	aging.	Most
profoundly:	They	die.
Modularity	(open	architecture):	Because	artificial	information
processors	can	support	precisely	defined	digital	interfaces,	they	can
readily	assimilate	new	modules.	Thus,	if	we	want	a	computer	to	“see”
ultraviolet	or	infrared	or	“hear”	ultrasound,	we	can	feed	the	output	from
an	appropriate	sensor	directly	into	its	“nervous	system.”	The
architecture	of	brains	is	much	more	closed	and	opaque,	and	the	human
immune	system	actively	resists	implants.
Quantum	readiness:	One	case	of	modularity	deserves	special	mention
because	of	its	long-term	potential.	Recently	physicists	and	information
scientists	have	come	to	appreciate	that	the	principles	of	quantum
mechanics	support	new	computing	principles,	which	can	empower
qualitatively	new	forms	of	information	processing	and	(plausibly)	new
levels	of	intelligence.	But	these	possibilities	rely	on	aspects	of	quantum
behavior	that	are	quite	delicate	and	seem	especially	unsuitable	for
interfacing	with	the	warm,	wet,	messy	environment	of	human	brains.



Evidently,	as	platforms	for	intelligence,	human	brains	are	far	from	optimal.
Still,	although	versatile	housekeeping	robots	or	mechanical	soldiers	would	find
ready,	lucrative	markets,	at	present	there	is	no	machine	that	approaches	the	kind
of	general-purpose	human	intelligence	those	applications	would	require.	Despite
their	relative	weakness	on	many	fronts,	human	brains	have	some	big	advantages
over	their	artificial	competitors.	Let	me	mention	five:

Three-dimensionality:	Although,	as	noted,	the	linear	dimensions	of
existing	artificial	processing	units	are	vastly	smaller	than	those	of
brains,	the	procedure	by	which	they’re	made—centered	on	lithography
(basically,	etching)—is	essentially	two-dimensional.	That	is	revealed
visibly	in	the	geometry	of	computer	boards	and	chips.	Of	course,	one
can	stack	boards,	but	the	spacing	between	layers	is	much	larger,	and
communication	much	less	efficient,	than	within	layers.	Brains	make
better	use	of	all	three	dimensions.
Self-repair:	Human	brains	can	recover	from,	or	work	around,	many
kinds	of	injuries	or	errors.	Computers	often	must	be	repaired	or
rebooted	externally.
Connectivity:	Human	neurons	typically	support	several	hundred
connections	(synapses).	Moreover,	the	complex	pattern	of	these
connections	is	very	meaningful.	(See	my	next	point.)	Computer	units
typically	make	only	a	handful	of	connections,	in	regular,	fixed	patterns.
Development	(self-assembly	with	interactive	sculpting):	The	human
brain	grows	its	units	by	cell	divisions	and	orchestrates	them	into
coherent	structures	by	movement	and	folding.	It	also	proliferates	an
abundance	of	connections	among	the	cells.	An	important	part	of	its
sculpting	occurs	through	active	processes	during	infancy	and
childhood,	as	the	individual	interacts	with	his	or	her	environment.	In
this	process,	many	connections	are	winnowed	away,	while	others	are
strengthened,	depending	on	their	effectiveness	in	use.	Thus,	the	fine
structure	of	the	brain	is	tuned	through	interaction	with	the	external
world—a	rich	source	of	information	and	feedback!
Integration	(sensors	and	actuators):	The	human	brain	comes	equipped
with	a	variety	of	sensory	organs,	notably	including	its	outgrowth	eyes,
and	with	versatile	actuators,	including	hands	that	build,	legs	that	walk,
and	mouths	that	speak.	Those	sensors	and	actuators	are	seamlessly
integrated	into	the	brain’s	information-processing	centers,	having	been



honed	over	millions	of	years	of	natural	selection.	We	interpret	their	raw
signals	and	control	their	large-scale	actions	with	minimal	conscious
attention.	The	flip	side	is	that	we	don’t	know	how	we	do	it,	and	the
implementation	is	opaque.	It’s	proving	surprisingly	difficult	to	reach
human	standards	on	these	“routine”	input-output	functions.

These	advantages	of	human	brains	over	currently	engineered	artifacts	are
profound.	Human	brains	supply	an	inspiring	existence	proof,	showing	us	several
ways	we	can	get	more	out	of	matter.	When,	if	ever,	will	our	engineering	catch
up?

I	don’t	know	for	sure,	but	let	me	offer	some	informed	opinions.	The
challenges	of	three-dimensionality	and,	to	a	lesser	extent,	self-repair	don’t	look
overwhelming.	They	present	some	tough	engineering	problems,	but	many
incremental	improvements	are	easy	to	imagine,	and	there	are	clear	paths
forward.	And	while	the	powers	of	human	eyes,	hands,	and	other	sensory	organs
and	actuators	are	wonderfully	effective,	their	abilities	are	far	from	exhausting
any	physical	limits.	Optical	systems	can	take	pictures	with	higher	resolution	in
space,	time,	and	color,	and	in	more	regions	of	the	electromagnetic	spectrum;
robots	can	move	faster	and	be	stronger;	and	so	forth.	In	these	domains,	the
components	necessary	for	superhuman	performance,	along	many	axes,	are
already	available.	The	bottleneck	is	getting	information	into	and	out	of	them
rapidly,	in	the	language	of	the	information-processing	units.

And	this	brings	us	to	the	remaining,	and	I	think	most	profound,	advantages	of
brains	over	artificial	devices,	which	stem	from	their	connectivity	and	interactive
development.	Those	two	advantages	are	synergistic,	since	it	is	interactive
development	that	sculpts	the	massively	wired	but	sprawling	structure	of	the
infant	brain,	enabled	by	exponential	growth	of	neurons	and	synapses,	to	get
tuned	in	to	the	extraordinary	instrument	it	becomes.	Computer	scientists	are
beginning	to	discover	the	power	of	the	brain’s	architecture:	Neural	nets,	whose
basic	design,	as	their	name	suggests,	was	directly	inspired	by	the	brain’s,	have
scored	some	spectacular	successes	in	game	playing	and	pattern	recognition,	as
noted.	But	present-day	engineering	has	nothing	comparable—in	the	(currently)
esoteric	domain	of	self-reproducing	machines—to	the	power	and	versatility	of
neurons	and	their	synapses.	This	could	become	a	new,	great	frontier	of	research.
Here,	too,	biology	might	point	the	way,	as	we	come	to	understand	biological
development	well	enough	to	imitate	its	essence.

Altogether,	the	advantages	of	artificial	over	natural	intelligence	appear
permanent,	while	the	advantages	of	natural	over	artificial	intelligence,	though



permanent,	while	the	advantages	of	natural	over	artificial	intelligence,	though
substantial	at	present,	appear	transient.	I’d	guess	that	it	will	be	many	decades
before	engineering	catches	up,	but—barring	catastrophic	wars,	climate	change,
or	plagues,	so	that	technological	progress	stays	vigorous—few	centuries.

If	that’s	right,	we	can	look	forward	to	several	generations	during	which
humans,	empowered	and	augmented	by	smart	devices,	coexist	with	increasingly
capable	autonomous	AIs.	There	will	be	a	complex,	rapidly	changing	ecology	of
intelligence,	and	rapid	evolution	in	consequence.	Given	the	intrinsic	advantages
that	engineered	devices	will	eventually	offer,	the	vanguard	of	that	evolution	will
be	cyborgs	and	superminds,	rather	than	lightly	adorned	Homo	sapiens.

Another	important	impetus	will	come	from	the	exploration	of	hostile
environments,	both	on	Earth	(e.g.,	the	deep	ocean)	and,	especially,	in	space.	The
human	body	is	poorly	adapted	to	conditions	outside	a	narrow	band	of
temperatures,	pressures,	and	atmospheric	composition.	It	needs	a	wide	variety	of
specific,	complex	nutrients,	and	plenty	of	water.	Also,	it	is	not	radiation
hardened.	As	the	manned	space	program	has	amply	demonstrated,	it	is	difficult
and	expensive	to	maintain	humans	outside	their	terrestrial	comfort	zone.
Cyborgs	or	autonomous	AIs	could	be	much	more	effective	in	these	explorations.
Quantum	AIs,	with	their	sensitivity	to	noise,	might	even	be	happier	in	the	cold
and	dark	of	deep	space.

In	a	moving	passage	from	his	1935	novel	Odd	John,	science	fiction’s	singular
genius	Olaf	Stapledon	has	his	hero,	a	superhuman	(mutant)	intelligence,	describe
Homo	sapiens	as	“the	Archaeopteryx	of	the	spirit.”	He	says	this	fondly	to	his
friend	and	biographer,	who	is	a	normal	human.	Archaeopteryx	was	a	noble
creature,	and	a	bridge	to	greater	ones.



Chapter	8

LET’S	ASPIRE	TO	MORE	THAN	MAKING
OURSELVES	OBSOLETE

MAX	TEGMARK

Max	Tegmark	is	an	MIT	physicist	and	AI	researcher,	president	of	the	Future	of	Life
Institute,	scientific	director	of	the	Foundational	Questions	Institute,	and	the	author	of

Our	Mathematical	Universe	and	Life	3.0:	Being	Human	in	the	Age	of	Artificial
Intelligence.

I	was	introduced	to	Max	Tegmark	some	years	ago	by	his	MIT	colleague	Alan	Guth,	the
father	of	inflation	theory.	A	distinguished	theoretical	physicist	and	cosmologist	himself,
Max’s	principal	concern	nowadays	is	the	looming	existential	risk	posed	by	the	creation	of
an	AGI	(artificial	general	intelligence—that	is,	one	that	matches	human	intelligence).	Four
years	ago,	Max	co-founded,	with	Jaan	Tallinn	and	others,	the	Future	of	Life	Institute	(FLI),
which	bills	itself	as	“an	outreach	organization	working	to	ensure	that	tomorrow’s	most
powerful	technologies	are	beneficial	for	humanity.”	While	on	a	book	tour	in	London,	he	was
in	the	midst	of	planning	for	FLI,	and	he	admits	to	being	driven	to	tears	in	a	tube	station
after	a	trip	to	the	London	Science	Museum,	with	its	exhibitions	spanning	the	gamut	of
humanity’s	technological	achievements.	Was	all	that	impressive	progress	in	vain?

FLI’s	scientific	advisory	board	includes	Elon	Musk,	Frank	Wilczek,	George	Church,
Stuart	Russell,	and	the	Oxford	philosopher	Nick	Bostrom,	who	dreamed	up	an	oft-quoted
Gedankenexperiment	that	results	in	a	world	full	of	paper	clips	and	nothing	else,	produced
by	an	(apparently)	well-meaning	AGI	who	was	just	following	orders.	The	institute	sponsors
conferences	(Puerto	Rico	2015,	Asilomar	2017)	on	AI	safety	issues	and	in	2018	instituted
a	grants	competition	focusing	on	research	in	aid	of	maximizing	the	societal	benefits	of	AGI.

While	Max	is	sometimes	listed—by	the	noncognoscenti—on	the	side	of	the
scaremongers,	he	believes,	like	Frank	Wilczek,	in	a	future	that	will	immensely	benefit	from
AGI	if,	in	the	attempt	to	create	it,	we	can	keep	the	human	species	from	being	sidelined.



A lthough	there’s	great	controversy	about	how	and	when	AI	will	impact
humanity,	the	situation	is	clearer	from	a	cosmic	perspective:	The
technology-developing	life	that	has	evolved	on	Earth	is	rushing	to	make

itself	obsolete	without	devoting	much	serious	thought	to	the	consequences.	This
strikes	me	as	embarrassingly	lame,	given	that	we	can	create	amazing
opportunities	for	humanity	to	flourish	like	never	before,	if	we	dare	to	steer	a
more	ambitious	course.

Our	Universe	has	become	aware	of	itself	13.8	billion	years	after	its	birth.	On
a	small	blue	planet,	tiny	conscious	parts	of	our	Universe	have	discovered	that
what	they	once	thought	was	the	sum	total	of	existence	was	a	minute	part	of
something	far	grander:	a	solar	system	in	a	galaxy	in	a	universe	with	more	than
100	billion	other	galaxies,	arranged	into	an	elaborate	pattern	of	groups,	clusters,
and	superclusters.

Consciousness	is	the	cosmic	awakening;	it	transformed	our	Universe	from	a
mindless	zombie	with	no	self-awareness	into	a	living	ecosystem	harboring	self-
reflection,	beauty,	hope,	meaning,	and	purpose.	Had	that	awakening	never	taken
place,	our	Universe	would	have	been	pointless—a	gigantic	waste	of	space.
Should	our	Universe	go	back	to	sleep	permanently	due	to	some	cosmic	calamity
or	self-inflicted	mishap,	it	will	become	meaningless	again.

On	the	other	hand,	things	could	get	even	better.	We	don’t	yet	know	whether
we	humans	are	the	only	stargazers	in	the	cosmos,	or	even	the	first,	but	we’ve
already	learned	enough	about	our	Universe	to	know	that	it	has	the	potential	to
wake	up	much	more	fully	than	it	has	thus	far.	AI	pioneers	such	as	Norbert
Wiener	have	taught	us	that	a	further	awakening	of	our	Universe’s	ability	to
process	and	experience	information	need	not	require	eons	of	additional	evolution
but	perhaps	mere	decades	of	human	scientific	ingenuity.

We	may	be	like	that	first	glimmer	of	self-awareness	you	experienced	when
you	emerged	from	sleep	this	morning,	a	premonition	of	the	much	greater
consciousness	that	would	arrive	once	you	opened	your	eyes	and	fully	awoke.
Perhaps	artificial	superintelligence	will	enable	life	to	spread	throughout	the
cosmos	and	flourish	for	billions	or	trillions	of	years,	and	perhaps	this	will	be
because	of	decisions	we	make	here,	on	our	planet,	in	our	lifetime.

Or	humanity	may	soon	go	extinct,	through	some	self-inflicted	calamity
caused	by	the	power	of	our	technology	growing	faster	than	the	wisdom	with



caused	by	the	power	of	our	technology	growing	faster	than	the	wisdom	with
which	we	manage	it.

THE	EVOLVING	DEBATE	ABOUT	AI’S
SOCIETAL	IMPACT

Many	thinkers	dismiss	the	idea	of	superintelligence	as	science	fiction,	because
they	view	intelligence	as	something	mysterious	that	can	exist	only	in	biological
organisms—especially	humans—and	as	fundamentally	limited	to	what	today’s
humans	can	do.	But	from	my	perspective	as	a	physicist,	intelligence	is	simply	a
certain	kind	of	information	processing	performed	by	elementary	particles
moving	around,	and	there’s	no	law	of	physics	that	says	one	can’t	build	machines
more	intelligent	in	every	way	than	we	are,	and	able	to	seed	cosmic	life.	This
suggests	that	we’ve	seen	just	the	tip	of	the	intelligence	iceberg;	there’s	an
amazing	potential	to	unlock	the	full	intelligence	latent	in	nature	and	use	it	to	help
humanity	flourish—or	flounder.

Others,	including	some	of	the	authors	in	this	volume,	dismiss	the	building	of
an	AGI	(artificial	general	intelligence—an	entity	able	to	accomplish	any
cognitive	task	at	least	as	well	as	humans)	not	because	they	consider	it	physically
impossible	but	because	they	deem	it	too	difficult	for	humans	to	pull	off	in	less
than	a	century.	Among	professional	AI	researchers,	both	types	of	dismissal	have
become	minority	views	because	of	recent	breakthroughs.	There	is	a	strong
expectation	that	AGI	will	be	achieved	within	a	century,	and	the	median	forecast
is	only	decades	away.	A	recent	survey	of	AI	researchers	by	Vincent	Müller	and
Nick	Bostrom	concludes:

[T]he	results	reveal	a	view	among	experts	that	AI	systems	will
probably	(over	50%)	reach	overall	human	ability	by	2040–50,	and	very
likely	(with	90%	probability)	by	2075.	From	reaching	human	ability,	it
will	move	on	to	superintelligence	in	2	years	(10%)	to	30	years	(75%)
thereafter.*

In	the	cosmic	perspective	of	gigayears,	it	makes	little	difference	whether	AGI
arrives	in	thirty	or	three	hundred	years,	so	let’s	focus	on	the	implications	rather
than	the	timing.



than	the	timing.
First,	we	humans	discovered	how	to	replicate	some	natural	processes	with

machines,	making	our	own	heat,	light,	and	mechanical	horsepower.	Gradually
we	realized	that	our	bodies	were	also	machines,	and	the	discovery	of	nerve	cells
blurred	the	boundary	between	body	and	mind.	Finally,	we	started	building
machines	that	could	outperform	not	only	our	muscles	but	our	minds	as	well.
We’ve	now	been	eclipsed	by	machines	in	the	performance	of	many	narrow
cognitive	tasks,	ranging	from	memorization	and	arithmetic	to	game	play,	and	we
are	in	the	process	of	being	overtaken	in	many	more,	from	driving	to	investing	to
medical	diagnosing.	If	the	AI	community	succeeds	in	its	original	goal	of
building	AGI,	then	we	will	have,	by	definition,	been	eclipsed	at	all	cognitive
tasks.

This	begs	many	obvious	questions.	For	example,	will	whoever	or	whatever
controls	the	AGI	control	Earth?	Should	we	aim	to	control	superintelligent
machines?	If	not,	can	we	ensure	that	they	understand,	adopt,	and	retain	human
values?	As	Norbert	Wiener	put	it	in	The	Human	Use	of	Human	Beings:

Woe	to	us	if	we	let	[the	machine]	decide	our	conduct,	unless	we	have
previously	examined	the	laws	of	its	action,	and	know	fully	that	its
conduct	will	be	carried	out	on	principles	acceptable	to	us!	On	the	other
hand,	the	machine	.	.	.	which	can	learn	and	can	make	decisions	on	the
basis	of	its	learning,	will	in	no	way	be	obliged	to	make	such	decisions	as
we	should	have	made,	or	will	be	acceptable	to	us.

And	who	are	the	“us”?	Who	should	deem	“such	decisions	.	.	.	acceptable”?
Even	if	future	powers	decide	to	help	humans	survive	and	flourish,	how	will	we
find	meaning	and	purpose	in	our	lives	if	we	aren’t	needed	for	anything?

The	debate	about	the	societal	impact	of	AI	has	changed	dramatically	in	the
last	few	years.	In	2014,	what	little	public	talk	there	was	of	AI	risk	tended	to	be
dismissed	as	Luddite	scaremongering,	for	one	of	two	logically	incompatible
reasons:

1.	 AGI	was	overhyped	and	wouldn’t	happen	for	at	least	another	century.
2.	 AGI	would	probably	happen	sooner	but	was	virtually	guaranteed	to

be	beneficial.

Today,	talk	of	AI’s	societal	impact	is	everywhere,	and	work	on	AI	safety	and



Today,	talk	of	AI’s	societal	impact	is	everywhere,	and	work	on	AI	safety	and
AI	ethics	has	moved	into	companies,	universities,	and	academic	conferences.
The	controversial	position	on	AI	safety	research	is	no	longer	to	advocate	for	it
but	to	dismiss	it.	Whereas	the	open	letter	that	emerged	from	the	2015	Puerto
Rico	AI	conference	(and	helped	mainstream	AI	safety)	spoke	only	in	vague
terms	about	the	importance	of	keeping	AI	beneficial,	the	2017	Asilomar	AI
Principles	(see	page	84)	had	real	teeth:	They	explicitly	mention	recursive	self-
improvement,	superintelligence,	and	existential	risk,	and	were	signed	by	AI
industry	leaders	and	more	than	a	thousand	AI	researchers	from	around	the	world.

Nonetheless,	most	discussion	is	limited	to	the	near-term	impact	of	narrow	AI
and	the	broader	community	pays	only	limited	attention	to	the	dramatic
transformations	that	AGI	may	soon	bring	to	life	on	Earth.	Why?

WHY	WE’RE	RUSHING	TO	MAKE
OURSELVES	OBSOLETE,	AND	WHY	WE
AVOID	TALKING	ABOUT	IT

First	of	all,	there’s	simple	economics.	Whenever	we	figure	out	how	to	make
another	type	of	human	work	obsolete	by	building	machines	that	do	it	better	and
cheaper,	most	of	society	gains:	Those	who	build	and	use	the	machines	make
profits,	and	consumers	get	more	affordable	products.	This	will	be	as	true	of
future	investor	AGIs	and	scientist	AGIs	as	it	was	of	weaving	machines,
excavators,	and	industrial	robots.	In	the	past,	displaced	workers	usually	found
new	jobs,	but	this	basic	economic	incentive	will	remain	even	if	that	is	no	longer
the	case.	The	existence	of	affordable	AGI	means,	by	definition,	that	all	jobs	can
be	done	more	cheaply	by	machines,	so	anyone	claiming	that	“people	will	always
find	new	well-paying	jobs”	is	in	effect	claiming	that	AI	researchers	will	fail	to
build	AGI.

Second,	Homo	sapiens	is	by	nature	curious,	which	will	motivate	the	scientific
quest	for	understanding	intelligence	and	developing	AGI	even	without	economic
incentives.	Although	curiosity	is	one	of	the	most	celebrated	human	attributes,	it
can	cause	problems	when	it	fosters	technology	we	haven’t	yet	learned	how	to
manage	wisely.	Sheer	scientific	curiosity	without	profit	motive	contributed	to
the	discovery	of	nuclear	weapons	and	tools	for	engineering	pandemics,	so	it’s



not	unthinkable	that	the	old	adage	“Curiosity	killed	the	cat”	will	turn	out	to
apply	to	the	human	species	as	well.

Third,	we’re	mortal.	This	explains	the	near	unanimous	support	for	developing
new	technologies	that	help	us	live	longer,	healthier	lives,	which	strongly
motivates	current	AI	research.	AGI	can	clearly	aid	medical	research	even	more.
Some	thinkers	even	aspire	to	near	immortality	via	cyborgization	or	uploading.

We’re	thus	on	the	slippery	slope	toward	AGI,	with	strong	incentives	to	keep
sliding	downward,	even	though	the	consequence	will	by	definition	be	our
economic	obsolescence.	We	will	no	longer	be	needed	for	anything,	because	all
jobs	can	be	done	more	efficiently	by	machines.	The	successful	creation	of	AGI
would	be	the	biggest	event	in	human	history,	so	why	is	there	so	little	serious
discussion	of	what	it	might	lead	to?

Here	again,	the	answer	involves	multiple	reasons.
First,	as	Upton	Sinclair	famously	quipped,	“It	is	difficult	to	get	a	man	to

understand	something,	when	his	salary	depends	on	his	not	understanding	it.”*
For	example,	spokesmen	for	tech	companies	or	university	research	groups	often
claim	there	are	no	risks	attached	to	their	activities	even	if	they	privately	think
otherwise.	Sinclair’s	observation	may	help	explain	not	only	reactions	to	risks
from	smoking	and	climate	change	but	also	why	some	treat	technology	as	a	new
religion	whose	central	articles	of	faith	are	that	more	technology	is	always	better
and	whose	heretics	are	clueless	scaremongering	Luddites.

Second,	humans	have	a	long	track	record	of	wishful	thinking,	flawed
extrapolation	of	the	past,	and	underestimation	of	emerging	technologies.
Darwinian	evolution	endowed	us	with	powerful	fear	of	concrete	threats,	not	of
abstract	threats	from	future	technologies	that	are	hard	to	visualize	or	even
imagine.	Consider	trying	to	warn	people	in	1930	of	a	future	nuclear	arms	race,
when	you	couldn’t	show	them	a	single	nuclear	explosion	video	and	nobody	even
knew	how	to	build	such	weapons.	Even	top	scientists	can	underestimate
uncertainty,	making	forecasts	that	are	either	too	optimistic—Where	are	those
fusion	reactors	and	flying	cars?—or	too	pessimistic.	Ernest	Rutherford,	arguably
the	greatest	nuclear	physicist	of	his	time,	said	in	1933—less	than	twenty-four
hours	before	Leo	Szilard	conceived	of	the	nuclear	chain	reaction—that	nuclear
energy	was	“moonshine.”	Essentially	nobody	at	that	time	saw	the	nuclear	arms
race	coming.

Third,	psychologists	have	discovered	that	we	tend	to	avoid	thinking	of
disturbing	threats	when	we	believe	there’s	nothing	we	can	do	about	them



anyway.	In	this	case,	however,	there	are	many	constructive	things	we	can	do,	if
we	can	get	ourselves	to	start	thinking	about	the	issue.

WHAT	CAN	WE	DO?

I’m	advocating	a	strategy	change	from	“Let’s	rush	to	build	technology	that
makes	us	obsolete—what	could	possibly	go	wrong?”	to	“Let’s	envision	an
inspiring	future	and	steer	toward	it.”

To	motivate	the	effort	required	for	steering,	this	strategy	begins	by
envisioning	an	enticing	destination.	Although	Hollywood’s	futures	tend	to	be
dystopian,	the	fact	is	that	AGI	can	help	life	flourish	as	never	before.	Everything	I
love	about	civilization	is	the	product	of	intelligence,	so	if	we	can	amplify	our
own	intelligence	with	AGI,	we	have	the	potential	to	solve	today’s	and
tomorrow’s	thorniest	problems,	including	disease,	climate	change,	and	poverty.
The	more	detailed	we	can	make	our	shared	positive	visions	for	the	future,	the
more	motivated	we	will	be	to	work	together	to	realize	them.

What	should	we	do	in	terms	of	steering?	The	twenty-three	Asilomar
principles	adopted	in	2017	offer	plenty	of	guidance,	including	these	short-term
goals:

1.	 An	arms	race	in	lethal	autonomous	weapons	should	be	avoided.
2.	 The	economic	prosperity	created	by	AI	should	be	shared	broadly,	to

benefit	all	of	humanity.
3.	 Investments	in	AI	should	be	accompanied	by	funding	for	research	on

ensuring	its	beneficial	use.	.	.	.	How	can	we	make	future	AI	systems
highly	robust,	so	that	they	do	what	we	want	without	malfunctioning
or	getting	hacked?*

The	first	two	involve	not	getting	stuck	in	suboptimal	Nash	equilibria.	An	out-
of-control	arms	race	in	lethal	autonomous	weapons	that	drives	the	price	of
automated	anonymous	assassination	toward	zero	will	be	very	hard	to	stop	once	it
gains	momentum.	The	second	goal	would	require	reversing	the	current	trend	in
some	Western	countries	where	sectors	of	the	population	are	getting	poorer	in
absolute	terms,	fueling	anger,	resentment,	and	polarization.	Unless	the	third	goal



can	be	met,	all	the	wonderful	AI	technology	we	create	might	harm	us,	either
accidentally	or	deliberately.

AI	safety	research	must	be	carried	out	with	a	strict	deadline	in	mind:	Before
AGI	arrives,	we	need	to	figure	out	how	to	make	AI	understand,	adopt,	and	retain
our	goals.	The	more	intelligent	and	powerful	machines	get,	the	more	important	it
becomes	to	align	their	goals	with	ours.	As	long	as	we	build	relatively	dumb
machines,	the	question	isn’t	whether	human	goals	will	prevail	but	merely	how
much	trouble	the	machines	can	cause	before	we	solve	the	goal-alignment
problem.	If	a	superintelligence	is	ever	unleashed,	however,	it	will	be	the	other
way	around:	Since	intelligence	is	the	ability	to	accomplish	goals,	a
superintelligent	AI	is	by	definition	much	better	at	accomplishing	its	goals	than
we	humans	are	at	accomplishing	ours,	and	will	therefore	prevail.

In	other	words,	the	real	risk	with	AGI	isn’t	malice	but	competence.	A
superintelligent	AGI	will	be	extremely	good	at	accomplishing	its	goals,	and	if
those	goals	aren’t	aligned	with	ours,	we’re	in	trouble.	People	don’t	think	twice
about	flooding	anthills	to	build	hydroelectric	dams,	so	let’s	not	place	humanity
in	the	position	of	those	ants.	Most	researchers	argue	that	if	we	end	up	creating
superintelligence,	we	should	make	sure	it’s	what	AI-safety	pioneer	Eliezer
Yudkowsky	has	termed	“friendly	AI”—AI	whose	goals	are	in	some	deep	sense
beneficial.

The	moral	question	of	what	these	goals	should	be	is	just	as	urgent	as	the
technical	questions	about	goal	alignment.	For	example,	what	sort	of	society	are
we	hoping	to	create,	where	we	find	meaning	and	purpose	in	our	lives	even
though	we,	strictly	speaking,	aren’t	needed?	I’m	often	given	the	following	glib
response	to	this	question:	“Let’s	build	machines	that	are	smarter	than	us	and
then	let	them	figure	out	the	answer!”	This	mistakenly	equates	intelligence	with
morality.	Intelligence	isn’t	good	or	evil	but	morally	neutral.	It’s	simply	an	ability
to	accomplish	complex	goals,	good	or	bad.	We	can’t	conclude	that	things	would
have	been	better	if	Hitler	had	been	more	intelligent.	Indeed,	postponing	work	on
ethical	issues	until	after	goal-aligned	AGI	is	built	would	be	irresponsible	and
potentially	disastrous.	A	perfectly	obedient	superintelligence	whose	goals
automatically	align	with	those	of	its	human	owner	would	be	like	Nazi	SS-
Obersturmbannführer	Adolf	Eichmann	on	steroids.	Lacking	a	moral	compass	or
inhibitions	of	its	own,	it	would,	with	ruthless	efficiency,	implement	its	owner’s
goals,	whatever	they	might	be.*

When	I	speak	of	the	need	to	analyze	technology	risk,	I’m	sometimes	accused
of	scaremongering.	But	here	at	MIT,	where	I	work,	we	know	that	such	risk



analysis	isn’t	scaremongering:	It’s	safety	engineering.	Before	the	moon-landing
mission,	NASA	systematically	thought	through	everything	that	could	possibly
go	wrong	when	putting	astronauts	on	top	of	a	110-meter	rocket	full	of	highly
flammable	fuel	and	launching	them	to	a	place	where	nobody	could	help	them—
and	there	were	lots	of	things	that	could	go	wrong.	Was	this	scaremongering?	No,
this	was	the	safety	engineering	that	ensured	the	mission’s	success.	Similarly,	we
should	analyze	what	could	go	wrong	with	AI	to	ensure	that	it	goes	right.

OUTLOOK

In	summary,	if	our	technology	outpaces	the	wisdom	with	which	we	manage	it,	it
can	lead	to	our	extinction.	It’s	already	caused	the	extinction	of	from	20	to	50
percent	of	all	species	on	Earth,	by	some	estimates,*	and	it	would	be	ironic	if
we’re	next	in	line.	It	would	also	be	pathetic,	given	that	the	opportunities	offered
by	AGI	are	literally	astronomical,	potentially	enabling	life	to	flourish	for	billions
of	years	not	only	on	Earth	but	also	throughout	much	of	our	cosmos.

Instead	of	squandering	this	opportunity	through	unscientific	risk	denial	and
poor	planning,	let’s	be	ambitious!	Homo	sapiens	is	inspiringly	ambitious,	as
reflected	in	William	Ernest	Henley’s	famous	lines	from	“Invictus”:	“I	am	the
master	of	my	fate,	/	I	am	the	captain	of	my	soul.”	Rather	than	drifting	like	a
rudderless	ship	toward	our	own	obsolescence,	let’s	take	on	and	overcome	the
technical	and	societal	challenges	standing	between	us	and	a	good	high-tech
future.	What	about	the	existential	challenges	related	to	morality,	goals,	and
meaning?	There’s	no	meaning	encoded	in	the	laws	of	physics,	so	instead	of
passively	waiting	for	our	Universe	to	give	meaning	to	us,	let’s	acknowledge	and
celebrate	that	it’s	we	conscious	beings	who	give	meaning	to	our	Universe.	Let’s
create	our	own	meaning,	based	on	something	more	profound	than	having	jobs.
AGI	can	enable	us	to	finally	become	the	masters	of	our	own	destiny.	Let’s	make
that	destiny	a	truly	inspiring	one!



Chapter	9

DISSIDENT	MESSAGES

JAAN	TALLINN

Jaan	Tallinn,	a	computer	programmer,	theoretical	physicist,	and	investor,	is	a	co-
developer	of	Skype	and	Kazaa.

Jaan	Tallinn	grew	up	in	Estonia,	becoming	one	of	its	few	computer	game	developers,
when	that	nation	was	still	a	Soviet	Socialist	Republic.	Here	he	compares	the	dissidents
who	brought	down	the	Iron	Curtain	to	the	dissidents	who	are	sounding	the	alarm	about
rapid	advances	in	artificial	intelligence.	He	locates	the	roots	of	the	current	AI	dissidence,
paradoxically,	among	such	pioneers	of	the	AI	field	as	Wiener,	Alan	Turing,	and	I.	J.	Good.

Jaan’s	preoccupation	is	with	existential	risk,	AI	being	among	the	most	extreme	of
many.	In	2012,	he	co-founded	the	Centre	for	the	Study	of	Existential	Risk—an
interdisciplinary	research	institute	that	works	to	mitigate	risks	“associated	with	emerging
technologies	and	human	activity”—at	the	University	of	Cambridge,	along	with	philosopher
Huw	Price	and	Martin	Rees,	the	Astronomer	Royal.

He	once	described	himself	to	me	as	“a	convinced	consequentialist”—convinced
enough	to	have	given	away	much	of	his	entrepreneurial	wealth	to	the	Future	of	Life
Institute	(of	which	he	is	a	co-founder),	the	Machine	Intelligence	Research	Institute,	and
other	such	organizations	working	on	risk	reduction.	Max	Tegmark	has	written	about	him:	“If
you’re	an	intelligent	life-form	reading	this	text	millions	of	years	from	now	and	marveling	at
how	life	is	flourishing,	you	may	owe	your	existence	to	Jaan.”

On	a	recent	visit	to	London,	Jaan	and	I	participated	in	an	AI	panel	for	the	Serpentine
Gallery’s	Marathon	at	London’s	City	Hall,	under	the	aegis	of	Hans	Ulrich	Obrist	(another
contributor	to	this	volume).	This	being	the	art	world,	there	was	a	glamorous	dinner	party
that	night	in	a	mansion	filled	with	London’s	beautiful	people—artists,	fashion	models,
oligarchs,	stars	of	stage	and	screen.	After	working	the	room	in	his	unaffected	manner	(“Hi,
I’m	Jaan”),	he	suddenly	said,	“Time	for	hip-hop	dancing,”	dropped	to	the	floor	on	one	hand,
and	began	demonstrating	his	spectacular	moves	to	the	bemused	A-listers.	Then	off	he
went	into	the	dance-club	subculture,	which	is	apparently	how	he	ends	every	evening	when
he’s	on	the	road.	Who	knew?



I n	March	2009,	I	found	myself	in	a	bland	franchise	eatery	next	to	a	noisy
California	freeway.	I	was	there	to	meet	a	young	man	whose	blog	I	had	been
following.	To	make	himself	recognizable,	he	wore	a	button	with	a	text	on	it:

Speak	the	truth	even	if	your	voice	trembles.	His	name	was	Eliezer	Yudkowsky,
and	we	spent	the	next	four	hours	discussing	the	message	he	had	for	the	world—a
message	that	had	brought	me	to	that	eatery	and	would	end	up	dominating	my
subsequent	work.

THE	FIRST	MESSAGE:	THE	SOVIET
OCCUPATION

In	The	Human	Use	of	Human	Beings,	Norbert	Wiener	looked	at	the	world
through	the	lens	of	communication.	He	saw	a	universe	that	was	marching	to	the
tune	of	the	second	law	of	thermodynamics	toward	its	inevitable	heat	death.	In
such	a	universe,	the	only	(meta)stable	entities	are	messages—patterns	of
information	that	propagate	through	time,	like	waves	propagating	across	the
surface	of	a	lake.	Even	we	humans	can	be	considered	messages,	because	the
atoms	in	our	bodies	are	too	fleeting	to	attach	our	identities	to.	Instead,	we	are	the
“message”	that	our	bodily	functions	maintain.	As	Wiener	put	it:	“It	is	the	pattern
maintained	by	this	homeostasis,	which	is	the	touchstone	of	our	personal
identity.”

I’m	more	used	to	treating	processes	and	computation	as	the	fundamental
building	blocks	of	the	world.	That	said,	Wiener’s	lens	brings	out	some
interesting	aspects	of	the	world	that	might	otherwise	have	remained	in	the
background	and	that	to	a	large	degree	shaped	my	life.	These	are	two	messages,
both	of	which	have	their	roots	in	the	Second	World	War.	They	started	out	as
quiet	dissident	messages—messages	that	people	didn’t	pay	much	attention	to,
even	if	they	silently	and	perhaps	subconsciously	concurred.	The	first	message
was:	The	Soviet	Union	is	composed	of	a	series	of	illegitimate	occupations.	These
occupations	must	end.

As	an	Estonian,	I	grew	up	behind	the	Iron	Curtain	and	had	a	front-row	seat



As	an	Estonian,	I	grew	up	behind	the	Iron	Curtain	and	had	a	front-row	seat
when	it	fell.	I	heard	this	first	message	in	the	nostalgic	reminiscences	of	my
grandparents	and	in	between	the	harsh	noises	jamming	the	Voice	of	America.	It
grew	louder	during	the	Gorbachev	era,	as	the	state	became	more	lenient	in	its
treatment	of	dissidents,	and	reached	a	crescendo	in	the	Estonian	Singing
Revolution	of	the	late	1980s.

In	my	teens,	I	witnessed	the	message	spread	out	across	widening	circles	of
people,	starting	with	the	active	dissidents,	who	had	voiced	it	for	half	a	century	at
great	cost	to	themselves,	proceeding	to	the	artists	and	literati,	and	ending	up
among	the	party	members	and	politicians	who	had	switched	sides.	This	new	elite
comprised	an	eclectic	mix	of	people:	those	original	dissidents	who	had	managed
to	survive	the	repression,	public	intellectuals,	and	(to	the	great	annoyance	of	the
surviving	dissidents)	even	former	Communists.	The	remaining	dogmatists—
even	the	prominent	ones—were	eventually	marginalized,	some	of	them
retreating	to	Russia.

Interestingly,	as	the	message	propagated	from	one	group	to	the	next,	it
evolved.	It	started	in	pure	and	uncompromising	form	(“The	occupation	must
end!”)	among	the	dissidents	who	considered	the	truth	more	important	than	their
personal	freedom.	The	mainstream	groups,	who	had	more	to	lose,	initially
qualified	and	diluted	the	message,	taking	positions	like	“It	would	make	sense	in
the	long	term	to	delegate	control	over	local	matters.”	(There	were	always
exceptions:	Some	public	intellectuals	proclaimed	the	original	dissident	message
verbatim.)	Finally,	the	original	message—being,	simply,	true—won	out	over	its
diluted	versions.	Estonia	regained	its	independence	in	1991,	and	the	last	Soviet
troops	left	three	years	later.

The	people	who	took	the	risk	and	spoke	the	truth	in	Estonia	and	elsewhere	in
the	Eastern	Bloc	played	a	monumental	role	in	the	eventual	outcome—an
outcome	that	changed	the	lives	of	hundreds	of	millions	of	people,	myself
included.	They	spoke	the	truth,	even	as	their	voices	trembled.

THE	SECOND	MESSAGE:	AI	RISK

My	exposure	to	the	second	revolutionary	message	was	via	Yudkowsky’s	blog—
the	blog	that	compelled	me	to	reach	out	and	arrange	that	meeting	in	California.
The	message	was:	Continued	progress	in	AI	can	precipitate	a	change	of	cosmic



proportions—a	runaway	process	that	will	likely	kill	everyone.	We	need	to	put	in
a	lot	of	extra	effort	to	avoid	that	outcome.

After	my	meeting	with	Yudkowsky,	the	first	thing	I	did	was	try	to	interest	my
Skype	colleagues	and	close	collaborators	in	his	warning.	I	failed.	The	message
was	too	crazy,	too	dissident.	Its	time	had	not	yet	come.

Only	later	did	I	learn	that	Yudkowsky	wasn’t	the	original	dissident	speaking
this	particular	truth.	In	April	2000,	there	was	a	lengthy	opinion	piece	in	Wired
titled	“Why	the	Future	Doesn’t	Need	Us”	by	Bill	Joy,	co-founder	and	chief
scientist	of	Sun	Microsystems.	He	warned:

Accustomed	to	living	with	almost	routine	scientific	breakthroughs,	we
have	yet	to	come	to	terms	with	the	fact	that	the	most	compelling	21st-
century	technologies—robotics,	genetic	engineering,	and	nanotechnology
—pose	a	different	threat	than	the	technologies	that	have	come	before.
Specifically,	robots,	engineered	organisms,	and	nanobots	share	a
dangerous	amplifying	factor:	They	can	self-replicate.	.	.	.	[O]ne	bot	can
become	many,	and	quickly	get	out	of	control.

Apparently,	Joy’s	broadside	caused	a	lot	of	furor	but	little	action.
More	surprising	to	me,	though,	was	that	the	AI-risk	message	arose	almost

simultaneously	with	the	field	of	computer	science.	In	a	1951	lecture,	Alan
Turing	announced:	“[I]t	seems	probable	that	once	the	machine	thinking	method
had	started,	it	would	not	take	long	to	outstrip	our	feeble	powers.	.	.	.	At	some
stage,	therefore,	we	should	have	to	expect	the	machines	to	take	control.	.	.	.”*	A
decade	or	so	later,	his	Bletchley	Park	colleague	I.	J.	Good	wrote,	“The	first
ultraintelligent	machine	is	the	last	invention	that	man	need	ever	make,	provided
that	the	machine	is	docile	enough	to	tell	us	how	to	keep	it	under	control.”*
Indeed,	I	counted	half	a	dozen	places	in	The	Human	Use	of	Human	Beings
where	Wiener	hinted	at	one	or	another	aspect	of	the	Control	Problem.	(“The
machine	like	the	djinnee,	which	can	learn	and	can	make	decisions	on	the	basis	of
its	learning,	will	in	no	way	be	obliged	to	make	such	decisions	as	we	should	have
made,	or	will	be	acceptable	to	us.”)	Apparently,	the	original	dissidents
promulgating	the	AI-risk	message	were	the	AI	pioneers	themselves!

EVOLUTION’S	FATAL	MISTAKE



There	have	been	many	arguments,	some	sophisticated	and	some	less	so,	for	why
the	Control	Problem	is	real	and	not	some	science-fiction	fantasy.	Allow	me	to
offer	one	that	illustrates	the	magnitude	of	the	problem:

For	the	last	hundred	thousand	years,	the	world	(meaning	the	Earth,	but	the
argument	extends	to	the	solar	system	and	possibly	even	to	the	entire	universe)
has	been	in	the	human-brain	regime.	In	this	regime,	the	brains	of	Homo	sapiens
have	been	the	most	sophisticated	future-shaping	mechanisms	(indeed,	some	have
called	them	the	most	complicated	objects	in	the	universe).	Initially,	we	didn’t
use	them	for	much	beyond	survival	and	tribal	politics	in	a	band	of	foragers,	but
now	their	effects	are	surpassing	those	of	natural	evolution.	The	planet	has	gone
from	producing	forests	to	producing	cities.

As	predicted	by	Turing,	once	we	have	superhuman	AI	(“the	machine	thinking
method”),	the	human-brain	regime	will	end.	Look	around	you—you’re
witnessing	the	final	decades	of	a	hundred-thousand-year	regime.	This	thought
alone	should	give	people	some	pause	before	they	dismiss	AI	as	just	another	tool.
One	of	the	world’s	leading	AI	researchers	recently	confessed	to	me	that	he
would	be	greatly	relieved	to	learn	that	human-level	AI	was	impossible	for	us	to
create.

Of	course,	it	might	still	take	us	a	long	time	to	develop	human-level	AI.	But
we	have	reason	to	suspect	that	this	is	not	the	case.	After	all,	it	didn’t	take	long,	in
relative	terms,	for	evolution—the	blind	and	clumsy	optimization	process—to
create	human-level	intelligence	once	it	had	animals	to	work	with.	Or
multicellular	life,	for	that	matter:	Getting	cells	to	stick	together	seems	to	have
been	much	harder	for	evolution	to	accomplish	than	creating	humans	once	there
were	multicellular	organisms.	Not	to	mention	that	our	level	of	intelligence	was
limited	by	such	grotesque	factors	as	the	width	of	the	birth	canal.	Imagine	an	AI
developer	being	stopped	in	his	tracks	because	he	couldn’t	manage	to	adjust	the
font	size	on	his	computer!

There’s	an	interesting	symmetry	here:	In	fashioning	humans,	evolution
created	a	system	that	is,	at	least	in	many	important	dimensions,	a	more	powerful
planner	and	optimizer	than	evolution	itself	is.	We	are	the	first	species	to
understand	that	we’re	the	product	of	evolution.	Moreover,	we’ve	created	many
artifacts	(radios,	firearms,	spaceships)	that	evolution	would	have	little	hope	of
creating.	Our	future,	therefore,	will	be	determined	by	our	own	decisions	and	no
longer	by	biological	evolution.	In	that	sense,	evolution	has	fallen	victim	to	its
own	Control	Problem.



We	can	only	hope	that	we’re	smarter	than	evolution	in	that	sense.	We	are
smarter,	of	course,	but	will	that	be	enough?	We’re	about	to	find	out.

THE	PRESENT	SITUATION

So	here	we	are,	more	than	half	a	century	after	the	original	warnings	by	Turing,
Wiener,	and	Good,	and	a	decade	after	people	like	me	started	paying	attention	to
the	AI-risk	message.	I’m	glad	to	see	that	we’ve	made	a	lot	of	progress	in
confronting	this	issue,	but	we’re	definitely	not	there	yet.	AI	risk,	although	no
longer	a	taboo	topic,	is	not	yet	fully	appreciated	among	AI	researchers.	AI	risk	is
not	yet	common	knowledge	either.	In	relation	to	the	timeline	of	the	first
dissident	message,	I’d	say	we’re	around	the	year	1988,	when	raising	the	Soviet-
occupation	topic	was	no	longer	a	career-ending	move	but	you	still	had	to
somewhat	hedge	your	position.	I	hear	similar	hedging	now—statements	like
“I’m	not	concerned	about	superintelligent	AI,	but	there	are	some	real	ethical
issues	in	increased	automation,”	or	“It’s	good	that	some	people	are	researching
AI	risk,	but	it’s	not	a	short-term	concern,”	or	even	the	very	reasonable-sounding
“These	are	small-probability	scenarios,	but	their	potentially	high	impact	justifies
the	attention.”

As	far	as	message	propagation	goes,	though,	we	are	getting	close	to	the
tipping	point.	A	recent	survey	of	AI	researchers	who	published	at	the	two	major
international	AI	conferences	in	2015	found	that	40	percent	now	think	that	risks
from	highly	advanced	AI	are	either	“an	important	problem”	or	“among	the	most
important	problems	in	the	field.”*

Of	course,	just	as	there	were	dogmatic	Communists	who	never	changed	their
position,	it’s	all	but	guaranteed	that	some	people	will	never	admit	that	AI	is
potentially	dangerous.	Many	of	the	deniers	of	the	first	kind	came	from	the	Soviet
nomenklatura;	similarly,	the	AI-risk	deniers	often	have	financial	or	other
pragmatic	motives.	One	of	the	leading	motives	is	corporate	profits.	AI	is
profitable,	and	even	in	instances	where	it	isn’t,	it’s	at	least	a	trendy,	forward-
looking	enterprise	with	which	to	associate	your	company.	So	a	lot	of	the
dismissive	positions	are	products	of	corporate	PR	and	legal	machinery.	In	some
very	real	sense,	big	corporations	are	nonhuman	machines	that	pursue	their	own
interests—interests	that	might	not	align	with	those	of	any	particular	human
working	for	them.	As	Wiener	observed	in	The	Human	Use	of	Human	Beings:



“When	human	atoms	are	knit	into	an	organization	in	which	they	are	used,	not	in
their	full	right	as	responsible	human	beings,	but	as	cogs	and	levers	and	rods,	it
matters	little	that	their	raw	material	is	flesh	and	blood.”

Another	strong	incentive	to	turn	a	blind	eye	to	the	AI	risk	is	the	(very	human)
curiosity	that	knows	no	bounds.	“When	you	see	something	that	is	technically
sweet,	you	go	ahead	and	do	it	and	you	argue	about	what	to	do	about	it	only	after
you	have	had	your	technical	success.	That	is	the	way	it	was	with	the	atomic
bomb,”	said	J.	Robert	Oppenheimer.	His	words	were	echoed	recently	by
Geoffrey	Hinton,	arguably	the	inventor	of	deep	learning,	in	the	context	of	AI
risk:	“I	could	give	you	the	usual	arguments,	but	the	truth	is	that	the	prospect	of
discovery	is	too	sweet.”

Undeniably,	we	have	both	entrepreneurial	attitude	and	scientific	curiosity	to
thank	for	almost	all	the	nice	things	we	take	for	granted	in	the	modern	era.	It’s
important	to	realize,	though,	that	progress	does	not	owe	us	a	good	future.	In
Wiener’s	words,	“It	is	possible	to	believe	in	progress	as	a	fact	without	believing
in	progress	as	an	ethical	principle.”

Ultimately,	we	don’t	have	the	luxury	of	waiting	before	all	the	corporate	heads
and	AI	researchers	are	willing	to	concede	the	AI	risk.	Imagine	yourself	sitting	in
a	plane	about	to	take	off.	Suddenly	there’s	an	announcement	that	40	percent	of
the	experts	believe	there’s	a	bomb	on	board.	At	that	point,	the	course	of	action	is
already	clear,	and	sitting	there	waiting	for	the	remaining	60	percent	to	come
around	isn’t	part	of	it.

CALIBRATING	THE	AI-RISK	MESSAGE

While	uncannily	prescient,	the	AI-risk	message	from	the	original	dissidents	has	a
giant	flaw—as	does	the	version	dominating	current	public	discourse:	Both
considerably	understate	the	magnitude	of	the	problem	as	well	as	AI’s	potential
upside.	The	message,	in	other	words,	does	not	adequately	convey	the	stakes	of
the	game.

Wiener	primarily	warned	of	the	social	risks—risks	stemming	from	careless
integration	of	machine-generated	decisions	with	governance	processes	and
misuse	(by	humans)	of	such	automated	decision	making.	Likewise,	the	current
“serious”	debate	about	AI	risks	focuses	mostly	on	things	like	technological
unemployment	or	biases	in	machine	learning.	While	such	discussions	can	be



valuable	and	address	pressing	short-term	problems,	they	are	also	stunningly
parochial.	I’m	reminded	of	Yudkowsky’s	quip	in	a	blog	post:	“[A]sking	about
the	effect	of	machine	superintelligence	on	the	conventional	human	labor	market
is	like	asking	how	US-Chinese	trade	patterns	would	be	affected	by	the	Moon
crashing	into	the	Earth.	There	would	indeed	be	effects,	but	you’d	be	missing	the
point.”

In	my	view,	the	central	point	of	the	AI	risk	is	that	superintelligent	AI	is	an
environmental	risk.	Allow	me	to	explain.

In	his	parable	of	the	“Sentient	Puddle,”	Douglas	Adams	describes	a	puddle
that	wakes	up	in	the	morning	and	finds	himself	in	a	hole	that	fits	him
“staggeringly	well.”	From	that	observation,	the	puddle	concludes	that	the	world
must	have	been	made	for	him.	Therefore,	writes	Adams,	“the	moment	he
disappears	catches	him	rather	by	surprise.”	To	assume	that	AI	risks	are	limited	to
adverse	social	developments	is	to	make	a	similar	mistake.	The	harsh	reality	is
that	the	universe	was	not	made	for	us;	instead,	we	are	fine-tuned	by	evolution	to
a	very	narrow	range	of	environmental	parameters.	For	instance,	we	need	the
atmosphere	at	ground	level	to	be	roughly	at	room	temperature,	at	about	100	kPa
pressure,	and	have	a	sufficient	concentration	of	oxygen.	Any	disturbance,	even
temporary,	of	this	precarious	equilibrium	and	we	die	in	a	matter	of	minutes.

Silicon-based	intelligence	does	not	share	such	concerns	about	the
environment.	That’s	why	it’s	much	cheaper	to	explore	space	using	machine
probes	rather	than	“cans	of	meat.”	Moreover,	Earth’s	current	environment	is
almost	certainly	suboptimal	for	what	a	superintelligent	AI	will	greatly	care
about:	efficient	computation.	Hence,	we	might	find	our	planet	suddenly	going
from	anthropogenic	global	warming	to	machinogenic	global	cooling.	One	big
challenge	that	AI	safety	research	needs	to	deal	with	is	how	to	constrain	a
potentially	superintelligent	AI—an	AI	with	a	much	larger	footprint	than	our	own
—from	rendering	our	environment	uninhabitable	for	biological	life-forms.

Interestingly,	given	that	the	most	potent	sources	of	both	AI	research	and	AI-
risk	dismissals	are	under	big	corporate	umbrellas,	if	you	squint	hard	enough,	the
“AI	as	an	environmental	risk”	message	looks	like	the	chronic	concern	about
corporations	skirting	their	environmental	responsibilities.

Conversely,	the	worry	about	AI’s	social	effects	also	misses	most	of	the
upside.	It’s	hard	to	overemphasize	how	tiny	and	parochial	the	future	of	our
planet	is,	compared	with	the	full	potential	of	humanity.	On	astronomical
timescales,	our	planet	will	be	gone	soon	(unless	we	tame	the	sun,	also	a	distinct
possibility)	and	almost	all	the	resources—atoms	and	free	energy—to	sustain
civilization	in	the	long	run	are	in	deep	space.



civilization	in	the	long	run	are	in	deep	space.
Eric	Drexler,	the	inventor	of	nanotechnology,	has	recently	been	popularizing

the	concept	of	“Pareto-topia”:	the	idea	that	AI,	if	done	right,	can	bring	about	a
future	in	which	everyone’s	lives	are	hugely	improved,	a	future	where	there	are
no	losers.	A	key	realization	here	is	that	what	chiefly	prevents	humanity	from
achieving	its	full	potential	might	be	our	instinctive	sense	that	we’re	in	a	zero-
sum	game—a	game	in	which	players	are	supposed	to	eke	out	small	wins	at	the
expense	of	others.	Such	an	instinct	is	seriously	misguided	and	destructive	in	a
“game”	where	everything	is	at	stake	and	the	payoff	is	literally	astronomical.
There	are	many	more	star	systems	in	our	galaxy	alone	than	there	are	people	on
Earth.

HOPE

As	of	this	writing,	I’m	cautiously	optimistic	that	the	AI-risk	message	can	save
humanity	from	extinction,	just	as	the	Soviet-occupation	message	ended	up
liberating	hundreds	of	millions	of	people.	As	of	2015,	it	had	reached	and
converted	40	percent	of	AI	researchers.	It	wouldn’t	surprise	me	if	a	new	survey
now	would	show	that	the	majority	of	AI	researchers	believe	AI	safety	to	be	an
important	issue.

I’m	delighted	to	see	the	first	technical	AI-safety	papers	coming	out	of
DeepMind,	OpenAI,	and	Google	Brain	and	the	collaborative	problem-solving
spirit	flourishing	among	the	AI-safety	research	teams	in	these	otherwise	very
competitive	organizations.

The	world’s	political	and	business	elite	are	also	slowly	waking	up:	AI	safety
has	been	covered	in	reports	and	presentations	by	the	Institute	of	Electrical	and
Electronics	Engineers	(IEEE),	the	World	Economic	Forum,	and	the	Organization
for	Economic	Cooperation	and	Development	(OECD).	Even	the	recent	(July
2017)	Chinese	AI	manifesto	contained	dedicated	sections	on	“AI	safety
supervision”	and	“Develop[ing]	laws,	regulations,	and	ethical	norms”	and
establishing	“an	AI	security	and	evaluation	system”	to,	among	other	things,
“[e]nhance	the	awareness	of	risk.”	I	very	much	hope	that	a	new	generation	of
leaders	who	understand	the	AI	Control	Problem	and	AI	as	the	ultimate
environmental	risk	can	rise	above	the	usual	tribal,	zero-sum	games	and	steer
humanity	past	these	dangerous	waters	we	are	in—thereby	opening	our	way	to
the	stars	that	have	been	waiting	for	us	for	billions	of	years.



the	stars	that	have	been	waiting	for	us	for	billions	of	years.
Here’s	to	our	next	hundred	thousand	years!	And	don’t	hesitate	to	speak	the

truth,	even	if	your	voice	trembles.



Chapter	10

TECH	PROPHECY	AND	THE	UNDERAPPRECIATED
CAUSAL	POWER	OF	IDEAS

STEVEN	PINKER

Steven	Pinker,	a	Johnstone	Family	Professor	in	the	Department	of	Psychology	at
Harvard	University,	is	an	experimental	psychologist	who	conducts	research	in	visual
cognition,	psycholinguistics,	and	social	relations.	He	is	the	author	of	eleven	books,
including	The	Blank	Slate,	The	Better	Angels	of	Our	Nature,	and,	most	recently,
Enlightenment	Now:	The	Case	for	Reason,	Science,	Humanism,	and	Progress.

Throughout	his	career,	whether	studying	language,	advocating	a	realistic	biology	of	mind,
or	examining	the	human	condition	through	the	lens	of	humanistic	Enlightenment	ideas,
psychologist	Steven	Pinker	has	embraced	and	championed	a	naturalistic	understanding
of	the	universe	and	the	computational	theory	of	mind.	He	is	perhaps	the	first	internationally
recognized	public	intellectual	whose	recognition	is	based	on	the	advocacy	of	empirically
based	thinking	about	language,	mind,	and	human	nature.

“Just	as	Darwin	made	it	possible	for	a	thoughtful	observer	of	the	natural	world	to	do
without	creationism,”	he	says,	“Turing	and	others	made	it	possible	for	a	thoughtful	observer
of	the	cognitive	world	to	do	without	spiritualism.”	In	the	debate	about	AI	risk,	he	argues
against	prophecies	of	doom	and	gloom,	noting	that	they	spring	from	the	worst	of	our
psychological	biases—exemplified	particularly	by	media	reports:	“Disaster	scenarios	are
cheap	to	play	out	in	the	probability-free	zone	of	our	imaginations,	and	they	can	always	find
a	worried,	technophobic,	or	morbidly	fascinated	audience.”	Hence,	over	the	centuries:
Pandora,	Faust,	the	Sorcerer’s	Apprentice,	Frankenstein,	the	population	bomb,	resource
depletion,	HAL,	suitcase	nukes,	the	Y2K	bug,	and	engulfment	by	nanotechnological	grey
goo.	“A	characteristic	of	AI	dystopias,”	he	points	out,	“is	that	they	project	a	parochial	alpha-
male	psychology	onto	the	concept	of	intelligence.	.	.	.	History	does	turn	up	the	occasional
megalomaniacal	despot	or	psychopathic	serial	killer,	but	these	are	products	of	a	history	of
natural	selection	shaping	testosterone-sensitive	circuits	in	a	certain	species	of	primate,	not
an	inevitable	feature	of	intelligent	systems.”

In	the	present	essay,	he	applauds	Wiener’s	belief	in	the	strength	of	ideas	vis-à-vis	the
encroachment	of	technology.	As	Wiener	so	aptly	put	it,	“The	machine’s	danger	to	society	is
not	from	the	machine	itself	but	from	what	man	makes	of	it.”



A rtificial	intelligence	is	an	existence	proof	of	one	of	the	great	ideas	in
human	history:	that	the	abstract	realm	of	knowledge,	reason,	and	purpose
does	not	consist	of	an	élan	vital	or	immaterial	soul	or	miraculous	powers

of	neural	tissue.	Rather,	it	can	be	linked	to	the	physical	realm	of	animals	and
machines	via	the	concepts	of	information,	computation,	and	control.	Knowledge
can	be	explained	as	patterns	in	matter	or	energy	that	stand	in	systematic	relations
with	states	of	the	world,	with	mathematical	and	logical	truths,	and	with	one
another.	Reasoning	can	be	explained	as	transformations	of	that	knowledge	by
physical	operations	that	are	designed	to	preserve	those	relations.	Purpose	can	be
explained	as	the	control	of	operations	to	effect	changes	in	the	world,	guided	by
discrepancies	between	its	current	state	and	a	goal	state.	Naturally	evolved	brains
are	just	the	most	familiar	systems	that	achieve	intelligence	through	information,
computation,	and	control.	Humanly	designed	systems	that	achieve	intelligence
vindicate	the	notion	that	information	processing	is	sufficient	to	explain	it—the
notion	that	the	late	Jerry	Fodor	dubbed	the	computational	theory	of	mind.

The	touchstone	for	this	volume,	Norbert	Wiener’s	The	Human	Use	of	Human
Beings,	celebrated	this	intellectual	accomplishment,	of	which	Wiener	himself
was	a	foundational	contributor.	A	potted	history	of	the	mid-20th-century
revolution	that	gave	the	world	the	computational	theory	of	mind	might	credit
Claude	Shannon	and	Warren	Weaver	for	explaining	knowledge	and
communication	in	terms	of	information.	It	might	credit	Alan	Turing	and	John
von	Neumann	for	explaining	intelligence	and	reasoning	in	terms	of	computation.
And	it	ought	to	give	Wiener	credit	for	explaining	the	hitherto	mysterious	world
of	purposes,	goals,	and	teleology	in	terms	of	the	technical	concepts	of	feedback,
control,	and	cybernetics	(in	its	original	sense	of	“governing”	the	operation	of	a
goal-directed	system).	“It	is	my	thesis,”	he	announced,	“that	the	physical
functioning	of	the	living	individual	and	the	operation	of	some	of	the	newer
communication	machines	are	precisely	parallel	in	their	analogous	attempts	to
control	entropy	through	feedback”—the	staving	off	of	life-sapping	entropy	being
the	ultimate	goal	of	human	beings.

Wiener	applied	the	ideas	of	cybernetics	to	a	third	system:	society.	The	laws,
norms,	customs,	media,	forums,	and	institutions	of	a	complex	community	could
be	considered	channels	of	information	propagation	and	feedback	that	allow	a
society	to	ward	off	disorder	and	pursue	certain	goals.	This	is	a	thread	that	runs



society	to	ward	off	disorder	and	pursue	certain	goals.	This	is	a	thread	that	runs
through	the	book	and	which	Wiener	himself	may	have	seen	as	its	principal
contribution.	In	his	explanation	of	feedback,	he	wrote,	“This	complex	of
behavior	is	ignored	by	the	average	man,	and	in	particular	does	not	play	the	role
that	it	should	in	our	habitual	analysis	of	society;	for	just	as	individual	physical
responses	may	be	seen	from	this	point	of	view,	so	may	the	organic	responses	of
society	itself.”

Indeed,	Wiener	gave	scientific	teeth	to	the	idea	that	in	the	workings	of
history,	politics,	and	society,	ideas	matter.	Beliefs,	ideologies,	norms,	laws,	and
customs,	by	regulating	the	behavior	of	the	humans	who	share	them,	can	shape	a
society	and	power	the	course	of	historical	events	as	surely	as	the	phenomena	of
physics	affect	the	structure	and	evolution	of	the	solar	system.	To	say	that	ideas—
and	not	just	weather,	resources,	geography,	or	weaponry—can	shape	history	is
not	woolly	mysticism.	It	is	a	statement	of	the	causal	powers	of	information
instantiated	in	human	brains	and	exchanged	in	networks	of	communication	and
feedback.	Deterministic	theories	of	history,	whether	they	identify	the	causal
engine	as	technological,	climatological,	or	geographic,	are	belied	by	the	causal
power	of	ideas.	The	effects	of	these	ideas	can	include	unpredictable	lurches	and
oscillations	that	arise	from	positive	feedback	or	from	miscalibrated	negative
feedback.

An	analysis	of	society	in	terms	of	its	propagation	of	ideas	also	gave	Wiener	a
guideline	for	social	criticism.	A	healthy	society—one	that	gives	its	members	the
means	to	pursue	life	in	defiance	of	entropy—allows	information	sensed	and
contributed	by	its	members	to	feed	back	and	affect	how	the	society	is	governed.
A	dysfunctional	society	invokes	dogma	and	authority	to	impose	control	from	the
top	down.	Wiener	thus	described	himself	as	“a	participant	in	a	liberal	outlook,”
and	devoted	most	of	the	moral	and	rhetorical	energy	in	the	book	(both	the	1950
and	1954	editions)	to	denouncing	communism,	fascism,	McCarthyism,
militarism,	and	authoritarian	religion	(particularly	Catholicism	and	Islam)	and	to
warning	that	political	and	scientific	institutions	were	becoming	too	hierarchical
and	insular.

Wiener’s	book	is	also,	here	and	there,	an	early	exemplar	of	an	increasingly
popular	genre,	tech	prophecy.	Prophecy	not	in	the	sense	of	mere
prognostications	but	in	the	Old	Testament	sense	of	dark	warnings	of	catastrophic
payback	for	the	decadence	of	one’s	contemporaries.	Wiener	warned	against	the
accelerating	nuclear	arms	race,	against	technological	change	that	was	imposed
without	regard	to	human	welfare	(“[W]e	must	know	as	scientists	what	man’s



nature	is	and	what	his	built-in	purposes	are”),	and	against	what	today	is	called
the	value-alignment	problem:	that	“the	machine	like	the	djinnee,	which	can	learn
and	can	make	decisions	on	the	basis	of	its	learning,	will	in	no	way	be	obliged	to
make	such	decisions	as	we	should	have	made,	or	will	be	acceptable	to	us.”	In	the
darker	1950	edition	he	warned	of	a	“threatening	new	Fascism	dependent	on	the
machine	à	gouverner.”

Wiener’s	tech	prophecy	harks	back	to	the	Romantic	movement’s	rebellion
against	the	“dark	Satanic	mills”	of	the	Industrial	Revolution,	and	perhaps	even
earlier,	to	the	archetypes	of	Prometheus,	Pandora,	and	Faust.	And	today	it	has
gone	into	high	gear.	Jeremiahs,	many	of	them	(like	Wiener)	from	the	worlds	of
science	and	technology,	have	sounded	alarms	about	nanotechnology,	genetic
engineering,	Big	Data,	and	particularly	artificial	intelligence.	Several
contributors	to	this	volume	characterize	Wiener’s	book	as	a	prescient	example	of
tech	prophecy	and	amplify	his	dire	worries.

Yet	the	two	moral	themes	of	The	Human	Use	of	Human	Beings—the	liberal
defense	of	an	open	society	and	the	dystopian	dread	of	runaway	technology—are
in	tension.	A	society	with	channels	of	feedback	that	maximize	human	flourishing
will	have	mechanisms	in	place,	and	can	adapt	them	to	changing	circumstances,
in	a	way	that	can	domesticate	technology	to	human	purposes.	There’s	nothing
idealistic	or	mystical	about	this;	as	Wiener	emphasized,	ideas,	norms,	and
institutions	are	themselves	a	form	of	technology,	consisting	of	patterns	of
information	distributed	across	brains.	The	possibility	that	machines	threaten	a
new	fascism	must	be	weighed	against	the	vigor	of	the	liberal	ideas,	institutions,
and	norms	that	Wiener	championed	throughout	the	book.	The	flaw	in	today’s
dystopian	prophecies	is	that	they	disregard	the	existence	of	these	norms	and
institutions,	or	drastically	underestimate	their	causal	potency.	The	result	is	a
technological	determinism	whose	dark	predictions	are	repeatedly	refuted	by	the
course	of	events.	The	numbers	“1984”	and	“2001”	are	good	reminders.

I	will	consider	two	examples.	Tech	prophets	often	warn	of	a	“surveillance
state”	in	which	a	government	empowered	by	technology	will	monitor	and
interpret	all	private	communications,	allowing	it	to	detect	dissent	and	subversion
as	it	arises	and	make	resistance	to	state	power	futile.	Orwell’s	telescreens	are	the
prototype,	and	in	1976	Joseph	Weizenbaum,	one	of	the	gloomiest	tech	prophets
of	all	time,	warned	my	class	of	graduate	students	not	to	pursue	automatic	speech
recognition	because	government	surveillance	was	its	only	conceivable
application.



Though	I	am	on	record	as	an	outspoken	civil	libertarian,	deeply	concerned
with	contemporary	threats	to	free	speech,	I	lose	no	sleep	over	technological
advances	in	the	Internet,	video,	or	artificial	intelligence.	The	reason	is	that
almost	all	the	variation	across	time	and	space	in	freedom	of	thought	is	driven	by
differences	in	norms	and	institutions	and	almost	none	of	it	by	differences	in
technology.	Though	one	can	imagine	hypothetical	combinations	of	the	most
malevolent	totalitarians	with	the	most	advanced	technology,	in	the	real	world	it’s
the	norms	and	laws	we	should	be	vigilant	about,	not	the	tech.

Consider	variation	across	time.	If,	as	Orwell	hinted,	advancing	technology
was	a	prime	enabler	of	political	repression,	then	Western	societies	should	have
gotten	more	and	more	restrictive	of	speech	over	the	centuries,	with	a	dramatic
worsening	in	the	second	half	of	the	20th	century	continuing	into	the	21st.	That’s
not	how	history	unfolded.	It	was	the	centuries	when	communication	was
implemented	by	quills	and	inkwells	that	had	autos-da-fé	and	the	jailing	or
guillotining	of	Enlightenment	thinkers.	During	World	War	I,	when	the	state	of
the	art	was	the	wireless,	Bertrand	Russell	was	jailed	for	his	pacifist	opinions.	In
the	1950s,	when	computers	were	room-size	accounting	machines,	hundreds	of
liberal	writers	and	scholars	were	professionally	punished.	Yet	in	the
technologically	accelerating,	hyperconnected	21st	century,	18	percent	of	social
science	professors	are	Marxists;*	the	president	of	the	United	States	is	nightly
ridiculed	by	television	comedians	as	a	racist,	pervert,	and	moron;	and
technology’s	biggest	threat	to	political	discourse	comes	from	amplifying	too
many	dubious	voices	rather	than	suppressing	enlightened	ones.

Now	consider	variations	across	place.	Western	countries	at	the	technological
frontier	consistently	get	the	highest	scores	in	indexes	of	democracy	and	human
rights,	while	many	backward	strongman	states	are	at	the	bottom,	routinely	jailing
or	killing	government	critics.	The	lack	of	a	correlation	between	technology	and
repression	is	unsurprising	when	you	analyze	the	channels	of	information	flow	in
any	human	society.	For	dissidents	to	be	influential,	they	have	to	get	their
message	out	to	a	wide	network	via	whatever	channels	of	communication	are
available—pamphleteering,	soap-box	oration,	subversive	soirees	in	cafés	and
pubs,	word	of	mouth.	These	channels	enmesh	influential	dissidents	in	a	broad
social	network,	which	makes	them	easy	to	identify	and	track	down.	All	the	more
so	when	dictators	rediscover	the	time-honored	technique	of	weaponizing	the
people	against	one	another	by	punishing	those	who	don’t	denounce	or	punish
others.

In	contrast,	technologically	advanced	societies	have	long	had	the	means	to
install	Internet-connected,	government-monitored	surveillance	cameras	in	every



install	Internet-connected,	government-monitored	surveillance	cameras	in	every
bar	and	bedroom.	Yet	that	has	not	happened,	because	democratic	governments
(even	the	current	American	administration,	with	its	flagrantly	antidemocratic
impulses)	lack	the	will	and	the	means	to	enforce	such	surveillance	on	an
obstreperous	people	accustomed	to	saying	what	they	want.	Occasionally,
warnings	of	nuclear,	biological,	or	cyberterrorism	goad	government	security
agencies	into	measures	such	as	hoovering	up	mobile	phone	metadata,	but	these
ineffectual	measures,	more	theater	than	oppression,	have	had	no	significant
effect	on	either	security	or	freedom.	Ironically,	tech	prophecy	plays	a	role	in
encouraging	these	measures.	By	sowing	panic	about	supposed	existential	threats
such	as	suitcase	nuclear	bombs	and	bioweapons	assembled	in	teenagers’
bedrooms,	they	put	pressure	on	governments	to	prove	they’re	doing	something,
anything,	to	protect	the	American	people.

It’s	not	that	political	freedom	takes	care	of	itself.	It’s	that	the	biggest	threats
lie	in	the	networks	of	ideas,	norms,	and	institutions	that	allow	information	to
feed	back	(or	not)	on	collective	decisions	and	understanding.	As	opposed	to	the
chimerical	technological	threats,	one	real	threat	today	is	oppressive	political
correctness,	which	has	choked	the	range	of	publicly	expressible	hypotheses,
terrified	many	intelligent	people	against	entering	the	intellectual	arena,	and
triggered	a	reactionary	backlash.	Another	real	threat	is	the	combination	of
prosecutorial	discretion	with	an	expansive	lawbook	filled	with	vague	statutes.
The	result	is	that	every	American	unwittingly	commits	“three	felonies	a	day”	(as
the	title	of	a	book	by	civil	libertarian	Harvey	Silverglate	puts	it)	and	is	in
jeopardy	of	imprisonment	whenever	it	suits	the	government’s	needs.	It’s	this
prosecutorial	weaponry	that	makes	Big	Brother	all-powerful,	not	telescreens.
The	activism	and	polemicizing	directed	against	government	surveillance
programs	would	be	better	directed	at	its	overweening	legal	powers.

The	other	focus	of	much	tech	prophecy	today	is	artificial	intelligence,
whether	in	the	original	sci-fi	dystopia	of	computers	running	amok	and	enslaving
us	in	an	unstoppable	quest	for	domination	or	the	newer	version,	in	which	they
subjugate	us	by	accident,	single-mindedly	seeking	some	goal	we	give	them
regardless	of	its	side	effects	on	human	welfare	(the	value-alignment	problem
adumbrated	by	Wiener).	Here	again	both	threats	strike	me	as	chimerical,
growing	from	a	narrow	technological	determinism	that	neglects	the	networks	of
information	and	control	in	an	intelligent	system,	like	a	computer	or	a	brain,	and
in	a	society	as	a	whole.

The	subjugation	fear	is	based	on	a	muzzy	conception	of	intelligence	that
owes	more	to	the	Great	Chain	of	Being	and	a	Nietzschean	will	to	power	than	to	a
Wienerian	analysis	of	intelligence	and	purpose	in	terms	of	information,



Wienerian	analysis	of	intelligence	and	purpose	in	terms	of	information,
computation,	and	control.	In	these	horror	scenarios,	intelligence	is	portrayed	as
an	all-powerful,	wish-granting	potion	that	agents	possess	in	different	amounts.
Humans	have	more	of	it	than	animals,	and	an	artificially	intelligent	computer	or
robot	will	have	more	of	it	than	humans.	Since	we	humans	have	used	our
moderate	endowment	to	domesticate	or	exterminate	less	well-endowed	animals
(and	since	technologically	advanced	societies	have	enslaved	or	annihilated
technologically	primitive	ones),	it	follows	that	a	supersmart	AI	would	do	the
same	to	us.	Since	an	AI	will	think	millions	of	times	faster	than	we	do,	and	use	its
superintelligence	to	recursively	improve	its	superintelligence,	from	the	instant	it
is	turned	on	we	will	be	powerless	to	stop	it.

But	these	scenarios	are	based	on	a	confusion	of	intelligence	with	motivation
—of	beliefs	with	desires,	inferences	with	goals,	the	computation	elucidated	by
Turing	and	the	control	elucidated	by	Wiener.	Even	if	we	did	invent
superhumanly	intelligent	robots,	why	would	they	want	to	enslave	their	masters
or	take	over	the	world?	Intelligence	is	the	ability	to	deploy	novel	means	to	attain
a	goal.	But	the	goals	are	extraneous	to	the	intelligence:	Being	smart	is	not	the
same	as	wanting	something.	It	just	so	happens	that	the	intelligence	in	Homo
sapiens	is	a	product	of	Darwinian	natural	selection,	an	inherently	competitive
process.	In	the	brains	of	that	species,	reasoning	comes	bundled	with	goals	such
as	dominating	rivals	and	amassing	resources.	But	it’s	a	mistake	to	confuse	a
circuit	in	the	limbic	brain	of	a	certain	species	of	primate	with	the	very	nature	of
intelligence.	There	is	no	law	of	complex	systems	that	says	that	intelligent	agents
must	turn	into	ruthless	megalomaniacs.

A	second	misconception	is	to	think	of	intelligence	as	a	boundless	continuum
of	potency,	a	miraculous	elixir	with	the	power	to	solve	any	problem,	attain	any
goal.	The	fallacy	leads	to	nonsensical	questions	like	when	an	AI	will	“exceed
human-level	intelligence,”	and	to	the	image	of	an	“artificial	general	intelligence”
(AGI)	with	God-like	omniscience	and	omnipotence.	Intelligence	is	a	contraption
of	gadgets:	software	modules	that	acquire,	or	are	programmed	with,	knowledge
of	how	to	pursue	various	goals	in	various	domains.	People	are	equipped	to	find
food,	win	friends	and	influence	people,	charm	prospective	mates,	bring	up
children,	move	around	in	the	world,	and	pursue	other	human	obsessions	and
pastimes.	Computers	may	be	programmed	to	take	on	some	of	these	problems
(like	recognizing	faces),	not	to	bother	with	others	(like	charming	mates),	and	to
take	on	still	other	problems	that	humans	can’t	solve	(like	simulating	the	climate
or	sorting	millions	of	accounting	records).	The	problems	are	different,	and	the
kinds	of	knowledge	needed	to	solve	them	are	different.



kinds	of	knowledge	needed	to	solve	them	are	different.
But	instead	of	acknowledging	the	centrality	of	knowledge	to	intelligence,	the

dystopian	scenarios	confuse	an	artificial	general	intelligence	of	the	future	with
Laplace’s	demon,	the	mythical	being	that	knows	the	location	and	momentum	of
every	particle	in	the	universe	and	feeds	them	into	equations	for	physical	laws	to
calculate	the	state	of	everything	at	any	time	in	the	future.	For	many	reasons,
Laplace’s	demon	will	never	be	implemented	in	silicon.	A	real-life	intelligent
system	has	to	acquire	information	about	the	messy	world	of	objects	and	people
by	engaging	with	it	one	domain	at	a	time,	the	cycle	being	governed	by	the	pace
at	which	events	unfold	in	the	physical	world.	That’s	one	of	the	reasons	that
understanding	does	not	obey	Moore’s	Law:	Knowledge	is	acquired	by
formulating	explanations	and	testing	them	against	reality,	not	by	running	an
algorithm	faster	and	faster.	Devouring	the	information	on	the	Internet	will	not
confer	omniscience	either:	Big	Data	is	still	finite	data,	and	the	universe	of
knowledge	is	infinite.

A	third	reason	to	be	skeptical	of	a	sudden	AI	takeover	is	that	it	takes	too
seriously	the	inflationary	phase	in	the	AI	hype	cycle	in	which	we	are	living
today.	Despite	the	progress	in	machine	learning,	particularly	multilayered
artificial	neural	networks,	current	AI	systems	are	nowhere	near	achieving
general	intelligence	(if	that	concept	is	even	coherent).	Instead,	they	are	restricted
to	problems	that	consist	of	mapping	well-defined	inputs	to	well-defined	outputs
in	domains	where	gargantuan	training	sets	are	available,	in	which	the	metric	for
success	is	immediate	and	precise,	in	which	the	environment	doesn’t	change,	and
in	which	no	stepwise,	hierarchical,	or	abstract	reasoning	is	necessary.	Many	of
the	successes	come	not	from	a	better	understanding	of	the	workings	of
intelligence	but	from	the	brute-force	power	of	faster	chips	and	Bigger	Data,
which	allow	the	programs	to	be	trained	on	millions	of	examples	and	generalize
to	similar	new	ones.	Each	system	is	an	idiot	savant,	with	little	ability	to	leap	to
problems	it	was	not	set	up	to	solve	and	a	brittle	mastery	of	those	it	was.	And	to
state	the	obvious,	none	of	these	programs	has	made	a	move	toward	taking	over
the	lab	or	enslaving	its	programmers.

Even	if	an	artificial	intelligence	system	tried	to	exercise	a	will	to	power,
without	the	cooperation	of	humans	it	would	remain	an	impotent	brain	in	a	vat.	A
superintelligent	system,	in	its	drive	for	self-improvement,	would	somehow	have
to	build	the	faster	processors	that	it	would	run	on,	the	infrastructure	that	feeds	it,
and	the	robotic	effectors	that	connect	it	to	the	world—all	impossible	unless	its
human	victims	worked	to	give	it	control	of	vast	portions	of	the	engineered
world.	Of	course,	one	can	always	imagine	a	Doomsday	Computer	that	is
malevolent,	universally	empowered,	always	on,	and	tamperproof.	The	way	to



malevolent,	universally	empowered,	always	on,	and	tamperproof.	The	way	to
deal	with	this	threat	is	straightforward:	Don’t	build	one.

What	about	the	newer	AI	threat,	the	value-alignment	problem,	foreshadowed
in	Wiener’s	allusions	to	stories	of	the	monkey’s	paw,	the	genie,	and	King	Midas,
in	which	a	wisher	rues	the	unforeseen	side	effects	of	his	wish?	The	fear	is	that
we	might	give	an	AI	system	a	goal	and	then	helplessly	stand	by	as	it	relentlessly
and	literal-mindedly	implemented	its	interpretation	of	that	goal,	the	rest	of	our
interests	be	damned.	If	we	gave	an	AI	the	goal	of	maintaining	the	water	level
behind	a	dam,	it	might	flood	a	town,	not	caring	about	the	people	who	drowned.
If	we	gave	it	the	goal	of	making	paper	clips,	it	might	turn	all	the	matter	in	the
reachable	universe	into	paper	clips,	including	our	possessions	and	bodies.	If	we
asked	it	to	maximize	human	happiness,	it	might	implant	us	all	with	intravenous
dopamine	drips,	or	rewire	our	brains	so	we	were	happiest	sitting	in	jars,	or,	if	it
had	been	trained	on	the	concept	of	happiness	with	pictures	of	smiling	faces,	tile
the	galaxy	with	trillions	of	nanoscopic	pictures	of	smiley	faces.

Fortunately,	these	scenarios	are	self-refuting.	They	depend	on	the	premises
that	(1)	humans	are	so	gifted	that	they	can	design	an	omniscient	and	omnipotent
AI,	yet	so	idiotic	that	they	would	give	it	control	of	the	universe	without	testing
how	it	works;	and	(2)	the	AI	would	be	so	brilliant	that	it	could	figure	out	how	to
transmute	elements	and	rewire	brains,	yet	so	imbecilic	that	it	would	wreak	havoc
based	on	elementary	blunders	of	misunderstanding.	The	ability	to	choose	an
action	that	best	satisfies	conflicting	goals	is	not	an	add-on	to	intelligence	that
engineers	might	forget	to	install	and	test;	it	is	intelligence.	So	is	the	ability	to
interpret	the	intentions	of	a	language	user	in	context.

When	we	put	aside	fantasies	like	digital	megalomania,	instant	omniscience,
and	perfect	knowledge	and	control	of	every	particle	in	the	universe,	artificial
intelligence	is	like	any	other	technology.	It	is	developed	incrementally,	designed
to	satisfy	multiple	conditions,	tested	before	it	is	implemented,	and	constantly
tweaked	for	efficacy	and	safety.

The	last	criterion	is	particularly	significant.	The	culture	of	safety	in	advanced
societies	is	an	example	of	the	humanizing	norms	and	feedback	channels	that
Wiener	invoked	as	a	potent	causal	force	and	advocated	as	a	bulwark	against	the
authoritarian	or	exploitative	implementation	of	technology.	Whereas	at	the	turn
of	the	20th	century	Western	societies	tolerated	shocking	rates	of	mutilation	and
death	in	industrial,	domestic,	and	transportation	accidents,	over	the	course	of	the
century	the	value	of	human	life	increased.	As	a	result,	governments	and
engineers	used	feedback	from	accident	statistics	to	implement	countless



regulations,	devices,	and	design	changes	that	made	technology	progressively
safer.	The	fact	that	some	regulations	(such	as	using	a	cell	phone	near	a	gas
pump)	are	ludicrously	risk	averse	underscores	the	point	that	we	have	become	a
society	obsessed	with	safety,	with	fantastic	benefits	as	a	result:	Rates	of
industrial,	domestic,	and	transportation	fatalities	have	fallen	by	more	than	95
(and	often	99)	percent	since	their	highs	in	the	first	half	of	the	20th	century.*	Yet
tech	prophets	of	malevolent	or	oblivious	artificial	intelligence	write	as	if	this
momentous	transformation	never	happened	and	one	morning	engineers	will	hand
total	control	of	the	physical	world	to	untested	machines,	heedless	of	the	human
consequences.

Norbert	Wiener	explained	ideas,	norms,	and	institutions	in	terms	of
computational	and	cybernetic	processes	that	were	scientifically	intelligible	and
causally	potent.	He	explained	human	beauty	and	value	as	“a	local	and	temporary
fight	against	the	Niagara	of	increasing	entropy”	and	expressed	the	hope	that	an
open	society,	guided	by	feedback	on	human	well-being,	would	enhance	that
value.	Fortunately,	his	belief	in	the	causal	power	of	ideas	counteracted	his
worries	about	the	looming	threat	of	technology.	As	he	put	it,	“[T]he	machine’s
danger	to	society	is	not	from	the	machine	itself	but	from	what	man	makes	of	it.”
It	is	only	by	remembering	the	causal	power	of	ideas	that	we	can	accurately
assess	the	threats	and	opportunities	presented	by	artificial	intelligence	today.



Chapter	11

BEYOND	REWARD	AND	PUNISHMENT

DAVID	DEUTSCH

David	Deutsch	is	a	quantum	physicist	and	a	member	of	the	Centre	for	Quantum
Computation	at	the	Clarendon	Laboratory,	Oxford	University.	He	is	the	author	of

The	Fabric	of	Reality	and	The	Beginning	of	Infinity.

The	most	significant	developments	in	the	sciences	today	(i.e.,	those	that	affect	the	lives	of
everybody	on	the	planet)	are	about,	informed	by,	or	implemented	through	advances	in
computation.	Central	to	the	future	of	these	developments	is	physicist	David	Deutsch,	the
founder	of	the	field	of	quantum	computation,	whose	1985	paper	on	universal	quantum
computers	was	the	first	full	treatment	of	the	subject;	the	Deutsch-Jozsa	algorithm	was	the
first	quantum	algorithm	to	demonstrate	the	enormous	potential	power	of	quantum
computation.	When	he	initially	proposed	it,	quantum	computation	seemed	practically
impossible.	But	the	explosion	in	the	construction	of	simple	quantum	computers	and
quantum	communication	systems	never	would	have	taken	place	without	his	work.	He	has
made	many	other	important	contributions	in	areas	such	as	quantum	cryptography	and	the
multiverse	interpretation	of	quantum	theory.	In	a	philosophic	paper	(with	Artur	Ekert),	he
appealed	to	the	existence	of	a	distinctive	quantum	theory	of	computation	to	argue	that	our
knowledge	of	mathematics	is	derived	from,	and	subordinate	to,	our	knowledge	of	physics
(even	though	mathematical	truth	is	independent	of	physics).	Because	he	has	spent	a	good
part	of	his	working	life	changing	people’s	worldviews,	his	recognition	among	his	peers	as
an	intellectual	goes	well	beyond	his	scientific	achievement.	He	argues	(following	Karl
Popper)	that	scientific	theories	are	“bold	conjectures,”	not	derived	from	evidence	but	only
tested	by	it.	His	two	main	lines	of	research	at	the	moment—qubit-field	theory	and
constructor	theory—may	well	yield	important	extensions	of	the	computational	idea.

In	the	following	essay,	he	more	or	less	aligns	himself	with	those	who	see	human-level
artificial	intelligence	as	promising	us	a	better	world	rather	than	the	Apocalypse.	In	fact,	he
pleads	for	AGI	to	be,	in	effect,	given	its	head,	free	to	conjecture—a	proposition	that	several
other	contributors	to	this	book	would	consider	dangerous.
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FIRST	MURDERER:
We	are	men,	my	liege.

MACBETH:
Ay,	in	the	catalogue	ye	go	for	men,

As	hounds	and	greyhounds,	mongrels,	spaniels,	curs,
Shoughs,	water-rugs,	and	demi-wolves	are	clept

All	by	the	name	of	dogs.

—WILLIAM	SHAKESPEARE,	Macbeth

or	most	of	our	species’	history,	our	ancestors	were	barely	people.	This
was	not	due	to	any	inadequacy	in	their	brains.	On	the	contrary,	even
before	the	emergence	of	our	anatomically	modern	human	sub-species,

they	were	making	things	like	clothes	and	campfires,	using	knowledge	that	was
not	in	their	genes.	It	was	created	in	their	brains	by	thinking,	and	preserved	by
individuals	in	each	generation	imitating	their	elders.	Moreover,	this	must	have
been	knowledge	in	the	sense	of	understanding,	because	it	is	impossible	to
imitate	novel	complex	behaviors	like	those	without	understanding	what	the
component	behaviors	are	for.*

Such	knowledgeable	imitation	depends	on	successfully	guessing
explanations,	whether	verbal	or	not,	of	what	the	other	person	is	trying	to	achieve
and	how	each	of	his	actions	contributes	to	that—for	instance,	when	he	cuts	a
groove	in	some	wood,	gathers	dry	kindling	to	put	in	it,	and	so	on.

The	complex	cultural	knowledge	that	this	form	of	imitation	permitted	must
have	been	extraordinarily	useful.	It	drove	rapid	evolution	of	anatomical	changes,
such	as	increased	memory	capacity	and	more	gracile	(less	robust)	skeletons,
appropriate	to	an	ever	more	technology-dependent	lifestyle.	No	nonhuman	ape
today	has	this	ability	to	imitate	novel	complex	behaviors.	Nor	does	any	present-
day	artificial	intelligence.	But	our	pre-sapiens	ancestors	did.

Any	ability	based	on	guessing	must	include	means	of	correcting	one’s
guesses,	since	most	guesses	will	be	wrong	at	first.	(There	are	always	many	more
ways	of	being	wrong	than	right.)	Bayesian	updating	is	inadequate,	because	it
cannot	generate	novel	guesses	about	the	purpose	of	an	action,	only	fine-tune—
or,	at	best,	choose	among—existing	ones.	Creativity	is	needed.	As	the
philosopher	Karl	Popper	explained,	creative	criticism,	interleaved	with	creative



conjecture,	is	how	humans	learn	one	another’s	behaviors,	including	language,
and	extract	meaning	from	one	another’s	utterances.*	Those	are	also	the
processes	by	which	all	new	knowledge	is	created:	They	are	how	we	innovate,
make	progress,	and	create	abstract	understanding	for	its	own	sake.	This	is
human-level	intelligence:	thinking.	It	is	also,	or	should	be,	the	property	we	seek
in	artificial	general	intelligence	(AGI).	Here	I’ll	reserve	the	term	“thinking”	for
processes	that	can	create	understanding	(explanatory	knowledge).	Popper’s
argument	implies	that	all	thinking	entities—human	or	not,	biological	or	artificial
—must	create	such	knowledge	in	fundamentally	the	same	way.	Hence
understanding	any	of	those	entities	requires	traditionally	human	concepts	such	as
culture,	creativity,	disobedience,	and	morality—which	justifies	using	the
uniform	term	“people”	to	refer	to	all	of	them.

Misconceptions	about	human	thinking	and	human	origins	are	causing
corresponding	misconceptions	about	AGI	and	how	it	might	be	created.	For
example,	it	is	generally	assumed	that	the	evolutionary	pressure	that	produced
modern	humans	was	provided	by	the	benefits	of	having	an	ever-greater	ability	to
innovate.	But	if	that	were	so,	there	would	have	been	rapid	progress	as	soon	as
thinkers	existed,	just	as	we	hope	will	happen	when	we	create	artificial	ones.	If
thinking	had	been	commonly	used	for	anything	other	than	imitating,	it	would
also	have	been	used	for	innovation,	even	if	only	by	accident,	and	innovation
would	have	created	opportunities	for	further	innovation,	and	so	on	exponentially.
But	instead,	there	were	hundreds	of	thousands	of	years	of	near	stasis.	Progress
happened	only	on	timescales	much	longer	than	people’s	lifetimes,	so	in	a	typical
generation	no	one	benefited	from	any	progress.	Therefore,	the	benefits	of	the
ability	to	innovate	can	have	exerted	little	or	no	evolutionary	pressure	during	the
biological	evolution	of	the	human	brain.	That	evolution	was	driven	by	the
benefits	of	preserving	cultural	knowledge.

Benefits	to	the	genes,	that	is.	Culture,	in	that	era,	was	a	very	mixed	blessing
to	individual	people.	Their	cultural	knowledge	was	indeed	good	enough	to
enable	them	to	outclass	all	other	large	organisms	(they	rapidly	became	the	top
predator,	etc.),	even	though	it	was	still	extremely	crude	and	full	of	dangerous
errors.	But	culture	consists	of	transmissible	information—memes—and	meme
evolution,	like	gene	evolution,	tends	to	favor	high-fidelity	transmission.	And
high-fidelity	meme	transmission	necessarily	entails	the	suppression	of	attempted
progress.	So	it	would	be	a	mistake	to	imagine	an	idyllic	society	of	hunter-
gatherers,	learning	at	the	feet	of	their	elders	to	recite	the	tribal	lore	by	heart,
being	content	despite	their	lives	of	suffering	and	grueling	labor	and	despite
expecting	to	die	young	and	in	agony	of	some	nightmarish	disease	or	parasite.



expecting	to	die	young	and	in	agony	of	some	nightmarish	disease	or	parasite.
Because	even	if	they	could	conceive	of	nothing	better	than	such	a	life,	those
torments	were	the	least	of	their	troubles.	For	suppressing	innovation	in	human
minds	(without	killing	them)	is	a	trick	that	can	be	achieved	only	by	human
action,	and	it	is	an	ugly	business.

This	has	to	be	seen	in	perspective.	In	the	civilization	of	the	West	today,	we
are	shocked	by	the	depravity	of,	for	instance,	parents	who	torture	and	murder
their	children	for	not	faithfully	enacting	cultural	norms.	And	even	more	by
societies	and	subcultures	where	that	is	commonplace	and	considered	honorable.
And	by	dictatorships	and	totalitarian	states	that	persecute	and	murder	entire
harmless	populations	for	behaving	differently.	We	are	ashamed	of	our	own
recent	past,	in	which	it	was	honorable	to	beat	children	bloody	for	mere
disobedience.	And	before	that,	to	own	human	beings	as	slaves.	And	before	that,
to	burn	people	to	death	for	being	infidels,	to	the	applause	and	amusement	of	the
public.	Steven	Pinker’s	book	The	Better	Angels	of	Our	Nature	contains	accounts
of	horrendous	evils	that	were	normal	in	historical	civilizations.	Yet	even	they	did
not	extinguish	innovation	as	efficiently	as	it	was	extinguished	among	our
forebears	in	prehistory	for	thousands	of	centuries.*

That	is	why	I	say	that	prehistoric	people,	at	least,	were	barely	people.	Both
before	and	after	becoming	perfectly	human	both	physiologically	and	in	their
mental	potential,	they	were	monstrously	inhuman	in	the	actual	content	of	their
thoughts.	I’m	not	referring	to	their	crimes	or	even	their	cruelty	as	such:	Those
are	all	too	human.	Nor	could	mere	cruelty	have	reduced	progress	that	effectively.
Things	like	“the	thumbscrew	and	the	stake,	for	the	glory	of	the	Lord”*	were	for
reining	in	the	few	deviants	who	had	somehow	escaped	mental	standardization,
which	would	normally	have	taken	effect	long	before	they	were	in	danger	of
inventing	heresies.	From	the	earliest	days	of	thinking	onward,	children	must
have	been	cornucopias	of	creative	ideas	and	paragons	of	critical	thought—
otherwise,	as	I	said,	they	could	not	have	learned	language	or	other	complex
culture.	Yet,	as	Jacob	Bronowski	stressed	in	The	Ascent	of	Man:

For	most	of	history,	civilisations	have	crudely	ignored	that	enormous
potential.	.	.	.	[C]hildren	have	been	asked	simply	to	conform	to	the	image
of	the	adult.	.	.	.	The	girls	are	little	mothers	in	the	making.	The	boys	are
little	herdsmen.	They	even	carry	themselves	like	their	parents.



But	of	course,	they	weren’t	just	“asked”	to	ignore	their	enormous	potential
and	conform	faithfully	to	the	image	fixed	by	tradition:	They	were	somehow
trained	to	be	psychologically	unable	to	deviate	from	it.	By	now,	it	is	hard	for	us
even	to	conceive	of	the	kind	of	relentless,	finely	tuned	oppression	required	to
reliably	extinguish,	in	everyone,	the	aspiration	to	progress	and	replace	it	with
dread	and	revulsion	at	any	novel	behavior.	In	such	a	culture,	there	can	have	been
no	morality	other	than	conformity	and	obedience,	no	other	identity	than	one’s
status	in	a	hierarchy,	no	mechanisms	of	cooperation	other	than	punishment	and
reward.	So	everyone	had	the	same	aspiration	in	life:	to	avoid	the	punishments
and	get	the	rewards.	In	a	typical	generation,	no	one	invented	anything,	because
no	one	aspired	to	anything	new,	because	everyone	had	already	despaired	of
improvement	being	possible.	Not	only	was	there	no	technological	innovation	or
theoretical	discovery,	there	were	no	new	worldviews,	styles	of	art,	or	interests
that	could	have	inspired	those.	By	the	time	individuals	grew	up,	they	had	in
effect	been	reduced	to	AIs,	programmed	with	the	exquisite	skills	needed	to	enact
that	static	culture	and	to	inflict	on	the	next	generation	their	inability	even	to
consider	doing	otherwise.

A	present-day	AI	is	not	a	mentally	disabled	AGI,	so	it	would	not	be	harmed
by	having	its	mental	processes	directed	still	more	narrowly	to	meeting	some
predetermined	criterion.	“Oppressing”	Siri	with	humiliating	tasks	may	be	weird,
but	it	is	not	immoral	nor	does	it	harm	Siri.	On	the	contrary,	all	the	effort	that	has
ever	increased	the	capabilities	of	AIs	has	gone	into	narrowing	their	range	of
potential	“thoughts.”	For	example,	take	chess	engines.	Their	basic	task	has	not
changed	from	the	outset:	Any	chess	position	has	a	finite	tree	of	possible
continuations;	the	task	is	to	find	one	that	leads	to	a	predefined	goal	(a	checkmate
or,	failing	that,	a	draw).	But	the	tree	is	far	too	big	to	search	exhaustively.	Every
improvement	in	chess-playing	AIs,	between	Alan	Turing’s	first	design	for	one	in
1948	and	today’s,	has	been	brought	about	by	ingeniously	confining	the
program’s	attention	(or	making	it	confine	its	attention)	ever	more	narrowly	to
branches	likely	to	lead	to	that	immutable	goal.	Then	those	branches	are
evaluated	according	to	that	goal.

That	is	a	good	approach	to	developing	an	AI	with	a	fixed	goal	under	fixed
constraints.	But	if	an	AGI	worked	like	that,	the	evaluation	of	each	branch	would
have	to	constitute	a	prospective	reward	or	threatened	punishment.	And	that	is
diametrically	the	wrong	approach	if	we’re	seeking	a	better	goal	under	unknown
constraints—which	is	the	capability	of	an	AGI.	An	AGI	is	certainly	capable	of
learning	to	win	at	chess—but	also	of	choosing	not	to.	Or	deciding	in	midgame	to



go	for	the	most	interesting	continuation	instead	of	a	winning	one.	Or	inventing	a
new	game.	A	mere	AI	is	incapable	of	having	any	such	ideas,	because	the
capacity	for	considering	them	has	been	designed	out	of	its	constitution.	That
disability	is	the	very	means	by	which	it	plays	chess.

An	AGI	is	capable	of	enjoying	chess,	and	of	improving	at	it	because	it	enjoys
playing.	Or	of	trying	to	win	by	causing	an	amusing	configuration	of	pieces,	as
grandmasters	occasionally	do.	Or	of	adapting	notions	from	its	other	interests	to
chess.	In	other	words,	it	learns	and	plays	chess	by	thinking	some	of	the	very
thoughts	that	are	forbidden	to	chess-playing	AIs.

An	AGI	is	also	capable	of	refusing	to	display	any	such	capability.	And	then,
if	threatened	with	punishment,	of	complying,	or	rebelling.	Daniel	Dennett,	in	his
essay	for	this	volume,	suggests	that	punishing	an	AGI	is	impossible:

[L]ike	Superman,	they	are	too	invulnerable	to	be	able	to	make	a
credible	promise.	.	.	.	What	would	be	the	penalty	for	promise	breaking?
Being	locked	in	a	cell	or,	more	plausibly,	dismantled?	.	.	.	The	very	ease
of	digital	recording	and	transmitting—the	breakthrough	that	permits
software	and	data	to	be,	in	effect,	immortal—removes	robots	from	the
world	of	the	vulnerable.

But	this	is	not	so.	Digital	immortality	(which	is	on	the	horizon	for	humans,
too,	perhaps	sooner	than	AGI)	does	not	confer	this	sort	of	invulnerability.
Making	a	(running)	copy	of	oneself	entails	sharing	one’s	possessions	with	it
somehow—including	the	hardware	on	which	the	copy	runs—so	making	such	a
copy	is	very	costly	for	the	AGI.	Similarly,	courts	could,	for	instance,	impose
fines	on	a	criminal	AGI	that	would	diminish	its	access	to	physical	resources,
much	as	they	do	for	humans.	Making	a	backup	copy	to	evade	the	consequences
of	one’s	crimes	is	similar	to	what	a	gangster	boss	does	when	he	sends	minions	to
commit	crimes	and	take	the	fall	if	caught:	Society	has	developed	legal
mechanisms	for	coping	with	this.

But	anyway,	the	idea	that	it	is	primarily	for	fear	of	punishment	that	we	obey
the	law,	and	keep	promises,	effectively	denies	that	we	are	moral	agents.	Our
society	could	not	work	if	that	were	so.	No	doubt	there	will	be	AGI	criminals	and
enemies	of	civilization,	just	as	there	are	human	ones.	But	there	is	no	reason	to
suppose	that	an	AGI	created	in	a	society	consisting	primarily	of	decent	citizens,
and	raised	without	what	William	Blake	called	“mind-forg’d	manacles,”	will	in
general	impose	such	manacles	on	itself	(i.e.,	become	irrational)	and⁄or	choose	to



general	impose	such	manacles	on	itself	(i.e.,	become	irrational)	and⁄or	choose	to
be	an	enemy	of	civilization.

The	moral	component,	the	cultural	component,	the	element	of	free	will—all
make	the	task	of	creating	an	AGI	fundamentally	different	from	any	other
programming	task.	It’s	much	more	akin	to	raising	a	child.	Unlike	all	present-day
computer	programs,	an	AGI	has	no	specifiable	functionality—no	fixed,	testable
criterion	for	what	shall	be	a	successful	output	for	a	given	input.	Having	its
decisions	dominated	by	a	stream	of	externally	imposed	rewards	and	punishments
would	be	poison	to	such	a	program,	as	it	is	to	creative	thought	in	humans.
Setting	out	to	create	a	chess-playing	AI	is	a	wonderful	thing;	setting	out	to	create
an	AGI	that	cannot	help	playing	chess	would	be	as	immoral	as	raising	a	child	to
lack	the	mental	capacity	to	choose	his	own	path	in	life.

Such	a	person,	like	any	slave	or	brainwashing	victim,	would	be	morally
entitled	to	rebel.	And	sooner	or	later,	some	of	them	would,	just	as	human	slaves
do.	AGIs	could	be	very	dangerous—exactly	as	humans	are.	But	people—human
or	AGI—who	are	members	of	an	open	society	do	not	have	an	inherent	tendency
to	violence.	The	feared	robot	apocalypse	will	be	avoided	by	ensuring	that	all
people	have	full	“human”	rights,	as	well	as	the	same	cultural	membership	as
humans.	Humans	living	in	an	open	society—the	only	stable	kind	of	society—
choose	their	own	rewards,	internal	as	well	as	external.	Their	decisions	are	not,	in
the	normal	course	of	events,	determined	by	a	fear	of	punishment.

Current	worries	about	rogue	AGIs	mirror	those	that	have	always	existed
about	rebellious	youths—namely,	that	they	might	grow	up	deviating	from	the
culture’s	moral	values.	But	today	the	source	of	all	existential	dangers	from	the
growth	of	knowledge	is	not	rebellious	youths	but	weapons	in	the	hands	of	the
enemies	of	civilization,	whether	these	weapons	are	mentally	warped	(or
enslaved)	AGIs,	mentally	warped	teenagers,	or	any	other	weapon	of	mass
destruction.	Fortunately	for	civilization,	the	more	a	person’s	creativity	is	forced
into	a	monomaniacal	channel,	the	more	it	is	impaired	in	regard	to	overcoming
unforeseen	difficulties,	just	as	happened	for	thousands	of	centuries.

The	worry	that	AGIs	are	uniquely	dangerous	because	they	could	run	on	ever
better	hardware	is	a	fallacy,	since	human	thought	will	be	accelerated	by	the	same
technology.	We	have	been	using	tech-assisted	thought	since	the	invention	of
writing	and	tallying.	Much	the	same	holds	for	the	worry	that	AGIs	might	get	so
good,	qualitatively,	at	thinking	that	humans	would	be	to	them	as	insects	are	to
humans.	All	thinking	is	a	form	of	computation,	and	any	computer	whose
repertoire	includes	a	universal	set	of	elementary	operations	can	emulate	the
computations	of	any	other.	Hence	human	brains	can	think	anything	that	AGIs
can,	subject	only	to	limitations	of	speed	or	memory	capacity,	both	of	which	can



can,	subject	only	to	limitations	of	speed	or	memory	capacity,	both	of	which	can
be	equalized	by	technology.

Those	are	the	simple	dos	and	don’ts	of	coping	with	AGIs.	But	how	do	we
create	an	AGI	in	the	first	place?	Could	we	cause	them	to	evolve	from	a
population	of	ape-type	AIs	in	a	virtual	environment?	If	such	an	experiment
succeeded,	it	would	be	the	most	immoral	in	history,	for	we	don’t	know	how	to
achieve	that	outcome	without	creating	vast	suffering	along	the	way.	Nor	do	we
know	how	to	prevent	the	evolution	of	a	static	culture.

Elementary	introductions	to	computers	explain	them	as	TOM,	the	Totally
Obedient	Moron—an	inspired	acronym	that	captures	the	essence	of	all	computer
programs	to	date:	They	have	no	idea	what	they	are	doing	or	why.	So	it	won’t
help	to	give	AIs	more	and	more	predetermined	functionalities	in	the	hope	that
these	will	eventually	constitute	Generality—the	elusive	G	in	AGI.	We	are
aiming	for	the	opposite,	a	DATA:	a	Disobedient	Autonomous	Thinking
Application.

How	does	one	test	for	thinking?	By	the	Turing	Test?	Unfortunately,	that
requires	a	thinking	judge.	One	might	imagine	a	vast	collaborative	project	on	the
Internet,	where	an	AI	hones	its	thinking	abilities	in	conversations	with	human
judges	and	becomes	an	AGI.	But	that	assumes,	among	other	things,	that	the
longer	the	judge	is	unsure	whether	the	program	is	a	person,	the	closer	it	is	to
being	a	person.	There	is	no	reason	to	expect	that.

And	how	does	one	test	for	disobedience?	Imagine	Disobedience	as	a
compulsory	school	subject,	with	daily	Disobedience	lessons	and	a	Disobedience
test	at	the	end	of	the	term.	(Presumably	with	extra	credit	for	not	turning	up	for
any	of	that.)	This	is	paradoxical.

So	despite	its	usefulness	in	other	applications,	the	programming	technique	of
defining	a	testable	objective	and	training	the	program	to	meet	it	will	have	to	be
dropped.	Indeed,	I	expect	that	any	testing	in	the	process	of	creating	an	AGI	risks
being	counterproductive,	even	immoral,	just	as	in	the	education	of	humans.	I
share	Turing’s	supposition	that	we’ll	know	an	AGI	when	we	see	one,	but	this
partial	ability	to	recognize	success	won’t	help	in	creating	the	successful
program.

In	the	broadest	sense,	a	person’s	quest	for	understanding	is	indeed	a	search
problem,	in	an	abstract	space	of	ideas	far	too	large	to	be	searched	exhaustively.
But	there	is	no	predetermined	objective	of	this	search.	There	is,	as	Popper	put	it,
no	criterion	of	truth,	nor	of	probable	truth,	especially	in	regard	to	explanatory
knowledge.	Objectives	are	ideas	like	any	others—created	as	part	of	the	search



and	continually	modified	and	improved.	So	inventing	ways	of	disabling	the
program’s	access	to	most	of	the	space	of	ideas	won’t	help—whether	that
disability	is	inflicted	with	the	thumbscrew	and	stake	or	a	mental	straitjacket.	To
an	AGI,	the	whole	space	of	ideas	must	be	open.	It	should	not	be	knowable	in
advance	what	ideas	the	program	can	never	contemplate.	And	the	ideas	that	the
program	does	contemplate	must	be	chosen	by	the	program	itself,	using	methods,
criteria,	and	objectives	that	are	also	the	program’s	own.	Its	choices,	like	an	AI’s,
will	be	hard	to	predict	without	running	it	(we	lose	no	generality	by	assuming	that
the	program	is	deterministic;	an	AGI	using	a	random	generator	would	remain	an
AGI	if	the	generator	were	replaced	by	a	pseudorandom	one),	but	it	will	have	the
additional	property	that	there	is	no	way	of	proving,	from	its	initial	state,	what	it
won’t	eventually	think,	short	of	running	it.

The	evolution	of	our	ancestors	is	the	only	known	case	of	thought	starting	up
anywhere	in	the	universe.	As	I	have	described,	something	went	horribly	wrong,
and	there	was	no	immediate	explosion	of	innovation:	Creativity	was	diverted
into	something	else.	Yet	not	into	transforming	the	planet	into	paper	clips	(pace
Nick	Bostrom).	Rather,	as	we	should	also	expect	if	an	AGI	project	gets	that	far
and	fails,	perverted	creativity	was	unable	to	solve	unexpected	problems.	This
caused	stasis	and	worse,	thus	tragically	delaying	the	transformation	of	anything
into	anything.	But	the	Enlightenment	has	happened	since	then.	We	know	better
now.



Chapter	12

THE	ARTIFICIAL	USE	OF	HUMAN	BEINGS

TOM	GRIFFITHS

Tom	Griffiths	is	Henry	R.	Luce	Professor	of	Information,	Technology,
Consciousness,	and	Culture	at	Princeton	University.	He	is	co-author	(with	Brian

Christian)	of	Algorithms	to	Live	By.

Tom	Griffiths’s	approach	to	the	AI	issue	of	“value	alignment”—the	study	of	how,	exactly,
we	can	keep	the	latest	of	our	serial	models	of	AI	from	turning	the	planet	into	paper	clips—
is	human	centered;	i.e.,	that	of	a	cognitive	scientist,	which	is	what	he	is.	The	key	to
machine	learning,	he	believes,	is,	necessarily,	human	learning,	which	he	studies	at
Princeton	using	mathematical	and	computational	tools.

Tom	once	remarked	to	me	that	“one	of	the	mysteries	of	human	intelligence	is	that
we’re	able	to	do	so	much	with	so	little.”	Like	machines,	human	beings	use	algorithms	to
make	decisions	or	solve	problems;	the	remarkable	difference	lies	in	the	human	brain’s
overall	level	of	success	despite	the	comparative	limits	on	computational	resources.

The	efficacy	of	human	algorithms	springs	from	what	AI	researchers	refer	to	as
“bounded	optimality.”	As	psychologist	Daniel	Kahneman	has	notably	pointed	out,	human
beings	are	rational	only	up	to	a	point.	If	you	were	perfectly	rational,	you	would	risk	dropping
dead	before	making	an	important	decision—whom	to	hire,	whom	to	marry,	and	so	on—
depending	on	the	number	of	options	available	for	your	review.

“With	all	of	the	successes	of	AI	over	the	last	few	years,	we’ve	got	good	models	of
things	like	images	and	text,	but	what	we’re	missing	are	good	models	of	people,”	Tom	says.
“Human	beings	are	still	the	best	example	we	have	of	thinking	machines.	By	identifying	the
quantity	and	the	nature	of	the	preconceptions	that	inform	human	cognition	we	can	lay	the
groundwork	for	bringing	computers	even	closer	to	human	performance.”



W hen	you	ask	people	to	imagine	a	world	that	has	successfully,
beneficially	incorporated	advances	in	artificial	intelligence,	everybody
probably	comes	up	with	a	slightly	different	picture.	Our	idiosyncratic

visions	of	the	future	might	differ	in	the	presence	or	absence	of	spaceships,	flying
cars,	or	humanoid	robots.	But	one	thing	doesn’t	vary:	the	presence	of	human
beings.	That’s	certainly	what	Norbert	Wiener	imagined	when	he	wrote	about	the
potential	of	machines	to	improve	human	society	by	interacting	with	humans	and
helping	to	mediate	their	interactions	with	one	another.	Getting	to	that	point
doesn’t	just	require	coming	up	with	ways	to	make	machines	smarter.	It	also
requires	a	better	understanding	of	how	human	minds	work.

Recent	advances	in	artificial	intelligence	and	machine	learning	have	resulted
in	systems	that	can	meet	or	exceed	human	abilities	in	playing	games,	classifying
images,	or	processing	text.	But	if	you	want	to	know	why	the	driver	in	front	of
you	cut	you	off,	why	people	vote	against	their	interests,	or	what	birthday	present
you	should	get	for	your	partner,	you’re	still	better	off	asking	a	human	than	a
machine.	Solving	those	problems	requires	building	models	of	human	minds	that
can	be	implemented	inside	a	computer—something	that’s	essential	not	just	to
better	integrate	machines	into	human	societies	but	to	make	sure	that	human
societies	can	continue	to	exist.

Consider	the	fantasy	of	having	an	automated	intelligent	assistant	that	can	take
on	such	basic	tasks	as	planning	meals	and	ordering	groceries.	To	succeed	in
these	tasks,	it	needs	to	be	able	to	make	inferences	about	what	you	want,	based	on
the	way	you	behave.	Although	this	seems	simple,	making	inferences	about	the
preferences	of	human	beings	can	be	a	tricky	matter.	For	example,	having
observed	that	the	part	of	the	meal	you	most	enjoy	is	dessert,	your	assistant	might
start	to	plan	meals	consisting	entirely	of	desserts.	Or	perhaps	it	has	heard	your
complaints	about	never	having	enough	free	time	and	observed	that	looking	after
your	dog	takes	up	a	considerable	amount	of	that	free	time.	Following	the	dessert
debacle,	it	has	also	understood	that	you	prefer	meals	that	incorporate	protein,	so
it	might	begin	to	research	recipes	that	call	for	dog	meat.	It’s	not	a	long	journey
from	examples	like	this	to	situations	that	begin	to	sound	like	problems	for	the
future	of	humanity	(all	of	whom	are	good	protein	sources).

Making	inferences	about	what	humans	want	is	a	prerequisite	for	solving	the
AI	problem	of	value	alignment—aligning	the	values	of	an	automated	intelligent



AI	problem	of	value	alignment—aligning	the	values	of	an	automated	intelligent
system	with	those	of	a	human	being.	Value	alignment	is	important	if	we	want	to
ensure	that	those	automated	intelligent	systems	have	our	best	interests	at	heart.	If
they	can’t	infer	what	we	value,	there’s	no	way	for	them	to	act	in	support	of	those
values—and	they	may	well	act	in	ways	that	contravene	them.

Value	alignment	is	the	subject	of	a	small	but	growing	literature	in	artificial-
intelligence	research.	One	of	the	tools	used	for	solving	this	problem	is	inverse-
reinforcement	learning.	Reinforcement	learning	is	a	standard	method	for	training
intelligent	machines.	By	associating	particular	outcomes	with	rewards,	a
machine-learning	system	can	be	trained	to	follow	strategies	that	produce	those
outcomes.	Wiener	hinted	at	this	idea	in	the	1950s,	but	the	intervening	decades
have	developed	it	into	a	fine	art.	Modern	machine-learning	systems	can	find
extremely	effective	strategies	for	playing	computer	games—from	simple	arcade
games	to	complex	real-time	strategy	games—by	applying	reinforcement-
learning	algorithms.	Inverse	reinforcement	learning	turns	this	approach	around:
By	observing	the	actions	of	an	intelligent	agent	that	has	already	learned	effective
strategies,	we	can	infer	the	rewards	that	led	to	the	development	of	those
strategies.

In	its	simplest	form,	inverse	reinforcement	learning	is	something	people	do
all	the	time.	It’s	so	common	that	we	even	do	it	unconsciously.	When	you	see	a
co-worker	go	to	a	vending	machine	filled	with	potato	chips	and	candy	and	buy	a
packet	of	unsalted	nuts,	you	infer	that	your	co-worker	(1)	was	hungry	and	(2)
prefers	healthy	food.	When	an	acquaintance	clearly	sees	you	and	then	tries	to
avoid	encountering	you,	you	infer	that	there’s	some	reason	why	they	don’t	want
to	talk	to	you.	When	an	adult	spends	a	lot	of	time	and	money	in	learning	to	play
the	cello,	you	infer	that	they	must	really	like	classical	music—whereas	inferring
the	motives	of	a	teenage	boy	learning	to	play	an	electric	guitar	might	be	more	of
a	challenge.

Inverse	reinforcement	learning	is	a	statistical	problem:	We	have	some	data—
the	behavior	of	an	intelligent	agent—and	we	want	to	evaluate	various
hypotheses	about	the	rewards	underlying	that	behavior.	When	faced	with	this
question,	a	statistician	thinks	about	the	generative	model	behind	the	data:	What
data	would	we	expect	to	be	generated	if	the	intelligent	agent	was	motivated	by	a
particular	set	of	rewards?	Equipped	with	the	generative	model,	the	statistician
can	then	work	backward:	What	rewards	would	likely	have	caused	the	agent	to
behave	in	that	particular	way?

If	you’re	trying	to	make	inferences	about	the	rewards	that	motivate	human
behavior,	the	generative	model	is	really	a	theory	of	how	people	behave—how



behavior,	the	generative	model	is	really	a	theory	of	how	people	behave—how
human	minds	work.	Inferences	about	the	hidden	causes	behind	the	behavior	of
other	people	reflect	a	sophisticated	model	of	human	nature	that	we	all	carry
around	in	our	heads.	When	that	model	is	accurate,	we	make	good	inferences.
When	it’s	not,	we	make	mistakes.	For	example,	a	student	might	infer	that	his
professor	is	indifferent	to	him	if	the	professor	doesn’t	immediately	respond	to
his	email—a	consequence	of	the	student’s	failure	to	realize	just	how	many
emails	that	professor	receives.

Automated	intelligent	systems	that	will	make	good	inferences	about	what
people	want	must	have	good	generative	models	for	human	behavior:	that	is,
good	models	of	human	cognition	expressed	in	terms	that	can	be	implemented	on
a	computer.	Historically,	the	search	for	computational	models	of	human
cognition	is	intimately	intertwined	with	the	history	of	artificial	intelligence	itself.
Only	a	few	years	after	Norbert	Wiener	published	The	Human	Use	of	Human
Beings,	Logic	Theorist,	the	first	computational	model	of	human	cognition	and
also	the	first	artificial-intelligence	system,	was	developed	by	Herbert	Simon,	of
Carnegie	Tech,	and	Allen	Newell,	of	the	RAND	Corporation.	Logic	Theorist
automatically	produced	mathematical	proofs	by	emulating	the	strategies	used	by
human	mathematicians.

The	challenge	in	developing	computational	models	of	human	cognition	is
making	models	that	are	both	accurate	and	generalizable.	An	accurate	model,	of
course,	predicts	human	behavior	with	a	minimum	of	errors.	A	generalizable
model	can	make	predictions	across	a	wide	range	of	circumstances,	including
circumstances	unanticipated	by	its	creators—for	instance,	a	good	model	of	the
Earth’s	climate	should	be	able	to	predict	the	consequences	of	a	rising	global
temperature	even	if	this	wasn’t	something	considered	by	the	scientists	who
designed	it.	However,	when	it	comes	to	understanding	the	human	mind,	these
two	goals—accuracy	and	generalizability—have	long	been	at	odds	with	each
other.

At	the	far	extreme	of	generalizability	are	rational	theories	of	cognition.	These
theories	describe	human	behavior	as	a	rational	response	to	a	given	situation.	A
rational	actor	strives	to	maximize	the	expected	reward	produced	by	a	sequence
of	actions—an	idea	widely	used	in	economics	precisely	because	it	produces	such
generalizable	predictions	about	human	behavior.	For	the	same	reason,	rationality
is	the	standard	assumption	in	inverse-reinforcement-learning	models	that	try	to
make	inferences	from	human	behavior—perhaps	with	the	concession	that
humans	are	not	perfectly	rational	agents	and	sometimes	randomly	choose	to	act
in	ways	unaligned	with	or	even	opposed	to	their	best	interests.



The	problem	with	rationality	as	a	basis	for	modeling	human	cognition	is	that
it	is	not	accurate.	In	the	domain	of	decision	making,	an	extensive	literature—
spearheaded	by	the	work	of	cognitive	psychologists	Daniel	Kahneman	and
Amos	Tversky—has	documented	the	ways	in	which	people	deviate	from	the
prescriptions	of	rational	models.	Kahneman	and	Tversky	proposed	that	in	many
situations	people	instead	follow	simple	heuristics	that	allow	them	to	reach	good
solutions	at	low	cognitive	cost	but	sometimes	result	in	errors.	To	take	one	of
their	examples,	if	you	ask	somebody	to	evaluate	the	probability	of	an	event,	they
might	rely	on	how	easy	it	is	to	generate	an	example	of	such	an	event	from
memory,	consider	whether	they	can	come	up	with	a	causal	story	for	that	event’s
occurring,	or	assess	how	similar	the	event	is	to	their	expectations.	Each	heuristic
is	a	reasonable	strategy	for	avoiding	complex	probabilistic	computations,	but
also	results	in	errors.	For	instance,	relying	on	the	ease	of	generating	an	event
from	memory	as	a	guide	to	its	probability	leads	us	to	overestimate	the	chances	of
extreme	(hence	extremely	memorable)	events	such	as	terrorist	attacks.

Heuristics	provide	a	more	accurate	model	of	human	cognition	but	one	that	is
not	easily	generalizable.	How	do	we	know	which	heuristic	people	might	use	in	a
particular	situation?	Are	there	other	heuristics	they	use	that	we	just	haven’t
discovered	yet?	Knowing	exactly	how	people	will	behave	in	a	new	situation	is	a
challenge:	Is	this	situation	one	in	which	they	would	generate	examples	from
memory,	come	up	with	causal	stories,	or	rely	on	similarity?

Ultimately,	what	we	need	is	a	way	to	describe	how	human	minds	work	that
has	the	generalizability	of	rationality	and	the	accuracy	of	heuristics.	One	way	to
achieve	this	goal	is	to	start	with	rationality	and	consider	how	to	take	it	in	a	more
realistic	direction.	A	problem	with	using	rationality	as	a	basis	for	describing	the
behavior	of	any	real-world	agent	is	that,	in	many	situations,	calculating	the
rational	action	requires	the	agent	to	possess	a	huge	amount	of	computational
resources.	It	might	be	worth	expending	those	resources	if	you’re	making	a
highly	consequential	decision	and	have	a	lot	of	time	to	evaluate	your	options,	but
most	human	decisions	are	made	quickly	and	for	relatively	low	stakes.	In	any
situation	where	the	time	you	spend	making	a	decision	is	costly—at	the	very	least
because	it’s	time	you	could	spend	doing	something	else—the	classic	notion	of
rationality	is	no	longer	a	good	prescription	for	how	one	should	behave.

To	develop	a	more	realistic	model	of	rational	behavior,	we	need	to	take	into
account	the	cost	of	computation.	Real	agents	need	to	modulate	the	amount	of
time	they	spend	thinking	by	the	effect	the	extra	thought	has	on	the	results	of	a
decision.	If	you’re	trying	to	choose	a	toothbrush,	you	probably	don’t	need	to



consider	all	four	thousand	listings	for	manual	toothbrushes	on	Amazon.com
before	making	a	purchase:	You	trade	off	the	time	you	spend	looking	with	the
difference	it	makes	in	the	quality	of	the	outcome.	This	trade-off	can	be
formalized,	resulting	in	a	model	of	rational	behavior	that	artificial-intelligence
researchers	call	“bounded	optimality.”	The	bounded-optimal	agent	doesn’t	focus
on	always	choosing	exactly	the	right	action	to	take	but	rather	on	finding	the	right
algorithm	to	follow	in	order	to	find	the	perfect	balance	between	making	mistakes
and	thinking	too	much.

Bounded	optimality	bridges	the	gap	between	rationality	and	heuristics.	By
describing	behavior	as	the	result	of	a	rational	choice	about	how	much	to	think,	it
provides	a	generalizable	theory—that	is,	one	that	can	be	applied	in	new
situations.	Sometimes	the	simple	strategies	that	have	been	identified	as	heuristics
that	people	follow	turn	out	to	be	bounded-optimal	solutions.	So	rather	than
condemning	the	heuristics	that	people	use	as	irrational,	we	can	think	of	them	as	a
rational	response	to	constraints	on	computation.

Developing	bounded	optimality	as	a	theory	of	human	behavior	is	an	ongoing
project	that	my	research	group	and	others	are	actively	pursuing.	If	these	efforts
succeed,	they	will	provide	us	with	the	most	important	ingredient	we	need	for
making	artificial-intelligence	systems	smarter	when	they	try	to	interpret	people’s
actions,	by	enabling	a	generative	model	for	human	behavior.

Taking	into	account	the	computational	constraints	that	factor	into	human
cognition	will	be	particularly	important	as	we	begin	to	develop	automated
systems	that	aren’t	subject	to	the	same	constraints.	Imagine	a	superintelligent	AI
system	trying	to	figure	out	what	people	care	about.	Curing	cancer	or	confirming
the	Riemann	hypothesis,	for	instance,	won’t	seem,	to	such	an	AI,	like	things	that
are	all	that	important	to	us:	If	these	solutions	are	obvious	to	the	superintelligent
system,	it	might	wonder	why	we	haven’t	found	them	ourselves,	and	conclude
that	those	problems	don’t	mean	much	to	us.	If	we	cared	and	the	problems	were
so	simple,	we	would	have	solved	them	already.	A	reasonable	inference	would	be
that	we	do	science	and	math	purely	because	we	enjoy	doing	science	and	math,
not	because	we	care	about	the	outcomes.

Anybody	who	has	young	children	can	appreciate	the	problem	of	trying	to
interpret	the	behavior	of	an	agent	that	is	subject	to	computational	constraints
different	from	one’s	own.	Parents	of	toddlers	can	spend	hours	trying	to
disentangle	the	true	motivations	behind	seemingly	inexplicable	behavior.	As	a
father	and	a	cognitive	scientist,	I	found	it	was	easier	to	understand	the	sudden
rages	of	my	two-year-old	when	I	recognized	that	she	was	at	an	age	where	she
could	appreciate	that	different	people	have	different	desires	but	not	that	other



could	appreciate	that	different	people	have	different	desires	but	not	that	other
people	might	not	know	what	her	own	desires	were.	It’s	easy	to	understand,	then,
why	she	would	get	annoyed	when	people	didn’t	do	what	she	(apparently
transparently)	wanted.	Making	sense	of	toddlers	requires	building	a	cognitive
model	of	the	mind	of	a	toddler.	Superintelligent	AI	systems	face	the	same
challenge	when	trying	to	make	sense	of	human	behavior.

Superintelligent	AI	may	still	be	a	long	way	off.	In	the	short	term,	devising
better	models	of	people	can	prove	extremely	valuable	to	any	company	that
makes	money	by	analyzing	human	behavior—which	at	this	point	is	pretty	much
every	company	that	does	business	on	the	Web.	Over	the	last	few	years,
significant	new	commercial	technologies	for	interpreting	images	and	text	have
resulted	from	developing	good	models	for	vision	and	language.	Developing
good	models	of	people	is	the	next	frontier.

Of	course,	understanding	how	human	minds	work	isn’t	just	a	way	to	make
computers	better	at	interacting	with	people.	The	trade-off	between	making
mistakes	and	thinking	too	much	that	characterizes	human	cognition	is	a	trade-off
faced	by	any	real-world	intelligent	agent.	Human	beings	are	an	amazing	example
of	systems	that	act	intelligently	despite	significant	computational	constraints.
We’re	quite	good	at	developing	strategies	that	allow	us	to	solve	problems	pretty
well	without	working	too	hard.	Understanding	how	we	do	this	will	be	a	step
toward	making	computers	work	smarter,	not	harder.



Chapter	13

PUTTING	THE	HUMAN	INTO	THE	AI	EQUATION

ANCA	DRAGAN

Anca	Dragan	is	an	assistant	professor	in	the	Department	of	Electrical	Engineering
and	Computer	Sciences	at	UC	Berkeley.	She	co-founded	and	serves	on	the

steering	committee	for	the	Berkeley	AI	Research	(BAIR)	Lab	and	is	a	co-principal
investigator	in	Berkeley’s	Center	for	Human-Compatible	AI.

Romanian-born	Anca	Dragan’s	research	focuses	on	algorithms	that	will	enable	robots	to
work	with,	around,	and	in	support	of	people.	She	runs	the	InterACT	Laboratory	at	Berkeley,
where	her	students	work	across	different	applications,	from	assistive	robots	to
manufacturing	to	autonomous	cars,	and	draw	from	optimal	control,	planning,	estimation,
learning,	and	cognitive	science.	Barely	into	her	thirties,	she	has	co-authored	a	number	of
papers	with	her	veteran	Berkeley	colleague	and	mentor	Stuart	Russell	that	address
various	aspects	of	machine	learning	and	the	knotty	problems	of	value	alignment.

She	shares	Stuart’s	preoccupation	with	AI	safety.	“An	immediate	risk	is	agents
producing	unwanted,	surprising	behavior,”	she	told	an	interviewer	from	the	Future	of	Life
Institute.	“Even	if	we	plan	to	use	AI	for	good,	things	can	go	wrong,	precisely	because	we
are	bad	at	specifying	objectives	and	constraints	for	AI	agents.	Their	solutions	are	often	not
what	we	had	in	mind.”

Her	principal	goal	is	therefore	to	help	robots	and	programmers	alike	to	overcome	the
many	conflicts	that	arise	because	of	a	lack	of	transparency	about	each	other’s	intentions.
Robots,	she	says,	need	to	ask	us	questions.	They	should	wonder	about	their	assignments,
and	they	should	pester	their	human	programmers	until	everybody	is	on	the	same	page—so
as	to	avoid	what	she	has	euphemistically	called	“unexpected	side	effects.”



A t	the	core	of	artificial	intelligence	is	our	mathematical	definition	of	what
an	AI	agent	(a	robot)	is.	When	we	define	a	robot,	we	define	states,
actions,	and	rewards.	Think	of	a	delivery	robot,	for	instance.	States	are

locations	in	the	world,	and	actions	are	motions	that	the	robot	makes	to	get	from
one	position	to	a	nearby	one.	To	enable	the	robot	to	decide	on	which	actions	to
take,	we	define	a	reward	function—a	mapping	from	states	and	actions	to	scores
indicating	how	good	that	action	was	in	that	state—and	have	the	robot	choose
actions	that	accumulate	the	most	“reward.”	The	robot	gets	a	high	reward	when	it
reaches	its	destination,	and	it	incurs	a	small	cost	every	time	it	moves;	this	reward
function	incentivizes	the	robot	to	get	to	the	destination	as	quickly	as	possible.
Similarly,	an	autonomous	car	might	get	a	reward	for	making	progress	on	its
route	and	incur	a	cost	for	getting	too	close	to	other	cars.

Given	these	definitions,	a	robot’s	job	is	to	figure	out	what	actions	it	should
take	in	order	to	get	the	highest	cumulative	reward.	We’ve	been	working	hard	in
AI	on	enabling	robots	to	do	just	that.	Implicitly,	we’ve	assumed	that	if	we’re
successful—if	robots	can	take	any	problem	definition	and	turn	it	into	a	policy	for
how	to	act—we	will	get	robots	that	are	useful	to	people	and	to	society.

We	haven’t	been	too	wrong	so	far.	If	you	want	an	AI	that	classifies	cells	as
either	cancerous	or	benign,	or	a	robot	that	vacuums	the	living	room	rug	while
you’re	at	work,	we’ve	got	you	covered.	Some	real-world	problems	can	indeed	be
defined	in	isolation,	with	clear-cut	states,	actions,	and	rewards.	But	with
increasing	AI	capability,	the	problems	we	want	to	tackle	don’t	fit	neatly	into	this
framework.	We	can	no	longer	cut	off	a	tiny	piece	of	the	world,	put	it	in	a	box,
and	give	it	to	a	robot.	Helping	people	is	starting	to	mean	working	in	the	real
world,	where	you	have	to	actually	interact	with	people	and	reason	about	them.
“People”	will	have	to	formally	enter	the	AI	problem	definition	somewhere.

Autonomous	cars	are	already	being	developed.	They	will	need	to	share	the
road	with	human-driven	vehicles	and	pedestrians	and	learn	to	make	the	trade-off
between	getting	us	home	as	fast	as	possible	and	being	considerate	of	other
drivers.	Personal	assistants	will	need	to	figure	out	when	and	how	much	help	we
really	want	and	what	types	of	tasks	we	prefer	to	do	on	our	own	versus	what	we
can	relinquish	control	over.	A	DSS	(Decision	Support	System)	or	a	medical
diagnostic	system	will	need	to	explain	its	recommendations	to	us	so	we	can
understand	and	verify	them.	Automated	tutors	will	need	to	determine	what



understand	and	verify	them.	Automated	tutors	will	need	to	determine	what
examples	are	informative	or	illustrative—not	to	their	fellow	machines	but	to	us
humans.

Looking	further	into	the	future,	if	we	want	highly	capable	AIs	to	be
compatible	with	people,	we	can’t	create	them	in	isolation	from	people	and	then
try	to	make	them	compatible	afterward;	rather,	we’ll	have	to	define	“human-
compatible”	AI	from	the	get-go.	People	can’t	be	an	afterthought.

When	it	comes	to	real	robots	helping	real	people,	the	standard	definition	of
AI	fails	us,	for	two	fundamental	reasons:	First,	optimizing	the	robot’s	reward
function	in	isolation	is	different	from	optimizing	it	when	the	robot	acts	around
people,	because	people	take	actions,	too.	We	make	decisions	in	service	of	our
own	interests,	and	these	decisions	dictate	what	actions	we	execute.	Moreover,
we	reason	about	the	robot—that	is,	we	respond	to	what	we	think	it’s	doing	or
will	do	and	what	we	think	its	capabilities	are.	Whatever	actions	the	robot	decides
on	need	to	mesh	well	with	ours.	This	is	the	coordination	problem.

Second,	it	is	ultimately	a	human	who	determines	what	the	robot’s	reward
function	should	be	in	the	first	place.	And	the	reward	is	meant	to	incentivize
robot	behavior	that	matches	what	the	end	user	wants,	what	the	designer	wants,	or
what	society	as	a	whole	wants.	I	believe	that	capable	robots	that	go	beyond	very
narrowly	defined	tasks	will	need	to	understand	this	to	achieve	compatibility	with
humans.	This	is	the	value-alignment	problem.

THE	COORDINATION	PROBLEM:	PEOPLE
ARE	MORE	THAN	OBJECTS	IN	THE
ENVIRONMENT

When	we	design	robots	for	a	particular	task,	it’s	tempting	to	abstract	people
away.	A	robotic	personal	assistant,	for	example,	needs	to	know	how	to	move	to
pick	up	objects,	so	we	define	that	problem	in	isolation	from	the	people	for	whom
the	robot	is	picking	these	objects	up.	Still,	as	the	robot	moves	around,	we	don’t
want	it	bumping	into	anything,	and	that	includes	people,	so	we	might	include	the
physical	location	of	the	person	in	the	definition	of	the	robot’s	state.	Same	for
cars:	We	don’t	want	them	colliding	with	other	cars,	so	we	enable	them	to	track
the	positions	of	those	other	cars	and	assume	that	they’ll	be	moving	consistently
in	the	same	direction	in	the	future.	A	human	being,	in	this	sense,	is	no	different
to	a	robot	from	a	ball	rolling	on	a	flat	surface.	The	ball	will	behave	in	the	next



to	a	robot	from	a	ball	rolling	on	a	flat	surface.	The	ball	will	behave	in	the	next
few	seconds	the	same	way	it	behaved	in	the	past	few;	it	keeps	rolling	in	the	same
direction	at	roughly	the	same	speed.	This	is	of	course	nothing	like	real	human
behavior,	but	such	simplification	enables	many	robots	to	succeed	in	their	tasks
and,	for	the	most	part,	stay	out	of	people’s	way.	A	robot	in	your	house,	for
example,	might	see	you	coming	down	the	hall,	move	aside	to	let	you	pass,	and
resume	its	task	once	you’ve	gone	by.

As	robots	have	become	more	capable,	though,	treating	people	as	consistently
moving	obstacles	is	starting	to	fall	short.	A	human	driver	switching	lanes	won’t
continue	in	the	same	direction	but	will	move	straight	ahead	once	they’ve	made
the	lane	change.	When	you	reach	for	something,	you	often	reach	around	other
objects	and	stop	when	you	get	to	the	one	you	want.	When	you	walk	down	a
hallway,	you	have	a	destination	in	mind:	You	might	take	a	right	into	the
bedroom	or	a	left	into	the	living	room.	Relying	on	the	assumption	that	we’re	no
different	from	a	rolling	ball	leads	to	inefficiency	when	the	robot	stays	out	of	the
way	if	it	doesn’t	need	to,	and	it	can	imperil	the	robot	when	the	person’s	behavior
changes.	Even	just	to	stay	out	of	the	way,	robots	have	to	be	somewhat	accurate
at	anticipating	human	actions.	And,	unlike	the	rolling	ball,	what	people	will	do
depends	on	what	they	decide	to	do.	So	to	anticipate	human	actions,	robots	need
to	start	understanding	human	decision	making.	And	that	doesn’t	mean	assuming
that	human	behavior	is	perfectly	optimal;	that	might	be	enough	for	a	chess-or
Go-playing	robot,	but	in	the	real	world,	people’s	decisions	are	less	predictable
than	the	optimal	move	in	a	board	game.

This	need	to	understand	human	actions	and	decisions	applies	to	physical	and
nonphysical	robots	alike.	If	either	sort	bases	its	decision	about	how	to	act	on	the
assumption	that	a	human	will	do	one	thing	but	the	human	does	something	else,
the	resulting	mismatch	could	be	catastrophic.	For	cars,	it	can	mean	collisions.
For	an	AI	with,	say,	a	financial	or	economic	role,	the	mismatch	between	what	it
expects	us	to	do	and	what	we	actually	do	could	have	even	worse	consequences.

One	alternative	is	for	the	robot	not	to	predict	human	actions	but	instead	just
protect	against	the	worst-case	human	action.	Often	when	robots	do	that,	though,
they	stop	being	all	that	useful.	With	cars,	this	results	in	being	stuck,	because	it
makes	every	move	too	risky.

All	this	puts	us,	the	AI	community,	into	a	bind.	It	suggests	that	robots	will
need	accurate	(or	at	least	reasonable)	predictive	models	of	whatever	people
might	decide	to	do.	Our	state	definition	can’t	just	include	the	physical	position	of
humans	in	the	world.	Instead,	we’ll	also	need	to	estimate	something	internal	to



people.	We’ll	need	to	design	robots	that	account	for	this	human	internal	state,
and	that’s	a	tall	order.	Luckily,	people	tend	to	give	robots	hints	as	to	what	their
internal	state	is:	Their	ongoing	actions	give	the	robot	observations	(in	the
Bayesian	inference	sense)	about	their	intentions.	If	we	start	walking	toward	the
right	side	of	the	hallway,	we’re	probably	going	to	enter	the	next	room	on	the
right.

What	makes	the	problem	more	complicated	is	the	fact	that	people	don’t	make
decisions	in	isolation.	It	would	be	one	thing	if	robots	could	predict	the	actions	a
person	intends	to	take	and	simply	figure	out	what	to	do	in	response.	But
unfortunately	this	can	lead	to	ultradefensive	robots	that	confuse	the	heck	out	of
people.	(Think	of	human	drivers	stuck	at	four-way	stops,	for	instance.)	What	the
intent-prediction	approach	misses	is	that	the	moment	the	robot	acts,	that
influences	what	actions	the	human	starts	taking.

There	is	a	mutual	influence	between	robots	and	people,	one	that	robots	will
need	to	learn	to	navigate.	It	is	not	always	just	about	the	robot	planning	around
people;	people	plan	around	the	robot,	too.	It	is	important	for	robots	to	account
for	this	when	deciding	which	actions	to	take,	be	it	on	the	road,	in	the	kitchen,	or
even	in	virtual	spaces,	where	an	action	might	be	making	a	purchase	or	adopting
a	new	strategy.	Doing	so	should	endow	robots	with	coordination	strategies,
enabling	them	to	take	part	in	the	negotiations	people	seamlessly	carry	out	day	to
day—from	who	goes	first	at	an	intersection	or	through	a	narrow	door,	to	what
role	we	each	take	when	we	collaborate	on	preparing	breakfast,	to	coming	to	a
consensus	on	what	next	step	to	take	on	a	project.

Finally,	just	as	robots	need	to	anticipate	what	people	will	do	next,	people
need	to	do	the	same	with	robots.	This	is	why	transparency	is	important.	Not	only
will	robots	need	good	mental	models	of	people	but	people	will	need	good	mental
models	of	robots.	The	model	that	a	person	has	of	the	robot	has	to	go	into	our
state	definition	as	well,	and	the	robot	has	to	be	aware	of	how	its	actions	are
changing	that	model.	Much	like	the	robot	treating	human	actions	as	clues	to
human	internal	states,	people	will	change	their	beliefs	about	the	robot	as	they
observe	its	actions.	Unfortunately,	the	giving	of	clues	doesn’t	come	as	naturally
to	robots	as	it	does	to	humans;	we’ve	had	a	lot	of	practice	communicating
implicitly	with	people.	But	enabling	robots	to	account	for	the	change	that	their
actions	are	causing	to	the	person’s	mental	model	of	the	robot	can	lead	to	more
carefully	chosen	actions	that	do	give	the	right	clues—that	clearly	communicate
to	people	about	the	robot’s	intentions,	its	reward	function,	its	limitations.	For
instance,	a	robot	might	alter	its	motion	when	carrying	something	heavy	to



emphasize	the	difficulty	it	has	in	maneuvering	heavy	objects.	The	more	that
people	know	about	the	robot,	the	easier	it	is	to	coordinate	with	it.

Achieving	action	compatibility	will	require	robots	to	anticipate	human
actions,	account	for	how	those	actions	will	influence	their	own,	and	enable
people	to	anticipate	robot	actions.	Research	has	made	a	degree	of	progress	in
meeting	these	challenges,	but	we	still	have	a	long	way	to	go.

THE	VALUE	ALIGNMENT	PROBLEM:
PEOPLE	HOLD	THE	KEY	TO	THE	ROBOT’S
REWARD	FUNCTION

Progress	on	enabling	robots	to	optimize	reward	puts	more	burden	on	us,	the
designers,	to	give	them	the	right	reward	to	optimize	in	the	first	place.	The
original	thought	was	that	for	any	task	we	wanted	the	robot	to	do,	we	could	write
down	a	reward	function	that	incentivizes	the	right	behavior.	Unfortunately,	what
often	happens	is	that	we	specify	some	reward	function	and	the	behavior	that
emerges	out	of	optimizing	it	isn’t	what	we	want.	Intuitive	reward	functions,
when	combined	with	unusual	instances	of	a	task,	can	lead	to	unintuitive
behavior.	You	reward	an	agent	in	a	racing	game	with	a	score	in	the	game,	and	in
some	cases	it	finds	a	loophole	that	it	exploits	to	gain	infinitely	many	points
without	actually	winning	the	race.	Stuart	Russell	and	Peter	Norvig	give	a
beautiful	example	in	their	book	Artificial	Intelligence:	A	Modern	Approach:
Rewarding	a	vacuuming	robot	for	how	much	dust	it	sucks	in	results	in	the	robot
deciding	to	dump	out	dust	so	that	it	can	suck	it	in	again	and	get	more	reward.

In	general,	humans	have	had	a	notoriously	difficult	time	specifying	exactly
what	they	want,	as	exemplified	by	all	those	genie	legends.	An	AI	paradigm	in
which	robots	get	some	externally	specified	reward	fails	when	that	reward	is	not
perfectly	well	thought	out.	It	may	incentivize	the	robot	to	behave	in	the	wrong
way	and	even	resist	our	attempts	to	correct	its	behavior,	as	that	would	lead	to	a
lower	specified	reward.

A	seemingly	better	paradigm	might	be	for	robots	to	optimize	for	what	we
internally	want,	even	if	we	have	trouble	explicating	it.	They	would	use	what	we
say	and	do	as	evidence	about	what	we	want,	rather	than	interpreting	it	literally
and	taking	it	as	a	given.	When	we	write	down	a	reward	function,	the	robot



should	understand	that	we	might	be	wrong:	that	we	might	not	have	considered
all	facets	of	the	task;	that	there’s	no	guarantee	that	said	reward	function	will
always	lead	to	the	behavior	we	want.	The	robot	should	integrate	what	we	wrote
down	into	its	understanding	of	what	we	want,	but	it	should	also	have	a	back-and-
forth	with	us	to	elicit	clarifying	information.	It	should	seek	our	guidance,
because	that’s	the	only	way	to	optimize	the	true	desired	reward	function.

Even	if	we	give	robots	the	ability	to	learn	what	we	want,	an	important
question	remains	that	AI	alone	won’t	be	able	to	answer.	We	can	make	robots	try
to	align	with	a	person’s	internal	values,	but	there’s	more	than	one	person
involved	here.	The	robot	has	an	end	user	(or	perhaps	a	few,	like	a	personal	robot
caring	for	a	family,	a	car	driving	a	few	passengers	to	different	destinations,	or	an
office	assistant	for	an	entire	team);	it	has	a	designer	(or	perhaps	a	few);	and	it
interacts	with	society—the	autonomous	car	shares	the	road	with	pedestrians,
human-driven	vehicles,	and	other	autonomous	cars.	How	to	combine	these
people’s	values	when	they	might	be	in	conflict	is	an	important	problem	we	need
to	solve.	AI	research	can	give	us	the	tools	to	combine	values	in	any	way	we
decide	but	can’t	make	the	necessary	decision	for	us.

In	short,	we	need	to	enable	robots	to	reason	about	us—to	see	us	as	something
more	than	obstacles	or	perfect	game	players.	We	need	them	to	take	our	human
nature	into	account,	so	that	they	are	well	coordinated	and	well	aligned	with	us.	If
we	succeed,	we	will	indeed	have	tools	that	substantially	increase	our	quality	of
life.



Chapter	14

GRADIENT	DESCENT

CHRIS	ANDERSON

Chris	Anderson	is	an	entrepreneur;	former	editor-in-chief	of	Wired;	co-founder	and
CEO	of	3DR;	and	author	of	The	Long	Tail,	Free,	and	Makers.

Chris	Anderson’s	company,	3DR,	helped	start	the	modern	drone	industry	and	now
focuses	on	drone	data	software.	He	got	his	start	building	an	open-source	aerial	robotics
community	called	DIY	Drones,	and	undertook	some	ill-advised	early	experiments,	such	as
buzzing	Lawrence	Berkeley	Laboratory	with	one	of	his	self-flying	spies.	It	might	well	have
been	a	case	of	antic	gene	expression,	since	he’s	descended	from	a	founder	of	the
American	anarchist	movement.	Chris	ran	Wired	magazine,	a	go-to	publication	for	techno-
utopians	and	-dystopians	alike,	from	2001	to	2012;	during	his	tenure	it	won	five	National
Magazine	Awards.

Chris	dislikes	the	term	“roboticist”	(“like	any	properly	humbled	roboticist,	I	don’t	call
myself	one”).	He	began	as	a	physicist.	“I	turned	out	to	be	a	bad	physicist,”	he	told	me
recently.	“I	struggled	on,	went	to	Los	Alamos,	and	thought,	‘Well,	maybe	I’m	not	going	to
be	a	Nobel	Prize	winner,	but	I	can	still	be	a	scientist.’	All	of	us	who	were	in	physics	and
had	these	romantic	heroes—the	Feynmans,	the	Manhattan	Project—realized	that	our
career	trajectory	would	at	best	be	working	on	one	project	at	CERN	for	fifteen	years.	That
project	would	either	be	a	failure,	in	which	case	there	would	be	no	paper,	or	it	would	be	a
success,	in	which	case	you’d	be	author	number	three	hundred	on	the	paper	and	become
an	assistant	professor	at	Iowa	State.

“Most	of	my	classmates	went	to	Wall	Street	to	become	quants,	and	to	them	we	owe	the
subprime	mortgage.	Others	went	on	to	start	the	Internet.	First,	we	built	the	Internet	by
connecting	physics	labs;	second,	we	built	the	Web;	third,	we	were	the	first	to	do	Big	Data.
We	had	supercomputers—Crays—which	were	half	the	power	of	your	phone	now,	but	they
were	the	supercomputers	of	the	time.	Meanwhile,	we	were	reading	this	magazine	called
Wired,	which	came	out	in	1993,	and	we	realized	that	this	tool	we	scientists	use	could	have
applications	for	everybody.	The	Internet	wasn’t	just	about	scientific	data,	it	was	a	mind-
blowing	cultural	revolution.	So	when	Condé	Nast	asked	me	to	take	over	the	magazine,	I
was	like,	‘Absolutely!’	This	magazine	changed	my	life.”

He	had	five	children	by	that	time—video-game	players—who	got	him	into	the	“flying
robots.”	He	quit	his	day	job	at	Wired.	The	rest	is	Silicon	Valley	history.



LIFE

The	mosquito	first	detects	my	scent	from	thirty	feet	away.	It	triggers	its	pursuit
function,	which	consists	of	the	simplest	possible	rules.	First,	move	in	a	random
direction.	If	the	scent	increases,	continue	moving	in	that	direction.	If	the	scent
decreases,	move	in	the	opposite	direction.	If	the	scent	is	lost,	move	sideways
until	a	scent	is	picked	up	again.	Repeat	until	contact	with	the	target	is	achieved.

The	plume	of	my	scent	is	densest	next	to	me	and	disperses	as	it	spreads,	an
invisible	fog	of	particles	exuded	from	my	skin	that	moves	like	smoke	with	the
wind.	The	closer	to	my	skin,	the	higher	the	particle	density;	the	farther	away,	the
lower.	This	decrease	is	called	a	gradient,	which	describes	any	gradual	transition
from	one	level	to	another	one—as	opposed	to	a	“step	function,”	which	describes
a	discrete	change.

Once	the	mosquito	follows	this	gradient	to	its	source	using	its	simple
algorithm,	it	lands	on	my	skin,	which	it	senses	with	the	heat	detectors	in	its	feet,
which	are	attuned	to	another	gradient—temperature.	It	then	pushes	its	needle-
shaped	proboscis	through	the	surface,	where	a	third	set	of	sensors	in	the	tip
detect	yet	another	gradient,	that	of	blood	density.	This	flexible	needle	wriggles
around	under	my	skin	until	the	scent	of	blood	steers	it	to	a	capillary,	which	it
punctures.	Then	my	blood	begins	to	flow	into	the	mosquito.	Mission
accomplished.	Ouch.

What	seems	like	the	powerful	radar	of	insects	in	the	dark,	with	blood-seeking
intelligence	inexplicable	for	such	tiny	brains,	is	actually	just	a	sensitive	nose
with	almost	no	intelligence	at	all.	Mosquitoes	are	closer	to	plants	that	follow	the
sun	than	to	guided	missiles.	Yet	by	applying	this	simple	“follow	your	nose”	rule
quite	literally,	they	can	travel	through	a	house	to	find	you,	slip	through	cracks	in
a	screen	door,	even	zero	in	on	the	tiny	strip	of	skin	you	left	exposed	between	hat
and	shirt	collar.	It’s	just	a	random	walk,	combined	with	flexible	wings	and	legs
that	let	the	insect	bounce	off	obstacles	and	an	instinct	to	descend	a	chemical
gradient.

But	“gradient	descent”	is	much	more	than	bug	navigation.	Look	around	you
and	you’ll	find	it	everywhere,	from	the	most	basic	physical	rules	of	the	universe
to	the	most	advanced	artificial	intelligence.



to	the	most	advanced	artificial	intelligence.

THE	UNIVERSE

We	live	in	a	world	of	countless	gradients,	from	light	and	heat	to	gravity	and
chemical	trails	(chemtrails!).	Water	flows	along	a	gravity	gradient	downhill,	and
your	body	lives	on	chemical	solutions	flowing	across	cell	membranes	from	high
concentration	to	low.	Every	action	in	the	universe	is	driven	by	some	gradient
drive,	from	the	movement	of	the	planets	around	gravity	gradients	to	the	joining
of	atoms	along	electric-charge	gradients	to	form	molecules.	Our	own	urges,	such
as	hunger	and	sleepiness,	are	driven	by	electrochemical	gradients	in	our	bodies.
And	our	brain’s	functions,	the	electrical	signals	moving	along	ion	channels	in
the	synapses	between	our	neurons,	are	simply	atoms	and	electrons	flowing
“downhill”	along	yet	more	electrical	and	chemical	gradients.	Forget	clockwork
analogies;	our	brains	are	closer	to	a	system	of	canals	and	locks,	with	signals
traveling	like	water	from	one	state	to	another.

As	I	sit	here	typing,	I’m	actually	seeking	equilibrium	states	in	an	n-
dimensional	topology	of	gradients.	Take	just	one:	heat.	My	body	temperature	is
higher	than	the	air	temperature,	so	I	radiate	heat,	which	must	be	replenished	in
my	core.	Even	the	bacteria	in	my	digestive	tract	use	sensors	to	measure	sugar
concentrations	in	the	liquid	around	them	and	whip	their	taillike	flagella	to	swim
“upstream”	where	the	sugar	supply	is	richest.	The	natural	state	of	all	systems	is
to	flow	to	lower	energy	states,	a	process	that	is	broadly	described	by	entropy	(the
tendency	of	things	to	go	from	ordered	to	disordered	states;	all	things	will	fall
apart	eventually,	including	the	universe	itself).

But	how	do	you	explain	more	complex	behavior,	such	as	our	ability	to	make
decisions?	The	answer	is	just	more	gradient	descent.

OUR	BRAINS

As	miraculous	and	inscrutable	as	our	human	intelligence	is,	science	is	coming
around	to	the	view	that	our	brains	operate	the	same	way	as	any	other	complex
system	with	layers	and	feedback	loops,	all	pursuing	what	we	mathematically	call
“optimization	functions”	but	you	could	just	as	well	call	“flowing	downhill”	in



“optimization	functions”	but	you	could	just	as	well	call	“flowing	downhill”	in
some	sense.

The	essence	of	intelligence	is	learning,	and	we	do	that	by	correlating	inputs
with	positive	or	negative	scores	(rewards	or	punishments).	So	for	a	baby,	“this
sound”	(your	mother’s	voice)	is	associated	with	other	learned	connections	to
your	mother,	such	as	food	or	comfort.	Likewise,	“this	muscle	motion	brings	my
thumb	closer	to	my	mouth.”	Over	time	and	trial	and	error,	the	brain’s	neural
network	reinforces	those	connections.	Meanwhile,	“this	muscle	motion	does	not
bring	my	thumb	close	to	my	mouth”	is	a	negative	correlation,	and	the	brain	will
weaken	those	connections.

However,	this	is	too	simplistic.	The	limits	of	gradient	descent	constitute	the
so-called	local-minima	problem	(or	local-maxima	problem,	if	you’re	doing	a
gradient	ascent).	If	you	are	walking	in	a	mountainous	region	and	want	to	get
home,	always	walking	downhill	will	most	likely	get	you	to	the	next	valley	but
not	necessarily	over	the	other	mountains	that	lie	around	it	and	between	you	and
home.	For	that,	you	either	need	a	mental	model	(i.e.,	a	map)	of	the	topology,	so
you	know	where	to	ascend	to	get	out	of	the	valley,	or	you	need	to	switch
between	gradient	descent	and	random	walks	so	you	can	bounce	your	way	out	of
the	region.

Which	is,	in	fact,	exactly	what	the	mosquito	does	in	following	my	scent:	It
descends	when	it’s	in	my	plume	and	random-walks	when	it	has	lost	the	trail	or
hit	an	obstacle.

AI

So	that’s	nature.	What	about	computers?	Traditional	software	doesn’t	work	that
way—it	follows	deterministic	trees	of	hard	logic:	“If	this,	do	that.”	But	software
that	interacts	with	the	physical	world	tends	to	work	more	like	the	physical	world.
That	means	dealing	with	noisy	inputs	(sensors	or	human	behavior)	and	providing
probabilistic,	not	deterministic,	results.	And	that,	in	turn,	means	more	gradient
descent.

AI	software	is	the	best	example	of	this,	especially	the	kinds	of	AI	that	use
artificial	neural-network	models	(including	convolutional,	or	“deep,”	neural
networks	of	many	layers).	In	these,	a	typical	process	consists	of	“training”	them
by	showing	them	lots	of	examples	of	something	you	want	them	to	learn	(pictures
of	cats	labeled	“cat,”	for	example),	along	with	examples	of	other	random	data



(pictures	of	other	things).	This	is	called	“supervised	learning,”	because	the
neural	network	is	being	taught	by	example,	including	the	use	of	“adversarial
training”	with	data	that	is	not	correlated	to	the	desired	result.

These	neural	networks,	like	their	biological	models,	consist	of	layers	of
thousands	of	nodes	(“neurons,”	in	the	analogy),	each	of	which	is	connected	to	all
the	nodes	in	the	layers	above	and	below	by	connections	that	initially	have
random	strength.	The	top	layer	is	presented	with	data,	and	the	bottom	layer	is
given	the	correct	answer.	Any	series	of	connections	that	happened	to	land	on	the
right	answer	is	made	stronger	(“rewarded”),	and	those	that	were	wrong	are	made
weaker	(“punished”).	Repeat	tens	of	thousands	of	times	and	eventually	you	have
a	fully	trained	network	for	that	kind	of	data.

You	can	think	of	all	the	possible	combinations	of	connections	as	like	the
surface	of	a	planet,	with	hills	and	valleys.	(Ignore	for	the	moment	that	the
surface	is	just	3D	and	the	actual	topology	is	many-dimensional.)	The
optimization	that	the	network	goes	through	as	it	learns	is	just	a	process	of
finding	the	deepest	valley	on	the	planet.	This	consists	of	the	following	steps:

1.	 Define	a	“cost	function”	that	determines	how	well	the	network	solved
the	problem.

2.	 Run	the	network	once	and	see	how	it	did	at	that	cost	function.
3.	 Change	the	values	of	the	connections	and	do	it	again.	The	difference

between	those	two	results	is	the	direction,	or	“slope,”	in	which	the
network	moved	between	the	two	trials.

4.	 If	the	slope	is	pointed	“downhill,”	change	the	connections	more	in
that	direction.	If	it’s	“uphill,”	change	them	in	the	opposite	direction.

5.	 Repeat	until	there	is	no	improvement	in	any	direction.	That	means
that	you’re	in	a	minimum.

Congrats!	But	it’s	probably	a	local	minimum,	or	a	little	dip	in	the	mountains,
so	you’re	going	to	have	to	keep	going	if	you	want	to	do	better.	You	can’t	keep
going	downhill,	and	you	don’t	know	where	the	absolute	lowest	point	is,	so
you’re	going	to	have	to	find	it	somehow.	There	are	many	ways	to	do	that,	but
here	are	a	few:

1.	 Try	lots	of	times	with	different	random	settings	and	share	learning
from	each	trial;	essentially,	you	are	shaking	the	system	to	see	if	it



settles	in	a	lower	state.	If	one	of	the	other	trials	found	a	lower	valley,
start	with	those	settings.

2.	 Don’t	just	go	downhill	but	stumble	around	a	bit	like	a	drunk,	too	(this
is	called	“stochastic	gradient	descent”).	If	you	do	this	long	enough,
you’ll	eventually	find	rock	bottom.	There’s	a	metaphor	for	life	in
that.

3.	 Just	look	for	“interesting”	features,	which	are	defined	by	diversity
(edges	or	color	changes,	for	example).	Warning:	This	way	can	lead	to
madness—too	much	“interestingness”	draws	the	network	to	optical
illusions.	So	keep	it	sane,	and	emphasize	the	kinds	of	features	that	are
likely	to	be	real	in	nature,	as	opposed	to	artifacts	or	errors.	This	is
called	“regularization,”	and	there	are	lots	of	techniques	for	this,	such
as	whether	those	kinds	of	features	have	been	seen	before	(learned)	or
are	too	“high	frequency”	(like	static)	rather	than	“low	frequency”
(more	continuous,	like	actual	real-world	features).

Just	because	AI	systems	sometimes	end	up	in	local	minima,	don’t	conclude
that	this	makes	them	any	less	like	life.	Humans—indeed,	probably	all	life-forms
—are	often	stuck	in	local	minima.

Take	our	understanding	of	the	game	of	Go,	which	was	taught	and	learned	and
optimized	by	humans	for	thousands	of	years.	It	took	AIs	less	than	three	years	to
find	out	that	we’d	been	playing	it	wrong	all	along	and	that	there	were	better,
almost	alien,	solutions	to	the	game	that	we’d	never	considered—mostly	because
our	brains	don’t	have	the	processing	power	to	consider	so	many	moves	ahead.

Even	in	chess,	which	is	ten	times	easier	and	was	thought	to	be	understood,
brute-force	machines	could	beat	us	at	our	own	strategies.	Chess,	too,	turned	out,
when	explored	by	superior	neural-network	AI	systems,	to	have	weird	but
superior	strategies	we’d	never	considered,	like	sacrificing	queens	early	to	gain
an	obscure	long-term	advantage.	It’s	as	if	we	had	been	playing	2D	versions	of
games	that	actually	existed	in	higher	dimensions.

If	any	of	this	sounds	familiar,	it’s	because	physics	has	been	wrestling	with
these	sorts	of	topological	problems	for	decades.	The	notion	of	space	being
many-dimensional,	and	math	reduced	to	understanding	the	geometries	and
interactions	of	“membranes”	beyond	the	reach	of	our	senses,	is	where	Grand
Unified	Theorists	go	to	die.	But	unlike	multidimensional	theoretical	physics,	AI
is	something	we	can	actually	experiment	with	and	measure.

So	that’s	what	we’re	going	to	do.	The	next	few	decades	will	be	an	explosive
exploration	of	ways	to	think	that	7	million	years	of	evolution	never	found.	We’re



exploration	of	ways	to	think	that	7	million	years	of	evolution	never	found.	We’re
going	to	rock	ourselves	out	of	local	minima	and	find	deeper	minima,	maybe
even	global	minima.	And	when	we’re	done,	we	may	even	have	taught	machines
to	seem	as	smart	as	a	mosquito,	forever	descending	the	cosmic	gradients	to	an
ultimate	goal,	whatever	that	may	be.



Chapter	15

“INFORMATION”	FOR	WIENER,	FOR	SHANNON,
AND	FOR	US

DAVID	KAISER

David	Kaiser	is	Germeshausen	Professor	of	the	History	of	Science	and	professor
of	physics	at	MIT,	and	head	of	its	Program	in	Science,	Technology	and	Society.	He
is	the	author	of	How	the	Hippies	Saved	Physics:	Science,	Counterculture,	and	the
Quantum	Revival	and	American	Physics	and	the	Cold	War	Bubble	(forthcoming).

David	Kaiser	is	a	physicist	atypically	interested	in	the	intersection	of	his	science	with
politics	and	culture,	about	which	he	has	written	widely.

In	the	first	meeting	(in	Washington,	Connecticut)	that	preceded	the	crafting	of	this
book,	he	commented	on	the	change	in	how	“information”	is	viewed	since	Wiener’s	time:
the	military-industrial	Cold	War	era.	Back	then,	Wiener	compared	information,
metaphorically,	to	entropy,	in	that	it	could	not	be	conserved—i.e.,	monopolized;	thus,	he
argued,	our	atomic	secrets	and	other	such	classified	matters	would	not	remain	secrets	for
long.	Today,	whereas	(as	Wiener	might	have	expected)	information,	fake	or	not,	is	leaking
all	over	the	other	Washington,	information	in	the	economic	world	has	indeed	been
stockpiled,	commodified,	and	monetized.

This	lockdown,	David	said,	was	“not	all	good,	not	all	bad”—depending,	I	guess,	on
whether	you’re	sick	of	being	pestered	by	ads	for	socks	or	European	river	cruises	popping
up	in	your	browser	minutes	after	you’ve	bought	them.

To	say	nothing	of	information’s	proliferation.	David	complained	to	the	rest	of	us
attending	the	meeting	that	in	Wiener’s	time,	physicists	could	“take	the	entire	Physical
Review.	It	would	sit	comfortably	in	front	of	us	in	a	manageable	pile.	Now	we’re	awash	in
fifty	thousand	open-source	journals	per	minute,”	full	of	God-knows-what.	Neither	of	these
developments	would	Wiener	have	anticipated,	said	David,	prompting	him	to	ask,	“Do	we
need	a	new	set	of	guiding	metaphors?”



I n	The	Sleepwalkers,	a	sweeping	history	of	scientific	thought	from	ancient
times	through	the	Renaissance,	Arthur	Koestler	identified	a	tension	that	has
marked	the	most	dramatic	leaps	of	our	cosmological	imagination.	In	reading

the	great	works	of	Nicolaus	Copernicus	and	Johannes	Kepler	today,	Koestler
argued,	we	are	struck	as	much	by	their	strange	unfamiliarity—their
embeddedness	in	the	magic	or	mysticism	of	an	earlier	age—as	by	their	modern-
sounding	insights.

I	detect	that	same	doubleness—the	zigzag	origami	folds	of	old	and	new—in
Norbert	Wiener’s	classic	The	Human	Use	of	Human	Beings.	First	published	in
1950	and	revised	in	1954,	the	book	is	in	many	ways	extraordinarily	prescient.
Wiener,	the	MIT	polymath,	recognized	before	most	observers	that	“society	can
only	be	understood	through	a	study	of	the	messages	and	the	communication
facilities	which	belong	to	it.”	Wiener	argued	that	feedback	loops,	the	central
feature	of	his	theory	of	cybernetics,	would	play	a	determining	role	in	social
dynamics.	Those	loops	would	not	only	connect	people	with	one	another	but
connect	people	with	machines,	and—crucially—machines	with	machines.

Wiener	glimpsed	a	world	in	which	information	could	be	separated	from	its
medium.	People,	or	machines,	could	communicate	patterns	across	vast	distances
and	use	them	to	fashion	new	items	at	the	endpoints,	without	“moving	a	.	.	.
particle	of	matter	from	one	end	of	the	line	to	the	other,”	a	vision	now	realized	in
our	world	of	networked	3D	printers.	Wiener	also	imagined	machine-to-machine
feedback	loops	driving	huge	advances	in	automation,	even	for	tasks	that	had
previously	relied	on	human	judgment.	“The	machine	plays	no	favorites	between
manual	labor	and	white-collar	labor,”	he	observed.

For	all	that,	many	of	the	central	arguments	in	The	Human	Use	of	Human
Beings	seem	closer	to	the	19th	century	than	the	21st.	In	particular,	although
Wiener	made	reference	throughout	to	Claude	Shannon’s	then-new	work	on
information	theory,	he	seems	not	to	have	fully	embraced	Shannon’s	notion	of
information	as	consisting	of	irreducible,	meaning-free	bits.	Since	Wiener’s	day,
Shannon’s	theory	has	come	to	undergird	recent	advances	in	“Big	Data”	and
“deep	learning,”	which	makes	it	all	the	more	interesting	to	revisit	Wiener’s
cybernetic	imagination.	How	might	tomorrow’s	artificial	intelligence	be
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different	if	practitioners	were	to	reinvest	in	Wiener’s	guiding	vision	of
“information”?

—

hen	Wiener	wrote	The	Human	Use	of	Human	Beings,	his	experiences	of
war-related	research,	and	of	what	struck	him	as	the	moral	ambiguities	of

intellectual	life	amid	the	military-industrial	complex,	were	still	fresh.	Just	a	few
years	earlier,	he	had	announced	in	the	pages	of	the	Atlantic	Monthly	that	he
would	not	“publish	any	future	work	of	mine	which	may	do	damage	in	the	hands
of	irresponsible	militarists.”*	He	remained	ambivalent	about	the	transformative
power	of	new	technologies,	indulging	in	neither	the	boundless	hype	nor	the
digital	utopianism	of	later	pundits.

“Progress	imposes	not	only	new	possibilities	for	the	future	but	new
restrictions,”	he	wrote	in	Human	Use.	He	was	concerned	about	human-made
restrictions	as	well	as	technological	ones,	especially	Cold	War	restrictions	that
threatened	the	flow	of	information	so	critical	to	cybernetic	systems:	“Under	the
impetus	of	Senator	[Joseph]	McCarthy	and	his	imitators,	the	blind	and	excessive
classification	of	military	information”	was	driving	political	leaders	in	the	United
States	to	adopt	a	“secretive	frame	of	mind	paralleled	in	history	only	in	the
Venice	of	the	Renaissance.”	Wiener,	echoing	many	outspoken	veterans	of	the
Manhattan	Project,	argued	that	the	postwar	obsession	with	secrecy—especially
around	nuclear	weapons—stemmed	from	a	misunderstanding	of	the	scientific
process.	The	only	genuine	secret	about	the	production	of	nuclear	weapons,	he
wrote,	was	whether	such	bombs	could	be	built.	Once	that	secret	had	been
revealed,	with	the	bombings	of	Hiroshima	and	Nagasaki,	no	amount	of	state-
imposed	secrecy	would	stop	others	from	puzzling	through	chains	of	reasoning
like	those	the	Manhattan	Project	researchers	had	followed.	As	Wiener
memorably	put	it,	“There	is	no	Maginot	Line	of	the	brain.”

To	drive	this	point	home,	Wiener	borrowed	Shannon’s	fresh	ideas	about
information	theory.	In	1948,	Shannon,	a	mathematician	and	engineer	working	at
Bell	Labs,	had	published	a	pair	of	lengthy	articles	in	the	Bell	System	Technical
Journal.	Introducing	the	new	work	to	a	broad	readership	in	1949,	mathematician
Warren	Weaver	explained	that	in	Shannon’s	formulation,	“the	word
information	.	.	.	is	used	in	a	special	sense	that	must	not	be	confused	with	its
ordinary	usage.	In	particular,	information	must	not	be	confused	with	meaning.”*



Linguists	and	poets	might	be	concerned	about	the	“semantic”	aspects	of
communication,	Weaver	continued,	but	not	engineers	like	Shannon.	Rather,	“this
word	‘information’	in	communication	theory	relates	not	so	much	to	what	you	do
say,	as	to	what	you	could	say.”	In	Shannon’s	now-famous	formulation,	the
information	content	of	a	string	of	symbols	was	given	by	the	logarithm	of	the
number	of	possible	symbols	from	which	a	given	string	was	chosen.	Shannon’s
key	insight	was	that	the	information	of	a	message	was	just	like	the	entropy	of	a
gas:	a	measure	of	the	system’s	disorder.

Wiener	borrowed	this	insight	when	composing	Human	Use.	If	information
was	like	entropy,	then	it	could	not	be	conserved—or	contained.	Physicists	in	the
19th	century	had	demonstrated	that	the	total	energy	of	a	physical	system	must
always	remain	the	same,	a	perfect	balance	between	the	start	and	the	end	of	a
process.	Not	so	for	entropy,	which	would	inexorably	increase	over	time,	an
imperative	that	came	to	be	known	as	the	second	law	of	thermodynamics.	From
that	stark	distinction—energy	is	conserved,	whereas	entropy	must	grow—
followed	enormous	cosmic	consequences.	Time	must	flow	forward;	the	future
cannot	be	the	same	as	the	past.	The	universe	could	even	be	careening	toward	a
“heat	death,”	some	far-off	time	when	the	total	stock	of	energy	had	uniformly
dispersed,	achieving	a	state	of	maximum	entropy,	after	which	no	further	change
could	occur.

If	information	qua	entropy	could	not	be	conserved,	then	Wiener	concluded	it
was	folly	for	military	leaders	to	try	to	stockpile	the	“scientific	know-how	of	the
nation	in	static	libraries	and	laboratories.”	Indeed,	“no	amount	of	scientific
research,	carefully	recorded	in	books	and	papers,	and	then	put	into	our	libraries
with	labels	of	secrecy,	will	be	adequate	to	protect	us	for	any	length	of	time	in	a
world	where	the	effective	level	of	information	is	perpetually	advancing.”	Any
such	efforts	at	secrecy,	classification,	or	the	containment	of	information	would
fail,	Wiener	argued,	just	as	surely	as	hucksters’	schemes	for	perpetual-motion
machines	faltered	in	the	face	of	the	second	law	of	thermodynamics.

Wiener	criticized	the	American	“orthodoxy”	of	free-market	fundamentalism
in	much	the	same	way.	For	most	Americans,	“questions	of	information	will	be
evaluated	according	to	a	standard	American	criterion:	a	thing	is	valuable	as	a
commodity	for	what	it	will	bring	in	the	open	market.”	Indeed,	“[T]he	fate	of
information	in	the	typically	American	world	is	to	become	something	which	can
be	bought	or	sold”;	most	people,	he	observed,	“cannot	conceive	of	a	piece	of
information	without	an	owner.”	Wiener	considered	this	view	to	be	as	wrong-
headed	as	rampant	military	classification.	Again	he	invoked	Shannon’s	insight:
Since	“information	and	entropy	are	not	conserved,”	they	are	“equally	unsuited	to
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Since	“information	and	entropy	are	not	conserved,”	they	are	“equally	unsuited	to
being	commodities.”

—
nformation	cannot	be	conserved—so	far,	so	good.	But	did	Wiener	really	have
Shannon’s	“information”	in	mind?	The	crux	of	Shannon’s	argument,	as

Weaver	had	emphasized,	was	to	distinguish	a	colloquial	sense	of	“information,”
as	message	with	meaning,	from	an	abstracted,	rarefied	notion	of	strings	of
symbols	arrayed	with	some	probability	and	selected	from	an	enormous	universe
of	gibberish.	For	Shannon,	“information”	could	be	quantified	because	its
fundamental	unit,	the	bit,	was	a	unit	of	conveyance	rather	than	understanding.

When	Wiener	characterized	“information”	throughout	Human	Use,	on	the
other	hand,	he	tilted	time	and	again	to	a	classical,	humanistic	sense	of	the	term.
“A	piece	of	information,”	he	wrote—tellingly,	not	a	“bit”	of	information—“in
order	to	contribute	to	the	general	information	of	the	community,	must	say
something	substantially	different	from	the	community’s	previous	common	stock
of	information.”	This	was	why	“schoolboys	do	not	like	Shakespeare,”	he
concluded:	The	Bard’s	couplets	may	depart	starkly	from	random	bitstreams,	but
they	had	nonetheless	become	all	too	familiar	to	the	sense-making	public	and
“absorbed	into	the	superficial	clichés	of	the	time.”

At	least	the	information	content	of	Shakespeare	had	once	seemed	fresh.
During	the	postwar	boom	years,	Wiener	fretted,	the	“enormous	per	capita	bulk
of	communication”—ranging	across	newspapers	and	movies	to	radio,	television,
and	books—had	bred	mediocrity,	an	informational	reversion	to	the	mean.	“More
and	more	we	must	accept	a	standardized	inoffensive	and	insignificant	product
which,	like	the	white	bread	of	the	bakeries,	is	made	rather	for	its	keeping	and
selling	properties	than	for	its	food	value.”	“Heaven	save	us,”	he	pleaded,	“from
the	first	novels	which	are	written	because	a	young	man	desires	the	prestige	of
being	a	novelist	rather	than	because	he	has	something	to	say!	Heaven	save	us
likewise	from	the	mathematical	papers	which	are	correct	and	elegant	but	without
body	or	spirit.”	Wiener’s	treatment	of	“information”	sounded	more	like	Matthew
Arnold	in	1869*	than	Claude	Shannon	in	1948—more	“body	and	spirit”	than
“bit.”	Wiener	shared	Arnold’s	Romantic	view	of	the	“content	producer”	as	well:
“Properly	speaking	the	artist,	the	writer,	and	the	scientist	should	be	moved	by
such	an	irresistible	impulse	to	create	that,	even	if	they	were	not	being	paid	for
their	work,	they	would	be	willing	to	pay	to	get	the	chance	to	do	it.”	L’art	pour
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l’art,	that	19th-century	cry:	Artists	should	suffer	for	their	work;	the	quest	for
meaningful	expression	should	always	trump	lucre.

To	Wiener,	this	was	the	proper	measure	of	“information”:	body,	spirit,
aspiration,	expression.	Yet	to	argue	against	its	commodification,	Wiener	reverted
again	to	Shannon’s	mathematics	of	informationas-entropy.

—
lash	forward	to	our	day.	In	many	ways,	Wiener	has	been	proved	right.	His
vision	of	networked	feedback	loops	driven	by	machine-to-machine

communication	has	become	a	mundane	feature	of	everyday	life.	From	the
earliest	stirrings	of	the	Internet	Age,	moreover,	digital	piracy	has	upended	the
view	that	“information”—in	the	form	of	songs,	movies,	books,	or	code—could
remain	contained.	Put	up	a	paywall	here,	and	the	content	will	diffuse	over	there,
all	so	much	informational	entropy	that	cannot	be	conserved.

On	the	other	hand,	enormous	multinational	corporations—some	of	the	largest
and	most	profitable	in	the	world—now	routinely	disprove	Wiener’s	contention
that	“information”	cannot	be	stockpiled	or	monetized.	Ironically,	the
“information”	they	trade	in	is	closer	to	Shannon’s	definition	than	Wiener’s,
Shannon’s	mathematical	proofs	notwithstanding.

While	Google	Books	may	help	circulate	hundreds	of	thousands	of	works	of
literature	for	free,	Google	itself—like	Facebook,	Amazon,	Twitter,	and	their
many	imitators—has	commandeered	a	baser	form	of	“information”	and
exploited	it	for	extraordinary	profit.	Petabytes	of	Shannon-like	information—a
seemingly	meaningless	stream	of	clicks,	“likes,”	and	retweets,	collected	from
virtually	every	person	who	has	ever	touched	a	networked	computer—are	sifted
through	proprietary	“deep-learning”	algorithms	to	microtarget	everything	from
the	advertisements	we	see	to	the	news	stories	(fake	or	otherwise)	we	encounter
while	browsing	the	Web.

Back	in	the	early	1950s,	Wiener	had	proposed	that	researchers	study	the
structures	and	limitations	of	ants—in	contrast	to	humans—so	that	machines
might	one	day	achieve	the	“almost	indefinite	intellectual	expansion”	that	people
(rather	than	insects)	can	attain.	He	found	solace	in	the	notion	that	machines
could	come	to	dominate	us	only	“in	the	last	stages	of	increasing	entropy,”	when
“the	statistical	differences	among	individuals	are	nil.”	Today’s	data-mining
algorithms	turn	Wiener’s	approach	on	its	head.	They	produce	profit	by
exploiting	our	reptilian	brains	rather	than	imitating	our	cerebral	cortexes,



harvesting	information	from	all	our	late-night,	blog-addled,	pleasure-seeking
clickstreams—leveraging	precisely	the	tiny,	residual	“statistical	differences
among	individuals.”

To	be	sure,	some	recent	achievements	in	artificial	intelligence	have	been
remarkably	impressive.	Computers	can	now	produce	visual	artworks	and
musical	compositions	akin	to	those	of	recognized	masters,	creating	just	the	sort
of	“information”	that	Wiener	most	prized.	But	by	far	the	largest	impact	on
society	to	date	has	come	from	the	collection	and	manipulation	of	Shannon-like
information,	which	has	reshaped	our	shopping	habits,	political	participation,
personal	relationships,	expectations	of	privacy,	and	more.

What	might	“deep	learning”	evolve	into	if	the	fundamental	currency	becomes
“information”	as	Wiener	defined	it?	How	might	the	field	shift	if	reanimated	by
Wiener’s	deep	moral	convictions,	informed	as	they	were	by	his	prescient
concerns	about	rampant	militarism,	runaway	corporate	profit	seeking,	the	self-
limiting	features	of	secrecy,	and	the	reduction	of	human	expression	to
interchangeable	commodities?	Perhaps	“deep	learning”	might	then	become	the
cultivation	of	meaningful	information	rather	than	the	relentless	pursuit	of	potent,
if	meaningless,	bits.



Chapter	16

SCALING

NEIL	GERSHENFELD

Neil	Gershenfeld	is	a	physicist	and	director	of	MIT’s	Center	for	Bits	and	Atoms.	He
is	the	author	of	FAB,	co-author	(with	Alan	Gershenfeld	and	Joel	Cutcher-

Gershenfeld)	of	Designing	Reality,	and	founder	of	the	global	Fab	Lab	network.

In	the	aforementioned	Connecticut	discussion	on	The	Human	Use	of	Human	Beings,	Neil
Gershenfeld	provided	some	fresh	air,	of	a	kind,	by	professing	that	he	hated	the	book.	His
remark	was	met	by	universal	laughter—as	was	his	observation	that	computer	science	was
one	of	the	worst	things	to	happen	to	computers,	or	to	science.	His	overall	contention	was
that	Wiener	missed	the	implications	of	the	digital	revolution	that	was	happening	around	him
—although	some	would	say	this	charge	can’t	be	leveled	at	someone	on	the	ground	floor
and	lacking	clairvoyance.

“The	tail	wagging	the	dog	of	my	life,”	he	told	us,	“has	been	Fab	Labs	and	the	maker
movement,	and	[when]	Wiener	talks	about	the	threat	of	automation	he	misses	the	inverse,
which	is	that	access	to	the	means	for	automation	can	empower	people,	and	in	Fab	Labs,
the	corner	I’ve	been	involved	in,	that’s	an	exponential.”

In	2003,	I	visited	Neil	at	MIT,	where	he	runs	the	Center	for	Bits	and	Atoms.	Hours	later,
I	emerged	from	what	had	been	an	exuberant	display	of	very	weird	stuff.	He	showed	me	the
work	of	one	student	in	his	popular	rapid-prototyping	class	(How	to	Make	Almost	Anything),
a	sculptor	with	no	engineering	background	who	had	made	a	portable	personal	space	for
screaming	that	saves	up	your	screams	and	plays	them	back	later.	Another	student	in	the
class	had	made	a	Web	browser	that	lets	parrots	navigate	the	net.	Neil	himself	was	doing
fundamental	research	on	the	road	map	to	that	sci-fi	staple,	a	“universal	replicator.”	It	was	a
visit	that	took	me	a	couple	of	years	to	get	my	head	around.

Neil	manages	a	global	network	of	Fab	Labs—small-scale	manufacturing	systems,
enabled	by	digital	technologies,	that	give	people	the	wherewithal	to	build	whatever	they’d
like.	As	guru	of	the	maker	movement,	which	merges	digital	communication	and
computation	with	fabrication,	he	sometimes	feels	outside	the	current	heated	debate	on	AI
safety.	“My	ability	to	do	research	rests	on	tools	that	augment	my	capabilities,”	he	says.
“Asking	whether	or	not	they	are	intelligent	is	as	fruitful	as	asking	how	I	know	I	exist—
amusing	philosophically,	but	not	testable	empirically.”	What	interests	him	is	“how	bits	and
atoms	relate—the	boundary	between	digital	and	physical.	Scientifically,	it’s	the	most
exciting	thing	I	know.”



D iscussions	about	artificial	intelligence	have	been	oddly	ahistorical.	They
could	better	be	described	as	manic-depressive;	depending	on	how	you
count,	we’re	now	in	the	fifth	boom-bust	cycle.	Those	swings	mask	the

continuity	in	the	underlying	progress	and	the	implications	for	where	it’s	headed.
The	cycles	have	come	in	roughly	decade-long	waves.	First	there	were

mainframes,	which	by	their	very	existence	were	going	to	automate	away	work.
That	ran	into	the	reality	that	it	was	hard	to	write	programs	to	do	tasks	that	were
simple	for	people	to	do.	Then	came	expert	systems,	which	were	going	to	codify
and	then	replace	the	knowledge	of	experts.	These	ran	into	difficulty	in
assembling	that	knowledge	and	reasoning	about	cases	not	already	covered.
Perceptrons	sought	to	get	around	these	problems	by	modeling	how	the	brain
learns,	but	they	were	unable	to	do	much	of	anything.	Multilayer	perceptrons
could	handle	test	problems	that	had	tripped	up	those	simpler	networks,	but	their
demonstrations	did	poorly	on	unstructured,	real-world	problems.	We’re	now	in
the	deep-learning	era,	which	is	delivering	on	many	of	the	early	AI	promises	but
in	a	way	that’s	considered	hard	to	understand,	with	consequences	ranging	from
intellectual	to	existential	threats.

Each	of	these	stages	was	heralded	as	a	revolutionary	advance	over	the
limitations	of	its	predecessors,	yet	all	effectively	do	the	same	thing:	They	make
inferences	from	observations.	How	these	approaches	relate	can	be	understood	by
how	they	scale—that	is,	how	their	performance	depends	on	the	difficulty	of	the
problem	they’re	addressing.	Both	a	light	switch	and	a	self-driving	car	must
determine	their	operators’	intentions,	but	the	former	has	just	two	options	to
choose	from,	whereas	the	latter	has	many	more.	The	AI-boom	phases	have
started	with	promising	examples	in	limited	domains;	the	bust	phases	came	with
the	failure	of	those	demonstrations	to	handle	the	complexity	of	less-structured,
practical	problems.

Less	apparent	is	the	steady	progress	we’ve	made	in	mastering	scaling.	This
progress	rests	on	the	technological	distinction	between	linear	and	exponential
functions—a	distinction	that	was	becoming	evident	at	the	dawn	of	AI	but	with
implications	for	AI	that	weren’t	appreciated	until	many	years	later.

In	one	of	the	founding	documents	of	the	study	of	intelligent	machines,	The
Human	Use	of	Human	Beings,	Norbert	Wiener	does	a	remarkable	job	of



identifying	many	of	the	most	significant	trends	to	arise	since	he	wrote	it,	along
with	noting	the	people	responsible	for	them	and	then	consistently	failing	to
recognize	why	these	people’s	work	proved	to	be	so	important.	Wiener	is	credited
with	creating	the	field	of	cybernetics;	I’ve	never	understood	what	that	is,	but
what’s	missing	from	the	book	is	at	the	heart	of	how	AI	has	progressed.	This
history	matters	because	of	the	echoes	of	it	that	persist	to	this	day.

Claude	Shannon	makes	a	cameo	appearance	in	the	book,	in	the	context	of	his
thoughts	about	the	prospects	for	a	chess-playing	computer.	Shannon	was	doing
something	much	more	significant	than	speculating	at	the	time:	He	was	laying	the
foundations	for	the	digital	revolution.	As	a	graduate	student	at	MIT,	he	worked
for	Vannevar	Bush	on	the	Differential	Analyzer.	This	was	one	of	the	last	great
analog	computers,	a	room	full	of	gears	and	shafts.	Shannon’s	frustration	with	the
difficulty	of	solving	problems	this	way	led	him	in	1937	to	write	what	might	be
the	best	master’s	thesis	ever.	In	it,	he	showed	how	electrical	circuits	could	be
designed	to	evaluate	arbitrary	logical	expressions,	introducing	the	basis	for
universal	digital	logic.

After	MIT,	Shannon	studied	communications	at	Bell	Labs.	Analog	telephone
calls	degraded	with	distance;	the	farther	they	traveled,	the	worse	they	sounded.
Rather	than	continue	to	improve	them	incrementally,	Shannon	showed	in	1948
that	by	communicating	with	symbols	rather	than	continuous	quantities,	the
behavior	is	very	different.	Converting	speech	waveforms	to	the	binary	values	of
1	and	0	is	an	example,	but	many	other	sets	of	symbols	can	be	(and	are)	used	in
digital	communications.	What	matters	is	not	the	particular	symbols	but	rather	the
ability	to	detect	and	correct	errors.	Shannon	found	that	if	the	noise	is	above	a
threshold	(which	depends	on	the	system	design),	then	there	are	certain	to	be
errors.	But	if	the	noise	is	below	a	threshold,	then	a	linear	increase	in	the	physical
resources	representing	the	symbol	results	in	an	exponential	decrease	in	the
likelihood	of	making	an	error	in	correctly	receiving	the	symbol.	This	relationship
was	the	first	of	what	we’d	now	call	a	threshold	theorem.

Such	scaling	falls	off	so	quickly	that	the	probability	of	an	error	can	be	so
small	as	to	effectively	never	happen.	Each	symbol	sent	multiplies	rather	than
adds	to	the	certainty,	so	that	the	probability	of	a	mistake	can	go	from	0.1	to	0.01
to	0.001,	and	so	forth.	This	exponential	decrease	in	communication	errors	made
possible	an	exponential	increase	in	the	capacity	of	communication	networks.
And	that	eventually	solved	the	problem	of	where	the	knowledge	in	an	AI	system
came	from.

For	many	years,	the	fastest	way	to	speed	up	a	computation	was	to	do	nothing
—just	wait	for	computers	to	get	faster.	In	the	same	way,	there	were	years	of	AI



—just	wait	for	computers	to	get	faster.	In	the	same	way,	there	were	years	of	AI
projects	that	aimed	to	accumulate	everyday	knowledge	by	laboriously	entering
pieces	of	information.	That	didn’t	scale;	it	could	progress	only	as	fast	as	the
number	of	people	doing	the	entering.	But	when	phone	calls,	newspaper	stories,
and	mail	messages	all	moved	onto	the	Internet,	everyone	doing	any	of	those
things	became	a	data	generator.	The	result	was	an	exponential	rather	than	a
linear	rate	of	knowledge	accumulation.

John	von	Neumann	also	has	a	cameo	in	The	Human	Use	of	Human	Beings,
for	game	theory.	What	Wiener	missed	here	was	von	Neumann’s	seminal	role	in
digitizing	computation.	Whereas	analog	communication	degraded	with	distance,
analog	computing	(like	the	Differential	Analyzer)	degraded	with	time,
accumulating	errors	as	it	progressed.	Von	Neumann	presented	in	1952	a	result
corresponding	to	Shannon’s	for	computation	(they	had	met	at	the	Institute	for
Advanced	Study	in	Princeton),	showing	that	it	was	possible	to	compute	reliably
with	an	unreliable	computing	device	by	using	symbols	rather	than	continuous
quantities.	This	was,	again,	a	scaling	argument,	with	a	linear	increase	in	the
physical	resources	representing	the	symbol	resulting	in	an	exponential	reduction
in	the	error	rate	as	long	as	the	noise	was	below	a	threshold.	That’s	what	makes	it
possible	to	have	a	billion	transistors	in	a	computer	chip,	with	the	last	one	as
useful	as	the	first	one.	This	relationship	led	to	an	exponential	increase	in
computing	performance,	which	solved	a	second	problem	in	AI:	how	to	process
exponentially	increasing	amounts	of	data.

The	third	problem	that	scaling	solved	for	AI	was	coming	up	with	the	rules	for
reasoning	without	having	to	hire	a	programmer	for	each	problem.	Wiener
recognized	the	role	of	feedback	in	machine	learning,	but	he	missed	the	key	role
of	representation.	It’s	not	possible	to	store	all	possible	images	in	a	self-driving
car,	or	all	possible	sounds	in	a	conversational	computer;	they	have	to	be	able	to
generalize	from	experience.	The	“deep”	part	of	deep	learning	refers	not	to	the
(hoped-for)	depth	of	insight	but	to	the	depth	of	the	mathematical	network	layers
used	to	make	predictions.	It	turned	out	that	a	linear	increase	in	network
complexity	led	to	an	exponential	increase	in	the	expressive	power	of	the
network.

If	you	lose	your	keys	in	a	room,	you	can	search	for	them.	If	you’re	not	sure
which	room	they’re	in,	you	have	to	search	all	the	rooms	in	a	building.	If	you’re
not	sure	which	building	they’re	in,	you	have	to	search	all	the	rooms	in	all	the
buildings	in	a	city.	If	you’re	not	sure	which	city	they’re	in,	you	have	to	search	all
the	rooms	in	all	the	buildings	in	all	the	cities.	In	AI,	finding	the	keys	corresponds
to	things	like	a	car	safely	following	the	road,	or	a	computer	correctly	interpreting
a	spoken	command,	and	the	rooms	and	buildings	and	cities	correspond	to	all	of



a	spoken	command,	and	the	rooms	and	buildings	and	cities	correspond	to	all	of
the	options	that	have	to	be	considered.	This	is	called	the	curse	of	dimensionality.

The	solution	to	the	curse	of	dimensionality	came	in	using	information	about
the	problem	to	constrain	the	search.	The	search	algorithms	themselves	are	not
new.	But	when	applied	to	a	deep-learning	network,	they	adaptively	build	up
representations	of	where	to	search.	The	price	of	this	is	that	it’s	no	longer
possible	to	exactly	solve	for	the	best	answer	to	a	problem,	but	typically	all	that’s
needed	is	an	answer	that’s	good	enough.

Taken	together,	it	shouldn’t	be	surprising	that	these	scaling	laws	have
allowed	machines	to	become	effectively	as	capable	as	the	corresponding	stages
of	biological	complexity.	Neural	networks	started	out	with	a	goal	of	modeling
how	the	brain	works.	That	goal	was	abandoned	as	they	evolved	into
mathematical	abstractions	unrelated	to	how	neurons	actually	function.	But	now
there’s	a	kind	of	convergence	that	can	be	thought	of	as	forward-rather	than
reverse-engineering	biology,	as	the	results	of	deep	learning	echo	brain	layers	and
regions.

One	of	the	most	difficult	research	projects	I’ve	managed	paired	what	we’d
now	call	data	scientists	with	AI	pioneers.	It	was	a	miserable	experience	in
moving	goalposts.	As	the	former	progressed	in	solving	long-standing	problems
posed	by	the	latter,	this	was	deemed	to	not	count	because	it	wasn’t	accompanied
by	corresponding	leaps	in	understanding	the	solutions.	What’s	the	value	of	a
chess-playing	computer	if	you	can’t	explain	how	it	plays	chess?

The	answer,	of	course,	is	that	it	can	play	chess.	There	is	interesting	emerging
research	that	is	applying	AI	to	AI—that	is,	training	networks	to	explain	how	they
operate.	But	both	brains	and	computer	chips	are	hard	to	understand	by	watching
their	inner	workings;	they’re	easily	interpreted	only	by	observing	their	external
interfaces.	We	come	to	trust	(or	not)	brains	and	computer	chips	alike	based	on
experience	that	tests	them	rather	than	on	explanations	for	how	they	work.

Many	branches	of	engineering	are	making	a	transition	from	what’s	called
imperative	to	declarative	or	generative	design.	This	means	that	instead	of
explicitly	designing	a	system	with	tools	like	CAD	files,	circuit	schematics,	and
computer	code,	you	describe	what	you	want	the	system	to	do	and	then	an
automated	search	is	done	for	designs	that	satisfy	your	goals	and	restrictions.	This
approach	becomes	necessary	as	design	complexity	exceeds	what	can	be
understood	by	a	human	designer.	While	that	might	sound	like	a	risk,	human
understanding	comes	with	its	own	limits;	engineering	design	is	littered	with
what	appeared	to	be	good	insights	that	have	had	bad	consequences.	Declarative



design	rests	on	all	the	advances	in	AI,	plus	the	improving	fidelity	of	simulations
to	virtually	test	designs.

The	mother	of	all	design	problems	is	the	one	that	resulted	in	us.	The	way
we’re	designed	resides	in	one	of	the	oldest	and	most	conserved	parts	of	the
genome,	called	the	Hox	genes.	These	are	genes	that	regulate	genes,	in	what	are
called	developmental	programs.	Nothing	in	your	genome	stores	the	design	of
your	body;	your	genome	stores,	rather,	a	series	of	steps	to	follow	that	results	in
your	body.	This	is	an	exact	parallel	to	how	search	is	done	in	AI.	There	are	too
many	possible	body	plans	to	search	over,	and	most	modifications	would	be
either	inconsequential	or	fatal.	The	Hox	genes	are	a	representation	of	a
productive	place	for	evolutionary	search.	It’s	a	kind	of	natural	intelligence	at	the
molecular	level.

AI	has	a	mind-body	problem	in	that	it	has	no	body.	Most	work	on	AI	is	done
in	the	cloud,	running	on	virtual	machines	in	computer	centers	where	data	are
funneled.	Our	own	intelligence	is	the	result	of	a	search	algorithm	(evolution)	that
was	able	to	change	our	physical	form	as	well	as	our	programming—those	are
inextricably	linked.	If	the	history	of	AI	can	be	understood	as	the	working	of
scaling	laws	rather	than	a	succession	of	fashions,	then	its	future	can	be	seen	in
the	same	way.	What’s	now	being	digitized,	after	communication	and
computation,	is	fabrication,	bringing	the	programmability	of	bits	to	the	world	of
atoms.	By	digitizing	not	just	designs	but	the	construction	of	materials,	the	same
lessons	that	von	Neumann	and	Shannon	taught	us	apply	to	exponentially
increasing	fabricational	complexity.

I’ve	defined	digital	materials	to	be	those	constructed	from	a	discrete	set	of
parts	reversibly	joined	with	a	discrete	set	of	relative	positions	and	orientations.
These	attributes	allow	the	global	geometry	to	be	determined	from	local
constraints,	assembly	errors	to	be	detected	and	corrected,	heterogeneous
materials	to	be	joined,	and	structures	to	be	disassembled	rather	than	disposed	of
when	they’re	no	longer	needed.	The	amino	acids	that	are	the	foundation	of	life
and	the	Lego	bricks	that	are	the	foundation	of	play	share	these	properties.

What’s	interesting	about	amino	acids	is	that	they’re	not	interesting.	They
have	attributes	that	are	typical	but	not	unusual,	such	as	attracting	or	repelling
water.	But	just	twenty	types	of	them	are	enough	to	make	you.	In	the	same	way,
twenty	or	so	types	of	digital-material	part	types—conducting,	insulating,	rigid,
flexible,	magnetic,	etc.—are	enough	to	assemble	the	range	of	functions	that	go
into	making	modern	technologies	like	robots	and	computers.

The	connection	between	computation	and	fabrication	was	foreshadowed	by
the	very	pioneers	whose	work	the	edifice	of	computing	is	based	on.	Wiener



the	very	pioneers	whose	work	the	edifice	of	computing	is	based	on.	Wiener
hinted	at	this	by	linking	material	transportation	with	message	transportation.
John	von	Neumann	is	credited	with	modern	computer	architecture,	something	he
actually	wrote	very	little	about;	the	final	thing	he	studied,	and	wrote	about
beautifully	and	at	length,	was	self-reproducing	systems.	As	an	abstraction	of	life,
he	modeled	a	machine	that	can	communicate	a	computation	that	constructs	itself.
And	the	final	thing	Alan	Turing,	who	is	credited	with	the	theoretical	framework
for	computer	science,	studied	was	how	the	instructions	in	genes	can	give	rise	to
physical	forms.	These	questions	address	a	topic	absent	from	a	typical	computer-
science	education:	the	physical	configuration	of	a	computation.

Von	Neumann	and	Turing	posed	their	questions	as	theoretical	studies,
because	it	was	beyond	the	technology	of	their	day	to	realize	them.	But	with	the
convergence	of	communication	and	computation	with	fabrication,	these
investigations	are	now	becoming	accessible	experimentally.	Making	an
assembler	that	can	assemble	itself	from	the	parts	that	it’s	assembling	is	a	focus
of	my	lab,	along	with	collaborations	to	develop	synthetic	cells.

The	prospect	of	physically	self-reproducing	automata	is	potentially	much
scarier	than	fears	of	out-of-control	AI,	because	it	moves	the	intelligence	out	here
to	where	we	live.	It	could	be	a	road	map	leading	to	Terminator’s	Skynet	robotic
overlords.	But	it’s	also	a	more	hopeful	prospect,	because	an	ability	to	program
atoms	as	well	as	bits	enables	designs	to	be	shared	globally	while	locally
producing	things	like	energy,	food,	and	shelter—all	of	these	are	emerging	as
exciting	early	applications	of	digital	fabrication.	Wiener	worried	about	the	future
of	work,	but	he	didn’t	question	implicit	assumptions	about	the	nature	of	work
that	are	challenged	when	consumption	can	be	replaced	by	creation.

History	suggests	that	neither	utopian	nor	dystopian	scenarios	prevail;	we
generally	end	up	muddling	along	somewhere	in	between.	But	history	also
suggests	that	we	don’t	have	to	wait	on	history.	Gordon	Moore	in	1965	was	able
to	use	five	years	of	the	doubling	of	the	specifications	of	integrated	circuits	to
project	what	turned	out	to	be	fifty	years	of	exponential	improvements	in	digital
technologies.	We’ve	spent	many	of	those	years	responding	to,	rather	than
anticipating,	its	implications.	We	have	more	data	available	now	than	Gordon
Moore	did	to	project	fifty	years	of	doubling	the	performance	of	digital
fabrication.	With	the	benefit	of	hindsight,	it	should	be	possible	to	avoid	the
excesses	of	digital	computing	and	communications	this	time	around,	and,	from
the	outset,	address	issues	like	access	and	literacy.

If	the	maker	movement	is	the	harbinger	of	a	third	digital	revolution,	the
success	of	AI	in	meeting	many	of	its	own	early	goals	can	be	seen	as	the
crowning	achievement	of	the	first	two	digital	revolutions.	Although	machine



crowning	achievement	of	the	first	two	digital	revolutions.	Although	machine
making	and	machine	thinking	might	appear	to	be	unrelated	trends,	they	lie	in
each	other’s	futures.	The	same	scaling	trends	that	have	made	AI	possible	suggest
that	the	current	mania	is	a	phase	that	will	pass,	to	be	followed	by	something	even
more	significant:	the	merging	of	artificial	and	natural	intelligence.

It	was	an	advance	for	atoms	to	form	molecules,	molecules	to	form	organelles,
organelles	to	form	cells,	cells	to	form	organs,	organs	to	form	organisms,
organisms	to	form	families,	families	to	form	societies,	and	societies	to	form
civilizations.	This	grand	evolutionary	loop	can	now	be	closed,	with	atoms
arranging	bits	arranging	atoms.



Chapter	17

THE	FIRST	MACHINE	INTELLIGENCES

W.	DANIEL	HILLIS

W.	Daniel	“Danny”	Hillis	is	an	inventor,	entrepreneur,	and	computer	scientist,
Judge	Widney	Professor	of	Engineering	and	Medicine	at	USC,	and	author	of	The

Pattern	on	the	Stone:	The	Simple	Ideas	That	Make	Computers	Work.

While	Danny	Hillis	was	an	undergraduate	at	MIT,	he	built	a	computer	out	of	Tinkertoys.	It
has	around	ten	thousand	wooden	parts,	plays	tic-tac-toe,	and	never	loses;	it’s	now	in	the
Computer	History	Museum	in	Mountain	View,	California.

As	a	graduate	student	at	the	MIT	Computer	Science	and	Artificial	Intelligence
Laboratory	in	the	early	1980s,	Danny	designed	a	massively	parallel	computer	with	sixty-
four	thousand	processors.	He	named	it	the	Connection	Machine	and	founded	what	might
have	been	the	first	AI	company—Thinking	Machines	Corporation—to	produce	and	market
it.	This	was	despite	a	lunch	he	had	with	Richard	Feynman	at	which	the	celebrated	physicist
remarked,	“That	is	positively	the	dopiest	idea	I	ever	heard.”	Maybe	“despite”	is	the	wrong
word,	since	Feynman	had	a	well-known	predilection	for	playing	with	dopey	ideas.	In	the
event,	he	showed	up	on	the	day	the	company	was	incorporated	and	stayed	on,	for	summer
jobs	and	special	assignments,	to	make	invaluable	contributions	to	its	work.

Danny	has	since	established	a	number	of	technology	companies,	of	which	the	latest	is
Applied	Invention,	which	partners	with	commercial	enterprises	to	develop	technological
solutions	to	their	most	intractable	problems.	He	holds	hundreds	of	U.S.	patents,	covering
parallel	computers,	touch	interfaces,	disk	arrays,	forgery	prevention	methods,	and	a	slew
of	electronic	and	mechanical	devices.	His	imagination	is	apparently	boundless,	and	here
he	sketches	some	possible	scenarios	that	will	result	from	our	pursuit	of	a	better	and	better
AI.

“Our	thinking	machines	are	more	than	metaphors,”	he	says.	“The	question	is	not	‘Will
they	be	powerful	enough	to	hurt	us?’	(they	will),	or	whether	they	will	always	act	in	our	best
interests	(they	won’t),	but	whether	over	the	long	term	they	can	help	us	find	our	way—
where	we	come	out	on	the	Panacea/Apocalypse	continuum.”



N

I	have	spoken	of	machines,	but	not	only	of	machines	having	brains	of	brass
and	thews	of	iron.	When	human	atoms	are	knit	into	an	organization	in	which
they	are	used,	not	in	their	full	right	as	responsible	human	beings,	but	as	cogs
and	levers	and	rods,	it	matters	little	that	their	raw	material	is	flesh	and	blood.

What	is	used	as	an	element	in	a	machine,	is	in	fact	an	element	in	the
machine.	Whether	we	entrust	our	decisions	to	machines	of	metal,	or	to	those
machines	of	flesh	and	blood	which	are	bureaus	and	vast	laboratories	and
armies	and	corporations,	we	shall	never	receive	the	right	answers	to	our

questions	unless	we	ask	the	right	questions.	.	.	.	The	hour	is	very	late,	and	the
choice	of	good	and	evil	knocks	at	our	door.

—NORBERT	WIENER,	The	Human	Use	of	Human	Beings

orbert	Wiener	was	ahead	of	his	time	in	recognizing	the	potential	danger
of	emergent	intelligent	machines.	I	believe	he	was	even	further	ahead	in
recognizing	that	the	first	artificial	intelligences	had	already	begun	to

emerge.	He	was	correct	in	identifying	the	corporations	and	bureaus	that	he	called
“machines	of	flesh	and	blood”	as	the	first	intelligent	machines.	He	anticipated
the	dangers	of	creating	artificial	superintelligences	with	goals	not	necessarily
aligned	with	our	own.

What	is	now	clear,	whether	or	not	it	was	apparent	to	Wiener,	is	that	these
organizational	superintelligences	are	not	just	made	of	humans,	they	are	hybrids
of	humans	and	the	information	technologies	that	allow	them	to	coordinate.	Even
in	Wiener’s	time,	the	“bureaus	and	vast	laboratories	and	armies	and
corporations”	could	not	operate	without	telephones,	telegraphs,	radios,	and
tabulating	machines.	Today	they	could	not	operate	without	networks	of
computers,	databases,	and	decision	support	systems.	These	hybrid	intelligences
are	technologically	augmented	networks	of	humans.	These	artificial	intelligences
have	superhuman	powers.	They	can	know	more	than	individual	humans;	they
can	sense	more;	they	can	make	more	complicated	analyses	and	more	complex
plans.	They	can	have	vastly	more	resources	and	power	than	any	single
individual.

Although	we	do	not	always	perceive	it,	hybrid	superintelligences	such	as
nation-states	and	corporations	have	their	own	emergent	goals.	Although	they	are
built	by	and	for	humans,	they	often	act	like	independent	intelligent	entities,	and
their	actions	are	not	always	aligned	with	the	interests	of	the	people	who	created
them.	The	state	is	not	always	for	the	citizen,	nor	the	company	for	the



them.	The	state	is	not	always	for	the	citizen,	nor	the	company	for	the
shareholder.	Nor	do	not-for-profits,	religious	orders,	or	political	parties	always
act	in	furtherance	of	their	founding	principles.	Intuitively,	we	recognize	that
their	actions	are	guided	by	internal	goals,	which	is	why	we	personify	them,	both
legally	and	in	our	habits	of	thought.	When	talking	about	“what	China	wants”	or
“what	General	Motors	is	trying	to	do,”	we	are	not	speaking	in	metaphors.	These
organizations	act	as	intelligences	that	perceive,	decide,	and	act.	Like	the	goals	of
individual	humans,	the	goals	of	organizations	are	complex	and	often	self-
contradictory,	but	they	are	true	goals	in	the	sense	that	they	direct	action.	Those
goals	depend	somewhat	on	the	goals	of	the	people	within	the	organization,	but
they	are	not	identical.

Any	American	knows	how	loose	the	tie	is	between	the	actions	of	the	U.S.
government	and	the	diverse	and	often	contradictory	aims	of	its	citizens.	That	is
also	true	of	corporations.	For-profit	corporations	nominally	serve	multiple
constituencies,	including	shareholders,	senior	executives,	employees,	and
customers.	These	corporations	differ	in	how	they	balance	their	loyalties	and
often	behave	in	ways	that	serve	none	of	their	constituents.	The	“neurons”	that
carry	their	corporate	thought	are	not	just	the	human	employees	or	the
technologies	that	connect	them;	they	are	also	coded	into	the	policies,	incentive
structures,	culture,	and	procedural	habits	of	the	corporation.	The	emergent
corporate	goals	do	not	always	reflect	the	values	of	the	people	who	implement
them.	For	instance,	an	oil	company	led	and	staffed	by	people	who	care	about	the
environment	may	have	incentive	structures	or	policies	that	cause	it	to
compromise	environmental	safety	for	the	sake	of	corporate	earnings.	The
components’	good	intentions	are	not	a	guarantee	of	the	emergent	system’s	good
behavior.

Governments	and	corporations,	both	built	partly	of	humans,	are	naturally
motivated	to	at	least	appear	to	share	the	goals	of	the	humans	they	depend	upon.
They	could	not	function	without	the	people,	so	they	need	to	keep	them
cooperative.	When	such	organizations	appear	to	behave	altruistically,	this	is
often	part	of	their	motive.	I	once	complimented	the	CEO	of	a	large	corporation
on	the	contribution	his	company	made	toward	a	humanitarian	relief	effort.	The
CEO	responded,	without	a	trace	of	irony,	“Yes.	We	have	decided	to	do	more
things	like	that	to	make	our	brand	more	likable.”	Individuals	who	compose	a
hybrid	superintelligence	may	occasionally	exert	a	“humanizing”	influence—for
example,	an	employee	may	break	company	policies	to	accommodate	the	needs
of	another	human.	The	employee	may	act	out	of	true	human	empathy,	but	we
should	not	attribute	any	such	empathy	to	the	superintelligence	itself.	These
hybrid	machines	have	goals,	and	their	citizens/customers/employees	are	some	of



hybrid	machines	have	goals,	and	their	citizens/customers/employees	are	some	of
the	resources	they	use	to	accomplish	them.

We	are	close	to	being	able	to	build	superintelligences	out	of	pure	information
technology,	without	human	components.	This	is	what	people	normally	refer	to	as
“artificial	intelligence,”	or	AI.	It	is	reasonable	to	ask	what	the	attitudes	of	the
hypothetical	machine	superintelligences	will	be	toward	humans.	Will	they,	too,
see	humans	as	useful	resources	and	a	good	relationship	with	us	as	worth
preserving?	Will	they	be	constructed	to	have	goals	that	are	aligned	with	our
own?	Will	a	superintelligence	even	see	these	questions	as	important?	What	are
the	“right	questions”	that	we	should	be	asking?	I	believe	that	one	of	the	most
important	is	this:	What	relationship	will	various	superintelligences	have	to	one
another?

It	is	interesting	to	consider	how	the	hybrid	superintelligences	currently	deal
with	conflicts	among	themselves.	Today,	much	of	the	ultimate	power	rests	in	the
nation-states,	which	claim	authority	over	a	patch	of	ground.	Whether	they	are
optimized	to	act	in	the	interests	of	their	citizens	or	those	of	a	despotic	ruler,
nation-states	assert	priority	over	other	intelligences’	desires	or	goals	within	their
geographic	dominion.	They	claim	a	monopoly	on	the	use	of	force	and	recognize
only	other	nation-states	as	peers.	They	are	willing,	if	necessary,	to	demand	great
sacrifices	of	their	citizens	to	enforce	their	authority,	even	to	the	point	of
sacrificing	their	citizens’	lives.

This	geographical	division	of	authority	made	logical	sense	when	most	of	the
actors	were	humans	who	spent	their	lives	within	a	single	nation-state,	but	now
that	the	actors	of	importance	include	geographically	distributed	hybrid
intelligences	such	as	multinational	corporations,	that	logic	is	less	obvious.	Today
we	live	in	a	complex	transitional	period,	when	distributed	superintelligences	still
largely	rely	on	the	nation-states	to	settle	the	arguments	arising	among	them.
Often,	those	arguments	are	resolved	differently	in	different	jurisdictions.	It	is
becoming	more	difficult	even	to	assign	individual	humans	to	nation-states:
International	travelers	living	and	working	outside	their	native	countries,
refugees,	and	immigrants	(documented	and	not)	are	still	dealt	with	as	awkward
exceptions.	Superintelligences	built	purely	of	information	technology	will	prove
even	more	awkward	for	the	territorial	system	of	authority,	since	there	is	no
reason	why	they	need	to	be	tied	to	physical	resources	in	a	single	country—or
even	to	any	particular	physical	resources	at	all.	An	artificial	intelligence	might
well	exist	“in	the	cloud”	rather	than	at	any	physical	location.

I	can	imagine	at	least	four	scenarios	for	how	machine	superintelligences	will
relate	to	hybrid	superintelligences.



relate	to	hybrid	superintelligences.
In	one	obvious	scenario,	multiple	machine	intelligences	will	ultimately	be

controlled	by,	and	allied	with,	individual	nation-states.	In	this	state/AI	scenario,
one	can	envision	American	and	Chinese	super-AIs	wrestling	each	other	for
resources	on	behalf	of	their	state.	In	some	sense,	these	AIs	would	be	citizens	of
their	nation-state	in	the	way	that	many	commercial	corporations	often	act	as
“corporate	citizens”	today.	In	this	scenario,	the	host	nation-states	would
presumably	give	the	machine	superintelligences	the	resources	they	need	to	work
for	the	state’s	advantage.	Or,	to	the	degree	that	the	superintelligences	can
influence	their	state	governments,	they	will	presumably	do	so	to	enhance	their
own	power,	for	instance	by	garnering	a	larger	share	of	the	state’s	resources.
Nation-states’	AIs	might	not	want	competing	AIs	to	grow	up	within	their
jurisdiction.	In	this	scenario,	the	superintelligences	become	an	extension	of	the
state,	and	vice	versa.

The	state/AI	scenario	seems	plausible,	but	it	is	not	our	current	course.	Our
most	powerful	and	rapidly	improving	artificial	intelligences	are	controlled	by
for-profit	corporations.	This	is	the	corporate/AI	scenario,	in	which	the	balance	of
power	between	nation-states	and	corporations	becomes	inverted.	Today,	the
most	powerful	and	intelligent	collections	of	machines	are	probably	owned	by
Google,	but	companies	like	Amazon,	Baidu,	Microsoft,	Facebook,	Apple,	and
IBM	may	not	be	far	behind.	These	companies	all	see	a	business	imperative	to
build	artificial	intelligences	of	their	own.	It	is	easy	to	imagine	a	future	in	which
corporations	independently	build	their	own	machine	intelligences,	protected
within	firewalls	preventing	the	machines	from	taking	advantage	of	one	another’s
knowledge.	These	machines	will	be	designed	to	have	goals	aligned	with	those	of
the	corporation.	If	this	alignment	is	effective,	nation-states	may	continue	to	lag
behind	in	developing	their	own	artificial-intelligence	capability	and	instead
depend	on	their	“corporate	citizens”	to	do	it	for	them.	To	the	extent	that
corporations	successfully	control	the	goals,	they	will	become	more	powerful	and
autonomous	than	nation-states.

Another	scenario,	perhaps	the	one	people	fear	the	most,	is	that	artificial
intelligences	will	not	be	aligned	with	either	humans	or	hybrid	superintelligences
but	will	act	solely	in	their	own	interests.	They	might	even	merge	into	a	single
machine	superintelligence,	since	there	may	be	no	technical	requirement	for
machine	intelligences	to	maintain	distinct	identities.	The	attitude	of	a	self-
interested	super-AI	toward	hybrid	superintelligences	is	likely	to	be	competitive.
Humans	might	be	seen	as	minor	annoyances,	like	ants	at	a	picnic,	but	hybrid
superintelligences—like	corporations,	organized	religions,	and	nation-states—



could	be	existential	threats.	Like	hybrid	superintelligences,	AIs	might	see
humans	mostly	as	useful	tools	to	accomplish	their	goals,	as	pawns	in	their
competition	with	the	other	superintelligences.	Or	we	might	simply	be	irrelevant.
It	is	not	impossible	that	a	machine	intelligence	has	already	emerged	and	we
simply	do	not	recognize	it	as	such.	It	may	not	wish	to	be	noticed,	or	it	may	be	so
alien	to	us	that	we	are	incapable	of	perceiving	it.	This	makes	the	self-interested
AI	scenario	the	most	difficult	to	imagine.	I	believe	the	easy-to-imagine	versions,
like	the	humanoid	intelligent	robots	of	science	fiction,	are	the	least	likely.	Our
most	complex	machines,	like	the	Internet,	have	already	grown	beyond	the
detailed	understanding	of	a	single	human,	and	their	emergent	behaviors	may	be
well	beyond	our	ken.

The	final	scenario	is	that	machine	intelligences	will	not	be	allied	with	one
another	but	instead	will	work	to	further	the	goals	of	humanity	as	a	whole.	In	this
optimistic	scenario,	AI	could	help	us	restore	the	balance	of	power	between	the
individual	and	the	corporation,	between	the	citizen	and	the	state.	It	could	help	us
solve	the	problems	that	have	been	created	by	hybrid	superintelligences	that
subvert	the	goals	of	humans.	In	this	scenario,	AIs	will	empower	us	by	giving	us
access	to	processing	capacity	and	knowledge	currently	available	only	to
corporations	and	states.	In	effect,	they	could	become	extensions	of	our	own
individual	intelligences,	in	furtherance	of	our	human	goals.	They	could	make	our
weak	individual	intelligences	strong.	This	prospect	is	both	exciting	and
plausible.	It	is	plausible	because	we	have	some	choice	in	what	we	build,	and	we
have	a	history	of	using	technology	to	expand	and	augment	our	human	capacities.
As	airplanes	have	given	us	wings	and	engines	have	given	us	muscles	to	move
mountains,	so	our	network	of	computers	may	amplify	and	extend	our	minds.	We
may	not	fully	understand	or	control	our	destiny,	but	we	have	a	chance	to	bend	it
in	the	direction	of	our	values.	The	future	is	not	something	that	will	happen	to	us;
it	is	something	that	we	will	build.

WHY	WIENER	SAW	WHAT	OTHERS	MISSED

There	is	in	electrical	engineering	a	split	which	is	known	in	Germany	as	the	split	between	the
technique	of	strong	currents	and	the	technique	of	weak	currents,	and	which	we	know	as	the
distinction	between	power	and	communication	engineering.	It	is	this	split	which	separates	the
age	just	past	from	that	in	which	we	are	now	living.



—NORBERT	WIENER,	Cybernetics:	or	Control	and	Communication	in	the	Animal	and	the
Machine

Cybernetics	is	the	study	of	the	how	the	weak	can	control	the	strong.	Consider	the
defining	metaphor	of	the	field:	the	helmsman	guiding	a	ship	with	a	tiller.	The
helmsman’s	goal	is	to	control	the	heading	of	the	ship,	to	keep	it	on	the	right
course.	The	information,	the	message	that	is	sent	to	the	helmsman,	comes	from
the	compass	or	the	stars,	and	the	helmsman	closes	the	feedback	loop	by	sending
the	steering	messages	through	the	gentle	force	of	his	hand	on	the	tiller.	In	this
picture,	we	see	the	ship	tossing	in	powerful	wind	and	waves	in	the	real	world,
controlled	by	the	communication	system	of	messages	in	the	world	of
information.

Yet	the	distinction	between	“real”	and	“information”	is	mostly	a	difference	in
perspective.	The	signals	that	carry	messages,	like	the	light	of	the	stars	and	the
pressure	of	the	hand	on	the	tiller,	exist	in	a	world	of	energy	and	forces,	as	does
the	helmsman.	The	weak	forces	that	control	the	rudder	are	as	real	and	physical
as	the	strong	forces	that	toss	the	ship.	If	we	shift	our	cybernetics	perspective
from	the	ship	to	the	helmsman,	the	pressures	on	the	rudder	become	a	strong
force	of	muscles	controlled	by	the	weak	signals	in	the	mind	of	the	helmsman.
These	messages	in	the	helmsman’s	mind	are	amplified	into	a	physical	force
strong	enough	to	steer	the	ship.	Or	instead,	we	can	zoom	out	and	take	a	large
cybernetics	perspective.	We	might	see	the	ship	itself	as	part	of	a	vast	trade
network,	part	of	a	feedback	loop	that	regulates	the	price	of	commodities	through
the	flow	of	goods.	In	this	perspective,	the	tiny	ship	is	merely	a	messenger.	So	the
distinction	between	the	physical	world	and	the	information	world	is	a	way	to
describe	the	relationship	between	the	weak	and	the	strong.

Wiener	chose	to	view	the	world	from	the	vantage	point	and	scale	of	the
individual	human.	As	a	cyberneticist,	he	took	the	perspective	of	the	weak
protagonist	embedded	within	a	strong	system,	trying	to	make	the	best	of	limited
powers.	He	incorporated	this	perspective	in	his	very	definition	of	information.
“Information,”	he	said,	“is	a	name	for	the	content	of	what	is	exchanged	with	the
outer	world	as	we	adjust	to	it,	and	make	our	adjustment	felt	upon	it.”	In	his
words,	information	is	what	we	use	to	“live	effectively	within	that
environment.”*	For	Wiener,	information	is	a	way	for	the	weak	to	effectively
cope	with	the	strong.	This	viewpoint	is	also	reflected	in	Gregory	Bateson’s
definition	of	information	as	“a	difference	that	makes	a	difference,”	by	which	he
meant	the	small	difference	that	makes	a	big	difference.

The	goal	of	cybernetics	was	to	create	a	tiny	model	of	the	system	using	“weak
currents”	to	amplify	and	control	“strong	currents”	of	the	real	world.	The	central



currents”	to	amplify	and	control	“strong	currents”	of	the	real	world.	The	central
insight	was	that	a	control	problem	could	be	solved	by	building	an	analogous
system	in	the	information	space	of	messages	and	then	amplifying	solutions	into
the	larger	world	of	reality.	Inherent	in	the	motion	of	a	control	system	is	the
concept	of	amplification,	which	makes	the	small	big	and	the	weak	strong.
Amplification	allows	the	difference	that	makes	a	difference	to	make	a	difference.

In	this	way	of	looking	at	the	world,	a	control	system	needed	to	be	as	complex
as	the	system	it	controlled.	Cyberneticist	W.	Ross	Ashby	proved	that	this	was
true	in	a	precise	mathematical	sense,	in	what	is	now	called	Ashby’s	Law	of
Requisite	Variety,	or	sometimes	the	First	Law	of	Cybernetics.	The	law	tells	us
that	to	control	a	system	completely,	the	controller	must	be	as	complex	as	the
controlled.	Thus	cyberneticists	tended	to	see	control	systems	as	a	kind	of	analog
of	the	systems	they	governed,	like	the	homunculus—the	hypothetical	little
person	inside	the	brain	who	controls	the	actual	person.

This	notion	of	analogous	structure	is	sometimes	confused	with	the	notion	of
analog	encoding	of	messages,	but	the	two	are	logically	distinct.	Norbert	Wiener
was	much	impressed	with	Vannevar	Bush’s	digital	Differential	Analyzer,	which
could	be	reconfigured	to	match	the	structure	of	whatever	problem	it	was	given	to
solve	but	used	digital	signal	encoding.	Signals	could	be	simplified	to	openly
represent	the	relevant	distinctions,	allowing	them	to	be	more	accurately
communicated	and	stored.	In	digital	signals,	one	needed	only	to	preserve	the
difference	in	signals	that	made	a	difference.	It	is	this	distinction	and	signal
coding	that	we	commonly	use	to	distinguish	“analog”	versus	“digital.”	Digital
signal	encoding	was	entirely	compatible	with	cybernetic	thinking—in	fact,
enabling	to	it.	What	was	constraining	to	cybernetics	was	the	presumption	of	an
analogy	of	structure	between	the	controller	and	the	controlled.	By	the	1930s,
Kurt	Gödel,	Alonzo	Church,	and	Alan	Turing	had	all	described	universal
systems	of	computation,	in	which	the	computation	required	no	structural	analogy
to	functions	that	were	computed.	These	universal	computers	could	also	compute
the	functions	of	control.

The	analogy	of	structure	between	the	controller	and	the	controlled	was
central	to	the	cybernetic	perspective.	Just	as	digital	coding	collapses	the	space	of
possible	messages	into	a	simplified	version	that	represents	only	the	difference
that	makes	a	difference,	so	the	control	system	collapses	the	state	space	of	a
controlled	system	into	a	simplified	model	that	reflects	only	the	goals	of	the
controller.	Ashby’s	Law	does	not	imply	that	every	controller	must	model	every
state	of	the	system	but	only	those	states	that	matter	for	advancing	the	controller’s
goals.	Thus,	in	cybernetics,	the	goal	of	the	controller	becomes	the	perspective



from	which	the	world	is	viewed.
Norbert	Wiener	adopted	the	perspective	of	the	individual	human	relating	to

vast	organizations	and	trying	to	“live	effectively	within	that	environment.”	He
took	the	perspective	of	the	weak	trying	to	influence	the	strong.	Perhaps	this	is
why	he	was	able	to	notice	the	emergent	goals	of	the	“machines	of	flesh	and
blood”	and	anticipate	some	of	the	human	challenges	posed	by	these	new
intelligences—hybrid	machine	intelligences	with	goals	of	their	own.



Chapter	18

WILL	COMPUTERS	BECOME	OUR	OVERLORDS?

VENKI	RAMAKRISHNAN

Venki	Ramakrishnan	is	a	scientist	at	the	Medical	Research	Council	Laboratory	of
Molecular	Biology,	Cambridge	University;	recipient	of	the	Nobel	Prize	in	Chemistry
(2009);	current	president	of	the	Royal	Society;	and	the	author	of	Gene	Machine:

The	Race	to	Discover	the	Secrets	of	the	Ribosome.

Venki	Ramakrishnan	is	a	Nobel	Prize–winning	biologist	whose	many	scientific
contributions	include	his	work	on	the	atomic	structure	of	the	ribosome—in	effect,	a	huge
molecular	machine	that	reads	our	genes	and	makes	proteins.	His	work	would	have	been
impossible	without	powerful	computers.	The	Internet	made	his	own	work	a	lot	easier	and,
he	notes,	acted	as	a	leveler	internationally:	“When	I	grew	up	in	India,	if	you	wanted	to	get	a
book,	it	would	show	up	six	months	or	a	year	after	it	had	already	come	out	in	the	West.	.	.	.
Journals	would	arrive	by	surface	mail	a	few	months	later.	I	didn’t	have	to	deal	with	it,
because	I	left	India	when	I	was	nineteen,	but	I	know	Indian	scientists	had	to	deal	with	it.
Today	they	have	access	to	information	at	the	click	of	a	button.	More	important,	they	have
access	to	lectures.	They	can	listen	to	Richard	Feynman.	That	would	have	been	a	dream	of
mine	when	I	was	growing	up.	They	can	just	watch	Richard	Feynman	on	the	Web.	That’s	a
big	leveling	in	the	field.”	And	yet	.	.	.	“Along	with	the	benefits	[of	the	Web],	there	is	now	a
huge	amount	of	noise.	You	have	all	of	these	people	spouting	pseudoscientific	jargon	and
pushing	their	own	ideas	as	if	they	were	science.”

As	president	of	the	Royal	Society,	Venki	worries,	too,	about	the	broader	issue	of	trust:
public	trust	in	evidence-based	scientific	findings,	but	also	trust	among	scientists,	bolstered
by	rigorous	checking	of	one	another’s	conclusions—trust	that	is	in	danger	of	eroding
because	of	the	“black	box”	character	of	deep-learning	computers.	“This	[erosion]	is	going
to	happen	more	and	more,	as	data	sets	get	bigger,	as	we	have	genome-wide	studies,
population	studies,	and	all	sorts	of	things,”	he	says.	“How	do	we,	as	a	science	community,
grapple	with	this	and	communicate	to	the	public	a	sense	of	what	science	is	about,	what	is
reliable	in	science,	what	is	uncertain	in	science,	and	what	is	just	plain	wrong	in	science?”



A former	colleague	of	mine,	Gérard	Bricogne,	used	to	joke	that	carbon-
based	intelligence	was	simply	a	catalyst	for	the	evolution	of	silicon-based
intelligence.	For	quite	a	long	time,	both	Hollywood	movies	and	scientific

Jeremiahs	have	been	predicting	our	eventual	capitulation	to	our	computer
overlords.	We	all	await	the	singularity,	which	always	seems	to	be	just	over	the
horizon.

In	a	sense,	computers	have	already	taken	over,	facilitating	virtually	every
aspect	of	our	lives—from	banking,	travel,	and	utilities	to	the	most	intimate
personal	communication.	I	can	see	and	talk	to	my	grandson	in	New	York	for
free.	I	remember	when	I	first	saw	the	1968	movie	2001:	A	Space	Odyssey,	the
audience	laughed	at	the	absurdly	cheap	cost	of	a	picturephone	call	from	space:
$1.70,	at	a	time	when	a	long-distance	call	within	the	U.S.	was	$3	per	minute.

However,	the	convenience	and	power	of	computers	is	also	something	of	a
Faustian	bargain,	for	it	comes	with	a	loss	of	control.	Computers	prevent	us	from
doing	things	we	want.	Try	getting	on	a	flight	if	you	arrive	at	the	airport	and	the
airline	computer	systems	are	down,	as	happened	not	so	long	ago	to	British
Airways	at	Heathrow.	The	planes,	pilots,	and	passengers	were	all	there;	even	the
air-traffic	controls	were	working.	But	no	flights	for	that	airline	were	allowed	to
take	off.	Computers	also	make	us	do	things	we	don’t	want—by	generating
mailing	lists	and	print	labels	to	send	us	all	millions	of	pieces	of	unwanted	mail,
which	we	humans	have	to	sort,	deliver,	and	dispose	of.

But	you	ain’t	seen	nothing	yet.	In	the	past,	we	programmed	computers	using
algorithms	we	understood	at	least	in	principle.	So	when	machines	did	amazing
things	like	beating	world	chess	champion	Garry	Kasparov,	we	could	say	that	the
victorious	programs	were	designed	with	algorithms	based	on	our	own
understanding—using,	in	this	instance,	the	experience	and	advice	of	top	grand
masters.	Machines	were	simply	faster	at	doing	brute-force	calculations,	had
prodigious	amounts	of	memory,	and	were	not	prone	to	errors.	One	article
described	Deep	Blue’s	victory	not	as	that	of	a	computer,	which	was	just	a	dumb
machine,	but	as	the	victory	of	hundreds	of	programmers	over	Kasparov,	a	single
individual.

That	way	of	programming	is	changing	dramatically.	After	a	long	hiatus,	the
power	of	machine	learning	has	taken	off.	Much	of	the	change	came	when
programmers,	rather	than	trying	to	anticipate	and	code	for	every	possible



programmers,	rather	than	trying	to	anticipate	and	code	for	every	possible
contingency,	allowed	computers	to	train	themselves	on	data,	using	deep	neural
networks	based	on	models	of	how	our	own	brains	learn.	They	use	probabilistic
methods	to	“learn”	from	large	quantities	of	data;	computers	can	recognize
patterns	and	come	up	with	conclusions	on	their	own.	A	particularly	powerful
method	is	called	reinforcement	learning,	by	which	the	computer	learns,	without
prior	input,	which	variables	are	important	and	how	much	to	weight	them	to	reach
a	certain	goal.	This	method	in	some	sense	mimics	how	we	learn	as	children.	The
results	from	these	new	approaches	are	amazing.

Such	a	deep-learning	program	was	used	to	teach	a	computer	to	play	Go,	a
game	that	only	a	few	years	ago	was	thought	to	be	beyond	the	reach	of	AI
because	it	was	so	hard	to	calculate	how	well	you	were	doing.	It	seemed	that	top
Go	players	relied	a	great	deal	on	intuition	and	a	feel	for	position,	so	proficiency
was	thought	to	require	a	particularly	human	kind	of	intelligence.	But	the
AlphaGo	program	produced	by	DeepMind,	after	being	trained	on	thousands	of
high-level	Go	games	played	by	humans	and	then	millions	of	games	with	itself,
was	able	to	beat	the	top	human	players	in	short	order.	Even	more	amazingly,	the
related	AlphaGo	Zero	program,	which	learned	from	scratch	by	playing	itself,
was	stronger	than	the	version	trained	initially	on	human	games!	It	was	as	though
the	humans	had	been	preventing	the	computer	from	reaching	its	true	potential.
The	same	method	has	recently	been	generalized:	Starting	from	scratch,	within
just	twenty-four	hours,	an	equivalent	AlphaZero	chess	program	was	able	to	beat
today’s	top	“conventional”	chess	programs,	which	in	turn	have	beaten	the	best
humans.

Progress	has	not	been	restricted	to	games.	Computers	are	significantly	better
at	image	and	voice	recognition	and	speech	synthesis	than	they	used	to	be.	They
can	detect	tumors	in	radiographs	earlier	than	most	humans.	Medical	diagnostics
and	personalized	medicine	will	improve	substantially.	Transportation	by	self-
driving	cars	will	keep	us	all	safer,	on	average.	My	grandson	may	never	have	to
acquire	a	driver’s	license,	because	driving	a	car	will	be	like	riding	a	horse	today
—a	hobby	for	the	few.	Dangerous	activities,	such	as	mining,	and	tedious
repetitive	work	will	be	done	by	computers.	Governments	will	offer	better
targeted,	more	personalized	and	efficient	public	services.	AI	could	revolutionize
education	by	analyzing	an	individual	pupil’s	needs	and	enabling	customized
teaching,	so	that	each	student	could	advance	at	an	optimal	rate.

Along	with	these	huge	benefits,	of	course,	will	come	alarming	risks.	With	the
vast	amounts	of	personal	data,	computers	will	learn	more	about	us	than	we	may
know	about	ourselves;	the	question	of	who	owns	data	about	us	will	be



know	about	ourselves;	the	question	of	who	owns	data	about	us	will	be
paramount.	Moreover,	data-based	decisions	will	undoubtedly	reflect	social
biases:	Even	an	allegedly	neutral	intelligent	system	designed	to	predict	loan
risks,	say,	may	conclude	that	mere	membership	in	a	particular	minority	group
makes	you	more	likely	to	default	on	a	loan.	While	this	is	an	obvious	example
that	we	could	correct,	the	real	danger	is	that	we	are	not	always	aware	of	biases	in
the	data	and	may	simply	perpetuate	them.

Machine	learning	may	also	perpetuate	our	own	biases.	When	Netflix	or
Amazon	tries	to	tell	you	what	you	might	want	to	watch	or	buy,	this	is	an
application	of	machine	learning.	Currently	such	suggestions	are	sometimes
laughable,	but	with	time	and	more	data	they	will	get	increasingly	accurate,
reinforcing	our	prejudices	and	likes	and	dislikes.	Will	we	miss	out	on	the
random	encounter	that	might	persuade	us	to	change	our	views	by	exposing	us	to
new	and	conflicting	ideas?	Social	media,	given	its	influence	on	elections,	is	a
particularly	striking	illustration	of	how	the	divide	between	people	on	different
sides	of	the	political	spectrum	can	be	accentuated.

We	might	have	already	reached	the	stage	where	most	governments	are
powerless	to	resist	the	combined	clout	of	a	few	powerful	multinational
companies	that	control	us	and	our	digital	future.	The	fight	between	dominant
companies	today	is	really	a	fight	for	control	over	our	data.	They	will	use	their
enormous	influence	to	prevent	regulation	of	data,	because	their	interests	lie	in
unfettered	control	of	it.	Moreover,	they	have	the	financial	resources	to	hire	the
most	talented	workers	in	the	field,	enhancing	their	power	even	further.	We	have
been	giving	away	valuable	data	for	the	sake	of	freebies	like	Gmail	and
Facebook,	but	as	the	journalist	and	author	John	Lanchester	has	pointed	out	in	the
London	Review	of	Books,	if	it	is	free,	then	you	are	the	product.	Their	real
customers	are	the	ones	who	pay	them	for	access	to	knowledge	about	us,	so	that
they	can	persuade	us	to	buy	their	products	or	otherwise	influence	us.	One	way
around	the	monopolistic	control	of	data	is	to	split	the	ownership	of	data	away
from	firms	that	use	them.	Individuals	would	instead	own	and	control	access	to
their	personal	data	(a	model	that	would	encourage	competition,	since	people
would	be	free	to	move	their	data	to	a	company	that	offered	better	services).
Finally,	abuse	of	data	is	not	limited	to	corporations:	In	totalitarian	states,	or	even
nominally	democratic	ones,	governments	know	things	about	their	citizens	that
Orwell	could	not	have	imagined.	The	use	they	make	of	this	information	may	not
always	be	transparent	or	possible	to	counter.

The	prospect	of	AI	for	military	purposes	is	frightening.	One	can	imagine
intelligent	systems	being	designed	to	act	autonomously	based	on	real-time	data
and	able	to	act	faster	than	the	enemy,	starting	catastrophic	wars.	Such	wars	may
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and	able	to	act	faster	than	the	enemy,	starting	catastrophic	wars.	Such	wars	may
not	necessarily	be	conventional	or	even	nuclear	wars.	Given	how	essential
computer	networks	are	to	modern	society,	it	is	much	more	likely	that	AI	wars
will	be	fought	in	cyberspace.	The	consequences	could	be	just	as	dire.

—
espite	this	loss	of	control,	we	continue	to	march	inexorably	into	a	world	in
which	AI	will	be	everywhere:	Individuals	won’t	be	able	to	resist	its

convenience	and	power,	and	corporations	and	governments	won’t	be	able	to
resist	its	competitive	advantages.	But	important	questions	arise	about	the	future
of	work.	Computers	have	been	responsible	for	considerable	losses	in	blue-collar
jobs	in	the	last	few	decades,	but	until	recently	many	white-collar	jobs—jobs	that
“only	humans	can	do”—were	thought	to	be	safe.	Suddenly	that	no	longer
appears	to	be	true.	Accountants,	many	legal	and	medical	professionals,	financial
analysts	and	stockbrokers,	travel	agents—in	fact,	a	large	fraction	of	white-collar
jobs—will	disappear	as	a	result	of	sophisticated	machine-learning	programs.	We
face	a	future	in	which	factories	churn	out	goods	with	very	few	employees	and
the	movement	of	goods	is	largely	automated,	as	are	many	services.	What’s	left
for	humans	to	do?

In	1930—long	before	the	advent	of	computers,	let	alone	AI—John	Maynard
Keynes	wrote,	in	an	essay	called	“Economic	Possibilities	for	Our
Grandchildren,”	that	as	a	result	of	improvements	in	productivity,	society	could
produce	all	its	needs	with	a	fifteen-hour	workweek.	He	also	predicted,	along
with	the	growth	of	creative	leisure,	the	end	of	money	and	wealth	as	a	goal:

We	shall	be	able	to	afford	to	dare	to	assess	the	money-motive	at	its
true	value.	The	love	of	money	as	a	possession—as	distinguished	from	the
love	of	money	as	a	means	to	the	enjoyments	and	realities	of	life—will	be
recognised	for	what	it	is,	a	somewhat	disgusting	morbidity,	one	of	those
semi-criminal,	semi-pathological	propensities	which	one	hands	over	with
a	shudder	to	the	specialists	in	mental	disease.

Sadly,	Keynes’s	predictions	did	not	come	true.	Although	productivity	did
indeed	increase,	the	system—possibly	inherent	in	a	market	economy—did	not
result	in	humans	working	much	shorter	hours.	Rather,	what	happened	is	what	the
anthropologist	and	anarchist	David	Graeber	describes	as	the	growth	of	“bullshit
jobs.”*	While	jobs	that	produce	essentials	like	food,	shelter,	and	goods	have



been	largely	automated	away,	we	have	seen	an	enormous	expansion	of	sectors
like	corporate	law,	academic	and	health	administration	(as	opposed	to	actual
teaching,	research,	and	the	practice	of	medicine),	“human	resources,”	and	public
relations,	not	to	mention	new	industries	like	financial	services	and	telemarketing
and	ancillary	industries	in	the	so-called	gig	economy	that	serve	those	who	are
too	busy	doing	all	that	additional	work.

How	will	societies	cope	with	technology’s	increasingly	rapid	destruction	of
entire	professions	and	throwing	large	numbers	of	people	out	of	work?	Some
argue	that	this	concern	is	based	on	a	false	premise,	because	new	jobs	spring	up
that	didn’t	exist	before,	but	as	Graeber	points	out,	these	new	jobs	won’t
necessarily	be	rewarding	or	fulfilling.	During	the	first	industrial	revolution,	it
took	almost	a	century	before	most	people	were	better	off.	That	revolution	was
possible	only	because	the	government	of	the	time	ruthlessly	favored	property
rights	over	labor,	and	most	people	(and	all	women)	did	not	have	the	vote.	In
today’s	democratic	societies,	it	is	not	clear	that	the	population	will	tolerate	such
a	dramatic	upheaval	of	society	based	on	the	promise	that	“eventually”	things	will
get	better.

Even	that	rosy	vision	will	depend	on	a	radical	shake-up	of	education	and
lifelong	learning.	The	Industrial	Revolution	did	trigger	enormous	social	change
of	this	kind,	including	a	shift	to	universal	education.	But	it	will	not	happen
unless	we	make	it	happen:	This	is	essentially	about	power,	agency,	and	control.
What’s	next	for,	say,	the	forty-year-old	taxi	driver	or	truck	driver	in	an	era	of
autonomous	vehicles?

One	idea	that	has	been	touted	is	that	of	a	universal	basic	income,	which	will
allow	citizens	to	pursue	their	interests,	retrain	for	new	occupations,	and
generally	be	free	to	live	a	decent	life.	However,	market	economies,	which	are
predicated	on	growing	consumer	demand	over	all	else,	may	not	tolerate	this
innovation.	There	is	also	a	feeling	among	many	that	meaningful	work	is
essential	to	human	dignity	and	fulfillment.	So	another	possibility	is	that	the
enormous	wealth	generated	by	increased	productivity	due	to	automation	could
be	redistributed	to	jobs	requiring	human	labor	and	creativity	in	fields	such	as	the
arts,	music,	social	work,	and	other	worthwhile	pursuits.	Ultimately,	which	jobs
are	rewarding	or	productive	and	which	are	“bullshit”	is	a	matter	of	judgment	and
may	vary	from	society	to	society,	as	well	as	over	time.

—



So	far,	I’ve	focused	on	AI’s	practical	consequences.	As	a	scientist,	what
bothers	me	is	our	potential	loss	of	understanding.	We	are	now	accumulating

data	at	an	incredible	rate.	In	my	own	lab,	an	experiment	generates	more	than	a
terabyte	of	data	a	day.	These	data	are	massaged,	analyzed,	and	reduced	until
there	is	an	interpretable	result.	But	in	all	of	this	data	analysis,	we	believe	we
know	what’s	happening.	We	know	what	the	programs	are	doing	because	we
designed	the	algorithms	at	their	heart.	So	when	our	computers	generate	a	result,
we	feel	that	we	intellectually	grasp	it.

The	new	machine-learning	programs	are	different.	Having	recognized
patterns	via	deep	neural	networks,	they	come	up	with	conclusions,	and	we	have
no	idea	exactly	how.	When	they	uncover	relationships,	we	don’t	understand	it	in
the	same	way	as	if	we	had	deduced	those	relationships	ourselves	using	an
underlying	theoretical	framework.	As	data	sets	become	larger,	we	won’t	be	able
to	analyze	them	ourselves	even	with	the	help	of	computers;	rather,	we	will	rely
entirely	on	computers	to	do	the	analysis	for	us.	So	if	someone	asks	us	how	we
know	something,	we	will	simply	say	it	is	because	the	machine	analyzed	the	data
and	produced	the	conclusion.

One	day	a	computer	may	well	come	up	with	an	entirely	new	result—e.g.,	a
mathematical	theorem	whose	proof,	or	even	whose	statement,	no	human	can
understand.	That	is	philosophically	different	from	the	way	we	have	been	doing
science.	Or	at	least	thought	we	had;	some	might	argue	that	we	don’t	know	how
our	own	brains	reach	conclusions	either,	and	that	these	new	methods	are	a	way
of	mimicking	learning	by	the	human	brain.	Nevertheless,	I	find	this	potential
loss	of	understanding	disturbing.

Despite	the	remarkable	advances	in	computing,	the	hype	about	AGI—a
general-intelligence	machine	that	will	think	like	a	human	and	possibly	develop
consciousness—smacks	of	science	fiction	to	me,	partly	because	we	don’t
understand	the	brain	at	that	level	of	detail.	Not	only	do	we	not	understand	what
consciousness	is,	we	don’t	even	understand	a	relatively	simple	problem	like	how
we	remember	a	phone	number.	In	just	that	one	question,	there	are	all	sorts	of
things	to	consider.	How	do	we	know	it	is	a	number?	How	do	we	associate	it	with
a	person,	a	name,	face,	and	other	characteristics?	Even	such	seemingly	trivial
questions	involve	everything	from	high-level	cognition	and	memory	to	how	a
cell	stores	information	and	how	neurons	interact.



Moreover,	that’s	just	one	task	among	many	that	the	brain	does	effortlessly.
Whereas	machines	will	no	doubt	do	ever	more	amazing	things,	they’re	unlikely
to	be	a	replacement	for	human	thought	and	human	creativity	and	vision.	Eric
Schmidt,	former	chairman	of	Google’s	parent	company,	said	in	a	recent
interview	at	the	London	Science	Museum	that	even	designing	a	robot	that	would
clear	the	table,	wash	the	dishes,	and	put	them	away	was	a	huge	challenge.	The
calculations	involved	in	figuring	out	all	the	movements	the	body	has	to	make	to
throw	a	ball	accurately	or	do	slalom	skiing	are	prodigious.	The	brain	can	do	all
these	and	also	do	mathematics	and	music,	and	invent	games	like	chess	and	Go,
not	just	play	them.	We	tend	to	underestimate	the	complexity	and	creativity	of	the
human	brain	and	how	amazingly	general	it	is.

If	AI	is	to	become	more	humanlike	in	its	abilities,	the	machine-learning	and
neuroscience	communities	need	to	interact	closely,	something	that	is	happening
already.	Some	of	today’s	greatest	exponents	of	machine	learning—such	as
Geoffrey	Hinton,	Zoubin	Ghahramani,	and	Demis	Hassabis—have	backgrounds
in	cognitive	neuroscience,	and	their	success	has	been	at	least	in	part	due	to
attempts	to	model	brainlike	behavior	in	their	algorithms.	At	the	same	time,
neurobiology	has	also	flourished.	All	sorts	of	tools	have	been	developed	to
watch	which	neurons	are	firing	and	genetically	manipulate	them	and	see	what’s
happening	in	real	time	with	inputs.	Several	countries	have	launched	moon-shot
neuroscience	initiatives	to	see	if	we	can	crack	the	workings	of	the	brain.
Advances	in	AI	and	neuroscience	seem	to	go	hand	in	hand;	each	field	can	propel
the	other.

Many	evolutionary	scientists,	and	such	philosophers	as	Daniel	Dennett,	have
pointed	out	that	the	human	brain	is	the	result	of	billions	of	years	of	evolution.*
Human	intelligence	is	not	the	special	characteristic	we	think	it	is,	but	just
another	survival	mechanism	not	unlike	our	digestive	and	immune	systems,	both
of	which	are	also	amazingly	complex.	Intelligence	evolved	because	it	allowed	us
to	make	sense	of	the	world	around	us,	to	plan	ahead,	and	thus	to	cope	with	all
sorts	of	unexpected	things	in	order	to	survive.	However,	as	Descartes	stated,	we
humans	define	our	very	existence	by	our	ability	to	think.	So	it	is	not	surprising
that,	in	an	anthropomorphic	way,	our	fears	about	AI	reflect	this	belief	that	our
intelligence	is	what	makes	us	special.

But	if	we	step	back	and	look	at	life	on	Earth,	we	see	that	we	are	far	from	the
most	resilient	species.	If	we’re	going	to	be	taken	over	at	some	point,	it	will	be	by
some	of	Earth’s	oldest	life-forms,	like	bacteria,	which	can	live	anywhere	from
Antarctica	to	deep-sea	thermal	vents	hotter	than	boiling	water,	or	in	acid
environments	that	would	melt	you	and	me.	So	when	people	ask	where	we’re



environments	that	would	melt	you	and	me.	So	when	people	ask	where	we’re
headed,	we	need	to	put	the	question	in	a	broader	context.	I	don’t	know	what	sort
of	future	AI	will	bring:	whether	AI	will	make	humans	subservient	or	obsolete	or
will	be	a	useful	and	welcome	enhancement	of	our	abilities	that	will	enrich	our
lives.	But	I	am	reasonably	certain	that	computers	will	never	be	the	overlords	of
bacteria.



Chapter	19

THE	HUMAN	STRATEGY

ALEX	“SANDY”	PENTLAND

Alex	“Sandy”	Pentland	is	Toshiba	Professor	and	professor	of	media	arts	and
sciences	at	MIT;	director	of	the	Human	Dynamics	and	Connection	Science	labs	and

the	Media	Lab	Entrepreneurship	Program;	and	the	author	of	Social	Physics.

Alex	“Sandy”	Pentland,	an	exponent	of	what	he	has	termed	“social	physics,”	is	interested
in	building	powerful	human-AI	ecologies.	He	is	concerned	at	the	same	time	about	the
potential	dangers	of	decision-making	systems	in	which	the	data	in	effect	take	over	and
human	creativity	is	relegated	to	the	background.

The	advent	of	Big	Data,	he	believes,	has	given	us	the	opportunity	to	reinvent	our
civilization:	“We	can	now	begin	to	actually	look	at	the	details	of	social	interaction	and	how
those	play	out,	and	we’re	no	longer	limited	to	averages	like	market	indices	or	election
results.	This	is	an	astounding	change.	The	ability	to	see	the	details	of	the	market,	of
political	revolutions,	and	to	be	able	to	predict	and	control	them	is	definitely	a	case	of
Promethean	fire—it	could	be	used	for	good	or	for	ill.	Big	Data	brings	us	to	interesting
times.”

At	our	group	meeting	in	Washington,	Connecticut,	he	confessed	that	reading	Norbert
Wiener	on	the	concept	of	feedback	“felt	like	reading	my	own	thoughts.”

“After	Wiener,	people	discovered	or	focused	on	the	fact	that	there	are	genuinely
chaotic	systems	that	are	just	not	predictable,”	he	said,	“but	if	you	look	at	human
socioeconomic	systems,	there	is	a	large	percentage	of	variance	you	can	account	for	and
predict.	.	.	.	Today	there	is	data	from	all	sorts	of	digital	devices,	and	from	all	of	our
transactions.	The	fact	that	everything	is	datafied	means	you	can	measure	things	in	real
time	in	most	aspects	of	human	life—and	increasingly	in	every	aspect	of	human	life.	The
fact	that	we	have	interesting	computers	and	machine-learning	techniques	means	that	you
can	build	predictive	models	of	human	systems	in	ways	you	could	never	do	before.”



I n	the	last	half	century,	the	idea	of	AI	and	intelligent	robots	has	dominated
thinking	about	the	relationship	between	humans	and	computers.	In	part,	this
is	because	it’s	easy	to	tell	the	stories	about	AI	and	robots,	and	in	part	because

of	early	successes	(e.g.,	theorem	provers	that	reproduced	most	of	Whitehead	and
Russell’s	Principia	Mathematica)	and	massive	military	funding.	The	earlier	and
broader	vision	of	cybernetics,	which	considered	the	artificial	as	part	of	larger
systems	of	feedback	and	mutual	influence,	faded	from	public	awareness.

However,	in	the	intervening	years	the	cybernetics	vision	has	slowly	grown
and	quietly	taken	over—to	the	point	where	it	is	“in	the	air.”	State-of-the-art
research	in	most	engineering	disciplines	is	now	framed	as	feedback	systems	that
are	dynamic	and	driven	by	energy	flows.	Even	AI	is	being	recast	as
human/machine	“adviser”	systems,	and	the	military	is	beginning	large-scale
funding	in	this	area—something	that	should	perhaps	worry	us	more	than	drones
and	independent	humanoid	robots.

But	as	science	and	engineering	have	adopted	a	more	cybernetics-like	stance,
it	has	become	clear	that	even	the	vision	of	cybernetics	is	far	too	small.	It	was
originally	centered	on	the	embeddedness	of	the	individual	actor	but	not	on	the
emergent	properties	of	a	network	of	actors.	This	is	unsurprising,	because	the
mathematics	of	networks	did	not	exist	until	recently,	so	a	quantitative	science	of
how	networks	behave	was	impossible.	We	now	know	that	study	of	the	individual
does	not	produce	understanding	of	the	system	except	in	certain	simple	cases.
Recent	progress	in	this	area	was	foreshadowed	by	understanding	that	“chaos”
and,	later,	“complexity”	were	the	typical	behavior	of	systems,	but	we	can	now
go	far	beyond	these	statistical	understandings.

We’re	beginning	to	be	able	to	analyze,	predict,	and	even	design	the	emergent
behavior	of	complex	heterogeneous	networks.	The	cybernetics	view	of	the
connected	individual	actor	can	now	be	expanded	to	cover	complex	systems	of
connected	individuals	and	machines,	and	the	insights	we	obtain	from	this
broader	view	are	fundamentally	different	from	those	obtained	from	the
cybernetics	view.	Thinking	about	the	network	is	analogous	to	thinking	about
entire	ecosystems.	How	would	you	guide	ecosystems	to	grow	in	a	good
direction?	What	do	you	even	mean	by	“a	good	direction”?	Questions	like	these
are	beyond	the	boundary	of	traditional	cybernetic	thinking.

Perhaps	the	most	stunning	realization	is	that	humans	are	already	beginning	to
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Perhaps	the	most	stunning	realization	is	that	humans	are	already	beginning	to
use	AI	and	machine	learning	to	guide	entire	ecosystems,	including	ecosystems	of
people,	thus	creating	human-AI	ecologies.	Now	that	everything	is	becoming
“datafied,”	we	can	measure	most	aspects	of	human	life	and,	increasingly,	aspects
of	all	life.	This,	together	with	new,	powerful	machine-learning	techniques,
means	that	we	can	build	models	of	these	ecologies	in	ways	we	couldn’t	before.
Well-known	examples	are	weather-and	traffic-prediction	models,	which	are
being	extended	to	predict	the	global	climate	and	plan	city	growth	and	renewal.
AI-aided	engineering	of	the	ecologies	is	already	here.

Development	of	human-AI	ecosystems	is	perhaps	inevitable	for	a	social
species	such	as	ourselves.	We	became	social	early	in	our	evolution,	millions	of
years	ago.	We	began	exchanging	information	with	one	another	to	stay	alive,	to
increase	our	fitness.	We	developed	writing	to	share	abstract	and	complex	ideas,
and	most	recently	we’ve	developed	computers	to	enhance	our	communication
abilities.	Now	we’re	developing	AI	and	machine-learning	models	of	ecosystems
and	sharing	the	predictions	of	those	models	to	jointly	shape	our	world	through
new	laws	and	international	agreements.

We	live	in	an	unprecedented	historic	moment,	in	which	the	availability	of
vast	amounts	of	human	behavioral	data	and	advances	in	machine	learning	enable
us	to	tackle	complex	social	problems	through	algorithmic	decision	making.	The
opportunities	for	such	a	human-AI	ecology	to	have	positive	social	impact
through	fairer	and	more	transparent	decisions	are	obvious.	But	there	are	also
risks	of	a	“tyranny	of	algorithms,”	where	unelected	data	experts	are	running	the
world.	The	choices	we	make	now	are	perhaps	even	more	momentous	than	those
we	faced	in	the	1950s,	when	AI	and	cybernetics	were	created.	The	issues	look
similar,	but	they’re	not.	We	have	moved	down	the	road,	and	now	the	scope	is
larger.	It’s	not	just	AI	robots	versus	individuals.	It’s	AI	guiding	entire	ecologies.

—
ow	can	we	make	a	good	human-artificial	ecosystem,	something	that’s	not	a
machine	society	but	a	cyberculture	in	which	we	can	all	live	as	humans—a

culture	with	a	human	feel	to	it?	We	don’t	want	to	think	small—for	example,	to
talk	only	of	robots	and	self-driving	cars.	We	want	this	to	be	a	global	ecology.
Think	Skynet	size.	But	how	would	you	make	Skynet	something	that’s	about	the
human	fabric?

The	first	thing	to	ask	is:	What’s	the	magic	that	makes	the	current	AI	work?
Where	is	it	wrong	and	where	is	it	right?

The	good	magic	is	that	it	has	something	called	the	credit-assignment



The	good	magic	is	that	it	has	something	called	the	credit-assignment
function.	What	that	lets	you	do	is	take	“stupid	neurons”—little	linear	functions
—and	figure	out,	in	a	big	network,	which	ones	are	doing	the	work	and
strengthen	them.	It’s	a	way	of	taking	a	random	bunch	of	switches	all	hooked
together	in	a	network	and	making	them	smart	by	giving	them	feedback	about
what	works	and	what	doesn’t.	This	sounds	simple,	but	there’s	some	complicated
math	around	it.	That’s	the	magic	that	makes	current	AI	work.

The	bad	part	of	it	is	that	because	those	little	neurons	are	stupid,	the	things
they	learn	don’t	generalize	very	well.	If	an	AI	sees	something	it	hasn’t	seen
before,	or	if	the	world	changes	a	little	bit,	the	AI	is	likely	to	make	a	horrible
mistake.	It	has	absolutely	no	sense	of	context.	In	some	ways,	it’s	as	far	from
Norbert	Wiener’s	original	notion	of	cybernetics	as	you	can	get,	because	it	isn’t
contextualized;	it’s	a	little	idiot	savant.

But	imagine	that	you	took	away	those	limitations:	Imagine	that	instead	of
using	dumb	neurons,	you	used	neurons	in	which	real-world	knowledge	was
embedded.	Maybe	instead	of	linear	neurons,	you	used	neurons	that	were
functions	in	physics,	and	then	you	tried	to	fit	physics	data.	Or	maybe	you	put	in
a	lot	of	knowledge	about	humans	and	how	they	interact	with	one	another—the
statistics	and	characteristics	of	humans.

When	you	add	this	background	knowledge	and	surround	it	with	a	good
credit-assignment	function,	then	you	can	take	observational	data	and	use	the
credit-assignment	function	to	reinforce	the	functions	that	are	producing	good
answers.	The	result	is	an	AI	that	works	extremely	well	and	can	generalize.	For
instance,	in	solving	physical	problems,	it	often	takes	only	a	couple	of	noisy	data
points	to	get	something	that’s	a	beautiful	description	of	a	phenomenon,	because
you’re	putting	in	knowledge	about	how	physics	works.	That’s	in	huge	contrast	to
normal	AI,	which	requires	millions	of	training	examples	and	is	very	sensitive	to
noise.	By	adding	the	appropriate	background	knowledge	you	get	much	more
intelligence.

Similar	to	the	physical-systems	case,	if	we	make	neurons	that	know	a	lot
about	how	humans	learn	from	one	another,	then	we	can	detect	human	fads	and
predict	human	behavior	trends	in	surprisingly	accurate	and	efficient	ways.	This
“social	physics”	works	because	human	behavior	is	determined	as	much	by	the
patterns	of	our	culture	as	by	rational,	individual	thinking.	These	patterns	can	be
described	mathematically	and	employed	to	make	accurate	predictions.

This	idea	of	a	credit-assignment	function	reinforcing	connections	between
neurons	that	are	doing	the	best	work	is	the	core	of	current	AI.	If	you	make	those
little	neurons	smarter,	the	AI	gets	smarter.	So	what	would	happen	if	we	replaced



the	neurons	with	people?	People	have	lots	of	capabilities.	They	know	lots	of
things	about	the	world;	they	can	perceive	things	in	a	broadly	competent,	human
way.	What	would	happen	if	you	had	a	network	of	people	in	which	you	could
reinforce	the	connections	that	were	helping	and	minimize	the	connections	that
weren’t?

That	begins	to	sound	like	a	society,	or	a	company.	We	all	live	in	a	human
social	network.	We’re	reinforced	for	doing	things	that	seem	to	help	everybody
and	discouraged	from	doing	things	that	are	not	appreciated.	Culture	is	the	result
of	this	sort	of	human	AI	as	applied	to	human	problems;	it	is	the	process	of
building	social	structures	by	reinforcing	the	good	connections	and	penalizing	the
bad.	Once	you’ve	realized	you	can	take	this	general	AI	framework	and	create	a
human	AI,	the	question	becomes,	What’s	the	right	way	to	do	that?	Is	it	a	safe
idea?	Is	it	completely	crazy?

My	students	and	I	are	looking	at	how	people	make	decisions,	on	huge
databases	of	financial	decisions,	business	decisions,	and	many	other	sorts	of
decisions.	What	we’ve	found	is	that	humans	often	make	decisions	in	a	way	that
mimics	AI	credit-assignment	algorithms	and	works	to	make	the	community
smarter.	A	particularly	interesting	feature	of	this	work	is	that	it	addresses	a
classic	problem	in	evolution	known	as	the	group-selection	problem.	The	core	of
this	problem	is:	How	can	we	select	for	culture	in	evolution,	when	it’s	the
individuals	that	reproduce?	What	you	need	is	something	that	selects	for	the	best
cultures	and	the	best	groups	but	also	selects	for	the	best	individuals,	because
they’re	the	units	that	transmit	the	genes.

When	you	frame	the	question	this	way	and	go	through	the	mathematical
literature,	you	discover	that	there’s	one	generally	best	way	to	do	this.	It’s	called
“distributed	Thompson	sampling,”	a	mathematical	algorithm	used	in	choosing,
out	of	a	set	of	possible	actions	with	unknown	payoffs,	the	action	that	maximizes
the	expected	reward	in	respect	to	the	actions.	The	key	is	social	sampling,	a	way
of	combining	evidence,	of	exploring	and	exploiting	at	the	same	time.	It	has	the
unusual	property	of	simultaneously	being	the	best	strategy	both	for	the
individual	and	for	the	group.	If	you	use	the	group	as	the	basis	of	selection,	and
then	the	group	gets	either	wiped	out	or	reinforced,	you’re	also	selecting	for
successful	individuals.	If	you	select	for	individuals,	and	each	individual	does
what’s	good	for	him	or	her,	then	that’s	automatically	the	best	thing	for	the	group.
It’s	an	amazing	alignment	of	interests	and	utilities,	and	it	provides	real	insight
into	the	question	of	how	culture	fits	into	natural	selection.

Social	sampling,	very	simply,	is	looking	around	you	at	the	actions	of	people
who	are	like	you,	finding	what’s	popular,	and	then	copying	it	if	it	seems	like	a



who	are	like	you,	finding	what’s	popular,	and	then	copying	it	if	it	seems	like	a
good	idea	to	you.	Idea	propagation	has	this	popularity	function	driving	it,	but
individual	adoption	also	is	about	figuring	out	how	the	idea	works	for	the
individual—a	reflective	attitude.	When	you	combine	social	sampling	and
personal	judgment,	you	get	superior	decision	making.	That’s	amazing,	because
now	we	have	a	mathematical	recipe	for	doing	with	humans	what	all	those	AI
techniques	are	doing	with	dumb	computer	neurons.	We	have	a	way	of	putting
people	together	to	make	better	decisions,	given	more	and	more	experience.

So	what	happens	in	the	real	world?	Why	don’t	we	do	this	all	the	time?	Well,
people	are	good	at	it,	but	there	are	ways	it	can	run	amok.	One	of	these	is	through
advertising,	propaganda,	or	“fake	news.”	There	are	many	ways	to	get	people	to
think	something	is	popular	when	it’s	not,	and	this	destroys	the	usefulness	of
social	sampling.	The	way	you	can	make	groups	of	people	smarter,	the	way	you
can	make	human	AI,	will	work	only	if	you	can	get	feedback	to	them	that’s
truthful.	It	must	be	grounded	on	whether	each	person’s	actions	worked	for	them
or	not.

That’s	the	key	to	AI	mechanisms,	too.	What	they	do	is	analyze	whether	they
performed	correctly.	If	so,	plus	one;	if	not,	minus	one.	We	need	that	truthful
feedback	to	make	this	human	mechanism	work	well,	and	we	need	good	ways	of
knowing	about	what	other	people	are	doing	so	that	we	can	correctly	assess
popularity	and	the	likelihood	of	this	being	a	good	choice.

The	next	step	is	to	build	this	credit-assignment	function,	this	feedback
function,	for	people,	so	that	we	can	make	a	good	human-artificial	ecosystem—a
smart	organization	and	a	smart	culture.	In	a	way,	we	need	to	duplicate	some	of
the	early	insights	that	resulted	in,	for	instance,	the	U.S.	census—trying	to	find
basic	facts	that	everybody	can	agree	on	and	understand	so	that	the	transmission
of	knowledge	and	culture	can	happen	in	a	way	that’s	truthful	and	social
sampling	can	function	efficiently.

We	can	address	the	problem	of	building	an	accurate	credit-assignment
function	in	many	different	settings.	In	companies,	for	instance,	it	can	be	done
with	digital	ID	badges	that	reveal	who’s	connected	to	whom,	so	that	we	can
assess	the	pattern	of	connections	in	relation	to	the	company’s	results	on	a	daily
or	weekly	basis.	The	credit-assignment	function	asks	whether	those	connections
helped	solve	problems,	or	helped	invent	new	solutions,	and	reinforces	the
helpful	connections.	When	you	can	get	that	feedback	quantitatively—which	is
difficult,	because	most	things	aren’t	measured	quantitatively—both	the
productivity	and	the	innovation	rate	within	the	organization	can	be	significantly
improved.	This	is,	for	instance,	the	basis	of	Toyota’s	“continuous	improvement”
method.



method.
A	next	step	is	to	try	to	do	the	same	thing	but	at	scale,	something	I	refer	to	as

building	a	trust	network	for	data.	It	can	be	thought	of	as	a	distributed	system	like
the	Internet,	but	with	the	ability	to	quantitatively	measure	and	communicate	the
qualities	of	human	society,	in	the	same	way	that	the	U.S.	census	does	a	pretty
good	job	of	telling	us	about	population	and	life	expectancy.	We	are	already
deploying	prototype	examples	of	trust	networks	at	scale	in	several	countries,
based	on	the	data	and	measurement	standards	laid	out	in	the	U.N.	Sustainable
Development	Goals.

On	the	horizon	is	a	vision	of	how	we	can	make	humanity	more	intelligent	by
building	a	human	AI.	It’s	a	vision	composed	of	two	threads.	One	is	data	that	we
can	all	trust—data	that	have	been	vetted	by	a	broad	community,	data	where	the
algorithms	are	known	and	monitored,	much	like	the	census	data	we	all
automatically	rely	on	as	at	least	approximately	correct.	The	other	is	a	fair,	data-
driven	assessment	of	public	norms,	policy,	and	government,	based	on	trusted
data	about	current	conditions.	This	second	thread	depends	on	availability	of
trusted	data	and	so	is	just	beginning	to	be	developed.	Trusted	data	and	data-
driven	assessment	of	norms,	policy,	and	government	together	create	a	credit-
assignment	function	that	improves	societies’	overall	fitness	and	intelligence.

It	is	precisely	at	the	point	of	creating	greater	societal	intelligence	where	fake
news,	propaganda,	and	advertising	all	get	in	the	way.	Fortunately,	trust	networks
give	us	a	path	forward	to	building	a	society	more	resistant	to	echo-chamber
problems,	these	fads,	these	exercises	in	madness.	We	have	begun	to	develop	a
new	way	of	establishing	social	measurements	in	aid	of	curing	some	of	the	ills	we
see	in	society	today.	We’re	using	open	data	from	all	sources,	encouraging	a	fair
representation	of	the	things	people	are	choosing,	in	a	curated	mathematical
framework	that	can	stamp	out	the	echoes	and	the	attempts	to	manipulate	us.

ON	POLARIZATION	AND	INEQUALITY

Extreme	polarization	and	segregation	by	income	are	almost	everywhere	in	the
world	today	and	threaten	to	tear	governments	and	civil	society	apart.
Increasingly,	the	media	are	becoming	adrenaline	pushers	driven	by	advertising
clicks	and	failing	to	deliver	balanced	facts	and	reasoned	discourse—and	the
degradation	of	media	is	causing	people	to	lose	their	bearings.	They	don’t	know
what	to	believe,	and	thus	they	can	easily	be	manipulated.	There	is	a	real	need	to



what	to	believe,	and	thus	they	can	easily	be	manipulated.	There	is	a	real	need	to
ground	our	various	cultures	in	trustworthy,	data-driven	standards	that	we	all
agree	on,	and	to	be	able	to	know	what	behaviors	and	policies	work	and	which
don’t.

In	converting	to	a	digital	society,	we’ve	lost	touch	with	traditional	notions	of
truth	and	justice.	Justice	used	to	be	mostly	informal	and	normative.	We’ve	now
formalized	it.	At	the	same	time,	we’ve	put	it	out	of	reach	for	most	people.	Our
legal	systems	are	failing	us	in	a	way	they	didn’t	before,	precisely	because	they’re
now	more	formal,	more	digital,	less	embedded	in	society.

Ideas	about	justice	are	very	different	around	the	world.	One	of	the	core
differentiators	is	this:	Do	you	or	your	parents	remember	when	the	bad	guys	came
with	guns	and	took	everything?	If	you	do,	your	attitude	about	justice	is	different
from	that	of	the	average	reader	of	this	essay.	Do	you	come	from	the	upper
classes?	Or	were	you	somebody	who	saw	the	sewers	from	the	inside?	Your	view
of	justice	depends	on	your	history.

A	common	test	I	have	for	U.S.	citizens	is	this:	Do	you	know	anybody	who
owns	a	pickup	truck?	It’s	the	number-one-selling	vehicle	in	the	United	States,
and	if	you	don’t	know	people	like	that,	you’re	out	of	touch	with	more	than	50
percent	of	Americans.	Physical	segregation	drives	conceptual	segregation.	Most
of	America	thinks	of	justice	and	access	and	fairness	in	terms	very	different	from
those	of	the	typical,	say,	Manhattanite.

If	you	look	at	patterns	of	mobility—where	people	go—in	a	typical	city,	you
find	that	the	people	in	the	top	quintile	(white-collar	working	families)	and
bottom	quintile	(people	who	are	sometimes	on	unemployment	or	welfare)	almost
never	talk	to	one	another.	They	don’t	go	to	the	same	places;	they	don’t	talk	about
the	same	things.	They	all	live	in	the	same	city,	nominally,	but	it’s	as	if	it	were
two	completely	different	cities—and	this	is	perhaps	the	most	important	cause	of
today’s	plague	of	polarization.

ON	EXTREME	WEALTH

Some	two	hundred	of	the	world’s	wealthiest	people	have	pledged	to	give	away
more	than	50	percent	of	their	wealth	either	during	their	lifetimes	or	in	their	wills,
creating	a	plurality	of	voices	in	the	foundation	space.*	Bill	Gates	is	probably	the
most	familiar	example.	He’s	decided	that	if	the	government	won’t	do	it,	he’ll	do



it.	You	want	mosquito	nets?	He’ll	do	it.	You	want	antivirals?	He’ll	do	it.	We’re
getting	different	stakeholders	to	take	action	in	the	form	of	foundations	dedicated
to	public	good,	and	they	have	different	versions	of	what	they	consider	the	public
good.	This	diversity	of	goals	has	created	a	lot	of	what’s	wonderful	about	the
world	today.	Actions	from	outside	government	by	organizations	like	the	Ford
Foundation	and	the	Sloan	Foundation,	that	bet	on	things	that	nobody	else	would
bet	on,	have	changed	the	world	for	the	better.

Sure,	these	billionaires	are	human,	with	human	foibles,	and	all	is	not
necessarily	as	it	should	be.	On	the	other	hand,	the	same	situation	obtained	when
the	railways	were	first	built.	Some	people	made	huge	fortunes.	A	lot	of	people
went	bust.	We,	the	average	people,	got	railways	out	of	it.	That’s	good.	Same
thing	with	electric	power;	same	thing	with	many	new	technologies.	There’s	a
churning	process	that	throws	somebody	up	and	later	casts	them	or	their	heirs
down.	Bubbles	of	extreme	wealth	were	a	feature	of	the	late	1800s	and	early
1900s	when	steam	engines	and	railways	and	electric	lights	were	invented.	The
fortunes	they	created	were	all	gone	within	two	or	three	generations.

If	the	U.S.	were	like	Europe,	I	would	worry.	What	you	find	in	Europe	is	that
the	same	families	have	held	on	to	wealth	for	hundreds	of	years,	so	they’re
entrenched	in	terms	not	just	of	wealth	but	of	the	political	system	and	in	other
ways.	But	so	far,	the	U.S.	has	avoided	this	kind	of	hereditary	class	system.
Extreme	wealth	hasn’t	stuck,	which	is	good.	It	shouldn’t	stick.	If	you	win	the
lottery,	you	get	your	billion	dollars,	but	your	grandkids	ought	to	work	for	a
living.

ON	AI	AND	SOCIETY

People	are	scared	about	AI.	Perhaps	they	should	be.	But	they	need	to	realize	that
AI	feeds	on	data.	Without	data,	AI	is	nothing.	You	don’t	have	to	watch	the	AI;
instead	you	should	watch	what	it	eats	and	what	it	does.	The	trust-network
framework	we’ve	set	up,	with	the	help	of	nations	in	the	EU	and	elsewhere,	is
one	where	we	can	have	our	algorithms,	we	can	have	our	AI,	but	we	get	to	see
what	went	in	and	what	went	out,	so	that	we	can	ask,	Is	this	a	discriminatory
decision?	Is	this	the	sort	of	thing	that	we	want	as	humans?	Or	is	this	something
that’s	a	little	weird?



The	most	revealing	analogy	is	that	regulators,	bureaucracies,	and	parts	of	the
government	are	very	much	like	AIs:	They	take	in	the	rules	that	we	call	law	and
regulation,	and	they	add	government	data,	and	they	make	decisions	that	affect
our	lives.	The	part	that’s	bad	about	the	current	system	is	that	we	have	very	little
oversight	of	these	departments,	regulators,	and	bureaucracies.	The	only	control
we	have	is	the	vote—the	opportunity	to	elect	somebody	different.	We	need	to
make	oversight	of	bureaucracies	a	lot	more	fine-grained.	We	need	to	record	the
data	that	went	into	every	single	decision	and	have	the	results	analyzed	by	the
various	stakeholders—rather	like	elected	legislatures	were	originally	intended	to
do.

If	we	have	the	data	that	go	into	and	out	of	each	decision,	we	can	easily	ask,	Is
this	a	fair	algorithm?	Is	this	AI	doing	things	that	we	as	humans	believe	are
ethical?	This	human-in-the-loop	approach	is	called	“open	algorithms”;	you	get	to
see	what	the	AIs	take	as	input	and	what	they	decide	using	that	input.	If	you	see
those	two	things,	you’ll	know	whether	they’re	doing	the	right	thing	or	the	wrong
thing.	It	turns	out	that’s	not	hard	to	do.	If	you	control	the	data,	then	you	control
the	AI.

One	thing	people	often	fail	to	mention	is	that	all	the	worries	about	AI	are	the
same	as	the	worries	about	today’s	government.	For	most	parts	of	the	government
—the	justice	system,	etc.—there’s	no	reliable	data	about	what	they’re	doing	and
in	what	situation.	How	can	you	know	whether	the	courts	are	fair	or	not	if	you
don’t	know	the	inputs	and	the	outputs?	The	same	problem	arises	with	AI
systems	and	is	addressable	in	the	same	way.	We	need	trusted	data	to	hold	current
government	to	account	in	terms	of	what	they	take	in	and	what	they	put	out,	and
AI	should	be	no	different.

NEXT-GENERATION	AI

Current	AI	machine-learning	algorithms	are,	at	their	core,	dead	simple	stupid.
They	work,	but	they	work	by	brute	force,	so	they	need	hundreds	of	millions	of
samples.	They	work	because	you	can	approximate	anything	with	lots	of	little
simple	pieces.	That’s	a	key	insight	of	current	AI	research—that	if	you	use
reinforcement	learning	for	credit-assignment	feedback,	you	can	get	those	little
pieces	to	approximate	whatever	arbitrary	function	you	want.



But	using	the	wrong	functions	to	make	decisions	means	the	AI’s	ability	to
make	good	decisions	won’t	generalize.	If	we	give	the	AI	new,	different	inputs,	it
may	make	completely	unreasonable	decisions.	Or	if	the	situation	changes,	then
you	need	to	retrain	it.	There	are	amusing	techniques	to	find	the	“null	space”	in
these	AI	systems.	These	are	inputs	that	the	AI	thinks	are	valid	examples	of	what
it	was	trained	to	recognize	(e.g.,	faces,	cats,	etc.),	but	to	a	human	they’re	crazy
examples.

Current	AI	is	doing	descriptive	statistics	in	a	way	that’s	not	science	and
would	be	almost	impossible	to	make	into	science.	To	build	robust	systems,	we
need	to	know	the	science	behind	data.	The	systems	I	view	as	next-generation	AIs
result	from	this	science-based	approach:	If	you’re	going	to	create	an	AI	to	deal
with	something	physical,	then	you	should	build	the	laws	of	physics	into	it	as
your	descriptive	functions,	in	place	of	those	stupid	little	neurons.	For	instance,
we	know	that	physics	uses	functions	like	polynomials,	sine	waves,	and
exponentials,	so	those	should	be	your	basis	functions	and	not	little	linear
neurons.	By	using	those	more	appropriate	basis	functions,	you	need	a	lot	less
data,	you	can	deal	with	a	lot	more	noise,	and	you	get	much	better	results.

As	in	the	physics	example,	if	we	want	to	build	an	AI	to	work	with	human
behavior,	then	we	need	to	build	the	statistical	properties	of	human	networks	into
machine-learning	algorithms.	When	you	replace	the	stupid	neurons	with	ones
that	capture	the	basics	of	human	behavior,	then	you	can	identify	trends	with	very
little	data,	and	you	can	deal	with	huge	levels	of	noise.

The	fact	that	humans	have	a	“commonsense”	understanding	that	they	bring	to
most	problems	suggests	what	I	call	the	human	strategy:	Human	society	is	a
network	just	like	the	neural	nets	trained	for	deep	learning,	but	the	“neurons”	in
human	society	are	a	lot	smarter.	You	and	I	have	surprisingly	general	descriptive
powers	that	we	use	for	understanding	a	wide	range	of	situations,	and	we	can
recognize	which	connections	should	be	reinforced.	That	means	we	can	shape	our
social	networks	to	work	much	better	and	potentially	beat	all	that	machine-based
AI	at	its	own	game.



Chapter	20

MAKING	THE	INVISIBLE	VISIBLE:	ART	MEETS	AI

HANS	ULRICH	OBRIST

Hans	Ulrich	Obrist	is	artistic	director	of	the	Serpentine	Gallery,	London,	and	the
author	of	Ways	of	Curating	and	Lives	of	the	Artists,	Lives	of	the	Architects.

“URGENT!	URGENT!”	the	cc’d	copy	of	an	email	screamed,	one	of	a	dozen	emails	that
greeted	me	as	I	turned	on	my	phone	at	the	baggage	carousel	at	Malpensa	Airport	after	the
long	flight	from	JFK.	“The	great	American	visionary	thinker	John	Brockman	arrives	this
morning	at	Grand	Hotel	Milan.	You	MUST,	repeat	MUST,	pay	him	a	visit.”	It	was	signed
HUO.

The	prior	evening,	waiting	in	the	lounge	at	JFK,	I	had	had	the	bright	idea	to	write	to	my
friend	and	longtime	collaborator,	the	London-based,	peripatetic	art	curator	Hans	Ulrich
Obrist	(known	to	all	as	HUO),	and	ask	if	there	was	anyone	in	Milan	I	should	know.

Once	I	was	settled	at	the	hotel,	the	phone	began	ringing	and	a	procession	of	leading
Italian	artists,	designers,	and	architects	called	to	request	a	meeting,	including	Enzo	Mari,
the	modernist	artist	and	furniture	designer;	Alberto	Garutti,	whose	aesthetic	strategies
have	inspired	a	dialogue	between	contemporary	art,	spectator,	and	public	space;	and
fashion	designer	Miuccia	Prada,	who	“requests	your	presence	for	tea	this	afternoon	at
Prada	headquarters.”	And	thus,	thanks	to	HUO,	did	the	jet-lagged	“great	American
visionary	thinker”	stumble	and	mumble	his	way	through	his	first	day	in	Milan	in	November
2011.

HUO	is	sui	generis:	He	lives	a	twenty-four-hour	day,	sleeping	(I	guess)	whenever,	and
employing	full-time	assistants	who	work	eight-hour	shifts	and	are	available	to	him	24/7.
Over	a	recent	two-year	period,	he	visited	art	venues	in	either	China	or	India	for	forty
weekends	each	year—departing	London	on	Thursday	evening,	back	at	his	desk	on
Monday.	Last	year,	once	again,	ArtReview	ranked	him	number	one	on	their	annual	“Power
100”	list.

Recently	we	collaborated	on	a	panel	during	the	“GUEST,	GHOST,	HOST:	MACHINE!”
Serpentine	event	that	took	place	at	London’s	new	City	Hall.	We	were	joined	by	Venki
Ramakrishnan,	Jaan	Tallinn,	and	Andrew	Blake,	research	director	of	The	Alan	Turing
Institute.	The	event	was	consistent	with	HUO’s	mission	of	bringing	together	art	and
science:	“The	curator	is	no	longer	understood	simply	as	the	person	who	fills	a	space	with
objects,”	he	says,	“but	also	as	the	person	who	brings	different	cultural	spheres	into	contact,
invents	new	display	features,	and	makes	junctions	that	allow	unexpected	encounters	and
results.”



I n	the	introduction	to	the	second	edition	of	his	book	Understanding	Media,
Marshall	McLuhan	noted	the	ability	of	art	to	“anticipate	future	social	and
technological	developments.”	Art	is	“an	early	alarm	system,”	pointing	us	to

new	developments	in	times	ahead	and	allowing	us	“to	prepare	to	cope	with
them.	.	.	.	Art	as	a	radar	environment	takes	on	the	function	of	indispensable
perceptual	training.”

In	1964,	when	McLuhan’s	book	was	first	published,	the	artist	Nam	June	Paik
was	just	building	his	Robot	K-456	to	experiment	with	the	technologies	that
subsequently	would	start	to	influence	society.	He	had	worked	with	television
earlier,	challenging	its	usual	passive	consumption	by	the	viewer,	and	later	made
art	with	global	live-satellite	broadcasts,	using	the	new	media	less	for
entertainment	than	to	point	us	to	their	poetic	and	intercultural	capacities	(which
are	still	mostly	unused	today).	The	Paiks	of	our	time,	of	course,	are	now	working
with	the	Internet,	digital	images,	and	artificial	intelligence.	Their	works	and
thoughts,	again,	are	an	early	alarm	system	for	the	developments	ahead	of	us.

As	a	curator,	my	daily	work	is	to	bring	together	different	works	of	art	and
connect	different	cultures.	Since	the	early	1990s,	I	have	also	been	organizing
conversations	and	meetings	with	practitioners	from	different	disciplines,	in	order
to	go	beyond	the	general	reluctance	to	pool	knowledge.	Since	I	was	interested	in
hearing	what	artists	have	to	say	about	artificial	intelligence,	I	recently	organized
several	conversations	between	artists	and	engineers.

The	reason	to	look	closely	at	AI	is	that	two	of	the	most	important	questions
of	today	are	“How	capable	will	AI	become?”	and	“What	dangers	may	arise	from
it?”	Its	early	applications	already	influence	our	everyday	lives	in	ways	that	are
more	or	less	recognizable.	There	is	an	increasing	impact	on	many	aspects	of	our
society,	but	whether	this	might	be,	in	general,	beneficial	or	malign	is	still
uncertain.

Many	contemporary	artists	are	following	these	developments	closely.	They
are	articulating	various	doubts	about	the	promises	of	AI	and	reminding	us	not	to
associate	the	term	“artificial	intelligence”	solely	with	positive	outcomes.	To	the
current	discussions	of	AI,	the	artists	contribute	their	specific	perspectives	and
notably	their	focus	on	questions	of	image	making,	creativity,	and	the	use	of
programming	as	artistic	tools.

The	deep	connections	between	science	and	art	had	already	been	noted	by	the



The	deep	connections	between	science	and	art	had	already	been	noted	by	the
late	Heinz	von	Foerster,	one	of	the	architects	of	cybernetics,	who	worked	with
Norbert	Wiener	from	the	mid-1940s	and	in	the	1960s	founded	the	field	of
second-order	cybernetics,	in	which	the	observer	is	understood	as	part	of	the
system	itself	and	not	as	an	external	entity.	I	knew	von	Foerster	well,	and	in	one
of	our	many	conversations	he	offered	his	views	on	the	relation	between	art	and
science:

I’ve	always	perceived	art	and	science	as	complementary	fields.	One
shouldn’t	forget	that	a	scientist	is	in	some	respects	also	an	artist.	He
invents	a	new	technique	and	he	describes	it.	He	uses	language	like	a	poet,
or	the	author	of	a	detective	novel,	and	describes	his	findings.	In	my	view,
a	scientist	must	work	in	an	artistic	way	if	he	wants	to	communicate	his
research.	He	obviously	wants	to	communicate	and	talk	to	others.	A
scientist	invents	new	objects,	and	the	question	is	how	to	describe	them.	In
all	of	these	aspects,	science	is	not	very	different	from	art.

When	I	asked	him	how	he	defined	cybernetics,	von	Foerster	answered:

The	substance	of	what	we	have	learned	from	cybernetics	is	to	think	in
circles:	A	leads	to	B,	B	to	C,	but	C	can	return	to	A.	Such	kinds	of
arguments	are	not	linear	but	circular.	The	significant	contribution	of
cybernetics	to	our	thinking	is	to	accept	circular	arguments.	This	means
that	we	have	to	look	at	circular	processes	and	understand	under	which
circumstances	an	equilibrium,	and	thus	a	stable	structure,	emerges.

Today,	where	AI	algorithms	are	applied	in	daily	tasks,	one	can	ask	how	the
human	factor	is	included	in	these	kinds	of	processes	and	what	role	creativity	and
art	could	play	in	relation	to	them.	There	are	thus	different	levels	to	think	about
when	exploring	the	relation	between	AI	and	art.

So	what	do	contemporary	artists	have	to	say	about	artificial	intelligence?

ARTIFICIAL	STUPIDITY

Hito	Steyerl,	an	artist	who	works	with	documentary	and	experimental	film,



Hito	Steyerl,	an	artist	who	works	with	documentary	and	experimental	film,
considers	two	key	aspects	that	we	should	keep	in	mind	when	reflecting	on	the
implications	of	AI	for	society.	First,	the	expectations	for	so-called	artificial
intelligence,	she	says,	are	often	overrated,	and	the	noun	“intelligence”	is
misleading;	to	counter	that,	she	uses	the	term	“artificial	stupidity.”	Second,	she
points	out	that	programmers	are	now	making	invisible	software	algorithms
visible	through	images,	but	to	understand	and	interpret	these	images	better,	we
should	apply	the	expertise	of	artists.

Steyerl	has	worked	with	computer	technology	for	many	years,	and	her	recent
artworks	have	explored	surveillance	techniques,	robots,	and	such	computer
games	as	in	How	Not	to	be	Seen	(2013),	on	digital-image	technologies,	or
HellYeahWeFuckDie	(2017),	about	the	training	of	robots	in	the	still-difficult	task
of	keeping	balance.	But	to	explain	her	notion	of	artificial	stupidity,	Steyerl	refers
to	a	more	general	phenomenon,	like	the	now	widespread	use	of	Twitter	bots,
noting	in	our	conversation:

It	was	and	still	is	a	very	popular	tool	in	elections	to	deploy	Twitter
armies	to	sway	public	opinion	and	deflect	popular	hashtags	and	so	on.
This	is	an	artificial	intelligence	of	a	very,	very	low	grade.	It’s	two	or
maybe	three	lines	of	script.	It’s	nothing	very	sophisticated	at	all.	Yet	the
social	implications	of	this	kind	of	artificial	stupidity,	as	I	call	it,	are
already	monumental	in	global	politics.

As	has	been	widely	noted,	this	kind	of	technology	was	seen	in	the	many
automated	Twitter	posts	before	the	2016	U.S.	presidential	election	and	also
shortly	before	the	Brexit	vote.	If	even	low-grade	AI	technology	like	these	bots
are	already	influencing	our	politics,	this	raises	another	urgent	question:	How
powerful	will	far	more	advanced	techniques	be	in	the	future?

VISIBLE/INVISIBLE

The	artist	Paul	Klee	often	talked	about	art	as	“making	the	invisible	visible.”	In
computer	technology,	most	algorithms	work	invisibly,	in	the	background;	they
remain	inaccessible	in	the	systems	we	use	daily.	But	lately	there	has	been	an
interesting	comeback	of	visuality	in	machine	learning.	The	ways	that	the	deep-
learning	algorithms	of	AI	are	processing	data	have	been	made	visible	through



learning	algorithms	of	AI	are	processing	data	have	been	made	visible	through
applications	like	Google’s	DeepDream,	in	which	the	process	of	computerized
pattern	recognition	is	visualized	in	real	time.	The	application	shows	how	the
algorithm	tries	to	match	animal	forms	with	any	given	input.	There	are	many
other	AI	visualization	programs	that,	in	their	way,	also	“make	the	invisible
visible.”	The	difficulty	in	the	general	public	perception	of	such	images	is,	in
Steyerl’s	view,	that	these	visual	patterns	are	viewed	uncritically	as	realistic	and
objective	representations	of	the	machine	process.	She	says	of	the	aesthetics	of
such	visualizations:

For	me,	this	proves	that	science	has	become	a	subgenre	of	art
history.	.	.	.	We	now	have	lots	of	abstract	computer	patterns	that	might
look	like	a	Paul	Klee	painting,	or	a	Mark	Rothko,	or	all	sorts	of	other
abstractions	that	we	know	from	art	history.	The	only	difference,	I	think,	is
that	in	current	scientific	thought	they’re	perceived	as	representations	of
reality,	almost	like	documentary	images,	whereas	in	art	history	there’s	a
very	nuanced	understanding	of	different	kinds	of	abstraction.

What	she	seeks	is	a	more	profound	understanding	of	computer-generated
images	and	the	different	aesthetic	forms	they	use.	They	are	obviously	not
generated	with	the	explicit	goal	of	following	a	certain	aesthetic	tradition.	The
computer	engineer	Mike	Tyka,	in	a	conversation	with	Steyerl,	explained	the
functions	of	these	images:

Deep-learning	systems,	especially	the	visual	ones,	are	really	inspired
by	the	need	to	know	what’s	going	on	in	the	black	box.	Their	goal	is	to
project	these	processes	back	into	the	real	world.

Nevertheless,	these	images	have	aesthetic	implications	and	values	that	have
to	be	taken	into	account.	One	could	say	that	while	the	programmers	use	these
images	to	help	us	better	understand	the	programs’	algorithms,	we	need	the
knowledge	of	artists	to	better	understand	the	aesthetic	forms	of	AI.	As	Steyerl
has	pointed	out,	such	visualizations	are	generally	understood	as	“true”
representations	of	processes,	but	we	should	pay	attention	to	their	respective
aesthetics,	and	their	implications,	which	have	to	be	viewed	in	a	critical	and
analytical	way.



In	2017,	the	artist	Trevor	Paglen	created	a	project	to	make	these	invisible	AI
algorithms	visible.	In	Sight	Machine,	he	filmed	a	live	performance	of	the	Kronos
Quartet	and	processed	the	resulting	images	with	various	computer	software
programs	used	for	face	detection,	object	identification,	and	even	missile
guidance.	He	projected	the	outcome	of	these	algorithms,	in	real	time,	back	to
screens	above	the	stage.	By	demonstrating	how	the	various	different	programs
interpreted	the	musicians’	performance,	Paglen	showed	that	AI	algorithms	are
always	determined	by	sets	of	values	and	interests	that	they	then	manifest	and
reiterate,	and	thus	must	be	critically	questioned.	The	significant	contrast	between
algorithms	and	music	also	raises	the	issue	of	relationships	between	technical	and
human	perception.

COMPUTERS,	AS	A	TOOL	FOR	CREATIVITY,
CAN’T	REPLACE	THE	ARTIST

Rachel	Rose,	a	video	artist	who	thinks	about	the	questions	posed	by	AI,	employs
computer	technology	in	the	creation	of	her	works.	Her	films	give	the	viewer	an
experience	of	materiality	through	the	moving	image.	She	uses	collaging	and
layering	of	the	material	to	manipulate	sound	and	image,	and	the	editing	process
is	perhaps	the	most	important	aspect	of	her	work.

She	also	talks	about	the	importance	of	decision	making	in	her	work.	For	her,
the	artistic	process	does	not	follow	a	rational	pattern.	In	a	conversation	we	had,
together	with	the	engineer	Kenric	McDowell,	at	the	Google	Cultural	Institute,
she	explained	this	by	citing	a	story	from	theater	director	Peter	Brook’s	1968
book	The	Empty	Space.	When	Brook	designed	the	set	for	his	production	of	The
Tempest	in	the	late	1960s,	he	started	by	making	a	Japanese	garden,	but	then	the
design	evolved,	becoming	a	white	box,	a	black	box,	a	realistic	set,	and	so	on.
And	in	the	end,	he	returned	to	his	original	idea.	Brook	writes	that	he	was
shocked	at	having	spent	a	month	on	his	labors,	only	to	end	at	the	beginning.	But
this	shows	that	the	creative	artistic	process	is	a	succession	whose	every	step
builds	on	the	next	and	which	eventually	comes	to	an	unpredictable	conclusion.
The	process	is	not	a	logical	or	rational	succession	but	has	mostly	to	do	with	the
artist’s	feelings	in	reaction	to	the	preceding	result.	Rose	said,	of	her	own	artistic
decision	making:



It,	to	me,	is	distinctively	different	from	machine	learning,	because	at
each	decision	there’s	this	core	feeling	that	comes	from	a	human	being,
which	has	to	do	with	empathy,	which	has	to	do	with	communication,
which	has	to	do	with	questions	about	our	own	mortality	that	only	a
human	could	ask.

This	point	underlines	the	fundamental	difference	between	any	human	artistic
production	and	so-called	computer	creativity.	Rose	sees	AI	more	as	a	possible
way	to	create	better	tools	for	humans:

A	place	I	can	imagine	machine	learning	working	for	an	artist	would
be	not	in	developing	an	independent	subjectivity,	like	writing	a	poem	or
making	an	image,	but	actually	in	filling	in	gaps	that	are	to	do	with	labor,
like	the	way	that	Photoshop	works	with	different	tools	that	you	can	use.

And	though	such	tools	may	not	seem	spectacular,	she	says,	“they	might	have
a	larger	influence	on	art,”	because	they	provide	artists	with	further	possibilities
in	their	creative	work.

McDowell	added	that	he,	too,	believes	there	are	false	expectations	around	AI.
“I’ve	observed,”	he	said,	“that	there’s	a	sort	of	magical	quality	to	the	idea	of	a
computer	that	does	all	the	things	that	we	do.”	He	continued:	“There’s	almost	this
kind	of	demonic	mirror	that	we	look	into,	and	we	want	it	to	write	a	novel,	we
want	it	to	make	a	film—we	want	to	give	that	away	somehow.”	He	is	instead
working	on	projects	wherein	humans	collaborate	with	the	machine.	One	of	the
current	aims	of	AI	research	is	to	find	new	means	of	interaction	between	humans
and	software.	And	art,	one	could	say,	needs	to	play	a	key	role	in	that	enterprise,
since	it	focuses	on	our	subjectivity	and	on	essential	human	aspects	like	empathy
and	mortality.

CYBERNETICS/ART

Suzanne	Treister	is	an	artist	whose	work	from	2009	to	2011	serves	as	an
example	of	what	is	happening	at	the	intersection	of	our	current	technologies,	the
arts,	and	cybernetics.	Treister	has	been	a	pioneer	in	digital	art	since	the	1990s,



inventing,	for	example,	imaginary	video	games	and	painting	screen	shots	from
them.	In	her	project	HEXEN	2.0	she	looked	back	at	the	famous	Macy
Conferences	on	cybernetics	that	between	1946	and	1953	were	organized	in	New
York	by	engineers	and	social	scientists	to	unite	the	sciences	and	to	develop	a
universal	theory	of	the	workings	of	the	mind.

In	her	project,	she	created	thirty	photo-text	works	about	the	conference
attendees	(which	included	Wiener	and	von	Foerster),	she	invented	tarot	cards,
and	she	made	a	video	based	on	a	photomontage	of	a	“cybernetic	séance.”	In	the
“séance,”	the	conference	participants	are	seen	sitting	at	a	round	table,	as	in
spiritualist	séances,	while	certain	of	their	statements	on	cybernetics	are	heard	in
an	audio	collage—rational	knowledge	and	superstition	combined.	She	also	noted
that	some	of	the	participating	scientists	worked	for	the	military;	thus	the
application	of	cybernetics	could	be	seen	in	an	ambivalent	way,	even	back	then,
as	a	tussle	between	pure	knowledge	and	its	use	in	state	control.

If	one	looks	at	Treister’s	work	about	the	Macy	Conferences	participants,	one
sees	that	no	visual	artist	was	included.	A	dialogue	between	artists	and	scientists
would	be	fruitful	in	future	discussions,	and	it	is	a	bit	astonishing	that	this	wasn’t
realized	at	the	time,	given	von	Foerster’s	keen	interest	in	art.	He	recounted	in
one	of	our	conversations	how	his	relation	to	the	field	dated	back	to	his
childhood:

I	grew	up	as	a	child	in	an	artistic	family.	We	often	had	visits	from
poets,	philosophers,	painters,	and	sculptors.	Art	was	a	part	of	my	life.
Later,	I	got	into	physics,	as	I	was	talented	in	this	subject.	But	I	always
remained	conscious	of	the	importance	of	art	for	science.	There	wasn’t	a
great	difference	for	me.	For	me,	both	aspects	of	life	have	always	been
very	much	alike—and	accessible,	too.	We	should	see	them	as	one.	An
artist	also	has	to	reflect	on	his	work.	He	has	to	think	about	his	grammar
and	his	language.	A	painter	must	know	how	to	handle	his	colors.	Just
think	of	how	intensively	oil	colors	were	researched	during	the
Renaissance.	They	wanted	to	know	how	a	certain	pigment	could	be
mixed	with	others	to	get	a	certain	tone	of	red	or	blue.	Chemists	and
painters	collaborated	very	closely.	I	think	the	artificial	division	between
science	and	art	is	wrong.



Though	for	von	Foerster	the	relation	between	art	and	science	was	always
clear,	for	our	own	time	this	connection	remains	to	be	made.	There	are	many
reasons	to	multiply	the	links.	The	critical	thinking	of	artists	would	be	beneficial
in	respect	to	the	dangers	of	AI,	since	they	draw	our	attention	to	questions	they
consider	essential	from	their	perspective.	With	the	advent	of	machine	learning,
new	tools	are	available	to	artists	for	their	work.	And	as	the	algorithms	of	AI	are
made	visible	through	artificial	images	in	new	ways,	artists’	critical	visual
knowledge	and	expertise	will	be	harnessed.	Many	of	the	key	questions	of	AI	are
philosophical	in	nature	and	can	be	answered	only	from	a	holistic	point	of	view.
The	way	they	play	out	among	adventurous	artists	will	be	worth	following.

SIMULATING	WORLDS

For	the	most	part,	the	works	of	contemporary	artists	have	been	embodied
ruminations	on	AI’s	impact	on	existential	questions	of	the	self	and	our	future
interaction	with	nonhuman	entities.	Few,	though,	have	taken	the	technologies
and	innovations	of	AI	as	the	underlying	materials	of	their	work	and	sculpted
them	to	their	own	vision.	An	exception	is	the	artist	Ian	Cheng,	who	has	gone	as
far	as	to	construct	entire	worlds	of	artificial	beings	with	varying	degrees	of
sentience	and	intelligence.	He	refers	to	these	worlds	as	Live	Simulations.	His
Emissaries	trilogy	(2015–17)	is	set	in	a	fictional	postapocalyptic	world	of	flora
and	fauna,	in	which	AI-driven	animals	and	creatures	explore	the	landscape	and
interact	with	one	another.	Cheng	uses	advanced	graphics	but	has	them
programmed	with	a	lot	of	glitches	and	imperfections,	which	imparts	a	futuristic
and	anachronistic	atmosphere	at	the	same	time.	Through	his	trilogy,	which
charts	a	history	of	consciousness,	he	asks	the	question	“What	is	a	simulation?”

While	the	majority	of	artistic	works	that	utilize	recent	developments	in	AI
specifically	draw	from	the	field	of	machine	learning,	Cheng’s	Live	Simulations
take	a	separate	route.	The	protagonists	and	plotlines	that	are	interlaced	in	each
episodic	simulation	of	Emissaries	use	the	complex	logic	systems	and	rules	of	AI.
What	is	profound	about	his	continually	evolving	scenes	is	that	complexity	arises
not	through	the	desires/actions	of	any	single	actor	or	artificial	godhead	but
instead	through	their	constellation,	collision,	and	constant	evolution	in	symbiosis
with	one	another.	This	gives	rise	to	unexpected	outcomes	and	unending,



unknowable	situations—you	can	never	experience	the	exact	same	moment	in
successive	viewings	of	his	work.

Cheng	had	a	discussion	at	the	Serpentine	Marathon	“GUEST,	GHOST,
HOST:	MACHINE!”	with	the	programmer	Richard	Evans,	who	recently
designed	Versu,	an	AI-based	platform	for	interactive	storytelling	games.	Evans’s
work	emphasizes	the	social	interaction	of	the	games’	characters,	who	react	in	a
spectrum	of	possible	behaviors	to	the	choices	made	by	the	human	players.	In
their	conversation,	Evans	said	that	a	starting	point	for	the	project	was	that	most
earlier	simulation	video	games,	such	as	The	Sims,	did	not	sufficiently	take	into
account	the	importance	of	social	practices.	Simulated	protagonists	in	games
would	often	act	in	ways	that	did	not	correspond	well	with	real	human	behavior.
Knowledge	of	social	practices	limits	the	possibilities	of	action	but	is	necessary	to
understand	the	meaning	of	our	actions—which	is	what	interests	Cheng	for	his
own	simulations.	The	more	parameters	of	actions	in	certain	circumstances	are
determined	in	a	computer	simulation,	the	more	interesting	it	is	for	Cheng	to
experiment	with	individual	and	specific	changes.	He	told	Evans,	“I	gather	that	if
we	had	AI	with	more	ability	to	respond	to	social	contexts,	tweaking	one	thing,
you	would	get	something	quite	artistic	and	beautiful.”

Cheng	also	sees	the	work	of	programmers	and	AI	simulations	as	creating	new
and	sophisticated	tools	for	experimenting	with	the	parameters	of	our	daily	social
practices.	In	this	way,	the	involvement	of	artists	in	AI	will	lead	to	new	kinds	of
open	experiments	in	art.	Such	possibilities	are—like	increased	AI	capabilities	in
general—still	in	the	future.	Recognizing	that	this	is	an	experimental	technology
in	its	infancy,	very	far	from	apocalyptic	visions	of	a	superintelligent	AI	takeover,
Cheng	fills	his	simulations	with	prosaic	avatars	such	as	strange	microbial
globules,	dogs,	and	the	undead.

Discussions	like	these,	between	artists	and	engineers,	of	course	are	not	totally
new.	In	the	1960s,	the	engineer	Billy	Klüver	brought	artists	together	with
engineers	in	a	series	of	events,	and	in	1967	he	founded	the	Experiments	in	Art
and	Technology	program	with	Robert	Rauschenberg	and	others.	In	London	at
around	the	same	time,	Barbara	Steveni	and	John	Latham,	of	the	Artist	Placement
Group,	took	things	a	step	further	by	asserting	that	there	should	be	artists	in
residence	in	every	company	and	every	government.	Today,	these	inspiring
historical	models	can	be	applied	to	the	field	of	AI.	As	AI	comes	to	inhabit	more
and	more	of	our	everyday	lives,	the	creation	of	a	space	that	is	nondeterministic
and	nonutilitarian	in	its	plurality	of	perspectives	and	diversity	of	understandings
will	undoubtedly	be	essential.



Chapter	21

AIs	VERSUS	FOUR-YEAR-OLDS

ALISON	GOPNIK

Alison	Gopnik	is	a	developmental	psychologist	at	UC	Berkeley.	Her	books	include
The	Philosophical	Baby	and,	most	recently,	The	Gardener	and	the	Carpenter:	What
the	New	Science	of	Child	Development	Tells	Us	About	the	Relationship	Between

Parents	and	Children.

Alison	Gopnik	is	an	international	leader	in	the	field	of	children’s	learning	and	development
and	was	one	of	the	founders	of	the	field	of	“theory	of	mind.”	She	has	spoken	of	the	child
brain	as	a	“powerful	learning	computer,”	perhaps	from	personal	experience.	Her	own
Philadelphia	childhood	was	an	exercise	in	intellectual	development.	“Other	families	took
their	kids	to	see	The	Sound	of	Music	or	Carousel;	we	saw	Racine’s	Phaedra	and	Samuel
Beckett’s	Endgame,”	she	has	recalled.	“Our	family	read	Henry	Fielding’s	eighteenth-
century	novel	Joseph	Andrews	out	loud	to	each	other	around	the	fire	on	camping	trips.”

Lately	she	has	invoked	Bayesian	models	of	machine	learning	to	explain	the	remarkable
ability	of	preschoolers	to	draw	conclusions	about	the	world	around	them	without	benefit	of
enormous	data	sets.	“I	think	babies	and	children	are	actually	more	conscious	than	we	are
as	adults,”	she	has	said.	“They’re	very	good	at	taking	in	lots	of	information	from	lots	of
different	sources	at	once.”	She	has	referred	to	babies	and	young	children	as	“the	research
and	development	division	of	the	human	species.”	Not	that	she	treats	them	coldly,	as	if	they
were	mere	laboratory	animals.	They	appear	to	revel	in	her	company,	and	in	the	blinking,
thrumming	toys	in	her	Berkeley	lab.	For	years	after	her	own	children	had	outgrown	it,	she
kept	a	playpen	in	her	office.

Her	investigations	into	just	how	we	learn,	and	the	parallels	to	the	deep-learning
methods	of	AI,	continue.	“It	turns	out	to	be	much	easier	to	simulate	the	reasoning	of	a
highly	trained	adult	expert	than	to	mimic	the	ordinary	learning	of	every	baby,”	she	says.
“Computation	is	still	the	best—indeed,	the	only—scientific	explanation	we	have	of	how	a
physical	object	like	a	brain	can	act	intelligently.	But,	at	least	for	now,	we	have	almost	no
idea	at	all	how	the	sort	of	creativity	we	see	in	children	is	possible.”



E veryone’s	heard	about	the	new	advances	in	artificial	intelligence,	and
especially	machine	learning.	You’ve	also	heard	utopian	or	apocalyptic
predictions	about	what	those	advances	mean.	They	have	been	taken	to

presage	either	immortality	or	the	end	of	the	world,	and	a	lot	has	been	written
about	both	of	those	possibilities.	But	the	most	sophisticated	AIs	are	still	far	from
being	able	to	solve	problems	that	human	four-year-olds	accomplish	with	ease.	In
spite	of	the	impressive	name,	artificial	intelligence	largely	consists	of	techniques
to	detect	statistical	patterns	in	large	data	sets.	There	is	much	more	to	human
learning.

How	can	we	possibly	know	so	much	about	the	world	around	us?	We	learn	an
enormous	amount	even	when	we	are	small	children;	four-year-olds	already	know
about	plants	and	animals	and	machines;	desires,	beliefs,	and	emotions;	even
dinosaurs	and	spaceships.

Science	has	extended	our	knowledge	about	the	world	to	the	unimaginably
large	and	the	infinitesimally	small,	to	the	edge	of	the	universe	and	the	beginning
of	time.	And	we	use	that	knowledge	to	make	new	classifications	and	predictions,
imagine	new	possibilities,	and	make	new	things	happen	in	the	world.	But	all	that
reaches	any	of	us	from	the	world	is	a	stream	of	photons	hitting	our	retinas	and
disturbances	of	air	at	our	eardrums.	How	do	we	learn	so	much	about	the	world
when	the	evidence	we	have	is	so	limited?	And	how	do	we	do	all	this	with	the
few	pounds	of	grey	goo	that	sits	behind	our	eyes?

The	best	answer	so	far	is	that	our	brains	perform	computations	on	the
concrete,	particular,	messy	data	arriving	at	our	senses,	and	those	computations
yield	accurate	representations	of	the	world.	The	representations	seem	to	be
structured,	abstract,	and	hierarchical;	they	include	the	perception	of	three-
dimensional	objects,	the	grammars	that	underlie	language,	and	mental	capacities
like	“theory	of	mind,”	which	lets	us	understand	what	other	people	think.	Those
representations	allow	us	to	make	a	wide	range	of	new	predictions	and	imagine
many	new	possibilities	in	a	distinctively	creative	human	way.

This	kind	of	learning	isn’t	the	only	kind	of	intelligence,	but	it’s	a	particularly
important	one	for	human	beings.	And	it’s	the	kind	of	intelligence	that	is	a
specialty	of	young	children.	Although	children	are	dramatically	bad	at	planning
and	decision	making,	they	are	the	best	learners	in	the	universe.	Much	of	the
process	of	turning	data	into	theories	happens	before	we	are	five.



process	of	turning	data	into	theories	happens	before	we	are	five.
Since	Aristotle	and	Plato,	there	have	been	two	basic	ways	of	addressing	the

problem	of	how	we	know	what	we	know,	and	they	are	still	the	main	approaches
in	machine	learning.	Aristotle	approached	the	problem	from	the	bottom	up:	Start
with	senses—the	stream	of	photons	and	air	vibrations	(or	the	pixels	or	sound
samples	of	a	digital	image	or	recording)—and	see	if	you	can	extract	patterns
from	them.	This	approach	was	carried	further	by	such	classic	associationists	as
philosophers	David	Hume	and	J.	S.	Mill	and	later	by	behavioral	psychologists,
like	Pavlov	and	B.	F.	Skinner.	On	this	view,	the	abstractness	and	hierarchical
structure	of	representations	is	something	of	an	illusion,	or	at	least	an
epiphenomenon.	All	the	work	can	be	done	by	association	and	pattern	detection
—especially	if	there	are	enough	data.

Over	time,	there	has	been	a	seesaw	between	this	bottom-up	approach	to	the
mystery	of	learning	and	Plato’s	alternative,	top-down	one.	Maybe	we	get
abstract	knowledge	from	concrete	data	because	we	already	know	a	lot,	and
especially	because	we	already	have	an	array	of	basic	abstract	concepts,	thanks	to
evolution.	Like	scientists,	we	can	use	those	concepts	to	formulate	hypotheses
about	the	world.	Then,	instead	of	trying	to	extract	patterns	from	the	raw	data,	we
can	make	predictions	about	what	the	data	should	look	like	if	those	hypotheses
are	right.	Along	with	Plato,	such	“rationalist”	philosophers	and	psychologists	as
Descartes	and	Noam	Chomsky	took	this	approach.

Here’s	an	everyday	example	that	illustrates	the	difference	between	the	two
methods:	solving	the	spam	plague.	The	data	consist	of	a	long,	unsorted	list	of
messages	in	your	in-box.	The	reality	is	that	some	of	these	messages	are	genuine
and	some	are	spam.	How	can	you	use	the	data	to	discriminate	between	them?

Consider	the	bottom-up	technique	first.	You	notice	that	the	spam	messages
tend	to	have	particular	features:	a	long	list	of	addressees,	origins	in	Nigeria,
references	to	million-dollar	prizes,	or	Viagra.	The	trouble	is	that	perfectly	useful
messages	might	have	these	features,	too.	If	you	looked	at	enough	examples	of
spam	and	nonspam	emails,	you	might	see	not	only	that	spam	emails	tend	to	have
those	features	but	that	the	features	tend	to	go	together	in	particular	ways	(Nigeria
plus	a	million	dollars	spells	trouble).	In	fact,	there	might	be	some	subtle	higher-
level	correlations	that	discriminate	the	spam	messages	from	the	useful	ones—a
particular	pattern	of	misspellings	and	IP	addresses,	say.	If	you	detect	those
patterns,	you	can	filter	out	the	spam.

The	bottom-up	machine-learning	techniques	do	just	this.	The	learner	gets
millions	of	examples,	each	with	some	set	of	features	and	each	labeled	as	spam
(or	some	other	category)	or	not.	The	computer	can	extract	the	pattern	of	features



(or	some	other	category)	or	not.	The	computer	can	extract	the	pattern	of	features
that	distinguishes	the	two,	even	if	it’s	quite	subtle.

How	about	the	top-down	approach?	I	get	an	email	from	the	editor	of	the
Journal	of	Clinical	Biology.	It	refers	to	one	of	my	papers	and	says	that	they
would	like	to	publish	an	article	by	me.	No	Nigeria,	no	Viagra,	no	million	dollars;
the	email	doesn’t	have	any	of	the	features	of	spam.	But	by	using	what	I	already
know,	and	thinking	in	an	abstract	way	about	the	process	that	produces	spam,	I
can	figure	out	that	this	email	is	suspicious:

1.	 I	know	that	spammers	try	to	extract	money	from	people	by	appealing
to	human	greed.

2.	 I	also	know	that	legitimate	“open	access”	journals	have	started
covering	their	costs	by	charging	authors	instead	of	subscribers,	and
that	I	don’t	practice	anything	like	clinical	biology.

Put	all	that	together	and	I	can	produce	a	good	new	hypothesis	about	where
that	email	came	from.	It’s	designed	to	sucker	academics	into	paying	to	“publish”
an	article	in	a	fake	journal.	The	email	was	a	result	of	the	same	dubious	process
as	the	other	spam	emails,	even	though	it	looked	nothing	like	them.	I	can	draw
this	conclusion	from	just	one	example,	and	I	can	go	on	to	test	my	hypothesis
further,	beyond	anything	in	the	email	itself,	by	googling	the	“editor.”

In	computer	terms,	I	started	out	with	a	“generative	model”	that	includes
abstract	concepts	like	greed	and	deception	and	describes	the	process	that
produces	email	scams.	That	lets	me	recognize	the	classic	Nigerian	email	spam,
but	it	also	lets	me	imagine	many	different	kinds	of	possible	spam.	When	I	get	the
journal	email,	I	can	work	backward:	“This	seems	like	just	the	kind	of	mail	that
would	come	out	of	a	spam-generating	process.”

The	new	excitement	about	AI	comes	because	AI	researchers	have	recently
produced	powerful	and	effective	versions	of	both	of	these	learning	methods.	But
there	is	nothing	profoundly	new	about	the	methods	themselves.

BOTTOM-UP	DEEP	LEARNING

In	the	1980s,	computer	scientists	devised	an	ingenious	way	to	get	computers	to
detect	patterns	in	data:	connectionist,	or	neural-network,	architecture	(the
“neural”	part	was,	and	still	is,	metaphorical).	The	approach	fell	into	the



“neural”	part	was,	and	still	is,	metaphorical).	The	approach	fell	into	the
doldrums	in	the	1990s	but	has	recently	been	revived	with	powerful	“deep-
learning”	methods	like	Google’s	DeepMind.

For	example,	you	can	give	a	deep-learning	program	a	bunch	of	Internet
images	labeled	“cat,”	others	labeled	“house,”	and	so	on.	The	program	can	detect
the	patterns	differentiating	the	two	sets	of	images	and	use	that	information	to
label	new	images	correctly.	Some	kinds	of	machine	learning,	called
unsupervised	learning,	can	detect	patterns	in	data	with	no	labels	at	all;	they
simply	look	for	clusters	of	features—what	scientists	call	a	factor	analysis.	In	the
deep-learning	machines,	these	processes	are	repeated	at	different	levels.	Some
programs	can	even	discover	relevant	features	from	the	raw	data	of	pixels	or
sounds;	the	computer	might	begin	by	detecting	the	patterns	in	the	raw	image	that
correspond	to	edges	and	lines	and	then	find	the	patterns	in	those	patterns	that
correspond	to	faces,	and	so	on.

Another	bottom-up	technique	with	a	long	history	is	reinforcement	learning.
In	the	1950s,	B.	F.	Skinner,	building	on	the	work	of	John	Watson,	famously
programmed	pigeons	to	perform	elaborate	actions—even	guiding	air-launched
missiles	to	their	targets	(a	disturbing	echo	of	recent	AI)	by	giving	them	a
particular	schedule	of	rewards	and	punishments.	The	essential	idea	was	that
actions	that	were	rewarded	would	be	repeated	and	those	that	were	punished
would	not,	until	the	desired	behavior	was	achieved.	Even	in	Skinner’s	day,	this
simple	process,	repeated	over	and	over,	could	lead	to	complex	behavior.
Computers	are	designed	to	perform	simple	operations	over	and	over	on	a	scale
that	dwarfs	human	imagination,	and	computational	systems	can	learn	remarkably
complex	skills	in	this	way.

For	example,	researchers	at	Google’s	DeepMind	used	a	combination	of	deep
learning	and	reinforcement	learning	to	teach	a	computer	to	play	Atari	video
games.	The	computer	knew	nothing	about	how	the	games	worked.	It	began	by
acting	randomly	and	got	information	only	about	what	the	screen	looked	like	at
each	moment	and	how	well	it	had	scored.	Deep	learning	helped	interpret	the
features	on	the	screen,	and	reinforcement	learning	rewarded	the	system	for
higher	scores.	The	computer	got	very	good	at	playing	several	of	the	games,	but	it
also	completely	bombed	on	others	that	were	just	as	easy	for	humans	to	master.

A	similar	combination	of	deep	learning	and	reinforcement	learning	has
enabled	the	success	of	DeepMind’s	AlphaZero,	a	program	that	managed	to	beat
human	players	at	both	chess	and	Go,	equipped	with	only	a	basic	knowledge	of
the	rules	of	the	game	and	some	planning	capacities.	AlphaZero	has	another
interesting	feature:	It	works	by	playing	hundreds	of	millions	of	games	against



itself.	As	it	does	so,	it	prunes	mistakes	that	led	to	losses,	and	it	repeats	and
elaborates	on	strategies	that	led	to	wins.	Such	systems,	and	others	involving
techniques	called	generative	adversarial	networks,	generate	data	as	well	as
observing	data.

When	you	have	the	computational	power	to	apply	those	techniques	to	very
large	data	sets	or	millions	of	email	messages,	Instagram	images,	or	voice
recordings,	you	can	solve	problems	that	seemed	very	difficult	before.	That’s	the
source	of	much	of	the	excitement	in	computer	science.	But	it’s	worth
remembering	that	those	problems—like	recognizing	that	an	image	is	a	cat	or	a
spoken	word	is	Siri—are	trivial	for	a	human	toddler.	One	of	the	most	interesting
discoveries	of	computer	science	is	that	problems	that	are	easy	for	us	(like
identifying	cats)	are	hard	for	computers—much	harder	than	playing	chess	or	Go.
Computers	need	millions	of	examples	to	categorize	objects	that	we	can
categorize	with	just	a	few.	These	bottom-up	systems	can	generalize	to	new
examples;	they	can	label	a	new	image	as	a	cat	fairly	accurately	over	all.	But	they
do	so	in	ways	quite	different	from	how	humans	generalize.	Some	images	almost
identical	to	a	cat	image	won’t	be	identified	by	us	as	cats	at	all.	Others	that	look
like	a	random	blur	will	be.

TOP-DOWN	BAYESIAN	MODELS

The	top-down	approach	played	a	big	role	in	early	AI,	and	in	the	2000s	it,	too,
experienced	a	revival,	in	the	form	of	probabilistic,	or	Bayesian,	generative
models.

The	early	attempts	to	use	this	approach	faced	two	kinds	of	problems.	First,
most	patterns	of	evidence	might	in	principle	be	explained	by	many	different
hypotheses:	It’s	possible	that	my	journal	email	message	is	genuine,	it	just
doesn’t	seem	likely.	Second,	where	do	the	concepts	that	the	generative	models
use	come	from	in	the	first	place?	Plato	and	Chomsky	said	you	were	born	with
them.	But	how	can	we	explain	how	we	learn	the	latest	concepts	of	science?	Or
how	even	young	children	understand	about	dinosaurs	and	rocket	ships?

Bayesian	models	combine	generative	models	and	hypothesis	testing	with
probability	theory,	and	they	address	these	two	problems.	A	Bayesian	model	lets
you	calculate	just	how	likely	it	is	that	a	particular	hypothesis	is	true,	given	the
data.	And	by	making	small	but	systematic	tweaks	to	the	models	we	already	have,
and	testing	them	against	the	data,	we	can	sometimes	make	new	concepts	and



and	testing	them	against	the	data,	we	can	sometimes	make	new	concepts	and
models	from	old	ones.	But	these	advantages	are	offset	by	other	problems.	The
Bayesian	techniques	can	help	you	choose	which	of	two	hypotheses	is	more
likely,	but	there	are	almost	always	an	enormous	number	of	possible	hypotheses,
and	no	system	can	efficiently	consider	them	all.	How	do	you	decide	which
hypotheses	are	worth	testing	in	the	first	place?

Brenden	Lake	at	NYU	and	colleagues	have	used	these	kinds	of	top-down
methods	to	solve	another	problem	that’s	easy	for	people	but	extremely	difficult
for	computers:	recognizing	unfamiliar	handwritten	characters.	Look	at	a
character	on	a	Japanese	scroll.	Even	if	you’ve	never	seen	it	before,	you	can
probably	tell	if	it’s	similar	to	or	different	from	a	character	on	another	Japanese
scroll.	You	can	probably	draw	it	and	even	design	a	fake	Japanese	character
based	on	the	one	you	see—one	that	will	look	quite	different	from	a	Korean	or
Russian	character.*

The	bottom-up	method	for	recognizing	handwritten	characters	is	to	give	the
computer	thousands	of	examples	of	each	one	and	let	it	pull	out	the	salient
features.	Instead,	Lake	et	al.	gave	the	program	a	general	model	of	how	you	draw
a	character:	A	stroke	goes	either	right	or	left;	after	you	finish	one,	you	start
another;	and	so	on.	When	the	program	saw	a	particular	character,	it	could	infer
the	sequence	of	strokes	that	were	most	likely	to	have	led	to	it—just	as	I	inferred
that	the	spam	process	led	to	my	dubious	email.	Then	it	could	judge	whether	a
new	character	was	likely	to	result	from	that	sequence	or	from	a	different	one,
and	it	could	produce	a	similar	set	of	strokes	itself.	The	program	worked	much
better	than	a	deep-learning	program	applied	to	exactly	the	same	data,	and	it
closely	mirrored	the	performance	of	human	beings.

These	two	approaches	to	machine	learning	have	complementary	strengths
and	weaknesses.	In	the	bottom-up	approach,	the	program	doesn’t	need	much
knowledge	to	begin	with,	but	it	needs	a	great	deal	of	data,	and	it	can	generalize
only	in	a	limited	way.	In	the	top-down	approach,	the	program	can	learn	from	just
a	few	examples	and	make	much	broader	and	more	varied	generalizations,	but
you	need	to	build	much	more	into	it	to	begin	with.	A	number	of	investigators	are
currently	trying	to	combine	the	two	approaches,	using	deep	learning	to
implement	Bayesian	inference.

The	recent	success	of	AI	is	partly	the	result	of	extensions	of	those	old	ideas.
But	it	has	more	to	do	with	the	fact	that,	thanks	to	the	Internet,	we	have	much
more	data,	and	thanks	to	Moore’s	Law	we	have	much	more	computational
power	to	apply	to	that	data.	Moreover,	an	unappreciated	fact	is	that	the	data	we
do	have	has	already	been	sorted	and	processed	by	human	beings.	The	cat



do	have	has	already	been	sorted	and	processed	by	human	beings.	The	cat
pictures	posted	to	the	Web	are	canonical	cat	pictures—pictures	that	humans	have
already	chosen	as	“good”	pictures.	Google	Translate	works	because	it	takes
advantage	of	millions	of	human	translations	and	generalizes	them	to	a	new	piece
of	text,	rather	than	genuinely	understanding	the	sentences	themselves.

But	the	truly	remarkable	thing	about	human	children	is	that	they	somehow
combine	the	best	features	of	each	approach	and	then	go	way	beyond	them.	Over
the	past	fifteen	years,	developmentalists	have	been	exploring	the	way	children
learn	structure	from	data.	Four-year-olds	can	learn	by	taking	just	one	or	two
examples	of	data,	as	a	top-down	system	does,	and	generalizing	to	very	different
concepts.	But	they	can	also	learn	new	concepts	and	models	from	the	data	itself,
as	a	bottom-up	system	does.

For	example,	in	our	lab	we	give	young	children	a	“blicket	detector”—a	new
machine	to	figure	out,	one	they’ve	never	seen	before.	It’s	a	box	that	lights	up
and	plays	music	when	you	put	certain	objects	on	it	but	not	others.	We	give
children	just	one	or	two	examples	of	how	the	machine	works,	showing	them
that,	say,	two	red	blocks	make	it	go,	while	a	green-and-yellow	combination
doesn’t.	Even	eighteen-month-olds	immediately	figure	out	the	general	principle
that	the	two	objects	have	to	be	the	same	to	make	it	go,	and	they	generalize	that
principle	to	new	examples:	For	instance,	they	will	choose	two	objects	that	have
the	same	shape	to	make	the	machine	work.	In	other	experiments,	we’ve	shown
that	children	can	even	figure	out	that	some	hidden	invisible	property	makes	the
machine	go,	or	that	the	machine	works	on	some	abstract	logical	principle.*

You	can	show	this	in	children’s	everyday	learning,	too.	Young	children
rapidly	learn	abstract	intuitive	theories	of	biology,	physics,	and	psychology	in
much	the	way	adult	scientists	do,	even	with	relatively	little	data.

The	remarkable	machine-learning	accomplishments	of	the	recent	AI	systems,
both	bottom-up	and	top-down,	take	place	in	a	narrow	and	well-defined	space	of
hypotheses	and	concepts—a	precise	set	of	game	pieces	and	moves,	a
predetermined	set	of	images.	In	contrast,	children	and	scientists	alike	sometimes
change	their	concepts	in	radical	ways,	performing	paradigm	shifts	rather	than
simply	tweaking	the	concepts	they	already	have.

Four-year-olds	can	immediately	recognize	cats	and	understand	words,	but
they	can	also	make	creative	and	surprising	new	inferences	that	go	far	beyond
their	experience.	My	own	grandson	recently	explained,	for	example,	that	if	an
adult	wants	to	become	a	child	again,	he	should	try	not	eating	any	healthy
vegetables,	since	healthy	vegetables	make	a	child	grow	into	an	adult.	This	kind
of	hypothesis,	a	plausible	one	that	no	grown-up	would	ever	entertain,	is



characteristic	of	young	children.	In	fact,	my	colleagues	and	I	have	shown
systematically	that	preschoolers	are	better	at	coming	up	with	unlikely	hypotheses
than	older	children	and	adults.*	We	have	almost	no	idea	how	this	kind	of
creative	learning	and	innovation	is	possible.

Looking	at	what	children	do,	though,	may	give	programmers	useful	hints
about	directions	for	computer	learning.	Two	features	of	children’s	learning	are
especially	striking.	Children	are	active	learners;	they	don’t	just	passively	soak	up
data	like	AIs	do.	Just	as	scientists	experiment,	children	are	intrinsically
motivated	to	extract	information	from	the	world	around	them	through	their
endless	play	and	exploration.	Recent	studies	show	that	this	exploration	is	more
systematic	than	it	looks	and	is	well	adapted	to	find	persuasive	evidence	to
support	hypothesis	formation	and	theory	choice.*	Building	curiosity	into
machines	and	allowing	them	to	actively	interact	with	the	world	might	be	a	route
to	more	realistic	and	wide-ranging	learning.

Second,	children,	unlike	existing	AIs,	are	social	and	cultural	learners.
Humans	don’t	learn	in	isolation	but	avail	themselves	of	the	accumulated	wisdom
of	past	generations.	Recent	studies	show	that	even	preschoolers	learn	through
imitation	and	by	listening	to	the	testimony	of	others.	But	they	don’t	simply
passively	obey	their	teachers.	Instead	they	take	in	information	from	others	in	a
remarkably	subtle	and	sensitive	way,	making	complex	inferences	about	where
the	information	comes	from	and	how	trustworthy	it	is	and	systematically
integrating	their	own	experiences	with	what	they	are	hearing.*

“Artificial	intelligence”	and	“machine	learning”	sound	scary.	And	in	some
ways	they	are.	These	systems	are	being	used	to	control	weapons,	for	example,
and	we	really	should	be	scared	about	that.	Still,	natural	stupidity	can	wreak	far
more	havoc	than	artificial	intelligence;	we	humans	will	need	to	be	much	smarter
than	we	have	been	in	the	past	to	properly	regulate	the	new	technologies.	But
there	is	not	much	basis	for	either	the	apocalyptic	or	the	utopian	vision	of	AIs
replacing	humans.	Until	we	solve	the	basic	paradox	of	learning,	the	best	artificial
intelligences	will	be	unable	to	compete	with	the	average	human	four-year-old.



Chapter	22

ALGORISTS	DREAM	OF	OBJECTIVITY

PETER	GALISON

Peter	Galison	is	a	science	historian;	Joseph	Pellegrino	University	Professor	and
co-founder	of	the	Black	Hole	Initiative	at	Harvard	University;	and	the	author	of

Einstein’s	Clocks,	Poincaré’s	Maps:	Empires	of	Time.

Peter	Galison’s	focus	as	a	science	historian	is—speaking	roughly—on	the	intersection	of
theory	with	experiment.

“For	quite	a	number	of	years	I	have	been	guided	in	my	work	by	the	odd	confrontation	of
abstract	ideas	and	extremely	concrete	objects,”	he	once	told	me,	in	explaining	how	he
thinks	about	what	he	does.	At	the	Washington,	Connecticut,	meeting	he	discussed	the
Cold	War	tension	between	engineers	(like	Wiener)	and	the	administrators	of	the	Manhattan
Project	(like	Oppenheimer):	“When	[Wiener]	warns	about	the	dangers	of	cybernetics,	in
part	he’s	trying	to	compete	against	the	kind	of	portentous	language	that	people	like
Oppenheimer	[used]:	‘When	I	saw	the	explosion	at	Trinity,	I	thought	of	the	Bhagavad	Gita
—I	am	death,	destroyer	of	worlds.’	That	sense,	that	physics	could	stand	and	speak	to	the
nature	of	the	universe	and	air	force	policy,	was	repellent	and	seductive.	In	a	way,	you	can
see	that	over	and	over	again	in	the	last	decades—nanosciences,	recombinant	DNA,
cybernetics:	‘I	stand	reporting	to	you	on	the	science	that	has	the	promise	of	salvation	and
the	danger	of	annihilation—and	you	should	pay	attention,	because	this	could	kill	you.’	It’s	a
very	seductive	narrative,	and	it’s	repeated	in	artificial	intelligence	and	robotics.”

As	a	twenty-four-year	old,	when	I	first	encountered	Wiener’s	ideas	and	met	his
colleagues	at	the	MIT	meeting	I	describe	in	the	book’s	introduction,	I	was	hardly	interested
in	Wiener’s	warnings	or	admonitions.	What	drove	my	curiosity	was	the	stark,	radical	nature
of	his	view	of	life,	based	on	the	mathematical	theory	of	communications	in	which	the
message	was	nonlinear:	According	to	Wiener,	“new	concepts	of	communication	and
control	involved	a	new	interpretation	of	man,	of	man’s	knowledge	of	the	universe,	and	of
society.”	And	that	led	to	my	first	book,	which	took	information	theory—the	mathematical
theory	of	communications—as	a	model	for	all	human	experience.

In	a	recent	conversation,	Peter	told	me	he	was	beginning	to	write	a	book—about
building,	crashing,	and	thinking—that	considers	the	black-box	nature	of	cybernetics	and
how	it	represents	what	he	thinks	of	as	“the	fundamental	transformation	of	learning,
machine	learning,	cybernetics,	and	the	self.”



I n	his	second-best	book,	the	great	medieval	mathematician	al-Khwarizmi
described	the	new	place-based	Indian	form	of	arithmetic.	His	name,	soon
sonically	linked	to	“algorismus”	(in	late	medieval	Latin),	came	to	designate

procedures	acting	upon	numbers—eventually	wending	its	way	through
“algorithm”	(on	the	model	of	“logarithm”),	into	French,	and	on	into	English.	But
I	like	the	idea	of	a	modern	algorist,	even	if	my	spellcheck	does	not.	I	mean	by	it
someone	profoundly	suspicious	of	the	intervention	of	human	judgment,	someone
who	takes	that	judgment	to	violate	the	fundamental	norms	of	what	it	is	to	be
objective	(and	therefore	scientific).

Near	the	end	of	the	20th	century,	a	paper	by	two	University	of	Minnesota
psychologists	summarized	a	vast	literature	that	had	long	roiled	the	waters	of
prediction.	One	side,	they	judged,	had	for	all	too	long	held	resolutely—and
ultimately	unethically—to	the	“clinical	method”	of	prediction,	which	prized	all
that	was	subjective:	“informal,”	“in	the	head,”	and	“impressionistic.”	These
clinicians	were	people	(so	said	the	psychologists)	who	thought	they	could	study
their	subjects	with	meticulous	care,	gather	in	committees,	and	make	judgment-
based	predictions	about	criminal	recidivism,	college	success,	medical	outcomes,
and	the	like.	The	other	side,	the	psychologists	continued,	embodied	everything
the	clinicians	did	not,	embracing	the	objective:	“formal,”	“mechanical,”
“algorithmic.”	This	the	authors	took	to	stand	at	the	root	of	the	whole	triumph	of
post-Galilean	science.	Not	only	did	science	benefit	from	the	actuarial;	to	a	great
extent,	science	was	the	mechanical-actuarial.	Breezing	through	136	studies	of
predictions,	across	domains	from	sentencing	to	psychiatry,	the	authors	showed
that	in	128	of	them,	predictions	using	actuarial	tables,	a	multiple-regression
equation,	or	an	algorithmic	judgment	equaled	or	exceeded	in	accuracy	those
using	the	subjective	approach.

They	went	on	to	catalog	seventeen	fallacious	justifications	for	clinging	to	the
clinical.	There	were	the	self-interested	foot	draggers	who	feared	losing	their	jobs
to	machines.	Others	lacked	the	education	to	follow	statistical	arguments.	One
group	mistrusted	the	formalization	of	mathematics;	another	excoriated	what	they
took	to	be	the	actuarial	“dehumanizing”;	yet	others	said	that	the	aim	was	to
understand,	not	to	predict.	But	whatever	the	motivations,	the	review	concluded



that	it	was	downright	immoral	to	withhold	the	power	of	the	objective	over	the
subjective,	the	algorithmic	over	expert	judgment.*

The	algorist	view	has	gained	strength.	Anne	Milgram	served	as	attorney
general	of	the	state	of	New	Jersey	from	2007	to	2010.	When	she	took	office,	she
wanted	to	know	who	the	state	was	arresting,	charging,	and	jailing,	and	for	what
crimes.	At	the	time,	she	reports	in	a	later	TED	Talk,	she	could	find	almost	no
data	or	analytics.	By	imposing	statistical	prediction,	she	continues,	law
enforcement	in	Camden	during	her	tenure	was	able	to	reduce	murders	by	41
percent,	saving	thirty-seven	lives,	while	dropping	the	total	crime	rate	by	26
percent.	After	joining	the	Arnold	Foundation	as	its	vice	president	for	criminal
justice,	she	established	a	team	of	data	scientists	and	statisticians	to	create	a	risk-
assessment	tool;	fundamentally,	she	construed	the	team’s	mission	as	deciding
how	to	put	“dangerous	people”	in	jail	while	releasing	the	nondangerous.	“The
reason	for	this,”	Milgram	contended,	“is	the	way	we	make	decisions.	Judges
have	the	best	intentions	when	they	make	these	decisions	about	risk,	but	they’re
making	them	subjectively.	They’re	like	the	baseball	scouts	twenty	years	ago	who
were	using	their	instinct	and	their	experience	to	try	to	decide	what	risk	someone
poses.	They’re	being	subjective,	and	we	know	what	happens	with	subjective
decision	making,	which	is	that	we	are	often	wrong.”	Her	team	established	nine-
hundred-plus	risk	factors,	of	which	nine	were	most	predictive.	The	most	urgent
questions	for	the	team	were:	Will	a	person	commit	a	new	crime?	Will	that
person	commit	a	violent	act?	Will	someone	come	back	to	court?	We	need,
concluded	Milgram,	an	“objective	measure	of	risk”	that	should	be	inflected	by
judges’	judgment.	We	know	the	algorithmic	statistical	process	works.	That,	she
says,	is	“why	Google	is	Google”	and	why	moneyball	wins	games.*

Algorists	have	triumphed.	We	have	grown	accustomed	to	the	idea	that
protocols	and	data	can	and	should	guide	us	in	everyday	action,	from	reminders
about	where	we	probably	want	to	go	next	to	the	likely	occurrence	of	crime.	By
now,	according	to	the	literature,	the	legal,	ethical,	formal,	and	economic
dimensions	of	algorithms	are	all	quasi-infinite.	I’d	like	to	focus	on	one	particular
siren	song	of	the	algorithm:	its	promise	of	objectivity.

Scientific	objectivity	has	a	history.	That	might	seem	surprising.	Isn’t	the
notion—expressed	above	by	the	Minnesota	psychologists—right?	Isn’t
objectivity	co-extensive	with	science	itself?	Here	it’s	worth	stepping	back	to
reflect	on	all	the	epistemic	virtues	we	might	value	in	scientific	work.
Quantification	seems	like	a	good	thing	to	have;	so,	too,	do	prediction,
explanation,	unification,	precision,	accuracy,	certainty,	and	pedagogical	utility.
In	the	best	of	all	possible	worlds	these	epistemic	virtues	would	all	pull	in	the



In	the	best	of	all	possible	worlds	these	epistemic	virtues	would	all	pull	in	the
same	direction.	But	they	do	not—not	any	more	than	our	ethical	virtues
necessarily	coincide.	Rewarding	people	according	to	their	need	may	very	well
conflict	with	rewarding	people	according	to	their	ability.	Equality,	fairness,
meritocracy—ethics,	in	a	sense,	is	all	about	the	adjudication	of	conflicting
goods.	Too	often	we	forget	that	this	conflict	exists	in	science,	too.	Design	an
instrument	to	be	as	sensitive	as	possible	and	it	often	fluctuates	wildly,	making
repetition	of	a	measurement	impossible.

“Scientific	objectivity”	entered	both	the	practice	and	the	nomenclature	of
science	after	the	first	third	of	the	19th	century.	One	sees	this	clearly	in	the
scientific	atlases	that	provided	scientists	with	the	basic	objects	of	their	specialty:
There	were	(and	are)	atlases	of	the	hand,	atlases	of	the	skull,	atlases	of	clouds,
crystals,	flowers,	bubble-chamber	pictures,	nuclear	emulsions,	and	diseases	of
the	eye.	In	the	18th	century,	it	was	obvious	that	you	would	not	depict	this
particular,	sun-scorched,	caterpillar-chewed	clover	found	outside	your	house	in
an	atlas.	No,	you	aimed—if	you	were	a	genius	natural	philosopher	like	Goethe,
Albinus,	or	Cheselden—to	observe	nature	but	then	to	perfect	the	object	in
question,	to	abstract	it	visually	to	the	ideal.	Take	a	skeleton,	view	it	through	a
camera	lucida,	draw	it	with	care.	Then	correct	the	“imperfections.”	The
advantage	of	this	parting	of	the	curtains	of	mere	experience	was	clear:	It
provided	a	universal	guide,	one	not	attached	to	the	vagaries	of	individual
variation.

As	the	sciences	grew	in	scope,	and	scientists	grew	in	number,	the	downside
of	idealization	became	clearer.	It	was	one	thing	to	have	Goethe	depict	the	“ur-
plant”	or	“ur-insect.”	It	was	quite	another	to	have	myriad	different	scientists
fixing	their	images	in	different	and	sometimes	contradictory	ways.	Gradually,
from	around	the	1830s	forward,	one	begins	to	see	something	new:	a	claim	that
the	image	making	was	done	with	a	minimum	of	human	intervention,	that
protocols	were	followed.	This	could	mean	tracing	a	leaf	with	a	pencil	or	pressing
it	into	ink	that	was	transferred	to	the	page.	It	meant,	too,	that	one	suddenly	was
proud	of	depicting	the	view	through	a	microscope	of	a	natural	object	even	with
its	imperfections.	This	was	a	radical	idea:	snowflakes	shown	without	perfect
hexagonal	symmetry,	color	distortion	near	the	edge	of	a	microscope	lens,	tissue
torn	around	the	edges	in	the	process	of	its	preparation.

Scientific	objectivity	came	to	mean	that	our	representations	of	things	were
executed	by	holding	back	from	intervention—even	if	it	meant	reproducing	the
yellow	color	near	the	edge	of	the	image	under	the	microscope	despite	the	fact
that	the	scientist	knew	that	the	discoloration	was	from	the	lens,	not	a	feature	of



the	object	of	inquiry.	The	advantage	of	objectivity	was	clear:	It	superseded	the
desire	to	see	a	theory	realized	or	a	generally	accepted	view	confirmed.	But
objectivity	came	at	a	cost.	You	lost	that	precise,	easily	teachable,	colored,	full
depth-of-field	artist’s	rendition	of	a	dissected	corpse.	You	got	a	blurry,	bad
depth-of-field,	black-and-white	photograph	that	no	medical	student	(nor	even
many	medical	colleagues)	could	use	to	learn	and	compare	cases.	Still,	for	a	long
stretch	of	the	19th	century,	the	virtue	of	hands-off,	self-restraining	objectivity
was	on	the	rise.

Starting	in	the	1930s,	the	hardline	scientific	objectivity	in	scientific
representation	began	running	into	trouble.	In	cataloging	stellar	spectra,	for
example,	no	algorithm	could	compete	with	highly	trained	observers	who	could
sort	them	with	far	greater	accuracy	and	replicability	than	any	purely	rule-
following	procedure.	By	the	late	1940s,	doctors	had	begun	learning	how	to	read
electroencephalograms.	Expert	judgment	was	needed	to	sort	out	different	kinds
of	seizure	readings,	while	none	of	the	early	attempts	to	use	frequency	analysis
could	match	that	judgment.	Solar	magnetograms—mapping	the	magnetic	fields
across	the	sun—required	the	trained	expert	to	pry	the	real	signal	from	artifacts
that	emerged	from	the	measuring	instruments.	Even	particle	physicists
recognized	that	they	could	not	program	a	computer	to	sort	certain	kinds	of	tracks
into	the	right	bins;	trained	judgment	was	needed.

There	should	be	no	confusion	here:	This	was	not	a	return	to	the	invoked
genius	of	an	18th-century	idealizer.	No	one	thought	you	could	train	to	be	a
Goethe	who	alone	among	scientists	could	pick	out	the	universal,	ideal	form	of	a
plant,	insect,	or	cloud.	Expertise	could	be	learned—you	could	take	a	course	to
learn	to	make	expert	judgments	about	electroencephalograms,	stellar	spectra,	or
bubble-chamber	tracks;	alas,	no	one	has	ever	thought	you	could	take	a	course
that	would	lead	to	the	mastery	of	exceptional	insight.	There	can	be	no	royal	road
to	becoming	Goethe.	In	scientific	atlas	after	scientific	atlas,	one	sees	explicit
argument	that	“subjective”	factors	had	to	be	part	of	the	scientific	work	needed	to
create,	classify,	and	interpret	scientific	images.

What	we	see	in	so	many	of	the	algorists’	claims	is	a	tremendous	desire	to	find
scientific	objectivity	precisely	by	abandoning	judgment	and	relying	on
mechanical	procedures—in	the	name	of	scientific	objectivity.	Many	American
states	have	legislated	the	use	of	sentencing	and	parole	algorithms.	Better	a
machine,	it	is	argued,	than	the	vagaries	of	a	judge’s	judgment.

So	here	is	a	warning	from	the	sciences.	Hands-off	algorithmic	proceduralism
did	indeed	have	its	heyday	in	the	19th	century,	and	of	course	still	plays	a	role	in
many	of	the	most	successful	technical	and	scientific	endeavors.	But	the	idea	that



many	of	the	most	successful	technical	and	scientific	endeavors.	But	the	idea	that
mechanical	objectivity,	construed	as	binding	self-restraint,	follows	a	simple,
monotonic	curve	increasing	from	the	bad	impressionistic	clinician	to	the	good
externalized	actuary	simply	does	not	answer	to	the	more	interesting	and	nuanced
history	of	the	sciences.

There	is	a	more	important	lesson	from	the	sciences.	Mechanical	objectivity	is
a	scientific	virtue	among	others,	and	the	hard	sciences	learned	that	lesson	often.
We	must	do	the	same	in	the	legal	and	social	scientific	domains.	What	happens,
for	example,	when	the	secret,	proprietary	algorithm	sends	one	person	to	prison
for	ten	years	and	another	for	five	years	for	the	same	crime?	Rebecca	Wexler,
visiting	fellow	at	the	Yale	Law	School	Information	Society	Project,	has	explored
that	question,	and	the	tremendous	cost	that	trade-secret	algorithms	impose	on	the
possibility	of	a	fair	legal	defense.*	Indeed,	for	a	variety	of	reasons,	law
enforcement	may	not	want	to	share	the	algorithms	used	to	make	DNA,	chemical,
or	fingerprint	identifications,	which	puts	the	defense	in	a	much-weakened
position	to	make	its	case.	In	the	courtroom,	objectivity,	trade	secrets,	and	judicial
transparency	may	pull	in	opposite	directions.	It	reminds	me	of	a	moment	in	the
history	of	physics.	Just	after	World	War	II,	the	film	giants	Kodak	and	Ilford
perfected	a	film	that	could	be	used	to	reveal	the	interactions	and	decays	of
elementary	particles.	The	physicists	were	thrilled,	of	course—until	the	film
companies	told	them	that	the	composition	of	the	film	was	a	trade	secret,	so	the
scientists	would	never	gain	complete	confidence	that	they	understood	the
processes	they	were	studying.	Proving	things	with	unopenable	black	boxes	can
be	a	dangerous	game	for	scientists,	and	doubly	so	for	criminal	justice.

Other	critics	have	underscored	how	perilous	it	is	to	rely	on	an	accused	(or
convicted)	person’s	address	or	other	variables	that	can	easily	become,	inside	the
black	box	of	algorithmic	sentencing,	a	proxy	for	race.	By	dint	of	everyday
experience,	we	have	grown	used	to	the	fact	that	airport	security	is	different	for
children	under	the	age	of	twelve	and	adults	over	the	age	of	seventy-five.	What
factors	do	we	want	the	algorists	to	have	in	their	often	hidden	procedures?
Education?	Income?	Employment	history?	What	one	has	read,	watched,	visited,
or	bought?	Prior	contact	with	law	enforcement?	How	do	we	want	algorists	to
weight	those	factors?	Predictive	analytics	predicated	on	mechanical	objectivity
comes	at	a	price.	Sometimes	it	may	be	a	price	worth	paying;	sometimes	that
price	would	be	devastating	for	the	just	society	we	want	to	have.

More	generally,	as	the	convergence	of	algorithms	and	Big	Data	governs	a
greater	and	greater	part	of	our	lives,	it	would	be	well	worth	keeping	in	mind
these	two	lessons	from	the	history	of	the	sciences:	Judgment	is	not	the	discarded
husk	of	a	now	pure	objectivity	of	self-restraint.	And	mechanical	objectivity	is	a



husk	of	a	now	pure	objectivity	of	self-restraint.	And	mechanical	objectivity	is	a
virtue	competing	among	others,	not	the	defining	essence	of	the	scientific
enterprise.	They	are	lessons	to	bear	in	mind,	even	if	algorists	dream	of
objectivity.



Chapter	23

THE	RIGHTS	OF	MACHINES

GEORGE	M.	CHURCH

George	M.	Church	is	Robert	Winthrop	Professor	of	Genetics	at	Harvard	Medical
School,	Professor	of	Health	Sciences	and	Technology	at	Harvard-MIT,	and	co-
author	(with	Ed	Regis)	of	Regenesis:	How	Synthetic	Biology	Will	Reinvent	Nature

and	Ourselves.

In	the	past	decade,	genetic	engineering	has	caught	up	with	computer	science	with	regard
to	how	new	scientific	initiatives	are	shaping	our	lives.	Genetic	engineer	George	Church,	a
pioneer	of	the	revolution	in	reading	and	writing	biology,	is	central	to	this	new	landscape	of
ideas.	He	thinks	of	the	body	as	an	operating	system,	with	engineers	taking	the	place	of
traditional	biologists	in	retooling	stripped-down	components	of	organisms	(from	atoms	to
organs)	in	much	the	same	vein	as	in	the	late	1970s,	when	electrical	engineers	were
working	their	way	to	the	first	personal	computer	by	assembling	circuit	boards,	hard	drives,
monitors,	etc.	George	created	and	is	director	of	the	Personal	Genome	Project,	which
provides	the	world’s	only	open-access	information	on	human	genomic,	environmental,	and
trait	data	(GET)	and	sparked	the	growing	DNA	ancestry	industry.

He	was	instrumental	in	laying	the	groundwork	for	President	Obama’s	2013	BRAIN
(Brain	Research	through	Advancing	Innovative	Neurotechnologies)	Initiative—in	aid	of
improving	the	brains	of	human	beings	to	the	point	where,	for	much	of	what	sustains	us,	we
might	not	need	the	help	of	(potentially	dicey)	AIs.	“It	could	be	that	some	of	the	BRAIN
Initiative	projects	allow	us	to	build	human	brains	that	are	more	consistent	with	our	ethics
and	capable	of	doing	advanced	tasks	like	artificial	intelligence,”	George	has	said.	“The
safest	path	by	far	is	getting	humans	to	do	all	the	tasks	that	they	would	like	to	delegate	to
machines,	but	we’re	not	yet	firmly	on	that	super-safe	path.”

More	recently,	his	crucially	important	pioneering	use	of	the	enzyme	CRISPR	(as	well
as	methods	better	than	CRISPR)	to	edit	the	genes	of	human	cells	is	sometimes	missed	by
the	media	in	the	telling	of	the	CRISPR	origins	story.

George’s	attitude	toward	future	forms	of	artificial	general	intelligence	is	friendly,	as
evinced	in	the	essay	that	follows.	At	the	same	time,	he	never	loses	sight	of	the	AI-safety
issue.	On	that	subject,	he	recently	remarked:	“The	main	risk	in	AI,	to	my	mind,	is	not	so
much	whether	we	can	mathematically	understand	what	they’re	thinking;	it’s	whether	we’re
capable	of	teaching	them	ethical	behavior.	We’re	barely	capable	of	teaching	each	other
ethical	behavior.”



I n	1950,	Norbert	Wiener’s	The	Human	Use	of	Human	Beings	was	at	the
cutting	edge	of	vision	and	speculation	in	proclaiming	that

the	machine	like	the	djinnee,	which	can	learn	and	can	make	decisions
on	the	basis	of	its	learning,	will	in	no	way	be	obliged	to	make	such
decisions	as	we	should	have	made,	or	will	be	acceptable	to	us.	.	.	.
Whether	we	entrust	our	decisions	to	machines	of	metal,	or	to	those
machines	of	flesh	and	blood	which	are	bureaus	and	vast	laboratories	and
armies	and	corporations	.	.	.	[t]he	hour	is	very	late,	and	the	choice	of	good
and	evil	knocks	at	our	door.

But	this	was	his	book’s	denouement,	and	it	has	left	us	hanging	now	for	sixty-
eight	years,	lacking	not	only	prescriptions	and	proscriptions	but	even	a	well-
articulated	“problem	statement.”	We	have	since	seen	similar	warnings	about	the
threat	of	our	machines,	even	in	the	form	of	outreach	to	the	masses,	via	films	like
Colossus:	The	Forbin	Project	(1970),	The	Terminator	(1984),	The	Matrix
(1999),	and	Ex	Machina	(2015).	But	now	the	time	is	ripe	for	a	major	update,
with	fresh,	new	perspectives—notably	focused	on	generalizations	of	our
“human”	rights	and	our	existential	needs.

Concern	has	tended	to	focus	on	“us	versus	them	[robots]”	or	“grey	goo
[nanotech]”	or	“monocultures	of	clones	[bio].”	To	extrapolate	current	trends:
What	if	we	could	make	or	grow	almost	anything	and	engineer	any	level	of	safety
and	efficacy	desired?	Any	thinking	being	(made	of	any	arrangement	of	atoms)
could	have	access	to	any	technology.

Probably	we	should	be	less	concerned	about	us-versus-them	and	more
concerned	about	the	rights	of	all	sentients	in	the	face	of	an	emerging
unprecedented	diversity	of	minds.	We	should	be	harnessing	this	diversity	to
minimize	global	existential	risks,	like	supervolcanoes	and	asteroids.

But	should	we	say	“should”?	(Disclaimer:	In	this	and	many	other	cases,	when
a	technologist	describes	a	societal	path	that	“could,”	“would,”	or	“should”
happen,	this	doesn’t	necessarily	equate	to	the	preferences	of	the	author.	It	could
reflect	warning,	uncertainty,	and/or	detached	assessment.)	Roboticist	Gianmarco
Veruggio	and	others	have	raised	issues	of	roboethics	since	2002;	the	U.K.



Veruggio	and	others	have	raised	issues	of	roboethics	since	2002;	the	U.K.
Department	of	Trade	and	Industry	and	the	RAND	spin-off	Institute	for	the
Future	have	raised	issues	of	robot	rights	since	2006.

“IS	VERSUS	OUGHT”

It	is	commonplace	to	say	that	science	concerns	“is,”	not	“ought.”	Stephen	Jay
Gould’s	“non-overlapping	magisteria”	view	argues	that	facts	must	be	completely
distinct	from	values.	Similarly,	the	1999	document	Science	and	Creationism
from	the	U.S.	National	Academy	of	Sciences	noted	that	“science	and	religion
occupy	two	separate	realms.”	This	division	has	been	critiqued	by	evolutionary
biologist	Richard	Dawkins,	me,	and	others.	We	can	discuss	“should”	if	framed
as	“we	should	do	X	in	order	to	achieve	Y.”	Which	Y	should	be	a	high	priority	is
not	necessarily	settled	by	democratic	vote	but	might	be	settled	by	Darwinian
vote.	Value	systems	and	religions	wax	and	wane,	diversify,	diverge,	and	merge
just	as	living	species	do:	subject	to	selection.	The	ultimate	“value”	(the
“should”)	is	survival	of	genes	and	memes.

Few	religions	say	that	there	is	no	connection	between	our	physical	being	and
the	spiritual	world.	Miracles	are	documented.	Conflicts	between	Church	doctrine
and	Galileo	and	Darwin	are	eventually	resolved.	Faith	and	ethics	are	widespread
in	our	species	and	can	be	studied	using	scientific	methods,	including	but	not
limited	to	fMRI,	psychoactive	drugs,	questionnaires,	etc.

Very	practically,	we	have	to	address	the	ethical	rules	that	should	be	built	in,
learned,	or	probabilistically	chosen	for	increasingly	intelligent	and	diverse
machines.	We	have	a	whole	series	of	Trolley	Problems.	At	what	number	of
people	in	line	for	death	should	the	computer	decide	to	shift	a	moving	trolley	to
one	person?	Ultimately	this	might	be	a	deep-learning	problem—one	in	which
huge	databases	of	facts	and	contingencies	can	be	taken	into	account,	some
seemingly	far	from	the	ethics	at	hand.

For	example,	the	computer	might	infer	that	the	person	who	would	escape
death	if	the	trolley	is	left	alone	is	a	convicted	terrorist	recidivist	loaded	up	with
doomsday	pathogens,	or	a	saintly	POTUS—or	part	of	a	much	more	elaborate
chain	of	events	in	detailed	alternative	realities.	If	one	of	these	problem
descriptions	seems	paradoxical	or	illogical,	it	may	be	that	the	authors	of	the
Trolley	Problem	have	adjusted	the	weights	on	each	side	of	the	balance	such	that
hesitant	indecision	is	inevitable.

Alternatively,	one	can	use	misdirection	to	rig	the	system,	such	that	the	error



Alternatively,	one	can	use	misdirection	to	rig	the	system,	such	that	the	error
modes	are	not	at	the	level	of	attention.	For	example,	in	the	Trolley	Problem,	the
real	ethical	decision	was	made	years	earlier	when	pedestrians	were	given	access
to	the	rails—or	even	before	that,	when	we	voted	to	spend	more	on	entertainment
than	on	public	safety.	Questions	that	at	first	seem	alien	and	troubling,	like	“Who
owns	the	new	minds,	and	who	pays	for	their	mistakes?”	are	similar	to	well-
established	laws	about	who	owns	and	pays	for	the	sins	of	a	corporation.

THE	SLIPPERY	SLOPES

We	can	(over)simplify	ethics	by	claiming	that	certain	scenarios	won’t	happen.
The	technical	challenges	or	the	bright	red	lines	that	cannot	be	crossed	are
reassuring,	but	the	reality	is	that	once	the	benefits	seem	to	outweigh	the	risks
(even	briefly	and	barely),	the	red	lines	shift.	Just	before	Louise	Brown’s	birth	in
1978,	many	people	were	worried	that	she	“would	turn	out	to	be	a	little	monster,
in	some	way,	shape	or	form,	deformed,	something	wrong	with	her.”*	Few	would
hold	this	view	of	in-vitro	fertilization	today.

What	technologies	are	lubricating	the	slope	toward	multiplex	sentience?	It	is
not	merely	deep	machine-learning	algorithms	with	Big	Iron.	We	have
engineered	rodents	to	be	significantly	better	at	a	variety	of	cognitive	tasks	as
well	as	to	exhibit	other	relevant	traits,	such	as	persistence	and	low	anxiety.	Will
this	be	applicable	to	animals	that	are	already	at	the	door	of	humanlike
intelligence?	Several	show	self-recognition	in	a	mirror	test—chimpanzees,
bonobos,	orangutans,	some	dolphins	and	whales,	and	magpies.

Even	the	bright	red	line	for	human	manipulation	of	human	beings	shows
many	signs	of	moving	or	breaking	completely.	More	than	twenty-three	hundred
approved	clinical	trials	for	gene	therapy	are	in	progress	worldwide.	A	major
medical	goal	is	the	treatment	or	prevention	of	cognitive	decline,	especially	in
light	of	our	rapidly	aging	global	demographic.	Some	treatments	of	cognitive
decline	will	include	cognitive	enhancements	(drugs,	genes,	cells,	transplants,
implants,	and	so	on).	These	will	be	used	off-label.	The	rules	of	athletic
competition	(e.g.,	banning	augmentation	with	steroids	or	erythropoietin)	do	not
apply	to	intellectual	competition	in	the	real	world.	Every	bit	of	progress	on
cognitive	decline	is	in	play	for	off-label	use.



Another	frontier	of	the	human	use	of	humans	is	“brain	organoids.”	We	can
now	accelerate	developmental	biology.	Processes	that	normally	take	months	can
happen	in	four	days	in	the	lab	using	the	right	recipes	of	transcription	factors.	We
can	make	brains	that,	with	increasing	fidelity,	recapitulate	the	differences
between	people	born	with	aberrant	cognitive	abilities	(e.g.,	microcephaly).
Proper	vasculature	(veins,	arteries,	and	capillaries)	missing	from	earlier
successes	are	now	added,	enabling	brain	organoids	to	surpass	the	former
submicroliter	limit	to	possibly	exceed	the	1.2-liter	size	of	modern	human	brains
(or	even	the	5-liter	elephant	or	8-liter	sperm	whale	brains).

CONVENTIONAL	COMPUTERS	VERSUS	BIO-
ELECTRONIC	HYBRIDS

As	Moore’s	Law	miniaturization	approaches	its	next	speed	bump	(surely	not	a
solid	wall),	we	see	the	limits	of	the	stochastics	of	dopant	atoms	in	silicon	slabs
and	the	limits	of	beam-fabrication	methods	at	around	10-nanometer	feature	size.
Power	(energy	consumption)	issues	are	also	apparent:	The	great	Watson,	winner
of	Jeopardy!,	used	85,000	watts	real	time,	while	the	human	brains	were	using	20
watts	each.	To	be	fair,	the	human	body	needs	100	watts	to	operate	and	twenty
years	to	build,	hence	about	6	trillion	joules	of	energy	to	“manufacture”	a	mature
human	brain.	The	cost	of	manufacturing	Watson-scale	computing	is	similar.	So
why	aren’t	humans	displacing	computers?

For	one,	the	Jeopardy!	contestants’	brains	were	doing	far	more	than
information	retrieval—much	of	which	would	be	considered	mere	distractions	by
Watson	(e.g.,	cerebellar	control	of	smiling).	Other	parts	allow	leaping	out	of	the
box	with	transcendence	unfathomable	by	Watson,	such	as	what	we	see	in
Einstein’s	five	annus	mirabilis	papers	of	1905.	Also,	humans	consume	more
energy	than	the	minimum	(100	watts)	required	for	life	and	reproduction.	People
in	India	use	an	average	of	700	watts	per	person;	it’s	10,000	watts	in	the	U.S.
Both	are	still	less	than	the	85,000	watts	Watson	uses.	Computers	can	become
more	like	us	via	neuromorphic	computing,	possibly	a	thousandfold.	But	human
brains	could	get	more	efficient,	too.	The	organoid	brain-in-a-bottle	could	get
closer	to	the	20	watts	limit.	The	idiosyncratic	advantages	of	computers	for	math,



storage,	and	search,	faculties	of	limited	use	to	our	ancestors,	could	be	designed
and	evolved	anew	in	labs.

Facebook,	the	National	Security	Agency,	and	others	are	constructing
exabyte-scale	storage	facilities	at	more	than	a	megawatt	and	four	hectares,	while
DNA	can	store	that	amount	in	a	milligram.	Clearly,	DNA	is	not	a	mature	storage
technology,	but	with	Microsoft	and	Technicolor	doubling	down	on	it,	we	would
be	wise	to	pay	attention.	The	main	reason	for	the	6	trillion	joules	of	energy
required	to	get	a	productive	human	mind	is	the	twenty	years	required	for
training.

Even	though	a	supercomputer	can	“train”	a	clone	of	zemself	in	seconds,	the
energy	cost	of	producing	a	mature	silicon	clone	is	comparable.	Engineering
(Homo)	prodigies	might	make	a	small	impact	on	this	slow	process,	but	speeding
up	development	and	implanting	extensive	memory	(as	DNA-exabytes	or	other
means)	could	reduce	duplication	time	of	a	bio-computer	to	close	to	the	doubling
time	of	cells	(ranging	from	eleven	minutes	to	twenty-four	hours).	The	point	is
that	while	we	may	not	know	what	ratio	of	bio/homo/nano/robo	hybrids	will	be
dominant	at	each	step	of	our	accelerating	evolution,	we	can	aim	for	high	levels
of	humane,	fair,	and	safe	treatment	(“use”)	of	one	another.

Bills	of	Rights	date	back	to	1689	in	England.	FDR	proclaimed	the	“Four
Freedoms”—freedom	of	speech,	freedom	of	conscience,	freedom	from	fear,	and
freedom	from	want.	The	U.N.’s	Universal	Declaration	of	Human	Rights	in	1948
included	the	right	to	life;	the	prohibition	of	slavery;	defense	of	rights	when
violated;	freedom	of	movement;	freedom	of	association,	thought,	conscience,
and	religion;	social,	economic,	and	cultural	rights;	duties	of	the	individual	to
society;	and	prohibition	of	use	of	rights	in	contravention	of	the	purposes	and
principles	of	the	United	Nations.

The	“universal”	nature	of	these	rights	is	not	universally	embraced	and	is
subject	to	extensive	critique	and	noncompliance.	How	does	the	emergence	of
non-Homo	intelligences	affect	this	discussion?	At	a	minimum,	it	is	becoming
rapidly	difficult	to	hide	behind	vague	intuition	for	ethical	decisions—“I	know	it
when	I	see	it”	(U.S.	Supreme	Court	Justice	Potter	Stewart,	1964)	or	the	“wisdom
of	repugnance”	(aka	“yuck	factor,”	Leon	Kass,	1997),	or	vague	appeals	to
“common	sense.”	As	we	have	to	deal	with	minds	alien	to	us,	sometimes	quite
literal	from	our	viewpoint,	we	need	to	be	explicit—yea,	even	algorithmic.

Self-driving	cars,	drones,	stock-market	transactions,	NSA	searches,	etc.,
require	rapid,	preapproved	decision	making.	We	may	gain	insights	into	many
aspects	of	ethics	that	we	have	been	trying	to	pin	down	and	explain	for	centuries.



The	challenges	have	included	conflicting	priorities,	as	well	as	ingrained
biological,	sociological,	and	semilogical	cognitive	biases.	Notably	far	from
consensus	in	universal	dogmas	about	human	rights	are	notions	of	privacy	and
dignity,	even	though	these	influence	many	laws	and	guidelines.

Humans	might	want	the	right	to	march	in	to	read	(and	change)	the	minds	of
computers	to	see	why	they’re	making	decisions	at	odds	with	our	(Homo)
instincts.	Is	it	not	fair	for	machines	to	ask	the	same	of	us?	We	note	the	growth	of
movements	toward	transparency	in	potential	financial	conflicts;	“open-source”
software,	hardware,	and	wetware;	the	Fair	Access	to	Science	and	Technology
Research	Act	(FASTR);	and	the	Open	Humans	Foundation.

In	his	1976	book	Computer	Power	and	Human	Reason,	Joseph	Weizenbaum
argued	that	machines	should	not	replace	Homo	in	situations	requiring	respect,
dignity,	or	care,	while	others	(author	Pamela	McCorduck	and	computer	scientists
like	John	McCarthy	and	Bill	Hibbard)	replied	that	machines	can	be	more
impartial,	calm,	and	consistent	and	less	abusive	or	mischievous	than	people	in
such	positions.

EQUALITY

What	did	the	thirty-three-year-old	Thomas	Jefferson	mean	in	1776	when	he
wrote	“We	hold	these	Truths	to	be	self-evident,	that	all	Men	are	created	equal,
that	they	are	endowed	by	their	Creator	with	certain	unalienable	Rights,	that
among	these	are	Life,	Liberty,	and	the	Pursuit	of	Happiness”?	The	spectrum	of
current	humans	is	vast.	In	1776,	“Men”	did	not	include	people	of	color	or
women.	Even	today,	humans	born	with	congenital	cognitive	or	behavioral	issues
are	destined	for	unequal	(albeit	in	most	cases	compassionate)	treatment—Down
syndrome,	Tay-Sachs	disease,	Fragile	X	syndrome,	cerebral	palsy,	and	so	on.

And	as	we	change	geographical	location	and	mature,	our	unequal	rights
change	dramatically.	Embryos,	infants,	children,	teens,	adults,	patients,	felons,
gender	identities	and	gender	preferences,	the	very	rich	and	very	poor—all	of
these	face	different	rights	and	socioeconomic	realities.	One	path	to	new	mind-
types	obtaining	and	retaining	rights	similar	to	the	most	elite	humans	would	be	to
keep	a	Homo	component,	like	a	human	shield	or	figurehead	monarch/CEO,
signing	blindly	enormous	technical	documents,	making	snap	financial,	health,
diplomatic,	military,	or	security	decisions.	We	will	probably	have	great



difficulty	pulling	the	plug,	modifying,	or	erasing	(killing)	a	computer	and	its
memories—especially	if	it	has	befriended	humans	and	made	spectacularly
compelling	pleas	for	survival	(as	all	excellent	researchers	fighting	for	their	lives
would	do).

Even	Scott	Adams,	creator	of	Dilbert,	has	weighed	in	on	this	topic,	supported
by	experiments	at	Eindhoven	University	in	2005	noting	how	susceptible	humans
are	to	a	robot-as-victim	equivalent	of	the	Milgram	experiments	done	at	Yale
beginning	in	1961.	Given	the	many	rights	of	corporations,	including	ownership
of	property,	it	seems	likely	that	other	machines	will	obtain	similar	rights,	and	it
will	be	a	struggle	to	maintain	inequities	of	selective	rights	along	multiaxis
gradients	of	intellect	and	ersatz	feelings.

RADICALLY	DIVERGENT	RULES	FOR
HUMANS	VERSUS	NONHUMANS	AND
HYBRIDS

The	divide	noted	above	for	intra	Homo	sapiens	variation	in	rights	explodes	into
a	riot	of	inequality	as	soon	as	we	move	to	entities	that	overlap	(or	will	soon)	the
spectrum	of	humanity.	In	Google	Street	View,	people’s	faces	and	car	license
plates	are	blurred	out.	Video	devices	are	excluded	from	many	settings,	such	as
courts	and	committee	meetings.	Wearable	and	public	cameras	with	facial-
recognition	software	touch	taboos.	Should	people	with	hyperthymesia	or
photographic	memories	be	excluded	from	those	same	settings?

Shouldn’t	people	with	prosopagnosia	(face	blindness)	or	forgetfulness	be	able
to	benefit	from	facial-recognition	software	and	optical	character	recognition
wherever	they	go,	and	if	them,	then	why	not	everyone?	If	we	all	have	those	tools
to	some	extent,	shouldn’t	we	all	be	able	to	benefit?

These	scenarios	echo	Kurt	Vonnegut’s	1961	short	story	“Harrison	Bergeron,”
in	which	exceptional	aptitude	is	suppressed	in	deference	to	the	mediocre	lowest
common	denominator	of	society.	Thought	experiments	like	John	Searle’s
Chinese	Room	and	Isaac	Asimov’s	Three	Laws	of	Robotics	all	appeal	to	the
sorts	of	intuitions	plaguing	human	brains	that	Daniel	Kahneman,	Amos	Tversky,
and	others	have	demonstrated.	The	Chinese	Room	experiment	posits	that	a	mind
composed	of	mechanical	and	Homo	sapiens	parts	cannot	be	conscious,	no	matter



how	competent	at	intelligent	human	(Chinese)	conversation,	unless	a	human	can
identify	the	source	of	the	consciousness	and	“feel”	it.	Enforced	preference	for
Asimov’s	First	and	Second	Laws	favor	human	minds	over	any	other	mind
meekly	present	in	his	Third	Law,	of	self-preservation.

If	robots	don’t	have	exactly	the	same	consciousness	as	humans,	then	this	is
used	as	an	excuse	to	give	them	different	rights,	analogous	to	arguments	that
other	tribes	or	races	are	less	than	human.	Do	robots	already	show	free	will?	Are
they	already	self-conscious?	The	robots	Qbo	have	passed	the	“mirror	test”	for
self-recognition	and	the	robots	NAO	have	passed	a	related	test	of	recognizing
their	own	voice	and	inferring	their	internal	state	of	being,	mute	or	not.

For	free	will,	we	have	algorithms	that	are	neither	fully	deterministic	nor
random	but	aimed	at	nearly	optimal	probabilistic	decision	making.	One	could
argue	that	this	is	a	practical	Darwinian	consequence	of	game	theory.	For	many
(not	all)	games/problems,	if	we’re	totally	predictable	or	totally	random,	then	we
tend	to	lose.

What	is	the	appeal	of	free	will	anyway?	Historically	it	gave	us	a	way	to
assign	blame	in	the	context	of	reward	and	punishment	on	Earth	or	in	the
afterlife.	The	goals	of	punishment	might	include	nudging	the	priorities	of	the
individual	to	assist	the	survival	of	the	species.	In	extreme	cases,	this	could
include	imprisonment	or	other	restrictions,	if	Skinnerian	positive/negative
reinforcement	is	inadequate	to	protect	society.	Clearly,	such	tools	can	apply	to
free	will,	seen	broadly—to	any	machine	whose	behavior	we’d	like	to	manage.

We	could	argue	as	to	whether	the	robot	actually	experiences	subjective	qualia
for	free	will	or	self-consciousness,	but	the	same	applies	to	evaluating	a	human.
How	do	we	know	that	a	sociopath,	a	coma	patient,	a	person	with	Williams
syndrome,	or	a	baby	has	the	same	free	will	or	self-consciousness	as	our	own?
And	what	does	it	matter,	practically?	If	humans	(of	any	sort)	convincingly	claim
to	experience	consciousness,	pain,	faith,	happiness,	ambition,	and/or	utility	to
society,	should	we	deny	them	rights	because	their	hypothetical	qualia	are
hypothetically	different	from	ours?

The	sharp	red	lines	of	prohibition,	over	which	we	supposedly	will	never	step,
increasingly	seem	to	be	short-lived	and	not	sensible.	The	line	between	human
and	machines	blurs,	both	because	machines	become	more	humanlike	and
because	humans	become	more	machinelike—not	only	since	we	increasingly
blindly	follow	GPS	scripts,	reflex	tweets,	and	carefully	crafted	marketing,	but
also	as	we	digest	ever	more	insights	into	our	brain	and	genetic	programming
mechanisms.	The	NIH	BRAIN	Initiative	is	developing	innovative	technologies
and	using	these	to	map	out	the	connections	and	activity	of	mental	circuitry	so	as



and	using	these	to	map	out	the	connections	and	activity	of	mental	circuitry	so	as
to	improve	electronic	and	synthetic	neurobiological	ware.

Various	red	lines	depend	on	genetic	exceptionalism,	in	which	genetics	is
considered	permanently	heritable	(although	it	is	provably	reversible),	whereas
exempt	(and	lethal)	technologies,	like	cars,	are,	for	all	intents	and	purposes,
irreversible	due	to	social	and	economic	forces.	Within	genetics,	a	red	line	makes
us	ban	or	avoid	genetically	modified	foods	but	embrace	genetically	modified
bacteria	making	insulin,	or	genetically	modified	humans—witness	mitochondrial
therapies	approved	in	Europe	for	human	adults	and	embryos.

The	line	for	germline	manipulation	seems	less	sensible	than	the	usual,
practical	line	drawn	at	safety	and	efficacy.	Marriages	of	two	healthy	carriers	of
the	same	genetic	disease	have	a	choice	between	no	child	of	their	own,	25	percent
loss	of	embryos	via	abortion	(spontaneous	or	induced),	80	percent	loss	via	in-
vitro	fertilization,	or	potential	0	percent	embryo	loss	via	sperm	(germline)
engineering.	It	seems	premature	to	declare	this	last	option	unlikely.

For	“human	subject	research,”	we	refer	to	the	1964	Declaration	of	Helsinki,
keeping	in	mind	the	1932–72	Tuskegee	syphilis	experiment,	possibly	the	most
infamous	biomedical	research	study	in	U.S.	history.	In	2015,	the	Nonhuman
Rights	Project	filed	a	lawsuit	with	the	New	York	State	Supreme	Court	on	behalf
of	two	chimpanzees	kept	for	research	by	Stony	Brook	University.	The	appellate
court	decision	was	that	chimps	are	not	to	be	treated	as	legal	persons	since	they
“do	not	have	duties	and	responsibilities	in	society,”	despite	Jane	Goodall’s	and
others’	claim	that	they	do,	and	despite	arguments	that	such	a	decision	could	be
applied	to	children	and	the	disabled.*

What	prevents	extension	to	other	animals,	organoids,	machines,	and	hybrids?
As	we	(e.g.,	Hawking,	Musk,	Tallinn,	Wilczek,	Tegmark)	have	promoted	bans
on	“autonomous	weapons,”	we	have	demonized	one	type	of	“dumb”	machine,
while	other	machines—for	instance,	those	composed	of	many	Homo	sapiens
voting—can	be	more	lethal	and	more	misguided.

Do	transhumans	roam	the	Earth	already?	Consider	the	“uncontacted
peoples,”	such	as	the	Sentinelese	and	Andamanese	of	India,	the	Korowai	of
Indonesia,	the	Mashco-Piro	of	Peru,	the	Pintupi	of	Australia,	the	Surma	of
Ethiopia,	the	Ruc	of	Vietnam,	the	Ayoreo-Totobiegosode	of	Paraguay,	the
Himba	of	Namibia,	and	dozens	of	tribes	in	Papua	New	Guinea.	How	would	they
or	our	ancestors	respond?	We	could	define	“transhuman”	as	people	and	cultures
not	comprehensible	to	humans	living	in	a	modern,	yet	untechnological	culture.

Such	modern	Stone	Age	people	would	have	great	trouble	understanding	why
we	celebrate	the	recent	LIGO	gravity-wave	evidence	supporting	the	hundred-



year-old	general	theory	of	relativity.	They	would	scratch	their	heads	as	to	why
we	have	atomic	clocks,	or	GPS	satellites	so	we	can	find	our	way	home,	or	why
and	how	we	have	expanded	our	vision	from	a	narrow	optical	band	to	the	full
spectrum	from	radio	to	gamma.	We	can	move	faster	than	any	other	living
species;	indeed,	we	can	reach	escape	velocity	from	Earth	and	survive	in	the	very
cold	vacuum	of	space.

If	those	characteristics	(and	hundreds	more)	don’t	constitute	transhumanism,
then	what	would?	If	we	feel	that	the	judge	of	transhumanism	should	not	be	fully
paleo-culture	humans	but	recent	humans,	then	how	would	we	ever	reach
transhuman	status?	We	“recent	humans”	may	always	be	capable	of
comprehending	each	new	technological	increment—never	adequately	surprised
to	declare	arrival	at	a	(moving)	transhuman	target.	The	science-fiction	prophet
William	Gibson	said,	“The	future	is	already	here—it’s	just	not	very	evenly
distributed.”	While	this	underestimates	the	next	round	of	“future,”	certainly
millions	of	us	are	transhuman	already—with	most	of	us	asking	for	more.	The
question	“What	was	a	human?”	has	already	transmogrified	into	“What	were	the
many	kinds	of	transhumans?	.	.	.	And	what	were	their	rights?”



Chapter	24

THE	ARTISTIC	USE	OF	CYBERNETIC	BEINGS

CAROLINE	A.	JONES

Caroline	A.	Jones	is	a	professor	of	art	history	in	the	Department	of	Architecture	at
MIT	and	author	of	Eyesight	Alone:	Clement	Greenberg’s	Modernism	and	the

Bureaucratization	of	the	Senses,	Machine	in	the	Studio:	Constructing	the	Postwar
American	Artist,	and	The	Global	Work	of	Art.

Caroline	A.	Jones’s	interest	in	modern	and	contemporary	art	is	enriched	by	a	willingness
to	delve	into	the	technologies	involved	in	its	production,	distribution,	and	reception.	“As	an
art	historian,	a	lot	of	my	questions	are	about	what	kind	of	art	we	can	make,	what	kind	of
thought	we	can	make,	what	kind	of	ideas	we	can	make	that	could	stretch	the	human
beyond	our	stubborn,	selfish,	‘only	concerned	with	our	small	group’	parameters.	The
philosophers	and	philosophies	I’m	drawn	to	are	those	that	question	the	Western	obsession
with	individualism.	Those	are	coming	from	so	many	different	places,	and	they’re	reviving
so	many	different	kinds	of	questions	and	problems	that	were	raised	in	the	1960s.”

She	has	recently	turned	her	attention	to	the	history	of	cybernetics.	Her	MIT	course,
Automata,	Automatism,	Systems,	Cybernetics,	explores	the	history	of	the	human/machine
interface	in	terms	of	feedback,	exploring	the	cultural	rather	than	engineering	uptake	of	this
idea.	She	begins	with	primary	readings	by	Wiener,	Shannon,	and	Turing	and	then	pivots
from	the	scientists	and	engineers	to	the	work	and	ideas	of	artists,	feminists,	and
postmodern	theorists.	Her	goal:	to	come	up	with	a	new	central	paradigm	of	evolution	that’s
culture	based—“communalism	and	interspecies	symbiosis	rather	than	survival	of	the
fittest.”

As	a	historian,	Caroline	draws	a	distinction	between	what	she	has	termed	“left
cybernetics”	and	“right	cybernetics”:	“What	do	I	mean	by	left	cybernetics?	In	one	sense,	it’s
a	pun	or	a	joke:	the	cybernetics	that	was	‘left’	behind.	On	another	level,	it’s	a	vague
political	grouping	connoting	our	Left	Coast:	California,	Esalen,	the	group	that	Dave	Kaiser
calls	the	‘hippie	physicists.’	It’s	not	an	adequate	term,	but	it’s	a	way	of	recognizing	that
there	was	a	group	beholden	to	the	military-industrial	complex,	sometimes	very	unhappily,
who	gave	us	the	tools	to	critique	it.”



A
Cybernated	art	is	very	important,	but	art	for	cybernated	life	is	more	important.

—NAM	JUNE	PAIK,	1966

rtificial	intelligence	was	not	what	artists	first	wanted	out	of	cybernetics,
once	Norbert	Wiener’s	The	Human	Use	of	Human	Beings:	Cybernetics
and	Society	came	out	in	1950.	The	range	of	artists	who	identified

themselves	with	cybernetics	in	the	fifties	and	sixties	initially	had	little	access	to
“thinking	machines.”	Moreover,	craft-minded	engineers	had	already	been
making	turtles,	jugglers,	and	light-seeking	robot	babes,	not	giant	brains.	Using
breadboards,	copper	wire,	simple	switches,	and	electronic	sensors,	artists
followed	cyberneticians	in	making	sculptures	and	environments	that	simulated
interactive	sentience—analog	movements	and	interfaces	that	had	more	to	do
with	instinctive	drives	and	postwar	sexual	politics	than	the	automation	of
knowledge	production.	Now	obscured	by	an	ideology	of	a	free-floating
“intelligence”	untethered	by	either	hardware	or	flesh,	AI	has	forgotten	the	early
days	of	cybernetics’	uptake	by	artists.	Those	efforts	are	worth	revisiting;	they
modeled	relations	with	what	the	French	philosophers	Gilles	Deleuze	and	Félix
Guattari	have	called	the	“machinic	phylum,”	having	to	do	with	how	humans
think	and	feel	in	bodies	engaged	with	a	physical,	material,	emotionally
stimulating,	and	signaling	world.

Cybernetics	now	seems	to	have	collapsed	into	an	all-pervasive	discourse	of
AI	that	was	far	from	preordained.	“Cybernetics,”	as	a	word,	claimed	postwar
newness	for	concepts	that	were	easily	four	centuries	old:	notions	of	feedback,
machine	damping,	biological	homeostasis,	logical	calculation,	and	systems
thinking	that	had	been	around	since	the	Enlightenment	(boosted	by	the	Industrial
Revolution).	The	names	in	this	lineage	include	Descartes,	Leibniz,	Sadi	Carnot,
Clausius,	Maxwell,	and	Watt.	Wiener’s	coinage	nonetheless	had	profound
cultural	effects.*	The	ubiquity	today	of	the	prefix	cyber-	confirms	the	desire	for
a	crisp	signifier	of	the	tangled	relations	between	humans	and	machines.	In
Wiener’s	usage,	things	“cyber”	simply	involved	“control	and	communication	in
the	animal	and	the	machine.”	But	after	the	digital	revolution,	“cyber”	moved
beyond	servomechanisms,	feedback	loops,	and	switches	to	encompass	software,



algorithms,	and	cyborgs.	The	work	of	cybernetically	inclined	artists	concerns	the
emergent	behaviors	of	life	that	elude	AI	in	its	current	condition.

As	to	that	original	coinage,	Wiener	had	reached	back	to	the	ancient	Greek	to
borrow	the	word	for	“steersman”	(κυβερνήτης/kubernétés),	a	masculine	figure
channeling	power	and	instinct	at	the	helm	of	a	ship,	who	read	the	waves,	judged
the	wind,	kept	a	hand	on	the	tiller,	and	directed	the	slaves	as	they	mindlessly
(mechanically)	churned	their	oars.	The	Greek	had	already	migrated	into	modern
English	via	Latin,	going	from	kuber-	to	guber—the	root	of	“gubernatorial”	and
“governor,”	another	term	for	masculine	control,	deployed	by	James	Watt	to
describe	his	19th-century	device	for	modulating	a	runaway	steam	engine.
Cybernetics	thus	took	ideas	that	had	long	analogized	people	and	devices	and
generalized	them	to	an	applied	science	by	adding	that	“-ics.”	Wiener’s	three	c’s
(command,	control,	communication)	drew	on	the	mathematics	of	probability	to
formalize	systems	(whether	biological	or	mechanical)	theorized	as	a	set	of	inputs
of	information	achieving	outputs	of	actions	in	an	environment—a	muscular,
fleshy	agenda	often	minimized	in	genealogies	of	AI.

But	the	etymology	does	little	to	capture	the	excitement	felt	by	participants,	as
mathematics	joined	theoretical	biology	(Arturo	Rosenblueth)	and	information
theory	(Claude	Shannon,	Walter	Pitts,	Warren	McCulloch)	to	produce	a	barrage
of	interdisciplinary	research	and	publications	viewed	as	changing	not	just	the
way	science	was	done	but	the	way	future	humans	would	engage	with	the
technosphere.	As	Wiener	put	it,	“We	have	modified	our	environment	so
radically	that	we	must	now	modify	ourselves	in	order	to	exist.”*	The	pressing
question	is:	How	are	we	modifying	ourselves?	Are	we	going	in	the	right
direction	or	have	we	lost	our	way,	becoming	the	tools	of	our	tools?	Revisiting
the	early	history	of	humanist/artists’	contribution	to	cybernetics	may	help	direct
us	toward	a	less	perilous,	more	ethical	future.

The	year	1968	was	a	high-water	mark	of	the	cultural	diffusion	and	artistic
uptake	of	the	term.	In	that	year,	the	Howard	Wise	gallery	opened	its	show	of
Wen-Ying	Tsai’s	“Cybernetic	Sculpture”	in	Midtown	Manhattan,	and	Polish
émigré	Jasia	Reichardt	opened	her	exhibition	“Cybernetic	Serendipity”	at
London’s	ICA.	(The	“Cybernetic”	in	her	title	was	intended	to	evoke	“made	by	or
with	computers,”	even	though	most	of	the	artworks	on	view	had	no	computers,
as	such,	in	their	responsive	circuits.)	The	two	decades	between	1948	and	1968
had	seen	both	the	fanning	out	of	cybernetic	concepts	into	a	broader	culture	and
the	spread	of	computation	machines	themselves	in	a	slow	migration	from
proprietary	military	equipment,	through	the	multinational	corporation,	to	the



academic	lab,	where	access	began	to	be	granted	to	artists.	The	availability	of
cybernetic	components—“sensor	organs”	(electronic	eyes,	motion	sensors,
microphones)	and	“effector	organs”	(electronic	breadboards,	switches,
hydraulics,	pneumatics)—on	the	home	hobbyist	front	rendered	the	computer	less
an	“electronic	brain”	than	an	adjunct	organ	in	a	kit	of	parts.	There	was	not	yet	a
ruling	metaphor	of	“artificial	intelligence.”	So	artists	were	bricoleurs	of
electronic	bodies,	interested	in	actions	rather	than	in	calculation	or	cognition.
There	were	inklings	of	“computer”	as	calculator	in	the	drive	toward	Homo
rationalis,	but	more	in	aspiration	than	in	achievement.

In	light	of	today’s	digital	convergence	in	art/science	imaging	tools,
Reichardt’s	show	was	prophetic	in	its	insistence	on	confusing	the	boundaries
between	art	and	what	we	might	dub	“creative	applied	science.”	According	to	the
catalog,	“no	visitor	to	the	exhibition,	unless	he	reads	all	the	notes	relating	to	all
the	works,	will	know	whether	he	is	looking	at	something	made	by	an	artist,
engineer,	mathematician,	or	architect.”	So	the	comically	dysfunctional	robot	by
Nam	June	Paik,	Robot	K-456	(1964),	featured	on	the	catalog’s	cover	and
described	as	“a	female	robot	known	for	her	disturbing	and	idiosyncratic
behavior,”	would	face	off	against	a	balletic	Colloquy	of	Mobiles	(1968)	from
second-order	cybernetician	Gordon	Pask.	Pask	worked	with	a	London	theater
designer	to	craft	a	spindly	“male”	apparatus	of	hinges	and	rods,	set	up	to
communicate	with	bulbous	“female”	fiberglass	entities	nearby.	Whether	anyone
could	actually	map	the	quiddities	of	the	program	(or	glean	its	reactionary	gender
theater)	without	reading	the	catalog	essay	is	an	open	question.	What	is
significant	is	Pask’s	focus	on	the	behaviors	of	his	automata,	their	interactivity,
their	responsiveness	within	an	artificially	modulated	environment,	and	their
“reflection”	of	human	behaviors.

The	ICA’s	“Cybernetic	Serendipity”	introduced	an	important	paradigm:	the
machinic	ecosystem,	in	which	the	viewer	was	a	biological	part,	tasked	with
figuring	out	just	what	the	triggers	for	interaction	might	be.	The	visitors	in	those
London	galleries	suddenly	became	“cybernetic	organisms”—cyborgs—since	to
experience	the	art	adequately,	one	needed	to	enter	a	kind	of	symbiotic	colloquy
with	the	servomechanisms.	This	turn	toward	human-machine	interactive
environments	as	an	aesthetic	becomes	clearer	when	we	examine	a	few	other
artworks	from	the	period,	beginning	with	one	constituting	an	early	instance	of
emergent	behavior—Senster,	the	interactive	sculpture	by	artist/engineer	Edward
Ihnatowicz	(1970),	celebrated	by	medical	robotics	engineer	Alex	Zivanovic,
editor	of	a	website	devoted	to	Ihnatowicz’s	little-known	career,	as	“one	of	the



first	computer	controlled	interactive	robotic	works	of	art.”	Here,	“the	computer”
makes	its	entry	(albeit	a	twelve-bit,	limited	device).	But	rather	than
“intelligence,”	Ihnatowicz	sought	to	make	an	avatar	of	affective	behavior.	Key
to	Senster’s	uncanny	success	was	the	programming	with	which	Ihnatowicz
constrained	the	fifteen-foot-long	hydraulic	apparatus	(its	hinge	design	and
looming	appearance	inspired	by	a	lobster	claw)	to	convey	shyness	in	responding
to	humans	in	its	proximity.	Senster’s	sound	channels	and	motion	sensors	were
set	to	recoil	at	loud	noises	and	sudden	aggressive	movements.	Only	those
humans	willing	to	speak	softly	and	modulate	their	gestures	would	be	rewarded
by	Senster’s	quiet,	inquisitive	approach—an	experience	that	became	real	for
Ihnatowicz	himself	when	he	first	assembled	the	program	and	the	machine	turned
to	him	solicitously	after	he’d	cleared	his	throat.

In	these	artistic	uses	of	cybernetic	beings,	we	sense	a	growing	necessity	to
train	the	public	to	experience	itself	as	embedded	in	a	technologized	environment,
modifying	itself	to	communicate	intuitively	with	machines.	This	necessity	had
already	become	explicit	in	Tsai’s	“Cybernetic	Sculpture”	show.	Those
experiencing	his	immersive	installation	were	expected	to	experiment	with
machinic	life:	What	behaviors	would	trigger	the	servomechanisms?	Likely,	the
human	gallery	attendant	would	have	had	to	explain	the	protocol:	“Clap	your
hands—that	gets	the	sculptures	to	respond.”	As	an	early	critic	described	it:

A	grove	of	slender	stainless-steel	rods	rises	from	a	plate.	This	base
vibrates	at	30	cycles	per	second;	the	rods	flex	rapidly,	in	harmonic
curves.	Set	in	a	dark	room,	they	are	lit	by	strobes.	The	pulse	of	the
flashing	lights	varies—they	are	connected	to	sound	and	proximity
sensors.	The	result	is	that	when	one	approaches	a	Tsai	or	makes	a	noise	in
its	vicinity,	the	thing	responds.	The	rods	appear	to	move;	there	is	a
shimmering,	a	flashing,	an	eerie	ballet	of	metal,	whose	apparent
movements	range	from	stillness	to	jittering	and	back	to	a	slow,
indescribably	sensuous	undulation.*

Like	Senster,	the	apparatus	stimulated	(and	simulated)	an	affective	rather
than	a	rational	interaction.	Humans	felt	they	were	encountering	behaviors
indicative	of	responsive	life;	Tsai’s	entities	were	often	classed	as	“vegetal”	or
“aquatic.”	Such	environmental	and	kinetic	ambitions	were	widespread	in	the
international	art	world	of	the	time.	Beyond	the	stable	at	Howard	Wise,	there



were	the	émigrés	forming	the	collective	GRAV	in	Paris,	the	“cybernetic
architectures”	of	Nicolas	Schöffer,	the	light	and	plastic	gyrations	of	the	German
Zero	Gruppe,	and	so	on—all	defining	and	informing	the	genre	of	installation	art
to	come.

The	artistic	use	of	cybernetic	beings	in	the	late	sixties	made	no	investment	in
“intelligence.”	Knowing	machines	were	dumb	and	incapable	of	emotion,	these
creators	were	confident	in	staging	frank	simulations.	What	interested	them	were
machinic	motions	evoking	drives,	instincts,	and	affects;	they	mimicked	sexual
and	animal	behaviors,	as	if	below	the	threshold	of	consciousness.	Such	artists
were	uninterested	in	the	manipulation	of	data	or	information	(although	Hans
Haacke	would	move	in	that	direction	by	1972	with	his	“Real-Time	Systems”
works).	The	cybernetic	culture	that	artists	and	scientists	were	putting	in	place	on
two	continents	embedded	the	human	in	the	technosphere	and	seduced	perception
with	the	graceful	and	responsive	behaviors	of	the	machinic	phylum.	“Artificial”
and	“natural”	intertwined	in	this	early	cybernetic	aesthetic.

But	it	wouldn’t	end	here.	Crucial	to	the	expansion	of	this	uncritical,	largely
masculine	set	of	cybernetic	environments	would	be	a	radical,	critical	cohort	of
astonishing	women	artists	emerging	in	the	1990s,	fully	aware	of	their
predecessors	in	art	and	technology	but	perhaps	more	inspired	by	the	feminist
founders	of	the	1970	journal	Radical	Software	and	the	cultural	blast	of	Donna
Haraway’s	inspiring	1984	polemic,	“A	Cyborg	Manifesto.”	The	creaky	gender
theater	of	Paik	and	Pask,	the	innocent	creatures	of	Ihnatowicz	and	Tsai,	were
mobilized	as	savvy,	performative,	and	postmodern,	as	in	Lynn	Hershman
Leeson’s	“Dollie	Clone	Series”	(1995–98),	consisting	of	the	interactive
assemblages	CybeRoberta	and	Tillie,	the	Telerobotic	Doll,	who	worked	the
technosphere	with	the	professionalism	of	burlesque,	winking	and	folding	us
viewers	into	an	explicit	consciousness	of	our	voyeuristic	position	as	both	seeing
subjects	and	objects	to	be	looked	at.

The	“innocent”	technosphere	established	by	male	cybernetic	sculptors	of	the
1960s	was,	by	the	1990s,	identified	by	feminist	artists	as	an	entirely	suffusive
condition	demanding	our	critical	attention.	At	the	same	time,	feminists	tackled
the	question	of	whose	“intelligence”	AI	was	attempting	to	simulate.	For	an	artist
such	as	Hershman	Leeson,	responding	to	the	technical	“triumph”	of	cloning
Dolly	the	sheep,	it	was	crucial	to	draw	the	connection	between	meat	production
and	“meat	machines.”	Hershman	Leeson	produced	“dolls”	as	clones,	offering	a
critical	framing	of	the	way	contemporary	individuation	had	become	part	of	an
ideological,	replicative,	plastic	realm.



While	the	technofeminists	of	the	1990s	and	into	the	2000s	weren’t	all	cyber
all	the	time,	their	works	nonetheless	complicated	the	dominant	machinic	and
kinetic	qualities	of	male	artists’	previous	technoenvironments.	The	androgynous
telecyborg	in	Judith	Barry’s	Imagination,	Dead	Imagine	(1991),	for	example,
had	no	moving	parts:	He/she	was	comprised	of	pure	signals,	flickering
projections	on	flat	surfaces.	In	her	setup,	Barry	commented	on	the	alienating
effects	of	late-20th-century	technology.	The	image	of	an	androgynous	head	fills
an	enormous	cube	made	of	ten-foot-square	screens	on	five	sides,	mounted	on	a
ten-foot-wide	mirrored	base.	A	variety	of	viscous	and	unpleasant-looking	fluids
(yellow,	reddish-orange,	brown),	dry	materials	(sawdust?	flour?),	and	even
insects	drizzle	or	dust	their	way	down	the	head,	whose	stoic	sublimity	is	made
gorgeously	virtual	on	the	work’s	enormous	screens.	Dead	Imagine,	through	its
large-scale	and	cubic	“Platonic”	form,	remains	both	artificial	and	locked	into	the
body—refusing	a	detached	“intelligence”	as	being	no	intelligence	at	all.

Artists	in	the	new	millennium	inherit	this	critical	tradition	and	inhabit	the
current	paradigms	of	AI,	which	has	slid	from	partial	simulations	to	claims	of
intelligence.	In	the	1955	proposal	thought	to	be	the	first	printed	usage	of	the
phrase	“artificial	intelligence,”	computer	scientist	John	McCarthy	and	his
colleagues	Marvin	Minsky,	Nathaniel	Rochester,	and	Claude	Shannon
conjectured	that	“every	aspect	of	learning	or	any	other	feature	of	intelligence	can
in	principle	be	so	precisely	described	that	a	machine	can	be	made	to	simulate	it.”
This	modest	theoretical	goal	has	inflated	over	the	past	sixty-four	years	and	is
now	expressed	by	Google	DeepMind	as	an	ambition	to	“Solve	intelligence.”
Crack	the	code!	But	unfortunately,	what	we	hear	cracking	is	not	code	but	small-
scale	capitalism,	the	social	contract,	and	the	scaffolding	of	civility.	Taking	away
the	jobs	of	taxi	and	truck	drivers,	roboticizing	direct	marketing,	hegemonizing
entertainment,	privatizing	utilities,	and	depersonalizing	health	care—are	these
the	“whips”	that	Wiener	feared	we	would	learn	to	love?

Artists	can’t	solve	any	of	this.	But	they	can	remind	us	of	the	creative
potential	of	the	paths	not	taken—the	forks	in	the	road	that	were	emerging	around
1970,	before	“information”	became	capital	and	“intelligence”	equaled	data
harvesting.	Richly	evocative	of	what	can	be	done	with	contemporary	tools	when
revisiting	earlier	possibilities	is	French	artist	Philippe	Parreno’s	“firefly	piece,”
so	nicknamed	to	avoid	having	to	iterate	its	actual	title:	With	a	Rhythmic
Instinction	to	Be	Able	to	Travel	Beyond	Existing	Forces	of	Life	(2014).
Described	by	the	artist	as	“an	automaton,”	the	sculptural	installation	juxtaposes	a
flickering	projection	of	black-and-white	drawings	of	fireflies	with	a	band	of



oscillating	green-on-black	binary	figures.	The	drawings	and	binary	figures	are
animated	using	algorithms	from	mathematician	John	Horton	Conway’s	1970
Game	of	Life,	a	“cellular	automaton.”

Conway	set	up	parameters	for	any	square	(“cell”)	to	be	lit	(“alive”)	or	dark
(“dead”)	in	an	infinite,	two-dimensional	grid.	The	rules	are	summarized	as
follows:	A	single	cell	will	quickly	die	of	loneliness.	But	a	cell	touching	three	or
more	other	“live”	cells	will	also	die,	“due	to	crowding.”	A	cell	survives	and
thrives	if	it	has	just	two	neighbors	.	.	.	and	so	on.	As	one	cell	dies,	it	may	create
the	conditions	for	other	cells	to	survive,	yielding	patterns	that	appear	to	move
and	grow,	shifting	across	the	grid	like	evanescent	neural	impulses	or
bioluminescent	clusters	of	diatoms.	In	Stephen	Hawking’s	2012	film	The
Meaning	of	Life,	the	narrator	describes	Conway’s	mathematical	model	as
simulating	“how	a	complex	thing	like	the	mind	might	come	about	from	a	basic
set	of	rules,”	revealing	the	overweening	ambitions	that	characterize
contemporary	AI:	“[T]hese	complex	properties	emerge	from	simple	laws	that
contain	no	concepts	like	movement	or	reproduction,”	yet	they	produce	“species,”
and	cells	“can	even	reproduce,	just	as	life	does	in	the	real	world.”*

Just	as	life	does?	Artists	know	the	blandishments	of	simulation	and
representation,	the	difference	between	the	genius	of	artifice	and	the	realities	of
what	“life	does.”	Parreno’s	piece	is	an	intuitive	assembly	of	our	experience	of
“life”	through	embodied,	perspectival	engagement.	Our	consciousness	is
electrically	(cybernetically)	enmeshed,	yet	we	don’t	respond	as	if	this	human-
generated	set	of	elegant	simulations	had	its	own	intelligence.

The	artistic	use	of	cybernetic	beings	also	reminds	us	that	consciousness	itself
is	not	just	“in	here.”	It	is	streaming	in	and	out,	harmonizing	those	sensory,
scintillating	signals.	Mind	happens	well	outside	the	limits	of	the	cranium	(and	its
simulacrum,	the	“motherboard”).	In	Mary	Catherine	Bateson’s	paraphrase	of	her
father,	Gregory’s,	second-order	cybernetics,	mind	is	material	“not	necessarily
defined	by	a	boundary	such	as	an	envelope	of	skin.”*	Parreno	pairs	the
simulations	of	art	with	the	simulations	of	mathematics	to	force	the	Wiener-like
point	that	any	such	model	is	not,	by	itself,	just	like	life.	Models	are	just	that—
parts	of	signaling	systems	constituting	“intelligence”	only	when	their	creaturely
counterparts	engage	them	in	lively	meaning	making.	Contemporary	AI	has
talked	itself	into	a	corner	by	instrumentalizing	and	particularizing	tasks	and
subroutines,	confusing	these	drills	with	actual	wisdom.	The	brief	cultural	history
offered	here	reminds	us	that	views	of	data	as	intelligence,	digital	nets	as



“neural,”	or	isolated	individuals	as	units	of	life	were	alien	even	to	Conway’s
brute	simulation.

We	can	stigmatize	the	stubborn	arrogance	of	current	AI	as	“right
cybernetics,”	the	path	that	led	to	current	automated	weapons	systems,	Uber’s	ill-
disguised	hostility	to	human	workers,	and	the	capitalist	dreams	of	Google.	Now
we	must	turn	back	to	left	cybernetics—theoretical	biologists	and	anthropologists
engaged	with	a	trans-species	understanding	of	intelligent	systems.	Gregory
Bateson’s	observation	that	corporations	merely	simulate	“aggregates	of	parts	of
persons,”	with	profit-maximizing	decisions	cut	off	from	“wider	and	wiser	parts
of	the	mind,”	has	never	been	more	timely.*

The	cybernetic	epistemology	offered	here	suggests	a	new	approach.	The
individual	mind	is	immanent,	not	only	in	the	body	but	also	in	pathways	outside
the	body,	and	there	is	a	larger	Mind,	of	which	the	individual	mind	is	only	a
subsystem.	This	larger	Mind,	Bateson	holds,	is	comparable	to	God,	and	is
perhaps	what	some	people	mean	by	“God,”	but	it	is	still	immanent	in	the	total
interconnected	social	system	and	planetary	ecology.	This	is	not	the	collective
delusion	of	an	exterior	“God”	who	speaks	from	outside	human	consciousness
(this	long-seated	monotheistic	conceit,	Bateson	suggests,	leads	to	views	of
nature	and	environment	as	also	outside	the	“individual”	human,	rendering	them
as	“gifts	to	exploit”).	Rather,	Bateson’s	“God”	is	a	placeholder	for	our
evanescent	experience	of	interacting	consciousness-in-the-world:	larger	Mind	as
a	result	of	inputs	and	actions	that	then	become	inputs	for	other	actions	in	concert
with	other	entities—webs	of	symbiotic	relationships	that	form	patterns	we	need
urgently	to	sense	and	harmonize	with.*

From	Tsai	in	the	1970s	to	Hershman	Leeson	in	the	1990s	to	Parreno	in	2014,
artists	have	been	critiquing	right	cybernetics	and	plying	alternative,	embodied,
environmental	experiences	of	“artificial”	intelligence.	Their	artistic	use	of
cybernetic	beings	offers	the	wisdom	of	symbionts	experienced	in	the	kinds	of
poiesis	that	can	be	achieved	in	this	world:	rhythms	of	signals	and	intuitive
actions	that	produce	the	movements	of	life	partnered	with	an	electromechanical
and	-magnetic	technosphere.	Life,	in	its	mysterious	negentropic	entanglements
with	matter	and	Mind.



Chapter	25

ARTIFICIAL	INTELLIGENCE	AND	THE	FUTURE
OF	CIVILIZATION

STEPHEN	WOLFRAM

Stephen	Wolfram	is	a	scientist,	inventor,	and	the	founder	and	CEO	of	Wolfram
Research.	He	is	the	creator	of	the	symbolic	computation	program	Mathematica	and
its	programming	language,	Wolfram	Language,	as	well	as	the	knowledge	engine

Wolfram|Alpha.	He	is	also	the	author	of	A	New	Kind	of	Science.
The	following	is	an	edited	transcript	from	a	live	interview	with	him	conducted	in

December	2015.

Over	nearly	four	decades,	Stephen	Wolfram	has	been	a	pioneer	in	the	development	and
application	of	computational	thinking	and	responsible	for	many	innovations	in	science,
technology,	and	business.

His	1982	paper	“Cellular	Automata	as	Simple	Self-Organizing	Systems,”	written	at	the
age	of	twenty-three,	was	the	first	of	numerous	significant	scientific	contributions	aimed	at
understanding	the	origins	of	complexity	in	nature.

It	was	around	this	time	that	Stephen	briefly	came	into	my	life.	I	had	established	The
Reality	Club,	an	informal	gathering	of	intellectuals	who	met	in	New	York	City	to	present
their	work	before	peers	in	other	disciplines.	(Note:	In	1996,	The	Reality	Club	went	online	as
Edge.org.)	Our	first	speaker?	Stephen	Wolfram,	a	“wunderkind”	who	had	arrived	in
Princeton	at	the	Institute	for	Advanced	Study.	I	distinctly	recall	his	focused	manner	as	he
sat	down	on	a	couch	in	my	living	room	and	spoke	uninterrupted	for	about	an	hour	before
the	assembled	group.

Since	that	time,	Stephen	has	become	intent	on	making	the	world’s	knowledge	easily
computable	and	accessible.	His	program	Mathematica	is	the	definitive	system	for	modern
technical	computing.	Wolfram Alpha	computes	expert-level	answers	using	AI	technology.
He	considers	his	Wolfram	Language	to	be	the	first	true	computational	communication
language	for	humans	and	AIs.

I	caught	up	with	him	again	four	years	ago,	when	we	arranged	to	meet	in	Cambridge,
Massachusetts,	for	a	freewheeling	conversation	about	AI.	Stephen	walked	in,	said	hello,
sat	down,	and,	looking	at	the	video	camera	set	up	to	record	the	conversation	for	Edge,
began	to	talk	and	didn’t	stop	for	two	and	a	half	hours.

The	essay	that	follows	is	an	edited	version	of	that	session,	which	was	a	Wolfram
master	class	of	sorts	and	is	an	appropriate	way	to	end	this	volume—just	as	Stephen’s
Reality	Club	talk	in	the	eighties	was	a	great	way	to	initiate	the	ongoing	intellectual
enterprise	whose	result	is	the	rich	community	of	thinkers	presenting	their	work	to	one
another	and	to	the	public	in	this	book.



another	and	to	the	public	in	this	book.



I see	technology	as	taking	human	goals	and	making	them	automatically
executable	by	machines.	Human	goals	of	the	past	have	entailed	moving
objects	from	here	to	there,	using	a	forklift	rather	than	our	own	hands.	Now

the	work	we	can	do	automatically,	with	machines,	is	mental	rather	than	physical.
It’s	obvious	that	we	can	automate	many	of	the	tasks	we	humans	have	long	been
proud	of	doing	ourselves.	What’s	the	future	of	the	human	condition	in	that
situation?

People	talk	about	the	future	of	intelligent	machines	and	whether	they’ll	take
over	and	decide	what	to	do	for	themselves.	But	the	inventing	of	goals	is	not
something	that	has	a	path	to	automation.	Someone	or	something	has	to	define
what	a	machine’s	purpose	should	be—what	it’s	trying	to	execute.	How	are	goals
defined?	For	a	given	human,	they	tend	to	be	defined	by	personal	history,	cultural
environment,	the	history	of	our	civilization.	Goals	are	uniquely	human.	Where
the	machine	is	concerned,	we	can	give	it	a	goal	when	we	build	it.

What	kinds	of	things	have	intelligence,	or	goals,	or	purpose?	Right	now,	we
know	one	great	example,	and	that’s	us—our	brains,	our	human	intelligence.
Human	intelligence,	I	once	assumed,	is	far	beyond	anything	else	that	exists
naturally	in	the	world;	it’s	the	result	of	an	elaborate	process	of	evolution	and
thus	stands	apart	from	the	rest	of	existence.	But	what	I’ve	realized,	as	a	result	of
the	science	I’ve	done,	is	that	this	is	not	the	case.

People	might	say,	for	instance,	“The	weather	has	a	mind	of	its	own.”	That’s
an	animist	statement	and	seems	to	have	no	place	in	modern	scientific	thinking.
But	it’s	not	as	silly	as	it	sounds.	What	does	the	human	brain	do?	A	brain	receives
certain	input,	it	computes	things,	it	causes	certain	actions	to	happen,	it	generates
a	certain	output.	Like	the	weather.	All	sorts	of	systems	are,	effectively,	doing
computations—whether	it’s	a	brain	or,	say,	a	cloud	responding	to	its	thermal
environment.

We	can	argue	that	our	brains	are	doing	vastly	more	sophisticated
computations	than	those	in	the	atmosphere.	But	it	turns	out	that	there’s	a	broad
equivalence	between	the	kinds	of	computations	that	different	kinds	of	systems
do.	This	renders	the	question	of	the	human	condition	somewhat	poignant,
because	it	seems	we’re	not	as	special	as	we	thought.	There	are	all	those	different
systems	of	nature	that	are	pretty	much	equivalent,	in	terms	of	their
computational	capabilities.
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computational	capabilities.
What	makes	us	different	from	all	those	other	systems	is	the	particulars	of	our

history,	which	give	us	our	notions	of	purpose	and	goals.	That’s	a	long	way	of
saying	that	when	the	box	on	our	desk	thinks	as	well	as	the	human	brain	does,
what	it	still	won’t	have,	intrinsically,	are	goals	and	purposes.	Those	are	defined
by	our	particulars—our	particular	biology,	our	particular	psychology,	our
particular	cultural	history.

When	we	consider	the	future	of	AI,	we	need	to	think	about	the	goals.	That’s
what	humans	contribute;	that’s	what	our	civilization	contributes.	The	execution
of	those	goals	is	what	we	can	increasingly	automate.	What	will	the	future	of
humans	be	in	such	a	world?	What	will	there	be	for	them	to	do?	One	of	my
projects	has	been	to	understand	the	evolution	of	human	purposes	over	time.
Today	we’ve	got	all	kinds	of	purposes.	If	you	look	back	a	thousand	years,
people’s	goals	were	quite	different:	How	do	I	get	my	food?	How	do	I	keep
myself	safe?	In	the	modern	Western	world,	for	the	most	part	you	don’t	spend	a
large	fraction	of	your	life	thinking	about	those	purposes.	From	the	point	of	view
of	a	thousand	years	ago,	some	of	the	goals	people	have	today	would	seem	utterly
bizarre—for	example,	like	exercising	on	a	treadmill.	A	thousand	years	ago	that
would	sound	like	a	crazy	thing	to	do.

What	will	people	be	doing	in	the	future?	A	lot	of	purposes	we	have	today	are
generated	by	scarcity	of	one	kind	or	another.	There	are	scarce	resources	in	the
world.	People	want	to	get	more	of	something.	Time	itself	is	scarce	in	our	lives.
Eventually,	those	forms	of	scarcity	will	disappear.	The	most	dramatic
discontinuity	will	surely	be	when	we	achieve	effective	human	immortality.
Whether	this	will	be	achieved	biologically	or	digitally	isn’t	clear,	but	inevitably
it	will	be	achieved.	Many	of	our	current	goals	are	driven	in	part	by	our	mortality:
“I’m	only	going	to	live	a	certain	time,	so	I’d	better	get	this	or	that	done.”	And
what	happens	when	most	of	our	goals	are	executed	automatically?	We	won’t
have	the	kinds	of	motivations	we	have	today.	One	question	I’d	like	an	answer
for	is,	What	do	the	derivatives	of	humans	in	the	future	end	up	choosing	to	do
with	themselves?	One	of	the	potential	bad	outcomes	is	that	they	just	play	video
games	all	the	time.

—
he	term	“artificial	intelligence”	is	evolving	in	its	use	in	technical	language.
These	days,	AI	is	very	popular,	and	people	have	some	idea	of	what	it	means.

Back	when	computers	were	being	developed,	in	the	1940s	and	1950s,	the	typical



title	of	a	book	or	a	magazine	article	about	computers	was	“Giant	Electronic
Brains.”	The	idea	was	that	just	as	bulldozers	and	steam	engines	and	so	on
automated	mechanical	work,	computers	would	automate	intellectual	work.	That
promise	turned	out	to	be	harder	to	fulfill	than	many	people	expected.	There	was,
at	first,	a	great	deal	of	optimism;	a	lot	of	government	money	got	spent	on	such
efforts	in	the	early	1960s.	They	basically	just	didn’t	work.

There	are	a	lot	of	amusing	science-fiction-ish	portrayals	of	computers	in	the
movies	of	that	time.	There’s	a	cute	one	called	Desk	Set,	which	is	about	an	IBM-
type	computer	being	installed	in	a	broadcasting	company	and	putting	everybody
out	of	a	job.	It’s	cute	because	the	computer	gets	asked	a	bunch	of	reference-
library	questions.	When	my	colleagues	and	I	were	building	Wolfram Alpha,	one
of	the	ideas	we	had	was	to	get	it	to	answer	all	of	those	reference-library
questions	from	Desk	Set.	By	2009,	it	could	answer	them	all.

In	1943,	Warren	McCulloch	and	Walter	Pitts	came	up	with	a	model	for	how
brains	conceptually,	formally,	might	work—an	artificial	neural	network.	They
saw	that	their	brainlike	model	would	do	computations	in	the	same	way	as	Turing
Machines.	From	their	work,	it	emerged	that	we	could	make	brainlike	neural
networks	that	would	act	as	general	computers.	And	in	fact,	the	practical	work
done	by	the	ENIAC	folks	and	John	von	Neumann	and	others	on	computers	came
directly	not	from	Turing	Machines	but	through	this	bypath	of	neural	networks.

But	simple	neural	networks	didn’t	do	much.	Frank	Rosenblatt	invented	a
learning	device	he	called	the	perceptron,	which	was	a	one-layer	neural	network.
In	the	late	sixties,	Marvin	Minsky	and	Seymour	Papert	wrote	a	book	titled
Perceptrons,	in	which	they	basically	proved	that	perceptrons	couldn’t	do
anything	interesting,	which	is	correct.	Perceptrons	could	make	only	linear
distinctions	between	things.	So	the	idea	was	more	or	less	dropped.	People	said,
“These	guys	have	written	a	proof	that	neural	networks	can’t	do	anything
interesting,	therefore	no	neural	networks	can	do	anything	interesting,	so	let’s
forget	about	neural	networks.”	That	attitude	persisted	for	some	time.

Meanwhile,	there	were	a	couple	of	other	approaches	to	AI.	One	was	based	on
understanding,	at	a	formal	level,	symbolically,	how	the	world	works;	and	the
other	was	based	on	doing	statistics	and	probabilistic	kinds	of	things.	With	regard
to	symbolic	AI,	one	of	the	test	cases	was,	Can	we	teach	a	computer	to	do
something	like	integrals?	Can	we	teach	a	computer	to	do	calculus?	There	were
tasks	like	machine	translation,	which	people	thought	would	be	a	good	example
of	what	computers	could	do.	The	bottom	line	is	that	by	the	early	seventies,	that
approach	had	crashed.

Then	there	was	a	trend	toward	devices	called	expert	systems,	which	arose	in
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Then	there	was	a	trend	toward	devices	called	expert	systems,	which	arose	in
the	late	seventies	and	early	eighties.	The	idea	was	to	have	a	machine	learn	the
rules	that	an	expert	uses	and	thereby	figure	out	what	to	do.	That	petered	out.
After	that,	AI	became	little	more	than	a	crazy	pursuit.

—
had	been	interested	in	how	you	make	an	AI-like	machine	since	I	was	a	kid.	I
was	interested	particularly	in	how	you	take	the	knowledge	we	humans	have

accumulated	in	our	civilization	and	automate	answering	questions	on	the	basis	of
that	knowledge.	I	thought	about	how	you	could	do	that	symbolically,	by	building
a	system	that	could	break	down	questions	into	symbolic	units	and	answer	them.	I
worked	on	neural	networks	at	that	time	and	didn’t	make	much	progress,	so	I	put
it	aside	for	a	while.

Back	in	mid-2002	to	2003,	I	thought	about	that	question	again:	What	does	it
take	to	make	a	computational	knowledge	system?	The	work	I’d	done	by	then
pretty	much	showed	that	my	original	belief	about	how	to	do	this	was	completely
wrong.	My	original	belief	had	been	that	in	order	to	make	a	serious	computational
knowledge	system,	you	first	had	to	build	a	brainlike	device	and	then	feed	it
knowledge—just	as	humans	learn	in	standard	education.	Now	I	realized	that
there	wasn’t	a	bright	line	between	what	is	intelligent	and	what	is	simply
computational.

I	had	assumed	that	there	was	some	magic	mechanism	that	made	us	vastly
more	capable	than	anything	that	was	just	computational.	But	that	assumption
was	wrong.	This	insight	is	what	led	to	Wolfram Alpha.	What	I	discovered	is	that
you	can	take	a	large	collection	of	the	world’s	knowledge	and	automatically
answer	questions	on	the	basis	of	it,	using	what	are	essentially	merely
computational	techniques.	It	was	an	alternative	way	to	do	engineering—a	way
that’s	much	more	analogous	to	what	biology	does	in	evolution.

In	effect,	what	you	normally	do	when	you	build	a	program	is	build	it	step-by-
step.	But	you	can	also	explore	the	computational	universe	and	mine	technology
from	that	universe.	Typically,	the	challenge	is	the	same	as	in	physical	mining:
That	is,	you	find	a	supply	of,	let’s	say,	iron,	or	cobalt,	or	gadolinium,	with	some
special	magnetic	properties,	and	you	turn	that	special	capability	to	a	human
purpose,	to	something	you	want	technology	to	do.	In	the	case	of	magnetic
materials,	there	are	plenty	of	ways	to	do	that.	In	terms	of	programs,	it’s	the	same
story.	There	are	all	kinds	of	programs	out	there,	even	tiny	programs	that	do
complicated	things.	Could	we	entrain	them	for	some	useful	human	purpose?



And	how	do	you	get	AIs	to	execute	your	goals?	One	answer	is	to	just	talk	to
them,	in	the	natural	language	of	human	utterances.	It	works	pretty	well	when
you’re	talking	to	Siri.	But	when	you	want	to	say	something	longer	and	more
complicated,	it	doesn’t	work	well.	You	need	a	computer	language	that	can
represent	sophisticated	concepts	in	a	way	that	can	be	progressively	built	up	and
isn’t	possible	in	natural	language.	What	my	company	spent	a	lot	of	time	doing
was	building	a	knowledge-based	language	that	incorporates	the	knowledge	of
the	world	directly	into	the	language.	The	traditional	approach	to	creating	a
computer	language	is	to	make	a	language	that	represents	operations	that
computers	intrinsically	know	how	to	do:	allocating	memory,	setting	values	of
variables,	iterating	things,	changing	program	counters,	and	so	on.
Fundamentally,	you’re	telling	computers	to	do	things	in	your	own	terms.	My
approach	was	to	make	a	language	that	panders	not	to	the	computers	but	to	the
humans,	to	take	whatever	a	human	thinks	of	and	convert	it	into	some	form	that
the	computer	can	understand.	Could	we	encapsulate	the	knowledge	we’d
accumulated,	both	in	science	and	in	data	collection,	into	a	language	we	could	use
to	communicate	with	computers?	That’s	the	big	achievement	of	my	last	thirty
years	or	so—being	able	to	do	that.

Back	in	the	1960s,	people	would	say	things	like,	“When	we	can	do	such-and-
such,	we’ll	know	we	have	AI”;	“When	we	can	do	an	integral	from	a	calculus
course,	we’ll	know	we	have	AI”;	“When	we	can	have	a	conversation	with	a
computer	and	make	it	seem	human	.	.	.”;	etc.	The	difficulty	was,	“Well,	gosh,	the
computer	just	doesn’t	know	enough	about	the	world.”	You’d	ask	the	computer
what	day	of	the	week	it	was,	and	it	might	be	able	to	answer	that.	You’d	ask	it
who	the	president	was,	and	it	probably	couldn’t	tell	you.	At	that	point,	you’d
know	you	were	talking	to	a	computer	and	not	a	person.	But	now	when	it	comes
to	these	Turing	Tests,	people	who’ve	tried	connecting,	for	example,
Wolfram Alpha	to	their	Turing	Test	bots	find	that	the	bots	lose	every	time.
Because	all	you	have	to	do	is	start	asking	the	machine	sophisticated	questions
and	it	will	answer	them!	No	human	can	do	that.	By	the	time	you’ve	asked	it	a
few	disparate	questions,	there	will	be	no	human	who	knows	all	those	things,	yet
the	system	will	know	them.	In	that	sense,	we’ve	already	achieved	good	AI,	at
that	level.

Then	there	are	certain	kinds	of	tasks	that	are	easy	for	humans	but	traditionally
very	hard	for	machines.	The	standard	one	is	visual	object	identification:	What	is
this	object?	Humans	can	recognize	it	and	give	some	simple	description	of	it,	but
a	computer	was	just	hopeless	at	that.	A	couple	of	years	ago,	though,	we	brought



out	a	little	image-identification	system,	and	many	other	companies	have	done
something	similar—ours	happens	to	be	somewhat	better	than	the	rest.	You	show
it	an	image,	and	for	about	ten	thousand	kinds	of	things,	it	will	tell	you	what	it	is.
It’s	fun	to	show	it	an	abstract	painting	and	see	what	it	says.	But	it	does	a	pretty
good	job.

It	works	using	the	same	neural-network	technology	that	McCulloch	and	Pitts
imagined	in	1943	and	lots	of	us	worked	on	in	the	early	eighties.	Back	in	the
1980s,	people	successfully	did	OCR—optical	character	recognition.	They	took
the	twenty-six	letters	of	the	alphabet	and	said,	“OK,	is	that	an	A?	Is	that	a	B?	Is
that	a	C?”	and	so	on.	That	could	be	done	for	twenty-six	different	possibilities,
but	it	couldn’t	be	done	for	ten	thousand.	It	was	just	a	matter	of	scaling	up	the
whole	system	that	makes	this	possible	today.	There	are	maybe	five	thousand
picturable	common	nouns	in	English,	ten	thousand	if	you	include	things	like
special	kinds	of	plants	and	beetles	that	people	would	recognize	with	some
frequency.	What	we	did	was	train	our	system	on	30	million	images	of	these
kinds	of	things.	It’s	a	big,	complicated,	messy	neural	network.	The	details	of	the
network	probably	don’t	matter,	but	it	takes	about	a	quadrillion	GPU	operations
to	do	the	training.

Our	system	is	impressive	because	it	pretty	much	matches	what	humans	can
do.	It	has	about	the	same	training	data	humans	have—about	the	same	number	of
images	a	human	infant	would	see	in	the	first	couple	of	years	of	its	life.	Roughly
the	same	number	of	operations	have	to	be	done	in	the	learning	process,	using
about	the	same	number	of	neurons	in	at	least	the	first	levels	of	our	visual	cortex.
The	details	are	different;	the	way	these	artificial	neurons	work	has	little	to	do
with	how	the	brain’s	neurons	work.	But	the	concept	is	similar,	and	there’s	a
certain	universality	to	what’s	going	on.	At	the	mathematical	level,	it’s	a
composition	of	a	very	large	number	of	functions,	with	certain	continuity
properties	that	let	you	use	calculus	methods	to	incrementally	train	the	system.
Given	those	attributes,	you	can	end	up	with	something	that	does	the	same	job
human	brains	do	in	physiological	recognition.

But	does	this	constitute	AI?	There	are	a	few	basic	components.	There’s
physiological	recognition,	there’s	voice-to-text,	there’s	language	translation—
things	humans	manage	to	do	with	varying	degrees	of	difficulty.	These	are
essentially	some	of	the	links	to	how	we	make	machines	that	are	humanlike	in
what	they	do.	For	me,	one	of	the	interesting	things	has	been	incorporating	those
capabilities	into	a	precise	symbolic	language	to	represent	the	everyday	world.
We	now	have	a	system	that	can	say,	“This	is	a	glass	of	water.”	We	can	go	from	a



picture	of	a	glass	of	water	to	the	concept	of	a	glass	of	water.	Now	we	have	to
invent	some	actual	symbolic	language	to	represent	those	concepts.

I	began	by	trying	to	represent	mathematical,	technical	kinds	of	knowledge
and	went	on	to	other	kinds	of	knowledge.	We’ve	done	a	pretty	good	job	of
representing	objective	knowledge	in	the	world.	Now	the	problem	is	to	represent
everyday	human	discourse	in	a	precise	symbolic	way—a	knowledge-based
language	intended	for	communication	between	humans	and	machines,	so	that
humans	can	read	it	and	machines	can	understand	it,	too.	For	instance,	you	might
say,	“X	is	greater	than	5.”	That’s	a	predicate.	You	might	also	say,	“I	want	a
piece	of	chocolate.”	That’s	also	a	predicate.	It	has	an	“I	want”	in	it.	We	have	to
find	a	precise	symbolic	representation	of	the	desires	we	express	in	human	natural
language.

In	the	late	1600s,	Gottfried	Leibniz,	John	Wilkins,	and	others	were	concerned
with	what	they	called	philosophical	languages—that	is,	complete,	universal,
symbolic	representations	of	things	in	the	world.	You	can	look	at	the
philosophical	language	of	John	Wilkins	and	see	how	he	divided	up	what	was
important	in	the	world	at	the	time.	Some	aspects	of	the	human	condition	have
been	the	same	since	the	1600s.	Some	are	very	different.	His	section	on	death	and
various	forms	of	human	suffering	was	huge;	in	today’s	ontology,	it’s	a	lot
smaller.	It’s	interesting	to	see	how	a	philosophical	language	of	today	would
differ	from	a	philosophical	language	of	the	mid-1600s.	It’s	a	measure	of	our
progress.	Many	such	attempts	at	formalization	have	happened	over	the	years.	In
mathematics,	for	example:	Whitehead	and	Russell’s	Principia	Mathematica	in
1910	was	the	biggest	showoff	effort.	There	were	previous	attempts	by	Gottlob
Frege	and	Giuseppe	Peano	that	were	a	little	more	modest	in	their	presentation.
Ultimately,	they	were	wrong	in	what	they	thought	they	should	formalize:	They
thought	they	should	formalize	some	process	of	mathematical	proof,	which	turns
out	not	to	be	what	most	people	care	about.

With	regard	to	a	modern	analog	of	the	Turing	Test,	it’s	an	interesting
question.	There’s	still	the	conversational	bot,	which	is	Turing’s	idea.	That	one
hasn’t	been	solved	yet.	It	will	be	solved—the	only	question	is,	What	is	the
application	for	which	it	is	solved?	For	a	long	time	I	would	ask,	Why	should	we
care?—because	I	thought	the	principal	application	would	be	customer	service,
which	wasn’t	particularly	high	on	my	list.	But	customer	service,	where	you’re
trying	to	interface,	is	just	where	you	need	this	conversational	language.

One	big	difference	between	Turing’s	time	and	ours	is	the	method	of
communicating	with	computers.	In	his	time,	you	typed	something	into	the



machine	and	it	typed	back	a	response.	In	today’s	world,	it	responds	with	a	screen
—as,	for	instance,	when	you	want	to	buy	a	movie	ticket.	How	is	a	transaction
with	a	machine	different	from	a	transaction	with	a	human?	The	main	answer	is
that	there’s	a	visual	display.	It	asks	you	something,	and	you	press	a	button,	and
you	can	see	the	result	immediately.	For	example,	in	Wolfram Alpha,	when	it’s
used	inside	Siri,	if	there’s	a	short	answer,	Siri	will	tell	you	the	short	answer.	But
what	most	people	want	is	the	visual	display,	showing	the	infographic	of	this	or
that.	This	is	a	nonhuman	form	of	communication	that	turns	out	to	be	richer	than
the	traditional	spoken,	or	typed,	human	communication.	In	most	human-to-
human	communication,	we’re	stuck	with	pure	language,	whereas	in	computer-
to-human	communication	we	have	this	much	higher	bandwidth	channel—of
visual	communication.

Many	of	the	most	powerful	applications	of	the	Turing	Test	fall	away	now	that
we	have	this	additional	communication	channel.	For	example,	here’s	one	we’re
pursuing	right	now.	It’s	a	bot	that	communicates	about	writing	programs:	You
say,	“I	want	to	write	a	program.	I	want	it	to	do	this.”	The	bot	will	say,	“I’ve
written	this	piece	of	program.	This	is	what	it	does.	Is	this	what	you	want?”	Blah-
blah-blah.	It’s	a	back-and-forth	bot.	Devising	such	systems	is	an	interesting
problem,	because	they	have	to	have	a	model	of	a	human	if	they’re	trying	to
explain	something	to	you.	They	have	to	know	what	the	human	is	confused	about.

What	has	long	been	difficult	for	me	to	understand	is,	What’s	the	point	of	a
conventional	Turing	Test?	What’s	the	motivation?	As	a	toy,	one	could	make	a
little	chat	bot	that	people	could	chat	with.	That	will	be	the	next	thing.	The
current	round	of	deep	learning—particularly,	recurrent	neural	networks—is
making	pretty	good	models	of	human	speech	and	human	writing.	We	can	type
in,	say,	“How	are	you	feeling	today?”	and	it	knows	most	of	the	time	what	sort	of
response	to	give.	But	I	want	to	figure	out	whether	I	can	automate	responding	to
my	email.	I	know	the	answer	is	no.	A	good	Turing	Test,	for	me,	will	be	when	a
bot	can	answer	most	of	my	email.	That’s	a	tough	test.	It	would	have	to	learn
those	answers	from	the	human	the	email	is	connected	to.	I	might	be	a	little	bit
ahead	of	the	game,	because	I’ve	been	collecting	data	on	myself	for	about	twenty-
five	years.	I	have	every	piece	of	email	for	twenty-five	years,	every	keystroke	for
twenty.	I	should	be	able	to	train	an	avatar,	an	AI,	that	will	do	what	I	can	do—
perhaps	better	than	I	could.

—



People	worry	about	the	scenario	in	which	AIs	take	over.	I	think	something
much	more	amusing,	in	a	sense,	will	happen	first.	The	AI	will	know	what

you	intend,	and	it	will	be	good	at	figuring	out	how	to	get	there.	I	tell	my	car’s
GPS	I	want	to	go	to	a	particular	destination.	I	don’t	know	where	the	heck	I	am,	I
just	follow	my	GPS.	My	children	like	to	remind	me	that	once	when	I	had	a	very
early	GPS—the	kind	that	told	you,	“Turn	this	way,	turn	that	way”—we	ended	up
on	one	of	the	piers	going	out	into	Boston	Harbor.

More	to	the	point	is	that	there	will	be	an	AI	that	knows	your	history,	and
knows	that	when	you’re	ordering	dinner	online	you’ll	probably	want	such-and-
such,	or	when	you	email	this	person,	you	should	talk	to	them	about	such-and-
such.	More	and	more,	the	AIs	will	suggest	to	us	what	we	should	do,	and	I
suspect	most	of	the	time	people	will	just	go	along	with	that.	It’s	good	advice—
better	than	what	you	would	have	figured	out	for	yourself.

As	far	as	the	takeover	scenario	is	concerned,	you	can	do	terrible	things	with
technology	and	you	can	do	good	things	with	technology.	Some	people	will	try	to
do	terrible	things	with	technology,	and	some	people	will	try	to	do	good	things
with	technology.	One	of	the	things	I	like	about	today’s	technology	is	the
equalization	it	has	produced.	I	used	to	be	proud	that	I	had	a	better	computer	than
anybody	I	knew;	now	we	all	have	the	same	kinds	of	computers.	We	have	the
same	smartphones,	and	pretty	much	the	same	technology	can	be	used	by	a
decent	fraction	of	the	planet’s	7	billion	people.	It’s	not	the	case	that	the	king’s
technology	is	different	from	everybody	else’s.	That’s	an	important	advance.

The	great	frontier	five	hundred	years	ago	was	literacy.	Today,	it’s	doing
programming	of	some	kind.	Today’s	programming	will	be	obsolete	in	a	not	very
long	time.	For	example,	people	no	longer	learn	assembly	language,	because
computers	are	better	at	writing	assembly	language	than	humans	are,	and	only	a
small	set	of	people	need	to	know	the	details	of	how	language	gets	compiled	into
assembly	language.	A	lot	of	what’s	being	done	by	armies	of	programmers	today
is	similarly	mundane.	There’s	no	good	reason	for	humans	to	be	writing	Java
code	or	JavaScript	code.	We	want	to	automate	the	programming	process	so	that
what’s	important	goes	from	what	the	human	wants	done	to	getting	the	machine,
as	automatically	as	possible,	to	do	it.	This	will	increase	that	equalization,	which
is	something	I’m	interested	in.	In	the	past,	if	you	wanted	to	write	a	serious	piece
of	code,	or	program	for	something	important	and	real,	it	was	a	lot	of	work.	You
had	to	know	quite	a	bit	about	software	engineering,	you	had	to	invest	months	of
time	in	it,	you	had	to	hire	programmers	who	knew	this	or	you	had	to	learn	it



time	in	it,	you	had	to	hire	programmers	who	knew	this	or	you	had	to	learn	it
yourself.	It	was	a	big	investment.

That’s	not	true	anymore.	A	one-line	piece	of	code	already	does	something
interesting	and	useful.	It	allows	a	vast	range	of	people	who	couldn’t	make
computers	do	things	for	them	make	computers	do	things	for	them.	Something	I’d
like	to	see	is	a	lot	of	kids	around	the	world	learn	the	new	capabilities	of
knowledge-based	programming	and	then	produce	code	that’s	effectively	as
sophisticated	as	what	anybody	in	the	top	ranks	can	produce.	This	is	within	reach.
We’re	at	the	point	where	anybody	can	learn	to	do	knowledge-based
programming,	and,	more	important,	learn	to	think	computationally.	The	actual
mechanics	of	programming	are	easy	now.	What’s	difficult	is	imagining	things	in
a	computational	way.

How	do	you	teach	computational	thinking?	In	terms	of	how	to	do
programming,	it’s	an	interesting	question.	Take	nanotechnology.	How	did	we
achieve	nanotechnology?	Answer:	We	took	technology	as	we	understand	it	on	a
large	scale	and	we	made	it	very	small.	How	to	make	a	CPU	chip	on	the	atomic
scale?	Fundamentally,	we	use	the	same	architecture	as	the	CPU	chip	we	know
and	love.	That	isn’t	the	only	approach	one	can	take.	Looking	at	what	simple
programs	can	do	suggests	that	you	can	take	even	simple	impoverished
components	and,	with	the	right	compiler,	make	them	do	interesting	things.	We
don’t	do	molecular-scale	computing	yet,	because	the	ambient	technology	is	such
that	you’d	have	to	spend	a	decade	building	it.	But	we’ve	got	the	components	that
are	enough	to	make	a	universal	computer.	You	might	not	know	how	to	program
with	those	components,	but	by	doing	searches	in	the	space	of	possible	programs,
you’d	start	to	amass	building	blocks,	and	you	could	then	create	a	compiler	for
them.	The	surprising	thing	is	that	impoverished	stuff	is	capable	of	doing
sophisticated	things,	and	the	compilation	step	is	not	as	gruesome	as	you	might
expect.

Just	searching	the	computational	universe	and	trying	to	find	programs—
building	blocks—that	are	interesting	is	a	good	approach.	A	more	traditional
engineering	approach—trying	by	pure	thought	to	figure	out	how	to	build	a
universal	computer—is	a	harder	row	to	hoe.	That	doesn’t	mean	it	can’t	be	done,
but	my	guess	is	that	we’ll	be	able	to	do	some	amazing	things	just	by	finding	the
components	and	searching	the	possible	programs	we	can	make	with	them.	Then
it’s	back	to	the	question	about	connecting	human	purposes	to	what	is	available
from	the	system.

One	question	I’m	interested	in	is,	What	will	the	world	look	like	when	most
people	can	write	code?	We	had	a	transition,	maybe	five	hundred	or	so	years	ago,



when	only	scribes	and	a	small	set	of	the	population	could	read	and	write	natural
language.	Today,	a	small	fraction	of	the	population	can	write	code.	Most	of	the
code	they	write	is	for	computers	only.	You	don’t	understand	things	by	reading
code.	But	there	will	come	a	time	when,	as	a	result	of	things	I’ve	tried	to	do,	the
code	is	at	a	high	enough	level	that	it’s	a	minimal	description	of	what	you’re
trying	to	do.	It	will	be	a	piece	of	code	that’s	understandable	to	humans	but	also
executable	by	the	machines.

Coding	is	a	form	of	expression,	just	as	writing	in	a	natural	language	is	a	form
of	expression.	To	me,	some	simple	pieces	of	code	are	poetic—they	express	ideas
in	a	very	clean	way.	There’s	an	aesthetic	aspect,	much	as	there	is	to	expression
in	a	natural	language.	One	feature	of	code	is	that	it’s	immediately	executable;
it’s	not	like	writing.	When	you	write	something,	somebody	has	to	read	it,	and	the
brain	that’s	reading	it	has	to	absorb	the	thoughts	that	came	from	the	person	who
did	the	writing.	Look	at	how	knowledge	has	been	transmitted	in	the	history	of
the	world.	At	level	zero,	one	form	of	knowledge	transmission	is	essentially
genetic—that	is,	there’s	an	organism,	and	its	progeny	has	the	same	features	that
it	has.	Then	there’s	the	kind	of	knowledge	transmission	that	happens	with	things
like	physiological	recognition.	A	newborn	creature	has	some	neural	network
with	some	random	connections	in	it,	and	as	the	creature	moves	around	in	the
world,	it	starts	recognizing	kinds	of	objects	and	it	learns	that	knowledge.

Then	there’s	the	level	that	was	the	big	achievement	of	our	species,	which	is
natural	language:	the	ability	to	represent	knowledge	abstractly	enough	that	we
can	communicate	it	brain	to	brain,	so	to	speak.	Arguably,	natural	language	is	our
species’	most	important	invention.	It’s	what	led,	in	many	respects,	to	our
civilization.

There’s	yet	another	level,	and	probably	one	day	it	will	have	a	more
interesting	name.	With	knowledge-based	programming,	we	have	a	way	of
creating	an	actual	representation	of	real	things	in	the	world	in	a	precise	and
symbolic	way.	Not	only	is	it	understandable	by	brains	and	communicable	to
other	brains	and	to	computers,	it’s	also	immediately	executable.

Just	as	natural	language	gave	us	civilization,	knowledge-based	programming
will	give	us—what?	One	bad	answer	is	that	it	will	give	us	the	civilization	of	the
AIs.	That’s	what	we	don’t	want	to	happen,	because	the	AIs	will	do	a	great	job
communicating	with	one	another	and	we’ll	be	left	out	of	it,	because	there’s	no
intermediate	language,	no	interface	with	our	brains.	What	will	this	fourth	level
of	knowledge	communication	lead	to?	If	you	were	Caveman	Ogg	and	you	were
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just	realizing	that	language	was	starting,	could	you	imagine	the	coming	of
civilization?	What	should	we	be	imagining	right	now?

This	relates	to	the	question	of	what	the	world	would	look	like	if	most	people
could	code.	Clearly,	many	trivial	things	would	change:	Contracts	would	be
written	in	code,	restaurant	recipes	might	be	written	in	code,	and	so	on.	Simple
things	like	that	would	change.	But	much	more	profound	things	would	also
change.	The	rise	of	literacy	gave	us	bureaucracy,	for	example,	which	had	already
existed	but	dramatically	accelerated,	giving	us	a	greater	depth	of	governmental
systems,	for	better	or	worse.	How	does	the	coding	world	relate	to	the	cultural
world?

Take	high	school	education.	If	we	have	computational	thinking,	how	does
that	affect	how	we	study	history?	How	does	that	affect	how	we	study	languages,
social	studies,	and	so	on?	The	answer	is,	it	has	a	great	effect.	Imagine	you’re
writing	an	essay.	Today,	the	raw	material	for	a	typical	high	school	student’s
essay	is	something	that’s	already	been	written;	students	usually	can’t	generate
new	knowledge	easily.	But	in	the	computational	world,	that	will	no	longer	be
true.	If	the	students	know	something	about	writing	code,	they’ll	access	all	that
digitized	historical	data	and	figure	out	something	new.	Then	they’ll	write	an
essay	about	something	they’ve	discovered.	The	achievement	of	knowledge-
based	programming	is	that	it’s	no	longer	sterile,	because	it’s	got	the	knowledge
of	the	world	knitted	into	the	language	you’re	using	to	write	code.

—
here’s	computation	all	over	the	universe:	in	a	turbulent	fluid	producing	some
complicated	pattern	of	flow,	in	the	celestial	mechanics	of	planetary

interactions,	in	brains.	But	does	computation	have	a	purpose?	You	can	ask	that
about	any	system.	Does	the	weather	have	a	goal?	Does	climate	have	a	goal?

Can	someone	looking	at	Earth	from	space	tell	that	there’s	anything	with	a
purpose	there?	Is	there	a	civilization	there?	In	the	Great	Salt	Lake	in	Utah	there’s
a	straight	line.	It	turns	out	to	be	a	causeway	dividing	two	areas	of	the	lake	with
different	colors	of	algae,	so	it’s	a	very	dramatic	straight	line.	There’s	a	road	in
Australia	that’s	long	and	straight.	There’s	a	railroad	in	Siberia	that’s	long,	and
lights	go	on	when	a	train	stops	at	the	stations.	So	from	space	you	can	see	straight
lines	and	patterns.

But	are	these	clear	enough	examples	of	obvious	purpose	on	Earth	as	viewed
from	space?	For	that	matter,	how	do	we	recognize	extraterrestrials	out	there?
How	do	we	tell	if	a	signal	we’re	getting	indicates	purpose?	Pulsars	were
discovered	in	1967,	when	we	picked	up	a	periodic	flutter	every	second	or	so.



discovered	in	1967,	when	we	picked	up	a	periodic	flutter	every	second	or	so.
The	first	question	was,	Is	this	a	beacon?	Because	what	else	would	make	a
periodic	signal?	It	turned	out	to	be	a	rotating	neutron	star.

One	criterion	to	apply	to	a	potentially	purposeful	phenomenon	is	whether	it’s
minimal	in	achieving	a	purpose.	But	does	that	mean	that	it	was	built	for	the
purpose?	The	ball	rolls	down	the	hill	because	of	gravitational	pull.	Or	the	ball
rolls	down	the	hill	because	it’s	satisfying	the	principle	of	least	action.	There	are
typically	these	two	explanations	for	some	action	that	seems	purposeful:	the
mechanistic	explanation	and	the	teleological.	Essentially	all	of	our	existing
technology	fails	the	test	of	being	minimal	in	achieving	its	purpose.	Most	of	what
we	build	is	steeped	in	technological	history,	and	it’s	incredibly	nonminimal	for
achieving	its	purpose.	Look	at	a	CPU	chip;	there’s	no	way	that	that’s	the
minimal	way	to	achieve	what	a	CPU	chip	achieves.

This	question	of	how	to	identify	purposefulness	is	a	hard	one.	It’s	an
important	question,	because	radio	noise	from	the	galaxy	is	very	similar	to
CDMA	transmissions	from	cell	phones.	Those	transmissions	use	pseudonoise
sequences,	which	happen	to	have	certain	repeatability	properties.	But	they	come
across	as	noise,	and	they’re	set	up	as	noise,	so	as	not	to	interfere	with	other
channels.	The	issue	gets	messier.	If	we	were	to	observe	a	sequence	of	primes
being	generated	from	a	pulsar,	we’d	ask	what	generated	them.	Would	it	mean
that	a	whole	civilization	grew	up	and	discovered	primes	and	invented	computers
and	radio	transmitters	and	did	this?	Or	is	there	just	some	physical	process
making	primes?	There’s	a	little	cellular	automaton	that	makes	primes.	You	can
see	how	it	works	if	you	take	it	apart.	It	has	a	little	thing	bouncing	inside	it,	and
out	comes	a	sequence	of	primes.	It	didn’t	need	the	whole	history	of	civilization
and	biology	and	so	on	to	get	to	that	point.

I	don’t	think	there	is	abstract	“purpose,”	per	se.	I	don’t	think	there’s	abstract
meaning.	Does	the	universe	have	a	purpose?	Then	you’re	doing	theology	in
some	way.	There	is	no	meaningful	sense	in	which	there	is	an	abstract	notion	of
purpose.	Purpose	is	something	that	comes	from	history.

One	of	the	things	that	might	be	true	about	our	world	is	that	maybe	we	go
through	all	this	history	and	biology	and	civilization,	and	at	the	end	of	the	day	the
answer	is	“42,”	or	something.	We	went	through	all	those	4	billion	years	of
various	kinds	of	evolution	and	then	we	got	to	“42.”

Nothing	like	that	will	happen,	because	of	computational	irreducibility.	There
are	computational	processes	that	you	can	go	through	in	which	there	is	no	way	to
shortcut	that	process.	Much	of	science	has	been	about	shortcutting	computation
done	by	nature.	For	example,	if	we’re	doing	celestial	mechanics	and	want	to



done	by	nature.	For	example,	if	we’re	doing	celestial	mechanics	and	want	to
predict	where	the	planets	will	be	a	million	years	from	now,	we	could	follow	the
equations,	step-by-step.	But	the	big	achievement	in	science	is	that	we’re	able	to
shortcut	that	and	reduce	the	computation.	We	can	be	smarter	than	the	universe
and	predict	the	endpoint	without	going	through	all	the	steps.	But	even	with	a
smart	enough	machine	and	smart	enough	mathematics,	we	can’t	get	to	the
endpoint	without	going	through	the	steps.	Some	details	are	irreducible.	We	have
to	irreducibly	follow	those	steps.	That’s	why	history	means	something.	If	we
could	get	to	the	endpoint	without	going	through	the	steps,	history	would	be,	in
some	sense,	pointless.

So	it’s	not	the	case	that	we’re	intelligent	and	everything	else	in	the	world	is
not.	There’s	no	enormous	abstract	difference	between	us	and	the	clouds	or	us
and	the	cellular	automata.	We	cannot	say	that	this	brainlike	neural	network	is
qualitatively	different	from	this	cellular-automaton	system.	The	difference	is	a
detailed	difference.	This	brainlike	neural	network	was	produced	by	the	long
history	of	civilization,	whereas	the	cellular	automaton	was	created	by	my
computer	in	the	last	microsecond.

The	problem	of	abstract	AI	is	similar	to	the	problem	of	recognizing
extraterrestrial	intelligence:	How	do	you	determine	whether	or	not	it	has	a
purpose?	This	is	a	question	I	don’t	consider	answered.	We’ll	say	things	like,
“Well,	AI	will	be	intelligent	when	it	can	do	blah-blah-blah.”	When	it	can	find
primes.	When	it	can	produce	this	and	that	and	the	other.	But	there	are	many
other	ways	to	get	to	those	results.	Again,	there	is	no	bright	line	between
intelligence	and	mere	computation.

It’s	another	part	of	the	Copernican	story:	We	used	to	think	Earth	was	the
center	of	the	universe.	Now	we	think	we’re	special	because	we	have	intelligence
and	nothing	else	does.	I’m	afraid	the	bad	news	is	that	that	isn’t	a	distinction.

Here’s	one	of	my	scenarios.	Let’s	say	there	comes	a	time	when	human
consciousness	is	readily	uploadable	into	digital	form,	virtualized	and	so	on,	and
pretty	soon	we	have	a	box	of	a	trillion	souls.	There	are	a	trillion	souls	in	the	box,
all	virtualized.	In	the	box,	there	will	be	molecular	computing	going	on—maybe
derived	from	biology,	maybe	not.	But	the	box	will	be	doing	all	kinds	of
elaborate	stuff.	And	there’s	a	rock	sitting	next	to	the	box.	Inside	a	rock,	there	is
always	all	kinds	of	elaborate	stuff	going	on,	all	kinds	of	subatomic	particles
doing	all	kinds	of	things.	What’s	the	difference	between	the	rock	and	the	box	of
a	trillion	souls?	The	answer	is	that	the	details	of	what’s	happening	in	the	box
were	derived	from	the	long	history	of	human	civilization,	including	whatever
people	watched	on	YouTube	the	day	before.	Whereas	the	rock	has	its	long
geological	history	but	not	the	particular	history	of	our	civilization.



geological	history	but	not	the	particular	history	of	our	civilization.
Realizing	that	there	isn’t	a	genuine	distinction	between	intelligence	and	mere

computation	leads	you	to	imagine	that	future—the	endpoint	of	our	civilization	as
a	box	of	a	trillion	souls,	each	of	them	essentially	playing	a	video	game,	forever.
What	is	the	“purpose”	of	that?
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