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PREFACE 

Previous treatments of Artificial Intelligence (AI) divide the subject 
into its major areas of application, namely, natural language processing, 
automatic programming, robotics, machine vision, automatic theorem 
proving, intelligent data retrieval systems, etc. The major difficulty with 
this approach is that these application areas are now so extensive, that 
each could, at best, be only superficially treated in a book of this length. 
Instead, I have attempted here to describe fundamental AI ideas that 
underlie many of these applications. My organization of these ideas is 
not, then, based on the subject matter of their application, but is, instead, 
based on general computational concepts involving the kinds of data 
structures used, the types of operations performed on these data struc
tures, and the properties of control strategies used by AI systems. I stress, 
in particular, the important roles played in AI by generalized production 
systems and the predicate calculus. 

The notes on which the book is based evolved in courses and seminars 
at Stanford University and at the University of Massachusetts at 
Amherst. Although certain topics treated in my previous book, Problem-
solving Methods in Artificial Intelligence, are covered here as well, this 
book contains many additional topics such as rule-based systems, robot 
problem-solving systems, and structured-object representations. 

One of the goals of this book is to fill a gap between theory and 
practice. AI theoreticians have little difficulty in communicating with 
each other; this book is not intended to contribute to that communica
tion. Neither is the book a handbook of current AI programming 
technology; other sources are available for that purpose. As it stands, the 
book could be supplemented either by more theoretical treatments of 
certain subjects, for AI theory courses, or by project and laboratory 
sessions, for more practically oriented courses. 

The book is designed as a text for a senior or first-year graduate course 
in AI. It is assumed that the reader has a good background in the 
fundamentals of computer science; knowledge of a list-processing 
language, such as LISP, would be helpful. A course organized around this 
book could comfortably occupy a full semester. If separate practical or 
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theoretical material is added, the time required might be an entire year. A 
one-quarter course would be somewhat hurried unless some material 
(perhaps parts of chapter 6 and chapter 8) is omitted. 

The exercises at the end of each chapter are designed to be thought-
provoking. Some expand on subjects briefly mentioned in the text. 
Instructors may find it useful to use selected exercises as a basis for class 
discussion. Pertinent references are briefly discussed at the end of every 
chapter. These citations should provide the interested student with 
adequate entry points to much of the most important literature in the 
field. 

I look forward someday to revising this book—to correct its inevitable 
errors, and to add new results and points of view. Toward that end, I 
solicit correspondence from readers. 

Nils J. Nilsson 

xn 



ACKNOWLEDGEMENTS 

Several organizations supported and encouraged the research, teach
ing, and discussions that led to this book. The Information Systems 
Program, Marvin Denicoff, Director, of the Office of Naval Research, 
provided research support under contract no. N00014-77-C-0222 with 
SRI International. During the academic year 1976-77,1 was a part-time 
visiting professor in the Computer Science Department at Stanford 
University. From September 1977 to January 1978, I spent the Winter 
Semester at the Computer and Information Sciences Department of the 
University of Massachusetts at Amherst. The students and faculty of 
these departments were immensely helpful in the development of this 
book. 

I want to give special thanks to my home organization, SRI Interna
tional, for the use of its facilities and for its liberal attitude toward 
book-writing. I also want to thank all my friends and colleagues in the 
Artificial Intelligence Center at SRI. One could not find a more dynamic, 
intellectually stimulating, and constructively critical setting in which to 
work and write. 

Though this book carries the name of a single author, it has been 
influenced by several people. It is a pleasure to thank here everyone who 
helped guide me toward a better presentation. Some of those who 
provided particularly detailed and extensive suggestions are: Doug 
Appelt, Michael Arbib, Wolfgang Bibel, Woody Bledsoe, John Brown, 
Lew Creary, Randy Davis, Jon Doyle, Ed Feigenbaum, Richard Fikes, 
Northrup Fowler, Peter Friedland, Anne Gardner, David Gelperin, 
Peter Hart, Pat Hayes, Gary Hendrix, Doug Lenat, Vic Lesser, John 
Lowrance, Jack Minker, Tom Mitchell, Bob Moore, Allen Newell, Earl 
Sacerdoti, Len Schubert, Herb Simon, Reid Smith, Elliot Soloway, Mark 
Stefik, Mabry Tyson, and Richard Waldinger. 

I also want to thank Robin Roy, Judy Fetler, and Georgia Navarro, for 
patient and accurate typing; Sally Seitz for heroic insertion of typesetting 
instructions into the manuscript; and Helen Tognetti for creative 
copy-editing. 

Most importantly, my efforts would not have been equal to this task 
had they not been generously supported, encouraged, and understood by 
my wife, Karen. 

xiii 



CREDITS 

The manuscript for this book was prepared on a Digital Equipment 
Corporation KL-10 computer at SRI International. The computer 
manuscript file was processed for automatic photo-typesetting by W. A. 
Barrett's TYPET system on a Hewlett-Packard 3000 computer. The main 
typeface is Times Roman. 

Book design: Ian Bastelier 
Cover design: Andrea Hendrick 
Illustrations: Maria Masterson 
Typesetting: Typothetae, Palo Alto, CA 
Page makeup: Vera Allen Composition, Castro Valley, CA 
Printing and binding: R. R. Donnelley and Sons Company 

xv 



PROLOGUE 

Many human mental activities such as writing computer programs, 
doing mathematics, engaging in commonsense reasoning, understanding 
language, and even driving an automobile are said to demand "intelli
gence." Over the past few decades, several computer systems have been 
built that can perform tasks such as these. Specifically, there are 
computer systems that can diagnose diseases, plan the synthesis of 
complex organic chemical compounds, solve differential equations in 
symbolic form, analyze electronic circuits, understand limited amounts 
of human speech and natural language text, or write small computer 
programs to meet formal specifications. We might say that such systems 
possess some degree of artificial intelligence. 

Most of the work on building these kinds of systems has taken place in 
the field called Artificial Intelligence (AI). This work has had largely an 
empirical and engineering orientation. Drawing from a loosely struc
tured but growing body of computational techniques, AI systems are 
developed, undergo experimentation, and are improved. This process 
has produced and refined several general AI principles of wide applica
bility. 

This book is about some of the more important, core AI ideas. We 
concentrate on those that find application in several different problem 
areas. In order to emphasize their generality, we explain these principles 
abstractly rather than discuss them in the context of specific applications, 
such as automatic programming or natural language processing. We 
illustrate their use with several small examples but omit detailed case 
studies of large-scale applications. (To treat these applications in detail 
would each certainly require a separate book.) An abstract understanding 
of the basic ideas should facilitate understanding specific AI systems 
(including strengths and weaknesses) and should also prove a sound basis 
for designing new systems. 
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PROLOGUE 

AI has also embraced the larger scientific goal of constructing an 
information-processing theory of intelligence. If such a science of 
intelligence could be developed, it could guide the design of intelligent 
machines as well as explicate intelligent behavior as it occurs in humans 
and other animals. Since the development of such a general theory is still 
very much a goal, rather than an accomplishment of AI, we limit our 
attention here to those principles that are relevant to the engineering goal 
of building intelligent machines. Even with this more limited outlook, 
our discussion of AI ideas might well be of interest to cognitive 
psychologists and others attempting to understand natural intelligence. 

As we have already mentioned, AI methods and techniques have been 
applied in several different problem areas. To help motivate our 
subsequent discussions, we next describe some of these applications. 

0.1. SOME APPLICATIONS OF ARTIFICIAL 
INTELLIGENCE 

0.1.1. NATURAL LANGUAGE PROCESSING 

When humans communicate with each other using language, they 
employ, almost effortlessly, extremely complex and still little understood 
processes. It has been very difficult to develop computer systems capable 
of generating and "understanding" even fragments of a natural language, 
such as English. One source of the difficulty is that language has evolved 
as a communication medium between intelligent beings. Its primary use 
is for transmitting a bit of "mental structure" from one brain to another 
under circumstances in which each brain possesses large, highly similar, 
surrounding mental structures that serve as a common context. Further
more, part of these similar, contextual mental structures allows each 
participant to know that the other also possesses this common structure 
and that the other can and will perform certain processes using it during 
communication "acts." The evolution of language use has apparently 
exploited the opportunity for participants to use their considerable 
computational resources and shared knowledge to generate and under
stand highly condensed and streamlined messages: A word to the wise 
from the wise is sufficient. Thus generating and understanding language 
is an encoding and decoding problem of fantastic complexity. 
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A computer system capable of understanding a message in natural 
language would seem, then, to require (no less than would a human) both 
the contextual knowledge and the processes for making the inferences 
(from this contextual knowledge and from the message) assumed by the 
message generator. Some progress has been made toward computer 
systems of this sort, for understanding spoken and written fragments of 
language. Fundamental to the development of such systems are certain 
AI ideas about structures for representing contextual knowledge and 
certain techniques for making inferences from that knowledge. Although 
we do not treat the language-processing problem as such in this book, we 
do describe some important methods for knowledge representation and 
processing that do find application in language-processing systems. 

0.1.2. INTELLIGENT RETRIEVAL FROM DATABASES 

Database systems are computer systems that store a large body of facts 
about some subject in such a way that they can be used to answer users' 
questions about that subject. To take a specific example, suppose the facts 
are the personnel records of a large corporation. Example items in such a 
database might be representations for such facts as "Joe Smith works in 
the Purchasing Department," "Joe Smith was hired on October 8, 1976," 
"The Purchasing Department has 17 employees," "John Jones is the 
manager of the Purchasing Department," etc. 

The design of database systems is an active subspecialty of computer 
science, and many techniques have been developed to enable the efficient 
representation, storage, and retrieval of large numbers of facts. From our 
point of view, the subject becomes interesting when we want to retrieve 
answers that require deductive reasoning with the facts in the database. 

There are several problems that confront the designer of such an 
intelligent information retrieval system. First, there is the immense 
problem of building a system that can understand queries stated in a 
natural language like English. Second, even if the language-understand
ing problem is dodged by specifying some formal, machine-understand
able query language, the problem remains of how to deduce answers 
from stored facts. Third, understanding the query and deducing an 
answer may require knowledge beyond that explicitly represented in the 
subject domain database. Common knowledge (typically omitted in the 
subject domain database) is often required. For example, from the 
personnel facts mentioned above, an intelligent system ought to be able 
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to deduce the answer "John Jones" to the query "Who is Joe Smith's 
boss?" Such a system would have to know somehow that the manager of a 
department is the boss of the people who work in that department. How 
common knowledge should be represented and used is one of the system 
design problems that invites the methods of Artificial Intelligence. 

0.13. EXPERT CONSULTING SYSTEMS 

AI methods have also been employed in the development of automatic 
consulting systems. These systems provide human users with expert 
conclusions about specialized subject areas. Automatic consulting sys
tems have been built that can diagnose diseases, evaluate potential ore 
deposits, suggest structures for complex organic chemicals, and even 
provide advice about how to use other computer systems. 

A key problem in the development of expert consulting systems is how 
to represent and use the knowledge that human experts in these subjects 
obviously possess and use. This problem is made more difficult by the 
fact that the expert knowledge in many important fields is often 
imprecise, uncertain, or anecdotal (though human experts use such 
knowledge to arrive at useful conclusions). 

Many expert consulting systems employ the AI technique of rule-based 
deduction. In such systems, expert knowledge is represented as a large set 
of simple rules, and these rules are used to guide the dialogue between 
the system and the user and to deduce conclusions. Rule-based deduction 
is one of the major topics of this book. 

0.1.4. THEOREM PROVING 

Finding a proof (or disproof) for a conjectured theorem in mathemat
ics can certainly be regarded as an intellectual task. Not only does it 
require the ability to make deductions from hypotheses but demands 
intuitive skills such as guessing about which lemmas should be proved 
first in order to help prove the main theorem. A skilled mathematician 
uses what he might call judgment (based on a large amount of specialized 
knowledge) to guess accurately about which previously proven theorems 
in a subject area will be useful in the present proof and to break his main 
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problem down into subproblems to work on independently. Several 
automatic theorem proving programs have been developed that possess 
some of these same skills to a limited degree. 

The study of theorem proving has been significant in the development 
of AI methods. The formalization of the deductive process using the 
language of predicate logic, for example, helps us to understand more 
clearly some of the components of reasoning. Many informal tasks, 
including medical diagnosis and information retrieval, can be formalized 
as theorem-proving problems. For these reasons, theorem proving is an 
extremely important topic in the study of AI methods. 

0.1.5. ROBOTICS 

The problem of controlling the physical actions of a mobile robot 
might not seem to require much intelligence. Even small children are 
able to navigate successfully through their environment and to manipu
late items, such as light switches, toy blocks, eating utensils, etc. However 
these same tasks, performed almost unconsciously by humans, per
formed by a machine require many of the same abilities used in solving 
more intellectually demanding problems. 

Research on robots or robotics has helped to develop many AI ideas. It 
has led to several techniques for modeling states of the world and for 
describing the process of change from one world state to another. It has 
led to a better understanding of how to generate plans for action 
sequences and how to monitor the execution of these plans. Complex 
robot control problems have forced us to develop methods for planning 
at high levels of abstraction, ignoring details, and then planning at lower 
and lower levels, where details become important. We have frequent 
occasion in this book to use examples of robot problem solving to 
illustrate important ideas. 

0.1.6. AUTOMATIC PROGRAMMING 

The task of writing a computer program is related both to theorem 
proving and to robotics. Much of the basic research in automatic 
programming, theorem proving, and robot problem solving overlaps. In 
a sense, existing compilers already do "automatic programming." They 
take in a complete source code specification of what a program is to 
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accomplish, and they write an object code program to do it. What we 
mean here by automatic programming might be described as a "super-
compiler," or a program that could take in a very high-level description 
of what the program is to accomplish and produce a program. The 
high-level description might be a precise statement in a formal language, 
such as the predicate calculus, or it might be a loose description, say, in 
English, that would require further dialogue between the system and the 
user in order to resolve ambiguities. 

The task of automatically writing a program to achieve a stated result is 
closely related to the task of proving that a given program achieves a 
stated result. The latter is called program verification. Many automatic 
programming systems produce a verification of the output program as an 
added benefit. 

One of the important contributions of research in automatic program
ming has been the notion of debugging as a problem-solving strategy. It 
has been found that it is often much more efficient to produce an 
inexpensive, errorful solution to a programming or robot control 
problem and then modify it (to make it work correctly), than to insist on a 
first solution completely free of defects. 

0.1.7. COMBINATORIAL AND SCHEDULING PROBLEMS 

An interesting class of problems is concerned with specifying optimal 
schedules or combinations. Many of these problems can be attacked by 
the methods discussed in this book. A classical example is the traveling 
salesman's problem, where the problem is to find a minimum distance 
tour, starting at one of several cities, visiting each city precisely once, and 
returning to the starting city. The problem generalizes to one of finding a 
minimum cost path over the edges of a graph containing n nodes such 
that the path visits each of the n nodes precisely once. 

Many puzzles have this same general character. Another example is 
the 8-queens problem, where the problem is to place eight queens on a 
standard chessboard in such a way that no queen can capture any of the 
others; that is, there can be no more than one queen in any row, column 
or diagonal. In most problems of this type, the domain of possible 
combinations or sequences from which to choose an answer is very large. 
Routine attempts at solving these types of problems soon generate a 
combinatorial explosion of possibilities that exhaust even the capacities of 
large computers. 
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Several of these problems (including the traveling salesman problem) 
are members of a class that computational theorists call NP-complete. 
Computational theorists rank the difficulty of various problems on how 
the worst case for the time taken (or number of steps taken) using the 
theoretically best method grows with some measure of the problem size. 
(For example, the number of cities would be a measure of the size of a 
traveling salesman problem.) Thus, problem difficulty may grow linearly, 
polynomially, or exponentially, for example, with problem size. 

The time taken by the best methods currently known for solving 
NP-complete problems grows exponentially with problem size. It is not 
yet known whether faster methods (involving only polynomial time, say) 
exist, but it has been proven that if a faster method exists for one of the 
NP-complete problems, then this method can be converted to similarly 
faster methods for all the rest of the NP-complete problems. In the 
meantime, we must make do with exponential-time methods. 

AI researchers have worked on methods for solving several types of 
combinatorial problems. Their efforts have been directed at making the 
time-versus-problem-size curve grow as slowly as possible, even when it 
must grow exponentially. Several methods have been developed for 
delaying and moderating the inevitable combinatorial explosion. Again, 
knowledge about the problem domain is the key to more efficient 
solution methods. Many of the methods developed to deal with combin
atorial problems are also useful on other, less combinatorially severe 
problems. 

0.1.8. PERCEPTION PROBLEMS 

Attempts have been made to fit computer systems with television 
inputs to enable them to "see" their surroundings or to fit them with 
microphone inputs to enable them to "hear" speaking voices. From these 
experiments, it has been learned that useful processing of complex input 
data requires "understanding" and that understanding requires a large 
base of knowledge about the things being perceived. 

The process of perception studied in Artificial Intelligence usually 
involves a set of operations. A visual scene, say, is encoded by sensors and 
represented as a matrix of intensity values. These are processed by 
detectors that search for primitive picture components such as line 
segments, simple curves, corners, etc. These, in turn, are processed to 
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infer information about the three-dimensional character of the scene in 
terms of its surfaces and shapes. The ultimate goal is to represent the 
scene by some appropriate model. This model might consist of a 
high-level description such as "A hill with a tree on top with cattle 
grazing." 

The point of the whole perception process is to produce a condensed 
representation to substitute for the unmanageably immense, raw input 
data. Obviously, the nature and quality of the final representation 
depend on the goals of the perceiving system. If colors are important, 
they must be noticed; if spatial relationships and measurements are 
important, they must be judged accurately. Different systems have 
different goals, but all must reduce the tremendous amount of sensory 
data at the input to a manageable and meaningful description. 

The main difficulty in perceiving a scene is the enormous number of 
possible candidate descriptions in which the system might be interested. 
If it were not for this fact, one could conceivably build a number of 
detectors to decide the category of a scene. The scene's category could 
then serve as its description. For example, perhaps a detector could be 
built that could test a scene to see if it belonged to the category "A hill 
with a tree on top with cattle grazing." But why should this detector be 
selected instead of the countless others that might have been used? 

The strategy of making hypotheses about various levels of description 
and then testing these hypotheses seems to offer an approach to this 
problem. Systems have been constructed that process suitable represen
tations of a scene to develop hypotheses about the components of a 
description. These hypotheses are then tested by detectors that are 
specialized to the component descriptions. The outcomes of these tests, in 
turn, are used to develop better hypotheses, etc. 

This hypothesize-and-test paradigm is applied at many levels of the 
perception process. Several aligned segments suggest a straight line; a 
line detector can be employed to test it. Adjacent rectangles suggest the 
faces of a solid prismatic object; an object detector can be employed to 
test it. 

The process of hypothesis formation requires a large amount of 
knowledge about the expected scenes. Some AI researchers have 
suggested that this knowledge be organized in special structures called 
frames or schémas. For example, when a robot enters a room through a 
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doorway, it activates a room schema, which loads into working memory a 
number of expectations about what might be seen next. Suppose the 
robot perceives a rectangular form. This form, in the context of a room 
schema, might suggest a window. The window schema might contain the 
knowledge that windows typically do not touch the floor. A special 
detector, applied to the scene, confirms this expectation, thus raising 
confidence in the window hypothesis. We discuss some of the fun
damental ideas underlying frame-structured representations and infer
ence processes later in the book. 

0.2· OVERVIEW 

The book is divided into nine chapters and a prospectus. In chapter 1, 
we introduce a generalized production system and emphasize its impor
tance as a basic building block of AI systems. Several distinctions among 
production systems and their control strategies are introduced. These 
distinctions are used throughout the book to help classify different AI 
systems. 

The major emphasis in chapters 2 and 3 is on the search strategies that 
are useful in the control of AI systems. Chapter 2 concerns itself with 
heuristic methods for searching the graphs that are implicitly defined by 
many AI systems. Chapter 3 generalizes these search techniques to 
extended versions of these graphs, called AND/OR graphs, and to the 
graphs that arise in analyzing certain games. 

In chapter 4, we introduce the predicate calculus and describe the 
important role that it plays in AI systems. Various rules of inference, 
including resolution, are described. Systems for proving theorems using 
resolution are discussed in chapter 5. We indicate how several different 
kinds of problems can be posed as theorem-proving problems. 

Chapter 6 examines some of the inadequacies of simple resolution 
systems and describes some alternatives, called rule-based deduction 
systems, that are more suitable for many AI applications. To illustrate 
how these deduction systems might be used, several small examples, 
ranging from information retrieval to automatic programming, are 
presented. 
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In chapters 7 and 8, we present methods for synthesizing sequences of 
actions that achieve prescribed goals. These methods are illustrated by 
considering simple problems in robot planning and automatic program
ming. Chapter 7 introduces some of the more basic ideas, and chapter 8 
elaborates on the subjects of complex goal interactions and hierarchical 
planning. 

Chapter 9 discusses some representational formalisms in which the 
structure of the representation itself is used to aid retrieval processes and 
to make certain common deductions more immediate. Two examples are 
semantic networks and the so-called frame-based representations. Our 
point of view toward such representations is that they can best be 
understood as a form of predicate calculus. 

Last, in the prospectus, we review some outstanding AI problems that 
are not yet sufficiently well understood to be included in the main part of 
a textbook. It is hoped that a discussion of these problems will provide 
perspective about the current status of the field and useful directions for 
future research. 

0.3· BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

In this section, and in similar sections at the end of each chapter, we 
discuss very briefly some of the relevant literature. The material cited is 
listed alphabetically by first author in the bibliography at the end of the 
book. Many of these citations will be useful to readers who wish to probe 
more deeply into either theoretical or applications topics. For complete
ness, we have occasionally referenced unpublished memoranda and 
reports. Authors (or their home institutions) will sometimes provide 
copies of such material upon request. 

Several books have been written about AI and its applications. The 
book by Slagle (1971) describes many early AI systems. Nilsson's (1971) 
book on problem solving in AI concentrates on search methods and 
applications of resolution theorem proving. An introductory book by 
Jackson (1974) treats these problem-solving ideas and also describes 
applications to natural language processing and image analysis. The book 
by Hunt (1975) treats pattern recognition, as well as other AI topics. 
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Introductory articles about AI topics appear in a book edited by Barr and 
Feigenbaum (1980). Nilsson's (1974) survey describes the field in the 
early 1970s and contains many references. Michie's (1974) book contains 
several of his articles on AI. 

Raphael's (1975) book and Winston's (1977) book are easy-to-read and 
elementary treatments of AI ideas. The latter contains an excellent 
introduction to AI programming methods. A book edited by Bundy 
(1978) contains material used in an introductory AI course given at the 
University of Edinburgh. A general discussion of AI and its connection 
with human intelligence is contained in Boden (1977). McCorduck 
(1979) has written an interesting book about the history of artificial 
intelligence. Marr's (1977) essay and Simon's (1969) book discuss AI 
research as a scientific endeavor. Cohen (1979) discusses the relationships 
between artistic imagery and visual cognition. 

The most authoritative and complete account of mechanisms of 
human problem solving from an AI perspective is the book by Newell 
and Simon (1972). The book edited by Norman and Rumelhart (1975) 
contains articles describing computer models of human memory, and a 
psychology text by Lindsay and Norman (1972) is written from an 
information-processing viewpoint. A multidisciplinary journal, Cognitive 
Science, contains articles on information-processing aspects of human 
cognition, perception, and language. 

03.1. NATURAL LANGUAGE PROCESSING 

Grosz (1979) presents a good survey of current techniques and 
problems in natural language processing. A collection of important 
papers on this topic is contained in a book edited by Rustin (1973). One 
of the first successful AI systems for understanding limited fragments of 
natural language is described in a book by Winograd (1972). 

The book by Newell et al. (1973) describes the five-year goals of a 
research project to develop a speech understanding system; the major 
results of this research are described in papers by Medress et al. (1977), 
and Klatt (1977); reports by Reddy et al. (1977), Woods, et al (1976), and 
Bernstein (1976); and a book edited by Walker (1978). 

A forthcoming book by Winograd (1980a) will present the foundations 
of computational mechanisms in natural language processing. Some 
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interface systems for subsets of natural language are described in an 
article edited by Waltz (1977). 

Proceedings of biannual conferences on Theoretical Issues in Natural 
Language Processing (TINLAP) contain several important papers. 
Work in language processing draws on several disciplines besides A l 
most notably, computational linguistics, philosophy, and cognitive psy
chology. 

03.2. INTELLIGENT RETRIEVAL FROM DATABASES 

Two excellent books on database systems are those of Date (1977) and 
Wiederhold (1977). An important paper by Codd (1970) formalizes a 
relational model for database management. Papers describing various 
applications of AI and logic to database organization and retrieval are 
contained in a book edited by Gallaire and Minker (1978). The article 
edited by Waltz (1977) contains several descriptions of systems for 
querying databases using simplified natural language. 

033. EXPERT CONSULTING SYSTEMS 

Expert consulting systems have been developed for a variety of 
domains. The most prominent applications of AI ideas to medical 
consulting are those of Pople (1977), for internal medicine; Weiss et al. 
(1978), for the glaucomas; and Shortliffe (1976) and Davis (1976), for 
bacterial infection diagnosis and therapy. 

A consulting system to aid a geologist in evaluating potential mineral 
deposits is described by Duda et al. (1978a, 1978b, 1979). Several expert 
systems developed at Stanford University are summarized by Feigen
baum (1977). The most highly developed of these, DENDRAL, computes 
structural descriptions of complex organic chemicals from their mass 
spectrograms and related data [Buchanan and Feigenbaum (1978)]. 

Other important expert systems are those of Sussman and Stallman 
(1975) [see also Stallman and Sussman (1977)] for analyzing the 
performance of electronic circuits; and Genesereth (1978, 1979), for 
helping casual users of the MACSYMA mathematical formula manipu
lation system [Martin and Fateman (1971)]. 
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03.4. THEOREM PROVING 

Early applications of AI ideas to proving theorems were made by 
Gelernter (1959) to plane geometry; and by Newell, Shaw, and Simon 
(1957) to propositional logic. The resolution principle of Robinson 
(1965) greatly accelerated work on automatic theorem proving. Resolu
tion theorem proving is thoroughly explained in books by Chang and Lee 
(1973), Loveland (1978), and Robinson (1979). 

Bledsoe and his co-workers have developed impressive theorem-prov
ing systems for analysis [Ballantyne and Bledsoe (1977)], for topology 
[Bledsoe and Bruell (1974)], and for set theory [Bledsoe (1971)]. Wos and 
his co-workers have achieved excellent results with resolution-based 
systems [McCharen et al. (1976); Winker and Wos (1978); Winker 
(1979)]. Boyer and Moore (1979) have developed a theorem-proving 
system that proves theorems about recursive functions and makes strong 
use of induction. 

Regular workshops are held on automatic deduction. An informal 
proceedings was issued for the Fourth Workshop [see WAD in the 
Bibliography]. 

03.5. ROBOTICS 

Much of the theoretical research in robotics was conducted through 
robot projects at MIT, Stanford University, Stanford Research Institute 
and the University of Edinburgh in the late 1960s and early 1970s. This 
work has been described in several papers and reports. Good accounts 
are available for the MIT work by Winston (1972); for the Stanford 
Research Institute work by Raphael et al. (1971) and Raphael (1976, 
chapter 8); for the Stanford University work by McCarthy et al. (1969); 
and for the Edinburgh work by Ambler, et al. (1975). 

Practical applications of robotics in industrial automation are becom
ing commonplace. A paper by Abraham (1977) describes a prototype 
robot system for assembling small electric motors. Automatic visual 
sensing with a solid-state TV camera is used to guide manipulators in the 
system. Rosen and Nitzan (1977) discuss the use of vision and other 
sensors in industrial automation. For a sample of advanced work in 
robotics applications see Nitzan (1979), Binford et al. (1978), Nevins and 
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Whitney (1977), Will and Grossman (1975), Takeyasu et al. (1977), 
Okhotsimski et al. (1979), and Cassinis (1979). International symposia on 
industrial robots are held regularly. 

03.6. AUTOMATIC PROGRAMMING 

One of the earliest attempts to use AI ideas for automatically 
synthesizing computer programs was by Simon (1963, 1972b). Pioneer
ing papers by Waldinger and Lee (1969) and by Green (1969a) showed 
how small programs could be synthesized using theorem-proving tech
niques. 

Surveys by Biermann (1976) and by Hammer and Ruth (1979) discuss 
several approaches to automatic programming. The PS I project of Green 
(1976) includes several components, one of which is a rule-based system 
for synthesizing programs from descriptions of abstract algorithms 
[Barstow (1979)]. Rich and Shrobe (1979) describe a programmer's 
apprentice system for assisting a human programmer. 

The related topic of program verification is surveyed by London 
(1979). [See also the discussion by Constable (1979) in the same volume.] 
The formal verification of properties of programs was discussed early in 
the history of computing by Goldstine and von Neumann (1947) and by 
Turing (1950). Program verification was mentioned by McCarthy (1962) 
as one of the applications of a proposed mathematical science of 
computation. Work by Floyd (1967) and Naur (1966) explicitly in
troduced the idea of invariant assertions. A collection of papers in a book 
by Manna and Waldinger (1977) describe logic-based methods for 
program verification, synthesis, and debugging. 

03.7. COMBINATORIAL AND SCHEDULING PROBLEMS 

Scheduling problems are usually studied in operations research. Good 
general references are the books by Wagner (1975) and by Hillier and 
Lieberman (1974). For a discussion of NP-complete problems and other 
topics in the mathematical analysis of algorithms, see the book by Aho, 
Hopcroft, and Ullman (1974). Lamiere (1978) presents a computer 
language and a system for solving combinatorial problems using AI 
methods. 
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0.3.8. PERCEPTION PROBLEMS 

Many good papers on the problems of visual perception by machine 
are contained in volumes edited by Hansen and Riseman (1978) and by 
Winston (1975). Representative systems for processing visual images 
include those of Barrow and Tenenbaum (1976) and Shirai (1978). An 
important paper by Marr (1976) theorizes about the computational and 
representational mechanisms of human vision. Kanade (1977) reviews 
some of the important general aspects of vision systems, and Agin (1977) 
surveys some of the uses of vision systems in industrial automation. 

A book by Duda and Hart (1973) describes some of the fundamentals 
of computer vision. International Joint Conferences on Pattern Recogni
tion are regularly held and proceedings are published by the IEEE. The 
Information Processing Techniques Office of the U. S. Defense Ad
vanced Research Projects Agency sponsors Image Understanding Work
shops; proceedings of these workshops are available. 

0.3.9. OTHER APPLICATIONS 

Applications of AI ideas have been made in other areas as well. 
Latombe (1977) and Sussman (1977) describe systems for automatic 
design; Brown (1977) discusses applications in education; and Gelernter 
et al. (1977) and Wipke, Ouchi, and Krishnan (1978) have developed 
systems for organic chemical synthesis. 

03.10. IMPORTANT SOURCE MATERIALS 

In addition to the books already mentioned, several volumes of 
collected papers are cited at the beginning of the bibliography. These 
include a series of nine volumes called Machine Intelligence (MI) and a 
volume entitled Computers and Thought ( CT) of important early papers 
edited by Feigenbaum and Feldman (1963). 

The international journal Artificial Intelligence is a primary publica
tion medium for papers in the field. AI papers are also published in the 
Journal of the Association for Computing Machinery (JACM), the 
Communications of the Association for Computing Machinery ( CACM), 
and in various publications of the Institute of Electrical and Electronic 
Engineers (IEEE). 
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International Joint Conferences on Artificial Intelligence (IJCAI) have 
been held biannually since 1969. The Association for Computing 
Machinery (ACM) publishes a newsletter devoted to AI called the 
SIGART Newsletter. In Britain, the Society for the Study of Artificial 
Intelligence and Simulation of Behavior publishes the AISB Quarterly 
and holds biannual summer conferences. The Canadian Society for 
Computational Studies of Intelligence (CSCSI/SCEIO) publishes an 
occasional newsletter. 

Some of the topics treated in this book assume some familiarity with 
the programming language LISP. For a readable introduction, see the 
book by Weissman (1967). Friedman (1974) is an entertaining pro
grammed instruction manual. For a more technical treatment, see the 
book by Allen (1978). 
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CHAPTER 1 

PRODUCTION SYSTEMS AND AI 

Most AI systems display a more or less rigid separation between the 
standard computational components of data, operations, and control. 
That is, if these systems are described at an appropriate level, one can 
often identify a central entity that might be called & global database that is 
manipulated by certain well-defined operations, all under the control of 
some global control strategy. We stress the importance of identifying an 
appropriate level of description; near the machine-code level, any neat 
separation into distinct components can disappear; at the top level, the 
complete AI system can consist of several database/operations/control 
modules interacting in a complex fashion. Our point is that a system 
consisting of separate database, operations, and control components 
represents an appropriate metaphorical building block for constructing 
lucid descriptions of AI systems. 

1.1. PRODUCTION SYSTEMS 

Various generalizations of the computational formalism known as a 
production system involve a clean separation of these computational 
components and thus seem to capture the essence of operation of many 
AI systems. The major elements of an AI production system are a. global 
database, a set of production rules, and a control system. 

The global database is the central data structure used by an AI 
production system. Depending on the application, this database may be 
as simple as a small matrix of numbers or as complex as a large, relational, 
indexed file structure. (The reader should not confuse the phrase "global 
database," as it is used in this book, with the databases of database 
systems.) 
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The production rules operate on the global database. Each rule has a 
precondition that is either satisfied or not by the global database. If the 
precondition is satisfied, the rule can be applied. Application of the rule 
changes the database. The control system chooses which applicable rule 
should be applied and ceases computation when a termination condition 
on the global database is satisfied. 

There are several differences between this production system structure 
and conventional computational systems that use hierarchically organ
ized programs. The global database can be accessed by all of the rules; no 
part of it is local to any of them in particular. Rules do not "call" other 
rules; communication between rules occurs only through the global 
database. These features of production systems are compatible with the 
evolutionary development of large AI systems requiring extensive 
knowledge. One difficulty with using conventional systems of hierarchi
cally organized programs in AI applications is that additions or changes 
to the knowledge base might require extensive changes to the various 
existing programs, data structures, and subroutine organization. The 
production system design is much more modular, and changes to the 
database, to the control system, or to the rules can be made relatively 
independently. 

We shall distinguish several varieties of production systems. These 
differ in the kinds of control systems they use, in properties of their rules 
and databases, and in the ways in which they are applied to specific 
problems. 

As a short example of what we mean by an AI production system, we 
shall illustrate how one is used to solve a simple puzzle. 

1.1.1. THE8-PUZZLE 

Many AI applications involve composing a sequence of operations. 
Controlling the actions of a robot and automatic programming are two 
examples. A simple and perhaps familiar problem of this sort, useful for 
illustrating basic ideas, is the 8-puzzle. The 8-puzzle consists of eight 
numbered, movable tiles set in a 3 X 3 frame. One cell of the frame is 
always empty thus making it possible to move an adjacent numbered tile 
into the empty cell—or, we could say, to move the empty cell. Such a 
puzzle is illustrated in Figure 1.1. Two configurations of tiles are given. 
Consider the problem of changing the initial configuration into the goal 

18 



PRODUCTION SYSTEMS 

configuration. A solution to the problem is an appropriate sequence of 
moves, such as "move tile 6 down, move tile 8 down, . . . , etc." 

To solve a problem using a production system, we must specify the 
global database, the rules, and the control strategy. Transforming a 
problem statement into these three components of a production system is 
often called the representation problem in AI. Usually there are several 
ways to so represent a problem. Selecting a good representation is one of 
the important arts involved in applying AI techniques to practical 
problems. 

For the 8-puzzle and certain other problems, we can easily identify 
elements of the problem that correspond to these three components. 
These elements are the problem states, moves, and goal. In the 8-puzzle, 
each tile configuration is a problem state. The set of all possible 
configurations is the space of problem states or the problem space. Many 
of the problems in which we are interested have very large problem 
spaces. The 8-puzzle has a relatively small space; there are only 362,880 
(that is, 9!) different configurations of the 8 tiles and the blank space. 
(This space happens to be partitioned into two disjoint subspaces of 
181,440 states each.) 

Once the problem states have been conceptually identified, we must 
construct a computer representation, or description, of them. This 
description is then used as the global database of a production system. 
For the 8-puzzle, a straightforward description is a 3 X 3 array or matrix 
of numbers. The initial global database is this description of the initial 
problem state. Virtually any kind of data structure can be used to 
describe states. These include symbol strings, vectors, sets, arrays, trees, 
and lists. Sometimes, as in the 8-puzzle, the form of the data structure 
bears a close resemblance to some physical property of the problem being 
solved. 
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Initial Goal 

Fig. 1.1 Initial and goal configurations for the 8-puzzle. 
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A move transforms one problem state into another state. The 8-puzzle 
is conveniently interpreted as having the following four moves: Move 
empty space (blank) to the left, move blank up, move blank to the right, 
and move blank down. These moves are modeled by production rules 
that operate on the state descriptions in the appropriate manner. The 
rules each have preconditions that must be satisfied by a state description 
in order for them to be applicable to that state description. Thus, the 
precondition for the rule associated with "move blank up" is derived 
from the requirement that the blank space must not already be in the top 
row. 

In the 8-puzzle, we are asked to produce a particular problem state, 
namely, the goal state shown in Figure 1.1. We can also deal with 
problems for which the goal is to achieve any one of an explicit list of 
problem states. A further generalization is to specify some true/false 
condition on states to serve as a goal condition. Then the goal would be to 
achieve any state satisfying this condition. Such a condition implicitly 
defines some set of goal states. For example, in the 8-puzzle, we might 
want to achieve any tile configuration for which the sum of the numbers 
labeling the tiles in the first row is 6. In our language of states, moves, and 
goals, a solution to a problem is a sequence of moves that transforms an 
initial state into a goal state. 

The problem goal condition forms the basis for the termination 
condition of the production system. The control strategy repeatedly 
applies rules to state descriptions until a description of a goal state is 
produced. It also keeps track of the rules that have been applied so that it 
can compose them into the sequence representing the problem solution. 

In certain problems, we want the solution to be subject to certain 
additional constraints. For example, we may want the solution to our 
8-puzzle problem having the smallest number of moves. In general we 
ascribe a cost to each move and then attempt to find a solution having 
minimal cost. These elaborations can easily be handled by methods we 
describe later on. 

1.1.2. THE BASIC PROCEDURE 

The basic production system algorithm for solving a problem like the 
8-puzzle can be written in nondeterministic form as follows: 
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Procedure PRODUCTION 

1 DA TA 4- initial database 

2 until DA TA satisfies the termination condition, do: 

3 begin 

4 select some rule, R, in the set of rules 
that can be applied to DA TA 

5 DA TA <- result of applying R to DA TA 

6 end 

1.13. CONTROL 

The above procedure is nondeterministic because we have not yet 
specified precisely how we are going to select an applicable rule in 
statement 4. Selecting rules and keeping track of those sequences of rules 
already tried and the databases they produced constitute what we call the 
control strategy for production systems. In most AI applications, the 
information available to the control strategy is not sufficient to permit 
selection of the most appropriate rule on every pass through step 4. The 
operation of AI production systems can thus be characterized as a search 
process in which rules are tried until some sequence of them is found that 
produces a database satisfying the termination condition. Efficient 
control strategies require enough knowledge about the problem being 
solved so that the rule selected in step 4 has a good chance of being the 
most appropriate one. 

We distinguish two major kinds of control strategies: irrevocable and 
tentative. In an irrevocable control regime, an applicable rule is selected 
and applied irrevocably without provision for reconsideration later. In a 
tentative control regime, an applicable rule is selected (either arbitrarily 
or perhaps with some good reason), the rule is applied, but provision is 
made to return later to this point in the computation to apply some other 
rule. 

We further distinguish two different types of tentative control regimes. 
In one, which we call backtracking, a backtracking point is established 
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when a rule is selected. Should subsequent computation encounter 
difficulty in producing a solution, the state of the computation reverts to 
the previous backtracking point, where another rule is applied instead, 
and the process continues. 

In the second type of tentative control regime, which we call 
graph-search control, provision is made for keeping track of the effects of 
several sequences of rules simultaneously. Various kinds of graph 
structures and graph searching procedures are used in this type of 
control. 

1.1.4. EXAMPLES OF CONTROL REGIMES 

1.1.4.1. Irrevocable. At first thought, it might seem that an irrevocable 
control regime would never be appropriate for production systems 
expected to solve problems requiring search. Trial-and-error methods 
seem to be inherent in solving puzzles, for example. One might argue that 
if a control strategy of a production system possessed sufficient know
ledge about a puzzle to select irrevocably an appropriate rule to apply to 
each state description, then it would have the puzzle's solution built into 
it and, if so, can hardly be said to have "solved" the puzzle, for it already 
knew the solution. Such an argument fails to acknowledge the distinction 
between the explicit local knowledge, about how to proceed toward a goal 
from any state, and the implicit global knowledge, of the complete 
solution. When infallible local knowledge is available, an irrevocable 
production system can use it to construct the explicit global knowledge of 
a solution (without having the explicit global knowledge originally). 

Outside of AI, one of the most common examples of the use of local 
knowledge to construct a global solution is in the "hill-climbing" process 
of finding the maximum of a function. At any point, we proceed in the 
direction of the steepest gradient (the local knowledge) to find eventually 
a maximum of the function (the global knowledge). For certain kinds of 
functions (those with a single maximum and certain other properties), 
knowledge of the direction of the steepest gradient is sufficient to find a 
solution. 

We can use the hill-climbing process directly in an irrevocable 
production system. We need only some real-valued function on the 
global databases. The control strategy uses this function to select a rule. It 
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selects (irrevocably) the applicable rule that produces a database giving 
the largest increase in the value of the function. Our hill-climbing 
function must be such that it attains its highest value for a database 
satisfying the termination condition. 

Applying hill-climbing to the 8-puzzle we might use, as a function of 
the state description, the negative of the number of tiles "out of place," as 
compared to the goal state description. For example, the value of this 
function for the initial state in Figure 1.1 is — 4, and the value for the goal 
state is 0. We can easily compute the value of this function for any state 
description. 

From the initial state, we achieve maximum increase in the value of 
this function by moving the blank up, so our production system selects 
the corresponding rule. In Figure 1.2 we show the sequence of states 
traversed by such a production system in solving this puzzle. The value of 
our hill-climbing function for each state description is circled. The figure 
shows that one of the rule applications along the path did not increase the 
value of our function. If none of the applicable rules permits an increase 
in the value of our function, a rule is selected (arbitrarily) that does not 
diminish the value. If there are no such rules, the process halts. 
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Fig. 1.2 Hill-climbing values for states of the 8-puzzle. 
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For the instance of the 8-puzzle in Figure 1.2, the hill-climbing 
strategy allowed us to find a path to a goal state. In general, however, 
hill-climbing functions can have multiple local maxima, which frustrates 
hill-climbing methods. For example, suppose the goal state is 

123 
74 

8 6 5 

and the initial state is 

125 
74 

8 6 3 

Any applicable rule applied to the initial state description lowers the 
value of our hill-climbing function. In this case the initial state descrip
tion is at a local (but not a global) maximum of the function. 

Other types of hill-climbing frustrations also occur: The process may 
get stuck on "plateaus" and "ridges." Of course, these difficulties could 
be solved if we could devise a better behaved hill-climbing func
tion—one that had just one global maximum and no plateaus, for 
example. Easily computable functions for problems of interest in AI 
typically have some of the difficulties we have mentioned. Thus, the use 
of hill-climbing methods to guide rule selection in irrevocable produc
tion systems is quite limited. 

Even though the control strategy cannot always select the best rule to 
apply at any stage, there are times where an irrevocable regime is 
appropriate. For example, if the application of what might turn out to be 
an inappropriate rule does not foreclose a subsequent application of an 
appropriate rule, nothing (other than making superfluous rule applica
tions) is risked by applying rules irrevocably. We shall see some examples 
of this possibility later. 

1.1.4.2. Backtracking. In many problems of interest, applying an 
inappropriate rule may prevent or substantially delay successful termi
nation. In these cases, we want a control strategy that can try a rule and, if 
it later discovers that this rule was inappropriate, can go back and try 
another one instead. 
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The backtracking process is one way in which the control strategy can 
be tentative. A rule is selected, and if it doesn't lead to a solution, the 
intervening steps are "forgotten," and another rule is selected instead. 
Formally, the backtracking strategy can be used regardless of how much 
or how little knowledge is available to bear on rule selection. If no 
knowledge is available, rules can be selected according to some arbitrary 
scheme. Ultimately, control will backtrack to select the appropriate rule. 
Obviously, if good rule-selection knowledge can be used, backing up to 
consider alternative rules will occur less often, and the whole process will 
be more efficient. 

As an example, let us apply the backtracking strategy to our 8-puzzle 
example of Figure 1.1 where rules are selected according to the arbitrary 
scheme of first attempting to move the blank square left, then up, then 
right, then down. Backing up will occur (a) whenever we generate a state 
description that already occurs on the path back to the initial state 
description, (b) whenever we have applied an arbitrarily set number of 
rules without having generated a goal state description, or (c) whenever 
there are no (more) applicable rules. In (b) above, the number chosen is 
the depth bound of this backtracking process. In Figure 1.3 we show a 
sequence of tentative rule applications and backups to illustrate how 
backtracking might be applied to the 8-puzzle. In Figure 1.3, each state 
description is labeled by a (circled) number to indicate its order in the 
sequence of state descriptions produced by the production system. We 
cannot depict the entire search for a solution in the figure; it is too 
extensive. Eventually though, a solution path will be found, because all 
possible paths (of length less than 6) will be explored. Note that if the 
depth bound is set too low, the process may not find a solution. 

The backtracking process is more efficient if rule selection is not 
arbitrary but is instead guided by information about what might be the 
best move. If this information is reasonably reliable, then the appropriate 
rule will usually be selected and there will be little need for backing up. In 
the 8-puzzle, for example, we might use a hill-climbing function as the 
means for selecting a rule. Whereas hill-climbing with an irrevocable 
control regime might get stuck on local maxima, backtracking allows 
alternative paths to be pursued. 

1.1.43. Graph Search. Graphs (or more specially, trees) are extremely 
useful structures for keeping track of the effects of several sequences of 
rules. We will be discussing these structures in much more detail in 
chapters 2 and 3, giving only a short example here of their use. 
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Fig. 1.3 A backtracking control strategy applied to the 8-puzzle. 

26 



PRODUCTION SYSTEMS 

Suppose we decide to use a graph-search control regime in solving the 
8-puzzle problem posed in Figure 1.1. We can keep track of the various 
rules applied and the databases produced by a structure called a search 
tree. An example of such a tree is in Figure 1.4. At the top or root of the 
tree is a description of the initial configuration. The various rules that can 
be applied correspond to links or directed arcs to descendant nodes, 
representing those states that can be reached by just one move from the 
initial state. A graph-search control strategy grows such a tree until a 
database is produced that satisfies the termination condition. 

In Figure 1.4, we show all applicable rules being applied to every state 
description. This sort of indecision on the part of the control system is 
usually grossly inefficient because the resulting tree grows too rapidly. An 
intelligent control strategy would grow a much narrower tree, using its 
special knowledge to focus the growth more directly toward the goal. We 
shall be discussing several methods for achieving such focusing in 
chapter 2. 

Even though we use graphs of this sort only with graph-search control 
regimes, it is useful to notice that an irrevocable control regime 
corresponds to following just a single path down through the search tree. 
(We have already seen that such a simple strategy can sometimes be 
usefully employed.) A backtracking regime does not maintain the entire 
search tree structure; it merely keeps track of the path that it is working 
on currently, modifying it when necessary. 

1.1.5. PROBLEMS OF REPRESENTATION 

Efficient problem solution requires more than an efficient control 
strategy. It requires selecting good representations for problem states, 
moves, and goal conditions. The representation of a problem has a great 
influence on the effort needed to solve it. Obviously one prefers 
representations with small state spaces. There are many examples of 
seemingly difficult puzzles that, when represented appropriately, have 
trivially small state spaces. Sometimes a given state space can be 
collapsed by recognizing that certain rules can be discarded or that rules 
can be combined to make more powerful ones. Even when such simple 
transformations cannot be achieved, it is possible that a complete 
reformulation of the problem (changing the very notion of what a state is, 
for example) will result in a smaller space. 
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PRODUCTION SYSTEMS 

The processes required to represent problems initially and to improve 
given representations are still poorly understood. It seems that desirable 
shifts in a problem's representation depend on experience gained in 
attempts to solve it in a given representation. This experience allows us to 
recognize the occurrence of simplifying notions, such as symmetries, or 
useful sequences of rules that ought to be combined into macro-rules. 
For example, an initial representation of the 8-puzzle might specify the 
32 rules corresponding to: move tile 1 left, move tile 1 right, move tile 1 
up, move tile 1 down, move tile 2 left, etc. Of course, most of these rules 
are never applicable to any given state description. After this fact 
becomes apparent to a problem solver, he would perhaps hit upon the 
better representation involving moving just the blank space. 

We shall next examine two more example problems to illustrate how 
they might be represented for solution by a production system. 

1.1.6. SOME EXAMPLE PROBLEM REPRESENTATIONS 

A wide variety of problems can be set up for solution by our 
production system approach. The formulations that we use in the 
following examples do not necessarily represent the only ways in which 
these problems can be solved. The reader may be able to think of good 
alternatives. 

1.1.6.1. A Traveling Salesman Problem. A salesman must visit each of 
the 5 cities shown in the map of Figure 1.5. There is a road between every 
pair of cities, and the distance is given next to the road. Starting at city A, 
the problem is to find a route of minimal distance that visits each of the 
cities only once and returns to A. 

D 

Fig. 1.5 A map for the traveling salesman problem. 
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Initial 
(A) 

(AB) 

A· 

Fig. 1.6 A search tree for the traveling salesman problem. 

To set up this problem we specify the following: 

The global database shall be a list of the cities 
visited so far. Thus the initial database is 
described by the list (A). We do not allow 
lists that name any city more than once, 
except that after all of the other cities have 
been named, A can be named again. 

The rules correspond to the decisions (a) go 
to city A next, (b) go to city B next, . . . , and 
(e) go to city E next. A rule is not applicable 
to a database unless it transforms it into some 
legal one. Thus the rule corresponding to "go 
to city A next" is not applicable to any list not 
already naming all of the cities. 

Any global database beginning and ending 
with A and naming all of the other cities 

30 

(AC) (AD) (AE) 

\ 
(ACD) 

• t · · 
/ \ / \ 6 M / \ 

I \ / 1 / \ / \ 

(ACDE) 

0 

l Ts I 
I \ i \ I \ 

I \ I \ I \ 
I \ I \ I \ 

i \ 
(ACDEB) 

/ 
(ACDEB A) 

Goal 
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satisfies the termination condition. Notice that 
we can use the distance chart of Figure 1.5 to 
compute the total distance for any trip. Any 
trip proposed as a solution must be of 
minimal distance. 

Figure 1.6 shows part of the search tree that might be generated by a 
graph-search control strategy in solving this problem. The numbers next 
to the edges of the tree are the increments of distance added to the trip by 
applying the corresponding rule. 

1.1.6.2. A Syntax Analysis Problem. Another problem we might want 
to solve using a production system approach is whether an arbitrary 
sequence of symbols is a sentence in a language; that is, could it have been 
generated by a grammar. Deciding whether a symbol string is a sentence 
is called the parsing problem, and production systems can be used to do 
parsing. 

Suppose we are given a simple context-free grammar that defines a 
language. As an example, let the grammar contain the following terminal 
symbols, 

of approves new president company sale the 

and the following non-terminal symbols, 

S NP VP PP P V DNP DET A N. 

The grammar is defined by the following rewrite rules: 

DNP VP -+ 
V DNP -+ 
P DNP -> 
of -» P 
approves —» 
DET NP -H> 
DNP PP -+ 

S 
VP 
PP 

V 
DNP 
DNP 

A NP -^ NP 
N -> NP 
new —> A 
president —> 
company —> 
sale —» N 
the -> DET 

N 
N 
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This grammar is too simple to be useful in analyzing most English 
sentences, but it could be expanded to make it a bit more realistic. 

Suppose we wanted to determine whether or not the following string of 
symbols is a sentence in the language: 

The president of the new company approves the sale 

To set up this problem, we specify the following: 

The global database shall consist of a string of 
symbols. The initial database is the given 
string of symbols that we want to test. 

The production rules are derived from the 
rewrite rules of the grammar. The right-hand 
side of a grammar rule can replace any 
occurrence of the left-hand side in a database. 
For example, the grammar rule 
DNP VP —» S is used to change any 
database containing the subsequence 
DNP VP to one in which this subsequence 
is replaced by S. A rule is not applicable if 
the database does not contain the left-hand 
side of the corresponding grammar rule. Also, 
a rule may be applicable to a database in 
different ways, corresponding to different 
occurrences of the left-hand side of the 
grammar rule in the database. 

Only that database consisting of the single 
symbol S satisfies the termination condition. 

Part of a search tree for this problem is shown in Figure 1.7. In this 
simple example, aside from different possible orderings of rule applica
tions, there is very little branching in the tree. 

1.1.7. BACKWARD AND BIDIRECTIONAL PRODUCTION 
SYSTEMS 

We might say that our production system for solving the 8-puzzle 
v/orkedforward from the initial state to a goal state. Thus, we could call it 
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di forward production system. We could also have solved the problem in a 
backward direction, by starting at the goal state, applying inverse moves, 
and working toward the initial state. Each inverse move would produce a 
subgoal state from which the immediately superordinate goal state could 
be reached by one forward move. A production system for solving the 
8-puzzle in this manner would merely reverse the roles of states and goals 
and would use rules that correspond to inverse moves. 

Setting up a backward-directed production system in the case of the 
8-puzzle is simple because the goal is described by an explicit state. We 
can also set up backward-directed production systems when the goal is 
described by a condition. We discuss this situation later, after introducing 
an appropriate language (predicate logic) for talking about goals de
scribed by conditions. 

Initial 

The president of the new company approves the sale 

I This sequence of rules replaces terminal 
! symbols by non-terminal symbols. 

DET N P DET A N V DET N 

i Another sequence produces 
| the following string: 

DNP P S 

lothing more can t >e 

DNP PP VP 

\ 1 

DNP VP ] 

1 
Π Goa 

Fig. 1.7 A search tree for the syntax analysis problem. 
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Although there is no formal difference between a production system 
that works on a problem in a forward direction and one that works in a 
backward direction, it is often convenient to make this distinction 
explicit. When a problem has intuitively clear states and goals and when 
we choose to employ descriptions of these states as the global database of 
a production system, we say that the system is a forward production 
system. Rules are applied to the state descriptions to produce new state 
descriptions, and these rules are called F-rules. If, instead, we choose to 
employ problem goal descriptions as the global database, we shall say 
that the system is a backward production system. Then, rules are applied 
to goal descriptions to produce subgoal descriptions, and these rules will 
be called B-rules. 

In the 8-puzzle, with a single initial state and a single goal state, it 
makes no difference whether the problem is solved in the forward or the 
backward direction. The computational effort is the same for both 
directions. There are occasions, however, when it is more efficient to solve 
a problem in one direction rather than the other. Suppose, for example, 
that there were a large number of explicit goal states and one initial state. 
It would not be very efficient to try to solve such a problem in the 
backward direction; we do not know a priori which goal state is "closest" 
to the initial state, and we would have to begin a search from all of them. 
The most efficient solution direction, in general, depends on the structure 
of the state space. 

It is often a good idea to attempt a solution to a problem searching 
bidirectionally (that is, both forward and backward simultaneously). We 
can achieve this effect with production systems also. To do so, we must 
incorporate both state descriptions and goal descriptions into the global 
database. F-rules are applied to the state description part, while B-rules 
are applied to the goal description part. In this type of search, the 
termination condition to be used by the control system (to decide when 
the problem is solved) must be stated as some type of matching condition 
between the state description part and the goal description part of the 
global database. The control system must also decide at every stage 
whether to apply an applicable F-rule or an applicable B-rule. 
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1.2. SPECIALIZED PRODUCTION SYSTEMS 

1.2.1. COMMUTATIVE PRODUCTION SYSTEMS 

Under certain conditions, the order in which a set of applicable rules is 
applied to a database is unimportant. When these conditions are satisfied, 
a production system improves its efficiency by avoiding needless explo
ration of redundant solution paths that are all equivalent except for rule 
ordering. 

In Figure 1.8 we have three rules, Rl, R2, and R3, that are applicable 
to the database denoted by SO. After applying any one of these rules, all 
three rules are still applicable to the resulting databases; after applying 
any pair in sequence, the three are still applicable. Furthermore, Figure 
1.8 demonstrates that the same database, namely SG, is achieved 
regardless of the sequence of rules applied in the set {Rl, R2, R3}. 

We say that a production system is commutative if it has the following 
properties with respect to any database D : 

(a) Each member of the set of rules applicable to D 
is also applicable to any database produced by 
applying an applicable rule to D. 

(b) If the goal condition is satisfied by Z), then it is also 
satisfied by any database produced by applying any 
applicable rule to D. 

(c) The database that results by applying to D any 
sequence composed of rules that are applicable to 
D is invariant under permutations of the sequence. 

The rule applications in Figure 1.8 possess this commutative property. 
In producing the database denoted by SG in Figure 1.8, we clearly need 
consider only one of the many paths shown. Methods for avoiding 
exploration of redundant paths are obviously of great importance for 
commutative systems. 

Note that commutativity of a system does not mean that the entire 
sequence of rules used to transform a given database into one satisfying a 
certain condition can be reordered. After a rule is applied to a database, 
additional rules might become applicable. Only those rules that are 
initially applicable to a database can be organized into an arbitrary 
sequence and applied to that database to produce a result independent of 
order. This distinction is important. 
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Fig. 1.8 Equivalent paths in a graph. 

Commutative production systems are an important subclass enjoying 
special properties. For example, an irrevocable control regime can always 
be used in a commutative system because the application of a rule never 
needs to be taken back or undone. Any rule that was applicable to an 
earlier database is still applicable to the current one. There is no need to 
provide a mechanism for applying alternative sequences of rules. 
Applying an inappropriate rule delays, but never prevents, termination; 
after termination, extraneous rules can be removed from the solution 
sequence. We have occasion later to investigate commutative systems in 
more detail. 

It is interesting to note that there is a simple way to transform any 
production system into a commutative one. Suppose we have already 
represented a problem for solution by a production system. Imagine that 
this production system has a global database, rules that can modify it, and 
a graph-search control strategy that generates a search tree of global 
databases. Now consider another production system whose global 
database is the entire search tree of the first. The rules of the new 
production system represent the various ways in which a search tree can 
be modified by the action of the control strategy of the first production 
system. Clearly, any rules of the second system that are applicable at any 
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stage remain applicable thereafter. The second system explicitly em
bodies in its commutative properties the nondeterministic tentativeness 
that we conferred upon the control strategy of the first system. Employ
ing this conversion results in a more complex global database and rule set 
and in a simpler sort of control regime (irrevocable). This change in 
representation simply shifts the system description to a lower level. 

1.2.2. DECOMPOSABLE PRODUCTION SYSTEMS 

Commutativity is not the only condition whose fulfillment permits a 
certain freedom in the order in which rules are applied. 

Consider, for example, a system whose initial database is (C,2?,Z), 
whose production rules are based on the following rewrite rules, 

Rl: C^>(D,L) 
R2: C-»(J?,M) 
R3: B->(M,M) 
R4: Ζ^(Β,Β,Μ) 

and whose termination condition is that the database contain only Ms. 

A graph-search control regime might explore many equivalent paths in 
producing a database containing only Ms. Two of these are shown in 
Figure 1.9. Redundant paths can lead to inefficiencies because the control 
strategy might attempt to explore all of them, but worse than this, in 
exploring paths that do not terminate successfully, the system may 
nevertheless do much useful work that ultimately is wasted. (Many of the 
rule applications in the right-hand branch of the tree in Figure 1.9 are 
ones needed in a solution.) 

One way to avoid the exploration of these redundant paths is to 
recognize that the initial database can be decomposed or split into 
separate components that can be processed independently. In our 
example, the initial database can be split into the components C, B, and 
Z. Production rules can be applied to each of these components 
independently (possibly in parallel); the results of these applications can 
also be split, and so on, until each component database contains only Ms. 

AI production systems often have global databases that are decom
posable in this manner. Metaphorically, we might imagine that such a 

37 



PRODUCTION SYSTEMS AND AI 

global database is a "molecule" consisting of individual "atoms" bound 
together in some way. If the applicability conditions of the rules involve 
tests on individual atoms only, and if the effects of the rules are to 
substitute a qualifying atom by some new molecule (that, in turn, is 
composed of atoms), then we might as well split the molecule into its 
atomic components and work on each part separately and independently. 
Each rule application affects only that component of the global database 
used to establish the precondition of the rule. Since some of the rules are 
being applied essentially in parallel, their order is unimportant. 

In order to decompose a database, we must also be able to decompose 
the termination condition. That is, if we are to work on each component 
separately, we must be able to express the global termination condition 
using the termination conditions of each of the components. The most 
important case occurs when the global termination condition can be 
expressed as the conjunction of the same termination condition for each 
component database. Unless otherwise stated, we shall always assume 
this case. 

nitial 

(Β,Μ,Β,Ζ) 

RS 
r 

(Μ,Μ,Μ,Β,Ζ) 

RS 
r 

(Μ,Μ,Μ,Μ,Μ,Ζ) 

R4 
'  ̂ ■ —' ' 

(Μ,Μ,Μ,Μ,Μ,Β,Β,Μ) J 
RS 

' 
(Μ,Μ,Μ,Μ,Μ,Μ,Μ,Β,Μ) 1 

R3 
Goal 

(Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,ΜΜ 

(C,B,B,B,M) 

R2 

(Β,Μ,Β,Β,Β,Μ) 

RS 

(Μ,Μ,Μ,Β,Β,Β,Μ) 

R3 

(D,L,B,Z) 

R3 \ 
(D,L,M,M,Z) 

R4 
r 

(D,L,M,M,B,B,M) 

R3 
1 1 

1 (D,L,M,M,M,M,B,M) 

R3 
< 1 

(D,L,M,MMMMMM) 

Fig. 1.9 Solution sequences for a rewriting problem. 
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Production systems that are able to decompose their global databases 
and termination conditions are called decomposable. The basic procedure 
for a decomposable production system might look something like the 
following: 

Procedure SPLIT 

1 DATA c initial database 

2 { Di } t- decomposition of DATA ; the individual Di are 
now regarded as separate databases 

3 until all { Di} satisfy the termination condition, do: 

4 begin 

5 select D* from among those { D i }  that do not 
satisfy the termination condition 

6 remove D* from { Di} 

7 select some rule R in the set of rules that can be 
applied to D* 

8 D c result of applying R to D* 

9 { di } f- decomposition of D 

10 append { d i }  to { D i }  

1 1  end 

The control strategy for SPLIT must select a component database, D*, in 
Step 5 and must select a rule, R, to apply in Step 7. Whatever the form of 
this strategy, in order to satisfy Step 3, it must ultimately select aZl the 
elements in { D i } .  For any D* selected, though, it need only select one 
applicable rule. 

Even though processing component databases in parallel is possible, 
we are typically interested in control strategies that process them in some 
serial order. There are two major ways to order the components: (a) the 
components can either be arranged in some fixed order at the time they 
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are generated, or (b) they can be dynamically reordered during process
ing. In the former mode, each component is processed to completion 
before processing begins on the next. Of course, when a production rule 
is applied to a component, a database may result that can itself be split. 
The components of this database are processed in order also. Typically, a 
backtracking strategy for making rule selections is used in conjunction 
with this fixed-order strategy for processing components. 

More flexible control strategies for decomposable production systems 
allow the component databases to be reordered dynamically as the 
processing unfolds. Structures called AND /OR graphs are useful for 
depicting the activity of production systems under this control regime. 
We show an example AND/OR tree for our rewrite problem in Figure 
1.10. Just as with ordinary graphs, an AND/OR graph consists of nodes 
labeled by global databases. Nodes labeled by compound databases have 
sets of successor nodes each labeled by one of the components. These 
successor nodes are called AND nodes because in order to process the 
compound database to termination, all of the component databases must 
be processed to termination. Sets of AND nodes are so indicated in our 
illustrations by a circular mark linking their incoming arcs. 

{M,M) 

ZL JSL 
M 

Fig. 1.10 An AND/OR tree for a rewriting problem. 
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Rules can be applied to component databases. Nodes labeled by these 
component databases have successor nodes labeled by the results of rule 
applications. These successor nodes are called OR nodes because in order 
to process a component database to termination, the database resulting 
from just one of the rule applications must be processed to termination. 

In Figure 1.10, any node corresponding to a component database 
satisfying the termination condition (in this case consisting of the symbol 
M) is enclosed in a double box. Such nodes are called terminal nodes. 
(We could also have drawn the tree of Figure 1.10 as a graph. For 
example, the database (M,M) occurs as four nodes in Figure 1.10, and 
these could have been collapsed into one.) 

A solution to this rewriting problem can be illustrated by a subgraph of 
the AND/OR graph. Such a solution subgraph is shown by darkened 
branches in Figure 1.10. It is a graph whose "tip nodes" correspond to 
databases that each satisfy the termination condition. We shall discuss 
strategies for searching AND/OR graphs to find solution graphs in 
chapter 3. 

We next discuss how decomposable production systems can be used on 
some example problems. 

1.2.2.1. Chemical Structure Generation. An important problem in 
organic chemistry involves determining the structure of a complex 
organic compound, given certain experimental data such as a mass 
spectrogram of a sample of the compound. A large AI system called 
DENDRAL can propose plausible structures for rather complex com
pounds. An important part of the DENDRAL system involves the 
generation of candidate structures, given the chemical formula of the 
compound. A full explanation of how these candidate structures are 
generated is beyond the scope of our present discussion, but we can give a 
brief description of how the process works for a simple hydrocarbon. 

The system for generating candidate structures can be viewed as a 
production system. The global database is a "partially structured" 
compound. The production system operates on this database to increase 
its degree of structure: Initially, the database describes no chemical 
structure and contains merely the chemical formula; at intermediate 
stages, the database describes some of the structure of the compound; at 
the end of the process, the database contains a representation of the 
entire structure of the compound. 
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We can use a decomposable production system for this problem 
because the databases are decomposable into segments, some of which 
are unstructured chemical formulas of part of the original compound. 
The production rules are "structure-proposing" rules that convert 
databases representing unstructured chemical formulas into databases 
representing partial structures. Any database that contains no unstruc
tured formulas satisfies the termination condition. 

Briefly, we can illustrate how the structure-proposing rules work by a 
simple example. Let us suppose that we are given the chemical formula 
CjH^. Our production system proposes some candidate structures for 
this compound. (Not all of the proposed structures will be chemically 
possible. At this stage of the process we are merely describing how we 
could generate structures that are plausible, given only simple valence 
bond considerations. The actual DENDRAL system drastically prunes the 
candidates by using other chemical knowledge as well as features of the 
mass spectrogram.) 

The initial database is simply the formula C5H7^. In this case, the rules 
propose the following partial structures: 

|C2H7| 

H 

I i H 

C = C 
| I | C 2 H 6 | 

H 

I H 

H — C — H 
I 

H 

H - C 

H 
j 

H — C — ( 
1 1 
H 

H - C 

: - H 

H 
I 
1 

:— c— 
1 
1 

H 

: - H 
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In the partial structures above, the formulas within vertical bars (| |) are 
unstructured. These can be split from the structured part of the database, 
and relevant structure-proposing rules can be applied to each of them 
independently. For example, the rules propose the following structure 
for the formula —\C2H51 : 

H H 
I I 

H—C—C — 
I I 

H H 

A partial AND/OR tree for our C5H12 problem is shown in Figure 
1.11. Each solution tree corresponds to a candidate structure. The one 
indicated by dark lines corresponds to the following structure: 

H H H H H 
I I I I I 

H—C —C — C — C — C —H (pentane) 
I I I I I 

H H H H H 

1.2.2.2. Symbolic Integration. In the problem of symbolic integration 
we want an automatic process that will accept any indefinite integral as 
input, say, fx sin 3x dx and deliver the answer 1/9 sin 3x — 1/3 x cos 3x 
as output. We allow a table containing such simple integral forms as: 

udu — — 
2 

sin udu — — cos u 

au du — au loga e 

etc. 

Solutions to symbolic integration problems can then be attempted by a 
production system that converts the given integral into expressions 
involving only instances of those integral forms given in the table. 

The production rules can be based on the integration by parts rule, the 
decomposition of an integral of a sum rule, and other transformation 
rules such as those involving algebraic and trigonometric substitutions. A 
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production rule based on integration by parts would transform the 
expression fu dv into the expression ufdv — fv du. If there is an option 
about which part of the original integrand is to be u and which is to be dv, 
then a separate rule instantiation covers each alternative. 

The decomposition rule states that the integral of a sum can be 
replaced by the sum of the integrands. Another rule, called the factoring 
rule, allows us to replace the expression fkf(x)dx by the expression 
kff(x)dx. Other rules are based on the processes shown in Figure 1.12. 

H 
I 

H - C - H 
I 

- C - H 
I 

H - C - H 
I 

H 

Terminal 

|C 2 H 5 | -

Rule" 

|C 2 H 5 | -

Rule 

^ ] 

Rul e > 

|C 2 H 5 | -

Ijr 

H 
1 

- c -
1 
H 

H H 
I I 

H - C - C -
I I 

H H 

Terminal 

Terminal 

Fig. 1.11 An AND/OR tree for a chemical structure problem. 
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Any expression involving the sum of integrals can be split into the 
separate integrals. Each of these can be processed separately, so we see 
that our production system is decomposable. 

The utility of these various rules depends strongly on the form of the 
integrand. In a symbolic integration system called SAINT (Slagle, 1963), 
the integrands were classified according to various features that they 
possessed. For each class of integrand, the various rules were selected 
according to their heuristic applicability. 

In Figure 1.13 we show an AND/OR tree that illustrates a possible 
search performed by a decomposable production system. The problem is 
to integrate 

- v2^5/2 (l - x*y 
-dx 

/£,-/■(«■—w) dz 

usingz2 = (2 + 3x)2/3 

Algebraic substitutions 

Example 

Trigonometric substitutions 

Example 

/
dx fS 4 

— -► / — cot 0 csc 0 dB using x = 7 tan 0 
JCV25JC 2 + 16 J 1 6 5 

Division of numerator by denominator 

Example 

Completing the square 

Example 

/
dx Ç dx 

(x2-4x+l3)2^J [ ( J C - 2 ) 2 + 9 ] 2 

Fig. 1.12 Examples of integration rules. 
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Jcoi-* yd y 

' 

\f-
z = cot y 

r 

dz 
z\\ +z2) 

\ f " ' 

1 r 

fdl 

z = tan y 

f— 
J 1 +z 

l 
dz 

Divide Numerator I by Denominator 

/(-1 + ' , + ίτ?)Λ 

fIìdz 

ί— 
J 1 +; 

J dw 

Fig. 1.13 An AND/OR tree for an integration problem. 
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The nodes of the tree represent expressions to be integrated. Expressions 
corresponding to basic integrals in an integral table satisfy the termina
tion condition and are enclosed in double boxes. The darkened arcs 
indicate a solution tree for this problem. From this solution tree and from 
the integrals obtained from the integral table, we compute the answer: 

arcsin x + - tan3 (arcsin x) — tan (arcsin x) 

1.3. COMMENTS ON THE DIFFERENT TYPES OF 
PRODUCTION SYSTEMS 

In summary, we shall be discussing two major types of AI production 
systems in this book, namely, the ordinary type, described by procedure 
PRODUCTION, and the decomposable type, described by procedure 
SPLIT. Depending on the way a problem is represented for solution by a 
production system, either of these types might be used in a forward or 
backward direction. They might be controlled by irrevocable or tentative 
control regimes. The taxonomy of production systems based on these 
distinctions will help greatly in organizing various AI systems and 
concepts into a coherent framework. 

It is important to note that we are drawing distinctions only between 
different kinds of AI systems; we are not making any distinctions between 
different kinds of problems. We shall see instances later in which the same 
problem can be represented and solved by entirely different kinds of 
systems. 

We will present many more examples of problem representation. 
Setting up global databases, rules, and termination conditions for any 
given problem is still a bit of an art and can best be taught by example. 
Since most of the examples used so far have been elementary puzzles and 
problems, the reader might well wonder whether production systems are 
really powerful enough to form the basis of intelligent systems. Later we 
shall consider some more realistic and difficult problems to show the 
broad utility of these organizations. 

Efficient AI systems require knowledge of the problem domain. We 
can naturally subdivide this knowledge into three broad categories 
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corresponding to the global database, the rules, and the control subdivi
sions of production systems. The knowledge about a problem that is 
represented in the global database is sometimes called declarative 
knowledge. In an intelligent information retrieval system, for example, 
the declarative knowledge would include the main database of specific 
facts. The knowledge about a problem that is represented in the rules is 
often called procedural knowledge. In intelligent information retrieval, 
the procedural knowledge would include general information that allows 
us to manipulate the declarative knowledge. The knowledge about a 
problem that is represented by the control strategy is often called the 
control knowledge. Control knowledge includes knowledge about a 
variety of processes, strategies, and structures used to coordinate the 
entire problem-solving process. The central problem considered in this 
book is how best to organize problem knowledge into its declarative, 
procedural, and control components for use by AI production systems. 
Our first concern, to be treated in some detail in the next two chapters, is 
with control—especially graph-searching control regimes. Then we move 
on to consider the uses of the predicate calculus in Artificial Intelligence. 

1.4. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

1.4.1. PRODUCTION SYSTEMS 

The term production system has been used rather loosely in AI, 
although it usually refers to more specialized types of computational 
systems than those discussed in this book. Production systems derive 
from a computational formalism proposed by Post (1943) that was based 
on string replacement rules. The closely related idea of a Markov 
algorithm [Markov (1954), Galler and Perlis (1970)] involves imposing an 
order on the replacement rules and using this order to decide which 
applicable rule to apply next. Newell and Simon (1972) use string-modi
fying production rules, with a simple control strategy, to model certain 
types of human problem-solving behavior [see also Newell (1973)]. 
Rychener (1976) proposes an AI programming language based on 
string-modifying production rules. 

Generalizations of these production system formalisms have been 
used in AI and called, variously, production systems, rule-based systems, 
blackboard systems, and pattern-directed inference systems. The volume 

48 



BIBLIOGRAPHICAL AND HISTORICAL REMARKS 

edited by Waterman and Hayes-Roth (1978) provides many examples of 
these sorts of systems [see also Hayes-Roth and Waterman (1977)]. A 
paper by Davis and King (1977) thoroughly discusses production systems 
in AL 

Our notion of a production system involves no restrictions on the form 
of the global database, the rules, or the control strategy. We introduce the 
idea of tentative control regimes to allow a form of controlled nondeter-
minism in rule application. Thus generalized, production systems can be 
used to describe the operation of many important AI systems. 

Our observation that rule application order can be unimportant in 
commutative and decomposable production systems is related to Church-
Rosser theorems of abstract algebra. [See, for example, Rosen (1973), and 
Ehrig and Rosen (1977,1980).] 

The notion of a decomposable production system encompasses a 
technique often called problem reduction in AI. [See Nilsson (1971).] The 
problem reduction idea usually involves replacing a problem goal by a 
set of subgoals such that if the subgoals are solved, the main goal is also 
solved. Explaining problem reduction in terms of decomposable pro
duction systems allows us to be indefinite about whether we are 
decomposing problem goals or problem states. Slagle (1963) used 
structures that he called AND/OR goal trees to deal with problem 
decomposition; Amarel (1967) proposed similar structures. Since then, 
AND/OR trees and graphs have been used frequently in AI. Additional 
references for AND/OR graph methods are given in chapter 3. 

The problem of finding good representations for problems has been 
treated by only a few researchers. Amarel (1968) has written a classic 
paper on the subject; it takes the reader through a series of progressively 
better representations for the missionaries-and-cannibals problem. [See 
Exercise 1.1.] Simon (1977) described a system called UNDERSTAND for 
converting natural language (English) descriptions of problems into 
representations suitable for problem solution. 

1.4.2. CONTROL STRATEGIES 

Hill-climbing is used in control theory and systems analysis as one 
method for finding the maximum {steepest ascent ) or minimum {steepest 
descent) of a function. See Athans et al. (1974, pp. 126ff) for a discussion. 
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In computer science, Golomb and Baumert (1965) suggested backtrack
ing as a selection mechanism. Various AI programming languages use 
backtracking as a built-in search strategy [Bobrow and Raphael (1974)]. 
The literature on heuristic graph searching is extensive; several refer
ences are cited in the next two chapters. 

1.43. EXAMPLE PROBLEMS 

Problem-solving programs have sharpened their techniques on a 
variety of puzzles and games. Some good general books of puzzles are 
those of Gardner (1959, 1961), who edits a puzzle column in Scientific 
American. Also see the books of puzzles by Dudeney (1958, 1967), a 
famous British puzzle inventor, a book of logical puzzles by Smullyan 
(1978), and a book on how to solve problems by Wickelgren (1974). The 
8-puzzle is a small version of the 15-puzzle, which is discussed by 
Gardner (1964, 1965a,b,c) and by Ball (1931, pp. 224-228). 

The traveling-salesman problem arises in operations research [see 
Wagner (1975), and Hillier and Lieberman (1974)]. A method for finding 
optimal tours has been proposed by Held and Karp (1970, 1971), and a 
method for finding "approximately" optimum tours has been proposed 
by Lin (1965). 

A good general reference on formal languages, grammars, and syntax 
analysis is Hopcroft and Ullman (1969). 

The technique for proposing chemical structures is based on the 
DENDRAL system of Feigenbaum et al. (1971). The symbolic integration 
example is based on the SAINT system of Slagle (1963). A more powerful 
symbolic integration system, SIN, was developed later by Moses (1967). 
Moses (1971) discusses the history of techniques for symbolic integra
tion. 

EXERCISES 

1.1 Specify a global database, rules, and a termination condition for a 
production system to solve the missionaries and cannibals problem: 
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Three missionaries and three cannibals come 
to a river. There is a boat on their side of the 
river that can be used by either one or two 
persons. How should they use this boat to 
cross the river in such a way that cannibals 
never outnumber missionaries on either side 
of the river? 

Specify a hill-climbing function over the global databases. Illustrate how 
an irrevocable control strategy and a backtracking control strategy would 
use this function in attempting to solve this problem. 

1.2 Specify a global database, rules, and a termination condition for a 
production system to solve the following water-jug problem: 

Given a 5-liter jug filled with water and an 
empty 2-liter jug, how can one obtain 
precisely 1 liter in the 2-liter jug? Water may 
either be discarded or poured from one jug 
into another; however, no more than the 
initial 5 liters is available. 

13 Describe how the rewrite rules of section 1.1.6. can be used in a 
production system that generates sentences. What is the global database 
and the termination condition for such a system? Use the system to 
generate five grammatical (even if not meaningful) sentences. 

1.4 My friend, Tom, claims to be a descendant of Paul Revere. Which 
would be the easier way to verify Tom's claim: By showing that Revere is 
one of Tom's ancestors or by showing that Tom is one of Revere's 
descendants? Why? 

1.5 Suppose a rule R of a commutative production system is applied to a 
database D to produce D'. Show that if R has an inverse, the set of rules 
applicable to D' is identical to the set of rules applicable to D. 

1.6 A certain production system has as its global database a set of 
integers. A database can be transformed by adding to the set the product 
of any pair of its elements. Show that this production system is 
commutative. 
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1.7 Describe how a production system can be used to convert a decimal 
number into a binary one. Illustrate its operation by converting 141. 

1.8 Critically discuss the following thesis: Backtracking (or depth-first 
graph-search) control strategies should be used when there are multiple 
paths between problem states because these strategies tend to avoid 
exploring all of the paths. 

1.9 In using a backtracking strategy with procedure SPLIT, should the 
selection made in step 5 be a backtracking point? Discuss. If step 5 is not a 
backtracking point, are there any differences between procedure SPLIT 
under backtracking and procedure PRODUCTION under backtracking? 
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CHAPTER 2 

SEARCH STRATEGIES FOR AI 
PRODUCTION SYSTEMS 

In this chapter we examine some control strategies for AI production 
systems. Referring to the basic procedure for production systems given 
on page 21, the fundamental control problem is to select an applicable 
rule to apply in step 4. For decomposable production systems (page 39), 
the control problem is to select a component database in step 5 and an 
applicable rule to apply in step 7. Other subsidiary but important tasks of 
the control system include checking rule applicability conditions, testing 
for termination, and keeping track of the rules that have been applied. 

An important characteristic of computations for selecting rules is the 
amount of information, or "knowledge," about the problem at hand that 
these computations use. At the uninformed extreme, the selection is 
made completely arbitrarily, without regard to any information about the 
problem at hand. For example, an applicable rule could be selected 
completely at random. At the informed extreme, the control strategy is 
guided by problem knowledge great enough for it to select a "correct" 
rule every time. 

The overall computational efficiency of an AI production system 
depends upon where along the informed/uninformed spectrum the 
control strategy falls. We can separate the computational costs of a 
production system into two major categories: rule application costs and 
control costs. A completely uninformed control system incurs only a 
small control strategy cost because merely arbitrary rule selection need 
not depend on costly computations. However, such a strategy results in 
high rule application costs because it generally needs to try a large 
number of rules to find a solution. To inform a control system completely 
about the problem domains of interest in AI typically involves a high-cost 
control strategy, in terms of the storage and computations required. 
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0 iςInformedness,, COMPLETE 

Fig. 2.1 Computational costs of ΛI production systems. 

Completely informed control strategies, however, result in minimal rule 
application costs; they guide the production system directly to a solution. 
These tendencies are shown informally in Figure 2.1. 

The overall computational cost of an AI production system is the 
combined rule application cost and control strategy cost. Part of the art of 
designing efficient AI systems is deciding how to balance these two costs. 
In any given problem, optimum production system efficiency might be 
obtained from less than completely informed control strategies. (The cost 
of a completely informed strategy may simply be too high.) 

Another important aspect of AI system design involves the use of 
techniques that allow the control strategy to use a large amount of 
problem information without incurring excessive control costs. Such 
techniques help to decrease the slope of the control strategy cost curve of 
Figure 2.1, lowering the overall cost of the production system. 

The behavior of the control system as it makes rule selections can be 
regarded as a search process. Some examples of the ways in which the 
control system might search for a solution were given in chapter 1. There, 
we discussed the hill-climbing method of irrevocable rule selection, 
exploring a surface for a maximum, and the backtracking and graph-
search regimes, search processes that permitted tentative rule selection. 
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Our main concern in the present chapter is tentative control regimes, 
even though the irrevocable ones have important applications, especially 
with commutative production systems. Some of the search methods that 
we develop for tentative control regimes can be adapted for use with 
certain types of commutative production systems using irrevocable 
control regimes. We begin our discussion of tentative control by 
describing backtracking methods. 

2.1. BACKTRACKING STRATEGIES 

In chapter 1 we presented a general description of the backtracking 
control strategy and illustrated its use on the 8-puzzle. For problems 
requiring only a small amount of search, backtracking control strategies 
are often perfectly adequate and efficient. Compared with graph-search 
control regimes, backtracking strategies are typically simpler to imple
ment and require less storage. 

A simple recursive procedure captures the essence of the operation of a 
production system under backtracking control. This procedure, which we 
call BACKTRACK, takes a single argument, DA TA, initially set equal to 
the global database of the production system. Upon successful termina
tion, the procedure returns a list of rules, that, if applied in sequence to 
the initial database, produces a database satisfying the termination 
condition. If the procedure halts without finding such a list of rules, it 
returns FAIL. The BACKTRACK procedure is defined as follows: 

Recursive procedure B ACKTRACK( DA TA ) 

1 if TERM(DATA\ return NIL; TERM is a 
predicate true for arguments that satisfy 
the termination condition of the production 
system. Upon successful termination, NIL, 
the empty list, is returned. 

2 ifDEADEND(/X47M), return FAIL; DEADEND 
is a predicate true for arguments that are 
known not to be on a path to a solution. In 
this case, the procedure returns the symbol 
FAIL. 
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3 RULES*- APPRULES(DATA); APPRULES is a 
function that computes the rules applicable to 
its argument and orders them (either arbitrarily 
or according to heuristic merit). 

4 LOOP: if NVLL(RULES\ return FAIL; 
if there are no (more) rules to apply, the 
procedure fails. 

5 fl<-FIRST(RULES); the best of the applicable 
rules is selected. 

6 RULES <-TAlL(RULES); the list of applicable 
rules is diminished by removing the one just 
selected. 

7 RDA TA 4- R( DA TA ); rule R is applied to 
produce a new database. 

8 PATH*- B ACKTRACK( RDA TA ); BACKTRACK is 
called recursively on the new database. 

9 ii PATH = FAIL, go LOOP; if the 
recursive call fails, try another rule. 

10 return CONS(R, PATH); otherwise, pass the 
successful list of rules up, by adding R 
to the front of the list. 

We can make several comments about this procedure. First, it 
terminates successfully (in step 1) only if it produces a database satisfying 
the termination condition. The list of rules used in producing this 
database is built up in step 10. Unsuccessful terminations can occur in 
steps 2 and 4. When an unsuccessful termination occurs within a 
recursive call, the procedure backtracks to a higher level. Step 2 performs 
a test to check whether or not a solution is even possible from the 
database in question. In step 4, the procedure fails if it has already tried 
all applicable rules. 

Procedure BACKTRACK may never terminate; it may generate new 
nonterminal databases indefinitely or it may cycle. Both of these cases 
can be arbitrarily prevented by imposing a depth bound on the recursion. 
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Any recursive call fails when its depth exceeds this bound. Cycling can be 
more straightforwardly prevented by maintaining a list of the databases 
produced so far and by checking new ones to see that they do not match 
any on the list. Later we present a slightly more complicated procedure 
that makes these tests. 

In step 3, the procedure orders the rules that are applicable to the 
database in question. Here, any available heuristic information about the 
problem domain is used. Those rules that are "guessed," using the 
heuristic information, most appropriate for that database occur early in 
the ordering. The applicable rules can be ordered arbitrarily if no 
ordering information is available, although, in that case, extensive 
backtracking may cause the procedure to be prohibitively inefficient. By 
definition, if a "correct" rule is always first in the ordering, no backtrack
ing will occur at all. 

We have used a specific procedure, BACKTRACK, to explain how 
backtracking control strategies operate. Several practical concerns—such 
as the need to avoid recopying large, complex global databases—would 
dictate implementations of the backtracking strategy that are more 
efficient than the procedure given here. 

Another illustrative example of how the backtracking strategy is 
applied to a simple problem is perhaps useful. Suppose we are given the 
problem of placing 4 queens on a 4 X 4 chess board so that none can 
capture any other. For our global database, we use a 4 X 4 array with 
marked cells corresponding to squares occupied by queens. The termi
nation condition, expressed by the predicate TERM, is satisfied for a 
database if and only if it has precisely 4 queen marks and the marks 
correspond to queens located so that they cannot capture each other. 

There are many alternative formulations possible for the production 
rules. A useful one for our purposes involves the following rule schema, 
for 1 < i,j < 4: 

Ru 

Precondition: 
i = l : There are no queen marks in the array. 
1 < / < 4: There is a queen mark in row / — 1 

of the array. 
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Effect: 
Puts a queen mark in row i, column y of the array. 

Thus, the first queen mark added to the array must be in row 1, the 
second must be in row 2, etc. 

To use the BACKTRACK procedure to solve the 4-queens problem, 
we have still to specify both the predicate DEADEND and an ordering 
relation for applicable rules. Suppose we arbitrarily say that R{j is ahead 
of Rik in the ordering only when/ < k. The predicate DEADEND might 
be defined so that it is satisfied for databases where it is obvious that no 
solution is possible; for example, certainly no solution is possible for any 
database containing a pair of queen marks in mutually capturing 
positions. (The reader is encouraged to try working through BACK
TRACK by hand using this simple test for DEADEND.) Altogether, the 
algorithm backtracks 22 times before finding a solution; even the very 
first rule applied must ultimately be taken back. 

A more efficient algorithm (with less backtracking) can be obtained if 
we use a more informed rule ordering. One simple, but useful ordering 
for this problem involves using the function diag(i,j), defined to be the 
length of the longest diagonal passing through cell (ij). Let R{j be ahead 
of Rmn in the ordering if diag(ij) < diag(m,n). (For equal values of 
diag, use the same order as before.) Using this ordering relation, the rules 
that are applicable to the initial database would be ordered as follows: 
(R12,R139R11,Rn)' The reader might verify that this ordering scheme 
solves the 4-queens problem with only 2 backtracks. 

As previously mentioned, we need a slightly more complex algorithm 
to avoid cycles. All databases on a path back to the initial one must be 
checked to insure that none are revisited. In order to implement this 
backtracking strategy as a recursive procedure, the entire chain of 
databases must be an argument of the procedure. Again, practical 
implementations of AI backtracking production systems use various 
techniques to avoid the need for explicitly listing all of these databases in 
their entirety. 

Let us call our cycle-avoiding algorithm BACKTRACK1. It takes a list 
of databases as its argument; when first called, this list contains the initial 
database as its single element. Upon successful termination, BACK-
TRACK1 returns a sequence of rules that can be applied to the initial 
database to produce one that satisfies the termination condition. The 
BACKTRACKl algorithm is defined as follows: 
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Recursive procedure BACKTRACK1( DA TA LIST) 

1 DATA «- FIRST(DATALIST); DATALIST 
is a list of all databases on a path back 
to the initial one. DA TA is the most 
recent one produced. 

2 if MEMBER( DA TA, T AIL( DA TA LIST)), return 
FAIL; the procedure fails if it revisits 
an earlier database. 

3 if TERM(DATA),return NIL 

4 if DEADEND( DA TA ), return FAIL 

5 if LENGTH( DA TA LIST) > BOUND, return 
FAIL; the procedure fails if too many 
rules have been applied. BOUND is a global 
variable specified before the procedure is 
first called. 

6 RULES <- APPRULES(£M7V1) 

7 LOOP: if NULL(Äi/L£S), return FAIL 

8 R <- FIRST(RULES) 

9 RULES *-TAlL(RULES) 

10 RDATA*-R(DATA) 

11 ÄDv4rv4L/Sr^CONS(ÄZ)/ir^ö,4ry4L/.ST); the 
list of databases visited so far is extended 
by adding RDATA. 

12 PATH*- BACKTRACK1( RDA TA LIST) 

13 if PA TH = FAIL, go LOOP 

14 return CONS(R, PATH) 
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The 8-puzzle example of backtracking in chapter 1 used BOUND = 7 
and also checked to see if a tile configuration had been visited previously. 
Note that the recursive algorithm does not remember all databases that it 
visited previously. Backtracking involves "forgetting" all databases 
whose paths lead to failures. The algorithm remembers only those 
databases on the current path back to the initial one. 

The backtracking strategies just described "fail back" one level at a 
time. If a level n recursive call of BACKTRACK fails, control returns to 
level n — 1 where another rule is tried. But sometimes the reason, or 
blame, for the failure at level n can be traced to rule choices made many 
levels above. In these cases it would be obviously futile to try another rule 
choice at level n — 1 ; predictably, any such choice there would again lead 
to a failure. What is needed, then, is a way to jump several levels at a time, 
all the way back to one where a different rule choice will make a useful 
difference. 

To see an example of this multilevel backtracking phenomenon, 
consider using BACKTRACK to solve the 8-queens problem. In this 
problem, we must place 8 queens on an 8 X 8 board so that none of them 
can capture any others. 

Suppose we are at a stage of the algorithm in which the database just 
produced is illustrated by the array in Figure 2.2. (In fact, the BACK
TRACK algorithm would produce precisely this array using the arbitrary 
rule ordering that we originally discussed.) The algorithm must now 
attempt to place a queen in row 6. Note that no cell in row 6 is 
satisfactory; each attempt to place a queen in that row would fail. In such 
a circumstance, BACKTRACK would attempt to relocate the queen in 
row 5, moving it eventually to column 8. But a more detailed analysis of 
the reasons for the row-6 failures would reveal that all of them would 
have still occurred regardless of the position of the queen in row 5. The 
row-6 failures were predestined by the positions of the first 4 queens. 
Therefore, since there is no point in relocating queen 5, we can jump over 
one recursive level, back to the point where we were selecting row-4 
locations. Some AI systems have used backtracking strategies that are 
able to analyze failures in this manner and to back up to the appropriate 
point. 
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Fig. 2.2 Queen positions during a stage 0/BACKTRACK. 

2.2. GRAPH-SEARCH STRATEGIES 

In backtracking strategies, the control system effectively forgets any 
trial paths that result in failures. Only the path currently being extended 
is stored explicitly. A more flexible procedure would involve the explicit 
storage of all trial paths so that any of them could be candidates for 
further extension. 

For example, in Figure 2.3 we show an initial database, DB1, to which 
rules Rl and R2, say, are applicable; suppose the control system selects 
and applies Rl producing database DB2; then suppose the control 
system selects applicable rule R3 and applies it to DB2, to produce DB3 ; 
and at this point, suppose the control system decides that this path is not 
promising and backs up to apply rule R2 to DB1, to produce database 
DB4. As stated, a backtracking strategy would erase the records of DB2 
and DBS. But if the control system were to maintain this record, then, 
should a path through DB4 ultimately prove futile, it could resume work 
immediately from either DB2 or DB3. In order to achieve this sort of 
flexibility, a control system must keep an explicit record of a graph of 
databases linked by rule applications. We say that control systems that 
operate in this manner use graph-search strategies. 
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In our discussions of graph-search strategies, we speak as if the various 
databases produced by rule applications are actually represented, each in 
its entirety, as nodes in a graph or tree. Because these databases are 
usually very large structures, it would be impractical to store each of them 
explicitly. Fortunately, there are ways in which the effect of explicit 
storage of all of the databases can be achieved, by explicitly storing just 
the initial database and records of incremental changes from which any 
of the other databases can rapidly be computed. 

2.2.1. GRAPH NOTATION 

We can think of a graph-search control strategy as a means of finding a 
path in a graph from a node representing the initial database to one 
representing a database that satisfies the termination condition of the 
production system. Graph-searching algorithms are thus of special 
interest to us. Before describing these algorithms, we first review some 
graph-theory terminology. 

A graph consists of a (not necessarily finite) set of nodes. Certain pairs 
of nodes are connected by arcs, and these arcs are directed from one 
member of the pair to the other. Such a graph is called a directed graph. 
For our purposes, the nodes are labeled by databases, and the arcs are 
labeled by rules. If an arc is directed from node n{ to node nh then node 
nj is said to be SL successor of node n{, and node n{ is said to be a parent of 
node nj. In the graphs that are of interest to us, a node can have only a 
finite number of successors. (Our production systems have only a finite 
number of applicable rules.) A pair of nodes may be successors of each 
other; in this case the pair of directed arcs is sometimes replaced by an 
edge. 

Ri 

DB1 

DB2 

R3 
r 

DB3 

s R2 

DB4 

Fig. 2.3 A tree of databases. 
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A tree is a special case of a graph in which each node has at most one 
parent. A node in the tree having no parent is called a root node. A node 
in the tree having no successors is called a tip node. We say that the root 
node is of depth zero. The depth of any other node in the tree is defined to 
be the depth of its parent plus 1. 

A sequence of nodes (nu,ni2,.. .,nik), with each ηυ a successor of 
nu-i f°TJ — 2,.. .,&, is called a, path of length k from node nu to node 
nik. If a path exists from node n{ to node njf then node nf is said to be 
accessible from node n%. Node AZ, is then a descendant of node 7ΐ4, and 
node n% is an ancestor of node /i,. We see that the problem of finding a 
sequence of rules transforming one database into another is equivalent to 
the problem of finding a path in a graph. 

Often it is convenient to assign positive costs to arcs, to represent the 
cost of applying the corresponding rule. We use the notation c(ni9nj) to 
denote the cost of an arc directed from node nx to node n,. It will be 
important in some of our later arguments to assume that these costs are 
all greater than some arbitrarily small positive number, e. The cost of a 
path between two nodes is then the sum of the costs of all of the arcs 
connecting the nodes on the path. In some problems, we want to find that 
path having minimal cost between two nodes. 

In the simplest type of problem, we desire to find a path (perhaps 
having minimal cost) between a given node s, representing the initial 
database and another given node t9 representing some other database. 
The more usual situation, though, involves finding a path between a node 
s and any member of a set of nodes {t%} that represent databases 
satisfying the termination condition. We call the set {t{} the goal set, and 
each node t in {t {} is a goal node. 

A graph may be specified either explicitly or implicitly. In an explicit 
specification, the nodes and arcs (with associated costs) are explicitly 
given by a table. The table might list every node in the graph, its 
successors, and the costs of the associated arcs. Obviously, an explicit 
specification is impractical for large graphs and impossible for those 
having an infinite set of nodes. 

In our applications, the control strategy generates (makes explicit) part 
of an implicitly specified graph. This implicit specification is given by the 
start node, s, representing the initial database, and the rules that alter 
databases. It will be convenient to introduce the notion of a successor 
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operator that is applied to a node to give all of the successors of that node 
(and the costs of the associated arcs). We call this process of applying the 
successor operator to a node, expanding the node. The successor operator 
depends in an obvious way on the rules. Expanding s, the successors of s, 
ad infinitum, makes explicit the graph that is implicitly defined by s and 
the successor operator. A graph-search control strategy, then, can be 
viewed as a process of making explicit a portion of an implicit graph 
sufficient to include a goal node. 

2.2.2. A GENERAL GRAPH-SEARCHING PROCEDURE* 

The process of explicitly generating part of an implicitly defined graph 
can be informally defined as follows. 

Procedure GRAPHSEARCH 

1 Create a search graph, G, consisting solely of the 
start node, s. Put s on a list called OPEN. 

2 Create a list called CLOSED that is initially empty. 

3 LOOP: if OPEN is empty, exit with failure. 

4 Select the first node on OPEN, remove it from OPEN, 
and put it on CLOSED. Call this node n. 

5 If n is a goal node, exit successfully with the solution 
obtained by tracing a path along the pointers from 
n to s in G. (Pointers are established in step 7.) 

6 Expand node n, generating the set, M, of its successors 
and install them as successors of n in G. 

7 Establish a pointer to n from those members of M that 
were not already in G (i.e., not already on either 
OPEN or CLOSED). Add these members of M to 
OPEN. For each member of M that was already on 
OPEN or CLOSED, decide whether or not to redirect 
its pointer to n. (See text.) For each member of 

*Note added to the fourth and subsequent printings of this book: Step 6 of the graph-searching 
procedure described in this section has been changed slightly to correct an error kindly pointed 
out to the author by Maurice Karnaugh of IBM. 
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M already on CLOSED, decide for each of its 
descendants in G whether or not to redirect its 
pointer. (See text.) 

8 Reorder the list OPEN, either according to some 
arbitrary scheme or according to heuristic merit. 

9 Go LOOP 

This procedure is sufficiently general to encompass a wide variety of 
special graph-searching algorithms. The procedure generates an 
explicit graph, G, called the search graph and a subset, T, of G called 
the search tree. Each node in G is also in T. The search tree is defined by 
the pointers that are set up in step 7. Each node (except s) in G has a 
pointer directed to just one of its parents in G, which defines its unique 
parent in T. Each possible path to a node discovered by the algorithm is 
preserved explicitly in G; a single distinguished path to any node is 
defined by T. Roughly speaking, the nodes on OPEN are the tip nodes of 
the search tree, and the nodes on CLOSED are the nontip nodes. More 
precisely, at step 3 of the procedure, the nodes on OPEN are those (tip) 
nodes of the search tree that have not yet been selected for expansion. 
The nodes on CLOSED are either tip nodes selected for expansion that 
generated no successors in the search graph or nontip nodes of the 
search tree. 

The procedure orders the nodes on OPEN in step 8 so that the "best" 
of these is selected for expansion in step 4. This ordering can be based on 
a variety of heuristic ideas (discussed below) or on various arbitrary 
criteria. Whenever the node selected for expansion is a goal node, the 
process terminates successfully. The successful path from start node to 
goal node can then be recovered (in reverse) by tracing the pointers back 
from the goal node to s. The process terminates unsuccessfully whenever 
the search tree has no remaining tip nodes that have not yet been selected 
for expansion. (Some nodes may have no successors at all, so it is possible 
for the list OPEN, ultimately, to become empty.) In the case of 
unsuccessful termination, the goal node(s) must have been inaccessible 
from the start node. 

Step 7 of the procedure requires some additional explanation. If the 
implicit graph being searched was a tree, we could be sure that none of 
the successors generated in step 6 had been generated previously: Every 
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node (except the root node) of a tree is the successor of only one node and 
thus is generated once only when its unique parent is expanded. Thus, in 
this special case, the members of M in steps 6 and 7 are not already on 
either OPEN or CLOSED. In this case, each member of M is added to 
OPEN and is installed in the search tree as a successor ofn. The search 
graph is the search tree throughout the execution of the algorithm, and 
there is no need to change parents of the nodes in T. 

If the implicit graph being searched is not a tree, it is possible that some 
of the members of M have already been generated, that is, they may 
already be on OPEN or CLOSED. The problem of determining whether 
a newly generated database is identical to one generated before can be 
computationally expensive. For this reason, some search processes avoid 
making this test, with the result that the search tree may contain several 
nodes labeled by the same database. Node repetitions, of course, lead to 
redundant successor computations. Hence, there is a tradeoff between 
the computational cost of testing for matching databases and the 
computational cost of generating a larger search tree (containing multiple 
nodes labeled by identical databases). In steps 6 and 7 of procedure 
GRAPHSEARCH, we are assuming that it is worthwhile to test for node 
identities. 

When the search process generates a node that it had generated before, 
it finds a (perhaps better) path to it other than the one already recorded in 
the search tree. We desire that the search tree preserve the least costly 
path found so far from s to any of its nodes. (The cost of a path from s to n 
in the search tree can be computed by summing the arc costs encountered 
in the tree while tracing back from n to s. In problems for which no arc 
costs are given, we assume that the arcs have unit cost.) When a newly 
found path is less costly than an older one, the search tree is adjusted by 
changing the parentage of the regenerated node to its more recent parent. 

If a node n on CLOSED has its parentage in T changed, a less costly 
path has been found to n. The less costly path may be part of less costly 
paths to some of the successors of n in the search graph, G; in this case, 
a change might be in order to the parentage in T of the successors of n 
in G. Because G is finite, the process of propagating the costs of the new 
paths downward to the successors of n in G is straightforward and 
finite. After this computation, the search tree is adjusted to record these 
paths, if appropriate. 

A simple example will serve to show how such search tree adjustments 
are accomplished. Suppose a search process has generated the search 
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graph and search tree shown in Figure 2.4. The dark arrows along certain 
arcs in this search graph are the pointers that define parents of nodes in 
the search tree. The solid nodes are on CLOSED, and the other nodes are 
on OPEN at the time the algorithm selects node 1 for expansion. (We 
assume unit arc costs.) When node 1 is expanded, its single successor, 
node 2, is generated. But node 2, with parent node 3 in the search tree, 
had previously been generated, and node 2 is also on CLOSED with 
successor nodes 4 and 5. Note, however, that node 4's parent in the search 
tree is node 6, because the shortest (least costly) path from s to node 4 in 
the search graph is through node 6. Since the algorithm now discovers a 
path to node 2 through node 1 that is less costly than the previous path 
through node 3, the parent of node 2 in the search tree is changed from 
node 3 to node 1. The costs of the paths to the descendants of node 2 in 
the search graph (namely, the paths to nodes 4 and 5) are recomputed. 
These costs are now also lower than before, with the result that the parent 
of node 4 is changed from node 6 to node 2. The adjusted search tree is 
defined by the pointers on the arcs of the search graph of Figure 2.5. 

As described, the GRAPHSEARCH algorithm generates all of the 
successors of a node at once. It is possible to modify the algorithm so that 
a node is selected for expansion and successors are generated one at a 
time [see, for example, Michie and Ross (1970)]. The modified algorithm 
does not put a node on CLOSED until all of its successors have been 
generated. Since the process of applying rules to a database to produce 
new databases is typically computationally expensive, the modified 
algorithm is often preferable even though it is slightly more difficult to 
describe. To facilitate explaining some general properties of graph-
searching procedures, we continue to use that version of the algorithm in 
which all successors are generated simultaneously. 

Fig. 2.4 A search graph and search tree before expanding node I. 
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'4 ~ 5 

Fig. 2.5 A search graph and search tree after expanding node 1. 

2.3. UNINFORMED GRAPH-SEARCH 
PROCEDURES 

If no heuristic information from the problem domain is used in 
ordering the nodes on OPEN, some arbitrary scheme must be used in 
step 8 of the algorithm. The resulting search procedure is called 
uninformed. In AI, we are typically not interested in uninformed 
procedures, but we describe two types here for purposes of comparison: 
depth-first search and breadth-first search. 

The first type of uninformed search orders the nodes on OPEN in 
descending order of their depth in the search tree. The deepest nodes are 
put first in the list. Nodes of equal depth are ordered arbitrarily. The 
search that results from such an ordering is called depth-first search 
because the deepest node in the search tree is always selected for 
expansion. To prevent the search process from running away along some 
fruitless path forever, a depth bound is provided. No node whose depth 
in the search tree exceeds this bound is ever generated. (The process can 
be made to terminate virtually as soon as a goal node is generated by 
putting goal nodes at the very beginning of OPEN ; but, of course, this 
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procedure would involve a goal test during step 8 of GRAPHSEARCH. 
If the result is saved, then the goal test in step 5 need only look up the 
result instead of repeating a possibly costly computation.) 

The depth-first procedure generates new databases in an order similar 
to that generated by an uninformed backtracking control strategy. The 
correspondence would be exact if the graph-search process generated 
only one successor at a time. Usually, the backtracking implementation is 
preferred to the depth-first version of GRAPHSEARCH because back
tracking is simpler to implement and involves less storage. (Backtracking 
strategies save only one path to a goal node; they do not save the entire 
record of the search as do depth-first graph-search strategies.) 

The search tree generated by a depth-first search process in an 8-puzzle 
problem is illustrated in Figure 2.6. The nodes are labeled with their 
corresponding databases and are numbered in the order in which they 
are selected for expansion. We assume a depth bound of five. The dark 
path shows a solution involving five rule applications. We see that a 
depth-first search process progresses along one path until it reaches the 
depth bound, then it begins to consider alternative paths of the same 
depth, or less, that differ only in the last step; then those that differ in the 
last two steps; etc. 

The second type of uninformed search procedure orders the nodes on 
OPEN in increasing order of their depth in the search tree. (Again, to 
promote earlier termination, goal nodes should be put immediately at the 
very beginning of OPEN.) The search that results from such an ordering 
is called breadth-first because expansion of nodes in the search tree 
proceeds along "contours" of equal depth. In Figure 2.7, we show the 
search tree generated by a breadth-first search in the 8-puzzle problem. 
The numbers next to each node indicate the order in which nodes are 
selected for expansion. Note that the goal node is selected immediately 
after it is generated. 

Later we show that breadth-first search is guaranteed to find a 
shortest-length path to a goal node, providing a path exists at all. (If no 
path exists, the method will exit with failure for finite graphs or will never 
terminate for infinite graphs.) 
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2.4. HEURISTIC GRAPH-SEARCH PROCEDURES 

The uninformed search methods, whether breadth-first or depth-first, 
are exhaustive methods for finding paths to a goal node. In principle, 
these methods provide a solution to the path-finding problem, but they 
are often infeasible to use to control AI production systems because the 
search expands too many nodes before a path is found. Since there are 
always practical limits on the amount of time and storage available to 
expend on the search, more efficient alternatives to uninformed search 
must be found. 

For many tasks it is possible to use task-dependent information to help 
reduce search. Information of this sort is usually called heuristic informa
tion, and search procedures using it are called heuristic search methods. It 
is often possible to specify heuristics that reduce search effort (below that 
expended by, say, breadth-first search) without sacrificing the guarantee 
of finding a minimal length path. Some heuristics greatly reduce search 
effort but do not guarantee finding minimal cost paths. In most practical 
problems, we are interested in minimizing some combination of the cost 
of the path and the cost of the search required to obtain the path. 
Furthermore, we are usually interested in search methods that minimize 
this combination averaged over all problems likely to be encountered. If 
the averaged combination cost of search method 1 is lower than the 
averaged combination cost of search method 2, then search method 1 is 
said to have more heuristic power than search method 2. Note that 
according to our definition, it is not necessary (though it is a common 
misconception) that a search method with more heuristic power give up 
any guarantee for finding a minimal cost path. 

Averaged combination costs are never actually computed, both be
cause it is difficult to decide on the way to combine path cost and search 
effort cost and because it would be difficult to define a probability 
distribution over the set of problems to be encountered. Therefore, the 
matter of deciding whether one search method has more heuristic power 
than another is usually left to informed intuition, gained from actual 
experience with the methods. 

2.4.1. USE OF EVALUATION FUNCTIONS 

Heuristic information can be used to order the nodes on OPEN in step 
8 of GRAPHSEARCH so that search expands along those sectors of the 
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frontier thought to be most promising. In order to apply such an ordering 
procedure, we need a method for computing the "promise" of a node. 
One important method uses a real-valued function over the nodes called 
an evaluation function. Evaluation functions have been based on a variety 
of ideas: Attempts have been made to define the probability that a node 
is on the best path; distance or difference metrics between an arbitrary 
node and the goal set have been suggested; or in board games or puzzles, 
a configuration is often scored points on the basis of those features that it 
possesses that are thought to be related to its promise as a step toward the 
goal. 

Suppose we denote the evaluation function by the symbol/. Then/(fl ) 
gives the value of the function at node n. For the moment we let/be any 
arbitrary function; later, we propose that it be an estimate of the cost of a 
minimal cost path from the start node to a goal node constrained to go 
through node n. 

We use the function / to order the nodes on OPEN in step 8 of 
GRAPHSEARCH. By convention, the nodes on OPEN are ordered in 
increasing order of their / values. Ties among / values are ordered 
arbitrarily, but always in favor of goal nodes. Supposedly, a node having 
a low evaluation is more likely to be on an optimal path. 

The way in which GRAPHSEARCH uses an evaluation function to 
order nodes can be illustrated by considering again our 8-puzzle 
example. We use the simple evaluation function: 

/ ( n ) = rf(n)+ W{n) 

where d(n ) is the depth of node n in the search tree and W(n ) counts the 
number of misplaced tiles in that database associated with node n. Thus 
the start node configuration 

283 
164 
7 5 

has an/value equal to 0 + 4 = 4. 

The results of applying GRAPHSEARCH to the 8-puzzle using this 
evaluation function are summarized in Figure 2.8. The value of/for each 
node is circled; the uncircled numbers show the order in which nodes are 
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expanded. We see that the same solution path is found here as was found 
by the other search methods, although the use of the evaluation function 
has resulted in substantially fewer nodes being expanded. (If we simply 
use the evaluation function/( n ) = d{ n ), we get the breadth-first search 
process.) 

The choice of evaluation function critically determines search results. 
The use of an evaluation function that fails to recognize the true promise 
of some nodes can result in nonminimal cost paths; whereas, the use of an 
evaluation function that overestimates the promise of all nodes (such as 
the evaluation function yielding breadth-first search) results in expansion 
of too many nodes. In the next few sections, we develop some theoretical 
results about the performance of GRAPHSEARCH when it uses a 
particular kind of evaluation function. 

2.4.2. ALGORITHM A 

Let us define the evaluation function/so that its value,/(n), at any 
node n estimates the sum of the cost of the minimal cost path from the 
start node s to node n plus the cost of a minimal cost path from node n to a 
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goal node. That ÌS,/(AI) is an estimate of the cost of a minimal cost path 
constrained to go through node n. That node on OPEN having the 
smallest value o f / i s then the node estimated to impose the least severe 
constraint; hence it is appropriate that it be expanded next. 

Before demonstrating some of the properties of this evaluation 
function, we first introduce some helpful notation. Let the function 
/c(/ii,/ii) give the actual cost of a minimal cost path between two arbitrary 
nodes n{ and AI, . (The function k is undefined for nodes having no path 
between them.) The cost of a minimal cost path from node n to some 
particular goal node, ti9 is then given by k{n,t{). We let h*(n) be the 
minimum of all of the k{n,t{) over the entire set of goal nodes {t%). 
Thus, A *(Λ ) is the cost of the minimal cost path from n to a goal node, 
and any path from node n to a goal node that achieves h *( n ) is an optimal 
path from « to a goal. (The function h * is undefined for any node n that 
has no accessible goal node.) 

Often we are interested in knowing the cost k (s,n ) of an optimal path 
from a given start node, s, to some arbitrary node n. It will simplify our 
notation somewhat to introduce a new function g * for this purpose. The 
function g * is defined as 

g*(n) = k(s,n), 

for all n accessible from s. 

We next define the function/* so that its value/*(« ) at any node n is 
the actual cost of an optimal path from node s to node n plus the cost of an 
optimal path from node « to a goal node, that is, 

/ * ( « ) = £*(/!) + * * ( « ) · 

The value of/*( n ) is then the cost of an optimal path from s constrained 
to go through node n. (Note that/*(^) = h*(s) is the actual cost of an 
unconstrained optimal path from s to a goal.) 

We desire our evaluation function/to be an estimate of/*. Our 
estimate can be given by 

f(n)=g(n) + h(n), 

where g is an estimate of g * and h is an estimate of h * . An obvious choice 
for g(n) is the cost of the path in the search tree from s to n given by 
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summing the arc costs encountered while tracing the pointers from n to s. 
(This path is the lowest cost path from s to n found so far by the search 
algorithm. The value of g ( n ) for certain nodes may decrease if the search 
tree is altered in step 7.) Notice that this definition implies 
g{n)> g*(n). For the estimate Α ( Λ ) , of A*(«), we rely on heuristic 
information from the problem domain. Such information might be 
similar to that used in the function W(n) in the 8-puzzle example. We 
call A the heuristic function and will discuss it in more detail later. 

Suppose we now use as an evaluation function 

/ ( n ) = g ( n ) + h(n). 

We call the GRAPHSEARCH algorithm using this evaluation function 
for ordering nodes, algorithm A. Note that when h = 0 and g = d (the 
depth of a node in the search tree), algorithm A is identical to 
breadth-first search. We claimed earlier that the breadth-first algorithm is 
guaranteed to find a minimal length path to a goal. We now show that if A 
is a lower bound on A * (that is, if A (AI ) < A *(n ) for all nodes n ), then 
algorithm A will find an optimal path to a goal. When algorithm A uses an 
A function that is a lower bound on A * , we call it algorithm A* (read 
"A-star"). Since A = 0 is certainly a lower bound on A * , the fact that the 
breadth-first algorithm finds minimal length paths follows directly as a 
special case of this more general result for algorithm A*. 

2.43. THE ADMISSIBILITY OF A*. 

Let us say that a search algorithm is admissible if, for any graph, it 
always terminates in an optimal path from s to a goal node whenever a 
path from s to a goal node exists. In this section we show informally that 
A* is admissible. 

To show that an algorithm is admissible, it is necessary to show, at least, 
that it terminates whenever a goal node is accessible. The GRAPH-
SEARCH algorithm terminates (if at all) either in step 3 or in step 5. 
Notice that in every cycle through the loop of the algorithm, a node is 
removed from OPEN and that only a finite number of new successors are 
added to OPEN. For finite graphs, we ultimately run out of new 
successors, and thus, unless the algorithm terminates successfully in step 
5 by finding a goal node, it will terminate in step 3 after eventually 
depleting OPEN. Therefore, 
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RESULT 1: GRAPHSEARCH always terminates for finite 
graphs. 

Next we would like to show that if a path from s to a goal node exists, 
A* will terminate even for infinite graphs. To do so, let us suppose the 
opposite, that A* does not terminate. Termination is prevented only if 
new nodes are forever added to OPEN. But in this case we can show that 
even the smallest of the / values of the nodes on OPEN will grow 
impossibly large. 

Let d*( n ) be the length of the shortest path in the implicit graph being 
searched from s to any node n in the search tree produced by A*. Then 
since the cost of each arc in the graph is at least some small positive 
number e, g *( n ) >: d *( n ) e. (Recall that g *( n ) is the cost of the optimal 
path from s to n, and that g(n ) is the cost of the path in the search tree 
from s to node n.) Clearly, g(n)> g*(n), and thus g(n) > d*(n)e. If 
h(n)>0 (which we henceforth assume), f(n)> g(n\ and thus 
f(n) > d*(n)e. In particular, for every node n on OPEN, the value of 
f(n) is at least as large as d*(n )e. Even though A* selects for expansion 
that node on OPEN whose / value is smallest, the node selected will 
ultimately have an arbitrarily large value ofd* and therefore also of/ if 
A* does not terminate. 

Now, to show that A* must eventually terminate, we show that before 
termination of A*, there is always a node n on OPEN such that 
f(n) < /*(^) . Let the ordered sequence (s = n0,nl9.. .,nk), where nk is 
a goal node, be an optimal path from s to a goal node. Then, for any time 
before A* terminates, let n' be the first node in this sequence that is on 
OPEN. (There must be at least one such node, because s is on OPEN at 
the beginning and if nk is on CLOSED, A* has terminated.) By the 
definition of/for A*, we have 

/ ( Ό = g ( O + *('!') ■ 

We know that A* has already found an optimal path to ri since ri is on an 
optimal path to a goal and all of the ancestors on this path are on 
CLOSED. Therefore, g (ri) = g*(ri) and 

f(ri) = g*(ri) + h(ri). 

Since we are assuming h (ri) < h *(ri), we can write 

f(n')<g*(ri) + h*(ri) = /*(« ' ) · 
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But t h e / * value of any node on an optimal path is equal to f*(s), the 
minimal cost, and therefore/(«') < / * ( s ) . Thus, we have: 

RESULT 2: At any time before A* terminates, there 
exists on OPEN a node n' that is on 
an optimal path from s to a goal node, with 

Combining this result with our previous argument, that even the 
smallest/values of the nodes on OPEN of a nonterminating A* become 
unbounded, shows that A* must terminate even for infinite graphs. Thus, 

RESULT 3: If there is a path from s to a goal node, 
A* terminates. 

RESULT 3 has an interesting corollary, namely, that any node, n, on 
OPEN with f(n) <f*(s) will eventually be selected for expansion by 
A*. We leave the proof as an exercise for the reader. 

Now it is a simple matter to show that A* is admissible. First, we note 
again that A* can either terminate by finding a goal node in step 5 or, 
after depleting OPEN, in step 3. But OPEN can never become empty 
before termination if there is a path from s to a goal node because, by 
RESULT 2, there will always be a node on OPEN (and on an optimal 
path). Therefore, A* must terminate by finding a goal node. 

Next we would like to show that A* only terminates by finding an 
optimal path to a goal node. Suppose A* were to terminate at some goal 
node, /, without finding an optimal path, that i s , / ( / ) = g(t) >f*(s). 
But, by RESULT 2, there existed just before termination a node, n\ on 
OPEN and on an optimal path with/(« ') < / * ( * ) < / ( * ) · T h u s> a t t h i s 

stage, A* would have selected nr for expansion rather than /, contradict
ing our supposition that A* terminated. Therefore, we finally have 

RESULT 4: Algorithm A* is admissible. (That is, if 
there is a path from s to a goal node, A* 
terminates by finding an optimal path.) 

Each node selected for expansion by A* has an interesting property 
that follows directly from RESULT 2: Its/value is never greater than the 
cost,/*($), of an optimal path. This result will be important to us later. 
To show that it is true, let n be any node selected for expansion by A*. If n 
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is a goal node, we have/( n ) = f*(s) by RESULT 4; so suppose n is not a 
goal node. Now A* selected n before termination, so at this time (by 
RESULT 2) we know that there existed on OPEN some node ri on an 
optimal path from s to a goal with/(Az') <f*(s). If n = ri, our result is 
established. Otherwise, we know that A* chose to expand n rather than 
ri; therefore it must have been the case that 

f(n) <f(ri) < / · ( * ) . 

Therefore, we have 

RESULT 5: For any node n selected for expansion by 
A*,/(n) < / · ( * ) . 

2.4.4. COMPARISON OF A* ALGORITHMS 

The precision of our heuristic function h depends on the amount of 
heuristic knowledge it possesses about the problem domain. Clearly, 
using h(n) = 0 reflects complete absence of any heuristic information 
about the problem, even though such an estimate is a lower bound on 
h*(n) and therefore leads to an admissible algorithm. 

Let us compare two versions of A*, namely, \ 1 and A2 using the 
following evaluation functions: 

M") = gl(n) + hin) 

and 

Λ ( Ό = gt(n) + Μ Ό 

where h1 and h2 are both lower bounds on h * . We say that algorithm A2 
is more informed than algorithm A7 if for all nongoal nodes, «, 
h2(n)> h1{n). This definition seems intuitively reasonable, since with h 
bounded from above by h* for admissibility, one suspects that using 
larger values of h (and thus values closer to h * ) requires more accurate 
heuristic information. 

As an example, consider the 8-puzzle solved in Figure 2.8. There we 
used the evaluation function/(/i) = d(n) + W(n). We can interpret 
the search process of that example as an application of A* with 
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h(n) — W{n) and unit arc costs. (Note that W{n) is a lower bound on 
the number of steps remaining to the goal.) It is reasonable to say that A* 
with h{n) — W{n) is more informed than breadth-first search, which 
uses h(n) = 0. 

We would expect intuitively that the more informed algorithm 
typically would need to expand fewer nodes to find a minimal cost path. 
In the case of the 8-puzzle, this observation is supported by comparing 
Figure 2.7 with Figure 2.8. Of course, merely because one algorithm 
expands fewer nodes than another does not imply that it is more efficient. 
The more informed algorithm may indeed have to make more costly 
computations, which would destroy efficiency. Nevertheless, the number 
of nodes expanded by an algorithm is one of the factors that determines 
efficiency, and it is a factor that permits simple comparisons. 

Suppose that A2 is more informed than A2 and that both A2 and A2
 a r e 

versions of A*. Suppose that A2 and A2
 a r e u s e d to search an implicit 

graph having a path from a given node s to a goal node. Both, of course, 
will terminate in an optimal path. We will show that, at termination, if 
node n in G was expanded by A2, it was also expanded by A7. Thus, A7 
always expands at least as many nodes as does the more informed A2. 

We prove this result using induction on the depth of a node in the A2 
search tree at termination. First, we prove that if A2 expands a node n 
having zero depth in its search tree, then so will A2. But, in this case, 
n — s. If s is a goal node, neither algorithm expands any nodes. If s is not a 
goal node, both algorithms expand node s. Continuing the inductive 
argument, we assume (the induction hypothesis) that A; expands all the 
nodes expanded by A2 having depth k, or less, in the A2 search tree. We 
must now prove that any node n expanded by A2 and of depth k + 1 in 

fthe A2 search tree is also expanded by A2. By the induction hypothesis, 
any ancestor oïn in the A2 search tree is also expanded by A2. Thus, node 
n is in the A; search tree and there is a path from s to n in the A; search 
tree that is no more costly than the cost of the path from s to n in the A2 
search tree; that is, 

gi{n) < g2(n). 

Let us suppose the opposite of what we are trying to prove, namely, 
that A; did not expand node n expanded by A2. Certainly, at termination 
of A2, node n must be on OPEN for A2, because A1 expanded a parent of 
node n. Since A2 terminated in a minimal cost path without expanding 
node n, we know that 
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thus, 

g1{n) + h1{n)>f*{s). 

Since we have already shown that g1 (n ) < g2(n ), we have 

But, by RESULT 5, since \ 2 expanded node n, we have 

or 

or 

Comparing this inequality for h2( n ) with the earlier one for h1(n) (i.e., 
A/(/i) > / * ( J ) — &?(«)) reveals that, at least at node «, A2 must be as 
large as h2 , which violates the assumption that A2 is more informed than 
A2. Thus, we have 

RESULT 6: If A, and A2 are two 
versions of A* such that \ 2 is 
more informed than A2, then at the 
termination of their searches on any graph 
having a path from 5toa goal node, 
every node expanded by A2 is also 
expanded by Aj. It follows that A2 
expands at least as many nodes as does A2. 

2.4.5. THE MONOTONE RESTRICTION 

Describing the GRAPHSEARCH procedure, we noted that when a 
node n is expanded, some of its successors may already be on OPEN or 
CLOSED. The search tree may then need to be adjusted so that it defines 
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the least costly paths in G from node s to the descendants of node n. In 
addition to the burden of adjusting the search tree, it is often computa
tionally quite expensive to test whether a node has been generated 
before. We now show that given a rather mild and reasonable restriction 
on A, when A* selects a node for expansion it has already found an 
optimal path to that node. Thus, with this restriction, there is no need for 
A* to test to see if a newly generated node is already on CLOSED, and 
there is no need to change the parentage in the search tree of any 
successors of this node in the search graph. 

A heuristic function, A, is said to satisfy the monotone restriction if for 
all nodes nx and n,, such that n, is a successor of ni9 

h(n{) - hin^^cin^nj) 

with 

A(O = 0'. 

If we write the monotone restriction in the form 

Λ ( « ι ) < h(nj) + c(A2i,Ai?), 

it is seen to be similar to a triangle inequality. It specifies that the estimate 
of the optimal cost to a goal from node n{ not be more than the cost of the 
arc from n{ to AÎ; plus the estimate of the optimal cost from TI,· to a goal. 
We might say that the monotone restriction imposes the rather reason
able condition that the heuristic function be locally consistent with the 
arc costs. 

In the 8-puzzle, it is easily verified that h(n) = W(n) satisfies the 
monotone restriction. If the function A is changed in any manner during 
the search process, then the monotone restriction might not be satisfied. 

We now show that, given the monotone restriction, when A* expands a 
node, it has found an optimal path to that node. Let n be any node 
selected for expansion by A*. If n = s, A* has trivially found an optimal 
path to s ; so let us suppose that n is not s. Let the sequence P — (s = n0, 
nj,n2i.. .,nk = n ) be an optimal path from s to n. Let node nx be the last 
node in this sequence that is on CLOSED at the time A* selects n for 
expansion. (Node s is on CLOSED, but node nk is not, because it is just 
now being selected for expansion.) Thus, node nx +1 in the sequence P is 
on OPEN at the time A* selects node n. 
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Using the monotone restriction, we have that 

S*(n,) + A(n4) < g*(ni) + c(nifni+1) + h(ni+1). 

Since n{ and ^ +7 are on an optimal path 

g*("i+l) = g*("i) + C(*i ,* i+i ) > 

therefore 

[ g * ( O + A(«i)] ^ [**(*i+,) + A(/i i4J)]. 

By transitivity, we then have 

g*(nl+1) + A(#iZ4J) < £*("*) + h(nk) 

or 

/ ( Λ Ι - Μ ) ^ ^ · ( Λ ) + Α ( Ι Ι ) . 

Therefore, at the time A* selected node n, in preference to node nt +2, it 
must have been the case that g(n) < g*(n); otherwise,/(n ) would have 
been greater t h a n / ( n i + i ) . Since g(m) >: g*(m) for all nodes m in the 
search tree, we have 

RESULT 7: If the monotone restriction is satisfied, 
then A* has already found an optimal path 
to any node it selects for expansion. That is, 
if A* selects n for expansion, and if the 
monotone restriction is satisfied, 
g(n) = g*(n). 

The monotone restriction also implies another interesting result, 
namely, that the/values of the sequence of nodes expanded by A* are 
nondecreasing. Suppose node n2 is expanded immediately after node n1. 
If n2 was on OPEN at the time nl was expanded, we have (trivially) that 
f{nt) < / (w^) . Suppose n2 is not on OPEN at the time n1 is expanded. 
(Node n2 is not on CLOSED either, because we are assuming that it has 
not been expanded yet.) Then, if n2 is expanded immediately after rij, it 
must have been added to OPEN by the process of expanding n1. 
Therefore, n2 is a successor of n1. Under these conditions, when n2 is 
selected for expansion we have 
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= g*(n2) + h(n2) (RESULT 7) 

= g*(*î) + c(nl9nt) + h(nf) 

= g("i) + c(nl9n2) + Α(π,) 
(RESULT 7) 

Since the monotone restriction implies 

c(nl9n2) + h(n2)> Λ(*ι), 

we have 

f(n2)>g(n1) + h(n1)=f(n1). 

Since this fact is true for any adjacent pair of nodes in the sequence of 
nodes expanded by A*, we have 

RESULT 8: If the monotone restriction is satisfied, 
the/values of the sequence of nodes 
expanded by A* is nondecreasing. 

When the monotone restriction is not satisfied, it is possible that some 
node has a smaller / value at expansion than that of a previously 
expanded node. We can exploit this observation to improve the effi
ciency of A* under this condition. By RESULT 5, when node n is 
expanded, f(n) < /* ( s ) . Suppose, during the execution of A*, we 
maintain a global variable, F, as the maximum of the/values of all nodes 
so far expanded. Certainly F </*($) at all times. If ever a node, n, on 
OPEN has/( n ) < F, we know by the corollary to RESULT 3 that it will 
eventually be expanded. In fact, there may be several nodes on OPEN 
whose/values are strictly less than F. Rather than choose, from these, 
that node with the smallest/value, we might rather choose that node with 
the smallest g value. (All of them must eventually be expanded anyway.) 

The effect of this altered node selection rule is to enhance the chances 
that the first path discovered to a node will be an optimal path. Thus, 
even when the monotone restriction is not satisfied, this alteration will 
diminish the need for pointer redirection in step 7 of the algorithm. (Note 
that when the monotone restriction is satisfied, RESULT 8 implies that 
there will never be a node on OPEN whose/value is less than F.) 
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2.4.6. THE HEURISTIC POWER OF EVALUATION 
FUNCTIONS 

The selection of the heuristic function is crucial in determining the 
heuristic power of search algorithm A. Using A = 0 assures admissibility 
but results in a breadth-first search and is thus usually inefficient. Setting 
A equal to the highest possible lower bound on A * expands the fewest 
nodes consistent with maintaining admissibility. 

Often, heuristic power can be gained at the expense of admissibility by 
using some function for A that is not a lower bound on A * . This added 
heuristic power then allows us to solve much harder problems. In the 
8-puzzle, the function h(n) = W{ n ) (where W{ n ) is the number of tiles 
in the wrong place) is a lower bound on A *( n ), but it does not provide a 
very good estimate of the difficulty (in terms of number of steps to the 
goal) of a tile configuration. A better estimate is the function 
h(n) = P(n), where P(n) is the sum of the distances that each tile is 
from "home" (ignoring intervening pieces). Even this estimate is too 
coarse, however, in that it does not accurately appraise the difficulty of 
exchanging the positions of two adjacent tiles. 

An estimate that works quite well for the 8-puzzle is 

h(n) = P(n) + 3S(n). 

The quantity S(n) is a sequence score obtained by checking around the 
noncentral squares in turn, allotting 2 for every tile not followed by its 
proper successor and allotting 0 for every other tile; a piece in the center 
scores one. We note that this A function does not provide a lower bound 
for A* . With this heuristic function used in the evaluation function 
f(n) = g(n) + A(Λ), we can easily solve much more difficult 8-puzzles 
than the one we solved earlier. In Figure 2.9 we show the search tree 
resulting from applying GRAPHSEAkCH with this evaluation function 
to the problem of transforming 

2 1 6 
4 8 
7 5 3 

into 

1 2 3 
8 4 
7 6 5 
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Fig. 2.9 A search tree for the 8-puzzle. 

86 



HEURISTIC GRAPH-SEARCH PROCEDURES 

Again, the / values of each node are circled in the figure, and the 
uncircled numbers show the order in which nodes are expanded. (In the 
search depicted in Figure 2.9, ties among minimal/values are resolved 
by selecting the deepest node in the search tree.) 

The solution path found happens to be of minimal length (18 steps); 
although, since the A function is not a lower bound for A * , we were not 
guaranteed of finding an optimal path. Note that this A function results in 
a focused search, directed toward the goal; only a very limited spread 
occurred, near the start. 

Another factor that determines the heuristic power of search al
gorithms is the amount of effort involved in calculating the heuristic 
function. The best function would be one identically equal to A* , 
resulting in an absolute minimum number of node expansions. (Such an 
A could, for example, be determined as a result of a separate complete 
search at every node; but this obviously would not reduce the total 
computational effort.) Sometimes an A function that is not a lower bound 
on A * is easier to compute than one that is a lower bound. In these cases, 
the heuristic power might be doubly improved—because the total 
number of nodes expanded can be reduced (at the expense of admissi-
bility) and because the computational effort is reduced. 

In certain cases the heuristic power of a given heuristic function can be 
increased simply by multiplying it by some positive constant greater than 
one. If this constant is very large, the situation is as if g(n ) = 0. In many 
problems we merely desire to find some path to a goal node and are 
unconcerned about the cost of the resulting path. (We are, of course, 
concerned about the amount of search effort required to find a path.) In 
such situations, we might think that g could be ignored completely since, 
at any stage during the search, we don't care about the costs of the paths 
developed thus far. We care only about the remaining seach effort 
required to find a goal node. This search effort, while possibly dependent 
on the A values of the nodes on OPEN, would seem to be independent of 
the g values of these nodes. Therefore, for such problems, we might be 
led to u s e / = A as the evaluation function. 

To ensure that some path to a goal will eventually be found, g should 
be included in/even when it is not essential to find a path of minimal 
cost. Such insurance is necessary whenever A is not a perfect estimator; if 
the node with minimum A were always expanded, the search process 
might expand deceptive nodes forever without ever reaching a goal node. 
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Including g tends to add a breadth-first component to the search and thus 
ensures that no part of the implicit graph will go permanently un-
searched. 

The relative weights of g and h in the evaluation function can be 
controlled by using/ = g + H>Ä, where w is a positive number. Very large 
values of w overemphasize the heuristic component, while very small 
values of w give the search a predominantly breadth-first character. 
Experimental evidence suggests that search efficiency is often enhanced 
by allowing the value of w to vary inversely with the depth of a node in 
the search tree. At shallow depths, the search relies mainly on the 
heuristic component, while at greater depths, the search becomes 
increasingly breadth-first, to ensure that some path to a goal will 
eventually be found. 

To summarize, there are three important factors influencing the 
heuristic power of Algorithm A: 

(a) the cost of the path, 

(b) the number of nodes expanded in finding the path, and 

(c) the computational effort required to compute A. 

The selection of a suitable heuristic function permits one to balance these 
factors to maximize heuristic power. 

2.5. RELATED ALGORITHMS 

2.5.1. BIDIRECTIONAL SEARCH 

Some problems can be solved using production systems whose rules 
can be used in either a forward or a backward direction. An interesting 
possibility is to search in both directions simultaneously. The graph-
searching process that models such a bidirectional production system can 
be viewed as one in which search proceeds outward simultaneously from 
both the start node and from a set of goal nodes. The process terminates 
when (and if) the two search frontiers meet in some appropriate fashion. 
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Unidirectional 
search frontier 
at termination 

Start node Goal node 

Bidirectional 
search frontiers 
at termination 

Fig. 2.10 Bidirectional and unidirectional breadth-first searches. 
Backward 

search frontier 

Forward 
search frontier 

Fig. 2.11 Forward search misses backward search. 
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Breadth-first versions of bidirectional graph-searching processes com
pare favorably with breadth-first unidirectional search. In Figure 2.10 we 
compare two searches over a two-dimensional grid of nodes. We see that 
the bidirectional process expands many fewer nodes than does the 
unidirectional one. 

The situation is more complex, however, when comparing bidirec
tional and unidirectional heuristic searches. If the heuristic functions 
used by the bidirectional process are even slightly inaccurate, the search 
frontiers may pass each other without intersecting. In such a case, the 
bidirectional search process may expand twice as many nodes as would 
the unidirectional one. This situation is illustrated in Figure 2.11. 

2.5.2. STAGED SEARCH 

The use of heuristic information as discussed so far can substantially 
reduce the amount of search effort required to find acceptable paths. Its 
use, therefore, also allows much larger graphs to be searched than would 
be the case otherwise. Even so, occasions may arise when available 
storage is exhausted before a satisfactory path is found. Rather than 
abandon the search process completely, in such cases, it may be desirable 
to prune the search graph, to free needed storage space to press the search 
deeper. 

The search process can then continue in stages, punctuated by pruning 
operations obtaining storage space. At the end of each stage, some subset 
of the nodes on OPEN, for example those having the smallest values of/, 
are marked for retention. The best paths to these nodes are remembered, 
and the rest of the search graph is thrown away. Search then resumes with 
these best nodes. This process continues until either a goal node is found 
or until resources are exhausted. Of course, even if A* is used in each 
stage and if the whole process does terminate in a path, there is now no 
guarantee that it is an optimal path. 

2.53. LIMITATION OF SUCCESSORS 

One technique that may save search effort is the disposal immediately 
after expansion of all successors except a few having the smallest values 
of/. Of course the nodes thrown away may be on the best (or the only!) 
paths to a goal, so the worth of any such pruning method for a particular 
problem can be determined only by experience. 
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Knowledge about the problem domain may sometimes be adequate to 
recognize that certain nodes cannot possibly be on a path to a goal node. 
(Such nodes satisfy a predicate like the DEADEND predicate used in the 
backtracking algorithm.) These nodes can be pruned from the search 
graph by modifying algorithm A to include this test. Alternatively, we 
could assign such nodes a very high h value so that they would never be 
selected for expansion. 

There are also search problems for which the successors of a node can 
be enumerated and their h values computed before the corresponding 
databases themselves are explicitly calculated. Furthermore, it may be 
advantageous to delay calculating the database associated with a node 
until it itself is expanded; then the process never calculates any successors 
not expanded by the algorithm. 

2.6. MEASURES OF PERFORMANCE 

The heuristic power of a searching technique depends heavily on the 
particular factors specific to a given problem. Estimating heuristic power 
involves judgements, based on experience rather than calculation. 
Certain measures of performance can be calculated, however, and though 
they do not completely determine heuristic power, they are useful in 
comparing various search techniques. 

One such measure is called penetrance. The penetrance, P, of a search 
is the extent to which the search has focused toward a goal, rather than 
wandered off in irrelevant directions. It is simply defined as 

P = L/T9 

where L is the length of the path found to the goal and T is the total 
number of nodes generated during the search (including the goal node 
but not including the start node). For example, if the successor operator is 
so precise that the only nodes generated are those on a path toward the 
goal, P will attain its maximum value of 1. Uninformed search is 
characterized by values of P much less than 1. Thus, penetrance measures 
the extent to which the tree generated by the search is "elongated" rather 
than "bushy." 
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The penetrance value of a search depends on the difficulty of the 
problem being searched as well as on the efficiency of the search method. 
A given search method might have a high penetrance value when the 
optimal solution path is short and a much lower one when it is long. 
(Increasing the length of the solution path L usually causes Tto increase 
even faster.) 

Another measure, the effective branching factor, B, is more nearly 
independent of the length of the optimal solution path. Its definition is 
based on a tree having (a) a depth equal to the path length and (b) a total 
number of nodes equal to the number generated during the search. The 
effective branching factor is the constant number of successors that 
would be possessed by each node in such a tree. Therefore, B is related to 
path length L and to the total number of nodes generated, Γ, by the 
expressions: 

B + B2 + . . . + Bh = T 

[ 5 L - \]B/(B - \)= T. 

Although B cannot be written explicitly as a function of L and Γ, a plot 
of B versus Tïor various values of L is given in Figure 2.12. A value of B 
near unity corresponds to a search that is highly focused toward the goal, 
with very little branching in other directions. On the other hand, a 
"bushy" search graph would have a high B value. Penetrance can be 
related to B and path length by the expression 
P — L(B — 1)/2?[2?L — 1]. In Figure 2.13 we illustrate how penetrance 
varies with path length for various values of B. 

To the extent that the effective branching factor is reasonably 
independent of path length, it can be used to give a prediction of how 
many nodes might be generated in searches of various lengths. For 
example, we can use Figure 2.12 to calculate that the use of the evaluation 
function / = g + P +3S results in a 5 value equal to 1.08 for the 
8-puzzle problem illustrated in Figure 2.9. Suppose we wanted to 
estimate how many nodes would be generated using this same evaluation 
function iti solving a more difficult 8-puzzle problem, say, one requiring 
30 steps. From Figure 2.12, we note that the 30-step puzzle would involve 
the generation of about 120 nodes, assuming that the branching factor 
remained constant. This estimate, incidentally, is not inconsistent with 
the experimental results of Doran and Michie (1966) on a wide variety of 
8-puzzle problems. 
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Fig. 2.13 P versus Lfor various values ofB. 

2.7. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

The book by Horowitz and Sahni (1978) contains a thorough discus
sion of backtracking and other search methods. Gaschnig (1979) presents 
experimental efficiency comparisons of backtracking and related al
gorithms. In some problems involving constraint satisfaction, relaxation 
techniques can be employed to reduce search effort; these methods are 
discussed by Waltz (1975), Montanari (1974), and Mackworth (1977). 
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Graph-search procedures of the sort that we termed uninformed have 
arisen in a variety of contexts. Dijkstra (1959) and Moore (1959) both 
proposed essentially breadth-first procedures. Dynamic programming 
[Bellman and Dreyfus (1962)] is a type of breadth-first search process. 
Our GRAPHSEARCH procedure differs from many previous ones in 
that we do not transfer nodes from CLOSED back to OPEN when they 
are revisited. [We redirect pointers in the search tree instead.] 

The use of heuristic information to increase search efficiency has been 
studied both in AI and in operations research. In AI, heuristic search was 
a main theme of the work of Newell, Shaw, and Simon (1957, 1960). The 
use of evaluation functions to direct search in graphs was proposed by 
Doran and Michie (1966), from whom we take our 8-puzzle examples. 

A general theory of the use of evaluation functions to guide search was 
presented in a paper by Hart, Nilsson, and Raphael (1968). Our 
description of A* and its properties is based on that paper. [The fact that 
A* expands no more nodes than other algorithms that are no more 
informed than A* was originally mistakenly thought to depend on a 
restriction similar to the monotone restriction. This error, originally 
pointed out by R. Coleman, was corrected in Hart, Nilsson, and Raphael 
(1972). Corrections and refinements were also proposed by Gelperin 
(1977).] VanderBrug (1976) presents an interesting geometric interpreta
tion of heuristic search processes. 

Pohl has proposed several generalizations of A*, including a scheme 
for bidirectional search [Pohl (1971)], and a method that changes the 
relative weighting of A and g as search proceeds [Pohl (1973)]. Our use of 
the monotone restriction is based on Pohl (1977). (The earlier consistency 
restriction, of Hart, Nilsson, and Raphael, is stronger than needed and 
harder to establish than the monotone restriction.) Pohl (1970,1977) and 
Harris (1974) analyze some of the effects of errors in the heuristic 
function on search, and Martelli (1977) analyzes the complexity of 
heuristic search algorithms. [The node selection rule described on page 
84 is based on Martelli's paper.] Simon and Kadane (1975) describe 
search methods designed to find any solution rather than insisting on 
optimal solutions. Michie and Ross (1970) describe a heuristic search 
process that generates just one successor at a time. 

The staged search variant was investigated by Doran and Michie 
(1966) and by Doran (1967). A process involving staged search has been 
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used rather effectively in systems for speech understanding [Lowerre 
(1976)] and visual scene interpretation [Rubin (1978)]. Jackson (1974, pp. 
104) discusses an application to the 15-puzzle (by A. K. Chandra) of an 
interesting search process that uses "mileposts." 

Doran and Michie (1966) proposed the penetrance measure for 
judging the efficiency of a given search. Slagle and Dixon (1969) 
proposed another measure that they called the "depth ratio." Our 
"effective branching factor" was motivated by these earlier measures. 

Heuristic search finds many applications, sometimes outside of the 
context of conventional AI systems. Montanari (1970) makes use of 
heuristic search in chromosome matching, and Kanal (1979) discusses an 
application in pattern classification. 

EXERCISES 

2.1 Consider a sliding block puzzle with the following initial configura
tion: 

\B B B W W W E\ 

there are three black tiles (2?), three white tiles ( W\ and an empty cell 
(E). The puzzle has the following moves: 

(a) A tile may move into an adjacent empty 
cell with unit cost. 

(b) A tile may hop over at most two other 
tiles into an empty cell with a cost equal to 
the number of tiles hopped over. 

The goal of the puzzle is to have all of the white tiles to the left of all of the 
black tiles (without regard for the position of the blank cell). 

Specify a heuristic function, A, for this problem and show the search 
tree produced by algorithm A using this heuristic function. Can you tell 
whether or not your h function satisfies the monotone restriction? Does it 
satisfy the monotone restriction for the nodes in your search tree? 
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2.2 Propose two (non-zero) h functions for the traveling salesman 
problem of section 1.1.6. Is either of these h functions a lower bound on 
h *? In your opinion, which of them would result in more efficient search? 
Apply algorithm A with these h functions to the five-city problem shown 
in Figure 1.5. 

2 3 Assume unit costs for each rule application in the formulation of the 
4-queens problem of section 2.1. Describe the general characteristics of 
the h * function for this problem. Can you think of any h functions that 
would be useful for guiding search? 

2.4 Describe how to modify procedure GRAPHSEARCH so that only 
one successor of a node (at a time) is generated in step 6. The modified 
procedure must make two selections: which node to expand and which 
successor to generate. (In controlling a production system, the modified 
procedure must select a database and an applicable rule.) 

2.5 Prove, as a corollary to RESULT 3, that any node, n, on OPEN with 
f{n) < / * ( s ) , will eventually be selected for expansion by A*. 

2.6 Explain why algorithm A* remains admissible if it removes from 
OPEN any node n for which / ( n ) > F, where F is an upper bound on 

2.7 Use the evaluation function f(n) = d(n) + W(n) (defined in 
section 2.4.1.) with algorithm A to search backward from the goal node of 
Figure 2.8 to the start node. Where would the backward search meet the 
forward search? 

2.8 Discuss ways in which an h function might be improved during a 
search. 
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CHAPTER 3 

SEARCH STRATEGIES FOR 
DECOMPOSABLE PRODUCTION 

SYSTEMS 

In chapter 1, we introduced decomposable production systems and 
structures called AND/OR trees, for controlling their operation. In this 
chapter we describe some heuristic strategies for searching AND/OR 
trees and graphs. We also describe some search techniques for graphs 
used in game-playing systems. 

3.1. SEARCHING AND/OR GRAPHS 

Recall that the AND or the OR label given to a node in an AND/OR 
tree depends upon that node's relation to its parent. In one case, a parent 
node labeled by a compound database has a set of AND successor nodes, 
each labeling one of the component databases. In the other case, a parent 
node labeled by a component database has a set of OR successor nodes, 
each labeling the database resulting from the application of alternative 
rules to the component database. 

We are generally concerned with AND/OR graphs rather than with 
the special case of trees, because different sequences of rule applications 
may generate identical databases. For example, a node could be labeled 
by a component database resulting both from having split a compound 
one and from having applied a rule to another one. In this case, it would 
be called an OR node with respect to one parent and an AND node with 
respect to the other parent. For this reason, we do not generally refer to 
the nodes of an AND/OR graph as being AND nodes or OR nodes; 

99 



SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS 

instead, we introduce some more general notation, appropriate for 
graphs. We continue to call these structures AND/OR graphs, however, 
and use the terms AND nodes and OR nodes when discussing AND/OR 
trees. 

We define AND/OR graphs here as hyper graphs. Instead of arcs 
connecting pairs of nodes, there are hyperarcs connecting a parent node 
with Si set of successor nodes. These hyperarcs are called connectors. Each 
k-connector is directed from ^parent node to a set of A: successor nodes. (If 
all of the connectors are 1-connectors, we have the special case of an 
ordinary graph.) 

In Figure 3.1, we show an example of an AND/OR graph. Note that 
node n0 has a 1-connector directed to successor nt and a 2-connector 
directed to the set of successors {n4in5}. For k > 1, /c-connectors are 
denoted in our illustrations by a curved line joining the arcs from parent 
to elements of the successor set. (Using our earlier terminology, we could 
have regarded nodes nh and n5 as a set of AND nodes, and we could have 
regarded node nt as an OR node, relative to their common parent n0 ; but 
note that node n8, for example, belongs to a set of AND nodes relative to 
its parent n5 but is an OR node relative to its parent nh.) 

Fig. 3.1 An AND/OR graph. 
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In an AND/OR tree, each node has at most one parent. In trees and 
graphs we call a node without any parent a root node. In graphs, we call a 
node having no successors a leaf node (a tip node for trees). 

A decomposable production system defines an implicit AND/OR 
graph. The initial database corresponds to a distinguished node in the 
graph called the start node. The start node has an outgoing connector to a 
set of successor nodes corresponding to the components of the initial 
database (if it can be decomposed). Each production rule corresponds to 
a connector in the implicit graph. The nodes to which such a connector is 
directed correspond to component databases resulting after rule applica
tion and decomposition into components. There is a set of terminal nodes 
in the implicit graph corresponding to databases satisfying the termina
tion condition of the production system. The task of the production 
system can be regarded as finding a solution graph from the start node to 
the terminal nodes. 

Roughly speaking, a solution graph from node n to node set N of an 
AND/OR graph is analogous to a path in an ordinary graph. It can be 
obtained by starting with node n and selecting exactly one outgoing 
connector. From each successor node to which this connector is directed, 
we continue to select one outgoing connector, and so on, until eventually 
every successor thus produced is an element of the set N. In Figure 3.2, 
we show two different solution graphs from node n0 to {n7,n8} in the 
graph of Figure 3.1. 

We can give a precise recursive definition of a solution graph. The 
definition assumes that our AND/OR graphs contain no cycles, that is, it 
assumes that there is no node in the graph having a successor that is also 
its ancestor. The nodes thus form a partial order which guarantees 
termination of the recursive procedures we use. We henceforth make this 
assumption of acyclicity. 

J0n0 Qn0 

/^ Λ 
n7 n8 n7 n8 

Fig. 3.2 Two solution graphs. 
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Let G' denote a solution graph from node n to a set N of nodes of an 
AND/OR graph G. G' is a subgraph of G. 

If n is an element of N, G' consists of the single node n ; 

otherwise, if n has an outgoing connector, K9 directed to nodes 
{nl9.. .9nk} such that there is a solution graph to N from each of ni9 
where / = 1, . . . , fc, then G' consists of node n9 the connector, K9 the nodes 
{nl9.. .,nk}9 and the solution graphs to TV from each of the nodes in 
{nl9...,nk}; 

otherwise, there is no solution graph from n to N. 

Analogous to the use of arc costs in ordinary graphs, it is often useful to 
assign costs to connectors in AND/OR graphs. (These costs model the 
costs of rule applications; again we need to assume that each cost is 
greater than some small positive number, e.) The connector costs can 
then be used to calculate the cost of a solution graph. Let the cost of a 
solution graph from any node n to N be denoted by k(n9N). The cost 
k(n9N) can be recursively calculated as follows: 

If n is an element of N9 k(n9N) = 0. 

Otherwise, n has an outgoing connector to a set of successor nodes 
{n1,..., nx} in the solution graph. Let the cost of this connector be cn. 
Then, 

k(n,N) = cn+ k(nl9N) + . . . + k(ni9N). 

We see that the cost of a solution graph, G'9 from ntoNis the cost of 
the outgoing connector from n (in G') plus the sum of the costs of the 
solution graphs from the successors of n (in G') to N. This recursive 
definition is satisfactory because we are assuming acyclic graphs. 

Note that our definition of the cost of a solution graph might count the 
costs of some connectors in the solution graph more than once. In 
general, the cost of an outgoing connector from some node m is counted 
in the cost of a solution graph from n to TV just as many times as there are 
paths from n to m in the solution graph. Thus, the costs of the two 
solution graphs in Figure 3.2 are 8 and 7 if the cost of each fc-connector is 
k. 
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Beyond merely finding any solution graph from the start node to a set 
of terminal nodes, we may want to find one having minimal cost. We call 
such a solution graph an optimal solution graph. Let the cost of an 
optimal solution graph from n to a set of terminal nodes be denoted by 
the function h*(n). 

3.2. AO*: A HEURISTIC SEARCH PROCEDURE FOR 
AND/OR GRAPHS 

As with ordinary graphs, we define the process of expanding a node as 
the application of a successor operator that generates all of the successors 
of a node (through all outgoing connectors). We might now define a 
breadth-first search algorithm for searching implicit AND/OR graphs to 
find solution graphs. Again, since breadth-first procedures are unin
formed about the problem domain, they are typically not sufficiently 
efficient for AI applications. We are naturally led to ask whether some 
search procedure using an evaluation function with a heuristic compo
nent can be devised for AND/OR graphs. 

We now describe a search procedure that uses a heuristic function 
A ( n ) that is an estimate of A *( n ), the cost of an optimal solution graph 
from node wtoa set of terminal nodes. Just as with GRAPHSEARCH, 
simplifications in the statement of the procedure are possible if A satisfies 
certain restrictions. 

Let us impose a monotone restriction on A, that is, for every connector 
in the implicit graph directed from node n to successors n1,.. .,nk, we 
assume: 

h(n)<c + h(n,) + . . . + h(nk), 

where c is the cost of the connector. This restriction is analogous to the 
monotone restriction on heuristic functions for ordinary graphs. If 
h(n) = 0 for n in the set of terminal nodes, then the monotone 
restriction implies that A is a lower bound on A *, that is, A(n ) < A *(n ) 
for all nodes n. 
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Our heuristic search procedure for AND/OR graphs can now be stated 
as follows: 

Procedure AO* 

1 Create a search graph, G, consisting solely of 
the start node, s. Associate with node 
s a cost q(s) — h(s). 
If s is a terminal node, label s SOLVED. 

2 until s is labeled SOL VED, do: 

3 begin 

4 Compute a. partial solution graph, G', 
in G by tracing down the marked connectors 
in G from s. (Connectors of G will be 
marked in a subsequent step.) 

5 select any nonterminal leaf node, ny of 
G'. (We discuss later how this 
selection might be made.) 

6 Expand node n generating all of its successors 
and install these in G as successors of AI. 
For each successor, nj9 not already 
occurring in G, associate the cost 

Label SOL VED any of these successors that are 
terminal nodes. (See text for discussion of what to 
do in case node n has no successors.) 

7 Create a singleton set of nodes, S, containing 

just node n. 

8 until S is empty, do: 

9 begin 
10 Remove from S a node m such that 

m has no descendants in G occurring 
inS . 
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11 Revise the cost q ( m ) for m, as follows: 
for each connector directed from m to a 
set of nodes {nli9.. .,nki} 
compute q{(m) = ci + q(nH) + . . . 
+ q(nki)· [The q(nH) have 
either just been computed in a 
previous pass through this inner loop 
or (if this is the first pass) they were 
computed in step 6.] 
Set q ( m ) to the minimum over all 
outgoing connectors of qi(m) and 
mark the connector through which this 
minimum is achieved, erasing the previous 
marking if different. If all of the 
successor nodes through this connector 
are labeled SOLVED, then label node m 
SOLVED. 

12 If m has been marked SOL VED or if the 
revised cost of m is different than its 
just previous cost, then add to S all 
those parents of m such that m is one 
of their successors through a marked 
connector. 

13 end 

14 end 

Algorithm AO* can best be understood as a repetition of the following 
two major operations. First, a top-down, graph-growing operation (steps 
4-6) finds the best partial solution graph by tracing down through the 
marked connectors. These (previously computed) marks indicate the 
current best partial solution graph from each node in the search graph. 
(Before the algorithm terminates, the best partial solution graph does not 
yet have all of its leaf nodes terminal, which is why it is called partial.) 
One of the nonterminal leaf nodes of this best partial solution graph is 
expanded, and a cost is assigned to its successors. 

The second major operation in AO* is a bottom-up, cost-revising, 
connector-marking, SOLVEAabcling procedure (steps 7-12). Starting 
with the node just expanded, the procedure revises its cost (using the 
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newly computed costs of its successors) and marks the outgoing connec
tor on the estimated best "path" to terminal nodes. This revised cost 
estimate is propagated upward in the graph. (Acyclicity of our graphs 
guarantees no loops in this upward propagation.) The revised cost, q ( n ), 
is an updated estimate of the cost of an optimal solution graph from n to a 
set of terminal nodes. Only the ancestors of nodes having their costs 
revised can possibly have their costs revised, so only these need be 
considered. Because we are assuming the monotone restriction on A, cost 
revisions can only be cost increases. Therefore, not all ancestors need 
have cost revisions, but only those ancestors having best partial solution 
graphs containing descendants with revised costs (hence step 12). 

When the AND/OR graph is an AND/OR tree, the bottom-up 
operation can be simplified somewhat (because then each node has only 
one parent). 

To avoid making algorithm AO* appear more comptex than it already 
does, we ignored the possibility (in step 6) that the node selected for 
expansion might not have any successors. This case is easily handled in 
step 11 by associating a very high q value cost with any node, m, having 
no successors (or, more generally, any node recognized as not belonging 
to any solution graph). The bottom-up operation will then propagate this 
high cost upward, which eliminates any chance that a graph containing 
this node might be selected as an estimated best solution graph. 

Suppose some node n has a finite number of descendants in the 
implicit AND/OR graph and that these do not comprise a solution graph 
from n to a set of terminal nodes. Then, eventually, the revised cost, q ( n ), 
for node n will have a very high value. The assignment of a very high 
value, q(s), to the start node can therefore be taken to signal that there is 
no solution graph from the start node. 

It is possible to prove that if there is a solution graph from a given node 
to a set of terminal nodes, and if h ( n ) < h *( n ) for all nodes, and if h 
satisfies the monotone restriction, then algorithm AO* will terminate in 
an optimal solution graph. (This optimal solution graph can be obtained 
by tracing down from s through the marked connectors at termination. 
The cost of this optimal solution graph is equal to the q value of s at 
termination.) Thus, we can say that algorithm AO* with these restrictions 
is admissible. We omit the proof of this result here; the interested reader 
is referred to Martelli and Montanari (1973). 
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A breadth-first algorithm can be obtained from AO* by using h = 0. 
Because such an h function satisfies the monotone restriction (and is a 
lower bound on h *), the breadth-first algorithm using it is admissible. 

As an example of the use of AO*, let us consider again the graph of 
Figure 3.1. Suppose that the following estimates are available: 

h(n0) = 0, h(n,) = 29h(nf) = 4, h{n3) = 4, 

h(nu) = 1, h(n5) = hh(n6) = 2, h{n7) = 0, 

h(n8) = 0. 

Let nodes n7 and n8 be terminal nodes, and let the cost of each 
/c-connector be k. Note that our h function provides a lower bound on h * 
and satisfies the monotone restriction. 

The search graphs obtained after various cycles through the outer loop 
of AO* are shown in Figure 3.3. In each graph, the revised q values are 
shown next to each node; heavy arrows are used to mark connectors, and 
nodes labeled SOLVED are indicated by solid circles. During the first 
cycle, we expand node n0\ next we expand node n1, then node n5, and 
then node nu. After node nu is expanded, node n0 is labeled SOL VED. 
The solution graph (with minimal cost equal to 5) is obtained by tracing 
down through the marked connectors. 

We have not yet discussed how AO* selects (in step 5) a nonterminal 
leaf node of the estimated best partial solution graph to expand. Perhaps 
it would be efficient to select that leaf node most likely to change the 
estimate of the best partial solution graph. If the estimate of the best 
partial solution graph never changes, AO* must eventually expand all of 
the nonterminal leaf nodes of this graph anyway. However, if the 
estimate is eventually going to change to some more nearly optimal 
graph, the sooner AO* makes this change, the better. Possibly the 
expansion ofthat leaf node having the highest h value would most likely 
result in a changed estimate. 

As with algorithms A and A* for ordinary graphs, AO* may be 
modified in a variety of ways to render it more practical in special 
situations. First, rather than recompute a new estimated best partial 
solution graph after every node expansion, one might instead expand one 
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3 ^ fir 4 //,, 

Ό"4 
η,Ο 

After one cycle After two cycles 

" 0 ^ 5 
n0 5 

After three cycles After four cycles 

Fig. 3.3 Search graphs after various cycles of AO*. 
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or more leaf nodes and some number of their descendants all at once, and 
then recompute an estimated best partial solution graph. This strategy 
reduces the overhead expense of frequent bottom-up operations but 
incurs the risk that some node expansions may not be on the best solution 
graph. 

A staged-search strategy may also be used for AND/OR graphs. To 
employ it, one periodically reclaims needed storage space by discarding 
some of the AND/OR search graph. One might, for example, determine 
a few of those partial solution graphs within the entire search graph 
having the largest estimated costs. These can then be discarded periodi
cally (with the risk, of course, of discarding one that might turn out to be 
the top of an optimal solution graph.) 

3.3. SOME RELATIONSHIPS BETWEEN 
DECOMPOSABLE AND COMMUTATIVE 
SYSTEMS 

In chapter 1 we mentioned that several problems could be solved by 
production systems working in either forward or backward directions. 
(Whether one chooses to call a given direction forward, or backward, is 
often arbitrary.) Here we illustrate that certain types of commutative 
systems are dual to decomposable ones. 

Suppose that we have a production system based on the following 
rewrite rules: 

Rl: 

R2: 

R3: 

R4: 

R5: 

R6: 

Τ^Α,Β 

T^>B,C 

A-+D 

B-> E,F 

B^>G 

C^>G 
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These rules are to be applied to a global database consisting of a set of 
symbols. A rule is applicable if the global database contains a symbol 
matching its left-hand side. The effect on the global database of applying 
the rule is to remove the occurrence of the left-hand side of the rule and 
add the right-hand side of the rule. 

Production systems using such context-free rewrite rules with single
ton left-hand sides are decomposable. An AND/OR search graph that 
results from applying the rewrite rules to an initial global database 
consisting of the single symbol, T, is shown in Figure 3.4. 

There is an interesting manner in which the rewrite rules of our 
example can be used in the reverse direction. We say that such a reverse 
rule is applicable if the global database contains symbols matching all the 
symbols of the right-hand side. The effect of the rule is to add (not replace 
by) the symbol occurring on the left-hand side. In Figure 3.5 we show an 
example in which some (reverse direction) rules are applied to an initial 
global database consisting of the set {D, E, F, G}. (We indicate a reverse 
direction application of rule R by R'.) We note that the production 
system that results from using these rewrite rules in the reverse direction, 
in the manner we have indicated, is commutative. Thus, as we discussed in 
chapter 1, an irrevocable control regime can be used without the danger 
of foreclosing any possible rule applications. 

If we continue to apply (irrevocably) the reverse rules RV,..., R6\ to a 
database that is initially the set {D,E,F,G}, and to its descendants, we 
eventually obtain the set {D,E,F,G,A,B,C,T}. We can keep track of 
these rule applications and the resulting global databases by an interest
ing structure called a derivation graph. A derivation graph is a way of 
structuring the global database at any stage of the production system 
process so that it indicates something about the history of rule applica
tions. 

We show a derivation graph for our example in Figure 3.6. The global 
database consists of the derivation graph. The way in which each boxed 
expression in the graph is derived is indicated by an incoming set of arcs 
labeled by the reverse rule. 

It is obvious, of course, that the two structures of Figure 3.4 and Figure 
3.6 are identical except for arc directions. In many problems in which we 
are interested, if we reverse the direction of a commutative production 
system, we obtain a decomposable production system. Often we think of 
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R5 R6 

H H 0 Ξ 
Fig. 3.4 A search graph. 

[D,E,F,G] 

{D,E,F,G,A} {D,E,F,G,C} {D,E,F,G,B} 

Fig. 3.5 Using rewrite rules in the reverse direction. 

Rf 

D 

RÏ 

E 

T 

B 

R4' 

R2' 

\R5' 
F 

Fig. 3.6 A derivation graph. 
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the commutative system, using its rules, as the forward-directed system 
and the decomposable system, using reverse direction rules, as the 
backward-directed system. 

We can use an evaluation function in connection with derivation 
graphs to control this type of commutative production system. Any rule 
applied to a derivation graph can be regarded as producing a new 
derivation graph. The rule application adds one new node to the 
structure. Thus, rule RI' adds the node labeled Tin Figure 3.6. We can 
define the cost of the derivation through this rule as the cost of both the 
rule itself plus the costs of the least costly derivation (sub)graphs 
associated with the nodes that are "inputs" to the rule. Such a cost 
definition is exactly analogous to the recursive definition of the cost of an 
AND/OR solution graph. 

The cost of a derivation graph can be regarded as a way of computing a 
g function for a commutative production system. There are several 
alternative rules that can be applied to any derivation graph. Each has 
associated with it a g value computed as we have just described. We can 
also define a heuristic function, h, over derivation graphs. Such a function 
estimates the additional cost of all subsequent rule applications to that 
derivation graph and to its descendants along an optimal path to 
termination. When used to evaluate alternative rules, we let the h value of 
the rule application be the value obtained from this heuristic function for 
the derivation graph after the rule is applied. We can now add the g and h 
values of a rule application to obtain an/value for evaluating rules. That 
applicable rule with the smallest / value is selected for irrevocable 
application. 

In this manner, a commutative production system with an irrevocable 
control strategy can be guided by a process very much like that used by 
algorithm A in graph searching. Given the assumption that h is a lower 
bound on h *, we could show that such a strategy yields minimal cost 
derivations and that a more informed h uses fewer rule applications. 

3,4. SEARCHING GAME TREES 

Search techniques similar to those already discussed can be used to 
find playing strategies for certain kinds of games. The games that we 
consider are those called two-person, perfect-information games. These 
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are played by two players who move in turn. They each know completely 
what both players have done and can do. Specifically, we are interested in 
those games where either one of the two players wins (and the other loses ) 
or where the result is a draw. Example games from this class are checkers, 
tic-tac-toe, chess, go, and nim. We are not going to consider here any 
games whose results are determined even partially by chance; thus, dice 
games and most card games are ruled out. (Our treatment could be 
generalized to include certain chance games, however.) 

We can use systems that are very much like production systems to 
analyze games. For example, in chess, the global database would contain 
a representation of the positions of all of the pieces on the board. The 
production rules model the legal moves of the game. The application of 
these rules to the initial database and to its successors, and so on, 
generates what is called a game graph or tree. 

We can illustrate these ideas using a simple game called "Grundy's 
game." The rules of the game are as follows: Two players have in front of 
them a single pile of objects, say a stack of pennies. The first player 
divides the original stack into two stacks that must be unequal. Each 
player alternately thereafter does the same to some single stack when it is 
his turn to play. The game proceeds until every stack has either just one 
penny or two—at which point continuation becomes impossible. The 
player who first cannot play is the loser. Suppose we call our two players 
MAX and MIN and let MIN play first. 

Let us start with seven pennies in the stack. A database for this game is 
an unordered sequence of numbers representing the number of pennies 
in the various stacks plus an indication of who is to move next. Thus 
(Ί,ΜΙΝ) is the starting configuration. From (7, MIN), MIN has three 
alternative moves creating the configurations (6,1, MAX), (5,2, MAX), or 
(4,3, MAX). The complete game graph for this game (produced by 
applying all applicable rules to all databases) is shown in Figure 3.7. All 
of the leaf nodes represent losing situations for the player next to move. 

We can use the game graph to show that, no matter what MIN does, 
MAX can always win. A winning strategy for MAX is shown in Figure 3.7 
by heavy lines. For every node representing a game situation in which it 
is M I NT s move next, we must show that MAX can win from every 
position to which MIN might move. For every node representing a 
situation for which it is MAX's move next, we need only show that MAX 
can win from just one of the positions to which he might move. 
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Note the similarity between the winning strategy for MAX shown in 
Figure 3.7 and a solution graph of an AND/OR graph. Nodes corre
sponding to MIKTs next move have successors that are like AND nodes. 
From MAX*s point of view, a solution (that is, a win) must be obtainable 
from all of these successors. Nodes corresponding to MAX'S next move 
have successors that are like OR nodes. Again, from MAX'S point of view, 
a win must be obtainable from at least one of these successors. Terminal 
nodes are nodes corresponding to winning situations for MAX. 

In our discussion of games, we adopt the convention that we are trying 
to find a winning strategy for MAX. Also, we assume that MAX moves 
first and that thereafter the moves alternate between the two players. 
With these conventions we can suppress any explicit mention of whose 
move is next in further illustrations of game graphs and trees. Nodes at 
even-numbered depths correspond to positions in which it is MAX's 
move next; these will be called MAX nodes. Nodes at odd-numbered 
depths correspond to positions in which it is MIN's move next; these are 
the MIN nodes. A terminal node is any node corresponding to a winning 
position for MAX. (The top node of a game graph is of depth zero, an 
even number.) 

(5, 1, \,MIN)\ (4 ,2 , \,MIN)\ (3 ,2 , 2,MIN)\ (3 ,3 , \,MIN) 

Fig. 3.7 A game graph for Grundy's game. 
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3.4.1. THE MINIMAX PROCEDURE 

Many simple games (as well as some "ending" sequences of more 
complex games) can be handled by search techniques that are analogous 
to those used for finding AND/OR solution graphs. The solution graph, 
then, represents a complete playing strategy. Grundy's game, tic-tac-toe 
(naughts and crosses), various versions of nim, and some chess and 
checker end-games are examples of simple games in which AND/OR 
search to termination is feasible. A gross estimate of the size of the 
tic-tac-toe game tree, for example, can be obtained by noting that the 
start node has nine successors, these in turn have eight, etc., yielding 9! 
(or 362,880) nodes at the bottom of the tree. Many of the paths end in 
terminal nodes at shallower levels, however, and further reductions in the 
size of the tree result if symmetries are acknowledged. 

For more complex games, such as complete chess and checker games, 
AND/OR search to termination is wholly out of the question. It has been 
estimated that the complete game tree for checkers has approximately 
1040 nodes and the chess tree has approximately 10120 nodes. (It would 
take about 1021 centuries to generate the complete checker tree, even 
assuming that a successor could be generated in 1/3 of a nanosecond.) 
Furthermore, heuristic search techniques do not reduce the effective 
branching factor sufficiently to be of much help. Therefore, for complex 
games, we must accept the fact that search to termination is impossible; 
that is, we must abandon the idea of using this method to prove that a win 
or draw can be obtained (except perhaps during the end-game). 

Our goal in searching a game tree might be, instead, merely to find a 
good first move. We could then make the indicated move, await the 
opponent's reply, and search again to find a good first move from this new 
position. We can use either breadth-first, depth-first, or heuristic meth
ods, except that the termination conditions must now be modified. 
Several artificial termination conditions can be specified based on such 
factors as a time limit, a storage-space limit, and the depth of the deepest 
node in the search tree. It is also usual in chess, for example, not to 
terminate if any of the tip nodes represent "live" positions, that is, 
positions in which there is an immediate advantageous swap. 

After search terminates, we must extract from the search graph an 
estimate of the "best" first move. This estimate can be made by applying 
a static evaluation function to the leaf nodes of the search graph. The 
evaluation function measures the "worth" of a leaf node position. The 
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measurement is based on various features thought to influence this 
worth; for example, in checkers some useful features measure the relative 
piece advantage, control of the center, control of the center by kings, and 
so forth. It is customary in analyzing game trees to adopt the convention 
that game positions favorable to MAX cause the evaluation function to 
have a positive value, while positions favorable to MIN cause the 
evaluation function to have a negative value; values near zero correspond 
to game positions not particularly favorable to either MAX or MIN. 

A good first move can be extracted by a procedure called the minimax 
procedure. (For simplicity we explain this procedure and others depend
ing on it as if the game graph were really just a game tree.) We assume 
that were MAX to choose among tip nodes, he would choose that node 
having the largest evaluation. Therefore, the ( MAX node) parent of MIN 
tip nodes is assigned a backed-up value equal to the maximum of the 
evaluations of the tip nodes. On the other hand, if MIN were to choose 
among tip nodes, he would presumably choose that node having the 
smallest evaluation (that is, the most negative). Therefore, the (MIN 
node) parent of MAX tip nodes is assigned a backed-up value equal to the 
minimum of the evaluations of the tip nodes. After the parents of all tip 
nodes have been assigned backed-up values, we back up values another 
level, assuming that MAX would choose that node with the largest 
backed-up value while MIN would choose that node with the smallest 
backed-up value. 

We continue to back up values, level by level, until, finally, the 
successors of the start node are assigned backed-up values. We are 
assuming it is MAX'S turn to move at the start, so MAX should choose as 
his first move the one corresponding to the successor having the largest 
backed-up value. 

The utility of this whole procedure rests on the assumption that the 
backed-up values of the start node's successors are more reliable 
measures of the ultimate relative worth of these positions than are the 
values that would be obtained by directly applying the static evaluation 
function to these positions. The backed-up values are, after all, based on 
"looking ahead" in the game tree and therefore depend on features 
occurring nearer the end of the game. 

A simple example using the game of tic-tac-toe illustrates the min-
imaxing method. Let us suppose that MAX marks crosses (X ) and MIN 
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marks circles (O) and that it is MAX'S turn to play first. We conduct a 
breadth-first search, until all of the nodes at level 2 are generated, and 
then we apply a static evaluation function to the positions at these nodes. 
Let our evaluation function e(p) of a position p be given simply by: 

If p is not a winning position for either player, 

e(p) = (number of complete rows, columns, or diagonals 
that are still open for MAX) — (number of 
complete rows, columns, or diagonals that are 
still open for MIN). 

lip is a win for MAX, 

e(p) = oo (oo denotes a very large positive number). 

If/? is a win for MIN, 

e(p) = - o o . 

Thus, if/7 is 

o 
X 

we have e(p) = 6 — 4 = 2. 

We make use of symmetries in generating successor positions; thus the 
following game states 

o 
X X 

o 
X o o X 

are all considered identical. (Early in the game, the branching factor of 
the tic-tac-toe tree is kept small by symmetries; late in the game, it is kept 
small by the number of open spaces available.) 

In Figure 3.8 we show the tree generated by a search to depth 2. Static 
evaluations are shown below the tip nodes, and backed-up values are 
circled. 
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Since 

has the largest backed-up value, it is chosen as the first move. (Coin-
cidentally, this is MAX'S best first move.) 

Now let us suppose that MAX makes this move and MIN replies by 
putting a circle in the square directly above the X (a bad move for MIN, 
who must not be using a good search strategy). Next MAX searches to 
depth 2 below the resulting configuration, yielding the search tree shown 
in Figure 3.9. There are now two possible "best" moves; suppose MAX 
makes the one indicated. Now MIN makes the move that avoids his 
immediate defeat, yielding 

O 
X 

O 

XI 
MAX searches again, yielding the tree shown in Figure 3.10. Some of 

the tip nodes in this tree (for example, the one marked A ) represent wins 
for MIN and thus have evaluations equal to — oo. When these evalua
tions are backed up, we see that MAX'S best move is also the only one that 
avoids his immediate defeat. Now MIN can see that MAX must win on 
his next move, so MIN gracefully resigns. 

3.4.2. THE ALPHA-BETA PROCEDURE 

The search procedure that we have just described separates completely 
the processes of search-tree generation and position evaluation. Only 
after tree generation is completed does position evaluation begin. It 
happens that this separation results in a grossly inefficient strategy. 
Remarkable reductions (amounting sometimes to many orders of mag
nitude) in the amount of search needed (to discover an equally good 
move) are possible if one performs tip-node evaluations and calculates 
backed-up values simultaneously with tree generation. 

Consider the search tree of Figure 3.10 (the last stage of our tic-tac-toe 
search). Suppose that a tip node is evaluated as soon as it is generated. 
Then after the node marked A is generated and evaluated, there is no 
point in generating (and evaluating) nodes B, C, and D ; that is, since 
MIN has A available and MIN could prefer nothing to A, we know 
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immediately that MIN will choose A. We can then assign A's parent the 
backed-up value of — oo and proceed with the search, having saved the 
search effort of generating and evaluating nodes 2?, C, and D. (Note that 
the savings in search effort would have been even greater if we were 
searching to greater depths; for then none of the descendants of nodes B, 
C, and D would have to be generated either.) It is important to observe 
that failing to generate nodes B, C, and D can in no way affect what will 
turn out to be MAX'S best first move. 

In this example, the search savings depended on the fact that node A 
represented a win for MIN. The same kind of savings can be achieved, 
however, even when none of the positions in the search tree represents a 
win for either MAX or MIN. 

Consider the first stage of the tic-tac-toe tree shown in Figure 3.8. We 
repeat part of this tree in Figure 3.11. Suppose that search had progressed 
in a depth-first manner and that whenever a tip node is generated, its 
static evaluation is computed. Also suppose that whenever a position can 
be given a backed-up value, this value is computed. Now consider the 
situation occurring at that stage of the depth-first search immediately 
after node A and all of its successors have been generated, but before 
node B is generated. Node A is now given the backed-up value of — 1. At 
this point we know that the backed-up value of the start node is bounded 
from below by — 1. Depending on the backed-up values of the other 
successors of the start node, the final backed-up value of the start node 
may be greater than — 1, but it cannot be less. We call this lower bound 
an alpha value for the start node. 

Now let depth-first search proceed until node B and its first successor 
node, C, are generated. Node C is then given the static value of — 1. Now 
we know that the backed-up value of node B is bounded from above by 
— 1. Depending on the static values of the rest of node B's successors, the 
final backed-up value of node B can be less than — 1 but it cannot be 
greater. We call this upper bound on node B a beta value. We note at this 
point, therefore, that the final backed-up value of node B can never 
exceed the alpha value of the start node, and therefore we can 
discontinue search below node B. We are guaranteed that node B will not 
turn out to be preferable to node A. 

This reduction in search effort was achieved by keeping track of 
bounds on backed-up values. In general, as successors of a node are given 
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backed-up values, the bounds on backed-up values can be revised. But 
we note that: 

(a) The alpha values of MAX nodes (including the 
start node) can never decrease, and 

(b) the beta values of MIN nodes can never increase. 

Because of these constraints we can state the following rules for 
discontinuing the search: 

(1) Search can be discontinued below any MIN node 
having a beta value less than or equal to the 
alpha value of any of its MAX node ancestors. 
The final backed-up value of this MIN node can 
then be set to its beta value. This value may 
not be the same as that obtained by full minimax 
search, but its use results in selecting the same 
best move. 

(2) Search can be discontinued below any MAX node 
having an alpha value greater than or equal to 
the beta value of any of its MIN node ancestors. 
The final backed-up value of this MAX node can 
then be set to its alpha value. 

X 
o 1— -̂  

Γ O 
1— -̂  

o 
L Ά 1 XJ 

fe 
o 

Beta value = -1 

Fig. 3.11 Part of the first stage tic-tac-toe tree. 
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During search, alpha and beta values are computed as follows: 

(a) The alpha value of a MAX node is set equal to the 
current largest final backed-up value of its 
successors. 

(b) The beta value of a MIN node is set equal to the 
current smallest final backed-up value 
of its successors. 

When search is discontinued under rule (1) above, we say that an alpha 
cutoff has occurred; when search is discontinued under rule (2), we say 
that a beta cutoff has occurred. The whole process of keeping track of 
alpha and beta values and making cutoffs when possible is usually called 
the alpha-beta procedure. The procedure terminates when all of the 
successors of the start node have been given final backed-up values, and 
the best first move is then the one creating that successor having the 
highest backed-up value. Employing this procedure always results in 
finding a move that is equally as good as the move that would have been 
found by the simple minimax method searching to the same depth. The 
only difference is that the alpha-beta procedure finds a best first move 
usually after much less search. 

An application of the alpha-beta procedure is illustrated in Figure 
3.12. We show a search tree generated to a depth of 6. (Our convention is 
to generate the left-most nodes first. MAX nodes are depicted by a 
square, and MIN nodes are depicted by a circle.) The tip nodes have the 
static values indicated. Now suppose we conduct a depth-first search 
employing the alpha-beta procedure. The subtree generated by the 
alpha-beta procedure is indicated by darkened branches. Those nodes 
cut off have X s drawn through them. Note that only 18 of the original 41 
tip nodes had to be evaluated. (The reader can test his understanding of 
the procedure by attempting to duplicate the alpha-beta search on this 
example.) 

3.43. THE SEARCH EFFICIENCY OF THE ALPHA-BETA 
PROCEDURE 

In order to perform alpha-beta cutoffs, at least some part of the search 
tree must be generated to maximum depth, because alpha and beta 
values must be based on the static values of tip nodes. Therefore some 
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type of a depth-first search is usually employed in using the alpha-beta 
procedure. Furthermore, the number of cutoffs that can be made during 
a search depends on the degree to which the early alpha and beta values 
approximate the final backed-up values. 

The final backed-up value of the start node is identical to the static 
value of one of the tip nodes. If this tip node could be reached first in a 
depth-first search, the number of cutoffs would be maximal. When the 
number of cutoffs is maximal, a minimal number of tip nodes need to be 
generated and evaluated. 

Suppose a tree has depth D, and every node (except a tip node) has 
exactly B successors. Such a tree will have precisely BD tip nodes. 
Suppose an alpha-beta procedure generated successors in the order of 
their true backed-up values—the lowest valued successors first for MIN 
nodes and the highest valued successors first for MAX nodes. (Of course, 
these backed-up values are not typically known at the time of successor 
generation, so this order could never really be achieved, except perhaps 
accidentally.) 

It happens that this order maximizes the number of cutoffs that will 
occur and minimizes the number of tip nodes generated. Let us denote 
this minimal number of tip nodes by ND. It can be shown that 

ND = 2ΒΌ/2 - 1 (for even/)) 

and 

ND = BiD+i)/2 + BiO~l)/2 - 1 (for odd D). 

That is, the number of tip nodes of depth D that would be generated by 
optimal alpha-beta search is about the same as the number of tip nodes 
that would have been generated at depth D/2 without alpha-beta. 
Therefore, for the same storage requirements, the alpha-beta procedure 
with perfect successor ordering allows search depth to double. Even 
though perfect ordering cannot be achieved in search problems (if it 
could, we wouldn't need the search process at all!), the large potential 
payoff suggests the importance of using the best ordering function 
available. 
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3.5. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

3.5.1. AND/OR GRAPHS 

Decomposition and AND/OR graphs have been used in a variety of 
applications. Hinxman (1976) discusses applications to the "stock-cutting 
problem"; Martelli and Montanari (1975,1978) show how dynamic 
programming problems can be formulated as problems of AND/OR 
search and how such a formulation is used to optimize decision trees; 
Slagle (1963) uses AND/OR trees in symbolic integration; Stockman 
(1977) describes applications to the analysis of waveforms, and, as we 
shall see in chapter 6, AND/OR graphs can be used in theorem-proving 
systems. 

Our algorithm AO* is essentially the same as the algorithm for 
searching AND/OR graphs of Martelli and Montanari (1973, 1978). We 
have taken some of our illustrative examples from Martelli and Montan
ari (1979). These AND/OR graph-searching algorithms are based on 
earlier work of Nilsson (1969,1971). [See also Amarel (1967).] Hall (1973) 
has shown the equivalence between AND/OR graphs and context-free 
grammars. Levi and Sirovich (1976) generalize AND/OR graphs to 
represent interdependent subproblems and show that the generalized 
graphs are equivalent to type-0 grammars. Chang and Slagle (1971) also 
discuss AND/OR graphs, although their treatment seems to lose some of 
the advantages inherent in decomposition. Berliner (1979) presents a 
related search algorithm involving upper and lower bound values at each 
node. 

Kowalski (1972) and vanderBrug and Minker (1975) discuss the 
relationships between what we term backward decomposable systems 
(using AND/OR graphs) and forward commutative ones (using deriva
tion graphs). Michie and Sibert (1974) also describe heuristic search 
algorithms based on derivation graphs. 

3.5.2. GAME TREES 

Shannon (1950) proposed a minimax search procedure to be used with 
a static evaluation function in a proposal for a program to play chess. 
Newell, Shaw, and Simon (1958) used these ideas in constructing an early 
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chess-playing program. Samuel (1959, 1967) developed a checker 
(draughts) program that used polynomial evaluation functions, alpha-
beta search methods, and learning strategies for improving play. Slagle 
(1970) has discussed the similarities between AND/OR trees and game 
trees. 

The alpha-beta procedure was discovered independently by many of 
the early AI researchers. A version of it is first described by Newell, Shaw, 
and Simon (1958). Knuth and Moore (1975) present a thorough analysis 
of its properties and discuss its history. Newborn (1977) and Baudet 
(1978) present additional results. The results on search efficiency of 
alpha-beta were first stated by Edwards and Hart (1963) based on a 
theorem that they attribute to Michael Levin. Later, Slagle and Dixon 
(1969) give what they consider to be the first published proof of this 
theorem. Knuth and Moore (1975) contains the most complete account 
of these properties. Lindstrom (1979) reformulates the alpha-beta 
procedure for coroutine (rather than recursive) control. Harris (1974) 
proposes an alternative to minimax search for game trees. 

Chess-playing programs are steadily improving in ability, and many 
AI experts continue to believe that a computer world chess champion is 
not far off. Good accounts of computer chess are given in an article by 
Berliner (1978) and in books by Newborn (1975) and by Levy (1976). A 
recent program by Wilkins (1979) incorporates knowledge about chess 
tactics, which greatly diminishes the amount of search needed. [See also 
Pitrat(1977).] 

EXERCISES 

3.1 The following rewrite rules can be used to replace the numeral on 
the left-hand side with the string of numerals on the right. 

6 ^ 3 , 3 4 ->3 , l 
6 ^ 4 , 2 3 - * 2,1 
4->2,2 2 —> 1,1 

Consider the problem of using these rules to transform the numeral 6 
into a string of Is. Illustrate how algorithm AO* works by using it to solve 
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this problem. Assume that the cost of a /c-connector is k units, and that 
the value of the h function at nodes labeled by the numeral 1 is zero and 
at nodes labeled by n (n Φ 1) is n. 

3.2 The game nim is played as follows: Two players alternate in 
removing one, two, or three pennies from a stack initially containing five 
pennies. The player who picks up the last penny loses. Show, by drawing 
the game graph, that the player who has the second move can always win. 
Can you think of a simple characterization of the winning strategy? 

3 3 Conduct on alpha-beta search of the game tree shown in Figure 3.12 
by generating nodes in the order right-most node first. Indicate where 
cutoffs occur and compare with Figure 3.12, in which nodes were 
generated left-most node first. 

3.4 Chapters 2 and 3 concentrated on search techniques for tentative 
control regimes (backtracking and graph-search). Discuss the search 
problem for an irrevocable control regime guiding a commutative 
production system. (You might base your discussion on Section 3.3., for 
example.) Specify (in detail) a search algorithm that uses an evaluation 
function with a heuristic component. 

3.5 Represent the configuration of a tic-tac-toe board by a nine-dimen
sional vector, c, having components equal to + 1, O, or — 1 according to 
whether the corresponding cells are marked with a X, are empty, or are 
marked with a O, respectively. Specify a nine-dimensional vector w, such 
that the dot product ovv is a useful evaluation function for use by MAX 
(playing Xs) to evaluate nonterminal positions. Use this evaluation 
function to perform a few minimax searches making any adjustments to 
w that seem appropriate to improve the evaluation function. Can you 
find a vector w that appraises positions so accurately that search below 
these positions is not needed? 
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CHAPTER 4 

THE PREDICATE CALCULUS IN AI 

In many applications, the information to be encoded into the global 
database of a production system originates from descriptive statements 
that are difficult or unnatural to represent by simple structures like arrays 
or sets of numbers. Intelligent information retrieval, robot problem 
solving, and mathematical theorem proving, for example, require the 
capability for representing, retrieving and manipulating sets of state
ments. 

The first order predicate calculus is a formal language in which a wide 
variety of statements can be expressed. Throughout the rest of the book, 
we use expressions in the predicate calculus language as components of 
the global databases of production systems. Before describing exactly 
how this language is used in AI systems, however, we must define the 
language, show how it is used to represent statements, explain how 
inferences can be made from sets of expressions in the language, and 
discuss how to deduce statements in the language from other statements 
in the language. These are fundamental concepts of formal logic and are 
also of great importance in AI. In this chapter we introduce the language 
and methods of logic and then show how they can be exploited in AI 
production systems. 

4.1. INFORMAL INTRODUCTION TO THE 
PREDICATE CALCULUS 

A language, such as the predicate calculus, is defined by its syntax. To 
specify a syntax we must specify the alphabet of symbols to be used in the 
language and how these symbols are to be put together to form legitimate 
expressions in the language. The legitimate expressions of the predicate 
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calculus are called the well-formed formulas (wffs). In the discussion that 
follows we give a brief, informal description of the syntax of the predicate 
calculus. 

4.1.1. THE SYNTAX AND SEMANTICS OF ATOMIC 
FORMULAS 

The elementary components of the predicate calculus language are 
predicate symbols, variable symbols, function symbols, and constant 
symbols set off by parentheses, brackets, and commas, in a manner to be 
illustrated by examples. A predicate symbol is used to represent a 
relation in a domain of discourse. Suppose, for example, that we wanted 
to represent the fact that someone wrote something. We might use the 
predicate symbol WRITE to denote a relationship between a person 
doing the writing and a thing written. We can compose a simple atomic 
formula using WRITE and two terms, denoting the writer and what is 
written. For example, to represent the sentence "Voltaire wrote Can
dide," we might use the simple atomic formula: 

WRITE( VOLTAIRE,CANDIDE). 

In this atomic formula, VOLTAIRE, and CANDIDE, are constant 
symbols. In general, atomic formulas are composed of predicate symbols 
and terms. A constant symbol is the simplest kind of term and is used to 
represent objects or entities in a domain of discourse. These objects or 
entities may be physical objects, people, concepts, or anything that we 
want to name. 

Variable symbols, like x ory, are terms also, and they permit us to be 
indefinite about which entity is being referred to. Formulas using 
variable symbols, like WRITE (x,y), are discussed later in the context of 
quantification. 

We can also compose terms of function symbols. Function symbols 
denote functions in the domain of discourse. For example, the function 
symbolfather can be used to denote the mapping between an individual 
and his male parent. To express the sentence "John's mother is married to 
John's father," we might use the following atomic formula: 

MARRIED[father(JOHN),mother(JOHN)]. 

Usually a mnemonic string of capital letters is used as a predicate 
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symbol. (Examples: WRITE, MARRIED.) In some abstract examples, 
short strings of upper-case letters and numerals (PI, Q2) are used as 
predicate symbols. A mnemonic string of capital letters or short strings of 
upper-case letters and numerals are also used as constant symbols; for 
example, CANDIDE, Al, or B2. Context prevents confusion between 
whether a string is a predicate symbol or a constant symbol. 

Mnemonic strings of lower-case letters are used as function symbols. 
(Examples: father, mother.) Lower-case letters near the middle of the 
alphabet, like/, g, h, etc., are used in abstract examples. 

To represent an English sentence by an atomic formula, we focus on 
the relations and entities that the sentence describes and represent them 
by predicates and terms. Often, the predicate is identified with the verb of 
the sentence, and the terms are identified with the subject or object of the 
verb. Usually we have several choices about how to represent a sentence. 
For example, we can represent the sentence "The house is yellow" either 
by a one-term predicate, as in YELLOW(HOUSE-l), by a two-term 
predicate, as in COLOR(HOUSE-l, YELLOW), or by a three-term 
predicate, as in VALUE(COLOR,HOUSE-l,YELLOW), etc. The 
designer of a representation selects the alphabet of predicates and terms 
that he will use and defines what the elements of this alphabet will mean. 

In the predicate calculus, a wff can be given an interpretation by 
assigning a correspondence between the elements of the language and 
the relations, entities, and functions in the domain of discourse. To each 
predicate symbol, we must assign a corresponding relation in the 
domain; to each constant symbol, an entity in the domain; and to each 
function symbol, a function in the domain. These assignments define the 
semantics of the predicate calculus language. In our applications, we are 
using the predicate calculus specifically to represent certain statements 
about a domain of discourse; thus we usually have a specific interpreta
tion in mind for the wffs that we use. Once an interpretation for an atomic 
formula has been defined, we say that the formula has value T (true) just 
when the corresponding statement about the domain is true and that it 
has value F (false) just when the corresponding statement is false. Thus, 
using the obvious interpretation, the formula 

WRITE( VOLTAIRE, CANDIDE) 

has value T, and 

WRITE( VOLTAIRE, COMPUTER-CHESS) 
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has value F. When an atomic formula contains variables, there may be 
some assignments to the variables (of entities in the domain) for which an 
atomic formula has value T and other assignments for which it has value 
F. 

4.1.2. CONNECTIVES 

Atomic formulas, like WRITE (x,y), are merely the elementary 
building blocks of the predicate calculus language. We can combine 
atomic formulas to form more complex wffs by using connectives such as 
" Λ " (and), " V " (or), and "^>" (implies). 

The connective " Λ " has obvious use in representing compound 
sentences like "John likes Mary, and John likes Sue." Also, some simpler 
sentences can be written in a compound form. For example, "John lives 
in a yellow house" might be represented by the formula 

LIVES(JOHN,HOUSE-l) A COLOR(HOUSE-l, YELLOW), 

where the predicate LIVES represents a relation between a person and 
an object and where the predicate COLOR represents a relation between 
an object and a color. Formulas built by connecting other formulas by Λ s 
are called conjunctions, and each of the component formulas is called a 
conjunct. Any conjunction composed of wffs is also a wff. 

The symbol " V " is used to represent inclusive "or." For example, the 
sentence "John plays centerfield or shortstop" might be represented by 
\PLAYS(JOHN,CENTERFIELD) V PLAYS (JOHN, SHORT
STOP)]. Formulas built by connecting other formulas by Vs are called 
disjunctions, and each of the component formulas is called a disjunct. Any 
disjunction composed of wffs is also a wff. 

The truth values of conjunctions and disjunctions are determined from 
the truth values of the components. A conjunction has value T if each of 
its conjuncts has value T; otherwise it has value F. A disjunction has 
value Tif at least one of its disjuncts has value T\ otherwise it has value F. 

The other connective, "=>," is used for representing "if-then" state
ments. For example, the sentence "If the car belongs to John, then it is 
green," might be represented by 

OWNS(JOHN,CAR-l)=> COLOR(CAR-l,GREEN). 
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A formula built by connecting two formulas with a =Φ is called an 
implication. The left-hand side of an implication is called the antecedent, 
and the right-hand side is called the consequent. If both the antecedent 
and the consequent are wffs, then the implication is a wff also. An 
implication has value T if either the consequent has value T (regardless of 
the value of the antecedent) or if the antecedent has value F (regardless of 
the value of the consequent); otherwise the implication has value F. This 
definition of implicational truth value is sometimes at odds with our 
intuitive notion of the meaning of "implies." For example, the predicate 
calculus representation of the sentence "If the moon is made of green 
cheese, then horses can fly" has value T 

The symbol " ~ " (not) is sometimes called a connective although it is 
really not used to connect two formulas. It is used to negate the truth 
value of a formula; that is, it changes the value of a wff from T to F, and 
vice versa. For example, the (true) sentence "Voltaire did not write 
Computer Chess" might be represented as 

~WRITE( VOLTAIRE, COMPUTER-CHESS) . 

A formula with a ~ in front of it is called a negation. The negation of a 
wff is also a wff. An atomic formula and the negation of an atomic 
formula are both called literals. 

It is easy to see that ~F1 V F2 always has the same truth value as 
Fl => F2, so we really wouldn't ever need to use =Φ. But our object here is 
not to propose a minimal representation but a useful one. There are 
occasions in which Fl =$> F2 is heuristically preferable to its equivalent 
~F1 V F2, and vice versa. 

If we limited our sentences to those that could be represented by the 
constructs that we have introduced so far, and if we never used variables 
in terms, we would be using a subset of the predicate calculus called the 
propositional calculus. Indeed, the propositional calculus can be a useful 
representation for many simplified domains, but it lacks the ability to 
represent many statements (such as "All elephants are gray") in a useful 
manner. To extend its power, we need the capability to make statements 
with variables in the formulas. 
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4.13. QUANTIFICATION 

Sometimes an atomic formula, like P(x\ has value T (with a given 
interpretation for P ) no matter what assignment is given to the variable 
x. Or such an atomic formula may have value Tfor at least one value of x. 
In the predicate calculus these properties are used in establishing the 
truth values of formulas containing constructs called quantifiers. The 
formula consisting of the universal quantifier (Vx )in front of a formula 
P(x ) has value 7" for an interpretation just when the value of P(x ) under 
this interpretation is T for all assignments of x to entities in the domain. 
The formula consisting of the existential quantifier (3x ) in front of a 
formula P(x) has value T for an interpretation just when the value of 
P(x ) under the interpretation is T for at least one assignment of x to an 
entity in the domain. 

For example, the sentence "All elephants are gray" might be repre
sented by 

(Vx )[ ELEPHANT {x ) => COLOR (JC, GRA Y)]. 

Here, the formula being quantified is an implication, and x is the 
quantified variable. We say that x is quantified over. The scope of a 
quantifier is just that part of the following string of formulas to which the 
quantifier applies. As another example, the sentence "There is a person 
who wrote Computer Chess" might be represented by 

(3x) WRITE(x,COMPUTER-CHESS). 

Any expression obtained by quantifying a wff over a variable is also a 
wff. If a variable in a wff is quantified over, it is said to be a bound 
variable; otherwise it is said to be a.free variable. We are mainly interested 
in wffs having all of their variables bound. Such wffs are called sentences. 

We note that if quantifiers occur in a wff, it is not always possible to use 
the rules for the semantics of quantifiers to compute the truth value of 
that wff. For example, consider the wff (\/x)P(x).Given an interpreta
tion for P and an infinite domain of entities, we would have to check to 
see whether the relation corresponding to P held for every possible 
assignment of the value of JC to a domain entity in order to establish that 
the wff had value T. Such a process would never terminate. 

The version of the predicate calculus used in this book is called first 
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order because it does not allow quantification over predicate symbols or 
function symbols. Thus, formulas like (VP)P(^4)are not wffs in first 
order predicate calculus. 

4.1.4. EXAMPLES AND PROPERTIES OF WFFS 

Using the syntactic rules that we have just informally discussed, we can 
build arbitrarily complex wffs, and we can compute whether or not an 
arbitrary expression is a wff. For example, the following expressions are 
wffs: 

(3x){<yy)[(P(x,y)AQ(y,x))^R(x)]} 

~0fq){(3x)[P(x)V R(q)]} 

~P[A,g(A,B,A)\ 

{~[P(A)^P(B)]}^P(B) 

In the above expressions, we have used parentheses, brackets, and braces 
as delimiters to group the component wffs. We use these delimiters to 
improve readability and to eliminate any ambiguity about how a wff is 
put together. 

Some examples of expressions that are not wffs are: 

~f{A) 

j\P{A)] 

Q{f(AUp(B)^Q(C)]} 

A V ~ => (V~) 

Given an interpretation, the truth values of wffs (except for some 
containing quantifiers) can be computed given the rules we have 
informally described above. When truth values are computed in this 
manner, we are using what is called a truth table method. This method 
takes its name from a truth table that summarizes the rules we have 
already discussed. If XI and X2 are any wffs, then the truth values of 
composite expressions made up of these wffs are given by the following 
truth table. 
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Table 4.1 
Truth Table 

XI X2 X1VX2 X1AX2 XI => X2 ~ * 7 

If the truth values of two wffs are the same regardless of their 
interpretation, then we say that these wffs are equivalent. Using the truth 
table, we can easily establish the following equivalences: 

~ ( ~ X I ) is equivalent to XI 
XI V X2 is equivalent to ~X1 => X2 

de Morgan's Laws: 
~(X1 AX2) is equivalent to ~X1 V ~ X2 
~(X1 V X2) is equivalent to ~ * 7 Λ ~X2 

Distributive Laws: 
XI A (X2 V X3) is equivalent to (XI A X2) V (XI A X3) 
XI V (X2 Λ X3) is equivalent to (XI V X2) A (XI V X3) 

Commutative Laws: 
XI A X2 is equivalent to X2 A XI 
XI V X2 is equivalent to X2 V XI 

Associative Laws: 
(XI AX2)AX3 is equivalent to XI A (X2 A X3) 
(XI V X2)V X3 is equivalent to XI V (X2 V X3) 

Contrapositive Law: 
X1^X2 is equivalent to — X2^>~X1 
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These laws justify the form in which we have written various of our 
example wffs in the discussion above. For example, the associative law 
allows us to write the conjunction XI A X2 A ... A XN without any 
parentheses. 

From the meanings of the quantifiers, we can also establish the 
following equivalences: 

~ ( 3 x ) P ( x ) is equivalent to (Vx ) [~P ( x )] 

~ ( V x ) P ( x ) is equivalent to (3x)[~P(x)] 

(Vx)[P(x) A Q(x)]is equivalent to 
(Vx)P(x)A(Vy)Q(y) 

(3x)[P(x) V Q(x)] is equivalent to 
(3x)P(x)V(3y)Q(y) 

(Vx)P(x) is equivalent to (Vy)P(y) 

(3x )P(x) is equivalent to (3y ) P (y ) 

In the last two equivalences, we see that the bound variable in a 
quantified expression is a kind of "dummy" variable. It can be arbitrarily 
replaced by any other variable symbol not already occurring in the 
expression. 

To show the versatility of the predicate calculus as a language for 
expressing various assertions, we show below some example predicate 
calculus representations of some English sentences: 

Every city has a dogcatcher who has been bitten by every dog in town. 

0/x){CITY(x)^(3y){DOGCATCHER(x,y) 
A (Vz){[DOG(z) A LIVES-IN(x9z)]^> BIT(y,z)}}} 

For every set x, there is a set y, such that the cardinality ofy is greater than 
the cardinality of JC. 

(Vx){SET(x)^(3y)(3u)(3v) 
[SET(y) A CARD(x,u) A CARD(y,v) A G(n,v)]} 
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All blocks on top of blocks that have been moved or that are attached to 
blocks that have been moved have also been moved. 

(Vx)(Vy) {{BLOCK(x) A BLOCK(y) 
A[ONTOP(x,y)V ATTACHED(χ,γ)] 

A MOVED00}=>MOVED(x)} 

4.1.5. RULES OF INFERENCE, THEOREMS, AND PROOFS 

In the predicate calculus, there are rules of inference that can be applied 
to certain wffs and sets of wffs to produce new wffs. One important 
inference rule is modus ponens. Modus ponens is the operation that 
produces the wff W2 from wffs of the form Wl and Wl => W2. Another 
rule of inference, universal specialization, produces the wff W(A ) from 
the wff (VA: ) W(x ),where A is any constant symbol. Using modus ponens 
and universal specialization together, for example, produces the wff 
W2(A) from the wffs (\/x)[Wl(x)=> W2(x)]imd W1(A). 

Inference rules, then, produce derived wffs from given ones. In the 
predicate calculus, such derived wffs are called theorems, and the 
sequence of inference rule applications used in the derivation constitutes 
di proof oî the theorem. As we mentioned earlier, some problem-solving 
tasks can be regarded as the task of finding a proof for a theorem. 

4.1.6. UNIFICATION 

In proving theorems involving quantified formulas, it is often neces
sary to "match" certain subexpressions. For example, to apply the 
combination of modus ponens and universal specialization to produce 
W2(A) from the wffs (Vx)[ Wl(x)=> W2{x)] and W1(A), it is 
necessary to find the substitution "A for x" that makes Wl (A ) and 
Wl{x) identical. Finding substitutions of terms for variables to make 
expressions identical is an extremely important process in AI and is called 
unification. In order to describe this process, we must first discuss the 
topic of substitutions. 

The terms of an expression can be variable symbols, constant symbols, 
or functional expressions, the latter consisting of function symbols and 
terms. A substitution instance of an expression is obtained by substituting 
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terms for variables in that expression. Thus, four instances of 
P[x,f(y),B] are: 

P[z,f(w),B] 
P[x,f(A),B) 
P[g(z),f(A),B] 
P[C,f(A),B] 

The first instance is called an alphabetic variant of the original literal 
because we have merely substituted different variables for the variables 
appearing in P [ x,f(y ),B], The last of the four instances shown above is 
called a ground instance, since none of the terms in the literal contains 
variables. 

We can represent any substitution by a set of ordered pairs s = {t1 /v1, 
t2/v2, . . . , tn/vn}. The pair ti/vi means that term t{ is substituted for 
variable v{ throughout. We insist that a substitution be such that each 
occurrence of a variable have the same term substituted for it. Also, no 
variable can be replaced by a term containing that same variable. The 
substitutions used above in obtaining the four instances of P[x,f(y),B] 
are: 

si = {z/x,w/y} 
s2={A/y] 
s3={g(z)/x,A/y) 
s4={C/x9A/y] 

To denote a substitution instance of an expression, E, using a 
substitution, s, we write Es. Thus, 

P[z9f(w)9B] = P[x9f(y)9B]sl . 

The composition of two substitutions si and s2 is denoted by sls2, which 
is that substitution obtained by applying s2 to the terms of si and then 
adding any pairs of s2 having variables not occurring among the variables 
of si. Thus, 

{g(x,y)/z}{A/x,B/y9C/w9D/z} = {g(A9B)/z9A/x,B/y9C/w} . 

It can be shown that applying si and s2 successively to an expression L 
is the same as applying 7̂̂ 2 to L ; that is, ( Lsl )s2 = L ( sls2 ). It can also 
be shown that the composition of substitutions is associative: 

(sls2)s3 = sl(s2s3). 
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Substitutions are not, in general, commutative; that is, it is not generally 
the case that sls2 = s2sl .  

If a substitution s is applied to every member of a set { E,}of 
expressions, we denote the set of substitution instances by { Ei } s. We say 
that a set { Ei}of expressions is unijiiable if there exists a substitution s 
such that E,s  = E,s = E,s = . . , . In such a case, s is said to be a unijier 
of { E,}since its use collapses the set to a singleton. For example, 
s = { A / x , B / y }  unifies { P [ x , f ( y ) , B I ,  P [ x , f ( B ) , B I } ,  to yield 
{ P [ A , f ( B ) , B I } .  

Although s = { A / x , B / y }  is a unifier of the set { P [ x , f ( y ) , B ] ,  
P [  x , f ( B ) , B ] } ,  in some sense it is not the simplest unifier. We note that 
we really did not have to substitute A for x to achieve unification. The 
most general (or simplest) unifier, mgu, g of { Ei }, has the property that if 
s is any unifier of { Ei } yielding { Ei } s, then there exists a substitution s’ 
such that { Ei } s = { Ei } gs’. Furthermore, the common instance pro- 
duced by a most general unifier is unique except for alphabetic variants. 

There are many algorithms that can be used to unify a finite set of 
unifiable expressions and which report failure when the set cannot be 
unified. The recursive procedure UNIFY, given informally below, is 
useful for establishing a general idea of how to unify a set of two 
list-structured expressions. [The literal P (  x , f ( A , y  )) is written as 
( P  x CfA y )) in list-structured form.] 

Recursive Procedure UNIFY( E l ,  E 2 )  

1 i f  either E l  or E2 is an atom (that is, a 
predicate symbol, a function symbol, a 
constant symbol, a negation symbol or a variable), 
interchange the arguments E l  and E2 (if 
necessary) so that El  is an atom, and do: 

2 begin 

3 if E l  and E2 are identical, return N I L  

4 i f  E l  is a variable, do: 
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5 begin 

6 if El occurs in E2, return FAIL 

7 return {E2/E1} 

8 end 

9 if E2 is a variable, return {E1/E2} 

10 return FAIL 

11 end 

12 Fl <- the first element of El, Tl <- the rest of El 

13 F2 <- the first element of E29 T2 «— the rest of E2 

14 Z7<-UNIFY(F7,F2) 

15 if Zl = FAIL, return FAIL 

16 Gl 4- result of applying Z7 to 77 

17 G2 +- result of applying Z7 to 77 

18 Z2 <-UNIFY(G7, (72) 

19 if Z2 = FAIL, return FAIL 

20 return the composition of Z7 and Z2 

It can be proven that UNIFY finds a most general unifier of a set of 
unifiable expressions or reports failure when the expressions are not 
unifiable. 

As examples, we list the most general common substitution instances 
(those obtained by applying the mgu) for a few sets of literals. 
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Table 4.2 
Unifiable Sets 

Sets of Literals Most General Common 
Substitution Instances 

{P(x),P(A)} P(A) 

{P\f(x),y,g(y)lP\f<<x)^g<<x)\) n/UW(*)l 

{P[f(x,g(A,y))yg(A,y)lP[f(x,z),z]} P\f(^i^y)\g(A,y)] 

Typically, we use unification to discover if one literal can match 
another one. There may be variables in both literals, and these variables 
may have terms substituted for them which would make the literals 
identical. The process of matching one expression to another template 
expression is sometimes called pattern matching. It plays a key role in AI 
systems. The unification process is more general than what is usually 
meant by pattern matching, however, because pattern matching pro
cesses typically do not allow variables to occur in both expressions. 

4.1.7. VALIDITY AND SATISFIABILITY 

If a wff has the value T for all possible interpretations, it is called valid. 
(Valid ground wffs are usually called tautologies.) Thus, by the truth 
table, the wffP(^ ) => [P(A ) V P(B)] has the value T regardless of the 
interpretation; therefore, it is valid. The truth table method can always be 
used to determine the validity of any wff that does not contain variables. 
One merely checks whether the wff has the value T for all possible 
valuations of the atomic formulas contained in the wff. 

When quantifiers occur, one cannot always compute whether or not a 
wff is valid. It has been shown to be impossible to find a general method 
to decide the validity of quantified expressions, and, for this reason, the 
predicate calculus is said to be undecidable. However, the validity of 
certain kinds of formulas containing quantifiers can be decided; thus, one 
may speak of decidable subclasses of the predicate calculus. Furthermore, 
it has been shown that if a wff is, in fact, valid, then a procedure exists for 
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verifying the validity of the wff. (This procedure applied to wffs that are 
not valid may never terminate.) Thus, the predicate calculus is said to be 
semidecidable. 

If the same interpretation makes each wff in a set of wffs have the value 
Γ, then we say that this interpretation satisfies the set of wffs. A wff X 
logically follows from a set of wffs S if every interpretation satisfying S 
also satisfies X. Thus, it is easy to see that the wff 
(Vx)(Vy)[P(jc) V Q(y)] logically follows from the set 

{(Vx)(Vy)[P(x) V ßOO], (Vz)[tf(z) V Q(A )]} . 

Also, the wff P(A )logically follows from (Vx)P(x). It also happens that 
(Vx ) Q ( x ) logically follows from the set {(Vx ) [~ P ( x ) V Q ( JC )], 
(Vx)P(x)} . 

There is an important connection between the concept of a wff 
logically following from a set of wffs and the concept of a wff being a 
theorem derived from a set of wffs by applying inference rules. Suppose 
we are given a system of inference rules. We say that these rules are sound 
if any theorem derivable from any set of wffs also logically follows from 
that set of wffs. It can be shown, for example, that modus ponens is sound. 
We say that a system of inference rules is complete if all wffs that logically 
follow from any set are also theorems derivable from that set. We are 
always interested in sound inference rules, although sometimes we do not 
insist that the set of rules be complete. 

4.2. RESOLUTION 

4.2.1. CLAUSES 

Resolution is an important rule of inference that can be applied to a 
certain class of wffs called clauses. A clause is defined as a wff consisting of 
a disjunction of literals. The resolution process, when it is applicable, is 
applied to a pair of parent clauses to produce a derived clause. Before 
explaining the resolution process itself, we first show that any predicate 
calculus wff can be converted to a set of clauses. We illustrate this 
conversion process by applying it to the following example wff: 
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(VJC){P(X) => {(VyXPC) =>P(f(x,y))] 
A ~ ( V y ) ( ô ( x , 7 ) ^ PO')]}} . 

The conversion process consists of the following steps: 

(1) Eliminate implication symbols. All occurrences of the => symbol in 
a wffare eliminated by making the substitution ~X1 V X2 for XI => A7 
throughout the wff. In our example wff, this substitution yields: 

(Vx){~p(x) v {(Vyx-poo v ^σ(^))ΐ 
A ~ ( V 7 ) [ ~ ô ( ^ j ) V i > ( 7 ) ] } } . 

(2) Reduce scopes of negation symbols. We want each negation 
symbol, ~ , to apply to at most one atomic formula. By making repeated 
use of de Morgan's laws and other equivalences mentioned with them on 
pages 138-139, we change our example wff to: 

(Vx){~P(x) V { ( V y X ~ P 0 0 V P(f{x,y))] 
Α ( 3 7 ) [ ρ ( χ , 7 ) Λ ^ Ρ ( 7 ) ] } } . 

(3) Standardize variables. Within the scope of any quantifier, a variable 
bound by that quantifier is a dummy variable. It can be uniformly 
replaced by any other (non-occurring) variable throughout the scope of 
the quantifier without changing the truth value of the wff. Standardizing 
variables within a wff means to rename the dummy variables to ensure 
that each quantifier has its own unique dummy variable. Thus, instead of 
writing (Vx)[/>(*)=» ( 3 χ ) β ( χ ) ] , we write (Vx)[/>(*)=> (3y)Q(y)]. 
Standardizing our example wff yields: 

0/x){~P(x) V {(V>0[~PO0 V P(f(x,y))] 
A(3w)[Q(x,w)A~P(w)]}}. 

(4) Eliminate existential quantifiers. Consider the wff 

(Vy)[(3x)P(x,y)\, 

which might be read as "For all y, there exists an x (possibly depending 
ony) such that P(x,y)" Note that because the existential quantifier is 
within the scope of a universal quantifier, we allow the possibility that the 
x that exists might depend on the value of y. Let this dependence be 
explicitly defined by some function g (y ), which maps each value of y into 
the x that "exists." Such a function is called a Skolem function. If we use 
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the Skolem function in place of the JC that exists, we can eliminate the 
existential quantifier altogether and write Qfy)P[g(y\y\. 

The general rule for eliminating an existential quantifier from a wff is 
to replace each occurrence of its existentially quantified variable by a 
Skolem function whose arguments are those universally quantified 
variables that are bound by universal quantifiers whose scopes include 
the scope of the existential quantifier being eliminated. Function 
symbols used in Skolem functions must be new in the sense that they 
cannot be ones that already occur in the wff. Thus, we can eliminate the 
(3z ) from 

[(Vw)Ô(w)]^(Vx){(Vy){(3z)[i>(x,/,z) 
^(Vu)R(x,y,u,z)]}}, 

to yield 

[(Vw)Q(w)]^0/x){0/y)[P(x,y9g(x,y)) 
^(Vu)R(x,y,u,g(x

K

y))] . 

If the existential quantifier being eliminated is not within the scope of 
any universal quantifiers, we use a Skolem function of no arguments, 
which is just a constant. Thus, (3x)P(x) becomes P(A), where the 
constant symbol A is used to refer to the entity that we know exists. It is 
important that A be a new constant symbol and not one used in other 
formulas to refer to known entities. 

To eliminate all of the existentially quantified variables from a wff, we 
use the above procedure on each formula in turn. Eliminating the 
existential quantifiers (there is just one) in our example wff yields: 

(V*){-/>(*) V {(Vy)[~P(y) V P(f(x,y))] 
^[Q(x,g(x))A~P(g(x))]}}, 

where g(x ) is a Skolem function. 

(5) Convert to prenex form. At this stage, there are no remaining 
existential quantifiers and each universal quantifier has its own variable. 
We may now move all of the universal quantifiers to the front of the wff 
and let the scope of each quantifier include the entirety of the wff 
following it. The resulting wff is said to be in prenex form. A wff in prenex 
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form consists of a string of quantifiers called a prefix followed by a 
quantifier-free formula called a matrix. The prenex form of our wff is: 

(Vx)(Vy) {-/>(*) V {[~/>00 V P(f(x9y))] 
A[Q(x,g(x))A~P(g(x))]}}. 

(6) Put matrix in conjunctive normal form. Any matrix may be written 
as the conjunction of a finite set of disjunctions of literals. Such a matrix is 
said to be in conjunctive normal form. Examples of matrices in conjunc
tive normal form are: 

[P(x) V Q(x,y)] A [P(w) V ~ R(y)] A Q(x,y) 
P(x)VQ(x,y) 
P(x)AQ(x,y) 
~R(y) 

We may put any matrix into conjunctive normal form by repeatedly 
using one of the distributive rules, namely, by replacing expressions of 
the form XI V (X2 A X3) by (XI V X2) A (XI V X3). 

When the matrix of our example wff is put in conjunctive normal form, 
our wff becomes: 

(V*)(Vy){[~P(x) V ~P(y) V P(f(x,y))] 
A [-/>(*) V Q(x,g(x))] A [~P(x) V ~P(g(x)))} . 

(7) Eliminate universal quantifiers. Since all of the variables in the wffs 
we use must be bound, we are assured that all the variables remaining at 
this step are universally quantified. Furthermore, the order of universal 
quantification is unimportant, so we may eliminate the explicit occur
rence of universal quantifiers and assume, by convention, that all 
variables in the matrix are universally quantified. We are left now with 
just a matrix in conjunctive normal form. 

(8) Eliminate Λ symbols. We may now eliminate the explicit occur
rence of Λ symbols by replacing expressions of the form (XI A X2) 
with the set of wffs { X19X2 }. The result of repeated replacements is to 
obtain a finite set of wffs, each of which is a disjunction of literals. Any wff 
consisting solely of a disjunction of literals is called a clause. Our example 
wff is transformed into the following set of clauses: 
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~P(x)V ~P{y)V P\f{x,y)] 
~P{x)V Q[x,g(x)] 
~P{x)V ~P[g(x)] 

(9) Rename variables. Variable symbols may be renamed so that no 
variable symbol appears in more than one clause. Recall that 
(VxXi»(jc) Λ Q(x)] is equivalent to [(VJC)P(JC) Λ (Vy)ßOOl· This 
process is sometimes called standardizing the variables apart. Our clauses 
are now: 

~P(xl)\/ ~P(y)V P[f(xl,y)) 
~P(x2)V Q[x2,g(x2)] 
~P(x3)V ~P[g(x3)} 

We note that the literals of a clause may contain variables but that 
these variables are always understood to be universally quantified. If 
terms not containing variables are substituted for the variables in an 
expression, we obtain what is called aground instance of the literal. Thus, 
Q(A,f(g(B))) is a ground instance of Q(x,y). 

When resolution is used as a rule of inference in a theorem-proving 
system, the set of wffs from which we wish to prove a theorem is first 
converted into clauses. It can be shown that if the wff A" logically follows 
from a set of wffs, 5, then it also logically follows from the set of clauses 
obtained by converting the wffs in S to clause form. Therefore, for our 
purposes, clauses are a completely general form in which to express wffs. 

4.2.2. RESOLUTION FOR GROUND CLAUSES 

The best way to obtain a general idea of the resolution inference rule is 
to understand how it applies to ground clauses. Suppose we have two 
ground clauses, PI V P2 V . . . V PN and ~P1 V Q2 V . . . QM. We 
assume that all of the Pi and Qj are distinct. Note that one of these clauses 
contains a literal that is the exact negation of one of the literals in the 
other clause. From these two parent clauses we can infer a new clause, 
called the resolvent of the two. The resolvent is computed by taking the 
disjunction of the two clauses and then eliminating the complementary 
pair, P1,~P1. Some interesting special cases of resolution follow in Table 
4.3. 
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Table 4.3 
Clauses and Resolvents 

Parent Clauses 

? a n d - ? V e 
( i .e . ,P=>£) 

P V ß a n d ~ / > V Q 

P V ß a n d ~ P V ~Q 

~P and P 

~i>Ve(i.e,i>=>0) 
and~<2 V Ä(i.e., Q^>R) 

Resolvent(s) 

Q 

Q 

Q V - Q a n d 
P V - P 

JV7L 

- ? V Ä 
(i.e., />=>/*) 

Comments 

Modus Ponens 

The clause 

eve 
"collapses" to 
Q. This re
solvent is 
called a merge. 

Here, there 
are two possible 
resolvents; in 
this case, both 
are tautologies. 

The empty 
clause is a 
sign of a 
contradiction. 

Chaining 

From the table above, we see that resolution allows the incorporation 
of several operations into one simple inference rule. We next consider 
how this simple rule can be extended to deal with clauses containing 
variables. 

4.23. GENERAL RESOLUTION 

In order to apply resolution to clauses containing variables, we need to 
be able to find a substitution that can be applied to the parent clauses so 
that they contain complementary literals. In discussing this case, it is 
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helpful to represent a clause by a set of literals (with the disjunction 
between the literals in the set understood). Let the prospective parent 
clauses be given by {L{} and {Mi} and let us assume that the variables 
occurring in these two clauses have been standardized apart. Suppose 
that {li} is a subset of {L%} and that {m^} is a subset of {Mi} such that a 
most general unifier s exists for the union of the sets {lx} and {-mj}. We 
say that the two clauses {L{} and {M{} resolve and that the new clause, 

{{L,} - { / , } } * U {{3/,} - { m , } } * , 

is a resolvent of the two clauses. 

If two clauses resolve, they may have more than one resolvent because 
there may be more than one way in which to choose {lx} and {rrii}. In 
any case, they can have at most a finite number of resolvents. As an 
example, consider the two clauses 

P[x,f{A)\y P[x,f{y)\\/ Q{y) 

and 

~P[z,f(A)\V ~Q{z). 

With {/4} = {P[x,f(A)]} and {wj} = {~P[z,f(A)]), we obtain the 
resolvent 

/W001v~ß(z)Vßoo. 
With {li}=[P{x,AA)],P[xJ{y)]}*nd{mi} = {~P[z9f(A)]}9 we 
obtain the resolvent 

Q(A)V~Q(z). 

Note that, in the latter case, two literals in the first clause were collapsed 
by the substitution into a single literal, complementary to an instance of 
one of the literals in the second clause. 

There are, altogether, four different resolvents of these two clauses. 
Three of these are obtained by resolving on P and one by resolving on Q. 

It is not difficult to show that resolution is a sound rule of inference; 
that is, that the resolvent of a pair of clauses also logically follows from 

151 



THE PREDICATE CALCULUS IN AI 

that pair of clauses. When resolution is used in a special kind of 
theorem-proving system, described in the next chapter and called a 
refutation system, it is also complete. Every wff that logically follows 
from a set of wffs can be derived from that set of wffs using resolution 
refutation. For this reason and because of its simplicity, resolution 
systems are an important class of theorem-proving systems. Their very 
simplicity results, though, in certain inefficiencies that restrict their use in 
AI systems. Nevertheless, an understanding of resolution systems pro
vides a basic foundation for understanding several other more efficient 
types of theorem-proving systems. 

In the next two chapters, we examine a variety of these systems, 
beginning with ones using resolution. 

4.3. THE USE OF THE PREDICATE 
CALCULUS IN AI 

The situations, or states, and the goals of several types of problems can 
be described by predicate calculus wffs. In Figure 4.1, for example, we 
show a situation in which there are three blocks, A, B, and C, on a table. 
We can represent this situation by the conjunction of the following 
formulas: 

ON(QA) 
ONTABLE(A) 
ONTA B LE (B) 
CLEAR(C) 
CLEAR(B) 
(Vx)[CLEAR(x) '{3y)ON(y9x)] 

Fig. 4,1 A situation with three blocks on a table. 
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The formula CLEAR(B) is intended to mean that block B has a clear 
top; that is, no other block is on it. The ON predicate is used to describe 
which blocks are (directly) on other blocks. (For this example, ON is not 
transitive; it is intended to mean immediately on top.) The formula 
ONT ABLE {B) is intended to mean that B is somewhere on the table. 
The last formula in the list gives information about how CLEAR and ON 
are related. 

A conjunction of several such formulas can serve as a description of a 
particular situation or "world state." We call it a state description. 
Actually, any finite conjunction of formulas really describes a, family of 
different world states, each member of which might be regarded as an 
interpretation satisfying the formulas. Even assuming that we give the 
obvious "blocks-world" interpretation to constituents of the formulas, 
there is still an infinite family of states (perhaps involving additional 
blocks as well) whose members satisfy these formulas. We can always 
eliminate some of these interpretations by adding additional formulas to 
the state description; for example, the set listed above says nothing about 
the color of the blocks and, thus, describes the family of states in which 
the blocks can have various colors. If we added the formula 
COLOR(B9 YELLOW), some interpretations would obviously be elim
inated. Even though a finite conjunction of formulas describes a family of 
states, we often loosely speak of the state described by the state 
description. We really mean, of course, the set of such states. 

We intend to use formulas, like those of our blocks-world example, as a 
global database in a production system. The way in which these formulas 
are used depends upon the problem and its representation. 

Suppose the problem is to show that a certain property is true in a 
given state. For example, we might want to establish that there is nothing 
on block C in the state depicted in Figure 4.1. We can prove this fact by 
showing that the formula ~(3y)ON(y9C) logically follows from the 
state description for Figure 4.1. Equivalently, we could show that 
~(3y ) ON(y, C) is a theorem derived from the state description by the 
application of sound rules of inference. 

We can use production systems to attempt to show that a given 
formula, called the goal wff, is a theorem derivable from a set of formulas 
(the state description). We call production systems of this sort theorem-
proving systems or deduction systems. (In the next two chapters, we 
present various commutative production systems for theorem proving.) 
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In a forward production system, the global database is set to the initial 
state description, and (sound) production rules are applied until a state 
description is produced that either includes the goal formula or unifies 
with it in some appropriate fashion. In a backward production system, 
the global database is set to the goal formula and production rules are 
applied until a subgoal is produced that unifies with formulas in the state 
description. Combined, forward/backward, systems are also possible. 

One obvious and direct use of theorem-proving systems is for proving 
theorems in mathematics and logic. A less obvious, but important, use of 
them is in intelligent information retrieval systems where deductions 
must be performed on a database of facts in order to derive an answer to a 
query. For example, from expressions like 

MANAGER(PURCHASING-DEPTJOHN-JONES), 

WORKS-IN(PURCHASING-DEPTJOE-SMITH), 

and 

{[ WORKS-IN(x,y) Λ MANAGER(x,z)] =Φ BOSS-OF(y,z)} , 

an intelligent retrieval system might be expected to answer a query like 
"Who is Joe Smith's boss?" Such a query might be stated as the following 
theorem to be proved: 

(3JC ) BOSS-OF(JOE-SMITH, x ) . 

A constructive proof (that is, one that exhibited the "JC" that exists) would 
provide an answer to the query. 

Even many commonsense reasoning tasks that one would not ordin
arily formalize can, in fact, be handled by predicate calculus theorem-
proving systems. The general strategy is to represent specialized know
ledge about the domain as predicate calculus expressions and to 
represent the problem or query as a theorem to be proved. The system 
then attempts to prove the theorem from the given expressions. 

Other kinds of problems involve changing the state description to one 
that describes an entirely different state. Suppose, for example, that we 
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have a "robot-type" problem in which the system must find a sequence of 
robot actions that change a configuration of blocks. We can specify the 
goal by a wff that describes the set of states acceptable as goal states. 
Referring to Figure 4.1, we might want to have block A on block 2?, and 
block 2?, in turn, on block C. Such a goal state (or rather set of states) 
could be expressed by the goal formula [ΟΝ(Α,Β) Λ ON(B9C)]. Note 
that this goal formula certainly cannot be proved as a theorem from the 
state description for Figure 4.1. The robot must change the state to one 
that can be described by a set of formulas from which the goal wff can be 
proved. 

Problems of this sort can be solved by production systems also. For a 
forward system, the global database is the state description. Each possible 
robot action is modeled by a production rule (an F-rule in forward 
systems). For example, if the robot can pick up a block, our production 
system would have a corresponding F-rule. The action of picking up a 
block changes the state of the world; application of the F-rule that 
models the action of picking up a block should make a corresponding 
change to the state description. A sequence of actions for achieving a goal 
can be computed by a forward production system that applies these 
F-rules to state descriptions until a terminal state description is produced, 
from which the goal wff can be proved. The solution sequence of F-rules 
constitutes a specification of apian of actions for achieving the goal state. 

Backward production systems for state-changing problems are also 
possible. They would use B-rules that are "inverse" models of the robot's 
actions. The formula describing the goal state would be used as the global 
database. B-rules would be applied until a subgoal formula was produced 
that could be proved from the initial state description. 

Production systems that use F-rules and B-rules in this way, to model 
state-changing actions, are typically not commutative. An F-rule for 
picking up a block, for example, might have as a precondition that the 
block have a clear top. In Figure 4.1, this precondition is satisfied for 
block B, but it would not be true for block B after block C is placed on it. 
Thus, applying one F-rule to a certain state description might render 
other F-rules suddenly inapplicable. Production systems for solving 
state-changing problems are explored in detail in chapters 7 and 8. They 
find application especially in robot problem solving and in automatic 
programming. 
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4.4. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

A book by Pospesel (1976) is a good elementary introduction to 
predicate calculus with many examples of English sentences represented 
as wffs. Two excellent textbooks on logic are those of Mendelson (1964) 
and Robbin (1969). Books by Chang and Lee (1973), Loveland (1978), 
and Robinson (1979) describe resolution methods. 

A unification algorithm and a proof of correctness is presented in 
Robinson (1965). Several variations have appeared since. Raulefs et al. 
(1978) survey unification and matching. Paterson and Wegman (1976) 
present a linear-time (and space) unification algorithm. 

The resolution rule was introduced by Robinson (1965) based on 
earlier work by Prawitz (1960) and others. The soundness and complete
ness of resolution was originally proved by Robinson (1965); proofs of 
these properties due to Kowalski and Hayes (1969) are presented in 
Nilsson (1971). The steps that we have outlined for converting any wff 
into clause form are based on the procedure of Davis and Putnam (1960). 
Clause form is also called quantifier-free, conjunctive-normal form. 
Manna and Waldinger (1979) have proposed a generalization of resolu
tion that is applicable to wffs in nonclausal form. Maslov (1971 and other 
earlier papers in Russian) proposed a dual form of resolution, working 
with "goal clauses" that are disjunctions of conjunctions of literals. [See 
also Kuehner (1971).] 

EXERCISES 

4.1 Suppose that we represent "Sam is Bill's father" by FA-
THER(BILL,SAM) and "Harry is one of Bill's ancestors" by ANCES
TOR ( BILL, HARR Y). Write a wff to represent "Every ancestor of Bill is 
either his father, his mother, or one of their ancestors." 

4.2 The connective ® (exclusive or) is defined by the following truth 
table: 
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XI 

τ 
F 
T 
F 

X2 

T 
T 
F 
F 

XI Θ Χ2 

F 
T 
T 
F 

What wff containing only ~ , V, and Λ connectives is equivalent to 
(XI ®X2)1 

43 Represent the following sentences by predicate calculus wffs. (Lean 
toward extravagance rather than economy in the number of different 
predicates and terms used. Do not, for example, use a single predicate 
letter to represent each sentence.) 

(a) A computer system is intelligent if it can 
perform a task which, if performed by a 
human, requires intelligence. 

(b) A formula whose main connective is a =Φ 
is equivalent to some formula whose main 
connective is a V. 

(c) If the input to the unification algorithm is 
a set of unifiable expressions, the output is 
the mgu; if the input is a set of non-unifiable 
expressions, the output is FAIL. 

(d) If a program cannot be told a fact, then it 
cannot learn that fact. 

(e) If a production system is commutative, 
then, for any database, £>, each member of 
the set of rules applicable to D is also 
applicable to any database produced by 
applying an applicable rule to D. 

4.4 Show that modus ponens in the propositional calculus is sound. 
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4.5 Show that (3Z)(VJC)[/>(*)=> ß(z)]and (3z)[(3x)P(x)^> Q(z)] 
are equivalent. 

4.6 Convert the following wffs to clause form: 

(a) (Vx)[P(x)^P(x)] 
(b) {~{(Vx)P(x)})=>(3x)[~P(x)] 
(c) ~Cx){P{x)=>{C*yyiP(y)=*P(f{x,y))] 

(d) (Vx)(3y) 
{[P(x,y)^Q(y,x)]A[Q(y,x)^S(x,y)]} 

^(3x)(Vy)[P(x,y)^S(x,y)] 

4.7 Show by an example that the composition of substitutions is not 
commutative. 

4.8 Show that resolution is sound; that is, show that the resolvent of two 
clauses logically follows from the two clauses. 

4.9 Find the mgu of the set {Ρ(χ,ζ,γ), P(w,u,w), P(A,u,u)}. 

4.10 Explain why the following sets of literals do not unify: 

(a) {P(f(x,x),A),P(f(y,f(y,A)),A)} 
(b) {~P(A),P(x)} 
(c) {P(f(A),x),P(x,A)} 

4.11 The following wffs were given a "blocks-world" interpretation in 
this chapter: 

ON(C,A) 
ONTABLE(A) 
ONTABLE(B) 
CLEAR(C) 
CLEAR(B) 
(\/x)[CLEAR(x)^> ~(3y)ON(y,x)] 

Invent two different (non-blocks-world) interpretations that satisfy the 
conjunction of these wffs. 
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4.12 In our examples representing English sentences by wffs, we have 
not been concerned about tense. Can you express the following sentences 
as wffs: 

Shakespeare writes "Hamlet." 
Shakespeare wrote "Hamlet." 
Shakespeare will write "Hamlet." 
Shakespeare will have written "Hamlet." 
Shakespeare had written "Hamlet." 
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CHAPTER 5 

RESOLUTION REFUTATION 
SYSTEMS 

In this chapter and chapter 6, we are primarily concerned with systems 
that prove theorems in the predicate calculus. Our interest in theorem 
proving is not limited to applications in mathematics; we also investigate 
applications in information retrieval, commonsense reasoning, and 
automatic programming. Two main types of theorem-proving systems 
will be discussed: here, systems based on resolution, and in chapter 6, 
systems that use various forms of implications as production rules. 

In the prototypical theorem-proving problem, we have a set, 5, of wffs 
from which we wish to prove some goal wff, W. Resolution-based systems 
are designed to produce proofs by contradiction or refutations. In a 
resolution refutation, we first negate the goal wff and then add the 
negation to the set, S. This expanded set is then converted to a set of 
clauses, and we use resolution in an attempt to derive a contradiction, 
represented by the empty clause, NIL. 

A simple argument can be given to justify the process of proof by 
refutation. Suppose a wff, W, logically follows from a set, S, of wffs; then, 
by definition, every interpretation satisfying S also satisfies W. None of 
the interpretations satisifying S can satisfy ~W, and, therefore, no 
interpretation can satisfy the union of S and ( ~ W). A set of wffs that 
cannot be satisfied by any interpretation is called unsatisfiable; thus, if W 
logically follows from S, the set S U {~ W) is unsatisfiable. 

It can be shown that if resolution is applied repeatedly to a set of 
unsatisfiable clauses, eventually the empty clause, NIL, will be produced. 
Thus, if W logically follows from S, then resolution will eventually 
produce the empty clause from the clause representation of S U {~ W). 
Conversely, it can be shown that if the empty clause is produced from the 
clause representation of S U {~W}, then W logically follows from S. 
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Let us consider a simple example of this process. Suppose the 
following statements are asserted: 

(1) Whoever can read is literate. 
(Vx)[R(x)^L(x)] 

(2) Dolphins are not literate. 
( V * X D ( x ) = > ~ L ( x ) ] 

(3) Some dolphins are intelligent. 
(3x)[D(x)AI(x)] 

From these, we want to prove the statement: 

(4) Some who are intelligent cannot read. 
(3x)[I(x)A ~R(x)] 

The set of clauses corresponding to statements 1 through 3 is: 
(1) ~R(x) V L ( J C ) 

(2) ~D(y)V ~L(y) 

(3a) D(A) 

(3b) 1(A) 

where the variables have been standardized apart and where A is a 
Skolem constant. The negation of the theorem to be proved, converted to 
clause form, is 

(4') ~I(z)VR(z) . 

To prove our theorem by resolution refutation involves generating 
resolvents from the set of clauses 1-3 and 4', adding these resolvents to 
the set, and continuing until the empty clause is produced. One possible 
proof (there are more than one) produces the following sequence of 
resolvents: 

(5) R (A ) resolvent of 3b and 4' 

(6) L (A ) resolvent of 5 and 1 
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(7) ~D(A) resolvent of 6 and 2 

(8) NIL resolvent of 7 and 3a 

5.1. PRODUCTION SYSTEMS FOR RESOLUTION 
REFUTATIONS 

We can think of a system for producing resolution refutations as a 
production system. The global database is a set of clauses, and the rule 
schema is resolution. Instances of this schema are applied to pairs of 
clauses in the database to produce a derived clause. The new database is 
then the old set of clauses augmented by the derived clause. The 
termination condition for this production system is a test to see if the 
database contains the empty clause. 

It is straightforward to show that such a production system is 
commutative. Because it is commutative, we can use an irrevocable 
control regime. That is, after performing a resolution, we never need to 
provide for backtracking or for consideration of alternative resolutions 
instead. We must emphasize that using an irrevocable control regime 
does not necessarily mean that every resolution performed is "on the 
path" to producing the empty clause; usually there will be several 
irrelevant resolutions applied. But, because the system is commutative, 
we are never prevented from applying an appropriate resolution later, 
even after having applied some irrelevant ones. 

Suppose we start with a set, S, of clauses called the base set. The basic 
algorithm for a resolution refutation production system can then be 
written as follows: 

Procedure RESOLUTION 

1 CLAUSES+-S 

2 until NIL is a member of CLA USES, do: 

3 begin 
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4 select two distinct, resolvable clauses 
Ci and Cj in CLA USES 

5 compute a resolvent, ri; of c{ 
and Cj 

6 CLA USES «— The set produced by adding r{j 
to CLAUSES 

7 end 

5.2. CONTROL STRATEGIES FOR RESOLUTION 
METHODS 

The decisions about which two clauses in CLAUSES to resolve 
(statement 4) and which resolution of these clauses to perform (statement 
5) are made irrevocably by the control strategy. Several strategies for 
selecting clauses have been developed for resolution; we give some 
examples shortly. 

In order to keep track of which resolutions have been selected and to 
avoid duplicated effort, it is helpful for the control strategy to use a 
structure called a derivation graph. The nodes in such a graph are labeled 
by clauses; initially, there is a node for every clause in the base set. When 
two clauses, q and cj9 produce a resolvent, ri ;, we create a new node, 
labeled rij9 with edges linking it to both the c{ and cs nodes. Here we 
deviate from the usual tree terminology and say that c{ and c, are the 
parents of r0 and that r{j is a descendant of c{ and c,. (Recall that we 
introduced the concept of a derivation graph in chapter 3.) 

A resolution refutation can be represented as a refutation tree (within 
the derivation graph) having a root node labeled by NIL. In Figure 5.1 
we show a refutation tree for the example discussed in the last section. 

The control strategy searches for a refutation by growing a derivation 
graph until a tree is produced with a root node labeled by the empty 
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clause, NIL. A control strategy for a refutation system is said to be 
complete if its use results in a procedure that will find a contradiction 
(eventually) whenever one exists. (The completeness of a, strategy should 
not be confused with the logical completeness of an inference rule 
discussed in chapter 4.) In AI applications, complete strategies are not so 
important as ones that find refutations efficiently. 

5.2.1. THE BREADTH-FIRST STRATEGY 

In the breadth-first strategy, all of the first-level resolvents are 
computed first, then the second-level resolvents, and so on. {A first-level 
resolvent is one between two clauses in the base set; an i-th level resolvent 
is one whose deepest parent is an (/ — l)-th level resolvent.) The 
breadth-first strategy is complete, but it is grossly inefficient. 

In Figure 5.2 we show the refutation graph produced by a breadth-first 
strategy for the example problem of the last section. All of the first- and 
second-level resolvents are shown, and we indicate that NIL is among the 
third-level resolvents. (Note that our refutation shown in Figure 5.1 did 
not produce the empty clause until the fourth level.) 

~/(z) V R(z) KA) 

R(A) ~R{x)V L(x) 

L(A) ~D(y) V ~L(y) 

-D(A) D(A) 

NIL 

Fig. 5.1 A resolution refutation tree. 
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5.2.2. THE SET-OF-SUPPORT STRATEGY 

A set-of-support refutation is one in which at least one parent of each 
resolvent is selected from among the clauses resulting from the negation 
of the goal wff or from their descendants (the set of support). It can be 
shown that a set-of-support refutation exists whenever any refutation 
exists and, therefore, that the set of support can be made the basis of a 
complete strategy. The strategy need only guarantee to search for all 
possible set-of-support refutations (in breadth-first manner, say). Set-of-
support strategies are usually more efficient than unconstrained breadth-
first ones. 

In a set-of-support refutation, each resolution has the flavor of a 
backward reasoning step because it uses a clause originating from the 
goal wff, or one of its descendants. Each of the resolvents in a 
set-of-support refutation might then correspond to a subgoal in a 
backward production system. One advantage of a refutation system is 
that it permits what are essentially backward and forward reasoning steps 
to occur in a simple fashion in the same production system. (Forward 
reasoning steps correspond to resolutions between clauses that do not 
descend from the theorem to be proved.) 

In Figure 5.3 we show a refutation graph produced by the set-of-sup
port strategy for our example problem. Notice that, in this case, set of 
support does not permit finding the empty clause at the third level. A 
third-level refutation for this problem necessarily involves resolving two 
clauses outside the set of support. Comparing Figure 5.2 with Figure 5.3, 
we see that set of support produces fewer clauses at each level than does 
unconstrained breadth-first resolution. Typically, the set-of-support 
strategy results in slower growth of the clause set and thus helps to 
moderate the usual combinatorial explosion. Usually this containment of 
clause-set growth more than compensates for the fact that a restrictive 
strategy, like set of support, often increases the depth at which the empty 
clause is first produced. 

The refutation tree in Figure 5.1 is one that could have been produced 
by a set-of-support strategy. We show the top part of this tree by 
darkening some of the branches in Figure 5.3. 

5.23. THE UNIT-PREFERENCE STRATEGY 

The unit-preference strategy is a modification of the set-of-support 
strategy in which, instead of filling out each level in breadth-first fashion, 
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CONTROL STRATEGIES FOR RESOLUTION METHODS 

we try to select a single-literal clause (called a unit ) to be a parent in a 
resolution. Every time units are used in resolution, the resolvents have 
fewer literals than do their other parents. This process helps to focus the 
search toward producing the empty clause and, thus, typically increases 
efficiency. 

The refutation tree of Figure 5.1 is one that might have been produced 
by a unit-preference strategy. 

5.2.4. THE LINEAR-INPUT FORM STRATEGY 

A linear-input form refutation is one in which each resolvent has at 
least one parent belonging to the base set. In Figure 5.4 we show how a 
refutation graph would be generated using this strategy on our example 
problem. Note that the first level of Figure 5.4 is the same as the first level 
of Figure 5.2. At subsequent levels, the linear-input form strategy does 
reduce the number of clauses produced. Again, the use of this strategy on 
our example problem does not permit us to find a third-level empty 
clause. Note that the refutation tree of Figure 5.1 qualifies as a 
linear-input form refutation. We indicate part of this tree by darkening 
some of the branches in Figure 5.4. 

There are cases in which a refutation exists but a linear-input form 
refutation does not; therefore, linear-input form strategies are not 
complete. To see that linear-input form refutations do not always exist for 
unsatisfiable sets, consider the following example set of clauses: 

Q(u)V P(A) 
~ ß ( w ) V P(w) 
~Q{x) V ~P(x) 
Q(y)V ~P(y) 

The set is clearly unsatisfiable, as evidenced by the refutation tree of 
Figure 5.5. A linear-input form refutation must (in particular) have one 
of the parents of NIL be a member of the base set. But to produce the 
empty clause in this case, one must either resolve two single-literal 
clauses or two clauses that collapse in resolution to single-literal clauses. 
None of the members of the base set meets either of these criteria, so 
there cannot be a linear-input form refutation for this set. 

Notwithstanding their lack of completeness, linear-input form strate
gies are often used because of their simplicity and efficiency. 
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CONTROL STRATEGIES FOR RESOLUTION METHODS 

5.2.5. THE ANCESTRY-FILTERED FORM STRATEGY 

An ancestry-filtered form refutation is one in which each resolvent has 
a parent that is either in the base set or that is an ancestor of the other 
parent. Thus, ancestry-filtered form is very much like linear form. It can 
be shown that a control strategy guaranteed to produce all ancestry-fil
tered form proofs is complete. 

As an example, the refutation tree of Figure 5.5 is one that could have 
been produced by an ancestry-filtered form strategy. The clause marked 
with an asterisk is used as an "ancestor" in this case. It can also be shown 
that completeness of the strategy is preserved if the ancestors that are 
used are limited to merges. (Recall from chapter 4 that a merge is a 
resolvent that inherits a literal from each parent such that this literal is 
collapsed to a singleton by the mgu.) We note in Figure 5.5 that the clause 
marked by an asterisk is a merge. 

■Q(*)V -P(x) (200 V ^ O ) 

Q(u)VP(A) 

NIL 

Fig. 5.5 A refutation tree. 
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5.2.6. COMBINATIONS OF STRATEGIES 

It is also possible to combine control strategies. A combination of set of 
support with either linear-input form or ancestry-filtered form is com
mon. Let us consider the set-of-support/linear-input form strategy, as an 
example. This strategy can be viewed as a simple type of reasoning 
backward from a goal to subgoal to sub-subgoal and so on. It happens 
that the first three levels in Figure 5.3 contain only clauses that are 
permitted by this combination strategy, so that the combination for those 
levels does not further restrict the set-of-support strategy used in that 
figure. Occasionally, however, the combination strategy leads to a slower 
growth of the clause set than would either strategy alone. 

The set-of-support, linear-input form, and ancestry-filtered form 
strategies restrict resolutions. Of all the resolutions that these strategies 
allow, the strategies say nothing about the order in which these 
resolutions are performed. We have already mentioned that an inappro
priate order does not prevent us from finding a refutation. This fact does 
not mean, however, that resolution order has no effect on the efficiency of 
the process. On the contrary, an appropriate order of performing 
resolutions can prevent the generation of large numbers of unneeded 
clauses. The unit-preference strategy is one example of an ordering 
strategy. Other ordering strategies based on the number of literals in a 
clause and the complexity of the terms in a clause can also be devised. 
The order in which resolutions are performed is crucial to the efficiency 
of resolution systems. Since we do not concentrate on applications of 
resolution refutation systems in this book, the interested reader is 
referred to the citations at the end of this chapter for references to papers 
and books dealing with ordering strategies for resolution systems. 

5.3. SIMPLIFICATION STRATEGIES 

Sometimes a set of clauses can be simplified by elimination of certain 
clauses or by elimination of certain literals in the clauses. These 
simplifications are such that the simplified set of clauses is unsatisfiable if 
and only if the original set is unsatisfiable. Thus, employing these 
simplification strategies helps to reduce the rate of growth of new clauses. 
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53.1. ELIMINATION OF TAUTOLOGIES 

Any clause containing a literal and its negation (we call such a clause a 
tautology) may be eliminated, since any unsatisfiable set containing a 
tautology is still unsatisfiable after removing it, and conversely. Thus, 
clauses like P(x) V B(y) V ~B(y) and P(f(A )) V ~P(f(A )) may 
be eliminated. 

53.2. PROCEDURAL ATTACHMENT 

Sometimes it is possible and more convenient to evaluate the truth 
values of literals than it would be to include these literals, or their 
negations, in the base set. Typically, evaluations are performed for 
ground instances. For example, if the predicate symbol "£" stands for the 
equality relation between numbers, it is a simple matter to evaluate 
ground instances such as E(1,3) when they occur; whereas we would 
probably not want to include in the base set a table containing a large 
number of ground instances of E(x,y) and ~E(x,y). 

It is instructive to look more closely at what is meant by "evaluating" 
an expression like £(7,3). Predicate calculus expressions are linguistic 
constructs that denote truth values, elements, functions, or relations in a 
domain. Such expressions can be interpreted with reference to a model 
which associates linguistic entities with appropriate domain entities. The 
end result is that the values T or F become associated with sentences in 
the language. 

Given a model, we could use any finite processes for interpretation 
with respect to it as a way of deciding truth values of sentences. 
Unfortunately, models and interpretation processes are not, in general, 
finite. Often, we can use partial models, however. In our equality 
example, we can associate with the predicate symbol, £, a computer 
program that tests the equality of two numbers within the finite domain 
of the program. Let us call this program EQUALS. We say that the 
program EQUALS is attached to the predicate symbol E. We can 
associate the linguistic symbols 7 and 3 (i.e., numerals ) with the computer 
data items 7 and 3 (i.e., numbers), respectively. We say that 7 is attached 
to 7, and that 3 is attached to 3, and that the computer program and 
arguments represented by EQUALS(7,3) are attached to the linguistic 
expression £(7,3). Now we can run the program to obtain the value F 
(false) which in turn induces the value F for £(7,3). 
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We can also attach procedures to function symbols. For example, an 
addition program can be attached to the function symbol plus. In this 
manner, we can establish a connection or procedural attachment between 
executable computer code and some of the linguistic expressions in our 
predicate calculus language. Evaluation of attached procedures can be 
thought of as a process of interpretation with respect to di partial model. 
When it can be used, procedural attachment reduces the search effort that 
would otherwise be required to prove theorems. 

A literal is evaluated when it is interpreted by running attached 
procedures. Typically, not all of the literals in a set of clauses can be 
evaluated, but the clause set can nevertheless be simplified by such 
evaluations. If a literal in a clause evaluates to Γ, the entire clause can be 
eliminated without affecting the unsatisfiability of the rest of the set. If a 
literal evaluates to F, then the occurrence of just that literal in the clause 
can be eliminated. Thus the clause P(x) V Q(A)V E(7,3) can be 
replaced by P(x)V Q(A), since E(7,3) evaluates to F. 

5.33. ELIMINATION BY SUBSUMPTION 

By definition, a clause { L{} subsumes a clause { M{} if there exists a 
substitution s such that { L{} s is a subset of { M{}. As examples: 

P(x) subsumes P(y) V Q(z) 

P(x) subsumes P(A ) 

P(x) subsumes P(A) V Q(z) 

P(x) V Q(A) subsumes P(f(A)) V Q(A) V R(y) 

A clause in an unsatisfiable set that is subsumed by another clause in 
the set can be eliminated without affecting the unsatisfiability of the rest 
of the set. Eliminating clauses subsumed by others frequently leads to 
substantial reductions in the number of resolutions that need to be made 
in finding a refutation. 
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5,4. EXTRACTING ANSWERS FROM RESOLUTION 
REFUTATIONS 

Many applications of predicate calculus theorem-proving systems 
involve proving formulas containing existentially quantified variables, 
and finding values or instances for these variables. That is, we might want 
to know if a wff such as (3x ) W( x ), logically follows from S, and if it 
does, we want an instance of the "JC" that exists. The problem of finding a 
proof for (Bx) W{X) from S is an ordinary predicate calculus theorem-
proving problem, but producing the satisfying instance for x requires 
that the proof method be "constructive." 

We note that the prospect of producing satisfying instances for 
existentially quantified variables allows the possibility for posing quite 
general questions. For example, we could ask "Does there exist a solution 
sequence to a certain 8-puzzle?" If a constructive proof can be found that 
a solution does exist, then we could produce the desired solution also. We 
could also ask whether there exist programs that perform desired 
computations. From a constructive proof of a program's existence, we 
could produce the desired program. (We must remember, though, that 
complex questions will generally have complex proofs, possibly so 
complex that our automatic proof-finding procedures will not find them.) 
In this section we describe a process by which a satisfying instance of an 
existentially quantified variable in a wff can be extracted from a 
resolution refutation for that wff. 

5.4.1. AN EXAMPLE 

Consider the following trivially simple problem: "If Fido goes 
wherever John goes and if John is at school, where is Fido?" Quite clearly 
the problem specifies two facts and then asks a question whose answer 
presumably can be deduced from these facts. The facts might be 
translated into the set S of wffs 

(Vx )[A T{JOHN,x ) => A T(FID09x )] 

and 

AT {JOHN, SCHOOL). 
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The question "where is Fido?" can be answered if we first prove that 
thewff 

(3x)AT(FIDO,x) 

logically follows from S and then find an instance of the x "that exists." 
The key idea is to convert the question into a goal wfT containing an 
existential quantifier such that the existentially quantified variable 
represents an answer to the question. If the question can be answered 
from the facts given, the goal wff created in this manner will logically 
follow from S. After obtaining a proof, we then try to extract an instance 
of the existentially quantified variable to serve as an answer. In our 
example we can easily prove that (3x)AT(FIDO,x) follows from S. We 
can also show that a relatively simple process extracts the appropriate 
answer. 

The resolution refutation is obtained in the usual manner, by first 
negating the wff to be proved, adding this negation to the set S, 
converting all of the members of this enlarged set to clause form, and 
then, by resolution, showing that this set of clauses is unsatisfiable. A 
refutation tree for our example is shown in Figure 5.6. The clauses 
resulting from the wifs in S are called axioms. Note that the negation of 
the goal wff (3x )A T( FIDO, x ) produces 

(Vx)[~AT(FIDO,x)], 

whose clause form is simply ~AT(FIDO,x). 

Next we must extract an answer to the question "Where is Fido?" from 
this refutation tree. The process for doing so in this case is as follows: 

(1) Append to each clause arising from the negation 
of the goal wff its own negation. Thus 
~AT(FIDO,x) becomes the tautology 
-AT (FIDO, x) V AT (FIDO, x). 

(2) Following the structure of the refutation tree, 
perform the same resolutions as before until some 
clause is obtained at the root. (We make the phrase 
the same resolutions more precise later.) 

(3) Use the clause at the root as an answer statement. 
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~AT(FIDO,x) 
(Negation of Goal) 

-A T{JOHN,y ) V A T(FIDO,y ) 
(Axiom 1) 

-AT(JOHN,x) AT(JOHN,SCHOOL) 
(Axiom 2) 

NIL 

Fig. 5.6 Refutation tree for example problem. 

~AT(FIDO,x) V AT(FIDO,x) -A T(JOHN,y) V A T(FIDO,y) 

-AT(JOHN,x) V AT(FIDO,x) AT(JOHN, SCHOOL) 

AT {FIDO, SCHOOL) 

Fig. 5.7 The modified proof tree for example problem. 
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In our example, these steps produce the proof tree shown in Figure 5.7 
with the clause AT {FIDO, SCHOOL) at the root. This clause, then, is 
the appropriate answer to the problem. 

We note that the answer statement has a form similar to that of the goal 
wff. In this case, the only difference is that we have a constant (the 
answer) in the answer statement in the place of the existentially 
quantified variable in the goal wff. 

In the next sections, we deal more thoroughly with the answer 
extraction process, justify its validity, and discuss how it should be 
employed if the goal wff contains universal as well as existential 
quantifiers. 

5.4.2. THE ANSWER EXTRACTION PROCESS 

Answer extraction involves converting a refutation tree (with NIL at 
the root) to a proof tree with some statement at the root that can be used 
as an answer. Since the conversion involves converting every clause 
arising from the negation of the goal wff into a tautology, the converted 
proof tree is a resolution proof that the statement at the root logically 
follows from the axioms plus tautologies. Hence it also follows from the 
axioms alone. Thus, the converted proof tree itself justifies the extraction 
process! 

Although the method is simple, there are some fine points that can be 
clarified by considering some additional examples. 

EXAMPLE 1. Consider the following set of wffs: 

1. (yx)0/y){[P(x,y)AP(y,z)]^G(x,z)} 

and 

2. (Vy)(3x)P(x,y). 

We might interpret these as follows: 

For all x and y, if x is the parent of y and y is the parent of z, then x is 
the grandparent of z. 
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and 

Everyone has a parent. 

Given these wffs as hypotheses, suppose we asked the question "Do there 
exist individuals x and y such that x is the grandparent of yl" The goal 
wff corresponding to this question is: 

(3x)(3y)G(x,y). 

The goal wff is easily proved by a resolution refutation. The refutation 
tree is shown in Figure 5.8. The literals that are unified in each resolution 
are underlined. We call the subset of literals in a clause that is unified 
during a resolution the unification set. 

(Negation of Goal) 
~P(x,y) V ~P(y,z) V G(x,z) 

(Axiom 1) 

~P(u,y) V ~P(y,v) 

P(f(w),w) 
(Axiom 2) 

-P(u,f(v)) 

P(f(w),w) 
(Axiom 2) 

NIL 

Fig. 5.8 A refutation tree for Example 1. 
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Note that the clause P(f(w),w) contains a Skolem function, /, 
introduced to eliminate the existential quantifier in Axiom 2. (The 
function/can be interpreted as a function that is defined to name the 
parent of any individual.) The modified proof tree is shown in i igure 5.9. 
The negation of the goal wff is transformed into a tautology, and the 
resolutions follow those performed in the tree of Figure 5.8. Each 
resolution in the modified tree uses unification sets that correspond 
precisely to the unification sets of the refutation tree. Again, the unification 
sets are underlined. 

The proof tree of Figure 5.9 has G(f(f(v)), v) at the root. This clause 
represents the wff (Vv )[ G (/*(/( v )), v )], which is the answer statement. 
The answer statement provides an answer to the question "Are there x 
and y such that x is the grandparent of yV The answer in this case 
involves the definitional function/. Any v and the parent of the parent of 
v are examples of individuals satisfying the conditions of the question. 
Again, the answer statement has a form similar to that of the goal wff. 

EXAMPLE 2. Here we illustrate the way in which more complex clauses 
arising from the negation of the goal wff are transformed into tautologies. 

-G(u,v) V G(u,v) 

P(x,y)V ~P(y,z)V G(x,z) 

~P(u,y)V ~P(y,v)V G{u,v) 

P(f(w),w) 

P(f(w),w) 

G(f(f(v)),v) 
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Consider the following set of clauses or axioms: 

~A(x) V F(x)VG(f(x)) 
~F(x) V B(x) 
- / ■ ( * ) V C(x) 
~G(x)V B(x) 
~ G ( x ) V D ( x ) 
i i ( S ( * ) ) V F ( A ( * ) ) 

(In this example, we assume that the variables in these clauses are 
standardized apart before performing resolutions. For simplicity, we do 
not indicate this process explicitly.) We desire to prove, from these 
axioms, the goal wff 

(3χ)(3γ){[Β(χ) A C(x)] V [D(y) A B(y))} . 

The negation of this wff produces two clauses, each with two literals: 

~B(x) V ~ C ( x ) 
~B(x) V ~D(x) . 

A refutation tree for this combined set of clauses is shown in Figure 5.10. 

Now, to transform this tree we must convert the clauses resulting from 
the negation of the goal wff (shown in double boxes in Figure 5.10) into 
tautologies, by appending their own negations. In this case, the negated 
clauses involve Λ symbols. For example, the clause ~B(x)V ~C(x) 
is converted to the formula— B (JC) V ~ C(x) V [B(x)A C(x)].This 
formula is not a clause because of the occurrence of the conjunction 
[B(x) A C(x)]; nevertheless, we treat this conjunction as a single literal 
and proceed formally as if the formula were a clause (none of the 
elements of this conjunction are ever in any unification sets). Similarly, 
we transform the clause — Z ) ( J C ) V ~ B ( x ) into the tautology 
~D(x) V ~B(x) V [D(x) A B(x)]. 

Performing the resolutions dictated by corresponding unification sets, 
we then produce the proof graph shown in Figure 5.11. Here the root 
clause is the wff 

Q/x){\B(g(x)) A C(g(x))] V [D(f(g(x))) A B(f(g(x)))] 

V[B(h(x))AC(h(x))]} . 
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-B(x) V ~C(x) ~D(x) V ~B(x) 

~F(x)V B(x) 

~F(x)V ~C(x) 

-G(x)V D(x) 

~B(x)V~G(x) 

~F(x)V C(x) 

~F{x) 

~G(x)V B(x) 

~G(x) 

i(g(x))VFMx)) 

Fig. 5.10 A re filiation tree for Example 2. 

We note that, in this example, the answer statement has a form somewhat 
different from the form of the goal wff. The underlined part of the answer 
statement is obviously similar to the entire goal wff—with g(x) taking 
the place of the existentially quantified variable x in the goal wff, and 
f(g(x)) taking the place of the existentially quantified variable y in the 
goal wff—but, in this example, there is the extra disjunct 
[ B (h (x )) Λ C(h (x ))] in the answer statement. This disjunct, however, 
is similar to one of the disjuncts of the goal wff, with h(x) taking the 
place of the existentially quantified variable x of the goal wff. 
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~F(x) V (B(x) A C(x)) 

~D(x) V ~B(x) V (D(x) A B(x)) 

~G(x)\/D(x) 

~B{x) V ~G(x) V (D(x) A B(x)) 

~G(x) V B{x) 1 

~G(x)V(D(x)AB(x)) 

~A(x)VF(x)VG(f(x)) 

-A(x) V G(f(x)) V (£(*) Λ C(x)) 

~A(x) V (*(*) Λ C(x)) V O W * ) ) V B(f(x))) 

A(g(x)) V F(h(x)) 

F(h(x)) V (£&(*)) Λ C(g(x)))V (D(f(g(x))) AB(f(g(x)))) 

[B(h(x)) A C(h(x))} V [D(f(g(x))) A B(f(g(x)))} V [B(g(x)) A C(g(x))] 

Fig. 5.11 The modified proof tree for Example 2. 

In general, if the goal wff itself is in disjunctive normal form, then our 
answer-extraction process will produce a statement that is a disjunction of 
expressions, each of which is similar in form either to the entire goal wff 
or to one or more disjuncts of the entire goal wff. For this reason we claim 
that the root clause here can be used as an "answer" to the "question" 
represented by the goal wff. 
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5.43. GOAL WFFS CONTAINING UNIVERSALLY 
QUANTIFIED VARIABLES 

A problem arises when the goal wff contains universally quantified 
variables. These universally quantified variables become existentially 
quantified in the negation of the goal wff, causing Skolem functions to be 
introduced. What is to be the interpretation of these Skolem functions if 
they should eventually appear as terms in the answer statement? 

We illustrate this problem with another example. Let the clause form 
of the axioms be: 

C(x,p (x )), meaning "For all x, x is the child ofp(x )" (that 
is, p is a function mapping a child of an individual into the 
individual); 

and 

~ C(x,y) V P(y,x% meaning "For all x andy, if x is the child 
of y, then y is the parent of x" 

Now suppose we wish to ask the question "For any x, who is the parent 
of jc?" The goal wff corresponding to this question is: 

(Vx)(3y)P(y,x). 

Converting the negation of this goal wff to clause form, we obtain, first: 

(3x)(Vy)[~P(y,x)l 

and then: 

~P(y,A), 

where A is a Skolem function of no arguments (i.e., a constant) 
introduced to eliminate the existential quantifier occurring in the 
negation of the goal wff. (The negation of the goal wff alleges that there is 
some individual, whom we call "Λ," that has no parent.) A modified 
proof tree with answer statement at the root is shown in Figure 5.12. 

Here we obtain the somewhat obtuse answer statement P(p(A ),A ), 
containing the Skolem function A. The interpretation should be that, 
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regardless of the Skolem function Λ (hypothesized to spoil the validity of 
the goal wfi), we are able to prove P(p (A ),A ). That is, any individual Λ, 
thought to spoil the goal wff, actually satisfies the goal wff. The constant A 
could have been a variable without invalidating the proof shown in 
Figure 5.12. It can be shown [Luckham and Nilsson (1971)] that in the 
answer-extracting process it is correct to replace any Skolem functions in 
the clauses coming from the negation of the goal wff by new variables. 
These new variables will never be substituted out of the modified proof 
but will merely trickle down to occur in the final answer statement. 
Resolutions in the modified proof will still be limited to those defined by 
those unification sets corresponding to the unification sets occurring in 
the original refutation. Variables might be renamed during some 
resolutions so that, possibly, a variable used in place of a Skolem function 
may get renamed and thus might be the "ancestor" of several new 
variables in the final answer statement. We illustrate some of the things 
that might happen in the latter case by two simple examples. 

EXAMPLE 3. Suppose S consists of the single axiom (in clause form): 

P(B,w,w) V P(A,u,u), 

and suppose we wish to prove the goal wff: 

(3χ)(\/ζ)(3γ)Ρ(χ,ζ,γ). 

~C(x,y)V P(y,x) ~P(y,A)VP(y,A) 

C(x,pM) 

Fig. 5.12 A modified proof tree for an answer statement. 
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A refutation tree is shown in Figure 5.13. Here, the clause resulting from 
the negation of the goal wff contains the Skolem function g ( x ). In Figure 
5.13 we also show the modified proof tree in which the variable t is used 
in place of the Skolem function g(x). Here we obtain a proof of the 
answer statement P(A9t9t) V P(B,z,z) that is identical (except for 
variable names) to the single axiom. This example illustrates how 
variables introduced by renaming variables in one clause during a 
resolution can finally appear in the answer statement. 

~P(x,g(x),y) 

P(B,w,w)V P(A,u,u) 

P(B,w,w) 

~P(x,g(x).y) 

NIL 

~P(x,t,y)V P(x,t,y) 

P(B,w,w) V P(A,u,u) 

P(B,w,w)\/ P{A,t,t) 

~P(x,t,y)V P(x,t,y) 

P(A,t,t)V P(B,z,z) 
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EXAMPLE 4. As another example, suppose we wish to prove the same 
goal wff as before, but now from the single axiom P(z,u9z) V P(A,u,u). 
The refutation tree is shown in Figure 5.14. Here the clause coming from 
the negation of the goal wff contains the Skolem function g (x). 

In Figure 5.14 we also show the modified proof tree in which the 
variable w is used in place of the Skolem function g (x ). Here we obtain a 
proof of the answer statement: 

P{z,w9z)VP(A,w9w)9 

~~P(x.g(x),y) 

-P(x,g(x)y>) 

P(z.u,z)V P{A,u,u) 

NIL 

~P(x,w,y)V P(x,w,y) 

P(z,u.z)V P(A,u,u) 

~P(x,w,y) V P(x,w,y)\ P(z,w,z)\/ P(A,w,w) 

P(z,w,z)V P(A,w,w) 

Fig. 5.14 Trees for Example 4. 
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which is identical (except for variable names) to the single axiom. Careful 
analysis of the unifying substitutions in this example will show that 
although the resolutions in the modified tree are constrained by 
corresponding unification sets, the substitutions used in the modified tree 
can be more general than those in the original refutation tree. 

In conclusion, the steps of the answer extraction process can be 
summarized as follows: 

1. A resolution-refutation tree is found by some search process. The 
unification subsets of the clauses in this tree are marked. 

2. New variables are substituted for any Skolem functions occurring in 
the clauses that result from the negation of the goal wff. 

3. The clauses resulting from the negation of the goal wff are converted 
into tautologies by appending to them their own negations. 

4. A modified proof tree is produced modeling the structure of the 
original refutation tree. Each resolution in the modified tree uses a 
unification set determined by the unification set used by the correspond
ing resolution in the refutation tree. 

5. The clause at the root of the modified tree is the answer statement 
extracted by this process. 

Obviously, the answer statement depends upon the refutation from 
which it is extracted. Several different refutations might exist for the 
same problem; from each refutation we could extract an answer, and, 
although some of these answers might be identical, it is possible that 
some answer statements would be more general than others. Usually we 
have no way of knowing whether or not the answer statement extracted 
from a given proof is the most general answer possible. We could, of 
course, continue to search for proofs until we found one producing a 
sufficiently general answer. Because of the undecidability of the predicate 
calculus, though, we would not always know whether we had found all of 
the possible proofs for a wff, W, from a set, S. 
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5.5. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

Various control strategies for resolution refutations are discussed in 
Loveland (1978) and Chang and Lee (1973). Ordering strategies have 
been proposed by Boy er (1971), Kowalski (1970), Reiter (1971), 
Kowalski and Kuehner (1971), Minker, Fishman, and McSkimin (1973), 
and Minker and Zanon (1979). 

Some examples of large-scale resolution refutation systems are those of 
Guard et al. (1969), McCharen et al. (1976), Minker et al. (1974), and 
Luckham et al. (1978) [The latter is also described in Allen and Luckham 
(1970).] Unlike some of the very earliest resolution systems, many of 
these possess control knowledge adequate to prove some rather difficult 
theorems. 

Our discussion of procedural attachment is based on the work of 
Weyhrauch (1980) on FOL. The process for extracting answers from 
resolution refutations was originally proposed by Green (1969b). Our 
treatment of answer extraction is based on work by Luckham and Nilsson 
(1971), who extended the method. 

EXERCISES 

5.1 Find a linear input form refutation for the following unsatisfiable set 
of clauses: 

~ rvp 
s 

~R 
~sv u 
~UV Q 
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5.2 Indicate which of the following clauses are subsumed by P (f( x ),y ) : 

(a) P(f(A),f(x))VP(z,f(y)) 
(b) P(z,A)V ~P(A,z) 
(c) P(/(/·(x)),z) 
(d) P(f(z),z)VQ(x) 
(e) P(A,A)V P(f(x),y) 

5 3 Show by a resolution refutation that each of the following formulas 
is a tautology: 

(a) ( ? ^ ß ) = > p V P ) = > ( Ä V ß ) ] 
(b) [(7»=>ß)=»j»]=>p 
(c) ( ~ P ^ P ) ^ P 
(d) ( / > = Φ ρ ) ^ ( ~ ρ = > ~ ρ ) 

5.4 Prove the validity of the following wffs using the method of 
resolution refutation: 

(a) (3x){[P(x)^P(A)]A[P(x)^P(B)]} 
(b) ( V z ) [ ß ( z ) ^ / > ( z ) ] 

=> { (3χ) [β(χ)=>/>(Λ)] A[Q(x)=>P(B)]} 
(c) (3x)(3y){[P(f(x)) A Q(f(B))] 

=*[P(f(A))AP(y)AQ(y)]} 
(d) (3x)(Vy)P(x,y) 

=>(yyX3x)P(jc,7) 
(e) ( V * ) { / » ( * ) A [ ß ( ^ ) V ß ( * ) ] } 

= > ( 3 χ χ Ρ ( χ ) Λ β ( χ ) ] 

5.5 Show by a resolution refutation that the wff (Bx)P(x) logically 
follows from the wff [P(A1 ) V P(A2)]. However, the Skolemized form 
of (3x)P(x), namely, P(A ), does not logically follow from 
[P(A1) V P(A2)]. Explain. 

5.6 Show that a production system using the resolution rule schema 
operating on a global database of clauses is commutative in the sense 
defined in chapter 1. 

5.7 Find an ancestry-filtered form refutation for the clauses of EXAM
PLE 2 in Section 5.4.2. Compare with the refutation graph of Figure 5.10. 
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5.8 Referring to the discussion in Section 3.3. on derivation graphs (and 
to Exercise 3.4) propose a heuristic search strategy for a resolution 
refutation system. On what factors would you base an h function? 

5.9 In this exercise we preview a relationship between computation and 
deduction that will be more fully explored in chapter 6. 

The expression cons(x,y) denotes the list formed by inserting the 
element * at the head of the list y. We denote the empty list by NIL ; the 
list (2) by cons(2,NIL)\ the list (1,2) by cons(\9cons(2,NIL)); etc. The 
expression LAST(x,y) is intended to mean thatj is the last element of 
the list x. We have the following axioms: 

(yu)LAST(cons(u,NIL),u) 
(Vx )(Vy )( Vz )[ LA ST(y, z)^>LAST( cons ( x,y ), z )] 

Prove the following theorem from these axioms by the method of 
resolution refutation: 

(3v)LAST(cons(2,cons(l,NIL)),v) 

Use answer extraction to find v, the last element of the list (2,1). Describe 
briefly how this method might be used to compute the last element of 
longer lists. 
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CHAPTER 6 

RULE-BASED DEDUCTION SYSTEMS 

The way in which a piece of knowledge about a certain field is 
expressed by an expert in that field often carries important information 
about how that knowledge can best be used. Suppose, for example, that a 
mathematician says: 

If x and y are both greater that zero, so is the product of x andj. 

A straightforward rendering of this statement into predicate calculus is: 

(Vx)(Vy){[G(x,0) Λ G(yfi)] ^ G (times (x, y ) fi)} . 

However, we could instead have used the following completely equiva
lent formulation: 

(Vjc)(Vy){[G(jc,0) Λ ~G(times(x,y)fi)] => ~G(y,0)} . 

The logical content of the mathematician's statement is, of course, 
independent of the many equivalent predicate calculus forms that could 
represent it. But the way in which English statements are worded often 
carries extra-logical, or heuristic, control information. In our example, 
the statement seems to indicate that we are to use the fact that x and y are 
individually greater than zero to prove that x multiplied by y is greater 
than zero. 

Much of the knowledge used by AI systems is directly representable by 
general implicational expressions. The following statements and expres
sions are additional examples: 

(1) All vertebrates are animals. 
(Vx)[ VERTEBRATE(x)^> ANIMAL(x)] 
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(2) Everyone in the Purchasing Dept. over 30 is married. 
(V*) (Vy) {[ WORKS-IN{PURCHASING-DEPT,x) 

A AGE(x9y) A G(y,30)]=ï MARRIED(x)} 

(3) There is a cube on top of every red cylinder. 
Çix){[CYLINDER(x) A RED(x)] 

^>(3y)[CUBE(y) A ON(y,x)]} 

If we were to convert expressions such as these into clauses, we would 
lose the possibly valuable control information contained in their given 
implicational forms. The clausal expression (A V B V C), for example, 
is logically equivalent to any of the implications {~A A ~B)=> C, 
(~A A ~C)=ïB9 Η Λ ~0=ΦΛ, ~A=ï(B V C ) , 
~B=>(A V C), or ~ C=ï(A V B)\ but each of these implications 
carries its own, rather different, extra-logical control information not 
carried at all by the clause form. In this chapter we argue that 
implications should be used in the form originally given, as F-rules or 
B-rules of a production system. 

The use of implicational wffs as rules in a production system prevents 
the system from making inferences directly from these rule wffs alone. 
All inferences made by a production system result from the application of 
production rules to the global database. Therefore each inference can 
involve only one rule wff at a time. This restriction has beneficial effects 
on the efficiency of the system. Additionally, we can show, in general, that 
converting wffs to clauses can lead to inefficiencies. 

Consider the problem of attempting to prove the wff P A ( Q V R ). If 
we used a resolution refutation system, we would negate this wff and 
convert it to clause form through the following steps: 

~[PA(QVR)] 

~ / > V - ( g V Ä ) 

—P V ( ~ ( ? A ~R) 

(1) - P V - Ô 

(2) ~ P V ~R 
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Suppose the base set also contains the following clauses: 

(3) ~ S V P 

(4) ~ t / V S 

(5) U 

(6) ~ W V R 

(7) W 

One reasonable strategy for obtaining a refutation might involve 
selecting clause 1, say, and using it and its descendants in resolutions. We 
can resolve clauses 1 and 3 to produce ~ 5 V ~ Q, and then use clauses 4 
and 5 in sequence to produce ~Q. At this stage, we have "resolved away" 
the literal ~ P from clause 1. Unfortunately, we now discover that we 
have no way to resolve away ~ g , so our search must consider working 
with clause 2. The previous work in resolving away ~P is wasted because 
we must search for a way to resolve it away again, to produce the clause 
~ R , which is on the way to a final solution. The fact that we had to 
resolve away ~P twice is an inefficiency caused by "multiplying out" a 
subexpression in the conversion to clause form. If we look at our original 
goal, namely, to prove P Λ ( Q V R ), it is obvious that the component P 
needs to be proved only once. Conversion to clauses makes this sort of 
duplication difficult to avoid. 

The systems described in this chapter do not convert wffs to clauses; 
they use them in a form close to their original given form. Wffs 
representing assertional knowledge about the problem are separated into 
two categories: rules and facts. The rules consist of those assertions given 
in implicational form. Typically, they express general knowledge about a 
particular subject area and are used as production rules. The facts are the 
assertions that are not expressed as implications. Typically, they repre
sent specific knowledge relevant to a particular case. The task of the 
production systems discussed in this chapter is to prove a goal wfffrom 
these facts and rules. 

In forward systems, implications used as F-rules operate on a global 
database of facts until a termination condition involving the goal wff is 
achieved. In backward systems, the implications used as B-rules operate 
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on a global database of goals until a termination condition involving the 
facts is achieved. Combined forward and backward operation is also 
possible. The details about rule operation and termination are explained 
in the next few pages. 

This sort of theorem-proving system is a direct system rather than a 
refutation system. A direct system is not necessarily more efficient than a 
refutation system, but its operation does seem intuitively easier for 
people to understand. 

Systems of this kind are often called rule-based deduction systems, to 
emphasize the importance of using rules to make deductions. AI research 
has produced many applications of rule-based systems. 

6.1. A FORWARD DEDUCTION SYSTEM 

6.1.1. THE AND/OR FORM FOR FACT EXPRESSIONS 

We begin by describing a simple type of forward production system 
that processes fact expressions of arbitrary form. Then we consider a dual 
form of this system, namely, a backward system that is able to prove goal 
expressions of arbitrary form. Finally, we combine the two in a single 
system. 

Our forward system has as its initial global database a representation 
for the given set of facts. In particular, we do not intend to convert these 
facts into clause form. The facts are represented as a predicate calculus 
wff that has been transformed into implication-free form that we call 
AND /OR form. To convert a wff into AND/OR form, the => symbols (if 
there are any) are eliminated, using the equivalence of ( Wl => W2) and 
( ~ Wl V W2). (Typically, there will be few => symbols among the facts 
because implications are preferably represented as rules.) Next, negation 
symbols are moved in (using de Morgan's laws) until their scopes include 
at most a single predicate. The resulting expression is then Skolemized 
and prenexed; variables within the scopes of universal quantifiers are 
standardized by renaming, existentially quantified variables are replaced 
by Skolem functions, and the universal quantifiers are dropped. Any 
variables remaining are assumed to have universal quantification. 
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For example, the fact expression: 

(3«)(Vv){ Q(v,u) A ~[[R(v) V P(v)] A S(u,v)]} 

is converted to 

Q(v,A ) Λ {[~/*(v) Λ ~P(v)] V ~S(A, v)]} . 

Variables can be renamed so that the same variable does not occur in 
different (main) conjuncts of the fact expression. Renaming variables in 
our example yields the expression: 

Q(w,A) Λ {[~Ä(v) Λ ~P(v)] V ~£(Λ,ν)} . 

Note that the variable v, in Q ( v,A ), can be replaced by a new variable, w, 
but that neither occurrence of the variable v in the conjuncts of the 
embedded conjunction, [~Ä(v) Λ ~P(v)], can be renamed because 
this variable also occurs in the disjunct ~S(A,v). An expression in 
AND/OR form consists of subexpressions of literals connected by Λ and 
V symbols. Note that an expression in AND/OR form is not in clause 
form. It is much closer to the form of the original expression. In 
particular, subexpressions are not multiplied out. 

6.1.2. USING AND/OR GRAPHS TO REPRESENT FACT 
EXPRESSIONS 

An AND/OR graph can be used to represent a fact expression in 
AND/OR form. For example, the AND/OR tree of Figure 6.1 repre
sents the fact expression that we just put into AND/OR form above. 
Each subexpression of the fact expression is represented by a node in the 
graph. Disjunctively related subexpressions, El,..., Ek, of a fact, 
(Ej V . . . V Ek\ are represented by descendant nodes connected to 
their parent node by a fc-connector. Each conjunctive subexpression, 
E1,..., En, of an expression, ( Et Λ . . . Λ En ), is represented by a single 
descendant node connected to the parent node by a 1-connector. It may 
seem surprising that we use /c-connectors (a conjunctive notion) to 
separate disjunctions in fact expressions. We see later why we have 
adopted this convention. 

The leaf nodes of the AND/OR graph representation of a fact 
expression are labeled by the literals occurring in the expression. We call 
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that node in the graph labeling the entire fact expression, the root node. It 
has no ancestors in the graph. 

An interesting property of the AND/OR graph representation of a wff 
is that the set of clauses into which that wff could have been converted 
can be read out as the set of solution graphs (terminating in leaf nodes) of 
the AND/OR graph. Thus, the clauses that result from the expression 
Q(w,A)A { [ ~ Α ( ν ) Λ ~Ρ(ν)] V ~S(A,v)} are: 

Ô(vM) 
~S(A,v) V 
~S(A9v)V 

' Ä ( v ) 

Each clause is obtained as the disjunction of the literals at the leaf nodes 
of one of the solution graphs of Figure 6.1. We might therefore think of 
the AND/OR graph as a compact representation for a set of clauses. [The 
AND/OR graph representation for an expression is actually slightly less 
general than the clause representation, however, because not multiplying 
out common subexpressions can prevent certain variable renamings that 
are possible in clause form. In the last of the clauses above, for example, 
the variable v can be renamed u throughout the clause. This renaming 
cannot be expressed in the AND/OR graph, which results in loss of 
generality that can sometimes cause difficulties (discussed later in the 
chapter).] 

Q(w,A) Λ {[-/?(»·) Λ ~P{v)) ~S{A,v)} 

Q(w,A) [-R(v) Λ -P(v)] V ~S(A,v) 

S(A,v) 

~R(v) 

Fig. 6.1 An AND/OR tree representation of a fact expression. 
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Usually, we draw our AND/OR graph representations of fact expres
sions "upside down." Later we also use AND/OR graph representations 
of goal wffs; these are displayed in the usual manner, "rightside up." 

When we represent wffs by AND/OR graphs, we are using AND/OR 
graphs for a quite different purpose than that described in chapters 1 and 
3. There, AND/OR graphs were representations used by the control 
strategy to monitor the progress of decomposable production systems. 
Here we are using them as representational forms for the global database 
of a production system. Various of the processes to be described in this 
chapter involve transformations and tests on the AND/OR graph as a 
whole, and thus it is appropriate to use the entire AND/OR graph as the 
global database. 

6.13. USING RULES TO TRANSFORM AND/OR GRAPHS 

The production rules used by our forward production system are 
applied to AND/OR graph structures to produce transformed graph 
structures. These rules are based on the implicational wffs that represent 
general assertional knowledge about a problem domain. For simplicity of 
explanation, we limit the types of wffs that we allow as rules to those of 
the form: 

where L is a single literal, W is an arbitrary wff (assumed to be in 
AND/OR form), and any variables occurring in the implication are 
assumed to have universal quantification over the entire implication. 
Variables in the facts and rules are standardized apart so that no variable 
occurs in more than one rule and so that the rule variables are different 
than the fact variables. 

The restriction to single-literal antecedents considerably simplifies the 
matching process in applying rules to AND/OR graphs. This restriction 
is a bit less severe than it appears because implications having antece
dents consisting of a disjunction of literals can be written as multiple 
rules; for example, the implication {LI V L2) => Wis equivalent to the 
pair of rules LI => W and L2 => W. In any case, the restrictions on rule 
forms that we impose in this chapter do not seem to cause practical 
limitations on the utility of the resulting deduction systems. 
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Any implication with a single-literal antecedent, regardless of its 
quantification, can be put in a form in which the scope of quantification is 
the entire implication by a process that first "reverses" the quantification 
of those variables local to the antecedent and then Skolemizes all 
existential variables. For example, the wif 

Q/x){[(3y)Qfz)P(x9y9z)]=> (Vii)ß(jc,n)} 

can be transformed through the following steps: 

(1) Eliminate (temporarily) implication symbol. 

<yX){~[(3y)Qfz)P(x,y,z)] 
V(Vu)Q(x,u)} 

(2) Reverse quantification of variables in first disjunct 
by moving negation symbol in. 

0tx){Qty)(3z)i~P(x,y,z)] 
V ( V « ) ß ( x , u ) } 

(3) Skolemize. 

(\/χ){(νγ)[~Ρ(χ,γ,/(χ,γ))] 
V ( V « ) ß ( * , « ) } 

(4) Move all universal quantifiers to the front and drop. 

~P(x,y,f(x,y))V Q(x,u) 

(5) Restore implication. 

P(x9y9f(x,y))=>Q(x,u) 

To explain how rules of this sort are applied to AND/OR graphs, we 
first consider the variable-free propositional calculus case. A rule of the 
form L=>W (where L is a literal and W is a wff in AND/OR form) can 
be applied to any AND/OR graph having a leaf node, n, labeled by literal 
L. The result is a new AND/OR graph in which node n now has an 
outgoing 1-connector to a descendant node (also labeled by L) which is 
the root node of that AND/OR graph structure representing W. 

200 



A FORWARD DEDUCTION SYSTEM 

As an example, consider the rule 

S=*(XA Y)V Z. 

We can apply this rule to the AND/OR graph of Figure 6.2 at the leaf 
node labeled by S. The result is the graph structure shown in Figure 6.3. 
The two nodes labeled by S are connected by an arc that we call a match 
arc. 

Before applying a rule, an AND/OR graph, such as that of Figure 6.2, 
represented a particular fact expression. (Its set of solution graphs 
terminating in leaf nodes represented the clause form of the fact 
expression.) We intend that the graph resulting after rule application 
represent both the original fact and a fact expression that is inferable 
from the original one and the rule. 

Suppose we have a rule L => ÌV, where L is a literal and W is a wff. 
From this rule and from the fact expression F(L), we can infer the 
expression F{ W) derived from F(L) by replacing all of the occurrences 
of L in F by W. When using a rule L => W to transform the AND/OR 
graph representation of F(L) in the manner described, we produce a 
new graph that can be considered to contain a representation of F( W)\ 
that is, its set of solution graphs terminating in leaf nodes represents the 
set of clauses in the clause form of F( W). This set of clauses includes the 
entire set that would be produced by performing all possible resolutions 
on L between the clause form of F( L ) and the clause form of L => W. 

Ξ 
(P V Q) H H V 

(T V U) 

Fig. 6.2 An AND /OR graph with no variables. 
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Consider the example of Figure 6.3. The clause form of the rule 
5=>[(*Λ 7 ) V Z ] i s : 

-svxvz 
and 

~ S V YV Z. 

Those clauses in the clause form of 

[(PVQ)AR] V[S A(TV U)] 

that would resolve (on S) with either of the two rule clauses are: 

P V Q V S 

and 

RV S. 

Match Arc 

(P V Q) I I R I s\ 

(PVQ)AR S A (T V U) 

[(P V Q) A R] V [S A (T V U)) 

Fig. 6.3 An AND/OR graph resulting from applying a rule. 
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The complete set of resolvents that can be obtained from these four 
clauses by resolving on S is: 

IVZVPVQ 
YVZV?VQ 
RV YV Z 
RV XV Z 

All of these are included in the clauses represented by the solution graphs 
of Figure 6.3. 

From this example, and from the foregoing discussion, we see that the 
process of applying a rule to an AND/OR graph accomplishes in an 
extremely economical fashion what might otherwise have taken several 
resolutions. 

We want the AND/OR graph resulting from a rule application to 
continue to represent the original fact expression as well as the inferred 
one. This effect is obtained by having identically labeled nodes on either 
side of the match arc. After a rule is applied at a node, this node is no 
longer a leaf node of the graph, but it is still labeled by a single literal and 
may continue to have rules applied to it. We call any node in the graph 
labeled by a single literal a literal node. The set of clauses represented by 
an AND/OR graph is the set that corresponds to the set of solution 
graphs terminating in literal nodes of the graph. 

All of our discussion so far about rule applications has been for the 
propositional calculus case in which the expressions do not contain 
variables. Soon we will describe how expressions with variables are dealt 
with, but first we discuss the termination condition for the variable-free 
case. 

6.1.4. USING THE GOAL WFF FOR TERMINATION 

The object of the forward production system that we have described is 
to prove some goal wff from a fact wff and a set of rules. This forward 
system is limited in the type of goal expressions that it can prove; 
specifically, it can prove only those goal wffs whose form is a disjunction 
of literals. We represent this goal wff by a set of literals and assume that 
the members of this set are disjunctively related. (Later, we describe a 
backward system and a bidirectional system that are not limited to such 
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Goal Nodes 

Rules: 
A=>C A D 
B^E A G 

Fact 

Fig. 6.4 An AND/OR graph satisfying termination. 

simple goal expressions.) Goal literals (as well as rules) can be used to add 
descendants to the AND/OR graph. When one of the goal literals 
matches a literal labeling a literal node, n, of the graph, we add a new 
descendant of node n, labeled by the matching goal literal, to the graph. 
This descendant is called a goal node. Goal nodes are connected to their 
parents by match arcs. The production system successfully terminates 
when it produces an AND/OR graph containing a solution graph that 
terminates in goal nodes. (At termination, the system has essentially 
inferred a clause identical to some subpart of the goal clause.) 

In our illustrations of AND/OR graphs, we represent matches 
between literal nodes and goal nodes in the same way that we represent 
matches between literal nodes and nodes representing rule antecedents. 
We show, in Figure 6.4, an AND/OR graph that satisfies a termination 
condition based on the goal wff ( C V G ). Note the match arcs to the goal 
nodes. 

The AND/OR solution graph of Figure 6.4 can also be interpreted as a 
proof of the goal expression ( C V G ) using a "reasoning-by-cases" 
strategy. Initially, we have the fact expression, (A V B). Since we don't 
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know whether A or B is true, we might attempt first to prove the goal by 
assuming that A is true and then attempt to prove the goal assuming B is 
true. If both proofs succeed, we hâve a proof based simply on the 
disjunction (A V B ), and it wouldn't matter which of A or B was true. In 
Figure 6.4, the descendants of the node labeled by (A V B) are 
connected to it by a 2-connector; thus both of these descendants must 
occur (as they indeed do) in the final solution graph. Now we can see the 
intuitive reason for using A>connectors to separate disjunctively related 
subexpressions in facts. If a solution graph for node n includes any 
descendant of AZ through a certain A>connector, it must include all of the 
descendants through this /c-connector. 

The production system that we have described, based on applying 
rules to AND/OR graphs, is commutative; therefore an irrevocable 
control regime suffices. The system continues to apply applicable rules 
until an AND/OR graph containing a solution graph is produced. 

6.1.5. EXPRESSIONS CONTAINING VARIABLES 

We now describe forward production systems that deal with expres
sions containing variables. We have already mentioned that variables in 
facts and rules have implicit universal quantification. We assume that any 
existential variables in facts and rules have been Skolemized. 

For goal wffs containing existentially or universally quantified vari
ables, we use a Skolemization process that is dual to that used for facts 
and rules. Universal variables in goals are replaced by Skolem functions 
of the existential variables in whose scopes these universal variables 
reside. Recall that in resolution refutation systems, goal wffs are negated, 
converting universal quantifiers into existential ones, and vice versa. 
Existential variables in these expressions are then replaced by Skolem 
functions. We achieve the same effect in direct proof systems if we 
replace universally quantified goal variables by Skolem functions. The 
existential quantifiers in the Skolemized goal wff can then be dropped, 
and variables remaining in goal expressions have assumed existential 
quantification. 

We are still restricting our goal wffs to those that are a disjunction of 
literals. After Skolemizing a goal wff, we can rename its variables so that 
the same variable does not occur in more than one disjunct of the goal 
wff. (Recall the equivalence between the wff (3x)[ Wl{x) V W2(x)] 
and the wff [(Bx) Wl(x) V (3y) W2(y)].) 
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Now we consider the process of applying a rule of the form ( L => W) 
to an AND/OR graph, where L is a literal, W is a wff in AND/OR form, 
and all expressions might contain variables. The rule is applicable if the 
AND/OR graph contains a literal node L' that unifies with L. Suppose 
the mgu is u. Then, application of this rule extends the graph (just as in 
the propositional calculus case) by creating a match arc directed from the 
node labeled by L! in the AND/OR graph to a new descendant node 
labeled by L. This descendant node is the root node of the AND/OR 
graph representation of Wu. We also label the match arc by the mgu, u. 

As an example, consider the fact expression 

{P(x,y)V[Q(x,A)AR(B,y)\}. 

The AND/OR graph representation for this fact is shown in Figure 6.5. 
Now, if we apply the rule: 

P(A,B)=ï[S(A) V X(B)] 

to this AND/OR graph, we obtain the AND/OR graph shown in Figure 
6.6. 

The AND/OR graph shown in Figure 6.6 has two solution graphs that 
terminate in leaf nodes and that include the newly added match arc. The 
clauses corresponding to these solution graphs are: 

S(A)V X(B)V Q(A,A) 

and 

S(A)V X(B)V R(B,B). 

In constructing these clauses, we have applied the mgu, w, to the literals 
occurring at the leaf nodes of the solution graphs. These clauses are just 
those that could be obtained from the clause form of the fact and the rule 
wffs by performing resolutions on P. 

The AND/OR graph of Figure 6.6 continues to represent the original 
fact expression, because we take it generally to represent all of those 
clauses corresponding to solution graphs terminating in literal nodes. 

After more than one rule has been applied to an AND/OR graph, it 
contains more than one match arc. In particular, any solution graph 
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(terminating in literal nodes) can have more than one match arc. In 
computing the sets of clauses represented by an AND/OR graph 
containing several match arcs, we count only those solution graphs 
terminating in literal nodes having consistent match arc substitutions. 
The clause represented by a consistent solution graph is obtained by 
applying a special substitution, called the unifying composition, to the 
disjunction of the literals labeling its terminal (literal) nodes. 

\Q(X,A) R(B,y) 

Fig. 6.5 An AND/OR graph representation of a fact expression containing variables. 

\s(A) xm 

Fig. 6.6 An AND /OR graph resulting after applying a rule containing variables. 
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The notions of a consistent set of substitutions and a unifying 
composition of substitutions are defined as follows. Suppose we have a 
set of substitutions, {ul9ug9.. ,,un). Each u{ is, in turn, a set of pairs: 

ui — {Ul/Vili · · ·> hm(i)/vim(i)} 

where the ts are terms and the vs are variables. From the ( u1,..., un ), we 
define two expressions: 

Ul — ( v l l v · -»vitna)v · · ) ν η ίν · '»vnm(n)) 

and 

Ü2 — (hi y · ·>^1ιη(1)ν · -^ηΐν · ^nm(n)) · 

The substitutions (ul9.. .,wn) are called consistent if and only if £/2 and 
i/^ are unifiable. The unifying composition, w, of (ul9.. .,wn) is the most 
general unifier of Uj and t/j. 

Some examples of unifying compositions [(Sickel (1976) and Chang 
and Slagle (1979)] are given in Table 6.1. 

Table 6.1 
Examples of Unifying Compositions of Substitutions 

"1 

{A/x) 

{x/y} 

ίΛΟΑ} 

{x/y,x/z} 

{*) 

{gir)/*) 

[f(g{xl))/x3, 
f(x2)/x4) 

Ug 

{B/x} 

0-/*} 

tf(A)/x} 

{Λ/ζ} 

{} 

W*)/J>i 

{x4/x3,g(xl)/x2) 

u 

inconsistent 

(x/y,x/z) 

{/(A)/x,A/z) 

{A/x,A/y,A/z} 

{*} 

inconsistent 

{J(g(xl))/x3, 
f(g(xl))/x4,g(xl)/x2) 
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It is not difficult to show that the unifying composition operation is 
associative and commutative. Thus, the unifying composition associated 
with a solution graph does not depend on the order in which match arcs 
were generated while constructing the graph. (Recall that the composition 
of substitutions is associative but not commutative.) 

It is reasonable to expect that a solution graph must have a set of 
consistent match arc substitutions in order for its corresponding clauses 
to be ones that can be inferred from the original fact expression and the 
rules. Suppose, for example, that we have the fact 

P(x)VQ(x) 

and the two rules 

P(A)=>R(A) 

and 

Q(B)^R(B). 

Application of both of these rules would produce the AND/OR graph 
shown in Figure 6.7. Even though this graph contains a solution graph 
with literal nodes labeled by R (A ) and R(B), this graph has inconsistent 
substitutions. Therefore, the clause [R(A ) V R(B)] is not one of those 
represented by the AND/OR graph shown in Figure 6.7. Of course, 
neither could this clause be derived by resolution from the clause form of 
the fact and rule wffs. 

R(A) 

P(A) 

[A M 

P(x) 

R(B) 

Q(B) 

[B/x] 

Q(x) 

P(x) V Q(x) 

Fig. 6.7 An AND/OR graph with inconsistent substitutions. 
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The graph of Figure 6.7 does, however, contain a representation for the 
clause [R(A) V Q(A)]. It is the clause obtained by applying the 
substitution {A/x } (which is the trivial unifying composition of the set 
containing the single element {A/x}) to the expression 
[R(A) V Q(x)]. This expression, in turn, corresponds to the solution 
graph terminating in the literal nodes labeled by R (A ) and Q (x ). 

If the same rule is applied more than once, it is important that each 
application use renamed variables. Otherwise, we may needlessly over-
constrain the substitutions. 

The AND/OR graph can also be extended by using the goal literals. 
When a goal literal, L, unifies with a literal U labeling a literal node, n, of 
the graph, we can add a match arc (labeled by the mgu) directed from 
node « to a new descendant goal node labeled by L. The same goal literal 
can be used a number of times, creating multiple goal nodes, but each use 
must employ renamed variables. 

The process of extending the AND/OR graph by applying rules or by 
using goal literals successfully terminates when a consistent solution 
graph is produced having goal nodes for all of its terminal nodes. The 
production system has then proved that goal (sub)disjunction obtained 
by applying the unifying composition of the final solution graph to the 
disjunction of the literals labeling the goal nodes in the solution graph. 

We illustrate how this forward production system operates by a simple 
example. Suppose we have the following fact and rules: 

Fido barks and bites, or Fido is not a dog: 

-DOG(FIDO) V [BARKS(FIDO) Λ BITES(FIDO)] 

All terriers are dogs: 

Rl: ~DOG(x)=> -TERRIER(x) 
(We use the contrapositive form of the implication here.) 

Anyone who barks is noisy: 

R2 : BA RKS (y ) => NOISY (y ) 
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Goal Nodes 

-TERRIER(z) 

{FIDO I z] 

-TERRIER(FIDO) 

Rl 

~DOG(x) 

[FIDOlx] 

NOISY(z) 

[FIDO/z] 

NOISY(FIDO) 
i 

R2 

BARKS{y) 

[FIDOly] 

BARKS(FIDO) BITES(FIDO) 

Fig. 6.8 An AND/OR graph for the "Terrier** problem. 

Now suppose we want to prove that there exists someone who is not a 
terrier or who is noisy. The goal wff representing the statement to be 
proved is: 

-TERRIER(z) V NOISY(z) . 

Recall that z is an existentially quantified variable. 

The AND/OR graph for this problem is shown in Figure 6.8. The goal 
nodes are shown by double-boxed expressions, and rule applications are 
labeled by the rule numbers. A consistent solution graph within this 
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AND/OR graph has the substitutions {FIDO/x}, {FIDO/y}, 
{FIDO/z}. The unifying composition of these substitutions is simply 
{ FIDO/x, FIDO/y, FIDO/z}. Applying this unifying composition to 
the goal literals used in the solution yields 

-TERRIER(FIDO) V NOISY(FIDO), 

which is the instance of the goal wff that our system has proved. This 
instantiated expression can thus be taken as the answer statement. 

There are several extensions that we could make to this simple forward 
production system. We have not yet explained how we might achieve 
resolutions between components of the fact expressions—sometimes 
allowing certain intraf act resolutions is useful (and necessary); nor have 
we described how we might proceed in those cases in which a fact 
(sub)expression might be needed more than once in the same proof, with 
differently named variables in each usage. Of course, there is also the very 
important problem of controlling this production system so that it finds 
consistent solution graphs efficiently. We postpone further consideration 
of these matters until they arise again in the backward system, described 
next. 

6.2. A BACKWARD DEDUCTION SYSTEM 

An important property of logic is the duality between assertions and 
goals in theorem-proving systems. We have already seen an instance of 
this principle of duality in resolution refutation systems. There the goal 
wff was negated, converted to clause form, and added to the clause form 
of the assertions. Duality between assertions and goals allows the negated 
goal to be treated as if it were an assertion. Resolution refutation systems 
apply resolution to the combined set of clauses until the empty clause 
(denoting F) is produced. 

We could also have described a dual resolution system that operates on 
goal expressions. To prepare wffs for such a system, we would first negate 
the wff representing the assertions, convert this negated wff to the dual of 
clause form (namely, a disjunction of conjunctions of literals), and add 
these clauses to the dual clause form of the goal wff. Such a system would 
then apply a dual version of resolution until the empty clause (now 
denoting T) was produced. 
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We can also imagine mixed systems in which three different forms of 
resolution are used, namely, resolution between assertions, resolution 
between goal expressions, and resolution between an assertion and a 
goal. The forward system described in the last section might be regarded 
as one of these mixed systems because it involved matching a fact literal 
in the AND/OR graph with a goal literal. The backward production 
system, described next, is also a mixed system that, in some respects, is 
dual to the forward system just described. Its operation involves the same 
sort of representations and mechanisms that were used in the forward 
system. 

6.2.1. GOAL EXPRESSIONS IN AND/OR FORM 

Our backward system is able to deal with goal expressions of arbitrary 
form. We first convert the goal wffto AND/OR form by the same sort of 
process used to convert a fact expression. We eliminate =Φ symbols, move 
negation symbols in, Skolemize universal variables, and drop existential 
quantifiers. Variables remaining in the AND/OR form of a goal 
expression have assumed existential quantification. 

For example, the goal expression: 

(3y)(Vx){P(x)^>[Q(x,y) Λ ~[R(x) Λ S(y)]]} 

is converted to 

~P(f(y)) v {Q(f(y),y) Λ [~*(/Ό0) v ~S00]} , 

wheref(y) is a Skolem function. 

Standardizing variables apart in the (main) disjuncts of the goal yields: 

~P(f(z)) V { Q(f(y),y) A [~R(f(y)) V ~S(y)]} . 

(Note that the variable y cannot be renamed within the disjunctive 
subexpression to give each disjunct there a different variable.) 

Goal wffs in AND/OR form can be represented as AND/OR graphs. 
But with goal expressions, A>connectors in these graphs are used to 
separate conjunctively related subexpressions. The AND/OR graph 
representation for the example goal wff used above is shown in Figure 
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~P(f(z))V {Q(f(y)y)A[-R{f(y)) V ~S(y)}} 

Fig. 6.9 An AND /OR graph representation of a goal wff. 

6.9. The leaf nodes of this graph are labeled by the literals of the goal 
expression. In AND/OR goal graphs, we call any descendant of the root 
node, a subgoal node. The expressions labeling such descendant nodes 
are called subgoals. 

The set of clauses in the clause form representation of this goal wff can 
be read from the set of solution graphs terminating in leaf nodes: 

~P(f(z)) 

Q(f(y),y)A~S(y) 

Goal clauses are conjunctions of literals and the disjunction of these 
clauses is the clause form of the goal wff. 

6.2.2. APPLYING RULES IN THE BACKWARD SYSTEM 

The B-rules for this system are based on assertional implications. They 
are assertions just as were the F-rules of the forward system. Now, 
however, we restrict these B-rules to expressions of the form 

W=$L, 
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where W is any wff (assumed to be in AND/OR form), L is a literal, and 
the scope of quantification of any variables in the implication is the entire 
implication. [Again, restricting B-rules to implications of this form 
simplifies matching and does not cause important practical difficulties. 
Also, an implication such as W =Φ {LI Λ L2) can be converted to the 
two rules W^> LI and W^> L2.] 

Such a B-rule is applicable to an AND/OR graph representing a goal 
wff if that graph contains a literal node labeled by U that unifies with L. 
The result of applying the rule is to add a match arc from the node 
labeled by U to a new descendant node labeled by L. This new node is 
the root node of the AND/OR graph representation of Wu where u is the 
mgu of L and ΖΛ This mgu labels the match arc in the transformed graph. 

Our explanation of the appropriateness of this operation is dual to the 
explanation for applying an F-rule to a fact AND/OR graph. The 
assertional rule W=5> L can be negated and added (disjunctively) to the 
goal wff. The negated form is (WΛ ~L). Performing all (goal) 
resolutions on L between the clauses deriving from ( W Λ ~ L ) and the 
goal wff clauses produces a set of resolvents that are identical to clauses 
included among those associated with the consistent solution graphs of 
the transformed AND/OR graph. 

6.23. THE TERMINATION CONDITION 

The fact expressions used by our backward system are limited to those 
in the form of a conjunction of literals. Such expressions can be 
represented as a set of literals. Analogous to the forward system, when a 
fact literal matches a literal labeling a literal node of the graph, a 
corresponding descendant fact node can be added to the graph. This fact 
node is linked to the matching subgoal literal node by a match arc labeled 
by the mgu. The same fact literal can be used a multiple number of times 
(with different variables in each use) to create multiple fact nodes. 

The condition for successful termination for our backward system is 
that the AND/OR graph contain a consistent solution graph terminating 
in fact nodes. Again, a consistent solution graph is one in which the match 
arc substitutions have a unifying composition. 

Let us consider a simple example of how the backward system works. 
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CAT(x) 

■J 

[x/x5 

CAT{x5) 

\ 
R5 

MEOWS(x) 

< 
[MYi 

ì 

RTL 

MEOWS{MYRTLE) 

Fig. 6.10 A consistent solution graph for a backward system. 
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Let the facts be: 

Fl: DOG(FIDO) 
F2: -BARKS(FIDO) 
F3: WAGS-TAIL(FIDO) 
F4: MEOWS(MYRTLE) 

and let us use the following rules: 

RI: [WAGS-TAIL(xl) A DOG(xl)]=> FRIENDLY(xl) 
R2: [FRIENDLY(x2) A ~BARKS(x2)] 

=>~AFRAID (y2,x2) 
R3: DOG(x3)^>ANIMAL(x3) 
R4: CAT(x4)=ïANIMAL(x4) 
R5: MEOWS(x5)^>CAT(x5) 

Suppose we want to ask if there are a cat and a dog such that the cat is 
unafraid of the dog. The goal expression is: 

(3x)(3y)[CAT(x) A DOG(y) A ~AFRAID(x,y)]. 

We show a consistent solution graph for this problem in Figure 6.10. 
The fact nodes are shown double-boxed, and rule applications are 
labeled by the rule number. To verify the consistency of this solution 
graph, we compute the unifying composition of all of the substitutions 
labeling the match arcs in the solution graph. For Figure 6.10, we must 
compute the unifying composition of ({x/x5}, {MYRTLE/x}9 
{FIDO/y}, {x/y2, y/x2], {FIDO/y}, {y/xl}9 {FIDO/y}9 
{FIDO/y}). The result is {MYRTLE:/x59 MYRTLE/x, FIDO/y, 
MYRTLEi>y2, FIDO/x2, FIDO/xl}. This unifying composition ap
plied to the goal expression yields the answer statement 

[CAT(MYRTLE) A DOG(FIDO) 
A -AFRAID(MYRTLE,FIDO)] . 

6.2.4. CONTROL STRATEGIES FOR DEDUCTION SYSTEMS 

Various techniques can be used to control the search for a consistent 
solution graph. We describe some of these as they might apply to a 
backward system; the same ideas can also be used with forward systems. 
The control strategy for our backward deduction system might attempt to 
find a consistent solution graph by first finding any solution graph and 
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then checking it for consistency. If this candidate graph is not consistent, 
the search must continue until a consistent one is found. 

A more sophisticated strategy would involve checking for consistency 
as the partial, candidate solution graphs are being developed (that is, 
before a complete candidate solution is found). Sometimes inconsisten
cies are revealed early in the process of developing a partial solution 
graph; these inconsistent partial solution graphs can be immediately 
ruled out, thus reducing the amount of search effort. 

Consider the following example. Suppose that we want to prove the 
goal P(x ) Λ Q (x ) and that the facts include R (A ) and Q (A ). Suppose 
that the rules include 

Rl: R{y)=>P{y) 

R2: S(z)^>P(B) 

Now, at a certain stage, the backward system might have produced the 
AND/OR graph shown in Figure 6.11. There are two partial candidate 
solution graphs in Figure 6.11. One has the substitutions ({x/y}, 
{A/x}), and the other has the substitutions ({B/x} , {A/x}). The latter 
is inconsistent. Furthermore, if ß(^4 ) is the only match for the subgoal 
Q (x ), we can see that rule R2 could not possibly be a part of any solution. 
Thus, detecting inconsistencies early in the search process can lead to 
opportunities for pruning the AND/OR graph. In our example, we do 
not need to generate subgoals of S(z). 

P(x) A Q(x) 

Piy) P{B) 

RL R2 

PW I I Q(x) 

Q(A) 

R(x) S(z) 

Fig. 6.11 An AND/OR graph with inconsistent substitutions. 
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Pruning operations that result from consistency checks among 
different levels of the graph are also possible. Consider the following 
example. Suppose the rules include: 

Rl 
R2 
R3 
R4 
R5 

[ß(u)AÄ(v)]=>P(«,v) 
W(y)^R(y) 
S(w)^>R(w) 
i/(z)=>S(C) 
V(A)^Q(A) 

Now, in attempting to deduce the goal P(x,x ), we might produce the 
AND/OR graph shown in Figure 6.12. Note that rules R4 and R5 are in 
the same partial candidate solution graph and that their associated 
substitutions, namely, {A/x } and { C/x }, are inconsistent. If rule R5 is 
the only possible match for subgoal Q (x ), this inconsistency would allow 
us to prune the subgoal U(z) from the graph. Solving U(z) cannot 
contribute to a consistent solution graph. Notice, however, that subgoal 
S(x) can be left in the graph; it might still permit the substitution 
{A/x}. The general rule is that a match need not be attempted if it is 
inconsistent with the match substitutions in all other partial solution 
graphs containing it. 

Another control strategy for backward, rule-based deduction systems 
involves building a structure called a rule connection graph. In this 
method, we precompute all possible matches among the rules and store 
the resulting substitutions. This precomputation is performed before 
solving any specific problems with the rules; the results are potentially 
useful in all problems so long as the set of rules is not changed. Such a 
process is, of course, only practical for rule sets that are not too large. 

We show, in Figure 6.13, an example rule connection graph for the 
rules of our earlier "cat and dog" example. The graph is constructed by 
writing down each rule in AND/OR graph form and then connecting 
(with match arcs) literals in rule antecedents to all matching rule 
consequents. The match arcs are then labeled by the mgus. 

When an actual problem is to be solved, we can connect the AND/OR 
goal graph and fact nodes to the rule connection graph by connecting the 
goal literal nodes to all matching rule consequents, and by connecting 
fact nodes to all matching literals in the rule antecedents. This enlarged 
connection graph can next be scanned to find candidate solution graphs 
within it. Once a candidate is found, we attempt to compute the unifying 
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Q(x) 

1 1 [A/x] 

Q(A) 

\V(A) 

P(x,x) 

{x/u,x/v} 
<> 

P(u.v) 

i? 1 
t\l 

R(x) 

l*/yJX^<^M 
R(y) R(w) 

J~RJ 

Six) 

[c/x] 11 

S(Q 

J/W 
U(z) 

Fig. 6.12 Another AND /OR graph with inconsistent substitutions. 

composition of the substitutions involved in this graph. If such a unifying 
composition exists, we have a consistent AND/OR solution graph and, 
thus, a solution. Otherwise, we must look for another candidate solution 
graph within the connection graph. 

Using connection graphs of this sort, we are really producing 
AND/OR graphs largely from precomputed structure. There is one 
important complication, however, that we have not yet mentioned: We 
might need to use the same rule in the rule connection graph more than 
once in a candidate solution graph. Each time it is used, it must have 
differently named variables. These differently named variables must then 
also occur in the substitutions copied over to the candidate solution 
graph. 

Let us consider a specific example. Suppose we have the rule 
P(x)=$ P(f(x)) and the fact P(A ). Suppose we want to prove the goal 
P(f(f(A))). The rule connection graph for this problem is shown in 
Figure 6.14. Here we use an (unlabeled) match arc between the rule's 
consequent and antecedent to remind us that a new instance of the rule 
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ANIMAL(x3) 

R3 

D0G(x3) 

ANIMAL(x4) 

\ 
R4 

\ 

CAT(x4) 

>> 
[x4lx5] 

V 

CAT(x5) 

R5 
\ 

MEOW S{x 5) 

Fig. 6.13 A rule connection graph. 

can have its consequent match the original antecedent, and so on. When 
the goal and fact nodes are connected, we have the graph shown in Figure 
6.15. Scanning this connection graph for candidate solution graphs can 
produce the one shown in Figure 6.16. This graph uses the same rule 
twice (going around a loop in the rule connection graph), and, thus, the 
variables occurring in the rule and in the associated substitutions must be 
renamed. The substitutions in the solution graph have the unifying 
composition {f(A )/JC, A/y). 
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ά^ 
P(fW) 

P(x) 

P(f(f(A))) 

[f(A)/x] 
^ 

P(f(x)) 

Fig. 6.14 Another rule connection graph. 

P(x) 

P(A) 

Fig. 6.15 A connection graph. 

P(f(f(A))) 

if(A)/x) 

PtfM) 

P(f{A)) 

[A/y] 
o 

WOO) 

P(A) 

P(A) 

Fig. 6.16 A candidate solution graph. 
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6.2.5. EXAMPLES OF BACKWARD, RULE-BASED 
DEDUCTION SYSTEMS 

To give a more concrete idea of the use of rule-based deduction 
systems in AI, we next describe some example systems. Each is 
illustrative only; practical versions of these systems would of course be 
much larger and need many additional features. It is interesting to note, 
however, that there are many important applications that can be attacked 
even with the restrictions we have imposed so far on the allowed forms 
for rules and facts in backward systems. 

6.2.5.1. An Information Retrieval System. Let us imagine that our set 
of facts contains personnel data for a business organization and that we 
want an automatic system to answer various questions about personnel 
matters. A highly simplified example system might have facts such as the 
following : 

MANAGER (P-D,JOHN-JONES)  
John Jones is the manager of the Purchasing Dept. 

WORKS-IN(  P-D,  JOE-SMITH) 
Joe Smith works in the Purchasing Department. 

WORKS-IN(  P-D,SALLY-JONES)  

WORKS-IN ( P-D, PETE-S W A N S O N )  

MANAGER(S-D,HARRY-TURNER) 
Harry Turner is the manager of the Sales Department. 

WORKS-IN ( S - D ,  MAR Y-JONES) 

WORKS-IN ( S - D ,  BILL- W H I T E )  

MARRIED (JOHN-JONES,MAR Y-JONES) 

In order to provide certain commonsense information about personnel 
concepts and to allow the set of facts to be kept concise, we might have 
the following rules: 
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Rl : MA NA GER (x9y)^> WORKS-IN ( x,y ) 

R2: [ WORKS-IN(χ,γ) Λ MANAGER(x.z)] 
^>BOSS-OF(y,z) 

(A more precise formulation might also state that a 
person cannot be his own boss.) 

R3 : [ WORKS-IN ( x9y ) Λ WORKS-IN (x,z)] 
^~MARRIED(y,z) 

(Company policy does not allow married couples 
to work in the same department.) 

R4: MARRIED(y,z)^> MARRIED(z,y) 
(Marriage is symmetrical. A more precise formulation 
might also state that persons cannot be married to 
themselves.) 

R5: [MARRIED(x,y) A WORKS-IN(P-D,x)] 
=> INSURED-BY(x9EAGLE-CORP) 

(All married employees of the Purchasing 
Department are insured by the Eagle Corporation.) 

With these facts and rules, a simple backward production system can 
answer a variety of questions. For these examples, we assume that the 
control strategy guides the generation of the AND/OR graph by 
pursuing a depth-first search for a consistent solution graph. In selecting 
a literal node within a partial solution graph to match against a B-rule 
consequent or fact, we assume that a look-ahead process selects that 
subgoal literal which has the fewest consistent matches. 

Those queries that can be answered without using rules are handled 
most simply. We show some example solution graphs in Figure 6.17. The 
solution graph is shown in such a way that a depth-first, left-to-right 
ordering of the literal nodes in the graph corresponds to the actual order 
in which the control regime found matches for these literals. The 
double-boxed nodes are fact nodes. In the second example, MAR
RIED (y,x) has the fewest potential matches, so it is matched first. If we 
apply the unifying composition of the substitutions occurring in the 
solution graph to the query, we obtain the answer 

WORKS-IN (SD, MAR Y-JONES) 
A MARRIED (JOHN-JONES, MARY-JONES). 
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Name someone who works in the Purchasing Department. 

WORKS-IN(P-D,x) 

[JOE-SMITH/x] 

WORKS-IN{P-D JOE-SMITH) 

Name someone who is married and works in the Sales Department. 

[JOHN-JONES/y, 
MARY-JONES/x] 

Ü 
MARRIED{JOHN-JONES,MAR Y-JONES) 

[MARY-JONES/x] 

O 

WORKS-IN(S-D,MAR Y-JONES) 

Fig. 6.17 Some simple queries that can be matched directly by facts. 
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Now let us try some more complex queries, ones that require using 
rules to answer. We show, in Figure 6.18, the solution graph for the query 
"Who is Joe Smith's Boss?" 

The only rule that can be applied at the beginning is rule R2. Of the 
resulting new literal nodes, MANAGER(xl9zl ) has the fewest possible 
matches, so it is matched first. Matching this subgoal against MAN-
AGER(S-D, HARRY-TURNER) cannot lead to a consistent solution 
graph, so ultimately the control process would have returned to try the 
match shown in Figure 6.18. (Notice that we have renamed the variables 
in rule R2 so that they are standardized apart from the goal wff.) After a 
solution is obtained, we can apply the unifying composition of the 
substitutions to the query to obtain the answer BOSS-OF(JOE-
SMITH, JOHN-JO NE S ). 

As a more complex example, consider the request "Name someone 
insured by the Eagle Corporation." We show the solution graph for this 
query in Figure 6.19. The MARRIED(x,y1) subgoal component is 
solved first, and then the rule Rl is applied to WORKS-IN ( P-D, x ) to set 
up the solution of the other subgoal component. Applying the unifying 
composition to the query produces the answer INSURED-BY(JOHN-
JONES, E A GLE-CORP ). 

[P-D/x l,JOHN-JONES/zl] 

MANAGER(xl,zl) WORKS-IN(xl JOE-SMITH) 

MAN A GER(P-D JOHN-JONES) 

[P-D/xl] 

WORKS-IN(P-DJOE-SMITH) 

Fig. 6.18 The solution graph for "Who is Joe Smith's boss?" 
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Suppose we wanted to ask "Is John Jones married to Sally Jones?" The 
system might first try to prove MARRIED (JOHN-JONES, SALLY-
JONES). No matches with facts are possible, and the subgoal obtained 
by using rule R4 doesn't help either. When no proof can be found, it is 
reasonable to attempt to prove the negation of the query. The solution 
graph for the negated goal is shown in Figure 6.20. 

We can also use this example to illustrate how additional knowledge 
and capabilities can be added without extensive changes to the system. 
Suppose, for example, that we want to refine rule R5 by introducing the 
notion of a temporary employee. The new rule, R5\ is: 

R5': [MARRIED(x,y) f\WORKS-IN(P-D,x) 
A -TEMPORARY (x)] 

=> INSURED-BY(x,EAGLE-CORP) 

{JOHN-JONES/x, 
MARY-JONES/yl] [P-D/x2,x/y2] 

MARRIED(JOHN-JONES,MAR Y-JONES) WORKS-IN(x2,y2) 

Rl 

MANAGER(P-D,x) 

{JOHN-JONES/x 

O 
M AN A GER(P-DJOHN-JONES) 

Fig. 6.19 The solution graph for "Name someone insured by the Eagle Corporation. 
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Now we must add to our set of facts the information about whether the 
employees are temporary or not. We might also have an additional 
definitional rule: 

R6: PERMANENT(x)^ -TEMPORARY(x). 

Additional facts might now include: 

PERMANENT(JOHN-JONES ) 

TEMPORARY(SALLY-JONES) 

The new rules and facts have little influence on the way in which 
previous queries are answered. As new rules are added to a deduction 
system, it is important, however, to check to see that they do not conflict 
with older rules. For example, suppose we were to add the rule: 

~MARRIED{JOHN-JONES,SALL Y-JONES) 

[JOHN-JONES/yl,SALL Y-JONES/zl] 

Fig. 6.20 The solution graph for "John Jones is Not Married to Sally Jones. ' 
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R7\ PREV-EMP(x,G-TEK) 
=> INSURED-BY(x,METRO-CORP) 

(Anyone previously employed by G-TEK is 
insured by Metro Corporation.) 

We would also add facts about the previous employment of employees. 
With these additions it now might be possible to derive conflicting 
INSURED-BYs. Resolution of such conflicts can usually be obtained by 
making the antecedents of the rules more precise. 

One desirable feature involves meta-rules like "If the database does not 
say explicitly that an employee is temporary, then that employee is 
permanent." This rule makes a statement that refers to databases in 
addition to employees! To use rules like this, our system would need a 
linguistic expression that denoted its own database. Additionally, it 
would be desirable to have the appropriate attachments between these 
expressions and the computer code comprising the database. Such 
considerations, however, would involve us in interesting complexities 
slightly beyond the scope of this book. [But see Weyhrauch (1980).] 

6.2.5.2. A System For Reasoning About Inequalities. Now let us turn 
our attention to some simple mathematics. We can use a system that 
reasons about inequalities to illustrate some additional points. This 
system will be able to show, for example, that if C > E > 0 and if 
B > A > 0, then [B(A + C)/E] > B. To simplify our present discus
sion we allow only one predicate, G. The intended meaning of G(x,y) is 
that x is greater than y. (Sometimes we use the more familar infix 
notation x > y.) In this system we do not deal with equal or "less-than" 
relations, so we specifically exclude the negation of G. 

The present system is not able to perform arithmetic operations, but it 
is able to represent their results by functional expressions. For addition 
and multiplication we use the expressions plus and times. Each of these 
takes as its single argument a bag, that is, an unordered group of 
elements. Thus, plus (3,4,3) is the same as plus (4,3,3), for example. (Most 
importantly, the two expressions are unifiable because they are regarded 
as the same expression.) We let the functions "divides" and "subtracts" 
have two arguments because their order is important. We represent x/y 
by divides(x,y), and x— y by subtracts (x,y). 

Using this notation, a typical expression might be G[ di
vides (times (B,plus (A, C)),E),B] which is more familiarly represented 
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as [B(A + C)/E] > B. The reason that we are using the more cumber
some prefix notation is to avoid possible sources of confusion when 
unifying terms. After one example of a deduction using prefix notation 
we revert to the more familiar infix convention. 

Our system uses rules that express certain properties of inequalities. 
We begin with the following set of rules: 

Rl: [G(xfi) A G(y,0)]^> G(times(x,y\0) 
that is, [(JC > 0) Λ (y > 0)] => (xy > 0) 

R2\ [ G ( J C , 0 ) A G(y,z)] => G(plus(x9y),z) 
that is, [(JC > 0) Λ (y > z)] =Φ [(JC + y) > z] 

R3: [ G ( J C , W ) A G(y,z)]=> G(plus(x,y),plus(w,z)) 
that is, [(JC > w) A (y > Z ) ] = > [ ( J C + y) > (w + z)] 

R4\ [ G ( J C , 0 ) A G(j>,z)]=> G(times(x,y\times(x,z)) 
that is, [(JC > 0) Λ (y > z)] => (jcy > JCZ) 

Ä5: [G(l ,w) Λ G(jc,0)]^>G(jc,/z>n^(jc,w)) 
that is, [(1 > w) A (JC > 0)] => (Λ: > jew) 

R6 : G ( x,plus ( //mes ( w, z ), f/mey ( j , z ))) 
=Φ G ( x, times (plus ( u>, j ), z )) 

that is, [x > (wz - h ^ z ^ ^ I j c > (w + y)z] 

R7: [ G(JC, tf/wes(w,y)) Λ G(j,0)] => G(rfivW«(x,y), w) 
that is, [(JC > wy) A (y > 0)] ^> [(jc/y) > w l 

These, of course, are not the only rules that would be useful; in fact, we 
shall introduce more later. Our system uses these rules as B-rules only. 
Various control strategies might be used, but since the AND/OR graphs 
resulting from applying these rules are all relatively small, we present the 
entire graphs in our examples. 

Our first problem is to prove [B(A + C)]/E > B from the following 
facts: E > 0, B > 0, A > 0, C > E, and C > 0. The AND/OR graph for 
this problem is shown in Figure 6.21. The solution graph is indicated by 
heavy branches, and facts that match (sub)goals are drawn in double 
boxes. We note that rule R2 is used twice with different substitutions, but 
one of these applications leads to an unsolvable subgoal. 
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Examining the facts supporting this proof, we note some redundancy 
that could have been avoided by use of the transitive property of G. That 
is, from C > E and E > 0, we ought to be able to derive C > 0 when 
needed, instead of having to represent it explicitly as a fact. Such a 
derivation could be made from a transitivity rule: 

R8: [(x>y)A(y>z)]^(x>z) . 

G(divides(times(B,plus(A,C)),E),B) 

1 I [times(B,plus(A,C))/xl, 

^ r E/yI,B/wl] 

G(divides(xl,yl),wl) 

G(times(B,plus(A,C)),times(B,E)) 

^ 

[B/x2,plus(A,C 

G(times(x2,y2),times(x2,z2)) 

G(B,0) 

I 
G(B,0) 

R4 ^ 

{A lx 5,C/y5,E/z5] 

R7 ^ V . 

)ly2,E/z2] 

G(plus(A,C),E) s 
G(plus(x5,y5),z5] 

/ 
1 G(A,0) 

^ i_ 
1 GO4,0)| 

R2 

^ 

\ 
G(C.E) 

l̂ 
1 Ie 

V 
| G ( C , £ - ) | [c 

G(E,0) 

Ϊ 
G(E,0) 

^[C/x6tA/y6tE/z6] 

G(plus(x6,y6),z6) 

/ 
KC.O) 

V 

r(C0) | 

R2 
\ 

G(A,E) 

no 
successors 

Fig. 6.21 The AND/OR graph for an inequality problem. 

231 



RULE-BASED DEDUCTION SYSTEMS 

Comparing R8 with the other rules, we note that its use is relatively 
unconstrained; it contains too many variables unencumbered by func
tions. Thus, it can participate in too many matches and will tend to get 
applied too often. Used as a B-rule, the consequent of R8, namely, 
G(x,z), matches any subgoal produced by our system. Clearly, we don't 
want to use transitivity at every step. 

Fortunately, there are ways to structure data so that special relations 
like transitivity can be implicitly encoded in the structure. For example, if 
the facts expressing an ordering relation are stored as nodes in a 
lattice-like structure, the desired consequences of transitivity (of the 
ordering) result automatically from simple computations on the lattice. 
These computations can be viewed as procedural attachments to the 
predicate denoting the ordering relation. 

Let us consider a more difficult proof. From B > 1, 1 > A, A > 0, 
C > Z), and D > 0, prove: 

(3u)[(Au + Bu)>D]. 

Also, from among the constants named in the facts, we would like an 
example of the u that satisfies the theorem. 

Let us assume that the facts are stored in a lattice-like structure that 
makes the following derived facts readily évaluable: B > A, B > 0, 
1 > 0, and C > 0. In the following example, we assume that any of these 
facts can be used as needed. 

The system first attempts to apply B-rules to the main goal. Only rule 
R2 is applicable, but there are two alternative substitutions that can be 
used. For brevity, let's follow the derivation along just one of them. (The 
other one leads very quickly to some unsolvable subgoals, as the reader 
might want to verify for himself.) 

Using just the rules Rl through R7, our system would generate the 
AND/OR graph shown in Figure 6.22. Note the subgoal (Bu > D) 
marked by an asterisk (*). No rules are applicable to this goal, so our 
present system would fail on this problem. What can be done to extend 
the power of the system? 

Here again we see an example in which the power of a production 
system can be extended in an evolutionary manner without extensive 
redesign. We can add the following rule to our system: 
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R9: [{y> 1) Λ ( x > z)] => (jcy > z) . 

This rule is applicable to the goal (Bu> D\ and its presence does not 
otherwise greatly diminish the efficiency of the system. [The reader may 
want to investigate the effect of R9 on the AND/OR graph of Figure 
6.21. Its presence allows some additional—but ultimately fu
tile—matches to the subgoal G ( times ( B, plus (A, C )), times ( B, E ))]. 

In Figure 6.23, we show the AND/OR graph produced by rule 
applications below Bu > D. Note that there are two 2-connectors below 
the top node. The left-hand one is futile, but the right-hand one is 
successful, with C substituted for u. We note that in Figure 6.22 the 
substitution { C/u } is one of the ones permitted under the goal u > 0. 
Thus our proof is complete, and a value oft/ that satisfies the theorem is 
u = C. 

(Au+Bu)>D 

{Au/x,Bu/y,D/z) [Bu/xl,Au/yl.D/zl] 

(x+y)>z (xl+yl)>zl 

R2 R2 

Au>0 

{A/x2,u/y2} 

Bu>D Bu>0 Au>D 

[u/x3,A/yS} 

x2y2 > 0 x3y3 > 0 

Fig. 6.22 A partial solution graph. 
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{B/x,u/y,D/z} {B/yl,u/xl,D/zl} 

[Blu] [C/u] 

Fig. 6.23 Subgoals produced by the new rule. 

Some additional extensions to our inequality reasoning system would 
increase its power further. One of the facts provided in our last example 
was (1 > 0). We should not have to represent all possible inequalities 
between numbers as facts. What is needed is an attachment to a 
"greater-than" computation that would allow evaluation of ground 
instances of G literals. There should also be attachments to arithmetic 
programs so that G(\0,A ) could be substituted for G (plus (3,7), A ) , for 
example. A means should be provided to simplify algebraic expressions 
and to handle equality predicates. Some of the mechanisms for efficiently 
implementing improvements such as these depend on techniques to be 
discussed at the end of this chapter. 

6.3. "RESOLVING" WITHIN AND/OR GRAPHS 

The backward system we have described is not able to prove valid or 
tautological goal expressions such a s ^ P V P ) unless it can prove ~P 
or P separately. Neither can the forward system recognize contradictory 
fact expressions such as (~P Λ P). In order for these systems to 
overcome these deficiencies, they must be able to perform intragoal or 
intrafact inferences. 
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Let us describe how certain intragoal inferences might be performed. 
Consider, for example, the following expressions used by a backward 
system: 

Goal 

[P(*,y)VQ(x,y)]A V(x,y) 

Rules 

Rl: [R(v)AS(u,B)]^>P(u,v) 

R2: [~S(A,s)A W(r)] => Q(r,s) 

Facts 

R(B)A W{B)A V(A,B)A V(B,B) 

After rules Rl and R2 have been applied, we have the AND/OR graph 
shown in Figure 6.24. This graph has two complementary literals whose 
predicates unify with mgu {A/x, B/y). We indicate this match in Figure 
6.24 by an edge between the nodes representing the complementary 
literals. The edge is labeled by the mgu. The (goal) clause form of the 
expressions represented by this AND/OR graph include the clauses: 

V(x,y)AR(y)AS(x,B) 

and 

V(x,y) A W(x) A ~S(A,y). 

If we were to perform a goal resolution (on S) between these two clauses 
(after standardizing variables apart), we would obtain the (goal) resol
vent: 

V(A9y)AR(y)A V(t,B) A W{t) . 

We mentioned at the beginning of this chapter that the AND/OR 
graph representation for an expression is slightly less general than clause 
form because variables in the AND/OR graph cannot be fully standard
ized apart. This constraint makes it difficult to represent, with full 
generality, the expressions that can be obtained by resolving goal 
subexpressions. 

235 



RULE-BASED DEDUCTION SYSTEMS 

Fig. 6.24 An AND/OR graph with complementary literal nodes. 

One way to represent a resolution operation performed between two 
goal clauses is to connect a literal in one partial solution graph with a 
complementary literal in another (as we have done in Figure 6.24). We 
take this connected structure to represent the clauses composed of the 
literal nodes in the pairs of all solution graphs (terminating in literal 
nodes) thus joined. We associate with a paired solution graph a 
substitution that is the unifying composition of the substitutions in each 
member of the pair plus the substitution associated with the match 
between the complementary literals. The substitution associated with a 
paired solution graph (terminating in literal nodes) is applied to its 
terminating literal nodes to obtain the clause that it represents. 

Thus, the structure of Figure 6.24 includes a representation for the 
clause: 

R(B)A W{A)/\ V(A,B). 

This clause is not as general as the one we obtained earlier by goal 
resolution between goal clauses whose variables had been standardized 
apart, and this restricted generality can prevent us from finding certain 
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proofs. (The expression [R (B ) A W{A ) Λ V(A,B)] cannot be proved 
from the facts that we have given, whereas the expression 
[V(A,y) A R(y) A V(t,B) Λ W(t)] can.) We might say that this 
operation, of matching complementary pairs of literals in AND/OR goal 
graphs, is a restricted goal resolution (RGR). 

To use RGR in a backward production system, we must modify the 
termination criterion. We can assume, for the purposes of finding 
candidate solution graphs, that literals joined by an RGR match edge are 
terminal nodes. A pair of partial solution graphs thus joined constitutes a 
candidate solution if all of its other leaf nodes are terminal (that is, if they 
are either goal nodes or if they participate in other RGR matches). Such a 
candidate solution graph is a final solution graph if its associated 
substitution is consistent. 

In our example, matching the remaining nonterminal leaf nodes of 
Figure 6.24 with facts fails to produce a consistent solution graph because 
the solution of this problem requires more generality than can be 
obtained by applying RGR to the AND/OR graph representation of the 
goal expression. The required generality can be obtained in this case by 
multiplying out the goal expression into clauses and standardizing the 
variables apart between the two clauses, producing the expression: 

[P(xl,yl) A V(xl,yl)] V [Q(x2,y2) A V(x2,y2)] . 

Now this expression can be represented as an AND/OR graph, and rules 
and RGR can be applied to produce the consistent solution graph shown 
in Figure 6.25. The unifying composition associated with this solution 
includes the substitution {B/yl,A/xl,B/x2,B/y2). Applying this sub
stitution to the root node of the graph yields the answer statement: 

[P(A9B)] A V(A,B)] V[Q(B,B) A V(B,B)] . 

To avoid conflicting substitutions when using RGR, it is sometimes 
necessary to multiply out part or all of the goal expression into clause 
form. A reasonable strategy for deduction systems of this type might be 
to attempt first to find a proof using the original goal expression. If this 
attempt fails, the system can convert (part of) the goal expression to 
clause form, standardize variables, and try again. In the example above, 
we had to multiply out the entire goal expression into clause form in order 
to find a proof. In general, it suffices to multiply out just that subexpres
sion of the goal that contains all of the occurrences of the variables that 
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need renaming. These variables are those for which substitution incon
sistencies were detected in the first proof attempt. Comparing Figure 6.24 
and Figure 6.25 reveals that the second proof attempt can be guided by 
the structure of the first. 

We can sometimes avoid multiplying out into clause form by using 
conditional substitutions. The idea of conditional substitutions is impor
tant in program synthesis applications. A conditional substitution is one 
that contains a conditional expression. The conditions that we use in 
conditional substitutions are ones based on a complementary pair of 
unifiable literals in alternative partial solution graphs. For example, in 
Figure 6.24, the literals S ( x, B ) and ~ S ( A ,y ) are in two different partial 
solution graphs and their predicates unify with mgu {A/x9B/y}. 
Applying this mgu to S(x,B) yields S(A,B); applying it to ~S(A9y) 
yields ~S(A,B). We could match the node labeled by S(x,B) with a 
fact node if S (Α,Β) had value T. In a sense, the conditional substitution 
((if S(A,B), thcnA/x)} unifies S(x,B) with T. Also, the conditional 
substitution ((if ~ S(A,B), then B/y)} unifies ~ S(A,y) with T. 

Using these two substitutions permits us to find the two consistent 
solution graphs shown in Figure 6.26. The unifying composition of the 
substitutions in the graph on the left includes the substitution ((if 
S(A,B\A/x,B/y)}. The unifying composition of the substitutions in 
the graph on the right includes the substitution ((if 
~S(A,B),B/y,B/x)}. Since either S(A,B) or ~S(A,B) must be true, 
we can combine these two solutions into one, with the unifying 
composition {B/y, (if S(A,B), A/x; else B/x)}. Such a substitution 
might well provide a useful answer statement to associate with the goal 
wff if S (A, B ) is a literal that can be evaluated by the user at the time the 
answer is needed. 

Dual processes could be described for restricted resolutions within 
AND/OR graphs representing facts, but we omit an explicit description 
because we do not usually expect to encounter contradictions among the 
facts of an AI system. (Tautologies among goals or subgoals is more 
common.) 

In the next section, we show how we can make use of the version of 
RGR using conditional expressions in systems that synthesize computer 
programs. First, though, we describe an alternative method for dealing 
with implicational goal wffs. Ordinarily we convert a goal wff of the form 
P1^>P2 to its AND/OR form (~PI V P2). Suppose, for simplicity, 
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{Β/χ,Β/y} 

I R(B) 1 T T W(B) 

Fig. 6.26 Two solution graphs with conditional substitutions. 

that PI is a literal. If the system then generates some subgoal of P2 that 
contains the literal PI, it can use RGR between ~P1 and PL 

An alternative treatment of a goal of the form PI => P2 involves 
converting this goal to the subgoal P2 while adding PI to the set of facts 
that can be used in proving P2 or its subgoals. Then, if the system 
generates PI as a subgoal of P2, this subgoal can be matched against the 
assumed fact PL 

The process of converting goal antecedents to assumed facts can be 
applied repeatedly so long as the subgoals contain implications, but the 
system must maintain a separate set of assumed facts for each subgoal 
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that is created in this manner. Also, the goal antecedents must be in the 
form of a conjunction of literals, because we are still restricted to fact 
expressions ofthat form. 

The logical justification for treating an implicational goal in this 
manner rests on the deduction theorem of logic, which states that if W2 
logically follows from Wl, then Wl => W2 is valid. We have occasion to 
use this method in one of the examples in the next section. 

6.4. COMPUTATION DEDUCTIONS AND 
PROGRAM SYNTHESIS 

We next show how backward, rule-based deduction systems can be 
used for performing computations and for synthesizing certain kinds of 
computer programs. For such applications, we use a predicate calculus 
expression to denote the relationship between the input and output of the 
computation or of the program to be synthesized. For example, suppose 
the input to a program is denoted by the variable "x," and the output is 
denoted by the variable " j . " Now suppose that we want to synthesize a 
program such that the relationship P holds between input and output. 
We can state the synthesis problem as the problem of finding a 
constructive proof for the expression Çix)(3y)P{x,y). If we prove that 
such a y exists by one of our theorem-proving methods, then we can 
exhibit y as some composition of functions of x. This composition of 
functions is then the program that we wished to synthesize. The 
elementary functions comprising the composition are the primitives of 
the particular programming language being used. "Pure" LISP is a 
convenient language for this sort of approach because its operations can 
all be defined in terms of functional expressions. 

Let us illustrate this approach by some examples. First, we show how 
we might compute an expression that bears a given relation to a given 
input expression. Then we illustrate how a recursive program can be 
synthesized for arbitrary inputs. 

Suppose we simply want to reverse the list (1,2). That is, we want a 
computation that takes the list (1,2) as input and produces the list (2,1) as 
output. We show how a rule-based deduction system can perform this 
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computation. First, we specify the relationship between input and output 
by a two-place predicate "REVERSED" whose arguments are terms 
denoting lists. REVERSED is defined, in turn, in terms of other 
predicates and primitive LISP expressions. 

We adopt the convention used in LISP for representing lists as nested 
dotted pairs. In LISP notation, the list (A,B,C,D), for example, is 
represented as A.( B.( C.{ D.NIL ))). The dots can be regarded as a special 
infix function symbol whose prefix form we call cons. Thus, the prefix 
form of A.B is cons (A, B). We prefer the prefix form because that is the 
form we have been using for functional terms in our predicate calculus 
language. Using this convention for representing lists, we show how the 
desired computation can be performed by a system that attempts to 
prove the goal expression: 

(By ) RE VERSED ( cons ( 1, cons (2, NIL )),y ) . 

In specifying rules and facts to use in our proof, we use the three-place 
predicate "APPENDED:9 APPENDED (x,y,z) has the value T just 
when z is the list formed by appending the list x onto the front of the list 
y. [For example, appending the list (1,2) onto the list (3,4) produces the 
list (1,2,3,4).] 

The facts that we need in proving the goal expression are: 

El: REVERSED(NIL,NIL) 

F2: APPENDED(NIL,xl,xl) 

We express certain relationships involving REVERSED and AP
PENDED by the following rules: 

Rl: APPENDED(x29y2,z2) 
=> APPENDED(cons(ul,x2),y2,cons(ul, z2)) 

R2: [REVERSED (x3,y3) 
Λ APPENDED (y3,cons(u2, NIL ), vl )] 

=> RE VERSED ( cons ( u2, x3 ), vl ) 

Rule Rl states that the list created by appending a list, whose first 
element is ul and whose tail is x29 to a listy2 is the same as the list created 
by adding the element ul to the front of the list formed by appending x2 
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to y2. Rule R2 states that the reverse of a list formed by adding an 
element u2 to the front of a list x3 is the same as appending the reverse of 
x3 onto the list consisting of the single element u2. 

Let us show how a backward production system might go about 
reversing the list (1,2) given these facts and B-rules. We do not attempt to 
explain here how a control strategy for this system might efficiently 
decide which applicable rule ought to be applied. Much of the control 
knowledge needed to make these sorts of choices intelligently is special to 
the domain of automatic programming and outside the scope of our 
present discussion of general mechanisms. 

We first look for facts and rules that match the goal RE
VERSED (cons(1,cons(2,NIL)\y). We can apply B-rule R2 with mgu 
(l/w2, cons(2,NIL)/x3,y/vl }. Applying this mgu to the antecedent of 
R2 yields new literal nodes labeled by 

RE VERSED ( cons (2, NIL \y3 ) 

and 

APPENDED(y3,cons(\,NIL\y) . 

We can apply B-rule R2 to the subgoal RE VERSED ( cons (2, NIL ),y3 ), 
creating two new literal nodes. (We rename the variables in R2 before 
application to avoid confusion with the variables used in the previous 
application.) 

A consistent solution graph for this problem is shown in Figure 6.27. 
The output expression that results from this proof is obtained by 
combining substitutions to find the term substituted for y, namely, 
cons(2,cons(\,NIL)). This expression represents the list that is the 
reverse of the input list (1,2). 

It is interesting to compare the computations involved in the search for 
the proof shown in Figure 6.27 with the computations involved in 
executing the following LISP program for reversing an arbitrary list: 

reverse(x): 
ifnull(x), NIL 
else, append(reverse(cdr(x)), cons(csir(x)y NIL))) 
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{cons(ul,x2)/y3,cons{l,NIL)ly2, 
cons(ul,z2)/y) 

REVERSED(cons(u3,x4),v2) APPENDED(cons{ul ,x2\y2,cons{ul ,z2)) 

R2 RÌ 

REVERSED(NIL,y4) 

{NIL/y4} 

APPENDED(x2,cons(l ,NIL\z2) 

APPENDED(y4,cons(2,NIL ),y3) 

REVERSED(NIL,NIL) 

[NIL/x2,cons(l,NIL)/x5, 

cons(l,NIL)/z2] 

APPENDED(NIE,x5,x5) 

{NIL/y4,cons(2,NIL)/xl,cons(2,NIL)/y3} 

APPENDED(NIL,xl,x 1 ) 

Fig. 6.27 The solution graph for reversing a list. 
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append(x,j>): 
if null(jc),j 
else, cons(car(x), append(cdr(x),^)) 

If the search process of our backward production system is sufficiently 
well-guided by an appropriate control strategy, then the steps in the 
search process correspond quite closely to the steps involved in executing 
the LISP program on the input list (1,2). 

We can control the production system search process by specifying 
which applicable fact or rule should be used at any stage, and in which 
order, to solve the component subgoals. A "language" for specifying this 
control information can be based on conventions about the order in 
which rules and facts are tested for possible matches and the order in 
which literals appear in rule antecedents. When a rule or fact must be 
selected for use, we select the first one in this ordering that can be 
matched. When a subgoal component must be selected for solution, we 
select according to the ordering in which literals are written in rule 
antecedents. It turns out that the order (FI, F2, RI, R2 ) for rule and fact 
matching and the order in which we have written the antecedents of rules 
Rl and R2 provide a very efficient control strategy for our example 
problem. With this control strategy, the steps performed in the search 
process for a proof mirror almost exactly the computational steps of 
executing the LISP program. 

To see the parallel, let us trace out just a few steps of the search process. 
Beginning with the goal RE VERSED ( cons ( 1, cons (2, NIL )), y ), we first 
check (in the order FI, F2, RI, R2 ) for a match. There might be a match 
against Fl, so we check to see if cons(\,cons(2,NIL)) unifies with NIL. 
[Compare with if null(x ) in the program.] Failing this test, we check for a 
match against the consequent of R2. This test involves matching 
cons ( u2, x3 ) against cons ( 1, cons (2, NIL )). This match succeeds with the 
substitution {1 /u2, cons (2, NIL )/x3}. [Compare with computing 
car(x) and cdr(jc) in the second line of the reverse program.] The first 
subgoal component [namely, REVERSED (cons(2, NIL),y)\ of the 
antecedent of R2 is worked on first. [Compare with the recursive call to 
reverse(cdr(x )) in the program.] Again, we check for a match against F I 
by checking to see if cons (2, NIL) equals NIL. Failing in this test again, 
we pass to another level of subgoal generation in the proof search (and of 
recursion in the program). At this level, we succeed in our match against 
Fl (with mgu {NIL/y4}), so we work on the next subgoal ΛΡ-
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PEND ED (y4, cons (2, NIL ), y 3 ). [In the program, we call the subroutine 
append(N/L,cons(2,JV7L)).] This same parallelism holds between the 
rest of the proof search and the program. 

In many cases, it is possible to control the search process sufficiently so 
that it mimics efficient computation, and, for this reason, it has been said 
that computation is controlled deduction [Hayes (1973b)]. In fact, a 
programming language, called PROLOG, is based on this very idea. 
PROLOG "programs" consist of a sequence of "facts" and "rules." The 
rules are implications just like our rules except that, in PROLOG, the rule 
antecedents are restricted to conjunctions of literals. A program is 
"called" by a goal expression. The fact and rule statements in the 
program are scanned to find the first match for the first component in the 
goal expression. The substitutions found in the match correspond to 
variable binding, and control is transferred to the first subgoal compo
nent of the rule. Thus, the "interpreter" for a PROLOG program 
corresponds to a backward, rule-based production system with very 
specific control information about what to do next. (The PROLOG 
interpreter is a bit less flexible than our backward system, because in 
PROLOG the substitutions used in matching one literal of a conjunctive 
subgoal are straightaway applied to the other conjuncts. The subgoal 
instances thus created might not have solutions, so PROLOG incorpo
rates a backtracking mechanism that can try other matches.) 

The example that we have been considering has involved a fixed input 
list, namely, (1,2). If this fixed list were different, the theorem-proving 
system would have produced a different proof and a different answer. 
(Presumably, though, our PROLOG program would continue to func
tion analogously to the general LISP program.) Rather than perform the 
search process each time we "run the program" (even though, ap
parently, this search can be made quite efficient), we are led to ask if we 
could automatically synthesize one general program (like the LISP one, 
for example) that would accept any input list. To do so we must find a 
proof for the goal: 

(Vx)(3y) REVERSED (x,y). 

(Of course, we don't literally mean "for all x" because the program 
doesn't have to be defined for all possible inputs. We only require that it 
be defined for lists. We could have expressed this input restriction in the 
formula to be proved, but our illustrative example is simpler if we merely 
assume that the domain of x is limited to lists.) 
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Since we already know that the final program for any given input list 
has a repetitive character, we might guess that the program we are 
seeking for arbitrary input lists is recursive. The introduction of recursive 
functions in program synthesis comes about by using mathematical 
induction in the proof. It turns out that in reversing a list by using an 
append function, we have double recursion, once in reverse and once in 
append. As a simpler example, let's consider just the problem of 
producing a program to append one list to (the front of) another. That is, 
our goal is to prove: 

(\/x)(Vy)(3z)APPENDED(x,y,z). 

In this case, we have two input lists, x and y, and one output list, z. 

Skolemizing the goal wff yields 

APPENDED(A,B,z)9 

where A and B are Skolem constants. To prove this goal, we'll need fact 
F2 and rule Rl from our previous example. (The presence of the other 
unneeded fact and rule does no harm, however.) Our explanation of this 
example is simplified if we re-represent Fl and Rl as the following rules: 

R3: NULL(u)^APPENDED(u,xl,xl) 

R4: [~NULL(v)f\APPENDED(cdr(v)yyO,zl)] 
^>APPENDED(v9yO,cons(car(v),zl)) 

In these expressions, we introduce the primitive LISP functions, namely, 
cons, car, and cdr, out of which our program will be constructed. These 
LISP expressions could have been introduced instead by the rule 

~NULL(x)=> EQUAL(x, cons (car(x%cdr(x))) . 

This alternative, however, would have involved us in some additional 
complexities regarding special techniques for using equality axioms. We 
avoid these difficulties, and simplify our example, by using rules R3 and 
R4 instead. The needed equality substitutions are already contained in 
these rules. 

As already mentioned, to synthesize a recursive program using 
theorem-proving methods requires the use of induction. We use the 
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method of structural induction for lists. To do so, we need the concept of a 
list as a sublist of a given list. This relation is denoted by the predicate 
SUBLIST(u,x). The principal property of SUBLIST on which our 
inductive argument depends can be expressed as the rule: 

R5: ~NULL(x)=> SUBLIST(cdr(x),x)) , 

that is, the tail of any nonempty list, JC, is a sublist of x. 

To prove 

(Vyl)(\fy2)(3zl)APPENDED(yl,y2,zl), 

using structural induction for lists, we would proceed as follows: 

1. Assume the induction hypothesis 

(Vw7 )(Vw2 )[ SU BUST {ul,xl ) 
=>(3z2)APPENDED(ul,u2,z2)] . 

That is, we assume our goal expression true for all input lists ul and u2 
such that ul is a sublist of some arbitrary list xl. 

2. Next, given the induction hypothesis, we attempt to prove our goal 
expression true for all input lists xl and x2 where xl is the arbitrary list of 
the induction hypothesis. 

If step 2 is successful, then our goal expression is true for all input lists, yl 
andy2. 

We can capture this argument in a single formula, which we call the 
induction rule. 

{(Vxl)(\/x2) 
{(Vul )(Vw2 )[ SUBLIST {ul9xl ) 

=> (3z2)APPENDED ( «7, u2,z2)]} 
>̂ (3z3)APPENDED(xl,x2,z3)} 

>̂ (Vyl )(\fy2)(3zl )APPENDED(yl9y29zl ) 

Although this rule looks rather complicated, we use it in a straightfor
ward manner. Ignoring quantifiers, the rule is of the form: 

\{A^>C1)^C2]^>C3 . 
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We will be using this rule as a B-rule to prove C3. Such a use creates the 
subgoal of proving 

\{A^>C1)^>C2). 

We elect to prove this subgoal by proving C2 while having available (only 
for use on C2 and its descendant subgoals) the B-rule {A =4> Cl ). (This 
manner of treating an implicational goal was discussed earlier. Now, 
however, rather than assume the goal's antecedent as a.fact, we assume it 
as a rule.) A diagram that illustrates this strategy is shown in Figure 6.28. 

Alternatively, we could transform the antecedent of the induction rule 
into AND/OR form and use the rule to create the subgoal 
[(A Λ ~C1) V C2]. This use of the induction rule is entirely equiva
lent, but it is a bit less intuitive and more difficult to explain, because an 
RGR step between ~ Cl and C2 would ultimately be required to prove 
the subgoal. 

The induction rule can be Skolemized as follows: 

{[SUBLIST(ul,Al)^>APPENDED(ul,u29skl(ul,u2))] 
=> APPENDED(Al9A29z3)} 

=>APPENDED(yl9y2,sk2(yl,y2)) . 

Note the Skolem constants and functions Al,A29skl, and sk2. The 
program that we seek will, in fact, turn out to be either of the Skolem 
functions ski or sk2. Thus, it is reasonable now to represent both of them 
by the single function symbol append. With this renaming, our induction 
rule, in the form in which we use it, is: 

RI: {[SUBLIST(ul,Al) 
=» APPENDED ( ul9 u29 append(ul, u2 ))] 

=Φ APPENDED(Al,A29z3)} 
=> APPENDED (yl,y29append(yl,y2)) . 

C3 

The B-rule A=>C1 can be used 
on this goal or on any of its descendants 

Fig. 6.28 Using the induction rule. 
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NULL(A) 

[A/v.B/yO. 
cons(car(A),zI )/z] 

APPENDED(v.y(),cons(car{r),zl)) 

note appropriateness of RJ 

{A/yl.B/y2. 
append (A,B)/z] 

V 

APPENDED {y 1,y 2,append tv 1 ,y2 )) 

RI 

APPENDED(Al,A2,z3) 

below this node we can use the rule /?/' 
SUBLIST(ul,Al)=> 
APPENDED(ul,u2,append(ul,u2)) 

(continued on next page) 

Fig. 6.29 A search graph for the APPENDED problem. 
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(continued from preceding page) 

[AI/u.A2/xl,A2/z. 

{AJ/v,A2/yO,cons(car(Al),zl))/z3} 

{cdr(Al)/ul,A2/u2, 
append(cdr(Al),A2)/zl} 

APPENDED(ul,u2,append(ul,u2)) 

' 

RÎ 

r 

SUBLIST{cdr(Al),Al) 

^ 
SUBLIST(cdr(x),x) 

R5 

-NULL (Al) 
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An AND/OR search graph for the problem of proving AP-
PENDED(A,B,z) is shown in Figure 6.29. In our example, search 
begins by applying rules R3 and R4 to the main goal. One of the subgoals 
produced by R4 is recognized as similar to the main goal. Producing a 
subgoal having this sort of similarity suggests, to the control strategy, the 
appropriateness of applying the induction rule, RI, to the main goal. (Of 
course, it is logically correct to apply the induction rule to the main goal 
at any time. Since proof by induction is relatively complicated, the 
induction rule should not be used unless it is judged heuristically 
appropriate. When a straightforward proof attempt produces this sort of 
"instance" of the main goal as a subgoal, induction is usually appro
priate.) 

Applying RI to the main goal produces the subgoal AP
PENDED (Al, A2,z3) and the rule: 

RF: SUBLIST(ul,Al)^APPENDED(ul,u2,append(ul,u2)). 

This rule can be used only in the proof of APPENDED (Al, A2,z3 ) or its 
subgoals. 

Next, the control strategy applies the same rules as were applied earlier 
to the main goal (namely, R3 and R4) to the subgoal produced by the 
induction rule. Ultimately, two différent solution graphs are produced 
that are complete except for the occurrence of NULL(Al) in one and 
~NULL(A1) in the other. An RGR step completes the solution and 
yields the conditional substitution: 

{(if mx\\(Al),A2/z3\ 
else cons ( car (Al ) , append(cdr (Al ),A2))/z3 )} . 

This substitution produces a term for variable z3, which occurred in a 
subgoal of the maingoal. This subgoal, which we have now proved, is 

APPENDED(Al,A2,(if nu\l(Al ), A2 ; 
else cons ( car (Al), append ( cdr (A1),A2 )))) . 

Since Al and A2 are Skolem constants originating from universal 
variables in a goal expression, they can be replaced by universally 
quantified variables when constructing an answer. Thus, we have proved: 

(Vx7 )(Vx2)APPENDED(xl,x2,(if null(xl), x2 ; 
else cons ( car (xl), append ( cdr (xl),x2 )))) . 
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Now we recognize that the third argument of APPENDED in the above 
expression is a recursive program satisfying our input/output condition. 

There are many subtleties involved in using induction in program 
synthesis. A full account of the process is beyond the scope of this book 
and would involve an explanation of methods for constructing auxiliary 
functions, recursion within recursive programs, and the use of induction 
hypotheses that are more general or "stronger" than the theorem to be 
proved. The special induction rule for APPENDED that we used in our 
example could be replaced by more general structural induction rule 
schémas. These would use well-founded ordering conditions more general 
than SUBLIST [see Manna and Waldinger (1979)]. 

6.5. A COMBINATION FORWARD AND 
BACKWARD SYSTEM 

Both the forward and the backward rule-based deduction systems had 
limitations. The backward system could handle goal expressions of 
arbitrary form but was restricted to fact expressions consisting of 
conjunctions of literals. The forward system could handle fact expres
sions of arbitrary form but was restricted to goal expressions consisting of 
disjunctions of literals. Can we combine these two systems into one that 
would have the advantages of each without the limitations of either? 

We next describe a production system that is based on a combination 
of the two we have just described. The global database of this combined 
system consists of two AND/OR graph structures, one representing goals 
and one representing facts. These AND/OR structures are initially set to 
represent the given goal and fact expressions whose forms are now 
unrestricted. 

These structures are modified by the B-rules and F-rules, respectively, 
of our two previous systems. The designer must decide which rules are to 
work on the fact graph and which are to work on the goal graph. We 
continue to call these rules B-rules and F-rules even though our new 
production system is really only proceeding in one direction as it modifies 
its bipartite global database. We continue to restrict the B-rules to 
single-literal consequents, and the F-rules to single-literal antecedents. 
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The major complication introduced by this combined production 
system is its termination condition. Termination must involve the proper 
kind of abutment between the two graph structures. These structures can 
be joined by match edges at nodes labeled by literals that unify. We label 
the match edges themselves by the corresponding mgus. In the initial 
graphs, match edges between the fact and goal graphs must be between 
leaf nodes. After the graphs are extended by B-rule and F-rule applica
tions, the matches might occur at any literal node. 

After all possible matches between the two graphs are made, we still 
have the problem of deciding whether or not the expression at the root 
node of the goal graph has been proved from the rules and the expression 
at the root node of the fact graph. Our proof procedure should terminate 
only when such a proof is found (or when we can conclude that one 
cannot be found within given resource limits). 

One simple termination condition is a straightforward generalization 
of the procedure for deciding whether the root node of an AND/OR 
graph is "solved." This termination condition is based on a symmetric 
relationship, called CANCEL, between a fact node and a goal node. 
CANCEL is defined recursively as follows: 

Two nodes n and m CANCEL each other if 
one of ( n, m ) is a fact node and the other a 
goal node, 

and 

if n and m are labeled by unifiable literals, or 
n has an outgoing fc-connector to a set of 
successors {s{}, such that CANCEL{s{,m) 
holds for each member of the set. 

When the root node of the goal graph and the root node of the fact 
graph CANCEL each other, we have a candidate solution. The graph 
structure, within the goal and fact graphs, that demonstrates that the goal 
and fact root nodes CANCEL each other is called a candidate CANCEL 
graph. The candidate solution is an actual solution if all of the match 
mgus in the candidate CANCEL graph are consistent. 

As an example, we show the matches between an initial fact graph and 
an initial goal graph in Figure 6.30. A consistent candidate CANCEL 
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Initial 
^ G o a l 

Graph 

Initial 
y Fact 

Graph 

Fig. 6.30 An example CANCEL graph. 
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graph is indicated by the darkened arcs. The mgus of each of the fact-goal 
node matches are shown next to the match edges, and the unifying 
composition of all of these mgus is {f(A )/v,A/y). 

Note that our CANCEL graph method treats conjunctively related 
goal nodes correctly. Each conjunct must be proved before the parent is 
proved. Disjunctively related fact nodes are treated in a similar manner. 
In order to use one member of a disjunction in a proof, we must be able to 
prove the same goal using each of the disjuncts separately. This process 
implements the "reasoning-by-cases" strategy. 

As the AND/OR search graphs are developed by application of 
B-rules and F-rules, substitutions are associated with each rule applica
tion. All substitutions in a solution graph, including the mgus obtained in 
rule matches and the mgus obtained between matching fact and goal 
literals, must be consistent. 

Goal Graph 

H H Ξ 0 

0 
f B 

X 
1 1 sx^ 

(B V C ) 

/ 

c 
J 

k 

A A (B V C ) A D\ 

0 Fact Graph 

Fig. 6.31 The termination check fails to detect a proof. 

256 



CONTROL KNOWLEDGE FOR RULE-BASED DEDUCTION SYSTEMS 

We note that pruning the AND/OR graphs by detecting inconsistent 
substitutions may be impossible in systems that use both B-rules and 
F-rules because, for these, both the fact and goal graphs change 
dynamically, making it impossible to tell at any stage whether all possible 
matches have already been made for a given literal node. Also, when 
using F-rules and B-rules simultaneously, it may be important to treat the 
appropriate instances of solved goals as facts, so that F-rules can be 
applied to them. (A solved goal is one that is CANCELltd by the root 
node of the fact graph.) 

The termination condition we have just described is adequate for many 
problems but would fail to detect that the goal graph follows from the fact 
graph in Figure 6.31. A more general sort of "fact-goal" resolution 
operation would be needed for this problem than that embodied in our 
simple CANCEL-bascd termination check. 

An alternative way of dealing with both arbitrary fact and goal 
expressions is to use a (unidirectional) refutation system that processes 
facts only. The goal expression is first negated and then converted to 
AND/OR form and conjoined with the fact expression. F-rules, the 
contrapositive forms of B-rules, and restricted resolution operations are 
then applied to this augmented fact graph until a contradiction is 
produced. 

6.6. CONTROL KNOWLEDGE FOR RULE-BASED 
DEDUCTION SYSTEMS 

Earlier we divided the knowledge needed by AI systems into three 
categories: declarative knowledge, procedural knowledge, and control 
knowledge. The production systems discussed in this chapter make it 
relatively easy to express declarative and procedural knowledge. Experts 
in various fields such as medicine and mathematics, who might not be 
familiar with computers, have found it quite convenient and natural to 
express their expertise in the form of predicates and implicational rules. 

Nevertheless, there is still the need to supply control knowledge for 
deduction systems. Efficient control strategies for the production systems 
we describe might need to be rather complex. Embedding these 
strategies into control programs requires a large amount of programming 
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skill. Thus, there is the temptation to leave the control strategy design 
entirely to the AI expert. But much important control knowledge is 
specific to the domain in which the AI program is to operate. It is often 
just as important for the physicians, chemists, and other domain experts 
to supply control knowledge as it is for them to supply declarative and 
procedural knowledge. 

There are several examples of control knowledge that might be specific 
to a particular application. Separating the rules into B-rules and F-rules 
relieves the control strategy of the burden of deciding on the direction of 
rule application. The best direction in which to apply a rule sometimes 
depends on the domain. As an example of the importance of the direction 
in which a rule is applied, consider rules that express taxonomic 
information such as "all cats are animals," and "all dogs are animals": 

CAT(x)^>ANIMAL(x) 

DOG(x)=ïANIMAL(x) 

If we had several such rules, one for each different type of animal, it 
would be extremely inefficient to use any of them in the backward 
direction. That is, one should not go about attempting to prove that Sam, 
say, is an animal by first setting up the subgoal of proving that he is a cat 
and, failing in that, trying the other subgoals. The taxonomic hierarchy 
branches out too extensively in the direction of search. 

Whenever possible, the direction of reasoning ought to be in the 
direction of a decreasing number of alternatives. The rules above can 
^afely be used in the forward direction. When we learn that Sam is a cat, 
say, we can efficiently assert that he is also an animal. Following the 
hierarchy in this direction does not lead to a combinatorial explosion 
because search is pinched off* by the ever-narrowing number of catego
ries. 

The contrapositive form of CAT(x)=$>ANIMAL(x) is ~ANI-
MAL(x)^> ~CAT(x). This rule should be used in the backward 
direction only. That is, to prove that Sam is not a cat, it is efficient to 
attempt to prove that he is not an animal. Again, search is pinched off by 
the narrow end of the taxonomic hierarchy. 

There is other important control information that might depend on the 
domain. In a rule of the form [PI A P2 A . . . Λ PN] => Q, used as a 
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B-rule, the domain expert may want to specify the order in which the 
subgoals should be attacked. For each of these subgoals, he may further 
want to specify explicitly a set of B-rules to be used on them and the order 
in which these B-rules should be applied. Similarly, whenever a rule of 
the form P => [ Ql Λ . . . Λ QN] is used as an F-rule, he may want to 
specify an additional set of F-rules that can now be applied and the order 
in which these F-rules ought to be applied. 

It may be appropriate for the control strategy to make other tests 
before deciding whether to apply a B-rule or an F-rule. In an earlier 
example, the transitivity of the "greater-than" predicate played an 
important role. It would typically be inefficient to apply a transitivity rule 
in the backward direction; but there may be specific cases in which it is 
efficient to do so. Recall that the transitivity rule was of the form: 

[(χ>γ)Α(γ>ζ)]^(χ>ζ). 

We might want to apply this rule as a B-rule if one of the subgoal 
conjuncts could match an existing fact, for example. This conditional 
application would greatly restrict the use of the rule. Application 
conditions comprise important control knowledge. 

In order to use this sort of control knowledge, we need suitable 
formalisms in which to represent it. There seem to be several approaches 
to the problem. First, we could consider the control strategy problem 
itself as a problem to be solved by another AI production system. The 
object-level AI system would have declarative and procedural knowledge 
about the applications domain; the meta-level AI system would have 
declarative and procedural knowledge relevant to the control of the 
object-level system. Such a scheme might conveniently allow the 
formulation of object-level control knowledge as meta-level rules. 

A second approach involves embedding some of the control knowl
edge into evaluation functions used by the control strategy. When a 
domain expert specifies that some conjunctive subgoal A, say, is to be 
solved before 2?, then we must arrange that the function used to order the 
AND nodes of a partial AND/OR solution graph places A before B in 
the ordering. This approach has not been thoroughly explored. 

A third method involves embedding the relevant control knowledge 
right into the rules. This approach has been embodied in several 
high-level AI programming languages. We attempt to describe the 
essence of this approach in the following section. 
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6.6.1. F-RULE AND B-RULE PROGRAMS 

Control knowledge specifies the order in which operations should be 
performed: Do this before that, do this first, do this if that is true, and so 
on. It is natural to attempt to represent this sort of knowledge in 
programs. F-rules and B-rules can be considered programs that operate 
on facts and goals. The most straightforward solution to the control 
problem is to embed control responsibility directly into the F-rules and 
B-rules. 

Just how much control should be given to the F-rules and B-rules? So 
far, we have been considering one extreme (production systems) in which 
a separate global control system retained total control and none was given 
to the rules. Let us now briefly investigate another extreme in which all 
control is given over to the rules (with a consequent atrophying of the 
global control system). 

We want to retain the basic character of the F-rules and B-rules. That 
is, F-rules should be called only when they can be applied to facts, and 
B-rules should be called only when they can be applied to goals. The 
calling mechanism should invoke rules only when new goals or facts are 
derived. This type of mechanism might be called goal· (fact-) directed 
function invocation. An extremely simple scheme for performing this 
invocation involves the following: When a new goal (fact) is created, all 
of the rules that are applicable to this new goal (fact) are collected. One of 
these is then selected and given complete control. This program is then 
executed; it may set new goals (invoking other B-rules) or it may assert 
new facts (invoking other F-rules). In either case, the control structure is 
otherwise much like that of conventional programs. A rule program runs 
until it encounters a RETURN statement. It then returns control to the 
program from which it was invoked. While it is running, a rule program 
has complete control. If an executing rule program fails (for one of 
several reasons to be discussed later), control automatically backtracks to 
the next highest choice point where another selection is made. Thus, the 
scheme we are describing corresponds to a simple backtrack control 
regime in which all of the control information is embedded in the rules. 

We elaborate later on the mechanism by which one of the many 
possible applicable rules is selected for invocation. We must also describe 
how consequents and antecedents of rules are represented in programs 
and how matching is to be handled. 
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We next present a simplified syntax for our F- and B-rule programs. 
(This syntax is related to, but not identical to, syntaxes of the high-level 
AI languages PLANNER, QLISP, and CONNIVER.) 

A goal or subgoal is introduced by a GOAL statement; for example, 
GOAL (ANIMAL Ίχ). This statement is equivalent to the predicate 
calculus goal expression (3x) ANIMAL (x). The variable x with a ? 
prefix is existentially quantified when it occurs in GOAL statements. 

A new or inferred fact is added to the set of facts by an ASSERT 
statement; for example, 

ASSERT (CATSAM) 

or 

ASSERT (DOGlx). 

The latter is equivalent to the predicate calculus expression 
(Vx)DOG(x). The variable x with a ? prefix is universally quantified 
when it occurs in facts or in ASSERT statements. 

F-rule and B-rule programs each have triggering expressions that are 
called their patterns. For F-rule programs, the pattern is the antecedent of 
the corresponding rule; for B-rule programs, the pattern is the con
sequent. For simplicity, we assume that a pattern consists of a single 
literal only. Patterns can contain ?-variables, and these variables can be 
matched against anything when invoking a program. Since F-rule 
patterns are used only to match facts and B-rule patterns are used only to 
match goals, the use of ?-variables in both patterns is consistent with our 
assumptions about variable quantifications in facts and goals. 

The body of rule programs contains, besides control information, that 
part of the corresponding rule not in the pattern. Thus, F-rule programs 
contain ASSERT statements corresponding to consequents, and B-rule 
programs contain GOAL statements corresponding to antecedents. Any 
variables in these statements that are the same as pattern variables are 
preceded by a $ and are called $-variables. When a pattern is matched to a 
fact or goal, the ?-variables are bound to the terms that they match. The 
corresponding $-variables in the body of the program receive the same 
bindings. These bindings also apply locally to subsequent statements in 
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the calling program that contained the GOAL or the ASSERT statement 
that caused the match. Pattern matching then takes the place of 
unification, and variable binding takes the place of substitution. 

Using this syntax, we could represent the rule CAT(x)=>ANI
MA L(x) by the following simple F-rule program: 

FRI {CATIx) 
ASSERT {ANIMAL %x) 
RETURN 

The pattern, {CAT Ίχ\ occurs immediately after the name of the 
program FRI. In this case, the body of the program consists only of an 
ASSERT statement. The variable %x is bound to that entity to which ?JC 
was matched when the pattern {CATlx) was matched against a fact. 

Consider the rule, ELEPHANT{x)^> GRAY{x). This rule can be 
written as a B-rule program as follows: 

BRl{GRAYlx) 
GOAL ( ELEPHANT $ x ) 
ASSERT {GRA Y$x) 
RETURN 

The variable $x is bound to whatever individual matched ?JC during the 
pattern match. 

Mechanisms for applying rules to facts and goals can be simply 
captured in programs, but we must also be able to match goals directly 
against facts. This objective is accomplished simply by checking the facts 
(in addition to the B-rule patterns) whenever a GOAL statement is 
encountered. Ordinarily we would check the facts first. 

Let's look at a simple example to see how these programs work and to 
gain familarity with the syntax. 

Suppose we have the following programs: 

BRI {BOSS-OFlylz) 
GOAL ( WORKS-IN Ίχ$γ) 
GOAL {MANAGER $x $z) 
ASSERT {BOSS-OF$y $z) 
RETURN 
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(If y works in x and z is the manager of x, then z is the boss ofy). 

(Note that the B-rule program allows us naturally to specify the order in 
which conjunctive goals are to be solved. The variable $ x in the second 
subgoal is bound to whatever is matched against ?JC in the first subgoal.) 

BR2 (HAPPYfx) 
GOAL ( MA RRIED $χΊγ) 
GOAL ( WORKS-IN Tz$y) 
ASSERT (HAPPY$x) 
RETURN 

(Happy is the person with a working spouse.) 

ΒΈϋ(ΗΑΡΡΥΊχ) 
GOAL ( WORKS-IN P-D$x) 
ASSERT (HAPPY%x) 
RETURN 

(If x works in the Purchasing Department, x is happy.) 

BR4 ( WORKS-IN Ίχ 1y) 
GOAL (MANAGER %x$y) 
ASSERT ( WORKS-IN $x$y) 
RETURN 

(If y is the manager of x,y works in x.) 

Suppose the facts are as follows: 

FI : MAN A GER ( P-DJOHN-JONES ) 
F2 : WORKS-IN ( P-D, JOE-SMITH ) 
F3 : WORKS-IN ( SD, SA LL Y-JONES ) 
F4: MARRIED (JOHN-JONES, MARY-JONES) 

Consider the problem of finding the name of an employee who has a 
happy boss. The query can be expressed by the following program: 

BEGIN 
GOAL (BOSS-OF'ìu'ìv) 
GOAL(HAPPYSv) 
PRINT $ u "has happy boss" $ v 
END 
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Let us trace a typical execution. We first encounter GOAL ( BOSS-
OFlu ?v). Since no facts match this goal, we look for B-rules and find 
BRI. The pattern match merely passes along the existential variables. 
The computational environment is now as shown in Figure 6.32. The 
asterisk marks the next statement to be executed, and the bindings that 
apply for a sequence of statements are shown at the top of the sequence. 
The next statement encountered (after binding variables) is: 

GOAL ( WORKS-IN Ixlu). 

Here we have a match against F2 with ? x bound to P-D and ? u bound to 
JOE-SMITH. Following the sequence of Figure 6.32, we next meet: 

GOAL (MANAGER P-Dlv). 

This statement matches Fl, binding ? v to JOHN-JONES. We can now 
assert BOSS-OF(JOE-SMITH, JOHN-JONES) and return to the 
query program to encounter GOAL (HAPPY JOHN-JONES). Now 
there are two different sequences of programs that might be used. 
GOAL (HAPPY JOHN-JONES) might invoke either BR2 or BR3. We 
leave it to the reader to trace through either or both of these paths. 

A GOAL statement can FAIL if there are no facts or B-rules that match 
its pattern. Suppose, for example, that we matched GOAL (WORKS-
IN Ίχ ? u ) against F3 instead of against F2. This match would have led to 
an attempt to execute GOAL ( M AN A GER S-D ? v ). The set of facts does 
not include any information about the manager of the Sales Department. 

BEGIN (bindings: ?u/?y,?v/?z) 

* GOAL (WORKS-IN ?x $y) 
GOAL(MANAGER $x $z) 
ASSERT (BOSSOF $y $z) 
RETURN 

GOAL (HAPPY $v) 
PRINT $w "has happy boss" $v 
END 

Fig. 6.32 A state in the execution of a query. 
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No B-rule applies either, so the GOAL statement FAILS. In such a case, 
control backtracks to the previous choice point, namely, the pattern 
match for GOAL (WORKS-IN Ίχ lu). In addition to transferring 
control, all bindings made since this choice point are undone. Now we 
can use the ultimately successful match against F2. 

Because rules are now programs, we can augment them with other 
useful control statements. For example, we can include tests to decide 
whether an F-rule or B-rule program ought to be applied. If the test 
indicates inappropriateness of the program, we can execute a special 
FAIL statement that causes backtracking. The general form of such a 
condition statement is: 

IF < condition > FAIL . 

The < condition > can be an arbitrary program that evaluates to true 
or false. Such statements are usually put at the beginning of the program 
to trap cases where the program ought not to continue. 

An important category of conditions involves testing to see if there is a 
fact that matches a particular pattern. This testing is done by an IS 
statement. The general form is: 

IS < pattern > . 

If < pattern > matches a fact, bindings are made (that apply locally to 
any following statements) and the program continues. Otherwise, the 
statement FAILS and backtracking occurs. 

Recall that earlier we mentioned that the transitivity rule for the 
"greater-than" predicate might be used as a B-rule if one of the 
antecedents was already a fact. We could implement such a B-rule as 
follows: 

BTRANS ( G ? J C ? Z ) 
IS (G$xly) 
GOAL (G$y$z) 
RETURN 

Now if G (Α,Β) and G ( £ , C) were facts, we could use BTRANS to 
prove G(A,C) as follows: First, we match BTRANS against 
GOAL(G^ C) and thus attempt to execute IS(GAly). This test is 
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successful, 1y is bound to B, and we next encounter GOAL ( G B C). This 
goal matches one of the facts directly, and we are finished. If the IS test 
failed, we would not have used this transitivity B-rule and, thus, would 
have avoided generating the subgoal. We'll see additional examples later 
of the usefulness of applicability conditions. 

Another important type of control information might be called 
"advice." At the time a GOAL statement is made, we may want to give 
advice about the B-rules that might be used in attempting to solve it. This 
advice can be in the form of a list of B-rules to be tried in order. Similarly, 
ASSERT statements can be accompanied by a list of F-rules to be tried in 
order. These lists can be dynamically modified by other programs, thus 
enabling quite flexible operation. 

There are other advantages of rule programs beyond those related to 
control strategies. We can write very general procedures to transform 
certain goals into subgoals, to evaluate goals, and to assert new facts. To 
achieve these same effects by ordinary production rules could sometimes 
be cumbersome. 

Suppose, for example, that in doing inequality reasoning we encounter 
the subgoal G (8,5). Now, as mentioned earlier, we certainly do not want 
to include G predicates for all pairs of numbers. The effect of procedural 
attachment to a "greater-than" computation can be achieved by the 
following B-rule: 

B G ( G ? J C ? 7 ) 
IF (NOTNUM $JC) FAIL 
IF (NOTNUM $γ) FAIL 
IF(NOTG$;c$jOFAIL 
ASSERT (G$x $y) 
RETURN 

In this program, NOTNUM tests to see if its argument is not a number. 
If NOTNUM returns T (i.e., if its argument is not a number), we FAIL 
out of this B-rule. If both NOTNUMs return F, we stay in the B-rule and 
use the program NOTG to see if the first numerical argument is greater 
than the second. If it is, we successfully bypass another FAIL and return. 

Similar examples could be given of procedural attachment in the 
forward direction. Suppose that in a circuit analysis problem, it has been 
computed that a 1/2 ampere current flows through a certain 1000 ohm 
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resistor named R3. After the current has been computed (but not before), 
we may want to ASSERT the value of the voltage across this resistor. 
Such an assertion could be appropriately made by the following general 
F-rule: 

FV (CURRENT!RlI) 
IF (NOTNUM (VALUE $ R )) FAIL 
IF(NOTNUM$/)FAIL 
SET ? V (TIMES $ / (VALUE $ R )) 
ASSERT ( VOLTAGE %R $ V) 
RETURN 

Now when the statement (ASSERT CURRENT R3 0.5) is made, FV is 
invoked. We compute VALUE(ÄJ) to be 1000, so we pass through the 
first NOTNUM. Similarly, since $ / is bound to 0.5, we pass through the 
second NOTNUM and encounter the SET statement. This binds ? F to 
500, we assert VOLTAGE (R3 500) and return. In this case we have 
attached a multiplication procedure that implements Ohm's law to the 
predicate VOLTAGE. 

6.7. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

One of the reasons for the inefficiency of early resolution theorem-
proving systems is that they lacked domain-specific control knowledge. 
The AI languages PLANNER [Hewitt (1972), Sussman, Winograd, and 
Charniak (1971)], QA4 [Rulifson, Derksen, and Waldinger (1972)], and 
CONNIVER [McDermott and Sussman (1972)] are examples of attempts 
to develop deduction and problem-solving formalisms in which control 
information could be explicitly represented. Moore (1975a) discusses 
some of the logical inadequacies of these languages and proposes some 
remedies. Among other points, Moore notes: (a) clause form is an 
inefficient representation for many wffs, (b) general implicational wffs 
should be used as rules and these rules should be kept separate from facts, 
and (c) the direction of rule use (forward or backward) is often an 
important factor in efficiency. 

Other researchers, too, moved away from resolution after its early 
popularity. Bledsoe (1977) presents a thorough discussion of "nonre-
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solution" theorem proving. Examples of some nonresolution systems 
include those of Bledsoe and Tyson (1978), Reiter (1976), Bibel and 
Schreiber (1975), Nevins (1974), Wilkins (1974), and Weyhrauch (1980). 
Many of the techniques for enhancing efficiency used by these nonre
solution systems can be used in the rule-based systems described in this 
chapter, where the relationship with resolution is clear. 

Unifying compositions of substitutions and their properties are dis
cussed by van Vaalen (1975) and by Sickel (1976), both of whom discuss 
the importance of the use of these substitutions in theorem proving with 
AND/OR graphs. Kowalski (1974b, 1979b) discusses the related process 
of finding simultaneous unifiers. 

The forward and backward rule-based deduction systems discussed in 
this chapter are intended to be models of various rule-based systems used 
in AI. The use of AND/OR graph structures (often called AND/OR goal 
trees) in theorem proving has a long history; however, many systems that 
have used them have important logical deficiencies. Our versions of these 
systems have a stronger logical base than most existing systems. The 
RGR operation used in our backward system is based on a similar 
operation proposed by Moore (1975a). Loveland and Stickel (1976) and 
Loveland (1978) also propose systems based on AND/OR graphs and 
discuss relationships with resolution. 

Human experts in some subject domains seem to be able to deduce 
useful conclusions from rules and facts about which they are less than 
completely certain. Extensions to rule-based deduction systems that 
allow use of only partially certain rules and facts were made by Shortliffe 
(1976) in the MYCIN system, for medical diagnosis and therapy selection. 
We might describe MYCIN as a backward, rule-based deduction system 
(without RGR) for the propositional calculus, augmented by the ability 
to handle partially certain rules and facts. A technique based on the use of 
Bayes' rule and subjective probabilities for dealing with uncertain facts 
and rules is described by Duda, Hart, and Nilsson (1976). 

Checking the consistency of substitutions as search proceeds derives 
from a paper by Sickel (1976). The use of connection graphs was 
originally suggested by Kowalski (1975). Other authors who have used 
various forms of connection graphs are Cox (1977), Klahr (1978), Chang 
and Slagle (1979), and Chang (1979). Cox (1977) proposes an interesting 
technique for modifying inconsistent solutions to make them consistent. 
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Most of these ideas were originally proposed as control strategies for 
resolution refutation systems rather than for rule-based deduction 
systems. 

The use of a metasystem, with its own rules, to control a deduction 
system has been suggested by several researchers, including Davis (1977), 
de Kleer et al. (1979), and Weyhrauch (1980). Hayes (1973b) proposes a 
related idea. 

Using deduction systems for intelligent information retrieval is dis
cussed in several papers in the volume by Gallaire and Minker (1978). 
Wong and Mylopoulos (1977) discuss the relationships between data 
models in database management and predicate calculus knowledge 
representations in AI. 

Bledsoe, Bruell, and Shostak (1978) describe a theorem-proving 
system for inequalities. A system developed by Waldinger and Levitt 
(1974) is able to prove certain inequalities arising in program verification 
problems. 

Our use of conditional substitutions is related to an idea proposed by 
Tyson and Bledsoe (1979). Manna and Waldinger (1979) employ the idea 
of conditional substitutions in their program synthesis system. 

Green (1969a) described how theorem-proving systems could be used 
both for performing computations and for synthesizing programs. 
Program synthesis through deduction was also studied by Waldinger and 
Lee (1969) and by Manna and Waldinger (1979). [For approaches to 
program synthesis based on techniques other than deduction, see the 
survey by Hammer and Ruth (1979). For a discussion of programming 
"knowledge" needed by an automatic programming system, see Green 
and Barstow (1978).] Our use of induction to introduce recursion is based 
on a technique described in Manna and Waldinger (1979). 

Using deduction systems to perform computations (and predicate logic 
as a programming language) was advocated by Kowalski (1974a). Based 
on these ideas, a group at the University of Marseille [see Roussel (1975), 
and Warren (1977)] developed the PROLOG language. Warren and 
Pereira (1977) describe PROLOG and compare it with LISP. Van Emden 
(1977) gives a clear tutorial account of these ideas. One of the appealing 
features of PROLOG is that it separates control information from logic 
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information in programming. This idea, first advocated by Hayes 
(1973b), has also been advanced in Kowalski (1979a) and by Pratt (1977). 
[For a contrary view, see Hewitt (1975, pp. 195ff.)] 

The combined forward/backward deduction system and the CAN-
CEL relation for establishing termination is based on a paper by Nilsson 
(1979). 

Our section on F-rule and B-rule programs is based on ideas in the AI 
languages PLANNER [Hewitt (1972), Sussman, Winograd, and Charniak 
(1971)] and QLISP [Sacerdoti et al. (1976)]. [See also the paper by 
Bobrow and Raphael (1974).] 

EXERCISES 

6.1 Represent the following statements as production rules for a 
rule-based geometry theorem-proving system: 

(a) Corresponding angles of two congruent triangles are 
congruent. 

(b) Corresponding sides of two congruent triangles are 
congruent. 

(c) If the corresponding sides of two triangles are congruent, 
the triangles are congruent. 

(d) The base angles of an isocèles triangle are congruent. 

6.2 Consider the following piece of knowledge: Tony, Mike, and John 
belong to the Alpine Club. Every member of the Alpine Club who is not 
a skier is a mountain climber. Mountain climbers do not like rain, and 
anyone who does not like snow is not a skier. Mike dislikes whatever 
Tony likes and likes whatever Tony dislikes. Tony likes rain and snow. 

Represent this knowledge as a set of predicate calculus statements 
appropriate for a backward rule-based deduction system. Show how such 
a system would answer the question. "Is there a member of the Alpine 
Club who is a mountain climber but not a skier?" 
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6 3 A blocks-world situation is described by the following set of wffs: 

ONTABLE(A ) CLEAR(E) 
ONTABLE(C) CLEAR(D) 
ON(D,C) HEAVY(D) 
ON(B,A) WOODEN(B) 
HEAVY(B) ON(E,B) 

Draw a sketch of the situation that these wffs are intended to describe. 

The following statements provide general knowledge about this blocks 
world: 

Every big, blue block is on a green block. 
Each heavy, wooden block is big. 
All blocks with clear tops are blue. 
All wooden blocks are blue. 

Represent these statements by a set of implications having single-literal 
consequents. Draw a consistent AND/OR solution tree (using B-rules) 
that solves the problem: "Which block is on a green block?" 

6.4 Consider the following restricted version of a backward rule-based 
deduction system: Only leaf nodes of the AND/OR graph can be 
matched against rule consequents or fact literals, and the mgu of the 
match is then applied to all leaf nodes in the graph. Explain why the 
resulting system is not commutative. Show how such a system would 
solve the problem of reversing the list (1,2), using the facts and rules of 
Section 6.4. What sort of control regime did you use? 

6.5 Discuss how a backward rule-based deduction system should deal 
with each of the following possibilities: 

(a) A subgoal literal is generated that is an 
instance of a higher goal (i.e., one of its 
ancestor goals in the AND/OR graph). 

(b) A subgoal literal is generated such that a 
higher goal is an instance of the subgoal. 

(e) A subgoal literal is generated that unifies 
with the negation of a higher goal. 
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(d) A subgoal literal is generated that is 
identical to another subgoal literal in the 
same potential solution graph. 

6.6 Show how RGR can be used in a backward deduction system to 
obtain a proof for the goal wff : 

[(3x)(Vy)P(x,y)^(Vy)(3x)P(x,y)] 

6.7 Propose a heuristic search method to guide rule selection in 
rule-based deduction systems. 

6.8 Although we have used AND/OR graphs in this chapter to 
represent formulas, we have not advocated the use of decomposable 
production systems for theorem proving. What is wrong with the idea of 
decomposing a conjuctive goal formula, for example, and processing 
each conjunct independently? Under what circumstances might decom
position be a reasonable strategy? 

6.9 Describe how to use a formula like EQUALS(f(x),g(h(x))) 
as a "replacement rule" in a rule-based deduction system. What heuristic 
strategies might be useful in using replacement rules? 

6.10 Critically examine the following proposal: 

An implication of the form (LI Λ L2)=> W, 
where LI and L2 are literals, can be used as 
an F-rule if it is first converted to the 
equivalent form LI => (L2 => W). The rule 
can be applied when LI matches a fact literal, 
and the effect of the rule is to add the new 
F-rule L2 => W. 

6.11 Deduction systems based on rule programs cannot (easily) perform 
resolutions between facts or between goals. Why not? 

6.12 Consider the following electrical circuit diagram: 
Rl = 2 ohms 

o v w — 

- W r 

R2 <RJ 

R4 = Vi ohm 
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We represent the fact that resistors Rl and R4 are in series by the 
assertion (SERIES RI R4). We represent the fact that the current 
through Rl is 2 amperes by the assertion (CURRENT Rl 2). We 
represent the fact that Rl has resistance 2 ohms by the assertion 
(RESISTANCE Rl 2), etc. 

Write a forward rule program that expresses the fact that if a current / 
flows through a resistor R, then that same current flows through any 
resistor in series with R. 

Write a backward rule program that expresses the fact that the voltage 
across a resistor is equal to the current through it multiplied by its 
resistance. Assuming that the forward program executes first (triggered 
by the assertion about the current in Rl ), trace the effect of the following 
GOAL statement: 

GOAL ( VOLTAGE R41V). 

6.13 Propose facts and rules involving the predicate MEMBER(x,y), 
which is intended to mean that atom x is a member of the list of atoms y. 
Use these facts and rules in a rule-based deduction system to prove the 
goal wff MEMBER (3, cons (4, cons (2, cons (3, NIL )))). What control in
formation results in an efficient search for a proof? What fact would be 
needed in order to prove ~MEMBER(3,cons(4,NIL))l 
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CHAPTER 7 

BASIC PLAN-GENERATING SYSTEMS 

In chapters 5 and 6 we saw that a wide class of deduction tasks could 
be solved by commutative production systems. For many other problems 
of interest in AI, however, the most natural formulations involve 
noncommutative systems. Typical problems of this sort are ones where 
goals are achieved by a sequence (or program ) of actions. Robot problem 
solving and automatic programming are two domains in which these 
kinds of problems occur. 

7.1. ROBOT PROBLEM SOLVING 

Research on robot problem solving has led to many of our ideas about 
problem solving systems. Since robot problems are simple and intuitive, 
we use examples from this domain to illustrate the major ideas. In the 
typical formulation of a "robot problem" we have a robot that has a 
repertoire of primitive actions that it can perform in some easy-to-un-
derstand world. In the "blocks world," for example, we imagine a world 
of several labeled blocks (like children's blocks) resting on a table or on 
each other and a robot consisting of a moveable hand that is able to pick 
up and move blocks. Many other types of robot problems have also been 
studied. In some problems the robot is a mobile vehicle that performs 
tasks such as moving objects from place to place through an environment 
containing other objects. 

Programming a robot involves integrating many functions, including 
perception of the world around it, formulation of plans of action, and 
monitoring of the execution of these plans. Here, we are concerned 
mainly with the problem of synthesizing a sequence of robot actions that 
will (if properly executed) achieve some stated goal, given some initial 
situation. 
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The action synthesis part of the robot problem can be solved by a 
production system. The global database is a description of the situation, 
or state, of the world in which the robot finds itself, and the rules are 
computations representing the robot's actions. 

7.1.1. STATE DESCRIPTIONS AND GOAL DESCRIPTIONS 

State descriptions and goals for robot problems can be constructed 
from predicate calculus wffs, as discussed in chapter 4. As an example, 
consider the robot hand and configuration of blocks shown in Figure 7.1. 
This situation can be represented by the conjunction of formulas shown 
in the figure. The formula CLEAR(B) means that block B has a clear 
top; that is, no other block is on it. The ON predicate is used to describe 
which blocks are (directly) on other blocks. The "robot" in this situation 
is a simple hand that can move blocks about in a manner to be described 
momentarily. The predicate HANDEMPTY has value Tjust when the 
robot hand is empty, as in the situation depicted. Of course, any finite 
conjunction of formulas actually describes a family of different world 
situations, where each member can be regarded as an interpretation 
satisfying the formulas (as discussed in chapter 4). For brevity, however, 
we usually use the phrase "the situation" rather than "the family of 
situations." 

Goal descriptions also can be expressed as predicate logic formulas. 
For example, if we wanted the robot of Figure 7.1 to construct a stack of 
blocks in which block B was on block C, and block A was on block 2?, we 
might describe the goal as: 

ON(B,C) A ON(A,B). 
Robot 

'Hand 

CLEAR (B) 
CLEAR (C) 

ON{C,A) 
HANDEMPTY 

ONTABLE(A) 
ONTA B LE (B) 

Fig. 7.1 A configuration of blocks. 
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ROBOT PROBLEM SOLVING 

Such a formula describes a family of world states, any one of which 
suffices as a goal. 

For ease of exposition, we place certain restrictions on the kinds of 
formulas that we allow for descriptions of world states and goals. (Many 
of these restrictions could be lifted by using some of the techniques 
described in the last chapter for dealing with complex wffs.) For goal (and 
subgoal) expressions, we allow conjunctions of literals only, and any 
variables in goal expressions are assumed to have existential quantifica
tion. For initial and intermediate state descriptions, we allow only 
conjunctions of ground literals (i.e., literals without variables). The 
formulas in Figure 7.1 clearly satisfy these restrictions. 

7.1.2. MODELING ROBOT ACTIONS 

Robot actions change one state, or configuration, of the world into 
another. We can model these actions by F-rules that change one state 
description into another. One simple, but extremely useful technique for 
representing robot actions was employed by a robot problem-solving 
system called STRIPS. This technique can be contrasted with our use of 
implicational rules as production rules, discussed in chapter 6. There, 
when an implicational rule was applied to a global database, the database 
was changed, by appending additional structure, but nothing was deleted 
from the database. In modeling robot actions, however, F-rules must be 
able to delete expressions that might no longer be true. Suppose, for 
example, that the robot hand of Figure 7.1 were to pick up block B. Then 
certainly the expression ONTABLE(B) would no longer be true and 
should be deleted by any F-rule modeling this pick-up action. F-rules of 
the STRIPS type specify the expressions to be deleted by listing them 
explicitly. 

STRI PS-form F-rules consists of three components. The first is the 
precondition formula. This component is like the antecedent of an 
implicational rule. It is a predicate calculus expression that must logically 
follow from the facts in the state description in order for the F-rule to be 
applicable to that state description. Consistent with our restrictions on 
the form of goal wffs, we assume here that the preconditions of our 
F-rules consist of a conjunction of literals. Variables in these precondi
tion formulas are assumed to have existential quantification. To decide 
whether or not a conjunction of literals (the precondition formula) 
logically follows from another conjunction of literals (the facts) is 
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straightforward: It follows if there are literals among the facts that unify 
with each of the precondition literals and if all of the mgu's are consistent 
(that is, if these mgu's have a unifying composition). If such a match can 
be found, we say that the precondition of the F-rule matches the facts. We 
call the unifying composition, the match substitution. For a given F-rule 
and state description, there may be many match substitutions. Each leads 
to a different instance of F-rule that can be applied. 

The second component of the F-rule is a list of literals (possibly 
containing free variables) called the delete list. When an F-rule is applied 
to a state description, the match substitution is applied to the literals in 
the delete list; and the ground instances thus obtained are deleted from 
the old state description as the first step of constructing the new one. We 
assume that all of the free variables in the delete list occur as (existentially 
quantified) variables in the precondition formula. This restriction en
sures that any match instance of a delete list literal is a ground literal. 

The third component is the add formula. It consists of a conjunction of 
literals (possibly containing free variables) and is like the consequent of 
an implication^ F-rule. When an F-rule is applied to a state description, 
the match substitution is applied to the add formula and the resulting 
match instance is added to the old state description (after the literals in 
the delete list are deleted) as the final step in constructing the new state 
description. Again we assume that all of the free variables in the add 
formula occur in the precondition formula so that any match instance of 
an add formula will be a conjunction of ground literals. Again, it is 
possible to lift some of these restrictions on F-rule components; we use 
them solely because they make our presentation much simpler. 

As an example of an F-rule, we model the action of picking up a block 
from a table. Let us say that the preconditions for executing this action are 
that the block be on the table, that the hand be empty, and that the block 
have nothing on top of it. The effect of the action is that the hand is 
holding the block. We might represent such an action as follows: 

pickup(X) 
Precondition: ONTA B LE (x) A HAND EMPTY 

Λ CLEAR(x) 
Delete list: ONTABLE(x\ HANDEMPTY, CLEAR(x) 
Add formula: HOLDING(x) 

Since, with our restrictions, the precondition and add formulas are 
conjunctions of literals, we can represent each of them by a set or list of 
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literals. Sometimes, as in the above example, the precondition formula 
and the delete list contain identical literals. In our example, we have 
chosen to include only HOLDING(x) in the add formula rather than, 
additionally, the negations of literals in the delete list. For our purposes, 
it will suffice merely to delete these literals from the state description. 

We see that we can apply pickupO ) to the situation of Figure 7.1 only 
if B is substituted for x. The new state description, in this case, would be 
given by: 

CLEAR(C) ON(C,A) 
ONTABLE(A ) HOLDING(B) 

Production systems using STRI PS-form F-rules are not, in general, 
commutative because these rules may delete certain literals from a state 
description. Such F-rules change one set of states to another set of states, 
in contrast to rules based on implications, whose application merely 
restricts the original set of states. Special methods must be used with 
STRI PS-form rules. These methods are the main focus of this chapter 
and chapter 8. 

7.13. THE FRAME PROBLEM 

To use a familiar analogy, the changes between one state description 
and another can be compared to changes between frames in an animated 
film. In very simple animations, certain characters move in a fixed 
background from frame to frame. In more realistic (and expensive) 
animations, many changes occur in the background also. A STRIPS 
F-rule (with short delete and add lists) treats most of the wffs in a state 
description as fixed background. 

The problem of specifying which wffs in a state description should 
change and which should not is usually called the frame problem in AI. 
The best approach to dealing with the frame problem depends on the sort 
of world states and actions that we are modeling. Speaking loosely, if the 
components of a world state are very closely coupled or unstable, then 
each action might have profound and global effects on the world state. In 
such a world, picking up the top block from a stack of blocks, for 
example, might topple the whole stack of blocks, causing other stacks to 
topple also, in domino fashion. A simple STRIPS F-rule would not be an 
appropriate action model in that kind of world. 
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Typically, the components of a world state are sufficiently decoupled to 
permit us to assume that the effects of actions are relatively local. When 
such an assumption is justified, STRIPS F-rules are efficient and 
appropriate models of many types of actions. 

Applying an F-rule to a state description can be regarded as simulating 
the action represented by the F-rule. Simulations vary with respect to the 
level of detail and accuracy with which they model actions. The F-rule 
pickupO), for example, is a much more approximate representation of 
the pick-up action than a simulation program that took into account such 
factors as the weight and size of blocks, friction in robot arm joints, 
ambient temperature, etc. In the next chapter we argue that it is useful to 
have models of actions at several levels of detail. Gross and approximate 
models are useful for computing high-level plans; more accurate models 
are necessary for computing detailed plans. Typically, the frame problem 
is more critical for the detailed models because they must take into 
account couplings among world state components that might be ignored 
at higher levels. 

Another aspect of the frame problem concerns how to deal with 
anomalous conditions. We can regard the F-rule pickup(x) as being an 
appropriate model for the normal operation of a picking-up action. But 
suppose the robot arm is broken, or that the block being picked up is too 
heavy, or that there is a power failure that prevents the motors in the arm 
from operating, or that the block being picked up is glued to the table, 
etc. Of course, we could include the negation of each of these anomalous 
conditions in the precondition of the F-rule to render the rule inapplica
ble as appropriate. But there are too many such conditions (an infinite 
number might be imagined), and normally the deviant conditions do not 
hold. Yet, if any of them do hold, the simple F-rule model is inaccurate. 

Several approaches to the problem of anomalous conditions have been 
suggested, but none of these, so far, is compelling. If a hierarchy of action 
models is used, it seems that the most detailed and accurate simulations 
automatically take into account all of the conditions of which the system 
can (by definition) be aware. 

Let us leave the frame problem now and make use of the representa
tions that we have been discussing in systems for solving robot problems. 
We begin with a forward production system. 
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A FORWARD PRODUCTION SYSTEM 

7.2. A FORWARD PRODUCTION SYSTEM 

The simplest type of robot problem-solving system is a production 
system that uses the state description as the global database and the rules 
modeling robot actions as F-rules. In such a system, we select applicable 
F-rules to apply until we produce a state description that matches the 
goal expression. Let us examine how such a system might operate in a 
concrete example. 

Consider the F-rules given below, in STRI PS-form, corresponding to a 
set of actions for the robot of Figure 7.1. 

1) pickup(jc) 
P & D : ONTABLE(x%CLEAR(x), HANDEMPTY 
A: HOLDING(x) 

2) putdown(x) 
P & D : HOLDING(x) 
A: ONTABLE(x), CLEAR(x), HANDEMPTY 

3) stack(;c,j) 
P & D : HOLDING(x),CLEAR(y) 
A: HANDEMPTY, ΟΝ(χ,γ), CLEAR(x) 

4) unstack(jc,j) 
P & D : HANDEMPTY, CLEAR(x), ΟΝ(χ,γ) 
A: HOLDING(x),CLEAR(y) 

Note that in each of these rules, the precondition formula (expressed as a 
list of literals) and the delete list happen to be identical. The first rule is 
the same as the rule that we used as an example in the last section. The 
others are models of actions for putting down, stacking, and unstacking 
blocks. 

Suppose our goal is the state shown in Figure 7.2. Working forward 
from the initial state description shown in Figure 7.1, we see that 
pickup(B) and unstack(C,A ) are the only applicable F-rules. Figure 7.3 
shows the complete state-space for this problem, with a solution path 
indicated by the dark branches. The initial state description is labeled 
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B 

C 

GOAL: [ON(B,C)AON(A,B)} 

Fig. 7.2 Goal for a robot problem. 

SO, and a state matching the goal is labeled G in Figure 7.3. (Contrary to 
custom and merely to reveal symmetries in the problem, SO is not the top 
node in Figure 7.3.) Note that in this example, each F-rule has an inverse. 

In this very simple example (with only 22 states in the entire 
state-space), a forward production system, with an unsophisticated 
control strategy, can quickly find a path to a goal state. For more complex 
problems, we would expect, however, that a forward search to the goal 
would generate a rather large graph and that such a search would be 
feasible only if combined with a well-informed evaluation function. 

7.3. A REPRESENTATION FOR PLANS 

We can construct the desired sequence of actions for achieving the goal 
in our example by referring to the F-rules labeling the arcs along the 
branch to the goal state. The sequence is: (unstack(C,̂ 4 ), putdown(C), 

,pickup(£), stack(£,C), pickup(^), stack(^,5)}. We call such a se
quence di plan for achieving the goal. (In this case all of the elements of 
the plan refer to "primitive" actions. In chapter 8 we consider plans 
whose elements might themselves be intermediate level goals requiring 
further and more detailed problem solving before being reduced to 
primitive actions.) 

For many purposes, it is useful to have additional information 
included in a specification of a plan. We might want to know, for 
example, what the relationships are between the F-rules and the 
preconditions that they provide for other F-rules. Such contextual 
information can be provided conveniently by a triangular table whose 
entries correspond to the preconditions and additions of the F-rules in 
the plan. 
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BASIC PLAN-GENERATING SYSTEMS 

An example of a triangle table is shown in Figure 7.4. It is a table whose 
columns are headed by the F-rules in the plan. Let the leftmost column 
be called the zero-th column; then they-th column is headed by they-th 
F-rule in the sequence. Let the top row be called the first row. If there are 
N F-rules in the plan sequence, then the last row is the (N + l)-th row. 
The entries in cell (/,y) of the table, for y > 0 and i < N + 1, are those 
literals added to the state description by they-th F-rule that survive as 
preconditions of the i-th F-rule. The entries in cell (/,0), for i < N + 1, 
are those literals in the initial state description that survive as precondi
tions of the i-th F-rule. The entries in the (N + l)-th row of the table are 
then those literals in the original state description, and those added by the 
various F-rules, that are components of the goal (and that survive the 
entire sequence of F-rules). 

Triangle tables can easily be constructed from the initial state 
description, the F-rules in the sequence, and the goal description. These 
tables are concise and convenient representations for robot plans. The 
entries in the row to the left of the ι-th F-rule are precisely the 
preconditions of the F-rule. The entries in the column below the i-th 
F-rule are precisely the add formula literals ofthat F-rule that are needed 
by subsequent F-rules or that are components of the goal. 

Let us define the i-th kernel as the intersection of all rows below, and 
including, the i-th row with all columns to the left of the i-th column. The 
4th kernel is outlined by double lines in Figure 7.4. The entries in the i-th 
kernel are then precisely the conditions that must be matched by a state 
description in order that the sequence composed of the i-th and 
subsequent F-rules be applicable and achieve the goal. Thus, the first 
kernel, that is, the zero-th column, contains those conditions of the initial 
state needed by subsequent F-rules and by the goal; the (JV + l)-th 
kernel [i.e.,the(A^ + l)-th row] contains the goal conditions themselves. 
These properties of triangle tables are very useful for monitoring the 
actual execution of robot plans. 

Since robot plans must ultimately be executed in the real world by a 
mechanical device, the execution system must acknowledge the possibil
ity that the actions in the plan may not accomplish their intended effects 
and that mechanical tolerances may introduce errors as the plan is 
executed. As actions are executed, unplanned effects might either place 
us unexpectedly close to the goal or throw us off the track. These 
problems could be dealt with by generating a new plan (based on an 
updated state description) after each execution step, but obviously, such 
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a strategy would be too costly, so we instead seek a scheme that can 
intelligently monitor progress as a given plan is being executed. 

The kernels of triangle tables contain just the information needed to 
realize such a plan execution system. At the beginning of a plan 
execution, we know that the entire plan is applicable and appropriate for 
achieving the goal because the literals in the first kernel are matched by 
the initial state description, which was used when the plan was created. 
(Here we assume that the world is static; that is, no changes occur in the 
world except those initiated by the robot itself.) Now suppose the system 
has just executed the first / — 1 actions of a plan sequence. Then, in order 
for the remaining part of the plan (consisting of the /-th and subsequent 
actions) to be both applicable and appropriate for achieving the goal, the 
literals in the /-th kernel must be matched by the new current state 
description. (We presume that a sensory perception system continuously 
updates the state description as the plan is executed so that this 
description accurately models the current state of the world.) Actually, 
we can do better than merely check to see if the expected kernel matches 
the state description after an action; we can look for the highest 
numbered matching kernel. Then, if an unanticipated effect places us 
closer to the goal, we need only execute the appropriate remaining 
actions; and if an execution error destroys the results of previous actions, 
the appropriate actions can be re-executed. 

To find the appropriate matching kernel, we check each one in turn 
starting with the highest numbered one (which is the last row of the table) 
and work backward. If the goal kernel (the last row of the table) is 
matched, execution halts; otherwise, supposing the highest numbered 
matching kernel is the /-th one, then we know that the /-th F-rule is 
applicable to the current state description. In this case, the system 
executes the action corresponding to this /-th F-rule and checks the 
outcome, as before, by searching again for the highest numbered 
matching kernel. In an ideal world, this procedure merely executes in 
order each action in the plan. In a real-world situation, on the other hand, 
the procedure has the flexibility to omit execution of unnecessary actions 
or to overcome certain kinds of failures by repeating the execution of 
appropriate actions. Replanning is initiated when there are no matching 
kernels. 

As an example of how this process might work, let us return to our 
block-stacking problem and the plan represented by the triangle table in 
Figure 7.4. Suppose the system executes actions corresponding to the first 
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four F-rules and that the results of these actions are as planned. Now 
suppose the system attempts to execute the pick-up-block-v4 action, but 
the execution routine (this time) mistakes block B for block A and picks 
up block B instead. [Assume again that the perception system accurately 
updates the state description by adding HOLDING(B) and deleting 
ON(B, C); in particular, it does not add HOLDING(A ).] If there were 
no execution error, the 6th kernel would now be matched; the result of 
the error is that the highest numbered matching kernel is now kernel 4. 
The action corresponding to stack(£, C) is thus re-executed, putting the 
system back on the track. 

The fact that the kernels of triangle tables overlap can be used to 
advantage to scan the table efficiently for the highest numbered matching 
kernel. Starting in the bottom row, we scan the table from left to right, 
looking for the first cell that contains a literal that does not match the 
current state description. If we scan the whole row without finding such a 
cell, the goal kernel is matched; otherwise, if we find such a cell in column 
/, the number of the highest numbered matching kernel cannot be greater 
than i. In this case, we set a boundary at column i and move up to the 
next-to-bottom row and begin scanning this row from left to right, but 
not past column /. If we find a cell containing an unmatched literal, we 
reset the column boundary and move up another row to begin scanning 
that row, etc. With the column boundary set to k, the process terminates 
by finding that the À>th kernel is the highest numbered matching kernel 
when it completes a scan of the fc-th row (from the bottom) up to the 
column boundary. 

7.4. A BACKWARD PRODUCTION SYSTEM 

7.4.1. DEVELOPMENT OF THE B-RULES 

In order to construct robot plans in an efficient fashion, we often want 
to work backward from a goal expression to an initial state description, 
rather than vice versa. Such a system starts with a goal description (again 
a conjunction of literals) as its global database and applies B-rules to this 
database to produce subgoal descriptions. It successfully terminates 
when it produces a subgoal description that is matched by the facts in the 
initial state description. 
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Our first step in designing a backward production system is to specify a 
set of B-rules that transform goal expressions into subgoal expressions. 
One strategy is to use B-rules that are based on the F-rules that we have 
just discussed. A B-rule that transforms a goal G into a subgoal G' is 
logically based on the corresponding F-rule that when applied to a state 
description matching Gf produces a state description matching G. 

We know that the application of an F-rule to any state description 
produces a state description that matches the add list literals. Therefore, 
if a goal expression contains a literal, L, that unifies with one of the 
literals in the add list of an F-rule, then we know that if we produce a state 
description that matches appropriate instances of the preconditions of 
that F-rule, the F-rule can be applied to produce a state description 
matching L. Thus, the subgoal expression produced by a backward 
application of an F-rule must certainly contain instances of the precon
ditions of that F-rule. But if the goal expression contains other literals 
(besides L ), then the subgoal expression must also contain other literals, 
which after application of the F-rule, become those other literals (i.e., 
other than L ) in the goal expression. 

7.4.2. REGRESSION 

To formalize what we have just stated, suppose that we have a goal 
given by a conjunction of literals [L Λ Gl A ... Λ GN] and that we 
want to use some F-rule (backward) to produce a subgoal expression. 
Suppose an F-rule with precondition formula, P, and add formula, A, 
contains a literal U in A that unifies with L, with most general unifier u. 
Application of u to the components of the F-rule creates an instance of 
the F-rule. Certainly the literals in Pu are a subset of the literals of the 
subgoal that we seek. We must also include the expressions Gl\ ..., GN' 
in the complete subgoal. The expressions Gl\ ..., GN' must be such that 
the application of the instance of the F-rule to any state description 
matching these expressions produces a state description matching 
G7,..., GN. Each GÏ is called the regression oïGi through the instance of 
the F-rule. The process of obtaining GV from Gi is called regression. 

For F-rules specified in the simple STRI PS-form, the regression 
procedure is quite easily described for ground instances of rules. (A 
ground instance of an F-rule is an instance in which all of the literals in the 
precondition formula, the delete list, and the add formula are ground 
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literals.) Let R [ Q ; Fu ] be the regression of a literal Q through a ground 
instance Fu of an F-rule with precondition, P, delete list, D, and add list, 
A. Then, 

if Qu is a literal in Au, 

R[Q;Fu] = T(Truc) 

else, if Qu is a literal in Du, 

R[Q ; Fu] = F (False) 

else, # [ £ ; / * ] = Qw 

In simpler terms, ß regressed through an F-rule is trivially TifQis one of 
the add literals, it is trivially F if Q is one of the deleted literals; otherwise, 
it is Q itself. 

Regressing expressions through incompletely instantiated F-rules is 
slightly more complicated. We describe how we deal with incompletely 
instantiated F-rules by some examples. Suppose the F-rule is unstack, 
given earlier and repeated here: 

unstack(jc,j) 
P&D: HANDEMPTY, CLEAR(x), ON(x,y) 
A: HOLDING(x),CLEAR(y) 

In particular, suppose we are considering the instance umteck(B,y), 
perhaps because our goal is to produce HOLDING(B). This instance is 
not fully instantiated. If we were to regress HOLDING(B) through this 
F-rule instance, we would obtain T, as expected. (The literal HOLD
ING (B) is unconditionally true in the state resulting after applying the 
F-rule.) If we were to regress HANDEMPTY through this F-rule 
instance, we would obtain F. (The literal HANDEMPTY can never be 
true immediately after applying unstack.) If we were to regress OiV-
TABLE(C), we would obtain ONTABLE(C). (The literal ON-
TABLE(C) is unaffected by the F-rule.) 

Suppose we attempt to regress CLEAR(C) through this incompletely 
instantiated instance of the F-rule. Note that if y were equal to C, 
CLEAR(C) would regress to T\ otherwise, it would simply regress to 
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CLEAR (C). We could summarize this result by saying that CLEAR ( C) 
regresses to the disjunction (y == C) V CLEAR(C). (In order for 
CLEAR ( C) to hold after applying any instance of unstack(2?,/), either/ 
must be equal to C or CLEAR(C) had to have held before applying the 
F-rule.) Unfortunately, to accept a disjunctive subgoal expression would 
violate our restrictions on the allowed forms of goal expressions. Instead, 
when such a case arises, we produce two alternative subgoal expressions. 
In the present example, one subgoal expression would contain the 
precondition of unstack( i?,C), and the other would contain the unin-
stantiated precondition of unstack(Z?,j) conjoined with the literal 
~{y = C). 

A related complication occurs when we regress an expression matching 
an incompletely instantiated literal in the delete list. Suppose, for 
example that we want to regress CLEAR ( C) through unstack(x, B ). If x 
were equal to C, then CLEAR(C) would regress to F\ otherwise, it 
would regress to CLEAR ( C). We could summarize this result by saying 
that CLEAR(C) regressed to 

[(JC = C)=>F]A[~(x = C)^>CLEAR(C)]. 

As a goal, this expression is equivalent to the conjunction 
[~(JC = C) A CLEAR(C)]. 

The reader might ask what would happen if we were to regress 
CLEAR(B) through unstack(2?,j). In our example, we would obtain T 
for the case y — B. But y — B corresponds to the instance unstack( B, B ), 
which really ought to be impossible because its precondition involves 
ON(B,B). Our simple example would be made more realistic by adding 
the precondition ~(x = y) to unstack(jc,j). 

In summary, a STRI PS-form F-rule can be used as a B-rule in the 
following manner. The applicability condition of the B-rule is that the 
goal expression contain a literal that unifies with one of the literals in the 
add list of the F-rule. The subgoal expression is created by regressing the 
other (the nonmatched) literals in the goal expression through the match 
instance of the F-rule and conjoining these and the match instance of the 
precondition formula of the F-rule. 

Let's consider a few more examples to illustrate the regression process. 
Suppose our goal expression is [ΟΝ(Α,Β) Λ ON(B,C)]. Referring to 
the F-rules given earlier, there are two ways in which stack(x,y) can be 
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used on this expression as a B-rule. The mgu's for these two cases are 
{A/x,B/y} and {B/x,C/y}. Let's consider the first of these. The 
subgoal description is constructed as follows: 

(1) Regress the (unmatched) expression ON(B, C) 
through stack(,4,£) yielding ON(B, C). 

(2) Add the expressions HOLDING (A), CLE A R(B) 
to yield, finally, the subgoal 
[ON(B,C) A HOLDING{A) A CLEAR(B)]. 

Another example illustrates how subgoals having existentially 
quantified variables are created. Suppose our goal expression is 
CLEAR(A ). Two F-rules have CLEAR on their add list. Let's consider 
unstack( x,y ). As a B-rule, the mgu is {A/y}, and the subgoal expression 
created is [HANDEMPTYA CLEAR(x) A ON(x,A)l In this ex
pression, the variable x is interpreted as existentially quantified. That is, 
if we can produce a state in which there is a block that is on A and whose 
top is clear, we can apply the F-rule, unstack, to this state to achieve a 
state that matches the goal expression, CLEAR(A ). 

A final example illustrates how we might generate "impossible" 
subgoal descriptions. Suppose we attempt to apply the B-rule version of 
unstack to the goal expression [CLEAR(A) A HANDEMPTY]. The 
mgu is {A/y}. The regression of HANDEMPTY through unstackO^ ) 
is F. Since no conjunction containing F can be achieved, we see that the 
application of this B-rule has created an impossible subgoal. [That is, 
there is no state from which the application of an instance of un-
stack(x,^ ) produces a state matching CLEAR(A ) Λ HANDEMPTY.] 

Impossible goal states might be detected in other ways also. In general, 
we could use some sort of theorem prover to attempt to deduce a 
contradiction. If a goal expression is contradictory, it cannot be achieved. 
Checking for the consistency of goals is important in order to avoid 
wasting effort attempting to achieve those that are impossible. 

Sometimes the mgu of a match between a literal on the add list of an 
F-rule and a goal literal does not further instantiate the F-rule. Suppose, 
for example, that we want to use the STRIPS rule unstack(u, C) as a 
B-rule applied to the goal [CLEAR(x) A ONTABLE(x)]. The mgu is 
{ C/x } . Now, even though this substitution does not further instantiate 
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unstack(w, C), the substitution is used in the regression process. When 
ONTABLE(x) is regressed through this instance of unstack(w, C), we 
obtain ONTABLE(C). 

7.43. AN EXAMPLE SOLUTION 

Let us show how a backward production system, using the STRIPS 
rules given earlier, might achieve the goal: 

[ON(A,B)AON(B,C)]. 

In this particular example, the subgoal space generated by applying all 
applicable B-rules is larger than the state space that we produced using 
F-rules. Many of the subgoal descriptions, however, are "impossible," 
that is, either they contain F explicitly or rather straightforward theorem 
proving would reveal their impossibility. Pruning impossible subgoals 
greatly reduces the subgoal space. 

In Figure 7.5 we show the results of applying some B-rules to our 
example goal. (The tail of each B-rule arc is adjacent to that goal literal 
used to match a literal in the add list of the rule.) Note in Figure 7.5 that 
when unstack was matched against CLEAR(B), it was not fully 
instantiated. As we discussed earlier, if a possible instantiation allows a 
literal in the add list of the rule to match a literal in the goal expression, 
we make this instantiation explicit by creating a separate subgoal node 
using it. 

All but one of the tip nodes in this figure can be pruned. The tip nodes 
marked "*" all represent impossible goals. That is, no state description 
can possibly match these goals. In one of them, for example, we must 
achieve the conjunct [HOLDING(B) A ON(A,B)], an obvious im
possibility. We assume that our backward reasoning system has some sort 
of mechanism for detecting such unachievable goals. 

The tip node marked "**" can be viewed as a further specification of 
the original goal (that is, it contains all of the literals in the original goal 
plus some additional ones.) Heuristically, we might prune (or at least 
delay expansion of) this subgoal node, because it is probably harder to 
achieve than the original goal. Also, this subgoal is one of those produced 
by matching CLEAR ( B ) against the add list of a rule. Since CLEAR ( B ) 
is already true in the initial state, there are heuristic grounds against 
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stacks , B) stack(£,C) 

HOLDING(A) 

CLEAR(B) 

ON(B,C) 

pickup( A ) / stack(£, C ) 

ONTABLE(A) 
CLEAR(A) 
HANDEMPTY 
ON(B,C) 
CLEAR(B) 

unstack(jt:,Ä) 

HOLDING(B) 
CLEAR(C) 
HOLDING(A) 

HANDEMPTY 
CLEAR(x) 
ON(x,B) 
(x±A) 
HOLDING(A) 
ON(B,C) 

HANDEMPTY 
CLEAR(A) 
ON{A,B) 
ON(B,C) 

Fig. 7.5 Part of the backward {goat) search graph for a robot problem. 

attempting to achieve it when it occurs in subgoal descriptions. (Some
times, of course, goal literals that already match literals in the initial state 
might get deleted by early F-rules in the plan and need to be reachieved 
by later F-rules. Thus, this heuristic is not always reliable.) 

The pruning operations leave just one subgoal node. The immediate 
successors of this subgoal are shown numbered in Figure 7.6. In this 
figure, nodes 1 and 6 contain conditions on the value of the variable x. 
(Conditions like these are inserted by the regression process when the 
delete list of the rule contains literals that might match regressed literals.) 
Both nodes 1 and 6 can be pruned in any case, because they contain the 
literal F, which makes them impossible to achieve. Note also that node 2 
is impossible to achieve because of the conjunction HOLD
ING(B) A ON (B,C). Node 4 is identical to one of its ancestors (in 
Figure 7.5), so it can be pruned also. (If a subgoal description is merely 
implied by one of its ancestors instead of being identical to one of them, 
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unstack(x,^l ) 

HANDEMPTY 
CLEAR(x) 
ON(x,A) 
ONTABLE(A) 
F 
ON(B,C) 
CLEAR(B) 

From Regressing 
~ HANDEMPTY 

unstack(x,Z?) 

HANDEMPTY 
CLEAR(x) 
ON(x,B) 
ONTABLE(A) 
CLEAR(A) 
(ΧΦΑ) 
F 
ON(B,C) 

From Regressing 
" HANDEMPTY 

\ 
pickupM) 

ONTABLE(A) 

CLEAR(A) 

HANDEMPTY 

ON{B,C) putdown(v4) 

CLEAR(B) 

HOLDING(B) 
ONTABLE(A) 
CLEAR(A) 
ON(B,C) 

HOLDING(B) 
CLEAR(C) 
ONTABLE(A) 
CLEAR(A) 

HOLDING(x) 
ONTABLE(A) 
CLEAR(A) 
(x*A) 
ON(B,C) 
CLEAR(B) 

Fig. 7.6 Continuation of the backward search graph. 
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unstack(ß.v) 

HOLDING {x) 
ONTABLE(B) 

CLEAR(B) 
{χΦΒ) 
CLEAR(C) 
(x*C) 
ONTA BLE (A) 
CLEAR (A) 

This subgoal 
matches 
the initial 

state 
description 

Fig. 7.7 Conclusion of the backward search graph. 
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we cannot, in general, prune it. Some of the successors generated by the 
ancestor might have been impossible because literals in the ancestor, but 
not in the subgoal node, might have regressed to F.) 

These pruning operations leave us only nodes 5 and 3. Let's examine 
node 5 for a moment. Here we have an existential variable in the goal 
description. Since the only possible instances that can be substituted for x 
(namely, B and C in this case) lead to impossible goals, we are justified in 
pruning node 5 also. 

In Figure 7.7 we show part of the goal space below node 3, the sole 
surviving tip node from Figure 7.6. This part of the space is a bit more 
branched than before, but we soon find a solution. (That is, we produce a 
subgoal description that matches the initial state description.) If we 
follow the B-rule arcs back to the top goal (along the darkened branches), 
we see that the following sequence of F-rules solves our problem: 
{unstack(C,v4), putdown(C), pickup(2?), stack(2?, C), pickup(^l), 
s tacks , £ ) } . 

7.4.4. INTERACTING GOALS 

When literals in a goal description survive into descendant descrip
tions, some of the same B-rules are applicable to the descendants as were 
applicable to the original goal. This situation can involve us in a search 
through all possible orderings of a sequence of rules before one that is 
acceptable is found. In problems for which several possible orderings of 
the different rules are acceptable, such a search is wastefully redundant. 
This efficiency problem is the same one that led us to the concept of 
decomposable systems. 

One way to avoid the redundancy of multiple solutions to the same 
goal component in different subgoals is to isolate a goal component and 
work on it alone until it is solved. After solving one of the components, by 
finding an appropriate sequence of F-rules, we can return to the 
compound goal and select another component, and so on. This process is 
related to splitting or decomposing compound (i.e., conjunctive) goals 
into single-literal components and suggests the use of decomposable 
systems. 

If we attempted to use a decomposable system to solve our example 
block-stacking problem, the compound goal would be split as shown in 
Figure 7.8. Suppose the initial state of the world is as shown in Figure 7.1. 
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If we work on the component goal ON(B,C) first, we easily find the 
solution sequence (pickup(2?), stack(2?, C)}. But if we apply this 
sequence, the state of the world would change, so that a solution to the 
other component goal, ON(A,B), would become more difficult. Fur
thermore, any solution to ON(A,B) from this state must "undo" the 
achieved goal, ON(B,C). On the other hand, if we work on the goal 
ON(A,B) first, we find we can achieve it by the sequence {un-
stack(C,^4), putdown(C), stack(A,B)}. Again, the state of the world 
would change to one from which the other component goal, ON(B,C), 
would be harder to solve. There seems no way to solve this problem by 
selecting one component, solving it, and then solving the other compo
nent without undoing the solution to the first. 

We say that the component goals of this problem interact. Solving one 
goal undoes an independently derived solution to the other. In general, 
when a forward production system is noncommutative, the correspond
ing backward system is not decomposable and cannot work on compo
nent goals independently. Interactions caused by the noncommutative 
effects of F-rule applications prevent us from being able to use success
fully the strategy of combining independent solutions for each compo
nent. 

In our example problem, the component goals are highly interactive. 
But in more typical problems, we might expect that component goals 
would occasionally interact but often would not. For such problems, it 
might be more efficient to assume initially that the components of 
compound goals can be solved separately, handling interactions, when 
they arise, by special mechanisms—rather than assuming that all 
compound goals are likely to interact. In the next section we describe a 
problem-solving system named STRIPS that is based on this general 
strategy. 

Fig. 7.8 Splitting a compound goal. 
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7.5. STRIPS 

The STRIPS system was one of the early robot problem-solving 
systems. STRIPS maintains a "stack" of goals and focuses its problem-
solving effort on the top goal of the stack. Initially, the goal stack contains 
just the main goal. Whenever the top goal in the goal stack matches the 
current state description, it is eliminated from the stack, and the match 
substitution is applied to the expressions beneath it in the stack. 
Otherwise, if the top goal in the goal stack is a compound goal, STRIPS 
adds each of the component goal literals, in some order, above the 
compound goal in the goal stack. The idea is that STRIPS works on each 
of these component goals in the order in which they appear on the stack. 
When all of the component goals are solved, it reconsiders the compound 
goal again, re-listing the components on the top of the stack if the 
compound goal does not match the current state description. This 
reconsideration of the compound goal is the (rather primitive) safety 
feature that STRIPS uses to deal with the interacting goal problem. If 
solving one component goal undoes an already solved component, the 
undone goal is reconsidered and solved again if needed. 

When the top (unsolved) goal on the stack is a single-literal goal, 
STRIPS looks for an F-rule whose add list contains a literal that can be 
matched to it. The match instance of this F-rule then replaces the 
single-literal goal at the top of the stack. On top of the F-rule is then 
added the match instance of its precondition formula, P. If P is 
compound and does not match the current state description, its compo
nents are added above it, in some order, on the stack. 

When the top item on the stack is an F-rule, it is because the 
precondition formula of this F-rule was matched by the current state 
description and removed from the stack. Thus, the F-rule is applicable, 
and it is applied to the current state description and removed from the 
top of the stack. The new state description is now used in place of the 
original one, and the system keeps track of the F-rule that has been 
applied for later use in composing a solution sequence. 

We can view STRIPS as a production system in which the global 
database is the combination of the current state description and the goal 
stack. Operations on this database produce changes to either the state 
description or to the goal stack, and the process continues until the goal 
stack is empty. The "rules" of this production system are then the rules 
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that transform one global database into another. They should not be 
confused with the STRIPS rules that correspond to the models of robot 
actions. These top-level rules change the global database, consisting of 
both state description and goal stack. STRIPS rules are named in the goal 
stack and are used to change the state description. 

The operation of the STRIPS system with a graph-search control 
regime produces a graph of global databases, and a solution corresponds 
to a path in this graph leading from the start to a termination node. (A 
termination node is one labeled by a database having an empty goal 
stack.) 

Let us see how STRIPS might solve a rather simple block-stacking 
problem. Suppose the goal is [ ON(C, B ) and ON {A, C)], and the initial 
state is as shown in Figure 7.1. We note that this goal can be simply 
accomplished by putting C on B and then putting A on C. We use the 
same STRIPS rules as before. 

In Figure 7,9 we show part of a graph that might be generated by 
STRIPS during the solution of this example problem. (For clarity, we 
show a picture of the state of the blocks along with each state description.) 
Since this problem was very simple, STRIPS quite easily obtains the 
solution sequence {unstack( C, A ), stack( C, B ), pickup( A ), 
stack(^,C)}. 

STRIPS has somewhat more difficulty with the problem whose goal is 
[ON(B,C) Λ ON(A,B)]. Starting from the same initial configuration 
of blocks, it is possible for STRIPS to produce a solution sequence longer 
than needed, namely, {unstack( C, A ), putdown( C ), pickup( A ), 
stack(^4, B ), unstack( A, B ), putdown( Λ ), pickup( B ), stack( 2?, C ), 
pickup(yl), stack(A,B)}. The third through sixth rules represent an 
unnecessary detour. This detour results in this case because STRIPS 
decided to achieve ON(A9B) before achieving ON(B,C). The interac
tion between these goals then forced STRIPS to undo ON{A,B) before 
it could achieve ON(B,C). 
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7.5.1. CONTROL STRATEGIES FOR STRIPS 

Several decisions must be made by the control component of the 
STRIPS system. We'll mention some of these briefly. First, it must decide 
how to order the components of a compound goal above the compound 
goal in the goal stack. A reasonable approach is first to find all of those 
components that match the current state description. (Conceptually, they 
are put on the top of the stack and then immediately stripped off.) This 
step leaves only the unmatched goals to be ordered. We could create a 
new successor node for each possible ordering (as we did in our 
examples) or we could select just one of them arbitrarily (perhaps that 
goal literal heuristically judged to be the hardest) and create a successor 
node in which only that component goal is put on the stack. The latter 
approach is probably adequate because after this single goal is solved, 
we'll confront the compound goal again and have the opportunity to 
select another one of its unachieved components. 

When (existentially quantified) variables occur in the goal stack, the 
control component may need to make a choice from among several 
possible instantiations. We can assume that a different successor can be 
created for each possible instantiation. 

When more than one STRIPS F-rule would achieve the top goal on the 
goal stack, we are again faced with a choice. Each relevant rule can 
produce a different successor node. 

A graph-search control strategy must be able to make a selection of 
which leaf node to work on in the problem-solving graph. Any of the 
methods of chapter 2 might be used here; in particular, we might develop 
a heuristic evaluation function over these nodes taking into account, for 
example, such factors as length of the goal stack, difficulty of the 
problems on the goal stack, cost of the STRIPS F-rules, etc. 

An interesting special case of STRIPS can be developed if we decide to 
use a backtracking control regime instead of a graph-search control 
regime. Here we can imagine a recursive function called STRIPS that 
calls itself to solve the top goal on the stack. In this case, the explicit use of 
a goal stack can be supplanted by the built-in stack mechanism of the 
language (such as LISP) in which recursive STRIPS is implemented. 

The program for recursive STRIPS would look something like the 
following: 
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First, we set S, a global variable, to the initial state description. (We call 
the program initially with the argument, G, the goal that STRIPS is 
trying to achieve.) 

Recursive Procedure STRIPS(G) 

1 until S matches G, do:; the main loop of 
STRIPS is iterative 

2 begin 

3 g 4— a component of G that does not match 
S; a nondeterministic selection and 
therefore a backtracking point 

4 /**— an F-rule whose add list contains a 
literal that matches g; another backtracking 
point 

5 p 4— precondition formula of appropriate 
instance of/ 

6 STRIPS(/? ); a recursive call to solve the 
subproblem 

7 5 4— result of applying appropriate instance 
of/to S 

8 end 

7.5.2. MEANS-ENDS ANALYSIS AND GPS 

An early problem-solving system called GPS (standing for General 
Problem Solver) used methods similar to those later used by STRIPS. 
GPS used a technique for identifying some key F-rules, given a state 
description, 5, and a goal, G. The identification process first attempted to 
calculate a difference between S and G. This difference-calculating 
process was performed by a function that needed to be written especially 
for each domain of application. 
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Differences were used to select “relevant” F-rules by accessing a 
“difference table” in which F-rules were associated with differences. The 
F-rules associated with a given difference are those F-rules that are 
“relevant to reducing that difference.” The F-rules associated with each 
difference were ordered according to relevance. A difference table had to 
be provided for each domain of application. Once an F-rule was selected 
as relevant to removing a difference, GPS worked recursively on the 
preconditions for that F-rule. When these had been satisfied, the F-rule 
was applied to the current state description, and the process continued. 

Thus, we see that recursive GPS is very similar to (if slightly more 
general than) recursive STRIPS. (Historically, the design of STRIPS was 
motivated by GPS.) The program for recursive GPS might look 
something like the following: 

First, we set S, a global variable, to the initial state description. (We call 
the program initially with the argument, G, the goal that GPS is trying to 
achieve.) 

Recursive Procedure GPS( G )  

1 until S matches G, do:; the main loop of GPS 
is iterative 

2 begin 

3 d 4- a difference between S and G; 
a backtracking point 

4 f4-  an F-rule relevant to reducing d; 
another backtracking point 

5 p 4- precondition formula of appropriate 
instance off 

6 GPS(p); a recursive call to solve the subproblem 

7 S 4- result of applying appropriate instance 
off to s 

8 end 
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The process of identifying differences and selecting F-rules to reduce 
them is called means-ends analysis. Recursive STRIPS can be regarded as 
a special case of GPS, where differences between S and G are those 
components of G unmatched by S and where all F-rules whose add list 
contains a literal L are considered relevant to reducing the difference, L. 

Although, originally, GPS worked recursively, as we have described, 
we could also easily imagine a GPS system having a graph-search control 
regime similar to that discussed for STRIPS. 

7.53. A PROBLEM THAT STRIPS CANNOT SOLVE 

STRIPS produces straightforward solutions to many problems, but, as 
we have seen, there are some problems for which STRIPS may produce 
solutions longer than necessary. Also, there are some very simple 
problems for which it is impossible for STRIPS (as described) to produce 
any solution at all. An example of a problem that STRIPS cannot solve is 
the problem of generating a program to switch the contents of two 
memory registers in a computer. 

Suppose we have two memory registers X and y whose initial contents 
are A and B respectively. We might represent this situation by the state 
description [CONT(X,A) A CONT(Y,B)] where CONT(X9A)9 for 
example, means that register X has content A (i.e., program variable X 
has value A ). In this example we must try not to be confused by the fact 
that a program "variable," like X, is really a constant symbol of our 
predicate calculus language that refers to a definite object (a particular 
memory register). Predicate calculus variables, like x and y, are used to 
denote arbitrary program variables (like X) and their "values" (like A ). 
To help avoid confusion, we purposely use the terms "register" and 
"content" instead of "program variables" and "values." 

Our goal for STRIPS is the expression 
[ CONT(X, B ) Λ CONT{ Y,A )]. The only operation that we allow is the 
assignment statement in which one register is "assigned" to another, that 
is, its content is replaced by the content of the other. We can represent 
such an assignment statement by an F-rule: 

assign(w,r,/,s) 
P: CONT{r,s) A CONT(uJ) 
D: CONT(u,t) 
A: CONT(u,s) 
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© 
STATE DESCRIPTION 

CONT(X,A) 
CONT(Y,B) 
CONT(Z,0) 

© 
STATE DESCRIPTION 

CONT(X.A) 
CONT{Y,B) 
CONT(Z,0) 

GOAL STACK 
CONT(X,B) A CONT(Y,A) 

r 

GOAL STACK 
CONT(X,B) 
CONT(Y<A) 
CONT(X,B)ACONT(Y,A) 

® ! 
STATE DESCRIPTION 

CONT(X,A) 
CONT(Y,B) 
CONT(Z,0) 

© 
STATE DESCRIPTION 

CONT(X.B) 
CONT(Y,B) 
CONT(Z,0) 

GOAL STACK 
CONT(r,B) A CONT(Xj) 
assign (X,r,t, B) 
CONT(Y,A) 
CONT(X,B)ACONT(Y,A) 

Here, we can match the top g 
[Y/r,A/t] and apply assign {) 

1 

GOAL STACK 

CONT(Y,A) 
CONT(X,B)ACONT(Y,A) 

Fig. 7.10 A problem STRIPS cannot solve. 

This assignment statement might be read: Assign the register u (with 
current content l) to the register r (with current content s). The result is 
that the current content of register u will be s, and the content of r will 
remain s. The original content of w, namely t, is lost in this process. 

A production system using this F-rule is noncommutative, because a 
CO NT relation is deleted by assign. Well-known to beginning program-
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ming students, the destructive property of the assignment statement 
requires that one must store the content of either Xov Y in a third register 
before attempting an exchange. To make the problem more than fair for 
STRIPS, we explicitly name this needed third register at the beginning of 
the problem. This naming can be done by adding the fact CONT(Z,0) 
to the initial state description. (In the next chapter we discuss a way in 
which additional registers could be created if the system decides it needs 
them.) 

In Figure 7.10 we show an attempt by STRIPS at the solution to this 
problem. Since the initial problem is completely symmetrical, it makes 
no difference how we order the components of the initial compound goal 
in node 1. At node 2, STRIPS quite reasonably decides to apply the 
instance assign^,/*,/ ,£). This operation creates node 3. Now we see 
STRIPS' fatal flaw: It is too anxious! It immediately decides that the top 
goal of node 3 can be matched by the current state description with mgu 
{ Y/r, A /t). This instance of assign unfortunately losest , making the top 
goal in node 4 unsolvable. Furthermore, there is no other match for the 
top goal in node 3 with node 3's state description. 

The only way that this problem could be solved would be to defer 
temporarily matching the top goal of node 3, and to create a successor 
node with top goal CONT(r,B). Then perhaps in some ultimate 
descendant, Z would be substituted for r. But to add this mechanism, of 
deferring goal matching, would greatly complicate STRIPS. Instead we 
describe in the next chapter some problem-solving systems that are 
inherently more powerful than STRIPS. 

7.6. USING DEDUCTION SYSTEMS TO GENERATE 
ROBOT PLANS 

From the examples given in this chapter, we see that the problem of 
composing a sequence of actions has a straightforward formulation 
involving STRI PS-form rules. A forward production system using these 
rules is typically noncommutative because certain expressions may be 
deleted when a rule is applied. We stress again that there is nothing 
inherently commutative or noncommutative about robot problems 
themselves: Commutativity (or its lack) depends entirely on the details of 
the production system used to solve a problem. It is perfectly possible, for 
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example, to formulate robot problems so that they can be solved by 
commutative production systems. One way to achieve such a commuta
tive formulation is to pose robot problems as theorems to be proved and 
then use one of our commutative deduction systems. Formulating a robot 
problem as a problem of deduction is, perhaps, a bit more complex and 
awkward than using STRI PS-form rules, but theorem-proving formula
tions have considerable theoretical interest and preceded STRIPS 
historically. We describe two alternative approaches for posing robot 
problems as theorem-proving problems. 

7.6.1. GREENS FORMULATION 

One of the first attempts to solve robot problems was by Green 
(1969a), who formulated them in such a way that a resolution theorem-
proving system (a commutative system) could solve them. This formula
tion involved one set of assertions that described the initial state and 
another set that described the effects of the various robot actions on 
states. To keep track of which facts were true in which state, Green 
included a "state" or "situation" variable in each predicate. The goal 
condition was then described by a formula with an existentially 
quantified state variable. That is, the system would attempt to prove that 
there existed a state in which a certain condition was true. A constructive 
proof method, then, could be used to produce the set of actions that 
would create the desired state. In Green's system, all assertions (and the 
negation of the goal condition) were converted to clause form for a 
resolution theorem prover, although other deduction systems could have 
been used as well. 

An example problem will help to illustrate exactly how this method 
works. Unfortunately, the notation needed in these theorem-proving 
formulations is a bit cumbersome, and the block-stacking examples that 
we have been using need to be simplified somewhat to keep the examples 
manageable. 

Suppose we have the initial situation depicted in Figure 7.11. There are 
just four discrete positions on a table, namely, Z>, E, F and G ; and there 
are three blocks, namely, A, B and C, resting on three of the positions as 
shown. Suppose we name this initial state SO. Then we denote the fact 
that block A is on position D in SO by the literal ON(A,D,SO). The 
state name is made an explicit argument of the predicate. The complete 
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configuration of blocks in the initial state is then given by the following 
set of formulas: 

ON(A,D,SO) 
ON(B,E,SO) 
ON(C,F,SO) 
CLEAR(A,SO) 
CLEAR (B, SO) 
CLEAR (C, SO) 
CLEAR(G,SO) 

Now we need a way to express the effects that various robot actions 
might have on the states. In theorem-proving formulations, we express 
these effects by logical implications rather than by STRI PS-form rules. 
For example, suppose the robot has an action that can "transfer" a block 
x from position y to position z, where 7 and z might be either the names of 
other blocks that block x might be resting on or the names of positions on 
the table that block x might be resting on. Let us assume that both block x 
and position z (the target position) must be clear in order to execute this 
action. We model this action by the expression "trans (x,y,z)" 

When an action is executed in one state, the result is a new state. We 
use the special functional expression "do{action,state)" to denote the 
function that maps a state into the one resulting from an action. Thus, if 
trans(x,y,z) is executed in state, s, the result is a state given by 
do[trans(x,y,z),s]. 

The major effect of the action modeled by trans can then be formulated 
as the following implication: 

[CLEAR(x,s) A CLEAR(z,s) A ON(x,y,s) A DIFF(x,z)] 
^>[CLEAR(x,do[trans(x,y,z),s]) 

A CLEAR(y,do[trans(x,y,z),s]) 
A ON(x,z,do[trans(x9y,z),s])] . 

(All variables in assertions have implicit universal quantification.) 

A B C 

mtmMmmmmm 
G D E F 

Fig. 7.11 An initial configuration of blocks. 
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This formula states that if x and z are clear and if x is on y in state s, and 
if x and z are different, then x and y will be clear and x will be on z in the 
state resulting from performing the action trans(x,^,z) in state s. (The 
predicate DI FF does not need a state variable because its truth value is 
independent of state.) 

But this formula alone does not completely specify the effects of the 
action. We must also state that certain relations are unaffected by the 
action. In systems like STRIPS, the F-rules use the convention that 
relations not explicitly named in the rule are unaffected. But here the 
effects and "non-effects" alike need to be stated explicitly. 

Unfortunately, in Green's formulation, we must have assertions for 
each relation not affected by an action. For example, we need the 
following assertion to express that the blocks that are not moved stay in 
the same position: 

[ON(u,v,s)ADIFF(u,x)] 
=> ON ( w, v, do [ trans ( x,y, z ), s ]) . 

And we would need another formula to state that block u remains clear if 
block u is clear when a block v (not equal to u ) is put on a block w (not 
equal to u ). 

These assertions, describing what stays the same during an action, are 
sometimes called the frame assertions. In large systems, there may be 
many predicates used to describe a situation. Green's formulation would 
require (for each action) a separate frame assertion for each predicate. 
This representation could be condensed if we used a higher order logic, in 
which we could write a formula something like: 

(VP)[P(s)^> P[do(action^)]. 

But higher order logics have their own complications. (Later, we 
examine another first-order logic formulation that does allow us to avoid 
multiple frame assertions.) 

After all of the assertions for actions are expressed by implications, we 
are ready to attempt to solve an actual robot problem. 

Suppose we wanted to achieve the simple goal of having block A on 
block B. This goal would be expressed as follows: 
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(3s)ON(A,B,s). 

The problem can now be solved by finding a constructive proof of the 
goal formula from the assertions. Any reasonable theorem-proving 
method might be used. 

As already mentioned, Green used a resolution system in which the 
goal was negated and all formulas were then put into clause form. The 
system then would attempt to find a contradiction, and an answer 
extraction process would find the goal state that exists. This state would, 
in general, be expressed as a composition of do functions, naming the 
actions involved in producing the goal state. We show a resolution 
refutation graph for our example problem in Figure 7.12 (the DIFF 
predicate is evaluated, instead of resolved against). Applying answer 
extraction to the graph of Figure 7.12 yields: 

si = do[trans(A,D9B),SO], 

which names the single action needed to accomplish the goal in this case. 

Instead of resolution, we could have used one of the rule-based 
deduction systems discussed in chapter 6. The assertions describing the 
initial state might be used as facts, and the action and frame assertions 
might be used as production rules. 

The example just cited is trivially simple, of course—we didn't even 
need to use any of the frame assertions in this case. (We certainly would 
have had to use them if, for example, our goal had been the compound 
goal [ON(A,B,s) A ON(B,C,s)]. In that case, we would have had to 
prove that B stayed on C while putting A on B.) However, in even slightly 
more complex examples, the amount of theorem-proving search required 
to solve a robot problem using this formulation can grow so explosively 
that the method becomes quite impractical. These search problems 
together with the difficulties caused by the frame assertions were the 
major impetus behind the development of the STRIPS problem-solving 
system. 

7.6.2. KOWALSKIS FORMULATION 

Kowalski has suggested a different formulation. It simplifies the 
statement of the frame assertions. What would ordinarily be predicates in 
Green's formulation are made terms. 
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-CLEAR{x,s) V -CLEAR(z,s) V ~ON(x,y,s) V ~DlFF(x,z) 
V ON(x,z,do[trans(x,y,z),s]) 

~CLEAR(A,s) V -CLEAR (B,s) V ~ON(x,y,s) V -DIFF(A,B) 

~CLEAR(B,SO) V ~~ON(x,ytS0) V ~DIFF{A,B) 

Fig. 7.12 A refiitation graph for a block-stacking problem. 
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For example, instead of using the literal ON(A,D,SO)Xo denote the 
fact that A is on D in state SO, we use the literal HOLDS [on(A,D),SO]. 
The term on(A,D) denotes the "concept" of A being on D; such 
concepts are treated as individuals in our new calculus. Representing 
what would normally be relations as individuals is a way of gaining some 
of the benefits of a higher order logic in a first-order formulation. 

The initial state shown in Figure 7.11 is then given by the following set 
of expressions: 

1 POSS(SO) 
2 HOLDS[on(A,D),SO] 
3 HOLDS[on(B,E),SO] 
4 HOLDS[on(C,F),SO] 
5 HOLDS[clear(A),SO] 
6 HOLDS[clear(B),SO] 
1 HOLDS[clear(C),SO] 
8 HOLDS[clear(G),SO] 

The literal PO SS (SO ) means that the state SO is a possible state, that 
is, one that can be reached. (The reason for having the POSS predicate 
will become apparent later.) 

Now we express part of the effects of actions (the "add-list" literals) by 
using a separate HOLDS literal for each relation made true by the action. 
In the case of our action trans ( x,y, z ), we have the following expressions: 

9 HOLDS [ clear ( x ), do [ trans ( x,y, z),s]] 
10 HOLDS[clear(yido[trans(x,y9z),s]] 
11 HOLDS[on(x,z\ do [ trans (x,y, z),s]] 

(Again, all variables in the assertions are universally quantified.) 

Another predicate, PACT, is used to say that it is possible to perform a 
given action in a given state, that is, the preconditions of the action match 
that state description. PACT(a,s) states that it is possible to perform 
action a in state s. For our action trans, we thus have: 

12 [HOLDS[clear(x),s] A HOLDS[clear(z),s] 
Λ HOLDS[on(x,y),s] A DIFF(x,z)} 

=> PA CT[ trans ( x,y, z ) , s ] 
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Next we state that if a given state is possible and if the preconditions of 
an action are satisfied in that state, then the state produced by performing 
that action is also possible: 

13 [POSS(s) A PACT(u,s)]=> POSS[do(u,s)] 

The major advantage of Kowalski's formulation is that we need only 
one frame assertion for each action. In our example, the single frame 
assertion is: 

14 {HOLDS(v,s) A DIFF[v,clear(z)] A DIFF[v,on(x,y)]} 
=> HOLDS[v,do[trans(x,y,z\s]] 

This expression quite simply states that all terms different than clear (z) 
and on (x,y) still HOLD in all states produced by performing the action 
trans(x,y,z). 

A goal for the system is given, as usual, by an expression with an 
existentially quantified state variable. If we wanted to achieve B on C and 
A on B, our goal would be: 

(3s){POSS(s) A HOLDS[on(B,C\s] A HOLDS[on(A,B\s}} 

The added conjunct, POSS(s), is needed to require that state s be 
reachable. 

Assertions 1-14, then, express the basic knowledge needed by a 
problem solver for this example. If we were to use one of the rule-based 
deduction systems of chapter 6 to solve problems using this knowledge, 
we might use assertions 1-11 as facts and use assertions 12-14 as rules. 
The details of operation of such a system would depend on whether the 
rules were used in a forward or backward manner and on the specific 
control strategy used by the system. For example, to make the rule-based 
system "simulate" the steps that would be performed by a backward 
production system using STRI PS-form rules, we would force the control 
strategy of the deduction system, first, to match one of assertions 9-11 
(the "adds") against the goal. (This step would establish the action 
through which we were attempting to work backward.) Next, assertions 
13 and 12 would be used to set up the preconditions of that action. 
Subsequently, the frame assertion, number 14, would be used to regress 
the other goal conditions through this action. All DIFF predicates should 
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be evaluated whenever possible. This whole sequence would then be 
repeated on one of the subgoal predicates until a set of subgoals was 
produced that would unify with fact assertions 1-8. 

Other control strategies could, no doubt, be specified that would allow 
a rule-based deduction system to "simulate" the steps of STRIPS and 
other more complex robot problem-solving systems, to be discussed in 
the next chapter. One way to specify the appropriate control strategies 
would be to use the ordering conventions on facts and rules that are used 
by the PROLOG language discussed in chapter 6. 

Comparing deduction systems with a STRI PS-like system, we must 
not be tempted to claim that one type can solve problems that the other 
cannot. In fact, by suitable control mechanisms, the problem-solving 
traces of different types of systems can be made essentially identical. The 
point is that to solve robot problems efficiently with deduction systems 
requires specialized and explicit control strategies that are implicitly 
"built-in to" the conventions used by systems like STRIPS. STRI PS-like 
robot problem-solving systems would appear, therefore, to be related to 
the deduction-based systems in the same way that a higher level 
programming language is related to lower level ones. 

7.7. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

Modeling robot actions by STRI PS-form rules was proposed, as a 
partial solution to the frame problem, in a paper by Fikes and Nilsson 
(1971). A similar approach is followed in the PLANNER-like AI 
languages [Bobrow and Raphael (1974); Derksen, Rulifson, and Wal-
dinger (1972)]. The frame problem is discussed in McCarthy and Hayes 
(1969), Hayes (1973a), and Raphael (1971). The problem of dealing with 
anomalous conditions is discussed in McCarthy and Hayes (1969) and in 
McCarthy (1977). McCarthy calls this problem the qualification problem 
and suggests that it may subsume the frame problem. Fahlman (1974) 
and Fikes (1975) avoid some frame problems by distinguishing between 
primary and secondary relationships. Models of actions are defined in 
terms of their effects on primary relationships; secondary relationships 
are deduced (as needed) from the primary ones. Waldinger (1977, part 2) 
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contains a clear discussion of frame problems not overcome by STRI PS-
form rules. Hendrix (1973) proposes a technique for modeling continu
ous actions. 

The robot actions used in the examples of this chapter are based on 
those of Dawson and Siklóssy (1977). The use of triangle tables to 
represent the structure of plans was proposed in a paper by Fikes, Hart, 
and Nilsson (1972b). Execution strategies using triangle tables were also 
discussed in that paper. 

The use of regression for computing the effects of B-rules is based on a 
similar use by Waldinger (1977). The STRIPS problem-solving system is 
described in Fikes and Nilsson (1971). The version of STRIPS discussed 
in this chapter is somewhat simpler than the original system. Fikes, Hart, 
and Nilsson (1972b) describe how solutions to specific robot problems 
can be generalized and used as components of plans for solving more 
difficult problems. Triangle tables play a key role in this process. 

The GPS system was developed by Ne well, Shaw, and Simon (1960) 
[see also Newell and Simon (1963)]. Ernst and Newell (1969) describe 
how later versions of GPS solve a variety of problems. Ernst (1969) 
presents a formal analysis of the properties of GPS. 

For an interesting example of applying "robot" problem-solving ideas 
to a domain other than robotics, see Cohen (1978), who describes a 
system for planning speech acts. 

The use of formal methods for solving robot problems was proposed in 
the "advice taker" memoranda of McCarthy (1958, 1963). Work toward 
implementing such a system was undertaken by Black (1964). Green 
(1969a) was the first to develop a full-scale formal system. McCarthy and 
Hayes (1969) contains proposals for formal problem-solving methods. 
Kowalski (1974b, 1979b) presents an alternative formulation that escapes 
some of the frame problems of first-order systems. Simon (1972a) 
discusses the general problem of reasoning about actions. 
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EXERCISES 

7.1 In LISP, rplaca(x,j>) alters the list structure x by replacing the car 
part of x by y. Similarly, rplacd(.x,j>) relaces the cdr part of x by y. 
Represent the effects on list structure of these two operations by STRIPS 
rules. 

7.2 Let right (x ) denote the cell to the right of cell x (when there is such 
a cell) in the 8-puzzle. Define similarly left(x), up(x), and down(x). 
Write STRIPS rules to model the actions move B (blank) up, move B 
down, move B left, move B right. 

13 Write simple English sentences that express the intended meanings 
of each of the literals in Figure 7.1. Devise a set of context-free rewrite 
rules to describe the syntax of these sentences. 

7.4 Describe how the two STRIPS rules pickup(jc) and stack(x,y) 
could be combined into a macro-rule put(x,y). What are the precondi
tions, delete list and add list of the new rule. Can you specify a general 
procedure for creating macro-rules from components? 

7.5 Referring to the blocks-world situation of Figure 7.1, let us define 
the predicate ABOVE in terms of ON as follows: 

ON(x,y)=ïABOVE(x,y) 
ABOVE(x,y) A ABOVE(y,z)=>ABOVE(x,z). 

The frame problems caused by the explicit occurrence of such derived 
predicates in state descriptions make it difficult to specify STRIPS 
F-rules. Discuss the problem and suggest some remedies. 

7.6 Consider the following pictures: 

~@\ 

A 

ΓΕΠ 
151 

B 

0 
HI 

c □ IS 
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Describe each by predicate calculus wffs and devise a STRIPS rule that is 
applicable to both the descriptions of A and C ; and when applied to a 
description of A, produces a description of B\ and when applied to a 
description of C, produces a description of just one of pictures 1 through 
5. Discuss the problem of building a system that could produce such 
descriptions and rules automatically. 

7.7 Two flasks, Fl and F2, have volume capacities of Cl and C2, 
respectively. The v/ÏÏCONT(x,y) denotes that flask x contains/ volume 
units of a liquid. Write STRIPS rules to model the following actions: 

(a) Pour the entire contents of Fl into F2. 
(b) Fill F2 with (part of) the contents of Fl. 

Can you see any difficulties that might arise in attempting to use these 
rules in a backward direction? Discuss. 

7.8 The "monkey-and bananas" problem is often used to illustrate AI 
ideas about plan generation. The problem can be stated as follows: 

A monkey is in a room containing a box and 
a bunch of bananas. The bananas are hanging 
from the ceiling out of reach of the monkey. 
How can the monkey obtain the bananas? 

Show how this problem can be represented so that STRIPS would 
generate a plan consisting of the following actions: go to the box, push 
the box under the bananas, climb the box, grab the bananas. 

7.9 Referring to the block-stacking problem solved by STRIPS in 
Figure 7.9, suggest an evaluation function that could be used to guide 
search. 

7.10 Write a STRIPS rule that models the action of interchanging the 
contents of two registers. (Assume that this action can be performed 
directly without explicit use of a third register.) Show how STRIPS 
would produce a program (using this action) for changing the contents of 
registers X, Y, and Z from A, B, and C, respectively, to C, B, and A, 
respectively. 

7.11 Suppose the initial state description of Figure 7.1 contained the 
expression HANDEMPTYV HOLDING(D) instead of HAND-
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EMPTY. Discuss how STRIPS might be modified to generate a plan 
containing a "runtime conditional" that branches on HANDEMPTY. 
(Conditional plans are useful when the truth values of conditions not 
known at planning time can be evaluated at execution time.) 

7.12 Discuss how rule programs (similar to those described at the end of 
chapter 6) can be used to solve block-stacking problems. (A DELETE 
statement will be needed.) Illustrate with an example. 

7.13 Find a proof for the goal wff : 

(3s){POSS(s) A HOLDS[on(B,C\s] A HOLDS[on(A,B\s]} 

given the assertions 1-14 of Kowalski's formulation described in Section 
7.6.2. Use any of the deduction systems described in chapters 5 and 6. 

7.14 A robot pet, Rover, is currently outside and wants to get inside. 
Rover cannot open the door to let itself in; but Rover can bark, and 
barking usually causes the door to open. Another robot, Max, is inside. 
Max can open doors and likes peace and quiet. Max can usually still 
Rover's barking by opening the door. Suppose Max and Rover each have 
STRIPS plan-generating systems and triangle-table based plan-execu
tion systems. Specify STRIPS rules and actions for Rover and Max and 
describe the sequence of planning and execution steps that bring about 
equilibrium. 

319 



CHAPTER 8 

ADVANCED PLAN-GENERATING 
SYSTEMS 

In this chapter we continue our discussion of systems for generating 
robot plans. First, we discuss two systems that can deal with interacting 
goals in a more sophisticated manner than STRIPS. Then, we discuss 
various hierarchical methods for plan generation. 

8.1. RSTRIPS 

RSTRIPS is a modification of STRIPS that uses a goal regression 
mechanism for circumventing goal interaction problems. A typical use of 
this mechanism prevents RSTRIPS from applying an F-rule, Fl, that 
would interfere with an achieved precondition, P, needed by another 
F-rule, F2, occurring later in the plan. Because F2 occurs later than Fl, it 
must be that F2 has some additional unachieved precondition, P\ that 
led to the need to apply Fl first. Instead of applying Fl, RSTRIPS 
rearranges the plan by regressing F through the F-rule that achieves P. 
Now, the achievement of the regressed P' will no longer interfere with P. 

Some of the techniques and conventions used by RSTRIPS can best be 
introduced while discussing an example problem in which the goals do 
not happen to interact. After these have been explained, we shall describe 
in detail how RSTRIPS handles interacting goals. 

EXAMPLE 1. Let us use one of the simpler blocks-world examples 
from the last chapter. Suppose the goal is [ ON{ C, B ) Λ ON {A, C)] and 
that the initial state is as shown in Figure 7.1. Until the first F-rule is 
applied, RSTRIPS operates in the same manner as STRIPS. It does use 
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some special conventions in the goal stack, however. Specifically, when it 
orders the components above a compound goal in the stack, it groups 
these components along with their compound goal within a vertical 
parenthesis in the stack. We shall see the use of this grouping shortly. 

The goal stack portion of the global database produced by RSTRIPS at 
the time that the first F-rule, namely, unstack( C,A ), can be applied is as 
follows: 

[HANDEMPTYA CLEAR(C) A ON(Qy) 
unstack(C,jO 

[HOLDING(C) 
CLEAR(B) 

IHOLDING(C) A CLEAR(B) 
stack(C,5) 

rON(C,B) 
ON(A9C) 

[_ON(C,B)AON(A,C) 

This goal stack is the same as the one produced by STRIPS at this stage of 
the problem's solution. (See Figure 7.9 of chapter 7.) For added clarity in 
the examples of this section, we retain the condition achieved by applying 
an F-rule just under the F-rule that achieved it in the goal stack. Note the 
vertical parentheses grouping goal components with compound goals. 

With the substitution {Α/γ}, RSTRIPS can apply unstack(C^) 
because its precondition (at the top of the stack) is matched by the initial 
state description. Rather than removing the satisfied precondition and 
the F-rule from the goal stack (as STRIPS did), RSTRIPS leaves these 
items on the stack and places a marker just below HOLDING(C) to 
indicate that HOLDING^ C) has just been achieved by the application of 
the F-rule. As the system tests conditions on the stack, it adjusts the 
position of the marker so that the marker is just above the next condition 
in the stack that still needs to be satisfied. After applying unstack( C,A ) 
the goal stack is as follows: 
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[ HANDEMPTYA CLEAR(C) A ON(QA) 
unstack(C,v4 ) | 

ï*HOLDING(C) g 

CLEAR(B) ^ ^ ^ ^ ^ ^ ^ ^ L L 

stack(C,£) 
Γ ON(C,B) 

ON(AX) 
lON(C,B)A ON(AX) 

The horizontal line running through the stack is the marker. All of the 
F-rules above the marker have been applied, and the condition just 
under the marker, namely, CLEAR ( 2? ), must now be tested. (For clarity, 
we include next to our goal stacks a picture of the state produced by 
applying the F-rules above the marker.) 

When the marker passes through a vertical parenthesis (as it does in 
the goal stack shown above), there are goals above the marker that have 
already been achieved that are components of a compound goal below 
the marker at the end of the parenthesis. RSTRIPS notes these 
components and "protects" them. Such protection means that RSTRIPS 
will ensure that no F-rule can be applied within this vertical parenthesis 
that deletes or falsifies the protected goal components. Protected goals 
are indicated by asterisks (*) in our goal stacks. 

In the last chapter, whenever STRIPS satisfied the preconditions of an 
F-rule in the goal stack, it applied that F-rule to the then current state 
description to produce a new state description. RSTRIPS does not need 
to perform this process explicitly. Rather, that part of the goal stack 
above the marker indicates the sequence of F-rules applied so far. From 
this sequence of F-rules, RSTRIPS can always compute what the state 
description would be if this sequence were applied to the initial state. 
Actually, RSTRIPS never needs to compute such a state description. At 
most it needs to be able to compute whether or not certain subgoals 
match the then current state description. This computation can be made 
by regressing the subgoal to be tested backward through the sequence of 
F-rules applied so far. For example, in the goal stack above, RSTRIPS 
must next decide whether or not CLEAR(B) matches the state descrip-
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tion achieved after applying unstack(C,^4). Regressing CLEAR(B) 
through this F-rule produces CLEAR ( 2? ), which matches the initial state 
description, so, therefore, it must also match the subsequent description. 
(If CLEAR(B) did not match, RSTRIPS would next have had to insert 
into the goal stack the F-rules for achieving it.) 

At this stage, RSTRIPS notes that both of the preconditions for 
stack(C,2?) are satisfied, so this F-rule is applied (by moving the 
marker), and ON(C9B) is protected. [Since the parenthesis of the 
compound goal HOLDING(C) A CLEAR(B) is now entirely above 
the marker, the system removes its protection of HOLDING ( C).] Next, 
RSTRIPS attempts to achieve ON(A,C). Finally, it produces the goal 
stack shown below: 

[HANDEMPTYA CLEAR(C) A ON(QA) 
unstack(C,^) I 
HOLDING(C) ^1 

CLEAR(B) ^ ^ ^ ^ ^ ^ ^ ^ 
IHOLDING(C) A CLEAR(B) "'"""""'""""""'"" 

stack(C,£) 
*ON(C,B) 

[ HANDEMPTY A CLEAR(A ) Λ ONTABLE(A ) 
pickup(v4 ) 
HOLDING (A) 
CLEAR(C) 

lHOLDING(A)A CLEAR(C) 
stack(A9C) 
ON(A,C) 

L ON(C9B)AON(A,C) 

The preconditions of pickup(/4 ) match the current state description, as 
can be verified by regressing them through the sequence of F-rules 
applied so far, namely, {unstack(C,y4), stack(C,2?)}. (The condition 
CLEAR (A ) did not match the initial state, but it becomes true in the 
current one by virtue of applying unstack( C,A ). The condition HAND-
EMPTY matched the initial state, was deleted after applying un-
stack(C,^), and becomes true again after applying stack( C,i?). The 
regression process reveals that these conditions are true currently.) 
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Before the F-rule, pickup(̂ 4 ), can be applied, RSTRIPS must make 
sure that it does not violate any protected subgoals. At this stage 
ON(C,B) is protected. A violation check is made by regressing 
ON(C,B) through pickup(̂ 4). A violation of the protected status of 
ON(C,B) would occur only if it regressed through to jF[that is, only if 
ON(C,B) were deleted by application of the F-rule, pickup(>4 )]. Since 
no protections are violated, the F-rule, pickup(y4 ), can be applied. The 
marker is moved to just below HOLDING(A ), and HOLDING(A ) is 
protected. [ON(C,B) retains its protected status.] 

Regression through the sequence of F-rules of the other precondition 
of stack(yl,C), namely, CLEAR(C), reveals that it matches the now 
current state description. Thus, the compound precondition of 
stack(^4,C) is satisfied. Regression of the previously solved main goal 
component, ON(C,B)9 through stack(A,C) reveals that its protected 
status would not be violated, so RSTRIPS applies stack(̂ 4, C) and moves 
the marker below the last condition in the stack. RSTRIPS can now 
terminate because all items in the stack are above the marker. The F-rules 
in the goal stack at this time yield the solution sequence {unstack( C9A ), 
staek( C, B ), pickup(^ ), stack(^, C )}. 

This example was straightforward because there were no protection 
violations. When goals interact, however, we will have protection 
violations; next we describe how RSTRIPS deals with these. 

EXAMPLE 2. Suppose the same initial configuration as before, 
namely, that of Figure 7.1. Here, however, we attempt to solve the more 
complicated goal [ ON(A,B) A ON(B, C)]. All goes well until the point 
at which RSTRIPS has produced the goal stack on the following page. 
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' ONTABLE(A) 
[HANDEMPTY A CLEAR(C) Λ ON(C,A) 

unstack(C,̂ 4) 
CLEAR(A) 

[HOLDING(C) 
putdown(C) 
HANDEMPTY 

L ONTABLE(A ) Λ CLEAR(A ) Λ HANDEMPTY 
pickup(/l ) i 
HOLDING(A) rh 

S o i f Ä ) Λ CL̂ *(£) ^ Α ^ Μ ^ 
^ stack(^,£) 
*~ *ON(A,B) 

^ONTABLE(B) 

[HANDEMPTY A CLEAR(Z) A ON(Z,B) 
unstack( z,Z?) 

i/,4JVZ)£MPry 
ONTABLE(B) A CLEAR(B) A HANDEMPTY 

" pickup(2?) 
HOLDING(B) 
CLEAR(C) 

IHOLDING(B) A CLEAR(C) 
stack(£,C) 

ON(A,B)A ON(B,C) 

The F-rule sequence that has been applied to the initial state 
description can be seen from the goal stack above the marker: (un-
stack( C, A ), putdown( C ), pickup( A ), stack( A, B )}. The subgoals 
ON(A9B) and ONTABLE(B) are currently solved by this sequence 
and are protected. We note that the preconditions of F-rule un-
stack(^4,2?) are currently satisfied, but its application would violate the 
protection of the goal ON(A,B). What should be done? 

RSTRIPS first checks to see whether or not ON(A9B) might be 
reachieved by the sequence of F-rules below the marker and above the 
end of its parenthesis. It is only at the end of its parenthesis that 
ON(A,B) needs to be true. Perhaps one of the F-rules within its 
parenthesis might happen to reachieve it; if so, such "temporary" 
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violations can be tolerated. In this case none of these F-rules reachieves 
ON(A,B), so RSTRIPS must take steps to avoid the protection 
violation. 

RSTRIPS notes that the compound goal at the end of the parenthesis 
of the violated goal is ON(A,B) A ON(B,C). An F-rule needed to 
solve one of these components, namely, ON(B,C), would violate the 
other's protection. We call ON(B,C) the protection violating compo
nent. RSTRIPS attempts to avoid the violation by regressing the 
protection violating component, ON(B, C), back through the sequence 
of F-rules (above the marker) that have already been applied until it has 
regressed it through the F-rule that achieved the protected subgoal. Since 
the last F-rule to be applied, stack(A,B), was also the rule that achieved 
ON(A,B), RSTRIPS regresses ON(B, C) through stack(,4,£) to yield 
ON(B9 C). In this case, the subgoal was not changed by regression, and 
RSTRIPS now attempts to achieve this regressed goal at the point in the 
plan just prior to the application of st*ck(A,B). This regression process 
leaves RSTRIPS with the following goal stack: 

ONTABLE(A) 
[HANDEMPTY A CLEAR(C)A ON(QA) 
unstack( C,A) ) 
CLEAR(A) 

[HOLDING(C) 
putdown( C ) ΓΗ Γ̂ Ί 
HANDEMPTY /z?Mmzmz?M?7 

L ONTABLE(A ) Λ CLEAR(A ) Λ HANDEMPTY 
pickup(^4 ) 

*HOLDING(A) 
*CLEAR(B) 

ON(B,C) 
HOLDING(A) A CLEAR(B) A ON(B,C) 
stack(v4,£) 
ON(A,B) 

\ON{A,B)AON{BX) 

The compound goal ON(A,B) A ON(B,C) at the end of the 
parenthesis in which the potential violation was detected, is retained in 
the stack. The other items below ON(A,B) in the stack of page 326 were 
part of the now discredited plan to achieve ON(B,C). These items are 
eliminated from the stack. The plan to achieve ON(A9B) by applying 
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stack(A,B) is still valid and is left in the stack. Note that we have 
combined the regressed goal ON (B,C) with the compound precondition 
just above the F-rule, st*ck(A,B). Since the marker crosses a parenthe
sis, the subgoals HOLDING {A ) and CLEAR(B) are protected. 

RSTRIPS begins again with this goal stack and does not discover any 
additional potential protection violations until the following goal stack is 
produced: 

" ONT ABLE (A) 
[HANDEMPTY A CLEAR(C) A ON(QA) 
unstack(C,v4 ) 
CLEAR(A) 

[HOLDING(C) 
putdown(C) 
HANDEMPTY 

L ONTABLE(A ) Λ CLEAR(A ) Λ HANDEMPTY 
pickup(̂ 4 ) 

' *HOLDING(A) 
*CLEAR(B) 

^*ONTABLE{B) r h 
*CLEAR(B) LJ 

[HOLDING (X) W S ^ W ^ W ^ W 
putdown(x) 
HANDEMPTY 

L ONTABLE(B) A CLEAR(B) A HANDEMPTY 
pickup(2?) 
HOLDING(B) 
CLEAR(C) 

\_HOLDING(B) A CLEAR(C) 
stack(£,C) 
~ON(B,C) 
HOLDING(A) A CLEAR(B) A ON(B,C) 
stack(A9B) 
ON(A,B) 

[ON(A,B)AON(B,C) 
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RSTRIPS notes, by regression, that the precondition of putdown(v4 ) 
matches the current state description but that the application of put-
down^ ) would violate the protection of HOLDING {A ). The violation 
is not temporary. To avoid this violation, RSTRIPS regresses the 
protection violating component, ON{B, C), further backward, this time 
through the F-rule pickup(̂ 4 ). 

After regression, the goal stack is as follows: 

~*ONTABLE(A) 
[HANDEMPTYA CLEAR(C) A ON(C9A) 

unstack(C, A) 
*CLEAR(A) 
[HOLDING(C) 

putdown(C) jJL, 
*HANDEMPTY 

ON(B, C) 
ONTABLE{A ) Λ CLEAR(A ) Λ HANDEMPTY 

A ON(B, C) 
pickup (A) 
HOLDING(A) 
CLEAR(B) 

lHOLDING(A ) A CLEAR(B) 
stack (A,B) 
ON(A,B) 

L ON(A,B)AON(B,C) 

The plan for achieving ON (A, B)is retained, but the protection violating 
plan for achieving ON(B, C) is eliminated. 

Beginning again with the resulting goal stack, RSTRIPS finds another 
potential protection violation when the following goal stack is produced: 
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~*ONTABLE(A) 
[HANDEMPTY A CLEAR(C)AON(C,A) 

unstack(C, A) 
*CLEAR(A) 
[HOLDING(C) r-1-, 

putdown(C) [71 171 ΓΤΊ 
*HANDEMPTY /////////////y//)////////)/// 

[ONTABLE(B) A CLEAR(B) A HANDEMPTY 
pickup (B) 
HOLDING(B) 
CLEAR(C) 
HOLDING(B)A CLEAR(C) 
stack ( B, C) 
ON(B, C) 
ONTABLE(A ) Λ CLEAR(A ) Λ HANDEMPTY 

A ON(B, C) 
pickup (A) 
HOLDING(A ) 
CLEAR(B) 
HOLDING(A) A CLEAR(B) 
st»ck(A,B) 
ON(A,B) 

|_ ON(A,B)AON(B,C) 

If pickup( B ) were to be applied, the protection of HANDEMPTY would 
be violated. But this time the violation is only temporary. A subsequent 
F-rule, namely, stack(5,C) (within the relevant stack parenthesis) 
reachieves HANDEMPTY, so we can tolerate the violation and proceed 
directly to a solution. 

In this case, RSTRIPS finds a shorter solution sequence than STRIPS 
could have found on this problem. The F-rules in the solution found by 
RSTRIPS are those above the marker in its terminal goal stack, namely, 
(unstack(C^), putdown(C), pickup(B), stack(2?,C), pickup(zt), 
st»ck(A,B)}. 
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EXAMPLE 3. As another example, let us apply RSTRIPS to the 
problem of interchanging the contents of two registers. The F-rule is: 

assign(w,r,i,s) 
P: CONT(r,s) A CONT(u,t) 
D: CONT(u9t) 
A: CONT(u,s) 

Our goal is to achieve [ CONT(X,B) A CONT( Y,A )] from the initial 
state [CONT(X,A) A CONT( Y,B) A CONT(Z,0)]. 

A difficulty is encountered at the point at which RSTRIPS has 
produced the following goal stack: 

[CONT( Y9B) A CONT(X9A) 
assign^, y,,4,jB) 

*CONT(X9B) 
Z:0 X:B Y:B 

CONT(rl9A) 
CONT(Y,tl) 
CONT(rl9A ) Λ CONT( Yjl ) 
assign( Y,rl9tl,A) 
CONT(Y,A) 

L CONT(X,B) A CONT( Y,A ) 

(We indicate the effect of applying assign( A\ Υ,Α,Β) by the notation 
next to the goal stack.) The condition CONT(rl,A ) cannot be satisfied 
because after applying assign( JT, Υ,Α,Β) there is no register having A as 
its contents. Here RSTRIPS has confronted an impossible goal rather 
than a potential protection violation. Goal regression is a useful tactic in 
this situation as well. The impossible goal is regressed through the last 
F-rule; perhaps there its achievement will be possible. 

Regressing CONT(rl,A) through assign(Jf, Υ,Α,Β) yields the ex
pression: 

[CONT(rltA) A ~EQUAL(rl,X)] . 
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The resulting goal stack is: 

Z:0 X:A Y.B 

CONT(rl,A) 
~EQUAL(rl,X) 
CO NT (X, A) 
CONT(Y,B) 
CONT(X,A) A CONT{ Υ,Β) A CONT(rl,A ) 

Λ ~EQUAL(rl,X) 
assign(X,Y,A,B) 
CONT(X,B) 
CONT(Y,tl) 
CONT(rl,A ) Λ CONT( Y,tl ) 
assign( Y,/7,f/,Λ) 
CONT( Y,A ) 
CONT(X,B) A CONT( Y,A ) 

Next, RSTRIPS attempts to solve CONT(rl,A). It cannot simply 
match this subgoal against the fact CONT(X, A) because the substitution 
{ X/rl } would make the next goal, ~EQUAL(X,X), impossible. The 
only alternative is to apply the F-rule assign again. This operation 
produces the following goal stack: 

Z:0 X:A Y.B 

CONT(r,A) 
CONT(rl,t) 
CONT(r,A)A CONT(rl,t) 
assign(r7,r,/,^l ) 
~CONT(rl,A) 
~EQUAL(rl,X) 
CONT(X,A) 
CONT(Y,B) 
CONT(X,A) A CONT( Y,B) A CONT(rl,A ) 

Λ ~EQUAL(rl,X) 
assiga(X,Y,A,B) 
CONT(X,B) 
CONT(Y,tl) 

_ CONT(rl,A ) Λ CONT( Y,tl ) 
assign(y,r7,f/,j4) 
CONT( Y,A ) 
CONT(X,B) A CONT( Y,A ) 
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Now RSTRIPS can match CONT(r,A ) against the fact CONT(X,A). 
Next, it can match CONT(rl,t) against the fact CONT(Zfi). These 
matches allow application of assign(Z, Χ,Ο,Λί ). The next subgoal in the 
stack, namely, ~EQUAL(Z,A ) is evaluated to T\ and all of the other 
subgoals above assign^, Υ,Α,Β) match facts. Next, RSTRIPS matches 
CONT( Y, tl ) against CONT( Y, B ) and applies assign( Y, Z, B,A ). The 
marker is then moved to the bottom of the stack, and the process 
terminates with the sequence (assign(Z,X,0,v4), assign^, Υ,Α,Β), 
assign(y,Z,5,^)}. 

The reader might object that we begged the question in this example 
by explicitly providing a third register. It is perfectly straightforward to 
provide another F-rule, perhaps called genreg, that can generate new 
registers when needed. Then, instead of matching CONT(rl,t) against 
CONT(Zfi) as we have done in this example, RSTRIPS could apply 
genreg to CONT(rl,t)to produce a new register. The effect of applying 
genreg would be to substitute the name of the new register for rl, and 0 
(say) for t. 

8.2. DCOMP 

We call our next system for dealing with interacting goals DCOMP. It 
operates in two main phases. In phase 1, DCOMP produces a tentative 
"solution," assuming that there are no goal interactions. Goal expressions 
are represented as AND/OR graphs, and B-rules are applied to literal 
nodes that do not match the initial state description. This phase 
terminates when a consistent solution graph is produced with leaf nodes 
that match the initial state description. This solution graph serves as a 
tentative solution to the problem; typically, it must be processed by a 
second phase to remove interactions. 

A solution graph of an AND/OR graph imposes only ^partial ordering 
on the solution steps. If there were no interactions, then rules in the 
solution graph that are not ancestrally related could be applied in 
parallel, rather than in some sequential order. Sometimes the robot 
hardware permits certain actions to be executed simultaneously. For 
example, a robot may be able to move its arm while it is locomoting. To 
the extent that parallel actions are possible, it is desirable to express robot 
action sequences as partial orderings of actions. From the standpoint of 
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achieving some particular goal, the least commitment possible about the 
order of actions is best. A solution graph of an AND/OR graph thus 
appears to be a good format with which to represent the actions for 
achieving a goal. 

In phase 2, DCOMP examines the tentative solution graph for goal 
interactions. Certain rules, for example, destroy the preconditions 
needed by rules in other branches of the graph. These interactions force 
additional constraints on the order of rule application. Often, we can find 
a more constrained partial ordering (perhaps a strict linear sequence) that 
satisfies all of these additional constraints. In this case, the result of this 
second phase is a solution to the problem. When the additional ordering 
constraints conflict, there is no immediate solution, and DCOMP must 
make more drastic alterations to the plan found in phase 1. 

These ideas can best be illustrated by some examples. Suppose we use 
the simpler example from chapter 7 again. The initial state description is 
as shown in Figure 7.1, and the goal is [ON(C,B) A ON(A,C)]. In 
phase 1, DCOMP applies B-rules until all subgoals are matched by the 
initial state description. There is no need to regress conditions through 
F-rules, because DCOMP assumes no interactions. 

A consistent solution graph that might be achieved by phase 1 is shown 
in Figure 8.1. (In Figure 8.1, we have suppressed match arcs; consistency 
of substitutions is not an issue in these examples. A substitution written 
near a leaf node unifies the literal labeling that node with a fact literal.) 
The B-rules in the graph are labeled by the F-rules from which they stem, 
because we will be referring to various properties of these F-rules later. 
All rule applications in the graph have been numbered (in no particular 
order) for reference in our discussion. Note also that we have numbered, 
by 0, the "operation" in which the goal [ ON (A, C) Λ ON( C, B )] is split 
into the two components ON(A,C) and ON(C,B). We might imagine 
that this backward splitting rule is based on an imaginary "join" F-rule 
that, in the final plan, assembles the two components into the final goal. 

We see that the solution consists of two sequences of F-rules to be 
executed in parallel, namely, {unstack(C,^4 ), stack(C,2?)} and (un-
stack(C,^l), pickup(yi ), stack(^4,C)}. Because of interactions, we ob
viously cannot execute these sequences in parallel. For example, F-rule 5 
deletes a precondition, namely, HANDEMPTY, needed by F-rule 2. 
Thus, we cannot apply F-rule 5 immediately prior to F-rule 2. Worse, 
F-rule 5 deletes a precondition, namely, HANDEMPTY, needed by the 
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ic/y) IC/y] 

Fig. 8.1 A first-phase solution. 

immediately subsequent F-rule 4. The graph of Figure 8.1 has several 
such interaction defects. 

The process for recognizing a noninteractive partial order involves 
examination of every F-rule mentioned in the solution graph (including 
the fictitious join rule) to see if its preconditions are matched by the state 
description at the time that it is to be applied. Suppose we denote the /-th 
precondition literal of they-th F-rule in the graph as CXi. For each such 
Cij in the graph, we compute two (possibly empty) sets. The first set, Dij9 
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is the set of F-rules specified in the graph that delete Ci; and that are not 
ancestors of rule j in the graph nor rule j itself. This set is called the 
deleters of C{j. Any deleter of Q, might (as an F-rule) destroy this 
precondition for F-rule j ; thus the order in which deleters occur relative 
to F-rule j is important. If the deleter is a descendant of rule j in the 
graph, we have special problems. (We are not concerned about rule j 
itself or any of its ancestors that might delete Cih since the "purpose" of 
Cij has by then already been served.) 

The second set, Aih computed for the condition Cij9 is the set of 
F-rules specified by the graph that add Ci5 and are not ancestors of ruley 
in the graph nor y itself. This set is called the adders of Ci;. Any adder of 
Cij is important because it might be ordered such that it occurs after a 
deleter and before F-ruley, thus vitiating the effect of the deleter. Also, if 
some rule, say rule k, was used in the original solution graph to achieve 
condition Cij9 we might be able to apply one of the other adders before 
F-rule j instead of F-rule k and thus eliminate rule k (and all of its 
descendants!). Obviously F-ruley and any of its ancestors that might add 
condition Ci} are not of interest to us because they are applied after 
condition C^ is needed. 

In Figure 8.2 we show all of the adders and deleters for all of the 
conditions in the graph. 

A partial order is noninteractive if, for each Ci;· in the graph, either of 
the following two conditions holds: 

1) F-rule y occurs before all members of D%i 
(In this case the condition, Cih is not deleted 
until after F-rule y is applied); or 
2) There exists a rule in Aij9 say rule k, such 
that F-rule k occurs before F-rule y and no 
member of D{j occurs between F-rule k and 
F-rule y. 

According to the above criteria, the solution graph of Figure 8.2 is not 
noninteractive because, for example, F-rule 2 does not precede F-rule 5 
in the ordering (and F-rule 5 deletes the preconditions of F-rule 2). 

In its second phase, DCOMP attempts to transform the partial ordering 
to one which is noninteractive. Often, such a transformation can be made. 
There are two principal techniques for transforming the ordering. We 
can further constrain the ordering so as to satisfy one of the two 
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conditions for noninteraction stated above, or we can eliminate an F-rule 
(and its descendants) from the graph if its effect can be achieved by 
constraining the order of one of the other adders. 

For example, in Figure 8.2, F-rule 3 is a deleter of condition 
CLEAR ( C) of F-rule 2. If we order F-rule 2 before F-rule 3, then F-rule 
3 would no longer be a deleter of this condition. Also F-rule 5 is a deleter 
of condition HANDEMPTY of F-rule 4. Obviously, we cannot make 
F-rule 4 occur before F-rule 5; it is already an ancestor of F-rule 5 in the 
partial ordering. 

stack (C,B) 

Adders: 5,2 

Deleters: 2 

Fig. 8.2 First-phase solution with adders and deleters listed 
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But we might be able to insert an adder, F-rule 1, between F-rule 5 and 
F-rule 4. Or if F-rule 2 occurs before F-rule 4 and after any deleters of 
this CLEAR(A) condition, we eliminate F-rule 5 entirely since 
CLEAR(A ) is added by F-rule 2. 

DCOMP attempts to render the phase 1 ordering noninteractive by 
further constraining it or by eliminating F-rules. The general problem of 
finding an acceptable set of manipulations seems rather difficult, and we 
discuss it here only informally. The additional ordering constraints 
imposed on the original solution graph must themselves be consistent. In 
some cases, DCOMP is not able to find appropriate orderings. In our 
example, however, DCOMP constructs an ordering by the following 
steps: 

1) Place F-rule 2 before F-rule 4 and 
eliminate F-rule 5. Note that F-rule 4 cannot 
now delete any preconditions of F-rule 2. 
Also because F-rule 2 now occurs before 
F-rule 3, F-rule 3 cannot delete any 
preconditions of F-rule 2 either. 

2) Place F-rule 1 before F-rule 4. Since F-rule 
1 occurs after F-rule 2 and before F-rules 4 
and 3 it reestablishes conditions needed by 
F-rules 4 and 3 deleted by F-rule 2. 

These additional constraints give us the ordering (2,1,4,3), correspond
ing to the sequence of F-rules {unstack(C,^4 ), stack( C,l?), pickup(/l ), 
s tack(^,C)}. 

In this case, the ordering of the F-rules in the plan produced a strict 
sequence. In fact, the F-rules that we have been using for these 
blocks-world examples are such that they can only be applied in 
sequence; the robot has only one hand, and this hand is involved in each 
of the actions. Suppose we had a robot with two hands and that each was 
capable of performing all four of the actions modeled by our F-rules. 
These rules could be adapted to model the two-handed robot by 
providing each of them with an extra "hand" argument taking the values 
" 1 " or "2." Also the predicates HANDEMPTY and HOLDING would 
need to have this hand argument added. (We won't allow interactions 
between the hands, such as one of them holding the other.) The F-rules 
for the two-handed robot are then as follows: 
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1) pickup(x,A) 
P& D: ONTABLE(x), CLEAR(x), HANDEMPTY(h) 
A: HOLDING(x,h) 

2) putdown(x,Ä) 
P & D : HOLDING(x,h) 
A: ONTABLE(x), CLEAR(x), HANDEMPTY(h) 

3) stack(x,j>,/z) 
P & D : HOLDING(x,h),CLEAR(y) 
A: HANDEMPTY(h), ON(x,y), CLEAR(x) 

4) unstack(x, y,h) 
P & D : HANDEMPTY (h\ CLEAR(x\ ON(x,y) 
A: HOLDING(x,h\CLEAR(y) 

With the rules just cited, we ought to be able to generate partially 
ordered plans in which hands " 1 " and "2" could be performing actions 
simultaneously. Let's attempt to solve the very same block-stacking 
problem just solved [that is, the goal is [ ON (AX) A ON(C, B )], from 
the initial state shown in Figure 7.1. [The HANDEMPTY predicate in 
that state description is now, of course, replaced by HAND-
EMPTY(l) A HANDEMPTY(2).] In Figure 8.3, we show a possible 
DCOMP first-phase solution with the adders and deleters listed for each 
condition. Note that, compared with Figure 8.2, there are fewer deleters 
of the HANDEMPTY predicates because we have two hands. 

During the second phase of this problem, DCOMP might specify that 
F-rule 2 occur before F-rule 4 so that we can delete rule 5. Further, F-rule 
2 should occur before F-rule 3 to avoid deleting the CLEAR(C) 
condition of F-rule 2. Now if F-rule 1 occurs between F-rules 2 and 3, the 
CLEAR(C) condition of F-rule 3 would be re-established. These 
additional constraints give us the partially ordered plan shown in Figure 
8.4. 

It is convenient to be able to represent any partially ordered plan in a 
form similar to solution graphs of AND/OR graphs. If there were no 
interactions at all among the subgoals of a solution graph produced by 
the first phase, then that graph itself would be a perfectly acceptable 
representation for the partially ordered plan. If the interactions were such 
that there could be no parallel application of F-rules, than a solution path 
like that shown in Figures 7.5 through 7.7 would be required. What about 
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cases between these extremes, such as that of our present two-handed 
robot? We show in Figure 8.5 one way of representing the plan of Figure 
8.4. Starting from the goal condition, we work backward along the plan 
producing the appropriate subgoal states. When the plan splits, it is 
because the subgoal condition at that point can be split into components. 
Such a split occurs at the point marked "*" in Figure 8.5. These 
components can be solved separately until they join again at the point 
marked "**". Notice that CLEAR(C) in node 1 regresses to Γ, as does 
CLEAR(A ) in node 2. Structures similar to those of Figure 8.5 have 
been called procedural nets by Sacerdoti (1977). 

Adders: 1 Deleters: 2 
Deleters: 2 

Fig. 8.3 A first-phase solution to a problem using two hands. 
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stack(i4,C,2) 

st2Lck(C,B,l) pickup(y4,2) 

unstack(C,A,I) 

Fig. 8.4 A partially ordered plan for a two-handed block stacking problem. 

ω 

ON(C,B) AON(A,C) 

stackM,C,2) 

HOLDING(A,2) A CLEAR(C) A ON(C,B) 

ON(C,B) A CLEAR(C) H0LD1NG{A,2) 

stack(C,£,7) pickup(y4,2) 

HOLDING{C,l ) Λ CLEAR(B) HANDEMPTY{2) A CLEAR(A) A ONTABLE(A) 

HOLDING(C,J) A CLEARiB) A HANDEMPTYÌ2) 
ACLEAR(A) A ONTABLE(A) 

unstack(C,AJ ) 

HANDEMPTYU) A CLEAR(C) A ON(C,A) A CLEAR(B) 
A HANDEMPTY{2) A ONTABLE(A) 

Fig. 8.5 Goal graph form for partially ordered plan. 
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8.3. AMENDING PLANS 

Sometimes it is impossible to transform the phase-1 solution into a 
noninteractive ordering merely by adding additional ordering con
straints. The general situation, in this case, is that the phase-2 process can 
do no better than leave us with a partially ordered plan in which some of 
the preconditions are unavoidably deleted. We assume that phase 2 
produces a plan having as few such deletions as possible and that the 
deletions that are left are those that are estimated to be easy to reachieve. 
After producing some such "approximate plan," DCOMP calls upon a 
phase-3 process to develop plans to reachieve the deleted conditions and 
then to "patch" those plans into the phase-2 (approximate) plan in such a 
way that the end result is noninteractive. 

The main task of phase 3, then, is to amend an existing (and faulty) 
plan. The process of amending plans requires some special explanation 
so we consider this general subject next. 

We begin our discussion by considering another example. Suppose we 
are trying to achieve the goal [ CLEAR (A) A HANDEMPTY] from the 
initial state shown in Figure 7.1 (with just one hand now). In Figure 8.6, 
we show the result of phase 1, with the adders and deleters listed. Here, 
we obviously have a solution that cannot be put into noninteractive form 
by adding additional constraints; there is only one F-rule, and it deletes a 
"precondition" of the join rule, number 0. The only remedy to this 
situation is to permit the deletion and to plan to reachieve HAND-
EMPTY in such a way that CLEAR (A) remains true. 

Our strategy is to insert a plan, say P, between F-rule 1 and the join. 
The requirements on P are that its preconditions must regress through 
F-rule 1 to conditions that match the initial state description and that 
CLEAR (A) regress through P unchanged (so that it can be achieved by 
F-rule 1). The structure of the solution that we are seeking is shown in 
Figure 8.7. 

If we apply the B-rule version of putdown(x) to HANDEMPTY, we 
obtain the subgoal HOLDING(x). This subgoal regresses through 
unstack(C,^4) to Γ, with the substitution {C/x}. Furthermore, 
CLEAR (A) regresses through putdown( C) unchanged, so putdown( C) 
is the appropriate patch. The final solution is shown in Figure 8.8. 
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CLEAR(A) A HANDEMPTY 

Adders: 

Fig. 8.6 First-phase solution requiring a patch. 

CLEAR(A) A HANDEMPTY 

P, a plan for achieving HANDEMPTY, 
whose preconditions regressed through 
unstack(C,v4 ) match the initial state 
description. CLEAR(A) must regress 
through P unchanged. 

CLEAR(A ) Λ < Preconditions of P > 

unst2ick(C,A) 

< Conditions that match initial state description > 

Fig. 8.7 The form of the patched solution. 
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When interactions occur that cannot be removed by additional 
ordering constraints, the general situation is often very much like this last 
example. In these cases, DCOMP attempts to insert patches as needed 
starting with the patch that is to be inserted earliest in the plan (closest to 
the initial state). This patching process is applied iteratively until the 
entire plan is free of interactions. 

We illustrate the patching process by another example. Now we 
consider the familiar, and highly interactive block-stacking problem that 
begins with the initial configuration of Figure 7.1 and whose goal is 
[ ΟΝ(Α,Β) Λ ON(B, C)]. The first-phase solution, shown in Figure 8.9, 
has interactions that cannot be removed by adding additional ordering 
constraints. The ordering 3 ^ 5 — > 4 - » 2 - * l is a good approximate 
solution even though F-rule 3 deletes a precondition of F-rule 4, namely, 
CLEAR(C), and it also deletes a precondition of F-rule 5, namely, 
HANDEMPTY. Our patching process attempts to reachieve these 
deleted conditions and works on the earliest one, HANDEMPTY, first. 

The path of the approximate solution is shown in Figure 8.10; we do 
not split the initial compound goal because neither of the components 
can be achieved in an order-independent fashion. Note that regression 
must be used to create successor nodes and that some of the goal 
components regress to Tand thus disappear. Here, we use the convention 
that the tail of the B-rule arc adjoins the condition used to match a literal 
in the add list of the rule. The conditions marked with asterisks (*) are 
conditions that our approximate plan does not yet achieve. 

CLEAR{A)A HANDEMPTY 

putdown(C) 

CLEAR(A) A HOLDING(C) 

unstack(C,,4) 

ON(C.A)A CLEAR{C)A HANDEMPTY 

Fig. 8.8 The patched solution. 
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Deleters: 4 Adders: 4 
Deleters: 5 

Fig. 8.9 First-phase solution for an interactive block-stacking problem. 
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m 
ΟΝ(Α,Β) 
ON(B,C) 

pickup(Z?) 

node 2-

unstack(C,,4 ) 

ON(C,A) 
CLEAR(C) 

HANDEMPTY 
ONTABLE(B) 
CLEAR(B) 

ONTABLE(A) 

Fig. 8.10 An approximate solution. 
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Adders: 1 Adders: 2 

assign( X,rl ,tl,B) 

Deleters: 2 

[X/ri [Bit] [Y/rl] {A/tl} 

Fig. 8.11 First-phase solution to the two-register problem. 

We first attempt to insert a patch between F-rule 3 and F-rule 5 to 
achieve HANDEMPTY. (Note the similarity of this situation with that 
depicted in Figure 8.7.) The rule putdown(v) with the substitution 
{C/x) is an appropriate patch. Its subgoal, HOLDING(C), regresses 
through unstack( C,A ) to T. Furthermore, all of the conditions of node 2 
[except HANDEMPTY, which is achieved by putdown(C)] regress 
unchanged through putdown( C). 

Now, we can consider the problem of finding a patch for the other 
deleted precondition, namely, CLEAR(C). Note, that in this case, 
however, CLEAR ( C) regresses unchanged through F-rule 5, pickup( B ), 
and then it regresses through our newly inserted rule, putdown( C), to T. 
Therefore no further modifications of the plan are necessary, and we have 
the usual solution {unstack( C, A ), putdown( C ), pickup( B ), stack( B, C ), 
pickup(^ ), steck(A,B)}. 

The process of patching can be more complicated than our examples 
have illustrated. If the preconditions of the patched plan have only to 
regress through a strict sequence (as in this last example), the process is 
straightforward, but how are conditions to be regressed through a partial 
ordering? Some conditions may regress through to conditions that match 
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assign(X,rJ,A,B) 

Deleters: 2 

CONT(X,A) CONT(Y,B) CONT(rl,B) CONT(X,A) 

Deleters: 1 r 

Xr2.B) | Γ 
[Ylr2] [Z/rl,0/t2] 

Fig. 8.12 Solution to the two-register problem. 

the initial state description for all strict orderings consistent with the 
partial ordering; others may do so for none of these strict orderings. Or 
we may be able to impose additional constraints on the partial ordering 
such that the preconditions of a patched plan may regress through it to 
conditions that are satisfied by the initial state description. The general 
problem of patching plans into partial orderings appears rather complex 
and has not yet received adequate attention. 

As a final example of DCOMP, we consider again the problem of 
interchanging the contents of two registers. From the initial state 
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[CONT(X,A) A CONT(Y,B) A CONT(Z,0)], we want to achieve 
the goal [CONT( YyA ) Λ CONT(X,B)]. The first phase produces the 
solution shown in Figure 8.11. The adders and deleters are indicated as 
usual. This first-phase solution has unavoidable deletions. F-rule 1 
deletes a precondition of F-rule 2, and vice versa. They cannot both be 
first! [Sacerdoti (1977) called this type of conflict a "double cross."] 

The blame for the unavoidable deletion conflict might be assigned to 
the substitutions used in one of the rules, say, rule 2. If Y were not 
substituted for rl in rule 2, then F-rule 1 would not have deleted 
CONT(rl,B). Then F-rule 1 could be ordered before F-rule 2 to avoid 
the deletion of the precondition, CONT(X,A)9 of F-rule 1 by F-rule 2. In 
this manner, DCOMP is led to continue the search for a solution by 
establishing the precondition, CONT(rl.B), of F-rule 2 but now 
prohibiting the substitution { Y/rl}. 

Continued search results in the tentative solution shown in Figure 
8.12. From this tentative solution, DCOMP can compute that the 
ordering 3 —> 1 —̂  2 produces a noninteractive solution. The final solu
tion produced is {assign (Z, Y, O, B ), assign ( Y, X, B, A ), as
sign (Χ,Ζ,Α, Β)}. 

8.4. HIERARCHICAL PLANNING 

The methods that we have considered so far for generating plans to 
achieve goals have all operated on "one level." When working backward, 
for example, we investigated ways to achieve the goal condition and then 
to achieve all of the subgoals, and so on. In many practical situations, we 
might regard some goal and subgoal conditions as mere details and 
postpone attempts to solve them until the major steps of the plan are in 
place. In fact, the goal conditions that we encounter and the rules to 
achieve them might be organized in a hierarchy with the most detailed 
conditions and fine-grained actions at the lowest level and the major 
conditions and their rules at the highest level. 

Planning the construction of a building, for example, involves the high 
level tasks of site preparation, foundation work, framing, heating and 
electrical work, and so on. Lower level activities would detail more 
precise steps for accomplishing the higher level tasks. At the very lowest 
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level, the activities might involve nail-driving, wire-stripping, and so on. 
If the entire plan had to be synthesized at the level of the most detailed 
actions, it would be impossibly long. Developing the plan level by level, 
in hierarchical fashion, allows the plans at each level to be of reasonable 
length and thus increases the likelihood of their being found. Such a 
strategy is called hierarchical planning. 

8.4.1. POSTPONING PRECONDITIONS 

One simple method of planning hierarchically is to identify a hierarchy 
of conditions. Those at the lower levels of the hierarchy are relatively 
unimportant details compared to those at the higher levels, and achieve
ment of the former can be postponed until most of the plan is developed. 
The general idea is that plan synthesis should occur in stages, dealing 
with the highest level conditions first. Once a plan has been developed to 
achieve the high-level conditions (and their high-level preconditions, and 
so on), other steps can be added in place to the plan to achieve lesser 
conditions, and so on. This method does not require that the rules 
themselves be graded according to a hierarchy. We can still have one set 
of rules. 

Hierarchical planning is achieved by constructing a plan in levels, 
using any of the single-level methods previously described. During each 
level, certain conditions are regarded as details and are thus postponed 
until a subsequent level. A condition regarded as a detail at a certain level 
is effectively invisible at that level. When details suddenly become visible 
at a lower level, we must have a means of patching the higher level plans 
to achieve them. 

8.4.2. ABSTRIPS 

The patching process is relatively straightforward with a STRI PS-type 
problem solver, so we illustrate the process of hierarchical planning first 
by using STRIPS as the basic problem solver. When STRIPS is modified 
in this way, it is called ABSTRIPS. 

For an example problem, let us again use the goal 
[ON(C,B) Λ ON(A,C)], and the initial state depicted in Figure 7.1. 
This goal is one that the single-level STRIPS can readily solve but we use 
it here merely to illustrate how ABSTRIPS works. 
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The F-rules that we use are those that we have been using, but for 
purposes of postponing preconditions we must specify a hierarchy of 
conditions (including goal conditions). To be realistic, this hierarchy 
ought to reflect the intrinsic difficulty of achieving the various conditions. 
Clearly, the major goal predicate, ON, should be on the highest level of 
the hierarchy; and perhaps HANDEMPTYshould be at the lowest level, 
since it is easy to achieve. In this simple example, we use only three 
hierarchical levels and place the remaining predicates, namely, ON-
TABLE, CLEAR, and HOLDING, in the middle level. 

The hierarchical level of each condition can be simply indicated by a 
criticality value associated with the condition. Small numbers indicate a 
low hierarchical level or small criticality, and large numbers indicate a 
high hierarchical level or large criticality. The F-rules for ABSTRIPS, 
with criticality values indicated above the preconditions, are shown 
below: 

1) pickup(x) 
2 2 1 

P & D: ONTABLE(x), CLEAR(x), HANDEMPTY 
A: HOLDING (x) 

2) putdown(jc) 
2 

P&D: HOLDING(x) 
A: ONTABLE(x),CLEAR(x), HANDEMPTY 

3) stack(x,j) 
2 2 

P&D: HOLDING(x),CLEAR(y) 
A: HANDEMPTY, ON(x,y), CLEAR(x) 

4) unstack(x,y) 
1 2 3 

P&D: HANDEMPTY, CLEAR(x), ON(x,y) 
A: HOLDING(x),CLEAR(y) 

Note that criticality values appear on both the preconditions and on 
the delete-list literals. They do not appear on the add-list literals. When 
an F-rule is applied, all of the literals in the add list are added to the state 
description. 
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ABSTRIPS begins by considering only conditions of highest critical
ly, namely, those with criticality value 3 in this example. All conditions 
having criticality values below this threshold value are invisible, that is, 
they are ignored. Since our main goal contains two conditions of value 3, 
ABSTRIPS considers one of them, say, ON(C, B ), and adds stack( C, B ) 
to the goal stack. (If ABSTRIPS had selected the other component to 
work on first, it would later have had to back up; the reader might want to 
explore this path on his own.) No preconditions (of stack) are added to 
the goal stack, because they have a criticality value of only 2 (below 
threshold) and are thus invisible at this level. 

ABSTRIPS can therefore apply the F-rule stack (C, B), resulting in a 
new state description. Next, it considers the other goal component 
ON(A,C) and adds stack(^4, C) to the goal stack. (Again, the precondi
tions of this rule are invisible.) Then ABSTRIPS applies stack(^4, C) to 
the current state resulting in a state description that matches the entire 
goal. We show the solution path for this level of the operation of 
ABSTRIPS in Figure 8.13. Note that when delete literals of rules are 
invisible, certain items that ought to be deleted from a state description 
are not deleted. A contradictory state description may result, but this 
causes no problems. 

The first level solution, obtained by ignoring certain details, is the 
sequence (stack(C,2?), stack(v4,C)}. (An equally valid solution at the 
first level, obtained by a different ordering of goal components, is 
(stack(^4,C), stack(C,i?)}. This solution will run into difficulties at a 
lower level causing the need to return to this first level to produce the 
appropriately ordered sequence.) Our first-level solution can be regarded 
as a high-level plan for achieving the goal. From this view, the 
block-stacking operations are considered most important, and a lower 
level of planning can be counted on to fill in details. 

We now pass down our first-level solution, namely, (staek(C,2?), 
stack(v4, C)}, to the second level. In this level we consider conditions of 
criticality value 2 or higher so that we begin to consider some of the 
details. We can effectively pass down the higher level solution by 
beginning the process at the next level with a goal stack that includes the 
sequence of F-rules in the higher level solution together with any of their 
visible preconditions. The last item in the beginning goal stack is the main 
goal. In this case the beginning goal stack for the second level is: 
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HOLDING(C) Λ CLEAR(B) 
stack(C,£) 
HOLDING(A) A CLEAR(C) 
stack(^,C) 
ON(C,B)A ON(A,C) 

Because STRIPS works with a goal stack, it is easy for a subsequent 
level to patch in rules for achieving details. The plan passed down from 
higher levels effectively constrains the search at lower levels, enhancing 
efficiency and diminishing the combinatorial explosion. 

The reader can verify for himself that one possible solution produced 
by this second level is the sequence {unstack( C,A ), stack(C,2?), 
pickup(^4 ), stack(^, C)}. If no solution can be found during one of the 
levels, the process can return to a higher level to find another solution. In 
this case our second-level solution is a good one and is complete except 
that in its construction we have ignored the condition HANDEMPTY. 

During the next or third level, we lower to 1 the threshold on criticality 
values. We start with a goal stack containing the sequence of F-rules from 
the second-level solution together with (now all of) their preconditions. 
The work at this level, for our present example, merely verifies that the 
second-level solution is a correct solution even to the most detailed level 
of the problem. 

ABSTRIPS is thus a completely straightforward process for accom
plishing hierarchical planning. All that is required is a grading of the 
importance of predicates accomplished by assigning them criticality 
values. In problems more complex than this example, ABSTRIPS is a 
much more efficient problem solver than the single-level STRIPS. 

8.43. VARIATIONS 

There are several variations on this particular theme of hierarchical 
problem solving. First, the basic problem solver used at each level does 
not have to be STRIPS. Any problem-solving method can be used so 
long as it is possible for the method at one level to be guided by the 
solution produced at a higher level. For example, we could use RSTRIPS 
or DCOMP at each level augmented by an appropriate patching process. 

A minor variation on this hierarchical planning scheme involves only 
two levels of precondition criticality and a slightly different way of using 
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the criticality levels. Since this variant is important, we illustrate how it 
works with an example using the set of F-rules given below: 

1) pickup(x) 
P& D: ONTABLE(x), CLEAR(x), P-HANDEMPTY 
A: HOLDING(x) 

2) putdown(x) 
P & D : HOLDING(x) 
A: ONTABLE(x%CLEAR(x),HANDEMPTY 

3) stack(;c,7) 
P & D : P-HOLDING{x\CLEAR{y) 
A: HANDEMPTY,ON(x,y),CLEAR(x) 

4) unstack(x,7) 
P & D : P-HANDEMPTY, CLEAR(x), ON(x,y) 
A: HOLDING(x\CLEAR(y) 

The special P- prefix before a predicate indicates that achievement of 
the corresponding precondition is always postponed until the next lower 
level. We call these preconditions P-conditions. This scheme allows us to 
specify, for each F-rule, which preconditions are the most important (to 
be achieved during the current planning level) and which are details (to 
be achieved in the immediately lower level). 

In this example, we use STRIPS as the basic problem solver at each 
level. Let us consider the same problem solved earlier, namely, to achieve 
the goal [ ON ( C, B ) Λ ON ( A, C )] from the initial state shown in Figure 
7.1. In Figure 8.14, we show a STRIPS solution path for the first level. 
Note again that the state description may contain inconsistencies because 
details are not deleted. The first level solution is the sequence 
(stack(C,£), stack(,4,C)}. 

We begin the second-level solution attempt with a goal stack contain
ing the sequence of F-rules just obtained and their preconditions. Now, 
however, the P-conditions previously postponed must be included as 
conditions and be achieved at this level. Also, when these F-rules are 
applied, we delete these preconditions from the current state description. 
Any new F-rules inserted at this level are treated as before. 
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The beginning goal stack for the next level of problem solving is given 
below. To distinguish the F-rules inherited from a previous level from 
those that might be inserted at the present level, we precede the inherited 
ones by an asterisk (*). 

HOLDING(C) A CLEAR(B) 
*stack(C,£) 
HOLDING(A) Λ CLEAR(C) 

*stack(^,C) 
[ON(C,B)A ON(A,C)] 

The STRIPS solution at this level is the sequence {unstack(C,^4 ), 
stack(C,i?), pickup(^), stack(^4,C)}. Even though there were post
poned conditions at this level, namely, HANDEMPTY, this sequence is a 
valid solution. The goal stack set up for the next lower level causes no 
additional F-rules to be inserted in the plan. The problem-solving 
process for this level merely verifies the correctness of the second-level 
plan when all details are included. 

8.5. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

RSTRIPS is based on systems for dealing with interacting goals 
developed by Warren (1974) and by Waldinger (1977). [Warren's system, 
WARPLAN, is clearly and economically implemented in PROLOG.] A 
similar scheme was proposed by Rieger and London (1977). 

DCOMP is based on Sacerdoti^ (1975, 1977) and Tate's (1976, 1977) 
ideas for developing "nonlinear" plans. Sussman (1975) discusses several 
of the problems of simultaneously achieving interacting goals and 
recommends the strategy of creating a plan that tolerates a few bugs and 
then debugging this plan in preference to the strategy of synthesizing a 
perfect plan. 

The ABSTRIPS system for hierarchical planning was developed by 
Sacerdoti (1974). The LAWALY system of Siklóssy and Dreussi (1973) 
also used hierarchies of subtasks. Our variation of ABSTRIPS using 
"P-conditions" is based on Sacerdoti's (1977) NOAH system. NOAH 
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combines hierarchical and nonlinear planning; thus it might be thought 
of as an AB-DCOMP using P-conditions. Tate's (1977) system for 
generating project networks can be viewed as an elaboration of NOAH. 
See also a hierarchical planning and execution system proposed by 
Nilsson (1973). 

Extensions to the capabilities of robot problem solving-systems have 
been proposed by Fikes, Hart, and Nilsson (1972a). Feldman and Sproull 
(1977) discuss problems caused by uncertainty in robot planning and 
recommend the use of decision-theoretic methods. 

EXERCISES 

8.1 Starting with the initial state description shown in Figure 7.1, show 
how RSTRIPS would achieve the goal [ON(B,A ) Λ ON(C,B)]. 

8.2 Use any of the plan generating systems described in chapters 7 and 8 
to solve the following block-stacking problem: 

x 
D 

Initial Goal 

8.3 Show how DCOMP would solve the following blocks-world prob
lem: 

x 
Initial Goal 

Use the predicates and STRIPS rules of chapter 7 to represent states and 
actions. 
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8.4 An initial blocks-world situation is described as follows: 

CLEAR(A ) ONTABLE(A ) 
CLEAR(B) ONTABLE(B) 
CLEAR(C) ONTABLE(C) 

There is just one F-rule, namely: 

puton(x,y) 
P: CLEAR(x\CLEAR(y),ONTABLE{x) 
D: CLEAR{y\ONTABLE{x) 
A: ΟΝ(χ,γ) 

Show how DCOMP would achieve the goal [ON(A,B) A ON(B,C)]. 

8.5 Sketch out the design of a hierarchical version of DCOM P that bears 
the same relationship to DCOMP that ABSTRIPS bears to STRIPS. (We 
might call the system AB-DCOMP.) Show how the system might work on 
an example problem. 

WARNING: There are some conceptual difficulties in designing AB-
DCOMP. Describe any that you encounter even if you do not solve them. 

8.6 If certain nodes in the graph of Figure 7.3 were combined, it would 
have the following structure: 

Specify a hierarchical planning system based on the form of this structure 
and illustrate its operation by an example. 

8.7 Suppose a hierarchical planning system fails to find a solution at one 
of its levels. What sort of information about the reason for the failure 
might be useful in searching for an alternative higher level plan? 
Illustrate with an example. 
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8.8 Can you think of any ways in which the ideas about hierarchical 
problem solving described in this chapter might be used in rule-based 
deduction systems? Test your suggestions by applying them to a 
deduction-system solution of a robot problem using Kowalski's formula
tion. 

8.9 Can you find a counter-example to the following statement? 

Any plan that can be generated by STRIPS 
can also be generated by ABSTRIPS. 

8.10 Discuss the "completeness" properties of RSTRIPS and DCOMP. 
That is, can these planning systems find plans whenever plans exist? 
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CHAPTER 9 

STRUCTURED OBJECT 
REPRESENTATIONS 

As we discussed in chapter 4, there are many ways to represent a body 
of knowledge in the predicate calculus. The appropriateness of a 
representation depends on the application. After deciding on a particular 
form of representation, the system designer must also decide on how 
predicate calculus expressions are to be encoded in computer memory. 
Efficient storage, retrieval, and modification are key concerns in selecting 
an implementation design. Up to now in this book, we have not been 
concerned with these matters of efficiency. We have treated each 
predicate calculus statement, whether fact, rule, or goal, as an individual 
entity that could be accessed as needed without concern for the actual 
mechanisms or costs involved in this access. Yet, ease of access is such an 
important consideration that it has had a major effect on the style of 
predicate calculus representation used in large AI systems. In this 
chapter, we describe some of the specialized representations that address 
some of these concerns. We also confront certain representational 
questions that might also have been faced earlier, say in chapter 6, but 
seem more appropriate in this chapter. 

The representations discussed here aggregate several related predicate 
calculus expressions into larger structures (sometimes called units ) that 
are identified with important objects in the subject domain of the system. 
When information about one of these objects is needed by the system, the 
appropriate unit is accessed and all of the relevant facts about the object 
are retrieved at once. We use the phrase structured objects to describe 
these representational schemes, because of the heavy emphasis on the 
structure of the representation. Indeed, the structure carries some of the 
representational and computational burden. Certain operations that 
might otherwise have been performed by explicit rule applications (in 
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other representations) can be performed in a more automatic way by 
mechanisms that depend on the structure of the representation. These 
representational schemes are the subject of this chapter. 

9.1. FROM PREDICATE CALCULUS TO UNITS 

Suppose we want to represent the following sentences as predicate 
calculus facts: 

John gave Mary the book. 

John is a programmer. 

Mary is a lawyer. 

John's address is 37 Maple St. 

The following wffs appear to be a reasonable representation: 

GIVE (JOHN, MAR Y, BOOK) 

OCCUPA TION(JOHN, PROGRAMMER ) 

OCCUPATION (MARY, LAWYER) 

ADDRESS (JOHN,31~MAPLE-ST) 

In this small database, we have used individual constant symbols to 
refer to six entitities, namely, JOHN, MAR Y, BOOK, PROGRAMMER, 
LA WYER, and 31-MAPLE-ST. If the database were enlarged, we would 
presumably mention more entities, but we would also probably add other 
information about these same entities. For retrieval purposes, it would be 
helpful if we gathered together all of the facts about a given entity into a 
single group, which we call a unit. In our simple example, the unit JOHN 
has associated with it the following facts: 

JOHN 

GIVE(JOHN,MARY,BOOK) 
OCCUPA TION(JOHN, PROGRAMMER ) 
ADDRESS (JOHN,31-MAPLE-ST) 
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Similarly, we associate the following facts with the unit MARY: 

MARY 

GIVE (JOHN, MARY, BOOK) 
OCCUPATION(MARY,LA WYER) 

(It is possible to have the same fact associated with terms denoting 
different entities in our domain.) 

A representational scheme in which the facts are indexed by terms 
denoting entities or objects of the domain is called an object-centered 
representation. 

Most notations for structured objects involve the use of binary 
(two-argument) predicates for expressing facts about the objects. A 
simple conversion scheme can be used to rewrite arbitrary wffs using only 
binary predicates. To convert the three argument formula 
GIVE (JOHN, MARY, BOOK), for example, to one involving binary 
predicates, we postulate the existence of a particular "giving event" and a 
set of such giving events. Let us call this set GIVING-E VENTS. For each 
argument of the original predicate, we invent a new binary predicate that 
relates the value of the argument to the postulated event. Using this 
scheme, the formula GIVE (JOHN, MARY, BOOK) would be converted 
to: 

(3x)[EL(x,GIVING-EVENTS) A GIVER(xJOHN) 
A RECIP(x,MARY) A OBJ(x,BOOK)\ 

The predicate EL is used to express set membership. Skolemizing the 
existential variable in the above formula gives a name, say GI, to our 
postulated giving event: 

EL(G1,GIVING-EVENTS) A GIVER(GIJOHN) 
A RECIP(G1,MARY) A OBJ(GI,BOOK) 

Thus, we have converted a three-argument predicate to the conjunc
tion of four binary ones. 

The relations between GI and the original arguments of GIVE could 
just as well be expressed as functions over the set GIVING-E VENTS 
instead of as predicates. With this additional notational change, the 
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sentence "John gave Mary the book" can be represented by the following 
formula: 

EL(G1,GIVING-EVENTS) 
AEQ[giver(Gl),JOHN] 
A EQ[recip(Gl),MARY] 
AEQ[obj(Gl),BOOK] 

The predicate EQ is meant to denote the equality relation. The 
expression above uses certain functions, defined over the set GIVING-
E VENTS, whose values name other objects that participate in Gl. 

There are some advantages in converting to a representation that uses 
events and binary relations. For our purposes, the primary advantage is 
modularity. Suppose, for example, that we want to add some information 
about when a giving event takes place. Before converting to our binary 
form, we would need to add a fourth (time) argument to the predicate 
GIVE. Such a change might require extensive changes to the production 
rules that referenced GIVE and to the control system. If, instead, giving is 
represented as a domain entity, then additional information about it can 
easily be incorporated by adding new binary relations, functions, and 
associated rules. 

In this part of the book we represent all but a small number of 
propositions as terms denoting "events" or "situations" that are consid
ered entities of our domain. The only predicates that we need are EQ, to 
say that two entities are the same; SS, to say that one set is a subset of 
another; and EL, to say that an entity is an element of a set. For our 
example sentences above, we had events in which persons had occupa
tions and an event in which a person had an address. These sentences are 
represented as follows: 

Gl 

EL ( Gl, GIVING-EVENTS) 
EQ[giver(Gl),JOHN] 
EQ[recip(Gl),MARY] 
EQ[obj(Gl),BOOK] 
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OC1 

EL ( OC1, OCCUPA TION-EVENTS) 
EQ[worker(OCl)JOHN] 
EQ [profession ( OC1 ), PROGRAMMER ] 

OC2 

EL(OC2, OCCUPA TION-EVENTS) 
EQ[worker{OC2\MARY] 
EQ [profession {OC2\ LA WYER ] 

ADR1 

EL(ADR19 ADDRESS-EVENTS) 
EQ[person(ADRl)JOHN] 
EQ [ location (ADRI \31-MAPLE-ST] 

In these units, we have freely invented functions to relate events with 
other entities. 

We notice that the units above share a common structure. First, an EL 
predicate is used to state that the object described by the unit is a member 
of some set. (If the object described by the unit had been a set itself, then 
an SS predicate would have been used to state that it was a subset of some 
other set.) Second, the values of the various functions of the object 
described by the unit are related to other objects. We next introduce a 
special unit notation based on this general structure. 

As an abbreviation for a formula like EQ[giver(GI),JOHN], we use 
the expression or pair "giver : JOHN" All of the EQ predicates that relate 
functions of the object described by the unit to other objects are 
expressed by such pairs grouped below the unit name. Thus, drawing 
from our example, we have: 

Gl 
giver: JOHN 
reap: MARY 
obj: BOOK 
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In AI systems using unit notation, constructs like "giver : JOHN" are 
often called slots. The first expression, giver, is called the slotname, and 
the second expression, JOHN, is called the slotvalue. 

Sometimes the slotvalue is not a constant symbol (such as JOHN) but 
a functional expression. In particular, the function may correspond to the 
slotname of another unit. Consider, for example, the sentences "John 
gave the book to Mary," and "Bill gave the pen to the person to whom 
John gave the book." We express this pair of sentences by the following 
units: 

Gl 
EL(G1,GIVING-EVENTS) 
giver: JOHN 
reap: MARY 
obj: BOOK 

G2 
EL(G2, GIVING-EVENTS) 
giver: BILL 
recip : recip(Gl) 
obj: PEN 

In these examples, recip (Gl) and MARY are two different ways of 
describing the same person. Later, we discuss a process for "evaluating" a 
functional expression like recip (Gl) by finding the slotvalue of recip in 
the unit Gl. 

Slotvalues can also be existential variables. For example, a predicate 
calculus version of the sentence "Someone gave Mary the book" might 
include the formula (3x)EQ[giver(G3)9x]. We might Skolemize the 
existential variable to get an expression like EQ [ giver (G3),S ]. Usually, 
we have some information about the existential variable. In our current 
example, we would know that "someone" referred to a person. A better 
rendering of "Someone gave Mary the book" would involve the formula: 

(3x){EQ[giver(G3),x] Λ EL(x,PERSONS)]} 

or simply, 

EL [ giver ( G3 ), PERSONS ]. 
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In order to handle this sort of formula in our unit notation, we invent 
the special form "(element-of PERSONS)" as a kind of pseudo-slot-
value. This form serves as an abbreviation for the formula that used the 
EL predicate. An expression using the abbreviated form can be thought 
of as an indefinite description of the slotvalue. 

To complete our set of abbreviating conventions, we use the "(ele
ment-of )" form in a slotname called "self to state that the object 
described by the unit is an element of a set. With these conventions, our 
set of units that were originally written as groups of predicate calculus 
formulas can be rewritten as follows: 

Gl 
self: (element-of GIVING-EVENTS) 
giver: JOHN 
reap: MARY 
obj: BOOK 

OC1 
self: ( element-of OCCUPA TION-E VENTS ) 
worker: JOHN 
profession: PROGRAMMER 

OC2 
self: ( element-of OCCUPA TION-E VENTS ) 
worker: MARY 
profession : LA WYER 

ADR1 
self: (element-ofADDRESS-EVENTS) 
person : JOHN 
location : 31-MAPLE-ST 

Other entities in our domain might similarly be described by the 
following units: 

JOHN 
self: (element-of PERSONS) 

MARY 
self: (element-ofPERSONS) 
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BOOK 
self: (element-ofPHYS-OBJS) 

PROGRAMMER 
self: (elemeni-ofJOBS) 

LA WYER 
self: (element-of JOBS) 

31-MAPLE-ST 
self: (element-of ADDRESSES) 

PERSONS 
self: (subset-of ANIMALS) 

This set of units represents explicitly certain information (about set 
membership) that was merely implicit in our original sentences. Note 
that in the last unit, PERSONS, we use the form "(subset-of AN
IMALS)" This form is analogous to the "(element-of )" form; within 
the PERSONS unit it stands for SS(PERSONS,ANIMALS). 

It should be clear how to translate any of the above units back into 
conventional predicate calculus notation. 

We can also accommodate universally quantified variables in units. 
Consider, for example, the sentence "John gave something to everyone." 
In predicate calculus, this sentence might be represented as follows: 

(Vx )(3y )(3z ){ EL (y, GIVING-E VENTS ) 
A EQ[giver(y)JOHN] A EQ[obj(y\z] 
AEQ[recip(ylx]} . 

Skolemization replaces the variables y and z by functions of x. In 
particular, the giving event, y, is now a Skolem function of x and not a 
constant. The family of giving events represented by this function can be 
described by the functional unit: 

g(x) 
self: (element-ofGIVING-EVENTS) 
giver: JOHN 
obj: sk(x) 
recip : x 
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In this unit, the slotvalue of obj is the Skolem function, sk(x). The 
scope of universal variables in units is the entire unit. (We assume that all 
predicate calculus formulas represented in unit notation are in prenex 
Skolem form. That is, all negation signs are moved in, variables are 
standardized apart, existential variables are Skolemized, and all universal 
quantifiers apply to the entire expression. Thus, when translating unit 
notation back into predicate calculus, the universal variables all have 
maximum scopes.) 

Since ideas about sets and set membership play such a prominent role 
in the representations being discussed in this chapter, it will be helpful to 
have some special functions for describing sets. To describe a set 
composed of certain individuals, we use the function the-set-of; for 
example, the-set-of {JOHN,MARY, BILL). We also use functions inter
section, union, and complement to describe sets composed of the 
intersection, union, or complement of sets, respectively. 

These set-describing functions can be usefully employed as a way to 
represent certain sentences expressing disjunctions and negations. For 
example, consider the sentences: "John bought a car," "It was either a 
Ford or a Chevy," and "It was not a convertible." These sentences could 
be described by the following unit: 

Bl 
self: (element-ofBUYING-EVENTS) 
buyer: JOHN 
bought : ( element-of intersection ( union ( FORDS, CHE VYS ), 

complement ( CON VER TIB LES ))) . 

As another example, the sentence "John gave the book to either Bill or 
Mary" might be represented by: 

G4 
self: (element-of GIVING-EVENTS) 
giver: JOHN 
recip : (element-of the-set-of (BILL, MARY)) 
obj: BOOK 

We postpone the discussion of how to represent implications in unit 
notation. It is not our intention here to develop the unit notation into a 
completely adequate alternative syntax for predicate calculus. A com
plete syntax might be quite cumbersome; indeed, various useful AI 
systems have employed quite restricted versions of unit languages. 
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9.2. A GRAPHICAL REPRESENTATION: SEMANTIC 
NETWORKS 

The binary-predicate version of predicate calculus introduced in the 
last section lends itself to a graphical representation. The terms of the 
formalism (namely, the constant and variable symbols and the functional 
expressions) can be represented by nodes of a graph. Thus, in our 
examples above, we would have nodes for JOHN, Gì, MARY, LAW
YER, ADR1, etc. The predicates EQ, EL, and SS can be represented by 
arcs; the tail of the arc leaves the node representing the first argument, 
and the head of the arc enters the node representing the second 
argument. Thus, the expression EL(G1,GIVING-EVENTS) is repre
sented by the following structure: 

CE> 
The nodes and arcs of such graphs are labeled by the terms and 

predicates that they denote. 

When an EQ predicate relates a term and a unary function of another 
term, we represent the unary function expression by an arc connecting 
the two terms. For example, to represent the formula 
EQ[giver{Gì),JOHN], we use the structure: 

A collection of predicate calculus expressions of the type we have been 
discussing can be represented by a graph structure that is often called a 
semantic network. A network representation of our example collection of 
sentences is shown in Figure 9.1. Semantic networks of this sort are useful 
for descriptive purposes because they give a simple, structural picture of 
a body of facts. They also depict some of the indexing structure used in 
many implementations of predicate calculus representations. Of course, 
whether we choose to describe the computer representation of a certain 
body of facts by a semantic network, by a set of units, or by a collection of 
linear formulas is mainly a matter of taste. The underlying computer data 
structures may well be the same! We use all three types of descriptions 
more or less interchangeably in this chapter. 

We show another semantic net example in Figure 9.2. It represents the 
same set of facts that were represented as predicate calculus expressions 
in an information retrieval example in chapter 6. 

JOHN 
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ADDRESS-EVENTS ) (OCCUPATION-EVENTS) ( GIVING-EVENTS 

fworker\ 
person worker / V™fession \ recip / \ \ profession 

PROGRAMMER 

EL 

JOHN 

EL 

Fig. 9.1 A simple semantic network. 
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Fig. 9.2 A semantic network representing personnel information. 
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The nodes in the networks of Figures 9.1 and 9.2 are all labeled by 
constant symbols. We can also accommocate variable nodes; these are 
labeled by lower case letters near the end of the alphabet (e.g.,..., x9y, z ). 
Again, the variables are standardized apart and are assumed to be 
universally quantified. The scope of these quantifications is the entire fact 
network. 

We follow the same conventions converting predicate calculus for
mulas to network form as we did converting them to unit notation. 
Existentially quantified variables are Skolemized, and the resulting 
Skolem functions are represented by nodes labeled by functional 
expressions. Thus the sentence "John gave something to everyone" can 
be represented by the network in Figure 9.3. In this figure, "x" is 
universally quantified. The nodes labeled by "g(x)" and "$&(*)" are 
Skolem-function nodes. (Computer implementations of nodes labeled by 
functional expressions would probably have some sort of pointer 
structure between the dependent nodes and the independent ones. For 
simplicity, we suppress explicit display of these pointers in our semantic 
networks; although some net formalisms include them.) 

We next discuss how to represent the propositional connectives 
graphically. Representing conjunctions is easy: The multiple nodes and 
EL and SS arcs in a semantic network represent the conjunction of the 
associated atomic formulas. To represent a disjunction, we need some 
way of setting off those nodes and arcs that are the disjuncts. In a linear 
notation, we use parentheses or brackets to delimit the disjunction. For 
semantic networks, we employ a graphical version of the parentheses, an 
enclosure, represented by a closed, dashed line in our illustrations. For a 
disjunction, each disjunctive predicate is drawn within the enclosure, and 
the enclosure is labeled DIS. Thus, the expression 
[EL(A,B) V SS(B9C)] is represented as in Figure 9.4. 

To set off a conjunction nested within a disjunction, we can use an 
enclosure labeled CONJ. (By convention, we omit the implied conjunc
tive enclosure that surrounds the entire semantic network.) Arbitrary 
nesting of enclosures within enclosures can be handled in this manner. As 
an example, Figure 9.5 shows the semantic network version of the 
sentence "John is a programmer or Mary is a lawyer." 

In converting predicate calculus expressions to semantic network form, 
negation symbols are typically moved in, so that their scopes are limited 
to a single predicate. In this case, expressions with negation symbols can 
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be represented in semantic network form simply by allowing ~EL, 
~SS, and ~EQ arcs. More generally, we can use enclosures to delimit 
the scopes of negations also. In this case, we label the enclosure by NEG. 
We show, in Figure 9.6, a graphical representation of 
~[EL(A,B) Λ SS(B,C)]. To simplify the notation we assume, by 
convention, that the predicates within a negative enclosure are conjunc
tive. 

(^ΊθΗΝ^) [sk(x)) 

Fig. 9.3 A net with Skolem-function nodes. 

disjunctive 
enclosure 

Fig. 9.4 Representing a disjunction. 
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Fig. 9.5 A disjunction with nested conjunctions. 

Fig. 9.6 Representing a negation. 
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In Figure 9.7 we show an example of a semantic network with both a 
disjunctive and a negative enclosure. This semantic network is equivalent 
to the following logical formula: 

{EL(B1,BUYING-EVENTS) A EQ[buyer(Bl),JOHN\ 
A EQ[bought(Bl),X] A ~EL(X,CONVERTIBLES) 
A [EL(X,FORDS) V EL(X,CHEVYS)] 
A SS(FORDS,CARS) A SS(CHEVYS,CARS) 
A SS(CONVERTIBLES,CARS)} 

Fig. 9.7 A semantic network with logical connectives. 
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If we negate an expression with a leading existentially quantified 
variable and then move the negation symbol in past the quantifier, the 
quantification is changed to universal. Thus, the statement "Mary is not a 
programmer" might be represented as 

~ {(3x ) EL ( jc, OCCUPA TION-E VENTS ) 
Λ EQ[profession(x ),PROGRAMMER] 
A EQ[worker(x),MARY]} , 

which is equivalent to 

(Vx ) ~ { EL (x, OCCUPA TION-EVENTS) 
A EQ [profession (x ), PROGRAMMER ] 
A EQ[worker(x),MARY]} . 

The network representation for the latter formula is shown in Figure 9.8. 

Enclosures can also be used to represent semantic network implica
tions. For this purpose, we have a linked pair of enclosures, one labeled 
ANTE and one labeled CON SE. For example, the sentence "Everyone 
who lives at 37 Maple St. is a programmer" might be represented by the 
net in Figure 9.9. In this figure, o(x,y) is a Skolem function naming an 
occupation event dependent on x and y. A dashed line links the ANTE 
and CON SE enclosures to show that they belong to the same implication. 
We discuss network implications in more detail later when we introduce 
rules for modifying databases. 

Fig. 9.8 One representation of a negated existential statement. 
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ADDRESS-EVENTS OCCUPA TION-E VENTS 

( EL 

ANTE CONSE 

r y Λ \ Penon \ t 0 , | worker / ^ 

EL 

y)) 

^ he profession 

PROGRAMMER 

Fig. 9.9 A network with an implication. 

In all of these examples, enclosures are used to set off a group of EL, 
SS, and function arcs and thus are drawn so as to enclose only arcs. 
(Whether or not they enclose nodes has no consequence in our semantic 
net notation.) 

9.3. MATCHING 

A matching operation, analogous to unification, is fundamental to the 
use of structured objects as the global database of a production system. 
We turn to this subject next. 

To help us define what we mean by saying that two structured objects 
"match," we must remember the fact that structured objects are merely 
an alternative kind of predicate calculus formalism. The appropriate 
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definition must be something like: Two objects match if and only if the 
predicate calculus formula associated with one of them unifies with the 
predicate calculus formula associated with the other. We are interested in 
a somewhat weaker definition of match, because our match operations 
are not usually symmetrical. That is, we usually have a goal object that we 
want to match against a, fact object. We say that a goal object matches a 
fact object if the formula involving the goal object unifies with some 
sub-conjunction of the formulas of the fact object. (Matching occurs only 
if the goal object formulas are provable from the fact-object formulas.) 

Let us look at some example matches between units using this 
definition. Suppose we have the fact unit: 

Ml 
self: (element-of MARRIAGE-EVENTS) 
male: JOHN-JONES 
female: MARY-JONES 

The predicate calculus formula associated with this unit is: 

EL(M1,MARRIAGE-EVENTS) 
A EQ [ male ( Ml ), JOHN-JONES ] 

EQ[female(Ml\MARY-JONES] . 

This fact unit would match the goal unit: 

Ml 
self: (element-of MARRIAGE-EVENTS) 
male: JOHN-JONES 

It would not match the goal unit: 

Ml 
self: (element-of MARRIAGE-EVENTS) 
male: JOHN-JONES 
female: MARY-JONES 
duration : 10 

For semantic networks, the situation is quite similar. In Figures 9.10 
and 9.11 we show the fact and goal networks that correspond to the units 
examples above. In these figures, we separate the fact and goal arcs by a 
dashed line. (Again, only the location of the arcs, with respect to the 
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male female EL 

Fig. 9.10 A goal net that matches a fact net. 

male female duration EL 

Fig. 9.11 A goal net that does not match a fact net. 
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dashed line, is important; the location of nodes is irrelevant in our 
formulation.) In order for a goal network structure to match a fact 
network structure, the formula associated with the goal structure must 
unify with some sub-conjunction of the formulas associated with the fact 
structure. In these examples, we merely have to find fact arcs that match 
each of the goal arcs. The match is successful in Figure 9.10, but it is 
unsuccessful in Figure 9.11. 

In any representational scheme there are often several alternative 
representations for basically the same information. Since our definition 
of structure matching depends on the exact form of the structure, such 
alternatives do not strictly match. Consider the network examples of 
Figure 9.12. There we show two alternatives for representing "John Jones 
is married to Mary Jones." One of these uses a "marriage-event," and the 
other uses the special wife-of function. (Ordinarily, our preference is not 
to use functions like wife-of unless their values are truly independent of 
other parameters, such as time.) Syntactically, the two structures of 
Figure 9.12 do not match even though they semantically "say" the same 
thing. Such a circumstance corresponds to the fact that two predicate 
calculus forms for representing the same idea do not unify when they 
contain different predicate or function symbols. We show a somewhat 
more complex example of equivalent forms in Figure 9.13. 

Some AI systems that use structured objects have elaborate matchers 
that use special knowledge about the domain of application to enable 
direct matches between structures like those shown in Figure 9.12 and 
Figure 9.13. These systems have what are often described as "semantic 
matchers," that is, matchers that decide that two structures are the same if 
they "mean" the same thing. 

It is perhaps a matter of taste as to where one wants to draw the line 
between matching and object manipulation computations and deduc
tions. Our preference is to prohibit operations in the matcher that require 
specialized domain knowledge or that might involve combinatorial 
computations. In these cases, we would prefer to use rule-based deduc
tive machinery to establish the semantic equivalence between different 
syntactic forms. Such a strategy retains, for the control system, the 
responsibility of managing all potentially combinatorial searches. It 
permits the matcher to be a general-purpose routine that does not have to 
be specially designed for each application. We postpone a discussion of 
deductive machinery until later, when we talk about operations on 
structured objects. 
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A common cause of syntactic differences between network structures 
are the different ways of setting up chains of EL and SS arcs. Consider 
the example of Figure 9.14. The goal structure can be derived from the 
fact structure using a fundamental theorem from set theory. Because this 
derivation occurs so often with structured objects, it is usually built into 
the matcher. In fact, one of the advantages of structured objects is that 
their pointer structures allow easy computation of element/subset/set 
relationships. Thus, we say that the two structures in Figure 9.14 do 
match. 

So far, we have only discussed matching between two constant 
structures. Usually, one or both of the structures contain variables that 
can have terms substituted for them during the matching process. 
Variables that occur in fact structures have implicit universal quantifica
tion in all formulas in which they appear, and variables that occur in goal 
structures have implicit existential quantification in all formulas in which 
they appear. Our structured-object systems are first-order, so variables 
can only occur as labels for nodes, units, or slotvalues. 

Fig. 9.12 Two non-matching, equivalent structures. 
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John or Bill gave Mary the pen. 

giver 

Fig. 9.13 Another example of equivalent networks. 
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PERSONS 

SS 

MEN 

EL 

JOHN-JONES 

FACT NET 

GOAL NET 

EL 

Fig. 9.14 Nets with EL and SS arcs. 

Fig. 9.15 Matching nets. 
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A typical use of structures with variables is as goal structures. Suppose, 
for example, that we wanted to ask the question "To whom did John give 
the book?" This question could be represented by the following goal 
unit: 

x 
self: {element-ofGIVING-EVENTS) 
giver: JOHN 
recip : y 
obj: BOOK 

Matching this goal unit against the fact unit, Gl, yields the substitution 
{Gl/x,MARY/y}, which can be used to generate an answer to the 
question. In network notation, we show the corresponding matching fact 
and goal structures in Figure 9.15. In order for a goal net to be matched, 
each of its elements (arcs and nodes) must unify with corresponding 
fact-net elements. 

In matching objects that contain functional expressions for slotvalues, 
we assume that these functional expressions are evaluated whenever 
possible. Evaluation is performed by reference to the object named by 
the argument of the function. Suppose, for example, that we want to ask 
the question: "Did Bill give Mary the pen?" This query can be expressed 
as the goal unit: 

x 
self: {element-of GIVING EVENTS) 
giver: BILL 
recip: MARY 
obj: PEN 

Suppose our fact units include: 

Gl 
self: {element-ofGIVING-EVENTS) 
giver: JOHN 
recip: MARY 
obj: BOOK 

G2 
self: {element-ofGIVING-EVENTS) 
giver: BILL 
recip : recip {Gl) 
obj: PEN 
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Because recip{Gl) can be evaluated to MARY, by reference to Gl, our 
goal unit matches G2 ; and we can answer "yes" to the original query. We 
permit the matcher to perform these kinds of evaluations because they 
can be handled without domain-specific strategies and do not cause 
combinatorial computations. 

It might also be desirable to allow the matcher to use certain common 
equivalences between units. One such equivalence involves the special 
descriptive form {element-of ). For example, the sentence "Joe bought a 
car" might be represented either by the unit: 

B2 
self: {element-ofBUYING-EVENTS) 
buyer: JOE 
bought : ( element-of CARS ) 

or by the pair of units: 

B2 
self: {element-ofBUYING-EVENTS) 
buyer: JOE 
bought: X 

and 

X 
self: {element-ofCARS) 

(The first unit could be considered an abbreviated form for the pair of 
units.) We could build information about this abbreviation into the 
matcher so that, for example, the pair of units would match the goal unit: 

y 
self: {element-ofBUYING-EVENTS) 
buyer: JOE 
bought : { element-of CARS ) 
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9.4. DEDUCTIVE OPERATIONS ON STRUCTURED 
OBJECTS 

9.4.1. DELINEATIONS 

Structured object representations can be used in production systems 
for performing deductions. As in our earlier discussions of predicate 
calculus deduction systems, the production rules are based on implica
tions. Before talking about how implications are used in general, we 
consider a frequently occurring special use: when an implication asserts 
properties about every member of a given set. 

Consider, for example, the sentence "All computer science students 
have graduate standing." From this assertion and the sentence, "John is a 
computer science student," we should be able to deduce that "John has 
graduate standing." We could represent these statements in the predicate 
calculus as follows: 

Fact : EL(JOHN, CS-STUDENTS) 

Rule :EL(x, CS-STUDENTS )=>EQ[ class ( x ), GRA D ] 

Goal: EQ[class{JOHN\GRAD] 

An ordinary predicate calculus production system might use the rule (in 
either direction) to prove the goal. 

In unit language, our fact might be represented as: 

JOHN 

self: (element-of CS-STUDENTS) 

and our goal might be represented as: 

JOHN 
class: GRAD 

Our problem now is how to represent and use the implicational rule in 
a system based on unit notation. 
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In the unit formalism, we represent implications that assert properties 
about every member of a set by a special kind of unit called a delineation 
unit. Such a unit describes (delineates) each of the individuals in a set 
denoted by another unit. For example, suppose we have a unit denoting 
the set of computer science students: 

CS-STUDENTS 
self: (subset-of STUDENTS) 

A delineation unit for this set is used to describe each of the individuals 
in the set. We let this delineation unit be a sorted universal variable whose 
domain of universal quantification is the set. The sort of the variable, that 
is, the name of its domain set, follows the variable after a vertical bar, "|". 
Thus, to describe each computer science student, we have the delineation 
unit: 

x | CS-STUDENTS 
major : CS 
class: GRAD 

We must be careful not to confuse delineation units describing each 
individual in a set with the unit describing the set itself, or with any 
particular individuals in the set! Some AI systems using a unit formalism 
have entities called prototype units that seem to play the same role as our 
delineation units. In these systems, prototype units seem to be treated as 
if they were a special kind of constant, representing a mythical "typical" 
member of a set. The prototype units are then related to other members 
of the set by an "instance" relation. But such prototype units might cause 
confusion—because substituting a constant for a variable (instantiation) 
should properly be thought of as a metaprocess rather than as a relation 
in the formalism itself. It seems more reasonable to think of a delineation 
unit as a special form of implicational rule. 

Delineation units can be used in the forward direction to create new 
fact units or to add properties to existing fact units. For example, suppose 
we had the fact unit: 

JOHN 
self: (element-of CS-STUDENTS) 

To use the delineation unit in the forward direction, we note that 
x I CS-STUDENTS matches the fact unit JOHN. The sorted variable, JC, 
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matches any term that is an element of CS-STUDENTS. Applying the 
delineation unit to the fact unit involves adding, to the fact unit, the slots 
"major: CS" and "class: GRAD." Thus extended, the fact unit JOHN 
matches our goal unit JOHN. 

Used in the backward direction on the goal unit, the delineation unit 
sets up the subgoal unit: 

JOHN 
self: (element-of CS-STUDENTS) 

Since this subgoal unit matches the original fact unit, we again have a 
proof. 

In the CS-student example, the goal unit did not contain any variables. 
Allowing (existential) variables in goals is perfectly straightforward. 
Suppose we want to find out which individual has graduate standing. A 
goal unit for this query might be: 

y 
class: GRAD 

Reasoning in the backward direction, this goal unit can be matched 
against the delineation unit x \ CS-STUDENTS to create the subgoal 
unit: 

y 
self: (element-of CS-STUDENTS) 

This subgoal unit, in turn, matches the fact unit JOHN, so the answer 
to our original query can be constructed from the substitution 
{JOHN/y}. 

Delineations can be represented in the network formalism by sorted 
variable nodes. The variable is assumed to have universal quantification 
over the individuals in the sort set. The network representation for the 
delineation of CS-STUDENTS, analogous to the unit representation just 
discussed, is shown in Figure 9.16. 

In addition to representations for a set of objects and characterizations 
of the properties of every member of a set, we often use the idea of an 
abstract individual in relation to members of the set. For example, 
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Fig. 9.16 A network delineation for CS-STUDENTS. 

consider the net shown in Figure 9.17. This net refers to the set of all 
autos, describes some properties of each member of the set, and also 
mentions a particular member, "car 54." Suppose we wanted a represen
tation of the sentence "The auto was invented in 1892." We could easily 
construct a node representing an "invention situation" with function arcs 
pointing to the inventor, the thing invented, etc. But to which node would 
the thing-invented arc point? It wasn't car 54 or even the set of all autos 
that was invented in 1892. Just what was invented? 

We can answer this question satisfactorily for many purposes by using 
the idea of an abstract auto, denoted by the node AB-AUTO. This 
abstract individual is then related to the rest of the network as shown in 
Figure 9.18. In that figure, the properties of each member of the set of 
autos (as expressed by the delineation) are augmented to include the fact 
that the abstract auto is the abstraction of every member of the set of 
autos. 

Note that the abstraction-of function does not have an inverse; the 
function is many-to-one. In systems that treat a delineation as if it were an 
individual constant representing a typical set member, it would be 
possible to have an inverse function of abstraction-of, say, reification-
prototype-of, whose value would be the prototype individual. Since the 
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prototype confers all of its properties on every member of the set, each 
would have the absurd property that it was the reification prototype of the 
abstract individual. Treating prototypes as universally quantified impli
cations instead of as constants avoids this difficulty. 

Some constant objects, such as LA WYER and PROGRAMMER, that 
were used in our earlier examples are probably best interpreted as 
abstract individuals. We'll see more examples of abstract individuals in 
the examples to follow. 

number-of-wheels 

Fig. 9.17 Some information about autos. 

x\AUTOS Yabstraction-of \ thing-invent ed 

Fig. 9.18 A net with a node denoting an abstract individual. 
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9.4.2. PROPERTY INHERITANCE 

In many applications, the structured objects denoting individuals and 
sets form a taxonomic hierarchy. A common example is the tree-like 
taxonomic division of the animals into species, families, orders, etc. The 
taxonomies used in ordinary reasoning might be somewhat more 
"convoluted" than those used in formal biology—an individual may be 
an element of more than one set, for example. Usually, though, useful 
hierarchies narrow toward a small number of sets at the top and, in any 
case, the various sets form a partial order under the subset relation. 

Consider the hierarchy shown in Figure 9.19. Learning that Clyde is an 
elephant, we could use the delineations (together with some set theory) to 
make several forward inferences. Specifically, we could derive that Clyde 
is gray and wrinkled, that he likes peanuts, that he is warm-blooded, etc. 
The results of these operations could be used to augment the structured 
object denoting Clyde. In any given reasoning problem, efficiency 
considerations demand that we do not derive all of these facts about 
Clyde explicitly. 

Similar efficiency problems arise when delineations in a taxonomic 
hierarchy are used to reason backward. Suppose that we want to prove 
that Clyde was gray (when we didn't know this fact explicitly). Using the 
delineations of Figure 9.19, we might set up several subgoals including 
showing that Clyde was a shark, a sperm whale, or an elephant. If the 
facts had included the assertion that Clyde was an elephant, we ought to 
be able to reason more efficiently, since, then, we should be able at least to 
avoid subgoals like Clyde being a shark. There is evidence that humans 
are able to perform these sorts of reasoning tasks rapidly without being 
overwhelmed by combinatorial considerations. 

Some of the forward uses of delineations in taxonomic hierarchies can 
be efficiently built into the matcher without risking severe combinatorial 
problems. We describe how this might be done for some simple examples 
using the network formalism. 

In taxonomic hierarchies that narrow toward a small number of sets at 
the top, there is little harm in building into the matcher itself the ability to 
apply certain delineations in the forward direction. Consider the problem 
of trying to find a match for a goal arc a between two fact nodes Nl and 
N2. We show this situation in Figure 9.20. If there is a fact arc a between 
Nl and N2 (as shown by one of the dashed arcs in Figure 9.20), then we 
have an immediate match. We could restrict the matcher by permitting it 
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blood-temp 

Fig. 9.19 A taxonomic hierarchy of sets and their delineations. 

to look only for such immediate matches. If none were found, we could 
apply production rules, like the delineation shown in Figure 9.20, to solve 
the problem. 

For the example of Figure 9.20, if the matcher could not find an 
explicit a arc in the fact network between Nl and 7V2, then it would 
ascend the taxonomic hierarchy from Nl checking for the presence of a 
arcs to N2 from delineations of the sets (and supersets) to which Nl 
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belongs. In Figure 9.20 we show, by dashed arcs, some of the possible a 
arcs that the matcher is permitted to seek. If it can find such an arc, the 
match is successful. Unless all of the goal arcs can be matched, the 
matcher terminates with failure. 

A system with an extended matcher of this type operates as if an object 
automatically inherited all of the (needed) properties of its sets and 
supersets. The ease with which properties can be inherited is one of the 
advantages of using a structured object formalism. As an illustration of 
this process, let's consider the following examples based on Figure 9.19. 

First, suppose we want to prove that Clyde is gray when we know that 
Clyde is an elephant (but we don't know explicitly that Clyde is gray). 
This problem is represented in Figure 9.21, where we have included part 
of the net shown in Figure 9.19. Since there is no color arc within the fact 
net pointing from CLYDE to GRAY, we cannot obtain an immediate 
match. So we move up to the ELEPHANTS delineation where we do 
have a color arc to GRA Y. The matcher notes that CLYDE inherits this 
color arc and finishes with a successful match. 

Fig. 9.20 Matching a goal arc. 
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GOAL NET 

color 

Fig. 9.21 A net for proving that Clyde is gray. 

Next, suppose we want to prove that Clyde is warm-blooded when we 
know only that Clyde is an elephant. Again, we move up the taxonomic 
hierarchy to the delineation unit for MAMMALS where a match is 
readily determined. 

Finally, suppose we want to prove that Clyde breathes oxygen and is 
gray and warm-blooded, given only that Clyde is a mammal. Ascending 
the delineation hierarchy picks up a blood-temp arc to WARM and an 
inhalant arc to OXYGEN, but not a complete match. These two 
properties are added explicitly to CL YD E before attempting to prove the 
goal by rule-based means. 

One might also want to build one other important operation into the 
matcher, namely, an operation in which an inherited Skolem function 
node must be proved equal to a constant node. Consider the example of 
Figure 9.22. Our goal there is to show that Henry is a member of the 
computer science faculty. Using the delineation x \ CS-STUDENTS in 
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CS-STUDENTS 

xlCS-STUDENTS t 

EL 

Fig. 9.22 A network with an inheritable Skolem-function node. 

the forward direction on JOHN creates the structure shown in dashes in 
Figure 9.22. Now, since the adviser arc represents a function, HENRY 
must be equal to a {JOHN), and our match is complete. 

One could use the following scheme for building this sort of reasoning 
process into the matcher. Using the example of Figure 9.22 as an 
illustration, we first attempt an immediate match by looking for a fact EL 
arc between HENRY and CS-FACULTY. Failing to find one, we then 
look in the taxonomic hierarchy above HENR Y to see if there is an EL 
arc to be inherited. In our example, we fail again. Next, we look for 
function arcs pointing to HENRY from constant nodes. Suppose we find 
an arc, ai, pointing to HENRY from a node, Ni. (That is, 
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Fig. 9.23 Matching a variable goal node. 

EQ [ ai ( Ni ) , HENR Y].) Then, we look in the taxonomic hierarchy above 
each such node Ni to see if Ni inherits an ai arc to some Skolem function 
node that has an EL arc directly to CS-FACULTY. If we find such an 
inheritance, our extended matcher succeeds. 

Strategies for matching a variable goal node against facts in the 
database also depend on the structure of the net. In the simplest case, the 
variable goal node, say, x, is tied to constant fact nodes, Nl, N2,..., Nk, 
by arcs labeled al, a2, . . . , ak, respectively. The situation is depicted in 
Figure 9.23. The constant nodes Nl,..., Nk also have other arcs incident 
on them. Our attempt to find a match must look back through al arcs 
incident on Nl, a2 arcs incident on N2, etc. (We assume that our 
implementation of the network makes it easy to trace through arcs in the 
"reverse" direction.) Some of these arcs originate from constant nodes 
and some from delineations. 

A good strategy is to look first for a constant node, because the set of 
possible nodes in the fact net that might match x can be quite large if the 
delineations are considered. Suppose node Ni has the smallest set of 
constant nodes sending ai arcs to Ni. We attempt to match x against the 
nodes in this set and allow the matcher to use delineations in matching 
the other arcs. In Figure 9.24, we show a simple example. In this case, 
there is only one constant node, namely, CLYDE, having the desired 
properties. In attempting a match against CLYDE, we must next find an 
EL arc between CLYDE and MAMMALS, and a blood-temp arc 
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Fig. 9.24 An example with a variable goal node. 

between CLYDE and WARM. The first of these arcs is inferred by a 
subset chain, and the second is established by inheritance; so the match 
succeeds. 

We can always find at least one constant node to use as a candidate if 
we allow the matcher to look backward down through SS and EL chains. 
Consider, for example, the problem shown in Figure 9.25. In this net, 
there is no "immediate" constant node to serve as a candidate match, but 
working down from MAMMALS through an SS and an EL chain puts us 
at the constant node, CLYDE. The rest of the match is easily handled by 
property inheritance. We can assume that a variable goal node always has 
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Fig. 9.25 Another example with a variable goal node. 

an EL (or SS) arc pointing to something in the fact net (every entity is at 
least a member of the universal set). 

This matching strategy can be elaborated to deal with cases in which 
the goal net structure is more complex, where it contains more than one 
variable node. Each variable node must be properly matched in order for 
the whole goal structure to be matched. In any case, if no match can be 
obtained, either delineation rules must be used in the backward direction 
or other rules must be used to change the fact or the goal structures. We 
discuss rule use in a later section. 
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9.43. PROCEDURAL ATTACHMENT 

In some applications, we can associate computer programs with the 
slots of delineations. Executing these programs, for properly instantiated 
arguments, produces slotvalues for instances of the delineation. Suppose, 
just as a simple example, that we wanted to use a unit-based system to 
multiply two numbers. One method is to provide such a system with a 
large set of facts such as: 

Ml 
self: (element-ofMULTIPLICA TIONS) 
mulîiplicandl : 1 
multiplicand! : 1 
product : 1 

M2 
self: ( element-of MOLTIPLICA TIONS ) 
multiplicandl : 1 
multiplicand! : 2 
product: 2 

etc. 

These units are a way of encoding a multiplication table. When we 
want to know the product of two numbers, 3 and 6, we query the system 
with the goal unit: 

z 
multiplicandl : 3 
multiplicand! : 6 
product: x 

This goal would match some stored fact unit having a slot "product : 
18." 
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Rather than store all the required facts explicitly, we could provide a 
computer program, say, TIMES and "attach" it to the delineation of 
MULTIPLICATIONS, thus: 

x | MOLTIPLICA T10NS 
multiplicand I : ( element-of N UM ERA LS) 
multiplicand!', (element-ofNUMERALS) 
product : TIMES[multiplicand! (JC ),multiplicand! (x)] 

Delineation units with attached procedures are used just as ordinary 
delineation units. Procedures occurring in substitutions are executed as 
soon as their instantiations permit. To illustrate how all of this might 
work, suppose again that we want to find the product of 3 and 6. First, we 
introduce as a fact unit the existence of the multiplication situation for 
which we want an answer: 

M 
self: (element-ofMULTIPLICA TIONS) 
multiplicand! : 3 
multiplicand! : 6 

Next, we pose the goal unit: 

M 
product: y 

When we attempt a match between goal M and fact M, the matcher 
uses the delineation for multiplications to allow fact M to inherit the 
"product" slot. This process produces the substitution (TIMES(3,6)/)>}. 
The correct answer is then obtained by executing the TIMES program. 

A completely analogous example could have been given using the 
network formalism. 

9.4.4. UNIT RULES 

Some implicational statements are not easily interpreted as expressing 
information solely about members of a set. For these, we introduce the 
concept of a unit rule having an antecedent and a consequent. The 
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antecedent (ANTE) and consequent (CONSE) are lists of units 
(possibly containing variables). When a unit rule is used in the forward 
direction, if all of the units in the ANTE (regarded as goal units) are 
matched by fact units, then the units in the CONSE (properly instan
tiated) can be added to the set of fact units. (When ANTE units are 
regarded as goals, their variables are, of course, existential.) If some of the 
added fact units already exist, the addition operation need only involve 
adding those properties mentioned in the CONSE units. This usage is 
consistent with how implications were used in the rule-based deduction 
systems of chapter 6. 

When a unit rule is used in the backward direction against a single goal 
unit, one of the CONSE units (regarded as a fact unit) must match the 
goal unit. (When CONSE units are regarded as facts, their variables are 
universal.) If the match succeeds, the units in the ANTE (properly 
instantiated) are set up as subgoal units. A backward unit rule applied to a 
(conjunctive) set of goal units is a slightly more complex operation; the 
process is analogous to the methods discussed in chapter 6 involving 
AND/OR graphs and substitution consistency tests. For simplicity of 
explanation in this chapter, we confine ourselves to examples that do not 
require these added mechanisms. 

We'll next show some simple examples of the use of unit rules. The 
reader might like to refer to our information retrieval example using 
personnel data in chapter 6. There we had the rule: 

Rl : MANAGER(x,y)=> WORKS-IN(x.y) 

Expressed in the predicate calculus system being used in this part of the 
book, this rule becomes: 

{EL(x,DEPARTMENTS) A EQ [ manager (x), y ]} 
=> EQ [ works-in (y ), x ] 

Using our syntax for unit rules, we would express this rule as follows: 

Rl 

ANTE: x 
self: (element-of DEPARTMENTS) 
manager: y 
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CON SE: y 

works-in : x 
Another rule used in our personnel problem example was: 

R2: [ WORKS-IN (x,y) A MANAGER(x,z)]^> BOSS-OF(y.z) 

Restated, this piece of information might be represented as: 

{ EQ [ works-in (y ), x ] A EQ [ manager ( x ), z ]} 
=>EQ[boss-of(j),z] 

As a unit rule, we might represent it as follows: 

R2 

ANTE: y 
works-in : x 

x 
manager: z 

CON SE: y 
boss-of: z 

A variety of implications can be represented by unit rules of this kind. 
These rules, in turn, can be used as production rules for manipulating fact 
and goal units in deduction systems. 

Earlier, we spoke of the fact that there are often many different ways of 
representing the same knowledge. Complex systems might not limit 
themselves to one alternative; thus there is a need to be able to translate 
freely among them. Consider the example in Figure 9.12. There we 
showed two alternatives for representing "John Jones is married to Sally 
Jones." The equivalence between these forms might be represented as 
follows: 

EQ[y,wife-of{x)] = (3z){ EL(z,MARRIAGE-EVENTS) 
A EQ[x,male(z)] A EQ[y,female(z)]} 

(Here, we use a wff of the form Wl = W2 as an abbreviation for 
[W1^W2]A[W2^>W1 ].) Using the "left-to-right" implication, we 
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have an existential variable within the scope of two universals. Skole-
mizing yields: 

EQ[y,wife-of(x)]=ï{EL[m(x,y), M ARRI AGE-EVENTS] 
Λ EQ[x,male(m(x,y))] 
AEQ[y,female(m(x,y))]} 

We represent this implication as the following unit rule: 

R-M 

ANTE.x 
wife-of: y 

CON SE: m(x,y) 
self: {element-of MARRIAGE-EVENTS) 
male: x 
female: y 

To use this rule in the forward direction, we match the ANTE to a fact 
unit and then create a new constant unit corresponding to the instan
tiated unit in the CON SE. 

The simplicity of the unit syntax makes representing implications that 
are much more complex than those we have used in our examples 
awkward. Even with this limitation, the formalism that has been 
developed so far is quite useful for a wide variety of problems. 

9.4.5. NET RULES 

Earlier we mentioned the use of enclosures to represent network 
implications. These implications can be used as forward or backward 
rules in semantic network-based production systems. For example, the 
implication: 

{EL(x,DEPARTMENTS) Λ EQ[manager(x),y]} 
=> EQ [ works-in (y ), x ] 

might be represented by the network structure shown in Figure 9.26. 

To use a network implication as a forward rule, the ANTE structure 
(regarded as a goal) must match existing network fact structures. The 
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V works-in J ^ ^ .**' 

CONSE 

Fig. 9.26 Representing an implication. 
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Fig. 9.27 A network implication with a S kolem function. 
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CON SE structure (appropriately instantiated) can then be added to the 
fact network. To use a network implication as a backward rule, the 
CON SE structure (regarded as a fact) must match the goal structure. 
Then, the ANTE structure (appropriately instantiated) is the subgoal 
produced by the rule application. Again, the situation is more complex 
(involving AND/OR graphs and substitution consistency testing) when 
the goal structure is first broken into component structures, and when 
these are matched individually by rule CON SE structures. 

As a more complex example we show, in Figure 9.27, the network 
version of an implication used earlier: 

EQ[y,wife-of(x)]^> 
{ EL [m( x, y ), MA RRIA GEE VENTS ] 
A EQ[x,male(m(x,y))] 
A EQ[y,female(m(x9y))]} 

The node labeled m(x,y) is a Skolem function node. Every forward 
application of the rule in Figure 9.27 creates a newly instantiated m(x,y ) 
node. 

9.4.6. APPENDING ADVICE TO DELINEATIONS 

In order to minimize combinatorial difficulties, rule applications must 
be guided by an intelligent control strategy. One way to specify useful 
control information is to add advice about rule applications to delinea
tions. We mention two forms for such advice: the "to-fiH" form, and the 
"when-filled" form. The former gives advice about which rules should be 
used in the backward direction when attempting to match existential 
variables in goals. The latter gives advice about which rules should be 
used in the forward direction to create new fact units. 

As an illustration of the use of such advice, consider the rules Rl and 
R2 used above in our personnel data example. We repeat these rules here 
for convenience: 

Rl 

ANTE: x 
self: (element-ofDEPARTMENTS) 
manager: y 
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CONSE: y 
works-in : x 

R2 

ANTE: y 
works-in : x 

x 
manager: z 

CON SE. y 
boss-of: z 

The following delineations contain advice about when to use these 
rules: 

REMPLOYEES 
boss-of\ (element-of EMPLOYEES) 

<to-fill: R2> 
works-in: (element-of DEPARTMENTS) 

r\ DEPARTMENTS 
manager : ( element-of EM PL O YE E S ) 

<when-filled: Rl> 

The notation <to-fill : R2> in u | EMPLO YEES states that whenever 
a goal has a 60^-0/slotvalue that is a variable, rule R2 should be used in 
the backward direction (when there is no direct match against a fact unit). 
The notation <when-filled: Rl> in r\ DEPARTMENTS states that 
whenever a fact unit whose self slot contains "(element-of DEPART
MENTS)" and whose manager slot has a value, rule Rl should be used. 

Suppose we have the fact units: 

JOE-SMITH 
self: (element-ofEMPLOYEES) 
works-in: P-D 
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P-D 
self: (element-of DEPARTMENTS) 
manager: JOHN-JONES 

When the second of these is asserted, a check of the delineation 
r\ DEPARTMENTS indicates that rule Rl should be applied in the 
forward direction. This application produces the fact unit: 

JOHN-JONES 
works-in : P-D 

Suppose we want to ask "Who is Joe Smith's boss?" This query is 
represented by the goal unit: 

JOE-SMITH 
boss-of: u 

An attempt at a direct match against fact unit JOE-SMITH fails; but 
one of the delineations, containing the boss-of slot, advises the system to 
use rule R2 in the backward direction; and doing so produces the subgoal 
units: 

JOE-SMITH 
works-in : x 

x 
manager: u 

The first of these can be matched against fact JOE-SMITH, to produce 
the substitution {P-D/x }. The instantiated second subgoal unit can then 
be matched against fact P-D, to produce the substitution {JOHN-
JONES/u }, which contains the answer to our original query. 

9.5. DEFAULTS AND CONTRADICTORY 
INFORMATION 

Many descriptive statements of the form "All xs have property P" 
must be regarded as only approximately true. Perhaps most xs do have 
property P, but typically we will come across exceptions. Examples of 
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these kinds of exceptions abound: All birds can fly (except ostriches); all 
insects have six legs (except juveniles like caterpillars); all lemons are 
yellow (except unripe green ones or mutant orange ones); etc. It appears 
that many general synthetic (as opposed to analytic or definitional) 
statements that we might make about the world are incorrect unless 
qualified. Furthermore these qualifications probably are so numerous 
that the formalism would become unmanageable if we attempted to 
include them all explicitly. Is there a way around this difficulty that would 
still preserve the simplicity of a predicate-calculus language? 

One approach to preserving simplicity is to allow implicit exceptions to 
the domain of universal quantification in certain implicational state
ments. Thus, the statement "All elephants are gray" might initially be 
given without listing any exceptions. Such a statement would allow us to 
deduce that Clyde is gray when we learn that Clyde is an elephant. Later, 
if we learn that Clyde is actually white, we must retract our deduction 
about his grayness and change the universal statement about elephants so 
that it excludes Clyde. After making this change, it is no longer possible 
to deduce erroneous conclusions about Clyde's color. 

The way in which the matcher uses property inheritance provides an 
automatic mechanism for dealing with exceptions like Clyde's being 
white. The matcher uses inheritance to deduce a property of an object 
from a delineation of its class only if specific information about the 
property ofthat object is lacking. Suppose, for example, that we want to 
know the color of Clyde. Such a query might be stated as the following 
goal unit: 

CLYDE 
color : x 

To answer this query, we first attempt a direct match with a fact unit. 
Suppose we have a fact unit describing Clyde: 

CLYDE 
self: (element-of ELEPHANTS) 
color: WHITE 

In this case, the match substitution is { WHITE/x}, and WHITE is 
our answer. 
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If our fact unit states only that Clyde is an elephant, the matcher 
automatically uses the delineation of ELEPHANTS to answer our query. 
Such a delineation might be as follows: 

y\ELEPHANTS 
color: GRAY 

This scheme, of countermanding general information by conflicting 
specific information, can be extended to several hierarchical levels. For 
example, we might have the following delineation for MAMMALS'. 

u\ MAMMALS 
texture: FUZZY 

Now, in order to avoid deducing that elephants are fuzzy, we need only 
include with the ELEPHANTS delineation a property such as "texture : 
WRINKLED." Clyde, however, may be a fuzzy elephant, and this 
property can be added to the unit CL YD E to override the ELEPHANTS 
delineation. (The hierarchy may contain several such property reversals.) 

For such a scheme to work, the use of delineations to deduce properties 
needs always to proceed from the most specific to the more general. With 
this built-in ordering on matching and retrieval processes, information at 
the more specific levels protects the system from making possibly 
contradictory deductions based on higher level delineations. It is as if the 
universal quantifiers of delineations specifically exclude, from their 
domains, all of the more specific objects that would contradict the 
delineation. 

Schemes of this sort do have certain problems, however. Suppose, for 
example, that an object in the taxonomic hierarchy belongs to two 
different sets and that the delineations of these sets are contradictory. We 
show a network example in Figure 9.28. In this figure, we do not show an 
explicit color arc for CLYDE, but CLYDE inherits contradictory color 
values [assuming that ~EQ(GRA Y, WHITE)]. A possible way to deal 
with this problem is to indicate something about the quality of each arc or 
slot in a delineation. In our example, if the color arc in the ALBINOS 
delineation were to dominate the color arc in the ELEPHANTS 
delineation, then we would always attempt to inherit the color value from 
the ALBINOS delineation first. 
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We can indicate that the arc or slot of a delineation is of low priority by 
marking it as a default. Default delineations can be used only if there is no 
other way to derive the needed information. In general, though, we need 
an ordering on the default markers. If both of the delineations in Figure 
9.28 were marked simply as defaults, for example, we would be at an 
impasse: We could prove that Clyde was gray only if we could not prove 
that he was any other color. However, we could prove that he was another 
color, namely, white, if we could not prove that he was any other color. 
And so on. 

We must also be careful when we use default delineations as forward 
rule applications, because then we risk adding objects to the fact database 
that contradict existing or subsequent specific facts. The forward use of 
delineations must be coupled with "truth maintenance" techniques to 
ensure that contradictory facts (and facts that might be derived from 
them) are either purged or otherwise inactivated. 

Fig. 9.28 A net with contradictory delineations. 
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9.6. BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

Structured object representations are related to frames (no relation to 
the frame problem) proposed by Minsky (1975); scripts proposed by 
Schank and Abelson (1977); and beta-structures proposed by Moore and 
Newell (1973). Bobrow et al. (1977) implemented a system called GUS 
which used a frame-like representation. Roberts and Goldstein (1977) 
implemented a simple frame language called FRL, and Goldstein and 
Roberts (1979) describe a system for automatic scheduling written in 
FRL. Stefik (1979) and Friedland (1979) describe a frame-based repre
sentation used by a computer system for planning experiments in 
molecular genetics. 

KRL-0 and KRL-7 are frame-based knowledge representation lan
guages developed by Bobrow and Winograd (1977a). [See also Bobrow 
and Winograd (1977b), Lehnert and Wilks (1979), and Bobrow and 
Winograd (1979) for discussion and criticisms of KRL] Winograd (1975) 
presents a readable discussion of some of the advantages of frame-based 
representations. 

Hayes (1977,1979) discusses the relationships between predicate logic 
and frame-based representations. Our treatment of structured objects in 
this chapter, stressing relationships with the predicate calculus, leans 
toward Hayes' point of view. Converting to binary predicates is discussed 
by Deliyanni and Kowalski (1979c). 

Work on semantic networks stems from many sources. In cognitive 
psychology, Quillian (1968), Anderson and Bower (1973), and Rumel-
hart and Norman (1975) have all proposed memory models based on 
networks. In computer science, Raphael's (1968) SIR system is based on 
networks of property lists; Winston (1975) used networks for represent
ing and learning information about configurations of blocks; and 
Simmons (1973) discusses the uses of networks in natural language 
processing. Woods (1975) discusses some of the logical inadequacies of 
early semantic networks. It is interesting that Frege's (1879) original 
symbolism for the predicate calculus involved two-dimensional dia
grams. 

Several semantic network "languages" have now been proposed that 
have the full expressive power of predicate calculus. Shapiro's (1979a) 
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SNePS system, Hendrix's (1975b, 1979)partitionedsemantic network for
malism and Schubert's (1976) [see also Schubert, Goebel and Cercone 
(1979)] network formalism are examples. Papers in the volume edited by 
Findler (1979) describe several different types of semantic networks. The 
semantic network formalism described in this chapter seems to capture 
the main ideas of those that use binary predicates. 

Example applications of semantic networks include natural language 
processing [Walker (1978, Section 3)], database management [Mylo-
poulos et al. (1975)], and computer representation of geological (ore-
prospecting) knowledge [Duda et al. (1978a)]. 

We base much of our discussion about matching network goal 
structures against network fact structures on a matcher developed by 
Fikes and Hendrix (1977) and, partially, on ideas of Moore (1975a). 
Various mechanisms for inheritance of properties in unit systems or in 
net formalisms have been suggested as approaches to what some have 
called the symbol-mapping problem. This problem is discussed at length 
in two issues of the SIGART newsletter. [See McDermott (1975a,b), 
Bundy and Stone (1975), Fahlman (1975), and Moore (1975b).] Fahlman 
(1979) recommends using special-purpose hardware to solve the set 
intersection problems required to perform property inheritance 
efficiently. 

Representing and using default information is discussed by Bobrow 
and Winograd (1977a) and by Reiter (1978). Attempts to formalize 
inferences of the form assume X unless ~X can be proved have led to 
non-monotonic logics. McDermott and Doyle (1980) discuss the history 
of these attempts, propose a specific formalism of their own, and prove its 
soundness and completeness. "Maintaining" databases by purging or 
modifying derived expressions, as appropriate, in response to changes in 
the truth values of primitive expressions, is discussed by Doyle (1979). 
Stallman and Sussman's (1977) system for reasoning about circuits uses a 
"truth-maintenance" scheme to make backtracking more efficient. 

Other complex representational schemes, related to those discussed in 
this chapter, have been proposed by Martin (1978), Schank and Abelson 
(1977), Srinivasan (1977), and Sridharan (1978). 
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EXERCISES 

9.1 Represent the situation of Figure 7.1 as a semantic network and 
represent the STRIPS rule pickup(x) as a production rule for changing 
networks. Explain how the rule pickup(2?) is tested for applicability and 
how it changes the network representation of Figure 7.1. 

9.2 The predicate D (x,y ) is intended to mean that sets x and y have an 
empty intersection. Explain how this predicate might be used to label 
arcs in a semantic network. Illustrate by an example. Can you think of 
any other useful arc predicates? 

9.3 Represent the following sentences as semantic network delinea
tions: 

(a) All men are mortal. 

(b) Every cloud has a silver lining. 

(c) All roads lead to Rome. 

(d) All branch managers of G-TEK 
participate in a profit-sharing plan. 

(e) All blocks that are on top of blocks that 
have been moved have also been moved. 

9.4 Use EL and SS predicates to rewrite each of the following wffs as a 
binary-predicate wff. Rewrite them also as sets of units and as semantic 
networks. 

(a) [ON(C,A)A ONTABLE(A)A ONTABLE(B) 
A HANDEMPTY A CLEAR(B) A CLEAR(C)] 

(b) [DOG(FIDO) A -BARKS(FIDO) 
A WAGS-TAIL(FIDO) A MEOWS (MYRTLE)] 

(c) (Vx)HOLDS[clear(x\do[trans(x,y,z),s]] 
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9.5 Represent the major ideas about search techniques in a semantic 
network taxonomic hierarchy. (Search techniques might first be divided 
into uninformed ones and heuristic ones, for example.) Include a 
delineation for each set represented in your network. 
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We have seen in this book that generalized production systems 
(especially those that process expressions in the first-order predicate 
calculus) play a fundamental role in Artificial Intelligence. The organi
zation and control of AI production systems and the ways in which these 
systems are used to solve several varieties of problems have been 
discussed in some detail. Lest the reader imagine that all of these 
details—the formalisms and the mathematical and empirical results— 
constitute an already mature engineering discipline routinely supporting 
extensive applications, we attempt here a perspective on the entire AI 
enterprise and point out several areas where further research is needed. 
In fact, we might say that our present knowledge of the mechanisms of 
intelligence consists of small islands in a large ocean of speculation, hope, 
and ignorance. 

The viewpoint presented in this book is just one window on the core 
ideas of AI. The specialist will also want to be familiar with AI 
programming languages such as LISP and AI programming techniques. 
We have not attempted to discuss these topics in this book, but there are 
other books that concentrate on just these subjects [see Winston (1977); 
Shapiro (1979); and Charniak, Riesbeck, and McDermott (1979)]. 
Serious students of AI will also want to be familiar with a variety of 
large-scale AI applications. We have cited many of these in the 
bibliographical remarks sections of this book. 

In this prospectus, we give brief descriptions of problem areas that 
seem to be very important for future progress in AL Some work has 
already been done on most of these problems, but results are typically 
tentative, controversial, or limited. We organize these problems into 
three main categories. The first category concerns novel AI system 
architectures and the challenges of parallel and distributed processing. 
The second category deals with the problems of knowledge acquisition 
and learning. Last, there are the problems concerned with the adequacy 
of AI processes and representational formalisms for dealing with topics 
such as knowledge, goals, beliefs, plans, and self-reference. 
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10.1. AI SYSTEM ARCHITECTURES 

10.1.1. MEMORY ORGANIZATION 

One of the most important design questions facing the implementer of 
AI systems concerns how to structure the knowledge base of facts and 
rules so that appropriate items can be efficiently accessed. Several 
techniques have been suggested. The QA3 resolution theorem-proving 
system [Green (1969b)] partitioned its list of clauses into an active list and 
a secondary storage list. Clauses were brought from the secondary list 
into the active list only if no resolutions were possible within the active 
list. The PLANNER-like AI languages generally had special methods for 
storing and accessing expressions. McDermott (1975c) describes the 
special indexing features used by many of these languages. The discrimi
nation net used by QA4 [Rulifson, Derksen, and Waldinger (1972)] is an 
example of such a feature. 

Probably the most important aspect of the frame-like representations 
(unit systems and semantic networks) is their built-in mechanisms for 
indexing. Indeed, the authors of KRL [Bobrow and Winograd (1977a)] 
speak specifically of permitting system designers to organize memory 
into those chunks that are most appropriate for the specific task at hand. 
We can expect that work will continue along these lines as systems are 
developed that must use the equivalent of hundreds of thousands of facts 
and rules. 

10.1.2. PARALLEL AND DISTRIBUTED SYSTEMS 

Our discussion of AI production systems was based on the tacit 
assumption of a single serial processor that applied one rule at a time to a 
database. Yet, there are several ways in which our production systems 
could be extended to utilize parallel processing. First, some of the 
primitive operations of the system could be performed by parallel 
hardware. For example, Fahlman (1979) has suggested a parallel system 
for performing the set intersections needed for efficient property inheri
tance computations. 

Second, in tentative control regimes, a system capable of parallel 
processing could apply several rules simultaneously rather than back
tracking or developing a search tree one node at a time. If the number of 
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successors to be generated exceeds the number of parallel rule-applica
tion modules, the control system must attempt to apportion the available 
rule-application modules as efficiently as possible. 

Third, in decomposable production systems, parallel processors could 
be assigned to each component database, and these processors (and their 
descendants) could work independently until all databases were pro
cessed to termination. These three methods of using parallelism do not 
alter the basic production-system paradigm for AI systems presented in 
this book; they merely involve implementing this paradigm with parallel 
processing. 

A third use of parallelism involves an expansion of the ideas presented 
here. One could imagine a large community of more-or-less independent 
systems. (Each of these systems could be a production system or a system 
of some different style, with internal processes either serial or parallel.) 
The systems communicate among themselves in order to solve problems 
cooperatively. If each of the component systems is relatively simple, the 
communication protocols and the procedures for control and cooperation 
must be specified in rather precise detail by the designer of the 
community. The augmented Petri nets of Zisman (1978) and the actor 
formalism of Hewitt (1977) seem to be examples of this type. [See also 
Hewitt and Baker (1977) and Kornfeld (1979).] On the other hand, if each 
of the systems is itself a complex AI system, then the situation is 
analogous to a society of humans or other higher animals who must plan 
their own communication and cooperation strategies. We have little 
experience with complexes of interacting AI systems, but the work of 
Lesser and Erman (1979), Lesser and Corkill (1979), and of Corkill (1979) 
are steps in that direction. Related work by Smith (1978, 1979) also 
involves networks of cooperating problem-solving components. Crane 
(1978) treats analogies between parallel computer systems and human 
societies in a provocative manner. 

10.2· KNOWLEDGE ACQUISITION 

Formalizing knowledge and implementing knowledge bases are major 
tasks in the construction of large AI systems. The hundreds of rules and 
thousands of facts required by many of these systems are generally 
obtained by interviewing experts in the domain of application. Repre
senting expert knowledge as facts or rules (or as expressions in any other 
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formalism) is typically a tedious and time-consuming process. Tech
niques for automating this knowledge acquisition process would consti
tute a major advance in AI technology. 

We shall briefly discuss three ways in which knowledge acquisition 
might be automated. First, special editing systems might be built that 
allow persons who possess expert knowledge about the domain of 
application (but who are not themselves computer programmers) to 
interact directly with the knowledge bases of AI systems. Second, 
advances in natural language processing techniques will allow humans to 
instruct and teach computer systems through ordinary conversations 
(augmented, perhaps, with diagrams and other nontextual material). 
Third, AI systems might learn important knowledge directly from their 
experiences in their problem domains. 

Virtually all large AI systems must have a knowledge base editing 
system of some sort to facilitate the processes of adding, deleting, and 
changing facts and rules as the systems evolve. Davis (1976) designed a 
system called TEIRESIAS that allowed physicians to interact directly 
with the knowledge base of the MYCIN medical diagnosis system. 
Friedland (1979) reports on a representation system that contains expert 
knowledge about molecular genetics; a key feature of this system is its 
family of editors for interacting with the knowledge base. Duda et al. 
(1979) describes a knowledge-base editing system for the PROSPEC
TOR system. As systems of these kinds become capable of conversing 
with their designers in natural language, knowledge entry and modifica
tion processes will become much more efficient. One must remember, 
however, that computer systems will be incapable of truly flexible 
dialogues about representations and the concepts to be used in these 
representations until designers are able to give these systems useful 
meta-knowledge about representations themselves. Unfortunately, we 
do not even have a very clear outline yet of a general theory of knowledge 
representation. 

It has often been hoped that the knowledge acquisition task could be 
eased somewhat by automatic learning mechanisms built into AI 
systems. Humans and other animals seem to have impressive capacities 
for learning from experience. Indeed, some early work in AI was based 
on the strategy of constructing intelligent machines that could learn how 
to perform tasks. 

There are, of course, several varieties of learning. Almost any change to 
an AI system, such as the entry of a single new fact, the addition of a new 
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component to a control strategy, or a profound reorganization of system 
architecture, might be called an instance of learning. Furthermore, these 
changes might be caused either directly by a programmer (design 
changes) or indirectly through conversation with a human or other 
system (teaching) or through response to experience in an environment 
(adaptive learning). Evolutionary design changes already play an impor
tant role in the development of AI systems. Some work has also been 
done on developing techniques for teaching AI systems. Strategies for 
adaptive learning, however, have so far met with only limited success. It 
can be expected that all of these varieties of learning will be important in 
future AI systems. The subject is an important area for AI research. 

Early work in adaptive learning concentrated on systems for pattern 
classification [Nilsson (1965)] and for game playing [Samuel (1959, 
1967)]. This work involved automatic adjustment of the parameters of 
simple classification and evaluation functions. Winston (1975) developed 
a system that could learn reasonably complex predicates for category 
membership; as with many learning systems, efficiency depended 
strongly on appropriately sequenced experiences. Mitchell (1979) and 
Dietterich and Michalski (1979) give good discussions of their own and 
other approaches to the problem of concept learning and induction. 

Some efforts have also been made to save the results of AI computa
tions (such as proofs of theorems and robot plans) in a form that permits 
their use in later problems. For example, Fikes, Hart, and Nilsson 
(1972b) proposed a method for generalizing and saving triangle tables so 
that they could be used as macro-operators in the construction of more 
complex plans. 

One of the most powerful ways of using learned or remembered 
material involves the ability to recognize analogies between current 
problems and those previously encountered. An early program by Evans 
(1968) was able to solve geometric analogy problems of the sort found in 
standard intelligence tests. Kling (1971) used an analogy-based method 
to improve the efficiency of a theorem-proving system. Ulrich and Moll 
(1977) describe a system that uses analogies in program synthesis. 
Winston (1979) describes a theory (accompanied by a program) about the 
use of analogy in learning, and McDermott (1979) discusses how a 
program might learn analogies. 

A system described by Vere (1978) is able to learn STRI PS-like rules 
by observing state descriptions before and after actions that modify them. 
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Buchanan and Mitchell (1978) describe a process for learning the 
production rules used by the DENDRAL chemical-structure computing 
system. A report by Soloway (1978) describes a system that learns some 
of the rules of baseball by observing the (simulated) actions of players. 

Last, we might mention the AM system of Lenat (1976) that uses a 
stock of simple, primitive concepts in mathematics and discovers 
concepts (such as prime numbers). 

10.3. REPRESENTATIONAL FORMALISMS 

The example problems that we have considered in this book demon
strate that the first-order predicate calculus can be used to represent 
much of the knowledge needed by AI systems. There are varieties of 
knowledge, however, that humans routinely use in solving problems and 
in interacting with other humans that present certain difficulties for 
first-order logic in particular and for AI systems in general. Examples 
include knowledge that is uncertain or indefinite in various ways, 
commonsense knowledge about cause and effect, knowledge about plans 
and processes, knowledge about the beliefs, knowledge, and goals of 
ourselves and others, and knowledge about knowledge. McCarthy (1977) 
discusses these and other epistemologicalproblems of AI. 

Some workers have concluded that logical formalisms are fundamen
tally inadequate to deal with these sorts of concepts and that some 
radically different representational schemes will have to be invented [see, 
for example, Winograd (1980b)]. Citing previous successes of formal 
methods, others maintain that certain augmentations of first-order logic, 
or suitably complex theories represented in first-order logic, or perhaps 
more complex logical formalisms will ultimately prove adequate to 
capture the knowledge and processes used in human-like reasoning. 

103.1. COMMONSENSE REASONING 

Many of the existing ideas about AI techniques have been refined on 
"toy" problems, such as problems in the "blocks world," in which the 
necessary knowledge is reasonably easy to formalize. AI applications in 
more difficult domains such as medicine, geology, and chemistry require 
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extensive effort devoted to formalizing the appropriate knowledge. 
Hayes (1978a) and others have argued that AI researchers should now 
begin an attempt to formalize fundamental "commonsense knowledge 
about the everyday physical world: about objects; shape; space; move
ment; substances (solids and liquids); time, etc." Hayes (1978b) has 
begun this task with an essay about the formalization of the properties of 
liquids. Kuipers (1978,1979) describes a system for modeling common-
sense knowledge of space. 

Formalizing commonsense physics must be distinguished from the 
rather precise mathematical models of the physics of solids, liquids and 
gases. The latter are probably too cumbersome to support commonsense 
reasoning about physical events. (McCarthy argues, for example, that 
people most likely do not—even unconsciously—perform complex 
hydrodynamic simulation computations in order to decide whether or 
not to move in order to avoid getting burned by a spilled cup of hot 
coffee.) 

Formalizing commonsense physics is important because many appli
cations require reasoning about space, materials, time, etc. Also, much of 
the content of natural language expressions is about the physical world; 
certainly many metaphors have a physical basis. Indeed, in order to make 
full use of analogical reasoning, AI systems will need a thorough, even if 
somewhat inexact, understanding of simple physics. 

Much commonsense reasoning (and even technical reasoning) is 
inexact in the sense that the conclusions and the facts and rules on which 
it is based are only approximately true. Yet, people are able to use 
uncertain facts and rules to arrive at useful conclusions about everyday 
subjects or about specialized subjects such as medicine. A basic charac
teristic of such approximate reasoning seems to be that a conclusion 
carries more conviction if it is independently supported by two or more 
separate arguments. 

We have previously cited the work of Shortliffe (1976) on MYCIN and 
of Duda, Hart, and Nilsson (1976) on PROSPECTOR and referred to 
their related methods for dealing with uncertain rules and facts. Their 
techniques have various shortcomings, however, especially when the 
facts and rules are not independent; furthermore, it is not clear that the 
MYCIN/PROSPECTOR methods can easily be extended to rules and 
facts containing quantified variables. 
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Collins (1978) stresses the importance of meta-knowledge in plausible 
reasoning. (We discuss the subject of meta-knowledge below.) Zadeh 
(1979) invokes the ideas of fuzzy sets to deal with problems of approx
imate reasoning. The work on default reasoning and non-monotonic 
logic, cited at the end of chapter 9, offers additional approaches to 
plausible reasoning. 

Another important component of commonsense reasoning is the 
ability to reason about actions, processes and plans. To do so, we first 
need ways of representing these concepts. In the bibliographic remarks 
sections of chapters 7 and 8, we cited several sources relevant to the 
problem of modeling actions and plans. In addition to these, we might 
mention the work of Moore (1979) who combines a technique for 
reasoning about actions with one for reasoning about knowledge (see 
below). The interaction between action and knowledge has not been 
discussed in this book (and, indeed, has not yet been adequately explored 
in AI). Yet, this interaction is quite fundamental because actions typically 
change the state of knowledge of the actor, and because knowledge about 
the world is necessary in order to perform actions. 

Hendrix (1975a; 1979, pp. 76ff) discusses the use of semantic networks 
for representing processes. Grosz (1977) and Robinson (1978) use 
structures similar to procedural nets [Sacerdoti (1977)] to help interpret 
natural language statements occurring in a dialogue with a user who is 
participating in a process. Schank and Abelson (1977) propose structures 
for representing processes and plans for use in natural language 
understanding applications. Schmidt, Sridharan, and Goodson (1978) 
propose techniques for recognizing plans and goals of actors from their 
actions. All of these efforts are contributing to our ability to formal
ize—and thus ultimately to build systems that can reason about—plans, 
actions, and processes. 

103.2. REPRESENTING PROPOSITIONAL ATTITUDES 

Certain verbs, such as know, believe, want, ana fear, can be used to 
express a relation between an agent and ^proposition, as illustrated by the 
following examples: 

Sam knows that Pete is a lawyer. 
Sam doesn't believe that John is a doctor. 
Pete wants it to rain. (Or, Pete wants that it be raining.) 
John fears that Sam believes that the morning star is not Venus. 

424 



REPRESENTATIONAL FORMALISMS 

The italicized portions of these sentences are propositions, and the 
relations know, believe, etc., refer to attitudes of agents toward these 
propositions. Thus, know, believe, etc., are called propositional attitudes. 
A logical formalism for expressing propositional attitudes must have a 
way of expressing the appropriate relations between agents and attitudes. 

It is well known that there are several difficulties in developing such a 
logical formalism. One difficulty is the problem of referential transpar
ency. From the statements John believes Santa Claus brought him presents 
at Christmas and John's father is Santa Claus, we would not want to be 
able to deduce the statement John believes John's father brought him 
presents at Christmas. These problems have been discussed by logicians 
for several years, and various solutions have been proposed [see, for 
example, the essays in Linsky (1971)]. 

Moore (1977, 1979) discusses the problems of formalizing proposi
tional attitudes for AI applications. He points out several difficulties with 
straightforward approaches and shows how a modal logic with a possible 
worlds semantics can be used to overcome these difficulties for the 
attitude know. He then proceeds to show how this approach can be 
embedded in first order logic so that the usual sorts of AI theorem-prov
ing systems can be used to reason about knowledge. (As we mentioned 
earlier, Moore also links his logic of knowledge with a logic of actions.) 

Several other approaches have also been suggested. McCarthy (1979) 
proposes that concepts of domain entities be added to the domain of 
discourse and shows how a first-order formulation involving these 
concepts avoids some of the standard difficulties. Creary (1979) extends 
this notion. Elschlager (1979) considers the problem of consistency of 
knowledge statements in formulations that treat concepts as domain 
entities. 

Although formalizations for propositional attitudes have largely been 
the concern of logicians, the problem is fundamental to future advances 
in AI. Natural language communication between humans seems to 
depend on the ability of the participants to make inferences about each 
others' beliefs, and we should expect that natural language understand
ing systems will require similar abilities. Also, when two or more AI 
systems cooperate to solve problems, they will need to be able to reason 
about each others' goals, knowledge, and beliefs. Cohen (1978) discusses 
how a system can plan to affect the state of knowledge of another system 
by speech acts. Much more work along these lines needs to be done. 
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103.3. METAKNOWLEDGE 

A good solution to the problem of reasoning about the knowledge of 
others ought also to confer the ability to reason about one's own 
knowledge. We would like to be able to build systems that know or can 
deduce whether or not they know facts and rules about certain subjects 
without having to scan their large knowledge bases searching for these 
items. We would also like systems to have knowledge about when and 
how to use other knowledge. As mentioned in the bibliographic remarks 
section of chapter 6, various researchers have suggested that systems 
containing meta-rules be used to control production systems. 

Collins (1978) has suggested that meta-knowledge would be useful in 
deducing object knowledge. For example: Since I would know it if Henry 
Kissinger were three meters tall, and since I don't know that he is, he isn't. 
Meta-level reasoning is also an easy way to solve many problems. Bundy 
et al. (1979) and Weyhrauch (1980) illustrate this principle applied to 
solving equations. 

Two elegant arrangements of systems and metasystems are LCF [Cohn 
(1979)] and FOL [Weyhrauch (1979)]. Weyhrauch stresses the ability of 
FOL to refer to itself while avoiding problems of circularity. Self-refer
ence has been a haunting but illusive theme in Artificial Intelligence 
research. For an interesting book about problems of self-reference in 
logic, music, and art, see Hofstadter (1979). 

The matters that we have briefly discussed in this prospectus are now 
the subjects of intense AI research activity. Empirical explorations and 
new research results can be expected to challenge and expand the AI 
paradigms and formalisms that have proved useful for organizing past 
results. In this book, we have used certain organizing ideas—such as 
generalized production systems, the language of the predicate calculus, 
and heuristic search—to make our story just a bit simpler and more 
memorable. We cannot now tell whether new results will fold in easily to 
the existing story or whether they will require the invention of new 
themes or a completely new plot. That is how science and technology 
progress. Whatever the new results, we do know, however, that their 
description will be as important as their invention in order that we (and 
machines) will be able to understand them. 
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Completeness: 

of inference rules, 144 
of resolution refutation strategies, 165 

Complexity of heuristic search, 95 
Computation by deduction, 241-246, 

269-270 
Computer-based consulting systems, 4, 

12 
Conditional plans, 318-319 
Conditional rule application, 259, 265-

267 
Conditional substitutions, 239, 252, 269 
Conjunctions, 134 
Conjunctive goals: 

in deductions, 213 
in robot problem solving, 297 
{Also see Interacting goals) 

Conjunctive normal form, 148 
Connection graphs, 219-222, 268 
Connectives, in predicate calculus, 134-

135 
Connectors, in AND/OR graphs, 100 
CONNIVER, 261, 267 
Consequent, of an implication, 135 
Consistency restriction, in heuristic 

search, 95 
Consistency, of substitutions, 207-208, 

218-219, 268 
Constraint satisfaction, references for, 

94 

Contradiction, proof by {see 
Refutations) 

Contradictory information, 408-411 
Contrapositive rules, 258 
Control knowledge, definition, 48 
Control strategy: 

backtracking, 24-26, 55-57 
for decomposable systems, 39-41, 103-

109 
for game-playing systems, 112-126 
graph-search, 22, 25, 27, 64-68 
irrevocable, 21-24 
of a production system, 17-18, 21-27 
for resolution refutations, 164-172 
for rule-based deduction systems, 217-

222, 257-260 
for STRIPS, 302-303 
tentative, 21-22, 24-27 

Costs, of arcs and paths in graphs {see 
Graph notation) 

Criticality values of preconditions, 351 

DCOMP, 333 
Debugging, as a planning strategy, 357 
Declarative knowledge, definition, 48 
Decomposable production systems: 

algorithm for, 39 
control of, 39-41 
definition of, 37-38 
examples of, 41-47 
relation with commutative systems, 

109-112, 127 
Deduction {see Theorem proving) 
Deductive operations on structured 

objects, 387 
Defaults, 408-411 
Delete list, of STRIPS rules, 278 
Deleters, in DCOMP, 335-336 
Delineations, of structured objects, 387-

391 
DeMorgan's laws, 138 
DENDRAL, 12, 41-44, 50, 422 
Depth, in graphs, {see Graph notation) 
Depth bound, definition, 56-57 
Depth-first search, 68-70 
Derivation graphs, 110, 164 
Descendant node {see Graph notation) 
Differences, in GPS, 303-305 
Disjunctions, 134 
Distributed AI systems, 419 
Double cross, in robot planning, 349 
Dynamic programming, 95 

8-puzzle: 
breadth- and depth-first searches of, 

68-71 
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description of, 18-20 
heuristic search of, 73-74, 85-87 
references for, 50 
representation of, 18-20 

8-queens problem, 6, 57-58, 60-61 
Enclosures, in networks, 373-378 
Epistemologica! problems, 422-426 
Equivalence, of wffs, 138-139 
Errors, effects of in heuristic search, 95 
Evaluation, of predicates, 173-174 
Evaluation functions: 

for commutative systems, 112 
definition of, 72-73 
for derivation graphs, 112 
examples of, 73, 85 
for games, 115-117 

Execution, of robot plans, 284-287 
Expanding nodes (see Graph notation) 
Expert systems, 4, 12 

F-rules: 
definition of, 34 
for robot problem solving, 277-279 
for rule-based deduction systems, 199-

203, 206 
Fact node, 215 
Fact object, 379 
Facts, in rule-based deduction systems, 

195 
FOL, 426 
Forward robot problem-solving system, 

281-282 
Forward rule-based deduction system, 

196 
Frame axioms or assertions, 310 
Frame problem, 279-280 
Frames, 8-9, 412 

(Also see Semantic networks and 
Units) 

FRL, 412 

Game-tree search, 112-126 
references for, 127-128 

Global database of a production system, 
17-18 

Goal clauses, 214 
Goal descriptions, 276-277 
Goal-directed invocation, 260 
Goal node, in rule-based systems, 204, 

210 
(Also see Graph notation) 

Goal object, 379 
Goal stack, in STRIPS, 298 
Goal wff, 153, 195 
Goals, in rule-based deduction systems, 

203-204 

interacting, 296-297, 325 
GPS, 303-305 
Graph notation 

for AND/OR graphs, 99-103 
for ordinary graphs, 62-64 

Graph-search control strategies: 
A*, 76 
admissibility of, 76 
algorithm for, 64-68 
for AND/OR graphs, 103-109 
A0*, 104-105 
breadth-first, 69-71 
definition of, 22, 61-62 
depth-first, 68-70 
examples of, 25, 27, 28, 66-68, 85-87, 

107-109 
for game trees, 112-126 
heuristic, 72 
optimality of, 79-81 
references for, 95-96, 127-128 
uninformed, 68-71 

Grammar, example of, 31-32 
Ground instance, 141, 149 
Grundy's game, 113-114 
GUS, 412 

Heuristic function, 76 
for AND/OR graphs, 103 

Heuristic power, 72, 85-88 
Heuristic search, 72 
Hierarchical planning, 349-357 
Hierarchies, taxonomic, 392 
Hill-climbing, 22-23, 49 
Hype rares, 100 
Hypergraphs, 100 
Hypothesize-and-test, 8 

Implications, 134-135 
Induction, (mathematical) in automatic 

programming, 247-253 
as related to learning, 421 

Inequalities, solution of, 229-234, 269 
Inference rules, 140 

soundness and completeness of, 145 
Information retrieval, 3-4, 12, 154, 223-

229, 269 
Informedness of search algorithms, 79 
Inheritance, of properties, 392-397 
Integration, symbolic, 43-47 
Interacting goals, 296-297, 325, 333 
Interactive partial orders, 336 
Interpretations, of predicate calculus 

wffs, 133-134 
Irrevocable control strategy: 

definition of, 21 
examples of, 22-24, 163-164 
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Kernels, of triangle tables, 284 
Knowledge acquisition, 419-422 
Knowledge, reasoning about, 424-425 
KRL, 412 

LAWALY, 357 
LCF, 426 
Leaf nodes, in AND/OR graphs, 101 
Learning, 420-422 
Linear-input form strategy in resolution, 

169-170 
LISP, references for, 16, 417 
Literals, 135 
Literal nodes, 203 

MACSYMA, 12 
Match arc, 201, 206 
Matching structured objects, 378-386, 

397-399 
Means-ends analysis, 303-305 
Memory organization, of AI systems, 

418 
Merge, in resolution, 150, 171 
Meta-knowledge, 424, 426 

(Also see Meta-rules) 
Meta-rules, 229, 259, 269, 426 
Mgu, 142 
Minimax search in game trees, 115-121 

references for, 127-128 
Missionaries-and-cannibals problem, 50-

51 
Modal logic, 425 
Models, of predicate calculus wffs, 133-

134 
Modus ponens, 140 
Monkey-and-bananas problem, 318 
Monotone restriction, on heuristic 

functions, 81-84 
for AND/OR graphs, 103 

Most general unifier, 142 
Multiplying out: 

inefficiency of, 194-195 
need for, 237-239 

MYCIN, 268, 420, 423 

Natural language processing, 2-3, 11-12 
Naughts and crosses, 116-121 
Negations, 135 
Network rules, 404-406 
Network, semantic, 370-378 
Nim, 129 
NOAH, 357, 358 
Nonlinear plans, 333, 357 
Non-monotonic logics, 413 
NP-complete problems, 7, 14 

Object-centered representations, 363 
OPEN node, 64 
Operations research, 14 
Optimal paths, in graphs, (see Graph 

notation) 
Optimality of search algorithms, 79-81 
OR nodes in AND/OR graphs, 41, 99-

100 
Ordering strategies, in resolution, 172 

references for, 189 

Parallel execution of plans, 338-341 
Parallel processing, 418-419 
Partial models, in logic, 173-174 
Partially ordered plans, 333-341 
Partitions, in networks, 373-378 
Patching plans, 342-349 
Paths, in graphs, (see Graph notation) 
Pattern-directed invocation, 260 
Pattern matching, 144, 261-262 
P-conditions, 355 
Penetrance, 91-94 
Perception, 7-9, 15, 96 
Performance measures of search 

algorithms, 91-94 
Petri nets, augmented, 419 
Plan generation, 275, 321 
PLANNER, 261, 267, 270 
PLANNER-like languages, 260 

references for, 267, 270 
Plans, 282 

representation of, 282-287 
execution of, 284-287 

Possible worlds semantics, 425 
Precondition: 

criticality of, 351 
postponing, 350, 355 
of production rules, 18 
of STRIPS rules, 277-278 
references for, 156 

Prenex form, 147-148 
Problem reduction (see Decomposable 

production systems) 
Problem states, 19-20 
Procedural attachment, 173-174, 232, 

234, 400-401 
Procedural knowledge, definition, 48 
Procedural net, 340 
Production rules: 

based on implications, 195 
definition of, 17-18 
for semantic networks, 404-406 
STRIPS-form, 277-279 
for units, 401-404 
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Production systems: 
algorithm for, 21 
backward and bidirectional, 32-34 
commutative, 35-37 
control strategies for, 17-18, 21-27, 

39-41 
decomposable, 37-47 
definition of, 17-18, 48-49 
for resolution refutations, 163-164 
for robot problems, 154-155, 281-282 
for theorem proving, 152-154, 193 

Program synthesis (see Automatic 
programming) 

Program verification (see Automatic 
programming) 

PROLOG, 246, 269-270, 315, 357 
Proof, definition of, 140 
Property inheritance, 392-397 
Propositional attitudes, 424-425 
Propositional calculus, 135 
PROSPECTOR, 420, 423 
Protection, of goals, 323 

violation of, 326 
Prototype units, 388, 390 
PSI automatic programming system, 14 
Puzzles, references for, 50 

QA3, 418 
OA4, 267, 418 
OLISP, 261,270 
Quantification, 136-137 

in units, 368 
in nets, 373 

Reasoning: 
about actions, 307-315, 424 
by cases, 204-205, 256 
commonsense, 154, 422-424 
about knowledge and belief, 424-425 

Referential transparency, 425 
Refutation tree, 164 
Refutations, 161 
Regression, 288-292, 321 
Representation: 

examples of, 29-32 
of plans, 424 
problems of, 27-29, 49 

Resolution, 145 
within AND/OR graphs, 234-241 
for general clauses, 150-152 
for ground clauses, 149-150 
references for, 156 

Resolution refutations, 161 
references for, 189 

Resolvents, 149, 151 

RGR, 237, 268 
Robot problems, 152-153, 275, 307-315, 

321 
Robots, 5, 13-14 
Root node (see Graph notation) 
RSTRIPS, 321 
Rule-based systems, 193, 196 

(Also see Production systems) 
Rules (see Production rules) 

SAINT, 45, 50 
Satisfiability, of sets of wffs, 145 
Scheduling problems, 6-7, 14 
Schemas (see Semantic networks and 

Units) 
Scripts, 412 
Search graph: 

definition of, 64-65, 104 
Search strategies (see Control strategies) 
Search tree: 

definition of, 64-65 
example of, 28 

Self-reference, 426 
Semantics, of predicate calculus wffs, 

133-134 
Semantic matching, 381 
Semantic networks, 370-378 

references for, 412-413 
Set-of-support strategy, in resolution, 

167 
Simplification strategies, in resolution, 

172-174 
Simultaneous unifiers, 268 
SIN, 50 
SIR, 412 
Situation variables, in robot problems, 

308 
Skolem functions, 146-147 
Slots, 364 
Slotnames, 364 
Slotvalues, 364 
Solution graph, in AND/OR graphs, 

101-102 
candidate, 217-218 

SOLVED nodes in AND/OR search 
graphs, 104-106 

Soundness, of inference rules, 145 
Speech acts, 316, 425 
Speech recognition and understanding, 

11, 96 
Staged search, 90-91 
Standardization of variables, 146, 149 
Start node (see Graph notation) 
State descriptions, 153, 276 
State variables, in robot problems, 308 
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States, of a problem, 19-20 
STRIPS, 277, 298 
STRIPS-form rules, 277-279 
Structured objects, 361 
Subgoal, 214 
Subgoal node, 214 
Subsumption, of clauses, 174 
Substitution instances, 141, 144 
Substitutions, 140-142 

associativity of, 141 
composition of, 141 
consistency of, 207-208, 218-219, 268 
non-commutativity of, 142 
unifying composition of, 207-208, 268 

Successor node, in graphs (see Graph 
notation) 

Symbol mapping, 413 
(Also see Property inheritance) 

Tautologies, 144 
elimination of, 173 

Taxonomic hierarchies, 392-397 
TEIRESIAS, 420 
Tentative control strategy, definition of, 

21-22 
(Also see Backtracking and Graph-

search control strategies) 
Terminal nodes, of AND/OR graphs, 41 
Termination condition: 

of backward, rule-based systems, 215 
of forward, rule-based systems, 203, 

210 
of production systems, 18 
of resolution refutation systems, 163 

Theorem, definition of, 140 
Theorem-proving, 4-5, 13, 153 

for robot problem solving, 307-315 
by resolution 151-152 
by resolution refutations, 161 
by rule-based systems, 193 

Tic-tac-toe, 116-121 
Time and tense, formalization of, 159 
Tip nodes, in trees (see Graph notation) 
Transitivity, 231-232 
Traveling salesman problem, 6-7, 29-31, 

50 
Triangle tables, 282-287, 421 
Triggers (see Advice) 
Truth maintenance, 411, 413 
Truth table, 138 
Truth values, of predicate calculus wffs, 

(see Interpretations) 
Two-handed robot, 338-341 

Uncertain knowledge: 
in deductions, 268, 423-424 
in robot planning, 358 

UNDERSTAND, 49 
Unification, 140-144 

algorithm for, 142-143 
references for, 156 
of structured objects (see Matching) 

Unification set, in answer extraction, 
179 

Unifying composition, of substitutions, 
207-208, 268 

Unit-preference strategy, in resolution, 
167-169 

Unit rules, 401-404 
Units, 361-369 

references for, 412 
Universal specialization, 140 

Validity, of wffs, 144 
Vision (see Perception) 

WARPLAN, 357 
Wffs, of the predicate calculus, 131-132 
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