
Principles
of

Artificial Intelligence
NILS J. NILSSON
Stanford University

MORGAN KAUFMANN

PUBLISHERS, INC.

Library of Congress Cataloging-in-Publication Data

Nilsson, Nils J., 1933-
Principles of artificial intelligence.

Reprint. Originally published: Palo Alto, Calif. :
TiogaPub. Co., © 1980.

Bibliography: p.
Includes indexes.
1. Artificial intelligence. I. Title.

Q335.N515 1986 006.3 86-2815
ISBN 0-934613-10-9

Copyright © 1980 Morgan Kaufmann Publishers, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States
of America. Library of Congress Catalog Card Number 86-2815.

The figures listed below are from "Problem-Solving Methods in Artifi
cial Intelligence" by Nils J. Nilsson, copyright © 1971 McGraw-Hill
Book Company. Used with permission of McGraw-Hill Book Company.
Figures 1.4, 1.5, 1.6, 1.13, 2.6, 2.7, 2.8, 2.9, 2.12, 2.13, 3.8, 3.9, 3.10, 3.11,
3.12, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14.

ISBN 0-934613-10-9
(Previously published by Tioga Publishing Co. under ISBN 0-935382-01-1)

FG-DO

for Kristen and Lars

PREFACE

Previous treatments of Artificial Intelligence (AI) divide the subject
into its major areas of application, namely, natural language processing,
automatic programming, robotics, machine vision, automatic theorem
proving, intelligent data retrieval systems, etc. The major difficulty with
this approach is that these application areas are now so extensive, that
each could, at best, be only superficially treated in a book of this length.
Instead, I have attempted here to describe fundamental AI ideas that
underlie many of these applications. My organization of these ideas is
not, then, based on the subject matter of their application, but is, instead,
based on general computational concepts involving the kinds of data
structures used, the types of operations performed on these data struc
tures, and the properties of control strategies used by AI systems. I stress,
in particular, the important roles played in AI by generalized production
systems and the predicate calculus.

The notes on which the book is based evolved in courses and seminars
at Stanford University and at the University of Massachusetts at
Amherst. Although certain topics treated in my previous book, Problem-
solving Methods in Artificial Intelligence, are covered here as well, this
book contains many additional topics such as rule-based systems, robot
problem-solving systems, and structured-object representations.

One of the goals of this book is to fill a gap between theory and
practice. AI theoreticians have little difficulty in communicating with
each other; this book is not intended to contribute to that communica
tion. Neither is the book a handbook of current AI programming
technology; other sources are available for that purpose. As it stands, the
book could be supplemented either by more theoretical treatments of
certain subjects, for AI theory courses, or by project and laboratory
sessions, for more practically oriented courses.

The book is designed as a text for a senior or first-year graduate course
in AI. It is assumed that the reader has a good background in the
fundamentals of computer science; knowledge of a list-processing
language, such as LISP, would be helpful. A course organized around this
book could comfortably occupy a full semester. If separate practical or

xi

theoretical material is added, the time required might be an entire year. A
one-quarter course would be somewhat hurried unless some material
(perhaps parts of chapter 6 and chapter 8) is omitted.

The exercises at the end of each chapter are designed to be thought-
provoking. Some expand on subjects briefly mentioned in the text.
Instructors may find it useful to use selected exercises as a basis for class
discussion. Pertinent references are briefly discussed at the end of every
chapter. These citations should provide the interested student with
adequate entry points to much of the most important literature in the
field.

I look forward someday to revising this book—to correct its inevitable
errors, and to add new results and points of view. Toward that end, I
solicit correspondence from readers.

Nils J. Nilsson

xn

ACKNOWLEDGEMENTS

Several organizations supported and encouraged the research, teach
ing, and discussions that led to this book. The Information Systems
Program, Marvin Denicoff, Director, of the Office of Naval Research,
provided research support under contract no. N00014-77-C-0222 with
SRI International. During the academic year 1976-77,1 was a part-time
visiting professor in the Computer Science Department at Stanford
University. From September 1977 to January 1978, I spent the Winter
Semester at the Computer and Information Sciences Department of the
University of Massachusetts at Amherst. The students and faculty of
these departments were immensely helpful in the development of this
book.

I want to give special thanks to my home organization, SRI Interna
tional, for the use of its facilities and for its liberal attitude toward
book-writing. I also want to thank all my friends and colleagues in the
Artificial Intelligence Center at SRI. One could not find a more dynamic,
intellectually stimulating, and constructively critical setting in which to
work and write.

Though this book carries the name of a single author, it has been
influenced by several people. It is a pleasure to thank here everyone who
helped guide me toward a better presentation. Some of those who
provided particularly detailed and extensive suggestions are: Doug
Appelt, Michael Arbib, Wolfgang Bibel, Woody Bledsoe, John Brown,
Lew Creary, Randy Davis, Jon Doyle, Ed Feigenbaum, Richard Fikes,
Northrup Fowler, Peter Friedland, Anne Gardner, David Gelperin,
Peter Hart, Pat Hayes, Gary Hendrix, Doug Lenat, Vic Lesser, John
Lowrance, Jack Minker, Tom Mitchell, Bob Moore, Allen Newell, Earl
Sacerdoti, Len Schubert, Herb Simon, Reid Smith, Elliot Soloway, Mark
Stefik, Mabry Tyson, and Richard Waldinger.

I also want to thank Robin Roy, Judy Fetler, and Georgia Navarro, for
patient and accurate typing; Sally Seitz for heroic insertion of typesetting
instructions into the manuscript; and Helen Tognetti for creative
copy-editing.

Most importantly, my efforts would not have been equal to this task
had they not been generously supported, encouraged, and understood by
my wife, Karen.

xiii

CREDITS

The manuscript for this book was prepared on a Digital Equipment
Corporation KL-10 computer at SRI International. The computer
manuscript file was processed for automatic photo-typesetting by W. A.
Barrett's TYPET system on a Hewlett-Packard 3000 computer. The main
typeface is Times Roman.

Book design: Ian Bastelier
Cover design: Andrea Hendrick
Illustrations: Maria Masterson
Typesetting: Typothetae, Palo Alto, CA
Page makeup: Vera Allen Composition, Castro Valley, CA
Printing and binding: R. R. Donnelley and Sons Company

xv

PROLOGUE

Many human mental activities such as writing computer programs,
doing mathematics, engaging in commonsense reasoning, understanding
language, and even driving an automobile are said to demand "intelli
gence." Over the past few decades, several computer systems have been
built that can perform tasks such as these. Specifically, there are
computer systems that can diagnose diseases, plan the synthesis of
complex organic chemical compounds, solve differential equations in
symbolic form, analyze electronic circuits, understand limited amounts
of human speech and natural language text, or write small computer
programs to meet formal specifications. We might say that such systems
possess some degree of artificial intelligence.

Most of the work on building these kinds of systems has taken place in
the field called Artificial Intelligence (AI). This work has had largely an
empirical and engineering orientation. Drawing from a loosely struc
tured but growing body of computational techniques, AI systems are
developed, undergo experimentation, and are improved. This process
has produced and refined several general AI principles of wide applica
bility.

This book is about some of the more important, core AI ideas. We
concentrate on those that find application in several different problem
areas. In order to emphasize their generality, we explain these principles
abstractly rather than discuss them in the context of specific applications,
such as automatic programming or natural language processing. We
illustrate their use with several small examples but omit detailed case
studies of large-scale applications. (To treat these applications in detail
would each certainly require a separate book.) An abstract understanding
of the basic ideas should facilitate understanding specific AI systems
(including strengths and weaknesses) and should also prove a sound basis
for designing new systems.

1

PROLOGUE

AI has also embraced the larger scientific goal of constructing an
information-processing theory of intelligence. If such a science of
intelligence could be developed, it could guide the design of intelligent
machines as well as explicate intelligent behavior as it occurs in humans
and other animals. Since the development of such a general theory is still
very much a goal, rather than an accomplishment of AI, we limit our
attention here to those principles that are relevant to the engineering goal
of building intelligent machines. Even with this more limited outlook,
our discussion of AI ideas might well be of interest to cognitive
psychologists and others attempting to understand natural intelligence.

As we have already mentioned, AI methods and techniques have been
applied in several different problem areas. To help motivate our
subsequent discussions, we next describe some of these applications.

0.1. SOME APPLICATIONS OF ARTIFICIAL
INTELLIGENCE

0.1.1. NATURAL LANGUAGE PROCESSING

When humans communicate with each other using language, they
employ, almost effortlessly, extremely complex and still little understood
processes. It has been very difficult to develop computer systems capable
of generating and "understanding" even fragments of a natural language,
such as English. One source of the difficulty is that language has evolved
as a communication medium between intelligent beings. Its primary use
is for transmitting a bit of "mental structure" from one brain to another
under circumstances in which each brain possesses large, highly similar,
surrounding mental structures that serve as a common context. Further
more, part of these similar, contextual mental structures allows each
participant to know that the other also possesses this common structure
and that the other can and will perform certain processes using it during
communication "acts." The evolution of language use has apparently
exploited the opportunity for participants to use their considerable
computational resources and shared knowledge to generate and under
stand highly condensed and streamlined messages: A word to the wise
from the wise is sufficient. Thus generating and understanding language
is an encoding and decoding problem of fantastic complexity.

2

SOME APPLICATIONS OF ARTIFICIAL INTELLIGENCE

A computer system capable of understanding a message in natural
language would seem, then, to require (no less than would a human) both
the contextual knowledge and the processes for making the inferences
(from this contextual knowledge and from the message) assumed by the
message generator. Some progress has been made toward computer
systems of this sort, for understanding spoken and written fragments of
language. Fundamental to the development of such systems are certain
AI ideas about structures for representing contextual knowledge and
certain techniques for making inferences from that knowledge. Although
we do not treat the language-processing problem as such in this book, we
do describe some important methods for knowledge representation and
processing that do find application in language-processing systems.

0.1.2. INTELLIGENT RETRIEVAL FROM DATABASES

Database systems are computer systems that store a large body of facts
about some subject in such a way that they can be used to answer users'
questions about that subject. To take a specific example, suppose the facts
are the personnel records of a large corporation. Example items in such a
database might be representations for such facts as "Joe Smith works in
the Purchasing Department," "Joe Smith was hired on October 8, 1976,"
"The Purchasing Department has 17 employees," "John Jones is the
manager of the Purchasing Department," etc.

The design of database systems is an active subspecialty of computer
science, and many techniques have been developed to enable the efficient
representation, storage, and retrieval of large numbers of facts. From our
point of view, the subject becomes interesting when we want to retrieve
answers that require deductive reasoning with the facts in the database.

There are several problems that confront the designer of such an
intelligent information retrieval system. First, there is the immense
problem of building a system that can understand queries stated in a
natural language like English. Second, even if the language-understand
ing problem is dodged by specifying some formal, machine-understand
able query language, the problem remains of how to deduce answers
from stored facts. Third, understanding the query and deducing an
answer may require knowledge beyond that explicitly represented in the
subject domain database. Common knowledge (typically omitted in the
subject domain database) is often required. For example, from the
personnel facts mentioned above, an intelligent system ought to be able

3

PROLOGUE

to deduce the answer "John Jones" to the query "Who is Joe Smith's
boss?" Such a system would have to know somehow that the manager of a
department is the boss of the people who work in that department. How
common knowledge should be represented and used is one of the system
design problems that invites the methods of Artificial Intelligence.

0.13. EXPERT CONSULTING SYSTEMS

AI methods have also been employed in the development of automatic
consulting systems. These systems provide human users with expert
conclusions about specialized subject areas. Automatic consulting sys
tems have been built that can diagnose diseases, evaluate potential ore
deposits, suggest structures for complex organic chemicals, and even
provide advice about how to use other computer systems.

A key problem in the development of expert consulting systems is how
to represent and use the knowledge that human experts in these subjects
obviously possess and use. This problem is made more difficult by the
fact that the expert knowledge in many important fields is often
imprecise, uncertain, or anecdotal (though human experts use such
knowledge to arrive at useful conclusions).

Many expert consulting systems employ the AI technique of rule-based
deduction. In such systems, expert knowledge is represented as a large set
of simple rules, and these rules are used to guide the dialogue between
the system and the user and to deduce conclusions. Rule-based deduction
is one of the major topics of this book.

0.1.4. THEOREM PROVING

Finding a proof (or disproof) for a conjectured theorem in mathemat
ics can certainly be regarded as an intellectual task. Not only does it
require the ability to make deductions from hypotheses but demands
intuitive skills such as guessing about which lemmas should be proved
first in order to help prove the main theorem. A skilled mathematician
uses what he might call judgment (based on a large amount of specialized
knowledge) to guess accurately about which previously proven theorems
in a subject area will be useful in the present proof and to break his main

4

SOME APPLICATIONS OF ARTIFICIAL INTELLIGENCE

problem down into subproblems to work on independently. Several
automatic theorem proving programs have been developed that possess
some of these same skills to a limited degree.

The study of theorem proving has been significant in the development
of AI methods. The formalization of the deductive process using the
language of predicate logic, for example, helps us to understand more
clearly some of the components of reasoning. Many informal tasks,
including medical diagnosis and information retrieval, can be formalized
as theorem-proving problems. For these reasons, theorem proving is an
extremely important topic in the study of AI methods.

0.1.5. ROBOTICS

The problem of controlling the physical actions of a mobile robot
might not seem to require much intelligence. Even small children are
able to navigate successfully through their environment and to manipu
late items, such as light switches, toy blocks, eating utensils, etc. However
these same tasks, performed almost unconsciously by humans, per
formed by a machine require many of the same abilities used in solving
more intellectually demanding problems.

Research on robots or robotics has helped to develop many AI ideas. It
has led to several techniques for modeling states of the world and for
describing the process of change from one world state to another. It has
led to a better understanding of how to generate plans for action
sequences and how to monitor the execution of these plans. Complex
robot control problems have forced us to develop methods for planning
at high levels of abstraction, ignoring details, and then planning at lower
and lower levels, where details become important. We have frequent
occasion in this book to use examples of robot problem solving to
illustrate important ideas.

0.1.6. AUTOMATIC PROGRAMMING

The task of writing a computer program is related both to theorem
proving and to robotics. Much of the basic research in automatic
programming, theorem proving, and robot problem solving overlaps. In
a sense, existing compilers already do "automatic programming." They
take in a complete source code specification of what a program is to

5

PROLOGUE

accomplish, and they write an object code program to do it. What we
mean here by automatic programming might be described as a "super-
compiler," or a program that could take in a very high-level description
of what the program is to accomplish and produce a program. The
high-level description might be a precise statement in a formal language,
such as the predicate calculus, or it might be a loose description, say, in
English, that would require further dialogue between the system and the
user in order to resolve ambiguities.

The task of automatically writing a program to achieve a stated result is
closely related to the task of proving that a given program achieves a
stated result. The latter is called program verification. Many automatic
programming systems produce a verification of the output program as an
added benefit.

One of the important contributions of research in automatic program
ming has been the notion of debugging as a problem-solving strategy. It
has been found that it is often much more efficient to produce an
inexpensive, errorful solution to a programming or robot control
problem and then modify it (to make it work correctly), than to insist on a
first solution completely free of defects.

0.1.7. COMBINATORIAL AND SCHEDULING PROBLEMS

An interesting class of problems is concerned with specifying optimal
schedules or combinations. Many of these problems can be attacked by
the methods discussed in this book. A classical example is the traveling
salesman's problem, where the problem is to find a minimum distance
tour, starting at one of several cities, visiting each city precisely once, and
returning to the starting city. The problem generalizes to one of finding a
minimum cost path over the edges of a graph containing n nodes such
that the path visits each of the n nodes precisely once.

Many puzzles have this same general character. Another example is
the 8-queens problem, where the problem is to place eight queens on a
standard chessboard in such a way that no queen can capture any of the
others; that is, there can be no more than one queen in any row, column
or diagonal. In most problems of this type, the domain of possible
combinations or sequences from which to choose an answer is very large.
Routine attempts at solving these types of problems soon generate a
combinatorial explosion of possibilities that exhaust even the capacities of
large computers.

6

SOME APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Several of these problems (including the traveling salesman problem)
are members of a class that computational theorists call NP-complete.
Computational theorists rank the difficulty of various problems on how
the worst case for the time taken (or number of steps taken) using the
theoretically best method grows with some measure of the problem size.
(For example, the number of cities would be a measure of the size of a
traveling salesman problem.) Thus, problem difficulty may grow linearly,
polynomially, or exponentially, for example, with problem size.

The time taken by the best methods currently known for solving
NP-complete problems grows exponentially with problem size. It is not
yet known whether faster methods (involving only polynomial time, say)
exist, but it has been proven that if a faster method exists for one of the
NP-complete problems, then this method can be converted to similarly
faster methods for all the rest of the NP-complete problems. In the
meantime, we must make do with exponential-time methods.

AI researchers have worked on methods for solving several types of
combinatorial problems. Their efforts have been directed at making the
time-versus-problem-size curve grow as slowly as possible, even when it
must grow exponentially. Several methods have been developed for
delaying and moderating the inevitable combinatorial explosion. Again,
knowledge about the problem domain is the key to more efficient
solution methods. Many of the methods developed to deal with combin
atorial problems are also useful on other, less combinatorially severe
problems.

0.1.8. PERCEPTION PROBLEMS

Attempts have been made to fit computer systems with television
inputs to enable them to "see" their surroundings or to fit them with
microphone inputs to enable them to "hear" speaking voices. From these
experiments, it has been learned that useful processing of complex input
data requires "understanding" and that understanding requires a large
base of knowledge about the things being perceived.

The process of perception studied in Artificial Intelligence usually
involves a set of operations. A visual scene, say, is encoded by sensors and
represented as a matrix of intensity values. These are processed by
detectors that search for primitive picture components such as line
segments, simple curves, corners, etc. These, in turn, are processed to

7

PROLOGUE

infer information about the three-dimensional character of the scene in
terms of its surfaces and shapes. The ultimate goal is to represent the
scene by some appropriate model. This model might consist of a
high-level description such as "A hill with a tree on top with cattle
grazing."

The point of the whole perception process is to produce a condensed
representation to substitute for the unmanageably immense, raw input
data. Obviously, the nature and quality of the final representation
depend on the goals of the perceiving system. If colors are important,
they must be noticed; if spatial relationships and measurements are
important, they must be judged accurately. Different systems have
different goals, but all must reduce the tremendous amount of sensory
data at the input to a manageable and meaningful description.

The main difficulty in perceiving a scene is the enormous number of
possible candidate descriptions in which the system might be interested.
If it were not for this fact, one could conceivably build a number of
detectors to decide the category of a scene. The scene's category could
then serve as its description. For example, perhaps a detector could be
built that could test a scene to see if it belonged to the category "A hill
with a tree on top with cattle grazing." But why should this detector be
selected instead of the countless others that might have been used?

The strategy of making hypotheses about various levels of description
and then testing these hypotheses seems to offer an approach to this
problem. Systems have been constructed that process suitable represen
tations of a scene to develop hypotheses about the components of a
description. These hypotheses are then tested by detectors that are
specialized to the component descriptions. The outcomes of these tests, in
turn, are used to develop better hypotheses, etc.

This hypothesize-and-test paradigm is applied at many levels of the
perception process. Several aligned segments suggest a straight line; a
line detector can be employed to test it. Adjacent rectangles suggest the
faces of a solid prismatic object; an object detector can be employed to
test it.

The process of hypothesis formation requires a large amount of
knowledge about the expected scenes. Some AI researchers have
suggested that this knowledge be organized in special structures called
frames or schémas. For example, when a robot enters a room through a

8

OVERVIEW

doorway, it activates a room schema, which loads into working memory a
number of expectations about what might be seen next. Suppose the
robot perceives a rectangular form. This form, in the context of a room
schema, might suggest a window. The window schema might contain the
knowledge that windows typically do not touch the floor. A special
detector, applied to the scene, confirms this expectation, thus raising
confidence in the window hypothesis. We discuss some of the fun
damental ideas underlying frame-structured representations and infer
ence processes later in the book.

0.2· OVERVIEW

The book is divided into nine chapters and a prospectus. In chapter 1,
we introduce a generalized production system and emphasize its impor
tance as a basic building block of AI systems. Several distinctions among
production systems and their control strategies are introduced. These
distinctions are used throughout the book to help classify different AI
systems.

The major emphasis in chapters 2 and 3 is on the search strategies that
are useful in the control of AI systems. Chapter 2 concerns itself with
heuristic methods for searching the graphs that are implicitly defined by
many AI systems. Chapter 3 generalizes these search techniques to
extended versions of these graphs, called AND/OR graphs, and to the
graphs that arise in analyzing certain games.

In chapter 4, we introduce the predicate calculus and describe the
important role that it plays in AI systems. Various rules of inference,
including resolution, are described. Systems for proving theorems using
resolution are discussed in chapter 5. We indicate how several different
kinds of problems can be posed as theorem-proving problems.

Chapter 6 examines some of the inadequacies of simple resolution
systems and describes some alternatives, called rule-based deduction
systems, that are more suitable for many AI applications. To illustrate
how these deduction systems might be used, several small examples,
ranging from information retrieval to automatic programming, are
presented.

9

PROLOGUE

In chapters 7 and 8, we present methods for synthesizing sequences of
actions that achieve prescribed goals. These methods are illustrated by
considering simple problems in robot planning and automatic program
ming. Chapter 7 introduces some of the more basic ideas, and chapter 8
elaborates on the subjects of complex goal interactions and hierarchical
planning.

Chapter 9 discusses some representational formalisms in which the
structure of the representation itself is used to aid retrieval processes and
to make certain common deductions more immediate. Two examples are
semantic networks and the so-called frame-based representations. Our
point of view toward such representations is that they can best be
understood as a form of predicate calculus.

Last, in the prospectus, we review some outstanding AI problems that
are not yet sufficiently well understood to be included in the main part of
a textbook. It is hoped that a discussion of these problems will provide
perspective about the current status of the field and useful directions for
future research.

0.3· BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

In this section, and in similar sections at the end of each chapter, we
discuss very briefly some of the relevant literature. The material cited is
listed alphabetically by first author in the bibliography at the end of the
book. Many of these citations will be useful to readers who wish to probe
more deeply into either theoretical or applications topics. For complete
ness, we have occasionally referenced unpublished memoranda and
reports. Authors (or their home institutions) will sometimes provide
copies of such material upon request.

Several books have been written about AI and its applications. The
book by Slagle (1971) describes many early AI systems. Nilsson's (1971)
book on problem solving in AI concentrates on search methods and
applications of resolution theorem proving. An introductory book by
Jackson (1974) treats these problem-solving ideas and also describes
applications to natural language processing and image analysis. The book
by Hunt (1975) treats pattern recognition, as well as other AI topics.

10

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

Introductory articles about AI topics appear in a book edited by Barr and
Feigenbaum (1980). Nilsson's (1974) survey describes the field in the
early 1970s and contains many references. Michie's (1974) book contains
several of his articles on AI.

Raphael's (1975) book and Winston's (1977) book are easy-to-read and
elementary treatments of AI ideas. The latter contains an excellent
introduction to AI programming methods. A book edited by Bundy
(1978) contains material used in an introductory AI course given at the
University of Edinburgh. A general discussion of AI and its connection
with human intelligence is contained in Boden (1977). McCorduck
(1979) has written an interesting book about the history of artificial
intelligence. Marr's (1977) essay and Simon's (1969) book discuss AI
research as a scientific endeavor. Cohen (1979) discusses the relationships
between artistic imagery and visual cognition.

The most authoritative and complete account of mechanisms of
human problem solving from an AI perspective is the book by Newell
and Simon (1972). The book edited by Norman and Rumelhart (1975)
contains articles describing computer models of human memory, and a
psychology text by Lindsay and Norman (1972) is written from an
information-processing viewpoint. A multidisciplinary journal, Cognitive
Science, contains articles on information-processing aspects of human
cognition, perception, and language.

03.1. NATURAL LANGUAGE PROCESSING

Grosz (1979) presents a good survey of current techniques and
problems in natural language processing. A collection of important
papers on this topic is contained in a book edited by Rustin (1973). One
of the first successful AI systems for understanding limited fragments of
natural language is described in a book by Winograd (1972).

The book by Newell et al. (1973) describes the five-year goals of a
research project to develop a speech understanding system; the major
results of this research are described in papers by Medress et al. (1977),
and Klatt (1977); reports by Reddy et al. (1977), Woods, et al (1976), and
Bernstein (1976); and a book edited by Walker (1978).

A forthcoming book by Winograd (1980a) will present the foundations
of computational mechanisms in natural language processing. Some

11

PROLOGUE

interface systems for subsets of natural language are described in an
article edited by Waltz (1977).

Proceedings of biannual conferences on Theoretical Issues in Natural
Language Processing (TINLAP) contain several important papers.
Work in language processing draws on several disciplines besides A l
most notably, computational linguistics, philosophy, and cognitive psy
chology.

03.2. INTELLIGENT RETRIEVAL FROM DATABASES

Two excellent books on database systems are those of Date (1977) and
Wiederhold (1977). An important paper by Codd (1970) formalizes a
relational model for database management. Papers describing various
applications of AI and logic to database organization and retrieval are
contained in a book edited by Gallaire and Minker (1978). The article
edited by Waltz (1977) contains several descriptions of systems for
querying databases using simplified natural language.

033. EXPERT CONSULTING SYSTEMS

Expert consulting systems have been developed for a variety of
domains. The most prominent applications of AI ideas to medical
consulting are those of Pople (1977), for internal medicine; Weiss et al.
(1978), for the glaucomas; and Shortliffe (1976) and Davis (1976), for
bacterial infection diagnosis and therapy.

A consulting system to aid a geologist in evaluating potential mineral
deposits is described by Duda et al. (1978a, 1978b, 1979). Several expert
systems developed at Stanford University are summarized by Feigen
baum (1977). The most highly developed of these, DENDRAL, computes
structural descriptions of complex organic chemicals from their mass
spectrograms and related data [Buchanan and Feigenbaum (1978)].

Other important expert systems are those of Sussman and Stallman
(1975) [see also Stallman and Sussman (1977)] for analyzing the
performance of electronic circuits; and Genesereth (1978, 1979), for
helping casual users of the MACSYMA mathematical formula manipu
lation system [Martin and Fateman (1971)].

12

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

03.4. THEOREM PROVING

Early applications of AI ideas to proving theorems were made by
Gelernter (1959) to plane geometry; and by Newell, Shaw, and Simon
(1957) to propositional logic. The resolution principle of Robinson
(1965) greatly accelerated work on automatic theorem proving. Resolu
tion theorem proving is thoroughly explained in books by Chang and Lee
(1973), Loveland (1978), and Robinson (1979).

Bledsoe and his co-workers have developed impressive theorem-prov
ing systems for analysis [Ballantyne and Bledsoe (1977)], for topology
[Bledsoe and Bruell (1974)], and for set theory [Bledsoe (1971)]. Wos and
his co-workers have achieved excellent results with resolution-based
systems [McCharen et al. (1976); Winker and Wos (1978); Winker
(1979)]. Boyer and Moore (1979) have developed a theorem-proving
system that proves theorems about recursive functions and makes strong
use of induction.

Regular workshops are held on automatic deduction. An informal
proceedings was issued for the Fourth Workshop [see WAD in the
Bibliography].

03.5. ROBOTICS

Much of the theoretical research in robotics was conducted through
robot projects at MIT, Stanford University, Stanford Research Institute
and the University of Edinburgh in the late 1960s and early 1970s. This
work has been described in several papers and reports. Good accounts
are available for the MIT work by Winston (1972); for the Stanford
Research Institute work by Raphael et al. (1971) and Raphael (1976,
chapter 8); for the Stanford University work by McCarthy et al. (1969);
and for the Edinburgh work by Ambler, et al. (1975).

Practical applications of robotics in industrial automation are becom
ing commonplace. A paper by Abraham (1977) describes a prototype
robot system for assembling small electric motors. Automatic visual
sensing with a solid-state TV camera is used to guide manipulators in the
system. Rosen and Nitzan (1977) discuss the use of vision and other
sensors in industrial automation. For a sample of advanced work in
robotics applications see Nitzan (1979), Binford et al. (1978), Nevins and

13

PROLOGUE

Whitney (1977), Will and Grossman (1975), Takeyasu et al. (1977),
Okhotsimski et al. (1979), and Cassinis (1979). International symposia on
industrial robots are held regularly.

03.6. AUTOMATIC PROGRAMMING

One of the earliest attempts to use AI ideas for automatically
synthesizing computer programs was by Simon (1963, 1972b). Pioneer
ing papers by Waldinger and Lee (1969) and by Green (1969a) showed
how small programs could be synthesized using theorem-proving tech
niques.

Surveys by Biermann (1976) and by Hammer and Ruth (1979) discuss
several approaches to automatic programming. The PS I project of Green
(1976) includes several components, one of which is a rule-based system
for synthesizing programs from descriptions of abstract algorithms
[Barstow (1979)]. Rich and Shrobe (1979) describe a programmer's
apprentice system for assisting a human programmer.

The related topic of program verification is surveyed by London
(1979). [See also the discussion by Constable (1979) in the same volume.]
The formal verification of properties of programs was discussed early in
the history of computing by Goldstine and von Neumann (1947) and by
Turing (1950). Program verification was mentioned by McCarthy (1962)
as one of the applications of a proposed mathematical science of
computation. Work by Floyd (1967) and Naur (1966) explicitly in
troduced the idea of invariant assertions. A collection of papers in a book
by Manna and Waldinger (1977) describe logic-based methods for
program verification, synthesis, and debugging.

03.7. COMBINATORIAL AND SCHEDULING PROBLEMS

Scheduling problems are usually studied in operations research. Good
general references are the books by Wagner (1975) and by Hillier and
Lieberman (1974). For a discussion of NP-complete problems and other
topics in the mathematical analysis of algorithms, see the book by Aho,
Hopcroft, and Ullman (1974). Lamiere (1978) presents a computer
language and a system for solving combinatorial problems using AI
methods.

14

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

0.3.8. PERCEPTION PROBLEMS

Many good papers on the problems of visual perception by machine
are contained in volumes edited by Hansen and Riseman (1978) and by
Winston (1975). Representative systems for processing visual images
include those of Barrow and Tenenbaum (1976) and Shirai (1978). An
important paper by Marr (1976) theorizes about the computational and
representational mechanisms of human vision. Kanade (1977) reviews
some of the important general aspects of vision systems, and Agin (1977)
surveys some of the uses of vision systems in industrial automation.

A book by Duda and Hart (1973) describes some of the fundamentals
of computer vision. International Joint Conferences on Pattern Recogni
tion are regularly held and proceedings are published by the IEEE. The
Information Processing Techniques Office of the U. S. Defense Ad
vanced Research Projects Agency sponsors Image Understanding Work
shops; proceedings of these workshops are available.

0.3.9. OTHER APPLICATIONS

Applications of AI ideas have been made in other areas as well.
Latombe (1977) and Sussman (1977) describe systems for automatic
design; Brown (1977) discusses applications in education; and Gelernter
et al. (1977) and Wipke, Ouchi, and Krishnan (1978) have developed
systems for organic chemical synthesis.

03.10. IMPORTANT SOURCE MATERIALS

In addition to the books already mentioned, several volumes of
collected papers are cited at the beginning of the bibliography. These
include a series of nine volumes called Machine Intelligence (MI) and a
volume entitled Computers and Thought (CT) of important early papers
edited by Feigenbaum and Feldman (1963).

The international journal Artificial Intelligence is a primary publica
tion medium for papers in the field. AI papers are also published in the
Journal of the Association for Computing Machinery (JACM), the
Communications of the Association for Computing Machinery (CACM),
and in various publications of the Institute of Electrical and Electronic
Engineers (IEEE).

15

PROLOGUE

International Joint Conferences on Artificial Intelligence (IJCAI) have
been held biannually since 1969. The Association for Computing
Machinery (ACM) publishes a newsletter devoted to AI called the
SIGART Newsletter. In Britain, the Society for the Study of Artificial
Intelligence and Simulation of Behavior publishes the AISB Quarterly
and holds biannual summer conferences. The Canadian Society for
Computational Studies of Intelligence (CSCSI/SCEIO) publishes an
occasional newsletter.

Some of the topics treated in this book assume some familiarity with
the programming language LISP. For a readable introduction, see the
book by Weissman (1967). Friedman (1974) is an entertaining pro
grammed instruction manual. For a more technical treatment, see the
book by Allen (1978).

16

CHAPTER 1

PRODUCTION SYSTEMS AND AI

Most AI systems display a more or less rigid separation between the
standard computational components of data, operations, and control.
That is, if these systems are described at an appropriate level, one can
often identify a central entity that might be called & global database that is
manipulated by certain well-defined operations, all under the control of
some global control strategy. We stress the importance of identifying an
appropriate level of description; near the machine-code level, any neat
separation into distinct components can disappear; at the top level, the
complete AI system can consist of several database/operations/control
modules interacting in a complex fashion. Our point is that a system
consisting of separate database, operations, and control components
represents an appropriate metaphorical building block for constructing
lucid descriptions of AI systems.

1.1. PRODUCTION SYSTEMS

Various generalizations of the computational formalism known as a
production system involve a clean separation of these computational
components and thus seem to capture the essence of operation of many
AI systems. The major elements of an AI production system are a. global
database, a set of production rules, and a control system.

The global database is the central data structure used by an AI
production system. Depending on the application, this database may be
as simple as a small matrix of numbers or as complex as a large, relational,
indexed file structure. (The reader should not confuse the phrase "global
database," as it is used in this book, with the databases of database
systems.)

17

PRODUCTION SYSTEMS AND AI

The production rules operate on the global database. Each rule has a
precondition that is either satisfied or not by the global database. If the
precondition is satisfied, the rule can be applied. Application of the rule
changes the database. The control system chooses which applicable rule
should be applied and ceases computation when a termination condition
on the global database is satisfied.

There are several differences between this production system structure
and conventional computational systems that use hierarchically organ
ized programs. The global database can be accessed by all of the rules; no
part of it is local to any of them in particular. Rules do not "call" other
rules; communication between rules occurs only through the global
database. These features of production systems are compatible with the
evolutionary development of large AI systems requiring extensive
knowledge. One difficulty with using conventional systems of hierarchi
cally organized programs in AI applications is that additions or changes
to the knowledge base might require extensive changes to the various
existing programs, data structures, and subroutine organization. The
production system design is much more modular, and changes to the
database, to the control system, or to the rules can be made relatively
independently.

We shall distinguish several varieties of production systems. These
differ in the kinds of control systems they use, in properties of their rules
and databases, and in the ways in which they are applied to specific
problems.

As a short example of what we mean by an AI production system, we
shall illustrate how one is used to solve a simple puzzle.

1.1.1. THE8-PUZZLE

Many AI applications involve composing a sequence of operations.
Controlling the actions of a robot and automatic programming are two
examples. A simple and perhaps familiar problem of this sort, useful for
illustrating basic ideas, is the 8-puzzle. The 8-puzzle consists of eight
numbered, movable tiles set in a 3 X 3 frame. One cell of the frame is
always empty thus making it possible to move an adjacent numbered tile
into the empty cell—or, we could say, to move the empty cell. Such a
puzzle is illustrated in Figure 1.1. Two configurations of tiles are given.
Consider the problem of changing the initial configuration into the goal

18

PRODUCTION SYSTEMS

configuration. A solution to the problem is an appropriate sequence of
moves, such as "move tile 6 down, move tile 8 down, . . . , etc."

To solve a problem using a production system, we must specify the
global database, the rules, and the control strategy. Transforming a
problem statement into these three components of a production system is
often called the representation problem in AI. Usually there are several
ways to so represent a problem. Selecting a good representation is one of
the important arts involved in applying AI techniques to practical
problems.

For the 8-puzzle and certain other problems, we can easily identify
elements of the problem that correspond to these three components.
These elements are the problem states, moves, and goal. In the 8-puzzle,
each tile configuration is a problem state. The set of all possible
configurations is the space of problem states or the problem space. Many
of the problems in which we are interested have very large problem
spaces. The 8-puzzle has a relatively small space; there are only 362,880
(that is, 9!) different configurations of the 8 tiles and the blank space.
(This space happens to be partitioned into two disjoint subspaces of
181,440 states each.)

Once the problem states have been conceptually identified, we must
construct a computer representation, or description, of them. This
description is then used as the global database of a production system.
For the 8-puzzle, a straightforward description is a 3 X 3 array or matrix
of numbers. The initial global database is this description of the initial
problem state. Virtually any kind of data structure can be used to
describe states. These include symbol strings, vectors, sets, arrays, trees,
and lists. Sometimes, as in the 8-puzzle, the form of the data structure
bears a close resemblance to some physical property of the problem being
solved.

1
8

J_

2

6

3
4
5

2
1
7

8
6

3
4
5

Initial Goal

Fig. 1.1 Initial and goal configurations for the 8-puzzle.

19

PRODUCTION SYSTEMS AND AI

A move transforms one problem state into another state. The 8-puzzle
is conveniently interpreted as having the following four moves: Move
empty space (blank) to the left, move blank up, move blank to the right,
and move blank down. These moves are modeled by production rules
that operate on the state descriptions in the appropriate manner. The
rules each have preconditions that must be satisfied by a state description
in order for them to be applicable to that state description. Thus, the
precondition for the rule associated with "move blank up" is derived
from the requirement that the blank space must not already be in the top
row.

In the 8-puzzle, we are asked to produce a particular problem state,
namely, the goal state shown in Figure 1.1. We can also deal with
problems for which the goal is to achieve any one of an explicit list of
problem states. A further generalization is to specify some true/false
condition on states to serve as a goal condition. Then the goal would be to
achieve any state satisfying this condition. Such a condition implicitly
defines some set of goal states. For example, in the 8-puzzle, we might
want to achieve any tile configuration for which the sum of the numbers
labeling the tiles in the first row is 6. In our language of states, moves, and
goals, a solution to a problem is a sequence of moves that transforms an
initial state into a goal state.

The problem goal condition forms the basis for the termination
condition of the production system. The control strategy repeatedly
applies rules to state descriptions until a description of a goal state is
produced. It also keeps track of the rules that have been applied so that it
can compose them into the sequence representing the problem solution.

In certain problems, we want the solution to be subject to certain
additional constraints. For example, we may want the solution to our
8-puzzle problem having the smallest number of moves. In general we
ascribe a cost to each move and then attempt to find a solution having
minimal cost. These elaborations can easily be handled by methods we
describe later on.

1.1.2. THE BASIC PROCEDURE

The basic production system algorithm for solving a problem like the
8-puzzle can be written in nondeterministic form as follows:

20

PRODUCTION SYSTEMS

Procedure PRODUCTION

1 DA TA 4- initial database

2 until DA TA satisfies the termination condition, do:

3 begin

4 select some rule, R, in the set of rules
that can be applied to DA TA

5 DA TA <- result of applying R to DA TA

6 end

1.13. CONTROL

The above procedure is nondeterministic because we have not yet
specified precisely how we are going to select an applicable rule in
statement 4. Selecting rules and keeping track of those sequences of rules
already tried and the databases they produced constitute what we call the
control strategy for production systems. In most AI applications, the
information available to the control strategy is not sufficient to permit
selection of the most appropriate rule on every pass through step 4. The
operation of AI production systems can thus be characterized as a search
process in which rules are tried until some sequence of them is found that
produces a database satisfying the termination condition. Efficient
control strategies require enough knowledge about the problem being
solved so that the rule selected in step 4 has a good chance of being the
most appropriate one.

We distinguish two major kinds of control strategies: irrevocable and
tentative. In an irrevocable control regime, an applicable rule is selected
and applied irrevocably without provision for reconsideration later. In a
tentative control regime, an applicable rule is selected (either arbitrarily
or perhaps with some good reason), the rule is applied, but provision is
made to return later to this point in the computation to apply some other
rule.

We further distinguish two different types of tentative control regimes.
In one, which we call backtracking, a backtracking point is established

21

PRODUCTION SYSTEMS AND AI

when a rule is selected. Should subsequent computation encounter
difficulty in producing a solution, the state of the computation reverts to
the previous backtracking point, where another rule is applied instead,
and the process continues.

In the second type of tentative control regime, which we call
graph-search control, provision is made for keeping track of the effects of
several sequences of rules simultaneously. Various kinds of graph
structures and graph searching procedures are used in this type of
control.

1.1.4. EXAMPLES OF CONTROL REGIMES

1.1.4.1. Irrevocable. At first thought, it might seem that an irrevocable
control regime would never be appropriate for production systems
expected to solve problems requiring search. Trial-and-error methods
seem to be inherent in solving puzzles, for example. One might argue that
if a control strategy of a production system possessed sufficient know
ledge about a puzzle to select irrevocably an appropriate rule to apply to
each state description, then it would have the puzzle's solution built into
it and, if so, can hardly be said to have "solved" the puzzle, for it already
knew the solution. Such an argument fails to acknowledge the distinction
between the explicit local knowledge, about how to proceed toward a goal
from any state, and the implicit global knowledge, of the complete
solution. When infallible local knowledge is available, an irrevocable
production system can use it to construct the explicit global knowledge of
a solution (without having the explicit global knowledge originally).

Outside of AI, one of the most common examples of the use of local
knowledge to construct a global solution is in the "hill-climbing" process
of finding the maximum of a function. At any point, we proceed in the
direction of the steepest gradient (the local knowledge) to find eventually
a maximum of the function (the global knowledge). For certain kinds of
functions (those with a single maximum and certain other properties),
knowledge of the direction of the steepest gradient is sufficient to find a
solution.

We can use the hill-climbing process directly in an irrevocable
production system. We need only some real-valued function on the
global databases. The control strategy uses this function to select a rule. It

22

PRODUCTION SYSTEMS

selects (irrevocably) the applicable rule that produces a database giving
the largest increase in the value of the function. Our hill-climbing
function must be such that it attains its highest value for a database
satisfying the termination condition.

Applying hill-climbing to the 8-puzzle we might use, as a function of
the state description, the negative of the number of tiles "out of place," as
compared to the goal state description. For example, the value of this
function for the initial state in Figure 1.1 is — 4, and the value for the goal
state is 0. We can easily compute the value of this function for any state
description.

From the initial state, we achieve maximum increase in the value of
this function by moving the blank up, so our production system selects
the corresponding rule. In Figure 1.2 we show the sequence of states
traversed by such a production system in solving this puzzle. The value of
our hill-climbing function for each state description is circled. The figure
shows that one of the rule applications along the path did not increase the
value of our function. If none of the applicable rules permits an increase
in the value of our function, a rule is selected (arbitrarily) that does not
diminish the value. If there are no such rules, the process halts.

& \2
1

LL

8
6

3
4
5

®
ΓΓ
8

L l

2

6

3
4
5

Q>
2
1
7

8

6

3
4
5

Θ
1

7

2
8
6

3
4
5

<3>
2 |
1 1
7l<

© ■
1 **

" l i
7|<

ΊΤ]
JU
>15]

1

>|3
! 4
> l 5 i

Fig. 1.2 Hill-climbing values for states of the 8-puzzle.

23

PRODUCTION SYSTEMS AND AI

For the instance of the 8-puzzle in Figure 1.2, the hill-climbing
strategy allowed us to find a path to a goal state. In general, however,
hill-climbing functions can have multiple local maxima, which frustrates
hill-climbing methods. For example, suppose the goal state is

123
74

8 6 5

and the initial state is

125
74

8 6 3

Any applicable rule applied to the initial state description lowers the
value of our hill-climbing function. In this case the initial state descrip
tion is at a local (but not a global) maximum of the function.

Other types of hill-climbing frustrations also occur: The process may
get stuck on "plateaus" and "ridges." Of course, these difficulties could
be solved if we could devise a better behaved hill-climbing func
tion—one that had just one global maximum and no plateaus, for
example. Easily computable functions for problems of interest in AI
typically have some of the difficulties we have mentioned. Thus, the use
of hill-climbing methods to guide rule selection in irrevocable produc
tion systems is quite limited.

Even though the control strategy cannot always select the best rule to
apply at any stage, there are times where an irrevocable regime is
appropriate. For example, if the application of what might turn out to be
an inappropriate rule does not foreclose a subsequent application of an
appropriate rule, nothing (other than making superfluous rule applica
tions) is risked by applying rules irrevocably. We shall see some examples
of this possibility later.

1.1.4.2. Backtracking. In many problems of interest, applying an
inappropriate rule may prevent or substantially delay successful termi
nation. In these cases, we want a control strategy that can try a rule and, if
it later discovers that this rule was inappropriate, can go back and try
another one instead.

24

PRODUCTION SYSTEMS

The backtracking process is one way in which the control strategy can
be tentative. A rule is selected, and if it doesn't lead to a solution, the
intervening steps are "forgotten," and another rule is selected instead.
Formally, the backtracking strategy can be used regardless of how much
or how little knowledge is available to bear on rule selection. If no
knowledge is available, rules can be selected according to some arbitrary
scheme. Ultimately, control will backtrack to select the appropriate rule.
Obviously, if good rule-selection knowledge can be used, backing up to
consider alternative rules will occur less often, and the whole process will
be more efficient.

As an example, let us apply the backtracking strategy to our 8-puzzle
example of Figure 1.1 where rules are selected according to the arbitrary
scheme of first attempting to move the blank square left, then up, then
right, then down. Backing up will occur (a) whenever we generate a state
description that already occurs on the path back to the initial state
description, (b) whenever we have applied an arbitrarily set number of
rules without having generated a goal state description, or (c) whenever
there are no (more) applicable rules. In (b) above, the number chosen is
the depth bound of this backtracking process. In Figure 1.3 we show a
sequence of tentative rule applications and backups to illustrate how
backtracking might be applied to the 8-puzzle. In Figure 1.3, each state
description is labeled by a (circled) number to indicate its order in the
sequence of state descriptions produced by the production system. We
cannot depict the entire search for a solution in the figure; it is too
extensive. Eventually though, a solution path will be found, because all
possible paths (of length less than 6) will be explored. Note that if the
depth bound is set too low, the process may not find a solution.

The backtracking process is more efficient if rule selection is not
arbitrary but is instead guided by information about what might be the
best move. If this information is reasonably reliable, then the appropriate
rule will usually be selected and there will be little need for backing up. In
the 8-puzzle, for example, we might use a hill-climbing function as the
means for selecting a rule. Whereas hill-climbing with an irrevocable
control regime might get stuck on local maxima, backtracking allows
alternative paths to be pursued.

1.1.43. Graph Search. Graphs (or more specially, trees) are extremely
useful structures for keeping track of the effects of several sequences of
rules. We will be discussing these structures in much more detail in
chapters 2 and 3, giving only a short example here of their use.

25

PRODUCTION SYSTEMS AND AI

©
[2
1

17

T
6

T
4
5

©1
|2
1

8
6
7

3
4
5

® 1
r
Li

8
6
7

3
4
5

©1
2

Li
8
6
7

3
4
5

©1 T
2

Li
6
7

3
4
5

©1
2

8

7
4
il

©
IT
2

l i
6
7

TI
4
5

©1
IT
2

Li

3
6
7

4
5

©1 T
2

7
4
il

©

Again, this repeats
one on the path, so
we retract the last
move and apply
"move blank down"
to state (6) instead.
Continuation is in the
next column.

This state occurs on
the path back to the
initial state, so we
retract the last move
and apply "move
blank right" to state
© instead. Continu
ation is in the next
column.

T
2

LL

3
6
7

41
5

© 1 T
2

3
/

llii
A
ii

©

We have now ap
plied six rules with
out reaching the
goal, so we retract
the last move. There
are no more untried
rules to apply to the
previous state
(number ©), so we
retract the next-to
the-last move also
and apply "move
blank down" to
state (5) . Continua
tion is in the next
column.

ΓΤ
2

Li
6
7

T
4
5

©1
ΓΤ
2

[l_

6

7

3
4
5

©1
r 6

7
4
ll

Again, we have ap
plied six rules with
out reaching a goal,
so, etc.

Fig. 1.3 A backtracking control strategy applied to the 8-puzzle.

26

PRODUCTION SYSTEMS

Suppose we decide to use a graph-search control regime in solving the
8-puzzle problem posed in Figure 1.1. We can keep track of the various
rules applied and the databases produced by a structure called a search
tree. An example of such a tree is in Figure 1.4. At the top or root of the
tree is a description of the initial configuration. The various rules that can
be applied correspond to links or directed arcs to descendant nodes,
representing those states that can be reached by just one move from the
initial state. A graph-search control strategy grows such a tree until a
database is produced that satisfies the termination condition.

In Figure 1.4, we show all applicable rules being applied to every state
description. This sort of indecision on the part of the control system is
usually grossly inefficient because the resulting tree grows too rapidly. An
intelligent control strategy would grow a much narrower tree, using its
special knowledge to focus the growth more directly toward the goal. We
shall be discussing several methods for achieving such focusing in
chapter 2.

Even though we use graphs of this sort only with graph-search control
regimes, it is useful to notice that an irrevocable control regime
corresponds to following just a single path down through the search tree.
(We have already seen that such a simple strategy can sometimes be
usefully employed.) A backtracking regime does not maintain the entire
search tree structure; it merely keeps track of the path that it is working
on currently, modifying it when necessary.

1.1.5. PROBLEMS OF REPRESENTATION

Efficient problem solution requires more than an efficient control
strategy. It requires selecting good representations for problem states,
moves, and goal conditions. The representation of a problem has a great
influence on the effort needed to solve it. Obviously one prefers
representations with small state spaces. There are many examples of
seemingly difficult puzzles that, when represented appropriately, have
trivially small state spaces. Sometimes a given state space can be
collapsed by recognizing that certain rules can be discarded or that rules
can be combined to make more powerful ones. Even when such simple
transformations cannot be achieved, it is possible that a complete
reformulation of the problem (changing the very notion of what a state is,
for example) will result in a smaller space.

27

io

oo

/ 8
■

3
:

6
4

1
7

5 Λ

8
3

"1

:
h

4
1

7
5;

|

\
|8

0

3
:

■
4

|l
7

5

■
:

3|

6
8

4
1

7
5|

 1:

3
■

6
8

4
|l

7

5

> 2
8

3
6

7
4

1
■

5 Λ

2
8

3
1

6
7

4
■

1
5

|

\
12

8

3
6

7
4

|l
5

■

2
8

3
■

1
4

7
6

5

■
8

3
2

1
4

7
6

5

8
■

3
2

1
4

7
6

5 A

,
/

,
8

3
■]

2

1
4

7
6

5|
 ,\

,

|8

1
3

2
■

4
\l

6
5

2
8

3
7

1
4

■
6

5

2
8

3
7

1
4

6
■

5

TV

,
/

,
2

8
3

I
7

■
4

6
1

5|
 ,\

,

1
2

8
3

7
1

4
|ó

5

■

|2
"

3
|

1
8

4
7

6
S

1"

2
3

[1
2

3
"1

Il

8

4
1

8
4

1
7

6
51

 1
 7

 6
 5

 |

Il

2
3

|
|2

3

4
|

■
8

4
1

8
■

1
7

6
5

1
1

7
6

5
|

,h
>,

Il

2
3

|
Il

2

31

8
«

4
7

8
4

1
7

6
5

1
| ■

 6
 5

 1
 2

8
"1

1

4
3

7
6

5|
 1

2
8

3
1

4
5

|7

(i
■

2
■

8|

1
4

3
7

6
5|

 1
2

8
3

1
4

5
1

7
■

β

o a e n H
 1 er
 < Vi

H

W

F/
^.

 1
.4

 A
 s

ea
rc

h
tre

e f
or

 t
he

 8
-p

uz
zle

.

PRODUCTION SYSTEMS

The processes required to represent problems initially and to improve
given representations are still poorly understood. It seems that desirable
shifts in a problem's representation depend on experience gained in
attempts to solve it in a given representation. This experience allows us to
recognize the occurrence of simplifying notions, such as symmetries, or
useful sequences of rules that ought to be combined into macro-rules.
For example, an initial representation of the 8-puzzle might specify the
32 rules corresponding to: move tile 1 left, move tile 1 right, move tile 1
up, move tile 1 down, move tile 2 left, etc. Of course, most of these rules
are never applicable to any given state description. After this fact
becomes apparent to a problem solver, he would perhaps hit upon the
better representation involving moving just the blank space.

We shall next examine two more example problems to illustrate how
they might be represented for solution by a production system.

1.1.6. SOME EXAMPLE PROBLEM REPRESENTATIONS

A wide variety of problems can be set up for solution by our
production system approach. The formulations that we use in the
following examples do not necessarily represent the only ways in which
these problems can be solved. The reader may be able to think of good
alternatives.

1.1.6.1. A Traveling Salesman Problem. A salesman must visit each of
the 5 cities shown in the map of Figure 1.5. There is a road between every
pair of cities, and the distance is given next to the road. Starting at city A,
the problem is to find a route of minimal distance that visits each of the
cities only once and returns to A.

D

Fig. 1.5 A map for the traveling salesman problem.

29

PRODUCTION SYSTEMS AND AI

Initial
(A)

(AB)

A·

Fig. 1.6 A search tree for the traveling salesman problem.

To set up this problem we specify the following:

The global database shall be a list of the cities
visited so far. Thus the initial database is
described by the list (A). We do not allow
lists that name any city more than once,
except that after all of the other cities have
been named, A can be named again.

The rules correspond to the decisions (a) go
to city A next, (b) go to city B next, . . . , and
(e) go to city E next. A rule is not applicable
to a database unless it transforms it into some
legal one. Thus the rule corresponding to "go
to city A next" is not applicable to any list not
already naming all of the cities.

Any global database beginning and ending
with A and naming all of the other cities

30

(AC) (AD) (AE)

\
(ACD)

• t · ·
/ \ / \ 6 M / \

I \ / 1 / \ / \

(ACDE)

0

l Ts I
I \ i \ I \

I \ I \ I \
I \ I \ I \

i \
(ACDEB)

/
(ACDEB A)

Goal

PRODUCTION SYSTEMS

satisfies the termination condition. Notice that
we can use the distance chart of Figure 1.5 to
compute the total distance for any trip. Any
trip proposed as a solution must be of
minimal distance.

Figure 1.6 shows part of the search tree that might be generated by a
graph-search control strategy in solving this problem. The numbers next
to the edges of the tree are the increments of distance added to the trip by
applying the corresponding rule.

1.1.6.2. A Syntax Analysis Problem. Another problem we might want
to solve using a production system approach is whether an arbitrary
sequence of symbols is a sentence in a language; that is, could it have been
generated by a grammar. Deciding whether a symbol string is a sentence
is called the parsing problem, and production systems can be used to do
parsing.

Suppose we are given a simple context-free grammar that defines a
language. As an example, let the grammar contain the following terminal
symbols,

of approves new president company sale the

and the following non-terminal symbols,

S NP VP PP P V DNP DET A N.

The grammar is defined by the following rewrite rules:

DNP VP -+
V DNP -+
P DNP ->
of -» P
approves —»
DET NP -H>
DNP PP -+

S
VP
PP

V
DNP
DNP

A NP -^ NP
N -> NP
new —> A
president —>
company —>
sale —» N
the -> DET

N
N

31

PRODUCTION SYSTEMS AND AI

This grammar is too simple to be useful in analyzing most English
sentences, but it could be expanded to make it a bit more realistic.

Suppose we wanted to determine whether or not the following string of
symbols is a sentence in the language:

The president of the new company approves the sale

To set up this problem, we specify the following:

The global database shall consist of a string of
symbols. The initial database is the given
string of symbols that we want to test.

The production rules are derived from the
rewrite rules of the grammar. The right-hand
side of a grammar rule can replace any
occurrence of the left-hand side in a database.
For example, the grammar rule
DNP VP —» S is used to change any
database containing the subsequence
DNP VP to one in which this subsequence
is replaced by S. A rule is not applicable if
the database does not contain the left-hand
side of the corresponding grammar rule. Also,
a rule may be applicable to a database in
different ways, corresponding to different
occurrences of the left-hand side of the
grammar rule in the database.

Only that database consisting of the single
symbol S satisfies the termination condition.

Part of a search tree for this problem is shown in Figure 1.7. In this
simple example, aside from different possible orderings of rule applica
tions, there is very little branching in the tree.

1.1.7. BACKWARD AND BIDIRECTIONAL PRODUCTION
SYSTEMS

We might say that our production system for solving the 8-puzzle
v/orkedforward from the initial state to a goal state. Thus, we could call it

32

PRODUCTION SYSTEMS

di forward production system. We could also have solved the problem in a
backward direction, by starting at the goal state, applying inverse moves,
and working toward the initial state. Each inverse move would produce a
subgoal state from which the immediately superordinate goal state could
be reached by one forward move. A production system for solving the
8-puzzle in this manner would merely reverse the roles of states and goals
and would use rules that correspond to inverse moves.

Setting up a backward-directed production system in the case of the
8-puzzle is simple because the goal is described by an explicit state. We
can also set up backward-directed production systems when the goal is
described by a condition. We discuss this situation later, after introducing
an appropriate language (predicate logic) for talking about goals de
scribed by conditions.

Initial

The president of the new company approves the sale

I This sequence of rules replaces terminal
! symbols by non-terminal symbols.

DET N P DET A N V DET N

i Another sequence produces
| the following string:

DNP P S

lothing more can t >e

DNP PP VP

\ 1

DNP VP]

1
Π Goa

Fig. 1.7 A search tree for the syntax analysis problem.

33

PRODUCTION SYSTEMS AND AI

Although there is no formal difference between a production system
that works on a problem in a forward direction and one that works in a
backward direction, it is often convenient to make this distinction
explicit. When a problem has intuitively clear states and goals and when
we choose to employ descriptions of these states as the global database of
a production system, we say that the system is a forward production
system. Rules are applied to the state descriptions to produce new state
descriptions, and these rules are called F-rules. If, instead, we choose to
employ problem goal descriptions as the global database, we shall say
that the system is a backward production system. Then, rules are applied
to goal descriptions to produce subgoal descriptions, and these rules will
be called B-rules.

In the 8-puzzle, with a single initial state and a single goal state, it
makes no difference whether the problem is solved in the forward or the
backward direction. The computational effort is the same for both
directions. There are occasions, however, when it is more efficient to solve
a problem in one direction rather than the other. Suppose, for example,
that there were a large number of explicit goal states and one initial state.
It would not be very efficient to try to solve such a problem in the
backward direction; we do not know a priori which goal state is "closest"
to the initial state, and we would have to begin a search from all of them.
The most efficient solution direction, in general, depends on the structure
of the state space.

It is often a good idea to attempt a solution to a problem searching
bidirectionally (that is, both forward and backward simultaneously). We
can achieve this effect with production systems also. To do so, we must
incorporate both state descriptions and goal descriptions into the global
database. F-rules are applied to the state description part, while B-rules
are applied to the goal description part. In this type of search, the
termination condition to be used by the control system (to decide when
the problem is solved) must be stated as some type of matching condition
between the state description part and the goal description part of the
global database. The control system must also decide at every stage
whether to apply an applicable F-rule or an applicable B-rule.

34

SPECIALIZED PRODUCTION SYSTEMS

1.2. SPECIALIZED PRODUCTION SYSTEMS

1.2.1. COMMUTATIVE PRODUCTION SYSTEMS

Under certain conditions, the order in which a set of applicable rules is
applied to a database is unimportant. When these conditions are satisfied,
a production system improves its efficiency by avoiding needless explo
ration of redundant solution paths that are all equivalent except for rule
ordering.

In Figure 1.8 we have three rules, Rl, R2, and R3, that are applicable
to the database denoted by SO. After applying any one of these rules, all
three rules are still applicable to the resulting databases; after applying
any pair in sequence, the three are still applicable. Furthermore, Figure
1.8 demonstrates that the same database, namely SG, is achieved
regardless of the sequence of rules applied in the set {Rl, R2, R3}.

We say that a production system is commutative if it has the following
properties with respect to any database D :

(a) Each member of the set of rules applicable to D
is also applicable to any database produced by
applying an applicable rule to D.

(b) If the goal condition is satisfied by Z), then it is also
satisfied by any database produced by applying any
applicable rule to D.

(c) The database that results by applying to D any
sequence composed of rules that are applicable to
D is invariant under permutations of the sequence.

The rule applications in Figure 1.8 possess this commutative property.
In producing the database denoted by SG in Figure 1.8, we clearly need
consider only one of the many paths shown. Methods for avoiding
exploration of redundant paths are obviously of great importance for
commutative systems.

Note that commutativity of a system does not mean that the entire
sequence of rules used to transform a given database into one satisfying a
certain condition can be reordered. After a rule is applied to a database,
additional rules might become applicable. Only those rules that are
initially applicable to a database can be organized into an arbitrary
sequence and applied to that database to produce a result independent of
order. This distinction is important.

35

PRODUCTION SYSTEMS AND AI

Fig. 1.8 Equivalent paths in a graph.

Commutative production systems are an important subclass enjoying
special properties. For example, an irrevocable control regime can always
be used in a commutative system because the application of a rule never
needs to be taken back or undone. Any rule that was applicable to an
earlier database is still applicable to the current one. There is no need to
provide a mechanism for applying alternative sequences of rules.
Applying an inappropriate rule delays, but never prevents, termination;
after termination, extraneous rules can be removed from the solution
sequence. We have occasion later to investigate commutative systems in
more detail.

It is interesting to note that there is a simple way to transform any
production system into a commutative one. Suppose we have already
represented a problem for solution by a production system. Imagine that
this production system has a global database, rules that can modify it, and
a graph-search control strategy that generates a search tree of global
databases. Now consider another production system whose global
database is the entire search tree of the first. The rules of the new
production system represent the various ways in which a search tree can
be modified by the action of the control strategy of the first production
system. Clearly, any rules of the second system that are applicable at any

36

SPECIALIZED PRODUCTION SYSTEMS

stage remain applicable thereafter. The second system explicitly em
bodies in its commutative properties the nondeterministic tentativeness
that we conferred upon the control strategy of the first system. Employ
ing this conversion results in a more complex global database and rule set
and in a simpler sort of control regime (irrevocable). This change in
representation simply shifts the system description to a lower level.

1.2.2. DECOMPOSABLE PRODUCTION SYSTEMS

Commutativity is not the only condition whose fulfillment permits a
certain freedom in the order in which rules are applied.

Consider, for example, a system whose initial database is (C,2?,Z),
whose production rules are based on the following rewrite rules,

Rl: C^>(D,L)
R2: C-»(J?,M)
R3: B->(M,M)
R4: Ζ^(Β,Β,Μ)

and whose termination condition is that the database contain only Ms.

A graph-search control regime might explore many equivalent paths in
producing a database containing only Ms. Two of these are shown in
Figure 1.9. Redundant paths can lead to inefficiencies because the control
strategy might attempt to explore all of them, but worse than this, in
exploring paths that do not terminate successfully, the system may
nevertheless do much useful work that ultimately is wasted. (Many of the
rule applications in the right-hand branch of the tree in Figure 1.9 are
ones needed in a solution.)

One way to avoid the exploration of these redundant paths is to
recognize that the initial database can be decomposed or split into
separate components that can be processed independently. In our
example, the initial database can be split into the components C, B, and
Z. Production rules can be applied to each of these components
independently (possibly in parallel); the results of these applications can
also be split, and so on, until each component database contains only Ms.

AI production systems often have global databases that are decom
posable in this manner. Metaphorically, we might imagine that such a

37

PRODUCTION SYSTEMS AND AI

global database is a "molecule" consisting of individual "atoms" bound
together in some way. If the applicability conditions of the rules involve
tests on individual atoms only, and if the effects of the rules are to
substitute a qualifying atom by some new molecule (that, in turn, is
composed of atoms), then we might as well split the molecule into its
atomic components and work on each part separately and independently.
Each rule application affects only that component of the global database
used to establish the precondition of the rule. Since some of the rules are
being applied essentially in parallel, their order is unimportant.

In order to decompose a database, we must also be able to decompose
the termination condition. That is, if we are to work on each component
separately, we must be able to express the global termination condition
using the termination conditions of each of the components. The most
important case occurs when the global termination condition can be
expressed as the conjunction of the same termination condition for each
component database. Unless otherwise stated, we shall always assume
this case.

nitial

(Β,Μ,Β,Ζ)

RS
r

(Μ,Μ,Μ,Β,Ζ)

RS
r

(Μ,Μ,Μ,Μ,Μ,Ζ)

R4
' ̂ ■ —' '

(Μ,Μ,Μ,Μ,Μ,Β,Β,Μ) J
RS

'
(Μ,Μ,Μ,Μ,Μ,Μ,Μ,Β,Μ) 1

R3
Goal

(Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,ΜΜ

(C,B,B,B,M)

R2

(Β,Μ,Β,Β,Β,Μ)

RS

(Μ,Μ,Μ,Β,Β,Β,Μ)

R3

(D,L,B,Z)

R3 \
(D,L,M,M,Z)

R4
r

(D,L,M,M,B,B,M)

R3
1 1

1 (D,L,M,M,M,M,B,M)

R3
< 1

(D,L,M,MMMMMM)

Fig. 1.9 Solution sequences for a rewriting problem.

38

SPECIALIZED PRODUCTION SYSTEMS

Production systems that are able to decompose their global databases
and termination conditions are called decomposable. The basic procedure
for a decomposable production system might look something like the
following:

Procedure SPLIT

1 DATA c initial database

2 { Di } t- decomposition of DATA ; the individual Di are
now regarded as separate databases

3 until all { Di} satisfy the termination condition, do:

4 begin

5 select D* from among those { D i } that do not
satisfy the termination condition

6 remove D* from { Di}

7 select some rule R in the set of rules that can be
applied to D*

8 D c result of applying R to D*

9 { di } f- decomposition of D

10 append { d i } to { D i }

1 1 end

The control strategy for SPLIT must select a component database, D*, in
Step 5 and must select a rule, R, to apply in Step 7. Whatever the form of
this strategy, in order to satisfy Step 3, it must ultimately select aZl the
elements in { D i } . For any D* selected, though, it need only select one
applicable rule.

Even though processing component databases in parallel is possible,
we are typically interested in control strategies that process them in some
serial order. There are two major ways to order the components: (a) the
components can either be arranged in some fixed order at the time they

39

PRODUCTION SYSTEMS AND AI

are generated, or (b) they can be dynamically reordered during process
ing. In the former mode, each component is processed to completion
before processing begins on the next. Of course, when a production rule
is applied to a component, a database may result that can itself be split.
The components of this database are processed in order also. Typically, a
backtracking strategy for making rule selections is used in conjunction
with this fixed-order strategy for processing components.

More flexible control strategies for decomposable production systems
allow the component databases to be reordered dynamically as the
processing unfolds. Structures called AND /OR graphs are useful for
depicting the activity of production systems under this control regime.
We show an example AND/OR tree for our rewrite problem in Figure
1.10. Just as with ordinary graphs, an AND/OR graph consists of nodes
labeled by global databases. Nodes labeled by compound databases have
sets of successor nodes each labeled by one of the components. These
successor nodes are called AND nodes because in order to process the
compound database to termination, all of the component databases must
be processed to termination. Sets of AND nodes are so indicated in our
illustrations by a circular mark linking their incoming arcs.

{M,M)

ZL JSL
M

Fig. 1.10 An AND/OR tree for a rewriting problem.

40

SPECIALIZED PRODUCTION SYSTEMS

Rules can be applied to component databases. Nodes labeled by these
component databases have successor nodes labeled by the results of rule
applications. These successor nodes are called OR nodes because in order
to process a component database to termination, the database resulting
from just one of the rule applications must be processed to termination.

In Figure 1.10, any node corresponding to a component database
satisfying the termination condition (in this case consisting of the symbol
M) is enclosed in a double box. Such nodes are called terminal nodes.
(We could also have drawn the tree of Figure 1.10 as a graph. For
example, the database (M,M) occurs as four nodes in Figure 1.10, and
these could have been collapsed into one.)

A solution to this rewriting problem can be illustrated by a subgraph of
the AND/OR graph. Such a solution subgraph is shown by darkened
branches in Figure 1.10. It is a graph whose "tip nodes" correspond to
databases that each satisfy the termination condition. We shall discuss
strategies for searching AND/OR graphs to find solution graphs in
chapter 3.

We next discuss how decomposable production systems can be used on
some example problems.

1.2.2.1. Chemical Structure Generation. An important problem in
organic chemistry involves determining the structure of a complex
organic compound, given certain experimental data such as a mass
spectrogram of a sample of the compound. A large AI system called
DENDRAL can propose plausible structures for rather complex com
pounds. An important part of the DENDRAL system involves the
generation of candidate structures, given the chemical formula of the
compound. A full explanation of how these candidate structures are
generated is beyond the scope of our present discussion, but we can give a
brief description of how the process works for a simple hydrocarbon.

The system for generating candidate structures can be viewed as a
production system. The global database is a "partially structured"
compound. The production system operates on this database to increase
its degree of structure: Initially, the database describes no chemical
structure and contains merely the chemical formula; at intermediate
stages, the database describes some of the structure of the compound; at
the end of the process, the database contains a representation of the
entire structure of the compound.

41

PRODUCTION SYSTEMS AND AI

We can use a decomposable production system for this problem
because the databases are decomposable into segments, some of which
are unstructured chemical formulas of part of the original compound.
The production rules are "structure-proposing" rules that convert
databases representing unstructured chemical formulas into databases
representing partial structures. Any database that contains no unstruc
tured formulas satisfies the termination condition.

Briefly, we can illustrate how the structure-proposing rules work by a
simple example. Let us suppose that we are given the chemical formula
CjH^. Our production system proposes some candidate structures for
this compound. (Not all of the proposed structures will be chemically
possible. At this stage of the process we are merely describing how we
could generate structures that are plausible, given only simple valence
bond considerations. The actual DENDRAL system drastically prunes the
candidates by using other chemical knowledge as well as features of the
mass spectrogram.)

The initial database is simply the formula C5H7^. In this case, the rules
propose the following partial structures:

|C2H7|

H

I i H

C = C
| I | C 2 H 6 |

H

I H

H — C — H
I

H

H - C

H
j

H — C — (
1 1
H

H - C

: - H

H
I
1

:— c—
1
1

H

: - H

42

- C - H
I

= c
I

— C - H
I
H

H
I

H - C - H
, I

C2HS — C - H

H — C — H
I
H

H

| C 2 H 5 | - Ç - | C 2 H 5 |

H

SPECIALIZED PRODUCTION SYSTEMS

In the partial structures above, the formulas within vertical bars (| |) are
unstructured. These can be split from the structured part of the database,
and relevant structure-proposing rules can be applied to each of them
independently. For example, the rules propose the following structure
for the formula —\C2H51 :

H H
I I

H—C—C —
I I

H H

A partial AND/OR tree for our C5H12 problem is shown in Figure
1.11. Each solution tree corresponds to a candidate structure. The one
indicated by dark lines corresponds to the following structure:

H H H H H
I I I I I

H—C —C — C — C — C —H (pentane)
I I I I I

H H H H H

1.2.2.2. Symbolic Integration. In the problem of symbolic integration
we want an automatic process that will accept any indefinite integral as
input, say, fx sin 3x dx and deliver the answer 1/9 sin 3x — 1/3 x cos 3x
as output. We allow a table containing such simple integral forms as:

udu — —
2

sin udu — — cos u

au du — au loga e

etc.

Solutions to symbolic integration problems can then be attempted by a
production system that converts the given integral into expressions
involving only instances of those integral forms given in the table.

The production rules can be based on the integration by parts rule, the
decomposition of an integral of a sum rule, and other transformation
rules such as those involving algebraic and trigonometric substitutions. A

43

PRODUCTION SYSTEMS A N D AI

production rule based on integration by parts would transform the
expression fu dv into the expression ufdv — fv du. If there is an option
about which part of the original integrand is to be u and which is to be dv,
then a separate rule instantiation covers each alternative.

The decomposition rule states that the integral of a sum can be
replaced by the sum of the integrands. Another rule, called the factoring
rule, allows us to replace the expression fkf(x)dx by the expression
kff(x)dx. Other rules are based on the processes shown in Figure 1.12.

H
I

H - C - H
I

- C - H
I

H - C - H
I

H

Terminal

|C 2 H 5 | -

Rule"

|C 2 H 5 | -

Rule

^]

Rul e >

|C 2 H 5 | -

Ijr

H
1

- c -
1
H

H H
I I

H - C - C -
I I

H H

Terminal

Terminal

Fig. 1.11 An AND/OR tree for a chemical structure problem.

44

SPECIALIZED PRODUCTION SYSTEMS

Any expression involving the sum of integrals can be split into the
separate integrals. Each of these can be processed separately, so we see
that our production system is decomposable.

The utility of these various rules depends strongly on the form of the
integrand. In a symbolic integration system called SAINT (Slagle, 1963),
the integrands were classified according to various features that they
possessed. For each class of integrand, the various rules were selected
according to their heuristic applicability.

In Figure 1.13 we show an AND/OR tree that illustrates a possible
search performed by a decomposable production system. The problem is
to integrate

- v2^5/2 (l - x*y
-dx

/£,-/■(«■—w) dz

usingz2 = (2 + 3x)2/3

Algebraic substitutions

Example

Trigonometric substitutions

Example

/
dx fS 4

— -► / — cot 0 csc 0 dB using x = 7 tan 0
JCV25JC 2 + 16 J 1 6 5

Division of numerator by denominator

Example

Completing the square

Example

/
dx Ç dx

(x2-4x+l3)2^J [(J C - 2) 2 + 9] 2

Fig. 1.12 Examples of integration rules.

45

PRODUCTION SYSTEMS AND AI

Jcoi-* yd y

'

\f-
z = cot y

r

dz
z\\ +z2)

\ f " '

1 r

fdl

z = tan y

f—
J 1 +z

l
dz

Divide Numerator I by Denominator

/(-1 + ' , + ίτ?)Λ

fIìdz

ί—
J 1 +;

J dw

Fig. 1.13 An AND/OR tree for an integration problem.

46

COMMENTS ON THE DIFFERENT TYPES OF PRODUCTION SYSTEMS

The nodes of the tree represent expressions to be integrated. Expressions
corresponding to basic integrals in an integral table satisfy the termina
tion condition and are enclosed in double boxes. The darkened arcs
indicate a solution tree for this problem. From this solution tree and from
the integrals obtained from the integral table, we compute the answer:

arcsin x + - tan3 (arcsin x) — tan (arcsin x)

1.3. COMMENTS ON THE DIFFERENT TYPES OF
PRODUCTION SYSTEMS

In summary, we shall be discussing two major types of AI production
systems in this book, namely, the ordinary type, described by procedure
PRODUCTION, and the decomposable type, described by procedure
SPLIT. Depending on the way a problem is represented for solution by a
production system, either of these types might be used in a forward or
backward direction. They might be controlled by irrevocable or tentative
control regimes. The taxonomy of production systems based on these
distinctions will help greatly in organizing various AI systems and
concepts into a coherent framework.

It is important to note that we are drawing distinctions only between
different kinds of AI systems; we are not making any distinctions between
different kinds of problems. We shall see instances later in which the same
problem can be represented and solved by entirely different kinds of
systems.

We will present many more examples of problem representation.
Setting up global databases, rules, and termination conditions for any
given problem is still a bit of an art and can best be taught by example.
Since most of the examples used so far have been elementary puzzles and
problems, the reader might well wonder whether production systems are
really powerful enough to form the basis of intelligent systems. Later we
shall consider some more realistic and difficult problems to show the
broad utility of these organizations.

Efficient AI systems require knowledge of the problem domain. We
can naturally subdivide this knowledge into three broad categories

47

PRODUCTION SYSTEMS AND AI

corresponding to the global database, the rules, and the control subdivi
sions of production systems. The knowledge about a problem that is
represented in the global database is sometimes called declarative
knowledge. In an intelligent information retrieval system, for example,
the declarative knowledge would include the main database of specific
facts. The knowledge about a problem that is represented in the rules is
often called procedural knowledge. In intelligent information retrieval,
the procedural knowledge would include general information that allows
us to manipulate the declarative knowledge. The knowledge about a
problem that is represented by the control strategy is often called the
control knowledge. Control knowledge includes knowledge about a
variety of processes, strategies, and structures used to coordinate the
entire problem-solving process. The central problem considered in this
book is how best to organize problem knowledge into its declarative,
procedural, and control components for use by AI production systems.
Our first concern, to be treated in some detail in the next two chapters, is
with control—especially graph-searching control regimes. Then we move
on to consider the uses of the predicate calculus in Artificial Intelligence.

1.4. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

1.4.1. PRODUCTION SYSTEMS

The term production system has been used rather loosely in AI,
although it usually refers to more specialized types of computational
systems than those discussed in this book. Production systems derive
from a computational formalism proposed by Post (1943) that was based
on string replacement rules. The closely related idea of a Markov
algorithm [Markov (1954), Galler and Perlis (1970)] involves imposing an
order on the replacement rules and using this order to decide which
applicable rule to apply next. Newell and Simon (1972) use string-modi
fying production rules, with a simple control strategy, to model certain
types of human problem-solving behavior [see also Newell (1973)].
Rychener (1976) proposes an AI programming language based on
string-modifying production rules.

Generalizations of these production system formalisms have been
used in AI and called, variously, production systems, rule-based systems,
blackboard systems, and pattern-directed inference systems. The volume

48

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

edited by Waterman and Hayes-Roth (1978) provides many examples of
these sorts of systems [see also Hayes-Roth and Waterman (1977)]. A
paper by Davis and King (1977) thoroughly discusses production systems
in AL

Our notion of a production system involves no restrictions on the form
of the global database, the rules, or the control strategy. We introduce the
idea of tentative control regimes to allow a form of controlled nondeter-
minism in rule application. Thus generalized, production systems can be
used to describe the operation of many important AI systems.

Our observation that rule application order can be unimportant in
commutative and decomposable production systems is related to Church-
Rosser theorems of abstract algebra. [See, for example, Rosen (1973), and
Ehrig and Rosen (1977,1980).]

The notion of a decomposable production system encompasses a
technique often called problem reduction in AI. [See Nilsson (1971).] The
problem reduction idea usually involves replacing a problem goal by a
set of subgoals such that if the subgoals are solved, the main goal is also
solved. Explaining problem reduction in terms of decomposable pro
duction systems allows us to be indefinite about whether we are
decomposing problem goals or problem states. Slagle (1963) used
structures that he called AND/OR goal trees to deal with problem
decomposition; Amarel (1967) proposed similar structures. Since then,
AND/OR trees and graphs have been used frequently in AI. Additional
references for AND/OR graph methods are given in chapter 3.

The problem of finding good representations for problems has been
treated by only a few researchers. Amarel (1968) has written a classic
paper on the subject; it takes the reader through a series of progressively
better representations for the missionaries-and-cannibals problem. [See
Exercise 1.1.] Simon (1977) described a system called UNDERSTAND for
converting natural language (English) descriptions of problems into
representations suitable for problem solution.

1.4.2. CONTROL STRATEGIES

Hill-climbing is used in control theory and systems analysis as one
method for finding the maximum {steepest ascent) or minimum {steepest
descent) of a function. See Athans et al. (1974, pp. 126ff) for a discussion.

49

PRODUCTION SYSTEMS AND AI

In computer science, Golomb and Baumert (1965) suggested backtrack
ing as a selection mechanism. Various AI programming languages use
backtracking as a built-in search strategy [Bobrow and Raphael (1974)].
The literature on heuristic graph searching is extensive; several refer
ences are cited in the next two chapters.

1.43. EXAMPLE PROBLEMS

Problem-solving programs have sharpened their techniques on a
variety of puzzles and games. Some good general books of puzzles are
those of Gardner (1959, 1961), who edits a puzzle column in Scientific
American. Also see the books of puzzles by Dudeney (1958, 1967), a
famous British puzzle inventor, a book of logical puzzles by Smullyan
(1978), and a book on how to solve problems by Wickelgren (1974). The
8-puzzle is a small version of the 15-puzzle, which is discussed by
Gardner (1964, 1965a,b,c) and by Ball (1931, pp. 224-228).

The traveling-salesman problem arises in operations research [see
Wagner (1975), and Hillier and Lieberman (1974)]. A method for finding
optimal tours has been proposed by Held and Karp (1970, 1971), and a
method for finding "approximately" optimum tours has been proposed
by Lin (1965).

A good general reference on formal languages, grammars, and syntax
analysis is Hopcroft and Ullman (1969).

The technique for proposing chemical structures is based on the
DENDRAL system of Feigenbaum et al. (1971). The symbolic integration
example is based on the SAINT system of Slagle (1963). A more powerful
symbolic integration system, SIN, was developed later by Moses (1967).
Moses (1971) discusses the history of techniques for symbolic integra
tion.

EXERCISES

1.1 Specify a global database, rules, and a termination condition for a
production system to solve the missionaries and cannibals problem:

50

EXERCISES

Three missionaries and three cannibals come
to a river. There is a boat on their side of the
river that can be used by either one or two
persons. How should they use this boat to
cross the river in such a way that cannibals
never outnumber missionaries on either side
of the river?

Specify a hill-climbing function over the global databases. Illustrate how
an irrevocable control strategy and a backtracking control strategy would
use this function in attempting to solve this problem.

1.2 Specify a global database, rules, and a termination condition for a
production system to solve the following water-jug problem:

Given a 5-liter jug filled with water and an
empty 2-liter jug, how can one obtain
precisely 1 liter in the 2-liter jug? Water may
either be discarded or poured from one jug
into another; however, no more than the
initial 5 liters is available.

13 Describe how the rewrite rules of section 1.1.6. can be used in a
production system that generates sentences. What is the global database
and the termination condition for such a system? Use the system to
generate five grammatical (even if not meaningful) sentences.

1.4 My friend, Tom, claims to be a descendant of Paul Revere. Which
would be the easier way to verify Tom's claim: By showing that Revere is
one of Tom's ancestors or by showing that Tom is one of Revere's
descendants? Why?

1.5 Suppose a rule R of a commutative production system is applied to a
database D to produce D'. Show that if R has an inverse, the set of rules
applicable to D' is identical to the set of rules applicable to D.

1.6 A certain production system has as its global database a set of
integers. A database can be transformed by adding to the set the product
of any pair of its elements. Show that this production system is
commutative.

51

PRODUCTION SYSTEMS AND AI

1.7 Describe how a production system can be used to convert a decimal
number into a binary one. Illustrate its operation by converting 141.

1.8 Critically discuss the following thesis: Backtracking (or depth-first
graph-search) control strategies should be used when there are multiple
paths between problem states because these strategies tend to avoid
exploring all of the paths.

1.9 In using a backtracking strategy with procedure SPLIT, should the
selection made in step 5 be a backtracking point? Discuss. If step 5 is not a
backtracking point, are there any differences between procedure SPLIT
under backtracking and procedure PRODUCTION under backtracking?

52

CHAPTER 2

SEARCH STRATEGIES FOR AI
PRODUCTION SYSTEMS

In this chapter we examine some control strategies for AI production
systems. Referring to the basic procedure for production systems given
on page 21, the fundamental control problem is to select an applicable
rule to apply in step 4. For decomposable production systems (page 39),
the control problem is to select a component database in step 5 and an
applicable rule to apply in step 7. Other subsidiary but important tasks of
the control system include checking rule applicability conditions, testing
for termination, and keeping track of the rules that have been applied.

An important characteristic of computations for selecting rules is the
amount of information, or "knowledge," about the problem at hand that
these computations use. At the uninformed extreme, the selection is
made completely arbitrarily, without regard to any information about the
problem at hand. For example, an applicable rule could be selected
completely at random. At the informed extreme, the control strategy is
guided by problem knowledge great enough for it to select a "correct"
rule every time.

The overall computational efficiency of an AI production system
depends upon where along the informed/uninformed spectrum the
control strategy falls. We can separate the computational costs of a
production system into two major categories: rule application costs and
control costs. A completely uninformed control system incurs only a
small control strategy cost because merely arbitrary rule selection need
not depend on costly computations. However, such a strategy results in
high rule application costs because it generally needs to try a large
number of rules to find a solution. To inform a control system completely
about the problem domains of interest in AI typically involves a high-cost
control strategy, in terms of the storage and computations required.

53

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

0 iςInformedness,, COMPLETE

Fig. 2.1 Computational costs of ΛI production systems.

Completely informed control strategies, however, result in minimal rule
application costs; they guide the production system directly to a solution.
These tendencies are shown informally in Figure 2.1.

The overall computational cost of an AI production system is the
combined rule application cost and control strategy cost. Part of the art of
designing efficient AI systems is deciding how to balance these two costs.
In any given problem, optimum production system efficiency might be
obtained from less than completely informed control strategies. (The cost
of a completely informed strategy may simply be too high.)

Another important aspect of AI system design involves the use of
techniques that allow the control strategy to use a large amount of
problem information without incurring excessive control costs. Such
techniques help to decrease the slope of the control strategy cost curve of
Figure 2.1, lowering the overall cost of the production system.

The behavior of the control system as it makes rule selections can be
regarded as a search process. Some examples of the ways in which the
control system might search for a solution were given in chapter 1. There,
we discussed the hill-climbing method of irrevocable rule selection,
exploring a surface for a maximum, and the backtracking and graph-
search regimes, search processes that permitted tentative rule selection.

54

BACKTRACKING STRATEGIES

Our main concern in the present chapter is tentative control regimes,
even though the irrevocable ones have important applications, especially
with commutative production systems. Some of the search methods that
we develop for tentative control regimes can be adapted for use with
certain types of commutative production systems using irrevocable
control regimes. We begin our discussion of tentative control by
describing backtracking methods.

2.1. BACKTRACKING STRATEGIES

In chapter 1 we presented a general description of the backtracking
control strategy and illustrated its use on the 8-puzzle. For problems
requiring only a small amount of search, backtracking control strategies
are often perfectly adequate and efficient. Compared with graph-search
control regimes, backtracking strategies are typically simpler to imple
ment and require less storage.

A simple recursive procedure captures the essence of the operation of a
production system under backtracking control. This procedure, which we
call BACKTRACK, takes a single argument, DA TA, initially set equal to
the global database of the production system. Upon successful termina
tion, the procedure returns a list of rules, that, if applied in sequence to
the initial database, produces a database satisfying the termination
condition. If the procedure halts without finding such a list of rules, it
returns FAIL. The BACKTRACK procedure is defined as follows:

Recursive procedure B ACKTRACK(DA TA)

1 if TERM(DATA\ return NIL; TERM is a
predicate true for arguments that satisfy
the termination condition of the production
system. Upon successful termination, NIL,
the empty list, is returned.

2 ifDEADEND(/X47M), return FAIL; DEADEND
is a predicate true for arguments that are
known not to be on a path to a solution. In
this case, the procedure returns the symbol
FAIL.

55

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

3 RULES*- APPRULES(DATA); APPRULES is a
function that computes the rules applicable to
its argument and orders them (either arbitrarily
or according to heuristic merit).

4 LOOP: if NVLL(RULES\ return FAIL;
if there are no (more) rules to apply, the
procedure fails.

5 fl<-FIRST(RULES); the best of the applicable
rules is selected.

6 RULES <-TAlL(RULES); the list of applicable
rules is diminished by removing the one just
selected.

7 RDA TA 4- R(DA TA); rule R is applied to
produce a new database.

8 PATH*- B ACKTRACK(RDA TA); BACKTRACK is
called recursively on the new database.

9 ii PATH = FAIL, go LOOP; if the
recursive call fails, try another rule.

10 return CONS(R, PATH); otherwise, pass the
successful list of rules up, by adding R
to the front of the list.

We can make several comments about this procedure. First, it
terminates successfully (in step 1) only if it produces a database satisfying
the termination condition. The list of rules used in producing this
database is built up in step 10. Unsuccessful terminations can occur in
steps 2 and 4. When an unsuccessful termination occurs within a
recursive call, the procedure backtracks to a higher level. Step 2 performs
a test to check whether or not a solution is even possible from the
database in question. In step 4, the procedure fails if it has already tried
all applicable rules.

Procedure BACKTRACK may never terminate; it may generate new
nonterminal databases indefinitely or it may cycle. Both of these cases
can be arbitrarily prevented by imposing a depth bound on the recursion.

56

BACKTRACKING STRATEGIES

Any recursive call fails when its depth exceeds this bound. Cycling can be
more straightforwardly prevented by maintaining a list of the databases
produced so far and by checking new ones to see that they do not match
any on the list. Later we present a slightly more complicated procedure
that makes these tests.

In step 3, the procedure orders the rules that are applicable to the
database in question. Here, any available heuristic information about the
problem domain is used. Those rules that are "guessed," using the
heuristic information, most appropriate for that database occur early in
the ordering. The applicable rules can be ordered arbitrarily if no
ordering information is available, although, in that case, extensive
backtracking may cause the procedure to be prohibitively inefficient. By
definition, if a "correct" rule is always first in the ordering, no backtrack
ing will occur at all.

We have used a specific procedure, BACKTRACK, to explain how
backtracking control strategies operate. Several practical concerns—such
as the need to avoid recopying large, complex global databases—would
dictate implementations of the backtracking strategy that are more
efficient than the procedure given here.

Another illustrative example of how the backtracking strategy is
applied to a simple problem is perhaps useful. Suppose we are given the
problem of placing 4 queens on a 4 X 4 chess board so that none can
capture any other. For our global database, we use a 4 X 4 array with
marked cells corresponding to squares occupied by queens. The termi
nation condition, expressed by the predicate TERM, is satisfied for a
database if and only if it has precisely 4 queen marks and the marks
correspond to queens located so that they cannot capture each other.

There are many alternative formulations possible for the production
rules. A useful one for our purposes involves the following rule schema,
for 1 < i,j < 4:

Ru

Precondition:
i = l : There are no queen marks in the array.
1 < / < 4: There is a queen mark in row / — 1

of the array.

57

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

Effect:
Puts a queen mark in row i, column y of the array.

Thus, the first queen mark added to the array must be in row 1, the
second must be in row 2, etc.

To use the BACKTRACK procedure to solve the 4-queens problem,
we have still to specify both the predicate DEADEND and an ordering
relation for applicable rules. Suppose we arbitrarily say that R{j is ahead
of Rik in the ordering only when/ < k. The predicate DEADEND might
be defined so that it is satisfied for databases where it is obvious that no
solution is possible; for example, certainly no solution is possible for any
database containing a pair of queen marks in mutually capturing
positions. (The reader is encouraged to try working through BACK
TRACK by hand using this simple test for DEADEND.) Altogether, the
algorithm backtracks 22 times before finding a solution; even the very
first rule applied must ultimately be taken back.

A more efficient algorithm (with less backtracking) can be obtained if
we use a more informed rule ordering. One simple, but useful ordering
for this problem involves using the function diag(i,j), defined to be the
length of the longest diagonal passing through cell (ij). Let R{j be ahead
of Rmn in the ordering if diag(ij) < diag(m,n). (For equal values of
diag, use the same order as before.) Using this ordering relation, the rules
that are applicable to the initial database would be ordered as follows:
(R12,R139R11,Rn)' The reader might verify that this ordering scheme
solves the 4-queens problem with only 2 backtracks.

As previously mentioned, we need a slightly more complex algorithm
to avoid cycles. All databases on a path back to the initial one must be
checked to insure that none are revisited. In order to implement this
backtracking strategy as a recursive procedure, the entire chain of
databases must be an argument of the procedure. Again, practical
implementations of AI backtracking production systems use various
techniques to avoid the need for explicitly listing all of these databases in
their entirety.

Let us call our cycle-avoiding algorithm BACKTRACK1. It takes a list
of databases as its argument; when first called, this list contains the initial
database as its single element. Upon successful termination, BACK-
TRACK1 returns a sequence of rules that can be applied to the initial
database to produce one that satisfies the termination condition. The
BACKTRACKl algorithm is defined as follows:

58

BACKTRACKING STRATEGIES

Recursive procedure BACKTRACK1(DA TA LIST)

1 DATA «- FIRST(DATALIST); DATALIST
is a list of all databases on a path back
to the initial one. DA TA is the most
recent one produced.

2 if MEMBER(DA TA, T AIL(DA TA LIST)), return
FAIL; the procedure fails if it revisits
an earlier database.

3 if TERM(DATA),return NIL

4 if DEADEND(DA TA), return FAIL

5 if LENGTH(DA TA LIST) > BOUND, return
FAIL; the procedure fails if too many
rules have been applied. BOUND is a global
variable specified before the procedure is
first called.

6 RULES <- APPRULES(£M7V1)

7 LOOP: if NULL(Äi/L£S), return FAIL

8 R <- FIRST(RULES)

9 RULES *-TAlL(RULES)

10 RDATA*-R(DATA)

11 ÄDv4rv4L/Sr^CONS(ÄZ)/ir^ö,4ry4L/.ST); the
list of databases visited so far is extended
by adding RDATA.

12 PATH*- BACKTRACK1(RDA TA LIST)

13 if PA TH = FAIL, go LOOP

14 return CONS(R, PATH)

59

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

The 8-puzzle example of backtracking in chapter 1 used BOUND = 7
and also checked to see if a tile configuration had been visited previously.
Note that the recursive algorithm does not remember all databases that it
visited previously. Backtracking involves "forgetting" all databases
whose paths lead to failures. The algorithm remembers only those
databases on the current path back to the initial one.

The backtracking strategies just described "fail back" one level at a
time. If a level n recursive call of BACKTRACK fails, control returns to
level n — 1 where another rule is tried. But sometimes the reason, or
blame, for the failure at level n can be traced to rule choices made many
levels above. In these cases it would be obviously futile to try another rule
choice at level n — 1 ; predictably, any such choice there would again lead
to a failure. What is needed, then, is a way to jump several levels at a time,
all the way back to one where a different rule choice will make a useful
difference.

To see an example of this multilevel backtracking phenomenon,
consider using BACKTRACK to solve the 8-queens problem. In this
problem, we must place 8 queens on an 8 X 8 board so that none of them
can capture any others.

Suppose we are at a stage of the algorithm in which the database just
produced is illustrated by the array in Figure 2.2. (In fact, the BACK
TRACK algorithm would produce precisely this array using the arbitrary
rule ordering that we originally discussed.) The algorithm must now
attempt to place a queen in row 6. Note that no cell in row 6 is
satisfactory; each attempt to place a queen in that row would fail. In such
a circumstance, BACKTRACK would attempt to relocate the queen in
row 5, moving it eventually to column 8. But a more detailed analysis of
the reasons for the row-6 failures would reveal that all of them would
have still occurred regardless of the position of the queen in row 5. The
row-6 failures were predestined by the positions of the first 4 queens.
Therefore, since there is no point in relocating queen 5, we can jump over
one recursive level, back to the point where we were selecting row-4
locations. Some AI systems have used backtracking strategies that are
able to analyze failures in this manner and to back up to the appropriate
point.

60

GRAPH^SEARCH STRATEGIES

F
X

X

X

X

Fig. 2.2 Queen positions during a stage 0/BACKTRACK.

2.2. GRAPH-SEARCH STRATEGIES

In backtracking strategies, the control system effectively forgets any
trial paths that result in failures. Only the path currently being extended
is stored explicitly. A more flexible procedure would involve the explicit
storage of all trial paths so that any of them could be candidates for
further extension.

For example, in Figure 2.3 we show an initial database, DB1, to which
rules Rl and R2, say, are applicable; suppose the control system selects
and applies Rl producing database DB2; then suppose the control
system selects applicable rule R3 and applies it to DB2, to produce DB3 ;
and at this point, suppose the control system decides that this path is not
promising and backs up to apply rule R2 to DB1, to produce database
DB4. As stated, a backtracking strategy would erase the records of DB2
and DBS. But if the control system were to maintain this record, then,
should a path through DB4 ultimately prove futile, it could resume work
immediately from either DB2 or DB3. In order to achieve this sort of
flexibility, a control system must keep an explicit record of a graph of
databases linked by rule applications. We say that control systems that
operate in this manner use graph-search strategies.

61

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

In our discussions of graph-search strategies, we speak as if the various
databases produced by rule applications are actually represented, each in
its entirety, as nodes in a graph or tree. Because these databases are
usually very large structures, it would be impractical to store each of them
explicitly. Fortunately, there are ways in which the effect of explicit
storage of all of the databases can be achieved, by explicitly storing just
the initial database and records of incremental changes from which any
of the other databases can rapidly be computed.

2.2.1. GRAPH NOTATION

We can think of a graph-search control strategy as a means of finding a
path in a graph from a node representing the initial database to one
representing a database that satisfies the termination condition of the
production system. Graph-searching algorithms are thus of special
interest to us. Before describing these algorithms, we first review some
graph-theory terminology.

A graph consists of a (not necessarily finite) set of nodes. Certain pairs
of nodes are connected by arcs, and these arcs are directed from one
member of the pair to the other. Such a graph is called a directed graph.
For our purposes, the nodes are labeled by databases, and the arcs are
labeled by rules. If an arc is directed from node n{ to node nh then node
nj is said to be SL successor of node n{, and node n{ is said to be a parent of
node nj. In the graphs that are of interest to us, a node can have only a
finite number of successors. (Our production systems have only a finite
number of applicable rules.) A pair of nodes may be successors of each
other; in this case the pair of directed arcs is sometimes replaced by an
edge.

Ri

DB1

DB2

R3
r

DB3

s R2

DB4

Fig. 2.3 A tree of databases.

62

GRAPH-SEARCH STRATEGIES

A tree is a special case of a graph in which each node has at most one
parent. A node in the tree having no parent is called a root node. A node
in the tree having no successors is called a tip node. We say that the root
node is of depth zero. The depth of any other node in the tree is defined to
be the depth of its parent plus 1.

A sequence of nodes (nu,ni2,.. .,nik), with each ηυ a successor of
nu-i f°TJ — 2,.. .,&, is called a, path of length k from node nu to node
nik. If a path exists from node n{ to node njf then node nf is said to be
accessible from node n%. Node AZ, is then a descendant of node 7ΐ4, and
node n% is an ancestor of node /i,. We see that the problem of finding a
sequence of rules transforming one database into another is equivalent to
the problem of finding a path in a graph.

Often it is convenient to assign positive costs to arcs, to represent the
cost of applying the corresponding rule. We use the notation c(ni9nj) to
denote the cost of an arc directed from node nx to node n,. It will be
important in some of our later arguments to assume that these costs are
all greater than some arbitrarily small positive number, e. The cost of a
path between two nodes is then the sum of the costs of all of the arcs
connecting the nodes on the path. In some problems, we want to find that
path having minimal cost between two nodes.

In the simplest type of problem, we desire to find a path (perhaps
having minimal cost) between a given node s, representing the initial
database and another given node t9 representing some other database.
The more usual situation, though, involves finding a path between a node
s and any member of a set of nodes {t%} that represent databases
satisfying the termination condition. We call the set {t{} the goal set, and
each node t in {t {} is a goal node.

A graph may be specified either explicitly or implicitly. In an explicit
specification, the nodes and arcs (with associated costs) are explicitly
given by a table. The table might list every node in the graph, its
successors, and the costs of the associated arcs. Obviously, an explicit
specification is impractical for large graphs and impossible for those
having an infinite set of nodes.

In our applications, the control strategy generates (makes explicit) part
of an implicitly specified graph. This implicit specification is given by the
start node, s, representing the initial database, and the rules that alter
databases. It will be convenient to introduce the notion of a successor

63

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

operator that is applied to a node to give all of the successors of that node
(and the costs of the associated arcs). We call this process of applying the
successor operator to a node, expanding the node. The successor operator
depends in an obvious way on the rules. Expanding s, the successors of s,
ad infinitum, makes explicit the graph that is implicitly defined by s and
the successor operator. A graph-search control strategy, then, can be
viewed as a process of making explicit a portion of an implicit graph
sufficient to include a goal node.

2.2.2. A GENERAL GRAPH-SEARCHING PROCEDURE*

The process of explicitly generating part of an implicitly defined graph
can be informally defined as follows.

Procedure GRAPHSEARCH

1 Create a search graph, G, consisting solely of the
start node, s. Put s on a list called OPEN.

2 Create a list called CLOSED that is initially empty.

3 LOOP: if OPEN is empty, exit with failure.

4 Select the first node on OPEN, remove it from OPEN,
and put it on CLOSED. Call this node n.

5 If n is a goal node, exit successfully with the solution
obtained by tracing a path along the pointers from
n to s in G. (Pointers are established in step 7.)

6 Expand node n, generating the set, M, of its successors
and install them as successors of n in G.

7 Establish a pointer to n from those members of M that
were not already in G (i.e., not already on either
OPEN or CLOSED). Add these members of M to
OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. (See text.) For each member of

*Note added to the fourth and subsequent printings of this book: Step 6 of the graph-searching
procedure described in this section has been changed slightly to correct an error kindly pointed
out to the author by Maurice Karnaugh of IBM.

64

GRAPH-SEARCH STRATEGIES

M already on CLOSED, decide for each of its
descendants in G whether or not to redirect its
pointer. (See text.)

8 Reorder the list OPEN, either according to some
arbitrary scheme or according to heuristic merit.

9 Go LOOP

This procedure is sufficiently general to encompass a wide variety of
special graph-searching algorithms. The procedure generates an
explicit graph, G, called the search graph and a subset, T, of G called
the search tree. Each node in G is also in T. The search tree is defined by
the pointers that are set up in step 7. Each node (except s) in G has a
pointer directed to just one of its parents in G, which defines its unique
parent in T. Each possible path to a node discovered by the algorithm is
preserved explicitly in G; a single distinguished path to any node is
defined by T. Roughly speaking, the nodes on OPEN are the tip nodes of
the search tree, and the nodes on CLOSED are the nontip nodes. More
precisely, at step 3 of the procedure, the nodes on OPEN are those (tip)
nodes of the search tree that have not yet been selected for expansion.
The nodes on CLOSED are either tip nodes selected for expansion that
generated no successors in the search graph or nontip nodes of the
search tree.

The procedure orders the nodes on OPEN in step 8 so that the "best"
of these is selected for expansion in step 4. This ordering can be based on
a variety of heuristic ideas (discussed below) or on various arbitrary
criteria. Whenever the node selected for expansion is a goal node, the
process terminates successfully. The successful path from start node to
goal node can then be recovered (in reverse) by tracing the pointers back
from the goal node to s. The process terminates unsuccessfully whenever
the search tree has no remaining tip nodes that have not yet been selected
for expansion. (Some nodes may have no successors at all, so it is possible
for the list OPEN, ultimately, to become empty.) In the case of
unsuccessful termination, the goal node(s) must have been inaccessible
from the start node.

Step 7 of the procedure requires some additional explanation. If the
implicit graph being searched was a tree, we could be sure that none of
the successors generated in step 6 had been generated previously: Every

65

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

node (except the root node) of a tree is the successor of only one node and
thus is generated once only when its unique parent is expanded. Thus, in
this special case, the members of M in steps 6 and 7 are not already on
either OPEN or CLOSED. In this case, each member of M is added to
OPEN and is installed in the search tree as a successor ofn. The search
graph is the search tree throughout the execution of the algorithm, and
there is no need to change parents of the nodes in T.

If the implicit graph being searched is not a tree, it is possible that some
of the members of M have already been generated, that is, they may
already be on OPEN or CLOSED. The problem of determining whether
a newly generated database is identical to one generated before can be
computationally expensive. For this reason, some search processes avoid
making this test, with the result that the search tree may contain several
nodes labeled by the same database. Node repetitions, of course, lead to
redundant successor computations. Hence, there is a tradeoff between
the computational cost of testing for matching databases and the
computational cost of generating a larger search tree (containing multiple
nodes labeled by identical databases). In steps 6 and 7 of procedure
GRAPHSEARCH, we are assuming that it is worthwhile to test for node
identities.

When the search process generates a node that it had generated before,
it finds a (perhaps better) path to it other than the one already recorded in
the search tree. We desire that the search tree preserve the least costly
path found so far from s to any of its nodes. (The cost of a path from s to n
in the search tree can be computed by summing the arc costs encountered
in the tree while tracing back from n to s. In problems for which no arc
costs are given, we assume that the arcs have unit cost.) When a newly
found path is less costly than an older one, the search tree is adjusted by
changing the parentage of the regenerated node to its more recent parent.

If a node n on CLOSED has its parentage in T changed, a less costly
path has been found to n. The less costly path may be part of less costly
paths to some of the successors of n in the search graph, G; in this case,
a change might be in order to the parentage in T of the successors of n
in G. Because G is finite, the process of propagating the costs of the new
paths downward to the successors of n in G is straightforward and
finite. After this computation, the search tree is adjusted to record these
paths, if appropriate.

A simple example will serve to show how such search tree adjustments
are accomplished. Suppose a search process has generated the search

66

GRAPH-SEARCH STRATEGIES

graph and search tree shown in Figure 2.4. The dark arrows along certain
arcs in this search graph are the pointers that define parents of nodes in
the search tree. The solid nodes are on CLOSED, and the other nodes are
on OPEN at the time the algorithm selects node 1 for expansion. (We
assume unit arc costs.) When node 1 is expanded, its single successor,
node 2, is generated. But node 2, with parent node 3 in the search tree,
had previously been generated, and node 2 is also on CLOSED with
successor nodes 4 and 5. Note, however, that node 4's parent in the search
tree is node 6, because the shortest (least costly) path from s to node 4 in
the search graph is through node 6. Since the algorithm now discovers a
path to node 2 through node 1 that is less costly than the previous path
through node 3, the parent of node 2 in the search tree is changed from
node 3 to node 1. The costs of the paths to the descendants of node 2 in
the search graph (namely, the paths to nodes 4 and 5) are recomputed.
These costs are now also lower than before, with the result that the parent
of node 4 is changed from node 6 to node 2. The adjusted search tree is
defined by the pointers on the arcs of the search graph of Figure 2.5.

As described, the GRAPHSEARCH algorithm generates all of the
successors of a node at once. It is possible to modify the algorithm so that
a node is selected for expansion and successors are generated one at a
time [see, for example, Michie and Ross (1970)]. The modified algorithm
does not put a node on CLOSED until all of its successors have been
generated. Since the process of applying rules to a database to produce
new databases is typically computationally expensive, the modified
algorithm is often preferable even though it is slightly more difficult to
describe. To facilitate explaining some general properties of graph-
searching procedures, we continue to use that version of the algorithm in
which all successors are generated simultaneously.

Fig. 2.4 A search graph and search tree before expanding node I.

67

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

'4 ~ 5

Fig. 2.5 A search graph and search tree after expanding node 1.

2.3. UNINFORMED GRAPH-SEARCH
PROCEDURES

If no heuristic information from the problem domain is used in
ordering the nodes on OPEN, some arbitrary scheme must be used in
step 8 of the algorithm. The resulting search procedure is called
uninformed. In AI, we are typically not interested in uninformed
procedures, but we describe two types here for purposes of comparison:
depth-first search and breadth-first search.

The first type of uninformed search orders the nodes on OPEN in
descending order of their depth in the search tree. The deepest nodes are
put first in the list. Nodes of equal depth are ordered arbitrarily. The
search that results from such an ordering is called depth-first search
because the deepest node in the search tree is always selected for
expansion. To prevent the search process from running away along some
fruitless path forever, a depth bound is provided. No node whose depth
in the search tree exceeds this bound is ever generated. (The process can
be made to terminate virtually as soon as a goal node is generated by
putting goal nodes at the very beginning of OPEN ; but, of course, this

68

UNINFORMED GRAPH-SEARCH PROCEDURES

procedure would involve a goal test during step 8 of GRAPHSEARCH.
If the result is saved, then the goal test in step 5 need only look up the
result instead of repeating a possibly costly computation.)

The depth-first procedure generates new databases in an order similar
to that generated by an uninformed backtracking control strategy. The
correspondence would be exact if the graph-search process generated
only one successor at a time. Usually, the backtracking implementation is
preferred to the depth-first version of GRAPHSEARCH because back
tracking is simpler to implement and involves less storage. (Backtracking
strategies save only one path to a goal node; they do not save the entire
record of the search as do depth-first graph-search strategies.)

The search tree generated by a depth-first search process in an 8-puzzle
problem is illustrated in Figure 2.6. The nodes are labeled with their
corresponding databases and are numbered in the order in which they
are selected for expansion. We assume a depth bound of five. The dark
path shows a solution involving five rule applications. We see that a
depth-first search process progresses along one path until it reaches the
depth bound, then it begins to consider alternative paths of the same
depth, or less, that differ only in the last step; then those that differ in the
last two steps; etc.

The second type of uninformed search procedure orders the nodes on
OPEN in increasing order of their depth in the search tree. (Again, to
promote earlier termination, goal nodes should be put immediately at the
very beginning of OPEN.) The search that results from such an ordering
is called breadth-first because expansion of nodes in the search tree
proceeds along "contours" of equal depth. In Figure 2.7, we show the
search tree generated by a breadth-first search in the 8-puzzle problem.
The numbers next to each node indicate the order in which nodes are
selected for expansion. Note that the goal node is selected immediately
after it is generated.

Later we show that breadth-first search is guaranteed to find a
shortest-length path to a goal node, providing a path exists at all. (If no
path exists, the method will exit with failure for finite graphs or will never
terminate for infinite graphs.)

69

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

00 sO «JO
?, m Tj- m

1 à m oo o

/ # / /

2 o

00 O ■

\ °°
00 ■ SO

o
00 — Ό
r i ■ r-

Γ ,̂ Tt Wi
oo o r-
n — a

0C %C Γ—
r i ■ —

^t-
m r i- «o
OO — Ό
Γ Ι Γ- 1

O
00 — MD

oo

oo ■ r-

00 G Γ-
■ ΓΙ —

c«-> rf m

oo — ■
r i h - \ θ

-
rr> Tt m

■ — vo
oo c i r-

r<-) Ti- LO
oo r- ■
r i se —

\

ΓΛ ■ in
oo Tt r-
CI sO —

o

■ oo r-

rc, T+ tr,

■ or -

<

C\|

<

^
e

•̂
^

e

1 ^
e

o

1 ^
e
\

CJ r- vo

m Tt κ->
00 ■ —
n r- so

r*1 Tt IO
— ■ so
oo CJ r-

oo n r-

m r f ■
oo f - u->
CI sO —

oo r— —

n o i

n-i i/-> ■
oo r t r-
c i se —

0O 1" r-

co oo r~

r 1 OO Γ-

■ -C —

■ I " Vi

00 CI —

">J

1
1
"8
■3

£

§
^
>o
<N
.00

70

UNINFORMED GRAPH-SEARCH PROCEDURES

Γ̂ , ■ Tf
00 Ϊ Ι Λ

oo

f ^ v l t
00 ■ W1
ΓΙ — |^

rr; sC TT
■ 00 in

ιη vCTt
oo — m
r i ■ r-

rn m ■
00 ·^ sC
n — r-~

00 t vC
Γ) — Γ-

00 Tf ■
r i — r-

Ο Ο ^ ΐ Λ

π — [—

ro ^t w>
■ 00 sO y!

rf

ro r f in
n o o vc
■ — r- SO

n O O vu

m rr m
r i oo so
— ■ r-

m Tt
00
Γ-

ΙΛ
SO

■
n ^ i n
<N

—
■
CO

SO
r-

m Tf in

00 — SO
«n

O Tt ti-i
00 — ■
r i r~- so <

00 — Ό
(N Γ~ SO

00 ■ —
™ r- so

f> T}- U-,
30 o r-

"-, r f v>

<

■ Tf ΗΊ

f i Tf i/~>
r i o o r -

■ vC —

1
1
*,
£>

Ì

DC r i —

71

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

2.4. HEURISTIC GRAPH-SEARCH PROCEDURES

The uninformed search methods, whether breadth-first or depth-first,
are exhaustive methods for finding paths to a goal node. In principle,
these methods provide a solution to the path-finding problem, but they
are often infeasible to use to control AI production systems because the
search expands too many nodes before a path is found. Since there are
always practical limits on the amount of time and storage available to
expend on the search, more efficient alternatives to uninformed search
must be found.

For many tasks it is possible to use task-dependent information to help
reduce search. Information of this sort is usually called heuristic informa
tion, and search procedures using it are called heuristic search methods. It
is often possible to specify heuristics that reduce search effort (below that
expended by, say, breadth-first search) without sacrificing the guarantee
of finding a minimal length path. Some heuristics greatly reduce search
effort but do not guarantee finding minimal cost paths. In most practical
problems, we are interested in minimizing some combination of the cost
of the path and the cost of the search required to obtain the path.
Furthermore, we are usually interested in search methods that minimize
this combination averaged over all problems likely to be encountered. If
the averaged combination cost of search method 1 is lower than the
averaged combination cost of search method 2, then search method 1 is
said to have more heuristic power than search method 2. Note that
according to our definition, it is not necessary (though it is a common
misconception) that a search method with more heuristic power give up
any guarantee for finding a minimal cost path.

Averaged combination costs are never actually computed, both be
cause it is difficult to decide on the way to combine path cost and search
effort cost and because it would be difficult to define a probability
distribution over the set of problems to be encountered. Therefore, the
matter of deciding whether one search method has more heuristic power
than another is usually left to informed intuition, gained from actual
experience with the methods.

2.4.1. USE OF EVALUATION FUNCTIONS

Heuristic information can be used to order the nodes on OPEN in step
8 of GRAPHSEARCH so that search expands along those sectors of the

72

HEURISTIC GRAPH-SEARCH PROCEDURES

frontier thought to be most promising. In order to apply such an ordering
procedure, we need a method for computing the "promise" of a node.
One important method uses a real-valued function over the nodes called
an evaluation function. Evaluation functions have been based on a variety
of ideas: Attempts have been made to define the probability that a node
is on the best path; distance or difference metrics between an arbitrary
node and the goal set have been suggested; or in board games or puzzles,
a configuration is often scored points on the basis of those features that it
possesses that are thought to be related to its promise as a step toward the
goal.

Suppose we denote the evaluation function by the symbol/. Then/(fl)
gives the value of the function at node n. For the moment we let/be any
arbitrary function; later, we propose that it be an estimate of the cost of a
minimal cost path from the start node to a goal node constrained to go
through node n.

We use the function / to order the nodes on OPEN in step 8 of
GRAPHSEARCH. By convention, the nodes on OPEN are ordered in
increasing order of their / values. Ties among / values are ordered
arbitrarily, but always in favor of goal nodes. Supposedly, a node having
a low evaluation is more likely to be on an optimal path.

The way in which GRAPHSEARCH uses an evaluation function to
order nodes can be illustrated by considering again our 8-puzzle
example. We use the simple evaluation function:

/ (n) = rf(n)+ W{n)

where d(n) is the depth of node n in the search tree and W(n) counts the
number of misplaced tiles in that database associated with node n. Thus
the start node configuration

283
164
7 5

has an/value equal to 0 + 4 = 4.

The results of applying GRAPHSEARCH to the 8-puzzle using this
evaluation function are summarized in Figure 2.8. The value of/for each
node is circled; the uncircled numbers show the order in which nodes are

73

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

l7_

s^ 2
^» 1 2 113 1 ^^ΓΤί
O 16 4 n i ■

3 ^ ^ ^ ^ 4
^ 1 2 8 3 1 ^ I T "
O ■ '4 O ' *
^ 7 6 5 | ^ 7 f

1" 8 3 | ^ ^ 2 8 3 —> ΓΓ^
2 1 4 Η Π 1 4 B 1 ί

|7 6 5| ^ > 6 5| ^ [7 (

*"7L
5 4 Start
! c Node

"71 ^ ^ | 2 8 3|
4 1 ^ 9 16 4
S| |7 5 ■[

3] ^ 1 2 8 3 1
41 ^m\ 1 4 ·
5 | b 6 S j

T i ^ ^ | 2 3 "1
4 0 18 4

) 5| |7 6 5|

6 |

B ■δ 4

L7 6 5 J

<~ i ^ 1 ' 2 3 l ^ 1 1 2 3 |

N o d e ^ ^ J j W[B 6 5|

F/'g. 2.#Λ search tree using an evaluation function.

expanded. We see that the same solution path is found here as was found
by the other search methods, although the use of the evaluation function
has resulted in substantially fewer nodes being expanded. (If we simply
use the evaluation function/(n) = d{ n), we get the breadth-first search
process.)

The choice of evaluation function critically determines search results.
The use of an evaluation function that fails to recognize the true promise
of some nodes can result in nonminimal cost paths; whereas, the use of an
evaluation function that overestimates the promise of all nodes (such as
the evaluation function yielding breadth-first search) results in expansion
of too many nodes. In the next few sections, we develop some theoretical
results about the performance of GRAPHSEARCH when it uses a
particular kind of evaluation function.

2.4.2. ALGORITHM A

Let us define the evaluation function/so that its value,/(n), at any
node n estimates the sum of the cost of the minimal cost path from the
start node s to node n plus the cost of a minimal cost path from node n to a

74

HEURISTIC GRAPH-SEARCH PROCEDURES

goal node. That ÌS,/(AI) is an estimate of the cost of a minimal cost path
constrained to go through node n. That node on OPEN having the
smallest value o f / i s then the node estimated to impose the least severe
constraint; hence it is appropriate that it be expanded next.

Before demonstrating some of the properties of this evaluation
function, we first introduce some helpful notation. Let the function
/c(/ii,/ii) give the actual cost of a minimal cost path between two arbitrary
nodes n{ and AI, . (The function k is undefined for nodes having no path
between them.) The cost of a minimal cost path from node n to some
particular goal node, ti9 is then given by k{n,t{). We let h*(n) be the
minimum of all of the k{n,t{) over the entire set of goal nodes {t%).
Thus, A *(Λ) is the cost of the minimal cost path from n to a goal node,
and any path from node n to a goal node that achieves h *(n) is an optimal
path from « to a goal. (The function h * is undefined for any node n that
has no accessible goal node.)

Often we are interested in knowing the cost k (s,n) of an optimal path
from a given start node, s, to some arbitrary node n. It will simplify our
notation somewhat to introduce a new function g * for this purpose. The
function g * is defined as

g*(n) = k(s,n),

for all n accessible from s.

We next define the function/* so that its value/*(«) at any node n is
the actual cost of an optimal path from node s to node n plus the cost of an
optimal path from node « to a goal node, that is,

/ * («) = £*(/!) + * * («) ·

The value of/*(n) is then the cost of an optimal path from s constrained
to go through node n. (Note that/*(^) = h*(s) is the actual cost of an
unconstrained optimal path from s to a goal.)

We desire our evaluation function/to be an estimate of/*. Our
estimate can be given by

f(n)=g(n) + h(n),

where g is an estimate of g * and h is an estimate of h * . An obvious choice
for g(n) is the cost of the path in the search tree from s to n given by

75

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

summing the arc costs encountered while tracing the pointers from n to s.
(This path is the lowest cost path from s to n found so far by the search
algorithm. The value of g (n) for certain nodes may decrease if the search
tree is altered in step 7.) Notice that this definition implies
g{n)> g*(n). For the estimate Α (Λ) , of A*(«), we rely on heuristic
information from the problem domain. Such information might be
similar to that used in the function W(n) in the 8-puzzle example. We
call A the heuristic function and will discuss it in more detail later.

Suppose we now use as an evaluation function

/ (n) = g (n) + h(n).

We call the GRAPHSEARCH algorithm using this evaluation function
for ordering nodes, algorithm A. Note that when h = 0 and g = d (the
depth of a node in the search tree), algorithm A is identical to
breadth-first search. We claimed earlier that the breadth-first algorithm is
guaranteed to find a minimal length path to a goal. We now show that if A
is a lower bound on A * (that is, if A (AI) < A *(n) for all nodes n), then
algorithm A will find an optimal path to a goal. When algorithm A uses an
A function that is a lower bound on A * , we call it algorithm A* (read
"A-star"). Since A = 0 is certainly a lower bound on A * , the fact that the
breadth-first algorithm finds minimal length paths follows directly as a
special case of this more general result for algorithm A*.

2.43. THE ADMISSIBILITY OF A*.

Let us say that a search algorithm is admissible if, for any graph, it
always terminates in an optimal path from s to a goal node whenever a
path from s to a goal node exists. In this section we show informally that
A* is admissible.

To show that an algorithm is admissible, it is necessary to show, at least,
that it terminates whenever a goal node is accessible. The GRAPH-
SEARCH algorithm terminates (if at all) either in step 3 or in step 5.
Notice that in every cycle through the loop of the algorithm, a node is
removed from OPEN and that only a finite number of new successors are
added to OPEN. For finite graphs, we ultimately run out of new
successors, and thus, unless the algorithm terminates successfully in step
5 by finding a goal node, it will terminate in step 3 after eventually
depleting OPEN. Therefore,

76

HEURISTIC GRAPH-SEARCH PROCEDURES

RESULT 1: GRAPHSEARCH always terminates for finite
graphs.

Next we would like to show that if a path from s to a goal node exists,
A* will terminate even for infinite graphs. To do so, let us suppose the
opposite, that A* does not terminate. Termination is prevented only if
new nodes are forever added to OPEN. But in this case we can show that
even the smallest of the / values of the nodes on OPEN will grow
impossibly large.

Let d*(n) be the length of the shortest path in the implicit graph being
searched from s to any node n in the search tree produced by A*. Then
since the cost of each arc in the graph is at least some small positive
number e, g *(n) >: d *(n) e. (Recall that g *(n) is the cost of the optimal
path from s to n, and that g(n) is the cost of the path in the search tree
from s to node n.) Clearly, g(n)> g*(n), and thus g(n) > d*(n)e. If
h(n)>0 (which we henceforth assume), f(n)> g(n\ and thus
f(n) > d*(n)e. In particular, for every node n on OPEN, the value of
f(n) is at least as large as d*(n)e. Even though A* selects for expansion
that node on OPEN whose / value is smallest, the node selected will
ultimately have an arbitrarily large value ofd* and therefore also of/ if
A* does not terminate.

Now, to show that A* must eventually terminate, we show that before
termination of A*, there is always a node n on OPEN such that
f(n) < /*(^) . Let the ordered sequence (s = n0,nl9.. .,nk), where nk is
a goal node, be an optimal path from s to a goal node. Then, for any time
before A* terminates, let n' be the first node in this sequence that is on
OPEN. (There must be at least one such node, because s is on OPEN at
the beginning and if nk is on CLOSED, A* has terminated.) By the
definition of/for A*, we have

/ (Ό = g (O + *('!') ■

We know that A* has already found an optimal path to ri since ri is on an
optimal path to a goal and all of the ancestors on this path are on
CLOSED. Therefore, g (ri) = g*(ri) and

f(ri) = g*(ri) + h(ri).

Since we are assuming h (ri) < h *(ri), we can write

f(n')<g*(ri) + h*(ri) = /*(« ') ·

77

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

But t h e / * value of any node on an optimal path is equal to f*(s), the
minimal cost, and therefore/(«') < / * (s) . Thus, we have:

RESULT 2: At any time before A* terminates, there
exists on OPEN a node n' that is on
an optimal path from s to a goal node, with

Combining this result with our previous argument, that even the
smallest/values of the nodes on OPEN of a nonterminating A* become
unbounded, shows that A* must terminate even for infinite graphs. Thus,

RESULT 3: If there is a path from s to a goal node,
A* terminates.

RESULT 3 has an interesting corollary, namely, that any node, n, on
OPEN with f(n) <f*(s) will eventually be selected for expansion by
A*. We leave the proof as an exercise for the reader.

Now it is a simple matter to show that A* is admissible. First, we note
again that A* can either terminate by finding a goal node in step 5 or,
after depleting OPEN, in step 3. But OPEN can never become empty
before termination if there is a path from s to a goal node because, by
RESULT 2, there will always be a node on OPEN (and on an optimal
path). Therefore, A* must terminate by finding a goal node.

Next we would like to show that A* only terminates by finding an
optimal path to a goal node. Suppose A* were to terminate at some goal
node, /, without finding an optimal path, that i s , / (/) = g(t) >f*(s).
But, by RESULT 2, there existed just before termination a node, n\ on
OPEN and on an optimal path with/(« ') < / * (*) < / (*) · T h u s> a t t h i s

stage, A* would have selected nr for expansion rather than /, contradict
ing our supposition that A* terminated. Therefore, we finally have

RESULT 4: Algorithm A* is admissible. (That is, if
there is a path from s to a goal node, A*
terminates by finding an optimal path.)

Each node selected for expansion by A* has an interesting property
that follows directly from RESULT 2: Its/value is never greater than the
cost,/*($), of an optimal path. This result will be important to us later.
To show that it is true, let n be any node selected for expansion by A*. If n

78

HEURISTIC GRAPH-SEARCH PROCEDURES

is a goal node, we have/(n) = f*(s) by RESULT 4; so suppose n is not a
goal node. Now A* selected n before termination, so at this time (by
RESULT 2) we know that there existed on OPEN some node ri on an
optimal path from s to a goal with/(Az') <f*(s). If n = ri, our result is
established. Otherwise, we know that A* chose to expand n rather than
ri; therefore it must have been the case that

f(n) <f(ri) < / · (*) .

Therefore, we have

RESULT 5: For any node n selected for expansion by
A*,/(n) < / · (*) .

2.4.4. COMPARISON OF A* ALGORITHMS

The precision of our heuristic function h depends on the amount of
heuristic knowledge it possesses about the problem domain. Clearly,
using h(n) = 0 reflects complete absence of any heuristic information
about the problem, even though such an estimate is a lower bound on
h*(n) and therefore leads to an admissible algorithm.

Let us compare two versions of A*, namely, \ 1 and A2 using the
following evaluation functions:

M") = gl(n) + hin)

and

Λ (Ό = gt(n) + Μ Ό

where h1 and h2 are both lower bounds on h * . We say that algorithm A2
is more informed than algorithm A7 if for all nongoal nodes, «,
h2(n)> h1{n). This definition seems intuitively reasonable, since with h
bounded from above by h* for admissibility, one suspects that using
larger values of h (and thus values closer to h *) requires more accurate
heuristic information.

As an example, consider the 8-puzzle solved in Figure 2.8. There we
used the evaluation function/(/i) = d(n) + W(n). We can interpret
the search process of that example as an application of A* with

79

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

h(n) — W{n) and unit arc costs. (Note that W{n) is a lower bound on
the number of steps remaining to the goal.) It is reasonable to say that A*
with h{n) — W{n) is more informed than breadth-first search, which
uses h(n) = 0.

We would expect intuitively that the more informed algorithm
typically would need to expand fewer nodes to find a minimal cost path.
In the case of the 8-puzzle, this observation is supported by comparing
Figure 2.7 with Figure 2.8. Of course, merely because one algorithm
expands fewer nodes than another does not imply that it is more efficient.
The more informed algorithm may indeed have to make more costly
computations, which would destroy efficiency. Nevertheless, the number
of nodes expanded by an algorithm is one of the factors that determines
efficiency, and it is a factor that permits simple comparisons.

Suppose that A2 is more informed than A2 and that both A2 and A2
 a r e

versions of A*. Suppose that A2 and A2
 a r e u s e d to search an implicit

graph having a path from a given node s to a goal node. Both, of course,
will terminate in an optimal path. We will show that, at termination, if
node n in G was expanded by A2, it was also expanded by A7. Thus, A7
always expands at least as many nodes as does the more informed A2.

We prove this result using induction on the depth of a node in the A2
search tree at termination. First, we prove that if A2 expands a node n
having zero depth in its search tree, then so will A2. But, in this case,
n — s. If s is a goal node, neither algorithm expands any nodes. If s is not a
goal node, both algorithms expand node s. Continuing the inductive
argument, we assume (the induction hypothesis) that A; expands all the
nodes expanded by A2 having depth k, or less, in the A2 search tree. We
must now prove that any node n expanded by A2 and of depth k + 1 in

fthe A2 search tree is also expanded by A2. By the induction hypothesis,
any ancestor oïn in the A2 search tree is also expanded by A2. Thus, node
n is in the A; search tree and there is a path from s to n in the A; search
tree that is no more costly than the cost of the path from s to n in the A2
search tree; that is,

gi{n) < g2(n).

Let us suppose the opposite of what we are trying to prove, namely,
that A; did not expand node n expanded by A2. Certainly, at termination
of A2, node n must be on OPEN for A2, because A1 expanded a parent of
node n. Since A2 terminated in a minimal cost path without expanding
node n, we know that

80

HEURISTIC GRAPH-SEARCH PROCEDURES

thus,

g1{n) + h1{n)>f*{s).

Since we have already shown that g1 (n) < g2(n), we have

But, by RESULT 5, since \ 2 expanded node n, we have

or

or

Comparing this inequality for h2(n) with the earlier one for h1(n) (i.e.,
A/(/i) > / * (J) — &?(«)) reveals that, at least at node «, A2 must be as
large as h2 , which violates the assumption that A2 is more informed than
A2. Thus, we have

RESULT 6: If A, and A2 are two
versions of A* such that \ 2 is
more informed than A2, then at the
termination of their searches on any graph
having a path from 5toa goal node,
every node expanded by A2 is also
expanded by Aj. It follows that A2
expands at least as many nodes as does A2.

2.4.5. THE MONOTONE RESTRICTION

Describing the GRAPHSEARCH procedure, we noted that when a
node n is expanded, some of its successors may already be on OPEN or
CLOSED. The search tree may then need to be adjusted so that it defines

81

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

the least costly paths in G from node s to the descendants of node n. In
addition to the burden of adjusting the search tree, it is often computa
tionally quite expensive to test whether a node has been generated
before. We now show that given a rather mild and reasonable restriction
on A, when A* selects a node for expansion it has already found an
optimal path to that node. Thus, with this restriction, there is no need for
A* to test to see if a newly generated node is already on CLOSED, and
there is no need to change the parentage in the search tree of any
successors of this node in the search graph.

A heuristic function, A, is said to satisfy the monotone restriction if for
all nodes nx and n,, such that n, is a successor of ni9

h(n{) - hin^^cin^nj)

with

A(O = 0'.

If we write the monotone restriction in the form

Λ (« ι) < h(nj) + c(A2i,Ai?),

it is seen to be similar to a triangle inequality. It specifies that the estimate
of the optimal cost to a goal from node n{ not be more than the cost of the
arc from n{ to AÎ; plus the estimate of the optimal cost from TI,· to a goal.
We might say that the monotone restriction imposes the rather reason
able condition that the heuristic function be locally consistent with the
arc costs.

In the 8-puzzle, it is easily verified that h(n) = W(n) satisfies the
monotone restriction. If the function A is changed in any manner during
the search process, then the monotone restriction might not be satisfied.

We now show that, given the monotone restriction, when A* expands a
node, it has found an optimal path to that node. Let n be any node
selected for expansion by A*. If n = s, A* has trivially found an optimal
path to s ; so let us suppose that n is not s. Let the sequence P — (s = n0,
nj,n2i.. .,nk = n) be an optimal path from s to n. Let node nx be the last
node in this sequence that is on CLOSED at the time A* selects n for
expansion. (Node s is on CLOSED, but node nk is not, because it is just
now being selected for expansion.) Thus, node nx +1 in the sequence P is
on OPEN at the time A* selects node n.

82

HEURISTIC GRAPH-SEARCH PROCEDURES

Using the monotone restriction, we have that

S*(n,) + A(n4) < g*(ni) + c(nifni+1) + h(ni+1).

Since n{ and ^ +7 are on an optimal path

g*("i+l) = g*("i) + C(*i ,* i+i) >

therefore

[g * (O + A(«i)] ^ [**(*i+,) + A(/i i4J)].

By transitivity, we then have

g*(nl+1) + A(#iZ4J) < £*("*) + h(nk)

or

/ (Λ Ι - Μ) ^ ^ · (Λ) + Α (Ι Ι) .

Therefore, at the time A* selected node n, in preference to node nt +2, it
must have been the case that g(n) < g*(n); otherwise,/(n) would have
been greater t h a n / (n i + i) . Since g(m) >: g*(m) for all nodes m in the
search tree, we have

RESULT 7: If the monotone restriction is satisfied,
then A* has already found an optimal path
to any node it selects for expansion. That is,
if A* selects n for expansion, and if the
monotone restriction is satisfied,
g(n) = g*(n).

The monotone restriction also implies another interesting result,
namely, that the/values of the sequence of nodes expanded by A* are
nondecreasing. Suppose node n2 is expanded immediately after node n1.
If n2 was on OPEN at the time nl was expanded, we have (trivially) that
f{nt) < / (w^) . Suppose n2 is not on OPEN at the time n1 is expanded.
(Node n2 is not on CLOSED either, because we are assuming that it has
not been expanded yet.) Then, if n2 is expanded immediately after rij, it
must have been added to OPEN by the process of expanding n1.
Therefore, n2 is a successor of n1. Under these conditions, when n2 is
selected for expansion we have

83

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

= g*(n2) + h(n2) (RESULT 7)

= g*(*î) + c(nl9nt) + h(nf)

= g("i) + c(nl9n2) + Α(π,)
(RESULT 7)

Since the monotone restriction implies

c(nl9n2) + h(n2)> Λ(*ι),

we have

f(n2)>g(n1) + h(n1)=f(n1).

Since this fact is true for any adjacent pair of nodes in the sequence of
nodes expanded by A*, we have

RESULT 8: If the monotone restriction is satisfied,
the/values of the sequence of nodes
expanded by A* is nondecreasing.

When the monotone restriction is not satisfied, it is possible that some
node has a smaller / value at expansion than that of a previously
expanded node. We can exploit this observation to improve the effi
ciency of A* under this condition. By RESULT 5, when node n is
expanded, f(n) < /* (s) . Suppose, during the execution of A*, we
maintain a global variable, F, as the maximum of the/values of all nodes
so far expanded. Certainly F </*($) at all times. If ever a node, n, on
OPEN has/(n) < F, we know by the corollary to RESULT 3 that it will
eventually be expanded. In fact, there may be several nodes on OPEN
whose/values are strictly less than F. Rather than choose, from these,
that node with the smallest/value, we might rather choose that node with
the smallest g value. (All of them must eventually be expanded anyway.)

The effect of this altered node selection rule is to enhance the chances
that the first path discovered to a node will be an optimal path. Thus,
even when the monotone restriction is not satisfied, this alteration will
diminish the need for pointer redirection in step 7 of the algorithm. (Note
that when the monotone restriction is satisfied, RESULT 8 implies that
there will never be a node on OPEN whose/value is less than F.)

84

HEURISTIC GRAPH-SEARCH PROCEDURES

2.4.6. THE HEURISTIC POWER OF EVALUATION
FUNCTIONS

The selection of the heuristic function is crucial in determining the
heuristic power of search algorithm A. Using A = 0 assures admissibility
but results in a breadth-first search and is thus usually inefficient. Setting
A equal to the highest possible lower bound on A * expands the fewest
nodes consistent with maintaining admissibility.

Often, heuristic power can be gained at the expense of admissibility by
using some function for A that is not a lower bound on A * . This added
heuristic power then allows us to solve much harder problems. In the
8-puzzle, the function h(n) = W{ n) (where W{ n) is the number of tiles
in the wrong place) is a lower bound on A *(n), but it does not provide a
very good estimate of the difficulty (in terms of number of steps to the
goal) of a tile configuration. A better estimate is the function
h(n) = P(n), where P(n) is the sum of the distances that each tile is
from "home" (ignoring intervening pieces). Even this estimate is too
coarse, however, in that it does not accurately appraise the difficulty of
exchanging the positions of two adjacent tiles.

An estimate that works quite well for the 8-puzzle is

h(n) = P(n) + 3S(n).

The quantity S(n) is a sequence score obtained by checking around the
noncentral squares in turn, allotting 2 for every tile not followed by its
proper successor and allotting 0 for every other tile; a piece in the center
scores one. We note that this A function does not provide a lower bound
for A* . With this heuristic function used in the evaluation function
f(n) = g(n) + A(Λ), we can easily solve much more difficult 8-puzzles
than the one we solved earlier. In Figure 2.9 we show the search tree
resulting from applying GRAPHSEAkCH with this evaluation function
to the problem of transforming

2 1 6
4 8
7 5 3

into

1 2 3
8 4
7 6 5

85

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

Fig. 2.9 A search tree for the 8-puzzle.

86

HEURISTIC GRAPH-SEARCH PROCEDURES

Again, the / values of each node are circled in the figure, and the
uncircled numbers show the order in which nodes are expanded. (In the
search depicted in Figure 2.9, ties among minimal/values are resolved
by selecting the deepest node in the search tree.)

The solution path found happens to be of minimal length (18 steps);
although, since the A function is not a lower bound for A * , we were not
guaranteed of finding an optimal path. Note that this A function results in
a focused search, directed toward the goal; only a very limited spread
occurred, near the start.

Another factor that determines the heuristic power of search al
gorithms is the amount of effort involved in calculating the heuristic
function. The best function would be one identically equal to A* ,
resulting in an absolute minimum number of node expansions. (Such an
A could, for example, be determined as a result of a separate complete
search at every node; but this obviously would not reduce the total
computational effort.) Sometimes an A function that is not a lower bound
on A * is easier to compute than one that is a lower bound. In these cases,
the heuristic power might be doubly improved—because the total
number of nodes expanded can be reduced (at the expense of admissi-
bility) and because the computational effort is reduced.

In certain cases the heuristic power of a given heuristic function can be
increased simply by multiplying it by some positive constant greater than
one. If this constant is very large, the situation is as if g(n) = 0. In many
problems we merely desire to find some path to a goal node and are
unconcerned about the cost of the resulting path. (We are, of course,
concerned about the amount of search effort required to find a path.) In
such situations, we might think that g could be ignored completely since,
at any stage during the search, we don't care about the costs of the paths
developed thus far. We care only about the remaining seach effort
required to find a goal node. This search effort, while possibly dependent
on the A values of the nodes on OPEN, would seem to be independent of
the g values of these nodes. Therefore, for such problems, we might be
led to u s e / = A as the evaluation function.

To ensure that some path to a goal will eventually be found, g should
be included in/even when it is not essential to find a path of minimal
cost. Such insurance is necessary whenever A is not a perfect estimator; if
the node with minimum A were always expanded, the search process
might expand deceptive nodes forever without ever reaching a goal node.

87

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

Including g tends to add a breadth-first component to the search and thus
ensures that no part of the implicit graph will go permanently un-
searched.

The relative weights of g and h in the evaluation function can be
controlled by using/ = g + H>Ä, where w is a positive number. Very large
values of w overemphasize the heuristic component, while very small
values of w give the search a predominantly breadth-first character.
Experimental evidence suggests that search efficiency is often enhanced
by allowing the value of w to vary inversely with the depth of a node in
the search tree. At shallow depths, the search relies mainly on the
heuristic component, while at greater depths, the search becomes
increasingly breadth-first, to ensure that some path to a goal will
eventually be found.

To summarize, there are three important factors influencing the
heuristic power of Algorithm A:

(a) the cost of the path,

(b) the number of nodes expanded in finding the path, and

(c) the computational effort required to compute A.

The selection of a suitable heuristic function permits one to balance these
factors to maximize heuristic power.

2.5. RELATED ALGORITHMS

2.5.1. BIDIRECTIONAL SEARCH

Some problems can be solved using production systems whose rules
can be used in either a forward or a backward direction. An interesting
possibility is to search in both directions simultaneously. The graph-
searching process that models such a bidirectional production system can
be viewed as one in which search proceeds outward simultaneously from
both the start node and from a set of goal nodes. The process terminates
when (and if) the two search frontiers meet in some appropriate fashion.

88

RELATED ALGORITHMS

Unidirectional
search frontier
at termination

Start node Goal node

Bidirectional
search frontiers
at termination

Fig. 2.10 Bidirectional and unidirectional breadth-first searches.
Backward

search frontier

Forward
search frontier

Fig. 2.11 Forward search misses backward search.

89

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

Breadth-first versions of bidirectional graph-searching processes com
pare favorably with breadth-first unidirectional search. In Figure 2.10 we
compare two searches over a two-dimensional grid of nodes. We see that
the bidirectional process expands many fewer nodes than does the
unidirectional one.

The situation is more complex, however, when comparing bidirec
tional and unidirectional heuristic searches. If the heuristic functions
used by the bidirectional process are even slightly inaccurate, the search
frontiers may pass each other without intersecting. In such a case, the
bidirectional search process may expand twice as many nodes as would
the unidirectional one. This situation is illustrated in Figure 2.11.

2.5.2. STAGED SEARCH

The use of heuristic information as discussed so far can substantially
reduce the amount of search effort required to find acceptable paths. Its
use, therefore, also allows much larger graphs to be searched than would
be the case otherwise. Even so, occasions may arise when available
storage is exhausted before a satisfactory path is found. Rather than
abandon the search process completely, in such cases, it may be desirable
to prune the search graph, to free needed storage space to press the search
deeper.

The search process can then continue in stages, punctuated by pruning
operations obtaining storage space. At the end of each stage, some subset
of the nodes on OPEN, for example those having the smallest values of/,
are marked for retention. The best paths to these nodes are remembered,
and the rest of the search graph is thrown away. Search then resumes with
these best nodes. This process continues until either a goal node is found
or until resources are exhausted. Of course, even if A* is used in each
stage and if the whole process does terminate in a path, there is now no
guarantee that it is an optimal path.

2.53. LIMITATION OF SUCCESSORS

One technique that may save search effort is the disposal immediately
after expansion of all successors except a few having the smallest values
of/. Of course the nodes thrown away may be on the best (or the only!)
paths to a goal, so the worth of any such pruning method for a particular
problem can be determined only by experience.

90

MEASURES OF PERFORMANCE

Knowledge about the problem domain may sometimes be adequate to
recognize that certain nodes cannot possibly be on a path to a goal node.
(Such nodes satisfy a predicate like the DEADEND predicate used in the
backtracking algorithm.) These nodes can be pruned from the search
graph by modifying algorithm A to include this test. Alternatively, we
could assign such nodes a very high h value so that they would never be
selected for expansion.

There are also search problems for which the successors of a node can
be enumerated and their h values computed before the corresponding
databases themselves are explicitly calculated. Furthermore, it may be
advantageous to delay calculating the database associated with a node
until it itself is expanded; then the process never calculates any successors
not expanded by the algorithm.

2.6. MEASURES OF PERFORMANCE

The heuristic power of a searching technique depends heavily on the
particular factors specific to a given problem. Estimating heuristic power
involves judgements, based on experience rather than calculation.
Certain measures of performance can be calculated, however, and though
they do not completely determine heuristic power, they are useful in
comparing various search techniques.

One such measure is called penetrance. The penetrance, P, of a search
is the extent to which the search has focused toward a goal, rather than
wandered off in irrelevant directions. It is simply defined as

P = L/T9

where L is the length of the path found to the goal and T is the total
number of nodes generated during the search (including the goal node
but not including the start node). For example, if the successor operator is
so precise that the only nodes generated are those on a path toward the
goal, P will attain its maximum value of 1. Uninformed search is
characterized by values of P much less than 1. Thus, penetrance measures
the extent to which the tree generated by the search is "elongated" rather
than "bushy."

91

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

The penetrance value of a search depends on the difficulty of the
problem being searched as well as on the efficiency of the search method.
A given search method might have a high penetrance value when the
optimal solution path is short and a much lower one when it is long.
(Increasing the length of the solution path L usually causes Tto increase
even faster.)

Another measure, the effective branching factor, B, is more nearly
independent of the length of the optimal solution path. Its definition is
based on a tree having (a) a depth equal to the path length and (b) a total
number of nodes equal to the number generated during the search. The
effective branching factor is the constant number of successors that
would be possessed by each node in such a tree. Therefore, B is related to
path length L and to the total number of nodes generated, Γ, by the
expressions:

B + B2 + . . . + Bh = T

[5 L - \]B/(B - \)= T.

Although B cannot be written explicitly as a function of L and Γ, a plot
of B versus Tïor various values of L is given in Figure 2.12. A value of B
near unity corresponds to a search that is highly focused toward the goal,
with very little branching in other directions. On the other hand, a
"bushy" search graph would have a high B value. Penetrance can be
related to B and path length by the expression
P — L(B — 1)/2?[2?L — 1]. In Figure 2.13 we illustrate how penetrance
varies with path length for various values of B.

To the extent that the effective branching factor is reasonably
independent of path length, it can be used to give a prediction of how
many nodes might be generated in searches of various lengths. For
example, we can use Figure 2.12 to calculate that the use of the evaluation
function / = g + P +3S results in a 5 value equal to 1.08 for the
8-puzzle problem illustrated in Figure 2.9. Suppose we wanted to
estimate how many nodes would be generated using this same evaluation
function iti solving a more difficult 8-puzzle problem, say, one requiring
30 steps. From Figure 2.12, we note that the 30-step puzzle would involve
the generation of about 120 nodes, assuming that the branching factor
remained constant. This estimate, incidentally, is not inconsistent with
the experimental results of Doran and Michie (1966) on a wide variety of
8-puzzle problems.

92

MEASURES OF PERFORMANCE

_ ^
— —
—

h—

[—

l·-
—
—

p~
p̂
—

1-

~

oS.
II \

S ^

II %
<1

II >

II ^

— II
o

II
< l

II

II

o

(N
II

o

J

l—ST

r A
II ^

o

J L

— r ç

II

o

L

~~P

v o \

II

L

oo\
||

V<1

c \ (N \
II \

V*1 \

J

i—v o \
II \
O \

J L

"Ί Γ

1

^
S
ί

_
1

\ ^

_J L

—1
— —
—

J —

-\

\
\—

N^-

—
^

8

£

.*0

93

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

1.0

0.9 l—

0.8 h-

0.7

0.6

0.5 \~

0.4 —

0.3

0.2

0.1

[—

1 1

\B = 5.0 \

No

1 I " 1 " 1

\ 5 = 15

1^-4^- 1

1 Γ 1 1

L{B-\)
P~ B(BL - 1)

% Ä = 1.1

^ \ ^ 5 = 1.2

\ Ä = 1 . 3 ^ ^ \ ^ ^

^ Ί — - H U- 1

—\

-\

10 12 14 16 18 20
L

Fig. 2.13 P versus Lfor various values ofB.

2.7. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

The book by Horowitz and Sahni (1978) contains a thorough discus
sion of backtracking and other search methods. Gaschnig (1979) presents
experimental efficiency comparisons of backtracking and related al
gorithms. In some problems involving constraint satisfaction, relaxation
techniques can be employed to reduce search effort; these methods are
discussed by Waltz (1975), Montanari (1974), and Mackworth (1977).

94

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

Graph-search procedures of the sort that we termed uninformed have
arisen in a variety of contexts. Dijkstra (1959) and Moore (1959) both
proposed essentially breadth-first procedures. Dynamic programming
[Bellman and Dreyfus (1962)] is a type of breadth-first search process.
Our GRAPHSEARCH procedure differs from many previous ones in
that we do not transfer nodes from CLOSED back to OPEN when they
are revisited. [We redirect pointers in the search tree instead.]

The use of heuristic information to increase search efficiency has been
studied both in AI and in operations research. In AI, heuristic search was
a main theme of the work of Newell, Shaw, and Simon (1957, 1960). The
use of evaluation functions to direct search in graphs was proposed by
Doran and Michie (1966), from whom we take our 8-puzzle examples.

A general theory of the use of evaluation functions to guide search was
presented in a paper by Hart, Nilsson, and Raphael (1968). Our
description of A* and its properties is based on that paper. [The fact that
A* expands no more nodes than other algorithms that are no more
informed than A* was originally mistakenly thought to depend on a
restriction similar to the monotone restriction. This error, originally
pointed out by R. Coleman, was corrected in Hart, Nilsson, and Raphael
(1972). Corrections and refinements were also proposed by Gelperin
(1977).] VanderBrug (1976) presents an interesting geometric interpreta
tion of heuristic search processes.

Pohl has proposed several generalizations of A*, including a scheme
for bidirectional search [Pohl (1971)], and a method that changes the
relative weighting of A and g as search proceeds [Pohl (1973)]. Our use of
the monotone restriction is based on Pohl (1977). (The earlier consistency
restriction, of Hart, Nilsson, and Raphael, is stronger than needed and
harder to establish than the monotone restriction.) Pohl (1970,1977) and
Harris (1974) analyze some of the effects of errors in the heuristic
function on search, and Martelli (1977) analyzes the complexity of
heuristic search algorithms. [The node selection rule described on page
84 is based on Martelli's paper.] Simon and Kadane (1975) describe
search methods designed to find any solution rather than insisting on
optimal solutions. Michie and Ross (1970) describe a heuristic search
process that generates just one successor at a time.

The staged search variant was investigated by Doran and Michie
(1966) and by Doran (1967). A process involving staged search has been

95

SEARCH STRATEGIES FOR AI PRODUCTION SYSTEMS

used rather effectively in systems for speech understanding [Lowerre
(1976)] and visual scene interpretation [Rubin (1978)]. Jackson (1974, pp.
104) discusses an application to the 15-puzzle (by A. K. Chandra) of an
interesting search process that uses "mileposts."

Doran and Michie (1966) proposed the penetrance measure for
judging the efficiency of a given search. Slagle and Dixon (1969)
proposed another measure that they called the "depth ratio." Our
"effective branching factor" was motivated by these earlier measures.

Heuristic search finds many applications, sometimes outside of the
context of conventional AI systems. Montanari (1970) makes use of
heuristic search in chromosome matching, and Kanal (1979) discusses an
application in pattern classification.

EXERCISES

2.1 Consider a sliding block puzzle with the following initial configura
tion:

\B B B W W W E\

there are three black tiles (2?), three white tiles (W\ and an empty cell
(E). The puzzle has the following moves:

(a) A tile may move into an adjacent empty
cell with unit cost.

(b) A tile may hop over at most two other
tiles into an empty cell with a cost equal to
the number of tiles hopped over.

The goal of the puzzle is to have all of the white tiles to the left of all of the
black tiles (without regard for the position of the blank cell).

Specify a heuristic function, A, for this problem and show the search
tree produced by algorithm A using this heuristic function. Can you tell
whether or not your h function satisfies the monotone restriction? Does it
satisfy the monotone restriction for the nodes in your search tree?

96

EXERCISES

2.2 Propose two (non-zero) h functions for the traveling salesman
problem of section 1.1.6. Is either of these h functions a lower bound on
h *? In your opinion, which of them would result in more efficient search?
Apply algorithm A with these h functions to the five-city problem shown
in Figure 1.5.

2 3 Assume unit costs for each rule application in the formulation of the
4-queens problem of section 2.1. Describe the general characteristics of
the h * function for this problem. Can you think of any h functions that
would be useful for guiding search?

2.4 Describe how to modify procedure GRAPHSEARCH so that only
one successor of a node (at a time) is generated in step 6. The modified
procedure must make two selections: which node to expand and which
successor to generate. (In controlling a production system, the modified
procedure must select a database and an applicable rule.)

2.5 Prove, as a corollary to RESULT 3, that any node, n, on OPEN with
f{n) < / * (s) , will eventually be selected for expansion by A*.

2.6 Explain why algorithm A* remains admissible if it removes from
OPEN any node n for which / (n) > F, where F is an upper bound on

2.7 Use the evaluation function f(n) = d(n) + W(n) (defined in
section 2.4.1.) with algorithm A to search backward from the goal node of
Figure 2.8 to the start node. Where would the backward search meet the
forward search?

2.8 Discuss ways in which an h function might be improved during a
search.

97

CHAPTER 3

SEARCH STRATEGIES FOR
DECOMPOSABLE PRODUCTION

SYSTEMS

In chapter 1, we introduced decomposable production systems and
structures called AND/OR trees, for controlling their operation. In this
chapter we describe some heuristic strategies for searching AND/OR
trees and graphs. We also describe some search techniques for graphs
used in game-playing systems.

3.1. SEARCHING AND/OR GRAPHS

Recall that the AND or the OR label given to a node in an AND/OR
tree depends upon that node's relation to its parent. In one case, a parent
node labeled by a compound database has a set of AND successor nodes,
each labeling one of the component databases. In the other case, a parent
node labeled by a component database has a set of OR successor nodes,
each labeling the database resulting from the application of alternative
rules to the component database.

We are generally concerned with AND/OR graphs rather than with
the special case of trees, because different sequences of rule applications
may generate identical databases. For example, a node could be labeled
by a component database resulting both from having split a compound
one and from having applied a rule to another one. In this case, it would
be called an OR node with respect to one parent and an AND node with
respect to the other parent. For this reason, we do not generally refer to
the nodes of an AND/OR graph as being AND nodes or OR nodes;

99

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

instead, we introduce some more general notation, appropriate for
graphs. We continue to call these structures AND/OR graphs, however,
and use the terms AND nodes and OR nodes when discussing AND/OR
trees.

We define AND/OR graphs here as hyper graphs. Instead of arcs
connecting pairs of nodes, there are hyperarcs connecting a parent node
with Si set of successor nodes. These hyperarcs are called connectors. Each
k-connector is directed from ^parent node to a set of A: successor nodes. (If
all of the connectors are 1-connectors, we have the special case of an
ordinary graph.)

In Figure 3.1, we show an example of an AND/OR graph. Note that
node n0 has a 1-connector directed to successor nt and a 2-connector
directed to the set of successors {n4in5}. For k > 1, /c-connectors are
denoted in our illustrations by a curved line joining the arcs from parent
to elements of the successor set. (Using our earlier terminology, we could
have regarded nodes nh and n5 as a set of AND nodes, and we could have
regarded node nt as an OR node, relative to their common parent n0 ; but
note that node n8, for example, belongs to a set of AND nodes relative to
its parent n5 but is an OR node relative to its parent nh.)

Fig. 3.1 An AND/OR graph.

100

SEARCHING AND/OR GRAPHS

In an AND/OR tree, each node has at most one parent. In trees and
graphs we call a node without any parent a root node. In graphs, we call a
node having no successors a leaf node (a tip node for trees).

A decomposable production system defines an implicit AND/OR
graph. The initial database corresponds to a distinguished node in the
graph called the start node. The start node has an outgoing connector to a
set of successor nodes corresponding to the components of the initial
database (if it can be decomposed). Each production rule corresponds to
a connector in the implicit graph. The nodes to which such a connector is
directed correspond to component databases resulting after rule applica
tion and decomposition into components. There is a set of terminal nodes
in the implicit graph corresponding to databases satisfying the termina
tion condition of the production system. The task of the production
system can be regarded as finding a solution graph from the start node to
the terminal nodes.

Roughly speaking, a solution graph from node n to node set N of an
AND/OR graph is analogous to a path in an ordinary graph. It can be
obtained by starting with node n and selecting exactly one outgoing
connector. From each successor node to which this connector is directed,
we continue to select one outgoing connector, and so on, until eventually
every successor thus produced is an element of the set N. In Figure 3.2,
we show two different solution graphs from node n0 to {n7,n8} in the
graph of Figure 3.1.

We can give a precise recursive definition of a solution graph. The
definition assumes that our AND/OR graphs contain no cycles, that is, it
assumes that there is no node in the graph having a successor that is also
its ancestor. The nodes thus form a partial order which guarantees
termination of the recursive procedures we use. We henceforth make this
assumption of acyclicity.

J0n0 Qn0

/^ Λ
n7 n8 n7 n8

Fig. 3.2 Two solution graphs.

101

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

Let G' denote a solution graph from node n to a set N of nodes of an
AND/OR graph G. G' is a subgraph of G.

If n is an element of N, G' consists of the single node n ;

otherwise, if n has an outgoing connector, K9 directed to nodes
{nl9.. .9nk} such that there is a solution graph to N from each of ni9
where / = 1, . . . , fc, then G' consists of node n9 the connector, K9 the nodes
{nl9.. .,nk}9 and the solution graphs to TV from each of the nodes in
{nl9...,nk};

otherwise, there is no solution graph from n to N.

Analogous to the use of arc costs in ordinary graphs, it is often useful to
assign costs to connectors in AND/OR graphs. (These costs model the
costs of rule applications; again we need to assume that each cost is
greater than some small positive number, e.) The connector costs can
then be used to calculate the cost of a solution graph. Let the cost of a
solution graph from any node n to N be denoted by k(n9N). The cost
k(n9N) can be recursively calculated as follows:

If n is an element of N9 k(n9N) = 0.

Otherwise, n has an outgoing connector to a set of successor nodes
{n1,..., nx} in the solution graph. Let the cost of this connector be cn.
Then,

k(n,N) = cn+ k(nl9N) + . . . + k(ni9N).

We see that the cost of a solution graph, G'9 from ntoNis the cost of
the outgoing connector from n (in G') plus the sum of the costs of the
solution graphs from the successors of n (in G') to N. This recursive
definition is satisfactory because we are assuming acyclic graphs.

Note that our definition of the cost of a solution graph might count the
costs of some connectors in the solution graph more than once. In
general, the cost of an outgoing connector from some node m is counted
in the cost of a solution graph from n to TV just as many times as there are
paths from n to m in the solution graph. Thus, the costs of the two
solution graphs in Figure 3.2 are 8 and 7 if the cost of each fc-connector is
k.

102

AO*: A HEURISTIC SEARCH PROCEDURE FOR AND/OR GRAPHS

Beyond merely finding any solution graph from the start node to a set
of terminal nodes, we may want to find one having minimal cost. We call
such a solution graph an optimal solution graph. Let the cost of an
optimal solution graph from n to a set of terminal nodes be denoted by
the function h*(n).

3.2. AO*: A HEURISTIC SEARCH PROCEDURE FOR
AND/OR GRAPHS

As with ordinary graphs, we define the process of expanding a node as
the application of a successor operator that generates all of the successors
of a node (through all outgoing connectors). We might now define a
breadth-first search algorithm for searching implicit AND/OR graphs to
find solution graphs. Again, since breadth-first procedures are unin
formed about the problem domain, they are typically not sufficiently
efficient for AI applications. We are naturally led to ask whether some
search procedure using an evaluation function with a heuristic compo
nent can be devised for AND/OR graphs.

We now describe a search procedure that uses a heuristic function
A (n) that is an estimate of A *(n), the cost of an optimal solution graph
from node wtoa set of terminal nodes. Just as with GRAPHSEARCH,
simplifications in the statement of the procedure are possible if A satisfies
certain restrictions.

Let us impose a monotone restriction on A, that is, for every connector
in the implicit graph directed from node n to successors n1,.. .,nk, we
assume:

h(n)<c + h(n,) + . . . + h(nk),

where c is the cost of the connector. This restriction is analogous to the
monotone restriction on heuristic functions for ordinary graphs. If
h(n) = 0 for n in the set of terminal nodes, then the monotone
restriction implies that A is a lower bound on A *, that is, A(n) < A *(n)
for all nodes n.

103

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

Our heuristic search procedure for AND/OR graphs can now be stated
as follows:

Procedure AO*

1 Create a search graph, G, consisting solely of
the start node, s. Associate with node
s a cost q(s) — h(s).
If s is a terminal node, label s SOLVED.

2 until s is labeled SOL VED, do:

3 begin

4 Compute a. partial solution graph, G',
in G by tracing down the marked connectors
in G from s. (Connectors of G will be
marked in a subsequent step.)

5 select any nonterminal leaf node, ny of
G'. (We discuss later how this
selection might be made.)

6 Expand node n generating all of its successors
and install these in G as successors of AI.
For each successor, nj9 not already
occurring in G, associate the cost

Label SOL VED any of these successors that are
terminal nodes. (See text for discussion of what to
do in case node n has no successors.)

7 Create a singleton set of nodes, S, containing

just node n.

8 until S is empty, do:

9 begin
10 Remove from S a node m such that

m has no descendants in G occurring
inS .

104

AO*: A HEURISTIC SEARCH PROCEDURE FOR AND/OR GRAPHS

11 Revise the cost q (m) for m, as follows:
for each connector directed from m to a
set of nodes {nli9.. .,nki}
compute q{(m) = ci + q(nH) + . . .
+ q(nki)· [The q(nH) have
either just been computed in a
previous pass through this inner loop
or (if this is the first pass) they were
computed in step 6.]
Set q (m) to the minimum over all
outgoing connectors of qi(m) and
mark the connector through which this
minimum is achieved, erasing the previous
marking if different. If all of the
successor nodes through this connector
are labeled SOLVED, then label node m
SOLVED.

12 If m has been marked SOL VED or if the
revised cost of m is different than its
just previous cost, then add to S all
those parents of m such that m is one
of their successors through a marked
connector.

13 end

14 end

Algorithm AO* can best be understood as a repetition of the following
two major operations. First, a top-down, graph-growing operation (steps
4-6) finds the best partial solution graph by tracing down through the
marked connectors. These (previously computed) marks indicate the
current best partial solution graph from each node in the search graph.
(Before the algorithm terminates, the best partial solution graph does not
yet have all of its leaf nodes terminal, which is why it is called partial.)
One of the nonterminal leaf nodes of this best partial solution graph is
expanded, and a cost is assigned to its successors.

The second major operation in AO* is a bottom-up, cost-revising,
connector-marking, SOLVEAabcling procedure (steps 7-12). Starting
with the node just expanded, the procedure revises its cost (using the

105

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

newly computed costs of its successors) and marks the outgoing connec
tor on the estimated best "path" to terminal nodes. This revised cost
estimate is propagated upward in the graph. (Acyclicity of our graphs
guarantees no loops in this upward propagation.) The revised cost, q (n),
is an updated estimate of the cost of an optimal solution graph from n to a
set of terminal nodes. Only the ancestors of nodes having their costs
revised can possibly have their costs revised, so only these need be
considered. Because we are assuming the monotone restriction on A, cost
revisions can only be cost increases. Therefore, not all ancestors need
have cost revisions, but only those ancestors having best partial solution
graphs containing descendants with revised costs (hence step 12).

When the AND/OR graph is an AND/OR tree, the bottom-up
operation can be simplified somewhat (because then each node has only
one parent).

To avoid making algorithm AO* appear more comptex than it already
does, we ignored the possibility (in step 6) that the node selected for
expansion might not have any successors. This case is easily handled in
step 11 by associating a very high q value cost with any node, m, having
no successors (or, more generally, any node recognized as not belonging
to any solution graph). The bottom-up operation will then propagate this
high cost upward, which eliminates any chance that a graph containing
this node might be selected as an estimated best solution graph.

Suppose some node n has a finite number of descendants in the
implicit AND/OR graph and that these do not comprise a solution graph
from n to a set of terminal nodes. Then, eventually, the revised cost, q (n),
for node n will have a very high value. The assignment of a very high
value, q(s), to the start node can therefore be taken to signal that there is
no solution graph from the start node.

It is possible to prove that if there is a solution graph from a given node
to a set of terminal nodes, and if h (n) < h *(n) for all nodes, and if h
satisfies the monotone restriction, then algorithm AO* will terminate in
an optimal solution graph. (This optimal solution graph can be obtained
by tracing down from s through the marked connectors at termination.
The cost of this optimal solution graph is equal to the q value of s at
termination.) Thus, we can say that algorithm AO* with these restrictions
is admissible. We omit the proof of this result here; the interested reader
is referred to Martelli and Montanari (1973).

106

AO*: A HEURISTIC SEARCH PROCEDURE FOR AND/OR GRAPHS

A breadth-first algorithm can be obtained from AO* by using h = 0.
Because such an h function satisfies the monotone restriction (and is a
lower bound on h *), the breadth-first algorithm using it is admissible.

As an example of the use of AO*, let us consider again the graph of
Figure 3.1. Suppose that the following estimates are available:

h(n0) = 0, h(n,) = 29h(nf) = 4, h{n3) = 4,

h(nu) = 1, h(n5) = hh(n6) = 2, h{n7) = 0,

h(n8) = 0.

Let nodes n7 and n8 be terminal nodes, and let the cost of each
/c-connector be k. Note that our h function provides a lower bound on h *
and satisfies the monotone restriction.

The search graphs obtained after various cycles through the outer loop
of AO* are shown in Figure 3.3. In each graph, the revised q values are
shown next to each node; heavy arrows are used to mark connectors, and
nodes labeled SOLVED are indicated by solid circles. During the first
cycle, we expand node n0\ next we expand node n1, then node n5, and
then node nu. After node nu is expanded, node n0 is labeled SOL VED.
The solution graph (with minimal cost equal to 5) is obtained by tracing
down through the marked connectors.

We have not yet discussed how AO* selects (in step 5) a nonterminal
leaf node of the estimated best partial solution graph to expand. Perhaps
it would be efficient to select that leaf node most likely to change the
estimate of the best partial solution graph. If the estimate of the best
partial solution graph never changes, AO* must eventually expand all of
the nonterminal leaf nodes of this graph anyway. However, if the
estimate is eventually going to change to some more nearly optimal
graph, the sooner AO* makes this change, the better. Possibly the
expansion ofthat leaf node having the highest h value would most likely
result in a changed estimate.

As with algorithms A and A* for ordinary graphs, AO* may be
modified in a variety of ways to render it more practical in special
situations. First, rather than recompute a new estimated best partial
solution graph after every node expansion, one might instead expand one

107

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

3 ^ fir 4 //,,

Ό"4
η,Ο

After one cycle After two cycles

" 0 ^ 5
n0 5

After three cycles After four cycles

Fig. 3.3 Search graphs after various cycles of AO*.

108

RELATIONSHIPS BETWEEN DECOMPOSABLE AND COMMUTATIVE SYSTEMS

or more leaf nodes and some number of their descendants all at once, and
then recompute an estimated best partial solution graph. This strategy
reduces the overhead expense of frequent bottom-up operations but
incurs the risk that some node expansions may not be on the best solution
graph.

A staged-search strategy may also be used for AND/OR graphs. To
employ it, one periodically reclaims needed storage space by discarding
some of the AND/OR search graph. One might, for example, determine
a few of those partial solution graphs within the entire search graph
having the largest estimated costs. These can then be discarded periodi
cally (with the risk, of course, of discarding one that might turn out to be
the top of an optimal solution graph.)

3.3. SOME RELATIONSHIPS BETWEEN
DECOMPOSABLE AND COMMUTATIVE
SYSTEMS

In chapter 1 we mentioned that several problems could be solved by
production systems working in either forward or backward directions.
(Whether one chooses to call a given direction forward, or backward, is
often arbitrary.) Here we illustrate that certain types of commutative
systems are dual to decomposable ones.

Suppose that we have a production system based on the following
rewrite rules:

Rl:

R2:

R3:

R4:

R5:

R6:

Τ^Α,Β

T^>B,C

A-+D

B-> E,F

B^>G

C^>G

109

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

These rules are to be applied to a global database consisting of a set of
symbols. A rule is applicable if the global database contains a symbol
matching its left-hand side. The effect on the global database of applying
the rule is to remove the occurrence of the left-hand side of the rule and
add the right-hand side of the rule.

Production systems using such context-free rewrite rules with single
ton left-hand sides are decomposable. An AND/OR search graph that
results from applying the rewrite rules to an initial global database
consisting of the single symbol, T, is shown in Figure 3.4.

There is an interesting manner in which the rewrite rules of our
example can be used in the reverse direction. We say that such a reverse
rule is applicable if the global database contains symbols matching all the
symbols of the right-hand side. The effect of the rule is to add (not replace
by) the symbol occurring on the left-hand side. In Figure 3.5 we show an
example in which some (reverse direction) rules are applied to an initial
global database consisting of the set {D, E, F, G}. (We indicate a reverse
direction application of rule R by R'.) We note that the production
system that results from using these rewrite rules in the reverse direction,
in the manner we have indicated, is commutative. Thus, as we discussed in
chapter 1, an irrevocable control regime can be used without the danger
of foreclosing any possible rule applications.

If we continue to apply (irrevocably) the reverse rules RV,..., R6\ to a
database that is initially the set {D,E,F,G}, and to its descendants, we
eventually obtain the set {D,E,F,G,A,B,C,T}. We can keep track of
these rule applications and the resulting global databases by an interest
ing structure called a derivation graph. A derivation graph is a way of
structuring the global database at any stage of the production system
process so that it indicates something about the history of rule applica
tions.

We show a derivation graph for our example in Figure 3.6. The global
database consists of the derivation graph. The way in which each boxed
expression in the graph is derived is indicated by an incoming set of arcs
labeled by the reverse rule.

It is obvious, of course, that the two structures of Figure 3.4 and Figure
3.6 are identical except for arc directions. In many problems in which we
are interested, if we reverse the direction of a commutative production
system, we obtain a decomposable production system. Often we think of

110

RELATIONSHIPS BETWEEN DECOMPOSABLE AND COMMUTATIVE SYSTEMS

R5 R6

H H 0 Ξ
Fig. 3.4 A search graph.

[D,E,F,G]

{D,E,F,G,A} {D,E,F,G,C} {D,E,F,G,B}

Fig. 3.5 Using rewrite rules in the reverse direction.

Rf

D

RÏ

E

T

B

R4'

R2'

\R5'
F

Fig. 3.6 A derivation graph.

I l l

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

the commutative system, using its rules, as the forward-directed system
and the decomposable system, using reverse direction rules, as the
backward-directed system.

We can use an evaluation function in connection with derivation
graphs to control this type of commutative production system. Any rule
applied to a derivation graph can be regarded as producing a new
derivation graph. The rule application adds one new node to the
structure. Thus, rule RI' adds the node labeled Tin Figure 3.6. We can
define the cost of the derivation through this rule as the cost of both the
rule itself plus the costs of the least costly derivation (sub)graphs
associated with the nodes that are "inputs" to the rule. Such a cost
definition is exactly analogous to the recursive definition of the cost of an
AND/OR solution graph.

The cost of a derivation graph can be regarded as a way of computing a
g function for a commutative production system. There are several
alternative rules that can be applied to any derivation graph. Each has
associated with it a g value computed as we have just described. We can
also define a heuristic function, h, over derivation graphs. Such a function
estimates the additional cost of all subsequent rule applications to that
derivation graph and to its descendants along an optimal path to
termination. When used to evaluate alternative rules, we let the h value of
the rule application be the value obtained from this heuristic function for
the derivation graph after the rule is applied. We can now add the g and h
values of a rule application to obtain an/value for evaluating rules. That
applicable rule with the smallest / value is selected for irrevocable
application.

In this manner, a commutative production system with an irrevocable
control strategy can be guided by a process very much like that used by
algorithm A in graph searching. Given the assumption that h is a lower
bound on h *, we could show that such a strategy yields minimal cost
derivations and that a more informed h uses fewer rule applications.

3,4. SEARCHING GAME TREES

Search techniques similar to those already discussed can be used to
find playing strategies for certain kinds of games. The games that we
consider are those called two-person, perfect-information games. These

112

SEARCHING GAME TREES

are played by two players who move in turn. They each know completely
what both players have done and can do. Specifically, we are interested in
those games where either one of the two players wins (and the other loses)
or where the result is a draw. Example games from this class are checkers,
tic-tac-toe, chess, go, and nim. We are not going to consider here any
games whose results are determined even partially by chance; thus, dice
games and most card games are ruled out. (Our treatment could be
generalized to include certain chance games, however.)

We can use systems that are very much like production systems to
analyze games. For example, in chess, the global database would contain
a representation of the positions of all of the pieces on the board. The
production rules model the legal moves of the game. The application of
these rules to the initial database and to its successors, and so on,
generates what is called a game graph or tree.

We can illustrate these ideas using a simple game called "Grundy's
game." The rules of the game are as follows: Two players have in front of
them a single pile of objects, say a stack of pennies. The first player
divides the original stack into two stacks that must be unequal. Each
player alternately thereafter does the same to some single stack when it is
his turn to play. The game proceeds until every stack has either just one
penny or two—at which point continuation becomes impossible. The
player who first cannot play is the loser. Suppose we call our two players
MAX and MIN and let MIN play first.

Let us start with seven pennies in the stack. A database for this game is
an unordered sequence of numbers representing the number of pennies
in the various stacks plus an indication of who is to move next. Thus
(Ί,ΜΙΝ) is the starting configuration. From (7, MIN), MIN has three
alternative moves creating the configurations (6,1, MAX), (5,2, MAX), or
(4,3, MAX). The complete game graph for this game (produced by
applying all applicable rules to all databases) is shown in Figure 3.7. All
of the leaf nodes represent losing situations for the player next to move.

We can use the game graph to show that, no matter what MIN does,
MAX can always win. A winning strategy for MAX is shown in Figure 3.7
by heavy lines. For every node representing a game situation in which it
is M I NT s move next, we must show that MAX can win from every
position to which MIN might move. For every node representing a
situation for which it is MAX's move next, we need only show that MAX
can win from just one of the positions to which he might move.

113

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

Note the similarity between the winning strategy for MAX shown in
Figure 3.7 and a solution graph of an AND/OR graph. Nodes corre
sponding to MIKTs next move have successors that are like AND nodes.
From MAX*s point of view, a solution (that is, a win) must be obtainable
from all of these successors. Nodes corresponding to MAX'S next move
have successors that are like OR nodes. Again, from MAX'S point of view,
a win must be obtainable from at least one of these successors. Terminal
nodes are nodes corresponding to winning situations for MAX.

In our discussion of games, we adopt the convention that we are trying
to find a winning strategy for MAX. Also, we assume that MAX moves
first and that thereafter the moves alternate between the two players.
With these conventions we can suppress any explicit mention of whose
move is next in further illustrations of game graphs and trees. Nodes at
even-numbered depths correspond to positions in which it is MAX's
move next; these will be called MAX nodes. Nodes at odd-numbered
depths correspond to positions in which it is MIN's move next; these are
the MIN nodes. A terminal node is any node corresponding to a winning
position for MAX. (The top node of a game graph is of depth zero, an
even number.)

(5, 1, \,MIN)\ (4 ,2 , \,MIN)\ (3 ,2 , 2,MIN)\ (3 ,3 , \,MIN)

Fig. 3.7 A game graph for Grundy's game.

114

SEARCHING GAME TREES

3.4.1. THE MINIMAX PROCEDURE

Many simple games (as well as some "ending" sequences of more
complex games) can be handled by search techniques that are analogous
to those used for finding AND/OR solution graphs. The solution graph,
then, represents a complete playing strategy. Grundy's game, tic-tac-toe
(naughts and crosses), various versions of nim, and some chess and
checker end-games are examples of simple games in which AND/OR
search to termination is feasible. A gross estimate of the size of the
tic-tac-toe game tree, for example, can be obtained by noting that the
start node has nine successors, these in turn have eight, etc., yielding 9!
(or 362,880) nodes at the bottom of the tree. Many of the paths end in
terminal nodes at shallower levels, however, and further reductions in the
size of the tree result if symmetries are acknowledged.

For more complex games, such as complete chess and checker games,
AND/OR search to termination is wholly out of the question. It has been
estimated that the complete game tree for checkers has approximately
1040 nodes and the chess tree has approximately 10120 nodes. (It would
take about 1021 centuries to generate the complete checker tree, even
assuming that a successor could be generated in 1/3 of a nanosecond.)
Furthermore, heuristic search techniques do not reduce the effective
branching factor sufficiently to be of much help. Therefore, for complex
games, we must accept the fact that search to termination is impossible;
that is, we must abandon the idea of using this method to prove that a win
or draw can be obtained (except perhaps during the end-game).

Our goal in searching a game tree might be, instead, merely to find a
good first move. We could then make the indicated move, await the
opponent's reply, and search again to find a good first move from this new
position. We can use either breadth-first, depth-first, or heuristic meth
ods, except that the termination conditions must now be modified.
Several artificial termination conditions can be specified based on such
factors as a time limit, a storage-space limit, and the depth of the deepest
node in the search tree. It is also usual in chess, for example, not to
terminate if any of the tip nodes represent "live" positions, that is,
positions in which there is an immediate advantageous swap.

After search terminates, we must extract from the search graph an
estimate of the "best" first move. This estimate can be made by applying
a static evaluation function to the leaf nodes of the search graph. The
evaluation function measures the "worth" of a leaf node position. The

115

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

measurement is based on various features thought to influence this
worth; for example, in checkers some useful features measure the relative
piece advantage, control of the center, control of the center by kings, and
so forth. It is customary in analyzing game trees to adopt the convention
that game positions favorable to MAX cause the evaluation function to
have a positive value, while positions favorable to MIN cause the
evaluation function to have a negative value; values near zero correspond
to game positions not particularly favorable to either MAX or MIN.

A good first move can be extracted by a procedure called the minimax
procedure. (For simplicity we explain this procedure and others depend
ing on it as if the game graph were really just a game tree.) We assume
that were MAX to choose among tip nodes, he would choose that node
having the largest evaluation. Therefore, the (MAX node) parent of MIN
tip nodes is assigned a backed-up value equal to the maximum of the
evaluations of the tip nodes. On the other hand, if MIN were to choose
among tip nodes, he would presumably choose that node having the
smallest evaluation (that is, the most negative). Therefore, the (MIN
node) parent of MAX tip nodes is assigned a backed-up value equal to the
minimum of the evaluations of the tip nodes. After the parents of all tip
nodes have been assigned backed-up values, we back up values another
level, assuming that MAX would choose that node with the largest
backed-up value while MIN would choose that node with the smallest
backed-up value.

We continue to back up values, level by level, until, finally, the
successors of the start node are assigned backed-up values. We are
assuming it is MAX'S turn to move at the start, so MAX should choose as
his first move the one corresponding to the successor having the largest
backed-up value.

The utility of this whole procedure rests on the assumption that the
backed-up values of the start node's successors are more reliable
measures of the ultimate relative worth of these positions than are the
values that would be obtained by directly applying the static evaluation
function to these positions. The backed-up values are, after all, based on
"looking ahead" in the game tree and therefore depend on features
occurring nearer the end of the game.

A simple example using the game of tic-tac-toe illustrates the min-
imaxing method. Let us suppose that MAX marks crosses (X) and MIN

116

SEARCHING GAME TREES

marks circles (O) and that it is MAX'S turn to play first. We conduct a
breadth-first search, until all of the nodes at level 2 are generated, and
then we apply a static evaluation function to the positions at these nodes.
Let our evaluation function e(p) of a position p be given simply by:

If p is not a winning position for either player,

e(p) = (number of complete rows, columns, or diagonals
that are still open for MAX) — (number of
complete rows, columns, or diagonals that are
still open for MIN).

lip is a win for MAX,

e(p) = oo (oo denotes a very large positive number).

If/? is a win for MIN,

e(p) = - o o .

Thus, if/7 is

o
X

we have e(p) = 6 — 4 = 2.

We make use of symmetries in generating successor positions; thus the
following game states

o
X X

o
X o o X

are all considered identical. (Early in the game, the branching factor of
the tic-tac-toe tree is kept small by symmetries; late in the game, it is kept
small by the number of open spaces available.)

In Figure 3.8 we show the tree generated by a search to depth 2. Static
evaluations are shown below the tip nodes, and backed-up values are
circled.

117

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

I
È
is

.bio

xlOl

118

Fi
g.

 3
.9

 M
in

im
ax

 a
pp

lie
d

to
 ti

c-
ta

c-
to

e
{s

ta
ge

 2
).

n X 5 o p H

w w

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

120

SEARCHING GAME TREES

Since

has the largest backed-up value, it is chosen as the first move. (Coin-
cidentally, this is MAX'S best first move.)

Now let us suppose that MAX makes this move and MIN replies by
putting a circle in the square directly above the X (a bad move for MIN,
who must not be using a good search strategy). Next MAX searches to
depth 2 below the resulting configuration, yielding the search tree shown
in Figure 3.9. There are now two possible "best" moves; suppose MAX
makes the one indicated. Now MIN makes the move that avoids his
immediate defeat, yielding

O
X

O

XI
MAX searches again, yielding the tree shown in Figure 3.10. Some of

the tip nodes in this tree (for example, the one marked A) represent wins
for MIN and thus have evaluations equal to — oo. When these evalua
tions are backed up, we see that MAX'S best move is also the only one that
avoids his immediate defeat. Now MIN can see that MAX must win on
his next move, so MIN gracefully resigns.

3.4.2. THE ALPHA-BETA PROCEDURE

The search procedure that we have just described separates completely
the processes of search-tree generation and position evaluation. Only
after tree generation is completed does position evaluation begin. It
happens that this separation results in a grossly inefficient strategy.
Remarkable reductions (amounting sometimes to many orders of mag
nitude) in the amount of search needed (to discover an equally good
move) are possible if one performs tip-node evaluations and calculates
backed-up values simultaneously with tree generation.

Consider the search tree of Figure 3.10 (the last stage of our tic-tac-toe
search). Suppose that a tip node is evaluated as soon as it is generated.
Then after the node marked A is generated and evaluated, there is no
point in generating (and evaluating) nodes B, C, and D ; that is, since
MIN has A available and MIN could prefer nothing to A, we know

121

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

immediately that MIN will choose A. We can then assign A's parent the
backed-up value of — oo and proceed with the search, having saved the
search effort of generating and evaluating nodes 2?, C, and D. (Note that
the savings in search effort would have been even greater if we were
searching to greater depths; for then none of the descendants of nodes B,
C, and D would have to be generated either.) It is important to observe
that failing to generate nodes B, C, and D can in no way affect what will
turn out to be MAX'S best first move.

In this example, the search savings depended on the fact that node A
represented a win for MIN. The same kind of savings can be achieved,
however, even when none of the positions in the search tree represents a
win for either MAX or MIN.

Consider the first stage of the tic-tac-toe tree shown in Figure 3.8. We
repeat part of this tree in Figure 3.11. Suppose that search had progressed
in a depth-first manner and that whenever a tip node is generated, its
static evaluation is computed. Also suppose that whenever a position can
be given a backed-up value, this value is computed. Now consider the
situation occurring at that stage of the depth-first search immediately
after node A and all of its successors have been generated, but before
node B is generated. Node A is now given the backed-up value of — 1. At
this point we know that the backed-up value of the start node is bounded
from below by — 1. Depending on the backed-up values of the other
successors of the start node, the final backed-up value of the start node
may be greater than — 1, but it cannot be less. We call this lower bound
an alpha value for the start node.

Now let depth-first search proceed until node B and its first successor
node, C, are generated. Node C is then given the static value of — 1. Now
we know that the backed-up value of node B is bounded from above by
— 1. Depending on the static values of the rest of node B's successors, the
final backed-up value of node B can be less than — 1 but it cannot be
greater. We call this upper bound on node B a beta value. We note at this
point, therefore, that the final backed-up value of node B can never
exceed the alpha value of the start node, and therefore we can
discontinue search below node B. We are guaranteed that node B will not
turn out to be preferable to node A.

This reduction in search effort was achieved by keeping track of
bounds on backed-up values. In general, as successors of a node are given

122

SEARCHING GAME TREES

backed-up values, the bounds on backed-up values can be revised. But
we note that:

(a) The alpha values of MAX nodes (including the
start node) can never decrease, and

(b) the beta values of MIN nodes can never increase.

Because of these constraints we can state the following rules for
discontinuing the search:

(1) Search can be discontinued below any MIN node
having a beta value less than or equal to the
alpha value of any of its MAX node ancestors.
The final backed-up value of this MIN node can
then be set to its beta value. This value may
not be the same as that obtained by full minimax
search, but its use results in selecting the same
best move.

(2) Search can be discontinued below any MAX node
having an alpha value greater than or equal to
the beta value of any of its MIN node ancestors.
The final backed-up value of this MAX node can
then be set to its alpha value.

X
o 1— -̂

Γ O
1— -̂

o
L Ά 1 XJ

fe
o

Beta value = -1

Fig. 3.11 Part of the first stage tic-tac-toe tree.

123

St
ar

t
N

od
e

(B
ac

ke
d-

U
p

V
alu

e
=

+1
)

Π

M
AX

 N
od

es

O

M
IN

 N
od

es

+5

-3

+3

+3
 -

3
0

+2

-2

+3
 +

5
+

2
+

5
-5

0

+1

+
5

+
1

-3

0
-5

+5

-3

+3

+2

+3

-3

0

-2

0
+1

+

4
+

5
+1

-1

+3

 -
3

+2

M
 n H

w 2 M

C/
5 o a M
 n o S ►

d O
 r w

►
o o a n H
 1 H

W

S C
/i

Fi
g.

 3
.1

2 A
n

ex
am

pl
e

ill
us

tra
tin

g
th

e
al

ph
a-

be
ta

 s
ea

rc
h

pr
oc

ed
ur

e.

SEARCHING GAME TREES

During search, alpha and beta values are computed as follows:

(a) The alpha value of a MAX node is set equal to the
current largest final backed-up value of its
successors.

(b) The beta value of a MIN node is set equal to the
current smallest final backed-up value
of its successors.

When search is discontinued under rule (1) above, we say that an alpha
cutoff has occurred; when search is discontinued under rule (2), we say
that a beta cutoff has occurred. The whole process of keeping track of
alpha and beta values and making cutoffs when possible is usually called
the alpha-beta procedure. The procedure terminates when all of the
successors of the start node have been given final backed-up values, and
the best first move is then the one creating that successor having the
highest backed-up value. Employing this procedure always results in
finding a move that is equally as good as the move that would have been
found by the simple minimax method searching to the same depth. The
only difference is that the alpha-beta procedure finds a best first move
usually after much less search.

An application of the alpha-beta procedure is illustrated in Figure
3.12. We show a search tree generated to a depth of 6. (Our convention is
to generate the left-most nodes first. MAX nodes are depicted by a
square, and MIN nodes are depicted by a circle.) The tip nodes have the
static values indicated. Now suppose we conduct a depth-first search
employing the alpha-beta procedure. The subtree generated by the
alpha-beta procedure is indicated by darkened branches. Those nodes
cut off have X s drawn through them. Note that only 18 of the original 41
tip nodes had to be evaluated. (The reader can test his understanding of
the procedure by attempting to duplicate the alpha-beta search on this
example.)

3.43. THE SEARCH EFFICIENCY OF THE ALPHA-BETA
PROCEDURE

In order to perform alpha-beta cutoffs, at least some part of the search
tree must be generated to maximum depth, because alpha and beta
values must be based on the static values of tip nodes. Therefore some

125

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

type of a depth-first search is usually employed in using the alpha-beta
procedure. Furthermore, the number of cutoffs that can be made during
a search depends on the degree to which the early alpha and beta values
approximate the final backed-up values.

The final backed-up value of the start node is identical to the static
value of one of the tip nodes. If this tip node could be reached first in a
depth-first search, the number of cutoffs would be maximal. When the
number of cutoffs is maximal, a minimal number of tip nodes need to be
generated and evaluated.

Suppose a tree has depth D, and every node (except a tip node) has
exactly B successors. Such a tree will have precisely BD tip nodes.
Suppose an alpha-beta procedure generated successors in the order of
their true backed-up values—the lowest valued successors first for MIN
nodes and the highest valued successors first for MAX nodes. (Of course,
these backed-up values are not typically known at the time of successor
generation, so this order could never really be achieved, except perhaps
accidentally.)

It happens that this order maximizes the number of cutoffs that will
occur and minimizes the number of tip nodes generated. Let us denote
this minimal number of tip nodes by ND. It can be shown that

ND = 2ΒΌ/2 - 1 (for even/))

and

ND = BiD+i)/2 + BiO~l)/2 - 1 (for odd D).

That is, the number of tip nodes of depth D that would be generated by
optimal alpha-beta search is about the same as the number of tip nodes
that would have been generated at depth D/2 without alpha-beta.
Therefore, for the same storage requirements, the alpha-beta procedure
with perfect successor ordering allows search depth to double. Even
though perfect ordering cannot be achieved in search problems (if it
could, we wouldn't need the search process at all!), the large potential
payoff suggests the importance of using the best ordering function
available.

126

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

3.5. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

3.5.1. AND/OR GRAPHS

Decomposition and AND/OR graphs have been used in a variety of
applications. Hinxman (1976) discusses applications to the "stock-cutting
problem"; Martelli and Montanari (1975,1978) show how dynamic
programming problems can be formulated as problems of AND/OR
search and how such a formulation is used to optimize decision trees;
Slagle (1963) uses AND/OR trees in symbolic integration; Stockman
(1977) describes applications to the analysis of waveforms, and, as we
shall see in chapter 6, AND/OR graphs can be used in theorem-proving
systems.

Our algorithm AO* is essentially the same as the algorithm for
searching AND/OR graphs of Martelli and Montanari (1973, 1978). We
have taken some of our illustrative examples from Martelli and Montan
ari (1979). These AND/OR graph-searching algorithms are based on
earlier work of Nilsson (1969,1971). [See also Amarel (1967).] Hall (1973)
has shown the equivalence between AND/OR graphs and context-free
grammars. Levi and Sirovich (1976) generalize AND/OR graphs to
represent interdependent subproblems and show that the generalized
graphs are equivalent to type-0 grammars. Chang and Slagle (1971) also
discuss AND/OR graphs, although their treatment seems to lose some of
the advantages inherent in decomposition. Berliner (1979) presents a
related search algorithm involving upper and lower bound values at each
node.

Kowalski (1972) and vanderBrug and Minker (1975) discuss the
relationships between what we term backward decomposable systems
(using AND/OR graphs) and forward commutative ones (using deriva
tion graphs). Michie and Sibert (1974) also describe heuristic search
algorithms based on derivation graphs.

3.5.2. GAME TREES

Shannon (1950) proposed a minimax search procedure to be used with
a static evaluation function in a proposal for a program to play chess.
Newell, Shaw, and Simon (1958) used these ideas in constructing an early

127

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

chess-playing program. Samuel (1959, 1967) developed a checker
(draughts) program that used polynomial evaluation functions, alpha-
beta search methods, and learning strategies for improving play. Slagle
(1970) has discussed the similarities between AND/OR trees and game
trees.

The alpha-beta procedure was discovered independently by many of
the early AI researchers. A version of it is first described by Newell, Shaw,
and Simon (1958). Knuth and Moore (1975) present a thorough analysis
of its properties and discuss its history. Newborn (1977) and Baudet
(1978) present additional results. The results on search efficiency of
alpha-beta were first stated by Edwards and Hart (1963) based on a
theorem that they attribute to Michael Levin. Later, Slagle and Dixon
(1969) give what they consider to be the first published proof of this
theorem. Knuth and Moore (1975) contains the most complete account
of these properties. Lindstrom (1979) reformulates the alpha-beta
procedure for coroutine (rather than recursive) control. Harris (1974)
proposes an alternative to minimax search for game trees.

Chess-playing programs are steadily improving in ability, and many
AI experts continue to believe that a computer world chess champion is
not far off. Good accounts of computer chess are given in an article by
Berliner (1978) and in books by Newborn (1975) and by Levy (1976). A
recent program by Wilkins (1979) incorporates knowledge about chess
tactics, which greatly diminishes the amount of search needed. [See also
Pitrat(1977).]

EXERCISES

3.1 The following rewrite rules can be used to replace the numeral on
the left-hand side with the string of numerals on the right.

6 ^ 3 , 3 4 ->3 , l
6 ^ 4 , 2 3 - * 2,1
4->2,2 2 —> 1,1

Consider the problem of using these rules to transform the numeral 6
into a string of Is. Illustrate how algorithm AO* works by using it to solve

128

EXERCISES

this problem. Assume that the cost of a /c-connector is k units, and that
the value of the h function at nodes labeled by the numeral 1 is zero and
at nodes labeled by n (n Φ 1) is n.

3.2 The game nim is played as follows: Two players alternate in
removing one, two, or three pennies from a stack initially containing five
pennies. The player who picks up the last penny loses. Show, by drawing
the game graph, that the player who has the second move can always win.
Can you think of a simple characterization of the winning strategy?

3 3 Conduct on alpha-beta search of the game tree shown in Figure 3.12
by generating nodes in the order right-most node first. Indicate where
cutoffs occur and compare with Figure 3.12, in which nodes were
generated left-most node first.

3.4 Chapters 2 and 3 concentrated on search techniques for tentative
control regimes (backtracking and graph-search). Discuss the search
problem for an irrevocable control regime guiding a commutative
production system. (You might base your discussion on Section 3.3., for
example.) Specify (in detail) a search algorithm that uses an evaluation
function with a heuristic component.

3.5 Represent the configuration of a tic-tac-toe board by a nine-dimen
sional vector, c, having components equal to + 1, O, or — 1 according to
whether the corresponding cells are marked with a X, are empty, or are
marked with a O, respectively. Specify a nine-dimensional vector w, such
that the dot product ovv is a useful evaluation function for use by MAX
(playing Xs) to evaluate nonterminal positions. Use this evaluation
function to perform a few minimax searches making any adjustments to
w that seem appropriate to improve the evaluation function. Can you
find a vector w that appraises positions so accurately that search below
these positions is not needed?

129

CHAPTER 4

THE PREDICATE CALCULUS IN AI

In many applications, the information to be encoded into the global
database of a production system originates from descriptive statements
that are difficult or unnatural to represent by simple structures like arrays
or sets of numbers. Intelligent information retrieval, robot problem
solving, and mathematical theorem proving, for example, require the
capability for representing, retrieving and manipulating sets of state
ments.

The first order predicate calculus is a formal language in which a wide
variety of statements can be expressed. Throughout the rest of the book,
we use expressions in the predicate calculus language as components of
the global databases of production systems. Before describing exactly
how this language is used in AI systems, however, we must define the
language, show how it is used to represent statements, explain how
inferences can be made from sets of expressions in the language, and
discuss how to deduce statements in the language from other statements
in the language. These are fundamental concepts of formal logic and are
also of great importance in AI. In this chapter we introduce the language
and methods of logic and then show how they can be exploited in AI
production systems.

4.1. INFORMAL INTRODUCTION TO THE
PREDICATE CALCULUS

A language, such as the predicate calculus, is defined by its syntax. To
specify a syntax we must specify the alphabet of symbols to be used in the
language and how these symbols are to be put together to form legitimate
expressions in the language. The legitimate expressions of the predicate

131

THE PREDICATE CALCULUS IN AI

calculus are called the well-formed formulas (wffs). In the discussion that
follows we give a brief, informal description of the syntax of the predicate
calculus.

4.1.1. THE SYNTAX AND SEMANTICS OF ATOMIC
FORMULAS

The elementary components of the predicate calculus language are
predicate symbols, variable symbols, function symbols, and constant
symbols set off by parentheses, brackets, and commas, in a manner to be
illustrated by examples. A predicate symbol is used to represent a
relation in a domain of discourse. Suppose, for example, that we wanted
to represent the fact that someone wrote something. We might use the
predicate symbol WRITE to denote a relationship between a person
doing the writing and a thing written. We can compose a simple atomic
formula using WRITE and two terms, denoting the writer and what is
written. For example, to represent the sentence "Voltaire wrote Can
dide," we might use the simple atomic formula:

WRITE(VOLTAIRE,CANDIDE).

In this atomic formula, VOLTAIRE, and CANDIDE, are constant
symbols. In general, atomic formulas are composed of predicate symbols
and terms. A constant symbol is the simplest kind of term and is used to
represent objects or entities in a domain of discourse. These objects or
entities may be physical objects, people, concepts, or anything that we
want to name.

Variable symbols, like x ory, are terms also, and they permit us to be
indefinite about which entity is being referred to. Formulas using
variable symbols, like WRITE (x,y), are discussed later in the context of
quantification.

We can also compose terms of function symbols. Function symbols
denote functions in the domain of discourse. For example, the function
symbolfather can be used to denote the mapping between an individual
and his male parent. To express the sentence "John's mother is married to
John's father," we might use the following atomic formula:

MARRIED[father(JOHN),mother(JOHN)].

Usually a mnemonic string of capital letters is used as a predicate

132

INFORMAL INTRODUCTION TO THE PREDICATE CALCULUS

symbol. (Examples: WRITE, MARRIED.) In some abstract examples,
short strings of upper-case letters and numerals (PI, Q2) are used as
predicate symbols. A mnemonic string of capital letters or short strings of
upper-case letters and numerals are also used as constant symbols; for
example, CANDIDE, Al, or B2. Context prevents confusion between
whether a string is a predicate symbol or a constant symbol.

Mnemonic strings of lower-case letters are used as function symbols.
(Examples: father, mother.) Lower-case letters near the middle of the
alphabet, like/, g, h, etc., are used in abstract examples.

To represent an English sentence by an atomic formula, we focus on
the relations and entities that the sentence describes and represent them
by predicates and terms. Often, the predicate is identified with the verb of
the sentence, and the terms are identified with the subject or object of the
verb. Usually we have several choices about how to represent a sentence.
For example, we can represent the sentence "The house is yellow" either
by a one-term predicate, as in YELLOW(HOUSE-l), by a two-term
predicate, as in COLOR(HOUSE-l, YELLOW), or by a three-term
predicate, as in VALUE(COLOR,HOUSE-l,YELLOW), etc. The
designer of a representation selects the alphabet of predicates and terms
that he will use and defines what the elements of this alphabet will mean.

In the predicate calculus, a wff can be given an interpretation by
assigning a correspondence between the elements of the language and
the relations, entities, and functions in the domain of discourse. To each
predicate symbol, we must assign a corresponding relation in the
domain; to each constant symbol, an entity in the domain; and to each
function symbol, a function in the domain. These assignments define the
semantics of the predicate calculus language. In our applications, we are
using the predicate calculus specifically to represent certain statements
about a domain of discourse; thus we usually have a specific interpreta
tion in mind for the wffs that we use. Once an interpretation for an atomic
formula has been defined, we say that the formula has value T (true) just
when the corresponding statement about the domain is true and that it
has value F (false) just when the corresponding statement is false. Thus,
using the obvious interpretation, the formula

WRITE(VOLTAIRE, CANDIDE)

has value T, and

WRITE(VOLTAIRE, COMPUTER-CHESS)

133

THE PREDICATE CALCULUS IN AI

has value F. When an atomic formula contains variables, there may be
some assignments to the variables (of entities in the domain) for which an
atomic formula has value T and other assignments for which it has value
F.

4.1.2. CONNECTIVES

Atomic formulas, like WRITE (x,y), are merely the elementary
building blocks of the predicate calculus language. We can combine
atomic formulas to form more complex wffs by using connectives such as
" Λ " (and), " V " (or), and "^>" (implies).

The connective " Λ " has obvious use in representing compound
sentences like "John likes Mary, and John likes Sue." Also, some simpler
sentences can be written in a compound form. For example, "John lives
in a yellow house" might be represented by the formula

LIVES(JOHN,HOUSE-l) A COLOR(HOUSE-l, YELLOW),

where the predicate LIVES represents a relation between a person and
an object and where the predicate COLOR represents a relation between
an object and a color. Formulas built by connecting other formulas by Λ s
are called conjunctions, and each of the component formulas is called a
conjunct. Any conjunction composed of wffs is also a wff.

The symbol " V " is used to represent inclusive "or." For example, the
sentence "John plays centerfield or shortstop" might be represented by
\PLAYS(JOHN,CENTERFIELD) V PLAYS (JOHN, SHORT
STOP)]. Formulas built by connecting other formulas by Vs are called
disjunctions, and each of the component formulas is called a disjunct. Any
disjunction composed of wffs is also a wff.

The truth values of conjunctions and disjunctions are determined from
the truth values of the components. A conjunction has value T if each of
its conjuncts has value T; otherwise it has value F. A disjunction has
value Tif at least one of its disjuncts has value T\ otherwise it has value F.

The other connective, "=>," is used for representing "if-then" state
ments. For example, the sentence "If the car belongs to John, then it is
green," might be represented by

OWNS(JOHN,CAR-l)=> COLOR(CAR-l,GREEN).

134

INFORMAL INTRODUCTION TO THE PREDICATE CALCULUS

A formula built by connecting two formulas with a =Φ is called an
implication. The left-hand side of an implication is called the antecedent,
and the right-hand side is called the consequent. If both the antecedent
and the consequent are wffs, then the implication is a wff also. An
implication has value T if either the consequent has value T (regardless of
the value of the antecedent) or if the antecedent has value F (regardless of
the value of the consequent); otherwise the implication has value F. This
definition of implicational truth value is sometimes at odds with our
intuitive notion of the meaning of "implies." For example, the predicate
calculus representation of the sentence "If the moon is made of green
cheese, then horses can fly" has value T

The symbol " ~ " (not) is sometimes called a connective although it is
really not used to connect two formulas. It is used to negate the truth
value of a formula; that is, it changes the value of a wff from T to F, and
vice versa. For example, the (true) sentence "Voltaire did not write
Computer Chess" might be represented as

~WRITE(VOLTAIRE, COMPUTER-CHESS) .

A formula with a ~ in front of it is called a negation. The negation of a
wff is also a wff. An atomic formula and the negation of an atomic
formula are both called literals.

It is easy to see that ~F1 V F2 always has the same truth value as
Fl => F2, so we really wouldn't ever need to use =Φ. But our object here is
not to propose a minimal representation but a useful one. There are
occasions in which Fl =$> F2 is heuristically preferable to its equivalent
~F1 V F2, and vice versa.

If we limited our sentences to those that could be represented by the
constructs that we have introduced so far, and if we never used variables
in terms, we would be using a subset of the predicate calculus called the
propositional calculus. Indeed, the propositional calculus can be a useful
representation for many simplified domains, but it lacks the ability to
represent many statements (such as "All elephants are gray") in a useful
manner. To extend its power, we need the capability to make statements
with variables in the formulas.

135

THE PREDICATE CALCULUS IN AI

4.13. QUANTIFICATION

Sometimes an atomic formula, like P(x\ has value T (with a given
interpretation for P) no matter what assignment is given to the variable
x. Or such an atomic formula may have value Tfor at least one value of x.
In the predicate calculus these properties are used in establishing the
truth values of formulas containing constructs called quantifiers. The
formula consisting of the universal quantifier (Vx)in front of a formula
P(x) has value 7" for an interpretation just when the value of P(x) under
this interpretation is T for all assignments of x to entities in the domain.
The formula consisting of the existential quantifier (3x) in front of a
formula P(x) has value T for an interpretation just when the value of
P(x) under the interpretation is T for at least one assignment of x to an
entity in the domain.

For example, the sentence "All elephants are gray" might be repre
sented by

(Vx)[ELEPHANT {x) => COLOR (JC, GRA Y)].

Here, the formula being quantified is an implication, and x is the
quantified variable. We say that x is quantified over. The scope of a
quantifier is just that part of the following string of formulas to which the
quantifier applies. As another example, the sentence "There is a person
who wrote Computer Chess" might be represented by

(3x) WRITE(x,COMPUTER-CHESS).

Any expression obtained by quantifying a wff over a variable is also a
wff. If a variable in a wff is quantified over, it is said to be a bound
variable; otherwise it is said to be a.free variable. We are mainly interested
in wffs having all of their variables bound. Such wffs are called sentences.

We note that if quantifiers occur in a wff, it is not always possible to use
the rules for the semantics of quantifiers to compute the truth value of
that wff. For example, consider the wff (\/x)P(x).Given an interpreta
tion for P and an infinite domain of entities, we would have to check to
see whether the relation corresponding to P held for every possible
assignment of the value of JC to a domain entity in order to establish that
the wff had value T. Such a process would never terminate.

The version of the predicate calculus used in this book is called first

136

INFORMAL INTRODUCTION TO THE PREDICATE CALCULUS

order because it does not allow quantification over predicate symbols or
function symbols. Thus, formulas like (VP)P(^4)are not wffs in first
order predicate calculus.

4.1.4. EXAMPLES AND PROPERTIES OF WFFS

Using the syntactic rules that we have just informally discussed, we can
build arbitrarily complex wffs, and we can compute whether or not an
arbitrary expression is a wff. For example, the following expressions are
wffs:

(3x){<yy)[(P(x,y)AQ(y,x))^R(x)]}

~0fq){(3x)[P(x)V R(q)]}

~P[A,g(A,B,A)\

{~[P(A)^P(B)]}^P(B)

In the above expressions, we have used parentheses, brackets, and braces
as delimiters to group the component wffs. We use these delimiters to
improve readability and to eliminate any ambiguity about how a wff is
put together.

Some examples of expressions that are not wffs are:

~f{A)

j\P{A)]

Q{f(AUp(B)^Q(C)]}

A V ~ => (V~)

Given an interpretation, the truth values of wffs (except for some
containing quantifiers) can be computed given the rules we have
informally described above. When truth values are computed in this
manner, we are using what is called a truth table method. This method
takes its name from a truth table that summarizes the rules we have
already discussed. If XI and X2 are any wffs, then the truth values of
composite expressions made up of these wffs are given by the following
truth table.

137

THE PREDICATE CALCULUS IN AI

Table 4.1
Truth Table

XI X2 X1VX2 X1AX2 XI => X2 ~ * 7

If the truth values of two wffs are the same regardless of their
interpretation, then we say that these wffs are equivalent. Using the truth
table, we can easily establish the following equivalences:

~ (~ X I) is equivalent to XI
XI V X2 is equivalent to ~X1 => X2

de Morgan's Laws:
~(X1 AX2) is equivalent to ~X1 V ~ X2
~(X1 V X2) is equivalent to ~ * 7 Λ ~X2

Distributive Laws:
XI A (X2 V X3) is equivalent to (XI A X2) V (XI A X3)
XI V (X2 Λ X3) is equivalent to (XI V X2) A (XI V X3)

Commutative Laws:
XI A X2 is equivalent to X2 A XI
XI V X2 is equivalent to X2 V XI

Associative Laws:
(XI AX2)AX3 is equivalent to XI A (X2 A X3)
(XI V X2)V X3 is equivalent to XI V (X2 V X3)

Contrapositive Law:
X1^X2 is equivalent to — X2^>~X1

138

INFORMAL INTRODUCTION TO THE PREDICATE CALCULUS

These laws justify the form in which we have written various of our
example wffs in the discussion above. For example, the associative law
allows us to write the conjunction XI A X2 A ... A XN without any
parentheses.

From the meanings of the quantifiers, we can also establish the
following equivalences:

~ (3 x) P (x) is equivalent to (Vx) [~P (x)]

~ (V x) P (x) is equivalent to (3x)[~P(x)]

(Vx)[P(x) A Q(x)]is equivalent to
(Vx)P(x)A(Vy)Q(y)

(3x)[P(x) V Q(x)] is equivalent to
(3x)P(x)V(3y)Q(y)

(Vx)P(x) is equivalent to (Vy)P(y)

(3x)P(x) is equivalent to (3y) P (y)

In the last two equivalences, we see that the bound variable in a
quantified expression is a kind of "dummy" variable. It can be arbitrarily
replaced by any other variable symbol not already occurring in the
expression.

To show the versatility of the predicate calculus as a language for
expressing various assertions, we show below some example predicate
calculus representations of some English sentences:

Every city has a dogcatcher who has been bitten by every dog in town.

0/x){CITY(x)^(3y){DOGCATCHER(x,y)
A (Vz){[DOG(z) A LIVES-IN(x9z)]^> BIT(y,z)}}}

For every set x, there is a set y, such that the cardinality ofy is greater than
the cardinality of JC.

(Vx){SET(x)^(3y)(3u)(3v)
[SET(y) A CARD(x,u) A CARD(y,v) A G(n,v)]}

139

THE PREDICATE CALCULUS IN AI

All blocks on top of blocks that have been moved or that are attached to
blocks that have been moved have also been moved.

(Vx)(Vy) {{BLOCK(x) A BLOCK(y)
A[ONTOP(x,y)V ATTACHED(χ,γ)]

A MOVED00}=>MOVED(x)}

4.1.5. RULES OF INFERENCE, THEOREMS, AND PROOFS

In the predicate calculus, there are rules of inference that can be applied
to certain wffs and sets of wffs to produce new wffs. One important
inference rule is modus ponens. Modus ponens is the operation that
produces the wff W2 from wffs of the form Wl and Wl => W2. Another
rule of inference, universal specialization, produces the wff W(A) from
the wff (VA:) W(x),where A is any constant symbol. Using modus ponens
and universal specialization together, for example, produces the wff
W2(A) from the wffs (\/x)[Wl(x)=> W2(x)]imd W1(A).

Inference rules, then, produce derived wffs from given ones. In the
predicate calculus, such derived wffs are called theorems, and the
sequence of inference rule applications used in the derivation constitutes
di proof oî the theorem. As we mentioned earlier, some problem-solving
tasks can be regarded as the task of finding a proof for a theorem.

4.1.6. UNIFICATION

In proving theorems involving quantified formulas, it is often neces
sary to "match" certain subexpressions. For example, to apply the
combination of modus ponens and universal specialization to produce
W2(A) from the wffs (Vx)[Wl(x)=> W2{x)] and W1(A), it is
necessary to find the substitution "A for x" that makes Wl (A) and
Wl{x) identical. Finding substitutions of terms for variables to make
expressions identical is an extremely important process in AI and is called
unification. In order to describe this process, we must first discuss the
topic of substitutions.

The terms of an expression can be variable symbols, constant symbols,
or functional expressions, the latter consisting of function symbols and
terms. A substitution instance of an expression is obtained by substituting

140

INFORMAL INTRODUCTION TO THE PREDICATE CALCULUS

terms for variables in that expression. Thus, four instances of
P[x,f(y),B] are:

P[z,f(w),B]
P[x,f(A),B)
P[g(z),f(A),B]
P[C,f(A),B]

The first instance is called an alphabetic variant of the original literal
because we have merely substituted different variables for the variables
appearing in P [x,f(y),B], The last of the four instances shown above is
called a ground instance, since none of the terms in the literal contains
variables.

We can represent any substitution by a set of ordered pairs s = {t1 /v1,
t2/v2, . . . , tn/vn}. The pair ti/vi means that term t{ is substituted for
variable v{ throughout. We insist that a substitution be such that each
occurrence of a variable have the same term substituted for it. Also, no
variable can be replaced by a term containing that same variable. The
substitutions used above in obtaining the four instances of P[x,f(y),B]
are:

si = {z/x,w/y}
s2={A/y]
s3={g(z)/x,A/y)
s4={C/x9A/y]

To denote a substitution instance of an expression, E, using a
substitution, s, we write Es. Thus,

P[z9f(w)9B] = P[x9f(y)9B]sl .

The composition of two substitutions si and s2 is denoted by sls2, which
is that substitution obtained by applying s2 to the terms of si and then
adding any pairs of s2 having variables not occurring among the variables
of si. Thus,

{g(x,y)/z}{A/x,B/y9C/w9D/z} = {g(A9B)/z9A/x,B/y9C/w} .

It can be shown that applying si and s2 successively to an expression L
is the same as applying 7̂̂ 2 to L ; that is, (Lsl)s2 = L (sls2). It can also
be shown that the composition of substitutions is associative:

(sls2)s3 = sl(s2s3).

141

THE PREDICATE CALCULUS IN AI

Substitutions are not, in general, commutative; that is, it is not generally
the case that sls2 = s2sl .

If a substitution s is applied to every member of a set { E,}of
expressions, we denote the set of substitution instances by { Ei } s. We say
that a set { Ei}of expressions is unijiiable if there exists a substitution s
such that E,s = E,s = E,s = . . , . In such a case, s is said to be a unijier
of { E,}since its use collapses the set to a singleton. For example,
s = { A / x , B / y } unifies { P [x , f (y) , B I , P [x , f (B) , B I } , to yield
{ P [A , f (B) , B I } .

Although s = { A / x , B / y } is a unifier of the set { P [x , f (y) , B] ,
P [x , f (B) , B] } , in some sense it is not the simplest unifier. We note that
we really did not have to substitute A for x to achieve unification. The
most general (or simplest) unifier, mgu, g of { Ei }, has the property that if
s is any unifier of { Ei } yielding { Ei } s, then there exists a substitution s’
such that { Ei } s = { Ei } gs’. Furthermore, the common instance pro-
duced by a most general unifier is unique except for alphabetic variants.

There are many algorithms that can be used to unify a finite set of
unifiable expressions and which report failure when the set cannot be
unified. The recursive procedure UNIFY, given informally below, is
useful for establishing a general idea of how to unify a set of two
list-structured expressions. [The literal P (x , f (A , y)) is written as
(P x CfA y)) in list-structured form.]

Recursive Procedure UNIFY(E l , E 2)

1 i f either E l or E2 is an atom (that is, a
predicate symbol, a function symbol, a
constant symbol, a negation symbol or a variable),
interchange the arguments E l and E2 (if
necessary) so that El is an atom, and do:

2 begin

3 if E l and E2 are identical, return N I L

4 i f E l is a variable, do:

142

INFORMAL INTRODUCTION TO THE PREDICATE CALCULUS

5 begin

6 if El occurs in E2, return FAIL

7 return {E2/E1}

8 end

9 if E2 is a variable, return {E1/E2}

10 return FAIL

11 end

12 Fl <- the first element of El, Tl <- the rest of El

13 F2 <- the first element of E29 T2 «— the rest of E2

14 Z7<-UNIFY(F7,F2)

15 if Zl = FAIL, return FAIL

16 Gl 4- result of applying Z7 to 77

17 G2 +- result of applying Z7 to 77

18 Z2 <-UNIFY(G7, (72)

19 if Z2 = FAIL, return FAIL

20 return the composition of Z7 and Z2

It can be proven that UNIFY finds a most general unifier of a set of
unifiable expressions or reports failure when the expressions are not
unifiable.

As examples, we list the most general common substitution instances
(those obtained by applying the mgu) for a few sets of literals.

143

THE PREDICATE CALCULUS IN AI

Table 4.2
Unifiable Sets

Sets of Literals Most General Common
Substitution Instances

{P(x),P(A)} P(A)

{P\f(x),y,g(y)lP\f<<x)^g<<x)\) n/UW(*)l

{P[f(x,g(A,y))yg(A,y)lP[f(x,z),z]} P\f(^i^y)\g(A,y)]

Typically, we use unification to discover if one literal can match
another one. There may be variables in both literals, and these variables
may have terms substituted for them which would make the literals
identical. The process of matching one expression to another template
expression is sometimes called pattern matching. It plays a key role in AI
systems. The unification process is more general than what is usually
meant by pattern matching, however, because pattern matching pro
cesses typically do not allow variables to occur in both expressions.

4.1.7. VALIDITY AND SATISFIABILITY

If a wff has the value T for all possible interpretations, it is called valid.
(Valid ground wffs are usually called tautologies.) Thus, by the truth
table, the wffP(^) => [P(A) V P(B)] has the value T regardless of the
interpretation; therefore, it is valid. The truth table method can always be
used to determine the validity of any wff that does not contain variables.
One merely checks whether the wff has the value T for all possible
valuations of the atomic formulas contained in the wff.

When quantifiers occur, one cannot always compute whether or not a
wff is valid. It has been shown to be impossible to find a general method
to decide the validity of quantified expressions, and, for this reason, the
predicate calculus is said to be undecidable. However, the validity of
certain kinds of formulas containing quantifiers can be decided; thus, one
may speak of decidable subclasses of the predicate calculus. Furthermore,
it has been shown that if a wff is, in fact, valid, then a procedure exists for

144

RESOLUTION

verifying the validity of the wff. (This procedure applied to wffs that are
not valid may never terminate.) Thus, the predicate calculus is said to be
semidecidable.

If the same interpretation makes each wff in a set of wffs have the value
Γ, then we say that this interpretation satisfies the set of wffs. A wff X
logically follows from a set of wffs S if every interpretation satisfying S
also satisfies X. Thus, it is easy to see that the wff
(Vx)(Vy)[P(jc) V Q(y)] logically follows from the set

{(Vx)(Vy)[P(x) V ßOO], (Vz)[tf(z) V Q(A)]} .

Also, the wff P(A)logically follows from (Vx)P(x). It also happens that
(Vx) Q (x) logically follows from the set {(Vx) [~ P (x) V Q (JC)],
(Vx)P(x)} .

There is an important connection between the concept of a wff
logically following from a set of wffs and the concept of a wff being a
theorem derived from a set of wffs by applying inference rules. Suppose
we are given a system of inference rules. We say that these rules are sound
if any theorem derivable from any set of wffs also logically follows from
that set of wffs. It can be shown, for example, that modus ponens is sound.
We say that a system of inference rules is complete if all wffs that logically
follow from any set are also theorems derivable from that set. We are
always interested in sound inference rules, although sometimes we do not
insist that the set of rules be complete.

4.2. RESOLUTION

4.2.1. CLAUSES

Resolution is an important rule of inference that can be applied to a
certain class of wffs called clauses. A clause is defined as a wff consisting of
a disjunction of literals. The resolution process, when it is applicable, is
applied to a pair of parent clauses to produce a derived clause. Before
explaining the resolution process itself, we first show that any predicate
calculus wff can be converted to a set of clauses. We illustrate this
conversion process by applying it to the following example wff:

145

THE PREDICATE CALCULUS IN AI

(VJC){P(X) => {(VyXPC) =>P(f(x,y))]
A ~ (V y) (ô (x , 7) ^ PO')]}} .

The conversion process consists of the following steps:

(1) Eliminate implication symbols. All occurrences of the => symbol in
a wffare eliminated by making the substitution ~X1 V X2 for XI => A7
throughout the wff. In our example wff, this substitution yields:

(Vx){~p(x) v {(Vyx-poo v ^σ(^))ΐ
A ~ (V 7) [~ ô (^ j) V i > (7)] } } .

(2) Reduce scopes of negation symbols. We want each negation
symbol, ~ , to apply to at most one atomic formula. By making repeated
use of de Morgan's laws and other equivalences mentioned with them on
pages 138-139, we change our example wff to:

(Vx){~P(x) V { (V y X ~ P 0 0 V P(f{x,y))]
Α (3 7) [ρ (χ , 7) Λ ^ Ρ (7)] } } .

(3) Standardize variables. Within the scope of any quantifier, a variable
bound by that quantifier is a dummy variable. It can be uniformly
replaced by any other (non-occurring) variable throughout the scope of
the quantifier without changing the truth value of the wff. Standardizing
variables within a wff means to rename the dummy variables to ensure
that each quantifier has its own unique dummy variable. Thus, instead of
writing (Vx)[/>(*)=» (3 χ) β (χ)] , we write (Vx)[/>(*)=> (3y)Q(y)].
Standardizing our example wff yields:

0/x){~P(x) V {(V>0[~PO0 V P(f(x,y))]
A(3w)[Q(x,w)A~P(w)]}}.

(4) Eliminate existential quantifiers. Consider the wff

(Vy)[(3x)P(x,y)\,

which might be read as "For all y, there exists an x (possibly depending
ony) such that P(x,y)" Note that because the existential quantifier is
within the scope of a universal quantifier, we allow the possibility that the
x that exists might depend on the value of y. Let this dependence be
explicitly defined by some function g (y), which maps each value of y into
the x that "exists." Such a function is called a Skolem function. If we use

146

RESOLUTION

the Skolem function in place of the JC that exists, we can eliminate the
existential quantifier altogether and write Qfy)P[g(y\y\.

The general rule for eliminating an existential quantifier from a wff is
to replace each occurrence of its existentially quantified variable by a
Skolem function whose arguments are those universally quantified
variables that are bound by universal quantifiers whose scopes include
the scope of the existential quantifier being eliminated. Function
symbols used in Skolem functions must be new in the sense that they
cannot be ones that already occur in the wff. Thus, we can eliminate the
(3z) from

[(Vw)Ô(w)]^(Vx){(Vy){(3z)[i>(x,/,z)
^(Vu)R(x,y,u,z)]}},

to yield

[(Vw)Q(w)]^0/x){0/y)[P(x,y9g(x,y))
^(Vu)R(x,y,u,g(x

K

y))] .

If the existential quantifier being eliminated is not within the scope of
any universal quantifiers, we use a Skolem function of no arguments,
which is just a constant. Thus, (3x)P(x) becomes P(A), where the
constant symbol A is used to refer to the entity that we know exists. It is
important that A be a new constant symbol and not one used in other
formulas to refer to known entities.

To eliminate all of the existentially quantified variables from a wff, we
use the above procedure on each formula in turn. Eliminating the
existential quantifiers (there is just one) in our example wff yields:

(V*){-/>(*) V {(Vy)[~P(y) V P(f(x,y))]
^[Q(x,g(x))A~P(g(x))]}},

where g(x) is a Skolem function.

(5) Convert to prenex form. At this stage, there are no remaining
existential quantifiers and each universal quantifier has its own variable.
We may now move all of the universal quantifiers to the front of the wff
and let the scope of each quantifier include the entirety of the wff
following it. The resulting wff is said to be in prenex form. A wff in prenex

147

THE PREDICATE CALCULUS IN AI

form consists of a string of quantifiers called a prefix followed by a
quantifier-free formula called a matrix. The prenex form of our wff is:

(Vx)(Vy) {-/>(*) V {[~/>00 V P(f(x9y))]
A[Q(x,g(x))A~P(g(x))]}}.

(6) Put matrix in conjunctive normal form. Any matrix may be written
as the conjunction of a finite set of disjunctions of literals. Such a matrix is
said to be in conjunctive normal form. Examples of matrices in conjunc
tive normal form are:

[P(x) V Q(x,y)] A [P(w) V ~ R(y)] A Q(x,y)
P(x)VQ(x,y)
P(x)AQ(x,y)
~R(y)

We may put any matrix into conjunctive normal form by repeatedly
using one of the distributive rules, namely, by replacing expressions of
the form XI V (X2 A X3) by (XI V X2) A (XI V X3).

When the matrix of our example wff is put in conjunctive normal form,
our wff becomes:

(V*)(Vy){[~P(x) V ~P(y) V P(f(x,y))]
A [-/>(*) V Q(x,g(x))] A [~P(x) V ~P(g(x)))} .

(7) Eliminate universal quantifiers. Since all of the variables in the wffs
we use must be bound, we are assured that all the variables remaining at
this step are universally quantified. Furthermore, the order of universal
quantification is unimportant, so we may eliminate the explicit occur
rence of universal quantifiers and assume, by convention, that all
variables in the matrix are universally quantified. We are left now with
just a matrix in conjunctive normal form.

(8) Eliminate Λ symbols. We may now eliminate the explicit occur
rence of Λ symbols by replacing expressions of the form (XI A X2)
with the set of wffs { X19X2 }. The result of repeated replacements is to
obtain a finite set of wffs, each of which is a disjunction of literals. Any wff
consisting solely of a disjunction of literals is called a clause. Our example
wff is transformed into the following set of clauses:

148

RESOLUTION

~P(x)V ~P{y)V P\f{x,y)]
~P{x)V Q[x,g(x)]
~P{x)V ~P[g(x)]

(9) Rename variables. Variable symbols may be renamed so that no
variable symbol appears in more than one clause. Recall that
(VxXi»(jc) Λ Q(x)] is equivalent to [(VJC)P(JC) Λ (Vy)ßOOl· This
process is sometimes called standardizing the variables apart. Our clauses
are now:

~P(xl)\/ ~P(y)V P[f(xl,y))
~P(x2)V Q[x2,g(x2)]
~P(x3)V ~P[g(x3)}

We note that the literals of a clause may contain variables but that
these variables are always understood to be universally quantified. If
terms not containing variables are substituted for the variables in an
expression, we obtain what is called aground instance of the literal. Thus,
Q(A,f(g(B))) is a ground instance of Q(x,y).

When resolution is used as a rule of inference in a theorem-proving
system, the set of wffs from which we wish to prove a theorem is first
converted into clauses. It can be shown that if the wff A" logically follows
from a set of wffs, 5, then it also logically follows from the set of clauses
obtained by converting the wffs in S to clause form. Therefore, for our
purposes, clauses are a completely general form in which to express wffs.

4.2.2. RESOLUTION FOR GROUND CLAUSES

The best way to obtain a general idea of the resolution inference rule is
to understand how it applies to ground clauses. Suppose we have two
ground clauses, PI V P2 V . . . V PN and ~P1 V Q2 V . . . QM. We
assume that all of the Pi and Qj are distinct. Note that one of these clauses
contains a literal that is the exact negation of one of the literals in the
other clause. From these two parent clauses we can infer a new clause,
called the resolvent of the two. The resolvent is computed by taking the
disjunction of the two clauses and then eliminating the complementary
pair, P1,~P1. Some interesting special cases of resolution follow in Table
4.3.

149

THE PREDICATE CALCULUS IN AI

Table 4.3
Clauses and Resolvents

Parent Clauses

? a n d - ? V e
(i .e . ,P=>£)

P V ß a n d ~ / > V Q

P V ß a n d ~ P V ~Q

~P and P

~i>Ve(i.e,i>=>0)
and~<2 V Ä(i.e., Q^>R)

Resolvent(s)

Q

Q

Q V - Q a n d
P V - P

JV7L

- ? V Ä
(i.e., />=>/*)

Comments

Modus Ponens

The clause

eve
"collapses" to
Q. This re
solvent is
called a merge.

Here, there
are two possible
resolvents; in
this case, both
are tautologies.

The empty
clause is a
sign of a
contradiction.

Chaining

From the table above, we see that resolution allows the incorporation
of several operations into one simple inference rule. We next consider
how this simple rule can be extended to deal with clauses containing
variables.

4.23. GENERAL RESOLUTION

In order to apply resolution to clauses containing variables, we need to
be able to find a substitution that can be applied to the parent clauses so
that they contain complementary literals. In discussing this case, it is

150

RESOLUTION

helpful to represent a clause by a set of literals (with the disjunction
between the literals in the set understood). Let the prospective parent
clauses be given by {L{} and {Mi} and let us assume that the variables
occurring in these two clauses have been standardized apart. Suppose
that {li} is a subset of {L%} and that {m^} is a subset of {Mi} such that a
most general unifier s exists for the union of the sets {lx} and {-mj}. We
say that the two clauses {L{} and {M{} resolve and that the new clause,

{{L,} - { / , } } * U {{3/,} - { m , } } * ,

is a resolvent of the two clauses.

If two clauses resolve, they may have more than one resolvent because
there may be more than one way in which to choose {lx} and {rrii}. In
any case, they can have at most a finite number of resolvents. As an
example, consider the two clauses

P[x,f{A)\y P[x,f{y)\\/ Q{y)

and

~P[z,f(A)\V ~Q{z).

With {/4} = {P[x,f(A)]} and {wj} = {~P[z,f(A)]), we obtain the
resolvent

/W001v~ß(z)Vßoo.
With {li}=[P{x,AA)],P[xJ{y)]}*nd{mi} = {~P[z9f(A)]}9 we
obtain the resolvent

Q(A)V~Q(z).

Note that, in the latter case, two literals in the first clause were collapsed
by the substitution into a single literal, complementary to an instance of
one of the literals in the second clause.

There are, altogether, four different resolvents of these two clauses.
Three of these are obtained by resolving on P and one by resolving on Q.

It is not difficult to show that resolution is a sound rule of inference;
that is, that the resolvent of a pair of clauses also logically follows from

151

THE PREDICATE CALCULUS IN AI

that pair of clauses. When resolution is used in a special kind of
theorem-proving system, described in the next chapter and called a
refutation system, it is also complete. Every wff that logically follows
from a set of wffs can be derived from that set of wffs using resolution
refutation. For this reason and because of its simplicity, resolution
systems are an important class of theorem-proving systems. Their very
simplicity results, though, in certain inefficiencies that restrict their use in
AI systems. Nevertheless, an understanding of resolution systems pro
vides a basic foundation for understanding several other more efficient
types of theorem-proving systems.

In the next two chapters, we examine a variety of these systems,
beginning with ones using resolution.

4.3. THE USE OF THE PREDICATE
CALCULUS IN AI

The situations, or states, and the goals of several types of problems can
be described by predicate calculus wffs. In Figure 4.1, for example, we
show a situation in which there are three blocks, A, B, and C, on a table.
We can represent this situation by the conjunction of the following
formulas:

ON(QA)
ONTABLE(A)
ONTA B LE (B)
CLEAR(C)
CLEAR(B)
(Vx)[CLEAR(x) '{3y)ON(y9x)]

Fig. 4,1 A situation with three blocks on a table.

152

THE USE OF THE PREDICATE CALCULUS IN AI

The formula CLEAR(B) is intended to mean that block B has a clear
top; that is, no other block is on it. The ON predicate is used to describe
which blocks are (directly) on other blocks. (For this example, ON is not
transitive; it is intended to mean immediately on top.) The formula
ONT ABLE {B) is intended to mean that B is somewhere on the table.
The last formula in the list gives information about how CLEAR and ON
are related.

A conjunction of several such formulas can serve as a description of a
particular situation or "world state." We call it a state description.
Actually, any finite conjunction of formulas really describes a, family of
different world states, each member of which might be regarded as an
interpretation satisfying the formulas. Even assuming that we give the
obvious "blocks-world" interpretation to constituents of the formulas,
there is still an infinite family of states (perhaps involving additional
blocks as well) whose members satisfy these formulas. We can always
eliminate some of these interpretations by adding additional formulas to
the state description; for example, the set listed above says nothing about
the color of the blocks and, thus, describes the family of states in which
the blocks can have various colors. If we added the formula
COLOR(B9 YELLOW), some interpretations would obviously be elim
inated. Even though a finite conjunction of formulas describes a family of
states, we often loosely speak of the state described by the state
description. We really mean, of course, the set of such states.

We intend to use formulas, like those of our blocks-world example, as a
global database in a production system. The way in which these formulas
are used depends upon the problem and its representation.

Suppose the problem is to show that a certain property is true in a
given state. For example, we might want to establish that there is nothing
on block C in the state depicted in Figure 4.1. We can prove this fact by
showing that the formula ~(3y)ON(y9C) logically follows from the
state description for Figure 4.1. Equivalently, we could show that
~(3y) ON(y, C) is a theorem derived from the state description by the
application of sound rules of inference.

We can use production systems to attempt to show that a given
formula, called the goal wff, is a theorem derivable from a set of formulas
(the state description). We call production systems of this sort theorem-
proving systems or deduction systems. (In the next two chapters, we
present various commutative production systems for theorem proving.)

153

THE PREDICATE CALCULUS IN AI

In a forward production system, the global database is set to the initial
state description, and (sound) production rules are applied until a state
description is produced that either includes the goal formula or unifies
with it in some appropriate fashion. In a backward production system,
the global database is set to the goal formula and production rules are
applied until a subgoal is produced that unifies with formulas in the state
description. Combined, forward/backward, systems are also possible.

One obvious and direct use of theorem-proving systems is for proving
theorems in mathematics and logic. A less obvious, but important, use of
them is in intelligent information retrieval systems where deductions
must be performed on a database of facts in order to derive an answer to a
query. For example, from expressions like

MANAGER(PURCHASING-DEPTJOHN-JONES),

WORKS-IN(PURCHASING-DEPTJOE-SMITH),

and

{[WORKS-IN(x,y) Λ MANAGER(x,z)] =Φ BOSS-OF(y,z)} ,

an intelligent retrieval system might be expected to answer a query like
"Who is Joe Smith's boss?" Such a query might be stated as the following
theorem to be proved:

(3JC) BOSS-OF(JOE-SMITH, x) .

A constructive proof (that is, one that exhibited the "JC" that exists) would
provide an answer to the query.

Even many commonsense reasoning tasks that one would not ordin
arily formalize can, in fact, be handled by predicate calculus theorem-
proving systems. The general strategy is to represent specialized know
ledge about the domain as predicate calculus expressions and to
represent the problem or query as a theorem to be proved. The system
then attempts to prove the theorem from the given expressions.

Other kinds of problems involve changing the state description to one
that describes an entirely different state. Suppose, for example, that we

154

THE USE OF THE PREDICATE CALCULUS IN AI

have a "robot-type" problem in which the system must find a sequence of
robot actions that change a configuration of blocks. We can specify the
goal by a wff that describes the set of states acceptable as goal states.
Referring to Figure 4.1, we might want to have block A on block 2?, and
block 2?, in turn, on block C. Such a goal state (or rather set of states)
could be expressed by the goal formula [ΟΝ(Α,Β) Λ ON(B9C)]. Note
that this goal formula certainly cannot be proved as a theorem from the
state description for Figure 4.1. The robot must change the state to one
that can be described by a set of formulas from which the goal wff can be
proved.

Problems of this sort can be solved by production systems also. For a
forward system, the global database is the state description. Each possible
robot action is modeled by a production rule (an F-rule in forward
systems). For example, if the robot can pick up a block, our production
system would have a corresponding F-rule. The action of picking up a
block changes the state of the world; application of the F-rule that
models the action of picking up a block should make a corresponding
change to the state description. A sequence of actions for achieving a goal
can be computed by a forward production system that applies these
F-rules to state descriptions until a terminal state description is produced,
from which the goal wff can be proved. The solution sequence of F-rules
constitutes a specification of apian of actions for achieving the goal state.

Backward production systems for state-changing problems are also
possible. They would use B-rules that are "inverse" models of the robot's
actions. The formula describing the goal state would be used as the global
database. B-rules would be applied until a subgoal formula was produced
that could be proved from the initial state description.

Production systems that use F-rules and B-rules in this way, to model
state-changing actions, are typically not commutative. An F-rule for
picking up a block, for example, might have as a precondition that the
block have a clear top. In Figure 4.1, this precondition is satisfied for
block B, but it would not be true for block B after block C is placed on it.
Thus, applying one F-rule to a certain state description might render
other F-rules suddenly inapplicable. Production systems for solving
state-changing problems are explored in detail in chapters 7 and 8. They
find application especially in robot problem solving and in automatic
programming.

155

THE PREDICATE CALCULUS IN AI

4.4. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

A book by Pospesel (1976) is a good elementary introduction to
predicate calculus with many examples of English sentences represented
as wffs. Two excellent textbooks on logic are those of Mendelson (1964)
and Robbin (1969). Books by Chang and Lee (1973), Loveland (1978),
and Robinson (1979) describe resolution methods.

A unification algorithm and a proof of correctness is presented in
Robinson (1965). Several variations have appeared since. Raulefs et al.
(1978) survey unification and matching. Paterson and Wegman (1976)
present a linear-time (and space) unification algorithm.

The resolution rule was introduced by Robinson (1965) based on
earlier work by Prawitz (1960) and others. The soundness and complete
ness of resolution was originally proved by Robinson (1965); proofs of
these properties due to Kowalski and Hayes (1969) are presented in
Nilsson (1971). The steps that we have outlined for converting any wff
into clause form are based on the procedure of Davis and Putnam (1960).
Clause form is also called quantifier-free, conjunctive-normal form.
Manna and Waldinger (1979) have proposed a generalization of resolu
tion that is applicable to wffs in nonclausal form. Maslov (1971 and other
earlier papers in Russian) proposed a dual form of resolution, working
with "goal clauses" that are disjunctions of conjunctions of literals. [See
also Kuehner (1971).]

EXERCISES

4.1 Suppose that we represent "Sam is Bill's father" by FA-
THER(BILL,SAM) and "Harry is one of Bill's ancestors" by ANCES
TOR (BILL, HARR Y). Write a wff to represent "Every ancestor of Bill is
either his father, his mother, or one of their ancestors."

4.2 The connective ® (exclusive or) is defined by the following truth
table:

156

EXERCISES

XI

τ
F
T
F

X2

T
T
F
F

XI Θ Χ2

F
T
T
F

What wff containing only ~ , V, and Λ connectives is equivalent to
(XI ®X2)1

43 Represent the following sentences by predicate calculus wffs. (Lean
toward extravagance rather than economy in the number of different
predicates and terms used. Do not, for example, use a single predicate
letter to represent each sentence.)

(a) A computer system is intelligent if it can
perform a task which, if performed by a
human, requires intelligence.

(b) A formula whose main connective is a =Φ
is equivalent to some formula whose main
connective is a V.

(c) If the input to the unification algorithm is
a set of unifiable expressions, the output is
the mgu; if the input is a set of non-unifiable
expressions, the output is FAIL.

(d) If a program cannot be told a fact, then it
cannot learn that fact.

(e) If a production system is commutative,
then, for any database, £>, each member of
the set of rules applicable to D is also
applicable to any database produced by
applying an applicable rule to D.

4.4 Show that modus ponens in the propositional calculus is sound.

157

THE PREDICATE CALCULUS IN AI

4.5 Show that (3Z)(VJC)[/>(*)=> ß(z)]and (3z)[(3x)P(x)^> Q(z)]
are equivalent.

4.6 Convert the following wffs to clause form:

(a) (Vx)[P(x)^P(x)]
(b) {~{(Vx)P(x)})=>(3x)[~P(x)]
(c) ~Cx){P{x)=>{C*yyiP(y)=*P(f{x,y))]

(d) (Vx)(3y)
{[P(x,y)^Q(y,x)]A[Q(y,x)^S(x,y)]}

^(3x)(Vy)[P(x,y)^S(x,y)]

4.7 Show by an example that the composition of substitutions is not
commutative.

4.8 Show that resolution is sound; that is, show that the resolvent of two
clauses logically follows from the two clauses.

4.9 Find the mgu of the set {Ρ(χ,ζ,γ), P(w,u,w), P(A,u,u)}.

4.10 Explain why the following sets of literals do not unify:

(a) {P(f(x,x),A),P(f(y,f(y,A)),A)}
(b) {~P(A),P(x)}
(c) {P(f(A),x),P(x,A)}

4.11 The following wffs were given a "blocks-world" interpretation in
this chapter:

ON(C,A)
ONTABLE(A)
ONTABLE(B)
CLEAR(C)
CLEAR(B)
(\/x)[CLEAR(x)^> ~(3y)ON(y,x)]

Invent two different (non-blocks-world) interpretations that satisfy the
conjunction of these wffs.

158

EXERCISES

4.12 In our examples representing English sentences by wffs, we have
not been concerned about tense. Can you express the following sentences
as wffs:

Shakespeare writes "Hamlet."
Shakespeare wrote "Hamlet."
Shakespeare will write "Hamlet."
Shakespeare will have written "Hamlet."
Shakespeare had written "Hamlet."

159

CHAPTER 5

RESOLUTION REFUTATION
SYSTEMS

In this chapter and chapter 6, we are primarily concerned with systems
that prove theorems in the predicate calculus. Our interest in theorem
proving is not limited to applications in mathematics; we also investigate
applications in information retrieval, commonsense reasoning, and
automatic programming. Two main types of theorem-proving systems
will be discussed: here, systems based on resolution, and in chapter 6,
systems that use various forms of implications as production rules.

In the prototypical theorem-proving problem, we have a set, 5, of wffs
from which we wish to prove some goal wff, W. Resolution-based systems
are designed to produce proofs by contradiction or refutations. In a
resolution refutation, we first negate the goal wff and then add the
negation to the set, S. This expanded set is then converted to a set of
clauses, and we use resolution in an attempt to derive a contradiction,
represented by the empty clause, NIL.

A simple argument can be given to justify the process of proof by
refutation. Suppose a wff, W, logically follows from a set, S, of wffs; then,
by definition, every interpretation satisfying S also satisfies W. None of
the interpretations satisifying S can satisfy ~W, and, therefore, no
interpretation can satisfy the union of S and (~ W). A set of wffs that
cannot be satisfied by any interpretation is called unsatisfiable; thus, if W
logically follows from S, the set S U {~ W) is unsatisfiable.

It can be shown that if resolution is applied repeatedly to a set of
unsatisfiable clauses, eventually the empty clause, NIL, will be produced.
Thus, if W logically follows from S, then resolution will eventually
produce the empty clause from the clause representation of S U {~ W).
Conversely, it can be shown that if the empty clause is produced from the
clause representation of S U {~W}, then W logically follows from S.

161

RESOLUTION REFUTATION SYSTEMS

Let us consider a simple example of this process. Suppose the
following statements are asserted:

(1) Whoever can read is literate.
(Vx)[R(x)^L(x)]

(2) Dolphins are not literate.
(V * X D (x) = > ~ L (x)]

(3) Some dolphins are intelligent.
(3x)[D(x)AI(x)]

From these, we want to prove the statement:

(4) Some who are intelligent cannot read.
(3x)[I(x)A ~R(x)]

The set of clauses corresponding to statements 1 through 3 is:
(1) ~R(x) V L (J C)

(2) ~D(y)V ~L(y)

(3a) D(A)

(3b) 1(A)

where the variables have been standardized apart and where A is a
Skolem constant. The negation of the theorem to be proved, converted to
clause form, is

(4') ~I(z)VR(z) .

To prove our theorem by resolution refutation involves generating
resolvents from the set of clauses 1-3 and 4', adding these resolvents to
the set, and continuing until the empty clause is produced. One possible
proof (there are more than one) produces the following sequence of
resolvents:

(5) R (A) resolvent of 3b and 4'

(6) L (A) resolvent of 5 and 1

162

PRODUCTION SYSTEMS FOR RESOLUTION REFUTATIONS

(7) ~D(A) resolvent of 6 and 2

(8) NIL resolvent of 7 and 3a

5.1. PRODUCTION SYSTEMS FOR RESOLUTION
REFUTATIONS

We can think of a system for producing resolution refutations as a
production system. The global database is a set of clauses, and the rule
schema is resolution. Instances of this schema are applied to pairs of
clauses in the database to produce a derived clause. The new database is
then the old set of clauses augmented by the derived clause. The
termination condition for this production system is a test to see if the
database contains the empty clause.

It is straightforward to show that such a production system is
commutative. Because it is commutative, we can use an irrevocable
control regime. That is, after performing a resolution, we never need to
provide for backtracking or for consideration of alternative resolutions
instead. We must emphasize that using an irrevocable control regime
does not necessarily mean that every resolution performed is "on the
path" to producing the empty clause; usually there will be several
irrelevant resolutions applied. But, because the system is commutative,
we are never prevented from applying an appropriate resolution later,
even after having applied some irrelevant ones.

Suppose we start with a set, S, of clauses called the base set. The basic
algorithm for a resolution refutation production system can then be
written as follows:

Procedure RESOLUTION

1 CLAUSES+-S

2 until NIL is a member of CLA USES, do:

3 begin

163

RESOLUTION REFUTATION SYSTEMS

4 select two distinct, resolvable clauses
Ci and Cj in CLA USES

5 compute a resolvent, ri; of c{
and Cj

6 CLA USES «— The set produced by adding r{j
to CLAUSES

7 end

5.2. CONTROL STRATEGIES FOR RESOLUTION
METHODS

The decisions about which two clauses in CLAUSES to resolve
(statement 4) and which resolution of these clauses to perform (statement
5) are made irrevocably by the control strategy. Several strategies for
selecting clauses have been developed for resolution; we give some
examples shortly.

In order to keep track of which resolutions have been selected and to
avoid duplicated effort, it is helpful for the control strategy to use a
structure called a derivation graph. The nodes in such a graph are labeled
by clauses; initially, there is a node for every clause in the base set. When
two clauses, q and cj9 produce a resolvent, ri ;, we create a new node,
labeled rij9 with edges linking it to both the c{ and cs nodes. Here we
deviate from the usual tree terminology and say that c{ and c, are the
parents of r0 and that r{j is a descendant of c{ and c,. (Recall that we
introduced the concept of a derivation graph in chapter 3.)

A resolution refutation can be represented as a refutation tree (within
the derivation graph) having a root node labeled by NIL. In Figure 5.1
we show a refutation tree for the example discussed in the last section.

The control strategy searches for a refutation by growing a derivation
graph until a tree is produced with a root node labeled by the empty

164

CONTROL STRATEGIES FOR RESOLUTION METHODS

clause, NIL. A control strategy for a refutation system is said to be
complete if its use results in a procedure that will find a contradiction
(eventually) whenever one exists. (The completeness of a, strategy should
not be confused with the logical completeness of an inference rule
discussed in chapter 4.) In AI applications, complete strategies are not so
important as ones that find refutations efficiently.

5.2.1. THE BREADTH-FIRST STRATEGY

In the breadth-first strategy, all of the first-level resolvents are
computed first, then the second-level resolvents, and so on. {A first-level
resolvent is one between two clauses in the base set; an i-th level resolvent
is one whose deepest parent is an (/ — l)-th level resolvent.) The
breadth-first strategy is complete, but it is grossly inefficient.

In Figure 5.2 we show the refutation graph produced by a breadth-first
strategy for the example problem of the last section. All of the first- and
second-level resolvents are shown, and we indicate that NIL is among the
third-level resolvents. (Note that our refutation shown in Figure 5.1 did
not produce the empty clause until the fourth level.)

~/(z) V R(z) KA)

R(A) ~R{x)V L(x)

L(A) ~D(y) V ~L(y)

-D(A) D(A)

NIL

Fig. 5.1 A resolution refutation tree.

165

O
N

~R
{x

)V

L(
x)

-D

(y
)V

-L

(y
)

Th
ir

d-
Le

ve
l

R
es

ol
ve

nt
s

Pi

W

in
 G

H
 δ z w H
 1 C/

3

C/
2 H

W

C/
5

Fi
g.

 5
.2

 Il
lu

str
at

io
n

of
 a

 b
re

ad
th

-fi
rs

t s
tra

te
gy

.

CONTROL STRATEGIES FOR RESOLUTION METHODS

5.2.2. THE SET-OF-SUPPORT STRATEGY

A set-of-support refutation is one in which at least one parent of each
resolvent is selected from among the clauses resulting from the negation
of the goal wff or from their descendants (the set of support). It can be
shown that a set-of-support refutation exists whenever any refutation
exists and, therefore, that the set of support can be made the basis of a
complete strategy. The strategy need only guarantee to search for all
possible set-of-support refutations (in breadth-first manner, say). Set-of-
support strategies are usually more efficient than unconstrained breadth-
first ones.

In a set-of-support refutation, each resolution has the flavor of a
backward reasoning step because it uses a clause originating from the
goal wff, or one of its descendants. Each of the resolvents in a
set-of-support refutation might then correspond to a subgoal in a
backward production system. One advantage of a refutation system is
that it permits what are essentially backward and forward reasoning steps
to occur in a simple fashion in the same production system. (Forward
reasoning steps correspond to resolutions between clauses that do not
descend from the theorem to be proved.)

In Figure 5.3 we show a refutation graph produced by the set-of-sup
port strategy for our example problem. Notice that, in this case, set of
support does not permit finding the empty clause at the third level. A
third-level refutation for this problem necessarily involves resolving two
clauses outside the set of support. Comparing Figure 5.2 with Figure 5.3,
we see that set of support produces fewer clauses at each level than does
unconstrained breadth-first resolution. Typically, the set-of-support
strategy results in slower growth of the clause set and thus helps to
moderate the usual combinatorial explosion. Usually this containment of
clause-set growth more than compensates for the fact that a restrictive
strategy, like set of support, often increases the depth at which the empty
clause is first produced.

The refutation tree in Figure 5.1 is one that could have been produced
by a set-of-support strategy. We show the top part of this tree by
darkening some of the branches in Figure 5.3.

5.23. THE UNIT-PREFERENCE STRATEGY

The unit-preference strategy is a modification of the set-of-support
strategy in which, instead of filling out each level in breadth-first fashion,

167

oo

O
rig

in
al

C

la
us

es
 S

-/
(z

)V
Ä

(z
)

H
A)

~R

(x
)V

L(

x)

-D
(y

)\f

~L
(y

)
D

(A
)

Th
ir

d-
Le

ve
l

R
es

ol
ve

nt
s

-D
(A

)
-K

A)

~D
(A

)
-D

(A
)

w a H
 1 w i H

W

F/
g.

 5
.5

 I
llu

str
at

io
n

of
 a

 se
t-o

f-s
up

po
rt

str
at

eg
y.

CONTROL STRATEGIES FOR RESOLUTION METHODS

we try to select a single-literal clause (called a unit) to be a parent in a
resolution. Every time units are used in resolution, the resolvents have
fewer literals than do their other parents. This process helps to focus the
search toward producing the empty clause and, thus, typically increases
efficiency.

The refutation tree of Figure 5.1 is one that might have been produced
by a unit-preference strategy.

5.2.4. THE LINEAR-INPUT FORM STRATEGY

A linear-input form refutation is one in which each resolvent has at
least one parent belonging to the base set. In Figure 5.4 we show how a
refutation graph would be generated using this strategy on our example
problem. Note that the first level of Figure 5.4 is the same as the first level
of Figure 5.2. At subsequent levels, the linear-input form strategy does
reduce the number of clauses produced. Again, the use of this strategy on
our example problem does not permit us to find a third-level empty
clause. Note that the refutation tree of Figure 5.1 qualifies as a
linear-input form refutation. We indicate part of this tree by darkening
some of the branches in Figure 5.4.

There are cases in which a refutation exists but a linear-input form
refutation does not; therefore, linear-input form strategies are not
complete. To see that linear-input form refutations do not always exist for
unsatisfiable sets, consider the following example set of clauses:

Q(u)V P(A)
~ ß (w) V P(w)
~Q{x) V ~P(x)
Q(y)V ~P(y)

The set is clearly unsatisfiable, as evidenced by the refutation tree of
Figure 5.5. A linear-input form refutation must (in particular) have one
of the parents of NIL be a member of the base set. But to produce the
empty clause in this case, one must either resolve two single-literal
clauses or two clauses that collapse in resolution to single-literal clauses.
None of the members of the base set meets either of these criteria, so
there cannot be a linear-input form refutation for this set.

Notwithstanding their lack of completeness, linear-input form strate
gies are often used because of their simplicity and efficiency.

169

ο

O
rig

in
al

C

la
us

es
, S

Fi
rs

t-
Le

ve
l

R
es

ol
ve

nt
s

Se
co

nd
-L

ev
el

R

es
ol

ve
nt

s

Th
ir

d-
Le

ve
l

R
es

ol
ve

nt
s

1(
A)

R(
A)

L(
A)

\

~/
(z

)V

R(
z)

~R

(x
)

V
 L

(x
)

\
-

V

~
/(

z)
V

L
(z

)

L(
A)

 • • •

~D
(y

)
V

-L

(y
)

~R
(y

)
V

~D

(y
)

—
i

-K
A)

D
(A

)

~/
(z

)
V

~D

(z
)

• ·
 ·

1
~I

(y
)

V
 -£

>(
>>

)

-1
(A

)

~R
(A

)

• ·
 ·

w H
 w

_
s 1 C

/i

C/
5 H

W

c/3

.F
/g.

 5
.4

 I
llu

str
at

io
n

of
 a

 li
ne

ar
-in

pu
t f

or
m

 s
tra

te
gy

.

CONTROL STRATEGIES FOR RESOLUTION METHODS

5.2.5. THE ANCESTRY-FILTERED FORM STRATEGY

An ancestry-filtered form refutation is one in which each resolvent has
a parent that is either in the base set or that is an ancestor of the other
parent. Thus, ancestry-filtered form is very much like linear form. It can
be shown that a control strategy guaranteed to produce all ancestry-fil
tered form proofs is complete.

As an example, the refutation tree of Figure 5.5 is one that could have
been produced by an ancestry-filtered form strategy. The clause marked
with an asterisk is used as an "ancestor" in this case. It can also be shown
that completeness of the strategy is preserved if the ancestors that are
used are limited to merges. (Recall from chapter 4 that a merge is a
resolvent that inherits a literal from each parent such that this literal is
collapsed to a singleton by the mgu.) We note in Figure 5.5 that the clause
marked by an asterisk is a merge.

■Q(*)V -P(x) (200 V ^ O)

Q(u)VP(A)

NIL

Fig. 5.5 A refutation tree.

171

RESOLUTION REFUTATION SYSTEMS

5.2.6. COMBINATIONS OF STRATEGIES

It is also possible to combine control strategies. A combination of set of
support with either linear-input form or ancestry-filtered form is com
mon. Let us consider the set-of-support/linear-input form strategy, as an
example. This strategy can be viewed as a simple type of reasoning
backward from a goal to subgoal to sub-subgoal and so on. It happens
that the first three levels in Figure 5.3 contain only clauses that are
permitted by this combination strategy, so that the combination for those
levels does not further restrict the set-of-support strategy used in that
figure. Occasionally, however, the combination strategy leads to a slower
growth of the clause set than would either strategy alone.

The set-of-support, linear-input form, and ancestry-filtered form
strategies restrict resolutions. Of all the resolutions that these strategies
allow, the strategies say nothing about the order in which these
resolutions are performed. We have already mentioned that an inappro
priate order does not prevent us from finding a refutation. This fact does
not mean, however, that resolution order has no effect on the efficiency of
the process. On the contrary, an appropriate order of performing
resolutions can prevent the generation of large numbers of unneeded
clauses. The unit-preference strategy is one example of an ordering
strategy. Other ordering strategies based on the number of literals in a
clause and the complexity of the terms in a clause can also be devised.
The order in which resolutions are performed is crucial to the efficiency
of resolution systems. Since we do not concentrate on applications of
resolution refutation systems in this book, the interested reader is
referred to the citations at the end of this chapter for references to papers
and books dealing with ordering strategies for resolution systems.

5.3. SIMPLIFICATION STRATEGIES

Sometimes a set of clauses can be simplified by elimination of certain
clauses or by elimination of certain literals in the clauses. These
simplifications are such that the simplified set of clauses is unsatisfiable if
and only if the original set is unsatisfiable. Thus, employing these
simplification strategies helps to reduce the rate of growth of new clauses.

172

SIMPLIFICATION STRATEGIES

53.1. ELIMINATION OF TAUTOLOGIES

Any clause containing a literal and its negation (we call such a clause a
tautology) may be eliminated, since any unsatisfiable set containing a
tautology is still unsatisfiable after removing it, and conversely. Thus,
clauses like P(x) V B(y) V ~B(y) and P(f(A)) V ~P(f(A)) may
be eliminated.

53.2. PROCEDURAL ATTACHMENT

Sometimes it is possible and more convenient to evaluate the truth
values of literals than it would be to include these literals, or their
negations, in the base set. Typically, evaluations are performed for
ground instances. For example, if the predicate symbol "£" stands for the
equality relation between numbers, it is a simple matter to evaluate
ground instances such as E(1,3) when they occur; whereas we would
probably not want to include in the base set a table containing a large
number of ground instances of E(x,y) and ~E(x,y).

It is instructive to look more closely at what is meant by "evaluating"
an expression like £(7,3). Predicate calculus expressions are linguistic
constructs that denote truth values, elements, functions, or relations in a
domain. Such expressions can be interpreted with reference to a model
which associates linguistic entities with appropriate domain entities. The
end result is that the values T or F become associated with sentences in
the language.

Given a model, we could use any finite processes for interpretation
with respect to it as a way of deciding truth values of sentences.
Unfortunately, models and interpretation processes are not, in general,
finite. Often, we can use partial models, however. In our equality
example, we can associate with the predicate symbol, £, a computer
program that tests the equality of two numbers within the finite domain
of the program. Let us call this program EQUALS. We say that the
program EQUALS is attached to the predicate symbol E. We can
associate the linguistic symbols 7 and 3 (i.e., numerals) with the computer
data items 7 and 3 (i.e., numbers), respectively. We say that 7 is attached
to 7, and that 3 is attached to 3, and that the computer program and
arguments represented by EQUALS(7,3) are attached to the linguistic
expression £(7,3). Now we can run the program to obtain the value F
(false) which in turn induces the value F for £(7,3).

173

RESOLUTION REFUTATION SYSTEMS

We can also attach procedures to function symbols. For example, an
addition program can be attached to the function symbol plus. In this
manner, we can establish a connection or procedural attachment between
executable computer code and some of the linguistic expressions in our
predicate calculus language. Evaluation of attached procedures can be
thought of as a process of interpretation with respect to di partial model.
When it can be used, procedural attachment reduces the search effort that
would otherwise be required to prove theorems.

A literal is evaluated when it is interpreted by running attached
procedures. Typically, not all of the literals in a set of clauses can be
evaluated, but the clause set can nevertheless be simplified by such
evaluations. If a literal in a clause evaluates to Γ, the entire clause can be
eliminated without affecting the unsatisfiability of the rest of the set. If a
literal evaluates to F, then the occurrence of just that literal in the clause
can be eliminated. Thus the clause P(x) V Q(A)V E(7,3) can be
replaced by P(x)V Q(A), since E(7,3) evaluates to F.

5.33. ELIMINATION BY SUBSUMPTION

By definition, a clause { L{} subsumes a clause { M{} if there exists a
substitution s such that { L{} s is a subset of { M{}. As examples:

P(x) subsumes P(y) V Q(z)

P(x) subsumes P(A)

P(x) subsumes P(A) V Q(z)

P(x) V Q(A) subsumes P(f(A)) V Q(A) V R(y)

A clause in an unsatisfiable set that is subsumed by another clause in
the set can be eliminated without affecting the unsatisfiability of the rest
of the set. Eliminating clauses subsumed by others frequently leads to
substantial reductions in the number of resolutions that need to be made
in finding a refutation.

174

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

5,4. EXTRACTING ANSWERS FROM RESOLUTION
REFUTATIONS

Many applications of predicate calculus theorem-proving systems
involve proving formulas containing existentially quantified variables,
and finding values or instances for these variables. That is, we might want
to know if a wff such as (3x) W(x), logically follows from S, and if it
does, we want an instance of the "JC" that exists. The problem of finding a
proof for (Bx) W{X) from S is an ordinary predicate calculus theorem-
proving problem, but producing the satisfying instance for x requires
that the proof method be "constructive."

We note that the prospect of producing satisfying instances for
existentially quantified variables allows the possibility for posing quite
general questions. For example, we could ask "Does there exist a solution
sequence to a certain 8-puzzle?" If a constructive proof can be found that
a solution does exist, then we could produce the desired solution also. We
could also ask whether there exist programs that perform desired
computations. From a constructive proof of a program's existence, we
could produce the desired program. (We must remember, though, that
complex questions will generally have complex proofs, possibly so
complex that our automatic proof-finding procedures will not find them.)
In this section we describe a process by which a satisfying instance of an
existentially quantified variable in a wff can be extracted from a
resolution refutation for that wff.

5.4.1. AN EXAMPLE

Consider the following trivially simple problem: "If Fido goes
wherever John goes and if John is at school, where is Fido?" Quite clearly
the problem specifies two facts and then asks a question whose answer
presumably can be deduced from these facts. The facts might be
translated into the set S of wffs

(Vx)[A T{JOHN,x) => A T(FID09x)]

and

AT {JOHN, SCHOOL).

175

RESOLUTION REFUTATION SYSTEMS

The question "where is Fido?" can be answered if we first prove that
thewff

(3x)AT(FIDO,x)

logically follows from S and then find an instance of the x "that exists."
The key idea is to convert the question into a goal wfT containing an
existential quantifier such that the existentially quantified variable
represents an answer to the question. If the question can be answered
from the facts given, the goal wff created in this manner will logically
follow from S. After obtaining a proof, we then try to extract an instance
of the existentially quantified variable to serve as an answer. In our
example we can easily prove that (3x)AT(FIDO,x) follows from S. We
can also show that a relatively simple process extracts the appropriate
answer.

The resolution refutation is obtained in the usual manner, by first
negating the wff to be proved, adding this negation to the set S,
converting all of the members of this enlarged set to clause form, and
then, by resolution, showing that this set of clauses is unsatisfiable. A
refutation tree for our example is shown in Figure 5.6. The clauses
resulting from the wifs in S are called axioms. Note that the negation of
the goal wff (3x)A T(FIDO, x) produces

(Vx)[~AT(FIDO,x)],

whose clause form is simply ~AT(FIDO,x).

Next we must extract an answer to the question "Where is Fido?" from
this refutation tree. The process for doing so in this case is as follows:

(1) Append to each clause arising from the negation
of the goal wff its own negation. Thus
~AT(FIDO,x) becomes the tautology
-AT (FIDO, x) V AT (FIDO, x).

(2) Following the structure of the refutation tree,
perform the same resolutions as before until some
clause is obtained at the root. (We make the phrase
the same resolutions more precise later.)

(3) Use the clause at the root as an answer statement.

176

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

~AT(FIDO,x)
(Negation of Goal)

-A T{JOHN,y) V A T(FIDO,y)
(Axiom 1)

-AT(JOHN,x) AT(JOHN,SCHOOL)
(Axiom 2)

NIL

Fig. 5.6 Refutation tree for example problem.

~AT(FIDO,x) V AT(FIDO,x) -A T(JOHN,y) V A T(FIDO,y)

-AT(JOHN,x) V AT(FIDO,x) AT(JOHN, SCHOOL)

AT {FIDO, SCHOOL)

Fig. 5.7 The modified proof tree for example problem.

177

RESOLUTION REFUTATION SYSTEMS

In our example, these steps produce the proof tree shown in Figure 5.7
with the clause AT {FIDO, SCHOOL) at the root. This clause, then, is
the appropriate answer to the problem.

We note that the answer statement has a form similar to that of the goal
wff. In this case, the only difference is that we have a constant (the
answer) in the answer statement in the place of the existentially
quantified variable in the goal wff.

In the next sections, we deal more thoroughly with the answer
extraction process, justify its validity, and discuss how it should be
employed if the goal wff contains universal as well as existential
quantifiers.

5.4.2. THE ANSWER EXTRACTION PROCESS

Answer extraction involves converting a refutation tree (with NIL at
the root) to a proof tree with some statement at the root that can be used
as an answer. Since the conversion involves converting every clause
arising from the negation of the goal wff into a tautology, the converted
proof tree is a resolution proof that the statement at the root logically
follows from the axioms plus tautologies. Hence it also follows from the
axioms alone. Thus, the converted proof tree itself justifies the extraction
process!

Although the method is simple, there are some fine points that can be
clarified by considering some additional examples.

EXAMPLE 1. Consider the following set of wffs:

1. (yx)0/y){[P(x,y)AP(y,z)]^G(x,z)}

and

2. (Vy)(3x)P(x,y).

We might interpret these as follows:

For all x and y, if x is the parent of y and y is the parent of z, then x is
the grandparent of z.

178

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

and

Everyone has a parent.

Given these wffs as hypotheses, suppose we asked the question "Do there
exist individuals x and y such that x is the grandparent of yl" The goal
wff corresponding to this question is:

(3x)(3y)G(x,y).

The goal wff is easily proved by a resolution refutation. The refutation
tree is shown in Figure 5.8. The literals that are unified in each resolution
are underlined. We call the subset of literals in a clause that is unified
during a resolution the unification set.

(Negation of Goal)
~P(x,y) V ~P(y,z) V G(x,z)

(Axiom 1)

~P(u,y) V ~P(y,v)

P(f(w),w)
(Axiom 2)

-P(u,f(v))

P(f(w),w)
(Axiom 2)

NIL

Fig. 5.8 A refutation tree for Example 1.

179

RESOLUTION REFUTATION SYSTEMS

Note that the clause P(f(w),w) contains a Skolem function, /,
introduced to eliminate the existential quantifier in Axiom 2. (The
function/can be interpreted as a function that is defined to name the
parent of any individual.) The modified proof tree is shown in i igure 5.9.
The negation of the goal wff is transformed into a tautology, and the
resolutions follow those performed in the tree of Figure 5.8. Each
resolution in the modified tree uses unification sets that correspond
precisely to the unification sets of the refutation tree. Again, the unification
sets are underlined.

The proof tree of Figure 5.9 has G(f(f(v)), v) at the root. This clause
represents the wff (Vv)[G (/*(/(v)), v)], which is the answer statement.
The answer statement provides an answer to the question "Are there x
and y such that x is the grandparent of yV The answer in this case
involves the definitional function/. Any v and the parent of the parent of
v are examples of individuals satisfying the conditions of the question.
Again, the answer statement has a form similar to that of the goal wff.

EXAMPLE 2. Here we illustrate the way in which more complex clauses
arising from the negation of the goal wff are transformed into tautologies.

-G(u,v) V G(u,v)

P(x,y)V ~P(y,z)V G(x,z)

~P(u,y)V ~P(y,v)V G{u,v)

P(f(w),w)

P(f(w),w)

G(f(f(v)),v)

180

Fig. 5.9 The modified proof tree for Example 1.

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

Consider the following set of clauses or axioms:

~A(x) V F(x)VG(f(x))
~F(x) V B(x)
- / ■ (*) V C(x)
~G(x)V B(x)
~ G (x) V D (x)
i i (S (*)) V F (A (*))

(In this example, we assume that the variables in these clauses are
standardized apart before performing resolutions. For simplicity, we do
not indicate this process explicitly.) We desire to prove, from these
axioms, the goal wff

(3χ)(3γ){[Β(χ) A C(x)] V [D(y) A B(y))} .

The negation of this wff produces two clauses, each with two literals:

~B(x) V ~ C (x)
~B(x) V ~D(x) .

A refutation tree for this combined set of clauses is shown in Figure 5.10.

Now, to transform this tree we must convert the clauses resulting from
the negation of the goal wff (shown in double boxes in Figure 5.10) into
tautologies, by appending their own negations. In this case, the negated
clauses involve Λ symbols. For example, the clause ~B(x)V ~C(x)
is converted to the formula— B (JC) V ~ C(x) V [B(x)A C(x)].This
formula is not a clause because of the occurrence of the conjunction
[B(x) A C(x)]; nevertheless, we treat this conjunction as a single literal
and proceed formally as if the formula were a clause (none of the
elements of this conjunction are ever in any unification sets). Similarly,
we transform the clause — Z) (J C) V ~ B (x) into the tautology
~D(x) V ~B(x) V [D(x) A B(x)].

Performing the resolutions dictated by corresponding unification sets,
we then produce the proof graph shown in Figure 5.11. Here the root
clause is the wff

Q/x){\B(g(x)) A C(g(x))] V [D(f(g(x))) A B(f(g(x)))]

V[B(h(x))AC(h(x))]} .

181

RESOLUTION REFUTATION SYSTEMS

-B(x) V ~C(x) ~D(x) V ~B(x)

~F(x)V B(x)

~F(x)V ~C(x)

-G(x)V D(x)

~B(x)V~G(x)

~F(x)V C(x)

~F{x)

~G(x)V B(x)

~G(x)

i(g(x))VFMx))

Fig. 5.10 A re filiation tree for Example 2.

We note that, in this example, the answer statement has a form somewhat
different from the form of the goal wff. The underlined part of the answer
statement is obviously similar to the entire goal wff—with g(x) taking
the place of the existentially quantified variable x in the goal wff, and
f(g(x)) taking the place of the existentially quantified variable y in the
goal wff—but, in this example, there is the extra disjunct
[B (h (x)) Λ C(h (x))] in the answer statement. This disjunct, however,
is similar to one of the disjuncts of the goal wff, with h(x) taking the
place of the existentially quantified variable x of the goal wff.

182

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

~F(x) V (B(x) A C(x))

~D(x) V ~B(x) V (D(x) A B(x))

~G(x)\/D(x)

~B{x) V ~G(x) V (D(x) A B(x))

~G(x) V B{x) 1

~G(x)V(D(x)AB(x))

~A(x)VF(x)VG(f(x))

-A(x) V G(f(x)) V (£(*) Λ C(x))

~A(x) V (*(*) Λ C(x)) V O W *)) V B(f(x)))

A(g(x)) V F(h(x))

F(h(x)) V (£&(*)) Λ C(g(x)))V (D(f(g(x))) AB(f(g(x))))

[B(h(x)) A C(h(x))} V [D(f(g(x))) A B(f(g(x)))} V [B(g(x)) A C(g(x))]

Fig. 5.11 The modified proof tree for Example 2.

In general, if the goal wff itself is in disjunctive normal form, then our
answer-extraction process will produce a statement that is a disjunction of
expressions, each of which is similar in form either to the entire goal wff
or to one or more disjuncts of the entire goal wff. For this reason we claim
that the root clause here can be used as an "answer" to the "question"
represented by the goal wff.

183

RESOLUTION REFUTATION SYSTEMS

5.43. GOAL WFFS CONTAINING UNIVERSALLY
QUANTIFIED VARIABLES

A problem arises when the goal wff contains universally quantified
variables. These universally quantified variables become existentially
quantified in the negation of the goal wff, causing Skolem functions to be
introduced. What is to be the interpretation of these Skolem functions if
they should eventually appear as terms in the answer statement?

We illustrate this problem with another example. Let the clause form
of the axioms be:

C(x,p (x)), meaning "For all x, x is the child ofp(x)" (that
is, p is a function mapping a child of an individual into the
individual);

and

~ C(x,y) V P(y,x% meaning "For all x andy, if x is the child
of y, then y is the parent of x"

Now suppose we wish to ask the question "For any x, who is the parent
of jc?" The goal wff corresponding to this question is:

(Vx)(3y)P(y,x).

Converting the negation of this goal wff to clause form, we obtain, first:

(3x)(Vy)[~P(y,x)l

and then:

~P(y,A),

where A is a Skolem function of no arguments (i.e., a constant)
introduced to eliminate the existential quantifier occurring in the
negation of the goal wff. (The negation of the goal wff alleges that there is
some individual, whom we call "Λ," that has no parent.) A modified
proof tree with answer statement at the root is shown in Figure 5.12.

Here we obtain the somewhat obtuse answer statement P(p(A),A),
containing the Skolem function A. The interpretation should be that,

184

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

regardless of the Skolem function Λ (hypothesized to spoil the validity of
the goal wfi), we are able to prove P(p (A),A). That is, any individual Λ,
thought to spoil the goal wff, actually satisfies the goal wff. The constant A
could have been a variable without invalidating the proof shown in
Figure 5.12. It can be shown [Luckham and Nilsson (1971)] that in the
answer-extracting process it is correct to replace any Skolem functions in
the clauses coming from the negation of the goal wff by new variables.
These new variables will never be substituted out of the modified proof
but will merely trickle down to occur in the final answer statement.
Resolutions in the modified proof will still be limited to those defined by
those unification sets corresponding to the unification sets occurring in
the original refutation. Variables might be renamed during some
resolutions so that, possibly, a variable used in place of a Skolem function
may get renamed and thus might be the "ancestor" of several new
variables in the final answer statement. We illustrate some of the things
that might happen in the latter case by two simple examples.

EXAMPLE 3. Suppose S consists of the single axiom (in clause form):

P(B,w,w) V P(A,u,u),

and suppose we wish to prove the goal wff:

(3χ)(\/ζ)(3γ)Ρ(χ,ζ,γ).

~C(x,y)V P(y,x) ~P(y,A)VP(y,A)

C(x,pM)

Fig. 5.12 A modified proof tree for an answer statement.

185

RESOLUTION REFUTATION SYSTEMS

A refutation tree is shown in Figure 5.13. Here, the clause resulting from
the negation of the goal wff contains the Skolem function g (x). In Figure
5.13 we also show the modified proof tree in which the variable t is used
in place of the Skolem function g(x). Here we obtain a proof of the
answer statement P(A9t9t) V P(B,z,z) that is identical (except for
variable names) to the single axiom. This example illustrates how
variables introduced by renaming variables in one clause during a
resolution can finally appear in the answer statement.

~P(x,g(x),y)

P(B,w,w)V P(A,u,u)

P(B,w,w)

~P(x,g(x).y)

NIL

~P(x,t,y)V P(x,t,y)

P(B,w,w) V P(A,u,u)

P(B,w,w)\/ P{A,t,t)

~P(x,t,y)V P(x,t,y)

P(A,t,t)V P(B,z,z)

186

Fig. 5.13 Trees for Example 3.

EXTRACTING ANSWERS FROM RESOLUTION REFUTATIONS

EXAMPLE 4. As another example, suppose we wish to prove the same
goal wff as before, but now from the single axiom P(z,u9z) V P(A,u,u).
The refutation tree is shown in Figure 5.14. Here the clause coming from
the negation of the goal wff contains the Skolem function g (x).

In Figure 5.14 we also show the modified proof tree in which the
variable w is used in place of the Skolem function g (x). Here we obtain a
proof of the answer statement:

P{z,w9z)VP(A,w9w)9

~~P(x.g(x),y)

-P(x,g(x)y>)

P(z.u,z)V P{A,u,u)

NIL

~P(x,w,y)V P(x,w,y)

P(z,u.z)V P(A,u,u)

~P(x,w,y) V P(x,w,y)\ P(z,w,z)\/ P(A,w,w)

P(z,w,z)V P(A,w,w)

Fig. 5.14 Trees for Example 4.

187

RESOLUTION REFUTATION SYSTEMS

which is identical (except for variable names) to the single axiom. Careful
analysis of the unifying substitutions in this example will show that
although the resolutions in the modified tree are constrained by
corresponding unification sets, the substitutions used in the modified tree
can be more general than those in the original refutation tree.

In conclusion, the steps of the answer extraction process can be
summarized as follows:

1. A resolution-refutation tree is found by some search process. The
unification subsets of the clauses in this tree are marked.

2. New variables are substituted for any Skolem functions occurring in
the clauses that result from the negation of the goal wff.

3. The clauses resulting from the negation of the goal wff are converted
into tautologies by appending to them their own negations.

4. A modified proof tree is produced modeling the structure of the
original refutation tree. Each resolution in the modified tree uses a
unification set determined by the unification set used by the correspond
ing resolution in the refutation tree.

5. The clause at the root of the modified tree is the answer statement
extracted by this process.

Obviously, the answer statement depends upon the refutation from
which it is extracted. Several different refutations might exist for the
same problem; from each refutation we could extract an answer, and,
although some of these answers might be identical, it is possible that
some answer statements would be more general than others. Usually we
have no way of knowing whether or not the answer statement extracted
from a given proof is the most general answer possible. We could, of
course, continue to search for proofs until we found one producing a
sufficiently general answer. Because of the undecidability of the predicate
calculus, though, we would not always know whether we had found all of
the possible proofs for a wff, W, from a set, S.

188

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

5.5. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

Various control strategies for resolution refutations are discussed in
Loveland (1978) and Chang and Lee (1973). Ordering strategies have
been proposed by Boy er (1971), Kowalski (1970), Reiter (1971),
Kowalski and Kuehner (1971), Minker, Fishman, and McSkimin (1973),
and Minker and Zanon (1979).

Some examples of large-scale resolution refutation systems are those of
Guard et al. (1969), McCharen et al. (1976), Minker et al. (1974), and
Luckham et al. (1978) [The latter is also described in Allen and Luckham
(1970).] Unlike some of the very earliest resolution systems, many of
these possess control knowledge adequate to prove some rather difficult
theorems.

Our discussion of procedural attachment is based on the work of
Weyhrauch (1980) on FOL. The process for extracting answers from
resolution refutations was originally proposed by Green (1969b). Our
treatment of answer extraction is based on work by Luckham and Nilsson
(1971), who extended the method.

EXERCISES

5.1 Find a linear input form refutation for the following unsatisfiable set
of clauses:

~ rvp
s

~R
~sv u
~UV Q

189

RESOLUTION REFUTATION SYSTEMS

5.2 Indicate which of the following clauses are subsumed by P (f(x),y) :

(a) P(f(A),f(x))VP(z,f(y))
(b) P(z,A)V ~P(A,z)
(c) P(/(/·(x)),z)
(d) P(f(z),z)VQ(x)
(e) P(A,A)V P(f(x),y)

5 3 Show by a resolution refutation that each of the following formulas
is a tautology:

(a) (? ^ ß) = > p V P) = > (Ä V ß)]
(b) [(7»=>ß)=»j»]=>p
(c) (~ P ^ P) ^ P
(d) (/ > = Φ ρ) ^ (~ ρ = > ~ ρ)

5.4 Prove the validity of the following wffs using the method of
resolution refutation:

(a) (3x){[P(x)^P(A)]A[P(x)^P(B)]}
(b) (V z) [ß (z) ^ / > (z)]

=> { (3χ) [β(χ)=>/>(Λ)] A[Q(x)=>P(B)]}
(c) (3x)(3y){[P(f(x)) A Q(f(B))]

=*[P(f(A))AP(y)AQ(y)]}
(d) (3x)(Vy)P(x,y)

=>(yyX3x)P(jc,7)
(e) (V *) { / » (*) A [ß (^) V ß (*)] }

= > (3 χ χ Ρ (χ) Λ β (χ)]

5.5 Show by a resolution refutation that the wff (Bx)P(x) logically
follows from the wff [P(A1) V P(A2)]. However, the Skolemized form
of (3x)P(x), namely, P(A), does not logically follow from
[P(A1) V P(A2)]. Explain.

5.6 Show that a production system using the resolution rule schema
operating on a global database of clauses is commutative in the sense
defined in chapter 1.

5.7 Find an ancestry-filtered form refutation for the clauses of EXAM
PLE 2 in Section 5.4.2. Compare with the refutation graph of Figure 5.10.

190

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

5.8 Referring to the discussion in Section 3.3. on derivation graphs (and
to Exercise 3.4) propose a heuristic search strategy for a resolution
refutation system. On what factors would you base an h function?

5.9 In this exercise we preview a relationship between computation and
deduction that will be more fully explored in chapter 6.

The expression cons(x,y) denotes the list formed by inserting the
element * at the head of the list y. We denote the empty list by NIL ; the
list (2) by cons(2,NIL)\ the list (1,2) by cons(\9cons(2,NIL)); etc. The
expression LAST(x,y) is intended to mean thatj is the last element of
the list x. We have the following axioms:

(yu)LAST(cons(u,NIL),u)
(Vx)(Vy)(Vz)[LA ST(y, z)^>LAST(cons (x,y), z)]

Prove the following theorem from these axioms by the method of
resolution refutation:

(3v)LAST(cons(2,cons(l,NIL)),v)

Use answer extraction to find v, the last element of the list (2,1). Describe
briefly how this method might be used to compute the last element of
longer lists.

191

CHAPTER 6

RULE-BASED DEDUCTION SYSTEMS

The way in which a piece of knowledge about a certain field is
expressed by an expert in that field often carries important information
about how that knowledge can best be used. Suppose, for example, that a
mathematician says:

If x and y are both greater that zero, so is the product of x andj.

A straightforward rendering of this statement into predicate calculus is:

(Vx)(Vy){[G(x,0) Λ G(yfi)] ^ G (times (x, y) fi)} .

However, we could instead have used the following completely equiva
lent formulation:

(Vjc)(Vy){[G(jc,0) Λ ~G(times(x,y)fi)] => ~G(y,0)} .

The logical content of the mathematician's statement is, of course,
independent of the many equivalent predicate calculus forms that could
represent it. But the way in which English statements are worded often
carries extra-logical, or heuristic, control information. In our example,
the statement seems to indicate that we are to use the fact that x and y are
individually greater than zero to prove that x multiplied by y is greater
than zero.

Much of the knowledge used by AI systems is directly representable by
general implicational expressions. The following statements and expres
sions are additional examples:

(1) All vertebrates are animals.
(Vx)[VERTEBRATE(x)^> ANIMAL(x)]

193

RULE-BASED DEDUCTION SYSTEMS

(2) Everyone in the Purchasing Dept. over 30 is married.
(V*) (Vy) {[WORKS-IN{PURCHASING-DEPT,x)

A AGE(x9y) A G(y,30)]=ï MARRIED(x)}

(3) There is a cube on top of every red cylinder.
Çix){[CYLINDER(x) A RED(x)]

^>(3y)[CUBE(y) A ON(y,x)]}

If we were to convert expressions such as these into clauses, we would
lose the possibly valuable control information contained in their given
implicational forms. The clausal expression (A V B V C), for example,
is logically equivalent to any of the implications {~A A ~B)=> C,
(~A A ~C)=ïB9 Η Λ ~0=ΦΛ, ~A=ï(B V C) ,
~B=>(A V C), or ~ C=ï(A V B)\ but each of these implications
carries its own, rather different, extra-logical control information not
carried at all by the clause form. In this chapter we argue that
implications should be used in the form originally given, as F-rules or
B-rules of a production system.

The use of implicational wffs as rules in a production system prevents
the system from making inferences directly from these rule wffs alone.
All inferences made by a production system result from the application of
production rules to the global database. Therefore each inference can
involve only one rule wff at a time. This restriction has beneficial effects
on the efficiency of the system. Additionally, we can show, in general, that
converting wffs to clauses can lead to inefficiencies.

Consider the problem of attempting to prove the wff P A (Q V R). If
we used a resolution refutation system, we would negate this wff and
convert it to clause form through the following steps:

~[PA(QVR)]

~ / > V - (g V Ä)

—P V (~ (? A ~R)

(1) - P V - Ô

(2) ~ P V ~R

194

Suppose the base set also contains the following clauses:

(3) ~ S V P

(4) ~ t / V S

(5) U

(6) ~ W V R

(7) W

One reasonable strategy for obtaining a refutation might involve
selecting clause 1, say, and using it and its descendants in resolutions. We
can resolve clauses 1 and 3 to produce ~ 5 V ~ Q, and then use clauses 4
and 5 in sequence to produce ~Q. At this stage, we have "resolved away"
the literal ~ P from clause 1. Unfortunately, we now discover that we
have no way to resolve away ~ g , so our search must consider working
with clause 2. The previous work in resolving away ~P is wasted because
we must search for a way to resolve it away again, to produce the clause
~ R , which is on the way to a final solution. The fact that we had to
resolve away ~P twice is an inefficiency caused by "multiplying out" a
subexpression in the conversion to clause form. If we look at our original
goal, namely, to prove P Λ (Q V R), it is obvious that the component P
needs to be proved only once. Conversion to clauses makes this sort of
duplication difficult to avoid.

The systems described in this chapter do not convert wffs to clauses;
they use them in a form close to their original given form. Wffs
representing assertional knowledge about the problem are separated into
two categories: rules and facts. The rules consist of those assertions given
in implicational form. Typically, they express general knowledge about a
particular subject area and are used as production rules. The facts are the
assertions that are not expressed as implications. Typically, they repre
sent specific knowledge relevant to a particular case. The task of the
production systems discussed in this chapter is to prove a goal wfffrom
these facts and rules.

In forward systems, implications used as F-rules operate on a global
database of facts until a termination condition involving the goal wff is
achieved. In backward systems, the implications used as B-rules operate

195

RULE-BASED DEDUCTION SYSTEMS

on a global database of goals until a termination condition involving the
facts is achieved. Combined forward and backward operation is also
possible. The details about rule operation and termination are explained
in the next few pages.

This sort of theorem-proving system is a direct system rather than a
refutation system. A direct system is not necessarily more efficient than a
refutation system, but its operation does seem intuitively easier for
people to understand.

Systems of this kind are often called rule-based deduction systems, to
emphasize the importance of using rules to make deductions. AI research
has produced many applications of rule-based systems.

6.1. A FORWARD DEDUCTION SYSTEM

6.1.1. THE AND/OR FORM FOR FACT EXPRESSIONS

We begin by describing a simple type of forward production system
that processes fact expressions of arbitrary form. Then we consider a dual
form of this system, namely, a backward system that is able to prove goal
expressions of arbitrary form. Finally, we combine the two in a single
system.

Our forward system has as its initial global database a representation
for the given set of facts. In particular, we do not intend to convert these
facts into clause form. The facts are represented as a predicate calculus
wff that has been transformed into implication-free form that we call
AND /OR form. To convert a wff into AND/OR form, the => symbols (if
there are any) are eliminated, using the equivalence of (Wl => W2) and
(~ Wl V W2). (Typically, there will be few => symbols among the facts
because implications are preferably represented as rules.) Next, negation
symbols are moved in (using de Morgan's laws) until their scopes include
at most a single predicate. The resulting expression is then Skolemized
and prenexed; variables within the scopes of universal quantifiers are
standardized by renaming, existentially quantified variables are replaced
by Skolem functions, and the universal quantifiers are dropped. Any
variables remaining are assumed to have universal quantification.

196

A FORWARD DEDUCTION SYSTEM

For example, the fact expression:

(3«)(Vv){ Q(v,u) A ~[[R(v) V P(v)] A S(u,v)]}

is converted to

Q(v,A) Λ {[~/*(v) Λ ~P(v)] V ~S(A, v)]} .

Variables can be renamed so that the same variable does not occur in
different (main) conjuncts of the fact expression. Renaming variables in
our example yields the expression:

Q(w,A) Λ {[~Ä(v) Λ ~P(v)] V ~£(Λ,ν)} .

Note that the variable v, in Q (v,A), can be replaced by a new variable, w,
but that neither occurrence of the variable v in the conjuncts of the
embedded conjunction, [~Ä(v) Λ ~P(v)], can be renamed because
this variable also occurs in the disjunct ~S(A,v). An expression in
AND/OR form consists of subexpressions of literals connected by Λ and
V symbols. Note that an expression in AND/OR form is not in clause
form. It is much closer to the form of the original expression. In
particular, subexpressions are not multiplied out.

6.1.2. USING AND/OR GRAPHS TO REPRESENT FACT
EXPRESSIONS

An AND/OR graph can be used to represent a fact expression in
AND/OR form. For example, the AND/OR tree of Figure 6.1 repre
sents the fact expression that we just put into AND/OR form above.
Each subexpression of the fact expression is represented by a node in the
graph. Disjunctively related subexpressions, El,..., Ek, of a fact,
(Ej V . . . V Ek\ are represented by descendant nodes connected to
their parent node by a fc-connector. Each conjunctive subexpression,
E1,..., En, of an expression, (Et Λ . . . Λ En), is represented by a single
descendant node connected to the parent node by a 1-connector. It may
seem surprising that we use /c-connectors (a conjunctive notion) to
separate disjunctions in fact expressions. We see later why we have
adopted this convention.

The leaf nodes of the AND/OR graph representation of a fact
expression are labeled by the literals occurring in the expression. We call

197

RULE-BASED DEDUCTION SYSTEMS

that node in the graph labeling the entire fact expression, the root node. It
has no ancestors in the graph.

An interesting property of the AND/OR graph representation of a wff
is that the set of clauses into which that wff could have been converted
can be read out as the set of solution graphs (terminating in leaf nodes) of
the AND/OR graph. Thus, the clauses that result from the expression
Q(w,A)A { [~ Α (ν) Λ ~Ρ(ν)] V ~S(A,v)} are:

Ô(vM)
~S(A,v) V
~S(A9v)V

' Ä (v)

Each clause is obtained as the disjunction of the literals at the leaf nodes
of one of the solution graphs of Figure 6.1. We might therefore think of
the AND/OR graph as a compact representation for a set of clauses. [The
AND/OR graph representation for an expression is actually slightly less
general than the clause representation, however, because not multiplying
out common subexpressions can prevent certain variable renamings that
are possible in clause form. In the last of the clauses above, for example,
the variable v can be renamed u throughout the clause. This renaming
cannot be expressed in the AND/OR graph, which results in loss of
generality that can sometimes cause difficulties (discussed later in the
chapter).]

Q(w,A) Λ {[-/?(»·) Λ ~P{v)) ~S{A,v)}

Q(w,A) [-R(v) Λ -P(v)] V ~S(A,v)

S(A,v)

~R(v)

Fig. 6.1 An AND/OR tree representation of a fact expression.

198

A FORWARD DEDUCTION SYSTEM

Usually, we draw our AND/OR graph representations of fact expres
sions "upside down." Later we also use AND/OR graph representations
of goal wffs; these are displayed in the usual manner, "rightside up."

When we represent wffs by AND/OR graphs, we are using AND/OR
graphs for a quite different purpose than that described in chapters 1 and
3. There, AND/OR graphs were representations used by the control
strategy to monitor the progress of decomposable production systems.
Here we are using them as representational forms for the global database
of a production system. Various of the processes to be described in this
chapter involve transformations and tests on the AND/OR graph as a
whole, and thus it is appropriate to use the entire AND/OR graph as the
global database.

6.13. USING RULES TO TRANSFORM AND/OR GRAPHS

The production rules used by our forward production system are
applied to AND/OR graph structures to produce transformed graph
structures. These rules are based on the implicational wffs that represent
general assertional knowledge about a problem domain. For simplicity of
explanation, we limit the types of wffs that we allow as rules to those of
the form:

where L is a single literal, W is an arbitrary wff (assumed to be in
AND/OR form), and any variables occurring in the implication are
assumed to have universal quantification over the entire implication.
Variables in the facts and rules are standardized apart so that no variable
occurs in more than one rule and so that the rule variables are different
than the fact variables.

The restriction to single-literal antecedents considerably simplifies the
matching process in applying rules to AND/OR graphs. This restriction
is a bit less severe than it appears because implications having antece
dents consisting of a disjunction of literals can be written as multiple
rules; for example, the implication {LI V L2) => Wis equivalent to the
pair of rules LI => W and L2 => W. In any case, the restrictions on rule
forms that we impose in this chapter do not seem to cause practical
limitations on the utility of the resulting deduction systems.

199

RULE-BASED DEDUCTION SYSTEMS

Any implication with a single-literal antecedent, regardless of its
quantification, can be put in a form in which the scope of quantification is
the entire implication by a process that first "reverses" the quantification
of those variables local to the antecedent and then Skolemizes all
existential variables. For example, the wif

Q/x){[(3y)Qfz)P(x9y9z)]=> (Vii)ß(jc,n)}

can be transformed through the following steps:

(1) Eliminate (temporarily) implication symbol.

<yX){~[(3y)Qfz)P(x,y,z)]
V(Vu)Q(x,u)}

(2) Reverse quantification of variables in first disjunct
by moving negation symbol in.

0tx){Qty)(3z)i~P(x,y,z)]
V (V «) ß (x , u) }

(3) Skolemize.

(\/χ){(νγ)[~Ρ(χ,γ,/(χ,γ))]
V (V «) ß (* , «) }

(4) Move all universal quantifiers to the front and drop.

~P(x,y,f(x,y))V Q(x,u)

(5) Restore implication.

P(x9y9f(x,y))=>Q(x,u)

To explain how rules of this sort are applied to AND/OR graphs, we
first consider the variable-free propositional calculus case. A rule of the
form L=>W (where L is a literal and W is a wff in AND/OR form) can
be applied to any AND/OR graph having a leaf node, n, labeled by literal
L. The result is a new AND/OR graph in which node n now has an
outgoing 1-connector to a descendant node (also labeled by L) which is
the root node of that AND/OR graph structure representing W.

200

A FORWARD DEDUCTION SYSTEM

As an example, consider the rule

S=*(XA Y)V Z.

We can apply this rule to the AND/OR graph of Figure 6.2 at the leaf
node labeled by S. The result is the graph structure shown in Figure 6.3.
The two nodes labeled by S are connected by an arc that we call a match
arc.

Before applying a rule, an AND/OR graph, such as that of Figure 6.2,
represented a particular fact expression. (Its set of solution graphs
terminating in leaf nodes represented the clause form of the fact
expression.) We intend that the graph resulting after rule application
represent both the original fact and a fact expression that is inferable
from the original one and the rule.

Suppose we have a rule L => ÌV, where L is a literal and W is a wff.
From this rule and from the fact expression F(L), we can infer the
expression F{ W) derived from F(L) by replacing all of the occurrences
of L in F by W. When using a rule L => W to transform the AND/OR
graph representation of F(L) in the manner described, we produce a
new graph that can be considered to contain a representation of F(W)\
that is, its set of solution graphs terminating in leaf nodes represents the
set of clauses in the clause form of F(W). This set of clauses includes the
entire set that would be produced by performing all possible resolutions
on L between the clause form of F(L) and the clause form of L => W.

Ξ
(P V Q) H H V

(T V U)

Fig. 6.2 An AND /OR graph with no variables.

201

RULE-BASED DEDUCTION SYSTEMS

Consider the example of Figure 6.3. The clause form of the rule
5=>[(*Λ 7) V Z] i s :

-svxvz
and

~ S V YV Z.

Those clauses in the clause form of

[(PVQ)AR] V[S A(TV U)]

that would resolve (on S) with either of the two rule clauses are:

P V Q V S

and

RV S.

Match Arc

(P V Q) I I R I s\

(PVQ)AR S A (T V U)

[(P V Q) A R] V [S A (T V U))

Fig. 6.3 An AND/OR graph resulting from applying a rule.

202

A FORWARD DEDUCTION SYSTEM

The complete set of resolvents that can be obtained from these four
clauses by resolving on S is:

IVZVPVQ
YVZV?VQ
RV YV Z
RV XV Z

All of these are included in the clauses represented by the solution graphs
of Figure 6.3.

From this example, and from the foregoing discussion, we see that the
process of applying a rule to an AND/OR graph accomplishes in an
extremely economical fashion what might otherwise have taken several
resolutions.

We want the AND/OR graph resulting from a rule application to
continue to represent the original fact expression as well as the inferred
one. This effect is obtained by having identically labeled nodes on either
side of the match arc. After a rule is applied at a node, this node is no
longer a leaf node of the graph, but it is still labeled by a single literal and
may continue to have rules applied to it. We call any node in the graph
labeled by a single literal a literal node. The set of clauses represented by
an AND/OR graph is the set that corresponds to the set of solution
graphs terminating in literal nodes of the graph.

All of our discussion so far about rule applications has been for the
propositional calculus case in which the expressions do not contain
variables. Soon we will describe how expressions with variables are dealt
with, but first we discuss the termination condition for the variable-free
case.

6.1.4. USING THE GOAL WFF FOR TERMINATION

The object of the forward production system that we have described is
to prove some goal wff from a fact wff and a set of rules. This forward
system is limited in the type of goal expressions that it can prove;
specifically, it can prove only those goal wffs whose form is a disjunction
of literals. We represent this goal wff by a set of literals and assume that
the members of this set are disjunctively related. (Later, we describe a
backward system and a bidirectional system that are not limited to such

203

RULE-BASED DEDUCTION SYSTEMS

Goal Nodes

Rules:
A=>C A D
B^E A G

Fact

Fig. 6.4 An AND/OR graph satisfying termination.

simple goal expressions.) Goal literals (as well as rules) can be used to add
descendants to the AND/OR graph. When one of the goal literals
matches a literal labeling a literal node, n, of the graph, we add a new
descendant of node n, labeled by the matching goal literal, to the graph.
This descendant is called a goal node. Goal nodes are connected to their
parents by match arcs. The production system successfully terminates
when it produces an AND/OR graph containing a solution graph that
terminates in goal nodes. (At termination, the system has essentially
inferred a clause identical to some subpart of the goal clause.)

In our illustrations of AND/OR graphs, we represent matches
between literal nodes and goal nodes in the same way that we represent
matches between literal nodes and nodes representing rule antecedents.
We show, in Figure 6.4, an AND/OR graph that satisfies a termination
condition based on the goal wff (C V G). Note the match arcs to the goal
nodes.

The AND/OR solution graph of Figure 6.4 can also be interpreted as a
proof of the goal expression (C V G) using a "reasoning-by-cases"
strategy. Initially, we have the fact expression, (A V B). Since we don't

204

A FORWARD DEDUCTION SYSTEM

know whether A or B is true, we might attempt first to prove the goal by
assuming that A is true and then attempt to prove the goal assuming B is
true. If both proofs succeed, we hâve a proof based simply on the
disjunction (A V B), and it wouldn't matter which of A or B was true. In
Figure 6.4, the descendants of the node labeled by (A V B) are
connected to it by a 2-connector; thus both of these descendants must
occur (as they indeed do) in the final solution graph. Now we can see the
intuitive reason for using A>connectors to separate disjunctively related
subexpressions in facts. If a solution graph for node n includes any
descendant of AZ through a certain A>connector, it must include all of the
descendants through this /c-connector.

The production system that we have described, based on applying
rules to AND/OR graphs, is commutative; therefore an irrevocable
control regime suffices. The system continues to apply applicable rules
until an AND/OR graph containing a solution graph is produced.

6.1.5. EXPRESSIONS CONTAINING VARIABLES

We now describe forward production systems that deal with expres
sions containing variables. We have already mentioned that variables in
facts and rules have implicit universal quantification. We assume that any
existential variables in facts and rules have been Skolemized.

For goal wffs containing existentially or universally quantified vari
ables, we use a Skolemization process that is dual to that used for facts
and rules. Universal variables in goals are replaced by Skolem functions
of the existential variables in whose scopes these universal variables
reside. Recall that in resolution refutation systems, goal wffs are negated,
converting universal quantifiers into existential ones, and vice versa.
Existential variables in these expressions are then replaced by Skolem
functions. We achieve the same effect in direct proof systems if we
replace universally quantified goal variables by Skolem functions. The
existential quantifiers in the Skolemized goal wff can then be dropped,
and variables remaining in goal expressions have assumed existential
quantification.

We are still restricting our goal wffs to those that are a disjunction of
literals. After Skolemizing a goal wff, we can rename its variables so that
the same variable does not occur in more than one disjunct of the goal
wff. (Recall the equivalence between the wff (3x)[Wl{x) V W2(x)]
and the wff [(Bx) Wl(x) V (3y) W2(y)].)

205

RULE-BASED DEDUCTION SYSTEMS

Now we consider the process of applying a rule of the form (L => W)
to an AND/OR graph, where L is a literal, W is a wff in AND/OR form,
and all expressions might contain variables. The rule is applicable if the
AND/OR graph contains a literal node L' that unifies with L. Suppose
the mgu is u. Then, application of this rule extends the graph (just as in
the propositional calculus case) by creating a match arc directed from the
node labeled by L! in the AND/OR graph to a new descendant node
labeled by L. This descendant node is the root node of the AND/OR
graph representation of Wu. We also label the match arc by the mgu, u.

As an example, consider the fact expression

{P(x,y)V[Q(x,A)AR(B,y)\}.

The AND/OR graph representation for this fact is shown in Figure 6.5.
Now, if we apply the rule:

P(A,B)=ï[S(A) V X(B)]

to this AND/OR graph, we obtain the AND/OR graph shown in Figure
6.6.

The AND/OR graph shown in Figure 6.6 has two solution graphs that
terminate in leaf nodes and that include the newly added match arc. The
clauses corresponding to these solution graphs are:

S(A)V X(B)V Q(A,A)

and

S(A)V X(B)V R(B,B).

In constructing these clauses, we have applied the mgu, w, to the literals
occurring at the leaf nodes of the solution graphs. These clauses are just
those that could be obtained from the clause form of the fact and the rule
wffs by performing resolutions on P.

The AND/OR graph of Figure 6.6 continues to represent the original
fact expression, because we take it generally to represent all of those
clauses corresponding to solution graphs terminating in literal nodes.

After more than one rule has been applied to an AND/OR graph, it
contains more than one match arc. In particular, any solution graph

206

A FORWARD DEDUCTION SYSTEM

(terminating in literal nodes) can have more than one match arc. In
computing the sets of clauses represented by an AND/OR graph
containing several match arcs, we count only those solution graphs
terminating in literal nodes having consistent match arc substitutions.
The clause represented by a consistent solution graph is obtained by
applying a special substitution, called the unifying composition, to the
disjunction of the literals labeling its terminal (literal) nodes.

\Q(X,A) R(B,y)

Fig. 6.5 An AND/OR graph representation of a fact expression containing variables.

\s(A) xm

Fig. 6.6 An AND /OR graph resulting after applying a rule containing variables.

207

RULE-BASED DEDUCTION SYSTEMS

The notions of a consistent set of substitutions and a unifying
composition of substitutions are defined as follows. Suppose we have a
set of substitutions, {ul9ug9.. ,,un). Each u{ is, in turn, a set of pairs:

ui — {Ul/Vili · · ·> hm(i)/vim(i)}

where the ts are terms and the vs are variables. From the (u1,..., un), we
define two expressions:

Ul — (v l l v · -»vitna)v · ·) ν η ίν · '»vnm(n))

and

Ü2 — (hi y · ·>^1ιη(1)ν · -^ηΐν · ^nm(n)) ·

The substitutions (ul9.. .,wn) are called consistent if and only if £/2 and
i/^ are unifiable. The unifying composition, w, of (ul9.. .,wn) is the most
general unifier of Uj and t/j.

Some examples of unifying compositions [(Sickel (1976) and Chang
and Slagle (1979)] are given in Table 6.1.

Table 6.1
Examples of Unifying Compositions of Substitutions

"1

{A/x)

{x/y}

ίΛΟΑ}

{x/y,x/z}

{*)

{gir)/*)

[f(g{xl))/x3,
f(x2)/x4)

Ug

{B/x}

0-/*}

tf(A)/x}

{Λ/ζ}

{}

W*)/J>i

{x4/x3,g(xl)/x2)

u

inconsistent

(x/y,x/z)

{/(A)/x,A/z)

{A/x,A/y,A/z}

{*}

inconsistent

{J(g(xl))/x3,
f(g(xl))/x4,g(xl)/x2)

208

A FORWARD DEDUCTION SYSTEM

It is not difficult to show that the unifying composition operation is
associative and commutative. Thus, the unifying composition associated
with a solution graph does not depend on the order in which match arcs
were generated while constructing the graph. (Recall that the composition
of substitutions is associative but not commutative.)

It is reasonable to expect that a solution graph must have a set of
consistent match arc substitutions in order for its corresponding clauses
to be ones that can be inferred from the original fact expression and the
rules. Suppose, for example, that we have the fact

P(x)VQ(x)

and the two rules

P(A)=>R(A)

and

Q(B)^R(B).

Application of both of these rules would produce the AND/OR graph
shown in Figure 6.7. Even though this graph contains a solution graph
with literal nodes labeled by R (A) and R(B), this graph has inconsistent
substitutions. Therefore, the clause [R(A) V R(B)] is not one of those
represented by the AND/OR graph shown in Figure 6.7. Of course,
neither could this clause be derived by resolution from the clause form of
the fact and rule wffs.

R(A)

P(A)

[A M

P(x)

R(B)

Q(B)

[B/x]

Q(x)

P(x) V Q(x)

Fig. 6.7 An AND/OR graph with inconsistent substitutions.

209

RULE-BASED DEDUCTION SYSTEMS

The graph of Figure 6.7 does, however, contain a representation for the
clause [R(A) V Q(A)]. It is the clause obtained by applying the
substitution {A/x } (which is the trivial unifying composition of the set
containing the single element {A/x}) to the expression
[R(A) V Q(x)]. This expression, in turn, corresponds to the solution
graph terminating in the literal nodes labeled by R (A) and Q (x).

If the same rule is applied more than once, it is important that each
application use renamed variables. Otherwise, we may needlessly over-
constrain the substitutions.

The AND/OR graph can also be extended by using the goal literals.
When a goal literal, L, unifies with a literal U labeling a literal node, n, of
the graph, we can add a match arc (labeled by the mgu) directed from
node « to a new descendant goal node labeled by L. The same goal literal
can be used a number of times, creating multiple goal nodes, but each use
must employ renamed variables.

The process of extending the AND/OR graph by applying rules or by
using goal literals successfully terminates when a consistent solution
graph is produced having goal nodes for all of its terminal nodes. The
production system has then proved that goal (sub)disjunction obtained
by applying the unifying composition of the final solution graph to the
disjunction of the literals labeling the goal nodes in the solution graph.

We illustrate how this forward production system operates by a simple
example. Suppose we have the following fact and rules:

Fido barks and bites, or Fido is not a dog:

-DOG(FIDO) V [BARKS(FIDO) Λ BITES(FIDO)]

All terriers are dogs:

Rl: ~DOG(x)=> -TERRIER(x)
(We use the contrapositive form of the implication here.)

Anyone who barks is noisy:

R2 : BA RKS (y) => NOISY (y)

210

A FORWARD DEDUCTION SYSTEM

Goal Nodes

-TERRIER(z)

{FIDO I z]

-TERRIER(FIDO)

Rl

~DOG(x)

[FIDOlx]

NOISY(z)

[FIDO/z]

NOISY(FIDO)
i

R2

BARKS{y)

[FIDOly]

BARKS(FIDO) BITES(FIDO)

Fig. 6.8 An AND/OR graph for the "Terrier** problem.

Now suppose we want to prove that there exists someone who is not a
terrier or who is noisy. The goal wff representing the statement to be
proved is:

-TERRIER(z) V NOISY(z) .

Recall that z is an existentially quantified variable.

The AND/OR graph for this problem is shown in Figure 6.8. The goal
nodes are shown by double-boxed expressions, and rule applications are
labeled by the rule numbers. A consistent solution graph within this

211

RULE-BASED DEDUCTION SYSTEMS

AND/OR graph has the substitutions {FIDO/x}, {FIDO/y},
{FIDO/z}. The unifying composition of these substitutions is simply
{ FIDO/x, FIDO/y, FIDO/z}. Applying this unifying composition to
the goal literals used in the solution yields

-TERRIER(FIDO) V NOISY(FIDO),

which is the instance of the goal wff that our system has proved. This
instantiated expression can thus be taken as the answer statement.

There are several extensions that we could make to this simple forward
production system. We have not yet explained how we might achieve
resolutions between components of the fact expressions—sometimes
allowing certain intraf act resolutions is useful (and necessary); nor have
we described how we might proceed in those cases in which a fact
(sub)expression might be needed more than once in the same proof, with
differently named variables in each usage. Of course, there is also the very
important problem of controlling this production system so that it finds
consistent solution graphs efficiently. We postpone further consideration
of these matters until they arise again in the backward system, described
next.

6.2. A BACKWARD DEDUCTION SYSTEM

An important property of logic is the duality between assertions and
goals in theorem-proving systems. We have already seen an instance of
this principle of duality in resolution refutation systems. There the goal
wff was negated, converted to clause form, and added to the clause form
of the assertions. Duality between assertions and goals allows the negated
goal to be treated as if it were an assertion. Resolution refutation systems
apply resolution to the combined set of clauses until the empty clause
(denoting F) is produced.

We could also have described a dual resolution system that operates on
goal expressions. To prepare wffs for such a system, we would first negate
the wff representing the assertions, convert this negated wff to the dual of
clause form (namely, a disjunction of conjunctions of literals), and add
these clauses to the dual clause form of the goal wff. Such a system would
then apply a dual version of resolution until the empty clause (now
denoting T) was produced.

212

A BACKWARD DEDUCTION SYSTEM

We can also imagine mixed systems in which three different forms of
resolution are used, namely, resolution between assertions, resolution
between goal expressions, and resolution between an assertion and a
goal. The forward system described in the last section might be regarded
as one of these mixed systems because it involved matching a fact literal
in the AND/OR graph with a goal literal. The backward production
system, described next, is also a mixed system that, in some respects, is
dual to the forward system just described. Its operation involves the same
sort of representations and mechanisms that were used in the forward
system.

6.2.1. GOAL EXPRESSIONS IN AND/OR FORM

Our backward system is able to deal with goal expressions of arbitrary
form. We first convert the goal wffto AND/OR form by the same sort of
process used to convert a fact expression. We eliminate =Φ symbols, move
negation symbols in, Skolemize universal variables, and drop existential
quantifiers. Variables remaining in the AND/OR form of a goal
expression have assumed existential quantification.

For example, the goal expression:

(3y)(Vx){P(x)^>[Q(x,y) Λ ~[R(x) Λ S(y)]]}

is converted to

~P(f(y)) v {Q(f(y),y) Λ [~*(/Ό0) v ~S00]} ,

wheref(y) is a Skolem function.

Standardizing variables apart in the (main) disjuncts of the goal yields:

~P(f(z)) V { Q(f(y),y) A [~R(f(y)) V ~S(y)]} .

(Note that the variable y cannot be renamed within the disjunctive
subexpression to give each disjunct there a different variable.)

Goal wffs in AND/OR form can be represented as AND/OR graphs.
But with goal expressions, A>connectors in these graphs are used to
separate conjunctively related subexpressions. The AND/OR graph
representation for the example goal wff used above is shown in Figure

213

RULE-BASED DEDUCTION SYSTEMS

~P(f(z))V {Q(f(y)y)A[-R{f(y)) V ~S(y)}}

Fig. 6.9 An AND /OR graph representation of a goal wff.

6.9. The leaf nodes of this graph are labeled by the literals of the goal
expression. In AND/OR goal graphs, we call any descendant of the root
node, a subgoal node. The expressions labeling such descendant nodes
are called subgoals.

The set of clauses in the clause form representation of this goal wff can
be read from the set of solution graphs terminating in leaf nodes:

~P(f(z))

Q(f(y),y)A~S(y)

Goal clauses are conjunctions of literals and the disjunction of these
clauses is the clause form of the goal wff.

6.2.2. APPLYING RULES IN THE BACKWARD SYSTEM

The B-rules for this system are based on assertional implications. They
are assertions just as were the F-rules of the forward system. Now,
however, we restrict these B-rules to expressions of the form

W=$L,

214

A BACKWARD DEDUCTION SYSTEM

where W is any wff (assumed to be in AND/OR form), L is a literal, and
the scope of quantification of any variables in the implication is the entire
implication. [Again, restricting B-rules to implications of this form
simplifies matching and does not cause important practical difficulties.
Also, an implication such as W =Φ {LI Λ L2) can be converted to the
two rules W^> LI and W^> L2.]

Such a B-rule is applicable to an AND/OR graph representing a goal
wff if that graph contains a literal node labeled by U that unifies with L.
The result of applying the rule is to add a match arc from the node
labeled by U to a new descendant node labeled by L. This new node is
the root node of the AND/OR graph representation of Wu where u is the
mgu of L and ΖΛ This mgu labels the match arc in the transformed graph.

Our explanation of the appropriateness of this operation is dual to the
explanation for applying an F-rule to a fact AND/OR graph. The
assertional rule W=5> L can be negated and added (disjunctively) to the
goal wff. The negated form is (WΛ ~L). Performing all (goal)
resolutions on L between the clauses deriving from (W Λ ~ L) and the
goal wff clauses produces a set of resolvents that are identical to clauses
included among those associated with the consistent solution graphs of
the transformed AND/OR graph.

6.23. THE TERMINATION CONDITION

The fact expressions used by our backward system are limited to those
in the form of a conjunction of literals. Such expressions can be
represented as a set of literals. Analogous to the forward system, when a
fact literal matches a literal labeling a literal node of the graph, a
corresponding descendant fact node can be added to the graph. This fact
node is linked to the matching subgoal literal node by a match arc labeled
by the mgu. The same fact literal can be used a multiple number of times
(with different variables in each use) to create multiple fact nodes.

The condition for successful termination for our backward system is
that the AND/OR graph contain a consistent solution graph terminating
in fact nodes. Again, a consistent solution graph is one in which the match
arc substitutions have a unifying composition.

Let us consider a simple example of how the backward system works.

215

RULE-BASED DEDUCTION SYSTEMS

CAT(x)

■J

[x/x5

CAT{x5)

\
R5

MEOWS(x)

<
[MYi

ì

RTL

MEOWS{MYRTLE)

Fig. 6.10 A consistent solution graph for a backward system.

216

A BACKWARD DEDUCTION SYSTEM

Let the facts be:

Fl: DOG(FIDO)
F2: -BARKS(FIDO)
F3: WAGS-TAIL(FIDO)
F4: MEOWS(MYRTLE)

and let us use the following rules:

RI: [WAGS-TAIL(xl) A DOG(xl)]=> FRIENDLY(xl)
R2: [FRIENDLY(x2) A ~BARKS(x2)]

=>~AFRAID (y2,x2)
R3: DOG(x3)^>ANIMAL(x3)
R4: CAT(x4)=ïANIMAL(x4)
R5: MEOWS(x5)^>CAT(x5)

Suppose we want to ask if there are a cat and a dog such that the cat is
unafraid of the dog. The goal expression is:

(3x)(3y)[CAT(x) A DOG(y) A ~AFRAID(x,y)].

We show a consistent solution graph for this problem in Figure 6.10.
The fact nodes are shown double-boxed, and rule applications are
labeled by the rule number. To verify the consistency of this solution
graph, we compute the unifying composition of all of the substitutions
labeling the match arcs in the solution graph. For Figure 6.10, we must
compute the unifying composition of ({x/x5}, {MYRTLE/x}9
{FIDO/y}, {x/y2, y/x2], {FIDO/y}, {y/xl}9 {FIDO/y}9
{FIDO/y}). The result is {MYRTLE:/x59 MYRTLE/x, FIDO/y,
MYRTLEi>y2, FIDO/x2, FIDO/xl}. This unifying composition ap
plied to the goal expression yields the answer statement

[CAT(MYRTLE) A DOG(FIDO)
A -AFRAID(MYRTLE,FIDO)] .

6.2.4. CONTROL STRATEGIES FOR DEDUCTION SYSTEMS

Various techniques can be used to control the search for a consistent
solution graph. We describe some of these as they might apply to a
backward system; the same ideas can also be used with forward systems.
The control strategy for our backward deduction system might attempt to
find a consistent solution graph by first finding any solution graph and

217

RULE-BASED DEDUCTION SYSTEMS

then checking it for consistency. If this candidate graph is not consistent,
the search must continue until a consistent one is found.

A more sophisticated strategy would involve checking for consistency
as the partial, candidate solution graphs are being developed (that is,
before a complete candidate solution is found). Sometimes inconsisten
cies are revealed early in the process of developing a partial solution
graph; these inconsistent partial solution graphs can be immediately
ruled out, thus reducing the amount of search effort.

Consider the following example. Suppose that we want to prove the
goal P(x) Λ Q (x) and that the facts include R (A) and Q (A). Suppose
that the rules include

Rl: R{y)=>P{y)

R2: S(z)^>P(B)

Now, at a certain stage, the backward system might have produced the
AND/OR graph shown in Figure 6.11. There are two partial candidate
solution graphs in Figure 6.11. One has the substitutions ({x/y},
{A/x}), and the other has the substitutions ({B/x} , {A/x}). The latter
is inconsistent. Furthermore, if ß(^4) is the only match for the subgoal
Q (x), we can see that rule R2 could not possibly be a part of any solution.
Thus, detecting inconsistencies early in the search process can lead to
opportunities for pruning the AND/OR graph. In our example, we do
not need to generate subgoals of S(z).

P(x) A Q(x)

Piy) P{B)

RL R2

PW I I Q(x)

Q(A)

R(x) S(z)

Fig. 6.11 An AND/OR graph with inconsistent substitutions.

218

A BACKWARD DEDUCTION SYSTEM

Pruning operations that result from consistency checks among
different levels of the graph are also possible. Consider the following
example. Suppose the rules include:

Rl
R2
R3
R4
R5

[ß(u)AÄ(v)]=>P(«,v)
W(y)^R(y)
S(w)^>R(w)
i/(z)=>S(C)
V(A)^Q(A)

Now, in attempting to deduce the goal P(x,x), we might produce the
AND/OR graph shown in Figure 6.12. Note that rules R4 and R5 are in
the same partial candidate solution graph and that their associated
substitutions, namely, {A/x } and { C/x }, are inconsistent. If rule R5 is
the only possible match for subgoal Q (x), this inconsistency would allow
us to prune the subgoal U(z) from the graph. Solving U(z) cannot
contribute to a consistent solution graph. Notice, however, that subgoal
S(x) can be left in the graph; it might still permit the substitution
{A/x}. The general rule is that a match need not be attempted if it is
inconsistent with the match substitutions in all other partial solution
graphs containing it.

Another control strategy for backward, rule-based deduction systems
involves building a structure called a rule connection graph. In this
method, we precompute all possible matches among the rules and store
the resulting substitutions. This precomputation is performed before
solving any specific problems with the rules; the results are potentially
useful in all problems so long as the set of rules is not changed. Such a
process is, of course, only practical for rule sets that are not too large.

We show, in Figure 6.13, an example rule connection graph for the
rules of our earlier "cat and dog" example. The graph is constructed by
writing down each rule in AND/OR graph form and then connecting
(with match arcs) literals in rule antecedents to all matching rule
consequents. The match arcs are then labeled by the mgus.

When an actual problem is to be solved, we can connect the AND/OR
goal graph and fact nodes to the rule connection graph by connecting the
goal literal nodes to all matching rule consequents, and by connecting
fact nodes to all matching literals in the rule antecedents. This enlarged
connection graph can next be scanned to find candidate solution graphs
within it. Once a candidate is found, we attempt to compute the unifying

219

RULE-BASED DEDUCTION SYSTEMS

Q(x)

1 1 [A/x]

Q(A)

\V(A)

P(x,x)

{x/u,x/v}
<>

P(u.v)

i? 1
t\l

R(x)

l*/yJX^<^M
R(y) R(w)

J~RJ

Six)

[c/x] 11

S(Q

J/W
U(z)

Fig. 6.12 Another AND /OR graph with inconsistent substitutions.

composition of the substitutions involved in this graph. If such a unifying
composition exists, we have a consistent AND/OR solution graph and,
thus, a solution. Otherwise, we must look for another candidate solution
graph within the connection graph.

Using connection graphs of this sort, we are really producing
AND/OR graphs largely from precomputed structure. There is one
important complication, however, that we have not yet mentioned: We
might need to use the same rule in the rule connection graph more than
once in a candidate solution graph. Each time it is used, it must have
differently named variables. These differently named variables must then
also occur in the substitutions copied over to the candidate solution
graph.

Let us consider a specific example. Suppose we have the rule
P(x)=$ P(f(x)) and the fact P(A). Suppose we want to prove the goal
P(f(f(A))). The rule connection graph for this problem is shown in
Figure 6.14. Here we use an (unlabeled) match arc between the rule's
consequent and antecedent to remind us that a new instance of the rule

220

A BACKWARD DEDUCTION SYSTEM

ANIMAL(x3)

R3

D0G(x3)

ANIMAL(x4)

\
R4

\

CAT(x4)

>>
[x4lx5]

V

CAT(x5)

R5
\

MEOW S{x 5)

Fig. 6.13 A rule connection graph.

can have its consequent match the original antecedent, and so on. When
the goal and fact nodes are connected, we have the graph shown in Figure
6.15. Scanning this connection graph for candidate solution graphs can
produce the one shown in Figure 6.16. This graph uses the same rule
twice (going around a loop in the rule connection graph), and, thus, the
variables occurring in the rule and in the associated substitutions must be
renamed. The substitutions in the solution graph have the unifying
composition {f(A)/JC, A/y).

221

RULE-BASED DEDUCTION SYSTEMS

ά^
P(fW)

P(x)

P(f(f(A)))

[f(A)/x]
^

P(f(x))

Fig. 6.14 Another rule connection graph.

P(x)

P(A)

Fig. 6.15 A connection graph.

P(f(f(A)))

if(A)/x)

PtfM)

P(f{A))

[A/y]
o

WOO)

P(A)

P(A)

Fig. 6.16 A candidate solution graph.

222

A BACKWARD DEDUCTION SYSTEM

6.2.5. EXAMPLES OF BACKWARD, RULE-BASED
DEDUCTION SYSTEMS

To give a more concrete idea of the use of rule-based deduction
systems in AI, we next describe some example systems. Each is
illustrative only; practical versions of these systems would of course be
much larger and need many additional features. It is interesting to note,
however, that there are many important applications that can be attacked
even with the restrictions we have imposed so far on the allowed forms
for rules and facts in backward systems.

6.2.5.1. An Information Retrieval System. Let us imagine that our set
of facts contains personnel data for a business organization and that we
want an automatic system to answer various questions about personnel
matters. A highly simplified example system might have facts such as the
following :

MANAGER (P-D,JOHN-JONES)
John Jones is the manager of the Purchasing Dept.

WORKS-IN(P-D, JOE-SMITH)
Joe Smith works in the Purchasing Department.

WORKS-IN(P-D,SALLY-JONES)

WORKS-IN (P-D, PETE-S W A N S O N)

MANAGER(S-D,HARRY-TURNER)
Harry Turner is the manager of the Sales Department.

WORKS-IN (S - D , MAR Y-JONES)

WORKS-IN (S - D , BILL- W H I T E)

MARRIED (JOHN-JONES,MAR Y-JONES)

In order to provide certain commonsense information about personnel
concepts and to allow the set of facts to be kept concise, we might have
the following rules:

223

RULE-BASED DEDUCTION SYSTEMS

Rl : MA NA GER (x9y)^> WORKS-IN (x,y)

R2: [WORKS-IN(χ,γ) Λ MANAGER(x.z)]
^>BOSS-OF(y,z)

(A more precise formulation might also state that a
person cannot be his own boss.)

R3 : [WORKS-IN (x9y) Λ WORKS-IN (x,z)]
^~MARRIED(y,z)

(Company policy does not allow married couples
to work in the same department.)

R4: MARRIED(y,z)^> MARRIED(z,y)
(Marriage is symmetrical. A more precise formulation
might also state that persons cannot be married to
themselves.)

R5: [MARRIED(x,y) A WORKS-IN(P-D,x)]
=> INSURED-BY(x9EAGLE-CORP)

(All married employees of the Purchasing
Department are insured by the Eagle Corporation.)

With these facts and rules, a simple backward production system can
answer a variety of questions. For these examples, we assume that the
control strategy guides the generation of the AND/OR graph by
pursuing a depth-first search for a consistent solution graph. In selecting
a literal node within a partial solution graph to match against a B-rule
consequent or fact, we assume that a look-ahead process selects that
subgoal literal which has the fewest consistent matches.

Those queries that can be answered without using rules are handled
most simply. We show some example solution graphs in Figure 6.17. The
solution graph is shown in such a way that a depth-first, left-to-right
ordering of the literal nodes in the graph corresponds to the actual order
in which the control regime found matches for these literals. The
double-boxed nodes are fact nodes. In the second example, MAR
RIED (y,x) has the fewest potential matches, so it is matched first. If we
apply the unifying composition of the substitutions occurring in the
solution graph to the query, we obtain the answer

WORKS-IN (SD, MAR Y-JONES)
A MARRIED (JOHN-JONES, MARY-JONES).

224

A BACKWARD DEDUCTION SYSTEM

Name someone who works in the Purchasing Department.

WORKS-IN(P-D,x)

[JOE-SMITH/x]

WORKS-IN{P-D JOE-SMITH)

Name someone who is married and works in the Sales Department.

[JOHN-JONES/y,
MARY-JONES/x]

Ü
MARRIED{JOHN-JONES,MAR Y-JONES)

[MARY-JONES/x]

O

WORKS-IN(S-D,MAR Y-JONES)

Fig. 6.17 Some simple queries that can be matched directly by facts.

225

RULE-BASED DEDUCTION SYSTEMS

Now let us try some more complex queries, ones that require using
rules to answer. We show, in Figure 6.18, the solution graph for the query
"Who is Joe Smith's Boss?"

The only rule that can be applied at the beginning is rule R2. Of the
resulting new literal nodes, MANAGER(xl9zl) has the fewest possible
matches, so it is matched first. Matching this subgoal against MAN-
AGER(S-D, HARRY-TURNER) cannot lead to a consistent solution
graph, so ultimately the control process would have returned to try the
match shown in Figure 6.18. (Notice that we have renamed the variables
in rule R2 so that they are standardized apart from the goal wff.) After a
solution is obtained, we can apply the unifying composition of the
substitutions to the query to obtain the answer BOSS-OF(JOE-
SMITH, JOHN-JO NE S).

As a more complex example, consider the request "Name someone
insured by the Eagle Corporation." We show the solution graph for this
query in Figure 6.19. The MARRIED(x,y1) subgoal component is
solved first, and then the rule Rl is applied to WORKS-IN (P-D, x) to set
up the solution of the other subgoal component. Applying the unifying
composition to the query produces the answer INSURED-BY(JOHN-
JONES, E A GLE-CORP).

[P-D/x l,JOHN-JONES/zl]

MANAGER(xl,zl) WORKS-IN(xl JOE-SMITH)

MAN A GER(P-D JOHN-JONES)

[P-D/xl]

WORKS-IN(P-DJOE-SMITH)

Fig. 6.18 The solution graph for "Who is Joe Smith's boss?"

226

A BACKWARD DEDUCTION SYSTEM

Suppose we wanted to ask "Is John Jones married to Sally Jones?" The
system might first try to prove MARRIED (JOHN-JONES, SALLY-
JONES). No matches with facts are possible, and the subgoal obtained
by using rule R4 doesn't help either. When no proof can be found, it is
reasonable to attempt to prove the negation of the query. The solution
graph for the negated goal is shown in Figure 6.20.

We can also use this example to illustrate how additional knowledge
and capabilities can be added without extensive changes to the system.
Suppose, for example, that we want to refine rule R5 by introducing the
notion of a temporary employee. The new rule, R5\ is:

R5': [MARRIED(x,y) f\WORKS-IN(P-D,x)
A -TEMPORARY (x)]

=> INSURED-BY(x,EAGLE-CORP)

{JOHN-JONES/x,
MARY-JONES/yl] [P-D/x2,x/y2]

MARRIED(JOHN-JONES,MAR Y-JONES) WORKS-IN(x2,y2)

Rl

MANAGER(P-D,x)

{JOHN-JONES/x

O
M AN A GER(P-DJOHN-JONES)

Fig. 6.19 The solution graph for "Name someone insured by the Eagle Corporation.

227

RULE-BASED DEDUCTION SYSTEMS

Now we must add to our set of facts the information about whether the
employees are temporary or not. We might also have an additional
definitional rule:

R6: PERMANENT(x)^ -TEMPORARY(x).

Additional facts might now include:

PERMANENT(JOHN-JONES)

TEMPORARY(SALLY-JONES)

The new rules and facts have little influence on the way in which
previous queries are answered. As new rules are added to a deduction
system, it is important, however, to check to see that they do not conflict
with older rules. For example, suppose we were to add the rule:

~MARRIED{JOHN-JONES,SALL Y-JONES)

[JOHN-JONES/yl,SALL Y-JONES/zl]

Fig. 6.20 The solution graph for "John Jones is Not Married to Sally Jones. '

228

A BACKWARD DEDUCTION SYSTEM

R7\ PREV-EMP(x,G-TEK)
=> INSURED-BY(x,METRO-CORP)

(Anyone previously employed by G-TEK is
insured by Metro Corporation.)

We would also add facts about the previous employment of employees.
With these additions it now might be possible to derive conflicting
INSURED-BYs. Resolution of such conflicts can usually be obtained by
making the antecedents of the rules more precise.

One desirable feature involves meta-rules like "If the database does not
say explicitly that an employee is temporary, then that employee is
permanent." This rule makes a statement that refers to databases in
addition to employees! To use rules like this, our system would need a
linguistic expression that denoted its own database. Additionally, it
would be desirable to have the appropriate attachments between these
expressions and the computer code comprising the database. Such
considerations, however, would involve us in interesting complexities
slightly beyond the scope of this book. [But see Weyhrauch (1980).]

6.2.5.2. A System For Reasoning About Inequalities. Now let us turn
our attention to some simple mathematics. We can use a system that
reasons about inequalities to illustrate some additional points. This
system will be able to show, for example, that if C > E > 0 and if
B > A > 0, then [B(A + C)/E] > B. To simplify our present discus
sion we allow only one predicate, G. The intended meaning of G(x,y) is
that x is greater than y. (Sometimes we use the more familar infix
notation x > y.) In this system we do not deal with equal or "less-than"
relations, so we specifically exclude the negation of G.

The present system is not able to perform arithmetic operations, but it
is able to represent their results by functional expressions. For addition
and multiplication we use the expressions plus and times. Each of these
takes as its single argument a bag, that is, an unordered group of
elements. Thus, plus (3,4,3) is the same as plus (4,3,3), for example. (Most
importantly, the two expressions are unifiable because they are regarded
as the same expression.) We let the functions "divides" and "subtracts"
have two arguments because their order is important. We represent x/y
by divides(x,y), and x— y by subtracts (x,y).

Using this notation, a typical expression might be G[di
vides (times (B,plus (A, C)),E),B] which is more familiarly represented

229

RULE-BASED DEDUCTION SYSTEMS

as [B(A + C)/E] > B. The reason that we are using the more cumber
some prefix notation is to avoid possible sources of confusion when
unifying terms. After one example of a deduction using prefix notation
we revert to the more familiar infix convention.

Our system uses rules that express certain properties of inequalities.
We begin with the following set of rules:

Rl: [G(xfi) A G(y,0)]^> G(times(x,y\0)
that is, [(JC > 0) Λ (y > 0)] => (xy > 0)

R2\ [G (J C , 0) A G(y,z)] => G(plus(x9y),z)
that is, [(JC > 0) Λ (y > z)] =Φ [(JC + y) > z]

R3: [G (J C , W) A G(y,z)]=> G(plus(x,y),plus(w,z))
that is, [(JC > w) A (y > Z)] = > [(J C + y) > (w + z)]

R4\ [G (J C , 0) A G(j>,z)]=> G(times(x,y\times(x,z))
that is, [(JC > 0) Λ (y > z)] => (jcy > JCZ)

Ä5: [G(l ,w) Λ G(jc,0)]^>G(jc,/z>n^(jc,w))
that is, [(1 > w) A (JC > 0)] => (Λ: > jew)

R6 : G (x,plus (//mes (w, z), f/mey (j , z)))
=Φ G (x, times (plus (u>, j), z))

that is, [x > (wz - h ^ z ^ ^ I j c > (w + y)z]

R7: [G(JC, tf/wes(w,y)) Λ G(j,0)] => G(rfivW«(x,y), w)
that is, [(JC > wy) A (y > 0)] ^> [(jc/y) > w l

These, of course, are not the only rules that would be useful; in fact, we
shall introduce more later. Our system uses these rules as B-rules only.
Various control strategies might be used, but since the AND/OR graphs
resulting from applying these rules are all relatively small, we present the
entire graphs in our examples.

Our first problem is to prove [B(A + C)]/E > B from the following
facts: E > 0, B > 0, A > 0, C > E, and C > 0. The AND/OR graph for
this problem is shown in Figure 6.21. The solution graph is indicated by
heavy branches, and facts that match (sub)goals are drawn in double
boxes. We note that rule R2 is used twice with different substitutions, but
one of these applications leads to an unsolvable subgoal.

230

A BACKWARD DEDUCTION SYSTEM

Examining the facts supporting this proof, we note some redundancy
that could have been avoided by use of the transitive property of G. That
is, from C > E and E > 0, we ought to be able to derive C > 0 when
needed, instead of having to represent it explicitly as a fact. Such a
derivation could be made from a transitivity rule:

R8: [(x>y)A(y>z)]^(x>z) .

G(divides(times(B,plus(A,C)),E),B)

1 I [times(B,plus(A,C))/xl,

^ r E/yI,B/wl]

G(divides(xl,yl),wl)

G(times(B,plus(A,C)),times(B,E))

^

[B/x2,plus(A,C

G(times(x2,y2),times(x2,z2))

G(B,0)

I
G(B,0)

R4 ^

{A lx 5,C/y5,E/z5]

R7 ^ V .

)ly2,E/z2]

G(plus(A,C),E) s
G(plus(x5,y5),z5]

/
1 G(A,0)

^ i_
1 GO4,0)|

R2

^

\
G(C.E)

l̂
1 Ie

V
| G (C , £ -) | [c

G(E,0)

Ϊ
G(E,0)

^[C/x6tA/y6tE/z6]

G(plus(x6,y6),z6)

/
KC.O)

V

r(C0) |

R2
\

G(A,E)

no
successors

Fig. 6.21 The AND/OR graph for an inequality problem.

231

RULE-BASED DEDUCTION SYSTEMS

Comparing R8 with the other rules, we note that its use is relatively
unconstrained; it contains too many variables unencumbered by func
tions. Thus, it can participate in too many matches and will tend to get
applied too often. Used as a B-rule, the consequent of R8, namely,
G(x,z), matches any subgoal produced by our system. Clearly, we don't
want to use transitivity at every step.

Fortunately, there are ways to structure data so that special relations
like transitivity can be implicitly encoded in the structure. For example, if
the facts expressing an ordering relation are stored as nodes in a
lattice-like structure, the desired consequences of transitivity (of the
ordering) result automatically from simple computations on the lattice.
These computations can be viewed as procedural attachments to the
predicate denoting the ordering relation.

Let us consider a more difficult proof. From B > 1, 1 > A, A > 0,
C > Z), and D > 0, prove:

(3u)[(Au + Bu)>D].

Also, from among the constants named in the facts, we would like an
example of the u that satisfies the theorem.

Let us assume that the facts are stored in a lattice-like structure that
makes the following derived facts readily évaluable: B > A, B > 0,
1 > 0, and C > 0. In the following example, we assume that any of these
facts can be used as needed.

The system first attempts to apply B-rules to the main goal. Only rule
R2 is applicable, but there are two alternative substitutions that can be
used. For brevity, let's follow the derivation along just one of them. (The
other one leads very quickly to some unsolvable subgoals, as the reader
might want to verify for himself.)

Using just the rules Rl through R7, our system would generate the
AND/OR graph shown in Figure 6.22. Note the subgoal (Bu > D)
marked by an asterisk (*). No rules are applicable to this goal, so our
present system would fail on this problem. What can be done to extend
the power of the system?

Here again we see an example in which the power of a production
system can be extended in an evolutionary manner without extensive
redesign. We can add the following rule to our system:

232

A BACKWARD DEDUCTION SYSTEM

R9: [{y> 1) Λ (x > z)] => (jcy > z) .

This rule is applicable to the goal (Bu> D\ and its presence does not
otherwise greatly diminish the efficiency of the system. [The reader may
want to investigate the effect of R9 on the AND/OR graph of Figure
6.21. Its presence allows some additional—but ultimately fu
tile—matches to the subgoal G (times (B, plus (A, C)), times (B, E))].

In Figure 6.23, we show the AND/OR graph produced by rule
applications below Bu > D. Note that there are two 2-connectors below
the top node. The left-hand one is futile, but the right-hand one is
successful, with C substituted for u. We note that in Figure 6.22 the
substitution { C/u } is one of the ones permitted under the goal u > 0.
Thus our proof is complete, and a value oft/ that satisfies the theorem is
u = C.

(Au+Bu)>D

{Au/x,Bu/y,D/z) [Bu/xl,Au/yl.D/zl]

(x+y)>z (xl+yl)>zl

R2 R2

Au>0

{A/x2,u/y2}

Bu>D Bu>0 Au>D

[u/x3,A/yS}

x2y2 > 0 x3y3 > 0

Fig. 6.22 A partial solution graph.

233

RULE-BASED DEDUCTION SYSTEMS

{B/x,u/y,D/z} {B/yl,u/xl,D/zl}

[Blu] [C/u]

Fig. 6.23 Subgoals produced by the new rule.

Some additional extensions to our inequality reasoning system would
increase its power further. One of the facts provided in our last example
was (1 > 0). We should not have to represent all possible inequalities
between numbers as facts. What is needed is an attachment to a
"greater-than" computation that would allow evaluation of ground
instances of G literals. There should also be attachments to arithmetic
programs so that G(\0,A) could be substituted for G (plus (3,7), A) , for
example. A means should be provided to simplify algebraic expressions
and to handle equality predicates. Some of the mechanisms for efficiently
implementing improvements such as these depend on techniques to be
discussed at the end of this chapter.

6.3. "RESOLVING" WITHIN AND/OR GRAPHS

The backward system we have described is not able to prove valid or
tautological goal expressions such a s ^ P V P) unless it can prove ~P
or P separately. Neither can the forward system recognize contradictory
fact expressions such as (~P Λ P). In order for these systems to
overcome these deficiencies, they must be able to perform intragoal or
intrafact inferences.

234

"RESOLVING" WITHIN AND/OR GRAPHS

Let us describe how certain intragoal inferences might be performed.
Consider, for example, the following expressions used by a backward
system:

Goal

[P(*,y)VQ(x,y)]A V(x,y)

Rules

Rl: [R(v)AS(u,B)]^>P(u,v)

R2: [~S(A,s)A W(r)] => Q(r,s)

Facts

R(B)A W{B)A V(A,B)A V(B,B)

After rules Rl and R2 have been applied, we have the AND/OR graph
shown in Figure 6.24. This graph has two complementary literals whose
predicates unify with mgu {A/x, B/y). We indicate this match in Figure
6.24 by an edge between the nodes representing the complementary
literals. The edge is labeled by the mgu. The (goal) clause form of the
expressions represented by this AND/OR graph include the clauses:

V(x,y)AR(y)AS(x,B)

and

V(x,y) A W(x) A ~S(A,y).

If we were to perform a goal resolution (on S) between these two clauses
(after standardizing variables apart), we would obtain the (goal) resol
vent:

V(A9y)AR(y)A V(t,B) A W{t) .

We mentioned at the beginning of this chapter that the AND/OR
graph representation for an expression is slightly less general than clause
form because variables in the AND/OR graph cannot be fully standard
ized apart. This constraint makes it difficult to represent, with full
generality, the expressions that can be obtained by resolving goal
subexpressions.

235

RULE-BASED DEDUCTION SYSTEMS

Fig. 6.24 An AND/OR graph with complementary literal nodes.

One way to represent a resolution operation performed between two
goal clauses is to connect a literal in one partial solution graph with a
complementary literal in another (as we have done in Figure 6.24). We
take this connected structure to represent the clauses composed of the
literal nodes in the pairs of all solution graphs (terminating in literal
nodes) thus joined. We associate with a paired solution graph a
substitution that is the unifying composition of the substitutions in each
member of the pair plus the substitution associated with the match
between the complementary literals. The substitution associated with a
paired solution graph (terminating in literal nodes) is applied to its
terminating literal nodes to obtain the clause that it represents.

Thus, the structure of Figure 6.24 includes a representation for the
clause:

R(B)A W{A)/\ V(A,B).

This clause is not as general as the one we obtained earlier by goal
resolution between goal clauses whose variables had been standardized
apart, and this restricted generality can prevent us from finding certain

236

"RESOLVING" WITHIN AND/OR GRAPHS

proofs. (The expression [R (B) A W{A) Λ V(A,B)] cannot be proved
from the facts that we have given, whereas the expression
[V(A,y) A R(y) A V(t,B) Λ W(t)] can.) We might say that this
operation, of matching complementary pairs of literals in AND/OR goal
graphs, is a restricted goal resolution (RGR).

To use RGR in a backward production system, we must modify the
termination criterion. We can assume, for the purposes of finding
candidate solution graphs, that literals joined by an RGR match edge are
terminal nodes. A pair of partial solution graphs thus joined constitutes a
candidate solution if all of its other leaf nodes are terminal (that is, if they
are either goal nodes or if they participate in other RGR matches). Such a
candidate solution graph is a final solution graph if its associated
substitution is consistent.

In our example, matching the remaining nonterminal leaf nodes of
Figure 6.24 with facts fails to produce a consistent solution graph because
the solution of this problem requires more generality than can be
obtained by applying RGR to the AND/OR graph representation of the
goal expression. The required generality can be obtained in this case by
multiplying out the goal expression into clauses and standardizing the
variables apart between the two clauses, producing the expression:

[P(xl,yl) A V(xl,yl)] V [Q(x2,y2) A V(x2,y2)] .

Now this expression can be represented as an AND/OR graph, and rules
and RGR can be applied to produce the consistent solution graph shown
in Figure 6.25. The unifying composition associated with this solution
includes the substitution {B/yl,A/xl,B/x2,B/y2). Applying this sub
stitution to the root node of the graph yields the answer statement:

[P(A9B)] A V(A,B)] V[Q(B,B) A V(B,B)] .

To avoid conflicting substitutions when using RGR, it is sometimes
necessary to multiply out part or all of the goal expression into clause
form. A reasonable strategy for deduction systems of this type might be
to attempt first to find a proof using the original goal expression. If this
attempt fails, the system can convert (part of) the goal expression to
clause form, standardize variables, and try again. In the example above,
we had to multiply out the entire goal expression into clause form in order
to find a proof. In general, it suffices to multiply out just that subexpres
sion of the goal that contains all of the occurrences of the variables that

237

oo

[P
{x

l,y
l)

A
V(

xl
,y

J)
]

V
 [

Q
(x

2,
y2

)
A

V(
x2

,y
2)

]

P{
xl

,y
l)A

V{
xl

,y
l)

Q
(x

2,
y2

)
A

V{
x2

,y
2)

P(
xl

,y
l)

{x
llu

,y
l/v

}
[A

/x
J.

B/
yl

] V{
xl

,y
l)\

\Q

(x
2,

y2
)

<J
r

{x
2/

r,y
2/

s}

V(
A,

B)

S(
xl

.B
)

Q
(r

,s)

\R
2

w

~S
(A

.v
2)

\

{A
/x

l,B
/y

2}

Fi
g.

 6
.2

5
A

so
lu

tio
n

gr
ap

h
us

in
g

RG
R.

V(
x2

,y
2)

[B
/x

2,
B/

y2
]

7*

r w

03
 w

a a w

a n H
 δ z < H

W

C/
3

"RESOLVING" WITHIN AND/OR GRAPHS

need renaming. These variables are those for which substitution incon
sistencies were detected in the first proof attempt. Comparing Figure 6.24
and Figure 6.25 reveals that the second proof attempt can be guided by
the structure of the first.

We can sometimes avoid multiplying out into clause form by using
conditional substitutions. The idea of conditional substitutions is impor
tant in program synthesis applications. A conditional substitution is one
that contains a conditional expression. The conditions that we use in
conditional substitutions are ones based on a complementary pair of
unifiable literals in alternative partial solution graphs. For example, in
Figure 6.24, the literals S (x, B) and ~ S (A ,y) are in two different partial
solution graphs and their predicates unify with mgu {A/x9B/y}.
Applying this mgu to S(x,B) yields S(A,B); applying it to ~S(A9y)
yields ~S(A,B). We could match the node labeled by S(x,B) with a
fact node if S (Α,Β) had value T. In a sense, the conditional substitution
((if S(A,B), thcnA/x)} unifies S(x,B) with T. Also, the conditional
substitution ((if ~ S(A,B), then B/y)} unifies ~ S(A,y) with T.

Using these two substitutions permits us to find the two consistent
solution graphs shown in Figure 6.26. The unifying composition of the
substitutions in the graph on the left includes the substitution ((if
S(A,B\A/x,B/y)}. The unifying composition of the substitutions in
the graph on the right includes the substitution ((if
~S(A,B),B/y,B/x)}. Since either S(A,B) or ~S(A,B) must be true,
we can combine these two solutions into one, with the unifying
composition {B/y, (if S(A,B), A/x; else B/x)}. Such a substitution
might well provide a useful answer statement to associate with the goal
wff if S (A, B) is a literal that can be evaluated by the user at the time the
answer is needed.

Dual processes could be described for restricted resolutions within
AND/OR graphs representing facts, but we omit an explicit description
because we do not usually expect to encounter contradictions among the
facts of an AI system. (Tautologies among goals or subgoals is more
common.)

In the next section, we show how we can make use of the version of
RGR using conditional expressions in systems that synthesize computer
programs. First, though, we describe an alternative method for dealing
with implicational goal wffs. Ordinarily we convert a goal wff of the form
P1^>P2 to its AND/OR form (~PI V P2). Suppose, for simplicity,

239

RULE-BASED DEDUCTION SYSTEMS

{Β/χ,Β/y}

I R(B) 1 T T W(B)

Fig. 6.26 Two solution graphs with conditional substitutions.

that PI is a literal. If the system then generates some subgoal of P2 that
contains the literal PI, it can use RGR between ~P1 and PL

An alternative treatment of a goal of the form PI => P2 involves
converting this goal to the subgoal P2 while adding PI to the set of facts
that can be used in proving P2 or its subgoals. Then, if the system
generates PI as a subgoal of P2, this subgoal can be matched against the
assumed fact PL

The process of converting goal antecedents to assumed facts can be
applied repeatedly so long as the subgoals contain implications, but the
system must maintain a separate set of assumed facts for each subgoal

240

COMPUTATION DEDUCTIONS AND PROGRAM SYNTHESIS

that is created in this manner. Also, the goal antecedents must be in the
form of a conjunction of literals, because we are still restricted to fact
expressions ofthat form.

The logical justification for treating an implicational goal in this
manner rests on the deduction theorem of logic, which states that if W2
logically follows from Wl, then Wl => W2 is valid. We have occasion to
use this method in one of the examples in the next section.

6.4. COMPUTATION DEDUCTIONS AND
PROGRAM SYNTHESIS

We next show how backward, rule-based deduction systems can be
used for performing computations and for synthesizing certain kinds of
computer programs. For such applications, we use a predicate calculus
expression to denote the relationship between the input and output of the
computation or of the program to be synthesized. For example, suppose
the input to a program is denoted by the variable "x," and the output is
denoted by the variable " j . " Now suppose that we want to synthesize a
program such that the relationship P holds between input and output.
We can state the synthesis problem as the problem of finding a
constructive proof for the expression Çix)(3y)P{x,y). If we prove that
such a y exists by one of our theorem-proving methods, then we can
exhibit y as some composition of functions of x. This composition of
functions is then the program that we wished to synthesize. The
elementary functions comprising the composition are the primitives of
the particular programming language being used. "Pure" LISP is a
convenient language for this sort of approach because its operations can
all be defined in terms of functional expressions.

Let us illustrate this approach by some examples. First, we show how
we might compute an expression that bears a given relation to a given
input expression. Then we illustrate how a recursive program can be
synthesized for arbitrary inputs.

Suppose we simply want to reverse the list (1,2). That is, we want a
computation that takes the list (1,2) as input and produces the list (2,1) as
output. We show how a rule-based deduction system can perform this

241

RULE-BASED DEDUCTION SYSTEMS

computation. First, we specify the relationship between input and output
by a two-place predicate "REVERSED" whose arguments are terms
denoting lists. REVERSED is defined, in turn, in terms of other
predicates and primitive LISP expressions.

We adopt the convention used in LISP for representing lists as nested
dotted pairs. In LISP notation, the list (A,B,C,D), for example, is
represented as A.(B.(C.{ D.NIL))). The dots can be regarded as a special
infix function symbol whose prefix form we call cons. Thus, the prefix
form of A.B is cons (A, B). We prefer the prefix form because that is the
form we have been using for functional terms in our predicate calculus
language. Using this convention for representing lists, we show how the
desired computation can be performed by a system that attempts to
prove the goal expression:

(By) RE VERSED (cons (1, cons (2, NIL)),y) .

In specifying rules and facts to use in our proof, we use the three-place
predicate "APPENDED:9 APPENDED (x,y,z) has the value T just
when z is the list formed by appending the list x onto the front of the list
y. [For example, appending the list (1,2) onto the list (3,4) produces the
list (1,2,3,4).]

The facts that we need in proving the goal expression are:

El: REVERSED(NIL,NIL)

F2: APPENDED(NIL,xl,xl)

We express certain relationships involving REVERSED and AP
PENDED by the following rules:

Rl: APPENDED(x29y2,z2)
=> APPENDED(cons(ul,x2),y2,cons(ul, z2))

R2: [REVERSED (x3,y3)
Λ APPENDED (y3,cons(u2, NIL), vl)]

=> RE VERSED (cons (u2, x3), vl)

Rule Rl states that the list created by appending a list, whose first
element is ul and whose tail is x29 to a listy2 is the same as the list created
by adding the element ul to the front of the list formed by appending x2

242

COMPUTATION DEDUCTIONS AND PROGRAM SYNTHESIS

to y2. Rule R2 states that the reverse of a list formed by adding an
element u2 to the front of a list x3 is the same as appending the reverse of
x3 onto the list consisting of the single element u2.

Let us show how a backward production system might go about
reversing the list (1,2) given these facts and B-rules. We do not attempt to
explain here how a control strategy for this system might efficiently
decide which applicable rule ought to be applied. Much of the control
knowledge needed to make these sorts of choices intelligently is special to
the domain of automatic programming and outside the scope of our
present discussion of general mechanisms.

We first look for facts and rules that match the goal RE
VERSED (cons(1,cons(2,NIL)\y). We can apply B-rule R2 with mgu
(l/w2, cons(2,NIL)/x3,y/vl }. Applying this mgu to the antecedent of
R2 yields new literal nodes labeled by

RE VERSED (cons (2, NIL \y3)

and

APPENDED(y3,cons(\,NIL\y) .

We can apply B-rule R2 to the subgoal RE VERSED (cons (2, NIL),y3),
creating two new literal nodes. (We rename the variables in R2 before
application to avoid confusion with the variables used in the previous
application.)

A consistent solution graph for this problem is shown in Figure 6.27.
The output expression that results from this proof is obtained by
combining substitutions to find the term substituted for y, namely,
cons(2,cons(\,NIL)). This expression represents the list that is the
reverse of the input list (1,2).

It is interesting to compare the computations involved in the search for
the proof shown in Figure 6.27 with the computations involved in
executing the following LISP program for reversing an arbitrary list:

reverse(x):
ifnull(x), NIL
else, append(reverse(cdr(x)), cons(csir(x)y NIL)))

243

RULE-BASED DEDUCTION SYSTEMS

{cons(ul,x2)/y3,cons{l,NIL)ly2,
cons(ul,z2)/y)

REVERSED(cons(u3,x4),v2) APPENDED(cons{ul ,x2\y2,cons{ul ,z2))

R2 RÌ

REVERSED(NIL,y4)

{NIL/y4}

APPENDED(x2,cons(l ,NIL\z2)

APPENDED(y4,cons(2,NIL),y3)

REVERSED(NIL,NIL)

[NIL/x2,cons(l,NIL)/x5,

cons(l,NIL)/z2]

APPENDED(NIE,x5,x5)

{NIL/y4,cons(2,NIL)/xl,cons(2,NIL)/y3}

APPENDED(NIL,xl,x 1)

Fig. 6.27 The solution graph for reversing a list.

244

COMPUTATION DEDUCTIONS AND PROGRAM SYNTHESIS

append(x,j>):
if null(jc),j
else, cons(car(x), append(cdr(x),^))

If the search process of our backward production system is sufficiently
well-guided by an appropriate control strategy, then the steps in the
search process correspond quite closely to the steps involved in executing
the LISP program on the input list (1,2).

We can control the production system search process by specifying
which applicable fact or rule should be used at any stage, and in which
order, to solve the component subgoals. A "language" for specifying this
control information can be based on conventions about the order in
which rules and facts are tested for possible matches and the order in
which literals appear in rule antecedents. When a rule or fact must be
selected for use, we select the first one in this ordering that can be
matched. When a subgoal component must be selected for solution, we
select according to the ordering in which literals are written in rule
antecedents. It turns out that the order (FI, F2, RI, R2) for rule and fact
matching and the order in which we have written the antecedents of rules
Rl and R2 provide a very efficient control strategy for our example
problem. With this control strategy, the steps performed in the search
process for a proof mirror almost exactly the computational steps of
executing the LISP program.

To see the parallel, let us trace out just a few steps of the search process.
Beginning with the goal RE VERSED (cons (1, cons (2, NIL)), y), we first
check (in the order FI, F2, RI, R2) for a match. There might be a match
against Fl, so we check to see if cons(\,cons(2,NIL)) unifies with NIL.
[Compare with if null(x) in the program.] Failing this test, we check for a
match against the consequent of R2. This test involves matching
cons (u2, x3) against cons (1, cons (2, NIL)). This match succeeds with the
substitution {1 /u2, cons (2, NIL)/x3}. [Compare with computing
car(x) and cdr(jc) in the second line of the reverse program.] The first
subgoal component [namely, REVERSED (cons(2, NIL),y)\ of the
antecedent of R2 is worked on first. [Compare with the recursive call to
reverse(cdr(x)) in the program.] Again, we check for a match against F I
by checking to see if cons (2, NIL) equals NIL. Failing in this test again,
we pass to another level of subgoal generation in the proof search (and of
recursion in the program). At this level, we succeed in our match against
Fl (with mgu {NIL/y4}), so we work on the next subgoal ΛΡ-

245

RULE-BASED DEDUCTION SYSTEMS

PEND ED (y4, cons (2, NIL), y 3). [In the program, we call the subroutine
append(N/L,cons(2,JV7L)).] This same parallelism holds between the
rest of the proof search and the program.

In many cases, it is possible to control the search process sufficiently so
that it mimics efficient computation, and, for this reason, it has been said
that computation is controlled deduction [Hayes (1973b)]. In fact, a
programming language, called PROLOG, is based on this very idea.
PROLOG "programs" consist of a sequence of "facts" and "rules." The
rules are implications just like our rules except that, in PROLOG, the rule
antecedents are restricted to conjunctions of literals. A program is
"called" by a goal expression. The fact and rule statements in the
program are scanned to find the first match for the first component in the
goal expression. The substitutions found in the match correspond to
variable binding, and control is transferred to the first subgoal compo
nent of the rule. Thus, the "interpreter" for a PROLOG program
corresponds to a backward, rule-based production system with very
specific control information about what to do next. (The PROLOG
interpreter is a bit less flexible than our backward system, because in
PROLOG the substitutions used in matching one literal of a conjunctive
subgoal are straightaway applied to the other conjuncts. The subgoal
instances thus created might not have solutions, so PROLOG incorpo
rates a backtracking mechanism that can try other matches.)

The example that we have been considering has involved a fixed input
list, namely, (1,2). If this fixed list were different, the theorem-proving
system would have produced a different proof and a different answer.
(Presumably, though, our PROLOG program would continue to func
tion analogously to the general LISP program.) Rather than perform the
search process each time we "run the program" (even though, ap
parently, this search can be made quite efficient), we are led to ask if we
could automatically synthesize one general program (like the LISP one,
for example) that would accept any input list. To do so we must find a
proof for the goal:

(Vx)(3y) REVERSED (x,y).

(Of course, we don't literally mean "for all x" because the program
doesn't have to be defined for all possible inputs. We only require that it
be defined for lists. We could have expressed this input restriction in the
formula to be proved, but our illustrative example is simpler if we merely
assume that the domain of x is limited to lists.)

246

COMPUTATION DEDUCTIONS AND PROGRAM SYNTHESIS

Since we already know that the final program for any given input list
has a repetitive character, we might guess that the program we are
seeking for arbitrary input lists is recursive. The introduction of recursive
functions in program synthesis comes about by using mathematical
induction in the proof. It turns out that in reversing a list by using an
append function, we have double recursion, once in reverse and once in
append. As a simpler example, let's consider just the problem of
producing a program to append one list to (the front of) another. That is,
our goal is to prove:

(\/x)(Vy)(3z)APPENDED(x,y,z).

In this case, we have two input lists, x and y, and one output list, z.

Skolemizing the goal wff yields

APPENDED(A,B,z)9

where A and B are Skolem constants. To prove this goal, we'll need fact
F2 and rule Rl from our previous example. (The presence of the other
unneeded fact and rule does no harm, however.) Our explanation of this
example is simplified if we re-represent Fl and Rl as the following rules:

R3: NULL(u)^APPENDED(u,xl,xl)

R4: [~NULL(v)f\APPENDED(cdr(v)yyO,zl)]
^>APPENDED(v9yO,cons(car(v),zl))

In these expressions, we introduce the primitive LISP functions, namely,
cons, car, and cdr, out of which our program will be constructed. These
LISP expressions could have been introduced instead by the rule

~NULL(x)=> EQUAL(x, cons (car(x%cdr(x))) .

This alternative, however, would have involved us in some additional
complexities regarding special techniques for using equality axioms. We
avoid these difficulties, and simplify our example, by using rules R3 and
R4 instead. The needed equality substitutions are already contained in
these rules.

As already mentioned, to synthesize a recursive program using
theorem-proving methods requires the use of induction. We use the

247

RULE-BASED DEDUCTION SYSTEMS

method of structural induction for lists. To do so, we need the concept of a
list as a sublist of a given list. This relation is denoted by the predicate
SUBLIST(u,x). The principal property of SUBLIST on which our
inductive argument depends can be expressed as the rule:

R5: ~NULL(x)=> SUBLIST(cdr(x),x)) ,

that is, the tail of any nonempty list, JC, is a sublist of x.

To prove

(Vyl)(\fy2)(3zl)APPENDED(yl,y2,zl),

using structural induction for lists, we would proceed as follows:

1. Assume the induction hypothesis

(Vw7)(Vw2)[SU BUST {ul,xl)
=>(3z2)APPENDED(ul,u2,z2)] .

That is, we assume our goal expression true for all input lists ul and u2
such that ul is a sublist of some arbitrary list xl.

2. Next, given the induction hypothesis, we attempt to prove our goal
expression true for all input lists xl and x2 where xl is the arbitrary list of
the induction hypothesis.

If step 2 is successful, then our goal expression is true for all input lists, yl
andy2.

We can capture this argument in a single formula, which we call the
induction rule.

{(Vxl)(\/x2)
{(Vul)(Vw2)[SUBLIST {ul9xl)

=> (3z2)APPENDED («7, u2,z2)]}
>̂ (3z3)APPENDED(xl,x2,z3)}

>̂ (Vyl)(\fy2)(3zl)APPENDED(yl9y29zl)

Although this rule looks rather complicated, we use it in a straightfor
ward manner. Ignoring quantifiers, the rule is of the form:

\{A^>C1)^C2]^>C3 .

248

COMPUTATION DEDUCTIONS AND PROGRAM SYNTHESIS

We will be using this rule as a B-rule to prove C3. Such a use creates the
subgoal of proving

\{A^>C1)^>C2).

We elect to prove this subgoal by proving C2 while having available (only
for use on C2 and its descendant subgoals) the B-rule {A =4> Cl). (This
manner of treating an implicational goal was discussed earlier. Now,
however, rather than assume the goal's antecedent as a.fact, we assume it
as a rule.) A diagram that illustrates this strategy is shown in Figure 6.28.

Alternatively, we could transform the antecedent of the induction rule
into AND/OR form and use the rule to create the subgoal
[(A Λ ~C1) V C2]. This use of the induction rule is entirely equiva
lent, but it is a bit less intuitive and more difficult to explain, because an
RGR step between ~ Cl and C2 would ultimately be required to prove
the subgoal.

The induction rule can be Skolemized as follows:

{[SUBLIST(ul,Al)^>APPENDED(ul,u29skl(ul,u2))]
=> APPENDED(Al9A29z3)}

=>APPENDED(yl9y2,sk2(yl,y2)) .

Note the Skolem constants and functions Al,A29skl, and sk2. The
program that we seek will, in fact, turn out to be either of the Skolem
functions ski or sk2. Thus, it is reasonable now to represent both of them
by the single function symbol append. With this renaming, our induction
rule, in the form in which we use it, is:

RI: {[SUBLIST(ul,Al)
=» APPENDED (ul9 u29 append(ul, u2))]

=Φ APPENDED(Al,A29z3)}
=> APPENDED (yl,y29append(yl,y2)) .

C3

The B-rule A=>C1 can be used
on this goal or on any of its descendants

Fig. 6.28 Using the induction rule.

249

RULE-BASED DEDUCTION SYSTEMS

NULL(A)

[A/v.B/yO.
cons(car(A),zI)/z]

APPENDED(v.y(),cons(car{r),zl))

note appropriateness of RJ

{A/yl.B/y2.
append (A,B)/z]

V

APPENDED {y 1,y 2,append tv 1 ,y2))

RI

APPENDED(Al,A2,z3)

below this node we can use the rule /?/'
SUBLIST(ul,Al)=>
APPENDED(ul,u2,append(ul,u2))

(continued on next page)

Fig. 6.29 A search graph for the APPENDED problem.

250

COMPUTATION DEDUCTIONS AND PROGRAM SYNTHESIS

(continued from preceding page)

[AI/u.A2/xl,A2/z.

{AJ/v,A2/yO,cons(car(Al),zl))/z3}

{cdr(Al)/ul,A2/u2,
append(cdr(Al),A2)/zl}

APPENDED(ul,u2,append(ul,u2))

'

RÎ

r

SUBLIST{cdr(Al),Al)

^
SUBLIST(cdr(x),x)

R5

-NULL (Al)

251

RULE-BASED DEDUCTION SYSTEMS

An AND/OR search graph for the problem of proving AP-
PENDED(A,B,z) is shown in Figure 6.29. In our example, search
begins by applying rules R3 and R4 to the main goal. One of the subgoals
produced by R4 is recognized as similar to the main goal. Producing a
subgoal having this sort of similarity suggests, to the control strategy, the
appropriateness of applying the induction rule, RI, to the main goal. (Of
course, it is logically correct to apply the induction rule to the main goal
at any time. Since proof by induction is relatively complicated, the
induction rule should not be used unless it is judged heuristically
appropriate. When a straightforward proof attempt produces this sort of
"instance" of the main goal as a subgoal, induction is usually appro
priate.)

Applying RI to the main goal produces the subgoal AP
PENDED (Al, A2,z3) and the rule:

RF: SUBLIST(ul,Al)^APPENDED(ul,u2,append(ul,u2)).

This rule can be used only in the proof of APPENDED (Al, A2,z3) or its
subgoals.

Next, the control strategy applies the same rules as were applied earlier
to the main goal (namely, R3 and R4) to the subgoal produced by the
induction rule. Ultimately, two différent solution graphs are produced
that are complete except for the occurrence of NULL(Al) in one and
~NULL(A1) in the other. An RGR step completes the solution and
yields the conditional substitution:

{(if mx\\(Al),A2/z3\
else cons (car (Al) , append(cdr (Al),A2))/z3)} .

This substitution produces a term for variable z3, which occurred in a
subgoal of the maingoal. This subgoal, which we have now proved, is

APPENDED(Al,A2,(if nu\l(Al), A2 ;
else cons (car (Al), append (cdr (A1),A2)))) .

Since Al and A2 are Skolem constants originating from universal
variables in a goal expression, they can be replaced by universally
quantified variables when constructing an answer. Thus, we have proved:

(Vx7)(Vx2)APPENDED(xl,x2,(if null(xl), x2 ;
else cons (car (xl), append (cdr (xl),x2)))) .

252

A COMBINATION FORWARD AND BACKWARD SYSTEM

Now we recognize that the third argument of APPENDED in the above
expression is a recursive program satisfying our input/output condition.

There are many subtleties involved in using induction in program
synthesis. A full account of the process is beyond the scope of this book
and would involve an explanation of methods for constructing auxiliary
functions, recursion within recursive programs, and the use of induction
hypotheses that are more general or "stronger" than the theorem to be
proved. The special induction rule for APPENDED that we used in our
example could be replaced by more general structural induction rule
schémas. These would use well-founded ordering conditions more general
than SUBLIST [see Manna and Waldinger (1979)].

6.5. A COMBINATION FORWARD AND
BACKWARD SYSTEM

Both the forward and the backward rule-based deduction systems had
limitations. The backward system could handle goal expressions of
arbitrary form but was restricted to fact expressions consisting of
conjunctions of literals. The forward system could handle fact expres
sions of arbitrary form but was restricted to goal expressions consisting of
disjunctions of literals. Can we combine these two systems into one that
would have the advantages of each without the limitations of either?

We next describe a production system that is based on a combination
of the two we have just described. The global database of this combined
system consists of two AND/OR graph structures, one representing goals
and one representing facts. These AND/OR structures are initially set to
represent the given goal and fact expressions whose forms are now
unrestricted.

These structures are modified by the B-rules and F-rules, respectively,
of our two previous systems. The designer must decide which rules are to
work on the fact graph and which are to work on the goal graph. We
continue to call these rules B-rules and F-rules even though our new
production system is really only proceeding in one direction as it modifies
its bipartite global database. We continue to restrict the B-rules to
single-literal consequents, and the F-rules to single-literal antecedents.

253

RULE-BASED DEDUCTION SYSTEMS

The major complication introduced by this combined production
system is its termination condition. Termination must involve the proper
kind of abutment between the two graph structures. These structures can
be joined by match edges at nodes labeled by literals that unify. We label
the match edges themselves by the corresponding mgus. In the initial
graphs, match edges between the fact and goal graphs must be between
leaf nodes. After the graphs are extended by B-rule and F-rule applica
tions, the matches might occur at any literal node.

After all possible matches between the two graphs are made, we still
have the problem of deciding whether or not the expression at the root
node of the goal graph has been proved from the rules and the expression
at the root node of the fact graph. Our proof procedure should terminate
only when such a proof is found (or when we can conclude that one
cannot be found within given resource limits).

One simple termination condition is a straightforward generalization
of the procedure for deciding whether the root node of an AND/OR
graph is "solved." This termination condition is based on a symmetric
relationship, called CANCEL, between a fact node and a goal node.
CANCEL is defined recursively as follows:

Two nodes n and m CANCEL each other if
one of (n, m) is a fact node and the other a
goal node,

and

if n and m are labeled by unifiable literals, or
n has an outgoing fc-connector to a set of
successors {s{}, such that CANCEL{s{,m)
holds for each member of the set.

When the root node of the goal graph and the root node of the fact
graph CANCEL each other, we have a candidate solution. The graph
structure, within the goal and fact graphs, that demonstrates that the goal
and fact root nodes CANCEL each other is called a candidate CANCEL
graph. The candidate solution is an actual solution if all of the match
mgus in the candidate CANCEL graph are consistent.

As an example, we show the matches between an initial fact graph and
an initial goal graph in Figure 6.30. A consistent candidate CANCEL

254

A COMBINATION FORWARD AND BACKWARD SYSTEM

Initial
^ G o a l

Graph

Initial
y Fact

Graph

Fig. 6.30 An example CANCEL graph.

255

RULE-BASED DEDUCTION SYSTEMS

graph is indicated by the darkened arcs. The mgus of each of the fact-goal
node matches are shown next to the match edges, and the unifying
composition of all of these mgus is {f(A)/v,A/y).

Note that our CANCEL graph method treats conjunctively related
goal nodes correctly. Each conjunct must be proved before the parent is
proved. Disjunctively related fact nodes are treated in a similar manner.
In order to use one member of a disjunction in a proof, we must be able to
prove the same goal using each of the disjuncts separately. This process
implements the "reasoning-by-cases" strategy.

As the AND/OR search graphs are developed by application of
B-rules and F-rules, substitutions are associated with each rule applica
tion. All substitutions in a solution graph, including the mgus obtained in
rule matches and the mgus obtained between matching fact and goal
literals, must be consistent.

Goal Graph

H H Ξ 0

0
f B

X
1 1 sx^

(B V C)

/

c
J

k

A A (B V C) A D\

0 Fact Graph

Fig. 6.31 The termination check fails to detect a proof.

256

CONTROL KNOWLEDGE FOR RULE-BASED DEDUCTION SYSTEMS

We note that pruning the AND/OR graphs by detecting inconsistent
substitutions may be impossible in systems that use both B-rules and
F-rules because, for these, both the fact and goal graphs change
dynamically, making it impossible to tell at any stage whether all possible
matches have already been made for a given literal node. Also, when
using F-rules and B-rules simultaneously, it may be important to treat the
appropriate instances of solved goals as facts, so that F-rules can be
applied to them. (A solved goal is one that is CANCELltd by the root
node of the fact graph.)

The termination condition we have just described is adequate for many
problems but would fail to detect that the goal graph follows from the fact
graph in Figure 6.31. A more general sort of "fact-goal" resolution
operation would be needed for this problem than that embodied in our
simple CANCEL-bascd termination check.

An alternative way of dealing with both arbitrary fact and goal
expressions is to use a (unidirectional) refutation system that processes
facts only. The goal expression is first negated and then converted to
AND/OR form and conjoined with the fact expression. F-rules, the
contrapositive forms of B-rules, and restricted resolution operations are
then applied to this augmented fact graph until a contradiction is
produced.

6.6. CONTROL KNOWLEDGE FOR RULE-BASED
DEDUCTION SYSTEMS

Earlier we divided the knowledge needed by AI systems into three
categories: declarative knowledge, procedural knowledge, and control
knowledge. The production systems discussed in this chapter make it
relatively easy to express declarative and procedural knowledge. Experts
in various fields such as medicine and mathematics, who might not be
familiar with computers, have found it quite convenient and natural to
express their expertise in the form of predicates and implicational rules.

Nevertheless, there is still the need to supply control knowledge for
deduction systems. Efficient control strategies for the production systems
we describe might need to be rather complex. Embedding these
strategies into control programs requires a large amount of programming

257

RULE-BASED DEDUCTION SYSTEMS

skill. Thus, there is the temptation to leave the control strategy design
entirely to the AI expert. But much important control knowledge is
specific to the domain in which the AI program is to operate. It is often
just as important for the physicians, chemists, and other domain experts
to supply control knowledge as it is for them to supply declarative and
procedural knowledge.

There are several examples of control knowledge that might be specific
to a particular application. Separating the rules into B-rules and F-rules
relieves the control strategy of the burden of deciding on the direction of
rule application. The best direction in which to apply a rule sometimes
depends on the domain. As an example of the importance of the direction
in which a rule is applied, consider rules that express taxonomic
information such as "all cats are animals," and "all dogs are animals":

CAT(x)^>ANIMAL(x)

DOG(x)=ïANIMAL(x)

If we had several such rules, one for each different type of animal, it
would be extremely inefficient to use any of them in the backward
direction. That is, one should not go about attempting to prove that Sam,
say, is an animal by first setting up the subgoal of proving that he is a cat
and, failing in that, trying the other subgoals. The taxonomic hierarchy
branches out too extensively in the direction of search.

Whenever possible, the direction of reasoning ought to be in the
direction of a decreasing number of alternatives. The rules above can
^afely be used in the forward direction. When we learn that Sam is a cat,
say, we can efficiently assert that he is also an animal. Following the
hierarchy in this direction does not lead to a combinatorial explosion
because search is pinched off* by the ever-narrowing number of catego
ries.

The contrapositive form of CAT(x)=$>ANIMAL(x) is ~ANI-
MAL(x)^> ~CAT(x). This rule should be used in the backward
direction only. That is, to prove that Sam is not a cat, it is efficient to
attempt to prove that he is not an animal. Again, search is pinched off by
the narrow end of the taxonomic hierarchy.

There is other important control information that might depend on the
domain. In a rule of the form [PI A P2 A . . . Λ PN] => Q, used as a

258

CONTROL KNOWLEDGE FOR RULE-BASED DEDUCTION SYSTEMS

B-rule, the domain expert may want to specify the order in which the
subgoals should be attacked. For each of these subgoals, he may further
want to specify explicitly a set of B-rules to be used on them and the order
in which these B-rules should be applied. Similarly, whenever a rule of
the form P => [Ql Λ . . . Λ QN] is used as an F-rule, he may want to
specify an additional set of F-rules that can now be applied and the order
in which these F-rules ought to be applied.

It may be appropriate for the control strategy to make other tests
before deciding whether to apply a B-rule or an F-rule. In an earlier
example, the transitivity of the "greater-than" predicate played an
important role. It would typically be inefficient to apply a transitivity rule
in the backward direction; but there may be specific cases in which it is
efficient to do so. Recall that the transitivity rule was of the form:

[(χ>γ)Α(γ>ζ)]^(χ>ζ).

We might want to apply this rule as a B-rule if one of the subgoal
conjuncts could match an existing fact, for example. This conditional
application would greatly restrict the use of the rule. Application
conditions comprise important control knowledge.

In order to use this sort of control knowledge, we need suitable
formalisms in which to represent it. There seem to be several approaches
to the problem. First, we could consider the control strategy problem
itself as a problem to be solved by another AI production system. The
object-level AI system would have declarative and procedural knowledge
about the applications domain; the meta-level AI system would have
declarative and procedural knowledge relevant to the control of the
object-level system. Such a scheme might conveniently allow the
formulation of object-level control knowledge as meta-level rules.

A second approach involves embedding some of the control knowl
edge into evaluation functions used by the control strategy. When a
domain expert specifies that some conjunctive subgoal A, say, is to be
solved before 2?, then we must arrange that the function used to order the
AND nodes of a partial AND/OR solution graph places A before B in
the ordering. This approach has not been thoroughly explored.

A third method involves embedding the relevant control knowledge
right into the rules. This approach has been embodied in several
high-level AI programming languages. We attempt to describe the
essence of this approach in the following section.

259

RULE-BASED DEDUCTION SYSTEMS

6.6.1. F-RULE AND B-RULE PROGRAMS

Control knowledge specifies the order in which operations should be
performed: Do this before that, do this first, do this if that is true, and so
on. It is natural to attempt to represent this sort of knowledge in
programs. F-rules and B-rules can be considered programs that operate
on facts and goals. The most straightforward solution to the control
problem is to embed control responsibility directly into the F-rules and
B-rules.

Just how much control should be given to the F-rules and B-rules? So
far, we have been considering one extreme (production systems) in which
a separate global control system retained total control and none was given
to the rules. Let us now briefly investigate another extreme in which all
control is given over to the rules (with a consequent atrophying of the
global control system).

We want to retain the basic character of the F-rules and B-rules. That
is, F-rules should be called only when they can be applied to facts, and
B-rules should be called only when they can be applied to goals. The
calling mechanism should invoke rules only when new goals or facts are
derived. This type of mechanism might be called goal· (fact-) directed
function invocation. An extremely simple scheme for performing this
invocation involves the following: When a new goal (fact) is created, all
of the rules that are applicable to this new goal (fact) are collected. One of
these is then selected and given complete control. This program is then
executed; it may set new goals (invoking other B-rules) or it may assert
new facts (invoking other F-rules). In either case, the control structure is
otherwise much like that of conventional programs. A rule program runs
until it encounters a RETURN statement. It then returns control to the
program from which it was invoked. While it is running, a rule program
has complete control. If an executing rule program fails (for one of
several reasons to be discussed later), control automatically backtracks to
the next highest choice point where another selection is made. Thus, the
scheme we are describing corresponds to a simple backtrack control
regime in which all of the control information is embedded in the rules.

We elaborate later on the mechanism by which one of the many
possible applicable rules is selected for invocation. We must also describe
how consequents and antecedents of rules are represented in programs
and how matching is to be handled.

260

CONTROL KNOWLEDGE FOR RULE-BASED DEDUCTION SYSTEMS

We next present a simplified syntax for our F- and B-rule programs.
(This syntax is related to, but not identical to, syntaxes of the high-level
AI languages PLANNER, QLISP, and CONNIVER.)

A goal or subgoal is introduced by a GOAL statement; for example,
GOAL (ANIMAL Ίχ). This statement is equivalent to the predicate
calculus goal expression (3x) ANIMAL (x). The variable x with a ?
prefix is existentially quantified when it occurs in GOAL statements.

A new or inferred fact is added to the set of facts by an ASSERT
statement; for example,

ASSERT (CATSAM)

or

ASSERT (DOGlx).

The latter is equivalent to the predicate calculus expression
(Vx)DOG(x). The variable x with a ? prefix is universally quantified
when it occurs in facts or in ASSERT statements.

F-rule and B-rule programs each have triggering expressions that are
called their patterns. For F-rule programs, the pattern is the antecedent of
the corresponding rule; for B-rule programs, the pattern is the con
sequent. For simplicity, we assume that a pattern consists of a single
literal only. Patterns can contain ?-variables, and these variables can be
matched against anything when invoking a program. Since F-rule
patterns are used only to match facts and B-rule patterns are used only to
match goals, the use of ?-variables in both patterns is consistent with our
assumptions about variable quantifications in facts and goals.

The body of rule programs contains, besides control information, that
part of the corresponding rule not in the pattern. Thus, F-rule programs
contain ASSERT statements corresponding to consequents, and B-rule
programs contain GOAL statements corresponding to antecedents. Any
variables in these statements that are the same as pattern variables are
preceded by a $ and are called $-variables. When a pattern is matched to a
fact or goal, the ?-variables are bound to the terms that they match. The
corresponding $-variables in the body of the program receive the same
bindings. These bindings also apply locally to subsequent statements in

261

RULE-BASED DEDUCTION SYSTEMS

the calling program that contained the GOAL or the ASSERT statement
that caused the match. Pattern matching then takes the place of
unification, and variable binding takes the place of substitution.

Using this syntax, we could represent the rule CAT(x)=>ANI
MA L(x) by the following simple F-rule program:

FRI {CATIx)
ASSERT {ANIMAL %x)
RETURN

The pattern, {CAT Ίχ\ occurs immediately after the name of the
program FRI. In this case, the body of the program consists only of an
ASSERT statement. The variable %x is bound to that entity to which ?JC
was matched when the pattern {CATlx) was matched against a fact.

Consider the rule, ELEPHANT{x)^> GRAY{x). This rule can be
written as a B-rule program as follows:

BRl{GRAYlx)
GOAL (ELEPHANT $ x)
ASSERT {GRA Y$x)
RETURN

The variable $x is bound to whatever individual matched ?JC during the
pattern match.

Mechanisms for applying rules to facts and goals can be simply
captured in programs, but we must also be able to match goals directly
against facts. This objective is accomplished simply by checking the facts
(in addition to the B-rule patterns) whenever a GOAL statement is
encountered. Ordinarily we would check the facts first.

Let's look at a simple example to see how these programs work and to
gain familarity with the syntax.

Suppose we have the following programs:

BRI {BOSS-OFlylz)
GOAL (WORKS-IN Ίχ$γ)
GOAL {MANAGER $x $z)
ASSERT {BOSS-OF$y $z)
RETURN

262

CONTROL KNOWLEDGE FOR RULE-BASED DEDUCTION SYSTEMS

(If y works in x and z is the manager of x, then z is the boss ofy).

(Note that the B-rule program allows us naturally to specify the order in
which conjunctive goals are to be solved. The variable $ x in the second
subgoal is bound to whatever is matched against ?JC in the first subgoal.)

BR2 (HAPPYfx)
GOAL (MA RRIED $χΊγ)
GOAL (WORKS-IN Tz$y)
ASSERT (HAPPY$x)
RETURN

(Happy is the person with a working spouse.)

ΒΈϋ(ΗΑΡΡΥΊχ)
GOAL (WORKS-IN P-D$x)
ASSERT (HAPPY%x)
RETURN

(If x works in the Purchasing Department, x is happy.)

BR4 (WORKS-IN Ίχ 1y)
GOAL (MANAGER %x$y)
ASSERT (WORKS-IN xy)
RETURN

(If y is the manager of x,y works in x.)

Suppose the facts are as follows:

FI : MAN A GER (P-DJOHN-JONES)
F2 : WORKS-IN (P-D, JOE-SMITH)
F3 : WORKS-IN (SD, SA LL Y-JONES)
F4: MARRIED (JOHN-JONES, MARY-JONES)

Consider the problem of finding the name of an employee who has a
happy boss. The query can be expressed by the following program:

BEGIN
GOAL (BOSS-OF'ìu'ìv)
GOAL(HAPPYSv)
PRINT $ u "has happy boss" $ v
END

263

RULE-BASED DEDUCTION SYSTEMS

Let us trace a typical execution. We first encounter GOAL (BOSS-
OFlu ?v). Since no facts match this goal, we look for B-rules and find
BRI. The pattern match merely passes along the existential variables.
The computational environment is now as shown in Figure 6.32. The
asterisk marks the next statement to be executed, and the bindings that
apply for a sequence of statements are shown at the top of the sequence.
The next statement encountered (after binding variables) is:

GOAL (WORKS-IN Ixlu).

Here we have a match against F2 with ? x bound to P-D and ? u bound to
JOE-SMITH. Following the sequence of Figure 6.32, we next meet:

GOAL (MANAGER P-Dlv).

This statement matches Fl, binding ? v to JOHN-JONES. We can now
assert BOSS-OF(JOE-SMITH, JOHN-JONES) and return to the
query program to encounter GOAL (HAPPY JOHN-JONES). Now
there are two different sequences of programs that might be used.
GOAL (HAPPY JOHN-JONES) might invoke either BR2 or BR3. We
leave it to the reader to trace through either or both of these paths.

A GOAL statement can FAIL if there are no facts or B-rules that match
its pattern. Suppose, for example, that we matched GOAL (WORKS-
IN Ίχ ? u) against F3 instead of against F2. This match would have led to
an attempt to execute GOAL (M AN A GER S-D ? v). The set of facts does
not include any information about the manager of the Sales Department.

BEGIN (bindings: ?u/?y,?v/?z)

* GOAL (WORKS-IN ?x $y)
GOAL(MANAGER $x $z)
ASSERT (BOSSOF $y $z)
RETURN

GOAL (HAPPY $v)
PRINT $w "has happy boss" $v
END

Fig. 6.32 A state in the execution of a query.

264

CONTROL KNOWLEDGE FOR RULE-BASED DEDUCTION SYSTEMS

No B-rule applies either, so the GOAL statement FAILS. In such a case,
control backtracks to the previous choice point, namely, the pattern
match for GOAL (WORKS-IN Ίχ lu). In addition to transferring
control, all bindings made since this choice point are undone. Now we
can use the ultimately successful match against F2.

Because rules are now programs, we can augment them with other
useful control statements. For example, we can include tests to decide
whether an F-rule or B-rule program ought to be applied. If the test
indicates inappropriateness of the program, we can execute a special
FAIL statement that causes backtracking. The general form of such a
condition statement is:

IF < condition > FAIL .

The < condition > can be an arbitrary program that evaluates to true
or false. Such statements are usually put at the beginning of the program
to trap cases where the program ought not to continue.

An important category of conditions involves testing to see if there is a
fact that matches a particular pattern. This testing is done by an IS
statement. The general form is:

IS < pattern > .

If < pattern > matches a fact, bindings are made (that apply locally to
any following statements) and the program continues. Otherwise, the
statement FAILS and backtracking occurs.

Recall that earlier we mentioned that the transitivity rule for the
"greater-than" predicate might be used as a B-rule if one of the
antecedents was already a fact. We could implement such a B-rule as
follows:

BTRANS (G ? J C ? Z)
IS (G$xly)
GOAL (Gyz)
RETURN

Now if G (Α,Β) and G (£ , C) were facts, we could use BTRANS to
prove G(A,C) as follows: First, we match BTRANS against
GOAL(G^ C) and thus attempt to execute IS(GAly). This test is

265

RULE-BASED DEDUCTION SYSTEMS

successful, 1y is bound to B, and we next encounter GOAL (G B C). This
goal matches one of the facts directly, and we are finished. If the IS test
failed, we would not have used this transitivity B-rule and, thus, would
have avoided generating the subgoal. We'll see additional examples later
of the usefulness of applicability conditions.

Another important type of control information might be called
"advice." At the time a GOAL statement is made, we may want to give
advice about the B-rules that might be used in attempting to solve it. This
advice can be in the form of a list of B-rules to be tried in order. Similarly,
ASSERT statements can be accompanied by a list of F-rules to be tried in
order. These lists can be dynamically modified by other programs, thus
enabling quite flexible operation.

There are other advantages of rule programs beyond those related to
control strategies. We can write very general procedures to transform
certain goals into subgoals, to evaluate goals, and to assert new facts. To
achieve these same effects by ordinary production rules could sometimes
be cumbersome.

Suppose, for example, that in doing inequality reasoning we encounter
the subgoal G (8,5). Now, as mentioned earlier, we certainly do not want
to include G predicates for all pairs of numbers. The effect of procedural
attachment to a "greater-than" computation can be achieved by the
following B-rule:

B G (G ? J C ? 7)
IF (NOTNUM $JC) FAIL
IF (NOTNUM $γ) FAIL
IF(NOTG$;c$jOFAIL
ASSERT (G$x $y)
RETURN

In this program, NOTNUM tests to see if its argument is not a number.
If NOTNUM returns T (i.e., if its argument is not a number), we FAIL
out of this B-rule. If both NOTNUMs return F, we stay in the B-rule and
use the program NOTG to see if the first numerical argument is greater
than the second. If it is, we successfully bypass another FAIL and return.

Similar examples could be given of procedural attachment in the
forward direction. Suppose that in a circuit analysis problem, it has been
computed that a 1/2 ampere current flows through a certain 1000 ohm

266

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

resistor named R3. After the current has been computed (but not before),
we may want to ASSERT the value of the voltage across this resistor.
Such an assertion could be appropriately made by the following general
F-rule:

FV (CURRENT!RlI)
IF (NOTNUM (VALUE $ R)) FAIL
IF(NOTNUM$/)FAIL
SET ? V (TIMES $ / (VALUE $ R))
ASSERT (VOLTAGE %R $ V)
RETURN

Now when the statement (ASSERT CURRENT R3 0.5) is made, FV is
invoked. We compute VALUE(ÄJ) to be 1000, so we pass through the
first NOTNUM. Similarly, since $ / is bound to 0.5, we pass through the
second NOTNUM and encounter the SET statement. This binds ? F to
500, we assert VOLTAGE (R3 500) and return. In this case we have
attached a multiplication procedure that implements Ohm's law to the
predicate VOLTAGE.

6.7. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

One of the reasons for the inefficiency of early resolution theorem-
proving systems is that they lacked domain-specific control knowledge.
The AI languages PLANNER [Hewitt (1972), Sussman, Winograd, and
Charniak (1971)], QA4 [Rulifson, Derksen, and Waldinger (1972)], and
CONNIVER [McDermott and Sussman (1972)] are examples of attempts
to develop deduction and problem-solving formalisms in which control
information could be explicitly represented. Moore (1975a) discusses
some of the logical inadequacies of these languages and proposes some
remedies. Among other points, Moore notes: (a) clause form is an
inefficient representation for many wffs, (b) general implicational wffs
should be used as rules and these rules should be kept separate from facts,
and (c) the direction of rule use (forward or backward) is often an
important factor in efficiency.

Other researchers, too, moved away from resolution after its early
popularity. Bledsoe (1977) presents a thorough discussion of "nonre-

267

RULE-BASED DEDUCTION SYSTEMS

solution" theorem proving. Examples of some nonresolution systems
include those of Bledsoe and Tyson (1978), Reiter (1976), Bibel and
Schreiber (1975), Nevins (1974), Wilkins (1974), and Weyhrauch (1980).
Many of the techniques for enhancing efficiency used by these nonre
solution systems can be used in the rule-based systems described in this
chapter, where the relationship with resolution is clear.

Unifying compositions of substitutions and their properties are dis
cussed by van Vaalen (1975) and by Sickel (1976), both of whom discuss
the importance of the use of these substitutions in theorem proving with
AND/OR graphs. Kowalski (1974b, 1979b) discusses the related process
of finding simultaneous unifiers.

The forward and backward rule-based deduction systems discussed in
this chapter are intended to be models of various rule-based systems used
in AI. The use of AND/OR graph structures (often called AND/OR goal
trees) in theorem proving has a long history; however, many systems that
have used them have important logical deficiencies. Our versions of these
systems have a stronger logical base than most existing systems. The
RGR operation used in our backward system is based on a similar
operation proposed by Moore (1975a). Loveland and Stickel (1976) and
Loveland (1978) also propose systems based on AND/OR graphs and
discuss relationships with resolution.

Human experts in some subject domains seem to be able to deduce
useful conclusions from rules and facts about which they are less than
completely certain. Extensions to rule-based deduction systems that
allow use of only partially certain rules and facts were made by Shortliffe
(1976) in the MYCIN system, for medical diagnosis and therapy selection.
We might describe MYCIN as a backward, rule-based deduction system
(without RGR) for the propositional calculus, augmented by the ability
to handle partially certain rules and facts. A technique based on the use of
Bayes' rule and subjective probabilities for dealing with uncertain facts
and rules is described by Duda, Hart, and Nilsson (1976).

Checking the consistency of substitutions as search proceeds derives
from a paper by Sickel (1976). The use of connection graphs was
originally suggested by Kowalski (1975). Other authors who have used
various forms of connection graphs are Cox (1977), Klahr (1978), Chang
and Slagle (1979), and Chang (1979). Cox (1977) proposes an interesting
technique for modifying inconsistent solutions to make them consistent.

268

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

Most of these ideas were originally proposed as control strategies for
resolution refutation systems rather than for rule-based deduction
systems.

The use of a metasystem, with its own rules, to control a deduction
system has been suggested by several researchers, including Davis (1977),
de Kleer et al. (1979), and Weyhrauch (1980). Hayes (1973b) proposes a
related idea.

Using deduction systems for intelligent information retrieval is dis
cussed in several papers in the volume by Gallaire and Minker (1978).
Wong and Mylopoulos (1977) discuss the relationships between data
models in database management and predicate calculus knowledge
representations in AI.

Bledsoe, Bruell, and Shostak (1978) describe a theorem-proving
system for inequalities. A system developed by Waldinger and Levitt
(1974) is able to prove certain inequalities arising in program verification
problems.

Our use of conditional substitutions is related to an idea proposed by
Tyson and Bledsoe (1979). Manna and Waldinger (1979) employ the idea
of conditional substitutions in their program synthesis system.

Green (1969a) described how theorem-proving systems could be used
both for performing computations and for synthesizing programs.
Program synthesis through deduction was also studied by Waldinger and
Lee (1969) and by Manna and Waldinger (1979). [For approaches to
program synthesis based on techniques other than deduction, see the
survey by Hammer and Ruth (1979). For a discussion of programming
"knowledge" needed by an automatic programming system, see Green
and Barstow (1978).] Our use of induction to introduce recursion is based
on a technique described in Manna and Waldinger (1979).

Using deduction systems to perform computations (and predicate logic
as a programming language) was advocated by Kowalski (1974a). Based
on these ideas, a group at the University of Marseille [see Roussel (1975),
and Warren (1977)] developed the PROLOG language. Warren and
Pereira (1977) describe PROLOG and compare it with LISP. Van Emden
(1977) gives a clear tutorial account of these ideas. One of the appealing
features of PROLOG is that it separates control information from logic

269

RULE-BASED DEDUCTION SYSTEMS

information in programming. This idea, first advocated by Hayes
(1973b), has also been advanced in Kowalski (1979a) and by Pratt (1977).
[For a contrary view, see Hewitt (1975, pp. 195ff.)]

The combined forward/backward deduction system and the CAN-
CEL relation for establishing termination is based on a paper by Nilsson
(1979).

Our section on F-rule and B-rule programs is based on ideas in the AI
languages PLANNER [Hewitt (1972), Sussman, Winograd, and Charniak
(1971)] and QLISP [Sacerdoti et al. (1976)]. [See also the paper by
Bobrow and Raphael (1974).]

EXERCISES

6.1 Represent the following statements as production rules for a
rule-based geometry theorem-proving system:

(a) Corresponding angles of two congruent triangles are
congruent.

(b) Corresponding sides of two congruent triangles are
congruent.

(c) If the corresponding sides of two triangles are congruent,
the triangles are congruent.

(d) The base angles of an isocèles triangle are congruent.

6.2 Consider the following piece of knowledge: Tony, Mike, and John
belong to the Alpine Club. Every member of the Alpine Club who is not
a skier is a mountain climber. Mountain climbers do not like rain, and
anyone who does not like snow is not a skier. Mike dislikes whatever
Tony likes and likes whatever Tony dislikes. Tony likes rain and snow.

Represent this knowledge as a set of predicate calculus statements
appropriate for a backward rule-based deduction system. Show how such
a system would answer the question. "Is there a member of the Alpine
Club who is a mountain climber but not a skier?"

270

EXERCISES

6 3 A blocks-world situation is described by the following set of wffs:

ONTABLE(A) CLEAR(E)
ONTABLE(C) CLEAR(D)
ON(D,C) HEAVY(D)
ON(B,A) WOODEN(B)
HEAVY(B) ON(E,B)

Draw a sketch of the situation that these wffs are intended to describe.

The following statements provide general knowledge about this blocks
world:

Every big, blue block is on a green block.
Each heavy, wooden block is big.
All blocks with clear tops are blue.
All wooden blocks are blue.

Represent these statements by a set of implications having single-literal
consequents. Draw a consistent AND/OR solution tree (using B-rules)
that solves the problem: "Which block is on a green block?"

6.4 Consider the following restricted version of a backward rule-based
deduction system: Only leaf nodes of the AND/OR graph can be
matched against rule consequents or fact literals, and the mgu of the
match is then applied to all leaf nodes in the graph. Explain why the
resulting system is not commutative. Show how such a system would
solve the problem of reversing the list (1,2), using the facts and rules of
Section 6.4. What sort of control regime did you use?

6.5 Discuss how a backward rule-based deduction system should deal
with each of the following possibilities:

(a) A subgoal literal is generated that is an
instance of a higher goal (i.e., one of its
ancestor goals in the AND/OR graph).

(b) A subgoal literal is generated such that a
higher goal is an instance of the subgoal.

(e) A subgoal literal is generated that unifies
with the negation of a higher goal.

271

RULE-BASED DEDUCTION SYSTEMS

(d) A subgoal literal is generated that is
identical to another subgoal literal in the
same potential solution graph.

6.6 Show how RGR can be used in a backward deduction system to
obtain a proof for the goal wff :

[(3x)(Vy)P(x,y)^(Vy)(3x)P(x,y)]

6.7 Propose a heuristic search method to guide rule selection in
rule-based deduction systems.

6.8 Although we have used AND/OR graphs in this chapter to
represent formulas, we have not advocated the use of decomposable
production systems for theorem proving. What is wrong with the idea of
decomposing a conjuctive goal formula, for example, and processing
each conjunct independently? Under what circumstances might decom
position be a reasonable strategy?

6.9 Describe how to use a formula like EQUALS(f(x),g(h(x)))
as a "replacement rule" in a rule-based deduction system. What heuristic
strategies might be useful in using replacement rules?

6.10 Critically examine the following proposal:

An implication of the form (LI Λ L2)=> W,
where LI and L2 are literals, can be used as
an F-rule if it is first converted to the
equivalent form LI => (L2 => W). The rule
can be applied when LI matches a fact literal,
and the effect of the rule is to add the new
F-rule L2 => W.

6.11 Deduction systems based on rule programs cannot (easily) perform
resolutions between facts or between goals. Why not?

6.12 Consider the following electrical circuit diagram:
Rl = 2 ohms

o v w —

- W r

R2 <RJ

R4 = Vi ohm

272

EXERCISES

We represent the fact that resistors Rl and R4 are in series by the
assertion (SERIES RI R4). We represent the fact that the current
through Rl is 2 amperes by the assertion (CURRENT Rl 2). We
represent the fact that Rl has resistance 2 ohms by the assertion
(RESISTANCE Rl 2), etc.

Write a forward rule program that expresses the fact that if a current /
flows through a resistor R, then that same current flows through any
resistor in series with R.

Write a backward rule program that expresses the fact that the voltage
across a resistor is equal to the current through it multiplied by its
resistance. Assuming that the forward program executes first (triggered
by the assertion about the current in Rl), trace the effect of the following
GOAL statement:

GOAL (VOLTAGE R41V).

6.13 Propose facts and rules involving the predicate MEMBER(x,y),
which is intended to mean that atom x is a member of the list of atoms y.
Use these facts and rules in a rule-based deduction system to prove the
goal wff MEMBER (3, cons (4, cons (2, cons (3, NIL)))). What control in
formation results in an efficient search for a proof? What fact would be
needed in order to prove ~MEMBER(3,cons(4,NIL))l

273

CHAPTER 7

BASIC PLAN-GENERATING SYSTEMS

In chapters 5 and 6 we saw that a wide class of deduction tasks could
be solved by commutative production systems. For many other problems
of interest in AI, however, the most natural formulations involve
noncommutative systems. Typical problems of this sort are ones where
goals are achieved by a sequence (or program) of actions. Robot problem
solving and automatic programming are two domains in which these
kinds of problems occur.

7.1. ROBOT PROBLEM SOLVING

Research on robot problem solving has led to many of our ideas about
problem solving systems. Since robot problems are simple and intuitive,
we use examples from this domain to illustrate the major ideas. In the
typical formulation of a "robot problem" we have a robot that has a
repertoire of primitive actions that it can perform in some easy-to-un-
derstand world. In the "blocks world," for example, we imagine a world
of several labeled blocks (like children's blocks) resting on a table or on
each other and a robot consisting of a moveable hand that is able to pick
up and move blocks. Many other types of robot problems have also been
studied. In some problems the robot is a mobile vehicle that performs
tasks such as moving objects from place to place through an environment
containing other objects.

Programming a robot involves integrating many functions, including
perception of the world around it, formulation of plans of action, and
monitoring of the execution of these plans. Here, we are concerned
mainly with the problem of synthesizing a sequence of robot actions that
will (if properly executed) achieve some stated goal, given some initial
situation.

275

BASIC PLAN-GENERATING SYSTEMS

The action synthesis part of the robot problem can be solved by a
production system. The global database is a description of the situation,
or state, of the world in which the robot finds itself, and the rules are
computations representing the robot's actions.

7.1.1. STATE DESCRIPTIONS AND GOAL DESCRIPTIONS

State descriptions and goals for robot problems can be constructed
from predicate calculus wffs, as discussed in chapter 4. As an example,
consider the robot hand and configuration of blocks shown in Figure 7.1.
This situation can be represented by the conjunction of formulas shown
in the figure. The formula CLEAR(B) means that block B has a clear
top; that is, no other block is on it. The ON predicate is used to describe
which blocks are (directly) on other blocks. The "robot" in this situation
is a simple hand that can move blocks about in a manner to be described
momentarily. The predicate HANDEMPTY has value Tjust when the
robot hand is empty, as in the situation depicted. Of course, any finite
conjunction of formulas actually describes a family of different world
situations, where each member can be regarded as an interpretation
satisfying the formulas (as discussed in chapter 4). For brevity, however,
we usually use the phrase "the situation" rather than "the family of
situations."

Goal descriptions also can be expressed as predicate logic formulas.
For example, if we wanted the robot of Figure 7.1 to construct a stack of
blocks in which block B was on block C, and block A was on block 2?, we
might describe the goal as:

ON(B,C) A ON(A,B).
Robot

'Hand

CLEAR (B)
CLEAR (C)

ON{C,A)
HANDEMPTY

ONTABLE(A)
ONTA B LE (B)

Fig. 7.1 A configuration of blocks.

276

ROBOT PROBLEM SOLVING

Such a formula describes a family of world states, any one of which
suffices as a goal.

For ease of exposition, we place certain restrictions on the kinds of
formulas that we allow for descriptions of world states and goals. (Many
of these restrictions could be lifted by using some of the techniques
described in the last chapter for dealing with complex wffs.) For goal (and
subgoal) expressions, we allow conjunctions of literals only, and any
variables in goal expressions are assumed to have existential quantifica
tion. For initial and intermediate state descriptions, we allow only
conjunctions of ground literals (i.e., literals without variables). The
formulas in Figure 7.1 clearly satisfy these restrictions.

7.1.2. MODELING ROBOT ACTIONS

Robot actions change one state, or configuration, of the world into
another. We can model these actions by F-rules that change one state
description into another. One simple, but extremely useful technique for
representing robot actions was employed by a robot problem-solving
system called STRIPS. This technique can be contrasted with our use of
implicational rules as production rules, discussed in chapter 6. There,
when an implicational rule was applied to a global database, the database
was changed, by appending additional structure, but nothing was deleted
from the database. In modeling robot actions, however, F-rules must be
able to delete expressions that might no longer be true. Suppose, for
example, that the robot hand of Figure 7.1 were to pick up block B. Then
certainly the expression ONTABLE(B) would no longer be true and
should be deleted by any F-rule modeling this pick-up action. F-rules of
the STRIPS type specify the expressions to be deleted by listing them
explicitly.

STRI PS-form F-rules consists of three components. The first is the
precondition formula. This component is like the antecedent of an
implicational rule. It is a predicate calculus expression that must logically
follow from the facts in the state description in order for the F-rule to be
applicable to that state description. Consistent with our restrictions on
the form of goal wffs, we assume here that the preconditions of our
F-rules consist of a conjunction of literals. Variables in these precondi
tion formulas are assumed to have existential quantification. To decide
whether or not a conjunction of literals (the precondition formula)
logically follows from another conjunction of literals (the facts) is

277

BASIC PLAN-GENERATING SYSTEMS

straightforward: It follows if there are literals among the facts that unify
with each of the precondition literals and if all of the mgu's are consistent
(that is, if these mgu's have a unifying composition). If such a match can
be found, we say that the precondition of the F-rule matches the facts. We
call the unifying composition, the match substitution. For a given F-rule
and state description, there may be many match substitutions. Each leads
to a different instance of F-rule that can be applied.

The second component of the F-rule is a list of literals (possibly
containing free variables) called the delete list. When an F-rule is applied
to a state description, the match substitution is applied to the literals in
the delete list; and the ground instances thus obtained are deleted from
the old state description as the first step of constructing the new one. We
assume that all of the free variables in the delete list occur as (existentially
quantified) variables in the precondition formula. This restriction en
sures that any match instance of a delete list literal is a ground literal.

The third component is the add formula. It consists of a conjunction of
literals (possibly containing free variables) and is like the consequent of
an implication^ F-rule. When an F-rule is applied to a state description,
the match substitution is applied to the add formula and the resulting
match instance is added to the old state description (after the literals in
the delete list are deleted) as the final step in constructing the new state
description. Again we assume that all of the free variables in the add
formula occur in the precondition formula so that any match instance of
an add formula will be a conjunction of ground literals. Again, it is
possible to lift some of these restrictions on F-rule components; we use
them solely because they make our presentation much simpler.

As an example of an F-rule, we model the action of picking up a block
from a table. Let us say that the preconditions for executing this action are
that the block be on the table, that the hand be empty, and that the block
have nothing on top of it. The effect of the action is that the hand is
holding the block. We might represent such an action as follows:

pickup(X)
Precondition: ONTA B LE (x) A HAND EMPTY

Λ CLEAR(x)
Delete list: ONTABLE(x\ HANDEMPTY, CLEAR(x)
Add formula: HOLDING(x)

Since, with our restrictions, the precondition and add formulas are
conjunctions of literals, we can represent each of them by a set or list of

278

ROBOT PROBLEM SOLVING

literals. Sometimes, as in the above example, the precondition formula
and the delete list contain identical literals. In our example, we have
chosen to include only HOLDING(x) in the add formula rather than,
additionally, the negations of literals in the delete list. For our purposes,
it will suffice merely to delete these literals from the state description.

We see that we can apply pickupO) to the situation of Figure 7.1 only
if B is substituted for x. The new state description, in this case, would be
given by:

CLEAR(C) ON(C,A)
ONTABLE(A) HOLDING(B)

Production systems using STRI PS-form F-rules are not, in general,
commutative because these rules may delete certain literals from a state
description. Such F-rules change one set of states to another set of states,
in contrast to rules based on implications, whose application merely
restricts the original set of states. Special methods must be used with
STRI PS-form rules. These methods are the main focus of this chapter
and chapter 8.

7.13. THE FRAME PROBLEM

To use a familiar analogy, the changes between one state description
and another can be compared to changes between frames in an animated
film. In very simple animations, certain characters move in a fixed
background from frame to frame. In more realistic (and expensive)
animations, many changes occur in the background also. A STRIPS
F-rule (with short delete and add lists) treats most of the wffs in a state
description as fixed background.

The problem of specifying which wffs in a state description should
change and which should not is usually called the frame problem in AI.
The best approach to dealing with the frame problem depends on the sort
of world states and actions that we are modeling. Speaking loosely, if the
components of a world state are very closely coupled or unstable, then
each action might have profound and global effects on the world state. In
such a world, picking up the top block from a stack of blocks, for
example, might topple the whole stack of blocks, causing other stacks to
topple also, in domino fashion. A simple STRIPS F-rule would not be an
appropriate action model in that kind of world.

279

BASIC PLAN-GENERATING SYSTEMS

Typically, the components of a world state are sufficiently decoupled to
permit us to assume that the effects of actions are relatively local. When
such an assumption is justified, STRIPS F-rules are efficient and
appropriate models of many types of actions.

Applying an F-rule to a state description can be regarded as simulating
the action represented by the F-rule. Simulations vary with respect to the
level of detail and accuracy with which they model actions. The F-rule
pickupO), for example, is a much more approximate representation of
the pick-up action than a simulation program that took into account such
factors as the weight and size of blocks, friction in robot arm joints,
ambient temperature, etc. In the next chapter we argue that it is useful to
have models of actions at several levels of detail. Gross and approximate
models are useful for computing high-level plans; more accurate models
are necessary for computing detailed plans. Typically, the frame problem
is more critical for the detailed models because they must take into
account couplings among world state components that might be ignored
at higher levels.

Another aspect of the frame problem concerns how to deal with
anomalous conditions. We can regard the F-rule pickup(x) as being an
appropriate model for the normal operation of a picking-up action. But
suppose the robot arm is broken, or that the block being picked up is too
heavy, or that there is a power failure that prevents the motors in the arm
from operating, or that the block being picked up is glued to the table,
etc. Of course, we could include the negation of each of these anomalous
conditions in the precondition of the F-rule to render the rule inapplica
ble as appropriate. But there are too many such conditions (an infinite
number might be imagined), and normally the deviant conditions do not
hold. Yet, if any of them do hold, the simple F-rule model is inaccurate.

Several approaches to the problem of anomalous conditions have been
suggested, but none of these, so far, is compelling. If a hierarchy of action
models is used, it seems that the most detailed and accurate simulations
automatically take into account all of the conditions of which the system
can (by definition) be aware.

Let us leave the frame problem now and make use of the representa
tions that we have been discussing in systems for solving robot problems.
We begin with a forward production system.

280

A FORWARD PRODUCTION SYSTEM

7.2. A FORWARD PRODUCTION SYSTEM

The simplest type of robot problem-solving system is a production
system that uses the state description as the global database and the rules
modeling robot actions as F-rules. In such a system, we select applicable
F-rules to apply until we produce a state description that matches the
goal expression. Let us examine how such a system might operate in a
concrete example.

Consider the F-rules given below, in STRI PS-form, corresponding to a
set of actions for the robot of Figure 7.1.

1) pickup(jc)
P & D : ONTABLE(x%CLEAR(x), HANDEMPTY
A: HOLDING(x)

2) putdown(x)
P & D : HOLDING(x)
A: ONTABLE(x), CLEAR(x), HANDEMPTY

3) stack(;c,j)
P & D : HOLDING(x),CLEAR(y)
A: HANDEMPTY, ΟΝ(χ,γ), CLEAR(x)

4) unstack(jc,j)
P & D : HANDEMPTY, CLEAR(x), ΟΝ(χ,γ)
A: HOLDING(x),CLEAR(y)

Note that in each of these rules, the precondition formula (expressed as a
list of literals) and the delete list happen to be identical. The first rule is
the same as the rule that we used as an example in the last section. The
others are models of actions for putting down, stacking, and unstacking
blocks.

Suppose our goal is the state shown in Figure 7.2. Working forward
from the initial state description shown in Figure 7.1, we see that
pickup(B) and unstack(C,A) are the only applicable F-rules. Figure 7.3
shows the complete state-space for this problem, with a solution path
indicated by the dark branches. The initial state description is labeled

281

BASIC PLAN-GENERATING SYSTEMS

B

C

GOAL: [ON(B,C)AON(A,B)}

Fig. 7.2 Goal for a robot problem.

SO, and a state matching the goal is labeled G in Figure 7.3. (Contrary to
custom and merely to reveal symmetries in the problem, SO is not the top
node in Figure 7.3.) Note that in this example, each F-rule has an inverse.

In this very simple example (with only 22 states in the entire
state-space), a forward production system, with an unsophisticated
control strategy, can quickly find a path to a goal state. For more complex
problems, we would expect, however, that a forward search to the goal
would generate a rather large graph and that such a search would be
feasible only if combined with a well-informed evaluation function.

7.3. A REPRESENTATION FOR PLANS

We can construct the desired sequence of actions for achieving the goal
in our example by referring to the F-rules labeling the arcs along the
branch to the goal state. The sequence is: (unstack(C,̂ 4), putdown(C),

,pickup(£), stack(£,C), pickup(^), stack(^,5)}. We call such a se
quence di plan for achieving the goal. (In this case all of the elements of
the plan refer to "primitive" actions. In chapter 8 we consider plans
whose elements might themselves be intermediate level goals requiring
further and more detailed problem solving before being reduced to
primitive actions.)

For many purposes, it is useful to have additional information
included in a specification of a plan. We might want to know, for
example, what the relationships are between the F-rules and the
preconditions that they provide for other F-rules. Such contextual
information can be provided conveniently by a triangular table whose
entries correspond to the preconditions and additions of the F-rules in
the plan.

282

pu
td

ow
n(

£
),

/'
^^

pi
ck

up
(Ä

)

y
ac

k(

pi
c

sta
c G

C
LE

AR
iA

)
C

LE
AR

iC
)

H
O

LD
IN

G
 iB

)
O

N
TA

BL
Ei

A)

O
N

TA
BL

Ei
C

)

y^
sta

ck
(B

,A
y\

C
LE

AR
iA

)
O

N
TA

BL
Ei

A)

C
LE

AR
iB

)
O

N
TA

BL
Ei

B)

C
LE

AR
iC

)
O

N
TA

BL
Ei

C
)

H
AN

D
EM

PT
Y

\
/

pi
ck

up
 (/

i i
rS

/N
.

pu
td

ow
n(

/4
)

pi
ck

up
 (C

)\

X
pu

td
ow

n(
C

)

\u
ns

ta
ck

(Ä
,,4

)
y

1
C

LE
AR

 iA
)

1
C

LE
AR

iB
)

H
O

LD
IN

G
iC

)
O

N
TA

BL
Ei

A)

\
O

N
TA

BL
Ei

B)

\

/ \S

st
ac

k(
C

,/l
)V

B,

C)
//u

ns
ta

ck
(B

,C
)

\
\

st
ac

k(
C

.Ä
)/

^/
un

st
ac

k(
C

,5
)

C
LE

AR
 (A

)
O

N
iB

.C
)

C
LE

AR
 iB

)
O

N
TA

BL
E

(A
)

O
N

TA
 B

LE
(C

)
H

AN
D

EM
PT

Y

iu
p(

A
)

1
pu

td
ov

O
N

iB
.C

)
C

LE
AR

iB
)

H
O

LD
IN

G
(A

)
O

N
TA

BL
Ei

C
)

k(
A.

B)
 1

l un
s t

ac

C
LE

AR
iA

)
O

N
iA

.B
)

O
N

iB
.C

)
O

N
TA

BL
Ei

C
)

H
AN

D
EM

PT
Y

C
LE

AR
iC

)
O

N
iB

.A
)

C
LE

AR
iB

)
O

N
TA

BL
Ei

A)

O
N

TA
BL

Ei
C

)
H

AN
D

EM
PT

Y

pi
ck

up
(C

)
m

(

sta
<

kM
 4)

C
LE

AR
iA

)
O

N
(C

.B
)

C
LE

AR
iC

)
O

N
TA

BL
Ei

A)

O
N

TA
BL

Ei
B)

H

AN
D

EM
PT

Y
A

 pu
td

ow
n(

C
)

O
N

iB
.A

)
C

LE
AR

iB
)

H
O

LD
IN

G
iC

)
O

N
TA

BL
Ei

A)

M
CB

)

.B
)

r

l un
s t

ac

C
LE

AR
iC

)
O

N
iC

B)

O
N

iB
,A

)
O

N
TA

BL
Ei

A)

H
AN

D
EM

PT
Y

pi
ck

up
(/4

)

«c

i '

50

V

un
st

ac
k(

C
,/l

)
/

C
LE

AR
iB

)
C

LE
AR

iC
)

H
O

LD
IN

G
iA

)
O

N
TA

BL
Ei

B)

O
N

TA
BL

Ei
C

)

y/
st

ac
k(

/l
.Ä

)V
 \u

ns
ta

ck
(i

4.
£)

Ν

Λ
^

st
ac

k(
/l

,C
)/

/u
ns

ta
ck

(^
,C

)
\

\

C
LE

AR
iB

)
O

N
iC

A)

C
LE

AR
iC

)
O

N
TA

BL
Ei

A)

O
N

TA
BL

Ei
B)

H

AN
D

EM
PT

Y

pi
ck

up
(Ä

)
pu

td
ow

n(
/l

)

O
N

iC
B)

C

LE
AR

iC
)

H
O

LD
IN

G
iA

)
O

N
TA

BL
Ei

B)

B)

ta
ck

M
.C

) 1

i '

C
LE

AR
iB

)
O

N
iA

.C
)

C
LE

AR
iA

)
O

N
TA

BL
Ei

B)

O
N

TA
BL

Ei
C

)
H

AN
D

EM
PT

Y
1

A
 pu

td
ow

n(
ß)

O
N

iC
A)

C

LE
AR

iC
)

H
O

LD
IN

G
iB

)
O

N
TA

BL
Ei

A)

st
ac

k(
5,

C
)

un
st

ac
k(

/l,
C

)

C
LE

AR
iA

)
O

N
iA

.C
)

O
N

iC
B)

O

N
TA

BL
Ei

B)

H
AN

D
EM

PT
Y

*

A

pi
ck

up
(#

)| ir

C
LE

AR
iC

)
O

N
iA

.B
)

C
LE

AR
iA

)
O

N
TA

BL
Ei

B)

O
N

TA
BL

Ei
C

)
H

AN
D

EM
PT

Y

pi
ck

up
(C

)
pu

td
ow

n(
C

)
pu

td
ow

n(
ß)

O
N

iA
.C

)
C

LE
AR

iA
)

H
O

LD
IN

G
iB

)
O

N
TA

BL
Ei

C
)

un
st

ac
k(

Ä
.C

)
s

C
LE

AR
iB

)
O

N
iB

.C
)

O
N

iC
A)

O

N
TA

BL
Ei

A)

H
AN

D
EM

PT
Y

A

ta
ck

(5
.,4

) •

O
N

iA
.B

)
C

LE
AR

iA
)

H
O

LD
IN

G
iC

)
O

N
TA

BL
Ei

B)

5t
ac

k(
C,

/l
)

A
 un

st
ac

k(
C

M
)

un
st

ac
k(

Ä
,/l

)

C
LE

AR
iB

)
O

N
iB

.A
)

O
N

iA
.C

)
O

N
TA

BL
Ei

C
)

H
AN

D
EM

PT
Y

C
LE

AR
iC

)
O

N
iC

A)

O
N

iA
.B

)
O

N
TA

BL
Ei

B)

H
AN

D
EM

PT
Y

> w

w
 s δ TI

00

Fi
g.

 7
.3

 T
he

 st
at

e-
sp

ac
e f

or
 a

 r
ob

ot
 p

ro
bl

em
.

BASIC PLAN-GENERATING SYSTEMS

An example of a triangle table is shown in Figure 7.4. It is a table whose
columns are headed by the F-rules in the plan. Let the leftmost column
be called the zero-th column; then they-th column is headed by they-th
F-rule in the sequence. Let the top row be called the first row. If there are
N F-rules in the plan sequence, then the last row is the (N + l)-th row.
The entries in cell (/,y) of the table, for y > 0 and i < N + 1, are those
literals added to the state description by they-th F-rule that survive as
preconditions of the i-th F-rule. The entries in cell (/,0), for i < N + 1,
are those literals in the initial state description that survive as precondi
tions of the i-th F-rule. The entries in the (N + l)-th row of the table are
then those literals in the original state description, and those added by the
various F-rules, that are components of the goal (and that survive the
entire sequence of F-rules).

Triangle tables can easily be constructed from the initial state
description, the F-rules in the sequence, and the goal description. These
tables are concise and convenient representations for robot plans. The
entries in the row to the left of the ι-th F-rule are precisely the
preconditions of the F-rule. The entries in the column below the i-th
F-rule are precisely the add formula literals ofthat F-rule that are needed
by subsequent F-rules or that are components of the goal.

Let us define the i-th kernel as the intersection of all rows below, and
including, the i-th row with all columns to the left of the i-th column. The
4th kernel is outlined by double lines in Figure 7.4. The entries in the i-th
kernel are then precisely the conditions that must be matched by a state
description in order that the sequence composed of the i-th and
subsequent F-rules be applicable and achieve the goal. Thus, the first
kernel, that is, the zero-th column, contains those conditions of the initial
state needed by subsequent F-rules and by the goal; the (JV + l)-th
kernel [i.e.,the(A^ + l)-th row] contains the goal conditions themselves.
These properties of triangle tables are very useful for monitoring the
actual execution of robot plans.

Since robot plans must ultimately be executed in the real world by a
mechanical device, the execution system must acknowledge the possibil
ity that the actions in the plan may not accomplish their intended effects
and that mechanical tolerances may introduce errors as the plan is
executed. As actions are executed, unplanned effects might either place
us unexpectedly close to the goal or throw us off the track. These
problems could be dealt with by generating a new plan (based on an
updated state description) after each execution step, but obviously, such

284

0

1 2 3 4 5 6 7

H
AN

D
EM

PT
Y

CL
EA

R(
C)

O

N
(C

,A
)

O
N

TA
BL

E(
B)

CL

EA
R(

B)

O
N

TA
BL

E(
A)

1

un
st

ac
k(

C
,/l

)

H
O

LD
IN

G
S)

CL
EA

R{
A)

2

pu
td

ow
n(

C
)

H
AN

D
EM

PT
Y

CL
EA

R(
C)

3

pi
ck

up
(Z

?)

H
O

LD
IN

G
(B

)\
4

st
ac

k(
fl.

C
)

H
AN

D
EM

PT
Y

CL
EA

R(
B)

O
N

(B
,C

)

5
pi

ck
up

(/l
)

H
O

LD
IN

G
(A

)
6

st
ac

ks
, B

)

O
N

(A
,B

)

> M

M

e«

M
 δ g

to

oo

KJ
Ì

Fi
g.

 7
.4

 A
 t

ria
ng

le
 ta

bl
e.

BASIC PLAN-GEN ERATING SYSTEMS

a strategy would be too costly, so we instead seek a scheme that can
intelligently monitor progress as a given plan is being executed.

The kernels of triangle tables contain just the information needed to
realize such a plan execution system. At the beginning of a plan
execution, we know that the entire plan is applicable and appropriate for
achieving the goal because the literals in the first kernel are matched by
the initial state description, which was used when the plan was created.
(Here we assume that the world is static; that is, no changes occur in the
world except those initiated by the robot itself.) Now suppose the system
has just executed the first / — 1 actions of a plan sequence. Then, in order
for the remaining part of the plan (consisting of the /-th and subsequent
actions) to be both applicable and appropriate for achieving the goal, the
literals in the /-th kernel must be matched by the new current state
description. (We presume that a sensory perception system continuously
updates the state description as the plan is executed so that this
description accurately models the current state of the world.) Actually,
we can do better than merely check to see if the expected kernel matches
the state description after an action; we can look for the highest
numbered matching kernel. Then, if an unanticipated effect places us
closer to the goal, we need only execute the appropriate remaining
actions; and if an execution error destroys the results of previous actions,
the appropriate actions can be re-executed.

To find the appropriate matching kernel, we check each one in turn
starting with the highest numbered one (which is the last row of the table)
and work backward. If the goal kernel (the last row of the table) is
matched, execution halts; otherwise, supposing the highest numbered
matching kernel is the /-th one, then we know that the /-th F-rule is
applicable to the current state description. In this case, the system
executes the action corresponding to this /-th F-rule and checks the
outcome, as before, by searching again for the highest numbered
matching kernel. In an ideal world, this procedure merely executes in
order each action in the plan. In a real-world situation, on the other hand,
the procedure has the flexibility to omit execution of unnecessary actions
or to overcome certain kinds of failures by repeating the execution of
appropriate actions. Replanning is initiated when there are no matching
kernels.

As an example of how this process might work, let us return to our
block-stacking problem and the plan represented by the triangle table in
Figure 7.4. Suppose the system executes actions corresponding to the first

286

A BACKWARD PRODUCTION SYSTEM

four F-rules and that the results of these actions are as planned. Now
suppose the system attempts to execute the pick-up-block-v4 action, but
the execution routine (this time) mistakes block B for block A and picks
up block B instead. [Assume again that the perception system accurately
updates the state description by adding HOLDING(B) and deleting
ON(B, C); in particular, it does not add HOLDING(A).] If there were
no execution error, the 6th kernel would now be matched; the result of
the error is that the highest numbered matching kernel is now kernel 4.
The action corresponding to stack(£, C) is thus re-executed, putting the
system back on the track.

The fact that the kernels of triangle tables overlap can be used to
advantage to scan the table efficiently for the highest numbered matching
kernel. Starting in the bottom row, we scan the table from left to right,
looking for the first cell that contains a literal that does not match the
current state description. If we scan the whole row without finding such a
cell, the goal kernel is matched; otherwise, if we find such a cell in column
/, the number of the highest numbered matching kernel cannot be greater
than i. In this case, we set a boundary at column i and move up to the
next-to-bottom row and begin scanning this row from left to right, but
not past column /. If we find a cell containing an unmatched literal, we
reset the column boundary and move up another row to begin scanning
that row, etc. With the column boundary set to k, the process terminates
by finding that the À>th kernel is the highest numbered matching kernel
when it completes a scan of the fc-th row (from the bottom) up to the
column boundary.

7.4. A BACKWARD PRODUCTION SYSTEM

7.4.1. DEVELOPMENT OF THE B-RULES

In order to construct robot plans in an efficient fashion, we often want
to work backward from a goal expression to an initial state description,
rather than vice versa. Such a system starts with a goal description (again
a conjunction of literals) as its global database and applies B-rules to this
database to produce subgoal descriptions. It successfully terminates
when it produces a subgoal description that is matched by the facts in the
initial state description.

287

BASIC PLAN-GENERATING SYSTEMS

Our first step in designing a backward production system is to specify a
set of B-rules that transform goal expressions into subgoal expressions.
One strategy is to use B-rules that are based on the F-rules that we have
just discussed. A B-rule that transforms a goal G into a subgoal G' is
logically based on the corresponding F-rule that when applied to a state
description matching Gf produces a state description matching G.

We know that the application of an F-rule to any state description
produces a state description that matches the add list literals. Therefore,
if a goal expression contains a literal, L, that unifies with one of the
literals in the add list of an F-rule, then we know that if we produce a state
description that matches appropriate instances of the preconditions of
that F-rule, the F-rule can be applied to produce a state description
matching L. Thus, the subgoal expression produced by a backward
application of an F-rule must certainly contain instances of the precon
ditions of that F-rule. But if the goal expression contains other literals
(besides L), then the subgoal expression must also contain other literals,
which after application of the F-rule, become those other literals (i.e.,
other than L) in the goal expression.

7.4.2. REGRESSION

To formalize what we have just stated, suppose that we have a goal
given by a conjunction of literals [L Λ Gl A ... Λ GN] and that we
want to use some F-rule (backward) to produce a subgoal expression.
Suppose an F-rule with precondition formula, P, and add formula, A,
contains a literal U in A that unifies with L, with most general unifier u.
Application of u to the components of the F-rule creates an instance of
the F-rule. Certainly the literals in Pu are a subset of the literals of the
subgoal that we seek. We must also include the expressions Gl\ ..., GN'
in the complete subgoal. The expressions Gl\ ..., GN' must be such that
the application of the instance of the F-rule to any state description
matching these expressions produces a state description matching
G7,..., GN. Each GÏ is called the regression oïGi through the instance of
the F-rule. The process of obtaining GV from Gi is called regression.

For F-rules specified in the simple STRI PS-form, the regression
procedure is quite easily described for ground instances of rules. (A
ground instance of an F-rule is an instance in which all of the literals in the
precondition formula, the delete list, and the add formula are ground

288

A BACKWARD PRODUCTION SYSTEM

literals.) Let R [Q ; Fu] be the regression of a literal Q through a ground
instance Fu of an F-rule with precondition, P, delete list, D, and add list,
A. Then,

if Qu is a literal in Au,

R[Q;Fu] = T(Truc)

else, if Qu is a literal in Du,

R[Q ; Fu] = F (False)

else, # [£ ; / *] = Qw

In simpler terms, ß regressed through an F-rule is trivially TifQis one of
the add literals, it is trivially F if Q is one of the deleted literals; otherwise,
it is Q itself.

Regressing expressions through incompletely instantiated F-rules is
slightly more complicated. We describe how we deal with incompletely
instantiated F-rules by some examples. Suppose the F-rule is unstack,
given earlier and repeated here:

unstack(jc,j)
P&D: HANDEMPTY, CLEAR(x), ON(x,y)
A: HOLDING(x),CLEAR(y)

In particular, suppose we are considering the instance umteck(B,y),
perhaps because our goal is to produce HOLDING(B). This instance is
not fully instantiated. If we were to regress HOLDING(B) through this
F-rule instance, we would obtain T, as expected. (The literal HOLD
ING (B) is unconditionally true in the state resulting after applying the
F-rule.) If we were to regress HANDEMPTY through this F-rule
instance, we would obtain F. (The literal HANDEMPTY can never be
true immediately after applying unstack.) If we were to regress OiV-
TABLE(C), we would obtain ONTABLE(C). (The literal ON-
TABLE(C) is unaffected by the F-rule.)

Suppose we attempt to regress CLEAR(C) through this incompletely
instantiated instance of the F-rule. Note that if y were equal to C,
CLEAR(C) would regress to T\ otherwise, it would simply regress to

289

BASIC PLAN-GEN ERATING SYSTEMS

CLEAR (C). We could summarize this result by saying that CLEAR (C)
regresses to the disjunction (y == C) V CLEAR(C). (In order for
CLEAR (C) to hold after applying any instance of unstack(2?,/), either/
must be equal to C or CLEAR(C) had to have held before applying the
F-rule.) Unfortunately, to accept a disjunctive subgoal expression would
violate our restrictions on the allowed forms of goal expressions. Instead,
when such a case arises, we produce two alternative subgoal expressions.
In the present example, one subgoal expression would contain the
precondition of unstack(i?,C), and the other would contain the unin-
stantiated precondition of unstack(Z?,j) conjoined with the literal
~{y = C).

A related complication occurs when we regress an expression matching
an incompletely instantiated literal in the delete list. Suppose, for
example that we want to regress CLEAR (C) through unstack(x, B). If x
were equal to C, then CLEAR(C) would regress to F\ otherwise, it
would regress to CLEAR (C). We could summarize this result by saying
that CLEAR(C) regressed to

[(JC = C)=>F]A[~(x = C)^>CLEAR(C)].

As a goal, this expression is equivalent to the conjunction
[~(JC = C) A CLEAR(C)].

The reader might ask what would happen if we were to regress
CLEAR(B) through unstack(2?,j). In our example, we would obtain T
for the case y — B. But y — B corresponds to the instance unstack(B, B),
which really ought to be impossible because its precondition involves
ON(B,B). Our simple example would be made more realistic by adding
the precondition ~(x = y) to unstack(jc,j).

In summary, a STRI PS-form F-rule can be used as a B-rule in the
following manner. The applicability condition of the B-rule is that the
goal expression contain a literal that unifies with one of the literals in the
add list of the F-rule. The subgoal expression is created by regressing the
other (the nonmatched) literals in the goal expression through the match
instance of the F-rule and conjoining these and the match instance of the
precondition formula of the F-rule.

Let's consider a few more examples to illustrate the regression process.
Suppose our goal expression is [ΟΝ(Α,Β) Λ ON(B,C)]. Referring to
the F-rules given earlier, there are two ways in which stack(x,y) can be

290

A BACKWARD PRODUCTION SYSTEM

used on this expression as a B-rule. The mgu's for these two cases are
{A/x,B/y} and {B/x,C/y}. Let's consider the first of these. The
subgoal description is constructed as follows:

(1) Regress the (unmatched) expression ON(B, C)
through stack(,4,£) yielding ON(B, C).

(2) Add the expressions HOLDING (A), CLE A R(B)
to yield, finally, the subgoal
[ON(B,C) A HOLDING{A) A CLEAR(B)].

Another example illustrates how subgoals having existentially
quantified variables are created. Suppose our goal expression is
CLEAR(A). Two F-rules have CLEAR on their add list. Let's consider
unstack(x,y). As a B-rule, the mgu is {A/y}, and the subgoal expression
created is [HANDEMPTYA CLEAR(x) A ON(x,A)l In this ex
pression, the variable x is interpreted as existentially quantified. That is,
if we can produce a state in which there is a block that is on A and whose
top is clear, we can apply the F-rule, unstack, to this state to achieve a
state that matches the goal expression, CLEAR(A).

A final example illustrates how we might generate "impossible"
subgoal descriptions. Suppose we attempt to apply the B-rule version of
unstack to the goal expression [CLEAR(A) A HANDEMPTY]. The
mgu is {A/y}. The regression of HANDEMPTY through unstackO^)
is F. Since no conjunction containing F can be achieved, we see that the
application of this B-rule has created an impossible subgoal. [That is,
there is no state from which the application of an instance of un-
stack(x,^) produces a state matching CLEAR(A) Λ HANDEMPTY.]

Impossible goal states might be detected in other ways also. In general,
we could use some sort of theorem prover to attempt to deduce a
contradiction. If a goal expression is contradictory, it cannot be achieved.
Checking for the consistency of goals is important in order to avoid
wasting effort attempting to achieve those that are impossible.

Sometimes the mgu of a match between a literal on the add list of an
F-rule and a goal literal does not further instantiate the F-rule. Suppose,
for example, that we want to use the STRIPS rule unstack(u, C) as a
B-rule applied to the goal [CLEAR(x) A ONTABLE(x)]. The mgu is
{ C/x } . Now, even though this substitution does not further instantiate

291

BASIC PLAN-GEN ERATING SYSTEMS

unstack(w, C), the substitution is used in the regression process. When
ONTABLE(x) is regressed through this instance of unstack(w, C), we
obtain ONTABLE(C).

7.43. AN EXAMPLE SOLUTION

Let us show how a backward production system, using the STRIPS
rules given earlier, might achieve the goal:

[ON(A,B)AON(B,C)].

In this particular example, the subgoal space generated by applying all
applicable B-rules is larger than the state space that we produced using
F-rules. Many of the subgoal descriptions, however, are "impossible,"
that is, either they contain F explicitly or rather straightforward theorem
proving would reveal their impossibility. Pruning impossible subgoals
greatly reduces the subgoal space.

In Figure 7.5 we show the results of applying some B-rules to our
example goal. (The tail of each B-rule arc is adjacent to that goal literal
used to match a literal in the add list of the rule.) Note in Figure 7.5 that
when unstack was matched against CLEAR(B), it was not fully
instantiated. As we discussed earlier, if a possible instantiation allows a
literal in the add list of the rule to match a literal in the goal expression,
we make this instantiation explicit by creating a separate subgoal node
using it.

All but one of the tip nodes in this figure can be pruned. The tip nodes
marked "*" all represent impossible goals. That is, no state description
can possibly match these goals. In one of them, for example, we must
achieve the conjunct [HOLDING(B) A ON(A,B)], an obvious im
possibility. We assume that our backward reasoning system has some sort
of mechanism for detecting such unachievable goals.

The tip node marked "**" can be viewed as a further specification of
the original goal (that is, it contains all of the literals in the original goal
plus some additional ones.) Heuristically, we might prune (or at least
delay expansion of) this subgoal node, because it is probably harder to
achieve than the original goal. Also, this subgoal is one of those produced
by matching CLEAR (B) against the add list of a rule. Since CLEAR (B)
is already true in the initial state, there are heuristic grounds against

292

A BACKWARD PRODUCTION SYSTEM

stacks , B) stack(£,C)

HOLDING(A)

CLEAR(B)

ON(B,C)

pickup(A) / stack(£, C)

ONTABLE(A)
CLEAR(A)
HANDEMPTY
ON(B,C)
CLEAR(B)

unstack(jt:,Ä)

HOLDING(B)
CLEAR(C)
HOLDING(A)

HANDEMPTY
CLEAR(x)
ON(x,B)
(x±A)
HOLDING(A)
ON(B,C)

HANDEMPTY
CLEAR(A)
ON{A,B)
ON(B,C)

Fig. 7.5 Part of the backward {goat) search graph for a robot problem.

attempting to achieve it when it occurs in subgoal descriptions. (Some
times, of course, goal literals that already match literals in the initial state
might get deleted by early F-rules in the plan and need to be reachieved
by later F-rules. Thus, this heuristic is not always reliable.)

The pruning operations leave just one subgoal node. The immediate
successors of this subgoal are shown numbered in Figure 7.6. In this
figure, nodes 1 and 6 contain conditions on the value of the variable x.
(Conditions like these are inserted by the regression process when the
delete list of the rule contains literals that might match regressed literals.)
Both nodes 1 and 6 can be pruned in any case, because they contain the
literal F, which makes them impossible to achieve. Note also that node 2
is impossible to achieve because of the conjunction HOLD
ING(B) A ON (B,C). Node 4 is identical to one of its ancestors (in
Figure 7.5), so it can be pruned also. (If a subgoal description is merely
implied by one of its ancestors instead of being identical to one of them,

293

BASIC PLAN-GENERATING SYSTEMS

unstack(x,^l)

HANDEMPTY
CLEAR(x)
ON(x,A)
ONTABLE(A)
F
ON(B,C)
CLEAR(B)

From Regressing
~ HANDEMPTY

unstack(x,Z?)

HANDEMPTY
CLEAR(x)
ON(x,B)
ONTABLE(A)
CLEAR(A)
(ΧΦΑ)
F
ON(B,C)

From Regressing
" HANDEMPTY

\
pickupM)

ONTABLE(A)

CLEAR(A)

HANDEMPTY

ON{B,C) putdown(v4)

CLEAR(B)

HOLDING(B)
ONTABLE(A)
CLEAR(A)
ON(B,C)

HOLDING(B)
CLEAR(C)
ONTABLE(A)
CLEAR(A)

HOLDING(x)
ONTABLE(A)
CLEAR(A)
(x*A)
ON(B,C)
CLEAR(B)

Fig. 7.6 Continuation of the backward search graph.

294

A BACKWARD PRODUCTION SYSTEM

unstack(ß.v)

HOLDING {x)
ONTABLE(B)

CLEAR(B)
{χΦΒ)
CLEAR(C)
(x*C)
ONTA BLE (A)
CLEAR (A)

This subgoal
matches
the initial

state
description

Fig. 7.7 Conclusion of the backward search graph.

295

BASIC PLAN-GENERATING SYSTEMS

we cannot, in general, prune it. Some of the successors generated by the
ancestor might have been impossible because literals in the ancestor, but
not in the subgoal node, might have regressed to F.)

These pruning operations leave us only nodes 5 and 3. Let's examine
node 5 for a moment. Here we have an existential variable in the goal
description. Since the only possible instances that can be substituted for x
(namely, B and C in this case) lead to impossible goals, we are justified in
pruning node 5 also.

In Figure 7.7 we show part of the goal space below node 3, the sole
surviving tip node from Figure 7.6. This part of the space is a bit more
branched than before, but we soon find a solution. (That is, we produce a
subgoal description that matches the initial state description.) If we
follow the B-rule arcs back to the top goal (along the darkened branches),
we see that the following sequence of F-rules solves our problem:
{unstack(C,v4), putdown(C), pickup(2?), stack(2?, C), pickup(^l),
s tacks , £) } .

7.4.4. INTERACTING GOALS

When literals in a goal description survive into descendant descrip
tions, some of the same B-rules are applicable to the descendants as were
applicable to the original goal. This situation can involve us in a search
through all possible orderings of a sequence of rules before one that is
acceptable is found. In problems for which several possible orderings of
the different rules are acceptable, such a search is wastefully redundant.
This efficiency problem is the same one that led us to the concept of
decomposable systems.

One way to avoid the redundancy of multiple solutions to the same
goal component in different subgoals is to isolate a goal component and
work on it alone until it is solved. After solving one of the components, by
finding an appropriate sequence of F-rules, we can return to the
compound goal and select another component, and so on. This process is
related to splitting or decomposing compound (i.e., conjunctive) goals
into single-literal components and suggests the use of decomposable
systems.

If we attempted to use a decomposable system to solve our example
block-stacking problem, the compound goal would be split as shown in
Figure 7.8. Suppose the initial state of the world is as shown in Figure 7.1.
296

A BACKWARD PRODUCTION SYSTEM

If we work on the component goal ON(B,C) first, we easily find the
solution sequence (pickup(2?), stack(2?, C)}. But if we apply this
sequence, the state of the world would change, so that a solution to the
other component goal, ON(A,B), would become more difficult. Fur
thermore, any solution to ON(A,B) from this state must "undo" the
achieved goal, ON(B,C). On the other hand, if we work on the goal
ON(A,B) first, we find we can achieve it by the sequence {un-
stack(C,^4), putdown(C), stack(A,B)}. Again, the state of the world
would change to one from which the other component goal, ON(B,C),
would be harder to solve. There seems no way to solve this problem by
selecting one component, solving it, and then solving the other compo
nent without undoing the solution to the first.

We say that the component goals of this problem interact. Solving one
goal undoes an independently derived solution to the other. In general,
when a forward production system is noncommutative, the correspond
ing backward system is not decomposable and cannot work on compo
nent goals independently. Interactions caused by the noncommutative
effects of F-rule applications prevent us from being able to use success
fully the strategy of combining independent solutions for each compo
nent.

In our example problem, the component goals are highly interactive.
But in more typical problems, we might expect that component goals
would occasionally interact but often would not. For such problems, it
might be more efficient to assume initially that the components of
compound goals can be solved separately, handling interactions, when
they arise, by special mechanisms—rather than assuming that all
compound goals are likely to interact. In the next section we describe a
problem-solving system named STRIPS that is based on this general
strategy.

Fig. 7.8 Splitting a compound goal.

297

BASIC PLAN-GENERATING SYSTEMS

7.5. STRIPS

The STRIPS system was one of the early robot problem-solving
systems. STRIPS maintains a "stack" of goals and focuses its problem-
solving effort on the top goal of the stack. Initially, the goal stack contains
just the main goal. Whenever the top goal in the goal stack matches the
current state description, it is eliminated from the stack, and the match
substitution is applied to the expressions beneath it in the stack.
Otherwise, if the top goal in the goal stack is a compound goal, STRIPS
adds each of the component goal literals, in some order, above the
compound goal in the goal stack. The idea is that STRIPS works on each
of these component goals in the order in which they appear on the stack.
When all of the component goals are solved, it reconsiders the compound
goal again, re-listing the components on the top of the stack if the
compound goal does not match the current state description. This
reconsideration of the compound goal is the (rather primitive) safety
feature that STRIPS uses to deal with the interacting goal problem. If
solving one component goal undoes an already solved component, the
undone goal is reconsidered and solved again if needed.

When the top (unsolved) goal on the stack is a single-literal goal,
STRIPS looks for an F-rule whose add list contains a literal that can be
matched to it. The match instance of this F-rule then replaces the
single-literal goal at the top of the stack. On top of the F-rule is then
added the match instance of its precondition formula, P. If P is
compound and does not match the current state description, its compo
nents are added above it, in some order, on the stack.

When the top item on the stack is an F-rule, it is because the
precondition formula of this F-rule was matched by the current state
description and removed from the stack. Thus, the F-rule is applicable,
and it is applied to the current state description and removed from the
top of the stack. The new state description is now used in place of the
original one, and the system keeps track of the F-rule that has been
applied for later use in composing a solution sequence.

We can view STRIPS as a production system in which the global
database is the combination of the current state description and the goal
stack. Operations on this database produce changes to either the state
description or to the goal stack, and the process continues until the goal
stack is empty. The "rules" of this production system are then the rules

298

STRIPS

that transform one global database into another. They should not be
confused with the STRIPS rules that correspond to the models of robot
actions. These top-level rules change the global database, consisting of
both state description and goal stack. STRIPS rules are named in the goal
stack and are used to change the state description.

The operation of the STRIPS system with a graph-search control
regime produces a graph of global databases, and a solution corresponds
to a path in this graph leading from the start to a termination node. (A
termination node is one labeled by a database having an empty goal
stack.)

Let us see how STRIPS might solve a rather simple block-stacking
problem. Suppose the goal is [ON(C, B) and ON {A, C)], and the initial
state is as shown in Figure 7.1. We note that this goal can be simply
accomplished by putting C on B and then putting A on C. We use the
same STRIPS rules as before.

In Figure 7,9 we show part of a graph that might be generated by
STRIPS during the solution of this example problem. (For clarity, we
show a picture of the state of the blocks along with each state description.)
Since this problem was very simple, STRIPS quite easily obtains the
solution sequence {unstack(C, A), stack(C, B), pickup(A),
stack(^,C)}.

STRIPS has somewhat more difficulty with the problem whose goal is
[ON(B,C) Λ ON(A,B)]. Starting from the same initial configuration
of blocks, it is possible for STRIPS to produce a solution sequence longer
than needed, namely, {unstack(C, A), putdown(C), pickup(A),
stack(^4, B), unstack(A, B), putdown(Λ), pickup(B), stack(2?, C),
pickup(yl), stack(A,B)}. The third through sixth rules represent an
unnecessary detour. This detour results in this case because STRIPS
decided to achieve ON(A9B) before achieving ON(B,C). The interac
tion between these goals then forced STRIPS to undo ON{A,B) before
it could achieve ON(B,C).

299

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

Ri
B)

CL

EA
Ri

O

O
Ni

C.
A)

O

NT
AB

LE
iA

)
O

NT
AB

LE
iB

)

G
O

A
L

ST
A

C
K

O

Ni
C.

B)

A
O

N(
A.

C)

Λ

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

Ri
B)

CL

EA
Ri

O

1
O

Ni
C.

A)

p
-l

"1
O

NT
AB

LE
iA

)
L£

J
O

NT
AB

LE
iB

)
M

I
\B \

H
AN

D
EM

PT
Y

G
O

A
L

ST
A

C
K

O
Ni

C.
B)

O

Ni
C.

B)

AO
Ni

A.
C)

•
ST

A
TE

 D
ES

C
R

IP
TI

O
N

G

O
A

L
ST

AC
K

CL

EA
Ri

B)

CL
EA

Ri
O

J^

O

Ni
C.

A)

r—
i

O
NT

AB
LE

iA
)

L£
J

O
NT

AB
LE

iB
)

M
I

lg
l

H
AN

D
EM

PT
Y

CL
EA

Ri
C)

A

//O
Z.

D
/,Y

G
X

4)

st
ac

k(
/1

.0

O
Ni

C.
B)

O

Ni
C.

B)

AO
Ni

A.
C)

N
ot

 a
 p

ro
m

is
in

g
so

lu
tio

n
pa

th
.

^

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

Ri
B)

CL

EA
Ri

O

I
O

V
(C

„4
)

^
O

NT
AB

LE
iA

)
O

NT
AB

LE
iB

)

G
O

A
L

ST
A

C
K

av
(/4

.c
)

O
Ni

C.
B)

A

0.
\'(

A.
C

)

~Ä
\

Γ^
Ι

H
AN

D
EM

PT
Y

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
 £V

«/
?(

Ä
)

C2
.£V

4Ä
(C

)
,_[_

,
av

(c
./i

)
r—

I
O

NT
AB

LE
iA

)
p-

|
p

-,

O
NT

AB
LE

iB
)

M
I

1*
1

H
AN

D
EM

PT
Y

G
O

A
L

ST
A

C
K

CL

EA
Ri

B)

A
H

O
LD

IN
G

iO

st
ac

k(
C

fl)

O
.Y

M
.O

0A

(C
i)

A
0.

V
(,

l,
O

ST
A

TE
 D

ES
C

R
IP

TI
O

N

<Γ
££

Λ
/?

(£
)

C
££

V
ltf

(C
)

O
vV

(C
..4

)
O

NT
AB

LE
iA

)
O

NT
AB

LE
iB

)
H

AN
D

EM
PT

Y

Λ
 JH

G
O

A
L

ST
A

C
K

H

O
LD

IN
G

iC
)

CL
EA

Ri
B)

CL

EA
Ri

B)

A
H

O
LD

IN
G

iC
)

st
ac

k(
C

.£
)

aV
(/

l.
C

)
O

Ni
C.

B)

A
O

N'
iA

.C
)

Fi
g.

 7
.9

 A
 s

ea
rc

h
gr

ap
h

pr
od

uc
ed

 b
y

ST
R

IP
S.

N

ot
 a

 p
ro

m
is

in
g

so
lu

tio
n

pa
tii

.

03
 n 3 6 w
 z w 5 5 o ·< C/

5 W
 S

Fr
om

 p
re

vi
ou

s
pa

ge

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

R(
B)

j

CL
EA

R(
Q

O

N(
C,

A)

O
NT

AB
LE

(A
)

I
O

NT
AB

LE
(B

)
»-

^
H

AN
D

EM
PT

Y

fc M"
 m

G
O

A
L

ST
A

C
K

H

AN
D

EM
PT

Y
A

CL
EA

R(
C)

AO

N{
C,

y)

un
st

ac
k(

C
,7

)
CL

EA
R(

B)

CL
EA

R(
B)

AH
O

LD
IN

G
(Q

st

ac
k(

C
,£

)
O

N(
A,

C)

O
N{

C,
B)

 A

O
N(

A,
C)

W
ith

[A
/y

]t
he

to

p
su

bg
oa

l
m

at
ch

es

th
e

cu
rr

en
t

st
at

e
de

sc
rip

tio
n.

 W
e

ca
n

th
en

 a
pp

ly
 u

ns
ta

ck
(C

,A
).

N
ow

 t
he

ne

xt
 t

w
o

go
al

s
m

at
ch

 a
ls

o,
 s

o
w

e
ca

n
ap

pl
y

st
ac

k(
C

,£
).

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

R(
C)

CL

EA
R{

A)

1
O

N{
C,

B)

1
1

FI

C

£

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

.
O

NT
AB

LE
(B

)

G
O

A
L

ST
AC

K

O
N(

A,
C)

O

N(
C,

B)
 A

O

N(
A,

C)

\
y

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

R(
A)

CL

EA
R(

C)

1
C

W
(C

,£
)

"y
—

1
O

NT
AB

LE
(A

)
L£

J
O

NT
AB

LE
(B

)
M

l
M

l
H

AN
D

EM
PT

Y

G
O

A
L

ST
A

C
K

CL

EA
R(

C)

A
H

0L
D

1N
G

(A

)
st

ac
ks

 ,C
)

O
N(

C,
B)

 A

O
N{

A,
C)

ST
A

TE
 D

ES
C

R
IP

TI
O

N

Λ
JZL

CL
EA

Ri
C)

O

N(
C,

B)

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

H
AN

D
EM

PT
Y

G
O

A
L

ST
A

C
K

O

NT
AB

LE
(A

)
A

CL
EA

R(
A)

A

H
AN

D
EM

PT
Y\

pi

ck
up

(.4
)

CL
EA

R(
C)

A

H
O

LD
IN

G
(A

)
st2

ic
k(

A,
C)

O

N(
Q

B)

A
O

N(
A,

C)

N
ow

 w
e

ca
n

ap
pl

y
pi

ck
up

(/l
)

, a
nd

th

en
 t

he
 n

ex
t

go
al

 w
ill

 b
e

m
at

ch
ed

,
so

 w
e

ca
n

ap
pl

y
st

ac
k(

A,
C

).
N

ow

th
e

la
st

 r
em

ai
ni

ng
 g

oa
l o

n
th

e
st

ac
k

is
m

at
ch

ed
.

ST
A

TE
 D

ES
C

R
IP

TI
O

N

Λ

O
N(

A,
C)

O

N(
C,

B)

H
AN

D
EM

PT
Y

CL
EA

R{
A)

O

NT
AB

LE
(B

)

G
O

A
L

ST
A

C
K

NI
L

BASIC PLAN-GEN ERATING SYSTEMS

7.5.1. CONTROL STRATEGIES FOR STRIPS

Several decisions must be made by the control component of the
STRIPS system. We'll mention some of these briefly. First, it must decide
how to order the components of a compound goal above the compound
goal in the goal stack. A reasonable approach is first to find all of those
components that match the current state description. (Conceptually, they
are put on the top of the stack and then immediately stripped off.) This
step leaves only the unmatched goals to be ordered. We could create a
new successor node for each possible ordering (as we did in our
examples) or we could select just one of them arbitrarily (perhaps that
goal literal heuristically judged to be the hardest) and create a successor
node in which only that component goal is put on the stack. The latter
approach is probably adequate because after this single goal is solved,
we'll confront the compound goal again and have the opportunity to
select another one of its unachieved components.

When (existentially quantified) variables occur in the goal stack, the
control component may need to make a choice from among several
possible instantiations. We can assume that a different successor can be
created for each possible instantiation.

When more than one STRIPS F-rule would achieve the top goal on the
goal stack, we are again faced with a choice. Each relevant rule can
produce a different successor node.

A graph-search control strategy must be able to make a selection of
which leaf node to work on in the problem-solving graph. Any of the
methods of chapter 2 might be used here; in particular, we might develop
a heuristic evaluation function over these nodes taking into account, for
example, such factors as length of the goal stack, difficulty of the
problems on the goal stack, cost of the STRIPS F-rules, etc.

An interesting special case of STRIPS can be developed if we decide to
use a backtracking control regime instead of a graph-search control
regime. Here we can imagine a recursive function called STRIPS that
calls itself to solve the top goal on the stack. In this case, the explicit use of
a goal stack can be supplanted by the built-in stack mechanism of the
language (such as LISP) in which recursive STRIPS is implemented.

The program for recursive STRIPS would look something like the
following:

302

STRIPS

First, we set S, a global variable, to the initial state description. (We call
the program initially with the argument, G, the goal that STRIPS is
trying to achieve.)

Recursive Procedure STRIPS(G)

1 until S matches G, do:; the main loop of
STRIPS is iterative

2 begin

3 g 4— a component of G that does not match
S; a nondeterministic selection and
therefore a backtracking point

4 /**— an F-rule whose add list contains a
literal that matches g; another backtracking
point

5 p 4— precondition formula of appropriate
instance of/

6 STRIPS(/?); a recursive call to solve the
subproblem

7 5 4— result of applying appropriate instance
of/to S

8 end

7.5.2. MEANS-ENDS ANALYSIS AND GPS

An early problem-solving system called GPS (standing for General
Problem Solver) used methods similar to those later used by STRIPS.
GPS used a technique for identifying some key F-rules, given a state
description, 5, and a goal, G. The identification process first attempted to
calculate a difference between S and G. This difference-calculating
process was performed by a function that needed to be written especially
for each domain of application.

303

BAS 1C PLAN G E N ERATIN G SYSTEMS

Differences were used to select “relevant” F-rules by accessing a
“difference table” in which F-rules were associated with differences. The
F-rules associated with a given difference are those F-rules that are
“relevant to reducing that difference.” The F-rules associated with each
difference were ordered according to relevance. A difference table had to
be provided for each domain of application. Once an F-rule was selected
as relevant to removing a difference, GPS worked recursively on the
preconditions for that F-rule. When these had been satisfied, the F-rule
was applied to the current state description, and the process continued.

Thus, we see that recursive GPS is very similar to (if slightly more
general than) recursive STRIPS. (Historically, the design of STRIPS was
motivated by GPS.) The program for recursive GPS might look
something like the following:

First, we set S, a global variable, to the initial state description. (We call
the program initially with the argument, G, the goal that GPS is trying to
achieve.)

Recursive Procedure GPS(G)

1 until S matches G, do:; the main loop of GPS
is iterative

2 begin

3 d 4- a difference between S and G;
a backtracking point

4 f4- an F-rule relevant to reducing d;
another backtracking point

5 p 4- precondition formula of appropriate
instance off

6 GPS(p); a recursive call to solve the subproblem

7 S 4- result of applying appropriate instance
off to s

8 end

304

STRIPS

The process of identifying differences and selecting F-rules to reduce
them is called means-ends analysis. Recursive STRIPS can be regarded as
a special case of GPS, where differences between S and G are those
components of G unmatched by S and where all F-rules whose add list
contains a literal L are considered relevant to reducing the difference, L.

Although, originally, GPS worked recursively, as we have described,
we could also easily imagine a GPS system having a graph-search control
regime similar to that discussed for STRIPS.

7.53. A PROBLEM THAT STRIPS CANNOT SOLVE

STRIPS produces straightforward solutions to many problems, but, as
we have seen, there are some problems for which STRIPS may produce
solutions longer than necessary. Also, there are some very simple
problems for which it is impossible for STRIPS (as described) to produce
any solution at all. An example of a problem that STRIPS cannot solve is
the problem of generating a program to switch the contents of two
memory registers in a computer.

Suppose we have two memory registers X and y whose initial contents
are A and B respectively. We might represent this situation by the state
description [CONT(X,A) A CONT(Y,B)] where CONT(X9A)9 for
example, means that register X has content A (i.e., program variable X
has value A). In this example we must try not to be confused by the fact
that a program "variable," like X, is really a constant symbol of our
predicate calculus language that refers to a definite object (a particular
memory register). Predicate calculus variables, like x and y, are used to
denote arbitrary program variables (like X) and their "values" (like A).
To help avoid confusion, we purposely use the terms "register" and
"content" instead of "program variables" and "values."

Our goal for STRIPS is the expression
[CONT(X, B) Λ CONT{ Y,A)]. The only operation that we allow is the
assignment statement in which one register is "assigned" to another, that
is, its content is replaced by the content of the other. We can represent
such an assignment statement by an F-rule:

assign(w,r,/,s)
P: CONT{r,s) A CONT(uJ)
D: CONT(u,t)
A: CONT(u,s)

305

BASIC PLAN-GEN ERATING SYSTEMS

©
STATE DESCRIPTION

CONT(X,A)
CONT(Y,B)
CONT(Z,0)

©
STATE DESCRIPTION

CONT(X.A)
CONT{Y,B)
CONT(Z,0)

GOAL STACK
CONT(X,B) A CONT(Y,A)

r

GOAL STACK
CONT(X,B)
CONT(Y<A)
CONT(X,B)ACONT(Y,A)

® !
STATE DESCRIPTION

CONT(X,A)
CONT(Y,B)
CONT(Z,0)

©
STATE DESCRIPTION

CONT(X.B)
CONT(Y,B)
CONT(Z,0)

GOAL STACK
CONT(r,B) A CONT(Xj)
assign (X,r,t, B)
CONT(Y,A)
CONT(X,B)ACONT(Y,A)

Here, we can match the top g
[Y/r,A/t] and apply assign {)

1

GOAL STACK

CONT(Y,A)
CONT(X,B)ACONT(Y,A)

Fig. 7.10 A problem STRIPS cannot solve.

This assignment statement might be read: Assign the register u (with
current content l) to the register r (with current content s). The result is
that the current content of register u will be s, and the content of r will
remain s. The original content of w, namely t, is lost in this process.

A production system using this F-rule is noncommutative, because a
CO NT relation is deleted by assign. Well-known to beginning program-

306

USING DEDUCTION SYSTEMS TO GENERATE ROBOT PLANS

ming students, the destructive property of the assignment statement
requires that one must store the content of either Xov Y in a third register
before attempting an exchange. To make the problem more than fair for
STRIPS, we explicitly name this needed third register at the beginning of
the problem. This naming can be done by adding the fact CONT(Z,0)
to the initial state description. (In the next chapter we discuss a way in
which additional registers could be created if the system decides it needs
them.)

In Figure 7.10 we show an attempt by STRIPS at the solution to this
problem. Since the initial problem is completely symmetrical, it makes
no difference how we order the components of the initial compound goal
in node 1. At node 2, STRIPS quite reasonably decides to apply the
instance assign^,/*,/ ,£). This operation creates node 3. Now we see
STRIPS' fatal flaw: It is too anxious! It immediately decides that the top
goal of node 3 can be matched by the current state description with mgu
{ Y/r, A /t). This instance of assign unfortunately losest , making the top
goal in node 4 unsolvable. Furthermore, there is no other match for the
top goal in node 3 with node 3's state description.

The only way that this problem could be solved would be to defer
temporarily matching the top goal of node 3, and to create a successor
node with top goal CONT(r,B). Then perhaps in some ultimate
descendant, Z would be substituted for r. But to add this mechanism, of
deferring goal matching, would greatly complicate STRIPS. Instead we
describe in the next chapter some problem-solving systems that are
inherently more powerful than STRIPS.

7.6. USING DEDUCTION SYSTEMS TO GENERATE
ROBOT PLANS

From the examples given in this chapter, we see that the problem of
composing a sequence of actions has a straightforward formulation
involving STRI PS-form rules. A forward production system using these
rules is typically noncommutative because certain expressions may be
deleted when a rule is applied. We stress again that there is nothing
inherently commutative or noncommutative about robot problems
themselves: Commutativity (or its lack) depends entirely on the details of
the production system used to solve a problem. It is perfectly possible, for

307

BASIC PLAN-GEN ERATING SYSTEMS

example, to formulate robot problems so that they can be solved by
commutative production systems. One way to achieve such a commuta
tive formulation is to pose robot problems as theorems to be proved and
then use one of our commutative deduction systems. Formulating a robot
problem as a problem of deduction is, perhaps, a bit more complex and
awkward than using STRI PS-form rules, but theorem-proving formula
tions have considerable theoretical interest and preceded STRIPS
historically. We describe two alternative approaches for posing robot
problems as theorem-proving problems.

7.6.1. GREENS FORMULATION

One of the first attempts to solve robot problems was by Green
(1969a), who formulated them in such a way that a resolution theorem-
proving system (a commutative system) could solve them. This formula
tion involved one set of assertions that described the initial state and
another set that described the effects of the various robot actions on
states. To keep track of which facts were true in which state, Green
included a "state" or "situation" variable in each predicate. The goal
condition was then described by a formula with an existentially
quantified state variable. That is, the system would attempt to prove that
there existed a state in which a certain condition was true. A constructive
proof method, then, could be used to produce the set of actions that
would create the desired state. In Green's system, all assertions (and the
negation of the goal condition) were converted to clause form for a
resolution theorem prover, although other deduction systems could have
been used as well.

An example problem will help to illustrate exactly how this method
works. Unfortunately, the notation needed in these theorem-proving
formulations is a bit cumbersome, and the block-stacking examples that
we have been using need to be simplified somewhat to keep the examples
manageable.

Suppose we have the initial situation depicted in Figure 7.11. There are
just four discrete positions on a table, namely, Z>, E, F and G ; and there
are three blocks, namely, A, B and C, resting on three of the positions as
shown. Suppose we name this initial state SO. Then we denote the fact
that block A is on position D in SO by the literal ON(A,D,SO). The
state name is made an explicit argument of the predicate. The complete

308

USING DEDUCTION SYSTEMS TO GENERATE ROBOT PLANS

configuration of blocks in the initial state is then given by the following
set of formulas:

ON(A,D,SO)
ON(B,E,SO)
ON(C,F,SO)
CLEAR(A,SO)
CLEAR (B, SO)
CLEAR (C, SO)
CLEAR(G,SO)

Now we need a way to express the effects that various robot actions
might have on the states. In theorem-proving formulations, we express
these effects by logical implications rather than by STRI PS-form rules.
For example, suppose the robot has an action that can "transfer" a block
x from position y to position z, where 7 and z might be either the names of
other blocks that block x might be resting on or the names of positions on
the table that block x might be resting on. Let us assume that both block x
and position z (the target position) must be clear in order to execute this
action. We model this action by the expression "trans (x,y,z)"

When an action is executed in one state, the result is a new state. We
use the special functional expression "do{action,state)" to denote the
function that maps a state into the one resulting from an action. Thus, if
trans(x,y,z) is executed in state, s, the result is a state given by
do[trans(x,y,z),s].

The major effect of the action modeled by trans can then be formulated
as the following implication:

[CLEAR(x,s) A CLEAR(z,s) A ON(x,y,s) A DIFF(x,z)]
^>[CLEAR(x,do[trans(x,y,z),s])

A CLEAR(y,do[trans(x,y,z),s])
A ON(x,z,do[trans(x9y,z),s])] .

(All variables in assertions have implicit universal quantification.)

A B C

mtmMmmmmm
G D E F

Fig. 7.11 An initial configuration of blocks.

309

BASIC PLAN-GENERATING SYSTEMS

This formula states that if x and z are clear and if x is on y in state s, and
if x and z are different, then x and y will be clear and x will be on z in the
state resulting from performing the action trans(x,^,z) in state s. (The
predicate DI FF does not need a state variable because its truth value is
independent of state.)

But this formula alone does not completely specify the effects of the
action. We must also state that certain relations are unaffected by the
action. In systems like STRIPS, the F-rules use the convention that
relations not explicitly named in the rule are unaffected. But here the
effects and "non-effects" alike need to be stated explicitly.

Unfortunately, in Green's formulation, we must have assertions for
each relation not affected by an action. For example, we need the
following assertion to express that the blocks that are not moved stay in
the same position:

[ON(u,v,s)ADIFF(u,x)]
=> ON (w, v, do [trans (x,y, z), s]) .

And we would need another formula to state that block u remains clear if
block u is clear when a block v (not equal to u) is put on a block w (not
equal to u).

These assertions, describing what stays the same during an action, are
sometimes called the frame assertions. In large systems, there may be
many predicates used to describe a situation. Green's formulation would
require (for each action) a separate frame assertion for each predicate.
This representation could be condensed if we used a higher order logic, in
which we could write a formula something like:

(VP)[P(s)^> P[do(action^)].

But higher order logics have their own complications. (Later, we
examine another first-order logic formulation that does allow us to avoid
multiple frame assertions.)

After all of the assertions for actions are expressed by implications, we
are ready to attempt to solve an actual robot problem.

Suppose we wanted to achieve the simple goal of having block A on
block B. This goal would be expressed as follows:

310

USING DEDUCTION SYSTEMS TO GENERATE ROBOT PLANS

(3s)ON(A,B,s).

The problem can now be solved by finding a constructive proof of the
goal formula from the assertions. Any reasonable theorem-proving
method might be used.

As already mentioned, Green used a resolution system in which the
goal was negated and all formulas were then put into clause form. The
system then would attempt to find a contradiction, and an answer
extraction process would find the goal state that exists. This state would,
in general, be expressed as a composition of do functions, naming the
actions involved in producing the goal state. We show a resolution
refutation graph for our example problem in Figure 7.12 (the DIFF
predicate is evaluated, instead of resolved against). Applying answer
extraction to the graph of Figure 7.12 yields:

si = do[trans(A,D9B),SO],

which names the single action needed to accomplish the goal in this case.

Instead of resolution, we could have used one of the rule-based
deduction systems discussed in chapter 6. The assertions describing the
initial state might be used as facts, and the action and frame assertions
might be used as production rules.

The example just cited is trivially simple, of course—we didn't even
need to use any of the frame assertions in this case. (We certainly would
have had to use them if, for example, our goal had been the compound
goal [ON(A,B,s) A ON(B,C,s)]. In that case, we would have had to
prove that B stayed on C while putting A on B.) However, in even slightly
more complex examples, the amount of theorem-proving search required
to solve a robot problem using this formulation can grow so explosively
that the method becomes quite impractical. These search problems
together with the difficulties caused by the frame assertions were the
major impetus behind the development of the STRIPS problem-solving
system.

7.6.2. KOWALSKIS FORMULATION

Kowalski has suggested a different formulation. It simplifies the
statement of the frame assertions. What would ordinarily be predicates in
Green's formulation are made terms.

311

BASIC PLAN-GENERATING SYSTEMS

-CLEAR{x,s) V -CLEAR(z,s) V ~ON(x,y,s) V ~DlFF(x,z)
V ON(x,z,do[trans(x,y,z),s])

~CLEAR(A,s) V -CLEAR (B,s) V ~ON(x,y,s) V -DIFF(A,B)

~CLEAR(B,SO) V ~~ON(x,ytS0) V ~DIFF{A,B)

Fig. 7.12 A refiitation graph for a block-stacking problem.

312

USING DEDUCTION SYSTEMS TO GENERATE ROBOT PLANS

For example, instead of using the literal ON(A,D,SO)Xo denote the
fact that A is on D in state SO, we use the literal HOLDS [on(A,D),SO].
The term on(A,D) denotes the "concept" of A being on D; such
concepts are treated as individuals in our new calculus. Representing
what would normally be relations as individuals is a way of gaining some
of the benefits of a higher order logic in a first-order formulation.

The initial state shown in Figure 7.11 is then given by the following set
of expressions:

1 POSS(SO)
2 HOLDS[on(A,D),SO]
3 HOLDS[on(B,E),SO]
4 HOLDS[on(C,F),SO]
5 HOLDS[clear(A),SO]
6 HOLDS[clear(B),SO]
1 HOLDS[clear(C),SO]
8 HOLDS[clear(G),SO]

The literal PO SS (SO) means that the state SO is a possible state, that
is, one that can be reached. (The reason for having the POSS predicate
will become apparent later.)

Now we express part of the effects of actions (the "add-list" literals) by
using a separate HOLDS literal for each relation made true by the action.
In the case of our action trans (x,y, z), we have the following expressions:

9 HOLDS [clear (x), do [trans (x,y, z),s]]
10 HOLDS[clear(yido[trans(x,y9z),s]]
11 HOLDS[on(x,z\ do [trans (x,y, z),s]]

(Again, all variables in the assertions are universally quantified.)

Another predicate, PACT, is used to say that it is possible to perform a
given action in a given state, that is, the preconditions of the action match
that state description. PACT(a,s) states that it is possible to perform
action a in state s. For our action trans, we thus have:

12 [HOLDS[clear(x),s] A HOLDS[clear(z),s]
Λ HOLDS[on(x,y),s] A DIFF(x,z)}

=> PA CT[trans (x,y, z) , s]

313

BASIC PLAN-GENERATING SYSTEMS

Next we state that if a given state is possible and if the preconditions of
an action are satisfied in that state, then the state produced by performing
that action is also possible:

13 [POSS(s) A PACT(u,s)]=> POSS[do(u,s)]

The major advantage of Kowalski's formulation is that we need only
one frame assertion for each action. In our example, the single frame
assertion is:

14 {HOLDS(v,s) A DIFF[v,clear(z)] A DIFF[v,on(x,y)]}
=> HOLDS[v,do[trans(x,y,z\s]]

This expression quite simply states that all terms different than clear (z)
and on (x,y) still HOLD in all states produced by performing the action
trans(x,y,z).

A goal for the system is given, as usual, by an expression with an
existentially quantified state variable. If we wanted to achieve B on C and
A on B, our goal would be:

(3s){POSS(s) A HOLDS[on(B,C\s] A HOLDS[on(A,B\s}}

The added conjunct, POSS(s), is needed to require that state s be
reachable.

Assertions 1-14, then, express the basic knowledge needed by a
problem solver for this example. If we were to use one of the rule-based
deduction systems of chapter 6 to solve problems using this knowledge,
we might use assertions 1-11 as facts and use assertions 12-14 as rules.
The details of operation of such a system would depend on whether the
rules were used in a forward or backward manner and on the specific
control strategy used by the system. For example, to make the rule-based
system "simulate" the steps that would be performed by a backward
production system using STRI PS-form rules, we would force the control
strategy of the deduction system, first, to match one of assertions 9-11
(the "adds") against the goal. (This step would establish the action
through which we were attempting to work backward.) Next, assertions
13 and 12 would be used to set up the preconditions of that action.
Subsequently, the frame assertion, number 14, would be used to regress
the other goal conditions through this action. All DIFF predicates should

314

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

be evaluated whenever possible. This whole sequence would then be
repeated on one of the subgoal predicates until a set of subgoals was
produced that would unify with fact assertions 1-8.

Other control strategies could, no doubt, be specified that would allow
a rule-based deduction system to "simulate" the steps of STRIPS and
other more complex robot problem-solving systems, to be discussed in
the next chapter. One way to specify the appropriate control strategies
would be to use the ordering conventions on facts and rules that are used
by the PROLOG language discussed in chapter 6.

Comparing deduction systems with a STRI PS-like system, we must
not be tempted to claim that one type can solve problems that the other
cannot. In fact, by suitable control mechanisms, the problem-solving
traces of different types of systems can be made essentially identical. The
point is that to solve robot problems efficiently with deduction systems
requires specialized and explicit control strategies that are implicitly
"built-in to" the conventions used by systems like STRIPS. STRI PS-like
robot problem-solving systems would appear, therefore, to be related to
the deduction-based systems in the same way that a higher level
programming language is related to lower level ones.

7.7. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

Modeling robot actions by STRI PS-form rules was proposed, as a
partial solution to the frame problem, in a paper by Fikes and Nilsson
(1971). A similar approach is followed in the PLANNER-like AI
languages [Bobrow and Raphael (1974); Derksen, Rulifson, and Wal-
dinger (1972)]. The frame problem is discussed in McCarthy and Hayes
(1969), Hayes (1973a), and Raphael (1971). The problem of dealing with
anomalous conditions is discussed in McCarthy and Hayes (1969) and in
McCarthy (1977). McCarthy calls this problem the qualification problem
and suggests that it may subsume the frame problem. Fahlman (1974)
and Fikes (1975) avoid some frame problems by distinguishing between
primary and secondary relationships. Models of actions are defined in
terms of their effects on primary relationships; secondary relationships
are deduced (as needed) from the primary ones. Waldinger (1977, part 2)

315

BASIC PLAN-GEN ERATING SYSTEMS

contains a clear discussion of frame problems not overcome by STRI PS-
form rules. Hendrix (1973) proposes a technique for modeling continu
ous actions.

The robot actions used in the examples of this chapter are based on
those of Dawson and Siklóssy (1977). The use of triangle tables to
represent the structure of plans was proposed in a paper by Fikes, Hart,
and Nilsson (1972b). Execution strategies using triangle tables were also
discussed in that paper.

The use of regression for computing the effects of B-rules is based on a
similar use by Waldinger (1977). The STRIPS problem-solving system is
described in Fikes and Nilsson (1971). The version of STRIPS discussed
in this chapter is somewhat simpler than the original system. Fikes, Hart,
and Nilsson (1972b) describe how solutions to specific robot problems
can be generalized and used as components of plans for solving more
difficult problems. Triangle tables play a key role in this process.

The GPS system was developed by Ne well, Shaw, and Simon (1960)
[see also Newell and Simon (1963)]. Ernst and Newell (1969) describe
how later versions of GPS solve a variety of problems. Ernst (1969)
presents a formal analysis of the properties of GPS.

For an interesting example of applying "robot" problem-solving ideas
to a domain other than robotics, see Cohen (1978), who describes a
system for planning speech acts.

The use of formal methods for solving robot problems was proposed in
the "advice taker" memoranda of McCarthy (1958, 1963). Work toward
implementing such a system was undertaken by Black (1964). Green
(1969a) was the first to develop a full-scale formal system. McCarthy and
Hayes (1969) contains proposals for formal problem-solving methods.
Kowalski (1974b, 1979b) presents an alternative formulation that escapes
some of the frame problems of first-order systems. Simon (1972a)
discusses the general problem of reasoning about actions.

316

EXERCISES

EXERCISES

7.1 In LISP, rplaca(x,j>) alters the list structure x by replacing the car
part of x by y. Similarly, rplacd(.x,j>) relaces the cdr part of x by y.
Represent the effects on list structure of these two operations by STRIPS
rules.

7.2 Let right (x) denote the cell to the right of cell x (when there is such
a cell) in the 8-puzzle. Define similarly left(x), up(x), and down(x).
Write STRIPS rules to model the actions move B (blank) up, move B
down, move B left, move B right.

13 Write simple English sentences that express the intended meanings
of each of the literals in Figure 7.1. Devise a set of context-free rewrite
rules to describe the syntax of these sentences.

7.4 Describe how the two STRIPS rules pickup(jc) and stack(x,y)
could be combined into a macro-rule put(x,y). What are the precondi
tions, delete list and add list of the new rule. Can you specify a general
procedure for creating macro-rules from components?

7.5 Referring to the blocks-world situation of Figure 7.1, let us define
the predicate ABOVE in terms of ON as follows:

ON(x,y)=ïABOVE(x,y)
ABOVE(x,y) A ABOVE(y,z)=>ABOVE(x,z).

The frame problems caused by the explicit occurrence of such derived
predicates in state descriptions make it difficult to specify STRIPS
F-rules. Discuss the problem and suggest some remedies.

7.6 Consider the following pictures:

~@\

A

ΓΕΠ
151

B

0
HI

c □ IS
317

BASIC PLAN-GEN ERATING SYSTEMS

Describe each by predicate calculus wffs and devise a STRIPS rule that is
applicable to both the descriptions of A and C ; and when applied to a
description of A, produces a description of B\ and when applied to a
description of C, produces a description of just one of pictures 1 through
5. Discuss the problem of building a system that could produce such
descriptions and rules automatically.

7.7 Two flasks, Fl and F2, have volume capacities of Cl and C2,
respectively. The v/ÏÏCONT(x,y) denotes that flask x contains/ volume
units of a liquid. Write STRIPS rules to model the following actions:

(a) Pour the entire contents of Fl into F2.
(b) Fill F2 with (part of) the contents of Fl.

Can you see any difficulties that might arise in attempting to use these
rules in a backward direction? Discuss.

7.8 The "monkey-and bananas" problem is often used to illustrate AI
ideas about plan generation. The problem can be stated as follows:

A monkey is in a room containing a box and
a bunch of bananas. The bananas are hanging
from the ceiling out of reach of the monkey.
How can the monkey obtain the bananas?

Show how this problem can be represented so that STRIPS would
generate a plan consisting of the following actions: go to the box, push
the box under the bananas, climb the box, grab the bananas.

7.9 Referring to the block-stacking problem solved by STRIPS in
Figure 7.9, suggest an evaluation function that could be used to guide
search.

7.10 Write a STRIPS rule that models the action of interchanging the
contents of two registers. (Assume that this action can be performed
directly without explicit use of a third register.) Show how STRIPS
would produce a program (using this action) for changing the contents of
registers X, Y, and Z from A, B, and C, respectively, to C, B, and A,
respectively.

7.11 Suppose the initial state description of Figure 7.1 contained the
expression HANDEMPTYV HOLDING(D) instead of HAND-

SIS

EXERCISES

EMPTY. Discuss how STRIPS might be modified to generate a plan
containing a "runtime conditional" that branches on HANDEMPTY.
(Conditional plans are useful when the truth values of conditions not
known at planning time can be evaluated at execution time.)

7.12 Discuss how rule programs (similar to those described at the end of
chapter 6) can be used to solve block-stacking problems. (A DELETE
statement will be needed.) Illustrate with an example.

7.13 Find a proof for the goal wff :

(3s){POSS(s) A HOLDS[on(B,C\s] A HOLDS[on(A,B\s]}

given the assertions 1-14 of Kowalski's formulation described in Section
7.6.2. Use any of the deduction systems described in chapters 5 and 6.

7.14 A robot pet, Rover, is currently outside and wants to get inside.
Rover cannot open the door to let itself in; but Rover can bark, and
barking usually causes the door to open. Another robot, Max, is inside.
Max can open doors and likes peace and quiet. Max can usually still
Rover's barking by opening the door. Suppose Max and Rover each have
STRIPS plan-generating systems and triangle-table based plan-execu
tion systems. Specify STRIPS rules and actions for Rover and Max and
describe the sequence of planning and execution steps that bring about
equilibrium.

319

CHAPTER 8

ADVANCED PLAN-GENERATING
SYSTEMS

In this chapter we continue our discussion of systems for generating
robot plans. First, we discuss two systems that can deal with interacting
goals in a more sophisticated manner than STRIPS. Then, we discuss
various hierarchical methods for plan generation.

8.1. RSTRIPS

RSTRIPS is a modification of STRIPS that uses a goal regression
mechanism for circumventing goal interaction problems. A typical use of
this mechanism prevents RSTRIPS from applying an F-rule, Fl, that
would interfere with an achieved precondition, P, needed by another
F-rule, F2, occurring later in the plan. Because F2 occurs later than Fl, it
must be that F2 has some additional unachieved precondition, P\ that
led to the need to apply Fl first. Instead of applying Fl, RSTRIPS
rearranges the plan by regressing F through the F-rule that achieves P.
Now, the achievement of the regressed P' will no longer interfere with P.

Some of the techniques and conventions used by RSTRIPS can best be
introduced while discussing an example problem in which the goals do
not happen to interact. After these have been explained, we shall describe
in detail how RSTRIPS handles interacting goals.

EXAMPLE 1. Let us use one of the simpler blocks-world examples
from the last chapter. Suppose the goal is [ON{ C, B) Λ ON {A, C)] and
that the initial state is as shown in Figure 7.1. Until the first F-rule is
applied, RSTRIPS operates in the same manner as STRIPS. It does use

321

ADVANCED PLAN-GEN ERATING SYSTEMS

some special conventions in the goal stack, however. Specifically, when it
orders the components above a compound goal in the stack, it groups
these components along with their compound goal within a vertical
parenthesis in the stack. We shall see the use of this grouping shortly.

The goal stack portion of the global database produced by RSTRIPS at
the time that the first F-rule, namely, unstack(C,A), can be applied is as
follows:

[HANDEMPTYA CLEAR(C) A ON(Qy)
unstack(C,jO

[HOLDING(C)
CLEAR(B)

IHOLDING(C) A CLEAR(B)
stack(C,5)

rON(C,B)
ON(A9C)

[_ON(C,B)AON(A,C)

This goal stack is the same as the one produced by STRIPS at this stage of
the problem's solution. (See Figure 7.9 of chapter 7.) For added clarity in
the examples of this section, we retain the condition achieved by applying
an F-rule just under the F-rule that achieved it in the goal stack. Note the
vertical parentheses grouping goal components with compound goals.

With the substitution {Α/γ}, RSTRIPS can apply unstack(C^)
because its precondition (at the top of the stack) is matched by the initial
state description. Rather than removing the satisfied precondition and
the F-rule from the goal stack (as STRIPS did), RSTRIPS leaves these
items on the stack and places a marker just below HOLDING(C) to
indicate that HOLDING^ C) has just been achieved by the application of
the F-rule. As the system tests conditions on the stack, it adjusts the
position of the marker so that the marker is just above the next condition
in the stack that still needs to be satisfied. After applying unstack(C,A)
the goal stack is as follows:

322

RSTRIPS

[HANDEMPTYA CLEAR(C) A ON(QA)
unstack(C,v4) |

ï*HOLDING(C) g

CLEAR(B) ^ ^ ^ ^ ^ ^ ^ ^ L L

stack(C,£)
Γ ON(C,B)

ON(AX)
lON(C,B)A ON(AX)

The horizontal line running through the stack is the marker. All of the
F-rules above the marker have been applied, and the condition just
under the marker, namely, CLEAR (2?), must now be tested. (For clarity,
we include next to our goal stacks a picture of the state produced by
applying the F-rules above the marker.)

When the marker passes through a vertical parenthesis (as it does in
the goal stack shown above), there are goals above the marker that have
already been achieved that are components of a compound goal below
the marker at the end of the parenthesis. RSTRIPS notes these
components and "protects" them. Such protection means that RSTRIPS
will ensure that no F-rule can be applied within this vertical parenthesis
that deletes or falsifies the protected goal components. Protected goals
are indicated by asterisks (*) in our goal stacks.

In the last chapter, whenever STRIPS satisfied the preconditions of an
F-rule in the goal stack, it applied that F-rule to the then current state
description to produce a new state description. RSTRIPS does not need
to perform this process explicitly. Rather, that part of the goal stack
above the marker indicates the sequence of F-rules applied so far. From
this sequence of F-rules, RSTRIPS can always compute what the state
description would be if this sequence were applied to the initial state.
Actually, RSTRIPS never needs to compute such a state description. At
most it needs to be able to compute whether or not certain subgoals
match the then current state description. This computation can be made
by regressing the subgoal to be tested backward through the sequence of
F-rules applied so far. For example, in the goal stack above, RSTRIPS
must next decide whether or not CLEAR(B) matches the state descrip-

323

ADVANCED PLAN-GEN ERATING SYSTEMS

tion achieved after applying unstack(C,^4). Regressing CLEAR(B)
through this F-rule produces CLEAR (2?), which matches the initial state
description, so, therefore, it must also match the subsequent description.
(If CLEAR(B) did not match, RSTRIPS would next have had to insert
into the goal stack the F-rules for achieving it.)

At this stage, RSTRIPS notes that both of the preconditions for
stack(C,2?) are satisfied, so this F-rule is applied (by moving the
marker), and ON(C9B) is protected. [Since the parenthesis of the
compound goal HOLDING(C) A CLEAR(B) is now entirely above
the marker, the system removes its protection of HOLDING (C).] Next,
RSTRIPS attempts to achieve ON(A,C). Finally, it produces the goal
stack shown below:

[HANDEMPTYA CLEAR(C) A ON(QA)
unstack(C,^) I
HOLDING(C) ^1

CLEAR(B) ^ ^ ^ ^ ^ ^ ^ ^
IHOLDING(C) A CLEAR(B) "'"""""'""""""'""

stack(C,£)
*ON(C,B)

[HANDEMPTY A CLEAR(A) Λ ONTABLE(A)
pickup(v4)
HOLDING (A)
CLEAR(C)

lHOLDING(A)A CLEAR(C)
stack(A9C)
ON(A,C)

L ON(C9B)AON(A,C)

The preconditions of pickup(/4) match the current state description, as
can be verified by regressing them through the sequence of F-rules
applied so far, namely, {unstack(C,y4), stack(C,2?)}. (The condition
CLEAR (A) did not match the initial state, but it becomes true in the
current one by virtue of applying unstack(C,A). The condition HAND-
EMPTY matched the initial state, was deleted after applying un-
stack(C,^), and becomes true again after applying stack(C,i?). The
regression process reveals that these conditions are true currently.)

324

RSTRIPS

Before the F-rule, pickup(̂ 4), can be applied, RSTRIPS must make
sure that it does not violate any protected subgoals. At this stage
ON(C,B) is protected. A violation check is made by regressing
ON(C,B) through pickup(̂ 4). A violation of the protected status of
ON(C,B) would occur only if it regressed through to jF[that is, only if
ON(C,B) were deleted by application of the F-rule, pickup(>4)]. Since
no protections are violated, the F-rule, pickup(y4), can be applied. The
marker is moved to just below HOLDING(A), and HOLDING(A) is
protected. [ON(C,B) retains its protected status.]

Regression through the sequence of F-rules of the other precondition
of stack(yl,C), namely, CLEAR(C), reveals that it matches the now
current state description. Thus, the compound precondition of
stack(^4,C) is satisfied. Regression of the previously solved main goal
component, ON(C,B)9 through stack(A,C) reveals that its protected
status would not be violated, so RSTRIPS applies stack(̂ 4, C) and moves
the marker below the last condition in the stack. RSTRIPS can now
terminate because all items in the stack are above the marker. The F-rules
in the goal stack at this time yield the solution sequence {unstack(C9A),
staek(C, B), pickup(^), stack(^, C)}.

This example was straightforward because there were no protection
violations. When goals interact, however, we will have protection
violations; next we describe how RSTRIPS deals with these.

EXAMPLE 2. Suppose the same initial configuration as before,
namely, that of Figure 7.1. Here, however, we attempt to solve the more
complicated goal [ON(A,B) A ON(B, C)]. All goes well until the point
at which RSTRIPS has produced the goal stack on the following page.

325

ADVANCED PLAN-GENERATING SYSTEMS

' ONTABLE(A)
[HANDEMPTY A CLEAR(C) Λ ON(C,A)

unstack(C,̂ 4)
CLEAR(A)

[HOLDING(C)
putdown(C)
HANDEMPTY

L ONTABLE(A) Λ CLEAR(A) Λ HANDEMPTY
pickup(/l) i
HOLDING(A) rh

S o i f Ä) Λ CL̂ *(£) ^ Α ^ Μ ^
^ stack(^,£)
*~ *ON(A,B)

^ONTABLE(B)

[HANDEMPTY A CLEAR(Z) A ON(Z,B)
unstack(z,Z?)

i/,4JVZ)£MPry
ONTABLE(B) A CLEAR(B) A HANDEMPTY

" pickup(2?)
HOLDING(B)
CLEAR(C)

IHOLDING(B) A CLEAR(C)
stack(£,C)

ON(A,B)A ON(B,C)

The F-rule sequence that has been applied to the initial state
description can be seen from the goal stack above the marker: (un-
stack(C, A), putdown(C), pickup(A), stack(A, B)}. The subgoals
ON(A9B) and ONTABLE(B) are currently solved by this sequence
and are protected. We note that the preconditions of F-rule un-
stack(^4,2?) are currently satisfied, but its application would violate the
protection of the goal ON(A,B). What should be done?

RSTRIPS first checks to see whether or not ON(A9B) might be
reachieved by the sequence of F-rules below the marker and above the
end of its parenthesis. It is only at the end of its parenthesis that
ON(A,B) needs to be true. Perhaps one of the F-rules within its
parenthesis might happen to reachieve it; if so, such "temporary"

326

RSTRIPS

violations can be tolerated. In this case none of these F-rules reachieves
ON(A,B), so RSTRIPS must take steps to avoid the protection
violation.

RSTRIPS notes that the compound goal at the end of the parenthesis
of the violated goal is ON(A,B) A ON(B,C). An F-rule needed to
solve one of these components, namely, ON(B,C), would violate the
other's protection. We call ON(B,C) the protection violating compo
nent. RSTRIPS attempts to avoid the violation by regressing the
protection violating component, ON(B, C), back through the sequence
of F-rules (above the marker) that have already been applied until it has
regressed it through the F-rule that achieved the protected subgoal. Since
the last F-rule to be applied, stack(A,B), was also the rule that achieved
ON(A,B), RSTRIPS regresses ON(B, C) through stack(,4,£) to yield
ON(B9 C). In this case, the subgoal was not changed by regression, and
RSTRIPS now attempts to achieve this regressed goal at the point in the
plan just prior to the application of st*ck(A,B). This regression process
leaves RSTRIPS with the following goal stack:

ONTABLE(A)
[HANDEMPTY A CLEAR(C)A ON(QA)
unstack(C,A))
CLEAR(A)

[HOLDING(C)
putdown(C) ΓΗ Γ̂ Ί
HANDEMPTY /z?Mmzmz?M?7

L ONTABLE(A) Λ CLEAR(A) Λ HANDEMPTY
pickup(^4)

*HOLDING(A)
*CLEAR(B)

ON(B,C)
HOLDING(A) A CLEAR(B) A ON(B,C)
stack(v4,£)
ON(A,B)

\ON{A,B)AON{BX)

The compound goal ON(A,B) A ON(B,C) at the end of the
parenthesis in which the potential violation was detected, is retained in
the stack. The other items below ON(A,B) in the stack of page 326 were
part of the now discredited plan to achieve ON(B,C). These items are
eliminated from the stack. The plan to achieve ON(A9B) by applying

327

ADVANCED PLAN-GEN ERATING SYSTEMS

stack(A,B) is still valid and is left in the stack. Note that we have
combined the regressed goal ON (B,C) with the compound precondition
just above the F-rule, st*ck(A,B). Since the marker crosses a parenthe
sis, the subgoals HOLDING {A) and CLEAR(B) are protected.

RSTRIPS begins again with this goal stack and does not discover any
additional potential protection violations until the following goal stack is
produced:

" ONT ABLE (A)
[HANDEMPTY A CLEAR(C) A ON(QA)
unstack(C,v4)
CLEAR(A)

[HOLDING(C)
putdown(C)
HANDEMPTY

L ONTABLE(A) Λ CLEAR(A) Λ HANDEMPTY
pickup(̂ 4)

' *HOLDING(A)
*CLEAR(B)

^*ONTABLE{B) r h
*CLEAR(B) LJ

[HOLDING (X) W S ^ W ^ W ^ W
putdown(x)
HANDEMPTY

L ONTABLE(B) A CLEAR(B) A HANDEMPTY
pickup(2?)
HOLDING(B)
CLEAR(C)

_HOLDING(B) A CLEAR(C)
stack(£,C)
~ON(B,C)
HOLDING(A) A CLEAR(B) A ON(B,C)
stack(A9B)
ON(A,B)

[ON(A,B)AON(B,C)

328

RSTRIPS

RSTRIPS notes, by regression, that the precondition of putdown(v4)
matches the current state description but that the application of put-
down^) would violate the protection of HOLDING {A). The violation
is not temporary. To avoid this violation, RSTRIPS regresses the
protection violating component, ON{B, C), further backward, this time
through the F-rule pickup(̂ 4).

After regression, the goal stack is as follows:

~*ONTABLE(A)
[HANDEMPTYA CLEAR(C) A ON(C9A)

unstack(C, A)
*CLEAR(A)
[HOLDING(C)

putdown(C) jJL,
*HANDEMPTY

ON(B, C)
ONTABLE{A) Λ CLEAR(A) Λ HANDEMPTY

A ON(B, C)
pickup (A)
HOLDING(A)
CLEAR(B)

lHOLDING(A) A CLEAR(B)
stack (A,B)
ON(A,B)

L ON(A,B)AON(B,C)

The plan for achieving ON (A, B)is retained, but the protection violating
plan for achieving ON(B, C) is eliminated.

Beginning again with the resulting goal stack, RSTRIPS finds another
potential protection violation when the following goal stack is produced:

329

ADVANCED PLAN-GENERATING SYSTEMS

~*ONTABLE(A)
[HANDEMPTY A CLEAR(C)AON(C,A)

unstack(C, A)
*CLEAR(A)
[HOLDING(C) r-1-,

putdown(C) [71 171 ΓΤΊ
*HANDEMPTY /////////////y//)////////)///

[ONTABLE(B) A CLEAR(B) A HANDEMPTY
pickup (B)
HOLDING(B)
CLEAR(C)
HOLDING(B)A CLEAR(C)
stack (B, C)
ON(B, C)
ONTABLE(A) Λ CLEAR(A) Λ HANDEMPTY

A ON(B, C)
pickup (A)
HOLDING(A)
CLEAR(B)
HOLDING(A) A CLEAR(B)
st»ck(A,B)
ON(A,B)

|_ ON(A,B)AON(B,C)

If pickup(B) were to be applied, the protection of HANDEMPTY would
be violated. But this time the violation is only temporary. A subsequent
F-rule, namely, stack(5,C) (within the relevant stack parenthesis)
reachieves HANDEMPTY, so we can tolerate the violation and proceed
directly to a solution.

In this case, RSTRIPS finds a shorter solution sequence than STRIPS
could have found on this problem. The F-rules in the solution found by
RSTRIPS are those above the marker in its terminal goal stack, namely,
(unstack(C^), putdown(C), pickup(B), stack(2?,C), pickup(zt),
st»ck(A,B)}.

330

RSTRIPS

EXAMPLE 3. As another example, let us apply RSTRIPS to the
problem of interchanging the contents of two registers. The F-rule is:

assign(w,r,i,s)
P: CONT(r,s) A CONT(u,t)
D: CONT(u9t)
A: CONT(u,s)

Our goal is to achieve [CONT(X,B) A CONT(Y,A)] from the initial
state [CONT(X,A) A CONT(Y,B) A CONT(Z,0)].

A difficulty is encountered at the point at which RSTRIPS has
produced the following goal stack:

[CONT(Y9B) A CONT(X9A)
assign^, y,,4,jB)

*CONT(X9B)
Z:0 X:B Y:B

CONT(rl9A)
CONT(Y,tl)
CONT(rl9A) Λ CONT(Yjl)
assign(Y,rl9tl,A)
CONT(Y,A)

L CONT(X,B) A CONT(Y,A)

(We indicate the effect of applying assign(A\ Υ,Α,Β) by the notation
next to the goal stack.) The condition CONT(rl,A) cannot be satisfied
because after applying assign(JT, Υ,Α,Β) there is no register having A as
its contents. Here RSTRIPS has confronted an impossible goal rather
than a potential protection violation. Goal regression is a useful tactic in
this situation as well. The impossible goal is regressed through the last
F-rule; perhaps there its achievement will be possible.

Regressing CONT(rl,A) through assign(Jf, Υ,Α,Β) yields the ex
pression:

[CONT(rltA) A ~EQUAL(rl,X)] .

331

ADVANCED PLAN-GENERATING SYSTEMS

The resulting goal stack is:

Z:0 X:A Y.B

CONT(rl,A)
~EQUAL(rl,X)
CO NT (X, A)
CONT(Y,B)
CONT(X,A) A CONT{ Υ,Β) A CONT(rl,A)

Λ ~EQUAL(rl,X)
assign(X,Y,A,B)
CONT(X,B)
CONT(Y,tl)
CONT(rl,A) Λ CONT(Y,tl)
assign(Y,/7,f/,Λ)
CONT(Y,A)
CONT(X,B) A CONT(Y,A)

Next, RSTRIPS attempts to solve CONT(rl,A). It cannot simply
match this subgoal against the fact CONT(X, A) because the substitution
{ X/rl } would make the next goal, ~EQUAL(X,X), impossible. The
only alternative is to apply the F-rule assign again. This operation
produces the following goal stack:

Z:0 X:A Y.B

CONT(r,A)
CONT(rl,t)
CONT(r,A)A CONT(rl,t)
assign(r7,r,/,^l)
~CONT(rl,A)
~EQUAL(rl,X)
CONT(X,A)
CONT(Y,B)
CONT(X,A) A CONT(Y,B) A CONT(rl,A)

Λ ~EQUAL(rl,X)
assiga(X,Y,A,B)
CONT(X,B)
CONT(Y,tl)

_ CONT(rl,A) Λ CONT(Y,tl)
assign(y,r7,f/,j4)
CONT(Y,A)
CONT(X,B) A CONT(Y,A)

332

DCOMP

Now RSTRIPS can match CONT(r,A) against the fact CONT(X,A).
Next, it can match CONT(rl,t) against the fact CONT(Zfi). These
matches allow application of assign(Z, Χ,Ο,Λί). The next subgoal in the
stack, namely, ~EQUAL(Z,A) is evaluated to T\ and all of the other
subgoals above assign^, Υ,Α,Β) match facts. Next, RSTRIPS matches
CONT(Y, tl) against CONT(Y, B) and applies assign(Y, Z, B,A). The
marker is then moved to the bottom of the stack, and the process
terminates with the sequence (assign(Z,X,0,v4), assign^, Υ,Α,Β),
assign(y,Z,5,^)}.

The reader might object that we begged the question in this example
by explicitly providing a third register. It is perfectly straightforward to
provide another F-rule, perhaps called genreg, that can generate new
registers when needed. Then, instead of matching CONT(rl,t) against
CONT(Zfi) as we have done in this example, RSTRIPS could apply
genreg to CONT(rl,t)to produce a new register. The effect of applying
genreg would be to substitute the name of the new register for rl, and 0
(say) for t.

8.2. DCOMP

We call our next system for dealing with interacting goals DCOMP. It
operates in two main phases. In phase 1, DCOMP produces a tentative
"solution," assuming that there are no goal interactions. Goal expressions
are represented as AND/OR graphs, and B-rules are applied to literal
nodes that do not match the initial state description. This phase
terminates when a consistent solution graph is produced with leaf nodes
that match the initial state description. This solution graph serves as a
tentative solution to the problem; typically, it must be processed by a
second phase to remove interactions.

A solution graph of an AND/OR graph imposes only ^partial ordering
on the solution steps. If there were no interactions, then rules in the
solution graph that are not ancestrally related could be applied in
parallel, rather than in some sequential order. Sometimes the robot
hardware permits certain actions to be executed simultaneously. For
example, a robot may be able to move its arm while it is locomoting. To
the extent that parallel actions are possible, it is desirable to express robot
action sequences as partial orderings of actions. From the standpoint of

333

ADVANCED PLAN-GEN ERATING SYSTEMS

achieving some particular goal, the least commitment possible about the
order of actions is best. A solution graph of an AND/OR graph thus
appears to be a good format with which to represent the actions for
achieving a goal.

In phase 2, DCOMP examines the tentative solution graph for goal
interactions. Certain rules, for example, destroy the preconditions
needed by rules in other branches of the graph. These interactions force
additional constraints on the order of rule application. Often, we can find
a more constrained partial ordering (perhaps a strict linear sequence) that
satisfies all of these additional constraints. In this case, the result of this
second phase is a solution to the problem. When the additional ordering
constraints conflict, there is no immediate solution, and DCOMP must
make more drastic alterations to the plan found in phase 1.

These ideas can best be illustrated by some examples. Suppose we use
the simpler example from chapter 7 again. The initial state description is
as shown in Figure 7.1, and the goal is [ON(C,B) A ON(A,C)]. In
phase 1, DCOMP applies B-rules until all subgoals are matched by the
initial state description. There is no need to regress conditions through
F-rules, because DCOMP assumes no interactions.

A consistent solution graph that might be achieved by phase 1 is shown
in Figure 8.1. (In Figure 8.1, we have suppressed match arcs; consistency
of substitutions is not an issue in these examples. A substitution written
near a leaf node unifies the literal labeling that node with a fact literal.)
The B-rules in the graph are labeled by the F-rules from which they stem,
because we will be referring to various properties of these F-rules later.
All rule applications in the graph have been numbered (in no particular
order) for reference in our discussion. Note also that we have numbered,
by 0, the "operation" in which the goal [ON (A, C) Λ ON(C, B)] is split
into the two components ON(A,C) and ON(C,B). We might imagine
that this backward splitting rule is based on an imaginary "join" F-rule
that, in the final plan, assembles the two components into the final goal.

We see that the solution consists of two sequences of F-rules to be
executed in parallel, namely, {unstack(C,^4), stack(C,2?)} and (un-
stack(C,^l), pickup(yi), stack(^4,C)}. Because of interactions, we ob
viously cannot execute these sequences in parallel. For example, F-rule 5
deletes a precondition, namely, HANDEMPTY, needed by F-rule 2.
Thus, we cannot apply F-rule 5 immediately prior to F-rule 2. Worse,
F-rule 5 deletes a precondition, namely, HANDEMPTY, needed by the

334

DCOMP

ic/y) IC/y]

Fig. 8.1 A first-phase solution.

immediately subsequent F-rule 4. The graph of Figure 8.1 has several
such interaction defects.

The process for recognizing a noninteractive partial order involves
examination of every F-rule mentioned in the solution graph (including
the fictitious join rule) to see if its preconditions are matched by the state
description at the time that it is to be applied. Suppose we denote the /-th
precondition literal of they-th F-rule in the graph as CXi. For each such
Cij in the graph, we compute two (possibly empty) sets. The first set, Dij9

335

ADVANCED PLAN-GEN ERATING SYSTEMS

is the set of F-rules specified in the graph that delete Ci; and that are not
ancestors of rule j in the graph nor rule j itself. This set is called the
deleters of C{j. Any deleter of Q, might (as an F-rule) destroy this
precondition for F-rule j ; thus the order in which deleters occur relative
to F-rule j is important. If the deleter is a descendant of rule j in the
graph, we have special problems. (We are not concerned about rule j
itself or any of its ancestors that might delete Cih since the "purpose" of
Cij has by then already been served.)

The second set, Aih computed for the condition Cij9 is the set of
F-rules specified by the graph that add Ci5 and are not ancestors of ruley
in the graph nor y itself. This set is called the adders of Ci;. Any adder of
Cij is important because it might be ordered such that it occurs after a
deleter and before F-ruley, thus vitiating the effect of the deleter. Also, if
some rule, say rule k, was used in the original solution graph to achieve
condition Cij9 we might be able to apply one of the other adders before
F-rule j instead of F-rule k and thus eliminate rule k (and all of its
descendants!). Obviously F-ruley and any of its ancestors that might add
condition Ci} are not of interest to us because they are applied after
condition C^ is needed.

In Figure 8.2 we show all of the adders and deleters for all of the
conditions in the graph.

A partial order is noninteractive if, for each Ci;· in the graph, either of
the following two conditions holds:

1) F-rule y occurs before all members of D%i
(In this case the condition, Cih is not deleted
until after F-rule y is applied); or
2) There exists a rule in Aij9 say rule k, such
that F-rule k occurs before F-rule y and no
member of D{j occurs between F-rule k and
F-rule y.

According to the above criteria, the solution graph of Figure 8.2 is not
noninteractive because, for example, F-rule 2 does not precede F-rule 5
in the ordering (and F-rule 5 deletes the preconditions of F-rule 2).

In its second phase, DCOMP attempts to transform the partial ordering
to one which is noninteractive. Often, such a transformation can be made.
There are two principal techniques for transforming the ordering. We
can further constrain the ordering so as to satisfy one of the two

336

DCOMP

conditions for noninteraction stated above, or we can eliminate an F-rule
(and its descendants) from the graph if its effect can be achieved by
constraining the order of one of the other adders.

For example, in Figure 8.2, F-rule 3 is a deleter of condition
CLEAR (C) of F-rule 2. If we order F-rule 2 before F-rule 3, then F-rule
3 would no longer be a deleter of this condition. Also F-rule 5 is a deleter
of condition HANDEMPTY of F-rule 4. Obviously, we cannot make
F-rule 4 occur before F-rule 5; it is already an ancestor of F-rule 5 in the
partial ordering.

stack (C,B)

Adders: 5,2

Deleters: 2

Fig. 8.2 First-phase solution with adders and deleters listed

337

ADVANCED PLAN-GEN E RATIN G SYSTEMS

But we might be able to insert an adder, F-rule 1, between F-rule 5 and
F-rule 4. Or if F-rule 2 occurs before F-rule 4 and after any deleters of
this CLEAR(A) condition, we eliminate F-rule 5 entirely since
CLEAR(A) is added by F-rule 2.

DCOMP attempts to render the phase 1 ordering noninteractive by
further constraining it or by eliminating F-rules. The general problem of
finding an acceptable set of manipulations seems rather difficult, and we
discuss it here only informally. The additional ordering constraints
imposed on the original solution graph must themselves be consistent. In
some cases, DCOMP is not able to find appropriate orderings. In our
example, however, DCOMP constructs an ordering by the following
steps:

1) Place F-rule 2 before F-rule 4 and
eliminate F-rule 5. Note that F-rule 4 cannot
now delete any preconditions of F-rule 2.
Also because F-rule 2 now occurs before
F-rule 3, F-rule 3 cannot delete any
preconditions of F-rule 2 either.

2) Place F-rule 1 before F-rule 4. Since F-rule
1 occurs after F-rule 2 and before F-rules 4
and 3 it reestablishes conditions needed by
F-rules 4 and 3 deleted by F-rule 2.

These additional constraints give us the ordering (2,1,4,3), correspond
ing to the sequence of F-rules {unstack(C,^4), stack(C,l?), pickup(/l),
s tack(^,C)}.

In this case, the ordering of the F-rules in the plan produced a strict
sequence. In fact, the F-rules that we have been using for these
blocks-world examples are such that they can only be applied in
sequence; the robot has only one hand, and this hand is involved in each
of the actions. Suppose we had a robot with two hands and that each was
capable of performing all four of the actions modeled by our F-rules.
These rules could be adapted to model the two-handed robot by
providing each of them with an extra "hand" argument taking the values
" 1 " or "2." Also the predicates HANDEMPTY and HOLDING would
need to have this hand argument added. (We won't allow interactions
between the hands, such as one of them holding the other.) The F-rules
for the two-handed robot are then as follows:

338

DCOMP

1) pickup(x,A)
P& D: ONTABLE(x), CLEAR(x), HANDEMPTY(h)
A: HOLDING(x,h)

2) putdown(x,Ä)
P & D : HOLDING(x,h)
A: ONTABLE(x), CLEAR(x), HANDEMPTY(h)

3) stack(x,j>,/z)
P & D : HOLDING(x,h),CLEAR(y)
A: HANDEMPTY(h), ON(x,y), CLEAR(x)

4) unstack(x, y,h)
P & D : HANDEMPTY (h\ CLEAR(x\ ON(x,y)
A: HOLDING(x,h\CLEAR(y)

With the rules just cited, we ought to be able to generate partially
ordered plans in which hands " 1 " and "2" could be performing actions
simultaneously. Let's attempt to solve the very same block-stacking
problem just solved [that is, the goal is [ON (AX) A ON(C, B)], from
the initial state shown in Figure 7.1. [The HANDEMPTY predicate in
that state description is now, of course, replaced by HAND-
EMPTY(l) A HANDEMPTY(2).] In Figure 8.3, we show a possible
DCOMP first-phase solution with the adders and deleters listed for each
condition. Note that, compared with Figure 8.2, there are fewer deleters
of the HANDEMPTY predicates because we have two hands.

During the second phase of this problem, DCOMP might specify that
F-rule 2 occur before F-rule 4 so that we can delete rule 5. Further, F-rule
2 should occur before F-rule 3 to avoid deleting the CLEAR(C)
condition of F-rule 2. Now if F-rule 1 occurs between F-rules 2 and 3, the
CLEAR(C) condition of F-rule 3 would be re-established. These
additional constraints give us the partially ordered plan shown in Figure
8.4.

It is convenient to be able to represent any partially ordered plan in a
form similar to solution graphs of AND/OR graphs. If there were no
interactions at all among the subgoals of a solution graph produced by
the first phase, then that graph itself would be a perfectly acceptable
representation for the partially ordered plan. If the interactions were such
that there could be no parallel application of F-rules, than a solution path
like that shown in Figures 7.5 through 7.7 would be required. What about

339

ADVANCED PLAN-GEN ERATING SYSTEMS

cases between these extremes, such as that of our present two-handed
robot? We show in Figure 8.5 one way of representing the plan of Figure
8.4. Starting from the goal condition, we work backward along the plan
producing the appropriate subgoal states. When the plan splits, it is
because the subgoal condition at that point can be split into components.
Such a split occurs at the point marked "*" in Figure 8.5. These
components can be solved separately until they join again at the point
marked "**". Notice that CLEAR(C) in node 1 regresses to Γ, as does
CLEAR(A) in node 2. Structures similar to those of Figure 8.5 have
been called procedural nets by Sacerdoti (1977).

Adders: 1 Deleters: 2
Deleters: 2

Fig. 8.3 A first-phase solution to a problem using two hands.

340

DCOMP

stack(i4,C,2)

st2Lck(C,B,l) pickup(y4,2)

unstack(C,A,I)

Fig. 8.4 A partially ordered plan for a two-handed block stacking problem.

ω

ON(C,B) AON(A,C)

stackM,C,2)

HOLDING(A,2) A CLEAR(C) A ON(C,B)

ON(C,B) A CLEAR(C) H0LD1NG{A,2)

stack(C,£,7) pickup(y4,2)

HOLDING{C,l) Λ CLEAR(B) HANDEMPTY{2) A CLEAR(A) A ONTABLE(A)

HOLDING(C,J) A CLEARiB) A HANDEMPTYÌ2)
ACLEAR(A) A ONTABLE(A)

unstack(C,AJ)

HANDEMPTYU) A CLEAR(C) A ON(C,A) A CLEAR(B)
A HANDEMPTY{2) A ONTABLE(A)

Fig. 8.5 Goal graph form for partially ordered plan.

ADVANCED PLAN-GEN ERATING SYSTEMS

8.3. AMENDING PLANS

Sometimes it is impossible to transform the phase-1 solution into a
noninteractive ordering merely by adding additional ordering con
straints. The general situation, in this case, is that the phase-2 process can
do no better than leave us with a partially ordered plan in which some of
the preconditions are unavoidably deleted. We assume that phase 2
produces a plan having as few such deletions as possible and that the
deletions that are left are those that are estimated to be easy to reachieve.
After producing some such "approximate plan," DCOMP calls upon a
phase-3 process to develop plans to reachieve the deleted conditions and
then to "patch" those plans into the phase-2 (approximate) plan in such a
way that the end result is noninteractive.

The main task of phase 3, then, is to amend an existing (and faulty)
plan. The process of amending plans requires some special explanation
so we consider this general subject next.

We begin our discussion by considering another example. Suppose we
are trying to achieve the goal [CLEAR (A) A HANDEMPTY] from the
initial state shown in Figure 7.1 (with just one hand now). In Figure 8.6,
we show the result of phase 1, with the adders and deleters listed. Here,
we obviously have a solution that cannot be put into noninteractive form
by adding additional constraints; there is only one F-rule, and it deletes a
"precondition" of the join rule, number 0. The only remedy to this
situation is to permit the deletion and to plan to reachieve HAND-
EMPTY in such a way that CLEAR (A) remains true.

Our strategy is to insert a plan, say P, between F-rule 1 and the join.
The requirements on P are that its preconditions must regress through
F-rule 1 to conditions that match the initial state description and that
CLEAR (A) regress through P unchanged (so that it can be achieved by
F-rule 1). The structure of the solution that we are seeking is shown in
Figure 8.7.

If we apply the B-rule version of putdown(x) to HANDEMPTY, we
obtain the subgoal HOLDING(x). This subgoal regresses through
unstack(C,^4) to Γ, with the substitution {C/x}. Furthermore,
CLEAR (A) regresses through putdown(C) unchanged, so putdown(C)
is the appropriate patch. The final solution is shown in Figure 8.8.

342

AMENDING PLANS

CLEAR(A) A HANDEMPTY

Adders:

Fig. 8.6 First-phase solution requiring a patch.

CLEAR(A) A HANDEMPTY

P, a plan for achieving HANDEMPTY,
whose preconditions regressed through
unstack(C,v4) match the initial state
description. CLEAR(A) must regress
through P unchanged.

CLEAR(A) Λ < Preconditions of P >

unst2ick(C,A)

< Conditions that match initial state description >

Fig. 8.7 The form of the patched solution.

343

ADVANCED PLAN-GEN ERATING SYSTEMS

When interactions occur that cannot be removed by additional
ordering constraints, the general situation is often very much like this last
example. In these cases, DCOMP attempts to insert patches as needed
starting with the patch that is to be inserted earliest in the plan (closest to
the initial state). This patching process is applied iteratively until the
entire plan is free of interactions.

We illustrate the patching process by another example. Now we
consider the familiar, and highly interactive block-stacking problem that
begins with the initial configuration of Figure 7.1 and whose goal is
[ΟΝ(Α,Β) Λ ON(B, C)]. The first-phase solution, shown in Figure 8.9,
has interactions that cannot be removed by adding additional ordering
constraints. The ordering 3 ^ 5 — > 4 - » 2 - * l is a good approximate
solution even though F-rule 3 deletes a precondition of F-rule 4, namely,
CLEAR(C), and it also deletes a precondition of F-rule 5, namely,
HANDEMPTY. Our patching process attempts to reachieve these
deleted conditions and works on the earliest one, HANDEMPTY, first.

The path of the approximate solution is shown in Figure 8.10; we do
not split the initial compound goal because neither of the components
can be achieved in an order-independent fashion. Note that regression
must be used to create successor nodes and that some of the goal
components regress to Tand thus disappear. Here, we use the convention
that the tail of the B-rule arc adjoins the condition used to match a literal
in the add list of the rule. The conditions marked with asterisks (*) are
conditions that our approximate plan does not yet achieve.

CLEAR{A)A HANDEMPTY

putdown(C)

CLEAR(A) A HOLDING(C)

unstack(C,,4)

ON(C.A)A CLEAR{C)A HANDEMPTY

Fig. 8.8 The patched solution.

344

AMENDING PLANS

Deleters: 4 Adders: 4
Deleters: 5

Fig. 8.9 First-phase solution for an interactive block-stacking problem.

345

ADVANCED PLAN-GEN E RATIN G SYSTEMS

m
ΟΝ(Α,Β)
ON(B,C)

pickup(Z?)

node 2-

unstack(C,,4)

ON(C,A)
CLEAR(C)

HANDEMPTY
ONTABLE(B)
CLEAR(B)

ONTABLE(A)

Fig. 8.10 An approximate solution.

346

AMENDING PLANS

Adders: 1 Adders: 2

assign(X,rl ,tl,B)

Deleters: 2

[X/ri [Bit] [Y/rl] {A/tl}

Fig. 8.11 First-phase solution to the two-register problem.

We first attempt to insert a patch between F-rule 3 and F-rule 5 to
achieve HANDEMPTY. (Note the similarity of this situation with that
depicted in Figure 8.7.) The rule putdown(v) with the substitution
{C/x) is an appropriate patch. Its subgoal, HOLDING(C), regresses
through unstack(C,A) to T. Furthermore, all of the conditions of node 2
[except HANDEMPTY, which is achieved by putdown(C)] regress
unchanged through putdown(C).

Now, we can consider the problem of finding a patch for the other
deleted precondition, namely, CLEAR(C). Note, that in this case,
however, CLEAR (C) regresses unchanged through F-rule 5, pickup(B),
and then it regresses through our newly inserted rule, putdown(C), to T.
Therefore no further modifications of the plan are necessary, and we have
the usual solution {unstack(C, A), putdown(C), pickup(B), stack(B, C),
pickup(^), steck(A,B)}.

The process of patching can be more complicated than our examples
have illustrated. If the preconditions of the patched plan have only to
regress through a strict sequence (as in this last example), the process is
straightforward, but how are conditions to be regressed through a partial
ordering? Some conditions may regress through to conditions that match

347

ADVANCED PLAN-GENERATING SYSTEMS

assign(X,rJ,A,B)

Deleters: 2

CONT(X,A) CONT(Y,B) CONT(rl,B) CONT(X,A)

Deleters: 1 r

Xr2.B) | Γ
[Ylr2] [Z/rl,0/t2]

Fig. 8.12 Solution to the two-register problem.

the initial state description for all strict orderings consistent with the
partial ordering; others may do so for none of these strict orderings. Or
we may be able to impose additional constraints on the partial ordering
such that the preconditions of a patched plan may regress through it to
conditions that are satisfied by the initial state description. The general
problem of patching plans into partial orderings appears rather complex
and has not yet received adequate attention.

As a final example of DCOMP, we consider again the problem of
interchanging the contents of two registers. From the initial state

348

HIERARCHICAL PLANNING

[CONT(X,A) A CONT(Y,B) A CONT(Z,0)], we want to achieve
the goal [CONT(YyA) Λ CONT(X,B)]. The first phase produces the
solution shown in Figure 8.11. The adders and deleters are indicated as
usual. This first-phase solution has unavoidable deletions. F-rule 1
deletes a precondition of F-rule 2, and vice versa. They cannot both be
first! [Sacerdoti (1977) called this type of conflict a "double cross."]

The blame for the unavoidable deletion conflict might be assigned to
the substitutions used in one of the rules, say, rule 2. If Y were not
substituted for rl in rule 2, then F-rule 1 would not have deleted
CONT(rl,B). Then F-rule 1 could be ordered before F-rule 2 to avoid
the deletion of the precondition, CONT(X,A)9 of F-rule 1 by F-rule 2. In
this manner, DCOMP is led to continue the search for a solution by
establishing the precondition, CONT(rl.B), of F-rule 2 but now
prohibiting the substitution { Y/rl}.

Continued search results in the tentative solution shown in Figure
8.12. From this tentative solution, DCOMP can compute that the
ordering 3 —> 1 —̂ 2 produces a noninteractive solution. The final solu
tion produced is {assign (Z, Y, O, B), assign (Y, X, B, A), as
sign (Χ,Ζ,Α, Β)}.

8.4. HIERARCHICAL PLANNING

The methods that we have considered so far for generating plans to
achieve goals have all operated on "one level." When working backward,
for example, we investigated ways to achieve the goal condition and then
to achieve all of the subgoals, and so on. In many practical situations, we
might regard some goal and subgoal conditions as mere details and
postpone attempts to solve them until the major steps of the plan are in
place. In fact, the goal conditions that we encounter and the rules to
achieve them might be organized in a hierarchy with the most detailed
conditions and fine-grained actions at the lowest level and the major
conditions and their rules at the highest level.

Planning the construction of a building, for example, involves the high
level tasks of site preparation, foundation work, framing, heating and
electrical work, and so on. Lower level activities would detail more
precise steps for accomplishing the higher level tasks. At the very lowest

349

ADVANCED PLAN-GENERATING SYSTEMS

level, the activities might involve nail-driving, wire-stripping, and so on.
If the entire plan had to be synthesized at the level of the most detailed
actions, it would be impossibly long. Developing the plan level by level,
in hierarchical fashion, allows the plans at each level to be of reasonable
length and thus increases the likelihood of their being found. Such a
strategy is called hierarchical planning.

8.4.1. POSTPONING PRECONDITIONS

One simple method of planning hierarchically is to identify a hierarchy
of conditions. Those at the lower levels of the hierarchy are relatively
unimportant details compared to those at the higher levels, and achieve
ment of the former can be postponed until most of the plan is developed.
The general idea is that plan synthesis should occur in stages, dealing
with the highest level conditions first. Once a plan has been developed to
achieve the high-level conditions (and their high-level preconditions, and
so on), other steps can be added in place to the plan to achieve lesser
conditions, and so on. This method does not require that the rules
themselves be graded according to a hierarchy. We can still have one set
of rules.

Hierarchical planning is achieved by constructing a plan in levels,
using any of the single-level methods previously described. During each
level, certain conditions are regarded as details and are thus postponed
until a subsequent level. A condition regarded as a detail at a certain level
is effectively invisible at that level. When details suddenly become visible
at a lower level, we must have a means of patching the higher level plans
to achieve them.

8.4.2. ABSTRIPS

The patching process is relatively straightforward with a STRI PS-type
problem solver, so we illustrate the process of hierarchical planning first
by using STRIPS as the basic problem solver. When STRIPS is modified
in this way, it is called ABSTRIPS.

For an example problem, let us again use the goal
[ON(C,B) Λ ON(A,C)], and the initial state depicted in Figure 7.1.
This goal is one that the single-level STRIPS can readily solve but we use
it here merely to illustrate how ABSTRIPS works.

350

HIERARCHICAL PLANNING

The F-rules that we use are those that we have been using, but for
purposes of postponing preconditions we must specify a hierarchy of
conditions (including goal conditions). To be realistic, this hierarchy
ought to reflect the intrinsic difficulty of achieving the various conditions.
Clearly, the major goal predicate, ON, should be on the highest level of
the hierarchy; and perhaps HANDEMPTYshould be at the lowest level,
since it is easy to achieve. In this simple example, we use only three
hierarchical levels and place the remaining predicates, namely, ON-
TABLE, CLEAR, and HOLDING, in the middle level.

The hierarchical level of each condition can be simply indicated by a
criticality value associated with the condition. Small numbers indicate a
low hierarchical level or small criticality, and large numbers indicate a
high hierarchical level or large criticality. The F-rules for ABSTRIPS,
with criticality values indicated above the preconditions, are shown
below:

1) pickup(x)
2 2 1

P & D: ONTABLE(x), CLEAR(x), HANDEMPTY
A: HOLDING (x)

2) putdown(jc)
2

P&D: HOLDING(x)
A: ONTABLE(x),CLEAR(x), HANDEMPTY

3) stack(x,j)
2 2

P&D: HOLDING(x),CLEAR(y)
A: HANDEMPTY, ON(x,y), CLEAR(x)

4) unstack(x,y)
1 2 3

P&D: HANDEMPTY, CLEAR(x), ON(x,y)
A: HOLDING(x),CLEAR(y)

Note that criticality values appear on both the preconditions and on
the delete-list literals. They do not appear on the add-list literals. When
an F-rule is applied, all of the literals in the add list are added to the state
description.

351

ADVANCED PLAN-GEN ERATING SYSTEMS

ABSTRIPS begins by considering only conditions of highest critical
ly, namely, those with criticality value 3 in this example. All conditions
having criticality values below this threshold value are invisible, that is,
they are ignored. Since our main goal contains two conditions of value 3,
ABSTRIPS considers one of them, say, ON(C, B), and adds stack(C, B)
to the goal stack. (If ABSTRIPS had selected the other component to
work on first, it would later have had to back up; the reader might want to
explore this path on his own.) No preconditions (of stack) are added to
the goal stack, because they have a criticality value of only 2 (below
threshold) and are thus invisible at this level.

ABSTRIPS can therefore apply the F-rule stack (C, B), resulting in a
new state description. Next, it considers the other goal component
ON(A,C) and adds stack(^4, C) to the goal stack. (Again, the precondi
tions of this rule are invisible.) Then ABSTRIPS applies stack(^4, C) to
the current state resulting in a state description that matches the entire
goal. We show the solution path for this level of the operation of
ABSTRIPS in Figure 8.13. Note that when delete literals of rules are
invisible, certain items that ought to be deleted from a state description
are not deleted. A contradictory state description may result, but this
causes no problems.

The first level solution, obtained by ignoring certain details, is the
sequence (stack(C,2?), stack(v4,C)}. (An equally valid solution at the
first level, obtained by a different ordering of goal components, is
(stack(^4,C), stack(C,i?)}. This solution will run into difficulties at a
lower level causing the need to return to this first level to produce the
appropriately ordered sequence.) Our first-level solution can be regarded
as a high-level plan for achieving the goal. From this view, the
block-stacking operations are considered most important, and a lower
level of planning can be counted on to fill in details.

We now pass down our first-level solution, namely, (staek(C,2?),
stack(v4, C)}, to the second level. In this level we consider conditions of
criticality value 2 or higher so that we begin to consider some of the
details. We can effectively pass down the higher level solution by
beginning the process at the next level with a goal stack that includes the
sequence of F-rules in the higher level solution together with any of their
visible preconditions. The last item in the beginning goal stack is the main
goal. In this case the beginning goal stack for the second level is:

352

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

R(
B)

CL

EA
R(

C)

O
N(

C,
A)

H

AN
D

EM
PT

Y
O

NT
AB

LE
(A

)
O

NT
AB

LE
(B

)

G
O

A
L

ST
AC

K

O
N(

C,
B)

AO

N(
A,

C)

ST
A

TE
 D

ES
C

R
IP

TI
O

N

G
O

A
L

ST
AC

K

CL
EA

R(
B)

CL

EA
R(

C)

O
N(

C,
A)

H

AN
D

EM
PT

Y
O

NT
AB

LE
(A

)
O

NT
AB

LE
(B

)

[S
T

A
T

E
D

E
SC

R
IP

T
IO

N

CL
EA

R(
B)

CL

EA
R(

C)

O
N(

C,
A)

H

AN
D

EM
PT

Y
O

NT
AB

LE
(A

)
O

NT
AB

LE
(B

)

O
N(

C,
B)

O

N(
A,

C)

O
N(

C,
B)

 A

O
N(

A,
C)

1

G
O

A
L

ST
AC

K

st
ac

k(
C

,5
)

O
N(

A,
C)

O

N(
C,

B)

AO
N(

A,
C)

z

f

1
ST

A
TE

 D
ES

C
R

IP
TI

O
N

CL

EA
R(

B)

CL
EA

R(
C)

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

O
N(

C,
B)

ST
A

TE
 D

ES
C

R
IP

TI
O

N

CL
EA

R(
B)

CL

EA
R(

C)

O
N(

C,
A)

H

AN
D

EM
PT

Y
O

NT
AB

LE
(A

)
O

NT
AB

LE
(B

)
O

N(
C,

B)

G
O

A
L

ST
AC

K

O
N(

A,
C)

O

N(
C,

B)
A

O
N(

A,
C)

[

G
O

A
L

ST
AC

K

st
ac

k(
,4

,C
)

O
N(

C,
B)

 A

O
N(

A,
C)

f

ST
A

TE
 D

ES
C

R
IP

TI
O

N

G
O

A
L

ST
AC

K

CL
EA

R
(A

)
CL

EA
R(

B)

CL
EA

R(
C)

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

O
N(

C,
B)

0N

(A
,O

NI
L

Fi
g.

 8
.1

3
Th

e s
ol

ut
io

n
pa

th
 fo

r
th

e
fir

st
le

ve
l o

/A
B

ST
R

IP
S.

3 n S

ADVANCED PLAN-GEN ERATING SYSTEMS

HOLDING(C) Λ CLEAR(B)
stack(C,£)
HOLDING(A) A CLEAR(C)
stack(^,C)
ON(C,B)A ON(A,C)

Because STRIPS works with a goal stack, it is easy for a subsequent
level to patch in rules for achieving details. The plan passed down from
higher levels effectively constrains the search at lower levels, enhancing
efficiency and diminishing the combinatorial explosion.

The reader can verify for himself that one possible solution produced
by this second level is the sequence {unstack(C,A), stack(C,2?),
pickup(^4), stack(^, C)}. If no solution can be found during one of the
levels, the process can return to a higher level to find another solution. In
this case our second-level solution is a good one and is complete except
that in its construction we have ignored the condition HANDEMPTY.

During the next or third level, we lower to 1 the threshold on criticality
values. We start with a goal stack containing the sequence of F-rules from
the second-level solution together with (now all of) their preconditions.
The work at this level, for our present example, merely verifies that the
second-level solution is a correct solution even to the most detailed level
of the problem.

ABSTRIPS is thus a completely straightforward process for accom
plishing hierarchical planning. All that is required is a grading of the
importance of predicates accomplished by assigning them criticality
values. In problems more complex than this example, ABSTRIPS is a
much more efficient problem solver than the single-level STRIPS.

8.43. VARIATIONS

There are several variations on this particular theme of hierarchical
problem solving. First, the basic problem solver used at each level does
not have to be STRIPS. Any problem-solving method can be used so
long as it is possible for the method at one level to be guided by the
solution produced at a higher level. For example, we could use RSTRIPS
or DCOMP at each level augmented by an appropriate patching process.

A minor variation on this hierarchical planning scheme involves only
two levels of precondition criticality and a slightly different way of using

354

HIERARCHICAL PLANNING

the criticality levels. Since this variant is important, we illustrate how it
works with an example using the set of F-rules given below:

1) pickup(x)
P& D: ONTABLE(x), CLEAR(x), P-HANDEMPTY
A: HOLDING(x)

2) putdown(x)
P & D : HOLDING(x)
A: ONTABLE(x%CLEAR(x),HANDEMPTY

3) stack(;c,7)
P & D : P-HOLDING{x\CLEAR{y)
A: HANDEMPTY,ON(x,y),CLEAR(x)

4) unstack(x,7)
P & D : P-HANDEMPTY, CLEAR(x), ON(x,y)
A: HOLDING(x\CLEAR(y)

The special P- prefix before a predicate indicates that achievement of
the corresponding precondition is always postponed until the next lower
level. We call these preconditions P-conditions. This scheme allows us to
specify, for each F-rule, which preconditions are the most important (to
be achieved during the current planning level) and which are details (to
be achieved in the immediately lower level).

In this example, we use STRIPS as the basic problem solver at each
level. Let us consider the same problem solved earlier, namely, to achieve
the goal [ON (C, B) Λ ON (A, C)] from the initial state shown in Figure
7.1. In Figure 8.14, we show a STRIPS solution path for the first level.
Note again that the state description may contain inconsistencies because
details are not deleted. The first level solution is the sequence
(stack(C,£), stack(,4,C)}.

We begin the second-level solution attempt with a goal stack contain
ing the sequence of F-rules just obtained and their preconditions. Now,
however, the P-conditions previously postponed must be included as
conditions and be achieved at this level. Also, when these F-rules are
applied, we delete these preconditions from the current state description.
Any new F-rules inserted at this level are treated as before.

355

u>

O
S

ST
A

TE
 D

ES
CR

IP
TI

O
N

CL

EA
R(

B)

CL
EA

R(
C)

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

ST
A

TE
 D

ES
CR

IP
TI

O
N

CL

EA
R(

B)

CL
EA

R(
C)

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

G
O

A
L

ST
A

CK

O
N(

C,
B)

AO

N(
A,

C)

1

G
O

A
L

ST
A

CK

O
N{

C,
B)

O

N(
A,

C)

O
N{

C,
B)

AO

N{
A,

Ç)

*

ST
A

TE
 D

ES
CR

IP
TI

O
N

G

O
A

L
ST

A
CK

CL
EA

R(
B)

CL

EA
R(

C)

O
N{

C,
A)

H

AN
D

EM
PT

Y
O

NT
AB

LE
(A

)
O

NT
AB

LE
(B

)

CL
EA

R(
B)

st

ac
k(

C
,£

)
O

N(
A,

C)

O
N(

C,
B)

 A

O
N(

A,
C)

z

"Ì
ST

A
TE

 D
ES

CR
IP

TI
O

N

CL
EA

R(
C)

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

O
N(

C,
B)

[S
TA

TE
 D

ES
CR

IP
TI

O
N

CL
EA

R(
C)

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

O
N(

C,
B)

G
O

A
L

ST
A

CK

O
N(

A,
C)

O

N{
C,

B)
 A

O

N(
A,

C)

1

G
O

A
L

ST
A

CK

CL
EA

R(
C)

sta

ck
(A

,C
)

O
N(

C,
B)

AO
N(

A,
C)

w

ST
A

TE
 D

ES
CR

IP
TI

O
N

G

O
A

L
ST

A
CK

O

N(
C,

A)

H
AN

D
EM

PT
Y

O
NT

AB
LE

(A
)

O
NT

AB
LE

(B
)

O
N(

C,
B)

O

N(
A,

Q

CE
EA

R(
A)

NI
L

n w

a 6 w
 z w z o in

 < m

H

W

F
ig

. 8
.1

4
A f

ir
st

-le
ve

l S
TR

IP
S

so
lu

tio
n

us
in

g
P-

co
nd

iti
on

s.

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

The beginning goal stack for the next level of problem solving is given
below. To distinguish the F-rules inherited from a previous level from
those that might be inserted at the present level, we precede the inherited
ones by an asterisk (*).

HOLDING(C) A CLEAR(B)
*stack(C,£)
HOLDING(A) Λ CLEAR(C)

*stack(^,C)
[ON(C,B)A ON(A,C)]

The STRIPS solution at this level is the sequence {unstack(C,^4),
stack(C,i?), pickup(^), stack(^4,C)}. Even though there were post
poned conditions at this level, namely, HANDEMPTY, this sequence is a
valid solution. The goal stack set up for the next lower level causes no
additional F-rules to be inserted in the plan. The problem-solving
process for this level merely verifies the correctness of the second-level
plan when all details are included.

8.5. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

RSTRIPS is based on systems for dealing with interacting goals
developed by Warren (1974) and by Waldinger (1977). [Warren's system,
WARPLAN, is clearly and economically implemented in PROLOG.] A
similar scheme was proposed by Rieger and London (1977).

DCOMP is based on Sacerdoti^ (1975, 1977) and Tate's (1976, 1977)
ideas for developing "nonlinear" plans. Sussman (1975) discusses several
of the problems of simultaneously achieving interacting goals and
recommends the strategy of creating a plan that tolerates a few bugs and
then debugging this plan in preference to the strategy of synthesizing a
perfect plan.

The ABSTRIPS system for hierarchical planning was developed by
Sacerdoti (1974). The LAWALY system of Siklóssy and Dreussi (1973)
also used hierarchies of subtasks. Our variation of ABSTRIPS using
"P-conditions" is based on Sacerdoti's (1977) NOAH system. NOAH

357

ADVANCED PLAN-GEN ERATING SYSTEMS

combines hierarchical and nonlinear planning; thus it might be thought
of as an AB-DCOMP using P-conditions. Tate's (1977) system for
generating project networks can be viewed as an elaboration of NOAH.
See also a hierarchical planning and execution system proposed by
Nilsson (1973).

Extensions to the capabilities of robot problem solving-systems have
been proposed by Fikes, Hart, and Nilsson (1972a). Feldman and Sproull
(1977) discuss problems caused by uncertainty in robot planning and
recommend the use of decision-theoretic methods.

EXERCISES

8.1 Starting with the initial state description shown in Figure 7.1, show
how RSTRIPS would achieve the goal [ON(B,A) Λ ON(C,B)].

8.2 Use any of the plan generating systems described in chapters 7 and 8
to solve the following block-stacking problem:

x
D

Initial Goal

8.3 Show how DCOMP would solve the following blocks-world prob
lem:

x
Initial Goal

Use the predicates and STRIPS rules of chapter 7 to represent states and
actions.

358

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

8.4 An initial blocks-world situation is described as follows:

CLEAR(A) ONTABLE(A)
CLEAR(B) ONTABLE(B)
CLEAR(C) ONTABLE(C)

There is just one F-rule, namely:

puton(x,y)
P: CLEAR(x\CLEAR(y),ONTABLE{x)
D: CLEAR{y\ONTABLE{x)
A: ΟΝ(χ,γ)

Show how DCOMP would achieve the goal [ON(A,B) A ON(B,C)].

8.5 Sketch out the design of a hierarchical version of DCOM P that bears
the same relationship to DCOMP that ABSTRIPS bears to STRIPS. (We
might call the system AB-DCOMP.) Show how the system might work on
an example problem.

WARNING: There are some conceptual difficulties in designing AB-
DCOMP. Describe any that you encounter even if you do not solve them.

8.6 If certain nodes in the graph of Figure 7.3 were combined, it would
have the following structure:

Specify a hierarchical planning system based on the form of this structure
and illustrate its operation by an example.

8.7 Suppose a hierarchical planning system fails to find a solution at one
of its levels. What sort of information about the reason for the failure
might be useful in searching for an alternative higher level plan?
Illustrate with an example.

359

ADVANCED PLAN-GEN ERATING SYSTEMS

8.8 Can you think of any ways in which the ideas about hierarchical
problem solving described in this chapter might be used in rule-based
deduction systems? Test your suggestions by applying them to a
deduction-system solution of a robot problem using Kowalski's formula
tion.

8.9 Can you find a counter-example to the following statement?

Any plan that can be generated by STRIPS
can also be generated by ABSTRIPS.

8.10 Discuss the "completeness" properties of RSTRIPS and DCOMP.
That is, can these planning systems find plans whenever plans exist?

360

CHAPTER 9

STRUCTURED OBJECT
REPRESENTATIONS

As we discussed in chapter 4, there are many ways to represent a body
of knowledge in the predicate calculus. The appropriateness of a
representation depends on the application. After deciding on a particular
form of representation, the system designer must also decide on how
predicate calculus expressions are to be encoded in computer memory.
Efficient storage, retrieval, and modification are key concerns in selecting
an implementation design. Up to now in this book, we have not been
concerned with these matters of efficiency. We have treated each
predicate calculus statement, whether fact, rule, or goal, as an individual
entity that could be accessed as needed without concern for the actual
mechanisms or costs involved in this access. Yet, ease of access is such an
important consideration that it has had a major effect on the style of
predicate calculus representation used in large AI systems. In this
chapter, we describe some of the specialized representations that address
some of these concerns. We also confront certain representational
questions that might also have been faced earlier, say in chapter 6, but
seem more appropriate in this chapter.

The representations discussed here aggregate several related predicate
calculus expressions into larger structures (sometimes called units) that
are identified with important objects in the subject domain of the system.
When information about one of these objects is needed by the system, the
appropriate unit is accessed and all of the relevant facts about the object
are retrieved at once. We use the phrase structured objects to describe
these representational schemes, because of the heavy emphasis on the
structure of the representation. Indeed, the structure carries some of the
representational and computational burden. Certain operations that
might otherwise have been performed by explicit rule applications (in

361

STRUCTURED OBJECT REPRESENTATIONS

other representations) can be performed in a more automatic way by
mechanisms that depend on the structure of the representation. These
representational schemes are the subject of this chapter.

9.1. FROM PREDICATE CALCULUS TO UNITS

Suppose we want to represent the following sentences as predicate
calculus facts:

John gave Mary the book.

John is a programmer.

Mary is a lawyer.

John's address is 37 Maple St.

The following wffs appear to be a reasonable representation:

GIVE (JOHN, MAR Y, BOOK)

OCCUPA TION(JOHN, PROGRAMMER)

OCCUPATION (MARY, LAWYER)

ADDRESS (JOHN,31~MAPLE-ST)

In this small database, we have used individual constant symbols to
refer to six entitities, namely, JOHN, MAR Y, BOOK, PROGRAMMER,
LA WYER, and 31-MAPLE-ST. If the database were enlarged, we would
presumably mention more entities, but we would also probably add other
information about these same entities. For retrieval purposes, it would be
helpful if we gathered together all of the facts about a given entity into a
single group, which we call a unit. In our simple example, the unit JOHN
has associated with it the following facts:

JOHN

GIVE(JOHN,MARY,BOOK)
OCCUPA TION(JOHN, PROGRAMMER)
ADDRESS (JOHN,31-MAPLE-ST)

362

FROM PREDICATE CALCULUS TO UNITS

Similarly, we associate the following facts with the unit MARY:

MARY

GIVE (JOHN, MARY, BOOK)
OCCUPATION(MARY,LA WYER)

(It is possible to have the same fact associated with terms denoting
different entities in our domain.)

A representational scheme in which the facts are indexed by terms
denoting entities or objects of the domain is called an object-centered
representation.

Most notations for structured objects involve the use of binary
(two-argument) predicates for expressing facts about the objects. A
simple conversion scheme can be used to rewrite arbitrary wffs using only
binary predicates. To convert the three argument formula
GIVE (JOHN, MARY, BOOK), for example, to one involving binary
predicates, we postulate the existence of a particular "giving event" and a
set of such giving events. Let us call this set GIVING-E VENTS. For each
argument of the original predicate, we invent a new binary predicate that
relates the value of the argument to the postulated event. Using this
scheme, the formula GIVE (JOHN, MARY, BOOK) would be converted
to:

(3x)[EL(x,GIVING-EVENTS) A GIVER(xJOHN)
A RECIP(x,MARY) A OBJ(x,BOOK)\

The predicate EL is used to express set membership. Skolemizing the
existential variable in the above formula gives a name, say GI, to our
postulated giving event:

EL(G1,GIVING-EVENTS) A GIVER(GIJOHN)
A RECIP(G1,MARY) A OBJ(GI,BOOK)

Thus, we have converted a three-argument predicate to the conjunc
tion of four binary ones.

The relations between GI and the original arguments of GIVE could
just as well be expressed as functions over the set GIVING-E VENTS
instead of as predicates. With this additional notational change, the

363

STRUCTURED OBJECT REPRESENTATIONS

sentence "John gave Mary the book" can be represented by the following
formula:

EL(G1,GIVING-EVENTS)
AEQ[giver(Gl),JOHN]
A EQ[recip(Gl),MARY]
AEQ[obj(Gl),BOOK]

The predicate EQ is meant to denote the equality relation. The
expression above uses certain functions, defined over the set GIVING-
E VENTS, whose values name other objects that participate in Gl.

There are some advantages in converting to a representation that uses
events and binary relations. For our purposes, the primary advantage is
modularity. Suppose, for example, that we want to add some information
about when a giving event takes place. Before converting to our binary
form, we would need to add a fourth (time) argument to the predicate
GIVE. Such a change might require extensive changes to the production
rules that referenced GIVE and to the control system. If, instead, giving is
represented as a domain entity, then additional information about it can
easily be incorporated by adding new binary relations, functions, and
associated rules.

In this part of the book we represent all but a small number of
propositions as terms denoting "events" or "situations" that are consid
ered entities of our domain. The only predicates that we need are EQ, to
say that two entities are the same; SS, to say that one set is a subset of
another; and EL, to say that an entity is an element of a set. For our
example sentences above, we had events in which persons had occupa
tions and an event in which a person had an address. These sentences are
represented as follows:

Gl

EL (Gl, GIVING-EVENTS)
EQ[giver(Gl),JOHN]
EQ[recip(Gl),MARY]
EQ[obj(Gl),BOOK]

364

FROM PREDICATE CALCULUS TO UNITS

OC1

EL (OC1, OCCUPA TION-EVENTS)
EQ[worker(OCl)JOHN]
EQ [profession (OC1), PROGRAMMER]

OC2

EL(OC2, OCCUPA TION-EVENTS)
EQ[worker{OC2\MARY]
EQ [profession {OC2\ LA WYER]

ADR1

EL(ADR19 ADDRESS-EVENTS)
EQ[person(ADRl)JOHN]
EQ [location (ADRI \31-MAPLE-ST]

In these units, we have freely invented functions to relate events with
other entities.

We notice that the units above share a common structure. First, an EL
predicate is used to state that the object described by the unit is a member
of some set. (If the object described by the unit had been a set itself, then
an SS predicate would have been used to state that it was a subset of some
other set.) Second, the values of the various functions of the object
described by the unit are related to other objects. We next introduce a
special unit notation based on this general structure.

As an abbreviation for a formula like EQ[giver(GI),JOHN], we use
the expression or pair "giver : JOHN" All of the EQ predicates that relate
functions of the object described by the unit to other objects are
expressed by such pairs grouped below the unit name. Thus, drawing
from our example, we have:

Gl
giver: JOHN
reap: MARY
obj: BOOK

365

file:///31-MAPLE-ST

STRUCTURED OBJECT REPRESENTATIONS

In AI systems using unit notation, constructs like "giver : JOHN" are
often called slots. The first expression, giver, is called the slotname, and
the second expression, JOHN, is called the slotvalue.

Sometimes the slotvalue is not a constant symbol (such as JOHN) but
a functional expression. In particular, the function may correspond to the
slotname of another unit. Consider, for example, the sentences "John
gave the book to Mary," and "Bill gave the pen to the person to whom
John gave the book." We express this pair of sentences by the following
units:

Gl
EL(G1,GIVING-EVENTS)
giver: JOHN
reap: MARY
obj: BOOK

G2
EL(G2, GIVING-EVENTS)
giver: BILL
recip : recip(Gl)
obj: PEN

In these examples, recip (Gl) and MARY are two different ways of
describing the same person. Later, we discuss a process for "evaluating" a
functional expression like recip (Gl) by finding the slotvalue of recip in
the unit Gl.

Slotvalues can also be existential variables. For example, a predicate
calculus version of the sentence "Someone gave Mary the book" might
include the formula (3x)EQ[giver(G3)9x]. We might Skolemize the
existential variable to get an expression like EQ [giver (G3),S]. Usually,
we have some information about the existential variable. In our current
example, we would know that "someone" referred to a person. A better
rendering of "Someone gave Mary the book" would involve the formula:

(3x){EQ[giver(G3),x] Λ EL(x,PERSONS)]}

or simply,

EL [giver (G3), PERSONS].

366

FROM PREDICATE CALCULUS TO UNITS

In order to handle this sort of formula in our unit notation, we invent
the special form "(element-of PERSONS)" as a kind of pseudo-slot-
value. This form serves as an abbreviation for the formula that used the
EL predicate. An expression using the abbreviated form can be thought
of as an indefinite description of the slotvalue.

To complete our set of abbreviating conventions, we use the "(ele
ment-of)" form in a slotname called "self to state that the object
described by the unit is an element of a set. With these conventions, our
set of units that were originally written as groups of predicate calculus
formulas can be rewritten as follows:

Gl
self: (element-of GIVING-EVENTS)
giver: JOHN
reap: MARY
obj: BOOK

OC1
self: (element-of OCCUPA TION-E VENTS)
worker: JOHN
profession: PROGRAMMER

OC2
self: (element-of OCCUPA TION-E VENTS)
worker: MARY
profession : LA WYER

ADR1
self: (element-ofADDRESS-EVENTS)
person : JOHN
location : 31-MAPLE-ST

Other entities in our domain might similarly be described by the
following units:

JOHN
self: (element-of PERSONS)

MARY
self: (element-ofPERSONS)

367

STRUCTURED OBJECT REPRESENTATIONS

BOOK
self: (element-ofPHYS-OBJS)

PROGRAMMER
self: (elemeni-ofJOBS)

LA WYER
self: (element-of JOBS)

31-MAPLE-ST
self: (element-of ADDRESSES)

PERSONS
self: (subset-of ANIMALS)

This set of units represents explicitly certain information (about set
membership) that was merely implicit in our original sentences. Note
that in the last unit, PERSONS, we use the form "(subset-of AN
IMALS)" This form is analogous to the "(element-of)" form; within
the PERSONS unit it stands for SS(PERSONS,ANIMALS).

It should be clear how to translate any of the above units back into
conventional predicate calculus notation.

We can also accommodate universally quantified variables in units.
Consider, for example, the sentence "John gave something to everyone."
In predicate calculus, this sentence might be represented as follows:

(Vx)(3y)(3z){ EL (y, GIVING-E VENTS)
A EQ[giver(y)JOHN] A EQ[obj(y\z]
AEQ[recip(ylx]} .

Skolemization replaces the variables y and z by functions of x. In
particular, the giving event, y, is now a Skolem function of x and not a
constant. The family of giving events represented by this function can be
described by the functional unit:

g(x)
self: (element-ofGIVING-EVENTS)
giver: JOHN
obj: sk(x)
recip : x

368

FROM PREDICATE CALCULUS TO UNITS

In this unit, the slotvalue of obj is the Skolem function, sk(x). The
scope of universal variables in units is the entire unit. (We assume that all
predicate calculus formulas represented in unit notation are in prenex
Skolem form. That is, all negation signs are moved in, variables are
standardized apart, existential variables are Skolemized, and all universal
quantifiers apply to the entire expression. Thus, when translating unit
notation back into predicate calculus, the universal variables all have
maximum scopes.)

Since ideas about sets and set membership play such a prominent role
in the representations being discussed in this chapter, it will be helpful to
have some special functions for describing sets. To describe a set
composed of certain individuals, we use the function the-set-of; for
example, the-set-of {JOHN,MARY, BILL). We also use functions inter
section, union, and complement to describe sets composed of the
intersection, union, or complement of sets, respectively.

These set-describing functions can be usefully employed as a way to
represent certain sentences expressing disjunctions and negations. For
example, consider the sentences: "John bought a car," "It was either a
Ford or a Chevy," and "It was not a convertible." These sentences could
be described by the following unit:

Bl
self: (element-ofBUYING-EVENTS)
buyer: JOHN
bought : (element-of intersection (union (FORDS, CHE VYS),

complement (CON VER TIB LES))) .

As another example, the sentence "John gave the book to either Bill or
Mary" might be represented by:

G4
self: (element-of GIVING-EVENTS)
giver: JOHN
recip : (element-of the-set-of (BILL, MARY))
obj: BOOK

We postpone the discussion of how to represent implications in unit
notation. It is not our intention here to develop the unit notation into a
completely adequate alternative syntax for predicate calculus. A com
plete syntax might be quite cumbersome; indeed, various useful AI
systems have employed quite restricted versions of unit languages.

369

STRUCTURED OBJECT REPRESENTATIONS

9.2. A GRAPHICAL REPRESENTATION: SEMANTIC
NETWORKS

The binary-predicate version of predicate calculus introduced in the
last section lends itself to a graphical representation. The terms of the
formalism (namely, the constant and variable symbols and the functional
expressions) can be represented by nodes of a graph. Thus, in our
examples above, we would have nodes for JOHN, Gì, MARY, LAW
YER, ADR1, etc. The predicates EQ, EL, and SS can be represented by
arcs; the tail of the arc leaves the node representing the first argument,
and the head of the arc enters the node representing the second
argument. Thus, the expression EL(G1,GIVING-EVENTS) is repre
sented by the following structure:

CE>
The nodes and arcs of such graphs are labeled by the terms and

predicates that they denote.

When an EQ predicate relates a term and a unary function of another
term, we represent the unary function expression by an arc connecting
the two terms. For example, to represent the formula
EQ[giver{Gì),JOHN], we use the structure:

A collection of predicate calculus expressions of the type we have been
discussing can be represented by a graph structure that is often called a
semantic network. A network representation of our example collection of
sentences is shown in Figure 9.1. Semantic networks of this sort are useful
for descriptive purposes because they give a simple, structural picture of
a body of facts. They also depict some of the indexing structure used in
many implementations of predicate calculus representations. Of course,
whether we choose to describe the computer representation of a certain
body of facts by a semantic network, by a set of units, or by a collection of
linear formulas is mainly a matter of taste. The underlying computer data
structures may well be the same! We use all three types of descriptions
more or less interchangeably in this chapter.

We show another semantic net example in Figure 9.2. It represents the
same set of facts that were represented as predicate calculus expressions
in an information retrieval example in chapter 6.

JOHN

370

A GRAPHICAL REPRESENTATION: SEMANTIC NETWORKS

ADDRESS-EVENTS) (OCCUPATION-EVENTS) (GIVING-EVENTS

fworker\
person worker / V™fession \ recip / \ \ profession

PROGRAMMER

EL

JOHN

EL

Fig. 9.1 A simple semantic network.

371

STRUCTURED OBJECT REPRESENTATIONS

Fig. 9.2 A semantic network representing personnel information.

372

A GRAPHICAL REPRESENTATION: SEMANTIC NETWORKS

The nodes in the networks of Figures 9.1 and 9.2 are all labeled by
constant symbols. We can also accommocate variable nodes; these are
labeled by lower case letters near the end of the alphabet (e.g.,..., x9y, z).
Again, the variables are standardized apart and are assumed to be
universally quantified. The scope of these quantifications is the entire fact
network.

We follow the same conventions converting predicate calculus for
mulas to network form as we did converting them to unit notation.
Existentially quantified variables are Skolemized, and the resulting
Skolem functions are represented by nodes labeled by functional
expressions. Thus the sentence "John gave something to everyone" can
be represented by the network in Figure 9.3. In this figure, "x" is
universally quantified. The nodes labeled by "g(x)" and "$&(*)" are
Skolem-function nodes. (Computer implementations of nodes labeled by
functional expressions would probably have some sort of pointer
structure between the dependent nodes and the independent ones. For
simplicity, we suppress explicit display of these pointers in our semantic
networks; although some net formalisms include them.)

We next discuss how to represent the propositional connectives
graphically. Representing conjunctions is easy: The multiple nodes and
EL and SS arcs in a semantic network represent the conjunction of the
associated atomic formulas. To represent a disjunction, we need some
way of setting off those nodes and arcs that are the disjuncts. In a linear
notation, we use parentheses or brackets to delimit the disjunction. For
semantic networks, we employ a graphical version of the parentheses, an
enclosure, represented by a closed, dashed line in our illustrations. For a
disjunction, each disjunctive predicate is drawn within the enclosure, and
the enclosure is labeled DIS. Thus, the expression
[EL(A,B) V SS(B9C)] is represented as in Figure 9.4.

To set off a conjunction nested within a disjunction, we can use an
enclosure labeled CONJ. (By convention, we omit the implied conjunc
tive enclosure that surrounds the entire semantic network.) Arbitrary
nesting of enclosures within enclosures can be handled in this manner. As
an example, Figure 9.5 shows the semantic network version of the
sentence "John is a programmer or Mary is a lawyer."

In converting predicate calculus expressions to semantic network form,
negation symbols are typically moved in, so that their scopes are limited
to a single predicate. In this case, expressions with negation symbols can

373

STRUCTURED OBJECT REPRESENTATIONS

be represented in semantic network form simply by allowing ~EL,
~SS, and ~EQ arcs. More generally, we can use enclosures to delimit
the scopes of negations also. In this case, we label the enclosure by NEG.
We show, in Figure 9.6, a graphical representation of
~[EL(A,B) Λ SS(B,C)]. To simplify the notation we assume, by
convention, that the predicates within a negative enclosure are conjunc
tive.

(^ΊθΗΝ^) [sk(x))

Fig. 9.3 A net with Skolem-function nodes.

disjunctive
enclosure

Fig. 9.4 Representing a disjunction.

374

A GRAPHICAL REPRESENTATION: SEMANTIC NETWORKS

Fig. 9.5 A disjunction with nested conjunctions.

Fig. 9.6 Representing a negation.

375

STRUCTURED OBJECT REPRESENTATIONS

In Figure 9.7 we show an example of a semantic network with both a
disjunctive and a negative enclosure. This semantic network is equivalent
to the following logical formula:

{EL(B1,BUYING-EVENTS) A EQ[buyer(Bl),JOHN\
A EQ[bought(Bl),X] A ~EL(X,CONVERTIBLES)
A [EL(X,FORDS) V EL(X,CHEVYS)]
A SS(FORDS,CARS) A SS(CHEVYS,CARS)
A SS(CONVERTIBLES,CARS)}

Fig. 9.7 A semantic network with logical connectives.
376

A GRAPHICAL REPRESENTATION: SEMANTIC NETWORKS

If we negate an expression with a leading existentially quantified
variable and then move the negation symbol in past the quantifier, the
quantification is changed to universal. Thus, the statement "Mary is not a
programmer" might be represented as

~ {(3x) EL (jc, OCCUPA TION-E VENTS)
Λ EQ[profession(x),PROGRAMMER]
A EQ[worker(x),MARY]} ,

which is equivalent to

(Vx) ~ { EL (x, OCCUPA TION-EVENTS)
A EQ [profession (x), PROGRAMMER]
A EQ[worker(x),MARY]} .

The network representation for the latter formula is shown in Figure 9.8.

Enclosures can also be used to represent semantic network implica
tions. For this purpose, we have a linked pair of enclosures, one labeled
ANTE and one labeled CON SE. For example, the sentence "Everyone
who lives at 37 Maple St. is a programmer" might be represented by the
net in Figure 9.9. In this figure, o(x,y) is a Skolem function naming an
occupation event dependent on x and y. A dashed line links the ANTE
and CON SE enclosures to show that they belong to the same implication.
We discuss network implications in more detail later when we introduce
rules for modifying databases.

Fig. 9.8 One representation of a negated existential statement.
3ΊΊ

STRUCTURED OBJECT REPRESENTATIONS

ADDRESS-EVENTS OCCUPA TION-E VENTS

(EL

ANTE CONSE

r y Λ \ Penon \ t 0 , | worker / ^

EL

y))

^ he profession

PROGRAMMER

Fig. 9.9 A network with an implication.

In all of these examples, enclosures are used to set off a group of EL,
SS, and function arcs and thus are drawn so as to enclose only arcs.
(Whether or not they enclose nodes has no consequence in our semantic
net notation.)

9.3. MATCHING

A matching operation, analogous to unification, is fundamental to the
use of structured objects as the global database of a production system.
We turn to this subject next.

To help us define what we mean by saying that two structured objects
"match," we must remember the fact that structured objects are merely
an alternative kind of predicate calculus formalism. The appropriate

378

MATCHING

definition must be something like: Two objects match if and only if the
predicate calculus formula associated with one of them unifies with the
predicate calculus formula associated with the other. We are interested in
a somewhat weaker definition of match, because our match operations
are not usually symmetrical. That is, we usually have a goal object that we
want to match against a, fact object. We say that a goal object matches a
fact object if the formula involving the goal object unifies with some
sub-conjunction of the formulas of the fact object. (Matching occurs only
if the goal object formulas are provable from the fact-object formulas.)

Let us look at some example matches between units using this
definition. Suppose we have the fact unit:

Ml
self: (element-of MARRIAGE-EVENTS)
male: JOHN-JONES
female: MARY-JONES

The predicate calculus formula associated with this unit is:

EL(M1,MARRIAGE-EVENTS)
A EQ [male (Ml), JOHN-JONES]

EQ[female(Ml\MARY-JONES] .

This fact unit would match the goal unit:

Ml
self: (element-of MARRIAGE-EVENTS)
male: JOHN-JONES

It would not match the goal unit:

Ml
self: (element-of MARRIAGE-EVENTS)
male: JOHN-JONES
female: MARY-JONES
duration : 10

For semantic networks, the situation is quite similar. In Figures 9.10
and 9.11 we show the fact and goal networks that correspond to the units
examples above. In these figures, we separate the fact and goal arcs by a
dashed line. (Again, only the location of the arcs, with respect to the

379

STRUCTURED OBJECT REPRESENTATIONS

male female EL

Fig. 9.10 A goal net that matches a fact net.

male female duration EL

Fig. 9.11 A goal net that does not match a fact net.

380

MATCHING

dashed line, is important; the location of nodes is irrelevant in our
formulation.) In order for a goal network structure to match a fact
network structure, the formula associated with the goal structure must
unify with some sub-conjunction of the formulas associated with the fact
structure. In these examples, we merely have to find fact arcs that match
each of the goal arcs. The match is successful in Figure 9.10, but it is
unsuccessful in Figure 9.11.

In any representational scheme there are often several alternative
representations for basically the same information. Since our definition
of structure matching depends on the exact form of the structure, such
alternatives do not strictly match. Consider the network examples of
Figure 9.12. There we show two alternatives for representing "John Jones
is married to Mary Jones." One of these uses a "marriage-event," and the
other uses the special wife-of function. (Ordinarily, our preference is not
to use functions like wife-of unless their values are truly independent of
other parameters, such as time.) Syntactically, the two structures of
Figure 9.12 do not match even though they semantically "say" the same
thing. Such a circumstance corresponds to the fact that two predicate
calculus forms for representing the same idea do not unify when they
contain different predicate or function symbols. We show a somewhat
more complex example of equivalent forms in Figure 9.13.

Some AI systems that use structured objects have elaborate matchers
that use special knowledge about the domain of application to enable
direct matches between structures like those shown in Figure 9.12 and
Figure 9.13. These systems have what are often described as "semantic
matchers," that is, matchers that decide that two structures are the same if
they "mean" the same thing.

It is perhaps a matter of taste as to where one wants to draw the line
between matching and object manipulation computations and deduc
tions. Our preference is to prohibit operations in the matcher that require
specialized domain knowledge or that might involve combinatorial
computations. In these cases, we would prefer to use rule-based deduc
tive machinery to establish the semantic equivalence between different
syntactic forms. Such a strategy retains, for the control system, the
responsibility of managing all potentially combinatorial searches. It
permits the matcher to be a general-purpose routine that does not have to
be specially designed for each application. We postpone a discussion of
deductive machinery until later, when we talk about operations on
structured objects.

381

STRUCTURED OBJECT REPRESENTATIONS

A common cause of syntactic differences between network structures
are the different ways of setting up chains of EL and SS arcs. Consider
the example of Figure 9.14. The goal structure can be derived from the
fact structure using a fundamental theorem from set theory. Because this
derivation occurs so often with structured objects, it is usually built into
the matcher. In fact, one of the advantages of structured objects is that
their pointer structures allow easy computation of element/subset/set
relationships. Thus, we say that the two structures in Figure 9.14 do
match.

So far, we have only discussed matching between two constant
structures. Usually, one or both of the structures contain variables that
can have terms substituted for them during the matching process.
Variables that occur in fact structures have implicit universal quantifica
tion in all formulas in which they appear, and variables that occur in goal
structures have implicit existential quantification in all formulas in which
they appear. Our structured-object systems are first-order, so variables
can only occur as labels for nodes, units, or slotvalues.

Fig. 9.12 Two non-matching, equivalent structures.

382

MATCHING

John or Bill gave Mary the pen.

giver

Fig. 9.13 Another example of equivalent networks.

383

STRUCTURED OBJECT REPRESENTATIONS

PERSONS

SS

MEN

EL

JOHN-JONES

FACT NET

GOAL NET

EL

Fig. 9.14 Nets with EL and SS arcs.

Fig. 9.15 Matching nets.

384

MATCHING

A typical use of structures with variables is as goal structures. Suppose,
for example, that we wanted to ask the question "To whom did John give
the book?" This question could be represented by the following goal
unit:

x
self: {element-ofGIVING-EVENTS)
giver: JOHN
recip : y
obj: BOOK

Matching this goal unit against the fact unit, Gl, yields the substitution
{Gl/x,MARY/y}, which can be used to generate an answer to the
question. In network notation, we show the corresponding matching fact
and goal structures in Figure 9.15. In order for a goal net to be matched,
each of its elements (arcs and nodes) must unify with corresponding
fact-net elements.

In matching objects that contain functional expressions for slotvalues,
we assume that these functional expressions are evaluated whenever
possible. Evaluation is performed by reference to the object named by
the argument of the function. Suppose, for example, that we want to ask
the question: "Did Bill give Mary the pen?" This query can be expressed
as the goal unit:

x
self: {element-of GIVING EVENTS)
giver: BILL
recip: MARY
obj: PEN

Suppose our fact units include:

Gl
self: {element-ofGIVING-EVENTS)
giver: JOHN
recip: MARY
obj: BOOK

G2
self: {element-ofGIVING-EVENTS)
giver: BILL
recip : recip {Gl)
obj: PEN

385

STRUCTURED OBJECT REPRESENTATIONS

Because recip{Gl) can be evaluated to MARY, by reference to Gl, our
goal unit matches G2 ; and we can answer "yes" to the original query. We
permit the matcher to perform these kinds of evaluations because they
can be handled without domain-specific strategies and do not cause
combinatorial computations.

It might also be desirable to allow the matcher to use certain common
equivalences between units. One such equivalence involves the special
descriptive form {element-of). For example, the sentence "Joe bought a
car" might be represented either by the unit:

B2
self: {element-ofBUYING-EVENTS)
buyer: JOE
bought : (element-of CARS)

or by the pair of units:

B2
self: {element-ofBUYING-EVENTS)
buyer: JOE
bought: X

and

X
self: {element-ofCARS)

(The first unit could be considered an abbreviated form for the pair of
units.) We could build information about this abbreviation into the
matcher so that, for example, the pair of units would match the goal unit:

y
self: {element-ofBUYING-EVENTS)
buyer: JOE
bought : { element-of CARS)

386

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

9.4. DEDUCTIVE OPERATIONS ON STRUCTURED
OBJECTS

9.4.1. DELINEATIONS

Structured object representations can be used in production systems
for performing deductions. As in our earlier discussions of predicate
calculus deduction systems, the production rules are based on implica
tions. Before talking about how implications are used in general, we
consider a frequently occurring special use: when an implication asserts
properties about every member of a given set.

Consider, for example, the sentence "All computer science students
have graduate standing." From this assertion and the sentence, "John is a
computer science student," we should be able to deduce that "John has
graduate standing." We could represent these statements in the predicate
calculus as follows:

Fact : EL(JOHN, CS-STUDENTS)

Rule :EL(x, CS-STUDENTS)=>EQ[class (x), GRA D]

Goal: EQ[class{JOHN\GRAD]

An ordinary predicate calculus production system might use the rule (in
either direction) to prove the goal.

In unit language, our fact might be represented as:

JOHN

self: (element-of CS-STUDENTS)

and our goal might be represented as:

JOHN
class: GRAD

Our problem now is how to represent and use the implicational rule in
a system based on unit notation.

387

STRUCTURED OBJECT REPRESENTATIONS

In the unit formalism, we represent implications that assert properties
about every member of a set by a special kind of unit called a delineation
unit. Such a unit describes (delineates) each of the individuals in a set
denoted by another unit. For example, suppose we have a unit denoting
the set of computer science students:

CS-STUDENTS
self: (subset-of STUDENTS)

A delineation unit for this set is used to describe each of the individuals
in the set. We let this delineation unit be a sorted universal variable whose
domain of universal quantification is the set. The sort of the variable, that
is, the name of its domain set, follows the variable after a vertical bar, "|".
Thus, to describe each computer science student, we have the delineation
unit:

x | CS-STUDENTS
major : CS
class: GRAD

We must be careful not to confuse delineation units describing each
individual in a set with the unit describing the set itself, or with any
particular individuals in the set! Some AI systems using a unit formalism
have entities called prototype units that seem to play the same role as our
delineation units. In these systems, prototype units seem to be treated as
if they were a special kind of constant, representing a mythical "typical"
member of a set. The prototype units are then related to other members
of the set by an "instance" relation. But such prototype units might cause
confusion—because substituting a constant for a variable (instantiation)
should properly be thought of as a metaprocess rather than as a relation
in the formalism itself. It seems more reasonable to think of a delineation
unit as a special form of implicational rule.

Delineation units can be used in the forward direction to create new
fact units or to add properties to existing fact units. For example, suppose
we had the fact unit:

JOHN
self: (element-of CS-STUDENTS)

To use the delineation unit in the forward direction, we note that
x I CS-STUDENTS matches the fact unit JOHN. The sorted variable, JC,

388

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

matches any term that is an element of CS-STUDENTS. Applying the
delineation unit to the fact unit involves adding, to the fact unit, the slots
"major: CS" and "class: GRAD." Thus extended, the fact unit JOHN
matches our goal unit JOHN.

Used in the backward direction on the goal unit, the delineation unit
sets up the subgoal unit:

JOHN
self: (element-of CS-STUDENTS)

Since this subgoal unit matches the original fact unit, we again have a
proof.

In the CS-student example, the goal unit did not contain any variables.
Allowing (existential) variables in goals is perfectly straightforward.
Suppose we want to find out which individual has graduate standing. A
goal unit for this query might be:

y
class: GRAD

Reasoning in the backward direction, this goal unit can be matched
against the delineation unit x \ CS-STUDENTS to create the subgoal
unit:

y
self: (element-of CS-STUDENTS)

This subgoal unit, in turn, matches the fact unit JOHN, so the answer
to our original query can be constructed from the substitution
{JOHN/y}.

Delineations can be represented in the network formalism by sorted
variable nodes. The variable is assumed to have universal quantification
over the individuals in the sort set. The network representation for the
delineation of CS-STUDENTS, analogous to the unit representation just
discussed, is shown in Figure 9.16.

In addition to representations for a set of objects and characterizations
of the properties of every member of a set, we often use the idea of an
abstract individual in relation to members of the set. For example,

389

STRUCTURED OBJECT REPRESENTATIONS

Fig. 9.16 A network delineation for CS-STUDENTS.

consider the net shown in Figure 9.17. This net refers to the set of all
autos, describes some properties of each member of the set, and also
mentions a particular member, "car 54." Suppose we wanted a represen
tation of the sentence "The auto was invented in 1892." We could easily
construct a node representing an "invention situation" with function arcs
pointing to the inventor, the thing invented, etc. But to which node would
the thing-invented arc point? It wasn't car 54 or even the set of all autos
that was invented in 1892. Just what was invented?

We can answer this question satisfactorily for many purposes by using
the idea of an abstract auto, denoted by the node AB-AUTO. This
abstract individual is then related to the rest of the network as shown in
Figure 9.18. In that figure, the properties of each member of the set of
autos (as expressed by the delineation) are augmented to include the fact
that the abstract auto is the abstraction of every member of the set of
autos.

Note that the abstraction-of function does not have an inverse; the
function is many-to-one. In systems that treat a delineation as if it were an
individual constant representing a typical set member, it would be
possible to have an inverse function of abstraction-of, say, reification-
prototype-of, whose value would be the prototype individual. Since the

390

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

prototype confers all of its properties on every member of the set, each
would have the absurd property that it was the reification prototype of the
abstract individual. Treating prototypes as universally quantified impli
cations instead of as constants avoids this difficulty.

Some constant objects, such as LA WYER and PROGRAMMER, that
were used in our earlier examples are probably best interpreted as
abstract individuals. We'll see more examples of abstract individuals in
the examples to follow.

number-of-wheels

Fig. 9.17 Some information about autos.

x\AUTOS Yabstraction-of \ thing-invent ed

Fig. 9.18 A net with a node denoting an abstract individual.

391

STRUCTURED OBJECT REPRESENTATIONS

9.4.2. PROPERTY INHERITANCE

In many applications, the structured objects denoting individuals and
sets form a taxonomic hierarchy. A common example is the tree-like
taxonomic division of the animals into species, families, orders, etc. The
taxonomies used in ordinary reasoning might be somewhat more
"convoluted" than those used in formal biology—an individual may be
an element of more than one set, for example. Usually, though, useful
hierarchies narrow toward a small number of sets at the top and, in any
case, the various sets form a partial order under the subset relation.

Consider the hierarchy shown in Figure 9.19. Learning that Clyde is an
elephant, we could use the delineations (together with some set theory) to
make several forward inferences. Specifically, we could derive that Clyde
is gray and wrinkled, that he likes peanuts, that he is warm-blooded, etc.
The results of these operations could be used to augment the structured
object denoting Clyde. In any given reasoning problem, efficiency
considerations demand that we do not derive all of these facts about
Clyde explicitly.

Similar efficiency problems arise when delineations in a taxonomic
hierarchy are used to reason backward. Suppose that we want to prove
that Clyde was gray (when we didn't know this fact explicitly). Using the
delineations of Figure 9.19, we might set up several subgoals including
showing that Clyde was a shark, a sperm whale, or an elephant. If the
facts had included the assertion that Clyde was an elephant, we ought to
be able to reason more efficiently, since, then, we should be able at least to
avoid subgoals like Clyde being a shark. There is evidence that humans
are able to perform these sorts of reasoning tasks rapidly without being
overwhelmed by combinatorial considerations.

Some of the forward uses of delineations in taxonomic hierarchies can
be efficiently built into the matcher without risking severe combinatorial
problems. We describe how this might be done for some simple examples
using the network formalism.

In taxonomic hierarchies that narrow toward a small number of sets at
the top, there is little harm in building into the matcher itself the ability to
apply certain delineations in the forward direction. Consider the problem
of trying to find a match for a goal arc a between two fact nodes Nl and
N2. We show this situation in Figure 9.20. If there is a fact arc a between
Nl and N2 (as shown by one of the dashed arcs in Figure 9.20), then we
have an immediate match. We could restrict the matcher by permitting it

392

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

blood-temp

Fig. 9.19 A taxonomic hierarchy of sets and their delineations.

to look only for such immediate matches. If none were found, we could
apply production rules, like the delineation shown in Figure 9.20, to solve
the problem.

For the example of Figure 9.20, if the matcher could not find an
explicit a arc in the fact network between Nl and 7V2, then it would
ascend the taxonomic hierarchy from Nl checking for the presence of a
arcs to N2 from delineations of the sets (and supersets) to which Nl

393

STRUCTURED OBJECT REPRESENTATIONS

belongs. In Figure 9.20 we show, by dashed arcs, some of the possible a
arcs that the matcher is permitted to seek. If it can find such an arc, the
match is successful. Unless all of the goal arcs can be matched, the
matcher terminates with failure.

A system with an extended matcher of this type operates as if an object
automatically inherited all of the (needed) properties of its sets and
supersets. The ease with which properties can be inherited is one of the
advantages of using a structured object formalism. As an illustration of
this process, let's consider the following examples based on Figure 9.19.

First, suppose we want to prove that Clyde is gray when we know that
Clyde is an elephant (but we don't know explicitly that Clyde is gray).
This problem is represented in Figure 9.21, where we have included part
of the net shown in Figure 9.19. Since there is no color arc within the fact
net pointing from CLYDE to GRAY, we cannot obtain an immediate
match. So we move up to the ELEPHANTS delineation where we do
have a color arc to GRA Y. The matcher notes that CLYDE inherits this
color arc and finishes with a successful match.

Fig. 9.20 Matching a goal arc.

394

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

GOAL NET

color

Fig. 9.21 A net for proving that Clyde is gray.

Next, suppose we want to prove that Clyde is warm-blooded when we
know only that Clyde is an elephant. Again, we move up the taxonomic
hierarchy to the delineation unit for MAMMALS where a match is
readily determined.

Finally, suppose we want to prove that Clyde breathes oxygen and is
gray and warm-blooded, given only that Clyde is a mammal. Ascending
the delineation hierarchy picks up a blood-temp arc to WARM and an
inhalant arc to OXYGEN, but not a complete match. These two
properties are added explicitly to CL YD E before attempting to prove the
goal by rule-based means.

One might also want to build one other important operation into the
matcher, namely, an operation in which an inherited Skolem function
node must be proved equal to a constant node. Consider the example of
Figure 9.22. Our goal there is to show that Henry is a member of the
computer science faculty. Using the delineation x \ CS-STUDENTS in

395

STRUCTURED OBJECT REPRESENTATIONS

CS-STUDENTS

xlCS-STUDENTS t

EL

Fig. 9.22 A network with an inheritable Skolem-function node.

the forward direction on JOHN creates the structure shown in dashes in
Figure 9.22. Now, since the adviser arc represents a function, HENRY
must be equal to a {JOHN), and our match is complete.

One could use the following scheme for building this sort of reasoning
process into the matcher. Using the example of Figure 9.22 as an
illustration, we first attempt an immediate match by looking for a fact EL
arc between HENRY and CS-FACULTY. Failing to find one, we then
look in the taxonomic hierarchy above HENR Y to see if there is an EL
arc to be inherited. In our example, we fail again. Next, we look for
function arcs pointing to HENRY from constant nodes. Suppose we find
an arc, ai, pointing to HENRY from a node, Ni. (That is,

396

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

Fig. 9.23 Matching a variable goal node.

EQ [ai (Ni) , HENR Y].) Then, we look in the taxonomic hierarchy above
each such node Ni to see if Ni inherits an ai arc to some Skolem function
node that has an EL arc directly to CS-FACULTY. If we find such an
inheritance, our extended matcher succeeds.

Strategies for matching a variable goal node against facts in the
database also depend on the structure of the net. In the simplest case, the
variable goal node, say, x, is tied to constant fact nodes, Nl, N2,..., Nk,
by arcs labeled al, a2, . . . , ak, respectively. The situation is depicted in
Figure 9.23. The constant nodes Nl,..., Nk also have other arcs incident
on them. Our attempt to find a match must look back through al arcs
incident on Nl, a2 arcs incident on N2, etc. (We assume that our
implementation of the network makes it easy to trace through arcs in the
"reverse" direction.) Some of these arcs originate from constant nodes
and some from delineations.

A good strategy is to look first for a constant node, because the set of
possible nodes in the fact net that might match x can be quite large if the
delineations are considered. Suppose node Ni has the smallest set of
constant nodes sending ai arcs to Ni. We attempt to match x against the
nodes in this set and allow the matcher to use delineations in matching
the other arcs. In Figure 9.24, we show a simple example. In this case,
there is only one constant node, namely, CLYDE, having the desired
properties. In attempting a match against CLYDE, we must next find an
EL arc between CLYDE and MAMMALS, and a blood-temp arc

397

STRUCTURED OBJECT REPRESENTATIONS

ELy^ [

Cy \MAMMALSJ

. . > ~

'
blood-temp

r

C WARM J

FACT NET \
GOAL NET \

blood-temp\

:

EL

^ ^ ^ 5 5

f ELEPHANTS J

EL\

^
C CLYDE J

color

*

C GRAY J

/color

X

Fig. 9.24 An example with a variable goal node.

between CLYDE and WARM. The first of these arcs is inferred by a
subset chain, and the second is established by inheritance; so the match
succeeds.

We can always find at least one constant node to use as a candidate if
we allow the matcher to look backward down through SS and EL chains.
Consider, for example, the problem shown in Figure 9.25. In this net,
there is no "immediate" constant node to serve as a candidate match, but
working down from MAMMALS through an SS and an EL chain puts us
at the constant node, CLYDE. The rest of the match is easily handled by
property inheritance. We can assume that a variable goal node always has

398

file:///MAMMALSJ

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

Fig. 9.25 Another example with a variable goal node.

an EL (or SS) arc pointing to something in the fact net (every entity is at
least a member of the universal set).

This matching strategy can be elaborated to deal with cases in which
the goal net structure is more complex, where it contains more than one
variable node. Each variable node must be properly matched in order for
the whole goal structure to be matched. In any case, if no match can be
obtained, either delineation rules must be used in the backward direction
or other rules must be used to change the fact or the goal structures. We
discuss rule use in a later section.

399

STRUCTURED OBJECT REPRESENTATIONS

9.43. PROCEDURAL ATTACHMENT

In some applications, we can associate computer programs with the
slots of delineations. Executing these programs, for properly instantiated
arguments, produces slotvalues for instances of the delineation. Suppose,
just as a simple example, that we wanted to use a unit-based system to
multiply two numbers. One method is to provide such a system with a
large set of facts such as:

Ml
self: (element-ofMULTIPLICA TIONS)
mulîiplicandl : 1
multiplicand! : 1
product : 1

M2
self: (element-of MOLTIPLICA TIONS)
multiplicandl : 1
multiplicand! : 2
product: 2

etc.

These units are a way of encoding a multiplication table. When we
want to know the product of two numbers, 3 and 6, we query the system
with the goal unit:

z
multiplicandl : 3
multiplicand! : 6
product: x

This goal would match some stored fact unit having a slot "product :
18."

400

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

Rather than store all the required facts explicitly, we could provide a
computer program, say, TIMES and "attach" it to the delineation of
MULTIPLICATIONS, thus:

x | MOLTIPLICA T10NS
multiplicand I : (element-of N UM ERA LS)
multiplicand!', (element-ofNUMERALS)
product : TIMES[multiplicand! (JC),multiplicand! (x)]

Delineation units with attached procedures are used just as ordinary
delineation units. Procedures occurring in substitutions are executed as
soon as their instantiations permit. To illustrate how all of this might
work, suppose again that we want to find the product of 3 and 6. First, we
introduce as a fact unit the existence of the multiplication situation for
which we want an answer:

M
self: (element-ofMULTIPLICA TIONS)
multiplicand! : 3
multiplicand! : 6

Next, we pose the goal unit:

M
product: y

When we attempt a match between goal M and fact M, the matcher
uses the delineation for multiplications to allow fact M to inherit the
"product" slot. This process produces the substitution (TIMES(3,6)/)>}.
The correct answer is then obtained by executing the TIMES program.

A completely analogous example could have been given using the
network formalism.

9.4.4. UNIT RULES

Some implicational statements are not easily interpreted as expressing
information solely about members of a set. For these, we introduce the
concept of a unit rule having an antecedent and a consequent. The

401

STRUCTURED OBJECT REPRESENTATIONS

antecedent (ANTE) and consequent (CONSE) are lists of units
(possibly containing variables). When a unit rule is used in the forward
direction, if all of the units in the ANTE (regarded as goal units) are
matched by fact units, then the units in the CONSE (properly instan
tiated) can be added to the set of fact units. (When ANTE units are
regarded as goals, their variables are, of course, existential.) If some of the
added fact units already exist, the addition operation need only involve
adding those properties mentioned in the CONSE units. This usage is
consistent with how implications were used in the rule-based deduction
systems of chapter 6.

When a unit rule is used in the backward direction against a single goal
unit, one of the CONSE units (regarded as a fact unit) must match the
goal unit. (When CONSE units are regarded as facts, their variables are
universal.) If the match succeeds, the units in the ANTE (properly
instantiated) are set up as subgoal units. A backward unit rule applied to a
(conjunctive) set of goal units is a slightly more complex operation; the
process is analogous to the methods discussed in chapter 6 involving
AND/OR graphs and substitution consistency tests. For simplicity of
explanation in this chapter, we confine ourselves to examples that do not
require these added mechanisms.

We'll next show some simple examples of the use of unit rules. The
reader might like to refer to our information retrieval example using
personnel data in chapter 6. There we had the rule:

Rl : MANAGER(x,y)=> WORKS-IN(x.y)

Expressed in the predicate calculus system being used in this part of the
book, this rule becomes:

{EL(x,DEPARTMENTS) A EQ [manager (x), y]}
=> EQ [works-in (y), x]

Using our syntax for unit rules, we would express this rule as follows:

Rl

ANTE: x
self: (element-of DEPARTMENTS)
manager: y

402

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

CON SE: y

works-in : x
Another rule used in our personnel problem example was:

R2: [WORKS-IN (x,y) A MANAGER(x,z)]^> BOSS-OF(y.z)

Restated, this piece of information might be represented as:

{ EQ [works-in (y), x] A EQ [manager (x), z]}
=>EQ[boss-of(j),z]

As a unit rule, we might represent it as follows:

R2

ANTE: y
works-in : x

x
manager: z

CON SE: y
boss-of: z

A variety of implications can be represented by unit rules of this kind.
These rules, in turn, can be used as production rules for manipulating fact
and goal units in deduction systems.

Earlier, we spoke of the fact that there are often many different ways of
representing the same knowledge. Complex systems might not limit
themselves to one alternative; thus there is a need to be able to translate
freely among them. Consider the example in Figure 9.12. There we
showed two alternatives for representing "John Jones is married to Sally
Jones." The equivalence between these forms might be represented as
follows:

EQ[y,wife-of{x)] = (3z){ EL(z,MARRIAGE-EVENTS)
A EQ[x,male(z)] A EQ[y,female(z)]}

(Here, we use a wff of the form Wl = W2 as an abbreviation for
[W1^W2]A[W2^>W1].) Using the "left-to-right" implication, we

403

STRUCTURED OBJECT REPRESENTATIONS

have an existential variable within the scope of two universals. Skole-
mizing yields:

EQ[y,wife-of(x)]=ï{EL[m(x,y), M ARRI AGE-EVENTS]
Λ EQ[x,male(m(x,y))]
AEQ[y,female(m(x,y))]}

We represent this implication as the following unit rule:

R-M

ANTE.x
wife-of: y

CON SE: m(x,y)
self: {element-of MARRIAGE-EVENTS)
male: x
female: y

To use this rule in the forward direction, we match the ANTE to a fact
unit and then create a new constant unit corresponding to the instan
tiated unit in the CON SE.

The simplicity of the unit syntax makes representing implications that
are much more complex than those we have used in our examples
awkward. Even with this limitation, the formalism that has been
developed so far is quite useful for a wide variety of problems.

9.4.5. NET RULES

Earlier we mentioned the use of enclosures to represent network
implications. These implications can be used as forward or backward
rules in semantic network-based production systems. For example, the
implication:

{EL(x,DEPARTMENTS) Λ EQ[manager(x),y]}
=> EQ [works-in (y), x]

might be represented by the network structure shown in Figure 9.26.

To use a network implication as a forward rule, the ANTE structure
(regarded as a goal) must match existing network fact structures. The

404

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

V works-in J ^ ^ .**'

CONSE

Fig. 9.26 Representing an implication.

M ARRI A GE-E VENTS

EL\

male

rife-of) Y m{x,y)

ANTE

Q-
\ female ^

CONSE

Fig. 9.27 A network implication with a S kolem function.

405

STRUCTURED OBJECT REPRESENTATIONS

CON SE structure (appropriately instantiated) can then be added to the
fact network. To use a network implication as a backward rule, the
CON SE structure (regarded as a fact) must match the goal structure.
Then, the ANTE structure (appropriately instantiated) is the subgoal
produced by the rule application. Again, the situation is more complex
(involving AND/OR graphs and substitution consistency testing) when
the goal structure is first broken into component structures, and when
these are matched individually by rule CON SE structures.

As a more complex example we show, in Figure 9.27, the network
version of an implication used earlier:

EQ[y,wife-of(x)]^>
{ EL [m(x, y), MA RRIA GEE VENTS]
A EQ[x,male(m(x,y))]
A EQ[y,female(m(x9y))]}

The node labeled m(x,y) is a Skolem function node. Every forward
application of the rule in Figure 9.27 creates a newly instantiated m(x,y)
node.

9.4.6. APPENDING ADVICE TO DELINEATIONS

In order to minimize combinatorial difficulties, rule applications must
be guided by an intelligent control strategy. One way to specify useful
control information is to add advice about rule applications to delinea
tions. We mention two forms for such advice: the "to-fiH" form, and the
"when-filled" form. The former gives advice about which rules should be
used in the backward direction when attempting to match existential
variables in goals. The latter gives advice about which rules should be
used in the forward direction to create new fact units.

As an illustration of the use of such advice, consider the rules Rl and
R2 used above in our personnel data example. We repeat these rules here
for convenience:

Rl

ANTE: x
self: (element-ofDEPARTMENTS)
manager: y

406

DEDUCTIVE OPERATIONS ON STRUCTURED OBJECTS

CONSE: y
works-in : x

R2

ANTE: y
works-in : x

x
manager: z

CON SE. y
boss-of: z

The following delineations contain advice about when to use these
rules:

REMPLOYEES
boss-of\ (element-of EMPLOYEES)

<to-fill: R2>
works-in: (element-of DEPARTMENTS)

r\ DEPARTMENTS
manager : (element-of EM PL O YE E S)

<when-filled: Rl>

The notation <to-fill : R2> in u | EMPLO YEES states that whenever
a goal has a 60^-0/slotvalue that is a variable, rule R2 should be used in
the backward direction (when there is no direct match against a fact unit).
The notation <when-filled: Rl> in r\ DEPARTMENTS states that
whenever a fact unit whose self slot contains "(element-of DEPART
MENTS)" and whose manager slot has a value, rule Rl should be used.

Suppose we have the fact units:

JOE-SMITH
self: (element-ofEMPLOYEES)
works-in: P-D

407

STRUCTURED OBJECT REPRESENTATIONS

P-D
self: (element-of DEPARTMENTS)
manager: JOHN-JONES

When the second of these is asserted, a check of the delineation
r\ DEPARTMENTS indicates that rule Rl should be applied in the
forward direction. This application produces the fact unit:

JOHN-JONES
works-in : P-D

Suppose we want to ask "Who is Joe Smith's boss?" This query is
represented by the goal unit:

JOE-SMITH
boss-of: u

An attempt at a direct match against fact unit JOE-SMITH fails; but
one of the delineations, containing the boss-of slot, advises the system to
use rule R2 in the backward direction; and doing so produces the subgoal
units:

JOE-SMITH
works-in : x

x
manager: u

The first of these can be matched against fact JOE-SMITH, to produce
the substitution {P-D/x }. The instantiated second subgoal unit can then
be matched against fact P-D, to produce the substitution {JOHN-
JONES/u }, which contains the answer to our original query.

9.5. DEFAULTS AND CONTRADICTORY
INFORMATION

Many descriptive statements of the form "All xs have property P"
must be regarded as only approximately true. Perhaps most xs do have
property P, but typically we will come across exceptions. Examples of

408

DEFAULTS AND CONTRADICTORY INFORMATION

these kinds of exceptions abound: All birds can fly (except ostriches); all
insects have six legs (except juveniles like caterpillars); all lemons are
yellow (except unripe green ones or mutant orange ones); etc. It appears
that many general synthetic (as opposed to analytic or definitional)
statements that we might make about the world are incorrect unless
qualified. Furthermore these qualifications probably are so numerous
that the formalism would become unmanageable if we attempted to
include them all explicitly. Is there a way around this difficulty that would
still preserve the simplicity of a predicate-calculus language?

One approach to preserving simplicity is to allow implicit exceptions to
the domain of universal quantification in certain implicational state
ments. Thus, the statement "All elephants are gray" might initially be
given without listing any exceptions. Such a statement would allow us to
deduce that Clyde is gray when we learn that Clyde is an elephant. Later,
if we learn that Clyde is actually white, we must retract our deduction
about his grayness and change the universal statement about elephants so
that it excludes Clyde. After making this change, it is no longer possible
to deduce erroneous conclusions about Clyde's color.

The way in which the matcher uses property inheritance provides an
automatic mechanism for dealing with exceptions like Clyde's being
white. The matcher uses inheritance to deduce a property of an object
from a delineation of its class only if specific information about the
property ofthat object is lacking. Suppose, for example, that we want to
know the color of Clyde. Such a query might be stated as the following
goal unit:

CLYDE
color : x

To answer this query, we first attempt a direct match with a fact unit.
Suppose we have a fact unit describing Clyde:

CLYDE
self: (element-of ELEPHANTS)
color: WHITE

In this case, the match substitution is { WHITE/x}, and WHITE is
our answer.

409

STRUCTURED OBJECT REPRESENTATIONS

If our fact unit states only that Clyde is an elephant, the matcher
automatically uses the delineation of ELEPHANTS to answer our query.
Such a delineation might be as follows:

y\ELEPHANTS
color: GRAY

This scheme, of countermanding general information by conflicting
specific information, can be extended to several hierarchical levels. For
example, we might have the following delineation for MAMMALS'.

u\ MAMMALS
texture: FUZZY

Now, in order to avoid deducing that elephants are fuzzy, we need only
include with the ELEPHANTS delineation a property such as "texture :
WRINKLED." Clyde, however, may be a fuzzy elephant, and this
property can be added to the unit CL YD E to override the ELEPHANTS
delineation. (The hierarchy may contain several such property reversals.)

For such a scheme to work, the use of delineations to deduce properties
needs always to proceed from the most specific to the more general. With
this built-in ordering on matching and retrieval processes, information at
the more specific levels protects the system from making possibly
contradictory deductions based on higher level delineations. It is as if the
universal quantifiers of delineations specifically exclude, from their
domains, all of the more specific objects that would contradict the
delineation.

Schemes of this sort do have certain problems, however. Suppose, for
example, that an object in the taxonomic hierarchy belongs to two
different sets and that the delineations of these sets are contradictory. We
show a network example in Figure 9.28. In this figure, we do not show an
explicit color arc for CLYDE, but CLYDE inherits contradictory color
values [assuming that ~EQ(GRA Y, WHITE)]. A possible way to deal
with this problem is to indicate something about the quality of each arc or
slot in a delineation. In our example, if the color arc in the ALBINOS
delineation were to dominate the color arc in the ELEPHANTS
delineation, then we would always attempt to inherit the color value from
the ALBINOS delineation first.

410

DEFAULTS AND CONTRADICTORY INFORMATION

We can indicate that the arc or slot of a delineation is of low priority by
marking it as a default. Default delineations can be used only if there is no
other way to derive the needed information. In general, though, we need
an ordering on the default markers. If both of the delineations in Figure
9.28 were marked simply as defaults, for example, we would be at an
impasse: We could prove that Clyde was gray only if we could not prove
that he was any other color. However, we could prove that he was another
color, namely, white, if we could not prove that he was any other color.
And so on.

We must also be careful when we use default delineations as forward
rule applications, because then we risk adding objects to the fact database
that contradict existing or subsequent specific facts. The forward use of
delineations must be coupled with "truth maintenance" techniques to
ensure that contradictory facts (and facts that might be derived from
them) are either purged or otherwise inactivated.

Fig. 9.28 A net with contradictory delineations.

411

STRUCTURED OBJECT REPRESENTATIONS

9.6. BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

Structured object representations are related to frames (no relation to
the frame problem) proposed by Minsky (1975); scripts proposed by
Schank and Abelson (1977); and beta-structures proposed by Moore and
Newell (1973). Bobrow et al. (1977) implemented a system called GUS
which used a frame-like representation. Roberts and Goldstein (1977)
implemented a simple frame language called FRL, and Goldstein and
Roberts (1979) describe a system for automatic scheduling written in
FRL. Stefik (1979) and Friedland (1979) describe a frame-based repre
sentation used by a computer system for planning experiments in
molecular genetics.

KRL-0 and KRL-7 are frame-based knowledge representation lan
guages developed by Bobrow and Winograd (1977a). [See also Bobrow
and Winograd (1977b), Lehnert and Wilks (1979), and Bobrow and
Winograd (1979) for discussion and criticisms of KRL] Winograd (1975)
presents a readable discussion of some of the advantages of frame-based
representations.

Hayes (1977,1979) discusses the relationships between predicate logic
and frame-based representations. Our treatment of structured objects in
this chapter, stressing relationships with the predicate calculus, leans
toward Hayes' point of view. Converting to binary predicates is discussed
by Deliyanni and Kowalski (1979c).

Work on semantic networks stems from many sources. In cognitive
psychology, Quillian (1968), Anderson and Bower (1973), and Rumel-
hart and Norman (1975) have all proposed memory models based on
networks. In computer science, Raphael's (1968) SIR system is based on
networks of property lists; Winston (1975) used networks for represent
ing and learning information about configurations of blocks; and
Simmons (1973) discusses the uses of networks in natural language
processing. Woods (1975) discusses some of the logical inadequacies of
early semantic networks. It is interesting that Frege's (1879) original
symbolism for the predicate calculus involved two-dimensional dia
grams.

Several semantic network "languages" have now been proposed that
have the full expressive power of predicate calculus. Shapiro's (1979a)

412

BIBLIOGRAPHICAL AND HISTORICAL REMARKS

SNePS system, Hendrix's (1975b, 1979)partitionedsemantic network for
malism and Schubert's (1976) [see also Schubert, Goebel and Cercone
(1979)] network formalism are examples. Papers in the volume edited by
Findler (1979) describe several different types of semantic networks. The
semantic network formalism described in this chapter seems to capture
the main ideas of those that use binary predicates.

Example applications of semantic networks include natural language
processing [Walker (1978, Section 3)], database management [Mylo-
poulos et al. (1975)], and computer representation of geological (ore-
prospecting) knowledge [Duda et al. (1978a)].

We base much of our discussion about matching network goal
structures against network fact structures on a matcher developed by
Fikes and Hendrix (1977) and, partially, on ideas of Moore (1975a).
Various mechanisms for inheritance of properties in unit systems or in
net formalisms have been suggested as approaches to what some have
called the symbol-mapping problem. This problem is discussed at length
in two issues of the SIGART newsletter. [See McDermott (1975a,b),
Bundy and Stone (1975), Fahlman (1975), and Moore (1975b).] Fahlman
(1979) recommends using special-purpose hardware to solve the set
intersection problems required to perform property inheritance
efficiently.

Representing and using default information is discussed by Bobrow
and Winograd (1977a) and by Reiter (1978). Attempts to formalize
inferences of the form assume X unless ~X can be proved have led to
non-monotonic logics. McDermott and Doyle (1980) discuss the history
of these attempts, propose a specific formalism of their own, and prove its
soundness and completeness. "Maintaining" databases by purging or
modifying derived expressions, as appropriate, in response to changes in
the truth values of primitive expressions, is discussed by Doyle (1979).
Stallman and Sussman's (1977) system for reasoning about circuits uses a
"truth-maintenance" scheme to make backtracking more efficient.

Other complex representational schemes, related to those discussed in
this chapter, have been proposed by Martin (1978), Schank and Abelson
(1977), Srinivasan (1977), and Sridharan (1978).

413

STRUCTURED OBJECT REPRESENTATIONS

EXERCISES

9.1 Represent the situation of Figure 7.1 as a semantic network and
represent the STRIPS rule pickup(x) as a production rule for changing
networks. Explain how the rule pickup(2?) is tested for applicability and
how it changes the network representation of Figure 7.1.

9.2 The predicate D (x,y) is intended to mean that sets x and y have an
empty intersection. Explain how this predicate might be used to label
arcs in a semantic network. Illustrate by an example. Can you think of
any other useful arc predicates?

9.3 Represent the following sentences as semantic network delinea
tions:

(a) All men are mortal.

(b) Every cloud has a silver lining.

(c) All roads lead to Rome.

(d) All branch managers of G-TEK
participate in a profit-sharing plan.

(e) All blocks that are on top of blocks that
have been moved have also been moved.

9.4 Use EL and SS predicates to rewrite each of the following wffs as a
binary-predicate wff. Rewrite them also as sets of units and as semantic
networks.

(a) [ON(C,A)A ONTABLE(A)A ONTABLE(B)
A HANDEMPTY A CLEAR(B) A CLEAR(C)]

(b) [DOG(FIDO) A -BARKS(FIDO)
A WAGS-TAIL(FIDO) A MEOWS (MYRTLE)]

(c) (Vx)HOLDS[clear(x\do[trans(x,y,z),s]]

414

EXERCISES

9.5 Represent the major ideas about search techniques in a semantic
network taxonomic hierarchy. (Search techniques might first be divided
into uninformed ones and heuristic ones, for example.) Include a
delineation for each set represented in your network.

415

PROSPECTUS

We have seen in this book that generalized production systems
(especially those that process expressions in the first-order predicate
calculus) play a fundamental role in Artificial Intelligence. The organi
zation and control of AI production systems and the ways in which these
systems are used to solve several varieties of problems have been
discussed in some detail. Lest the reader imagine that all of these
details—the formalisms and the mathematical and empirical results—
constitute an already mature engineering discipline routinely supporting
extensive applications, we attempt here a perspective on the entire AI
enterprise and point out several areas where further research is needed.
In fact, we might say that our present knowledge of the mechanisms of
intelligence consists of small islands in a large ocean of speculation, hope,
and ignorance.

The viewpoint presented in this book is just one window on the core
ideas of AI. The specialist will also want to be familiar with AI
programming languages such as LISP and AI programming techniques.
We have not attempted to discuss these topics in this book, but there are
other books that concentrate on just these subjects [see Winston (1977);
Shapiro (1979); and Charniak, Riesbeck, and McDermott (1979)].
Serious students of AI will also want to be familiar with a variety of
large-scale AI applications. We have cited many of these in the
bibliographical remarks sections of this book.

In this prospectus, we give brief descriptions of problem areas that
seem to be very important for future progress in AL Some work has
already been done on most of these problems, but results are typically
tentative, controversial, or limited. We organize these problems into
three main categories. The first category concerns novel AI system
architectures and the challenges of parallel and distributed processing.
The second category deals with the problems of knowledge acquisition
and learning. Last, there are the problems concerned with the adequacy
of AI processes and representational formalisms for dealing with topics
such as knowledge, goals, beliefs, plans, and self-reference.

417

PROSPECTUS

10.1. AI SYSTEM ARCHITECTURES

10.1.1. MEMORY ORGANIZATION

One of the most important design questions facing the implementer of
AI systems concerns how to structure the knowledge base of facts and
rules so that appropriate items can be efficiently accessed. Several
techniques have been suggested. The QA3 resolution theorem-proving
system [Green (1969b)] partitioned its list of clauses into an active list and
a secondary storage list. Clauses were brought from the secondary list
into the active list only if no resolutions were possible within the active
list. The PLANNER-like AI languages generally had special methods for
storing and accessing expressions. McDermott (1975c) describes the
special indexing features used by many of these languages. The discrimi
nation net used by QA4 [Rulifson, Derksen, and Waldinger (1972)] is an
example of such a feature.

Probably the most important aspect of the frame-like representations
(unit systems and semantic networks) is their built-in mechanisms for
indexing. Indeed, the authors of KRL [Bobrow and Winograd (1977a)]
speak specifically of permitting system designers to organize memory
into those chunks that are most appropriate for the specific task at hand.
We can expect that work will continue along these lines as systems are
developed that must use the equivalent of hundreds of thousands of facts
and rules.

10.1.2. PARALLEL AND DISTRIBUTED SYSTEMS

Our discussion of AI production systems was based on the tacit
assumption of a single serial processor that applied one rule at a time to a
database. Yet, there are several ways in which our production systems
could be extended to utilize parallel processing. First, some of the
primitive operations of the system could be performed by parallel
hardware. For example, Fahlman (1979) has suggested a parallel system
for performing the set intersections needed for efficient property inheri
tance computations.

Second, in tentative control regimes, a system capable of parallel
processing could apply several rules simultaneously rather than back
tracking or developing a search tree one node at a time. If the number of

418

AI SYSTEM ARCHITECTURES

successors to be generated exceeds the number of parallel rule-applica
tion modules, the control system must attempt to apportion the available
rule-application modules as efficiently as possible.

Third, in decomposable production systems, parallel processors could
be assigned to each component database, and these processors (and their
descendants) could work independently until all databases were pro
cessed to termination. These three methods of using parallelism do not
alter the basic production-system paradigm for AI systems presented in
this book; they merely involve implementing this paradigm with parallel
processing.

A third use of parallelism involves an expansion of the ideas presented
here. One could imagine a large community of more-or-less independent
systems. (Each of these systems could be a production system or a system
of some different style, with internal processes either serial or parallel.)
The systems communicate among themselves in order to solve problems
cooperatively. If each of the component systems is relatively simple, the
communication protocols and the procedures for control and cooperation
must be specified in rather precise detail by the designer of the
community. The augmented Petri nets of Zisman (1978) and the actor
formalism of Hewitt (1977) seem to be examples of this type. [See also
Hewitt and Baker (1977) and Kornfeld (1979).] On the other hand, if each
of the systems is itself a complex AI system, then the situation is
analogous to a society of humans or other higher animals who must plan
their own communication and cooperation strategies. We have little
experience with complexes of interacting AI systems, but the work of
Lesser and Erman (1979), Lesser and Corkill (1979), and of Corkill (1979)
are steps in that direction. Related work by Smith (1978, 1979) also
involves networks of cooperating problem-solving components. Crane
(1978) treats analogies between parallel computer systems and human
societies in a provocative manner.

10.2· KNOWLEDGE ACQUISITION

Formalizing knowledge and implementing knowledge bases are major
tasks in the construction of large AI systems. The hundreds of rules and
thousands of facts required by many of these systems are generally
obtained by interviewing experts in the domain of application. Repre
senting expert knowledge as facts or rules (or as expressions in any other

419

PROSPECTUS

formalism) is typically a tedious and time-consuming process. Tech
niques for automating this knowledge acquisition process would consti
tute a major advance in AI technology.

We shall briefly discuss three ways in which knowledge acquisition
might be automated. First, special editing systems might be built that
allow persons who possess expert knowledge about the domain of
application (but who are not themselves computer programmers) to
interact directly with the knowledge bases of AI systems. Second,
advances in natural language processing techniques will allow humans to
instruct and teach computer systems through ordinary conversations
(augmented, perhaps, with diagrams and other nontextual material).
Third, AI systems might learn important knowledge directly from their
experiences in their problem domains.

Virtually all large AI systems must have a knowledge base editing
system of some sort to facilitate the processes of adding, deleting, and
changing facts and rules as the systems evolve. Davis (1976) designed a
system called TEIRESIAS that allowed physicians to interact directly
with the knowledge base of the MYCIN medical diagnosis system.
Friedland (1979) reports on a representation system that contains expert
knowledge about molecular genetics; a key feature of this system is its
family of editors for interacting with the knowledge base. Duda et al.
(1979) describes a knowledge-base editing system for the PROSPEC
TOR system. As systems of these kinds become capable of conversing
with their designers in natural language, knowledge entry and modifica
tion processes will become much more efficient. One must remember,
however, that computer systems will be incapable of truly flexible
dialogues about representations and the concepts to be used in these
representations until designers are able to give these systems useful
meta-knowledge about representations themselves. Unfortunately, we
do not even have a very clear outline yet of a general theory of knowledge
representation.

It has often been hoped that the knowledge acquisition task could be
eased somewhat by automatic learning mechanisms built into AI
systems. Humans and other animals seem to have impressive capacities
for learning from experience. Indeed, some early work in AI was based
on the strategy of constructing intelligent machines that could learn how
to perform tasks.

There are, of course, several varieties of learning. Almost any change to
an AI system, such as the entry of a single new fact, the addition of a new

420

KNOWLEDGE ACQUISITION

component to a control strategy, or a profound reorganization of system
architecture, might be called an instance of learning. Furthermore, these
changes might be caused either directly by a programmer (design
changes) or indirectly through conversation with a human or other
system (teaching) or through response to experience in an environment
(adaptive learning). Evolutionary design changes already play an impor
tant role in the development of AI systems. Some work has also been
done on developing techniques for teaching AI systems. Strategies for
adaptive learning, however, have so far met with only limited success. It
can be expected that all of these varieties of learning will be important in
future AI systems. The subject is an important area for AI research.

Early work in adaptive learning concentrated on systems for pattern
classification [Nilsson (1965)] and for game playing [Samuel (1959,
1967)]. This work involved automatic adjustment of the parameters of
simple classification and evaluation functions. Winston (1975) developed
a system that could learn reasonably complex predicates for category
membership; as with many learning systems, efficiency depended
strongly on appropriately sequenced experiences. Mitchell (1979) and
Dietterich and Michalski (1979) give good discussions of their own and
other approaches to the problem of concept learning and induction.

Some efforts have also been made to save the results of AI computa
tions (such as proofs of theorems and robot plans) in a form that permits
their use in later problems. For example, Fikes, Hart, and Nilsson
(1972b) proposed a method for generalizing and saving triangle tables so
that they could be used as macro-operators in the construction of more
complex plans.

One of the most powerful ways of using learned or remembered
material involves the ability to recognize analogies between current
problems and those previously encountered. An early program by Evans
(1968) was able to solve geometric analogy problems of the sort found in
standard intelligence tests. Kling (1971) used an analogy-based method
to improve the efficiency of a theorem-proving system. Ulrich and Moll
(1977) describe a system that uses analogies in program synthesis.
Winston (1979) describes a theory (accompanied by a program) about the
use of analogy in learning, and McDermott (1979) discusses how a
program might learn analogies.

A system described by Vere (1978) is able to learn STRI PS-like rules
by observing state descriptions before and after actions that modify them.

421

PROSPECTUS

Buchanan and Mitchell (1978) describe a process for learning the
production rules used by the DENDRAL chemical-structure computing
system. A report by Soloway (1978) describes a system that learns some
of the rules of baseball by observing the (simulated) actions of players.

Last, we might mention the AM system of Lenat (1976) that uses a
stock of simple, primitive concepts in mathematics and discovers
concepts (such as prime numbers).

10.3. REPRESENTATIONAL FORMALISMS

The example problems that we have considered in this book demon
strate that the first-order predicate calculus can be used to represent
much of the knowledge needed by AI systems. There are varieties of
knowledge, however, that humans routinely use in solving problems and
in interacting with other humans that present certain difficulties for
first-order logic in particular and for AI systems in general. Examples
include knowledge that is uncertain or indefinite in various ways,
commonsense knowledge about cause and effect, knowledge about plans
and processes, knowledge about the beliefs, knowledge, and goals of
ourselves and others, and knowledge about knowledge. McCarthy (1977)
discusses these and other epistemologicalproblems of AI.

Some workers have concluded that logical formalisms are fundamen
tally inadequate to deal with these sorts of concepts and that some
radically different representational schemes will have to be invented [see,
for example, Winograd (1980b)]. Citing previous successes of formal
methods, others maintain that certain augmentations of first-order logic,
or suitably complex theories represented in first-order logic, or perhaps
more complex logical formalisms will ultimately prove adequate to
capture the knowledge and processes used in human-like reasoning.

103.1. COMMONSENSE REASONING

Many of the existing ideas about AI techniques have been refined on
"toy" problems, such as problems in the "blocks world," in which the
necessary knowledge is reasonably easy to formalize. AI applications in
more difficult domains such as medicine, geology, and chemistry require

422

REPRESENTATIONAL FORMALISMS

extensive effort devoted to formalizing the appropriate knowledge.
Hayes (1978a) and others have argued that AI researchers should now
begin an attempt to formalize fundamental "commonsense knowledge
about the everyday physical world: about objects; shape; space; move
ment; substances (solids and liquids); time, etc." Hayes (1978b) has
begun this task with an essay about the formalization of the properties of
liquids. Kuipers (1978,1979) describes a system for modeling common-
sense knowledge of space.

Formalizing commonsense physics must be distinguished from the
rather precise mathematical models of the physics of solids, liquids and
gases. The latter are probably too cumbersome to support commonsense
reasoning about physical events. (McCarthy argues, for example, that
people most likely do not—even unconsciously—perform complex
hydrodynamic simulation computations in order to decide whether or
not to move in order to avoid getting burned by a spilled cup of hot
coffee.)

Formalizing commonsense physics is important because many appli
cations require reasoning about space, materials, time, etc. Also, much of
the content of natural language expressions is about the physical world;
certainly many metaphors have a physical basis. Indeed, in order to make
full use of analogical reasoning, AI systems will need a thorough, even if
somewhat inexact, understanding of simple physics.

Much commonsense reasoning (and even technical reasoning) is
inexact in the sense that the conclusions and the facts and rules on which
it is based are only approximately true. Yet, people are able to use
uncertain facts and rules to arrive at useful conclusions about everyday
subjects or about specialized subjects such as medicine. A basic charac
teristic of such approximate reasoning seems to be that a conclusion
carries more conviction if it is independently supported by two or more
separate arguments.

We have previously cited the work of Shortliffe (1976) on MYCIN and
of Duda, Hart, and Nilsson (1976) on PROSPECTOR and referred to
their related methods for dealing with uncertain rules and facts. Their
techniques have various shortcomings, however, especially when the
facts and rules are not independent; furthermore, it is not clear that the
MYCIN/PROSPECTOR methods can easily be extended to rules and
facts containing quantified variables.

423

PROSPECTUS

Collins (1978) stresses the importance of meta-knowledge in plausible
reasoning. (We discuss the subject of meta-knowledge below.) Zadeh
(1979) invokes the ideas of fuzzy sets to deal with problems of approx
imate reasoning. The work on default reasoning and non-monotonic
logic, cited at the end of chapter 9, offers additional approaches to
plausible reasoning.

Another important component of commonsense reasoning is the
ability to reason about actions, processes and plans. To do so, we first
need ways of representing these concepts. In the bibliographic remarks
sections of chapters 7 and 8, we cited several sources relevant to the
problem of modeling actions and plans. In addition to these, we might
mention the work of Moore (1979) who combines a technique for
reasoning about actions with one for reasoning about knowledge (see
below). The interaction between action and knowledge has not been
discussed in this book (and, indeed, has not yet been adequately explored
in AI). Yet, this interaction is quite fundamental because actions typically
change the state of knowledge of the actor, and because knowledge about
the world is necessary in order to perform actions.

Hendrix (1975a; 1979, pp. 76ff) discusses the use of semantic networks
for representing processes. Grosz (1977) and Robinson (1978) use
structures similar to procedural nets [Sacerdoti (1977)] to help interpret
natural language statements occurring in a dialogue with a user who is
participating in a process. Schank and Abelson (1977) propose structures
for representing processes and plans for use in natural language
understanding applications. Schmidt, Sridharan, and Goodson (1978)
propose techniques for recognizing plans and goals of actors from their
actions. All of these efforts are contributing to our ability to formal
ize—and thus ultimately to build systems that can reason about—plans,
actions, and processes.

103.2. REPRESENTING PROPOSITIONAL ATTITUDES

Certain verbs, such as know, believe, want, ana fear, can be used to
express a relation between an agent and ^proposition, as illustrated by the
following examples:

Sam knows that Pete is a lawyer.
Sam doesn't believe that John is a doctor.
Pete wants it to rain. (Or, Pete wants that it be raining.)
John fears that Sam believes that the morning star is not Venus.

424

REPRESENTATIONAL FORMALISMS

The italicized portions of these sentences are propositions, and the
relations know, believe, etc., refer to attitudes of agents toward these
propositions. Thus, know, believe, etc., are called propositional attitudes.
A logical formalism for expressing propositional attitudes must have a
way of expressing the appropriate relations between agents and attitudes.

It is well known that there are several difficulties in developing such a
logical formalism. One difficulty is the problem of referential transpar
ency. From the statements John believes Santa Claus brought him presents
at Christmas and John's father is Santa Claus, we would not want to be
able to deduce the statement John believes John's father brought him
presents at Christmas. These problems have been discussed by logicians
for several years, and various solutions have been proposed [see, for
example, the essays in Linsky (1971)].

Moore (1977, 1979) discusses the problems of formalizing proposi
tional attitudes for AI applications. He points out several difficulties with
straightforward approaches and shows how a modal logic with a possible
worlds semantics can be used to overcome these difficulties for the
attitude know. He then proceeds to show how this approach can be
embedded in first order logic so that the usual sorts of AI theorem-prov
ing systems can be used to reason about knowledge. (As we mentioned
earlier, Moore also links his logic of knowledge with a logic of actions.)

Several other approaches have also been suggested. McCarthy (1979)
proposes that concepts of domain entities be added to the domain of
discourse and shows how a first-order formulation involving these
concepts avoids some of the standard difficulties. Creary (1979) extends
this notion. Elschlager (1979) considers the problem of consistency of
knowledge statements in formulations that treat concepts as domain
entities.

Although formalizations for propositional attitudes have largely been
the concern of logicians, the problem is fundamental to future advances
in AI. Natural language communication between humans seems to
depend on the ability of the participants to make inferences about each
others' beliefs, and we should expect that natural language understand
ing systems will require similar abilities. Also, when two or more AI
systems cooperate to solve problems, they will need to be able to reason
about each others' goals, knowledge, and beliefs. Cohen (1978) discusses
how a system can plan to affect the state of knowledge of another system
by speech acts. Much more work along these lines needs to be done.

425

PROSPECTUS

103.3. METAKNOWLEDGE

A good solution to the problem of reasoning about the knowledge of
others ought also to confer the ability to reason about one's own
knowledge. We would like to be able to build systems that know or can
deduce whether or not they know facts and rules about certain subjects
without having to scan their large knowledge bases searching for these
items. We would also like systems to have knowledge about when and
how to use other knowledge. As mentioned in the bibliographic remarks
section of chapter 6, various researchers have suggested that systems
containing meta-rules be used to control production systems.

Collins (1978) has suggested that meta-knowledge would be useful in
deducing object knowledge. For example: Since I would know it if Henry
Kissinger were three meters tall, and since I don't know that he is, he isn't.
Meta-level reasoning is also an easy way to solve many problems. Bundy
et al. (1979) and Weyhrauch (1980) illustrate this principle applied to
solving equations.

Two elegant arrangements of systems and metasystems are LCF [Cohn
(1979)] and FOL [Weyhrauch (1979)]. Weyhrauch stresses the ability of
FOL to refer to itself while avoiding problems of circularity. Self-refer
ence has been a haunting but illusive theme in Artificial Intelligence
research. For an interesting book about problems of self-reference in
logic, music, and art, see Hofstadter (1979).

The matters that we have briefly discussed in this prospectus are now
the subjects of intense AI research activity. Empirical explorations and
new research results can be expected to challenge and expand the AI
paradigms and formalisms that have proved useful for organizing past
results. In this book, we have used certain organizing ideas—such as
generalized production systems, the language of the predicate calculus,
and heuristic search—to make our story just a bit simpler and more
memorable. We cannot now tell whether new results will fold in easily to
the existing story or whether they will require the invention of new
themes or a completely new plot. That is how science and technology
progress. Whatever the new results, we do know, however, that their
description will be as important as their invention in order that we (and
machines) will be able to understand them.

426

KNOWLEDGE ACQUISITION

B

c

X

//////////////////////////

427

BIBLIOGRAPHY

MNEMONICS FOR SYMPOSIA, PROCEEDINGS,
AND SPECIAL COLLECTIONS

COLLECTED WORKS

AHT
Elithorn, A., and Jones, D. (Eds.) 1973. Artificial And Human
Thinking. San Francisco: Jossey-Bass.

AIHP
Findler, N. V., and Meltzer, B. (Eds.) 1971. Artificial Intelligence and
Heuristic Programming. New York: American Elsevier.

AI-MIT
Winston, P. H., and Brown, R. H. (Eds.) 1979. Artificial Intelligence:
An MIT Perspective (2 vols.). Cambridge, MA: MIT Press.

AN
Findler, N. V. (Ed.) 1979. Associative Networks—The Representa
tion and Use of Knowledge in Computers. New York: Academic
Press.

CT
Feigenbaum, E., and Feldman, J. (Eds.) 1963. Computers and
Thought. New York: McGraw-Hill.

CVS
Hanson, A. R., and Riseman, E. M. (Eds.) 1978. Computer Vision
Systems. New York: Academic Press.

KBS
Davis, R., and Lenat, D. 1980. Knowledge-Based Systems in Artifi
cial Intelligence. New York: McGraw-Hill. In press.

429

BIBLIOGRAPHY

Mil
Collins, N. L., and Michie, D. (Eds.) 1967. Machine Intelligence 1.
Edinburgh: Edinburgh University Press.

MI2
Dale, E., and Michie, D. (Eds.) 1968. Machine Intelligence 2.
Edinburgh: Edinburgh University Press.

MB
Michie, D. (Ed.) 1968. Machine Intelligence 3. Edinburgh: Edin
burgh University Press.

MI4
Meltzer, B., and Michie, D. (Eds.) 1969. Machine Intelligence 4.
Edinburgh: Edinburgh University Press.

MI5
Meltzer, B., and Michie, D. (Eds.) 1970. Machine Intelligence 5.
Edinburgh: Edinburgh University Press.

MI6
Meltzer, B., and Michie, D. (Eds.) 1971. Machine Intelligence 6.
Edinburgh: Edinburgh University Press.

Mil
Meltzer, B., and Michie, D. (Eds.) 1972. Machine Intelligence 7.
Edinburgh: Edinburgh University Press.

MIS
Elcock E., and Michie, D. (Eds.) 1977. Machine Intelligence 8:
Machine Representations of Knowledge. Chichester: Ellis Horwood.

MI9
Hayes, J. E., Michie, D., and Mikulich, L. I. (Eds.) 1979. Machine
Intelligence 9: Machine Expertise and the Human Interface. Chi
chester: Ellis Horwood.

PCV
Winston, P. H. (Ed.) 1975. The Psychology of Computer Vision. New
York: McGraw-Hill.

430

PDIS
Waterman, D., and Hayes-Roth, F. (Eds.) 1978. Pattern-Directed
Inference Systems. New York: Academic Press.

RDST
Wegner, P. (Ed.) 1979. Research Directions in Software Technology.
Cambridge, MA: MIT Press.

RM
Simon, H. A., and Siklóssy, L. (Eds.) 1972. Representation and
Meaning: Experiments with Information Processing Systems. Engle-
wood Cliffs, NJ: Prentice-Hall.

Bobrow, D. G., and Collins, A. (Eds.) 1975. Representation and
Understanding. New York: Academic Press.

SIP
Minsky, M. (Ed.) 1968. Semantic Information Processing. Cam
bridge, MA: MIT Press.

TANPS
Banerji, R., and Mesarovic, M. D. (Eds.) 1970. Theoretical Ap
proaches to Non-Numerical Problem Solving. Berlin: Springer-
Verlag.

431

BIBLIOGRAPHY

PROCEEDINGS

IJCAI-1
Walker, D. E., and Norton, L. M. (Eds.) 1969. International Joint
Conference on Artificial Intelligence. Washington, D.C.; May.

IJCAI-2
1971. Advance Papers, Second International Joint Conference on
Artificial Intelligence. London: The British Computer Society;
September. (Xerographic or microfilm copies available from Xerox
University Microfilms, 300 North Zeeb Rd., Ann Arbor, MI, 48106;
or from University Microfilms Ltd., St. John's Rd., Tylers Green,
Penn., Buckinghamshire HP 10 8HR, England.)

IJCAI-3
1973. Advance Papers, Third International Joint Conference on
Artificial Intelligence. Stanford, CA; August. (Copies available from
Artificial Intelligence Center, SRI International, Inc., Menlo Park,
CA, 94025.)

IJCAI-4
1975. Advance Papers of the Fourth International Joint Conference
on Artificial Intelligence (2 vols.). Tbilisi, Georgia, USSR; Sep
tember. (Copies available from IJCAI-4, MIT AI Laboratory, 545
Technology Sq., Cambridge, MA, 02139.)

IJCAI-5
1977. Proceedings of the 5th International Joint Conference on
Artificial Intelligence (2 vols.). Massachusetts Institute of Technol
ogy, Cambridge, MA; August. (Copies available from IJCAI-77,
Dept. of Computer Science, Carnegie-Mellon University, Pitts
burgh, PA, 15213.)

IJCAI-6
1979. Proceedings of the Sixth International Joint Conference on
Artificial Intelligence (2 vols.). Tokyo; August. (Copies available
from IJCAI-79, Computer Science Dept., Stanford University,
Stanford, CA 94305.)

432

PA SC
1974. Proceedings of the AI SB Summer Conference. (Copies avail
able from Dept. of Artificial Intelligence, University of Edinburgh,
Hope Park Sq., Edinburgh, EH8 9NW, Scotland.)

PCAI
1978. Proceedings of the AISB/GI Conference on Artificial Intelli
gence. Hamburg; July. (Copies available from Dept. of Artificial
Intelligence, University of Edinburgh, Hope Park Sq., Edinburgh,
EH8 9NW, Scotland.)

SCAISB-76
1976. Conference Proceedings, Summer Conference on Artificial
Intelligence and Simulation of Behavior. Department of Artificial
Intelligence, University of Edinburgh; July. (Copies available from
Dept. of Artificial Intelligence, University of Edinburgh, Hope Park
Sq., Edinburgh, EH8 9NW, Scotland.)

TIN LAP-1
Nash-Webber, B., and Schank, R. (Eds.) 1975. Proceedings of
Theoretical Issues in Natural Language Processing. Cambridge,
MA; June.

TIN LAP-2
Waltz, D. (Ed.) 1978. Proceedings ofTINLAP-2: Theoretical Issues
in Natural Language Processing—2. University of Illinois; July.
(Copies available from the Association for Computing Machinery,
P.O. Box 12105, Church Street Station, New York, NY, 10249.)

WAD
Joyner, W. H., Jr. (Ed.) 1979. Proceedings of the Fourth Workshop on
Automated Deduction. Austin, Texas; February.

433

BIBLIOGRAPHY

REFERENCES

Abraham, R. G. 1977. Programmable automation of batch assembly
operations. The Industrial Robot, 4(3), 119-131. (International Fluidics
Services, Ltd.)

Agin, G. J. 1977. Vision systems for inspection and for manipulator
control. Proc. 1977 Joint Automatic Control Confi, vol. 1, pp. 132-138.
San Francisco, CA; June. New York: IEEE.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1974. The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-Wesley.

Allen, J. 1978. Anatomy of LISP. New York: McGraw-Hill.

Allen, J., and Luckham, D. 1970. An interactive theorem proving
program. In M15, pp. 321-336.

Amarel, S. 1967. An approach to heuristic problem-solving and
theorem proving in the propositional calculus. In J. Hart and S. Takasu
(Eds.), Systems and Computer Science. Toronto: University of Toronto
Press.

Amarel, S. 1968. On representations of problems of reasoning about
actions. In M13, pp. 131-171.

Ambler, A. P., et al. 1975. A versatile system for computer-controlled
assembly. Artificial Intelligence, 6(2), 129-156.

Anderson, J., and Bower, G. 1973. Human Associative Memory. Wash
ington, D.C.: Winston.

Athans, M., et al. 1974. Systems, Networks and Computation: Mul
tivariable Methods. New York: McGraw-Hill.

Ball, W. 1931. Mathematical Recreations and Essays (10th ed.). Lon
don: Macmillan & Co.

Ballantyne, A. M., and Bledsoe, W. W. 1977. Automatic proofs of
theorems in analysis using non-standard techniques. JACM, 24(3),
353-374.

434

Banerji, R., and Mesarovic, M. D. (Eds.) 1970. Theoretical Approaches
to Non-Numerical Problem Solving. Berlin: Springer-Verlag.

Barr, A., and Feigenbaum, E. A. 1980. Handbook of Artificial Intelli
gence. Stanford, CA: Stanford University Computer Science Dept.

Barrow, H., and Tenenbaum, J. M. 1976. MSYS: A System for Reason
ing about Scenes, Tech. Note 121, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, CA; March.

Barstow, D. 1979. Knowledge-Based Program Construction. New York:
North-Holland.

Baudet, G. M. 1978. On the branching factor of the alpha-beta pruning
algorithm. Artificial Intelligence, 10(2), 173-199.

Bellman, R., and Dreyfus, S. 1962. Applied Dynamic Programming.
Princeton, NJ: Princeton University Press.

Berliner, H. J. 1978. A chronology of computer chess and its literature.
Artificial Intelligence, 10(2), 201-214.

Berliner, H. J. 1979. The B* tree search algorithm: A best-first proof
procedure. Artificial Intelligence, 12(1), 23-40.

Bernstein, M. 1.1976. Interactive Systems Research: Final Report to the
Director, Advanced Research Projects Agency. Rep. No. TM-
5243/006/00, System Development Corporation, Santa Monica, CA.

Bibel, W., and Schreiber, J. 1975. Proof search in a Gentzen-like system
of first-order logic. In E. Gelenbe and D. Potier (Eds.), International
Computing Symposium 1975. Amsterdam: North-Holland.

Biermann, A. W. 1976. Approaches to automatic programming. Ad
vances in Computers (vol. 15). New York: Academic Press.

Binford, T. O., et al. 1978. Exploratory Study of Computer Integrated
Assembly Systems, Memo AIM-285.4, Fifth Report, Stanford Artificial
Intelligence Laboratory, Stanford University, September.

Black, F. 1964. A Deductive Question-Answering System. Doctoral
dissertation, Harvard, June. (Reprinted in SIP, pp. 354-402.)

435

BIBLIOGRAPHY

Bledsoe, W. W. 1971. Splitting and reduction heuristics in automatic
theorem proving. Artificial Intelligence, 2(1), 55-77.

Bledsoe, W. W. 1977. Non-resolution theorem proving. Artificial Intel
ligence, 9(1), 1-35.

Bledsoe, W.W., and Bruell, P. 1974. A man-machine theorem-proving
system. Artificial Intelligence, 5(1), 51-72.

Bledsoe, W. W., Bruell, P., and Shostak, R. 1978. A Proverfor General
Inequalities. Rep. No. ATP-40, The University of Texas at Austin,
Departments of Mathematics and Computer Sciences.

Bledsoe, W. W., and Tyson, M. 1978. The UT Interactive Theorem
Prover. Memo ATP-17a, The University of Texas at Austin, Math. Dept.,
June.

Bobrow, D., and Raphael, B. 1974. New programming languages for
Artificial Intelligence research. A CM Computing Surveys, vol. 6, pp.
153-174.

Bobrow, D. G., and Collins, A. (Eds.) 1975. Representation and Under
standing. New York: Academic Press.

Bobrow, D. G., et al. 1977. GUS, A frame-driven dialog system.
Artificial Intelligence, 8(2), 155-173.

Bobrow, D. G., and Winograd, T. 1977a. An overview of KRL, a
knowledge representation language. Cognitive Science, 1(1), 3-46.

Bobrow, D. G., and Winograd, T. 1977b. Experience with KRL-0: one
cycle of a knowledge representation language. In IJCAI-5, pp. 213-222.

Bobrow, D. G., and Winograd, T. 1979. KRL: another perspective.
Cognitive Science, 3(1), 29-42.

Boden, M. A. 1977. Artificial Intelligence and Natural Man. New York:
Basic Books.

Boyer, R. S. 1971. Locking: A Restriction of Resolution. Doctoral
dissertation, University of Texas at Austin, August.

436

Boyer, R. S., and Moore, J S. 1979. A Computational Logic. New York:
Academic Press.

Brown, J. S. 1977. Uses of Artificial Intelligence and advanced com
puter technology in education. In R. J. Seidel and M. Rubin (Eds.),
Computers and Communications: Implications for Education. New York:
Academic Press.

Buchanan, B. G., and Feigenbaum, E. A. 1978. Dendral and Meta-Den-
dral: their applications dimension. Artificial Intelligence, 11(1,2), 5-24.

Buchanan, B. G. and Mitchell, T. M. 1978. Model-directed learning of
production rules. In PDIS, pp. 297-312.

Bundy, A. (Ed.) 1978. Artificial Intelligence: An Introductory Course.
New York: North Holland.

Bundy, A., and Stone, M. 1975. A note on McDermott's symbol-map
ping problem. SIGARTNewsletter, no. 53, pp. 9-10.

Bundy, A., et al. 1979. Solving mechanics problems using meta-level
inference. In IJCAI-6, pp. 1017-1027.

Cassinis, R. 1979. Sensing system in supersigma robot. 9th International
Symposium on Industrial Robots, Washington, D.C., September. Dear
born, MI: Society of Manufacturing Engineers. Pp. 437-448.

Chang, C. L. 1979. Resolution plans in theorem proving. In IJCAI-6,
pp. 143-148.

Chang, C. L., and Lee, R. C. T. 1973. Symbolic Logic and Mechanical
Theorem Proving. New York: Academic Press.

Chang, C. L., and Slagle, J. R. 1971. An admissible and optimal
algorithm for searching AND/OR graphs. Artificial Intelligence, 2(2),
117-128.

Chang, C. L., and Slagle, J. R. 1979. Using rewriting rules for connec
tion graphs to prove theorems. Artificial Intelligence, 12(2).

Charniak, E., Riesbeck, C, and McDermott, D. 1979. Artificial Intelli
gence Programming. Hillsdale, NJ: Lawrence Erlbaum Associates.

437

BIBLIOGRAPHY

Codd, E. F. 1970. A relational model of data for large shared data banks.
CACM, 13(6), June.

Cohen, P. R. 1978. On Knowing What to Say: Planning Speech Acts.
Tech. Rep. No. 118, University of Toronto, Dept. of Computer Science.
(Doctoral dissertation.)

Cohen, H. 1979. What is an image? In IJCAI-6, pp. 1028-1057.

Cohn, A. 1979. High level proof in LCF. In WAD, pp. 73-80.

Collins, A. 1978. Fragments of a theory of human plausible reasoning.
In TINLAP-2, pp. 194-201.

Collins, N. L., and Michie, D. (Eds.) 1967. Machine Intelligence 1.
Edinburgh: Edinburgh University Press.

Constable, R. 1979. A discussion of program verification. In RDST, pp.
393-403.

Corkill, D. D. 1979. Hierarchical planning in a distributed environment.
In IJCAI-6, pp. 168-175.

Cox, P. T. 1977. Deduction Plans: A Graphical Proof Procedure for the
First-Order Predicate Calculus. Rep. CS-77-28, University of Waterloo,
Faculty of Mathematics Research, Waterloo, Ontario, Canada.

Crane, H. D. 1978. Beyond the Seventh Synapse: The Neural Mar
ketplace of the Mind. Research Memorandum, SRI International, Menlo
Park, CA; December.

Creary, L. G. 1979. Propositional attitudes: Fregean representation and
simulative reasoning. In IJCAI-6, pp. 176-181.

Dale, E., and Michie, D. (Eds.) 1968. Machine Intelligence 2. Edin
burgh: Edinburgh University Press.

Date, C. J. 1977. An Introduction to Database Systems, (2nd ed.).
Reading, MA: Addison-Wesley.

Davis, R. 1976. Applications of Meta Level Knowledge to the Construc
tion, Maintenance and Use of Large Knowledge Bases. Doctoral disserta-

438

tion, Stanford University, Stanford Artificial Intelligence Laboraratory,
Memo 283. (Reprinted in KBS.)

Davis, R. 1977. Meta-level knowledge: overview and applications. In
IJCAI-5, pp. 920-927.

Davis, R., and King, J. 1977. An overview of production systems. In M18,
pp. 300-332.

Davis, R., and Lenat, D. 1980. Knowledge-Based Systems in Artificial
Intelligence. New York: McGraw-Hill. In press.

Davis, M., and Putnam, H. 1960. A computing procedure for
quantification theory. JACM, 7(3), 201-215.

Dawson, C, and Siklóssy, L. 1977. The role of preprocessing in problem
solving systems. In IJCAI-5, pp. 465-471.

de Kleer, J., et al. 1979. Explicit control of reasoning. In AI-MIT, vol. 1,
pp. 93-116.

Deliyani, A., and Kowalski, R. 1979. Logic and semantic networks.
CACM, 22(3), 184-192.

Derksen, J. A., Rulifson, J. F., and Waldinger, R. J. 1972. The QA4
language applied to robot planning. Proc. FallJoint Computer Confi, vol.
41, Part 2, pp. 1181-1192.

Dietterich, T. G. and Michalski, R. S. 1979. Learning and generalization
of characteristic descriptions: evaluation criteria and comparative review
of selected methods. In IJCAI-6, pp. 223-231.

Dijkstra, E. W. 1959. A note on two problems in connection with
graphs. Numerische Mathematik, vol. 1, pp. 269-271.

Doran, J. 1967. An approach to automatic problem-solving. In Mil, pp.
105-123.

Doran, J., and Michie, D. 1966. Experiments with the graph traverser
program. Proceedings of the Royal Society of London, vol. 294 (series A),
pp. 235-259.

439

BIBLIOGRAPHY

Doyle, J. 1979. A truth maintenance system. Artificial Intelligence,
12(3).

Duda, R. O., and Hart, P. E. 1973. Pattern Recognition and Scene
Analysis. New York: John Wiley and Sons.

Duda, R. O., Hart, P. E., and Nilsson, N. J. 1976. Subjective Bayesian
methods for rule-based inference systems. Proc. 1976 Nat. Computer
Confi (AFIPS Confi Proc), vol. 45, pp. 1075-1082.

Duda, R. O., et al. 1978a. Semantic network representations in
rule-based inference systems. In PDIS, pp. 203-221.

Duda, R. O., et al. 1978b. Development of the Prospector Consultation
System for Mineral Exploration. Final Report to the Office of Resource
Analysis, U.S. Geological Survey, Reston, VA (Contract No. 14-08-
0001-15985) and to the Mineral Resource Alternatives Program, The
National Science Foundation, Washington, D.C. (Grant No. AER77-
04499). Artificial Intelligence Center, SRI International, Menlo Park,
CA; October.

Duda, R. O., et al. 1979. A Computer-Based Consultant for Mineral
Exploration. Final Report, Grant AER 77-04499, SRI International,
Menlo Park, CA; September.

Dudeney, H. 1958. The Canterbury Puzzles. New York: Dover Publica
tions. (Originally published in 1907.)

Dudeney, H. 1967. 536 Puzzles and Curious Problems, edited by M.
Gardner. New York: Charles Scribner's Sons. (A collection from two of
Dudeney's books: Modern Puzzles, 1926, and Puzzles and Curious
Problems, 1931.)

Edwards, D., and Hart, T. 1963. The Alpha-Beta Heuristic (rev.). MIT
AI Memo no. 30, Oct. 28. (Originally published as the Tree Prune (TP)
Algorithm, Dec. 4, 1961.)

Ehrig, H., and Rosen, B. K. 1977. Commutativity of Independent
Transformations of Complex Objects. IBM Research Division Report RC
6251 (No. 26882), October.

440

Ehrig, H., and Rosen, B. K. 1980. The mathematics of record handling.
SIAM Journal of Computing. To appear.

Elcock E., and Michie, D. (Eds.) 1977. Machine Intelligence 8: Machine
Representations of Knowledge. Chichester: Ellis Horwood.

Elithorn, A., and Jones, D. (Eds.) 1973. Artificial And Human Thinking.
San Francisco: Jossey-Bass.

Elschlager, R. 1979. Consistency of theories of ideas. In IJCAI-6, pp.
241-243.

Ernst, G. W. 1969. Sufficient conditions for the success of GPS. JA CM,
16(4), 517-533.

Ernst, G. W., and Newell, A. 1969. GPS: A Case Study in Generality and
Problem Solving. New York: Academic Press.

Evans, T. G. 1968. A program for the solution of a class of geometric-
analogy intelligence-test questions. In SIP, pp. 271-353.

Fahlman, S. E. 1974. A planning system for robot construction tasks.
Artificial Intelligence, 5(1), 1-49.

Fahlman, S. 1975. Symbol-mapping and frames. SIGART Newsletter,
no. 53, pp. 7-8.

Fahlman, S. E. 1979. Representing and using real-world knowledge. In
Λ/-Μ/Γ, vol. 1, pp. 453-470.

Feigenbaum, E. A. 1977. The art of Artificial Intelligence: I. Themes and
case studies of knowledge engineering. In IJCAI-5, pp. 1014-1029.

Feigenbaum, E., Buchanan, B., and Lederberg, J. 1971. Generality and
problem solving: a case study using the DENDRAL program. In MI6.

Feigenbaum, E., and Feldman, J. (Eds.) 1963. Computers and Thought.
New York: McGraw-Hill.

Feldman, J. A., and Sproull, R. F. 1977. Decision theory and Artificial
Intelligence II: the hungry monkey. Cognitive Science, 1(2), 158-192.

441

BIBLIOGRAPHY

Fikes, R. E. 1975. Deductive retrieval mechanisms for state description
models. In IJCAI-4, pp. 99-106.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: a new approach to the
application of theorem proving to problem solving. Artificial Intelligence,
2(3/4), 189-208.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. 1972a. New directions in
robot problem solving. In Mil, pp. 405-430.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. 1972b. Learning and
executing generalized robot plans. Artificial Intelligence, 3(4), 251-288.

Fikes, R. E., and Hendrix, G. G. 1977. A network-based knowledge
representation and its natural deduction system. In IJCAI-5, pp. 235-246.

Findler, N. V. (Ed.) 1979. Associative Networks—The Representation
and Use of Knowledge in Computers. New York: Academic Press.

Findler, N. V., and Meltzer, B. (Eds.) 1971. Artificial Intelligence and
Heuristic Programming. New York: American Else vier.

Floyd, R. W. 1967. Assigning meanings to programs. Proc. of a
Symposium in Applied Mathematics, vol. 19, pp. 19-32. (American
Mathematical Society, Providence, RI.)

Frege, G. 1879. Begriffsschrift, a formula language modelled upon that
of arithmetic, for pure thought. In J. van Heijenoort (Ed.), From Frege to
Godei: A Source Book In Mathematical Logic, 1879-1931. Cambridge,
MA: Harvard Univ. Press, 1967. Pp. 1-82.

Friedland, P. 1979. Knowledge-based Experiment Design in Molecular
Genetics. Doctoral dissertation, Stanford University, Computer Science
Dept. Report CS-79-760.

Friedman, D. P. 1974. The Little LISPer. Science Research Associates,
Inc.

Gallaire, H., and Minker, J. (Eds.) 1978. Logic and Databases. New
York: Plenum Press.

442

Galler, B., and Perlis, A. 1970. A View of Programming Languages.
Reading, MA: Addison-Wesley.

Gardner, M. 1959. The Scientific American Book of Mathematical
Puzzles and Diversions. New York: Simon and Schuster.

Gardner, M. 1961. The Second Scientific American Book of Mathemati
cal Puzzles and Diversions. New York: Simon and Schuster.

Gardner, M. 1964,1965a,b,c. Mathematical games. Scientific American,
210(2), 122-130, February 1964; 212(3), 112-117, March 1965; 212(6),
120-124, June 1965; 213(3), 222-236, September 1965.

Gaschnig, J. 1979. Performance Measurement and Analysis of Certain
Search Algorithms. Report CMU-CS-79-124, Carnegie-Mellon Univer
sity, Dept. of Computer Science, May.

Gelernter, H. 1959. Realization of a geometry theorem-proving ma
chine. Proc. Intern. Conf. Inform Proc, UNESCO House, Paris, pp.
273-282. (Reprinted in CT, pp. 134-152.)

Gelernter, H. L., et al. 1977. Empirical explorations of SYNCHEM.
Science, 197(4308), 1041-1049.

Gelperin, D. 1977. On the optimality of A*. Artificial Intelligence, 8(1),
69-76.

Genesereth, M. R. 1978. Automated Consultation for Complex Com
puter Systems. Doctoral dissertation, Harvard University, September.

Genesereth, M. R. 1979. The role of plans in automated consultation. In
IJCAI-6, pp. 311-319.

Goldstein, I. P., and Roberts, R. B. 1979. Using frames in scheduling. In
ΑΙ-ΜΙΤ,νοΙ 1, pp. 251-284.

Goldstine, H. H., and von Neumann, J. 1947. Planning and coding of
problems for an electronic computing instrument, Part 2 (vols. 1-3).
Reprinted in A. H. Taub (Ed.), John von Neumann, Collected Works (vol.
5). London: Pergamon, 1963. Pp. 80-235.

443

BIBLIOGRAPHY

Golomb, S., and Baumert, L. 1965. Backtrack programming. JA CM,
12(4), 516-524.

Green, C. 1969a. Application of theorem proving to problem solving. In
IJCAI-1, pp. 219-239.

Green, C. 1969b. Theorem-proving by resolution as a basis for ques
tion-answering systems. In M14, pp. 183-205.

Green, C. 1976. The design of the PSI program synthesis system.
Proceedings of Second International Conference on Software Engineering,
San Francisco, CA, pp. 4-18.

Green C. C, and Barstow, D. 1978. On program synthesis knowledge.
Artificial Intelligence, 10(3), 241-279.

Grosz, B. J. 1977. The Representation and Use of Focus in Dialogue
Understanding. Tech. Note 151, SRI International Artificial Intelligence
Center, SRI International, Menlo Park, CA; July.

Grosz, B. J. 1979. Utterance and objective: issues in natural language
processing. In IJCAI-6, pp. 1067-1076.

Guard, J., et al. 1969. Semi-automated mathematics. JACM, 16(1),
49-62.

Hall, P. A. V. 1973. Equivalence between AND/OR graphs and
context-free grammars. CACM, vol. 16, pp. 444-445.

Hammer, M., and Ruth, G. 1979. Automating the software development
process. In RDST, pp. 767-790.

Hanson, A. R., and Riséman, E. M. (Eds.) 1978. Computer Vision
Systems. New York: Academic Press.

Harris, L. R. 1974. The heuristic search under conditions of error.
Artificial Intelligence, 5(3), 217-234.

Hart, P. E., Nilsson, N. J., and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst.
Science and Cybernetics, SSC-4(2), 100-107.

444

Hart, P. E., Nilsson, N. J., and Raphael, B. 1972. Correction to "A
formal basis for the heuristic determination of minimum cost paths."
SIGART Newsletter, no. 37, December, pp. 28-29.

Hayes, J. E., Michie, D., and Mikulich, L. I. (Eds.) 1979. Machine
Intelligence 9: Machine Expertise and the Human Interface. Chichester:
Ellis Horwood.

Hayes, P. J. 1973a. The frame problem and related problems in
Artificial Intelligence. In A HT, pp. 45-49.

Hayes, P. J. 1973b. Computation and deduction. Proc. 2nd. Symposium
on Mathematical Foundations of Computer Science, Czechoslovakian
Academy of Sciences, pp. 105-118.

Hayes, P. J. 1977. In defence of logic. In IJCAI-5, pp. 559-565.

Hayes, P. J. 1978a. The Naive Physics Manifesto (working papers),
Institute of Semantic and Cognitive Studies, Geneva; May.

Hayes, P. J. 1978b. Naive Physics 1: Ontology for Liquids (working
papers), Institute of Semantic and Cognitive Studies, Geneva; August.

Hayes, P. J. 1979. The logic of frames. In The Frame Reader. Berlin: De
Gruyter. In press.

Hayes-Roth, F., and Waterman, D. 1977. Proceedings of the workshop
on pattern-directed inference systems. A CM SIGART Newsletter, no. 63,
June, pp. 1-83. (Some of the papers of the workshop that do not appear in
PDIS are printed here.)

Held, M., and Karp, R. M. 1970. The traveling-salesman problem and
minimum spanning trees. Operations Research, vol. 18, pp. 1138-1162.

Held, M., and Karp, R. 1971. The traveling salesman problem and
minimum spanning trees—Part II. Mathematical Prog., vol. 1, pp. 6-25.

Hendrix, G. G. 1973. Modeling simultaneous actions and continuous
processes. Artificial Intelligence, 4(3,4), 145-180.

Hendrix, G. G. 1975a. Partitioned Networks for the Mathematical
Modeling of Natural Language Semantics. Tech. Rep. NL-28, Dept. of
Computer Science, University of Texas at Austin.

445

BIBLIOGRAPHY

Hendrix, G. G. 1975b. Expanding the utility of semantic networks
through partitioning. In IJCAI-4, pp. 115-121.

Hendrix, G. G. 1979. Encoding knowledge in partitioned networks. In
AN, pp. 51-92.

Hewitt, C. 1972. Description and Theoretical Analysis (Using Schemata)
of PLANNER: A Language for Proving Theorems and Manipulating
Models in a Robot. Doctoral dissertation (June, 1971), MIT, AI Lab Rep.
AI-TR-258.

Hewitt, C. 1975. How to use what you know. In IJCAI-4, pp. 189-198.

Hewitt, C. 1977. Viewing control structures as patterns of passing
messages. Artificial Intelligence, 8(3), 323-364.

Hewitt, C, and Baker, H. 1977. Laws for communicating parallel
processes. In B. Gilchrist (Ed.), Information Processing 77, IFIP. Am
sterdam: North-Holland. Pp. 987-992.

Hillier, F. S., and Lieberman, G. J. 1974. Introduction to Operations
Research (2nd ed.). San Francisco: Holden Day.

Hinxman, A. I. 1976. Problem reduction and the two-dimensional
trim-loss problem. In SCAISB-76, pp. 158-165.

Hofstadter, D. R. 1979. Godei, Escher, Bach: An Eternal Golden Braid.
New York: Basic Books.

Hopcroft, J. E., and Ullman, J. D. 1969. Formal Languages and Their
Relation to Automata. Reading, MA: Addison-Wesley.

Horowitz, E., and Sahni, S. 1978. Fundamentals of Computer Al
gorithms. Potomac, MD: Computer Science Press.

Hunt, E. B. 1975. Artificial Intelligence. New York: Academic Press.

Jackson, P. C , Jr., 1974. Introduction to Artificial Intelligence. New
York: Petrocelli Books.

Joyner, W. H., Jr. (Ed.) 1979. Proceedings of the Fourth Workshop on
Automated Deduction, Austin, Texas; February.

446

Kanade, T. 1977. Model representations and control structures in image
understanding. In IJCAI-5, pp. 1074-1082.

Kanal, L. N. 1979. Problem-solving models and search strategies for
pattern recognition. IEEE Trans, of Pattern Analysis and Machine
Intelligence, PAM 1-1(2), 193-201.

Klahr, P. 1978. Planning techniques for rule selection in deductive
question-answering. In PDIS, pp. 223-239.

Klatt, D. H. 1977. Review of the ARPA speech understanding project.
Journal Acoust. Soc. Amer., 62(6), 1345-1366.

Kling, R. E. 1971. A paradigm for reasoning by analogy. Artificial
Intelligence, vol. 2, pp. 147-178.

Knuth, D. E., and Moore, R. W. 1975. An analysis of alpha-beta
pruning. Artificial Intelligence, 6(4), 293-326.

Kornfeld, W. A. 1979. ETHER—a parallel problem solving system. In
IJCAI-6, pp. 490-492.

Kowalski, R. 1970. Search strategies for theorem-proving. In MI5, pp.
181-201.

Kowalski, R. 1972. AND/OR Graphs, theorem-proving graphs, and
bidirectional search. In M17, pp. 167-94.

Kowalski, R. 1974a. Predicate logic as a programming language. Infor
mation Processing 74. Amsterdam: North-Holland. Pp. 569-574.

Kowalski, R. 1974b. Logic for Problem Solving. Memo no. 75, Dept. of
Computational Logic, University of Edinburgh, Edinburgh.

Kowalski, R. 1975. A proof procedure using connection graphs. JA CM,
vol. 22, pp. 572-595.

Kowalski, R. 1979a. Algorithm = logic + control. CACM, 22(7),
424-436.

Kowalski, R. 1979b. Logic for Problem Solving. New York: North-Hol
land.

447

BIBLIOGRAPHY

Kowalski, R., and Hayes P. 1969. Semantic trees in automatic theorem
proving. In M14, pp. 87-101.

Kowalski, R., and Kuehner, D. 1971. Linear resolution with selection
function. Artificial Intelligence, 2(3/4), 227-260.

Kuehner, D. G. 1971. A note on the relation between resolution and
Maslov's inverse method. In MI6, pp. 73-90.

Kuipers, B. 1978. Modeling spatial knowledge. Cognitive Science, 2(2),
129-153.

Kuipers, B. 1979. On representing commonsense knowledge. In AN, pp.
393-408.

Latombe, J. C. 1977. Artificial intelligence in computer aided design. In
J. J. Allen (Ed.), CAD Systems. Amsterdam: North-Holland.

Lauriere, J. L. 1978. A language and a program for stating and solving
combinatorial problems. Artificial Intelligence, 10(1), 29-127.

Lehnert, W., and Wilks, Y. 1979. A critical perspective on KRL.
Cognitive Science, 3(1), 1-28.

Lenat, D. B. 1976. AM: An A rtificial Intelligence Approach to Disco very
in Mathematics as Heuristic Search. Rep. STAN-CS-76-570, Stanford
University, Computer Science Dept.; July. (Reprinted in KBS.)

Lesser, V. R. and Corkill, D. D. 1979. The application of Artificial
Intelligence techniques to cooperative distributed processing. In IJCAI-
6, pp. 537-540.

Lesser, V. R., and Erman, L. D. 1979. An Experiment in Distributed
Interpretation. University of Southern California Information Sciences
Institute Report No. ISI/RR-79-76, May. (Also, Carnegie-Mellon Uni
versity Computer Science Dept. Technical Report CMU-CS-79-120,
May.)

Levy, D. 1976. Chess and Computers. Woodland Hills, CA: Computer
Science Press.

448

Levi, G., and Sirovich, F. 1976. Generalized AND/OR graphs. Artifi
cial Intelligence, 7(3), 243-259.

Lin, S. 1965. Computer solutions of the traveling salesman problem.
Bell System Tech. Journal, vol. XLIV, no. 10, December 1965.

Lindsay, P. H., and Norman, D. A. 1972. Human Information Process
ing: An Introduction to Psychology. New York: Academic Press.

Lindstrom, G. 1979. A Ipha-Beta Pruning on Evolving Game Trees. Tech.
Rep. UUCS 79-101, University of Utah, Dept. of Computer Science.

Linsky, L. (Ed.) 1971. Reference and Modality. London: Oxford Uni
versity Press.

London, R. L. 1979. Program verification. In RDST, pp. 302-315.

Loveland, D. W. 1978. Automated Theorem Proving: A Logical Basis.
New York: North Holland.

Loveland, D. W., and Stickel, M. E. 1976. A hole in goal trees: some
guidance from resolution theory. IEEE Trans, on Computers, C-25(4),
335-341.

Lowerre, B. T. 1976. The HARPY Speech Recognition System. Doctoral
dissertation, Carnegie-Mellon University; Tech. Rep., Computer Science
Dept., Carnegie-Mellon University.

Luckham, D. C. 1978. A study in the application of theorem proving. In
PCAI, pp. 176-188.

Luckham, D. C, and Nilsson, N. J. 1971. Extracting information from
resolution proof trees. Artificial Intelligence, 2(1), 27-54.

McCarthy, J. 1958. Programs with common sense. Mechanisation of
Thought Processes, Proc. Symp. Nat. Phys. Lab., vol. I, pp. 77-84.
London: Her Majesty's Stationary Office. (Reprinted in SIP, pp.
403-410.)

McCarthy, J. 1962. Towards a mathematical science of computation.
Information Processing, Proceedings of IFIP Congress 1962, pp. 21-28.
Amsterdam: North-Holland.

449

BIBLIOGRAPHY

McCarthy, J. 1963. Situations, Actions and Causal Laws. Stanford
University Artificial Intelligence Project Memo no. 2. (Reprinted in SIP,
pp. 410-418.)

McCarthy, J. 1977. Epistemological problems of Artificial Intelligence.
In IJCAI-5, pp. 1038-1044.

McCarthy, J. 1979. First order theories of individual concepts and
propositions. In MI9.

McCarthy, J., et al. 1969. A computer with hands, eyes, and ears. Proc.
of the American Federation of Information Processing Societies, vol. 33,
pp. 329-338. Washington, D.C.: Thompson Book Co.

McCarthy, J., and Hayes, P. J. 1969. Some philosophical problems
from the standpoint of Artificial Intelligence. In M14, pp. 463-502.

McCharen, J. D., Overbeek, R. A., and Wos, L. A. 1976. Problems and
experiments for and with automated theorem-proving programs. IEEE
Trans, on Computers, C-25(8), 773-782.

McCorduck, P. 1979. Machines Who Think. San Francisco: W. H.
Freeman.

McDermott, D. V. 1975a. Symbol-mapping: a technical problem in
PLANNER-like systems. SIGARTNewsletter, no. 51, April, pp. 4-5.

McDermott, D. V. 1975b. A packet-based approach to the symbol-
mapping problem. SIGART Newsletter, no. 53, August, pp. 6-7.

McDermott, D. V. 1975c. Very Large PLANNER-Type Data Bases.
MIT Artificial Intelligence Laboratory Memo. 339, MIT; September.

McDermott, D. V., and Doyle, J. 1980. Non-monotonic logic I. A rtificial
Intelligence, forthcoming.

McDermott, D. V., and Sussman, G. J. 1972. The CON NI VER Refer-
enee Manual, MIT AI Lab. Memo 259, May. (Rev., July 1973.)

McDermott, J. 1979. Learning to use analogies. In IJCAI-6, pp.
568-576.

450

Mackworth, A. K. 1977. Consistency in networks of relations. Artificial
Intelligence, 8(1), 99-118.

Manna, Z., and Waldinger, R. (Eds.) 1977. Studies in Automatic
Programming Logic. New York: North-Holland.

Manna, Z., and Waldinger, R. 1979. A deductive approach to program
synthesis. In IJCAI-6, pp. 542-551.

Markov, A. 1954. A Theory of Algorithms. National Academy of
Sciences, USSR.

Marr, D. 1976. Early processing of visual information. Phil. Trans.
Royal Society (Series B), vol. 275, pp. 483-524.

Marr, D. 1977. Artificial intelligence—a personal view. Artificial Intel
ligence, 9(1), 37-48.

Martelli, A. 1977. On the complexity of admissible search algorithms.
A rtificial Intelligence, 8(1), 1-13.

Martelli, A., and Montanari, U. 1973. Additive AND/OR graphs. In
IJCAI-3,pp. 1-11.

Martelli, A., and Montanari, U. 1975. From dynamic programming to
search algorithms with functional costs. In IJCAI-4, pp. 345-350.

Martelli, A., and Montanari, U. 1978. Optimizing decision trees through
heuristically guided search. CACM, 21(12), 1025-1039.

Martin, W. A. 1978. Descriptions and the Specialization of Concepts.
Rep. MIT/LCS/TM-101, MIT Lab. for Computer Science, MIT.

Martin, W. A., and Fateman, R. J. 1971. The MACSYMA system. Proc.
ACM 2d Symposium on Symbolic and Algebraic Manipulation, Los
Angeles, CA, pp. 23-25.

Maslov, S. J. 1971. Proof-search strategies for methods of the resolution
type. In MI6, pp. 77-90.

Medress, M. F., et al. 1977. Speech understanding systems: Report of a
steering committee. Artificial Intelligence, 9(3), 307-316.

451

BIBLIOGRAPHY

Meltzer, B., and Michie, D. (Eds.) 1969. Machine Intelligence 4.
Edinburgh: Edinburgh University Press.

Meltzer, B., and Michie, D. (Eds.) 1970. Machine Intelligence 5.
Edinburgh: Edinburgh University Press.

Meltzer, B., and Michie, D. (Eds.) 1971. Machine Intelligence 6.
Edinburgh: Edinburgh University Press.

Meltzer, B., and Michie, D. (Eds.) 1972. Machine Intelligence 7.
Edinburgh: Edinburgh University Press.

Mendelson, E. 1964. Introduction to Mathematical Logic. Princeton,
NJ: D. Van Nostrand.

Michie, D. (Ed.) 1968. Machine Intelligence 3. Edinburgh: Edinburgh
University Press.

Michie, D. 1974. On Machine Intelligence. New York: John Wiley and
Sons.

Michie, D., and Ross, R. 1970. Experiments with the adaptive graph
traverser. In M15, pp. 301-318.

Michie, D., and Sibert, E. E. 1974. Some binary derivation systems.
JACM, 21(2), 175-190.

Minker, J., Fishman, D. H., and McSkimin, J. R. 1973. The Q*
algorithm— a search strategy for a deductive question-answering system.
Artificial Intelligence, 4(3,4), 225-244.

Minker, J., and Zanon, G. 1979. Lust resolution: Resolution with
Arbitrary Selection Function, Res. Rep. TR-736, Univ. of Maryland,
Computer Science Center, College Park, MD.

Minker, J., et al. 1974. MRPPS: an interactive refutation proof proce
dure system for question answering. /. Computers and Information
Sciences, vol. 3, June, pp. 105-122.

Minsky, M. (Ed.) 1968. Semantic Information Processing. Cambridge,
MA: The MIT Press.

452

Minsky, M. 1975. A Framework for Representing Knowledge. In PCV,
pp. 211-277.

Mitchell, T. M. 1979. An analysis of generalization as a search problem.
In IJCAI-6, pp. 577-582.

Montanari, U. 1970. Heuristically guided search and chromosome
matching. Artificial Intelligence, 1(4), 227-245.

Montanari, U. 1974. Networks of constraints: fundamental properties
and applications to picture processing. Information Science, vol. 7, pp.
95-132.

Moore, E. F. 1959. The shortest path through a maze. Proceedings of an
International Symposium on the Theory of Switching, Part II. Cam
bridge: Harvard University Press. Pp. 285-292.

Moore, J., and Newell, A. 1973. How can MERLIN understand? In L.
Gregg (Ed.), Knowledge and Cognition. Hillsdale, NJ: Lawrence Erl-
baum Assoc.

Moore, R. C. 1975a. Reasoning from Incomplete Knowledge in a
Procedural Deduction System. Tech. Rep. AI-TR-347, MIT Artificial
Intelligence Lab, Massachusetts Institute of Technology, Cambridge,
MA.

Moore, R. C. 1975b. A serial scheme for the inheritance of properties.
SIGARTNewsletter, No. 53, pp. 8-9.

Moore, R. C. 1977. Reasoning about knowledge and action. In IJCAI-5,
pp. 223-227.

Moore, R. C. 1979. Reasoning About Knowledge and Action. Tech. Note
191, SRI International, Artificial Intelligence Center, Menlo Park, CA.

Moses, J. 1967. Symbolic Integration. MAC-TR-47, Project MAC,
Massachusetts Institute of Technology, Cambridge, MA.

Moses, J. 1971. Symbolic integration: the stormy decade. CACM,
14(8), 548-560.

453

BIBLIOGRAPHY

Mylopoulos, J., et al. 1975. TORUS—a natural language understanding
system for data management. In IJCAI-4, pp. 414-421.

Nash-Webber, B., and Schank, R. (Eds.) 1975. Proceedings of Theoreti
cal Issues in Natural Language Processing. Cambridge, MA; June.

Naur, P. 1966. Proofs of algorithms by general snapshots. BIT, 6(4),
310-316.

Nevins, A. J. 1974. A human-oriented logic for automatic theorem
proving. JA CM, vol. 21, pp. 606-621.

Nevins, J. L., and Whitney, D. E. 1977. Research on advanced assembly
automation. Computer (IEEE Computer Society), 10(12), 24-38.

Newborn, M., 1975. Computer Chess. New York: Academic Press.

Newborn, M. 1977. The efficiency of the alpha-beta search on trees with
branch-dependent terminal node scores. Artificial Intelligence, 8(2),
137-153.

Newell, A. 1973. Production systems: models of control structures. In
W.G. Chase, (Ed.), Visual Information Processing. New York: Academic
Press. Chapter 10, pp. 463-526.

Newell, A., Shaw, J., and Simon, H. 1957. Empirical explorations of the
logic theory machine. Proc. West. Joint Computer Confi, vol. 15, pp.
218-239. (Reprinted in CT, pp. 109-133.)

Newell, A., Shaw, J. C, and Simon, H. A. 1958. Chess-playing programs
and the problem of complexity. IBM Jour. R&D, vol. 2, pp. 320-355.
(Reprinted in CT, pp. 109-133.)

Newell, A., Shaw, J. C , and Simon, H. A. 1960. Report on a general
problem-solving program for a computer. Information Processing: Proc.
of the Int. Confi, on Information Processing, UNESCO, Paris, pp. 256-264.

Newell, A., and Simon, H. A. 1963. GPS, a program that simulates
human thought. In CT, pp. 279-293.

Newell, A., and Simon, H. A. 1972. Human Problem Solving. Englewood
Cliffs, NJ: Prentice-Hall.

454

Newell, A., et al. 1973. Speech Understanding Systems: Final Report of a
Study Group. New York: American Elsevier.

Nilsson, N. J. 1965. Learning Machines: Foundations of Trainable
Pattern-Classifying Systems. New York: McGraw-Hill.

Nilsson, N. J. 1969. Searching problem-solving and game-playing trees
for minimal cost solutions. In A. J. H. Morrell (Ed.), Information
Processing 68 (vol. 2). Amsterdam: North-Holland. Pp. 1556-1562.

Nilsson, N. J. 1971. Problem-solving Methods in Artificial Intelligence.
New York: McGraw-Hill.

Nilsson, N. J. 1973. Hierarchical Robot Planning and Execution System.
SRI AI Center Technical Note 76, SRI International, Inc., Menlo Park,
CA, April.

Nilsson, N. J. 1974. Artificial Intelligence. In J. L. Rosenfeld (Ed.),
Technological and Scientific Applications; Applications in the Social
Sciences and the Humanities, Information Processing, 74: Proc. of IFIP
Congress 74, vol. 4, pp. 778-801. New York: American Elsevier.

Nilsson, N. J. 1979. A production system for automatic deduction. In
MI9.

Nitzan, D. 1979. Flexible automation program at SRI. Proc. 1979 Joint
Automatic Control Conference. New York: IEEE.

Norman, D. A., and Rumelhart, D. E. (Eds.) 1975. Explorations in
Cognition. San Francisco: W. H. Freeman.

Okhotsimski, D. E., et al. 1979. Integrated walking robot development.
In MI9.

Paterson, M. S., and Wegman, M. N. 1976. Linear Unification. IBM
Research Report 5304, IBM.

Pitrat, J. 1977. A chess combination program which uses plans. Artifi
cial Intelligence, 8(3), 275-321.

Pohl, I. 1970. First results on the effect of error in heuristic search. In
M/5, pp. 219-236.

455

BIBLIOGRAPHY

Pohl, I. 1971. Bi-directional search. In M16, pp. 127-140.

Pohl, 1.1973. The avoidance of (relative) catastrophe, heuristic compe
tence, genuine dynamic weighting and computational issues in heuristic
problem solving. In IJCAI-3, pp. 12-17.

Pohl, 1.1977. Practical and theoretical considerations in heuristic search
algorithms. In MIS, pp. 55-72.

Pople, H. E., Jr. 1977. The formation of composite hypotheses in
diagnostic problem solving: an exercise in synthetic reasoning. In
IJCAI-5, pp. 1030-1037.

Pospesel, H. 1976. Introduction to Logic: Predicate Logic. Englewood
Cliffs, NJ: Prentice-Hall.

Post, E. 1943. Formal reductions of the general combinatorial problem.
American Jour. Math., vol. 65, pp. 197-268.

Pratt, V. R. 1977. The Competence/Performance Dichotomy in Pro
gramming. Memo 400, January, MIT Artificial Intelligence Laboratory,
MIT.

Prawitz, D. 1960. An improved proof procedure. Theoria, vol. 26, pp.
102-139.

Quillian, M. R. 1968. Semantic memory. In SIP, pp. 216-270.

Raphael, B. 1968. SIR: semantic information retrieval. In SIP, pp.
33-134.

Raphael, B. 1971. The frame problem in problem-solving systems. In
AIHP, pp. 159-169.

Raphael, B. 1976. The Thinking Computer: Mind Inside Matter. San
Francisco: W. H. Freeman.

Raphael, B., et al. 1971. Research and Applications—Artificial Intelli
gence, Stanford Research Institute Final Report on Project 8973. Ad
vanced Research Projects Agency, Contract NASW-2164; December.

456

Raulefs, P., et al. 1978. A short survey on the state of the art in matching
and unification problems. AI SB Quarterly, no. 32, December, pp. 17-21.

Reddy, D. R., et al. 1977. Speech Understanding Systems: A Summary of
Results of the Five- Year Research Effort. Dept. of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Reiter, R. 1971. Two results on ordering for resolution with merging
and linear format. JACM, vol. 18, October, pp. 630-646.

Reiter, R. 1976. A semantically guided deductive system for automatic
theorem proving. IEEE Trans, on Computers, C-25(4), 328-334.

Reiter, R. 1978. On reasoning by default. In TINLAP-2, pp. 210-218.

Rich, C, and Shrobe, H. E. 1979. Design of a programmer's apprentice.
In AI-MIT, vol. 1, pp. 137-173.

Rieger, C, and London, P. 1977. Subgoal protection and unravelling
during plan synthesis. In IJCAI-5, pp. 487-493.

Robbin, J. 1969. Mathematical Logic: A First Course. New York: W. A.
Benjamin.

Roberts, R. B., and Goldstein, I. P. 1977. The FRL Primer. Memo 408,
MIT Artificial Intelligence Laboratory, MIT.

Robinson, A. E. 1978. Investigating the Process of Natural Language
Communication: A Status Report. SRI International Artificial Intelli
gence Center Tech. Note 165. SRI International, Menlo Park, CA; July.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution
principle. JA CM, 12(1), 23-41.

Robinson, J. A. 1979. Logic: Form and Function. New York: North-
Holland.

Rosen, C. A., and Nitzan, D. 1977. Use of sensors in programmable
automation. Computer (IEEE Computer Society Magazine), December,
pp. 12-23.

457

BIBLIOGRAPHY

Rosen, B. K. 1973. Tree-manipulating systems and Church-Rosser
theorems. JA CM, vol. 20, pp. 160-187.

Roussel, P. 1975. Prolog: Manual de reference et d'utilisation. Groupe
d'Intelligence Artificielle, Marseille-Luminy; September.

Rubin, S. 1978. The ARGO S Image Understanding System. Doctoral
dissertation, Dept. of Computer Science, Carnegie-Mellon University,
November. (Also in Proc ARPA Image Understanding Workshop,
Carnegie-Mellon, Nov. 1978, pp. 159-162.)

Rulifson, J. F., Derksen, J. A., and Waldinger, R. J. 1972. QA4: A
Procedural Calculus for Intuitive Reasoning. Stanford Research Institute
Artificial Intelligence Center Tech. Note 73, Stanford Research Institute,
Inc., November.

Rumelhart, D. E., and Norman, D. A. 1975. The active structural
network. In D. A. Norman and D. E. Rumelhart (Eds.), Explorations in
Cognition. San Francisco: W. H. Freeman.

Rustin, R. (Ed.) 1973. Natural Language Processing. New York:
Algorithmes Press.

Rychener, M. D. 1976. Production Systems as a Programming Lan
guage for Artificial Intelligence Applications. Doctoral dissertation, Dept.
of Computer Science, Carnegie-Mellon University.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence, 5(2), 115-135.

Sacerdoti, E. D. 1975. The non-linear nature of plans. In IJCAI-4, pp.
206-214.

Sacerdoti, E. D. 1977. A Structure for Plans and Behavior. New York:
Elsevier.

Sacerdoti, E. D., et al. 1976. QLISP—A language for the interactive
development of complex systems. Proceedings of A FI PS National
Computer Conference, pp. 349-356.

458

Samuel, A. L. 1959. Some studies in machine learning using the game of
checkers. IBM Jour. R&D, vol. 3, pp. 211-229. (Reprinted in CT, pp.
71-105.)

Samuel, A. L. 1967. Some studies in machine learning using the game
of checkers II—recent progress. IBM Jour. R&D, 11(6), 601-617.

Schank, R. C , and Abelson, R. P. 1977. Scripts, Plans, Goals and
Understanding. Hillsdale, NJ: Lawrence Erlbaum Assoc.

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L. 1978. The plan
recognition problem: an intersection of psychology and Artificial Intelli
gence. Artificial Intelligence, 11(1,2), pp. 45-83.

Schubert, L. K. 1976. Extending the expressive power of semantic
networks. Artificial Intelligence, 7(2), pp. 163-198.

Schubert, L. K., Goebel, R. G., and Cercone, N. J. 1979. The structure
and organization of a semantic net for comprehension and inference. In
AN, pp. 121-175.

Shannon, C. E. 1950. Programming a computer for playing chess.
Philosophical Magazine (Series 7), vol. 41, pp. 256-275.

Shapiro, S. 1979a. The SNePS Semantic Network Processing System.
In AN, pp. 179-203.

Shapiro, S. 1979b. Techniques of Artificial Intelligence. New York: D.
Van Nostrand.

Shirai, Y. 1978. Recognition of real-world objects using edge cue. In
CVS, pp. 353-362.

Shortliffe, E. H. 1976. Computer-Based Medical Consultations:
MYCIN. New York: American Elsevier.

Siklóssy, L., and Dreussi, J. 1973. An efficient robot planner which
generates its own procedures. In IJCAI-3, pp. 423-430.

Sickel, S. 1976. A search technique for clause interConnectivity graphs.
IEEE Trans, on Computers, C-25(8), 823-835.

459

BIBLIOGRAPHY

Simmons, R. F. 1973. Semantic networks: their computation and use
for understanding English sentences. In R. Schank and K. Colby (Eds.),
Computer Models of Thought and Language. San Francisco: W. H.
Freeman. Pp. 63-113.

Simon, H. A. 1963. Experiments with a heuristic compiler. JA CM,
10(4), 493-506.

Simon, H. A. 1969. The Sciences of the Artificial. Cambridge, MA: The
MIT Press.

Simon, H. A. 1972a. On reasoning about actions. In RM, pp. 414-430.

Simon, H. A. 1972b. The heuristic compiler. In RM, pp. 9-43.

Simon, H. 1977. Artificial Intelligence systems that understand. In
IJCAI-5,pp. 1059-1073.

Simon, H. A., and Kadane, J. B. 1975. Optimal problem-solving search:
all-or-none solutions. Artificial Intelligence, vol. 6, 235-247.

Slagle, J. R. 1963. A heuristic program that solves symbolic integration
problems in freshman calculus. In CT, pp. 191-203. (Also in JACM, 1963,
vol. 10, 507-520.)

Slagle, J. R. 1970. Heuristic search programs. In TAN PS, pp. 246-273.

Slagle, J. R. 1971. Artificial Intelligence: The Heuristic Programming
Approach. New York: McGraw-Hill.

Slagle, J. R., and Dixon, J. K. 1969. Experiments with some programs
that search game trees. JACM, 16(2), 189-207.

Smith, R. G. 1978. A Framework for Problem Solving in a Distributed
Environment. Doctoral dissertation, Stanford University, Computer
Science Dept., Report STAN-CS-78-700; December.

Smith, R. G. 1979. A framework for distributed problem solving. In
IJCAI-6, pp. 836-841.

Smullyan, R. M. 1978. What Is The Name of This Book: The Riddle of
Dracula and Other Logical Puzzles. Englewood Cliffs, NJ: Prentice-Hall.

460

Soloway, E. M. 1978. "Learning = Interpretation + Generalization": A
Case Study in Knowledge-Directed Learning. Doctoral dissertation,
University of Massachusetts at Amherst, Computer and Information
Science Dept., Technical Report 78-13; July.

Sridharan, N. S. 1978. AIMDS User Manual—Version 2. Rutgers
University Computer Science Tech. Report CBM-TR-89, Rutgers, June.

Srinivasan, C. V. 1977. The Meta Description System: A System to
Generate Intelligent Information Systems. Part I: The Model Space.
Rutgers University Computer Science Tech. Report SOSAP-TR-20A,
Rutgers.

Stallman, R. M., and Sussman, G. J. 1977. Forward reasoning and
dependency-directed backtracking in a system for computer-aided cir
cuit analysis. Artificial Intelligence, 9(2), 135-196. (Reprinted in AI-MIT,
vol. 1, pp. 31-91.)

Stefik, M. 1979. An examination of a frame-structured representation
system. In IJCAI-6, pp. 845-852.

Stockman, G. 1977. A Problem-Reduction Approach to the Linguistic
Analysis of Waveforms. Doctoral dissertation, University of Maryland,
College Park, MD.; Computer Science Technical Report TR-538.

Sussman, G. J. 1975. A Computer Model of Skill Acquisition. New
York: American Else vier.

Sussman, G. J. 1977. Electrical design: a problem for artificial intelli
gence research. In IJCAI-5, pp. 894-900.

Sussman, G. J., and Stallman, R. M. 1975. Heuristic techniques in
computer aided circuit analysis. IEEE Trans, on Circuits and Systems,
CAS-22(11), November.

Sussman, G., Winograd, T., and Charniak, E. 1971. Micro-Planner
Reference Manual, MIT AI Memo 203a, MIT, 1970.

Takeyasu, K. et al. 1977. An approach to the integrated intelligent robot
with multiple sensory feedback: construction and control functions.
Proceedings 7th Intern. Symp. on Industrial Robots, Tokyo, Japan
Industrial Robot Assoc, pp. 523-530.

461

BIBLIOGRAPHY

Tate, A. 1976. Project Planning Using a Hierarchic Non-Linear Planner.
Research Report no. 25, Department of Artificial Intelligence, University
of Edinburgh.

Tate, A. 1977. Generating project networks. In IJCAI-5, pp. 888-893.

Turing, A. M. 1950. Checking a large routine. Report of a Conference on
high speed automatic calculating machines, University of Toronto,
Canada, June 1949, Cambridge University Mathematical Laboratory,
pp. 66-69.

Tyson, M., and Bledsoe, W. W. 1979. Conflicting bindings and general
ized substitutions. In WAD, pp. 14-18.

Ulrich, J. W. and Moll, R. 1977. Program synthesis by analogy. In
Proceedings of the Symposium on Artificial Intelligence and Programming
Languages (ACM); SIGPLAN Notices, 12(8); and SIGART Newsletter,
no. 64, pp. 22-28.

vanderBrug, G. J. 1976. Problem representations and formal properties
of heuristic search. Information Sciences, vol. II, pp. 279-307.

vanderBrug, G., and Minker, J. 1975. State-space, problem-reduction,
and theorem proving—some relationships. Comm. ACM, 18(2), 107-115.

van Emden, M. H. 1977. Programming with resolution logic. In MI8,
pp. 266-299.

van Vaalen, J. 1975. An extension of unification to substitutions with an
application to automatic theorem proving. In IJCAI-4, pp. 77-82.

Vere, S. A. 1978. Inductive learning of relational productions. In PDIS,
pp. 281-295.

Wagner, H. 1975. Principles of Operations Research (2nd ed.). Engle-
wood Cliffs, NJ: Prentice-Hall.

Waldinger, R. J. 1977. Achieving several goals simultaneously. In M18,
pp. 94-136.

Waldinger, R. J., and Lee, R. C. T. 1969. PROW: A step toward
automatic program writing. In IJCAI-1, pp. 241-252.

462

Waldinger, R. J., and Levitt, K. N. 1974. Reasoning about programs.
Artificial Intelligence, 5(3), 235—316. (Reprinted in Z. Manna and R. J.
Waldinger (Eds.), Studies in Automatic Programming Logic. New York:
North-Holland, 1977.)

Walker, D. E., and Norton, L. M. (Eds.) 1969. International Joint
Conference on Artificial Intelligence. Washington, D.C.; May.

Walker, D. E. (Ed.). 1978. Understanding Spoken Language. New York:
North Holland.

Waltz, D. 1975. Understanding line drawings of scenes with shadows. In
PCV,pp. 19-91.

Waltz, D. (Ed.) 1977. Natural language interfaces. SIGART Newsletter
no. 61, February, pp. 16-64.

Waltz, D. (Ed.) 1978. TIN LAP-2, University of Illinois, July.

Warren, D. H. D. 1974. WARPLAN: A System for Generating Plans.
Memo 76, Dept. of Computational Logic, University of Edinburgh
School of Artificial Intelligence, June.

Warren, D. H. D. 1977. Logic Programming and Compiler Writing. Res.
Rep. No. 44, Dept. of Artificial Intelligence, University of Edinburgh.

Warren, D. H. D., and Pereira, L. M. 1977. PROLOG—The language
and its implementation compared with LISP. Proceedings of the Sympo
sium on Artificial Intelligence and Programming Languages (ACM);
SIGPLAN Notices, 12(8); and SIGART Newsletter, no. 64, pp. 109-115.

Waterman, D., and Hayes-Roth, F. (Eds.) 1978. Pattern-Directed Infer
ence Systems. New York: Academic Press.

Wegner, P. (Ed.) 1979. Research Directions in Software Technology
Cambridge, MA: The MIT Press.

Weiss, S. M., Kulikowski, C. A., Amarel, S., and Safir, A. 1978. A
model-based method for computer-aided medical decision-making.
Artificial Intelligence, 11(1,2), 145-172.

463

BIBLIOGRAPHY

Weissman, C. 1967. LISP 1.5 Primer. Belmont, CA: Dickenson Pub
lishing Co.

Weyhrauch, R. 1980. Prolegomena to a theory of mechanized formal
reasoning. Artificial Intelligence, forthcoming.

Wickelgren, W. A. 1974. How to Solve Problems. San Francisco: W. H.
Freeman.

Wiederhold, G. 1977. Database Design. New York: McGraw-Hill.

Wilkins, D. 1974. A non-clausal theorem proving system. In PASC.

Wilkins, D. 1979. Using plans in chess. In IJCAI-6, pp. 960-967.

Will, P., and Grossman, D. 1975. An experimental system for computer
controlled mechanical assembly. IEEE Trans, on Computers, C-24(9),
879-888.

Winker, S. 1979. Generation and verification of finite models and
counterexamples using an automated theorem prover answering two
open questions. In WAD, pp. 7-13.

Winker, S. and Wos, L. 1978. Automated generation of models and
counterexamples and its application to open questions in ternary boolean
algebra. Proc. Eighth Int. Symposium on Multiple- Valued Logic (IEEE),
Rosemont, Illinois.

Winograd, T. 1972. Understanding Natural Language. New York:
Academic Press.

Winograd, T. 1975. Frame representations and the declarative/proce
dural controversy. In RU, pp. 185-210.

Winograd, T. 1980a. Language as a Cognitive Process. Reading, MA:
Addison-Wesley, forthcoming.

Winograd, T. 1980b. What does it mean to understand language?
Cognitive Science, 4. To appear.

Winston, P. H. 1972. The MIT robot. In MI7, pp. 431-463.

464

Winston, P. H. (Ed.) 1975. The Psychology of Computer Vision. New
York: McGraw-Hill.

Winston, P. H. 1975. Learning structural descriptions from examples.
In PCF, pp. 157-209.

Winston, P. H. 1977. Artificial Intelligence. Reading, MA: Addison-
Wesley.

Winston, P. H. 1979. Learning by Understanding Analogies. Memo 520,
MIT Artificial Intelligence Laboratory, April. (Rev., June.)

Winston, P. H., and Brown, R. H. (Eds.) 1979. Artificial Intelligence: an
MIT Perspective (2 vols.). Cambridge, MA: MIT Press.

Wipke, W. T., Ouchi, G. I., and Krishnan, S. 1978. Simulation and
evaluation of chemical synthesis—SECS: an application of artificial
intelligence techniques. Artificial Intelligence, 11(1,2), 173-193.

Wong, H. K. T., and Mylopoulos, J. 1977. Two views of data semantics:
a survey of data models in artificial intelligence and database manage
ment. Information, 15(3), 344-383.

Woods, W. 1975. What's in a link: foundations for semantic networks.
In RU9 pp. 35-82.

Woods, W., et al. 1976. Speech Understanding Systems: Final Technical
Progress Report. (5 vols.), BBN No. 3438. Cambridge, MA: Bolt, Beranek
and Newman.

Zadeh, L. 1979. A theory of approximate reasoning. In M1-9.

Zisman, M. D. 1978. Use of production systems for modeling
asynchronous, concurrent processes. In PDIS, pp. 53-68.

465

AUTHOR INDEX

Abelson, R. P., 412, 413, 424
Abraham, R. G., 13
Agin, G. J., 15
Aho, A. V., 14
Allen, J., 16, 189
Amarel, S.,49, 127
Ambler, A. P., 13
Anderson, J., 412
Athans, M., 49

Baker, H., 419
Ball, W., 50
Ballantyne, A. M., 13
Banerji, R., 431
Barr, A., 11
Barrow, H., 15
Barstow, D., 14, 269
Baudet, G. M., 128
Baumert, L., 50
Bellman, R., 95
Berliner, H. J., 127, 128
Bernstein, M. I., 11
Bibel, W., 268
Biermann, A. W., 14
Binford, T. O., 13
Black, F., 316
Bledsoe, W. W., 13, 267, 268, 269
Bobrow, D. G., 50, 270, 315, 412, 413,

418, 431
Boden, M. A., 11
Bower, G., 412
Boyer, R. S., 13, 189
Brown, J. S., 15
Brown, R. H., 429
Bruell, P., 13, 269
Buchanan, B. G., 12, 422
Bundy, A., 11,413,426

Cassinis, R., 14
Cercone, N. J., 413
Chandra, A. K., 96
Chang, C L., 13, 127, 156, 189, 208,

268
Charniak, E.,267, 270, 417
Codd, E. F., 12

Cohen, H., 11
Cohen, P. R., 316, 425
Cohn, A., 426
Coleman, R., 95
Collins, A., 424, 426, 431
Collins, N. L., 430
Constable, R., 14
Corkill, D. D., 419
Cox, P. T., 268
Crane, H. D., 419
Creary, L. G., 425

Dale, E., 430
Date, C. J., 12
Davis, M., 156
Davis, R., 12,49,269,420,429
Dawson, C , 316
de Kleer, J., 269
Deliyani, A., 412
Derksen, J. A., 267, 315, 418
Dietterich, T. G., 421
Dijkstra, E. W., 95
Dixon, J. K., 96, 128
Doran, J., 90, 95,96
Doyle, J., 413
Dreussi, J., 357
Dreyfus, S., 95
Duda, R. O., 12, 15, 268, 413, 420, 423
Dudeney, H., 50

Edwards, D., 128
Ehrig, H., 49
Elcock, E.,430
Elithorn, A., 429
Elschlager, R., 425
Erman, L. D., 419
Ernst, G. W., 316
Evans, T. G., 421

Fahlman, S. E., 315, 413, 418
Fateman, R. J., 12
Feigenbaum, E. A., 11, 12, 15, 50, 429
Feldman, J. A., 358
Feldman, Julian, 15, 429
Fikes, R. E., 315, 316, 358, 413, 421

467

AUTHOR INDEX

Findler, N. V., 413, 429
Fishman, D. H., 189
Floyd, R. W., 14
Frege, G., 412
Friedland, P., 412, 420
Friedman, D. P., 16

Gallaire, H., 12,269
Galler, B. ,48
Gardner, M., 50
Gaschnig, J., 94
Gelernter, H. L., 13, 15
Gelperin, D., 95
Genesereth, M. R., 12
Goebel, R. G., 413
Goldstein, I. P., 412
Goldstine, H. H., 14
Golomb, S., 50
Goodson, J. L., 424
Green, C. C , 14, 189, 269, 308, 316,

418
Grossman, D., 14
Grosz, B. J., 11,424
Guard, J., 189

Hall, P. A. V., 127
Hammer, M., 14, 269
Hanson, A. R., 15,429
Harris, L. R., 95, 128
Hart, P. E., 15, 95, 268, 316, 358, 421,

423
Hart, T., 128
Hayes, J. E., 430
Hayes, P. J., 156, 246, 269, 270, 315,

316, 412, 423
Hayes-Roth, F., 49, 431
Held, M.,50
Hendrix, G. G., 316, 412, 413, 424
Hewitt, C , 267, 270,419
Hillier, F. S., 14,50
Hinxman, A. I., 127
Hofstadter, D. R., 426
Hopcroft, J. E., 14,50
Horowitz, E., 94
Hunt, E. B., 10

Jackson, P. C , Jr., 10, 96
Jones, D., 429
Joyner, W. H., Jr., 433

Radane, J. B., 95
Kanade, T., 15
Kanal, L. N., 96
Karp, R. M.,50
King, J., 49

Klahr, P.,268
Klatt, D. H., 11
Kling, R. E.,421
Knuth, D. E., 128
Kornfeld, W. A., 419
Kowalski, R., 127, 156, 189, 268, 269,

270,311,316,412
Krishnan, S., 15
Kuehner, D. G., 156, 189
Kuipers, B., 423

Latombe, J. C , 15
Lauriere, J. L., 14
Lee, R. C. T., 13, 14, 156, 189, 269
Lehnert, W., 412
Lenat, D. B., 422,429
Lesser, V. R., 419
Levi, G., 127
Levin, M., 128
Levitt, K. N., 268
Levy, D., 128
Lieberman, G. J., 14, 50
Lin, S., 50
Lindsay, P. H., 11
Lindstrom, G., 128
Linsky, L., 425
London, P., 357
London, R. L., 14
Loveland, D. W., 13, 156, 189, 268
Lowerre, B. T., 96
Luckham, D. C , 13, 156, 189, 268

McCarthy, J., 13, 14, 315, 316, 422,
423, 425

McCharen, J. D., 13, 189
McCorduck, P., 11
McDermott, D. V., 267, 413, 417, 418
McDermott, J., 421
Mack worth, A. K., 94
McSkimin, J. R., 189
Manna, Z., 14, 156, 253,269
Markov, A., 48
Marr, D., 11, 15
Martelli, A., 95, 106, 127
Martin, W. A., 12,413
Maslov, S. J., 156
Medress, M. F., 11
Meltzer, B., 429, 430
Mendelson, E., 156
Mesarovic, M. D., 431
Michalski, R. S., 421
Michie, D., 11, 67, 90, 95, 96, 127, 430
Mikulich, L. I.,430
Minker, J., 12, 127, 189, 269
Minsky, M., 412, 431

468

Mitchell, T. M., 421, 422
Moll, R., 421
Montanari, U., 94, 96, 106, 127
Moore, E. F., 95
Moore, J., 412
Moore, J S., 13
Moore, R. C , 267, 268, 413, 424, 425
Moore, R. W., 128
Moses, J., 50
Mylopoulos, J., 269, 413

Nash-Webber, B., 433
Naur, P., 14
Nevins, A. J., 268
Nevins, J. L., 13
Newborn, M., 128
Newell, A., 11, 13, 48, 95, 127, 128,

316, 412
Nilsson, N . J . , 10, 11, 49, 95, 127, 156,

185, 268, 270, 315, 316, 358,
421,423

Nitzan, D., 13
Norman, D. A., 11, 412
Norton, L. M., 432

Okhotsimski, D. E., 14
Ouchi, G. I., 15

Paterson, M. S., 156
Pereira, L. M., 269
Perlis, A., 48
Pitrat, J., 128
Pohl, L, 95
Pople, H. E., Jr., 12
Pospesel, H., 156
Post, E., 48
Pratt, V. R., 270
Prawitz, D., 156
Putnam, H., 156

Ouillian, M. R., 412

Raphael, B., 11, 13, 50, 95, 270, 315,
412

Raulefs, P., 156
Reddy, D. R., 11
Reiter, R., 189,268, 413
Rich, C , 14
Rieger, C , 357
Riesbeck, C , 413
Riseman, E. M., 15, 429
Robbin, J., 156
Roberts, R. B., 412
Robinson, A. E., 424
Robinson, J. A., 13, 156

Rosen, B. K., 49
Rosen, C. A., 13
Ross, R., 67, 95
Roussel, P., 269
Rubin, S., 96
Rulifson, J. F., 267, 315, 418
Rumelhart, D. E., 412
Rustin, R., 11
Ruth, G., 14,269
Rychener, M. D., 48

Sacerdoti, E. D., 270, 340, 349, 357,
424

Sahni, S., 94
Samuel, A. L., 128, 421
Schank, R. C , 412, 413, 424, 433
Schmidt, C. F., 424
Schreiber, J., 268
Schubert, L. K., 413
Shannon, C. E., 127
Shapiro, S., 412, 417
Shaw, J., 13,95, 127, 128,316
Shirai, Y., 15
Shortliffe, E. H., 12,268,423
Shostak, R., 269
Shrobe, H. E., 14
Sibert, E. E., 127
Sickel, S.,208, 268
Siklóssy, L.,316, 357, 431
Simmons, R. F., 412
Simon, H. A., 11, 13, 14, 48, 49, 95,

127, 128, 316, 431
Sirovich, F. , 127
Slagle, J. R., 10, 45, 49, 50, 96, 127,

128, 208, 268
Smith, R. G., 419
Smullyan, R. M., 50
Soloway, E. M., 422
Sproull, R. F., 358
Sridharan, N. S., 413, 424
Srinivasan, C. V., 413
Stallman, R. M., 12, 413
Stefik, M., 412
Stickel, M. E., 268
Stockman, G., 127
Stone, M., 413
Sussman, G. J., 12, 15, 267, 270, 357,

413

Takeyasu, K., 14
Tate, A., 357, 358
Tenenbaum, J. M., 15
Turing, A. M., 14
Tyson, M., 268, 269

AUTHOR INDEX

Ullman, J. D., 14, 50
Ulrich, J. W.,421

van Emden, M. H., 269
van Vaalen, J., 268
vanderBrug, G. J., 95, 127
Vere, S. A., 421
von Neumann, J., 14

Wagner, H., 14, 50
Waldinger, R. J., 14, 156, 253, 267,

269, 315, 316, 357, 418
Walker, D. E., 11, 413, 432
Waltz, D., 12,94,433
Warren, D. H. D., 269, 357
Waterman, D., 49, 431
Wegman, M. N., 156
Wegner, P., 431
Weiss, S. M., 12
Weissman, C , 16

Weyhrauch, R., 189, 229, 268, 269, 426
Whitney, D. E., 14
Wickelgren, W. A., 50
Wiederhold, G., 12
Wilkins, D., 128,268
Wilks, Y., 412
Will, P., 14
Winker, S., 13
Winograd, T., 11, 267, 270, 412, 413,

418, 422
Winston, P. H., 11, 13, 15, 412, 417,

421,429,430
Wipke, W. T., 15
Wong, H. K. T., 269
Woods, W., 11, 412
Wos, L. A., 13

Zadeh, L., 424
Zanon, G., 189
Zisman, M. D., 419

470

SUBJECT INDEX

A*:
admissibility of, 76-79
definition of, 76
optimality of, 79-81
properties of, 76-84
references for, 95

Abstract individuals, 389-391
ABSTRIPS, 350-354, 357
Actions, reasoning about, 307-315, 424
Actor formalism, 419
Add list, of STRIPS rules, 278
Adders, in DCOMP, 336
Admissibility, of search algorithms, 76
Advice, added to delineations, 406-408
AI languages, 261

references for, 267, 270, 417, 418
Alpha-beta procedure, for games, 121-

126
efficiency of, 125-126
references for, 127

Alphabetic variant, 141
AM, 422
Amending plans, 342-349
Analogies, 317-318, 421
Ancestor node, in graphs, (see Graph

notation)
Ancestry-filtered form strategy, in

resolution, 171
AND/OR form:

for fact expressions, 196-199
for goal expressions, 213-215

AND/OR graphs and trees:
definition of, 40-41, 99-100
references for, 49, 127
for representing fact expressions, 197-

199
for representing goal expressions,

213-215
for robot problem solving, 333

AND nodes, in AND/OR graphs, 40,
- 99-100

Answer extraction, in resolution, 175
Skolem functions in, 184
references for, 189

Answer statements:
in resolution, 176
in rule-based systems, 212

Antecedent, of an implication, 135
AO*:

definition of, 104-105
references for, 127

Applications of AI, 2-9, 11-15
Atomic formulas, in predicate calculus,

132
Attachment, procedural, 173-174, 232,

234, 400-401
Automatic programming, 5-6

by DCOMP, 348-349
references for, 14, 269
by resolution, 191
by RSTRIPS, 331-333
by rule-based systems, 241-253
by STRIPS, 305-307

Automation, industrial, 13-14

B-rules:
definition of, 34
for robot problems, 287-292
for rule-based deduction systems, 214-

215
Backed-up values, in game trees, 116
Backtracking control strategies:

algorithms for, 55-57, 59
definition of, 24-25
examples of, 25-26, 57-58, 60-61
references for, 50, 94

Backward production systems, 32-34
for robot problem solving, 287-296
for theorem proving, 212

Bag, 229
Base set, of clauses, 163
Beliefs, reasoning about, 424-425
Beta-structures, 412
Bidirectional production systems, 32-34
Bidirectional search, 88-90
Blackboard systems (see Production

systems)
Blocks world, 152-155, 275

471

SUBJECT INDEX

Branching factor, of search processes,
92-94

Breadth-first search, 69-71
Breadth-first strategy, in resolution,

165-166

CANCEL relation, in theorem proving,
254-257, 270

Candidate solution graph, 217-218, 254
Checker-playing programs, references

for, 128
Chess-playing programs, references for,

128
Church-Rosser theorems, 49
Clauses, 145

conversion to, 146-149
for goals, 214

CLOSED node, 64
Combinatorial explosion, 6-7
Combinatorial problems, 6-7, 14
Commonsense physics, 423
Commonsense reasoning, 154, 422-424
Commutative production systems:

definition of, 35
relation with decomposable systems,

109-112, 127
Completeness:

of inference rules, 144
of resolution refutation strategies, 165

Complexity of heuristic search, 95
Computation by deduction, 241-246,

269-270
Computer-based consulting systems, 4,

12
Conditional plans, 318-319
Conditional rule application, 259, 265-

267
Conditional substitutions, 239, 252, 269
Conjunctions, 134
Conjunctive goals:

in deductions, 213
in robot problem solving, 297
{Also see Interacting goals)

Conjunctive normal form, 148
Connection graphs, 219-222, 268
Connectives, in predicate calculus, 134-

135
Connectors, in AND/OR graphs, 100
CONNIVER, 261, 267
Consequent, of an implication, 135
Consistency restriction, in heuristic

search, 95
Consistency, of substitutions, 207-208,

218-219, 268
Constraint satisfaction, references for,

94

Contradiction, proof by {see
Refutations)

Contradictory information, 408-411
Contrapositive rules, 258
Control knowledge, definition, 48
Control strategy:

backtracking, 24-26, 55-57
for decomposable systems, 39-41, 103-

109
for game-playing systems, 112-126
graph-search, 22, 25, 27, 64-68
irrevocable, 21-24
of a production system, 17-18, 21-27
for resolution refutations, 164-172
for rule-based deduction systems, 217-

222, 257-260
for STRIPS, 302-303
tentative, 21-22, 24-27

Costs, of arcs and paths in graphs {see
Graph notation)

Criticality values of preconditions, 351

DCOMP, 333
Debugging, as a planning strategy, 357
Declarative knowledge, definition, 48
Decomposable production systems:

algorithm for, 39
control of, 39-41
definition of, 37-38
examples of, 41-47
relation with commutative systems,

109-112, 127
Deduction {see Theorem proving)
Deductive operations on structured

objects, 387
Defaults, 408-411
Delete list, of STRIPS rules, 278
Deleters, in DCOMP, 335-336
Delineations, of structured objects, 387-

391
DeMorgan's laws, 138
DENDRAL, 12, 41-44, 50, 422
Depth, in graphs, {see Graph notation)
Depth bound, definition, 56-57
Depth-first search, 68-70
Derivation graphs, 110, 164
Descendant node {see Graph notation)
Differences, in GPS, 303-305
Disjunctions, 134
Distributed AI systems, 419
Double cross, in robot planning, 349
Dynamic programming, 95

8-puzzle:
breadth- and depth-first searches of,

68-71

472

description of, 18-20
heuristic search of, 73-74, 85-87
references for, 50
representation of, 18-20

8-queens problem, 6, 57-58, 60-61
Enclosures, in networks, 373-378
Epistemologica! problems, 422-426
Equivalence, of wffs, 138-139
Errors, effects of in heuristic search, 95
Evaluation, of predicates, 173-174
Evaluation functions:

for commutative systems, 112
definition of, 72-73
for derivation graphs, 112
examples of, 73, 85
for games, 115-117

Execution, of robot plans, 284-287
Expanding nodes (see Graph notation)
Expert systems, 4, 12

F-rules:
definition of, 34
for robot problem solving, 277-279
for rule-based deduction systems, 199-

203, 206
Fact node, 215
Fact object, 379
Facts, in rule-based deduction systems,

195
FOL, 426
Forward robot problem-solving system,

281-282
Forward rule-based deduction system,

196
Frame axioms or assertions, 310
Frame problem, 279-280
Frames, 8-9, 412

(Also see Semantic networks and
Units)

FRL, 412

Game-tree search, 112-126
references for, 127-128

Global database of a production system,
17-18

Goal clauses, 214
Goal descriptions, 276-277
Goal-directed invocation, 260
Goal node, in rule-based systems, 204,

210
(Also see Graph notation)

Goal object, 379
Goal stack, in STRIPS, 298
Goal wff, 153, 195
Goals, in rule-based deduction systems,

203-204

interacting, 296-297, 325
GPS, 303-305
Graph notation

for AND/OR graphs, 99-103
for ordinary graphs, 62-64

Graph-search control strategies:
A*, 76
admissibility of, 76
algorithm for, 64-68
for AND/OR graphs, 103-109
A0*, 104-105
breadth-first, 69-71
definition of, 22, 61-62
depth-first, 68-70
examples of, 25, 27, 28, 66-68, 85-87,

107-109
for game trees, 112-126
heuristic, 72
optimality of, 79-81
references for, 95-96, 127-128
uninformed, 68-71

Grammar, example of, 31-32
Ground instance, 141, 149
Grundy's game, 113-114
GUS, 412

Heuristic function, 76
for AND/OR graphs, 103

Heuristic power, 72, 85-88
Heuristic search, 72
Hierarchical planning, 349-357
Hierarchies, taxonomic, 392
Hill-climbing, 22-23, 49
Hype rares, 100
Hypergraphs, 100
Hypothesize-and-test, 8

Implications, 134-135
Induction, (mathematical) in automatic

programming, 247-253
as related to learning, 421

Inequalities, solution of, 229-234, 269
Inference rules, 140

soundness and completeness of, 145
Information retrieval, 3-4, 12, 154, 223-

229, 269
Informedness of search algorithms, 79
Inheritance, of properties, 392-397
Integration, symbolic, 43-47
Interacting goals, 296-297, 325, 333
Interactive partial orders, 336
Interpretations, of predicate calculus

wffs, 133-134
Irrevocable control strategy:

definition of, 21
examples of, 22-24, 163-164

473

SUBJECT INDEX

Kernels, of triangle tables, 284
Knowledge acquisition, 419-422
Knowledge, reasoning about, 424-425
KRL, 412

LAWALY, 357
LCF, 426
Leaf nodes, in AND/OR graphs, 101
Learning, 420-422
Linear-input form strategy in resolution,

169-170
LISP, references for, 16, 417
Literals, 135
Literal nodes, 203

MACSYMA, 12
Match arc, 201, 206
Matching structured objects, 378-386,

397-399
Means-ends analysis, 303-305
Memory organization, of AI systems,

418
Merge, in resolution, 150, 171
Meta-knowledge, 424, 426

(Also see Meta-rules)
Meta-rules, 229, 259, 269, 426
Mgu, 142
Minimax search in game trees, 115-121

references for, 127-128
Missionaries-and-cannibals problem, 50-

51
Modal logic, 425
Models, of predicate calculus wffs, 133-

134
Modus ponens, 140
Monkey-and-bananas problem, 318
Monotone restriction, on heuristic

functions, 81-84
for AND/OR graphs, 103

Most general unifier, 142
Multiplying out:

inefficiency of, 194-195
need for, 237-239

MYCIN, 268, 420, 423

Natural language processing, 2-3, 11-12
Naughts and crosses, 116-121
Negations, 135
Network rules, 404-406
Network, semantic, 370-378
Nim, 129
NOAH, 357, 358
Nonlinear plans, 333, 357
Non-monotonic logics, 413
NP-complete problems, 7, 14

Object-centered representations, 363
OPEN node, 64
Operations research, 14
Optimal paths, in graphs, (see Graph

notation)
Optimality of search algorithms, 79-81
OR nodes in AND/OR graphs, 41, 99-

100
Ordering strategies, in resolution, 172

references for, 189

Parallel execution of plans, 338-341
Parallel processing, 418-419
Partial models, in logic, 173-174
Partially ordered plans, 333-341
Partitions, in networks, 373-378
Patching plans, 342-349
Paths, in graphs, (see Graph notation)
Pattern-directed invocation, 260
Pattern matching, 144, 261-262
P-conditions, 355
Penetrance, 91-94
Perception, 7-9, 15, 96
Performance measures of search

algorithms, 91-94
Petri nets, augmented, 419
Plan generation, 275, 321
PLANNER, 261, 267, 270
PLANNER-like languages, 260

references for, 267, 270
Plans, 282

representation of, 282-287
execution of, 284-287

Possible worlds semantics, 425
Precondition:

criticality of, 351
postponing, 350, 355
of production rules, 18
of STRIPS rules, 277-278
references for, 156

Prenex form, 147-148
Problem reduction (see Decomposable

production systems)
Problem states, 19-20
Procedural attachment, 173-174, 232,

234, 400-401
Procedural knowledge, definition, 48
Procedural net, 340
Production rules:

based on implications, 195
definition of, 17-18
for semantic networks, 404-406
STRIPS-form, 277-279
for units, 401-404

474

Production systems:
algorithm for, 21
backward and bidirectional, 32-34
commutative, 35-37
control strategies for, 17-18, 21-27,

39-41
decomposable, 37-47
definition of, 17-18, 48-49
for resolution refutations, 163-164
for robot problems, 154-155, 281-282
for theorem proving, 152-154, 193

Program synthesis (see Automatic
programming)

Program verification (see Automatic
programming)

PROLOG, 246, 269-270, 315, 357
Proof, definition of, 140
Property inheritance, 392-397
Propositional attitudes, 424-425
Propositional calculus, 135
PROSPECTOR, 420, 423
Protection, of goals, 323

violation of, 326
Prototype units, 388, 390
PSI automatic programming system, 14
Puzzles, references for, 50

QA3, 418
OA4, 267, 418
OLISP, 261,270
Quantification, 136-137

in units, 368
in nets, 373

Reasoning:
about actions, 307-315, 424
by cases, 204-205, 256
commonsense, 154, 422-424
about knowledge and belief, 424-425

Referential transparency, 425
Refutation tree, 164
Refutations, 161
Regression, 288-292, 321
Representation:

examples of, 29-32
of plans, 424
problems of, 27-29, 49

Resolution, 145
within AND/OR graphs, 234-241
for general clauses, 150-152
for ground clauses, 149-150
references for, 156

Resolution refutations, 161
references for, 189

Resolvents, 149, 151

RGR, 237, 268
Robot problems, 152-153, 275, 307-315,

321
Robots, 5, 13-14
Root node (see Graph notation)
RSTRIPS, 321
Rule-based systems, 193, 196

(Also see Production systems)
Rules (see Production rules)

SAINT, 45, 50
Satisfiability, of sets of wffs, 145
Scheduling problems, 6-7, 14
Schemas (see Semantic networks and

Units)
Scripts, 412
Search graph:

definition of, 64-65, 104
Search strategies (see Control strategies)
Search tree:

definition of, 64-65
example of, 28

Self-reference, 426
Semantics, of predicate calculus wffs,

133-134
Semantic matching, 381
Semantic networks, 370-378

references for, 412-413
Set-of-support strategy, in resolution,

167
Simplification strategies, in resolution,

172-174
Simultaneous unifiers, 268
SIN, 50
SIR, 412
Situation variables, in robot problems,

308
Skolem functions, 146-147
Slots, 364
Slotnames, 364
Slotvalues, 364
Solution graph, in AND/OR graphs,

101-102
candidate, 217-218

SOLVED nodes in AND/OR search
graphs, 104-106

Soundness, of inference rules, 145
Speech acts, 316, 425
Speech recognition and understanding,

11, 96
Staged search, 90-91
Standardization of variables, 146, 149
Start node (see Graph notation)
State descriptions, 153, 276
State variables, in robot problems, 308

475

SUBJECT INDEX

States, of a problem, 19-20
STRIPS, 277, 298
STRIPS-form rules, 277-279
Structured objects, 361
Subgoal, 214
Subgoal node, 214
Subsumption, of clauses, 174
Substitution instances, 141, 144
Substitutions, 140-142

associativity of, 141
composition of, 141
consistency of, 207-208, 218-219, 268
non-commutativity of, 142
unifying composition of, 207-208, 268

Successor node, in graphs (see Graph
notation)

Symbol mapping, 413
(Also see Property inheritance)

Tautologies, 144
elimination of, 173

Taxonomic hierarchies, 392-397
TEIRESIAS, 420
Tentative control strategy, definition of,

21-22
(Also see Backtracking and Graph-

search control strategies)
Terminal nodes, of AND/OR graphs, 41
Termination condition:

of backward, rule-based systems, 215
of forward, rule-based systems, 203,

210
of production systems, 18
of resolution refutation systems, 163

Theorem, definition of, 140
Theorem-proving, 4-5, 13, 153

for robot problem solving, 307-315
by resolution 151-152
by resolution refutations, 161
by rule-based systems, 193

Tic-tac-toe, 116-121
Time and tense, formalization of, 159
Tip nodes, in trees (see Graph notation)
Transitivity, 231-232
Traveling salesman problem, 6-7, 29-31,

50
Triangle tables, 282-287, 421
Triggers (see Advice)
Truth maintenance, 411, 413
Truth table, 138
Truth values, of predicate calculus wffs,

(see Interpretations)
Two-handed robot, 338-341

Uncertain knowledge:
in deductions, 268, 423-424
in robot planning, 358

UNDERSTAND, 49
Unification, 140-144

algorithm for, 142-143
references for, 156
of structured objects (see Matching)

Unification set, in answer extraction,
179

Unifying composition, of substitutions,
207-208, 268

Unit-preference strategy, in resolution,
167-169

Unit rules, 401-404
Units, 361-369

references for, 412
Universal specialization, 140

Validity, of wffs, 144
Vision (see Perception)

WARPLAN, 357
Wffs, of the predicate calculus, 131-132

476

