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Preface

Artificial intelligence and quantum computation divide the subject into

many major areas. Each of these areas are now so extensive and huge,

that a major understanding of the core concepts that unite them is ex-

tremely difficult. This book is about the core ideas of artificial intelligence

and quantum computation. They are united in new subarea of artificial

intelligence: “Quantum Artificial Intelligence”.

The book is composed of two sections: the first is on classical com-

putation and the second section is on quantum computation. In the first

section, we introduce the basic principles of computation, representation

and problem solving. In the second section, we introduce the principles

of quantum computation and their relation to the core ideas of artificial

intelligence, such as search and problem solving. We illustrate their use

with several examples.

The notes on which the book is based evolved in the course “Informa-

tion and Computation for Artificial Intelligence” in the years 2008 − 2012

at Department of Computer Science and Engineering, Instituto Superior

Técnico, Technical University of Lisbon. Thanks to Technical University of

Lisbon for rewarding me a sabbatical leave in the 2012-2013 academic year,

which has given me the time to finish this book. My research in recent

years has benefited from many discussions with Ana Paiva, Lúıs Tarrat-

aca, Ângelo Cardoso, João Sacramento and Catarina Moreira. Especially

I would like to thank Lúıs Tarrataca and offer all of him deepest grati-

tude. The chapter about “Quantum Problem-Solving” is mainly based on

his work. Finally, I would like to thank my loving wife Manuela, without

her encouragement the book would be never finished.

Andreas Wichert
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Chapter 1

Introduction

Symbolical artificial intelligence is a field of computer science that is highly

related to quantum computation. At first glance, this statement appears

to be a contradiction. However, the artificial intelligence framework, such

as search and production system theory, allows an elegant description of a

quantum computer model that is capable of quickly executing programs.

1.1 Artificial Intelligence

Artificial intelligence (AI) is a subfield of computer science that models the

mechanisms of intelligent human behavior (intelligence). This approach

is accomplished via simulation with the help of artificial artifacts, typi-

cally with computer programs on a machine that performs calculations. It

should be noted that the machine does not need to be electronic. Indeed,

Charles Babbage (1791-1871) sketched the first mechanical machine (a dif-

ference engine) for the calculation of certain values of polynomial functions

[Hyman (1985)]. With the goal of mechanizing calculation steps, Babbage

sketched the first model of a mechanical universal computer and called it

an analytical engine. At the same time, Lady Ada Lovelance (1815-1852)

thought about the computing power of such a machine. She argued that

such a machine could only perform what it was told to do; such a machine

could not generate new knowledge.

The term “artificial intelligence” itself was invented by the American

computer scientist John McCarthy. It was used in the title of a confer-

ence that took place in the year 1956 at Dartmonth College in the USA.

During this meeting, programs were presented that played chess and check-

ers, proved theorems and interpreted texts. The programs were thought

to simulate human intelligent behavior. However, the terms “intelligence”

1
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and “intelligent human behavior” are not very well defined and understood.

The definition of artificial intelligence leads to the paradox of a discipline

whose principal purpose is its own definition.

A.M. Turing (1912-1954), in 1950, wrote the essay “Computing Machin-

ery and Intelligence”, in which he poses the question of how to determine

whether a program is intelligent or not [Turing (1950)]. He defines intel-

ligence as the reaction of an intelligent being to certain questions. This

behavior can be tested by the so-called Turing test. A subject communi-

cates over a computer terminal with two non-visible partners, a program

and a human. If the subject cannot differentiate between the human and

the program, the program is called intelligent. The questions posed can

originate from any domain. However, if the domain is restricted, then the

test is called a restricted Turing test. A restricted domain could be, for

example, a medical diagnosis or the game of chess.

Human problem-solving algorithms are studied in Artificial Intelligence.

The key idea behind these algorithms is the symbolic representation of the

domain in which the problems are solved. Symbols are used to denote or

refer to something other than themselves, namely other things in the world

(according to the, pioneering work of Tarski [Tarski (1944, 1956, 1995)]).

They are defined by their occurrence in a structure and by a formal lan-

guage which manipulates these structures [Simon (1991); Newell (1990)]

(see Figure 1.1). In this context, symbols do not, by themselves, represent

any utilizable knowledge. For example, they cannot be used for a definition

of similarity criteria between themselves. The use of symbols in algorithms

which imitate human intelligent behavior led to the famous physical symbol

system hypothesis by Newell and Simon (1976) [Newell and Simon (1976)]:

“The necessary and sufficient condition for a physical system to exhibit in-

telligence is that it be a physical symbol system.” Symbols are not present

in the world; they are the constructs of a human mind and simplify the

process of representation used in communication and problem solving.

1.2 Motivation and Goals

Traditional AI is built around abstract algorithms and data structures that

manipulate symbols. One of the important algorithms is the tree or graph

search. Common forms of knowledge representation are symbolic rules and

semantic nets. Traditional AI attempts to imitate human behavior without
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Objects

Relations

On-relation

Predicates

Object symbols

On(B,A)

B

A

Imaginable worldLogic

Fig. 1.1 Object represented by symbols and relation represented by predicate.

any relationship to physical reality, for example, in biological hardware.

Sub-Symbolical processing, on the other hand, belongs to biology-inspired

AI, which involves methods such as neural networks or behavioral systems.

Could the physical nature, as described by quantum physics, also lead to

algorithms that imitate human behavior? What are the possibilities for

the realization of artificial intelligence by means of quantum computation?

Computational algorithms that are inspired by this physical reality are de-

scribed by quantum computation. We will answer questions such as why

and how to use quantum algorithms in artificial intelligence.

Questions that appear to be quite simple, such as: what are random num-

bers and how can we generate them, cannot be answered by traditional

computer science. The widely used pseudo random generators are based

on deterministic procedures and do not generate randomness; instead, they

generate pseudo-randomness. Pseudo random generators are related to de-

terministic chaos sequences, which are described by mathematical chaos

theory. Chaotic patterns can arise from very simple mathematics. While

the results can be similar to true randomness, the output patterns are

generated by deterministic rules. Chaotic patterns differ from most de-

terministic systems because any small change made to their variables can

result in unpredictable changes to the system behavior.
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Recently, quantum algorithms for AI were proposed, including a quan-

tum tree search algorithm and a quantum production system [Tarrataca

and Wichert (2011b,a, 2012b, 2013b)]. In this book, we introduce quantum

computation and its application to AI. Based on information science, we

will illustrate the general principles that govern information processing and

information structures.

1.3 Guide to the Reader

This book is about some core ideas of artificial intelligence and quantum

computation and is composed of two sections: the first is on classical com-

putation and the second section is on quantum computation. In the first

section, we introduce the basic principles of computation, representation

and problem solving. Quantum physics is based on information theory

and probability theory. We present both theories and indicate their re-

lationships to artificial intelligence by associative memory and Bayesian

networks. In the second section, we introduce the principles of quantum

computation and its mathematical framework. We present two principles

on which quantum computation is based, the discrete Fourier transform

and Grover’s algorithm. Based on these principles, we introduce the it-

erative quantum tree search algorithm that speeds up the search. In the

next step we introduce a quantum production system on which a universal

quantum computer model is based. Finally, related topics such as quantum

cognition and quantum random walk are presented. Readers who want to

develop a general understanding of the quantum computation mathemati-

cal framework should read the second section, beginning with the chapter

“Introduction to Quantum Physics”. Sections that go more into detail are

marked by a star “∗” and can be skipped on the first reading.

1.4 Content

1.4.1 Classical computation

Computation - Chapter 2 The Entscheidungsproblem is presented,

and the Turing machine is introduced. The proof of the Entscheidungsprob-

lem is based on Cantor’s diagonal argument and Gödelization. The Uni-

versal Turing machine is an abstract model of a computer. Computational

complexity theory addresses questions regarding which problems can be
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solved in a finite amount of time on a computer. The Church–Turing thesis

states that any algorithmic process can be simulated on a Turing machine.

Two classes of practical computers are presented: analog and digital com-

puters.

Problem Solving - Chapter 3 In the first step, the knowledge rep-

resentation framework is introduced: rules, logic-based operators, frames

and categorical representations. In the next step, production systems are

introduced. A production system is a model of human problem solving.

It is composed of long-term memory and working memory, which is also

called short-term memory. We distinguish between deduction systems and

reaction systems. Planning can be performed more easily by reaction sys-

tems in which the premise specifies the conditions that must be satisfied;

in this way, the condition that specifies an action can be undertaken. An

8-puzzle example is presented. There is an assumption that the distance

between states in the problem space is related to the distance between the

sub-symbols that represent the states in sub-symbolical problem-solving.

Sub-symbolical problem-solving takes advantage of the geometric nature of

the world.

Information - Chapter 4 Information theory is highly related to math-

ematical probability theory and thermodynamics. Entropy is a measure of

the disorder of the configuration of states and can be described by a dice

model. The Maxwell paradox identifies information with a negative mea-

sure of entropy. The ideal entropy represents the minimal number of opti-

mal questions that must be addressed to know the result of an experiment.

We will indicate the relationships between information and hierarchical

structures and measurement. In the section on information and memory,

we will introduce a biologically inspired model of associative memory. The

Information and storage capacity of the model is high, given that the binary

representation is sparse. Finally, a deduction system based on associative

memory is presented.

Reversible Algorithms - Chapter 5 Bennett (1973) showed that ir-

reversible overwriting of one bit causes at least k · T · log2 joules of energy

dissipation, where k is Boltzmann’s constant and T is the absolute temper-

ature. Bennett also indicated that this lower bound can be ignored when

using reversible computation. Reversible computing is a model of comput-

ing in which the computational process is reversible. Reversible Boolean

gates and circuits are described.



August 13, 2013 15:47 World Scientific Book - 9in x 6in QAI

6 Principles of Quantum Artificial Intelligence

Probability - Chapter 6 Probability theory is built around Kol-

mogorov’s axioms. For a joint distribution of n possible variables, the expo-

nential growth of combinations being true or false becomes an intractable

problem for large n. There are two possible solutions to this problem, Näıve

Bayes and Bayesian networks. Näıve Bayes is related to counting and cate-

gorization. For the unobservable variables, the Bayesian networks are based

on the law of total probability. A Markov chain is a mathematical system

that undergoes transitions described by a stochastic matrix. A stochastic

matrix evolution that occurs when describing the evolution of a physical

system is usually non-reversible.

1.4.2 Quantum computation

Introduction to Quantum Physics - Chapter 7 The unitary deter-

ministic evolution represented by the Schrödinger equation and two inter-

pretations of quantum mechanics are presented. We indicate the difference

between stochastic Markov evolution and unitary evolution. The mathe-

matical framework of quantum theory is based on linear algebra in Hilbert

space. The relationships between the unitary operators represented by

unitary matrices and the Schrödinger equation and the Hamiltonian are

described by a spectral representation. A 2-state quantum system is de-

scribed by a two-dimensional Hilbert space. Such a 2-state quantum system

corresponds to a qubit. A register is composed of several qubits and is de-

fined by the tensor product. The von Neumann entropy of a superposition

of qubits measures the distribution of the probabilities. It describes the

departure of the state from a pure state. For a pure state, there is no un-

certainty during the measurement. The higher the entropy is, the higher

the uncertainty during the measurement.

Computation with Qubits - Chapter 8 A unitary operator on a

qubit is called a unary quantum gate. An operation on several qubits can

be represented by unitary matrices. The matrix representation of serial and

parallel operations is composed of either a product or a tensor operation

between the matrices. A reversible circuit of m bits corresponds to a unitary

mapping. A reversible circuit can be represented by a unitary permutation

matrix or by quantum Boolean gates. The Deutsch algorithm exploits

the superposition of qubits that are generated by Hadamard gates; the

Deutsch algorithm is more powerful than any other classical algorithm and

determines whether an unknown function of one bit is constant or not by
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calling the function one time. A classical algorithm requires two calls. The

Deutsch Jozsa algorithm generalizes the working principle even to a more

powerful algorithm for a function of m bits.

Periodicity - Chapter 9 The Fourier transform changes a signal from

the time domain to the frequency domain. The discrete Fourier transform

changes discrete time-based or space-based data into frequency-based data.

The discrete Fourier transform (DFT) can be seen as a linear transform

represented by a unitary matrix F . This unitary matrix F also defines

the quantum Fourier transform (QFT). The decomposition of the matrix

is described by the fast Fourier transform (FFT). The QFT decomposition

is equivalent to the FFT. The QFT period algorithm determines the pe-

riod of a periodic function in polynomial time and is the basis of Shor’s

Algorithm for the factorization of numbers in polynomial time. An alter-

native approach is described in Kitaev’s phase estimation algorithm, which

determines the eigenvalue for a unitary operator and an eigenvector.

Search - Chapter 10 We want to find x for which f(x) = 1, x = ξ. This

task is equivalent to a decision problem with a binary answer 1 = yes and

0 = no and the instance x. There is a lower bound for a quantum search

on a quantum computer using a quantum oracle. The possible speedup is

quadratic; NP − complete problems remain NP − complete. The search

is described by Grover’s algorithm and is based on the Householder reflec-

tion. In the case, the number of the solutions is unknown, we can apply

a quantum counting algorithm. The generate-and-test method is a simple

AI paradigm that can directly benefit from Grover’s algorithm.

Quantum Problem-Solving - Chapter 11 Problem-solving can be

modeled by a production system that implements a search algorithm. The

search defines a problem space and can be represented as a tree. In an

uninformed search, no additional information about the states is given. A

heuristic search is based on a heuristic function h(ν) that estimates the

cheapest cost from the node ν to the goal. However, inventing heuristic

functions is difficult. An alternative approach is that of the quantum tree

search algorithm. Using Grover’s algorithm, we search through all possi-

ble paths and verify, for each path, whether it leads to the goal state. We

present the iterative quantum tree search, which is the basis of the quantum

production system. We explain the principles of Tarrataca’s quantum pro-

duction system on a trivial example, the 3-puzzle. Finally, we present a uni-

versal quantum computer model that is capable of more quickly executing
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programs. The corresponding principles can be integrated into the unified

theories of human cognition.

Quantum cognition - Chapter 12 Quantum cognition uses mathemat-

ical quantum theory to model cognitive phenomena. It is assumed that the

computation itself is performed on a classical computer and not on a quan-

tum computer. The brain is considered a classical computer in a quantum

world. The quantum probabilities, when observed, correspond to classical

probability theory. If not observed, the state of a system is described by

a complex vector with a length of one. Two equivalent states represent

the same state when a measurement is performed, but they can behave

differently during the unitary evolution. Humans, when making decisions,

violate the law of total probability. The violation can be explained as a

quantum interference.

Related approaches - Chapter 13 Quantum random walks correspond

to Grover’s algorithm and the quantum tree search algorithm. A quantum

random walk corresponds to the random walk. We will introduce a quantum

insect and demonstrate the principles of quantum walk by a discrete walk

on a line. Adiabatic quantum computation is an alternative approach to

quantum computation and is based on the evolution time of a quantum

system. The energy of a system can be described by a function. In quantum

annealing, the quantum fluctuation parameter replaces a local minimum

state by a randomly selected neighboring state in a fixed radius. Quantum

annealing can speed up some machine learning tasks that are based on the

gradient descent method.
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Computation

2.1 Entscheidungsproblem

David Hilbert, one of the most famous German mathematicians, attended

a banquet in 1934, and he was seated next to the new minister of edu-

cation, Bernhard Rust [Reid (1996)]. Rust asked, “How is mathematics

in Göttingen now that it has been freed of the Jewish influence?” Hilbert

replied, “Mathematics in Göttingen? There is really none any more.” David

Hilbert died in 1943. On his tombstone, at Göttingen, one can read his epi-

taph:

• Wir müssen wissen (We have to know)

• Wir werden wissen (We shall know!)

At the International Congress of Mathematicians in Paris in 1900, he put

forth an influential list of 23 unsolved problems in mathematics. Hilbert’s

23rd problem became known as the Entscheidungsproblem. Hilbert’s

Entscheidungsproblem is formulated as the following question:

• Is there a general algorithm to determine whether a mathematical

conjecture is true or false?

It was commonly believed that there was no such thing as an unsolvable

problem. However, Alonzo Church and Alan Turing discovered indepen-

dently, around 1936, that a general solution to the Entscheidungsproblem

is impossible. They showed that it is impossible to decide algorithmically

whether statements in arithmetic are true or false. This result is now known

as Church’s Theorem or the Theorem Church-Turing Theorem.

Alonzo Church created the method for defining recursive functions λ-

calculus [Church (1936a)], [Church (1936b)], [Church (1941)] and Alan Tur-

9
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ing created a simple model called the Turing machine [Turing (1936)] (see

Figure 2.1). The Turing machine constitutes an infinitely long tape that

is divided into a sequence of cells. In each cell, a certain symbol can be

written and later read by a head. The head can move along the tape and

exist in one state of a finite set of internal states. A set of rules specifies a

new state given the current state and the symbol being read. The new state

determines in which direction the head must move and if it must write or

read a symbol. For each state, only one rule describes one action. Turing

Fig. 2.1 The Turing machine constitutes an infinitely long tape that is divided into a
sequence of cells. In each cell, a certain symbol can be written and later read by a head.
The head can move along the tape and exist in one state of a finite set of internal states.
A set of rules specifies a new state given the current state and the symbol being read.
The new state determines in which direction the head must move and if it must write or
read a symbol. For each state, only one rule describes one action.

realized that one could encode the transformation rules of any specific Tur-

ing machine T as some pattern of symbols on the tape that fed into a special

Turing machine U. U had the effect of reading in the pattern, specifying

the transformation rules for T and then simulating T. Any algorithmic

process can be simulated on a Turing machine U. Entscheidungsproblem

corresponds to the halting problem. Whether a program will halt or run

forever can be determined and is based on the given program with a finite
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input. We will sketch the proof, assuming a common computer model and

not the Turing machine, to make the explanation easier.

The proof uses a technique called reduction ad absurdum, in which we

assume the truth of the opposite of what we want to prove and then derive

a logical contradiction. The proof is based on Cantor’s diagonal argument

and a form of coding in which a function or a program can be represented

by a number. This form of coding is called Gödelization. It allows self-

reference, which means that the code of the program that is represented

by a number can form an input to the program. The program can make

statements about itself.

2.1.1 Cantor’s diagonal argument

Cantor’s diagonal argument indicates that there is no bijection between in-

finite sets and natural numbers [Lewis and Papadimitriou (1981)]. Natural

numbers are countably infinite, and infinite sets are uncountably infinite.

Suppose that infinite sets are represented by binary infinite strings, and we

list all of the sets in a table. This list is infinitely long, and we can write

each entry as an infinitely long binary string. It is possible to build a new

infinite binary string in such a way that its first element is different from

the first element of the first infinite binary string in the list, its second ele-

ment is different from the second element of the second infinite binary sting

in the list, and so on. In general, its nth element is different from the nth

element of the nth infinite binary string in the list. The new infinite binary

string corresponds to the diagonal elements of the list in which its element

is zero if the diagonal element is one and is zero if the diagonal element is

one. The procedure can be repeated many times; the infinite list of infinite

sets is never complete, and the set of all infinite sets is uncountable. It

should be noted that to deny the Cantor’s diagonal argument implicates

the rejection of infinity. Because the size of the power set is 2n, it follows

from Cantor’s diagonal argument

lim
n→∞

n < lim
n→∞

2n.

2.1.2 Reductio ad absurdum

Using Gödelization, we can represent a program with binary numbers. A

binary number can be easily mapped to a binary string. A program can
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be infinite because the Turing machine has an infinite tape [Lewis and

Papadimitriou (1981)]. As previously observed, we cannot list all of the

infinite programs. Suppose that the program is finite. The program and

the finite input are encoded as a pair of positive binary numbers. Is there

a program that solves the halting problem? Let us suppose that such a

program exists and that it is using a self-referent function halt(x). The

binary number x is its representation using the Gödelization principle. The

function halt(x) returns a one if the corresponding program represented by

the binary number x with the input x halts and otherwise returns a zero.

halt(x) =

{
1 program x halts on input x

0 otherwise

Using the modified diagonal argument we define the program with the name

“Diagonal”

Diagonal(x)

{

if halt(x)=0 then halt;

else loop forever;

}

The program “Diagonal” is represented by the binary number u. Does the

program Diagonal(u) halt? If yes, then we have a contradiction to the

definition of halt(x). If it does not halt, then there is also a contradiction

to the definition of halt(x). From the contradiction, it would follow that

there is no program that solves the halting problem.

2.2 Complexity Theory

The elegant way of modeling a computer by a Turing machine leads us to

computational complexity theory. Computational complexity theory ad-

dresses the questions of which problems can be solved in a finite amount

of time on a computer. Time is the most important resource during com-

putation besides space and energy. Space and energy are negligible when

using the Turing machine because the Turing machine itself is composed

of infinitely long tape and does not require any energy resources [Lewis

and Papadimitriou (1981)]. To simplify the analysis of the correspondence

to time, special computational problems are investigated, namely decision

problems.
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2.2.1 Decision problems

A decision problem is a computational problem with instances formulated

as a question with a binary “yes” or “no” answer. An example is the

question of whether a certain number n is a prime number. Most problems

can be converted into a decision problem. A problem is easy if a certain

Turing machine can determine the instances related to the input for the

answer “yes” in polynomial time. Otherwise, we state that the problem

is hard. The relationship to the size of the input accounts for the reading

time of the input. It should not influence the time complexity. A number

is usually represented by the base B > 1, which means that k digits can

represent Bk different numbers. In other words, the hierarchical organized

structure of the numbers exponentially speeds up the reading time of a

deterministic Turing machine. This relationship is not valid for a unary

representation in which the input size is equivalent to the numbers that

can be represented.

2.2.2 P and NP

The formal definition for easy problems represented by P is as follows:

The set of all decision problems that have instances that are solvable in

polynomial time using a deterministic Turing machine. In a deterministic

Turing machine, all of the transitions are described by some fixed rules

[Lewis and Papadimitriou (1981)]. An example for an easy problem is

multiplication x × b = c, where x is the instance and the values b and c

are given; determine x so that the answer to the question is x × 7 = 28

is yes. On the other hand, it is thought that the factoring determines the

integers for which the product is equal to for a given number d; for example,

integers a, b with a× b = d is not in P , which indicates that it is hard. The

class NP is the set of all decision problems that have instances that are

solvable in polynomial time using a non-deterministic Turing machine. In

a non-deterministic Turing machine, in contrast to a deterministic Turing

machine, for each state, several rules with different actions can be applied.

Non-deterministic Turing machine branches into many copies that

are represented by a computational tree in which there are different com-

putational paths. The class NP corresponds to a non-deterministic Turing

machine that guesses the computational path that represents the solution.

By doing so, it guesses the instances of the decision problem. In the second

step, a deterministic Turing machine verifies whether the guessed instance
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leads to a “yes” answer. It is easy to verify whether a solution is valid or

not. This statement does not mean that finding a solution is easy. Clearly,

the class P ⊆ NP is known, and it follows that NP 6= P or NP = P ;

however, other relationships are not known. The class NP − complete is

present if the problem is in NP and every other problem in NP can be

reduced to the class NP − complete.

It was not obvious that an NP − complete problem exists. Cook-Levin

described the first example of an NP − complete problem, the satisfiability

problem. Until recently, thousands of other problems are known to be NP−
complete, including the well-known traveling salesman and Hamiltonian

cycle problem [Cormen et al. (2001)].

The structure of NP − complete problems is equivalent to a com-

putational tree of a non-deterministic Turing machine in which all different

computational paths must be searched by a deterministic Turing machine.

A simple algorithm for solving NP − complete problems by a deterministic

Turing machine is to perform an iterative search for all possible instances.

• The formal definition for NP is as follows: a deterministic Tur-

ing machine verifies whether an instance (ticket) leads to a “yes”

answer in polynomial time.

• The formal definition of an NP − complete problem is as follows:

The problem is NP and the problem is NP − hard. NP − hard

means that every other problem in NP can be reduced to it in

polynomial time.

2.3 Church–Turing Thesis

The definition of P and NP should not depend upon the currently used

computational model. The following is stated in the Church–Turing the-

sis: Any algorithmic process can be simulated on a Turing machine. The

extended Church–Turing thesis, which is also called the strong Church–

Turing thesis, states that everything that can be computed in a certain

amount of time on any physical computer can be also be computed on a

Turing machine with a polynomial slowdown. In other words, any reason-

able algorithmic process can be simulated on a Turing machine, with the

possibility of a polynomial slowdown, in the number of steps required to

run the simulation. The problems in P are precisely those for which a

polynomial-time solution is the best possible, in any physically reasonable

model of computation.
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The hypothesis that the universe is equivalent to a Turing machine,

which is related to the Church–Turing thesis, is similar to that stated in dig-

ital physics. However, Richard Feynman observed in the early eighties that

it did not appear possible for a Turing machine to simulate certain quantum

physical processes without incurring an exponential slowdown. This fact

would contradict the strong Church–Turing thesis, which led Feynman to

ask whether a quantum system can be simulated on an imaginary quantum

computer.

2.3.1 Church–Turing–Deutsch principle

In 1985, David Deutsch [Deutsch (1985)] reformulated the Church–Turing

thesis based on the observation of Richard Feynman in physical terms:

“Every finitely realizable physical system can be perfectly simulated by

universal computing machine operating by finite means.” The Turing ma-

chine was replaced by the universal computing machine which operates by

finite means.

2.4 Computers

The Turing machine is a theoretical mathematical model, not a practical

engineering model of a computer. There are two distinct classes of practical

computers, analog and digital computers.

2.4.1 Analog computers

An analog computer represents information by analog means, such as volt-

age. In such a computer, information is represented by a voltage wave

and the algorithm is represented by an electrical circuit. Such a circuit is

composed of resistors and capacitors that are connected together. An al-

gorithm represents a mathematical model of a physical system, which can

be described, for example, by specific differential equations. In the first

step, the mathematical model is determined. Then, a block diagram that

models the analogous system is developed. This model defines the elec-

trical components that specify the computation. The input and output of

the computation are voltage waves that can be observed by an oscilloscope.

The represented values are usually less accurate than digitally represented

values. The results of each computation can vary due to external influences.
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For this reason, each result of the computation is unique. The exact value

cannot be reproduced without an error. This type of noise, which results

from an external influence, makes it impossible to recompute the output

of chaotic deterministic functions. Even making the smallest change to the

initial condition can cause the results to greatly diverge. It is important to

note that analog computers are not covered by the Church–Turing thesis

because they cannot be simulated by a Turing machine; however, analog

computers are covered by the Church–Turing–Deutsch principle because

they correspond to a computing machine that operates by finite means.

Analog computers were popular in the 1950s. However, analog computers

fell into decline with the advent of the development of the microprocessor,

which led to the development of digital computers.

2.4.2 Digital computers

A digital computer is a device that processes information that is represented

in discrete means such as symbols. Usually, the symbols are represented

in binary form. Modern digital computers are based on digital circuits. In

a digital circuit, the information is represented by binary digits. Due to a

digital representation, the exact values of each computation can be repro-

duced without any error. The computation can be repeated, and the result

remains the same (this scenario is not the case with analog computers).

Binary digits are represented by the minimal unit of information, the bit.

The binary information is manipulated by Boolean digital circuits. Emil

Post has proven the complete sets of truth functions. It follows that they

can be computed using Boolean circuits, which are composed of Boolean

gates and represent Boolean logic, which operates on bits [Cormen et al.

(2001)]. An algorithm can be described by a circuit. The construction of a

circuit requires the exact knowledge of the values that must be computed.

For this reason, a circuit is not an algorithmic device; by itself, it does not

correspond to a universal Turing machine. The Halting problem cannot by

represented by a circuit.

2.4.3 Von Neumann architecture

The ENIAC (Electronic Numerical Integrator And Computer) was one of

the first Turing-complete universal digital computers that was capable of

being programmed. John von Neumann learned in 1945 of the ENIAC

Project and described this model in a technical report called “First Draft
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of a Report on the EDVAC” [von Neumann (1945)]. The model become

known as the Van Neumann architecture [Aspray (1990)]. This technology

is composed of five main concepts:

• An arithmetic logic unit (ALU) unit that is capable of performing

both arithmetic and logic operations on the data.

• A control unit (CU) that interprets an instruction retrieved from

the memory and that selects alternative courses of action based on

the results of the previous operations.

• Main memory stores both data and instructions and read-write

random-access memory (RAM).

• Secondary memory represents the external mass storage.

• Input and output mechanisms.

Fig. 2.2 The Van Neumann architecture. In modern computers, the ALU and the CU
are parts of the central processing unit (CPU) that are represented by a single silicon
chip called a microprocessor. The subsystem called a bus transfers the data between the
random-access memory, the CPU, and the input and output.

In modern computers, the ALU and the CU are parts of the central pro-

cessing unit (CPU) that are represented by a single silicon chip called a
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microprocessor. The subsystem called a bus transfers the data between the

random-access memory, the CPU, and the input and output (see Figure

2.2). Most modern computers are based on the von Neumann architecture.
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Problem Solving

It is quite certain for the cognitive psychologist that the human computa-

tional model is not at all based on the Van Neumann architecture. Instead,

they propose that the human computational model is based on production

systems. A production system is a mathematical as well as a practical

model that can be realized as a computing machine. Production systems

are closely related to the approach taken by Markov algorithms [Markov

(1954)], and similar to these approaches, production systems are equiva-

lent in power to a Turing machine [Turing (1936)]. A Turing machine can

also be easily simulated by a production system. The production system

is a model of actual human problem-solving behavior [Newell and Simon

(1972); Anderson (1983); Klahr and Waterman (1986); Newell (1990)].

3.1 Knowledge Representation

Production systems are composed of if-then rules that are also called pro-

ductions. A rule contains several “if” patterns and one or more “then”

patterns. A pattern in the context of rules is an individual predicate,

which can be negated together with arguments. A rule can establish a

new assertion by the “then” part (its conclusion) whenever the “if” part

(its premise) is true. Productions can be represented by rules or logic-based

operators. Alternative sub-symbolical representation is based on categorial

representation. Binary vector representation is the basis of the quantum

production systems.

3.1.1 Rules

A rule [Winston (1992); Russell and Norvig (1995); Luger and Stubblefield

(1998)] contains several “if” patterns and one or more “then” patterns.

19
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A pattern in the context of rules is an individual predicate which can be

negated together with arguments. The rule can establish a new assertion

by the “then” part, the conclusion whenever the “if” part, the premise,

is true. When variables become identified with values they are bound to

these values. Whenever the variables in a pattern are replaced by values,

the pattern is said to be instantiationed. Here is an example of rules with

a variable x:

• If (flies(x) ∨ feathes(x)) ∧ lays eggs(x)
︸ ︷︷ ︸

premise

then bird(x)
︸ ︷︷ ︸

conclusion

• If bird(x) ∧ swims(x) then penguin(x)

• If bird(x) ∧ sings(x) then nightinagle(x)

The following assertions are present:

• feathers(Pit)

• lays eggs(Pit)

• swims(Pit)

• flies(Airbus)

Pit is a bird because the premise of the first rule is true when x is bound

to Pit. Because bird(Pit), the premise of the second rule is true and Pit is

a penguin.

3.1.2 Logic-based operators

Logical representation is motivated by philosophy and mathematics

[Kurzweil (1990); Tarski (1995); Luger and Stubblefield (1998)]. Predi-

cates are functions that map objects’ arguments into true or false values.

They describe the relation between objects in a world which is represented

by symbols. Whenever a relation holds with respect to some objects, the

corresponding predicate is true when applied to the corresponding object

symbols.

Predicates can be negated by the function ¬ (not) and combined by the

logical connectives ∨ (disjunction), ∧ ( conjunction) and the implies (→)

operator. ¬, ∨, ∧, and → determine the predicate’s value. To signal that

an expression is universally true, the universal quantifier and a variable

standing for possible objects is used.
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∀ x[Feathers(x) → Bird(x)].

An Object having feathers is a bird.

Some expressions are true only for some objects. This is represented by an

existential quantifier and a variable.

∃ x[Bird(x)].

There is at least one object which is a bird.

An interpretation is an accounting of the correspondence between ob-

jects and object symbols and between relations and predicates. An inter-

pretation can be only either true or false. These are some basic ideas about

representation in predicate calculus, which is a subset of formal logic. A

world state can be described including properties and relations using pred-

icate calculus. This kind of description can be used to define operators

like those used in the STRIPS computer science approach (see Figure 3.1)

[Fikes and Nilsson (1971); Nilsson (1982); Givan and Dean (1997)].

ontable(A).

ontable(C).

on(B,A).

clear(B).

clear(C).

gripping().

A

B

C

Fig. 3.1 ABC block world.
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Using the block examples, four operations “pickup”, “putdown”,

“stack” and “unstack” can be defined [Nilsson (1982)]: 1

pickup(x)







P : gripping() ∧ clear(x) ∧ ontable(x)

A : gripping(x)

D : ontable(x) ∧ gripping()

putdown(x)







P : gripping(x)

A : ontable(x) ∧ gripping() ∧ clear(x)

D : gripping(x)

stack(x, y)







P : gripping(x) ∧ clear(x)

A : on(x, y) ∧ gripping() ∧ clear(x)

D : clear(y) ∧ gripping(x)

unstack(x, y)







P : gripping() ∧ clear(x) ∧ on(x, y)

A : gripping(x) ∧ clear(y)

D : on(x, y) ∧ gripping()

Each of the operators is represented as triples of description. The first ele-

ment is the precondition, the world state that must be met for an operator

to be applied. It can be true or false when variables become identified with

the values, which describe the state. The second element is the additions

to the state description that are a result of applying the operator. The last

element is the items that are removed from the state description to create

a new state when the operator is applied. These operators obey the frame

axiom since they specify what is true in one state of the world and what

exactly has changed by performing some action by an operator. The prob-

lem of specifying which part of the description should change and which

should not is called the frame problem [Winston (1992)].

ontable(A).

clear(A)

ontable(C).

clear(C).

gripping(B).

1The expressions are always universally true, and therefore the universal quantifier is
omitted.
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The state after the operator pickup(B) was applied to the state of Figure

3.1 (see Figure 3.2).

A C

B

Fig. 3.2 The state after the operator pickup(B) was applied to the state of Figure 3.1.

3.1.3 Frames

Frames describe individual objects and entire classes [Minsky (1975, 1986);

Winston (1992)] and can be used to represent states of the world. They are

composed of slots which can be either attributes, which describe the classes

or object, or links to other frames. With the aid of links, a hierarchy can be

represented in which classes or objects are parts of more general classes. In

this taxonomic representation, frames inherit attributes of the more general

classes (see Figure 3.3). Frames can be viewed as generalization of semantic

nets. They are psychologically motivated and were popularized in computer

science by Marvin Minsky. One important result of the frame theory is the

object-oriented approach in programming.

3.1.4 Categorial representation

Humans divide the world into categories so that they can make sense of

it [Smith (1995)]. The categorization task consists of the determination

if an object belongs to a category [Osherson (1995); Lakeoff (1987)]. Ob-

jects can be described by a set of discrete features, such as red, round and
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mammal

is-a

animal

gives milk

bird

is-a

does lay egg

singdoes 

is-a

nightingale
dolphin

swim

is-a

does

penguin

is-a

does swim

giraffe

long neck

is-a

has

Fig. 3.3 Taxonomic frame representation of some animals.

sweet [Tversky (1977); McClelland and Rumelhart (1985)]. The similarity

between them can be defined as a function of the features they have in

common [Osherson (1995); Sun (1995); Goldstone (1999); Gilovich (1999)].

The contrast model of Tversky [Tversky (1977)] is one well known model

in cognitive psychology [Smith (1995); Opwis and Plötzner (1996)] which

describes the similarity between two objects which are described by their

features. Rather than relying on prototypical features, picture categoriza-

tion often relies on detailed shape representation [Smith et al. (1978); Mur-

phy and Brownell (1985); Smith (1995)]. Objects and scenes can be rep-

resented by binary pictures which are normalized for size and orientation

[Feldman (1985)]. Similarity between the objects or scenes is measured by

the amount of shared area between the overlaid patterns [Biederman and

Ju (1988); Kurbat et al. (1994); Smith and Sloman (1994)]. Categorial

representation represents the basis of sub-symbolical representation.

3.1.5 Binary vector representation

Binary vectors can represent discrete features. A one represents a discrete

feature at the corresponding position of a binary vector, its absence is de-

noted by a zero. The feature set A, B, C, D, E, F, G, H, I, J, K is represented
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by a binary vector of dimension 11. The presence of features C and E is

represented by the binary vector [0 0 1 0 1 0 0 0 0 0 0]. Binary vectors

can represent transitions between states. The first binary vector describes

the state which should be present before the transition (the premise). The

second binary vector describes the world state after the transition (the

conclusion).

3.2 Production System

Human problem solving can be described by a problem-behavior graph con-

structed from a protocol of the person talking aloud, mentioning consid-

ered moves and aspects of the situation. According to the resulting theory,

searching whose state includes the initial situation and the desired situation

(goal) in a problem space [Newell (1990); Anderson (1995b)]. This process

can be described by the production system theory. The production system

in the context of classical Artificial Intelligence and Cognitive Psychology

is one of the most successful computer models of human problem solving.

The production system theory describes how to form a sequence of actions,

which lead to a goal, and offers a computational theory of how humans

solve problems [Anderson (1995b)]. A production system is composed of

[Brownston et al. (1985); Luger and Stubblefield (1998)] (see Figure 3.4):

• Set of rules. These rule are also called productions. The set of

rules models the human long-term memory.

• Working memory. This memory contains a description of the state

in a problem solving process. The state is described using predi-

cate calculus and is simply called a pattern. Whenever a premise is

true, the conclusions of the rules change the contents of the work-

ing memory. The working memory models the human short-term

memory.

• Recognize-act cycle. The current state of the problem-solving pro-

cess is maintained as a set of patterns in the working memory.

Working memory is initialized with the initial state description.

The patterns in working memory are matched against the premise

of the rules. The premise of the rules that match the patterns in

working memory produces a set, which is called the conflict set.

One of the rules of this set is chosen and the conclusion of the

rule changes the content of the working memory. This process is

denoted as firing of the rule. This recognize-cycle is repeated on
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the modified working memory until a desired state is reached or no

rules can be fired. The recognize-act cycle models the current focus

of attention triggering one of the set of permanent skills. This, in

turn, changes the focus of attention.

Conflict resolution chooses a rule from the conflict set for firing. There are

different conflict resolution strategies, such as choosing a random rule from

the set, or selecting a rule by some certain function. In a pure production

system which was proposed as a formal theory of computation [Post (1943)]

the system halts if no production can fire in a state.

Fig. 3.4 A production system is composed of the long term memory and the working
memory also called short term memory. This recognize-cycle is repeated on the modified
working memory until a desired state is reached or no rules can be fired.

3.2.1 Deduction systems

Problems without side effects of actions can be described by deduction sys-

tems which are a subgroup of production systems [Winston (1992)]. In de-

duction systems the premise specifies combinations of assertions, by which

a new assertion of the conclusion is directly deduced. This new assertion is

added to the working memory. Deduction systems do not need strategies

for conflict resolution because every rule presumably produces reasonable

assertions and there is no harm in firing all triggered rules. Deduction sys-

tems may chain together rules in a forward direction, from assertions to

conclusions, or backward from hypotheses to premises. During backward

chaining it is ensured that all features are properly focused. Backward
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chaining is used if no features are present. If all features are given, forward

chaining is used to prevent wasting of time pursuing hypotheses, which

are not specified by the features. The chained rules describe the complete

problem space which can be represented by a graph [Quillian (1968); Shas-

tri (1988)]. Examples of deduction systems are semantic nets, diagnostic

systems and expert systems. Simple if then rules can be represented by a

knowledge base. We present a compendium of six rules concerning problems

with the oil of a car expert system:

(1) oil lamp lights during driving round a bend or oil lamp lights during

braking then cable of the oil pressure lamp is loose

(2) driving round a bend and problems with oil then oil lamp lights during

driving round a bend

(3) braking and problems with oil then oil lamp lights during braking

(4) oil lamp goes out after some time and problems with oil and during

idling then oil pressure too low

(5) problems with oil and during idling then oil level too low

(6) oil lamp lights up then problems with oil

For clarity we can replace the names of features and categories by sym-

bols, each symbol representing a name, for example B representing “oil

lamp lights during driving round a bend”:

(1) B ∨ C then A

(2) D ∧ F then B

(3) E ∧ F then C

(4) H ∧ F ∧ I then G

(5) F ∧ I then J

(6) K then F

The representation of the logical relationship defined by these rules re-

quires an extension to the basic graph model known as AND/OR graph

[Luger and Stubblefield (1998)]. We can represent the set of rules (for ex-

ample describing an ontology) by a directed AND/OR graph. In Figure 3.5

we see the representation of the six rules. During the deduction a subgraph

is constructed. The deduction system is a simple model. It is not practical

therefore to use it for planning, as planning is mostly described by fewer

rules, but it characterizes a much bigger problem space. Dynamical rep-

resentation of the problem space is suitable instead of static for reaction

systems.
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A

B C

D

G

IFH

K

E

J

Fig. 3.5 Representation of six rules by a directed AND/OR graph. The ‘and’ rules are
indicated by an arc between the links connecting the nodes indicating the manifestations.

3.2.2 Reaction systems

Problems with side effects of actions like planning can be resolved by reac-

tion systems [Winston (1992)]. Reaction systems are a subgroup of produc-

tion systems. The premise specifies the conditions that must be true before

the action described in the conclusion can be taken. Reaction systems need

strategies for conflict resolution. We will call the reaction systems simply

“production system” if no confusion with a deduction system is possible.

3.2.3 Conflict resolution

Conflict resolution strategies are often specified by general provisions [Jack-

son (1999)]:

• chose randomly a rule;

• a rule should be not allowed to fire more than once on the same data;

• rules that have used more recent data are preferred;

• rules that have a greater number of patterns in the premise are pre-

ferred.

Rules also can be evaluated by a heuristic function. There are two different

kinds of heuristic functions:

• the probability that the function is on the best path;

• the distance or difference between a given state and the desired state.
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It is difficult to define heuristic functions, though frequently features can

be picked out which describe the distance to the goal [Russell and Norvig

(1995)]. The other possibility is the reuse of solutions to solved problems

to indicate which rule to use.

3.2.4 Human problem-solving

In systems which model human behavior and in practical applications, back-

tracking to a previous state of working memory is allowed. By allowing

backtracking and the exclusion of loops, a search from the initial state to

the desired state is executed. The search defines a problem space and can

be represented as a tree. However, it may not reach the desired goal either

because the branches are infinite, or because after backtracking to the ini-

tial state no rule can fire. A problem is described by the productions in

the long term memory, by the initial state, and by the desired state. The

solution to the problem is represented by a set of the productions which

successively change the state from the initial state to the desired state.

One of the best-known cognitive models, based on the production system,

is SOAR. The SOAR state, operator and result model was developed to

explain human problem-solving behavior [Newell (1990)]. It is a hierarchi-

cal production system in which the conflict-resolution strategy is treated as

another problem to be solved. All satisfied instances of rules are executed

in parallel in a “temporary” mode. After the temporary execution, the

best rule is chosen to take action. The decision takes place in the context

of a stack of earlier decisions. Those decisions are rated utilizing prefer-

ences and added to the stack by chosen rules. Preferences are determined

together with the rules by an observer using knowledge about a problem.

3.2.5 Example

The 8-puzzle is composed of eight numbered movable tiles in a 3× 3 frame.

One cell of the frame is empty; as a result, tiles can be moved around to

form different patterns. The goal is to find a series of moves of tiles into

the blank space that changes the board from the initial configuration to a

desired configuration (see Figure 3.6). The production of long-term memory

can be specified by four productions [Luger and Stubblefield (1998)]:

• If the empty cell is not on the top edge, then move the empty cell up;

• If the empty cell is not on the left edge, then move the empty cell left;

• If the empty cell is not on the right edge, then move the empty cell



August 13, 2013 15:47 World Scientific Book - 9in x 6in QAI

30 Principles of Quantum Artificial Intelligence

8

8

8

1

4

7

7 5

4

7 55 8

3

8

3

7

66

7

3

8

6

7

77

778 6

4

8 6

4 5

8 6

3

5

3

8 6

3

5

8

7

1

2 3 5

1

2 3 2

1 4

5

4

1

2

6

2 4

1

87

1 5 6

42 3

51

2 4

1

2 4

5

2

41

85

2 3

64

7

1

1 2 3

4 6

1 2 3

6

2 3

65

321

7 8

654

Fig. 3.6 The first pattern (upper left) represents the initial configuration and the last
(low right) the desired configuration. The series of moves describe the solution to the
problem.

right;

• If the empty cell is not on the bottom edge, then move the empty cell

down.

The control strategy for the search would be

• halt when goal is in the working memory;

• chose a random production;

• do not allow loops.

3.3 Sub-Symbolic Models of Problem-Solving

Perception-oriented representation is an example of sub-symbolical repre-

sentation, such as the representation of numbers by the Oksapmin tribe of

Papua New Guinea. The Oksapmin tribe of Papua New Guinea counts by

associating a number with the position of the body [Lancy (1983)]. The

sub-symbolical representation often corresponds to a pattern that mirrors

the way the biological sense organs describe the world. Vectors represent

patterns. A vector is only a sub-symbol if there is a relationship between
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the vector and the corresponding similarity of the represented object or

state in the real world through sensors or biological senses. Feature-based

representation is an example of sub-symbolical representation.

Living organisms experience the world as a simple Euclidian geometrical

world. The actual perception of the world and manipulation in the world by

living organisms lead to the invention or recreation of an experience that, at

least in some respects, resembles the experience of actually perceiving and

manipulating objects in the absence of direct sensory stimulation [Wichert

(2009)].

This kind of representation is called sub-symbolic. Sub-symbolic rep-

resentation implies heuristic functions. The assumption that the distance

between states in the problem space is related to the similarity between the

sub-symbols representing the states is only valid in simple cases. However,

simple cases represent the majority of exiting problems in domain. Sense

organs sense the world by receptors which a part of the sensory system and

the nervous system.

According to the production system theory (reaction systems), we can

define a geometrically-based problem-solving model as a production system

operating on vectors of fixed dimensions. Instead of rules, we use associ-

ations and vectors represent the states. Our goal is to form a sequence of

associations, which lead to a desired state represented by a vector, from an

initial state represented by a vector. Each association changes some parts

of the vector. In each state, several possible associations can be executed,

but only one has to be chosen. Otherwise, conflicts in the representation

of the state would occur. To perform these operations, we divided a vec-

tor representing a state into sub-vectors. An association recognizes some

sub-vectors in the vector and exchanges them for different sub-vectors. It is

composed of a precondition of fixed arranged α sub-vectors and a conclusion

[Wichert (2009)], [Wichert (2013)].

3.3.1 Proto logic

The manipulation of the states is described by simple proto logic, which

verifies if a subset of symbols is present in a certain set of symbols. Suppose

a vector is divided into α sub-vectors with α > β. A production recognizes

β different sub-vectors and exchanges them for β different sub-vectors. Let

α = 7 objects that were recognized in the visual scene. The seven vi-

sual objects are indicated at a certain position of the scene by symbols

A,B,C,D,E, F and G. The task of proto logic is to identify a precondi-
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tion formed by visual objects represented by the set B,C,G, β = 3. Each

of the symbols B,C,G is checked for presence in the set that represents the

scene. It is verified if a set representing a precondition is a subset of the

set representing a scene. Proto logic operates on sets. It verifies whether a

subset is present in a certain set [Wichert (2013)]. The task of proto logic

is trivial when working with sets. For an associative memory the direct

access to the stored information is not present, a solution to this problem

is described in [Wichert (2011)].

3.3.2 Binding problem

The “binding problem” determines how to connect together all physically

separated fragments of a complex object so that they can be processed

as a whole in sub-symbolical representation [Miikkulainen (1993); Kurfess

(1997); Wennekers (1999); Hummel (1999)]. For example, a red block is ob-

viously a different object then a blue block. The fragments in this example

are the form and the color. Sub-vectors representing different fragments can

be concatenated to a sub-vector representing the object [Wichert (2011)].

3.3.3 Icons

Out of several possible associations, we chose the one, which modifies the

state in such a way that it becomes more similar to the desired state ac-

cording to the Euclidean distance [Wichert (2009)] (see Figure 3.7).

(a) (b) (c)

Fig. 3.7 The Euclidean distance between the corresponding vectors can compute the
distance between the icons. The distance between the states in the problem space is
actually related to the distance between the icons representing the states. Euclidian
distance of state (a) and state (c) is smaller than the distance between state (b) and (c).
The distance in the problem space as well between state (a) and state (c) is smaller than
the distance between state (b) and (c).
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Fig. 3.8 The simplest method corresponds to a random choice, and does not offer any
advantage over simple symbolical representation. An example of visual planning of the
tower building task of three blocks using the random choice is shown. The upper left
pattern represents the initial state; the bottom right pattern, the desired state.

With the aid of this heuristic hill climbing is performed. Each element

represents an object. Objects are represented by some dimensions of the

space and form a sub-space by themselves.

The example of Figure 3.8 and Figure 3.9 consists of the task of building

a tower from a collection of blocks [Nilsson (1982)]. A robot arm can stack,

unstack, and move the blocks within a plane on three different positions

at a table. There are two different classes of blocks: cubes and pyramids.

While additional blocks may be stacked on top of a cube, no other blocks

may be placed on top of a pyramid. The robot arm, which is represented

in the upper right corner, has a gripper that can grasp any available block.

It can move the block to eight different positions on the tabletop or place

it on top of another cube [Wichert (2001, 2005a)].

The computation can be improved by a simple and universal heuristics

function, which takes into account the relationship between the vector and

the corresponding similarity of the represented states (see Figure 3.8 and

Figure 3.9). The heuristics function makes a simple assumption that the

distance between the states in the problem space is related to the similarity
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Fig. 3.9 An example of visual planning of the tower building task of three blocks using
hill climbing shown. The upper left pattern represents the initial state; the bottom right
pattern, the desired state..

Fig. 3.10 An example of visual planning of the tower building task of eleven blocks using
hill climbing shown. The upper left pattern represents the initial state; the bottom right
pattern, the desired state.

of the vectors representing the states. This becomes more obvious with the

growth of objects that can be manipulated (see Figure 3.10).
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3.3.4 Euclidian geometry of the world

The similarity between the corresponding vectors can indicate the distance

between the sub-symbols representing the state. Empirical experiments

in popular problem-solving domains of Artificial Intelligence, like robot in

a maze, block world or 8-puzzle indicated that the distance between the

states in the problem space is actually related to the similarity between

the images representing the states [Wichert (2001); Wichert et al. (2008);

Wichert (2009)].

Sub-symbolical problem solving takes advantage of the geometric nature

of the world. The assumption that the distance between states in the prob-

lem space is related to the distance between the sub-symbols representing

the states is only valid in simple cases. For example, our simple heuristics

and the resulting hill climbing cannot overcome problems in which one can-

not perform either of the necessary first actions without undoing them at a

later stage. These kinds of problems are very often called anomalies, such

as the “Sussman anomaly” [Sussman (1975)].
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Chapter 4

Information

4.1 Information and Thermodynamics

Information can be presented in a variety of forms that differ from one

another: natural language, symbols, acoustic speech and pictures [Resnikoff

(1989)] (see Figure 4.1).

Fig. 4.1 Information can be presented in a variety of forms which differ from one an-
other: natural language, symbols, acoustic speech, pictures.

Information appeared as a unifying scientific concept before the inven-

tion of the first computers. Information does not concern the substance

and the forces of the physical world [Stonier (1990)]. Information is what

remains after one abstracts from the material aspects of physical reality. In-

37
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formation theory is highly related to mathematical probability theory and

thermodynamics. A thermodynamic description similar to information is

not a description of a physical property and relationships, but rather, this

description is a fundamental property. Thermodynamic relations might re-

main valid for all physical theories that can describe an aspect of reality.

They link physical entities to their organization and to their informational

structure. Thermodynamics is the study of the collective behavior of en-

tities on a macroscopic scale and uses statistics to describe microscopic

states of entities. The microscopic behavior corresponds to the motion of

the entities; on a macroscopic scale, this behavior is represented by the

temperature, pressure, and volume of physical systems such as a gas or a

fluid. The statistical description gives us freedom of abstraction [Maxwell

(2001)]. It was James Clerk Maxwell, (1831 − 1879), a Scottish mathe-

matician, who was one of the first to recognize the connection between

thermodynamic quantities that are associated with gas, such as tempera-

ture, and the statistical descriptions of the molecules. We do not need to

specify each entity as a molecule or specify its exact speed or position. It

is sufficient to describe the statistical behavior of specific molecules. The

three laws of thermodynamics describe the processes that are involved in

the transport of heat. They are some of the most important laws of physics.

• Conservation of energy (first law of thermodynamics): The change in

the internal energy of a closed thermodynamic system is equal to the

sum of the amount of heat energy supplied to the system and the work

performed on the system.

• The second law deals with entropy. Entropy is a measure of disorder

of the configuration of the states of the atoms or other particles, which

make up the system. The total entropy of any isolated thermodynamic

system tends to increase over time, approaching a maximum value.

• Third law of thermodynamics: absolute zero temperature As a system

asymptotically approaches the absolute zero of the temperature, all

processes virtually cease and the entropy of the system asymptotically

approaches a minimum value. The entropy of all systems and of all

states of a system is zero at absolute zero.

“A physical system that is made up of many, many tiny parts will have

microscopic details to its physical behavior that are not easy to observe.

There are various microscopic states the system can have, each of which is

defined by the state of motion of every one of its atoms, for instance.” a
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Table 4.1 Each of the two die can have one out of six microstates.
macrostate (die1, die2) number of microstates

2 1,1 1

3 1,2;2,1 2

4 1,3; 2,2; 3,1 3

5 1,4; 2,3; 3,2; 4,1 4

6 1,5; 2,4; 3,3; 4,2; 5,1 5

7 1,6; 2,5; 3,4; 4,3; 5;2, 5,1 6

8 2,6; 3,5; 4,4; 5,3; 6,2 5

9 3,6; 4,5; 5,4; 6,3 4

10 4,6; 5,5; 6,4 3

11 5,6; 6,5 2

12 6,6 1

quote from Matt McIrvin.1 We can choose to measure a physical system at

the macroscopic level. Macroscopic properties such as density or pressure

are the result of microscopic properties. A macroscopic property can be

realized by different microscopic states. Macroscopic states are not static,

but they continuously change corresponding to the motion of atoms or

molecules. Statistical mechanics describes this motion by some random

parameters, whereby each atom is moving randomly from a macroscopic

viewpoint. A set of atoms is described by a distribution of random variables

that express the random movements.

4.1.1 Dice model

Suppose that we have two dice; the macrostate is the total of the two dice,

and the microstate corresponds to the number on each of the die. There

are six ways to get a total of 7 from the microstates of the two dice but

only one way to get a total of 2 or 12. For this reason, throwing two dice

to sum a total of seven is more likely to occur; a sum of seven is six times

more likely to occur than two or twelve. Each die can have one out of six

microstates. The number of microstates of the whole system of two dice

is 6 × 6 = 36, the number of possible microstates is multiplied together.

The number of different macrostates adds, for example, (6 + 6) − 1 = 11.

We must subtract a one because the smallest macrostate is two and not

one (see Table 4.1). For four dice the number of microstates is already

6 × 6 × 6 × 6 = 1296. In general, when several systems are combined

into a larger system, the number of possible microstates of each system

is multiplied, and the number of macrostates is added. For n fair dice,

1Matt McIrvin physics- group posting.
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the total number of possible microstates is at a maximum at a macrostate

value of 3.5 × n. The value corresponds to the median of the Gaussian

distribution. The median of a finite list of microstates can be found by

arranging all of the microstates from the lowest value that represents a

macrostate to the highest value of a macrostate and picking the middle

value (see Table 4.1). The value of 3.5 × n can be derived for n dice, as

follows; the median is also represented as follows,

min + max

2
(4.1)

for n dice it follows:

n + n · 6
2

= n · 3.5. (4.2)

If we shake n dice in a bag and measure the uppermost faces, and we

repeat the experiment, the dice will converge rapidly on the value (the

“macrostate”) for which the number of ways to make the value from indi-

vidual dice (“microstates”) is at a maximum. By performing this action,

we model an isolated system, the second law of thermodynamics. We model

the thermal fluctuations by “shaking” the bag. The macroscopically mea-

surable quantities converge to the values that have the largest number of

microstates. It appears that the basis of the time direction, as expressed

by the second law of thermodynamics, is a type of Gaussian randomness.

4.1.2 Entropy

When several systems are combined into a larger system, the number of

possible microstates of each system are multiplied. This operation leads to

a very large number, which becomes intractable very quickly. A solution to

this problem is to use the logarithms of numbers; in this case, the log of the

product is the sum of the logs. In statistical thermodynamics, Boltzmann’s

equation relates the entropy S of an ideal gas to the number of microstates,

where W corresponds to a given macrostate [Boltzman (1995)]. We add

the number of microstates when we put systems together by taking the

logarithm. The result indicates the relationship between entropy and the

number of ways that the atoms or molecules of a thermodynamic system

can be arranged. Entropy corresponds to the number of ways that the

microstate can rearrange itself without affecting the macrostate. In the
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equation, k is Boltzmann’s constant, which is equal to 1.38062 × 10−23

joule/kelvin.

S = k · log ·W (4.3)

The Second Law states that isolated systems tend toward an equilibrium

macrostate with as large total entropy as possible corresponding to the

largest number of microstates. For example, atoms moving around in a

gas possess a large number of possible microstates. This number is less for

a crystalline structure and, finally, it is one at 0K, where all microstates

become identical.

4.1.3 Maxwell paradox and information

In 1929, Leó Szilárd explained the thermodynamic Maxwell paradox by

identifying information with the negative measure of entropy [Szilárd

(1929)]. Suppose that we have two chambers that are separated by a com-

mon partition, which could be removed to permit the objects in one to

move freely to the other. One chamber contains gas and the other chamber

contains nothing; on the removal of the partition, the gas will rapidly dif-

fuse and fill the empty chamber (see Figure 4.2). Reverse evidence of this

Fig. 4.2 Suppose that we have two chambers that are separated by a common partition,
which could be removed to permit the objects in one to move freely to the other. One
chamber contains gas and the other chamber contains nothing; on the removal of the
partition, the gas will rapidly diffuse and fill the empty chamber.

sequence mostly does not occur because an isolated systems tends toward

an equilibrium macrostate that corresponds to the largest number of mi-

crostates that are present when the gas is diffused over the two chambers.

Thinking in terms of the dice model, the probability of reverse evidence



August 13, 2013 15:47 World Scientific Book - 9in x 6in QAI

42 Principles of Quantum Artificial Intelligence

approaches zero but is never equal to zero. In the paradox, there is a de-

mon that observes the gas molecules. Between the chambers, there is a

small door. The demon can open and close the small door, passing only

one molecule into a chamber. When a molecule in its random motion heads

toward the door of the chamber, it opens the door, briefly permitting the

molecule to pass into the other chamber. Soon there will be more molecules

in one chamber than the other. Because the demon requires almost no en-

ergy to operate the door, the process decreases the entropy, which is a

contradiction to the second law of thermodynamics. Szilard’s explanation

is the following: to perform this task, the demon must be very well informed

about the position and velocity of the molecules that approached the door.

Only with this information can he judge when and for how long the door

should be opened to pass a molecule through and into the chamber without

allowing any molecules to pass in the opposite direction. As the demon’s

information about the distribution of the gas increases, the entropy of the

gas decreases.

4.1.4 Information theory

Instead of a demon that operates a door between two chambers, let us

imagine a simple experiment, for example, throwing a fair coin [Topsoe

(1974)]. Before we perform the experiment, we do not know what will be the

result; we are uncertain about the outcome. We measure the uncertainty by

the entropy of the experiment. The experiment starts at t0 and ends at t1.

At t0, we have no information about the results of the experiment, and at

t1, we have all of the information, so that the entropy of the experiment is

0. We can describe an experiment by probabilities. For the outcome of the

flip of an honest coin, the probability for a head or tail is 0.5, p = (0.5, 0.5).

How can we define entropy? A person A knows the outcome, but person

B does not. Person B could ask A about the outcome of the experiment.

If the question is of the most basic nature, then we could measure the

minimal number of optimally required questions B must pose to know the

result of the experiment. A most basic question corresponds to the smallest

information unit that could correspond to a yes or no answer. The smallest

information unit is called a binary digit, or bit. For a fair coin, we pose

just one question, for example, is it a tail?

For a card game, to determine if a card is either red, clubs or spades,

we have a different number of possible questions. If the card is red, then

we need only one question. However, in the case in which the card is not
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red, we need another question to determine whether it is a spade or a

club. The probability of being red is 0.5, of clubs 0.25 and spades 0.25,

p = (0.5, 0.25, 0.25). If the card is red, then we need only one question

(with probability 0.5). For clubs and spades, we need two questions. In the

meantime, we must ask 1 · 0.5 + 2 · 0.25 + 2 · 0.25 questions, which would

result in 1.5 questions. Thus, we must measure the mean number of op-

timal questions. For four cards, of which one is the joker, the probability

of a joker is 0.25 and of the other cards 1 − 0.25 = 0.75, p = (0.25, 0.75).

In the meantime, we must ask 1 · 0.25 + 1 · 0.75 questions to determine if

the card is a joker or not. This approach results in one question. Given n

cards, of which one is the joker, the probability of a joker is 1/n and of the

other cards is 1− 1/n. In the meantime, we must ask 1 · 1/n+ 1 · (1− 1/n)

questions to determine if the card is a joker or not. This approach results

in one question that is independent of the size of n. How could it be that

the result is independent of the size of n? It appears that something is

missing in our definition. Our result is correct for one independent exper-

iment; however, for several experiments, the mean number of questions is

lower. We define the real entropy for one experiment as H0(F
1), for two

experiments as H0(F
2), and for k experiments as H0(F

k). Here, we have

the mean number of questions for the first experiment, the second, and

the third to the kth experiment. The mean number of questions for one

experiment in the sequence of k experiments is 1/k ·H0(F
k).

For four cards of which one is the joker the probability of a joker is 0.25

and of other cards 1 − 0.25 = 0.75 The real entropy for one experiment is

H0(F
1):

H0(F
1) = 1 · 0.75 + 1 · 0.25 = 1

H0(F
1)

1
= 1

The binary search tree corresponding to one experiment is represented in

the Figure 4.3.

The hierarchy of the probabilities for two experiments is shown in Table

4.2 and the resulting binary search tree is represented in the Figure 4.4. The

real entropy for two experiments is H0(F
2):

H0(F
2) = 1 · 0.75 · 0.75 + 2 · 0.75 · 0.25 + 3 · 0.25 · 0.75 + 3 · 0.25 · 0.25

H0(F
2) = 1.6875
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Fig. 4.3 For four cards of which one is the joker the probability of a joker is 0.25 and of
other cards 1−0.25 = 0.75, p = (0.25, 0.75). In the mean we have to ask 1 ·0.25+1 ·0.75
questions to determine to determine if the card is a joker or not. The real entropy for
one experiment as H0(F 1)

Table 4.2 Hierarchy of the
probabilities for two experi-
ments.

results probability

card, card 0.75 · 0.75

joker, card 0.25 · 0.75

card, joker 0.75 · 0.25

joker, joker 0.25 · 0.25

H0(F
2)

2
= 0.84375

The hierarchy of the probabilities for three experiments is shown in

Table 4.3 and the resulting binary search tree is represented in the Figure

4.5. The real entropy for two experiments is H0(F
3):

H0(F
3) = 1 · 0.42188 + 3 · 0.14062 + 3 · 0.14062 + 3 · 0.14062+

+5 · 0.046875 + 5 · 0.046875 + 5 · 0.046875 + 5 · 0.015625

H0(F
3) = 2.4688

H0(F
3)

3
= 0.82292

Does the sequence hk := H0(F
k)

k , with the values {1, 0.84375, 0.82292, ...}
for k = 1, 2, 3, .. have a limit for limk→∞ hk?

It has. The limit is defined as

H(F ) := lim
k→∞

H0(F
k)

k
≤ H0(F ) (4.4)
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Fig. 4.4 The real entropy for two experiments as H0(F 2)

Table 4.3 Hierarchy of the probabilities
for three experiments.

results probability

card, card, card 0.75 · 0.75 · 0.75

card, card, joker 0.75 · 0.75 · 0.25

card, joker, card 0.75 · 0.25 · 0.75

joker. card card 0.25 · 0.75 · 0.75

joker, joker, card 0.25 · 0.25 · 0.75

joker, card, joker 0.25 · 0.75 · 0.25

card, joker, joker 0.75 · 0.25 · 0.25

joker, joker, joker 0.25 · 0.25 · 0.25

it is called the ideal entropy, it converges to [Shannon (1948)]

H(F ) = −
∑

i

pi log2 pi. (4.5)

In our case it is simply

H(F ) = −0.25 · log2 0.25 − 0.75 · log2 0.75 = 0.81128.

The ideal entropy indicates the minimal number of optimal questions that

B must pose to know the result of the experiment on A [Shannon (1948)],

[Topsoe (1974)]. Suppose that A repeated the experiment an infinite num-

ber of times. The ideal entropy is the essential information obtained by

taking out the redundant information that corresponds to the ideal distri-

bution to which the results converge. An experiment is described by the
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Fig. 4.5 The real entropy for two experiments as H0(F 3)

probabilities p = (p1, p2, ..., pn). Does the distribution of these probabilities

have an effect on the ideal entropy? It turns out that the ideal entropy is

maximal in the case in which all probabilities are equal, which means that

p = (1/n, 1/n..., 1/n). In this case, the maximal ideal entropy is

H(F ) = −
∑

i

pi log2 pi = − log2 1/n = log2 n (4.6)

in which n describes the number of states. For 216 = 65536 states that

present with the equal probability 1/65536, the optimal number of questions

is 16, which corresponds to 16 bits. If we suppose the letters of the alphabet

(26 of them) occur with equal probability in a message, then the average

information content per letter in a message is

H(F ) −
26∑

i

1/26 · log2 1/26 = log2 26 = 4.7004 bit.

A word of five letters has an average information content of 5 · log2 6 =

23.502 bits. However, in a real human language, the average informa-

tion content per letter is much lower because the distribution is not equal

[Topsoe (1974)]. Some letters are more frequent than others; an e is more

frequent than an x. We say that events that seldom happen, for example,

the letter x in a message, have a higher surprise. Surprise is inversely re-

lated to probability. The larger the probability that we receive a character,

the less surprised we are. A message over events that are not equally dis-

tributed has less information than a message over events that are equally

distributed, but that message allows a higher surprise.
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The equation H(F ) = log2 n is very similar to Boltzmann’s equation,

in which W number of microstates corresponds to a given macrostate. It

follows, then, that the number of microstates is evenly distributed, and each

microstate has the same probability of appearance. There are, however,

two differences between the two equations. Boltzmann’s equation includes

Boltzmann’s constant, and it uses log instead of log2. Instead of measuring

the information in bits (yes/no questions) it measures the information in

nepit (nat), which is based on Euler’s number e = 2.7182818... (sometimes

also called Napier’s constant). Euler’s number is irrational and cannot be

attributed to any questions. However, in the next section, we indicate that

Euler’s number is the ideal number that minimizes the depth of an idealistic

search tree.

4.2 Hierarchical Structures

The principles of hierarchical organization appear in nature, for example,

the structure of matter itself is hierarchically organized, including elemen-

tary particles, atomic nuclei, atoms, and molecules [Resnikoff (1989)]. The

idea of hierarchical structures is based on the decomposition of a hierarchy

into simpler parts. One of the greatest inventions of human civilization is

the possibility of representing numbers by a hierarchically organized struc-

ture, which was begun approximately 5000 years ago by the Sumerian and

Akkadian civilizations and later popularized by the Babylonians. An an-

cient way to denote a positive whole number is a sequence of marks used

for counting. A requirement for the sequence is to provide a way to write

down the next mark. An example is the arrangement of a number as a

set of similar strokes; however, this representation takes up a large amount

of space. This type of representation is called the unary numeral system.

Positional notation is itself a hierarchical organized structure in which the

whole number is mapped to positional notation to a certain base. For a

unary numeral system, the base is one, and no hierarchy is present. For

base B > 1 (a whole number), the hierarchy for a number N corresponds to

determining the largest integer k such that Bk ≤ N , where k indicates the

number of digits that correspond to the depth of the hierarchy for the basis

B. Bk represents the number of possible numbers that can be represented

by the corresponding hierarchy. In the next step, k questions for each layer

of the hierarchy must be answered to indicate which combination out of

the Bk possible numbers is present. Each question has B possible answers,
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which correspond to the digits B−1, B−2, .., 0. The first question is: what

is the leading digit nk of the base B representing N , nk · Bk ≤ N . The

next question asks about the digit,

nk−1 · Bk−1 ≤ N − nk ·Bk. (4.7)

The following questions ask about the digit

nk−2 ·Bk−2 ≤ N − nk · Bk − nk−1 · Bk−1 (4.8)

and so forth.

For a binary base, the hierarchical structure corresponds to the ideal

Entropy in which all of the probabilities of occurrences of the numbers are

equal. Each question receives a reply of either yes or no. For each base, each

question has B possible answers. This representation is related to a tree

in computer science that has a constant branching factor of B. However,

there are some differences; the nodes are organized in levels, the root of the

tree corresponds to the level 0, and each node at each level has B children,

which means that, at each level k, there are Bk nodes. A has the highest

level L, and there are BL = N leaves that correspond to the N represented

objects. For N objects and the number of levels L, the branching factor B

is equal to

B = N
1
L . (4.9)

For each level k there are

N(K) = Bk = N
1
L (4.10)

nodes with N(L) = L. For a search of an object out of N at each level, B

questions must be answered. The costs are B · log(N)/(log(B). Is there a

B for which the cost becomes minimal? If we suppose that the tree is an

ideal tree in which the branching factor can be an irrational number, then

the solution is easy

cost = B · log(N)

log(B)
(4.11)

0 =
∂cost

∂B
=

log(N)

log(B)
− log(N)

log(B)2

with the solution

B = e = 2.7182818...

which corresponds to Euler’s number. The closest whole number is three,

followed by two. Euler’s number minimizes the cost of an idealistic search
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tree; it is the minimal mean number of questions that must be answered.

The minimal value of the number of questions corresponds to the essential

information represented by nepit (nat) in the Boltzmann’s equation. We

assumed that we can answer all of the questions. Suppose that we cannot.

In this case, we do not know which path to follow, and we must perform

a search. Either we chose the path (answer to a question) randomly, or

we perform a blind search, or we get a hint of which path (which answer)

is right. In computer science, the hint is expressed by a heuristic function

that rates the value’s different paths according to how far the paths are

from the goal object.

4.2.1 Example of a taxonomy

One of the most effective ways to structure knowledge is the taxonomic ar-

rangement of the information that represents it [Resnikoff (1989)]. In 1887

Professor Harry Govier Seeley grouped all dinosaurs into the Saurischia

and Ornithischia groups according to their hip design [Haines (1999)]. In

Figure 4.6 and we 4.7 can see some examples of the two categories [Wichert

(2000)].

Fig. 4.6 Stenonychosaurus is an example of the category Saurischia.

Fig. 4.7 Stegosaurus is an example of the category Ornithischia.
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The saurischian were divided later into two subgroups: the car-

nivorous, bipedal theropods and the plant-eating, mostly quadruped

sauropodomorphs. The ornithischians were divided into the subgroups

birdlike ornithopods, armored thyreophorans, and margginoncephalia. The

subgroups can be divided into suborders and then into families and finally

into genus. The genus includes the species. It must be noted that in this

taxonomy many relations are only guesswork, and many paleontologists

have different ideas about how the taxonomy should look [Lambert (1983,

1993)] (see Figure 4.8).

Order

Ornthischian

Ornithopods

Four Legged
Ornithischian

Other

Saurischian Strange Killers

Sauropodomorphs

Sauropods

Coelurosaurs Carnosaurs

Therodopods

5

14

Prosauropods

Assorted Sauropods

Staurikosaurids

1

10

Fig. 4.8 Taxonomy of dinosauria. The number written below the rectangular boxes
represents the categories which are not divided, the species. Uncertain categories are
represented by dotted arrows.

4.3 Information and Measurement

Numbers are used in two fundamentally different ways. Either they can

describe measurements of observed phenomena or they are used for mathe-

matical calculations. Numbers that are attached to an observed magnitude

represent the gained information. A real number a will be represented as

decimal expansions of the form

a = a−N · · · a−1a0.a1a2 · · · (4.12)

it is a shorthand of notation of

a = a−N10N + · · · + a−110 + a0100 + a110−1 + a210−2 + · · · . (4.13)

Increasingly precise variants of the measurement yield to least signif-

icant digit (right one) in the decimal expansion. How much additional
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information is provided by increasing the process of measurement? The

measurement of a quantity Ξ is made. Its numerical value is h with in-

finitely many digits. The measurement provides a range of values in which

h will be contained. Suppose the measurement provides numbers x1 and

y1 with [Resnikoff (1989)]

x1 < h < y1, (4.14)

(see Figure 4.9). In terms of decimal expansion, the measurement has

Fig. 4.9 The measurement provides numbers x1 and y1 with x1 < h < y1.

determined a certain fixed numbers of the expansion of h. The second

measurement is done with a greater precision x2 and y2 with

x1 < x2 < h < y2 < y1, (4.15)

(see Figure 4.10). The gain of information after the second measurement

Fig. 4.10 The second measurement is done with a greater precision x2 and y2 with
x1 < x2 < h < y2 < y1.

can be expressed by

I10 = log10

(
y1 − x1

y2 − x2

)

= log10(y1 − x1) − log10(y2 − x2) (4.16)

with log10(y2 − x2) being approximately number of digits in decimal

expansion. The information can be measured in different units, for example

binary digit expansion is

I2 = log2

(
y1 − x1

y2 − x2

)

= log2(y1 − x1) − log2(y2 − x2). (4.17)

The Equation 4.16 represents the information, which depends only on

the endpoints x and y of the measurement of the interval. It does not

depend on
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• the choice of the zero point

I(x + b, y + b) = I(x, y)

• nor the scale

I(x · a, y · a) = I(x, y).

4.3.1 Information measure I

We determine the function I which satisfies both conditions [Resnikoff

(1989)]. With b = −x we get

I(x, y) = I(x + b, y + b) = I(0, y − x) (4.18)

and with a = 1
x we get

I(x, y) = I(a · x, a · y) = I
(

1,
y

x

)

. (4.19)

If we apply a = 1
y−x to Equation 4.18 we get

I(x, y) = I(0, y − x) = I(a · 0, a · (y − x)) = I(0, 1) = constant (4.20)

One measurement results always in a constant gain. Information gain does

not depend on the results of one measurement described by x and y. Sup-

pose that I is a function of 3 variables x, y, z which were the results of a

measurement (see Figure 4.11). The function does not depend on

Fig. 4.11 I is a function of 3 variables x, y, z which were the results of a measurement.

• the choice of the zero point

I(x + b, y + b, z + b) = I(x, y, z)

• nor the scale

I(x · a, y · a, z · a) = I(x, y, z).

Setting b = −x and a = 1
y we get

I(x, y, z) = I(x + b, y + b, z + b) = I(0, y − x, z − x) (4.21)

I(x, y, z) = I(a · x, a · y, a · z) = I

(
x

y
, 1,

z

y

)

(4.22)
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Combining this two results together we get

I(x, y, z) = I

(

0, 1,
z − x

y − x

)

. (4.23)

Information measurement which yields the numbers x, y, z can be expressed

as a function of the ratio of the difference z−x to the difference y−x. This

ratio corresponds to two measurements for h with x < y < z (see Figure

4.11):

• first with the bounds x < h < z,

• second with the bounds x < h < y.

We can preform a third measurement h with x < w < y < z, see Figure

4.12. The information content of the second measurement relative to the

Fig. 4.12 x, y, z, w describe two measurements for h with x < w < y < z.

first one is

I(x, y, z) = I

(

0, 1,
z − x

y − x

)

(4.24)

and the information content of the third measurement relative to the second

one is

I(x, y, z) = I

(

0, 1,
y − x

w − x

)

. (4.25)

The information content of the third measurement relative to the first

should remain unchanged

I

(

0, 1,
z − x

w − x

)

= I

(

0, 1,
z − x

y − x

)

+ I

(

0, 1,
y − x

w − x

)

. (4.26)

We simplify

I

(
z − x

w − x

)

= I

(
z − x

y − x

)

+ I

(
y − x

w − x

)

(4.27)

with

t := z − x, u := y − x, v := w − x
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I

(
t

v

)

= I

(
t

u

)

+ I
(u

v

)

(4.28)

and with

s :=
1

v
, u := 1

I(s · t) = I(t) + I(s). (4.29)

I must be a Logarithm with respect to chosen base, for log2

I(s) = log2 s (4.30)

and

I

(
z − x

w − x

)

= log2

(
z − x

w − x

)

(4.31)

represent the gain of information in bits. The general case is the one of the

two measurements, with the first measurement x < h < z and second one

is a more precise measurement u < h < v with x < u < v (see Figure 4.13).

Additivity of the information function I provides

Fig. 4.13 The general case is the one of the two measurements, with the first mea-
surement x < h < z and second one is a more precise measurement u < h < v with
x < u < v.

I

(
z − x

z − u

)

+ I

(
z − u

v − u

)

= I

(
z − x

v − u

)

(4.32)

• First term is the information increment obtained by narrowing the es-

timate x < h < z to u < h < z where x < u.

• Second term is the information increment gained by narrowing the es-

timate u < h < z to u < h < v where v < z.

• Sum as in formation gained by passing from the estimate x < h < z to

the more precise estimate u < h < v.
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4.3.2 Nature of information measure

Information measure is relative [Resnikoff (1989)]:

• The information remains unchanged when each of the variables is in-

creased by a value or multiplied by a constant.

• A single measurement does not provide information.

Information gained from the measurement of an interval must always be

considered relative to some prior measurement. This prior measurement can

be represented by a pre defined scale representing the first measurement,

like defined by the metric system.

4.3.3 Measurement of angle

In a circle a measurement is represented by an angle α and a more exact

one by the angle β with α > β (see Figure 4.14). The information gain is

Fig. 4.14 In a circle a measurement is represented by two angles.

I

(
α

β

)

= log2

(
α

β

)

(4.33)

bits. The angle measure of a direction must lie between 0 and 2 · π With a

priori knowledge α = 2 · π only one measurement β is required [Resnikoff

(1989)]

I

(
2 · π
β

)

= log2

(
2 · π
β

)

. (4.34)

For a straight line β = π and the information content is

I(π) = log2

(
2 · π
π

)

= 1 bit. (4.35)
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The observed direction lies in one half-of the planes. Smaller angles corre-

spond to greater information, I(π/2) = 2 bits, I(π/4) = 3 bits.

4.3.4 Information and contour

A contour is subdivided into short segments of equal length. Each seg-

menting point can be thought as the vertex of an angle formed with two

neighboring points [Resnikoff (1989)]. Associated with that angle is its

measure of information gain. In a simple example there are three points P ,

Q, R (see Figure 4.15). We move on a line from P to Q. The corresponding

information is 1 bit. The information gain passing from one straight line

to the next is

I
(π

π

)

= 0 bits

since the angle remains unchanged. When the right angle at vertex Q is

reached, there is a positive gain of information

I

(
π

π/2

)

= 1 bits.

At the next step, passing from right angle to the straight angle there is an

information loss

I

(
π/2

π

)

= −1 bits.

In the example the right angle is where the contour changes its direction.

Fig. 4.15 There are three points P , Q, R.

Corners yield the greatest information, more strongly curved points yield

more information.
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4.4 Information and Memory

“Human memory is based on associations with the memories it contains.

Just a snatch of well-known tune is enough to bring the whole thing back to

mind. A forgotten joke is suddenly completely remembered when the next-

door neighbor starts to tell it again. This type of memory has previously

been termed content-addressable, which means that one small part of the

particular memory is linked - associated -with the rest.” Cited from [Brunak

and Lautrup (1990)], page 104.

Associative memory models human memory [Palm (1990); Churchland

and Sejnowski (1994); Fuster (1995); Squire and Kandel (1999)]. The as-

sociative memory and sub-symbolic distributed representation incorporate

the following abilities in a natural way [Palm (1982); Hertz et al. (1991);

Anderson (1995b); Kohonen (1989)]:

• The ability to correct faults if false information is given.

• The ability to complete information if some parts are missing.

• The ability to interpolate information. In other words, if a sub-symbol

is not currently stored the most similar stored sub-symbol is deter-

mined.

The Lernmatrix, also simply called “associative memory”, was devel-

oped by Steinbuch in 1958 as a biologically inspired model from the effort

to explain the psychological phenomenon of conditioning [Steinbuch (1961,

1971)]. Later this model was studied under biological and mathematical as-

pects mainly by Willshaw [Willshaw et al. (1969)] and Palm [Palm (1982,

1990)].

Associative memory is composed of a cluster of units. Each unit rep-

resents a simple model of a real biological neuron. The Lernmatrix was

invented by Steinbuch, whose goal was to produce a network that could use

a binary version of Hebbian learning to form associations between pairs of

binary vectors, for example each one representing a cognitive entity. Each

unit is composed of binary weights, which correspond to the synapses and

dendrites in a real neuron (see Figure. 4.16).

They are described by wij ∈ {0, 1} in Figure 4.17. T is the threshold

of the unit. The Lernmatrix is simply called associative memory if no

confusion with other models is possible [Anderson (1995a); Ballard (1997)].

The patterns, which are stored in the Lernmatrix, are represented by

binary vectors. The presence of a feature is indicated by a ‘one’ component

of the vector, its absence through a ‘zero’ component of the vector. A pair of
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dendrites

synapse

soma

axon
unitneuron

Fig. 4.16 A unit is an abstract model of a biological neuron [McClelland and Kawamoto
(1986); Palm (1990); Hertz et al. (1991); OFTA (1991); Schwenker (1996)].
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Fig. 4.17 The Lernmatrix is composed of a set of units which represent a simple model
of a real biological neuron. The unit is composed of weights, which correspond to the
synapses and dendrites in the real neuron. In this Figure they are described by wij ∈
{0, 1} where 1 ≤ i ≤ m and 1 ≤ j ≤ n. T is the threshold of the unit.

these vectors is associated and this process of association is called learning.

The first of the two vectors is called the question vector and the second,

the answer vector. After learning, the question vector is presented to the

associative memory and the answer vector is determined by the retrieval

rule.

Learning Initially, no information is stored in the associative memory.

Because the information is represented in weights, all unit weights are ini-

tially set to zero. In the learning phase, pairs of binary vector are associated.
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Let ~x be the question vector and ~y the answer vector, the learning rule is:

wnew
ij

{
1 if yi · xj = 1

wold
ij otherwise.

(4.36)

This rule is called the binary Hebbian rule [Palm (1982)]. Every time a

pair of binary vectors is stored, this rule is used.

Retrieval In the one-step retrieval phase of the associative memory, a

fault tolerant answering mechanism recalls the appropriate answer vector

for a question vector ~x. The retrieval rule for the determination of the

answer vector ~y is:

yi =

{
1
∑n

j=1 wijxj = T

0 otherwise
(4.37)

where T is the threshold of the unit. The threshold T is set to the number

of “one” components in the question vector ~x, T := |~x|. It is quite possible

that no answer vector is determined (zero answer vector). This happens

when the question vector has a subset of components that was not correlated

with the answer vector. A solution to this problem is the soft threshold

strategy. In this strategy, the threshold is set to the maximum sum:

T :=max i

n∑

j=1

δ(wijxj) (4.38)

with

δ(x) =

{
1 if x > 0

0 if x = 0
(4.39)

and the retrieval rule for the determination of the answer vector ~y is:

yi =

{
1
∑n

j=1 wijxj ≥ T

0 otherwise.
(4.40)

This retrieval is called:

• association provided that the answer vector represents the reconstruc-

tion of the disturbed question vector;

• hetero-assocation if both vectors are different.
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Example In Figure 4.18 the vector pair ~x1 = (1, 0, 0, 0, 1) and ~y1 =

(0, 1, 1, 1, 0) is learned. The corresponding binary weights of the associ-

ated pair are indicated by a black square. In the next step the vector pair

~x2 = (0, 1, 1, 0, 1) and ~y2 = (1, 1, 0, 0, 1) is learned. The corresponding bi-

nary weights of the associated pair are indicated by a black circle. In third

step the retrieval phase is preformed. The question vector ~x∗ = (0, 1, 0, 0, 1)

differs by one bit to the learned question vector ~x2 = (0, 1, 1, 0, 1). The

threshold T is set to the number of “one” components in the question vec-

tor ~x∗, T = 2. The retrieved vector is the vector ~y2 = (1, 1, 0, 0, 1) that

was stored. A backward projection can be preformed in the fourth step.

The synaptic matrix is a transpose of the matrix W , which is used for the

forward projection. The similarity between the stored vector pair and the

presented can be computed.

Fig. 4.18 The vector pair ~x1 = (1, 0, 0, 0, 1) and ~y1 = (0, 1, 1, 1, 0) is learned. The
corresponding binary weights of the associated pair are indicated by a black square. In
the next step the vector pair ~x2 = (0, 1, 1, 0, 1) and ~y2 = (1, 1, 0, 0, 1) is learned. The
corresponding binary weights of the associated pair are indicated by a black circle. In
third step the retrieval phase is preformed. The question vector ~x∗ = (0, 1, 0, 0, 1) differs
by one bit to the learned question vector ~x2 = (0, 1, 1, 0, 1). The threshold T is set to
the number of “one” components in the question vector ~x∗, T = 2. The retrieved vector
is the vector ~y2 = (1, 1, 0, 0, 1) that was stored. A backward projection can be preformed
in the fourth step. The synaptic matrix is a transpose of the matrix W , which is used for
the forward projection. The similarity between the stored vector pair and the presented
can be computed.
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Storage capacity For an estimation of the asymptotic number L of vec-

tor pairs (~x, ~y) that can be stored in an associative memory before it begins

to make mistakes in the retrieval phase, it is assumed that both vectors have

the same dimension n. It is also assumed that both vectors are composed

of k ones, which are equally likely to be in any coordinate of the vector. In

this case it was shown [Palm (1982); Hecht-Nielsen (1989); Sommer (1993)]

that the optimum value for k is approximately

k
.
= log2(n/4). (4.41)

For example for a vector of the dimension n=1000000 only k = 18 ones

should be used to code a pattern according to the Equation 4.41. For

an optimal value for k according to the Equation 4.41 with ones equally

distributed over the coordinates of the vectors, approximately L vector

pairs can be stored in the associative memory [Palm (1982); Hecht-Nielsen

(1989)]. L is approximately

L
.
= (ln 2)(n2/k2). (4.42)

This value is much greater than n. The estimate of L is very rough because

Equation 4.42 is only valid for very large networks. Equation 4.42 does

not apply for networks of reasonable size, however the capacity increase is

still considerable. For realistic values please consult Table 2 in [Knoblauch

et al. (2010)]. Small deviation from the logarithmic sparseness reduces the

network capacity. It is very difficult to find coding schemas that represent

the information by logarithmic sparse codes [Knoblauch et al. (2010)].

It should be noted that the Lernmatrix system allows high capacity and

fast access when working in parallel, each unit represents a neuron that

performs calculations. On a conventional Von Neumann architecture, com-

pressed look-up tables are more efficient [Knoblauch et al. (2010)]. However

a Von Neuman architecture is not biologically plausible.

Information and storage capacity We indicate a sketch of a proof for

Equation 4.41 and 4.42 [Hecht-Nielsen (1989)]. There are C(n, k) different

binary vectors of the dimension n with k ones,

C(n, k) =
n!

(n− k)! · k!
(4.43)

for example

C(3, 2) =
3!

(1)! · 2!
= 3,

(1, 1, 0), (1, 0, 1), (0, 1, 1).
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We can determine for each vector the probability the presence of a one

pC(n,k) =
1

C(n, k)
. (4.44)

The entropy of L vectors is

H(F ) = −
∑

i

pi log2 pi = −L · pC(n,k) log2 pC(n,k) (4.45)

and we can rewrite it as

H(F ) = L · 1

C(n, k)
log2 C(n, k). (4.46)

The self-information or the information content associated with the out-

come of a random variable ωi is defined as

I(ωi) = − log2 P (ωi). (4.47)

The information content of L vectors is

I = −L · log2 pC(n,k) = L · log2 C(n, k) = L · log2

(
n!

(n− k)! · k!

)

. (4.48)

We want to maximize the information I in correspondence to the size of

the associative memory n,

Maximize −→ I

n2
. (4.49)

Depending on the size n, we have to find optimal values for k and L.

• We need to determine the probability p after storing L binary vectors

in the associative memory, that a weight wij at a certain position (ij)

is one.

• We need to determine the probability p−1 after storing L binary vectors

in the associative memory, that a weight wij at a certain position (ij)

is zero.

The probability p depends on the probability 1 − p. For L pairs the prob-

ability that a weight is zero is

(1 − p) =

(
n2 − k2

n2

)L

(4.50)

since the probability of a sequence of n independent events is its product.

For L pairs the probability that a weight is one is

p = 1 −
(

1 − k2

n2

)L

. (4.51)
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We try to determine the probability of obtaining an extra 1 during recall of

~yq. We know that the vector ~xq has k ones and the probability of a weight

being 1 is p. Let us demand that the number of wrong ones on each ~yq
vector recall be 1. The product of (n − k), the number of 0 in ~yq and the

probability of each 0 being wrongly set to one (pk) will be equal to one

1 = (n− k) · pk. (4.52)

Combining the Equations 4.51 and 4.52 yields

(n− k) ·
(

1 −
(

1 − k2

n2

)L
)k

= 1, (4.53)

1 −
(

1 − k2

n2

)L

= (n− k)−
1
k , (4.54)

(

1 − k2

n2

)L

= 1 − (n− k)−
1
k , (4.55)

L · log

(

1 − k2

n2

)

= log
(

1 − (n− k)−
1
k

)

, (4.56)

L =
log
(

1 − (n− k)−
1
k

)

log
(
1 − k2

n2

) . (4.57)

Combining the Equations 4.48

I = L · log2 C(n, k) =
log
(

1 − (n− k)−
1
k

)

log
(
1 − k2

n2

) · log2

(
n!

(n− k)! · k!

)

(4.58)

and

log2

(
n!

(n− k)! · k!

)

= log2(n!) − log2((n− k)!) − log2(k!). (4.59)

We can use the logarithmic version of Sterling‘s formula. The Sterling‘s

formula is given by

log(n!) =
n + 1

2
· log(n) − n +

1

2
· log(2 · π), (4.60)

log2(n!) =
n + 1

2
· log2(n) · log(2) − n +

1

2
· log2(2 · π) · log(2),

log2(n!) =
n + 1

2
· log2(n) · log(2)− n + 0.92. (4.61)
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All together yields

I = L · log2 C(n, k) =
1

log(2)
·




log
(

1 − (n− k)−
1
k

)

log
(
1 − k2

n2

)



 ·

(

n +
1

2
· (log(n) − log(n− k)) + k · log(n− k) − log(k) ·

(

k +
1

2

)

− 0.92

)

(4.62)

Using computer simulation we can determine the corresponding values k

that maximize I

Maximize −→ I

n2

depending on n, n = 102, 103, · · · , 10100, see Figure 4.19. We find the

20000 40000 60000 80000 100000

8

10

12

14

Fig. 4.19 Values k that maximizes I for n = 102, 103, 104, 105.

optimum value for k to be

k
.
= log2(n) − 2 = log2(n/4) (4.63)

and

L
.
= (ln 2)(n2/k2).

Substituting Equation 4.63 into Equation 4.62 we get the upper bound for

large n

I = n2 log 2 = n2 · 0.693 (4.64)

the asymptotic capacity is 69.31 percent with allowed error rate of one

additional one per ~yq as expressed by Equation 4.52. This capacity is only

valid for sparse equally distributed ones [Palm (1982)].
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Weight matrix diagram The diagram of the weight matrix illustrates

the weight distribution which results from the distribution of the stored

patterns [Marcinowski (1987); Freeman (1994)]. Useful associative proper-

ties result from equally distributed weights over the whole weight matrix.

Clusters in the diagram indicate strong correlation between parts of stored

patterns. The load of the associative memory is indicated by the percent-

age of weights which are not zero. A high percentage indicates an overload

and the loss of its associative properties. Figure 4.20 represents a diagram

of a high loaded matrix with equally distributed weights.

Structure of weight matrix The structure of the weight matrix indi-

cates the elementary blocks which compose an associative memory. It is

represented by the frequency of different sum values of the weights of rows

or columns [Marcinowski (1987)]. The sum over column i is,

µi =

n∑

j=1

wij

The µi are sorted with a new index π = ι(i),

µ1 ≤ µ2 ≤ µ3 ≤ µπ ≤ . . . ≤ . . . ≤ µm.

The number ζ of groups with different µ values and the number of their

elements is determined,

µ1 = µ2 = µ3
︸ ︷︷ ︸

τ1=3

< µπ = . . .
︸ ︷︷ ︸

τ2

< . . . = µm.
︸ ︷︷ ︸

τζ

This can be represented as a procedure:

Φ = 1

τΦ = 1

FOR π = 1 TO m-1 STEP 1

DO

IF µπ = µπ+1 THEN τΦ = τΦ + 1

ELSE DO Φ = Φ + 1; τΦ = 1 OD

OD

ζ = Φ.
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The ζ sorted different τΦ values are represented by a diagram. The x

axis represents the Φ ∈ [1, 2, . . . , ζ] values and y axis the corresponding

frequency of sum values τΦ. The relationship between the x axis ordinate

and corresponding value µπ is represented additionally, for example, by an

additional plot. If the associative memory performs hetroassocative recalls,

the associative matrix is not symmetric and the diagrams for the sum of

rows and columns are different. The sum over row j is

µj =

n∑

i=1

wij .

There are n µj values (see Figure 4.17). In Figure 4.21 the structure of

the weight matrix of Figure 4.20 is represented. The plot illustrates that the

weight matrix is composed of approximately 300 elementary blocks which

represent a nearly gausian correlation between the stored pattern parts.

Figure 4.20 shows the distribution results of the ten randomly set ones in

the 2000 dimensional, 20000 learned vector pairs.

200 400 600 800 1000 1200 1400 1600 1800 2000
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Fig. 4.20 The weight matrix after learning of 20000 test patterns, in which ten ones were
randomly set in a 2000 dimensional vector represents a high loaded matrix with equally
distributed weights. This example shows that weight matrix diagram often contains
nearly no information. Information about the weight matrix can be extracted by the
structure of weight matrix. (White color represents weights.)
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Fig. 4.21 38% of synapses of associative memory are not zero. (a) The frequency of
different sum values of columns. (b) The corresponding sum values of columns. (c) The
frequency of different sum values of rows. (d) The corresponding sum values of rows.

4.5 Sparse code for Sub-symbols

Usually suboptimal sparse codes are used. An example of a suboptimal

sparse code is the representation of words by context-sensitive letter units

[Wickelgren (1969, 1977); Rumelhart and McClelland (1986); Bentz et al.

(1989)]. The ideas for the used robust mechanism come from psychology

and biology [Wickelgren (1969, 1977); Rumelhart and McClelland (1986);

Bentz et al. (1989)]. Each letter in a word is represented as a triple, which

consists of the letter itself, its predecessor, and its successor. For example,

six context-sensitive letters encode the word desert, namely: de, des, ese,

ser, ert, rt . The character “ ” marks the word beginning and ending.

Because the alphabet is composed of 26+1 characters, 273 different context-

sensitive letters exist. In the 273 dimensional binary vector each position

corresponds to a possible context-sensitive letter, and a word is represented

by indication of the actually present context-sensitive letters.

A set of features can be represented by a binary vector and represent a

category. A position in the corresponding vector corresponds to a feature.

To be sparse, the set of features that describes a category compared to the

dimension of the vector has to be sufficiently small. This is because, of all

possible features, only some should define categories. This can be achieved

by sparsification based on unary sub-vector representation.
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4.5.1 Sparsification based on unary sub-vectors

A binary representation of a number h would require a vector of length

d = blog2h+1c. However if we represent the number h in unary, we requireh

positions. One unary representation of h 6= 0 is a string of h− 1 zeros with

a one at h-th postion [Wichert (2013)]. A binary number of length d is

represented by a unary number of 2d positions, which is exponential in

the size of input. A binary vector ~x of dimension t is split into f distinct

sub vectors of dimension p = dim(t/f). The binary sub vectors ui(~x) of

dimension p = dim(t/f) are represented as unary vectors of dimension 2p :

~x = x1, , x2, · · · , xp
︸ ︷︷ ︸

u1(~x)

, · · · , xm−p+1, · · · , xm
︸ ︷︷ ︸

uf (~x)

(4.65)

The resulting binary vector is composed out of the unary vectors and has

the dimension f ·2p. In the following example a binary vector of dimension

6 is split into 2 distinct sub vectors of dimension 3. The binary sub vectors

ui(~x) of dimension 3 are represented as unary vectors of dimension 23 :

~x = 1, 0, 1
︸ ︷︷ ︸

u1(1,0,1)

, 0, 0, 1
︸ ︷︷ ︸

u2(0,0,1)

(4.66)

u1(1, 0, 1) = (0, 0, 0, 0, 1, 0, 0, 0); (h = 5)

u2(0, 0, 1) = (1, 0, 0, 0, 0, 0, 0, 0); (h = 1)

u(~x) = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (4.67)

resulting in a new vector of dimension 16 = 2∗23 with 2 ones. The resulting

vector is more sparse, however some information related to correlation is

lost [Wichert (2013)]. These ideas are related to the Wilshaw model of

associative memory with local inhibition [Shim et al. (1990)] and [Kropff

and Treves (2005)].

4.6 Deduction Systems and Associative Memory

In this section we will present a straightforward transformation from sym-

bolic rules into a representation by associative memory. We will indicate

that deduction systems may be represented by an associative memory with

feedback connections [Wichert (2005b)], [Wichert (2006)], [Wichert (2012)].
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Binary vectors can represent features. A ‘one’ represents a feature at the

corresponding position of a binary vector; its absence is denoted by a ‘zero’.

The feature set A,B,C,D,E, F,G,H, I, J,K (defined in the preceding sec-

tion) is represented by a binary vector of dimension 11, no distinction be-

tween categories and features is made. The presence of features C and E

is represented by the binary vector [0 0 1 0 1 0 0 0 0 0 0].

The associative memory represents the long-term memory of our de-

duction system in which the rules are stored. In the initialization phase

of the associative memory, no information is stored. Because the infor-

mation is represented in the weights, they are all initially set to zero. In

the learning phase, binary vector pairs are associated. In the first vector

~x we store the feature set; the category itself is indicated by the second

vector ~y. For example, the rule D ∧ F then B is represented in the vectors

x = [0 0 0 1 0 1 0 0 0 0 0] and y = [0 1 0 0 0 0 0 0 0 0 0].

We demonstrate this procedure with the example that was introduced in

the section about the deduction systems (see Section 3.2.1). For clarity we

can replace the names of features and categories by symbols, each symbol

representing a name, for example B representing “oil lamp lights during

driving round a bend”:

(1) B ∨ C then A

(2) D ∧ F then B

(3) E ∧ F then C

(4) H ∧ F ∧ I then G

(5) F ∧ I then J

(6) K then F

In Figure 4.22 we see the associative memory after learning of the six

rules. The ‘or’ rules are indicated by a one in the threshold. For example,

the ‘or’ rule B ∨ C then A is represented by the first unit, and the rule D

∧ F then B is represented by the second unit (see Figure 4.22).

After learning the categories can be determined by the inference with the

aid of associative memory. The present features represented by the question

vector ~x are presented to the associative memory and the categories are

identified by the retrieval rule which determines the answer vector ~y with

the aid of the following adapted retrieval rule:

yi = µ(zi) (4.68)
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Fig. 4.22 The architecture of our inference system is composed of associative memory
with feedback connections [Palm (1990); Palm et al. (1992)]. The rule B ∨ C then A is
represented by the first unit; that it is an ‘or’ rule is indicated by a one in its threshold
(represented in this Figure by a black dot). The associative memory forms the long-term
memory; the short-term memory that is initialized with the initial state description is
represented by the row buffer on the left side of the associative memory. The features of
the short-term memory are presented to the associative memory, which determines the
categories by using the retrieval rule. The determined categories are transported from
the buffer below the units (column buffer) via the feedback connections to the short-term
memory.

with

zi =

∑n
j=1 wijxj − 1
∑n

j=1 wij
(4.69)

and

µ(zi) =







1 if

{
zi > 0 for or rules

zi = 1 for and rules

0 else

(4.70)

The short-term memory, which is initialized with the initial state de-

scription, is represented by the row buffer (short-term memory) on the
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Fig. 4.23 (i) The features ‘oil lamp lights up’ and ‘braking’ are represented in our
symbol notation by K and E respectively. The short-term memory is initialized with
/K,E/. (ii) In the first inference step, F is deduced. The activation of the units is
indicated by the buffer below the units and should be not confused with the ‘or’ rule

indication of a one in the threshold (represented by a black dot). iii) The short-term
memory is now /K,E, F/. The features of the short-term memory are presented to the
associative memory, and C and F are deduced in the following inference. (iv) The short-
term memory is now updated to /K,E, F,C/. In the next inference step, C, F and A are
deduced. A is deduced, because A ⇒ B ∨C is an ‘or’ rule as indicated by the threshold
value one of the corresponding unit (represented by a black dot

left side of the associative memory, see Figure 4.22. The features of the

short-term memory are presented to the associative memory, which deter-

mines the categories by using the retrieval rule to perform an inference step.

The determined categories are transported from the buffer below the units

(column buffer) via the feedback connections to the short-term memory.

The short-term memory is updated and the procedure is repeated until the

short-term memory does not change, i.e. the number of features in it does

not grow.
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Fig. 4.24 Representation of 16 rules arranged in five modules by two directed AND/OR
graphs. A name and a number in the context of a module indicate each feature. Each
module is represented by an associative memory. The number of a feature indicates the
position in the corresponding vector. A disorder that is defined in a certain module
can cause a manifestation in other modules. This relation corresponds to connections
between modules. The ‘and’ rules are indicated by an arc between the links connecting
the nodes, which indicate the manifestations.

The features ‘oil lamp lights up’ and ‘braking’ are present (represented

in our symbol notation by K and E). The short-term memory is initialized

with /K,E/ (see Figure 4.23 (i)). In the first inference step, F is deduced;

the short-term memory is now /K,E, F/ (see Figure 4.23 (ii)). The features

of the short-term memory are presented to the associative memory and, in

the following inference, C and F are deduced (see Figure 4.23 (iii)). The

short-term memory is then updated to /K,E, F, C/. In the next inference

steps, C, F and A are deduced. A is deduced, because A ⇒ B ∨ C is an

‘or’ rule as indicated by the threshold value of the corresponding unit (see

Figure 4.23 (iv)). The inference procedure is completed because no new
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features are determined in the following inference step. In our example

the category A would correspond to “the cable of the oil pressure lamp is

loose.”

The representation of directed AND/OR graphs by associative memory

with feedback are summarized in the following points:

• The inference in the AND/OR graphs corresponds to breadth-first

search.

• The number of cycles performed by the associative memory with

the feedback correspond to the maximum depth of the represented

graphs.

• The directed AND/OR graph can contain cycles, because only new,

not yet present disorders are added to the short term memory, and the

feedback is done until the number of features in the short term memory

does not grow.
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Fig. 4.25 The five modules are represented by five associative memories. By arranging
them diagonal, we compose a global associative memory. An associative memory of
dimension 30 evolves. In this global context, connections between modules can be easily
indicated by weights depicted outside the modules. Connection from the first to the
second module is indicated by the weights in the column of the first module and the row
of the second module. In this Figure we can see three connections between the modules.
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• The number of represented disorders is correlated with the size of the

associative memory; this number is only limited by the size of the

expandable associative memory.

4.6.1 Taxonomic knowledge organization

For clarity, rules should be arranged in groups [Aikins (1986); Kahn et al.

(1987)] that define taxonomy. A module could represent a group, each

feature is indicated by a name in the context of a module and each module

is represented by an associative memory [Wichert (2012)] (see Figure 4.24).

Each module (see Figure 4.24) could correspond to a different area of

the human brain. How can we link this different areas of the brain? For

example, 5 modules would be represented by 5 associative memories. From

the 5 associative memories, we can compose a global associative memory by

the arrangement on the diagonal. An associative memory of the dimension

30 evolves in which local feature addresses are translated into global feature

addresses (see Figure 4.25). In this global context, connections between

modules can be easily indicated by weights outside the modules, in the

column of the first module and the row to the second module (connection

from the first module to the second module). In Figure 4.25 we can see three

connections between the modules corresponding to our rule base [Wichert

(2012)].
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Chapter 5

Reversible Algorithms

5.1 Reversible Computation

Energy is negligible when using the Turing machine model, because the

Turing machine itself constitutes an infinitely long tape and does not re-

quire any energy resources. However, what is the relation between energy

and information that is processed by a Turing machine? In the thermody-

namic Maxwell paradox, there is a demon that observes the gas molecules.

Between the chambers, there is a small door. The demon can open and close

the small door, passing only one molecule into a chamber. The negative of

the demon’s entropy increments as the measure of the quantity of the infor-

mation that it has used. Information increments when entropy decrements.

The information must be stored in a demon’s memory. Given the fact that

the memory is finite, the demon must erase some information. The erasing

of information increases the entropy represented by energy. Bennett (1973)

showed [Bennett (1973)] that irreversible overwriting of one bit causes at

least k · T · log2 joules of energy dissipation, where k is Boltzmann’s con-

stant and T is the absolute temperature. Bennett also indicated that this

lower bound can be ignored when using reversible computation. Reversible

computing is a model of computing in which the computational process is

reversible. For example, a NOT gate is reversible in the sense that one

can infer the output from the input. However, neither the AND or OR

gates are reversible in the sense that one cannot infer the output from the

input. For example, (1 AND 0) = (0 AND 1) = (0 AND 0) = 0 [Ben-

nett (1982)]. Reversibility is obtained by Bennett by the storage of all of

the computational steps. A three-tape Turing machine is used, with an

input tape, history tape and output tape. The computation is performed

on the input tape, and all steps are stored on the history tape. Without

75
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the history tape, the computational history would be forgotten. When the

computation stops, the results are copied to the output tape, and the com-

putation is run backward to erase the history tape for feature usage. Any

Turing machine can be simulated by a reversible Turing machine [Bennett

(1988)], [Bennett (1989)]. For a reversible production system, the sequence

of productions at each step must be remembered. This requirement is usu-

ally met for any production system. A computation of a production system

is specified by the initial and the goal state, the set of productions. The

solution is represented by the sequence of productions at each step.

5.2 Reversible Circuits

5.2.1 Boolean gates

The sets of truth functions can be computed using Boolean circuits, which

are composed of Boolean gates. An algorithm can be described by such a

circuit; however, the AND and OR gates are not reversible; each one of

them erases one bit and generates approximately k ·T · log2 joules of energy

dissipation [Landauer (1961)], [Landauer (1992)]. During the computation,

information is lost; however, at the same time, the entropy grows [Landauer

(1992)], [Bennett (2003)]. For this reason, processors generate waste heat

and must be cooled to keep them within permissible operating temperature

limits. A solution to the generation of waste heat is reversible Boolean

gates. However, reversible Boolean gates require additional waste bits.

5.2.2 Reversible Boolean gates

To make a circuit reversible, we must make each of the gates reversible.

A necessary condition for a reversible gate is that of a bijective transition

function with m inputs and m outputs. No injective transition function

can be used, if n is the input and m the output; if n > m, then some

information is lost. Such a bijective function is a permutation of m inputs

and m outputs. For m bits, there are c = 2m different combinations. For

c different combinations, there are c! possible permutations between the

input and output. A reversible gate is such a permutation. For the NOT

gate, there are two possible combinations of one bit, c = 21. Either the

bit is 1 or 0. There are also two possible permutations, which means two

different gates, which are both reversible. One gate is the identity gate,

and the other gate is the NOT gate. Both of them are reversible. For the
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Table 5.1 Truth table of the Toffoli
gate.

inputs outputs

dec. x1, x2, x3 y1, y2, y3 dec.

0 0,0,0 0,0,0 0

1 0,0,1 0,0,1 1

2 0,1,0 0,1,0 2

3 0,1,1 0,1,1 3

4 1,0,0 1,0,0 4

5 1,0,1 1,0,1 5

6 1,1,0 1,1,1 7

7 1,1,1 1,1,0 6

identity gate, the input is equal to the output. For gates with two bits,

there are altogether four combinations of two bits, c = 22 and 24 = 4!

possible permutations, which means 24 different gates. However, none of

the 24 gates solves the AND or OR problem.

5.2.3 Toffoli gate

The AND gate can be only computed by a reversible gate, which operates

on three bits. On there bits, c = 23 and 40320 = 8! possible permutations.

One of the possible permutations corresponds to the truth table of the

Toffoli gate [Toffoli (1980a)], [Toffoli (1980b)], [Toffoli (1980c)] Each value

of Table 5.1 corresponds to three input bits x1, x2, x3 and three output bits

y1, y2, y3. The permutation is defined by the exchange of the values 1, 1, 0

with 1, 1, 1 (decimal 6, 7).

The Toffoli gate does not change the first input bits x1 and x2. The op-

eration is described by the following mapping on three input bits x1, x2, x3

with B = {0, 1}
T : B3 → B3 :, T (x1, x2, x3) = (x1, x2, (x1 ∧ x2) ⊕ x3)

A Toffoli gate is a universal reversible gate it performs following operations.

• It computes the AND operation, the ancilla (fixed) bit x3 is set to 0

T : B3 → B3 :, T (x1, x2, 0) = (x1, x2, x1 ∧ x2)

• It computes the NOT operation on x3

T : B3 → B3 :, T (1, 1, x3) = (1, 1,¬x3)

• It computes the NAND operation, the ancilla (fixed) bit x3 is set to 1

T : B3 → B3 :, T (x1, x2, 1) = (x1, x2,¬(x1 ∧ x2)
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• It computes the FANOUT operation (the value of bit x2 is copied into

x3)

T : B3 → B3 :, T (1, x2, 0) = (1, x2, x2)

The OR operation follows from the De Morgan’s laws

x1 ∨ x2 = ¬(¬x1∧,¬x2)

Because NAND and FANOUT are together universal, we can implement

any reversible circuit using the Toffoli gate.

5.2.4 Circuit

A reversible circuit can be built using Toffoli gates and NOT gates. This

construct represents a permutation on m bits, defining an injective mapping

Bm → Bm. Out of m bits, several bits act as control bits (ancilla bits) and

others are not changed during the computation. For each AND operation,

one ancilla bit is required. A reversible circuit performs a permutation

of the input bits. The output is a permutation of the input bits. Each

reversible circuit can be represented by a permutation matrix. As stated

before, a circuit is not an algorithmic device; by itself, it does not correspond

to a universal reversible Turing machine. This arrangement also applies to

any reversible circuit.
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Chapter 6

Probability

6.1 Kolmogorovs Probabilities

Probability theory is built around Kolmogorov’s axioms (first published in

1933, [Kolmogorov (1933)]). All probabilities are between 0 and 1. For any

proposition a,

0 ≤ P (a) ≤ 1

and

P (true) = 1, P (false) = 0.

To each sentence, a numerical degree of belief between 0 and 1 is assigned,

which provides a way of summarizing the uncertainty. The last axiom

expresses the probability of disjunction and is given by

P (a ∨ b) = P (a) + P (b) − P (a ∧ b)

Where do these numerical degrees of belief come from?

• Humans can believe in a subjective viewpoint, which can be determined

by some empirical psychological experiments. This approach is a very

subjective way to determine the numerical degree of belief.

• A more objective method results from physical experiments or from

some databases describing market behavior: for any finite sample, we

can estimate the true fraction and also calculate how accurate our esti-

mation is likely to be. By using samples, as in most physical measure-

ments, we estimate the values. This approach is called frequentist. We

approach the true value by counting the frequency of an event but do

not reach the true value because we cannot access the whole population

of events.

79
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• It appears that the true values can be determined from the true nature

of the universe, for example, for a fair coin, the probability of heads is

0.5. This approach is related to the Platonic world of ideas. However,

we can never verify whether a fair coin exists. To accomplish such a

verification, we would have to follow the frequentist approach.

6.1.1 Conditional probability

The degree of belief P (a) is attached to a sentence a before any evidence

about the nature of the sentence is obtained; we call this probability the

prior (before) probability. Arising from the frequentist approach, one can

determine the probability of an event a by counting. If Ω is the set of all

possible events, P (Ω) = 1, then a ∈ Ω. The cardinality determines the

number of elements of a set, card(Ω) is the number of elements of the set

Ω, card(a) is the number of elements of the set a and

P (a) =
card(a)

card(Ω)
. (6.1)

Now we can define the posterior probability, the probability of a after the

evidence b is obtained

P (a|b) =
card(a ∧ b)

card(b)
. (6.2)

The posterior probability is also called the conditional probability. From

P (a ∧ b) =
card(a ∧ b)

card(Ω)
(6.3)

and

P (b) =
card(b)

card(Ω)
(6.4)

we get

P (a|b) =
P (a ∧ b)

P (b)
(6.5)

and

P (b|a) =
P (a ∧ b)

P (a)
. (6.6)
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6.1.2 Bayes’s rule

The Bayes’s rule follows from both equations

P (b|a) =
P (a|b) · P (b)

P (a)
. (6.7)

For mutually exclusive events b1, ..., bn with
n∑

i=1

P (bi) = 1 (6.8)

the law of total probability is represented by

P (a) =

n∑

i=1

P (a) ∧ P (bi), (6.9)

P (a) =

n∑

i=1

P (a|bi) · P (bi). (6.10)

Bayes rule can be used to determine the prior total probability P (h) of

hypothesis h to given data D.

• P (D|h) is the probability that a hypothesis h generates the data D.

P (D|h) can be easily estimated. For example, what is the probability

that some illness generates some symptoms?

• The probability that an illness is present given certain symptoms, can

be then determined by the Bayes rule

P (h|D) =
P (D|h) · P (h)

P (D)
. (6.11)

The most probable hypothesis hi out of a set of possible hypothesis

h1, h2, · · · given some present data is according to the Bayes rule

P (hi|D) =
P (D|hi) · P (hi)

P (D)
. (6.12)

To determine the maximum posteriori hypothesis hMAP we maximize

hmap = argmaxhi

P (D|hi) · P (hi)

P (D)
. (6.13)

The maximization is independent of P (D), it follows

hmap = argmaxhi
P (D|hi) · P (hi). (6.14)

Given the scores x and y

x = P (D|h) · P (h), z = P (D|¬h) · P (¬h)

the probabilities P (h|D) and P (¬h|D) can be determined by normalization,

talking into account 1 = P (h|D) + P (¬h|D).
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6.1.3 Joint distribution

The joint distribution for n possible variables is described by 2n possible

combinations. The probability distribution d1 × d2 × · · · × dn corresponds

to a vector of length 2n. For a joint distribution of n possible variables,

the exponential growth of combinations being true or false becomes an

intractable problem for large n. For

P (hi|d1, d2, d3, .., dn) =
P (d1, d2, d3, ..., dn|hi) · P (hi)

P (d1, d2, d3, ..., dn)
(6.15)

all 2n − 1 possible combinations must be known. There are two possible

solutions to this problem.

• The first solution is the decomposition of large probabilistic domains

into weakly connected subsets via conditional independence,

P (d1, d2, d3, ..., dn|hi) =

n∏

j=1

P (dj |hi). (6.16)

This approach is known as the Näıve Bayes assumption and is one

of the most important developments in the recent history of Artificial

Intelligence. It assumes that a single cause directly influences a number

of events, all of which are conditionally independent,

hmap = argmaxhi

n∏

j=1

P (dj |hi) · P (hi). (6.17)

However, this conditional independence is very restrictive. Often, it

is not present in real life events. Dependence between some events is

always present.

• Bayesian networks represent the second and more realistic solution.

Bayesian networks can describe a probability distribution of a set of

variables by combining conditional independence assumptions with con-

ditional probabilities. Unlike the Näıve Bayes assumption, which states

that all of the variables are conditionally independent given the value

of the target variable, Bayesian networks enable these conditional inde-

pendence assumptions to be applied to subsets of variables, providing

a model with fewer constraints than the Bayes assumption [Mitchell

(1997)].

6.1.3.1 Example

Cancer screening aims to detect cancer before symptoms appear. This may

involve for example a blood tests. Suppose a result of one secure test is
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positive [Mitchell (1997)]. The test is secure because in 99 percent of the

cases the test returns a correct positive result (= p) in which a rare form of

cancer is actually present. Should the doctor tell the patient, that he has

cancer?

He should not do it. It is quite probable that a false positive error occurs.

A consequence of the Bayesian inference is that such false positive errors

occur when the prior probability is very low. In our case it is the rare form

of cancer. The test has correct negative result (= n) in 99 percent of the

cases when rare form of cancer is not present. It is also known that 0.001

of the entire population have rare form of cancer (= c).

P (c) = 0.001, P (¬c) = 0.999,

P (p|c) = 0.99, P (n|c) = 0.01,

P (p|¬c) = 0.01, P (n|¬c) = 0.99.

We determine hmap,

P (c|p) = α · P (p|c) · P (c) = α · 0.99 · 0.001 = α · 0.00099, (6.18)

P (¬c|p) = α · P (p|¬c) · P (¬c) = α · 0.01 · 0.999 = α · 0.00999, (6.19)

it follows

hmap = ¬c.

By normalization we get the actual probabilities

P (c|p) =
0.00099

0.00099 + 0.00999
= 0.0901639,

and

P (¬c|p) =
0.00999

0.00099 + 0.00999
= 0.909836.

However if we repeat the test again according to the the Näıve Bayes as-

sumption

P (c|p) = α · P (p|c) · P (c) = α · 0.99 · 0.99 · 0.001 = α · 0.00098, (6.20)

P (¬c|p) = α ·P (p|¬c) ·P (¬c) = α ·0.01 ·0.01 ·0.999 = α ·0.0000999, (6.21)

hmap = c.

To rule out false positive error the doctor has to repeat the test.
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6.1.4 Näıve Bayes and counting

The Näıve Bayes approach is related to simple counting if we follow the

frequentist approach. For maximum a posteriori hypothesis hmap

hmap = argmaxhi

n∏

j=1

P (dj |hi) · P (hi) (6.22)

Ω is a set of all possible events

P (hi) =
card(hi)

card(Ω)
(6.23)

and

P (dj |hi) =
card(dj ∧ hi)

card(hi)
, (6.24)

hmap = argmaxhi

n∏

j=1

card(dj ∧ hi)

card(hi)
· card(hi)

card(Ω)
. (6.25)

Because Ω is a set of all possible events it does not play a role in the process

maximization of hmap

hmap = argmaxhi

n∏

j=1

card(dj ∧ hi) (6.26)

we can apply log

hmap = argmaxhi
log





n∏

j=1

card(dj ∧ hi)



 , (6.27)

hmap = argmaxhi

n∑

j=1

log (card(dj ∧ hi)) . (6.28)

For the process of maximization hmap we can simply write

hmap = argmaxhi

n∑

j=1

card(dj ∧ hi). (6.29)

The result is related to categorial representation based the contrast model

of Tversky [Tversky (1977)].
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6.1.5 Counting and categorization

An object is judged to belong to a verbal to the extent that its features are

predicted by the verbal category [Osherson (1987)]. The sets of prototypical

features defines a category. If Ca is a category and B the features set, so

only Ca ∩ B features are considered [Wichert (1998)], [Wichert (2000)].

Then

card(Ca ∧B) = |Ca ∩B|, (6.30)

we normalize the result, in our case we normalize to the interval [−1, 1] and

define the Sim(Ca,B) function as

Sim(Ca,B) =
2

|Ca| · |Ca ∩B| − 1 ∈ [−1, 1] (6.31)

|Ca| is the number of the prototypical features that define the category Ca.

This function corresponds to the simplified normalized contrast model of

Tversky [Tversky (1977)]

Sim(Ca,B) = α|Ca ∩B| − β|Ca−B| (6.32)

in which only Ca ∩B features are considered

Sim(Ca,B) = α|Ca ∩B| − β(|Ca− (Ca ∩B)| (6.33)

it is supposed that the similarity value should be from the interval [−1, 1]

so α = 1/|Ca| and β = 1/|Ca| and

Sim(Ca,B) =
|Ca ∩B|
|Ca| − |(Ca− (Ca ∩B)|

|Ca| . (6.34)

The present features are counted and normalized so that the value can be

compared. For example, the category bird is defined by the following fea-

tures: flies, sings, lays eggs, nests in trees, eats insects. The category bat

is defined by the following features: flies, gives milk, eat insects. The fol-

lowing features are present: flies and gives milk.

Simc(bird, presentfeatures) =
1

5
− 4

5
=

2

5
· 1 − 1 = −3

5
, (6.35)

Simc(bat, presentfeatures) =
2

3
− 1

3
=

2

3
· 2 − 1 =

1

3
. (6.36)

Features that discriminate among relevant facts should have a higher

salience than those that do not [Smith (1995)]. The features of an equal

salience have a unary representation, they can only be represented as ex-

istent or nonexistent. A category that is described as a set of features can
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be present with different grades of vagueness corresponding to the cardinal

number of the set. A set of features that describes a category can be some-

times divided into subsets that represent some subcategories. Each feature

can be also regarded as a kind of subcategory. If this subcategory cannot

be described by other features, but, nevertheless, should have the proper-

ties of variable salience and vagueness, it is described by invisible features.

To each feature a number of invisible features is assigned dependent on its

salience. An example of two old sayings from country folklore:

(1) If it is April and it snows much then probably the apple harvest will

be bad.

(2) If it is April and it rains a lot and it is very cold then the vintage will

be good.

The number of invisible features as determined by the observer:

• April is represented by one invisible feature, as it can be present or

absent.

• Snows much is described by two invisible features because the ob-

server thinks that it has a higher salience than April. It can be either

present, maybe present, or absent.

• The observer thinks that rains a lot has the same salience as snows

much.

• The observer thinks that very cold has the greatest salience, as it is

described by three invisible features. It can be either present, maybe

present, maybe absent or absent.

With this approach hierarchical categorization can be preformed in anal-

ogy to the Näıve Bayes approach. Categories can be divided into subcat-

egories, so that a taxonomy can be constructed and represented by an

acyclic graph. The nodes in this graph correspond to categories and the

links indicate the “is a subcategory” relation between them. The process

of the hierarchical categorization can be performed by moving from more

general categories to more specific categories until the desired categories

are reached. Several expert systems were build based on this approach

[Wichert (2000)], [Wichert (2004)].

6.1.6 Bayesian networks

Bayesian networks also provide a natural representation for (causally in-

duced) conditional independence. Bayesian networks also called belief net-
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works because they represent our beliefs. They represent a set of condi-

tional independence assumptions, by the topology of an acyclic directed

graph and sets of conditional probabilities. In the network each variable

is represented by a node and the links between them represents the con-

ditional independence of the variable towards its non descendants and its

immediate predecessors. Bayesian networks represent for each variable a

conditional probability table which describes the probability distribution

of a specific variable given the values of its immediate predecessors. A

conditional distribution for each node xi given its parents is

P (xi|Parent1(xi), Parent2(xi), .., Parentk(xi))

with k usually between 1 and 4 for nodes xi. Full joint distribution is given

by

P (x1, .., xn) =

n∏

i=1

P (xi|Parent1(xi), Parent2(xi), .., Parentk(xi)). (6.37)

Given the x query variable which value has to be determined and e evidence

variable which is known and the remaining unobservable variables we pre-

form a summation over all possible y (all possible values of the unobservable

variables y according to the law of total probability)

P (x|e) = α
∑

y

P (x, e, y). (6.38)

The values P (x|e), P (¬x|e) can be determined by normalization

1 = α ·
(
∑

y

P (x, e, y) +
∑

y

P (¬x, e, y)
)

.

Cooper [Cooper and Herskovits (1990)] has found that the exact inference

of probabilities is a NP − hard problem.

6.1.6.1 Example

The network topology reflects our belief in the associated causal knowledge.

Consider the well-known example of Judea Perl [Pearl (1989)], [Russell and

Norvig (2010)]. I am at work in Los Angeles, and neighbor John calls to

say that the alarm of my house is ringing, but neighbor Mary does not

call. Sometimes minor earthquakes set off the alarm. Is there a burglary?

Constructing a Bayesian network is difficult because each variable should

be directly influenced by only a few other variables. In the example, there

are five variables, namely, Burglary(= b), Earthquake(= e), Alarm(= a),

JohnCalls(= j), and MaryCalls(= m). The corresponding network topol-

ogy is indicated in Figure 6.1 and reflects the following “causal” knowledge:
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• A burglar can set the alarm off.

• An earthquake can set the alarm off.

• The alarm can cause Mary to call.

• The alarm can cause John to call.

Fig. 6.1 A Bayesian network and the corresponding conditional probability tables. Each
row requires one number p for P (X) = true (P (X) = false is 1 − p).

If all values are observed, for example we know that

j = true,m = true, a = true, b = false, e = false

then

P (j ∧m ∧ a ∧ ¬b ∧ ¬e) = P (j,m, a,¬b,¬e)

P (j,m, a,¬b,¬e) = P (j|a) · P (m|a) · P (a|¬b ∧ ¬e) · P (¬b) · P (¬e)

P (j,m, a,¬b,¬e) = 0.9 · 0.7 · 0.001 · 0.999 · 0.998 = 0.00062.

There are three types of variables: x query variable, e evidence variables

and unobservable variables y. An unobservable variable y is irrelevant

unless y is ancestor of x or e. We want to determine the probability of

Alarm if Burglary , Earthquake, JohnCalls, MaryCalls are unknown. In

this example JohnCalls and MaryCalls are irrelevant [Russell and Norvig

(2010)]. We want to determine the probability of

P (A|b, e, j,m) = α
∑

b

∑

e

∑

j

∑

m

P (A, b, e, j,m). (6.39)
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Small letters indicate instantiationed variables,

P (A|b, e, j,m)

= α
∑

b

∑

e



P (A|b, e) · P (b) · P (e) ·
∑

j

P (j|A) ·
∑

m

P (m|A)



 (6.40)

JohnCalls and MaryCalls are irrelevant, because the sum over j and m

are one
∑

j

P (j|a) =
∑

j

P (j|¬a) =
∑

m

P (m|a) =
∑

m

P (m|¬a) = 1,

for example
∑

j

P (j|a) = 0.9 + 0.1 = 1.

It follows that

P (A|b, e, j,m) = α ·
∑

b

∑

e

P (A|b, e) · P (b) · P (e) · 1 · 1 (6.41)

and

P (A|b, e, j,m)

= α ·
∑

b

(P (A|b, e) · P (b) · P (¬e) + P (A|b,¬e) · P (b) · P (¬e)) (6.42)

P (A|b, e, j,m) = α · (P (A|b, e) · P (b) · P (¬e) + P (A|b,¬e) · P (b) · P (¬e)

+P (A|¬b, e) · P (¬b) · P (¬e) + P (A|¬b,¬e) · P (¬b) · P (¬e)) (6.43)

with the values from conditional probability table

P (a|b, e, j,m) = α(0.95 · 0.001 · 0.002 + 0.94 · 0.01 · 0.998

+ 0.29 · 0.999 · 0.002 + 0.001 · 0.999 · 0.998)

and

P (¬a|b, e, j,m) = α(0.05 · 0.001 · 0.002 + 0.06 · 0.01 · 0.998

+ 0.71 · 0.999 · 0.002 + 0.999 · 0.999 · 0.998),

P (a|b, e, j,m) = α · 0.010960, P (¬a|b, e, j,m) = alpha · 0.99802, (6.44)

α =
1

0.010960 + 0.99802
. (6.45)

The probability of Alarm being present or not is

P (a|b, e, j,m) = 0.010862, P (¬a|b, e, j,m) = 0.98914. (6.46)
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6.2 Mixed Distribution

Suppose that the variable d1 represents whether a person likes mathematics

or not. The truth-values are represented by 0 and 1, so d1 = 0 means that

the person does not like mathematics. The next variable d2 represents

whether the person studies philosophy or not, and d3 represents if the

person knows how to play chess or not. If we introduce positional notation

for the variables, then d1, d2, d3 = 101 would mean that the person likes

mathematics and does not study philosophy and knows how to play chess.

The probability of P (d1 = 1, d2 = 0, d3 = 1) is written in short as p101. In

this case, the distribution d1 × d2 × d3 is represented by a vector of length

8 [Rieffel and Polak (2011)]:

~p = (p000, p001, p010, p011, p100, p101, p110, p111). (6.47)

Suppose that we do not know anything about a person; in this case, the

probability distribution is a mixed distribution and is represented by the

vector

~p = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8).

The vector p represents the mixed distribution on uncertainty before know-

ing the facts about the person. Every possible combination has the same

probability. Before we know the facts, the distribution is mixed, with 23

states. After learning the fact that the person studies philosophy, d2 = 1,

we know for certain that four possible combinations are not present, namely

those combinations in which d2 = 0, which are p000, p001, p100 and p101. The

mixed distribution represented by the vector ~p must be re-normalized,

~p = (0, 0, 1/4, 1/4, 0, 0, 1/4, 1/4).

After learning the fact that the person does like mathematics, d1 = 1, the

mixed distribution represented by the vector ~p, must be re-normalized again

~p = (0, 0, 0, 0, 0, 0, 1/2, 1/2).

Finally, after learning that the person plays chess d3 = 1, the mixed distri-

bution becomes pure; in this case, there is no uncertainty that the vector

~p is a unary vector with a one at the position that corresponds to p111

~p = (0, 0, 0, 0, 0, 0, 0, 1).
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6.3 Markov Chains

A physical system is described by the state of the system. The state of the

system can be represented by a vector ~x. A single object can be described

in classical mechanics by its position and momentum. Momentum is the

product of the mass and velocity of an object. The corresponding vector

is ~x = (x1, x2, x3, p1, p2, p3) ∈ R6, where (x1, x2, x3) describes the posi-

tion and (p1, p2, p3) describes the momentum of the object. As the object

moves, the state of the system changes over time ~x(t). Classical mechan-

ics describes the time evolution of the state by the Hamiltonian equation

of motion represented by differential equations [Hirvensalo (2004)], [Ross

(2009)].

If we do not know the states of the system, we can attempt to describe

the probability distribution of the system. We know that a system is in

states x1, ..., xn with probabilities p1, ...., pn and that they sum up to 1.

The probability distribution over state xi is represented by the mixed state

p1[x1] + p2[x2] + ... + pn[xn]. (6.48)

Tossing a fair coin with a head and a tail is represented by the mixed state

0.5[h] + 0.5[t].

The time evolution of a system is a non-deterministic procedure. It develops

each state xi into a distribution

p1i[x1] + p2i[x2] + ... + pni[xn]

where pij is the probability that the system state xi evolves into xj . A

simplification can be reached by using discrete time. Another simplification

is the one-level dependence of the state, which is also called the Markov

property. Each state is dependent on the preceding state. The discrete

probabilistic time evolution represents a Markov chain that can be described

by linear mapping. Transition probabilities between states are represented

by conditional probabilities

pij = P (xj(t + 1)|xi(t)). (6.49)

We represent

p1[x1] + p2[x2] + ... + pn[xn]

by a stochastic vector

~p = (p1, p2, .., pn).
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For a state xi the mapping is represented by

p′i = pi1p1 + pi2p2 + ... + pinipn. (6.50)

The vector is defined by an n × n stochastic matrix P = [pij ] that is also

called a Markov matrix or a stochastic matrix, and it has the following

properties:

(i) pij ≥ 0 for 1 ≤ i, j ≤ n;

(ii)

n∑

i=1

pij = 1 for 1 ≤ j ≤ n.

The probabilities are related by the linear mapping using the stochastic

matrix P with







p′1
p′2
...

p′n








=








p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn








·








p1

p2

...

pn








. (6.51)

Because all the columns sum to one we are guaranteed that

p′1 + p′2 + .. + p′n = p1 + p2 + .. + pn. (6.52)

A Markov chain is a mathematical system that undergoes transitions that

are described by a stochastic matrix that moves from one stochastic vector

to another [Markov (1954)]. The asymptotic behavior of Markov chains

either converges to a fixed distribution or goes to a periodic sequence of

distributions. Given that all of the entries of the stochastic matrix are

larger than zero, which means that each state can be reached from another

state, there is a fixed distribution ~q. The distribution ~q is independent

of the initial distribution ~p. A fixed distribution is unchanged when it is

transformed by P . The fixed distribution ~q is represented by the eigenvector

of P , with the eigenvalue equal to 1.







q1
q2
...

qn








=








p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn








·








q1
q2
...

qn








(6.53)

because ~q is a probability vector, it follows that
n∑

i=1

qi = 1.
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P describes the transition of the states of the weather, such as sunny, cloudy

and rainy (see Figure 6.2). Each state of the weather can be reached from

another state, and the prediction over several days is increasingly inaccu-

rate. The prediction tends toward a steady state vector that represents the

probabilities of sunny, cloudy and rainy, independent of the initial weather

state. The information about the initial weather is lost and cannot be re-

constructed. The evolution of a stochastic matrix does not lead to a loss of

Fig. 6.2 Transition of for the states of the weather, such as sunny, cloudy and rainy
represented by the symbol “sun”,“cloud” and “rain”. Each state of the weather can be
reached from another state.

information if the matrix is orthogonal. An example orthogonal stochastic

matrix is the permutation matrix. A permutation matrix is a square binary

matrix that has exactly one entry 1 in each row and each column and is 0

elsewhere. As a consequence, each state cannot be reached from another

state.
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Chapter 7

Introduction to Quantum Physics

7.1 Unitary Evolution

Physical measurements have an intrinsically probabilistic character. Rep-

etitions of an observation using the same experimental apparatus with

the same initial conditions will generally yield different measurements of

the observed variable. Statistical laws govern the totality of large obser-

vations. An object can be described in classical mechanics by a vector

~x = (x1, x2, x3, p1, p2, p3) ∈ R6, which describes its position (x1, x2, x3)

and its momentum (p1, p2, p3). The changes in the position and the mo-

mentum of the object over time are described by the Hamiltonian equation

of motion
d

dt
xi =

∂

∂pi
H,

d

dt
pi =

∂

∂xi
H. (7.1)

The state of the object is described by the Hamiltonian function

H = H(x1, x2, x3, p1, p2, p3).

The wavefunction in quantum mechanics, if unobservable, evolves in a

smooth and continuous way according to the Schrödinger equation, which

is related to the Hamiltonian equation of motion. This equation describes

a linear superposition of different states at time t, which is represented by

the vector x(t),

i · h · d

dt
x(t) = H · x(t) (7.2)

with i =
√
−1 and h being the Planck’s constant. For simplification we

set h = 1. H is the Hamiltonian operator, which is related to the total

energy of the system. A general solution of the Schroedinger equation (for

the time-independent Hamiltonian) represents the unitary evolution with

x(t) = e−i·t·H · x(0) = Ut · x(0) (7.3)

95



August 13, 2013 15:47 World Scientific Book - 9in x 6in QAI

96 Principles of Quantum Artificial Intelligence

where Ut = e−i·t·H is the evolutionary operator, which can be represented

by a unitary matrix. Unitary evolution is deterministic and reversible. The

vector x(t) describes the probability of the presence of certain states. A

dimension represents each state, and the value of the vector is related to

the probability of the state being present. However, measurements always

find the physical system to be in a definite state, which does something

to the wavefunction represented by the vector x(t). This something is not

explained by quantum theory.

7.1.1 Schrödinger’s cat paradox

The best known example of this type kind of this ‘something’ is the

Schrödinger’s cat paradox [Schrödinger (1935)]. “When I hear about

Schrödinger’s cat, I reach for my gun,” is a quote from Stephen Hawking.

In our description of the paradox we will replace the cat with a rabbit...

A rabbit is apparently evolving into a superposition of two states that can

be characterized as an alive rabbit and a dead rabbit. A Geiger counter

measures the decay of a radioactive substance. There is a fifty percent

chance that, in a given time frame, decay is measured. The Geiger counter

is connected to a device that kills the rabbit, if decay is measured. Because

the rabbit and the Geiger counter are in a closed room, we do not know

whether the rabbit is dead or alive. Each of these possibilities is associated

with a specific fifty percent probability. The rabbit is in a mixed state,

and the two states are “really” present at the same time. A measurement

always finds either an alive rabbit or a dead rabbit with a probability of

fifty percent.

7.1.2 Interpretations of quantum mechanics

As long as we make no measurements, there are no random effects. The

behavior of the system is strictly deterministic. The randomness is only

present during the measurement. Randomness is an effect of measurement.

Different interpretations of quantum mechanics propose different solutions

of the measurement problem. We present the two most influential explana-

tions:

• The most popular interpretation, the Copenhagen interpretation,

claims that quantum mechanics is a mathematical tool that is used
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in the calculation of probabilities and has no physical existence; all

other questions are metaphysical. This popular unscientific interpreta-

tion delayed for many years the development of quantum computation

[Heisenberg (1949)].

• The many-worlds theory led to the development of the first quantum

algorithms; this approach is less popular due to some philosophical diffi-

culties. The many-worlds theory views reality as a many-branched tree

in which every possible quantum outcome is realized [Everett (1959)],

[Byrne (2007)]. The subjective appearance of the wave function col-

lapse is explained by the mechanism of quantum decoherence. Every

possible outcome to every event exists in its own world. In one world,

randomness exists, but not in the universe (multiverse) that describes

all possible worlds [Deutsch (1997)].

7.2 Quantum Mechanics

A bit can be represented by the state of a simple 2-state quantum system

such as the spin state of a particle. When measured, the spin is always in

one of two possible states: spin-up or spin-down. A quantum mechanical

description of a physical system is related to a probabilistic representation;

it is described by a vector in Hilbert space. This description extends the

two- or three-dimensional Euclidean space into spaces that have any finite

or infinite number of dimensions. In such a space, the Euclidean norm is

induced by the inner product

‖x‖ =
√

〈x|x〉. (7.4)

A basis of n dimensional Hilbert space Hn is chosen. A 2-state system is

described by a two dimensional Hilbert space H2. For the basis

e1 =

(
1

0

)

, e2 =

(
0

1

)

(7.5)

the system is described by a vector x with complex numbers ω1, ω2 that

represent the amplitude of each dimension

x = ω1 · e1 + ω2 · e2 =

(
ω1

ω2

)

. (7.6)

The probabilities are real numbers between 0 and 1. The probability that

the system is in e1 and e2 is |ω1|2 and |ω2|2 . This is because the product

of complex number with is conjugate is always a real number

ω∗ · ω = (x− y · i) · (x + y · i) = x2 + y2 = |ω|2. (7.7)
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The vector representing a state is normalized. Its length is one. The am-

plitudes correspond to the probability with

|ω1|2 + |ω2|2 = 1.

Paul Dirac introduced the following notation for a vector x describing a

state

|x〉 = ω1 · |e1〉 + ω2 · |e2〉 = ω1 · |x1〉 + ω2 · |x2〉 =

(
ω1

ω2

)

(7.8)

with

|e1〉 = |x1〉, |e2〉 = |x2〉.
It is a shorthand notation for a column vector. Related to the scalar product

〈x|x〉 row vector are 〈x| “bra” and and column vectors are |x〉 “kets” from

bra(c)kets. A state vector is just a particular instance of a ket vector. It

is specified by a particular choice of basis and refers to observable that can

have some system properties.

Operators represented by a square matrix give mathematical description

how something changes in the quantum world. For a 2-state quantum

system an operator that acts on the memory register would be represented

by a 2 × 2 dimensional unitary matrix. In Unitary matrices, its conjugate

transpose is equal to its inverse.

U∗ = U−1. (7.9)

7.2.1 Stochastic Markov evolution and unitary evolution

To indicate the difference to a Markov chain we introduce the example of

a quantum coin, a system with two states 0 and 1 with

|0〉 =

(
1

0

)

, |1〉 =

(
0

1

)

. (7.10)

The mapping is represented as

|0〉 → 1√
2
· |0〉 +

1√
2
· |1〉 (7.11)

and

|1〉 → 1√
2
· |0〉 − 1√

2
· |1〉. (7.12)

The corresponding operator is indicated by the following unitary matrix,

W =

(
1√
2

1√
2

1√
2
− 1√

2

)

=
1√
2
·
(

1 1

1 −1

)

. (7.13)
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If the system starts in state |0〉 and undergoes the time evolution, the

probability of observing 0 or 1 is
∣
∣
∣

1√
2

∣
∣
∣

2

= 1
2 . If we do not preform a mea-

surement and repeat the mapping, the probability of observing 0 becomes

1 and observing 1 becomes zero. This is due to the fact, that the ampli-

tudes of |1〉 cancel each other. This effect is called destructive interference

and cannot occur in the probability distribution since all its coefficients are

non-negative real numbers.

Stochastic Markov evolution The behavior of a fair coin can be mod-

eled by a Markov chain described by a stochastic matrix. The behavior of

the system is independent from initial distribution ~p. The information

about the initial state is lost. The fixed distribution is reached after one

step.
(

1
2
1
2

)

=

( p1+p2

2
p1+p2

2

)

=

(
1
2

1
2

1
2

1
2

)

·
(
p1

p2

)

. (7.14)

If constantly observed the quantum coin has the same behavior as a fair

coin described by a stochastic matrix. The probability of being in one of the

states is 0.5. Each time the coin is tossed the “random” effect is observed.

Unitary evolution During unitary evolution of a (not observed) quan-

tum coin the information about the initial state is not lost, the system is

reversible and deterministic. Each of the two state is present. The loss of

information about its history occurs during the measurement.

In the next section we demonstrate the relation between the unitary ma-

trices and evolutionary operator Ut = e−i·t·H .

7.3 Hilbert Space

Amplitude distribution corresponds to a unit-length vector of a finite di-

mensional Hilbert space over complex numbers of dimension n denoted as

Hn. The inner product is defined as by the inner product

〈x|y〉 = 〈y|x〉∗

〈x|x〉 ≥ 0, 〈x|x〉 = 0 ⇔ x = 0

〈x|c1 · y + c2 · z〉 = c1 · 〈x|y〉 + c2 · 〈x|z〉
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with

x, y, z ∈ Hn, c1, c2 ∈ C.

With a fixed basis we will use the the coordinate representation that will

induce the inner prouduct by

〈x|y〉 = x∗
1 · y1 + x∗

2 · y2 + · · · + x∗
n · yn

and the Euclidean vector norm. Is is a vector space with and Euclidean

norm. If W is a subspace of a V, then the orthogonal complement of W is

also a subspace of V . The orthogonal complement W⊥ is the set of vectors

W⊥ = {y ∈ V |〈y|x〉 = 0 x ∈ V } (7.15)

and ach vector x ∈ V can be represented as x = xW + xW⊥ with xW ∈ W

and xW⊥ ∈ W⊥. The mapping P · x = xW is an orthogonal projection.

Such projection is always a linear transformation and can be represented

by a projection matrix P . The matrix is self-adjoint P = P ∗ with P = P 2.

An orthogonal projection can never increase a norm

‖P · x‖2 = ‖xW ‖2 ≤ ‖xW ‖2 + ‖xW⊥‖2 = ‖xW + xW⊥‖2 = ‖x‖2. (7.16)

P can be generated by the normalized vector |x〉 indicating the direction

of the bisecting line

|x〉 =
1√
n
· |x1〉 +

1√
n
· |x2〉 + · · · + 1√

n
· |xn〉 =







1√
n
...
1√
n







(7.17)

and the row representation

〈x| =

(
1√
n
,

1√
n
, · · · , 1√

n

)

. (7.18)

The projection matrix is

P = |x〉〈x| =








1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n








. (7.19)

The projection P computes for each dimension described by the fixed basis,

for example |xi〉 = |ei〉, the mean value of all dimensions. An example of

such a projection in the two dimensional Hilbert space is the stochastic

matrix describing the behavior of a fair coin.
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7.3.1 Spectral representation∗

A linear mapping Hn → Hn is called an operator. An operator A is self-

adjoint if

〈x |A · y〉 = 〈A∗ · x|y〉. (7.20)

For a fixed basis a matrix can represent an operator. A self-adjoint op-

erator is represented by a Hermitian matrix A∗ = A with aij = aji. For

real values the Hermitian matrix is a symmetrical matrix with AT = A.

Hermitian matrices have real eigenvalues and corresponding eigenvectors

are orthogonal. From the definition of eigenvalues and eigenvectors

A · x = λ · x

consequently

λ∗ · 〈x|x〉 = 〈λ · x|x〉 = 〈A · x|x〉 = 〈x|A · x〉 = λ · 〈x|x〉.

The eigenvectors of different eigenvalues λ1 6= λ2 are orthogonal,

λ1 · 〈x1|x2〉 = 〈A · x1|x2〉 = 〈x1|A · x2〉 = λ2 · 〈x1|x2〉

hence the two different eigenvectors are orthogonal

λ1 · 〈x1|x2〉 = λ2 · 〈x1|x2〉 ⇒ 〈x1|x2〉 = 0.

A Hermitian matrix can be represented by a sum of projections of its or-

thonormal eigenvectors (normalized eigenvectors) x1, · · · , xn weighted by

its eigenvalues. The projections are defined by the matrix |xi〉〈xi| with

|xi〉〈xi| = (|xi〉〈xi|)2 . The set of the eigenvalues is called the spectrum and

the corresponding representation a spectral representation

A = λ1 · |x1〉〈x1| + λ2 · |x2〉〈x2| + · · · + λn · |xn〉〈xn|. (7.21)

The function ei·A with a self-adjoint operator A is unitary

ei·A = ei·λ1 · |x1〉〈x1| + ei·λ2 · |x2〉〈x2| + · · · + ei·λn · |xn〉〈xn|. (7.22)

An operator U is unitary, if U∗ = U−1,
(
ei·A

)∗
=
(
ei·A

)−1
, (7.23)

(
ei·A

)−1
= e−i·λ1 · |x1〉〈x1|+e−i·λ2 · |x2〉〈x2|+ · · ·+e−i·λn · |xn〉〈xn|. (7.24)

This representation is similar to the evolutionary operator Ut = e−i·t·H

for t = 1 and A = H is the Hamiltonian operator that is related to the

total energy of the system. Mathematical description in a quantum world
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is given by operators represented by a unitary square matrix. For example

the unitary matrix that describes the quantum coin is

W =
1√
2
·
(

1 1

1 −1

)

. (7.25)

What is the relation between a unitary matrix and the evolutionary op-

erator? For simplicity we omit the minus sign and write instead of U∗

simply

W = U = ei·H .

What is the corresponding Hamiltonian operator? A unitary operator U

is not self-adjoint, the Matrix is unitary but not Hermitian. However it

can be decomposed into two self-adjoint operators. As shown before each

self-adjoint operators has a spectral representation

U =
1

2
· (R + i · I) (7.26)

with

R =
1

2
· (U + U∗), I =

1

i · 2 · (U + U∗).

R and I are Hermitian matrices and their spectral representation is

R = λ1 · |x1〉〈x1| + λ2 · |x2〉〈x2| + · · · + λn · |xn〉〈xn|
and

I = µ1 · |x1〉〈x1| + µ2 · |x2〉〈x2| + · · · + µn · |xn〉〈xn|.
U can be written as

U = (λ1 + i · µ1) · |x1〉〈x1| + · · · + (λn + i · µn) · |xn〉〈xn|. (7.27)

How can we represent U as U = ei·H ?

For all eigenvalues of U

〈x|x〉 = 〈x|U · U∗x〉 = 〈U · x|U · x〉 = 〈λ · x|λ · x = |λ|2 · 〈x|x〉
the absolute value is 1

1 = |λi + µi|
all values of λi and µi are real values from the interval [−1, 1]. Therefore

there exist a value θi for each i with

λi = cos θi, µi = sin θi, (7.28)

and because ei·x = cosx + i · sinx

λi + i · µi = cos θi + i · sin θi, (7.29)

µi = ei·θi . (7.30)

We can now represent any unitary operator U by the spectral representation

U = ei·H = ei·θ1 · |x1〉〈x1| + ei·θ2 · |x2〉〈x2| + · · · + ei·θn · |xn〉〈xn|. (7.31)

with the corresponding Hamilton operator H

H = θ1 · |x1〉〈x1| + θ1 · |x2〉〈x2| + · · · θn · |xn〉〈xn|. (7.32)
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Example The unitary matrix that describes the quantum coin

W =
1√
2
·
(

1 1

1 −1

)

is as well Hermitian with WT = W . Because of this the two eigenvalues

are real, −1 and 1 . The corresponding eigenvectors are

|x1〉 =
1

√

4 − 2 ·
√

2
·
(

1 −
√

2

1

)

and

|x2〉 =
1

√

4 + 2 ·
√

2
·
(

1 +
√

2

1

)

.

The Hermitian matrix W can be represented by the spectral representation

W = 1 · |x1〉〈x1| − 1 · |x2〉〈x2| (7.33)

with

|x1〉〈x1| =

(
1−

√
2

4
−
√

2
4

−
√

2
4

1+
√

2
4

)

and

|x2〉〈x2| =

(
1+

√
2

4

√
2

4√
2

4
1−

√
2

4

)

.

We can now represent unitary operator W as (evolutionary operator)

U = ei·H = ei·0 · |x1〉〈x1|+ ei·π · |x2〉〈x2| = |x1〉〈x1| + ei·π · |x2〉〈x2| (7.34)

with the corresponding Hamilton operator H

H = 0 · |x1〉〈x1| + π · |x2〉〈x2|. (7.35)

A unitary matrix can be represented by the evolutionary operator with the

Hamilton operator H .

7.4 Quantum Time Evolution

Quantum time Evolution is described by Schrödinger equation, its solution

represents the unitary evolution described by the unitary operator Ut. The

unitary operator is determined by the requirements for the time-evolution

mapping

x(t) = Ut · x(0).

Suppose Ut is a time-evolution mapping, then the following requirements

should be fulfilled [Hirvensalo (2004)]
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• Ut should preserve the norm,

‖Ut · 〈x|‖ = ‖〈x|‖.
The length of a vector is always one, before and after the mapping.

It determines the probability of the presence of certain states repre-

sented by its dimensions. The vector itself describes the probability

distribution.

• The mapping Ut is linear

Ut · (λ1 · |x1〉 + · · · + λn · |xn〉) = Ut · λ1 · |x1〉 + · · · + Ut · λn · |xn〉.
For the basis

|e1〉 = |x1〉, |e2〉 = |x2〉, · · · , |en〉 = |xn〉
the linearity corresponds to simple matrix operation

U ·








λ1

λ2

...

λn








= U ·








λ1

0
...

0








+ U ·








0

λ2

...

0








+ · · · + U ·








0

0
...

λn








.

• For all t1 and t2

Ut2+t1 = Ut2Ut1.

• The time evolution must be smooth. Even if we are interested in the

state of the system a discrete time points, the evolution should be

smooth and continuous

lim
t→t0

Ut · x(0) = lim
t→t0

x(t) = x(t0).

Only a unitary operator can satisfy the first three requirements. It can

be represented by a unitary matrix and by the evolutionary operator with

the Hamilton self-adjoint operator H . If Ut satisfies all four requirements,

there exists self-adjoint operator H with a relation to time t

Ut = e−i·t·H

and

x(t) = e−i·t·H · x(0) = Ut · x(0).

The time evolution is continuous and reversible, however we will represent

an algorithm as a sequence of one-length vectors in discrete time steps

t0 → t1 → t2 → t3 → · · ·
as

|x〉 → U1 · |x〉 → U2 · U1 · |x〉 → U3 · U2 · U1 · |x〉 → · · ·
This representation is motivated by the first and second requirement.
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7.5 Compound Systems

A 2-state quantum system is described by a two dimensional Hilbert space

H2,

|x1〉 =

(
1

0

)

, |x2〉 =

(
0

1

)

(7.36)

is described by a vector |x〉 with complex numbers ω1, ω2 that represent the

amplitude of each dimension.

|x〉 = ω1 · |x1〉 + ω2 · |x2〉 =

(
ω1

ω2

)

. (7.37)

Such a 2-state quantum system corresponds to a qubit with the basis

|0〉 = |x1〉, |1〉 = |x2〉.

The qubit is described by a vector |x〉 with complex numbers ω1, ω2 that

represent the amplitude of each dimension

|x〉 = ω0 · |0〉 + ω1 · |1〉. (7.38)

The vector has length one with

|ω0|2 + |ω1|2 = 1 → ‖|x〉‖ = 1.

The unitary matrix W performs the following mapping in the ket notation

W · |0〉 = W · 1 · |0〉 + W · 0 · |1〉 =
1√
2
· |0〉 +

1√
2
· |1〉

with the vector notation

1√
2
·
(

1 1

1 −1

)

·
(

1

0

)

=

(
1√
2

1√
2

)

.

Applying W again results in

W ·
(

1√
2
· |0〉 +

1√
2
· |1〉

)

= W · 1√
2
· |0〉 + W · 1√

2
· |1〉 = |0〉

with the vector notation

1√
2
·
(

1 1

1 −1

)

·
(

1√
2

1√
2

)

=

(
1

0

)

.

How can we represent a register composed of two qubits? Such a register

would represent 22 possible states and would be represented in a Hilbert
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space H4. The first qubit is represented by a two dimensional Hilbert space

H2,

|x〉 = ω0 · |0〉 + ω1 · |1〉 =

(
ω0

ω1

)

and the second as

|y〉 = ω0 · |0〉 + ω1 · |1〉 =

(
ω0

ω1

)

.

The register of two qubits is represented as a direct product of |x〉 and |y〉

|x〉⊗|y〉 = |x〉|y〉 = |xy〉 =

(
ω0

ω1

)

⊗
(
ω0

ω1

)

=







ω0 · ω0

ω0 · ω1

ω1 · ω0

ω1 · ω1







=







ω0

ω1

ω2

ω3







(7.39)

or

|xy〉 = (ω0 · |0〉 + ω1 · |1〉) ⊗ (ω0 · |0〉 + ω1 · |1〉)

|xy〉 = ω0 · |00〉 + ω1 · |01〉 + ω2 · |10〉 + ω3 · |11〉 (7.40)

with the new basis

|00〉 =







1

0

0

0







, |01〉 =







0

1

0

0







, |10〉 =







0

0

1

0







, |11〉 =







0

0

0

1







. (7.41)

A register of three qubits represents 23 different states represented in a

Hilbert space H8.

|xyz〉 = |x〉 ⊗ |y〉 ⊗ |z〉 =

ω0 · |00〉+ ω1 · |001〉 + ω2 · |010〉+ ω3 · |011〉+

+ω4 · |100〉+ ω5 · |001〉+ ω6 · |110〉 + ω7 · |111〉. (7.42)

A quantum register of length m represents m qubits in a Hilbert space of

dimension n = 2m. A state in a n-dimensional Hilbert space Hn is defined

by an orthonormal basis

|x1〉, |x1〉, · · · |xn〉
and is represented as a unit-length vector

ω1 · |x1〉 + ω2 · |x2〉 + · · · + ωn · |xn〉
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that determines the probability of distribution of the states. Each dimen-

sion correspond to a possible combination. The state is in a basis state |xi〉
with a probability |ωi|2.

The compund system of the Hilbert space Hn and a w-dimensional Hilbert

space Hw defined by a orthonormal basis |y1〉, |y1〉. · · · |yw〉 is defined by the

tensor product

Hn·w = Hn ⊗Hw (7.43)

According to this definition we can apply an operator on two qubits as

W · (ω0 · |0〉 + ω1 · |1〉) ⊗W · (ω0 · |0〉 + ω1 · |1〉) =

(

W ·
(
ω0

ω1

))

⊗
(

W ·
(
ω0

ω1

))

(7.44)

(W ⊗W ) · (ω0 · |0〉 + ω1 · |1〉) ⊗ (ω0 · |0〉 + ω1 · |1〉) = (W ⊗W ) ·







ω0

ω1

ω2

ω3







(7.45)

it follows

(

W ·
(
ω0

ω1

))

⊗
(

W ·
(
ω0

ω1

))

= (W ⊗W ) ·







ω0

ω1

ω2

ω3







. (7.46)

The tensor product between matrix is defined as

A⊗B =

(
a11 · B a12 · B
a21 · B a22 · B

)

=







a11 · b11 a11 · b12 a12 · b11 a12 · b12
a11 · b21 a11 · b22 a12 · b21 a12 · b22
a21 · b11 a21 · b12 a22 · b11 a22 · b12
a21 · b21 a21 · b22 a22 · b21 a22 · b22







.

For example W ⊗W is

W ⊗W =
1√
2
·
(

1 1

1 −1

)

⊗ 1√
2
·
(

1 1

1 −1

)

=
1

2
·







1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







.
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7.6 Von Neumann Entropy

A state |x〉 (‖x‖ = 1) in a Hilbert space Hn can be represented by the

corresponding density matrix P = |x〉〈x| with,

|x〉〈x| =








x1

x2

...

xn








· (x∗
1, x

∗
2, · · · , x∗

n) =








|x1|2 x1 · x∗
2 · · · x1 · x∗

n

x2 · x∗
1 |x2|2 · · · x2 · x∗

n
...

...
. . .

...

xn · x∗
1 x1 · x∗

n · · · |xn|2








(7.47)

A density matrix P has following properties

• P is a Hermitian matrix with P ∗ = P .

• P represents a self-adjoint operator P .

• P has a spectral representation.

• P is a projection with P = P 2, because |x〉〈x| = ||x〉〈x||2.
• P is a linear combination of one-dimensional projections.

• The trace of P , Tr(P ) = 1 with Tr(P ) =
∑n

i=1 |xi|2.

For the density matrix P , the von Neumann entropy is defined as

E(P ) = −Tr(P · logP ), (7.48)

with a logarithm of matrix Q = logP , where Q is a matrix with P = eQ.

With the spectral decomposition of the self-adjoint operator P the von

Neumann entropy can be easily computed without using logarithm of a

matrix,

P = λ1 · |x1〉〈x1| + λ2 · |x2〉〈x2| + · · · + λn · |xn〉〈xn|
with

E(P ) = −
n∑

i=1

(λi · logλi) (7.49)

and

1 =

n∑

i=1

λi.

The spectral representation of a state |x〉 in n-dimensional Hilbert space

Hn is unique . It is defined by the orthonormal eigenvectors of the density

matrix P = |x〉〈x|. The representation of a state |x〉 by a vector of complex

amplitudes depends on the orthonormal basis. For the orthonormal basis

|x1〉 = e1, |x2〉 = e2, · · · , |xn〉 = en

|x〉 = ω1 · |x1〉| + ω2 · |x2〉 + · · · + ωn · |xn〉
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we can assume that

E(P ) = −
n∑

i=1

(|ωi|2 · log |ωi|2). (7.50)

States equal to a basis are called pure states. A pure state corresponds to a

one-dimensional projection in a spectral representation with one eiganvalue

λi = 1. Otherwise the states are called superposition. The von Neumann

entropy of a pure state is zero, 0 = 1 · log 1. The von Neumann entropy of a

superposition measures the distribution of the probabilities represented by

the eiganvalues. It describes the departure of the state from a pure state

with a maximal value when all eigenvalues are equal.

E(P ) = −
n∑

i=1

λi · logλi = −
n∑

i=1

1

n
· log

1

n
= logn (7.51)

We represent a state by a sequence of m qubits by a n = 2m dimensional

vector in Hn Hilbert space. In this case the maximal value of the von

Neumann entropy is

E(P ) = logn = log 2m = log 2 · log2 2m = log 2 ·m. (7.52)

The von Neumann entropy measure the information in nepit (nat). If the

von Neumann entropy is measured in bits, yes no questions, its maximal

value is just the number of present qubits.

Before the measurement of a state |x〉 we are uncertain about the outcome.

We measure the uncertainty by the entropy. After the measure the state

is pure, the von Neumann entropy is zero, 0 = 1 · log 1. The measurement

is a random process described by distributions of probabilities represented

by the eigenvalues λi.

7.7 Measurement

After a unitary information processing starting form a initial basis state

the result of the algorithm is determined by the measurement. The mea-

surement corresponds to the collapse of the state vector, a projection into

a basis state. The projection is not reversible and it is not consistent with

the unitary time evolution. For a state represented by a unit-length vector

ω1 · |x1〉 + ω2 · |x2〉 + · · · + ωn · |xn〉
in a n-dimensional Hilbert space |xk〉 is observed. After the measurement

(observation) the state is in a pure state

1 · |xk〉.
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7.7.1 Observables

The measurement is preformed by an observable. A Hilbert space Hn can

be represented as a collection of orthogonal subspaces

Hn = E1 ⊕ E2 ⊕ . . .⊕ Ef (7.53)

with f ≤ n. A state |x〉 can be represented with |xi〉 ∈ Ei as

ω1 · |x1〉 + ω2 · |x2〉 + · · · + ωf · |xf 〉.

For one dimensional subspaces

Hn = E1 ⊕ E2 ⊕ . . .⊕ En

the value |xk〉 is observed with a probability ‖ωk · |xk〉‖2 = |ωk|2.
Another description is through a projection into a subspace. A subspace

defines a projection PEk
. Because a projection is self-adjoint PEk

= P ∗
Ek

and PEk
= P 2

Ek
the probability of observing |xk〉 is

〈x|PEk
· x〉 = 〈x|P 2

Ek
· x〉 = 〈PEk

· x|PEk
· x〉 = ‖ωk · |xk〉‖2 = |ωk|2 (7.54)

and the resulting value is

1
√

〈x|PEk
· x〉

· PEk
· |x〉 = 1 · |xk〉.

Finally a state can be represented by the corresponding density matrix

P with a corresponding spectral decomposition. The projection in the

orthogonal subspace Ek is described by the projection matrix |xk〉〈xk| and

the corresponding probability is λk. We can represent this probability as

〈x|xk〉〈xk|x〉 = λk

and the resulting value of the projection is

1
√

〈x|xk〉〈xk|x〉
|xk〉〈xk| · |x〉 = 1 · |xk〉.

All three different descriptions represent the same fact through different

formalisms. An observation corresponds to a non-reversible projection onto

one or several basis states.
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7.7.2 Measuring a compound system

The state of the system is projected to the subspace that corresponds to the

observed state and the vector representing the state is renormalized to the

unit length. An observable describes a subspace of some dimensions with

a special case of one dimension. A part of the system can be observed by a

projection in a subspace with a dimension higher one. The compound sys-

tem of n-dimensional Hilbert space |x〉 ∈ Hn and a w-dimensional Hilbert

space |y〉 ∈ Hw defined by a orthonormal basis |xy〉 ∈ Hn·w. A state of the

system is represented as

|xy〉 =

n∑

i=1

w∑

j=1

ωij |xi〉|yj〉. (7.55)

For example

|xy〉 =

2∑

i=1

2∑

j=1

ωij |xi〉|yj〉 =

= ω11 · |x1〉|y1〉 + ω12 · |x1〉|y2〉 + ω21 · |x2〉|y1〉 + ω22 · |x2〉|y2〉.
For simplicity we use the following notation for a qubit register

|xy〉 = ω0 · |00〉 + ω1 · |01〉 + ω2 · |10〉 + ω3 · |11〉
The probability of observing xk is

∑w
j=1 |ωkj |2. If we observe xk, the system

after the observation is projected into

|xy〉 =
1

√
∑w

j=1 |ωkj |2

w∑

j=1

ωkj |xk〉|yj〉.

Suppose the two qubits are in the following state

√
0.25 · |00〉 +

√
0.25 · |01〉 +

√
0.25 · |10〉 +

√
0.25 · |11〉 =







1
2
1
2
1
2
1
2







.

The observed first qubit is |0〉. The probability of the observation is

|ω00|2 + |ω01|2 = |ω0|2 + |ω1|2 = |
√

0.25|2 + |
√

0.25|2 = 0.25 + 0.25 = 0.5

the system after the observation is projected into

√
0.25 · |00〉 +

√
0.25 · |01〉√

0.5
=

√
0.5 · |00〉 +

√
0.5 · |01〉 =









√
1
2

√
1
2

0

0









.
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7.7.3 Heisenberg’s uncertainty principle∗

The commutator between two operators A and B is defined as

[A,B] := A ·B −B · A (7.56)

so

[A,B] = 0 ⇐⇒ A ·B = B ·A. (7.57)

The anti-commutator between two operators A and B is defined as

{A,B} := A · B + B ·A (7.58)

it follows that

A ·B =
[A,B] + {A,B}

2
. (7.59)

The expected value of observable M in state x is

〈M〉 = 〈x|M · x〉 (7.60)

and the standard deviation of observed values is

∆(M) =
√

〈(M − 〈M〉)2〉 =
√

〈M2〉 − 〈M〉2. (7.61)

What happens if we try to measure two observable G and K?

A and B are Hermitian, A∗ = A,B∗ = B and |x〉 is a quantum state.

If

〈x|A · B · x〉 = a + ib (7.62)

then

〈x|[A,B] · x〉 = 2 · ib (7.63)

and

〈x|{A,B} · x〉 = 2 · a (7.64)

It follows that

|〈x|[A,B] · x〉|2 + |〈x|{A,B} · x〉|2 = 4 · |〈x|A ·B · x〉|2. (7.65)

Because by the Cauchy-Schwarz inequality

|〈x|A · B · x〉|2 ≤ 〈x|A2 · x〉|〈x|B2 · x〉| (7.66)

|〈x|[A,B] · x〉|2 + |〈x|{A,B} · x〉|2 ≤ 4 · 〈x|A2 · x〉|〈x|B2 · x〉| (7.67)

and

|〈x|[A,B] · x〉|2+ ≤ 4 · 〈x|A2 · x〉|〈x|B2 · x〉| (7.68)

With

A = G− 〈G〉, B = K − 〈K〉
we obtain the Heisenberg’s uncertainty principle

∆(G)∆(K) ≥ |〈x|[G,K] · x〉|
2

. (7.69)
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Example Suppose we have a large number of quantum systems in the

state |x〉. If we measure the observable G on some and the observable

K on others, then the standard deviation ∆(G) and ∆(K) will satisfy

the Equation 7.69. For example the observable G is [Nielsen and Chuang

(2000)]

G =

(
0 1

1 0

)

(7.70)

and

K =

(
0 −i

i 0

)

(7.71)

with

[G,K] =

(
0 1

1 0

)

·
(

0 −i

i 0

)

−
(

0 −i

i 0

)

·
(

0 1

1 0

)

[G,K] =

(
2i 0

0 −2i

)

then

∆(G)∆(K) ≥

∣
∣
∣
∣
〈0|
(

2i 0

0 −2i

)

· 0〉
∣
∣
∣
∣

2
= 1 (7.72)

∆(G) and ∆(K) must be grater than 0.

Time-frequency information of a signal The uncertainty principle

was originally applied to the momentum and location of moving particles.

The uncertainty principle can also be applied to the classical time-frequency

information of a signal. It is not possible to know the exact time-frequency

representation of a signal. In short-time Fourier transform (STFT), the

signal is divided into small segments. In each segment, the Fourier trans-

form determines the frequency representation of the signal. The size of

the window defines the time representation of the signal. The uncertainty

principle of STFT is related to the width of the window function that is

used.

• Narrow window: good time resolution, poor frequency resolution.

• Wide window: good frequency resolution, poor time resolution.

In classical physics, a possible solution exists. This solution is the multi

resolution analysis of the signal, as described by the wavelet transform.

The analysis is “repeated” several times. Each time, a different size (scale)

of the window is used.
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7.8 Randomness

Randomness can be defined by numbers in a sequence [Williams and Clear-

watter (1997)]. A random number alone does not exist. A sequence of

random numbers must correspond to some distribution, and there should

be no correlation among the numbers in the sequence. For example, the

following sequence, which represents the toss of a fair coin 0, 1, is not ran-

dom,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

because a correlation between 0 and 1 is present. Classical physics is deter-

ministic. Because of that, no randomness exists in its context. Some facts

could appear to be random. However, this arrangement is only the case

because some essential information is missing.

7.8.1 Deterministic chaos

A sequence could look random even though it is generated by a simple non-

linear deterministic equation. Such behavior is called deterministic chaos.

The logistic map is defined by a dynamical nonlinear difference equation

xt+1 = r · xt · (1 − xt) (7.73)

with with some constant r. The rule generates a sequence

x0, x,x2, x3, x4, · · ·
that depending on the value r.

For x0 = 0.1 and r = 3.2 the equation converges to a period (see Fig-

ure 7.1). However, for values that are approximately in [3.5699, 4], the

sequence does not converge to any pattern. A minimal change of x0 leads

to a different sequence (see the values x0 = 0.1 and r = 3.98 represented in

Figure 7.2 and the values x0 = 0.101 and r = 3.98 in Figure 7.3).

There is no randomness in classical physics and in the resulting equa-

tions that describe it, in spite of the fact that a behavior can be generated

that is highly unpredictable due to our lack of information. For example,

in the logistic equation, exact knowledge of the initial condition is required.

7.8.2 Kolmogorov complexity

Kolmogorov complexity is defined as the shortest program that can pro-

duce its output. It is a measure of the amount of innate randomness of a
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Fig. 7.1 For x0 = 0.1 and r = 3.2 the logistic map converges to a period.
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Fig. 7.2 For x0 = 0.1 and r = 3.98 the logistic map behaves chaotically, it appears
random.
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Fig. 7.3 The logistic map is sensitive to the initial condition. For x0 = 0.101 and
r = 3.98 it behaves diferentlys as the sequence with initial condition or x0 = 0.1.
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sequence. In the case of deterministic chaos, the randomness is low. It can

be described by a very short program, such as in the case of the logistic

map, by an equation together with the values of x0 and r. Randomness is

defined by the Kolmogorov complexity. The larger the shortest program

that generates the sequence is, the more random it is. However, we cannot

determine whether a sequence can be represented by a short program. The

problem is related to the halting problem [Gardner (1979)]. We cannot

generate a truly random sequence using a Turing machine.

7.8.3 Humans and random numbers

Randomness could be nature’s way to avoid complexity. A decision could

be chosen randomly, where no knowledge is present and planning is not pos-

sible. How well can people generate random sequences? It was indicated

in one experiment that humans cannot generate true binary random se-

quences. Hagelbarger asked subjects to create a binary random sequence,

and the sequence was analyzed for correlations by a computer program.

The program attempted to predict the next symbol in the sequence and

achieved a 55− 60 percent accuracy. For a random sequence, the accuracy

should be approximately 50 percent [Shannon (1953)].

7.8.4 Randomness in quantum physics

Quantum physics is the only source of true randomness. Randomness can

be generated by a quantum computing device that simulates a quantum

coin. A quantum coin is defined by the unitary matrix

W =
1√
2
·
(

1 1

1 −1

)

and by the mapping

W · |0〉 =
1√
2
· |0〉 +

1√
2
· |1〉 (7.74)

or

W · |1〉 =
1√
2
· |0〉 − 1√

2
· |1〉. (7.75)

The corresponding operator is indicated by the following unitary matrix,

W =

(
1√
2

1√
2

1√
2
− 1√

2

)

=
1√
2
·
(

1 1

1 −1

)

. (7.76)
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After the mapping, a measurement is preformed. The probability of ob-

serving 0 or 1 is
∣
∣
∣

1√
2

∣
∣
∣

2

= 1
2 . True randomness is present during the mea-

surement; it is an effect of the measurement represented by the collapse.

The collapse itself is not explained by quantum theory. Using a quantum

coin, we can generate a true random binary sequence. It is easy to combine

the results from a quantum coin to generate a random integer in the range

0 to 2n−1. Later, we will see how to generate a true random dice using

QFT .
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Chapter 8

Computation with Qubits

8.1 Computation with one Qubit

A unitary operator on a qubit is called an unary quantum gate. It is

described by a unitary matrix of the dimension 2 × 2. For the qubit with

the basis

|0〉 =

(
1

0

)

, |1〉 =

(
0

1

)

the quantum not gate M¬ does the not operation on a qubit

M¬|0〉 = |1〉,M¬|1〉 = |0〉

and is represented by the unitary matrix

M¬ =

(
0 1

1 0

)

. (8.1)

The not operation can be written using XOR = ⊕ for x ∈ B1

M¬|x〉 = |x⊕ 1〉

M¬|0〉 = |0 ⊕ 1〉 = |0〉, M¬|1〉 = |1 ⊕ 1〉 = |1〉.

The square root of the not gate M¬ =
√
M¬ ·

√
M¬ is represented by the

unitary matrix

√

M¬ =

(
1+i
2

1−i
2

1−i
2

1+i
2

)

(8.2)

with
(

1+i
2

1−i
2

1−i
2

1+i
2

)

·
(

1+i
2

1−i
2

1−i
2

1+i
2

)

=

(
0 1

1 0

)

(8.3)

119
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and it is unitary because

(
1+i
2

1−i
2

1−i
2

1+i
2

)

·
(

1−i
2

1+i
2

1+i
2

1−i
2

)

=

(
1 0

0 1

)

(8.4)

with

M¬|0〉 =
1 + i

2
· |0〉 +

1 − i

2
· |1〉

and

M¬|1〉 =
1 − i

2
· |0〉 +

1 + i

2
· |1〉.

The probability of measuring |0〉 and |1〉 is 0.5, because

∣
∣
∣
∣

1 − i

2

∣
∣
∣
∣

2

=

∣
∣
∣
∣

1 + i

2

∣
∣
∣
∣

2

=
1

2
.

−
√
M¬ has the same behavior with

M¬ = −
√

M¬ · −
√

M¬.

The identity gate preforms no operation on a qubit, it is defined as the

identity matrix

I1 =

(
1 0

0 1

)

. (8.5)

The square root of the identity matrix is the identity I matrix is I and −I

−I1 =

(
−1 0

0 −1

)

. (8.6)

−I1 changes the sign of the amplitude but not the probabilities. The in-

troduced unitary matrix W maps a pure state in a superposition.

|0〉 → 1√
2
· |0〉 +

1√
2
· |1〉

|1〉 → 1√
2
· |0〉 − 1√

2
· |1〉

The probability of measuring |0〉 and |1〉 is 0.5. The matrix W is called

Walsh, Hadarmad or Hamarad Walsh, matrix.
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8.2 Computation with m Qubit

The register of m qubits is represented as a direct product of m qubits. It

defines n = 2m dimensional Hilbert space Hn with an orthonprmal basis

|x1〉, |x1〉, · · · |xn〉. For example four qubits define a 16 dimensional Hilbert

space H16 with the basis

|0000〉 =

































1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

































, |0001〉 =































0

1

0

0

0

0

0

0

0

0

0

0

0

0

0































, |0010〉 =































0

0

1

0

0

0

0

0

0

0

0

0

0

0

0































, · · · , |1111〉 =































0

0

0

0

0

0

0

0

0

0

0

0

0

0

1































.

(8.7)

It is difficult to simulate more than few of tens bits on an ordinary com-

puter because the dimension of the Hilbert space grows exponentially in

relation to the number of represented qubits. For example sixteen qubits

are represented by a 65536 dimensional Hilbert space H65536.

The Hadarmad matrix W on one qubit has the dimension 2 × 2 is also

called a Hadamard gate and is indicated as W1. A Hadarmad operator

for m qubits Wm is represented by a 2m × 2m dimensional matrix built by

a direct product of m W1 matrices. The complexity of the operator Wm

corresponds to m Hadamard gates W1.

Wm =
⊗m

W1 = W1 ⊗W1 · · · ⊗W1 (8.8)

The Hadamard matrix is also called the Hadamard transform and can be

defined recursively with W0 = 1 and

Wm =
1√
2
·
(
Wm−1 Wm−1

Wm−1 −Wm−1

)

(8.9)
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with W3

W3 = W1 ⊗W1 ⊗W1

W3 =
1√
2
·
(
W2 W2

W2 −W2

)

=
1√
23

·
















1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 −1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1
















.

The Hadamard operator Wm maps m qubits |z〉 representing a pure state

in a Hilbert space H2m with z ∈ Bm

Wm|z〉 =
1√
2m

∑

x∈Bm

(−1)〈z|x〉 · |x〉 (8.10)

with a scalar product (〈z|x〉) over the binary field with two elements cor-

responding to the bits 0 and 1. The multiplication of two bits is equal to

the AND operation with

0 · 0 = 0 ∧ 0 = 0, 0 · 1 = 0 ∧ 1 = 0, 1 · 0 = 1 ∧ 0 = 0, 1 · 1 = 1 ∧ 1 = 1

and the addition is equal to the XOR operation ⊕

0 + 0 = 0 ⊕ 0 = 0, 0 + 1 = 0 ⊕ 1 = 1,

1 + 0 = 1 ⊕ 0 = 1, 1 + 1 = 1 ⊕ 1 = 0.

For the state zero represented by m qubits

|0〉⊗m

= |0〉|0〉|0〉 · · · |0〉 =










1

0
...

0

0










the Hadamard operator Wm maps a pure state into a superposition of all

possible states with no negative sign,

Wm|0〉⊗m

=
1√
2m

∑

x∈Bm

|x〉. (8.11)
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For example

W3|0〉⊗
3

= W3|000〉 =
1√
23

∑

x∈B3

|x〉

W3|000〉 =

=
1√
23

(|000〉+ |001〉+ |000〉 + |010〉+ |011〉+ |100〉 + |101〉+ |111〉) .

It can be expressed as

W3|000〉 = W1|0〉⊗W1|0〉⊗W1|0〉 =

( |0〉 + |1〉√
2

)

·
( |0〉 + |1〉√

2

)

·
( |0〉 + |1〉√

2

)

and

W3 ·W3|000〉 = |000〉.

This is because Wm = W ∗
m so that Im = Wm ·Wm. The pure states |11〉 is

maped into

W2|11〉 = W1|1〉 ⊗W1|1〉 =

( |0〉 − |1〉√
2

)

·
( |0〉 − |1〉√

2

)

W2|11〉 =
1

2
· (|00〉 − |01〉 − |10〉 + |11〉) .

A Walsh matrix is a square matrix of the dimension power of two.

It has the property that the scalar product of any two different rows or

columns is zero. The vectors that represent the matrix are orthogonal. In

Hadamard transform the vectors that represent the matrix are orthonormal.

We indicate the matrix by Wm for m qubits (because of Walsh), not to be

confused with the Hilbert space Hn of the dimension n with the relation

n = 2m.

8.3 Matrix Representation of Serial and Parallel Opera-

tions

A serial computation corresponds to a multiplication of matrices that repre-

sent the gates. The multiplication of matrices is usually not commutative,

for example W1 ·M¬ 6= M¬W1
(

1√
2

1√
2

1√
2
− 1√

2

)

·
(

0 1

1 0

)

6=
(

0 1

1 0

)

·
(

1√
2

1√
2

1√
2
− 1√

2

)
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(
1√
2

1√
2

− 1√
2

1√
2

)

6=
(

1√
2
− 1√

2
1√
2

1√
2

)

it means

W1 ·M¬ · |0〉 = W1 · |1〉 =
|0〉 − |1〉√

2

and

M¬ ·W1 · |0〉 = M¬ ·
( |0〉 + |1〉√

2

)

=

=
M¬ · |0〉 + M¬ · |1〉√

2
=

|1〉 + |0〉√
2

=
|0〉 + |1〉√

2

it follows

M¬ ·W1 · |0〉 = W1 · |0〉.
Only the multiplication with the identity matrix and the inverse matrix

are commutative operations. Parallel operations correspond to the direct

product, also called the tensor product or Kronecker product when dealing

with matrices. For example with

M¬ ⊗ I1 ⊗W1 · |000〉 = (M¬ · |0〉) ⊗ (I1 · |0〉) ⊗ (W1 · |0〉) =

|10〉 · |0〉 + |1〉√
2

=
|100〉 + |101〉√

2
in vector representation as

((
0 1

1 0

)

·
(

1

0

))

⊗
((

1 0

0 1

)

·
(

1

0

))

⊗
((

1√
2

1√
2

1√
2
− 1√

2

)

·
(

1

0

))

=


















0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 1√
2
− 1√

2
0 0

0 0 0 0 0 0 1√
2

1√
2

0 0 0 0 0 0 1√
2
− 1√

2
1√
2

1√
2

0 0 0 0 0 0
1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0


















·
















1

0

0

0

0

0

0

0
















=

















0

0

0

0
1√
2

1√
2

0

0

















.

Matrices representing quantum operators can be decomposed, for example

W4 = W2 ⊗W2 = W1 ⊗W1 ⊗W1 ⊗W1.

There are however matrices representing quantum operators that can be

not decomposed with some serious consequences.
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8.4 Entanglement

The following operator MCNOT s unitary and defends an injective mapping

on two qubits that is reversible

MCNOT |00〉 = |00〉, MCNOT |01〉 = |01〉,

MCNOT |10〉 = |11〉, MCNOT |11〉 = |10〉.

The operator MCNOT is called a controlled not gate. The first qubit count-

ing from the left is not changed. The second qubit is only flipped in the

case that the first qubit is 1. In this case a NOT operation on the second

qubit is executed. The control not gate can as well perform the fan-out

operation. For this operation the second qubit has to be zero. In this case

the value of the first qubit is copied into the second one. The MCNOT can

be represented by a matrix

MCNOT =







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







. (8.12)

MCNOT cannot be expressed as a tensor product of 2×2 matrices. Suppose

we start with the state |00〉 and map the first qubit bit into the superposition

using the Hadamard gate

W1 ⊗ I · |00〉 = (W1 · |0〉) ⊗ |0〉 =
|0〉 + |1〉√

2
⊗ |0〉 =

|00〉 + |10〉√
2

.

To this state represented by the two qubit we apply MCNOT gate

MCNOT ·
( |00〉 + |10〉√

2

)

=
MCNOT · |00〉 + MCNOT · |10〉√

2
=

|00〉 + |11〉√
2

.

A register of two qubit is decomposable if it can be represented as a

direct product of two qubits. For example the state

|00〉+ |01〉 + |10〉 + |11〉
2

=

( |0〉 + |1〉√
2

)

⊗
( |0〉 + |1〉√

2

)

is decomposable. In vector notation it is represented as






1
2
1
2
1
2
1
2







=

(
1√
2

1√
2

)

⊗
(

1√
2

1√
2

)

.
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However the state of two qubits

|00〉 + |11〉√
2

(8.13)

is not decomposable. We preform a proof by contradiction. From the

assumption that the state is decomposable follows a contradiction,

|00〉+ |11〉√
2

= (ao · |0〉 + a1|1〉) ⊗ (bo · |0〉 + b1|1〉) = (8.14)

= a0 · b0 · |00〉 + a0 · b1 · |01〉 + a1 · b0 · |10〉 + a1 · b1 · |11〉

→ a0 · b0 =
1√
2
, a0 · b1 = 0, a1 · b0 = 0, a1 · b1 =

1√
2

that is a contradiction.

A state that is not decomposable is called entangled. If two qubits are

entangled in a state |00〉+|11〉√
2

, then observing one of them will result in ei-

ther |0〉 or |1〉 with probability 1
2 . However, it is not possible to observe

a different value on the other, non-observed qubit. Both qubits behave as

one unit and are called an ebit. There are four known ebits:

|00〉 + |11〉√
2

,
|00〉 − |11〉√

2
,

|01〉 + |10〉√
2

,
|01〉 − |10〉√

2
. (8.15)

Once either qubit of an ebit is measured, the states of both particles

become definite. Experiments have shown that this correlation can re-

main even if the qubits are separated over a distance of several kilometers.

Quantum collapse during measurement is a non-local force. A non-local

interaction is not limited by the speed of light, and its strength is not me-

diated with distance. This arrangement conflicts with Einstein’s Theory of

Special Relativity, which states that nothing can travel faster than light.

The conflict is resolved by the fact that one cannot use an ebit to send any

information. If two qubits of an ebit are separated over a distance in two

places, A and B, and there are no other means of communication, then

measuring the qubit on place A determines the outcome on place B, but

at place B, the outcome is unknown. Measuring at place B is a random

process without the knowledge of the results of place A. More than two

qubits can be entangled. The GHZ (Greenberger–Horne–Zeilinger) state is

entangled over M qubits with M > 2

|0〉⊗M + |1〉⊗M

√
2

. (8.16)
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For M = 3

|000〉+ |111〉√
2

.

The entanglement can arise during a computation that uses quantum gates

due to the nature of the MCNOT gate. During a computation, a part of

the system can be observed by a projection, and the vector that represents

the state is renormalized to the unit length. However, if an entanglement is

present, then the observed part determines the rest of the state. In contrast

to the conventional register, several qubits in a quantum register can form

an entity, such as an ebit. Extra care must be taken when a part of the

system is measured. A register is used to indicate if the computation is ter-

minated, |1〉 for terminated and |0〉 for not terminated. If we measure |1〉,
then we are done. If we measure |0〉, then we must start all of the compu-

tation from the beginning due to entanglement. There is no entanglement

between two qubits of a state if

∑

i

ωi · |xi〉|yi〉 =

(
∑

i

ωi · |xi〉
)

⊗ |yi〉

that is only valid if |yi〉 = |yj〉 for all i and j. The states

∑

i

ωi · |xi〉|yi〉,
∑

i

ωi · |xi〉

behave differently.

8.5 Quantum Boolean Circuits

A reversible circuit that is composed of m bits corresponds to a unitary

mapping that represents a permutation on m bits, defining an injective

mapping Bm → Bm. A unitary permutation matrix can represent this

unitary mapping. A more elegant method is to map the reversible circuit

into the quantum Boolean gates. Such a mapping allows us to determine the

complexity of the circuit by the number of gates. The following quantum

gates are Boolean quantum gates: the identity gate I, the NOT gate and

the control not gate MCNOT . The control not gate performs the essential

fan-out operation. What is missing are the AND and OR operations.

These operations can be represented by the universal reversible Toffoli gate

(see chapter “Reversible Algorithms”). A reversible Toffoli gate is a unitary
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mapping. It defines a quantum gate on three qubits and can be represented

by a unitary matrix M in Hilbert space H8

M =







I1 0 0 0

0 I1 0 0

0 0 I1 0

0 0 0 M¬







=
















1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0
















. (8.17)

The unitary matrix M can be decomposed into several ways using non

Boolean quantum gates. However each decomposition involves the MCNOT ,

indicating that an entanglement may arise when applying a quantum Toffoli

gate. With the basis of three qubits of the Hilbert space H8

|000〉 =
















1

0

0

0

0

0

0

0
















, |001〉 =
















0

1

0

0

0

0

0

0
















, |010〉 =
















0

0

1

0

0

0

0

0
















, |011〉 =
















0

0

0

1

0

0

0

0
















,

|100〉 =
















0

0

0

0

1

0

0

0
















, |101〉 =
















0

0

0

0

0

1

0

0
















, |110〉 =
















0

0

0

0

0

0

1

0
















, |111〉 =
















0

0

0

0

0

0

0

1
















the mapping of the reversible T (x1, x2, x3) = (x1, x2, (x1 ∧ x2) ⊕ x3) corre-

sponds to the unitary mapping

M · |xyz〉 = M · |x〉|y〉|z〉 = |x〉|y〉|(x ∧ y) ⊕ z〉. (8.18)

For the AND operation, the ancilla bit z is set to 0

M · |x〉|y〉|0〉 = |x〉|y〉|(x ∧ y)〉. (8.19)
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The four bit conjunction x ∧ y ∧ z ∧ v requires three quantum Toffoli gates

and three additional qubits that are zero. The input:

|x〉|y〉|0〉|z〉|0〉|v〉|0〉.
First quantum Toffoli gate

(M · |x〉|y〉|0〉) ⊗ (I4| · |z〉|0〉|v〉|0〉) = |x〉|y〉|x ∧ y〉|z〉|0〉|v〉|0〉.
Second quantum Toffoli gate

(I2 · |x〉|y〉) ⊗ (M · |x ∧ y〉|z〉|0) ⊗ (I2 · |v〉|0〉) =

= |x〉|y〉|x ∧ y〉|z〉|x ∧ y ∧ z〉|v〉|0〉.
Third quantum Toffoli gate

(I4 · |x〉|y〉|x ∧ y〉|z〉) ⊗ (M · |x ∧ y ∧ z〉|v〉|0〉) =

= |x〉|y〉|x ∧ y〉|z〉|x ∧ y ∧ z〉|v〉|x ∧ y ∧ z ∧ v〉.
The circuit corresponds to the following unitary mapping

((I4 ⊗M) (I2 ⊗M ⊗ I2) · (M ⊗ I4)) · |xy0z0v0〉
with the result

|x〉|y〉|x ∧ y〉|z〉|x ∧ y ∧ z〉|v〉|x ∧ y ∧ z ∧ v〉.
The third and the fifth qubit are usually not required for further computa-

tion because the result is represented in the output qubit seven. However

they are entangled with the output qubit. It is not possible to reset them

to zero. Instead they are un-computed. Because M−1 = M we recompute

the first and the second quantum Toffoli gate after determining the result.

The steps are reversed, it follows

((I2 ⊗M ⊗ I2) · (M ⊗ I4) · (I4 ⊗M) (I2 ⊗M ⊗ I2) · (M ⊗ I4)) · |xy0z0v0〉
= |x〉|y〉|0〉|z〉|0〉|v〉|x ∧ y ∧ z ∧ v〉 = |xy0z0v(x ∧ y ∧ z ∧ v)〉.

The OR operation is represented by the unitary mapping according to the

De Morgan’s laws

((I2 ⊗MNOT ) ·M · (MNOT ⊗MNOT ⊗ I1)) · |xy0〉 = xy(x ∨ y)〉.
For each quantum Boolean AND, OR operation a näıve implementation

requires an ancilla bit. These bits can be reused for further computation

only by reversing the preceding steps. The complexity of the circuit corre-

sponds to the number of used quantum gates. A quantum circuit represents

a permutation in Hilbert space and is not an algorithmic device. The com-

putation does not alter the distribution of the amplitudes; the von Neumann

entropy remains unchanged during the execution of the quantum Boolean

gates. The probability of measuring certain states is the same before and

after the computation; by itself, it does not offer any advantage over the

classical computation.
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8.6 Deutsch Algorithm

The Hadamard gate changes the von Neumann entropy before and after

the computation; it performs an operation that goes beyond the Boolean

truth operations. It maps a state with zero von Neumann entropy to a

superposition with maximal entropy. The Deutsch algorithm [Deutsch and

Jozsa (1992)] exploits the superposition of qubits generated by Hadamard

gates and is more powerful than any classical algorithm. It determines if

an unknown function f : B1 → B1 : f(x) = y of one bit is constant or

not by calling the function one time. A classical algorithm requires two

calls. A constant function on one bit is either f(x) = 1 or f(x) = 0. A non

constant function is either the identity function f(0) = 0 and f(1) = 1 or

the flip function f(0) = 1 and f(1) = 0. The condition of the function being

constant f(0) = f(1) implies that the XOR operation ⊕ is f(0)⊕ f(1) = 0

is zero. On the other hand if the function is not constant f(0) 6= f(1)

implies that the XOR operation ⊕ is f(0)⊕ f(1) = 1 is one. We can define

a unitary operator Uf that acts on the two qubits

Uf · |xy〉 = |x〉|f(x) ⊕ y〉.
Uf can be implemented by a quantum Boolean circuit including CNOT gate.

There are four different cases, for f(x) = 0 with the identity mapping

i) Uf |00〉 = |0〉|0 ⊕ 0〉 = |00〉, Uf |01〉 = |01〉,
Uf |10〉 = |10〉, Uf |11〉 = |11〉

for f(x) = 1 with the permutation of all elements.

ii) Uf |00〉 = |0〉|1 ⊕ 0〉 = |01〉, Uf |01〉 = |00〉,
Uf |10〉 = |11〉, Uf |11〉 = |10〉

and for a non-constant function, f(x) = x corresponds to a permutation of

two elements.

iii) Uf |00〉 = |0〉|0 ⊕ 0〉 = |00〉, Uf |01〉 = |01〉,
Uf |10〉 = |11〉, Uf |11〉 = |10〉

and f(x) = ¬x with a permutation of two elements as well

vi) Uf |00〉 = |0〉|1 ⊕ 0〉 = |01〉, Uf |01〉 = |00〉,
Uf |10〉 = |10〉, Uf |11〉 = |11〉.

There are two classes:

• No permutation i) or permutation of all elements ii) indicates that the

function is constant.

• Permutation of two elements iii), iv) indicates that the function is non

constant.
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The Algorithm to determine if f(x) is constant or not is composed of

four steps. In the first step of the algorithm we build a superposition of

two qubits

W2 · |01〉 = W1 · |0〉 ⊗W1 · |1〉 =

( |0〉 + |1〉√
2

)

⊗
( |0〉 − |1〉√

2

)

=

W2 · |01〉 =
1

2
· (|00〉 − |01〉 + |10〉 − |11〉) .

In the second step we apply the Uf , gate.

Uf ·W2 · |01〉 = Uf

(
1

2
· (|00〉 − |01〉+ |10〉 − |11〉)

)

=

=
1

2
· (Uf · |00〉 − Uf · |01〉 + Uf · |10〉 − Uf · |11〉) .

There are four possible outcomes. For constant function

i) =
1

2
· (|00〉 − |01〉 + |10〉 − |11〉) =

( |0〉 + |1〉√
2

)

⊗
( |0〉 − |1〉√

2

)

,

ii) =
1

2
· (|01〉 − |00〉 + |11〉 − |10〉) =

1

2
· (−|00〉+ |01〉 − |10〉 + |11〉)

=

(−|0〉 − |1〉√
2

)

⊗
( |0〉 − |1〉√

2

)

= −
( |0〉 + |1〉√

2

)

⊗
( |0〉 − |1〉√

2

)

,

and for non-constant function

iii) =
1

2
· (|00〉 − |01〉 + |11〉 − |10〉) =

1

2
· (|00〉 − |01〉|10〉+ |11〉)

=

( |0〉 − |1〉√
2

)

⊗
( |0〉 − |1〉√

2

)

,

iv) =
1

2
· (|01〉 − |00〉 + |10〉 − |11〉) =

1

2
· (−|00〉+ |01〉 + |10〉 − |11〉)

(−|0〉 + |1〉√
2

)

⊗
( |0〉 − |1〉√

2

)

= −
( |0〉 − |1〉√

2

)

⊗
( |0〉 − |1〉√

2

)

.

In the third step a Hadamard gate is applied to the first qubit

(W1 ⊗ I1) · Uf ·W2 · |01〉. (8.20)

There are four possible outcomes,

i) |0〉 ⊗
( |0〉 − |1〉√

2

)

,
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ii) − |0〉 ⊗
( |0〉 − |1〉√

2

)

,

iii) |1〉 ⊗
( |0〉 − |1〉√

2

)

,

vi) − |1〉 ⊗
( |0〉 − |1〉√

2

)

.

In the fourth step the first qubit (that is in the pure state) is measured. It

is |0〉 if the function is constant, otherwise |1〉.

Even the Deutsch algorithm is more powerful than any classical algorithm,

it determines a unknown function of one bit by calling it only one time, it

needs three serial steps before a measurement can take place. In the next

section we generalize the working principle of the algorithm even to a more

powerful algorithm.

8.7 Deutsch Jozsa Algorithm

It determines if a unknown function f : Bm → B1 : f(x) = y of m bit

is constant or a balanced function. In constant function of m bits for all

possible n = 2m inputs the output is either 0 or 1 [Deutsch and Jozsa

(1992)]. In a balanced function half of the n = 2m input values output 0

the other half output 1. A set of the input values x of the size 2m is mapped

into two subsets called 0 and 1 each of the size 2m/2 = 2m−1. Such a two

subsets could be the subset of even and odd numbers. A classical algorithm

has to call the function 2m−1 +1 times in the worst case, since in the worst

case the output is 2m−1 times 0. If in the next call it is 0 then the function

is constant, otherwise it is guaranteed to be balanced. The Deutsch Jozsa

algorithm needs three serial steps before a measurement can take place. We

define a unitary operator Uf that acts on the m + 1 qubits with x ∈ Bm

and y ∈ B1

Uf · |x〉|y〉 = |x〉|f(x) ⊕ y〉.

The Algorithm to determine if f(x) is constant or balanced is composed

of four steps. In the first step of the algorithm we build a superposition of

m + 1 qubits

Wm+1 · |0⊗m〉|1〉 = Wm · |0⊗n〉 ⊗W1 · |1〉 =
1√
2n

∑

x∈Bm

|x〉 ⊗
( |0〉 − |1〉√

2

)

.
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The first m qubits represent a superposition over all possible states with

a positive amplitude, in the last qubit one amplitude of the two possible

states is negative. In the second step we apply the Uf , operator,

Uf ·Wm+1 · |0⊗m〉|1〉 = Uf ·
(

1√
2m

∑

x∈Bm

|x〉 ⊗
( |0〉 − |1〉√

2

))

= Uf ·
(

1√
2m+1

∑

x∈Bm

|x〉 ⊗ (|0〉 − |1〉)
)

=
1√

2m+1
· Uf ·

(
∑

x∈Bm

(|x〉|0〉 − |x〉|1〉)
)

=
1√

2n+1
·
∑

x∈Bm

Uf · (|x〉|0〉 − |x〉|1〉)

=
1√

2m+1
·
∑

x∈Bm

(Uf · |x〉|0〉 − Uf · |x〉|1〉)

=
1√

2m+1
·
∑

x∈Bm

Uf · |x〉|0〉 − 1√
2m+1

·
∑

x∈Bm

Uf · |x〉|1〉

=
1√

2m+1
·
∑

x∈Bm

|x〉|f(x) ⊕ 0〉 − 1√
2m+1

·
∑

x∈Bm

|x〉|f(x) ⊕ 1〉.

There are three possible outcomes. For constant function

i)
1√

2m+1
·
∑

x∈Bm

|x〉|0 ⊕ 0〉 − 1√
2m+1

·
∑

x∈Bm

|x〉|0 ⊕ 1〉 =

=
1√
2m

∑

x∈Bm

|x〉 ⊗
( |0〉 − |1〉√

2

)

,

ii)
1√

2m+1
·
∑

x∈Bm

|x〉|1 ⊕ 0〉 − 1√
2m+1

·
∑

x∈Bm

|x〉|1 ⊕ 1〉 =

= − 1√
2m

∑

x∈Bm

|x〉 ⊗
( |0〉 − |1〉√

2

)

,
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and for non-constant function

iii)
1√

2n+1
· (
∑

f(x)=0

|x〉|0 ⊕ 0〉 −
∑

f(x)=0

|x〉|0 ⊕ 1〉+

+
∑

f(x)=1

|x〉|1 ⊕ 0〉 −
∑

f(x)=1

|x〉|1 ⊕ 1〉) =

=
1√
2n

·




∑

f(x)=0

|x〉 −
∑

f(x)=1

|x〉



⊕
( |0〉 − |1〉√

2

)

=

=
1√
2n

∑

x∈Bm

(−1)f(x) · |x〉 ⊗
( |0〉 − |1〉√

2

)

.

The result i), ii) can be as well represented by iii). The representation

1√
2m

∑

x∈Bm

(−1)f(x) · |x〉 ⊗
( |0〉 − |1〉√

2

)

(8.21)

is one of the most used notations in quantum computation. The value of

the function f(x) is encoded by (−1)f(x), the sign of the amplitude. The

last qubit
(

|0〉−|1〉√
2

)

is called auxiliary, or target bit and is ignored, so the

Equation 8.21 is written as

1√
2m

∑

x∈Bm

(−1)f(x) · |x〉. (8.22)

In the third step a Hadamard gate is applied to the first n qubits, the target

qubit is ignored

(Wm ⊗ I1) · Uf ·Wm+1 · |0⊗n〉|1〉 (8.23)

there are four possible outcomes,

i) |0⊗n〉 ⊗
( |0〉 − |1〉√

2

)

ii) − |0⊗n〉 ⊗
( |0〉 − |1〉√

2

)

iii) Wm · 1√
2m

∑

x∈Bm

(−1)f(x) · |x〉 ⊗ I1 ·
( |0〉 − |1〉√

2

)

=

= Wm ·
(

1√
2m

∑

x∈Bn

(−1)〈z|x〉 · |x〉
)

⊗
( |0〉 − |1〉√

2

)

= |z〉 ⊗
( |0〉 − |1〉√

2

)
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vi) Wm · 1√
2m

∑

x∈Bm

(−1)f(x) · |x〉 ⊗ I1 ·
( |0〉 − |1〉√

2

)

=

= Wm ·
(

−1√
2m

∑

x∈Bn

(−1)〈z|x〉 · |x〉
)

⊗
( |0〉 − |1〉√

2

)

= −|z〉 ⊗
( |0〉 − |1〉√

2

)

.

The results i), ii), iii) and iv) can be represented as

1

2m

∑

z∈Bm

∑

x∈Bm

(−1)f(x) · |z〉 ⊗
( |0〉 − |1〉√

2

)

. (8.24)

In the fourth step the first m qubits are measured. They are |0⊗m〉 if the

function is constant, for a balanced function |z〉 6= |0⊗m〉. The algorithm

determines as well the shape of the function f(x). The shape is represented

by the z row or column of the Wm matrix, in which either 1 represents the

value zero of the function and −1 the value one or visa versa. Before the

measurement this information is represented by the minus sign of the am-

plitude. The first n qubits are either |z〉 or −|z〉. After the measurement

the m qubits are |z〉, the information about of the amplitude is lost, |0⊗m〉 is

either the constant function f(x) = 0 or f(x) = 1. The Deutsch Jozsa algo-

rithm is build on three serial steps. It maps a state with zero von Neumann

entropy to a superposition with maximal entropy, does the computation on

this superposition and maps the result into a state with zero entropy. It

provides three most important principles of quantum computation:

• The function f(x) is represented by a quantum Boolean circuit.

• The properties of the function f(x) are determined using the super-

position principle and a generalized class of Fourier transform (The

Hadamard transform).

• The values of the function f(x) are encoded by (−1)f(x), the sign of

the amplitude.

This principles are the basis for the two most revolutionary quantum algo-

rithms, Shor’s algorithm and Grover’s algorithm. Before their introduction,

some limitations of quantum computation are highlighted.

8.8 Amplitude Distribution

The register of m qubits is represented as a direct product of m qubits. It

defines n = 2m dimensional Hilbert space Hn with an orthonormal basis
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|x1〉, |x1〉 · · · |xn〉 and a state is represented as a unit-length vector

|x〉 = ω1 · |x1〉 + ω2 · |x2〉 + · · · + ωn · |xn〉.
After the measurement, observation the state |x〉 is projected into a pure

state

1 · |xk〉.
All the information about the amplitude distribution ω1, · · · , ωn of |x〉 is

lost. Could we save this inform by coping the unit-length vector |x〉 to

another state? Could we clone a state?

8.8.1 Cloning

To preform this task we define a copy machine. We chose one orthonormal

basis state of the orthonormal basis, for example |x1〉 and define a unitary

copy operator that copies an state |x〉 ∈ Hn as

Ucopy(|x〉, |x1〉) = |x〉|x〉. (8.25)

Does Ucopy exist? For pure states Ucopy is defined. It can be realized for

example by MCNOT with |x1〉 = |0〉 and |x2〉 = |1〉,
Ucopy(|x1〉, |x1〉) = |x1〉|x1〉, Ucopy(|x2〉, |x1〉) = |x2〉|x2〉.

If the state is in a superposition

|x〉 =
|x1〉 + |x2〉√

2

it implies that

Ucopy(|x〉, |x1〉) = |x〉|x〉 =

( |x1〉 + |x2〉√
2

)

⊗
( |x1〉 + |x2〉√

2

)

=

1

2
· (|x1〉|x1〉 + |x1〉|x2〉 + |x2〉|x1〉 + |x2〉|x2〉) .

Because of the linearity of Ucopy it follows,

Ucopy(|x〉, |x1〉) = Ucopy

( |x1〉 + |x2〉√
2

, |x1〉
)

=

Ucopy(|x〉, |x1〉) = Ucopy

( |x1〉|x1〉 + |x2〉|x1〉√
2

)

=

Ucopy(|x1〉|x1〉) + Ucopy(|x2〉|x1〉)√
2

=
1√
2
· (|x1〉|x1〉 + |x2〉|x2〉)
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it leads to a contradiction. An operation that would produce a copy of

an arbitrary quantum state is not possible, we cannot copy an unknown

amplitude distribution of a state. For example we cannot copy an unknown

qubit α · |0〉+ β · |1〉. The amplitude distribution is specified by the values

of α and β. However we can copy the basis, α · |0〉 + β · |1〉 into the basis

α · |00〉 + β · |11〉. The operator copy base Ucopy∗

Ucopy∗(α · |x1〉 + β · |x2〉, |x1〉)

= Ucopy∗(α · |x1x1〉 + β · |x2x1〉) = α · |x1x1〉 + β · |x2x2〉 (8.26)

exist, it can be realized by MCNOT . Ucopy∗ does not change the entropy of

the register, Ucopy would change it.

8.8.2 Teleportation

It is possible to teleport a qubit from one location to another using an ebit

[Bennett et al. (1993)]. The two qubits in an ebit behave as one unit, even if

the qubits are separated. This nonlocal interaction is not limited by speed

of light, not mediated by the distance. The qubit is transferred from one

point to another without traversing the physical space. Suppose we have

two qubits that are entangled in a state |00〉+|11〉√
2

. We separate the two

qubits of the ebit over a distance on two places A and B.

|0A〉|0B〉 + |1A〉|1B〉√
2

. (8.27)

In the first step of the teleportation of the qubit α · |0A〉+β · |1A〉 from the

place A to the place B we interact with the corresponding ebit

(α · |0A〉 + β · |1A〉) ⊗
( |0A〉|0B〉 + |1A〉|1B〉√

2

)

(8.28)

α · (|0A〉|0A〉|0B〉 + |0A〉|1A〉|1B〉) + β · (|1A〉|0A〉|0B〉 + |1A〉|1A〉|1B〉)√
2

.

(8.29)

After the interaction there are two qubits on the location A and on the

location B. In the second step we apply the MCNOT quantum gate to the

first two qubits at the location A and on the location B we do noting

(MCNOT ⊗ I1) ·
1√
2
· (α · (|0A〉|0A〉|0B〉 + |0A〉|1A〉|1B〉)+

β · (|1A〉|0A〉|0B〉 + |1A〉|1A〉|1B〉)) =
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α · (|0A〉|0A〉|0B〉 + |0A〉|1A〉|1B〉) + β · (|1A〉|1A〉|0B〉 + |1A〉|0A〉|1B〉)√
2

.

(8.30)

This can be rewritten as

α · |0A〉 ⊗ (|0A〉|0B〉 + |1A〉|1B〉) + β · |1A〉 ⊗ (|1A〉|0B〉 + |0A〉|1B〉)√
2

.

(8.31)

In the third step we apply the W1 quantum gate to the first qubit at the

location A and on the location B we do noting.

(W1 ⊗ I2) ·
1√
2
· (α · |0A〉 ⊗ (|0A〉|0B〉 + |1A〉|1B〉)+

β · |1A〉 ⊗ (|1A〉|0B〉 + |0A〉|1B〉)) =

1

2
· (α · (|0A〉 + 1A〉) ⊗ (|0A〉|0B〉 + |1A〉|1B〉)+

+β · (|0A〉 − 1A〉) ⊗ (|1A〉|0B〉 + |0A〉|1B〉)) =

1

2
· (α · |0A〉0A〉|0B〉 + α · |0A|1A〉|1B〉+

α · |1A〉0A〉|0B〉 + α · |1A|1A〉|1B〉+

β · |0A〉|1A〉|0B〉 + β · |0A〉0A〉|1B〉 − β · |0A〉1A〉|0B〉 − β · |0A〉|0A〉|1B〉)

after rewriting the equation we get the following representation

1

2
· (|0A〉|0A〉 ⊗ (α · |0B〉 + β · |1B〉) + |0A〉|1A〉 ⊗ (α · |1B〉 + β · |0B〉)+

|1A〉|0A〉 ⊗ (α · |0B〉 − β · |1B〉) + |1A〉|1A〉 ⊗ (α · |1B〉 − β · |0B〉)).

In the fourth step a measurement of the first two qubits at the place A is

done. There are four possible results; each of them has an equal probability

of being measured.

|00〉 is measured the state collapses at place B to

α · |0〉 + β · |1〉

at place B no correction is nesseascary, the qubit described by its amplitude

distribution was teleported.
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|01〉 is measured the state collapses at place B to

α · |1〉 + β · |0〉
at place B a correction is necessary to reconstruct the teleported qubit.

MNOT gate is applied.

MNOT · (α · |1〉 + β · |0〉) = α · |0〉 + β · |1〉

|10〉 is measured the state collapses at place B to

α · |0〉 − β · |1〉
at place B a correction is necessary to reconstruct the teleported qubit. Z

gate is applied.

Z =

(
1 0

0 −1

)

(8.32)

Z · (α · |0〉 − β · |1〉) = α · |0〉 + β · |1〉

|11〉 is measured the state collapses at place B to

α · |1〉 − β · |0〉
at place B a correction is necessary to reconstruct the teleported qubit.

MNOT gate and then the Z gate is applied.

Z ·MNOT · (α · |1〉 − β · |0〉) = α · |0〉 + β · |1〉.
This transformation is also called the Y gate

Y = Z ·MNOT =

(
1 0

0 −1

)

·
(

0 1

1 0

)

=

(
0 1

−1 0

)

. (8.33)

For the teleportation of qubits classical communication is required. To

indicate how to reconstruct one qubit two bits have to be send over a clas-

sical channel, since one teleported qubit can take four different superposi-

tions. It follows that an ebit cannot be used to send or teleport information,

additionally a classical channel is required.

8.9 Geometric Operations

A unitary operator performs a rotation or a reflection of a state represented

by a unit length vector in a Hilbert space. States may be equivalent if they

differ only by the relative amplitudes, different states when measured are

always equal.
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Equivalent states Two equivalent states represent the same state when

a measurement is preformed, but they can have behave differently during

the unitary evolution. Two states |x〉 and |y〉 are equivalent |x〉 ≡ |y〉 if

|x〉 = ei·θ · |y〉 (8.34)

with

ei·θ = cos θ + i · sin θ. (8.35)

For example |0〉 and −|0〉 are two equivalent states

|0〉 ≡ −|0〉 ⇔ |0〉 = −ei·π · |0〉 (8.36)

for θ = π

ei·π = cosπ + i · sinπ = −1.

Other examples are

|0〉 ≡ i · |0〉 ⇔ |0〉 = i · ei·−π/2 · |0〉 (8.37)

for θ = −π/2

ei·−π/2 = cos−π/2 + i · sin−π/2 = −i

and

|0〉 ≡ |0〉 + i · |0〉√
2

⇔ |0〉 =
1 + i√

2
· ei·π/4 · |0〉 (8.38)

for θ = −π/4

ei·(−π/4) = cos(−π/4) + i · sin(−π/4) =
1 − i√

2

1 − i√
2

· 1 + i√
2

=
2

2
= 1.

However the following two state is not equal nor not equivalent

|0〉 + |1〉√
2

6= |0〉 − |1〉√
2

.

They are the reflection of each other.
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Reflection An example of a reflection operator is the Z operator

Z =

(
1 0

0 −1

)

.

It preforms a reflection on the basis defined by |0〉. The Z gate is a special

case of the phase gate

P =

(
1 0

0 ei·θ

)

(8.39)

with θ = π. A phase gate alters the relative amplitudes but represents

the same state value when a measurement is preformed and can be used

together with the MNOT gate
(
ei·θ 0

0 ei·θ

)

=

(
1 0

0 ei·θ

)

·
(

0 1

1 0

)

·
(

1 0

0 e−i·θ

)

. (8.40)

Rotation A rotation by an angle α is represented by the unitary operator

R

R =

(
cosα − sinα

sinα cosα

)

. (8.41)

It can be shown that a unitary transformation is a rotation of n = 2m

Hilbert space [Rieffel and Polak (2011)].

Changing the basis In data analysis the Karhunen-Loève transforma-

tion rotates the coordinate system in such a way that the covariance matrix

is diagonal, means each dimension is uncorrelated. In quantum computa-

tion a unitary transformation is equivalent to a change of the basis.

Closure relation For a basis an orthonormal basis

|x1〉, |x1〉. · · · |xn〉
the identity operator is represented as

n∑

i=1

|xi〉〈xi|. (8.42)

With the inner product

〈x|xi〉 = ωi

an state |x〉 can be represented as

|x〉 = I · |x〉 =

(
n∑

i=1

|xi〉〈xi|
)

|x〉 =

n∑

i=1

|xi〉〈xi|x〉 =

n∑

i=1

ωi · |xi〉. (8.43)
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An operator A can be represented using the closure relation as

A = I ·A · I =

(
n∑

i=1

|xi〉〈xi|
)

·A ·





n∑

j=1

|xj〉〈xj |



 =
∑

i,j

〈xi|A · |xj〉 · |xi〉〈xj |

(8.44)

with aij = 〈xi|A · |xj〉 being the number of the operator matrix A at row

i and column j for the base |x1〉, |x1〉. · · · |xn〉. For a different orthonormal

basis

|y1〉, |y1〉. · · · |yn〉

the operator A is represented as a′ij = 〈yi|A · |yj〉

A′ =








〈y1|A · |y1〉 〈y1|A · |y2〉 · · · 〈y1|A · |yn〉
〈y2|A · |y1〉 〈y2|A · |y2〉 · · · 〈y2|A · |yn〉

...
...

. . .
...

〈yn|A · |y1〉 〈yn|A · |y2〉 · · · 〈yn|A · |yn〉








. (8.45)

The change of the basis |xi〉 to yi〉 is represented by the operator U

U =








〈y1|x1〉 〈y1|x2〉 · · · 〈y1|xn〉
〈y2|x1〉 〈y2|x2〉 · · · 〈y2|xn〉

...
...

. . .
...

〈yn|x1〉 〈yn|x2〉 · · · 〈yn|xn〉








. (8.46)

A vector |x〉 is changed to the basis |yi〉 by the basis change

|x′〉 = U · |x〉 (8.47)

|x′〉 is the same vector as |x〉 represented in the basis |yi〉. This method is

also called the unitary transformation. If we apply an operator A to |x〉
and represent the result in the basis |yi〉 we do the following operation

|z〉 = U ·A · |x〉 = U · A · U∗ · U · |x〉. (8.48)

The operator A is represented in the new basis as

A′ = U ·A · U∗. (8.49)

In the following example in H2 we change from the basis

|0〉 =

(
1

0

)

, |1〉 =

(
0

1

)

to the the Hadarmad basis
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|+〉 =

(
1√
2

1√
2

)

, |−〉 =

(
1√
2

−1√
2

)

.

The change of the basis |0〉, |1〉 to |+〉, |−〉 is represented by the operator U

U =

(
〈+|0〉 〈+|1〉
〈−|0〉 〈−|1〉

)

=

(
1√
2

1√
2

1√
2

−1√
2

)

= W1. (8.50)

The MNOT gate

MNOT =

(
0 1

1 0

)

is represented in the basis |+〉, |−〉 as

M ′
NOT = U ·MNOT · U∗ =

(
1√
2

1√
2

1√
2

−1√
2

)

·
(

0 1

1 0

)

·
(

1√
2

1√
2

1√
2

−1√
2

)

=

(
1 0

0 −1

)

.

(8.51)

A base change corresponds to the unitary transformation.

In quantum physics there are two models:

• The Heisenberg picture, the state vectors are time-independent, the

basis change in time.

• The Schrödinger picture, the states evolve in time, the basis does not

change in time.

Both approaches are similar and depend on observer. Either he is inside

the coordinate system or outside. Either the sun is rotating around the

earth, or the earth is rotating around the sun. In quantum computation

the Schrödinge picture is used.
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Chapter 9

Periodicity

9.1 Fourier Transform

A way to solve a problem is to transform it into some other problem, for

which a solution is known. Transformations are applied to signals to obtain

further information from the signal that is not readily available in the raw

signal. One such transformation is the Fourier transform. Many signals are

represented in the time domain, and some additional information is present

in the frequency content. A Fourier transform maps the signal from the

time domain to the frequency domain. The frequency is the number of

occurrences of a repeating event per unit time. The period is the duration

of one cycle of an event, and the period is the reciprocal of the frequency

f . For example, if we count 40 events in two seconds, then the frequency is

40

2 s
=

20

1 s
= 20

1

s
= 20 hertz

then the period is

T = p =
1

20
s.

A repeated event can be a rotation, oscillation, or a periodic wave. For

periodic waves, one period corresponds to the time in which a full cycle of

a wave passes. A cycle is represented by the wavelength. The velocity v

of the wave is represented by the wavelength λ divided by the period p.

Because the frequency f is the inverse of the period, we can represent the

velocity as

v =
λ

p
= λ · f (9.1)

and the frequency as

f =
1

T
=

1

p
=

v

λ
. (9.2)

145
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If something changes rapidly, then we say that it has a high frequency. If it

does not change rapidly, i.e., it changes smoothly, we say that it has a low

frequency. The Fourier transform changes a signal from the time domain

x(t) ∈ C to the frequency domain X(f) ∈ C. The representation of the

signal x(t) in the frequency domain X(f) is the frequency spectrum. This

representation has the amplitude or phase plotted versus the frequency. In

a wave, the amplitude describes the magnitude of change and the phase

of the fraction of the wave cycle that has elapsed relative to the origin.

The complex number X(f) conveys both the amplitude and phase of the

frequency f . The absolute value |X(f)| represents the amplitude of the

frequency f . The phase is represented by the argument of X(f), arg(X(f)).

For a complex number

z = x + i · y = |z| · ei·θ (9.3)

θ is the phase

θ = arg(z) = tan−1
(y

x

)

(9.4)

and

|z| =
√

x2 + y2 (9.5)

phase is an angle (radians), and that negative phase corresponds to positive

time delay of the wave. For example if we shift the cosines function by the

angle θ

cos(x) → cos(x − θ)

the phase of the cosines wave is shifted. It follows as well that

sin(x) = cos(x− π/2). (9.6)

The Fourier transform of x(t) is

X(f) =

∫ ∞

−∞
x(t) · e−2·π·i·t·fdt (9.7)

t stands for time and f for frequency. The signal x(t) is multiplied with an

exponential term at some certain frequency f , and then integrated over all

times. The frequency spectrum of a real valued signal is always symmetric,

since the symmetric part is exactly a mirror image of the first part the

second part is usually not shown. The inverse Fourier transform of X(f) is

x(t) =

∫ ∞

−∞
X(f) · e2·π·i·t·fdf. (9.8)
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9.2 Discrete Fourier Transform

The discrete Fourier transforms discrete time-based or space-based data

into the frequency sequency-based data. Given a seqience α

αt : [1, 2, · · · , n] → C. (9.9)

The discrete Fourier transform produces a sequence ω:

ωf : [1, 2, · · · , n] → C. (9.10)

The discrete Fourier transform of α(t) is

ωf =
1√
n
·

n∑

t=1

αt · e−2·π·i·(t−1)· (f−1)
n (9.11)

its wave frequency is (f−1)
n events per sample. The inverse discrete Fourier

transform of ωf is

αt =
1√
n
·

n∑

f=1

ωf · e2·π·i·(t−1)· (f−1)
n . (9.12)

Discrete Fourier transform (DFT) can be seen as a linear transform F

talking the column vector α to a column vector ω

ω = F · α (9.13)








ω1

ω2

...

ωn








= F · α =

=
1√
n
·









e−2·π·i·(0)· (0)
n e−2·π·i·(0)· (1)

n · · · e−2·π·i·(0)· (n−1)
n

e−2·π·i·(1)· (0)
n e−2·π·i·(1)· (1)

n · · · e−2·π·i·(1)· (n−1)
n

...
...

. . .
...

e−2·π·i·(n−1)· (0)
n e−2·π·i·(n−1)· (1)

n · · · e−2·π·i·(n)· (n−1)
n









·








α1

α2

...

αn








(9.14)

and the inverse discrete Fourier transform (IDFT) can be seen as a linear

transform IF talking the column vector ω to a column vector α

α = IF · ω (9.15)
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






α1

α2

...

αn








=
1√
n
·









e2·π·i·(0)· (0)
n e2·π·i·(0)· (1)

n · · · e2·π·i·(0)· (n−1)
n

e2·π·i·(1)· (0)
n e2·π·i·(1)· (1)

n · · · e2·π·i·(1)· (n−1)
n

...
...

. . .
...

e2·π·i·(n−1)· (0)
n e2·π·i·(n−1)· (1)

n · · · e2·π·i·(n)· (n−1)
n









·








ω1

ω2

...

ωn








.

(9.16)

The the matrix F can be represented as a Vandermonde matrix using the

nth root of unity. An nth root of unity is a complex number ζ satisfying

the equation

ζn = 1 (9.17)

with n = 1, 2, 3, · · · , n− 1 being a a positive integer, for example

ζn = e−2·π·i· 1
n = cos

(

2 · π · 1

n

)

− i · sin
(

2 · π · 1

n

)

(9.18)

with exponential of the complex number

ei·x = cos(x) + i · sin(x) (9.19)

and

e−i·x = cos(x) − i · sin(x). (9.20)

With ζn = e−2·π·i· 1
n the matrix F can be represented as

F =
1√
n
·









ζ
(0)·(0)
n ζ

(0)·(1)
n · · · ζ

·(0)·(n−1)
n

ζ
(1)·(0)
n ζ

(1)·(1)
n · · · ζ

·(1)·(n−1)
n

...
...

. . .
...

ζ
(n−1)·(0)
n ζ

(n−1)·(1)
n · · · ζ·(n−1)·(n−1)

n









. (9.21)

A Vandermonde matrix V is a matrix with the terms of a geometric pro-

gression in each row

V =











1 γ1 γ2
1 γ3

1 · · · γ(n−1)
1

1 γ2 γ2
2 γ3

2 · · · γ(n−1)
2

1 γ3 γ2
3 γ3

3 · · · γ(n−1)
3

...
...

. . .
...

...
...

1 γn γ2
n γ3

n · · · γ(n−1)
n











. (9.22)

F is a Vandermonde matrix, it can be represented as

F =
1√
n
·














1 1 1 1 · · · 1

1 ζn ζ2
n ζ3

n · · · ζ
(n−1)
n

1 ζ2
n ζ4

n ζ6
n · · · ζ

2·(n−1)
n

1 ζ3
n ζ6

n ζ9
n · · · ζ

3·(n−1)
n

...
...

. . .
...

. . .
...

1 ζ
(n−1)
n ζ

2·(n−1)
n ζ

3·(n−1)
n · · · ζ(n−1)·(n−1)

n














. (9.23)
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The matrix F, also called DFT matrix is unitary

F−1 = F ∗ = IF. (9.24)

Because F is unitary it implies that the length of a vector is preserved as

stated in Parseval’s theorem

‖ω‖ = ‖F · α‖ = ‖α‖. (9.25)

9.2.1 Example

We generates a list with 256 = 28 elements containing a periodic signal αt

with Gaussian random noise from the interval [−0.5, 0.5].

αt = sin

(
50 · t · 2 · ·π

256

)

+ noise.

The represented data looks random (see Figure 9.1).

50 100 150 200 250

!1.0

!0.5

0.5

1.0

Fig. 9.1 A periodic signal αt with with Gaussian random noise.

The discrete Fourier transform ωf of the real valued signal αt is sym-

metric. It shows a strong peak at 50+1 and a symmetric peak at 256−50+1

representing the frequency component of the signal αt (see Figure 9.2). The

zero frequency term represents the DC average and appears at position 1

instead at the position 0.

A filter that reduces Gaussian noise based on DFT removes frequencies

with low amplitude of ωf and performs inverse discrete Fourier transform.
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50 100 150 200 250

2

4

6

8

Fig. 9.2 The discrete Fourier transform ωf . It shows a strong peak at 50 + 1 and a
symmetric peak at 256 − 50 + 1 representing the frequency component of the signal αt.
The zero frequency term represents the DC average and appears at position 1 instead at
the position 0.

9.3 Quantum Fourier Transform

For n = 2m F performs a Quantum Fourier Transform (QFT) on a state

|x〉 of m qubits in a n-dimensional Hilbert space Hn

|x〉 = α1 · |x1〉 + α2 · |x2〉 + · · · + αn · |xn〉.
The QFT is defined as

|y〉 = Fm · |x〉 (9.26)

with

|y〉 = ω1 · |x1〉 + ω2 · |x2〉 + · · · + ωn · |xn〉
and inverse QFT is defined as

|x〉 = IFm · |y〉 = F ∗
m · |y〉. (9.27)

For one qubit m = 1 , n = 2

ζ2 = e−2·π·i· 12 = e−π·i = eπ·i = −1

and the QFT F1 is

F1 =
1√
2
·
(

1 1

1 ζ2

)

=
1√
2
·
(

1 1

1 −1

)

= W1. (9.28)

F1 is just a Hadamard transform W1 of one qubit in Hilbert space H2.

A Hadamard transform of m qubits in Hilbert space Hn with n = 2m is

equivalent to a multidimensional two size discrete Fourier transforms F1

Wm =
⊗m

W1 =
⊗m

F1 = F1 ⊗ F1 · · · ⊗ F1. (9.29)
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For two qubits m = 2 , n = 4

ζ4 = e−2·π·i· 14 = e−·π·i· 12 = −i

and the QFT F2 is

F2 =
1√
4
·







1 1 1 1

1 ζ4 ζ2
4 ζ3

4

1 ζ2
4 ζ4

4 ζ6
4

1 ζ3
4 ζ6

4 ζ9
4







=
1

2
·







1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i







(9.30)

and the inverse QFT IF2 is

IF2 = F ∗
2 =

1

2
·







1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i







. (9.31)

For three qubits m = 3 , n = 8

ζ8 = e−2·π·i· 18 = e−π·i· 14 =
1 − i√

2

F3 =
1√
8
·
















1 1 1 1 1 1 1 1

1 ζ1
8 ζ2

8 ζ3
8 ζ4

8 ζ5
8 ζ6

8 ζ7
8

1 ζ2
8 ζ4

8 ζ6
8 ζ8

8 ζ10
8 ζ12

8 ζ14
8

1 ζ3
8 ζ6

8 ζ9
8 ζ12

8 ζ15
8 ζ18

8 ζ21
8

1 ζ4
8 ζ8

8 ζ12
8 ζ16

8 ζ20
8 ζ24

8 ζ28
8

1 ζ5
8 ζ10

8 ζ15
8 ζ20

8 ζ25
8 ζ30

8 ζ35
8

1 ζ6
8 ζ12

8 ζ18
8 ζ24

8 ζ30
8 ζ36

8 ζ42
8

1 ζ7
8 ζ14

8 ζ21
8 ζ28

8 ζ35
8 ζ42

8 ζ49
8
















(9.32)

F3 =
1√
8
·
















1 1 1 1 1 1 1 1

1 e−π·i· 14 −i e−π·i· 34 −1 eπ·i·
3
4 i eπ·i·

1
4

1 −i −1 i 1 −i −1 i

1 e−π·i· 34 i e−π·i· 14 −1 eπ·i·
1
4 i eπ·i·

3
4

1 −1 1 −1 1 −1 1 −1

1 eπ·i·
3
4 −i eπ·i·

1
4 −1 e−π·i· 14 i e−π·i· 34

1 i −1 −i 1 i −1 −i

1 eπ·i·
1
4 i eπ·i·

3
4 −1 e−π·i· 34 −i e−π·i· 14
















. (9.33)

The first row of F3 is the DC average of the amplitude of the input state

when measured, the following rows represent the AC (difference) of the
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input state amplitudes. The QFT operation on the state |x〉 is
















ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8
















=
1√
8
·

















1 1 1 1 1 1 1 1

1 1−i√
2

−i −1−i√
2

−1 −1+i√
2

i 1+i√
2

1 −i −1 i 1 −i −1 i

1 −1−i√
2

−i 1−i√
2
−1 1+i√

2
i −1+i√

2

1 −1 1 −1 1 −1 1 −1

1 −1+i√
2

−i 1+i√
2
−1 1−i√

2
i −1−i√

2

1 i −1 −i 1 i −1 −i

1 1+i√
2

−i −1+i√
2

−1 −1−i√
2

i 1−i√
2

















·
















α1

α2

α3

α4

α5

α6

α7

α8
















(9.34)

F3 can be represented as a sum of a real and imaginary matrix.

F3 =
1√
8
·

















1 1 1 1 1 1 1 1

1 1√
2

0 −1√
2
−1 −1√

2
0 1√

2

1 0 −1 0 1 0 −1 0

1 −1√
2

0 1√
2
−1 1√

2
0 −1√

2

1 −1 1 −1 1 −1 1 −1

1 −1√
2

0 1√
2
−1 1√

2
0 −1√

2

1 0 −1 0 1 0 −1 0

1 1√
2

0 −1√
2
−1 −1√

2
0 1√

2

















+ (9.35)

+
1√
8
·

















0 0 0 0 0 0 0 0

0 −i√
2
−i −i√

2
0 i√

2
i i√

2

0 −i 0 i 0 −i 0 i

0 −i√
2
−i −i√

2
0 i√

2
i −i√

2

0 0 0 0 0 0 0 0

0 i√
2
−i i√

2
0 −i√

2
i −i√

2

0 i 0 −i 0 i 0 −i

0 i√
2
−i i√

2
0 −i√

2
i −i√

2

















. (9.36)

The first row measures the DC, the second row fractional frequency of the

amplitude of the input state of 1/8, the third of 1/4 = 2/8, the fourth of

3/8, the fifth of 1/2 = 4/8, the sixth of 5/8, the seventh of 3/4 = 6/8 and

the eighth of 7/8 or equivalently the fractional frequency of −1/8. The

resulting frequency of the amplitude vector ω of the state |y〉 for a real

valued amplitude vector α of the state |x〉 is symmetric, ω2 = ω6, ω3 = ω7

and ω4 = ω8.
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9.4 FFT

The Hadamard transform Hm is composed of multidimensional two size

discrete Fourier transforms F1, it is a subset of DFT [Cormen et al. (2001)].

DFT Fm is related to the Hadamard transform but cannot be decomposed

as a tensor product of 2× 2 matrices. Any operator can be represented by

single qubit gates together with MCNOT gates, however their number can

grow exponential in the number if qubits [Rieffel and Polak (2011)]. An

efficient decomposition is represented by the fast Fourier transform (FFT).

Carl Friedrich Gauss invented the FFT algorithm around 1805. However

because the corresponding article was written in Latin it did not gain any

popularity. FFT was several times rediscovered and it was made popular by

J. W. Cooley and J. W. Tukey in 1965 [Cormen et al. (2001)]. The original

algorithm is limited to the DFT matrix of the size 2m × 2m, power of two.

Variants of the algorithm for the case in which the size of the matrix is not

power of two exist. The original algorithm decomposes Fm recursively.

Fm+1 =
1√
2
·
(
Im Dm

Im −Dm

)

·
(
Fm 0

0 Fm

)

·Rm+1 (9.37)

with the permutation matrix Rm given that n = 2m

Rm =






r11 · · · r1n
...

. . .
...

rn1 · · · rnn




 (9.38)

with

rab =







1 if 2 · a− 1 = b

1 if 2 · a− n = b

0 else

(9.39)

and the diagonal matrix with n · 2 = 2m+1

Dm =








ζ0
n·2 0 · · · 0

0 ζ1
n·2 · · · 0

...
...

. . .
...

0 0 · · · ζn−1
n·2








. (9.40)

For example F2 is decomposed with

D1, ζ4 = e−2·π·i· 14 → D1 =

(

e−·π·i· 02 0

0 e−·π·i· 12

)

=

(
1 0

0 −i

)

(9.41)
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and

R2 =







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







(9.42)

it follows

F2 =
1√
2
·







1 0 1 0

0 1 0 −i

1 0 −1 0

0 1 0 i







· 1√
2
·







1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1







·







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







(9.43)

F2 =
1

2
·







1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i







. (9.44)

The complexity of the FFT algorithm that decomposes Fm recursively is

O(n ·m).

9.5 QFT Decomposition

The Hadamard transform Wm can be decomposed into a tensor product of

m 2 × 2 matrices representing W1

Wm =
⊗m

W1 = W1 ⊗W1 · · · ⊗W1

so that the quantum complexity is O(m) [Rieffel and Polak (2011)]. Fm

cannot be decomposed as a tensor product of 2 × 2 matrices. Using the

decomposition of the FFT algorithm and decomposing the corresponding

matrices by the tensor product a quantum complexity of O(m2) = O(m ·m)

can be achieved. The decomposition performs m steps. In each step is rep-

resented by a product of three unitary matrices. They can be decomposed

at the step k into k tensor products. It folows

m + (m− 1) + (m− 2) + · · · + 1 =
m · (m− 1)

2
= O(m2). (9.45)

The permutation matrix Rm is unitary and can be decomposed into a tensor

product of m swap operators S preforming a swap operation on one qubit

states |x〉 and |y〉,
S|xy〉 = |yx〉 (9.46)
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with

S|00〉 = |00〉, S|01〉 = |10〉, S|10〉 = |01〉, S|11〉 = |11〉

and the matrix representation

S =







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







. (9.47)

The following matrix can be recursively decomposed
(
Fm 0

0 Fm

)

= I1 ⊗ Fm (9.48)

and

1√
2
·
(
Im Dm

Im −Dm

)

= (W1 · |0〉〈0|·) ⊗ Im + (W1 · |1〉〈1|·) ⊗Dm (9.49)

with

Dm = Dm−1 ⊗
(

1 0

0 ζn·2

)

. (9.50)

9.5.1 QFT quantum circuit∗

We can rewrite the recursive decomposition into a “kind” of tensor product

using the binary representation of |x〉, |y〉. This representation is popular,

however it not a real tensor decomposition. The QFT on a state |x〉 of m

qubits in a n-dimensional Hilbert space Hn = H2m can be represented as

[Kaye et al. (2007)]

|y〉 = Fm · |x〉 =
1√
n

∑

y∈Bm

e−2·π·i· y
n
·x · |y〉. (9.51)

It is just the discrete Fourier transform of α(t) in the bra-ket notation

ωf =
1√
n
·

n∑

t=1

αt · e−2·π·i· (f−1)
n

·(t−1).

The binary representation of x of m bits is given by

x = xm · 2m−1 + xm−1 · 2m−2 + · · · + x2 · 21 + x1 · 20 (9.52)

and of y by

y = ym · 2m−1 + ym−1 · 2m−2 + · · · + y2 · 21 + y1 · 20. (9.53)
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We can represent the multiplication of

e
−2·π·i·y·x

n = e
−2·π·i·y·x

2m

= e
−2·π·i·(ym·2m−1+···1+y1·20·x)··(xm·2m−1···+x2·21+x1·20)

2m = (9.54)

= e
−2·π·i·(ym·2m−1·(xm·2m−1···+x2·21+x1·20)+···+y1·20·(xm·2m−1···+x2·21+x1·2

0))
2m .

(9.55)

Because

e−2·π·i·(a+b+c) = e(−2·π·i·a)+(−2·π·i·b)+(−2·π·i·c) =

= e(−2·π·i·a) · e(−2·π·i·b) · e(−2·π·i·c)

and e−2·π·i is a nth root of unity

e−2·π·i·n = 1, n ∈ N0 = {0, 1, 2, 3, · · · }.
we can ignore in

e
−2·π·i·(ym·2m−1·(xm·2m−1···+x2·21+x1·2

0)+···+y1·20·(xm·2m−1···+x2·21+x1·20))
2m

the terms divisible by n = 2m. For example

e−2·π·i·(1+ 1
2+2) = e(−2·π·i·1) · e(−2·π·i· 12 ) · e(−2·π·i·3) = 1 · e(−2·π·i· 12 ) · 1 = −1.

It follows that

e
−2·π·i·y·x

2m =

= e−2·π·i·(ym·x1
21

+ym−1·(x2
21

+
x1
22

)+ym−2·(x3
21

+
x2
22

+
x1
23

)+···+y1·(xm

21
+

xm−1

22
+···+ x1

2m ))

(9.56)

using the binary fraction notation for binary numbers

e
−2·π·i·y·x

2m =

= e−2·π·i·(ym·0.x1+ym−1·0.x2x1+ym−2·0.x3x2x1+···+y1·0.xmxm 1xm−2···x2x1)

(9.57)

binary fractions are represented as

0.xmxm 1xm−2 · · ·x2x1 =
xm

21
+

xm−1

22
+ · · · + x1

2m
.

So the QFT can be factored into the tensor product of m single-qubit

operations,

|y〉 = Fm · |x〉 =
1√
n

∑

y∈Bm

e−2·π·i· y
n
·x · |y〉 =
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1√
n
·




∑

ym∈{0,1}
e−2·π·i·ym·0.x1



 ·




∑

ym−1∈{0,1}
e−2·π·i·ym−1·0.x2x1



 · · ·

· · ·




∑

y1∈{0,1}
e−2·π·i·y1·0.xm···x2x1



 (9.58)

=
1√
n
·
(
|0〉 + e−2·π·i·0.x1 · |1〉

)
⊗
(
|0〉 + e−2·π·i·0.x2x1 · |1〉

)
⊗ · · · ⊗ (9.59)

⊗
(
|0〉 + e−2·π·i·0.xm···x2x1 · |1〉

)
.

The representation involeves the input in the tensor decomposition. For

example the equivalent decomposition of the the Hadamard matrix would

involve the input to determine the sign,

Wm =
1√
n
· (|0〉 + (−1)xm · |1〉) ⊗ (|0〉 + (−1)xm−1 · |1〉) ⊗ · · ·

⊗ (|0〉 + (−1)x1 · |1〉)
if the corresponding input is zero the sign is positive, if it is one the sign

is negative. The product of m single-qubit operations of the QFT allows

us to define a quantum circuit. The circuit will use a controlled phase gate

CRk that performs following mapping on two qubits

CRk|00〉 = |00〉, CRk|01〉 = |01〉,

CRk|10〉 = |10〉, CRk|11〉 = e−2·π·i·/2k · |11〉.
The general phase gate is

P =

(
1 0

0 ei·θ

)

.

The phase gate Rk is

Rk =

(

1 0

0 e−2·π·i·/2k

)

(9.60)

and the controlled phase gate CRk is

CRk =








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−2·π·i·/2k








. (9.61)



August 13, 2013 15:47 World Scientific Book - 9in x 6in QAI

158 Principles of Quantum Artificial Intelligence

We demonstrate the definition of the quantum circuit on F2

F2 =
1√
4
·
(
|0〉 + e−2·π·i·0.x1 · |1〉

)
⊗
(
|0〉 + e−2·π·i·0.x2x1 · |1〉

)
(9.62)

on the input |x2x1〉. We define the circuit recursively from the back. Be-

cause

e−2·π·i·0.x1 = e−2·π·i· x1
2 = (−1)x1

it follows that
1√
2
·
(
|0〉 + e−2·π·i·0.x1 · |1〉

)
=

1√
2
· (|0〉 + (−1)x1 · |1〉)

can be represented by

(I1 ⊗W1) · |x2x1〉.
The “first” operation can be represented as

1√
2
·
(
|0〉 + e−2·π·i·0.x2x1 · |1〉

)
=

1√
2
·
(

|0〉 + e−2·π·i·x2
21 · e−2·π·i· x1

22 · |1〉
)

and can be represented as

CR1 · (W1 ⊗ I1) · |x2x1〉.
Together we get

(I1 ⊗W1) · CR2 · (W1 ⊗ I1) · |x2x1〉 =

=
1√
4
·
(
|0〉 + e−2·π·i·0.x2x1 · |1〉

)
⊗
(
|0〉 + e−2·π·i·0.x1 · |1〉

)
(9.63)

The arrangement of the bits is is not correct. This is because the last qubit

in the result uses the first input qubit and so on. To correct the order we

have to apply swap gate S as defined for the FFT . The decomposition is

given by

F2 · |x2x1〉 = S · (I1 ⊗W1) · CR1 · (W1 ⊗ I1) · |x2x1〉. (9.64)

or in matrix notation

F2 =
1

2
·







1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i







=







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







·
((

1 0

0 1

)

⊗ 1√
2
·
(

1 1

1 −1

))

·

·







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −i







·
(

1√
2
·
(

1 1

1 −1

)

⊗
(

1 0

0 1

))

.
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For F3 we need to define phase gate on three qubits |x3x2x1〉 and a swap

operation of the first and last qubit. The swap operation is simply the swap

of the value of x1 with the value of x2, of the value of x2 with the value of

x3 and finally of the value of x1 with the value of x2,

(I1 ⊗ S) · (S ⊗ I1) · (I1 ⊗ S).

The phase gate on third qubit controlled by the second qubit is simply

CRk ⊗ I1.

The phase gate on third qubit controlled by the first qubit is

(I1 ⊗ S) · (CRk ⊗ I1) · (I1 ⊗ S)

F3 =
1√
8
·
(
|0〉 + e−2·π·i·0.x1 · |1〉

)
⊗
(
|0〉 + e−2·π·i·0.x2x1 · |1〉

)
⊗

⊗
(
|0〉 + e−2·π·i·0.x3x2x1 · |1〉

)
(9.65)

the decomposition is given by

[(I1 ⊗ S) · (S ⊗ I1) · (I1 ⊗ S)] · [(I2 ⊗W1)] · [(I1 ⊗ CR1) · (I1 ⊗W1 ⊗ I1)]

·[(I1 ⊗ S) · (CR2 ⊗ I1) · (I1 ⊗ S) · (CR1 ⊗ I1) · (W1 ⊗ I2)] · |x3x2x1〉.
The first term requires one Hadamard gate, the second one requires a

Hadamard gate and a controlled phase gate. Each following term requires

an additional controlled phase gate. Summing up

1 + 2 + 3 + · · · (m− 1) + m =
m · (m− 1)

2
= O(m2).

9.6 QFT Properties

QFT is just a simple DFT represented by the DFT matrix. However one

should take care of the fact that in quantum computing literature it is

common that the QFT is defined as the inverse discrete Fourier transform

(IDFT) and the inverse QFT as the DFT. QFT decomposition is motivated

by FFT. The complexity of QFT is O(m2) that is exponentially less then

O(n · m) of the classical FFT. The saving results from the possible ten-

sor decomposition that can be computed in parallel. The main difference

between DFT and QFT beside the time complexity is quite obvious. In

QFT we cannot access the frequency domain of a signal represented by the
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amplitude distribution of the state |y〉. We can only gain some insight by

repeated experiments, measurements. DFT can be defined for any dimen-

sion n, for example n = 3 or n = 6. With n = 6 we could define a quantum

dice that cannot be represented by qubits. The basis of a 6 dimensional

Hilbert space H6 is

|I〉 =












1

0

0

0

0

0












, |II〉 =












0

1

0

0

0

0












, |III〉 =












0

0

1

0

0

0












,

|IV 〉 =












0

0

0

1

0

0












, |V 〉 =












1

0

0

0

1

0












, |V I〉 =












0

0

0

0

0

1












. (9.66)

The DFT for the basis in H6 is F 6

ζ6 = e−2·π·i· 16 = e−π·i· 13 =
1 − i ·

√
3

2

F 6 =
1√
6
·












1 1 1 1 1 1

1 ζ1
6 ζ2

6 ζ3
6 ζ4

6 ζ5
6

1 ζ2
6 ζ4

6 ζ6
6 ζ8

6 ζ10
6

1 ζ3
6 ζ6

6 ζ9
6 ζ12

6 ζ15
6

1 ζ4
6 ζ8

6 ζ12
6 ζ16

6 ζ20
6

1 ζ5
6 ζ10

6 ζ15
6 ζ20

6 ζ25
6












(9.67)

F 6 =
1√
6
·













1 1 1 1 1 1

1 1−i·
√

3
2

−1−i·
√

3
2 −1 −1+i·

√
3

2
1+i·

√
3

2

1 −1−i·
√

3
2

−1+i·
√

3
2 1 −1−i·

√
3

2
−1+i·

√
3

2

1 −1 1 −1 1 −1

1 −1+i·
√

3
2

−1−i·
√

3
2 1 −1+i·

√
3

2
−1−i·

√
3

2

1 1+i·
√

3
2

−1+i·
√

3
2 −1 −1−i·

√
3

2
1−i·

√
3

2













. (9.68)

We can use F 6 to map the dice from a pure state in a superposition of

maximal entropy

F 6|I〉 =
1√
6
· |I〉+ | 1√

6
· II〉+ 1√

6
· |III〉+ 1√

6
· |IV 〉+ 1√

6
· |V 〉+ 1√

6
· |V I〉.
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We can define a register of m quantum dices using the tensor product, and

map a pure sate |I〉 in a superposition by

F 6
m =

⊗m
F 6 = F 6 ⊗ F 6 · · · ⊗ F 6. (9.69)

We can define quantum computation on any base B besides qubits, base

B = 2. The qubit representation as the bit representation is the most

popular one.

9.7 The QFT Period Algorithm

QFT and Fm is used equivalently as Wm in the Deutsch Jozsa algorithm to

determine the properties of the function f(x). In Deutsch Jozsa algorithm

the function must be balanced or constant. In the algorithm based on

QFT the function f(x) must be periodic. The determined property is the

period of the function f(x). We cannot use QFT to determine if a function

is periodic or not. The QFT algorithm is built on three serial steps. It

maps a state with zero von Neumann entropy to a superposition with the

maximal entropy, does the computation in this superposition and maps the

result into a state with low entropy. It should be noted that the entropy is

not zero and consequently the algorithm is probabilistic. The algorithms is

build on three principles of quantum computation that are related to the

Deutsch Jozsa algorithm,

• The function f(x) is represented by a quantum Boolean circuit.

• The properties of the function f(x) are determined using the superpo-

sition principle and QFT.

• The values of the function f(x) are determined by measuring a com-

pound system.

We represent the function f(x) by a quantum Boolean circuit represented

by a unitary operator Uf that acts on two registers of m qubits,

Uf · |x〉|0⊗m〉 = |x〉|f(x)〉
after the application of Uf the two registers are entangled. In the first step

of the algorithm we build a superposition of m qubits

Wm · |0⊗m〉|0⊗m〉 =
1√
2m

∑

x∈Bm

|x〉|0⊗m〉.

In the second step we apply the Uf operator

Uf

(

1√
2m

∑

x∈Bm

|x〉|0⊗m〉
)

=
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=
1√
2m

∑

x∈Bm

Uf · |x〉|0⊗m〉 =
1√
2m

∑

x∈Bm

|x〉|f(x)〉.

In the third step we measure the second register of the compound system

[Shor (1994)], [Shor (1995)]. The state of the system is projected to the

subspace that corresponds to the observed state and the vector representing

the state is renormalized to the unit length. Because the function f(x) is

periodic, the new amplitude distribution is normalized and has the same

period as f(x). Before the measurement the amplitude distribution is at

a constant value 1√
2m

, it corresponding to the maximum entropy. The

measured value γ corresponds to all k xi values for which the periodic

function is γ = f(xi). The function α(x) after the measurement is defined

as

α(x) =

{
1√
k

if γ = f(x)

0 else
. (9.70)

After the measurement the state is represented as
∑

x∈Bm

α(x) · |x〉|γ〉.

In the fourth step we apply QFT that computes the discrete Fourier trans-

form. The discrete Fourier transform of α(x) is ω(x). Fm s a linear trans-

form talking the column vector α to a column vector ω

Fm ·
∑

x∈Bm

α(x) · |x〉|γ〉 =
∑

x∈Bm

ω(x) · |x〉|γ〉.

In the fifth step we measure the first register. The measurement gives us a

value v that is close to a multiple value of n
period . There are three possible

cases:

Period r happens to be power of 2, the discrete Fourier transform

gives exact multiplies

v = t · n
r

= t · 2m

r
. (9.71)

In this case we can estimate r by several experiments if necessary

v

2m
=

t

r
(9.72)

where the lowest term of v
2m will yield a fraction t

r whose denominator is

the period r.
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Period r is not power of 2, the discrete Fourier transform gives ap-

proximate multiples

v ≈ t · n
r

= t · 2m

r
. (9.73)

In this case we can estimate r by continued finite fraction expansion of v
2m

resulting in a unique fraction p
q with r ≈ q. For unique fraction p

q of v
2m

with q < M

∣
∣
∣
∣

v

2m
− p

q

∣
∣
∣
∣
<

1

M2
. (9.74)

The fraction can be obtained by the following algorithm:

a0 =
⌊ v

2m

⌋

, ε0 =
v

2m
− a0, p0 = a0, q0 = 1

a1 =

⌊
1

ε0

⌋

, ε1 =
1

ε0
− a0, p1 = a1 · a0 + 1, q1 = a1

ai =

⌊
1

εi−1

⌋

, εi =
1

εi−1
− ai, pi = ai · pi−1 + pi−2, qi = ai · qi−1 + qi−2.

We stop the algorithm with the output pi

qi
with r ≈ qi if

qi < M ≤ qi+1.

f(x) is a periodic block function, the measured value γ in a block

function corresponds to all k xi values for which the periodic function is

γ = f(xi). The amplitude function α(x) after the measurement has less or

equal number of zeros with

n− k ≤ k.

The 1√
k

dominates the amplitude distribution. After the DFT the DC

average of the amplitude dominates the distribution. The measured value

will be with high probability v = 1, we cannot estimate the period. It is

important to remember that the first row of DFT matrix Fm is the DC

average of the amplitude of the input state. However during data analysis

using mathematical software care has to to be taken because many DFT

plot functions omit the DC component.
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9.8 Factorization

The application of QFT gained popularity by Shor’s algorithm for factor-

ization of numbers in polynomial time [Shor (1994)], [Shor (1995)]. The

widely used RSA-public key cryptography scheme is secure. Its security

corresponds to the difficulty in factoring large numbers on conventional

computers. Shor’s algorithm indicated how to do it on a quantum com-

puter in polynomial time.

Number theory relates the period of a particular function to the factor

of an integer. Given an integer number M to be factored, a function f(x)M
is defined

fM (x) = ax mod M, (9.75)

a is a randomly chosen coprime to M , means the greatest common divisor

of a and M is 1. f(x)M is periodic. For a value a the period of a modulo

M is r.

ar = 1 mod M, (9.76)

if r is an even number (r is dependent on a, if r is not even, chose different

a), then
(
a

r
2

)2
= 1 mod M (9.77)

(
a

r
2

)2 − 1 = 0 mod M ⇒
(
a

r
2

)2 − 12 = 0 mod M

(
a

r
2 − 1

)
·
(
a

r
2 + 1

)
= 1 mod M. (9.78)

The product
(
a

r
2 − 1

)
·
(
a

r
2 + 1

)
is some integer multiple of M , because if

we divide it by M the reminder is zero. A common factor between them can

be efficiently determined by the greatest common divisor (gcd) Euclidean

algorithm.

gcd
((
a

r
2 − 1

)
,M
)
, gcd

((
a

r
2 + 1

)
,M
)
.

9.8.1 Example

In this example we will factor the number M = 15. We chose a = 13.

f15(x) = 13x mod 15.

We apply the Uf15 operator

Uf15

(

1√
28

∑

x∈B8

|x〉|0⊗8〉
)

=
1

16

∑

x∈B8

|x〉|f(x)〉.
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Fig. 9.3 The periodic signal f15(x) = 13x mod 15. It represents the superposition
described by the amplitude of the second register.
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0.6

0.8

Fig. 9.4 The periodic signal f15(x) = 13x mod 15 in a higher resolution. We can
recognize a period of four.

In Figure 9.3 and 9.4 a superposition is indicated that is described by the

amplitude of the second register. We measure the second register of the

compound system. In our experiment the function α(x) of the first register

after the measurement is defined as

α(x) =

{
1√
64

if 0.25 = f(x)

0 else
. (9.79)

We indicate the periodic block function α(x) of the first register in Figure

9.5 and 9.6. We apply QFT that computes the discrete Fourier transform
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Fig. 9.5 The periodic block function α(x) of the first register.
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Fig. 9.6 The periodic block function α(x) of the first register in a higher resolution.
We can recognize a period of four.

in the first register (see Figure 9.7 and 9.8). The measurement gives us a

value v that is close to a multiple value of n
period . We measure the first

register. The measurement gives us a value 64+1 that is close to a multiple

value of 256
period . In our experiment the period r happens to be power of 2.

The zero frequency term represents the DC average and appears at position

1 instead at the position 0, so v = 64. It follows for the period r

r =
256

v
=

256

64
.
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Fig. 9.7 DFT transform of the first register. It shows a strong peak at 1 and 64 + 1,
2 · 64 + 1 = 129 and 3 · 64 + 1 = 193.
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Fig. 9.8 DFT transform of the first register, higher resolution. The zero frequency term
represents the DC average and appears at position 1 instead at the position 0.

A common factor between them can be efficiently determined by the great-

est common divisor (gcd) Euclidean algorithm,

gcd
((

13
4
2 − 1

)

, 15
)

= 3, gcd
((

13
4
2 + 1

)

, 15
)

= 5.

The factors of 15 are 3 and 5. The algorithm is probabilistic and it can

fail. Suppose the measurement gives us the value 1, in this case we have to

repeat the whole procedure.
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9.9 Kitaev’s Phase Estimation Algorithm∗

Given a unitary operator U on m qubits with an eigenvector |u〉 with

an unknown eigenvalue e2·π·i·θ we want to determine the phase θ [Kitaev

(1996)], [Kaye et al. (2007)]. For a complex number

z = x + i · y = |z| · ei·θ

θ is the phase. if we apply U to |u〉 we get

U · |u〉 = e2·π·i·θ · |u〉 (9.80)

if we apply U to |u〉 w times we get

Uw · |u〉 = Uw−1 ·
(
e2·π·i·θ · |u〉

)
=
(
e2·π·i·θ)w · |u〉 = e2·π·i·θ·w · |u〉. (9.81)

However we will not gain any information, because |u〉 and e2·π·i·θ·w · |u〉
are equivalent states, they represent the same state when a measurement

is preformed. Instead of the unitary operator Uw we use the controlled Uw

operator cUw. If the control qubit is set then Uw is applied to the target

qubits, otherwise not. The operator cUw is unitary and defines an injective

mapping on two qubits that is reversible

cUw · |0〉|u〉 = |0〉|u〉, cUw · |1〉|u〉 = |1〉
(
e2·π·i·θ·w · |u〉

)
= e2·π·i·θ·w · |1〉|u〉.

So with w = 2j

cU2j ·
(( |0〉 + |1〉√

2

)

· |u〉
)

=

(

|0〉 + e2·π·i·θ··2j |1〉√
2

)

· |u〉.

The QFT is represented as a tensor product of m single-qubit operations.

The inverse QFT can be factored into the tensor product of m single-qubit

operations,

|y〉 = IFm · |x〉 =
1√
n

∑

y∈Bm

e2·π·i· y
n
·x · |y〉 =

=
1√
n
·
(
|0〉 + e2·π·i·0.x1 · |1〉

)
⊗
(
|0〉 + e2·π·i·0.x2x1 · |1〉

)
⊗ · · ·⊗ (9.82)

⊗
(
|0〉 + e2·π·i·0.xm···x2x1 · |1〉

)
.

If we set θ = 0.xm · · ·x2x1 we can rewrite the equation as

|y〉 = IFm · |x〉 =
1√
n

∑

y∈Bm

e2·π·i·y·θ · |y〉 =



August 13, 2013 15:47 World Scientific Book - 9in x 6in QAI

Periodicity 169

=
1√
n
·
(

|0〉 + e2·π·i·(θ·2m−1) · |1〉
)

⊗
(

|0〉 + e2·π·i·(θ·2m−2) · |1〉
)

⊗ · · · ⊗
(9.83)

⊗
(

|0〉 + e2·π·i·(θ·20) · |1〉
)

.

For m control qubits we define cj+1U
2j

in the following way. For j ∈
{0, 1, 2, · · · ,m − 1} the control qubit j + 1 of the m qubits is set then

cj+1U
2j

is applied to the target |u〉, otherwise not. The initial state of the

algorithm is

|0⊗m〉|u〉
with u being the eigenvector of U . In the first step of the algorithm we

build a superposition of m control qubits

Wm · |0⊗m〉|u〉 =
1√
2m

∑

x∈Bm

|x〉|u〉 =

=
1√
n
· (|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ · · · ⊗ (|0〉 + |1〉) |u〉. (9.84)

In the second step we apply m cj+1U
2j

operators to the target |u〉
m−1∏

j=0

cj+1U
2j ·
(

1√
2m

∑

x∈Bm

|x〉|u〉
)

=

= IFm · |x〉|u〉 =
1√
n

∑

y∈Bm

e2·π·i·y·θ · |y〉|u〉 =

=
1√
n
·
(

|0〉 + e2·π·i·(θ·2m−1) · |1〉
)

⊗
(

|0〉 + e2·π·i·(θ·2m−2) · |1〉
)

⊗· · · (9.85)

⊗
(

|0〉 + e2·π·i·(θ·20) · |1〉
)

· |u〉
In the third step we apply QFT to the m control qubtis

Fm ·




1√
n

∑

y∈Bm

e2·π·i·y·θ · |y〉



 · |u〉 =

= Fm ·




1√
n

∑

y∈Bm

e2·π·i· y
n
·x · |y〉



 · |u〉 = |x〉|u〉. (9.86)

In the fourth step we measure the first register composed of m control

qubtis and estimate θ

θ = 0.xm · · ·x2x1 =
x

n
=

x

2m
. (9.87)
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9.9.1 Order finding

It seem that with Kitaev’s phase estimation algorithm we do not need to

apply continued finite fraction expansion. But actually this is not the case.

One big problem when using Kitaev’s phase estimation algorithm is the

determination of the eigenvector |u〉 of the unitary operator U . Usually

this is non trivial and the computational costs are expensive. But for order

finding (period estimation), there is an elegant way around the problem.

For the unitary operator

Ua · |x〉 = |x · a mod M〉, x ≤ M (9.88)

a is a coprime of M . Because ar = 1 mod M is a rth root of unity, it

follows

U r
a · |x〉 = |x · a mod M〉 = |x〉

that U r
a is a rth root of unity operation, and Ua has the following eigenvector

|ut〉 =
1√
r

r−1∑

x=0

e−2·π·i· t
r
·x · |ax mod M〉 (9.89)

in this case we can determine the eigenvalue

Ua · |ut〉 = e2·π·i· t
r · |ut〉. (9.90)

With the Kitaev’s phase estimation algorithm we could determine t
r and

r ≈ q as before. Without knowing r in advance we cannot determine |ut〉.
However we can use the following relation

|ax mod M〉 = 1 ⇔ x = 0 mod r

it follows

1√
r

r−1∑

t=0

|ut〉 = |1〉 (9.91)

with this relation we can use Kitaev’s phase estimation. In the first step

of the algorithm we build a superposition of m control qubits and with

|u〉 = |1〉
Wm · |0⊗m〉|1〉 =

1√
2m

∑

x∈Bm

|x〉|u〉 =

=
1√
n
· (|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ · · · ⊗ (|0〉 + |1〉) |1〉.

In the second step we apply m cj+1U
2j

operators to the target |1〉 = |u〉.
After applying QFT we get actually a superposition

1√
r

r−1∑

t=0

∣
∣
∣
∣

t

r

〉

|ut〉 (9.92)

after measuring the first register we can estimate t
r and by continued finite

fraction expansion r ≈ q.
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9.10 Unitary Transforms

Other unitary transforms beside DFT can be applied in quantum computa-

tion. Examples of such transforms are the Discrete Cosine Transform DCT

and the Haar-Wavelet-Transform (HWT).

DCT corresponds to the sum of cosine functions oscillating at different

frequencies with no imaginary number representation.

HWT The Haar transform analyzes the signal at different frequencies

with different resolutions. The Haar-Wavelet-Transform (HWT) is repre-

sented by the unitary matrix (HW). For n = 2m HWm performs a Quan-

tum Haar-Wavelet-Transform on a state |x〉 of m qubits in a n-dimensional

Hilbert space Hn.

HW1 = W1. (9.93)

For three qubits HWT is,

HW3 =
1√
8
·
















1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2
















. (9.94)

Interestingly The introduced unitary matrix W maps a pure state |000〉 in

a superposition,

HW3 · |000〉 =
1

2 ·
√

2
· |000〉 +

1

2 ·
√

2
· |001〉+

1√
2
· |011〉 (9.95)

where the distribution of the amplitudes does not corresponds to the max-

imal entropy.
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Chapter 10

Search

10.1 Search and Quantum Oracle

For a function f(x)

fξ(x) =

{
1 if x = ξ

0 else
(10.1)

we want to find x for which f(x) = 1, x = ξ. The task is equivalent

to a decision problem with a binary answer 1 = yes and 0 = no and

the instance x. We can describe by the function f(x) NP − complete

problems. A problem is NP − complete, if it is in NP and every other

problem in NP can be reduced to it. For NP a deterministic algorithm

verifies if an instance (ticket) leads to a “yes” answer in polynomial time.

The verification of an instance (ticket) is in polynomial time P and can be

represented by a uniformly polynomial circuit, a circuit with a polynomial

number of gates. If f(x) is NP − complete a quantum circuit Uf with a

polynomial number of quantum gates can verify for a given instance xticket

if f(xticket) = 1, xticket = ξ or f(xticket) = 0. The search for ξ is based on

the three principles of quantum computation:

• The function f(x) is represented by a quantum Boolean circuit Uf .

• The properties of the function f(x) are determined using the superpo-

sition principle and a some kind of unitary transform.

• The values of the function f(x) are encoded by (−1)f(x), the sign of

the amplitude.

Often f(x) is represented by an abstract black box function and not by a

quantum circuit. In this case Uf is a quantum oracle. The Uf quantum

oracle or quantum circuit is a unitary operator that acts on the m+1 qubits

173
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with x ∈ Bm and y ∈ B1

Uf · |x〉|y〉 = |x〉|f(x) ⊕ y〉.
The function f(x), the solution is encoded by (−1)f(x), the sign of the

amplitude. In correspondence with the Deutsch Jozsa algorithm we build

a superposition of m + 1 qubits

Wm+1 · |0⊗m〉|1〉 = Wm · |0⊗m〉 ⊗W1 · |1〉 =
1√
2m

∑

x∈Bm

|x〉 ⊗
( |0〉 − |1〉√

2

)

and we apply the Uf , operator,

Uf ·Wm+1 · |0⊗n〉|1〉 =

=
1√

2m+1
·
∑

x∈Bm

Uf · |x〉|0〉 − 1√
2m+1

·
∑

x∈Bm

Uf · |x〉|1〉

=
1√

2m+1
·
∑

x∈Bm

|x〉|f(x) ⊕ 0〉 − 1√
2m+1

·
∑

x∈Bm

|x〉|f(x) ⊕ 1〉

=
1√

2m+1
·
(
∑

x∈Bm

|x〉|f(x) ⊕ 0〉 −
∑

x∈Bm

|x〉|f(x) ⊕ 1〉
)

.

There are four possible cases:

Uf · |x〉|0〉 = |x〉|f(x) ⊕ 0〉 = |x〉|0〉,

Uf · |x〉|1〉 = |x〉|f(x) ⊕ 1〉 = |x〉|1〉,

Uf · |ξ〉|0〉 = |ξ〉|f(ξ) ⊕ 0〉 = |ξ〉|1〉,

Uf · |ξ〉|1〉 = |ξ〉|f(ξ) ⊕ 1〉 = |ξ〉|0〉.
It follows that

=
1√

2m+1
·




∑

x6=ξ

|x〉|0〉 + |ξ〉|1〉 −
∑

x6=ξ

|x〉|1〉 − |ξ〉|0〉





=
1√

2m+1
·




∑

x6=ξ

|x〉 (|0〉 − |1〉) + |ξ〉 (|1〉 − |0〉)





=
1√
n

∑

x∈Bm

(−1)f(x) · |x〉 ⊗
( |0〉 − |1〉√

2

)

. (10.2)
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The value of the function f(x) is encoded by (−1)f(x), in most cases again

the auxiliary bit is ignored,

1√
2m

∑

x∈Bm

(−1)f(x) · |x〉 =
1√
n

∑

x∈Bm

(−1)f(x) · |x〉. (10.3)

For m = 1 we could use the Deutsch algorithm to decide if ξ exist, for

m = 2 there exist the unitary operator described by the unitary matrix

S =
1

2
·







−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1







(10.4)

with I = S · S∗. We can determine x = ξ by a simple approach. We apply

the Uf operator and then the operator S,

(S ⊗ I1) · Uf ·W2+1 · |00〉|1〉 = S ·
(

1√
4

∑

x∈B2

(−1)f(x) · |x〉
)

⊗
( |0〉 − |1〉√

2

)

(10.5)

(S ⊗ I1) · Uf ·W2+1 · |00〉|1〉 = |ξ〉 ⊗
( |0〉 − |1〉√

2

)

(10.6)

and measure the first register and obtain |ξ〉 with probability 1. For example

if ξ = |10〉 = 3,

1

2
·







−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1







· 1

2
·







1

1

−1

1







=







0

0

1

0







. (10.7)

Such a “spy” matrix S exist only for m = 2. Is it possible to get an

exponential speed up for m � 2? To determine ξ for we would require only

O(m) = O(log 2m) = O(log n) steps. This näıve hope can not be fulfilled.

10.2 Lower Bound Ω(
√
n) for Uf -based Search∗

If the operator Uf is represented by O(m) gates, then we can get a speed

up of maximum O(
√
n) steps, in fact Ω(

√
n) is the lower bound. The proof

for lower bound Ω(
√
n) for Uf -based search is based on a sequence in a

Hilbert space and the Euclidean norm properties of Hilbert space as well as

the definition of the probabilities as normed squared amplitudes [Bennett
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et al. (1997)], [Boyer et al. (1998)]. Suppose we start with a state |x〉 of m

qubits in a n-dimensional Hilbert space Hn

|x〉 = α1 · |x1〉 + α2 · |x2〉 + · · · + αn · |xn〉
and we are searching for one solution represented by the pure state |ξ〉
that corresponds to some basis of |x〉 . We apply Uf which performs a

phase shift to the amplitude of the corresponding basis, if |xi〉 = |ξ〉 then

−αi ·|xi〉. The Von Neumann Entropy is not changed by this operation. We

will apply t times Uf and some arbitrary unitary operation At that would

reduce the Von Neumann Entropy. The reduction is realized by changing

the amplitude that indicates the solution together with the amplitudes of

non solutions,

|xξ
t 〉 = At · Uf · At−1 · Uf · · · · ·A1 · Uf · |x〉. (10.8)

We will apply t times some arbitrary unitary operation At without indicat-

ing the solution by phase shift to the amplitude by Uf ,

|xt〉 = At · At−1 · · · · ·A1 · |x〉. (10.9)

We define a sequence at as the deviation after t steps between informed

and uninformed evaluation of unitary operators on the a state |x〉
at = ‖|xξ

t 〉 − |xt〉‖2 (10.10)

with

||xt〉‖2 = 〈xt|xt〉.
The norm of difference between informed and uninformed evaluation is

taken to the power of two, because the probabilities correspond to the

normed amplitudes power two.

10.2.1 Lower bound of at

We suppose that an observation yields to the solution of the search with

probability al least 0.5.

‖〈ξ|xξ
t 〉‖2 ≥ 1

2
. (10.11)

We can rewrite at as

at = ‖|xξ
t 〉 − |ξ〉 + |ξ〉 − |xt〉‖2 = ‖

(

|xξ
t 〉 − |ξ〉

)

+ (|ξ〉 − |xt〉) ‖2.

We define two sequences, the deviation after t steps between informed eval-

uation of unitary operators and the solution |ξ〉 with

a+
t = ‖|xξ

t 〉 − |ξ〉‖2
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and the deviation after t steps between uninformed evaluation of unitary

operators and the solution |ξ〉 with

a−t = ‖|ξ〉 − |xt〉‖2

Because of the inequality

‖α + β‖2 ≥ ‖α‖2 − 2 · ‖α‖ · ‖β‖ + ‖β‖2

it follows that

at = ‖
(

|xξ
t 〉 − |ξ〉

)

+ (|ξ〉 − |xt〉) ‖2 ≥ a+
t − 2 ·

√

a+
t ·
√

a−t + a−t . (10.12)

Using the two sequence we indicate a lower bound for at and t � 1

at ≥ a+
t − 2 ·

√

a+
t ·
√

a−t + a−t =

(√

a+
t −

√

a−t

)2

≥ c. (10.13)

With a+
t we indicate that in Hilbert space Hn a lower bound c > 0 exists

a+
t = 〈xξ

t |xξ
t 〉 − 2 · 〈ξ|xξ

t 〉 + 〈ξ|ξ〉 = 1 − 2 · 〈ξ|xξ
t 〉 + 1. (10.14)

The value of

2 · 〈ξ|xξ
t 〉

can be estimated. In the first step we notice that we can replace the state

〈ξ| by an equivalent state

|ξ〉 = ei·θ · |ξ〉.
Because of the Equation 10.11 for t � 1

2 · 〈ξ|xξ
t 〉 = 2 · |〈ξ|xξ

t 〉| ≥
2√
2

=
√

2 (10.15)

and

a+
t ≤ 2 −

√
2. (10.16)

For

a−t = 〈xt|xt〉 − 2 · 〈ξ|xt〉 + 〈ξ|ξ〉 = 1 − 2 · 〈ξ|xξ
t 〉 + 1 (10.17)

with

2 · 〈ξ|xt〉 = 2 · |〈ξ|xt〉| ≤
2√
n

(10.18)

it follows that

2 − 2√
n
≤ a−t ≤ 2 (10.19)

putting at+ and a−t together we get

at ≥
(√

a+
t −

√

a−t

)2

≥
(√

2 −
√

2 −
√

2

)2

= c = 0.421002. (10.20)
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10.2.2 Upper bound of at

The deviation cannot grow faster as O(t2), this can be proven by induction.

We prove that 4 · t2

n ≥ at. For t = 0

|xξ
0〉 = |x〉

because no unitary operators were applied. The induction step is if 4 · t2n ≥
at, then 4 · (t+1)2

n ≥ at+1 as well,

at+1 = ‖At+1 · Uf · |xξ
t 〉 −At+1 · |xt〉‖2

at+1 = ‖At+1 ·
(

Uf · |xξ
t 〉 − |xt〉

)

‖2 ≤ ‖|At+1‖2 · ‖Uf · |xξ
t 〉 − |xt〉‖2.

The norm for square matrices A in Hilbert space Hn is the Frobenius norm

‖A‖F =





n∑

i=1,j=1

|aij





1
2

=
√

tr(A · A∗) (10.21)

‖A‖2 is also called the spectral norm. For unitary matrices A

‖A‖F = ‖A‖2 = 1. (10.22)

Because the matrix At+1 is unitary it follows that

at+1 = ‖|At+1 ·
(

Uf · |xξ
t 〉 − |xt〉

)

‖2 = ‖Uf · |xξ
t 〉 − |xt〉‖2

at+1 = ‖|Uf ·
(

|xξ
t 〉 − |xt〉

)

+ (Uf − Im) · |xt〉‖2.

Note that if a solution exist the amplitude of the corresponding basis of

|xt〉 that is equal to |ξ〉 is 〈ξ|xt〉, then

(Uf − Im) · |xt〉 = Uf · |xt〉 − |xt〉 = −2 · 〈ξ|xt〉 · |ξ〉

and

−2 · ‖〈ξ|xt〉 · |ξ〉‖ = −2 · |〈ξ|xt〉|

also

‖Uf ·
(

|xξ
t 〉 − |xt〉

)

‖2 = ‖|xξ
t 〉 − |xt〉‖2

because

‖α + β‖2 ≤ ‖α‖2 + 2 · ‖α‖ · ‖β‖ + ‖β‖2
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it follows

at+1 = ‖Uf ·
(

|xξ
t 〉 − |xt〉

)

− 2 · 〈ξ|xt〉 · |ξ〉‖2

at+1 ≤ ‖|xξ
t 〉 − |xt〉‖2 + 4 · ‖|xξ

t 〉 − |xt〉t‖ · |〈ξ|xt〉| + 4 · |〈ξ|xt〉|2
at+1 ≤ at + 4 · √at · |〈ξ|xt〉| + 4 · |〈ξ|xt〉|2 (10.23)

with

〈ξ|xt〉 = |〈ξ|xt〉| ≤
1√
n

(10.24)

it follows that

at+1 ≤ 4 · t
2

n
+ 4 ·

√

4 · t
2

n
· 1√

n
+

4

n
= 4 · t

2

n
+ 4 ·

√

4 · t
2

n2
+

4

n
(10.25)

at+1 ≤ 4 · t
2

n
+ 8 · t

n
+

4

n
= 4 · (t + 1)2

n
(10.26)

and the induction step t to t + 1 is concluded.

10.2.3 Ω(
√
n)

With the lower and upper bound of at we can estimate the lower bound of

t. at grows quadratically,

4 · t
2

n
≥ at ≥ c = 0.421002

it follows that

t ≥
√

n · c
4

=
√
n · 0.324423. (10.27)

The speed up of O(
√
n) compared to O(n) is due to the definition of the

probabilities as normed squared amplitudes. If the operator Uf is rep-

resented by O(m) gates, then we can get a speed up of maximum O(
√
n)

steps, in fact Ω(
√
n) is the lower bound [Bennett et al. (1997)], [Boyer et al.

(1998)], [Zalka (1999)]. This is the case when f(x) is a NP − complete

problem. It follows that for Uf -based search using a quantum computer

NP − complete problems remain NP − complete. Despite the fact the

saving of O(2
m
2 ) compared to O(2m) is huge, 2m 6= O(2

m
2 ) means

Θ(2
m
2 ) 6= Θ(2m). (10.28)

For 2m 6= O(2
m
2 ) we assume there exist a constant c, that for certain value

m0 > 0

0 ≤ 2m ≤ c · 2m
2 ∀m ≥ m0.

However such a constant does not exist because from

2m = 2
m
2 · 2m

2 ≤ c · 2m
2

follows the simple contradiction

2
m
2 ≤ c.
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10.3 Grover’s Amplification

If the operator Uf is represented by O(m) gates, then Grover’s amplification

algorithm implements exhaustive search in O(
√
n) steps in n-dimensional

Hilbert space Hn [Grover (1996)], [Grover (1997)], [Grover (1998a)], [Grover

(1998b)], [Grover (1996)], [Grover (1996)]. It is as good as any possible

quantum algorithm for exhaustive search due to the lower bound Ω(
√
n)

[Aharonov (1999)]. The algorithm is based on the Householder reflection

of state |x〉 of m qubits with n = 2m [Zalka (1999)].

10.3.1 Householder reflection

Beside rotation and permutation the Householder reflection is an important

class of unitary transformations (some times also called the elementary

reflector). The Householder reflection reflects one vector |x〉 ∈ Hn to its

negative and leaves invariant the orthogonal complement of this vectors. It

is described by the Householder matrix Qx With ‖|x〉‖ = 1 representing m

qubits with n = 2m

Qx = Im − 2 · |x〉〈x| (10.29)

Qx is unitary,

Qx ·Q∗
x = (Im − 2 · |x〉〈x|) · (Im − 2 · |x〉〈x|)∗

Qx ·Q∗
x = Im − 2 · |x〉〈x| − 2 · |x〉〈x| + 4 · |x〉〈x| · |x〉〈x|

Qx ·Q∗
x = Im − 4 · |x〉〈x| + 4 · 〈x|x〉 · |x〉〈x| = Im

〈x|x〉 = 1 because ‖|x〉‖ = 1. With

P = |x〉〈x|.
For example with

|x〉 = cos(α) · |x1〉 + sin(α) · |x2〉
we get

Qx =

(
1 − 2 · cos2 ·α −2 · cosα · sinα

−2 · cosα · sinα 1 − 2 · sin2 α

)

=

(
− cos 2 · α − sin 2 · α
− sin 2 · α cos 2 · α

)

.

(10.30)

It becomes clear with

Qx · |0〉 =

(
− cos 2 · α
− sin 2 · α

)
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and

Qx · |1〉 =

(
− sin 2 · α
cos 2 · α

)

that Qx is not a rotation by the angle 2 · α

R2α =

(
cos 2 · α − sin 2 · α
sin 2 · α cos 2 · α

)

.

It is a one dimensional reflection

S =

(
−1 0

0 1

)

and a rotation by R2α

Qx = R2α · S.

10.3.2 Householder reflection and the mean value

Suppose Pm is generated by the normalized vector |x〉 indicating the direc-

tion of the bisecting line,

|x〉 =
1√
n
· |x1〉 +

1√
n
· |x2〉 + · · · + 1√

n
· |xn〉 =







1√
n
...
1√
n







(10.31)

or in qubit notation (binary)

|x〉 =
1√
2m

·
∑

y∈Bm

|y〉 (10.32)

then the projection matrix Pm is

Pm = |x〉〈x| =








1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n








(10.33)

it computes for each dimension described by the fixed basis he mean value

of all dimensions.








∑n
i=1 xi

n∑n
i=1 xi

n
...

∑n
i=1 xi

n









=








1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n








·








x1

x2

...

xn








(10.34)
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we get

Qx = Im − 2 · Pm. (10.35)

For each dimension the Householder reflection in the direction of the bi-

secting line computes the following mapping,

xi = xi − 2 ·
∑n

i=1 xi

n
. (10.36)

10.3.3 Amplification

Grover’s amplification is based on −Qx. It is a unitary operator with

Gm := −Qx = −Im + 2 · Pm = 2 · Pm − Im (10.37)

the mapping is defined as,

xi = 2 ·
∑n

i=1 xi

n
− xi. (10.38)

Suppose only one amplitude of xj is negative and the other one are positive.

Then the corresponding amplitude grows with

xj = 2 ·
∑n

i=1 xj

n
+ xi (10.39)

the other xi with i 6= j diminish. With j = 2 we get








2 ·
∑n

i=1 xi

n − x1

2 ·
∑n

i=1 xi

n + x2

...

2 ·
∑n

i=1 xi

n − xn









=








2
n − 1 2

n · · · 2
n

2
n

2
n − 1 · · · 2

n
...

...
. . .

...
2
n

2
n · · · 2

n − 1








·








x1

−x2

...

xn








. (10.40)

Amplitude amplification is based on Gm and Uf . For a register of m qubits

in a Hilbert space Hn we apply the Uf operator and then the operator Gm,

(Gm ⊗ I1) · Uf ·Wm+1 · |0⊕m〉|1〉 =

= Gm ·
(

1√
n

∑

x∈Bm

(−1)f(x) · |x〉
)

⊗
( |0〉 − |1〉√

2

)

(10.41)

with Gm

Gm =








2
n − 1 2

n · · · 2
n

2
n

2
n − 1 · · · 2

n
...

...
. . .

...
2
n

2
n · · · 2

n − 1








(10.42)
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note that for m = 2, G2 is equal to the “spy” matrix S

G2 = S =
1

2
·







−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1







(10.43)

the resulting state is |τ〉

(Gm ⊗ I1) · Uf ·Wm+1 · |0⊕m〉|1〉 = |τ〉 ⊗
( |0〉 − |1〉√

2

)

. (10.44)

The state |τ〉 has an amplitude distribution with a lower entropy as the state

with the maximum entropy logn represented by the maximal superposition

|y〉 =
1√
n

∑

x∈Bm

(−1)f(x) · |x〉.

The new amplitude distribution is computed by

Gm · |y〉 = (2 · Pm − Im) · |y〉.
First two times the average amplitude is computed. The amplitude values

for non solution are 1√
n

and for one marked solution − 1√
n
, it follows

A = 2 · Pm · |y〉 =
2

n
·
(

n · 1√
n
− 1√

n
− 1√

n

)

=
2

n
·
(

(n− 1) · 1√
n
− 1√

n

)

(10.45)

A = 2 · Pm · |y〉 =
2√
n
·
(

1 − 2

n

)

=
2 · n− 4

n
3
2

. (10.46)

The amplitude of the state |τ〉 indicating the solution in the dimension i is

τi = A +
1√
n

=
3 · n− 4

n
3
2

=
3√
n
− 4

n · √n
(10.47)

and the non solution in the dimension j with j 6= i

τj = A− 1√
n

=
n− 4

n
3
2

=
1√
n
− 4

n · √n
. (10.48)

For n = 4 τi = 1 and τj = 0, for n = 28 τi = 0.186523 and τj = 0.0615234.

The probability of measuring the solution depending on the size n is

‖|τi〉‖2 =

∣
∣
∣
∣

3√
n
− 4

n · √n

∣
∣
∣
∣

2

(10.49)

and non solution

‖|τj〉‖2 =

∣
∣
∣
∣

1√
n
− 4

n · √n

∣
∣
∣
∣

2

. (10.50)

In the Figure 10.1 we indicated the probability of measuring the solution

and non solution for 4 ≤ n ≤ 16 and in the Figure 10.2 for 28 ≤ n ≤ 216.

For more than 4 qubits the probability of measuring a solution will be below

0.5. The probability can be increased by the iterative amplification.
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Fig. 10.1 The probability of measuring the solution and non solution for 4 ≤ n ≤ 16.
The x-axis indicates n and the y-axis the probability. Top curve is the probability of the
solution, down curve the probability of the non-solution.
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Fig. 10.2 The probability of measuring the solution and non solution for 28 ≤ n ≤ 216.
The x-axis indicates n and the y-axis the probability. Top curve is the probability of the
solution, down curve the probability of the non-solution.

10.3.4 Iterative amplification

With the definition

Γm := (Gm ⊗ I1) · Uf (10.51)

the resulting state is |τ〉. We describe several amplifications by
(

r∏

t=1

Γm

)

·Wm+1 · |0⊕m〉|1〉 = Γm · Γm · · · · · Γm ·Wm+1 · |0⊕m〉|1〉 =
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= |τ〉 ⊗
( |0〉 − |1〉√

2

)

.

How many iterations do we need to preform, or what is the suitable value

for r? The probability of seeing one solution should be as close as possible

to 1 and r should be as small as possible. Suppose that the function f(x)

has k solutions with n � k ≥ 1,

fξ(x) =

{
1 if x = ξi i ∈ {1, 2, · · · , k}
0 else

(10.52)

we want to find x for which f(x) = 1. All the preceding steps can be easily

extended to this more general case. The amplitude for the solution at the

iteration t will be indicated by αt non-solution by βt. For t = 0 before the

first iteration of Γm

α0 =
1√
n

(10.53)

β0 =
1√
n
. (10.54)

In the first iteration Γm two times the average amplitude is computed, the

amplitude values for non-solution are 1√
n

and for one marked solution − 1√
n
,

it follows

A =
2

n
·
(

n · 1√
n
− k√

n
− k√

n

)

=
2

n
·
(

(n− k) · 1√
n
− k√

n

)

(10.55)

A =
2

n
· ((n− k) · β0 − k · α0) . (10.56)

The amplitude of the solution is

α1 = A +
1√
n

= A + α0 =
2

n
· ((n− k) · β0 − k · α0) + α0, (10.57)

α1 =
1

n
· (α0 · (n− 2 · k) + β0 · (2 · n− 2 · k),

α1 = α0 · (1 − 2 · k
n

) + β0 · (2 − 2 · k
n

), (10.58)

and the non-solution

β1 = A− 1√
n

= A− β0 =
2

n
· ((n− k) · β0 − k · α0) − β0, (10.59)

β1 = −α0 ·
2 · k
n

+ β0 · (1 − 2 · k
n

). (10.60)
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We can describe the evolution of the amplitudes in time t by two coupled

recurrence equations. They represent a discrete dynamical system of two

difference equations

αt+1 = αt ·
(

1 − 2 · k
n

)

+ βt ·
(

2 − 2 · k
n

)

(10.61)

βt+1 = −αt ·
2 · k
n

+ βt ·
(

1 − 2 · k
n

)

. (10.62)

We can indicate the states of a system in three dimensional phase space

of αt, βt and t with the boundary condition of α0 = β0 = 1√
n

(see Figure

10.3). It represents a periodic orbit in time. The projected orbit in the two

dimensional subspace αt, βt represents an ellipse (see Figure 10.4). The

ellipse is determined by the values of n and k (see Figure 10.5). The pro-

!1.0

!0.5

0.0

0.5

1.0

!0.05

0.00

0.05

0

50

100

150

200

Fig. 10.3 Phase space ofαt, βt and t with the boundary condition of α0 = β0 = 1√
n

.

The values are n = 256, k = 1 and 1 ≤ t ≤ 200. The x-axis indicates αt, the y-axis βt

and the z-axis t.

jected orbit in two dimensional subspace of amplitude and time t represents

two sine waves, periodic functions described by αt and βt (see Figure 10.6).

The period is determined by the value of k and n. With k = 1 the peak

amplitude is one (see Figure 10.7 and Figure 10.5). Such a linear and peri-

odic system is usually described by sine and cosine equations. It should be

noted that a cosine wave is a sine wave because of the phase-shift relation

cos(θ) = sin
(

θ +
π

2

)

.
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The ellipse in a Cartesian system is represented by the equation

!1.0 !0.5 0.5 1.0

!0.06

!0.04

!0.02

0.02

0.04

0.06

Fig. 10.4 The projected orbit in the two dimensional subspace αt, βt with the boundary
condition of α0 = β0 = 1√

n
. The values are n = 256, k = 1 and 1 ≤ t ≤ 200. The x-axis

indicates αt and the y-axis βt.

!1.0 !0.5 0.5 1.0

!0.06
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0.02

0.04

0.06

Fig. 10.5 The projected orbit in the two dimensional subspace αt, βt with the boundary
condition of α0 = β0 = 1√

n
. The x-axis indicates αt, the y-axis βt. The outer ellipse

has the values n = 256, k = 1 as before, the two ellipses with diminishing x-axis radius
corresponds to increased k values k = 4 and k = 16. For all three ellipses with n = 256,

200 iterations were done. In the fourth ellipse k is one and n = 65536 = 216, y-axis
radius diminish. 1000 iterations were done.

x2

a2
+

y2

b2
= 1. (10.63)
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50 100 150 200

!1.0

!0.5

0.5

1.0

Fig. 10.6 The projected orbit in the two dimensional subspace of amplitude and time t
represents a periodic function described by αt (the dotted curve) and βt (the continuous
curve). The x-axis indicates t and the y-axis the amplitude. The values are n = 256,
k = 1 and 1 ≤ t ≤ 200.

200 400 600 800 1000
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Fig. 10.7 The projected orbit in the two dimensional subspace of amplitude and time t.
The x-axis indicates t and the y-axis the amplitude. Four periodic functions represented
by αt with different periods are shown. The period is determined by the value of k and
n. With k = 1 the peak amplitude is one. The greatest period corresponds to the values
k = 1 and n = 65536. For n = 256 the period diminishes, for k = 4 and k = 16 the peak
amplitude diminishes below one and the period diminishes even more. 1000 iterations
were done.

Because αt and βt are real, following equation representing an ellipse is

given by

k · α2
t + (n− k) · β2

t = 1. (10.64)
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Using the the Pythagorean identity

sin2 θ + cos2 θ = 1

we can rewrite the equation representing the ellipse as

k ·
(√

1

k
· sin θt

)2

+ (n− k) ·
(√

1

n− k
· cos θt

)2

= 1 (10.65)

it follows that

αt =

√

1

k
· sin θt and βt =

√

1

n− k
· cos θt (10.66)

and we can rewrite the the two coupled recurrence equations as
√

1

k
· sin θt+1 =

√

1

k
· sin θt ·

(

1 − 2 · k
n

)

+

√

1

n− k
· cos θt ·

(

2 − 2 · k
n

)

√

1

n− k
· cos θt+1 = −

√

1

k
· sin θt ·

2 · k
n

+

√

1

n− k
· cos θt ·

(

1 − 2 · k
n

)

simplified as

sin θt+1 = sin θt ·
(

1 − 2 · k
n

)

+ cos θt ·
2 ·

√
k ·

√
n− k

n
(10.67)

cos θt+1 = − sin θt ·
2 ·

√
k ·

√
n− k

n
+ cos θt ·

(

1 − 2 · k
n

)

. (10.68)

Trigonometric simplification∗

Because

−1 ≤
(

1 − 2 · k
n

)

≤ 1

we can represent it as

cosω = 1 − 2 · k
n

. (10.69)

Because of the Pythagorean identity

(

1 − 2 · k
n

)2

+

(

2 ·
√
k ·

√
n− k

n

)2

= 1

it follows that

sinω =
2 ·

√
k ·

√
n− k

n
(10.70)
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and we can rewrite again the the two coupled recurrence equations as

sin θt+1 = sin θt · cosω + cos θt · sinω (10.71)

cos θt+1 = − sin θt · sinω + cos θt · cosω (10.72)

Because of the trigonometric identities, addition and subtraction theorem,

the two coupled recurrence equations with the boundary condition θ0 are

sin θt+1 = sin(θt + ω) = sin(θ0 + t · ω + ω) (10.73)

cos θt+1 = cos(θt + ω) = cos(θ0 + t · ω + ω) (10.74)

and we can rewrite the recurrence equations into two simple equations

αt =
1√
k
· sin(θ0 + t · ω) (10.75)

βt =
1√

n− k
· cos(θ0 + t · ω). (10.76)

With the boundary condition of α0 = β0 = 1√
n

and α0 =
√

1
k · sin θ0,

β0 = 1√
n−k

· cos θ0 it follows that

sin2 θ0 =
k

n
(10.77)

and

cos2 θ0 =
n− k

n
= 1 − k

n
(10.78)

and because of the double angle formula

cos(2 · x) = 2 · cos2 x− 1 = 1 − 2 · sin2 x

and

sin(2 · x) = 2 · sinx · cosx

it follows that

cosω = 1 − 2 · k
n

= 1 − 2 · sin2 θ0 = cos(2 · θ0). (10.79)

sinω =
2 ·

√
k ·

√
n− k

n
= 2 sin θ0 · cos0 θ0 = sin(2 · θ0). (10.80)

Using the trigonometric identities

αt =
1√
k
· (sin θ0 · cos(t · ω) + cos θ0 · sin(t · ω)) (10.81)
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βt =
1√

n− k
· (− sin θ0 · sin(t · ω) + cos θ0 · cos(t · ω)) (10.82)

the solution for the two difference equations representing the discrete dy-

namical with the boundary condition α0 = β0 = 1√
n

is represented by the

two equations

αt =
1√
k
· sin(θ0 + t · 2 · θ0) =

1√
k
· sin(θ0 · (2 · t + 1)) (10.83)

βt =
1√

n− k
· cos(θ0 + t · 2 · θ0) =

1√
n− k

· cos(θ0 · (2 · t + 1)) (10.84)

with

θ0 = sin−1

(√

k

n

)

. (10.85)

10.3.5 Number of iterations

The probability of seeing one solution should be as close as possible to 1

and the number of iterations r should be as small as possible. Because

there are k solution, the probability of measuring a state that represents a

solution is

k · α2
t = sin2(θ0 · (2 · t + 1)) = 1 (10.86)

θ0 · (2 · t + 1) =
π

2
(10.87)

after t∗ iterations the probability of measuring a solution is nearly one

t∗ := t =
π

4 · θ0
− 1

2
=

π

4
·
√

n

k
− 1

2
=

π

4
·
√

2m

k
− 1

2
(10.88)

t∗ = 0.785398 ·
√

2m

k
− 0.5. (10.89)

For k = 1 and more than two qubits (m > 2, n = 2m) the corresponding

value is above the possible lower bound for Uf based search

t∗ =
√
n · 0.785398− 0.5 >

√
n · 0.324423. (10.90)

The number of iterations r
(

r∏

t=1

Γm

)

·Wm+1 · |0⊕m〉|1〉
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is the largest integer not greater than t∗,

r = bt∗c =

⌊

π

4
·
√

2m

k
− 1

2

⌋

. (10.91)

The value of r depends on the relation of n versus k. For n = 4 and k = 1

we need only one rotation, we need as well only one rotation for

n

4
= k

to find one of the k solutions. For 16 qubits and one solution, k = 1,

n = 65536 = 216 , t∗ = 200.562. In this case we need two hundred rotations.

The probability of measuring a state that represents a solution is nearly one.

It is possible to adapt the iterations in such a way that the probability of

finding a solution is exactly one. One changes θ0 of the difference equations

either in the last step or continuously so that the r = t∗ = bt∗c as proposed

by Brassard [Brassard et al. (2000)], [Brassard et al. (1998)]. The resulting

speed up remains quadratic. The iterative amplification algorithm requires

the value of k in order to determine the number of iterations. We can

determine the value of k by the quantum counting algorithm.

10.3.6 Quantum counting

Quantum counting algorithm is based on the QFT period algorithm to esti-

mate the period of the sin wave period represented by the of the amplitude

αt or βt [Brassard et al. (1998)]. [Brassard et al. (2000)] (see Figure 10.6).

We define t iterations of amplification as

Φt =

(
t∏

t=1

Γm

)

. (10.92)

The state |τ〉 has two different amplitudes representing solution and non-

solution. They define the two subspaces |τsolution〉 and |τnon〉 with

Φt ·Wm+1|0⊗m〉|1〉 = k · αt · |τsolution〉 + (n− k) · βt · |τnon〉 ⊗
( |0〉 − |1〉√

2

)

(10.93)

ignoring the auxiliary qubt, or target qubit we can write

Φt ·Wm|0⊗m〉 =

=
√
k·sin(θ0·(2·t+1))·|τsolution〉+

√

(n− k)·cos(θ0·(2·t+1))·|τnon〉. (10.94)
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We define a unitary operator UΦ that acts on two registers |t〉 and |x〉 and

one auxiliary qubit,

UΦ · |t〉|x〉 ⊗
( |0〉 − |1〉√

2

)

= |t〉|Φt|x〉 ⊗
( |0〉 − |1〉√

2

)

(10.95)

with

UΦ · |t〉 ⊗
(

1√
2m

∑

x∈Bm

|x〉
)

⊗
( |0〉 − |1〉√

2

)

= |t〉 ⊗ (k · αt · |τsolution〉 + (n− k) · βt · |τnon〉) ⊗
( |0〉 − |1〉√

2

)

(10.96)

after the application of UΨ the two registers and the auxiliary qubit are

entangled. In the first step of the algorithm we build a superposition of m

qubits and µ qubits with T = 2µ taking into account the auxiliary bit. The

value of T can be estimated by the determination of the period of

sin(θ0 · (2 · t + 1))

assuming k = 1. It follows that

Wµ ·Wm+1|0⊗µ〉|0⊗m〉|1〉 =

=

(

1√
T

∑

t∈Bµ

|t〉
)

⊗
(

1√
n

∑

x∈Bm

|x〉
)

⊗
( |0〉 − |1〉√

2

)

.

In the second step we apply the UΦ operator

UΦ

(

1√
T

∑

t∈Bµ

|t〉
)

⊗
(

1√
n

∑

x∈Bm

|x〉
)

⊗
( |0〉 − |1〉√

2

)

=

(

1√
T

∑

t∈Bµ

|t〉
)

⊗ (k · αt · |τsolution〉 + (n− k) · βt · |τnon〉) ⊗
( |0〉 − |1〉√

2

)

.

(10.97)

In the third step we measure the second register of the compound system.

As the result the state of the system is projected to the subspace that

corresponds to the observed state and the vector representing the state is

renormalized to the unit length. The result of the second register is either

fsolution(t) = sin(θ0 ·(2·t+1)) or fnon(t) = cos(θ0 ·(2·t+1)). Both functions

have the same period and will be represented as f(t). The new amplitude

distribution is normalized and has the same periodic period as f(t). The

following steps correspond to the QFT period algorithm as before.
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10.4 Circuit Representation

Grover’s amplification is based on Gm = −Qx. and can be represented by

O(m) quantum gates. The unitary operator Λm reverse the sign of |0〉

Λm · |0〉 = −|0〉
and for |x〉 6= |0〉

Λm · |x〉 = |x〉.

Λm can be implemented efficiently with f0(x)

f0(x) =

{
1 if x = 0

0 else
(10.98)

as

1√
n

∑

x∈Bm

(−1)f0(x) · |x〉 ⊗
( |0〉 − |1〉√

2

)

. (10.99)

We can write

Gm = −Qx = −Im + 2 · Pm = 2 · Pm − Im = −(Wm · Λm ·Wm) (10.100)

with the auxiliary qbit for the Λm operator representation it becomes

Gm = −(Wm · Λm ·Wm) ⊗
( |0〉 − |1〉√

2

)

(10.101)

neglecting the auxiliary qbit it follows that

Wm · Λm ·Wm =








1 − 2
n − 2

n · · · − 2
n

− 2
n 1 − 2

n · · · − 2
n

...
...

. . .
...

− 2
n − 2

n · · · 1 − 2
n








. (10.102)

The first row of Wm which is positive and can be represented as

〈w| =
∑

x∈Bm

〈x|

By the operator Λm it becomes negative. 〈w| it multiplies with the first

column of Wm

|w〉 =
∑

x∈Bm

|x〉

the first column multiplied with the first row results in

|w〉〈w| = Pm.
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This value is subtracted from

Im = Wm ·Wm

and replaced by −|w〉〈w|
Im − |w〉〈w| − |w〉〈w| = Im − 2 · |w〉〈w| = Im − 2 · Pm. (10.103)

Because Uf(0) that represents f0(x) can be represented by O(m) gates

and all other operators are based on Hadamard operator Wm built by a

direct product of m W1 matrices, Gm can be represented by O(m) quan-

tum gates. Given the fact that the operator Uf is represented by O(m)

gates, then Grover’s amplification algorithm implements exhaustive search

in O(
√
n) steps in n-dimensional Hilbert space Hn.

10.5 Speeding up the Traveling Salesman Problem

A salesman must visit t cities; he must visit each city exactly once and

finish at the city where his tour started. We call such a tour a valid tour.

The costs of traveling from city i to city j are represented by cij . The costs

do not need to be symmetrical cij 6= cji. The salesman wishes to conduct a

valid tour that costs at most k. The traveling salesman problem (TSP) is

the most popular NP − complete problem. An instance (ticket) leads to a

“yes” answer in polynomial time. Given a tour, we can verify whether the

tour is valid, and the costs are below k in polynomial time.

We search through all possible orderings of the cities and verify, for each

ordering, if the tour is valid and the costs are below k. A quantum circuit

UTSP with a polynomial number of quantum gates can verify, for a given

tour, whether it is a solution. Because we can not reset to the input state,

the circuit should recompute the output before applying the amplification

step. For t cities, we can represent each city by dlog2 te qubits, and a tour

by a register of

m∗ = t · dlog2 te
qubits. We will examine all of the possible orderings of t cities with rep-

etition for simplicity. Without repetitions, there are t! possible orderings;

with repetition,

tt = 2t log2 t = 2m (10.104)

with

m = t · log2 t ≤ m∗.
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We apply the UTSP operator,

Γm := (Gm ⊗ I1) · UTSP (10.105)

determine the value of r by quantum counting
(

r∏

t=1

Γm

)

·Wm+1 · |0⊕m〉|1〉 = |τ〉 ⊗
( |0〉 − |1〉√

2

)

(10.106)

and and determine the solution by the measurement of the register |τ〉. The

computing costs are

O(t
t
2 ) = O

(√
2m
)

(10.107)

with

t! � t
t
2 .

Any NP − complete problem can be solved in a similar way.

10.6 The Generate-and-Test Method

The generate-and-test method is a simple AI paradigm. This approach

uses a generator and a tester. The generator produces all of the possible

solutions, and the tester evaluates each possible solution to see whether it

is the expected solution (see Figure 10.8).

Fig. 10.8 The generate-and-test method.
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This approach is mostly used to solve identification problems. The

generator produces hypotheses that are tested. For some problems, the

possible solutions can be represented by some points in the problem space.

For other problems, the possible solutions can be represented by paths in

the problem space. We can speed up the generate-and-test method by

mapping the generator into a superposition and the tester into an oracle

represented by a quantum circuit.
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Chapter 11

Quantum Problem-Solving

11.1 Symbols and Quantum Reality

Problem-solving can be modeled by a production system that implements

a search algorithm. The search defines a problem space and can be rep-

resented as a tree. Because symbols do not by themselves represent any

utilizable knowledge, additional heuristic functions are used to speed up the

search. Without the use of heuristic functions, real-world problems become

intractable because of the exponential growth of the leaves in the tree. A

heuristic function is used that rates the value’s different states according

to how far they are from the desired state. A best-first search is that in

which the best rule (according to a heuristic function of the conflict set)

is chosen. The better the heuristic measure of the remaining distance to

the desired state is, the faster the best-first search [Winston (1992)]. An

example for a simple heuristic function is the simple assumption that the

distance between the states in the problem space is related to the similarity

of the vectors that represent the states. A vector corresponds to a pattern

that mirrors the way that the biological sense organs describe the world and

is called a sub-symbol. The argument as presented before indicates that

the heuristic function results from the Euclidian geometry of the world as

experienced by humans. Could physical nature as described by quantum

physics also lead to a quantum heuristic? In the relation of sub-symbols to

symbols, do quantum-symbols exist?

In quantum computation, there are two known principles to speed up

the computation:

• The QFT can determine the period of a wave (periodic function) expo-

nentially faster than any known classical algorithm. QFT is based on

the unitary DFT matrix and FFT decomposition.

199
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• Grover’s algorithm can speed up the search quadratically. Grover’s

algorithm is based on the unitary Householder reflection, which is rep-

resented by a unitary matrix.

In a tree, we search for a leaf ξ. Using Grover’s algorithm, we represent the

corresponding search tree by a quantum Boolean circuit Utree. What is the

speedup in relation to the structure of the represented tree? We will in-

vestigate this question starting from classical tree search algorithms, which

will lead us to the general model of a quantum computer, the Tarrataca’s

quantum production system.

11.2 Uninformed Tree Search

In an uninformed search, no additional information about the states is

given. The search represented by a search tree is performed from an initial

state through the following states until a goal state is reached. A search

tree is represented by nodes and edges. Each node represents a state, and

each edge represents a transition from one state to the following state. The

initial state defines the root of the tree. From each state ν, either Bν states

can be reached or the state is a leaf. Bν represents the branching factor

of the node v. A leaf represents either the goal of the computation or an

impasse when no valid transition to a succeeding state exists. In contrast to

a real tree in computer science, the root of a tree structure is at the top of

the tree and the leaves are at the bottom. Every node besides the root has a

unique node from which it was reached, called the parent. The parent is the

node above it and is connected by an edge. Each parent ν has Bν children.

The depth of a node ν is the number of edges to the root node. Nodes with

the same depth k define the level k. For a tree with a constant branching

factor B, each node at each level k has B children, and at each level k, there

are B · k nodes [Nilsson (1982)], [Luger and Stubblefield (1993)], [Russell

and Norvig (2010)].

Breadth-first search In a breadth-first search the root node (level L =

0) is expanded first. Then each children of the root at the level L = 1 are

expanded, they become the parents of the children at the level L = 2. Then

the procedure is repeated for the preceding levels until a goal is reached or

all nodes are impasse states (see Figure 11.1). Breadth-first search performs

a level wise search. All nodes at level L have to be visited before visiting

a node at level L + 1. For a constant branching factor B Bm nodes are
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Fig. 11.1 In a breadth-first search the root node (level L = 0) is expanded first. Then
each children of the root at the level L = 1 are expanded, they become the parents of
the children at the level L = 2.

expanded at level m with k = 0 being the root. The total number of nodes

at level m is represented by the geometric series

1 + B + B2 + B3 + · · · + Bm =

m∑

i=0

Bi =
1 −Bm+1

1 −B
= O(Bm). (11.1)

Every node that is generated has to be represented in memory and the

number of nodes grows exponentially. The computing costs and the memory

requirements are in worst case O(Bm).

Depth-first search Progressive depending and local focusing leads to

a depth-first search [Newell (1990)]. It always expands the deepest node

in the search tree until a goal is reached or all nodes are impasse states

(see Figure 11.2). An impasse is present when no valid transition to a

Fig. 11.2 Depth-first search always expands the deepest node in the search tree until a
goal is reached or all nodes are impasse states.
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succeeding state exists. In this case backtracking to the previous state is

done. Another state can be chosen, if possible, or backtracking is repeated.

In worst case the same number of nodes are visited as in breadth-first

search. Commonly this number is less and the memory requirements are

low compared to breadth-first search. Only a path from the root to the

current node with the remaining unexpected sibling nodes for each node on

the path have to be represented. If m is the maximum depth of the search

tree and for a constant branching factor B the memory requirements are

B ·m + 1 (11.2)

we add a one because the node at the depth m is a leaf or an impasse. The

computing costs are in the worst case O(Bm) and the memory requirements

B · m = O(m). Depth-first search first search contrary to breadth-first

search can fail in the case the maximum depth of the search tree converges

to m → ∞. A solution to this problem is the combination of both methods

with the benefits of both of them.

Iterative deepening search In iterative deepening search we gradually

increase the limit of the search from one, to two, three, four and continue

to do it until a goal is found. For each limit mk a depth-first search is

performed from the root with mk being the maximum depth of the search

tree. During iterative deepening states are generated multiple times [Korf

(1985)], [Russell and Norvig (2010)]. The time complexity of iterative deep-

ening search is of the same order of magnitude as breadth-first search [Korf

(1985)], as explained by Richard E. Korf: “Since the number of nodes on

a given level of the tree grows exponentially with depth, almost all time is

spent in the deepest level, even through shallower levels are generated an

arithmetically increasing number of times.” The paradox can be explained

by the arithmetico-geometric sequence. The number of nodes for iterative

deepening for each level starting with level zero (for simplicity) is given by

1

1 + B

1 + B + B2

· · ·
to level m is given by

1 + B + B2 + B3 + · · · + Bm
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the costs Cm (total number of visited nodes) are represented by the

arithmetic-geometric sequence that represent the sum of each iteration

Cm = (m+1) ·1+m ·B+(m− 1) ·B2 +(m− 2) ·B3 + · · ·+1 ·Bm, (11.3)

Cm =

m∑

i=0

(m + 1 − i) · Bi. (11.4)

With

Cm =

m+1∑

i=1

(m + 1 − (i − 1)) · Bi−1. (11.5)

According to Riley [Riley et al. (2006)]

Cm−Cm·B = Cm·(1−B) = m+1−(2·m+1)·Bm+1+
B · (1 −Bm)

(1 −B)
, (11.6)

Cm =
m + 1

1 −B
− (2 ·m + 1) ·Bm+1

1 −B
+

B · (1 −Bm)

(1 −B)2
, (11.7)

by simplifying this equation we arrive at

Cm =
1 + m−B ·m− 2 ·B1+m · (1 + m) + B2+m · (1 + 2 ·m)

(B − 1)2
= O(Bm).

(11.8)

The computing costs are in the worst case O(Bm) and the memory require-

ments B · m = O(m). It follows that we should use depth-first search if

the depth of the solution is known, otherwise we should prefer iterative

deepening over breadth-first search due to the low memory requirements.

Loops To speed up the search the formation of loops should be prohib-

ited. By comparison with the sequence of carried out states loops can be

prevented.

11.3 Heuristic Search

Heuristic search is based on a heuristic function h(ν) that estimates the

cheapest cost from the node ν to the goal.
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Greedy best-first search It expands the node ν that is closest to the

goal according to a heuristic function h(ν). Out of the B children the node

νi is chosen with

min
1≤i≤B

(h(νi)). (11.9)

Like depth-first search it follows a single path to the goal. It always expands

the deepest node in the search tree according to h(ν) until a goal is reached

or all nodes are impasse states. An impasse is present when no valid transi-

tion to a succeeding state exists. In this case backtracking to the previous

state is done. Another state can be chosen that is closest to the goal, if

possible, or backtracking is repeated. The computing costs are in the worst

case O(Bm) and the memory requirements B ·m = O(m). However with a

good heuristic function h(ν) the cost can be reduced considerably.

A search It evaluates the nodes through a function f(ν) that estimates

the cheapest solution that passes through the node ν. The function f(ν)

is composed out of the heuristic function h(ν) and the function g(ν) that

indicates the cheapest costs of reaching the node ν from the root node

representing the initial state.

f(ν) = g(ν) + h(ν).

As breadth-first search it keeps all evaluated nodes in memory. The com-

puting costs and the memory requirements are in the worst case O(Bm).

A∗ search A∗ search is equivalent to the A search with the constraint

that the function h(ν) is an admissible heuristic, it never overestimates the

cost to reach the goal. If c(ν) are the true cost to reach the goal it follows

h(ν) ≤ c(ν).

It follows that the triangle inequality is valid with c(ζ, ν) representing the

true cost from node ζ to node ν

h(ζ) ≤ c(ζ, ν) + h(ν). (11.10)

A∗ search is complete and optimal. A solution is found if it exists. A∗

search is optimal, no other algorithm is guaranteed to expand fewer nodes.

However the number of expanded nodes can grow exponential unless the

error of estimates the cheapest cost from the node ν to the goal is extremely

small

c(ν) − h(ν) ≤ O(log c(ν)). (11.11)

The computing costs and the memory requirements are in worst case

O(Bm).
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11.3.1 Heuristic functions

We will demonstrate the principles of heuristic function h(ν) on the 8-

puzzle example. Two common heuristics for this task are the number of

misplaced tiles, and the “city-block distance” [Nilsson (1982); Pearl (1984);

Luger and Stubblefield (1998)]. The first heuristic counts the number of

misplaced tiles out of place in each state compared to the desired goal.

However this heuristic fails to take into account all available information

such as the distance the tiles must be moved. The “city-block distance”

sums all the distances by which the tiles are out of place, with one count

for each square a tile must be moved to reach a position of the desired

state. The “city-block distance”, also called the “Manhattan distance”, is

often better than the “number of misplaced tiles” (see Figure 11.3). Both

heuristic functions are admissible.

321

7 8

654

1

4

7

7

7

4

2 3

5

1 2 3

5

7 8 6

8 6

5

21 3

8

4

68 6

1 2 3

4 5

Fig. 11.3 The first pattern (upper left) represents the initial configuration and the last
(low right) the desired configuration. The series of moves describe the solution to the
problem using the “city-block distance” heuristic function.

11.3.2 Invention of heuristic functions

Euclidean geometry of the world The invention process can be in-

spired by the Euclidean geometry of the world as stated before. The Ok-

sapmin tribe of Papua New Guinea counts by associating a number with

the position of the body [Lancy (1983)]. This suggests a representation of

numbers by bars at certain positions which can overlap. A bar at a certain

position codes the magnitude of the number. The closeness or similarity of

different numbers is determined by the overlap of the bar codes [Wichert

et al. (2008)] (see Figure 11.4). In the 8-puzzle, each tile is defined by its
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1

2

3

4

Fig. 11.4 A bar at a certain position codes the magnitude of the number. The closeness
or similarity of different numbers is determined by the overlap of the bar codes.

corresponding coordinates. Two numbers can be represented by two bars

(see fig 11.5). The amount of overlapping indicates the closeness of differ-

ent tiles. The resulting function is equivalent to the city-block distance.

4 5 6

1 2 3

7 8

Fig. 11.5 The desired state for the task 8-puzzle and its representation by bars. The
associative fields in which the objects are describe have a fixed dimension of ten times
ten pixels. Because of this, excessive unused space is present.

The distance between a state and a desired state corresponds to the sum of

distance by which the tiles are out of place. The closeness or similarity of a

tile to the desired position of the tile is determined by the overlap of the two

bar codes representing the tile (see Figure 11.6). The overlap corresponds

to the distance by which the tile is out of place. The heuristic function

emerged by a reasonable sub-symbolical representation of the states in the

8-puzzle world [Wichert et al. (2008)].
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Fig. 11.6 The tile “1” at the position of the tile “6” (shown by dotted bars). The
value of the city-block distance is three. The hamming distance between the patterns
representing the tile “1” and “6” is also three.

Symbolical problems Generally the invention of heuristic functions is

difficult. In many applications there is no relation to the Euclidean ge-

ometry of the world. Examples are chemical structures or mathematical

expressions as used in symbolical integration. One way to is to approxi-

mate a problem by a relaxed problem with fewer restrictions. For example

in the relaxed version of the n-puzzle problem we assume we can move

each tile to its position independently of moving the other tiles. The re-

laxed problem represents an admissible heuristic function of the problem.

An optimal solution in the original problem c(ν) is also a solution in the

relaxed problem. By the abolition of present restrictions the cost of the

relaxed problem are less or equal to c(ν). Another way is to decompose

the problem into sub-problems and to store all exact solution in a database

and to use it to speed up the search using the solution of sub-problems or

to extract the heuristic function by machine learning.

11.3.3 Quality of heuristic

A frequent used measure is the effective branching factor b. It is indepen-

dent of the length of the optimal solution. It is related to the costs Cm

represented by the number of generated nodes during A∗ search [Nilsson

(1982)], [Russell and Norvig (2010)]. It is represented by the geometric

series (we do not omit level L=0 for simplicity)

Cm = 1 + b + b2 + b3 + · · · + bm =

m∑

i=0

bi =
1 − bm+1

1 − b
. (11.12)

We cannot represent b as a function of m and Cm, however we can plot the

values of Cm in dependence of b and m (see Figure 11.7). The exponential
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grow cost Cm can be only stopped in the case of fully informed search b = 1.

A heuristic reduces the value of b. By doing so it extends the horizon of

1

2

3

4
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4
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8

10

0

5000

10000

Fig. 11.7 Values of Cm in dependence of branching factor b (1-4) and depth m (1-10).

m of tractable Cm values. No classical universal heuristic function for all

domains exist, for each domain a heuristic function has to be invented. This

process in general is non-trivial.

11.4 Quantum Tree Search

11.4.1 Principles of quantum tree search

There is a simple relation between a tree search and information theory.

Suppose that we have a constant branching factor B and the depth of

the tree is m. In this case, there are Bm = n leaves. The goal of the

search is to visit all of the leaves. The ideal entropy indicates the minimum

number of optimal questions that describe the result of an experiment.

The experiment represents n leaves of a search tree with equal probabilities

p = (1/n, 1/n..., 1/n). The maximal ideal Entropy is

H(F ) = m = −
∑

i

pi logB pi = logB n (11.13)
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and corresponds to the depth of the search tree. In the case of B = 2,

each of the m questions has a reply of either “yes” or “no” and can be

represented by a bit (see Figure 11.8). The m answers are represented by

Fig. 11.8 Search tree for B = 2 and m = 2. Each question can be represented by a bit.
Each binary number (11, 10, 01, 00) represents a path from the root to the leaf.

a binary register of length m. There are n different binary registers, which

represent all of the possible binary numbers of length m. Each binary num-

ber represents a path from the root to a leaf. A path could contain loops, or

an impasse could be present before a leaf is reached. However, for each goal,

a certain binary number indicates the solution. For a constant branching

factor B > 2, each question has B possible answers. The m answers can be

represented by a base-B number with m digits. For example, with B = 8,

the number is represented in an octal numeral system. Alternatively, the

m answers can be represented by a binary register of length m · dlog2 Be.

Using Grover’s algorithm, we search through all possible paths and ver-

ify, for each path, whether it leads to the goal state [Tarrataca and Wichert

(2011b)]. A quantum circuit Up with a polynomial number of quantum

gates can verify whether each path corresponds to a sequence of produc-

tions that lead from the initial state to the goal state. Because we can not
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reset to the input state, the circuit should recompute the output before

applying the amplification step. We apply the Up operator with,

µ = m · dlog2 Be (11.14)

with the special case µ = m for constant branching factor B = 2, it follows

Γµ := (Gµ ⊗ I1) · Up (11.15)

determine the value of r by quantum counting
(

r∏

t=1

Γµ

)

·Wµ+1 · |0⊕µ〉|1〉 = |τ〉 ⊗
( |0〉 − |1〉√

2

)

(11.16)

and and determine the solution by the measurement of the register |τ〉.
Because

√
Bm ≈

√

2m·dlog2 Be (11.17)

it follows that the computing costs are

O
(√

Bm
)

= O
(√

2µ
)

= O
(√

2m·dlog2 Be
)

(11.18)

which is much less then uninformed tree search algorithms with

O
(√

2m·dlog2 Be
)

= O
(√

Bm
)

� O(Bm) = O
(

2m·dlog2 Be
)

. (11.19)

The effective branching factor for quantum tree search bq is given by the

equation

Cm =
1 − bm+1

1 − b
≈ B

m
2 (11.20)

it follows that

bq ≈
√

2dlog2 Be ≥
√
B. (11.21)

11.4.2 Iterative quantum tree search

The presented algorithm is limited to a search of depth m. This constraint

can be overcome by the quantum iterative deepening search. A quantum

iterative deepening search is equivalent to the iterative deepening search

[Tarrataca and Wichert (2012a)], [Tarrataca and Wichert (2013b)]. We

gradually increase the limit of the search from one, to two, three, and four

and continue to search until the goal is found. For each limit m, a quantum

tree search is performed from the root, with m being the maximum depth of

the search tree. The possible solutions are determined by a measurement.
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The time complexity of an iterative deepening search has the same order

of magnitude as the quantum tree search. With

β := B
1
2

the computing costs for each level starting with level zero (for simplicity)

are given by

O(1)

O(β) = O(B
1
2 )

O(β2) = O(B
2
2 )

· · ·

to level m is given by

O(βm) = O(B
m
2 )

the total costs of mk iterations with m measurments are O(B
m
2 ) =

O
(√

Bm
)

O(1) + O(B
1
2 ) + O(B

2
2 ) + O(B

3
2 ) + · · · + O(B

m
2 ) = O(B

m
2 ) = O

(√
Bm
)

(11.22)

O
(√

Bm
)

= O
(√

2µ
)

= O
(√

2m·dlog2 Be
)

the equation is based on the geometric series

1+β+β2+β3+· · ·+βm =

m∑

i=0

βi =
1 − βm+1

1 − β
= O(βm) = O(B

m
2 ) (11.23)

and the effective branching factor is equal to bq as for quantum tree search.

11.4.3 No constant branching factor

Suppose the branching factor is not constant, in this case the tree search

can be described by the effective branching factor. For uninformed tree

search for a large number of instances (different initial and goal states)

the effective branching factor converge to the averaged branching factor

for uninformed tree search [Tarrataca and Wichert (2011b)]. For a not

constant branching factor the quantum tree search the maximal branching

factor Bmax has to be used for the quantum tree search. For Bmax the
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quantum algorithm using qubit representation is better then the classical

tree search described by the effective branching factor b in the case

b > bq. (11.24)

If Bmax is a power of two then

b > bq =
√

2dlog2 Bmaxe =
√

Bmax (11.25)

otherwise

b > bq =
√

2dlog2 Bmaxe >
√

Bmax (11.26)

for example Bmax = 9, then

bq = 4 =
√

24 > 3 =
√

9.

and base-9 instead of qubit representation would be more economical. In

production systems Bmax corresponds often to the number of productions.

In the 8-puzzle example there are four productions in the long term memory

and Bmax = 4 and bq = 2. For blind search the effective branching factor is

≈ 2.8 [Russell and Norvig (2010)], the “city-block distance” heuristic effec-

tive branching factor is ≈ 1.24. However one should keep in mind that the

invention of heuristic functions is difficult and the 8-puzzle is a well stud-

ied problem in the AI community [Nilsson (1982); Pearl (1984); Luger and

Stubblefield (1998)]. Heuristic functions can fail. For example in instances

of a problem in which one cannot perform the first necessary action without

undoing them at a later stage, also called “Sussman anomaly” [Sussman

(1975)]. Iterative quantum tree search never fails. This is because during

the iterative amplifications of the Grover’s algorithm one can adapt the

iterations in such a way that the probability of finding a solution is exactly

one.

11.5 Quantum Production System

The control structure of a production system (reaction system) can be de-

fined in terms of an iterative quantum tree search [Tarrataca and Wichert

(2012b)], [Tarrataca and Wichert (2011a)]. In an iterative quantum tree

search, the limit is increased gradually in each step t. For each limit mt, a

quantum tree search is performed from the root, with mt being the max-

imum depth of the search tree. With a maximal branching factor Bmax

and using the qubit representation, there are nt different binary registers,

which represent all of the possible binary numbers of length µt with

nt = 2µt = 2mt·dlog2 Bmaxe. (11.27)
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The register is called a path descriptor κt
i for the iteration step t with

i ∈ {1, 2, · · · , nt}. Each path descriptor κt
i represents a possible path from

the root to the leaf. A path can be undefined. However, for each goal state,

a corresponding κt
i exists. The quantum production system is deterministic

and reversible because the search is determined by the path descriptor. No

conflict resolution is needed. The circuit U t
p verifies whether each path

specified by the path descriptor κt
i corresponds to a sequence of productions

that leads from the initial state to the goal state. The computation is

described by the initial state, the goal state and the long-termmemory. The

long-term memory is composed of several productions. The productions

define the circuit U t
p. The result of the computation is represented by a path

descriptor κt
i. After each iterative step t, Grover’s algorithm is performed.

If no goal at step t was reached, then the resulting path descriptor κt
i is

randomly chosen. In a case in which the goal state can be reached by only

one path at iteration t, the path descriptor κt
i is chosen deterministically

by Grover’s algorithm. The number of possible paths to a goal state can

be determined by quantum counting.

11.6 Tarrataca’s Quantum Production System

A formal definition of Tarrataca’s quantum production system is based on

the pure production system [Tarrataca and Wichert (2012b)]. We explain

the principles of Tarrataca’s quantum production system on a trivial exam-

ple, the 3-puzzle. In the next step we generalize to n-puzzle and to general

quantum production systems. The description is a simplified version of the

one presented in [Tarrataca and Wichert (2011a)].

11.6.1 3-puzzle

The 3-puzzle is composed of three numbered movable tiles in a 2× 2 frame

(see Figure 11.9).

Fig. 11.9 The desired configuration of the 3-puzzle.
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One cell of the frame is empty and because of this, tiles can be moved

around to form different patterns. The goal is to find a series of moves of

tiles into the blank space that changes the board from the initial configu-

ration to a desired configuration). There are twelve possible configurations

(see Figure 11.10). For any of this configuration only two movements are

possible. The movement of the empty cell are either a clockwise or counter-

clockwise movement.

Fig. 11.10 There are twelve possible configurations. For any of this configuration only
two movements are possible. The movement of the empty cell are either a clockwise or
counter-clockwise movement.

The 3-puzzle is tractable and requires fewer qubits to encode. However

the model can be generalized to any n-puzzle. The number of possible

solvable configurations of the n-puzzle is

n!

2
. (11.28)

There are n! different configurations, however only n!/2 are solvable by

moving the empty tile according to the rules. The problem of finding the

shortest solution is NP − complete.

In our example there are four different objects: 3 cells and one empty

cell. Each object can be coded by two qubits (22) and a configuration

of the four objects can be represented by a register of eight qubits |x〉.
The control function of the quantum production system needs to fulfill two

requirements [Tarrataca and Wichert (2011a)]:

• For a given board configuration and a production rule determine the

new board configuration.

• To determine if the configuration is the goal configuration.
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The function g(x) determines if the configuration is the goal configuration

g(x) = g(x1, x2, x3, x4, x5, x6, x7, x8
︸ ︷︷ ︸

board configuration

) =

{
1 if goal board configuration

0 otherwise.

(11.29)

Function g(x) is represented by a unitary operator T . T acts on the 8 + 1

qubits with x ∈ B8 and c ∈ B1

T · |x〉|c〉 = |x〉|f(x) ⊕ c〉.
The new board configuration is determined by productions that are

represented by the function p. There are four possible positions of the

empty cell. The input of the function p is the current board configuration

and a bit m that indicates whether the blank cell should perform a clockwise

(m = 1) or counter-clockwise movement (m = 0). Together, there are 8

possible mappings, which are represented by 8 productions. There are four

possible positions of the empty cell times two possible moves. For simplicity,

we will represent the mappings of the function p by a unitary permutation

matrix L(1). For each mapping, the empty tile can have three different

neighbors. It follows that, in total, there are 24 = 8 × 3 instantiationed

rules. They correspond to permutations in the unitary permutation matrix

L(1). The matrix acts on the 8 + 1 qubits with m ∈ B1 and x ∈ B8

L(1) · |m〉|x〉 = |m〉|γ〉.
The L(1) matrix represents the long-term memory of our production sys-

tem.

Decomposition An important open question is whether the permutation

matrix L(1) of dimension 512 = 29 can be decomposed. It is possible to

determine if a permutation is tensor decomposable and to chose an efficient

tensor decomposition if present [Kolda and Bader (2009)]. An alternative

less costly representation of the long-term memory can be realized by a

uniformly polynomial circuit. The circuit is based on the truth table that

describes the mappings of the function p.

In the case in which the system is not based on an iterative quantum tree

search but instead is based on a quantum tree search, we should apply only

the move of the blank cell if and only if the input board configuration is

not a target board configuration. This process could be performed by in-

cluding a reference to function g in the new function p’s definition and can

be described by a unitary operator.
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The operator that describes the application of a single production rule for

the 3-puzzle and a test condition in order to determine if the final board is

a target configuration board is represented in B10 as

(I1 ⊗ T ) · (L(1) ⊗ I1) · |m,x1, x2, x3, x4, x5, x6, x7, x8, c〉. (11.30)

The operator that describes the application of a two production rules for

the 3-puzzle and a test condition in order to determine if the final board is

a target configuration board is represented with

L(2) · |m2,m1〉|x〉 = |m2,m1〉|γ〉
as

(I2 ⊗ T ) · (L(2) ⊗ I1) · (L(2) ⊗ I1) · |m2,m1, x1, x2, x3, x4, x5, x6, x7, x8, c〉

(I2 ⊗ T ) · (L(2) ⊗ I1)
2 · |m2,m1, x1, x2, x3, x4, x5, x6, x7, x8, c〉. (11.31)

The operator that describes the application of a t production rules for the

3-puzzle and a test condition in order to determine if the final board is a

target configuration board is represented with

L(t) · |mt, · · · ,m1〉|x〉 = |mt, · · · ,m1〉|γ〉
and

|κt〉 = |mt, · · · ,m1〉
as

(It ⊗ T ) · (L(t) ⊗ I1)
t · |κt, x1, x2, x3, x4, x5, x6, x7, x8, c〉. (11.32)

In quantum computation it is not possible to reset the register

x1, x2, x3, x4, x5, x6, x7, x8 to the pattern representing the initial state. In-

stead we un-compute the output back to the input before applying the

amplification step of the Grover’s algorithm. Because of the unitary evolu-

tion it follows that

(It ⊗ T )∗ · ((L(t) ⊗ I1)
∗)t · (It ⊗ T ) · (L(t) ⊗ I1)

t· (11.33)

·|κt, x1, x2, x3, x4, x5, x6, x7, x8, c〉 = |κt, x1, x2, x3, x4, x5, x6, x7, x8, c〉
the computation can be undone. The result indicated in the qubit c and can

saved into the qubit y by a controlled not gate MCNOT . The computation

is defined on B10+t with

U3−puzzle := (It ⊗ T ⊗ I1)
∗ · ((L(t) ⊗ I2)

∗)t ·
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·(I(9)+t ⊗MCNOT ) · (It ⊗ T ⊗ I1) · (L(t) ⊗ I2)
t (11.34)

simplified as

U3−puzzle · |κt, x1, x2, x3, x4, x5, x6, x7, x8, c, y〉 = U3−puzzle · |κt, x, c, y〉.
(11.35)

We apply the U3−puzzle operator,

ΓT := (Tt ⊗ I10) · U3−puzzle (11.36)

determine the value of r by quantum counting
(

r∏

t=1

ΓT

)

·
(
(Wt · |0⊕t〉) ⊗ |x〉 ⊗ |0〉 ⊗ (W1 · |1〉)

)
= (11.37)

it follows
(

r∏

t=1

ΓT

)

· (Wt⊗I10) · (It+9⊗W1) · |0⊕t〉|x〉|0〉|1〉 = |κt
i〉|x〉|0〉⊗

( |0〉 − |1〉√
2

)

(11.38)

and and determine the solution by the measurement of the register |κt
i〉 that

represents the path descriptor. The 3-puzzle quantum production system

highlighted the principles of quantum production systems. It does not give

any true computational speed up due to the simplicity of the problem and

due to the näıve implementation of the long term memory by a permutation

matrix.

11.6.2 Extending for any n-puzzle

For n-puzzle there are n + 1 different objects: n cells and one empty cell.

Each object can be coded by ρ = dlog2 n + 1e qubits and a configuration of

n+ 1 objects can be represented by a register of z := ρ · (n+ 1) qubits |x〉.
The function g(x) is represented a unitary operator T . T acts on the

z + 1 qubits with x ∈ Bz and c ∈ B1

T · |x〉|c〉 = |x〉|f(x) ⊕ c〉.

The new board configuration is determined by the function p. The input

of the function p is the current board configuration and two bits m = m1,m2

indicating whether the blank cell should perform move up (m = 0 = |00〉),
down (m = 1 = |01〉), right (m = 2 = |10〉) or left (m = 3 = |11〉). The

mappings of the function p between states can be described by a truth table

and can represented as column permutations.
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In the case the empty cell is in the corner only two movements are

possible, the other one are not valid. In the case of not valid movement a

halt bit flag h represented by one bit is set and no further production is

applied. We move the blank cell if and only if the halt bit flag h is not

set. The same applies for empty cell on the edge. In this case only three

movements are possible. For 8-puzzle Bmax = 4 and Baverage

Baverage =
4 · 1 + 2 · 4 + 3 · 4

9
= 2.7778. (11.39)

With growing value n Baverage converges to Bmax.

There are maximal n + 1 possible positions of the empty cell. The

empty cell can move either up, down, left or right or the halt bit flag

is set. Together there (4 + 1) actions and for n + 1 positions there are

(n+1) · 5 possible mappings represented by n · 5+ 5 permutations. In each

combination the empty tile can have n different neighbors. It follows that

in total there are (n+ 1) · 5 · n = 5 · n2 + 5 · n instantiationed productions.

A 8-puzzle there would represented by 360 instantiationed productions.

The instantiationed productions are represented unitary permutation

matrix L(1). The matrix acts on the z+3 qubits with m ∈ B2 and x ∈ Bz

and h ∈ B1

L(1) · |m〉|x〉|h〉 = |m〉|γ〉|h′〉.

11.6.3 Pure production system

The pure production system model has no mechanism for recovering from

an impasse [Post (1943)]. The system halts if no production can fire. It is

composed of the set of productions L (the long term memory) and control

system C. A pure production system is a sextuple:

(Σ, L,W, γi, γg, C) (11.40)

with

• Σ is a finite alphabet;

• W is the working memory. It represents a state γ ∈ Σ.

• L is the long term memory. It is the set of B productions. A produc-

tion p has the form (precondition, conclusion) ∈ Σ. The precondition

is matched against the contents of the working memory. If the precon-

dition is met then the conclusion is preformed and changes the contents

of the working memory;

• γi ∈ Σ is the initial state. The working memory is initialized with the

initial state γi;
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• γg ∈ Σ is the goal state;

• δ is the control function of the form Σ → L × Σ × h. It chooses a

production and fires it or halts h.

If C(γ) = (p, γ′, h), then the working memory contains symbol γ. It is

substituted by the the production p by γ′ or the computation halts h. The

computation halts if the goal state γg is reached or an an impasse is present

(no production can be applied).

11.6.4 Unitary control strategy

A pure production system can be converted into a quantum production

system by mapping the control strategy into a unitary control strategy

represented by a unitary operator L(t) on a register |v1〉 [Tarrataca and

Wichert (2012b)], [Tarrataca and Wichert (2013b)].

L(t) · |v1〉 = |v2〉.

L(t) is used during the iterative quantum tree search to the limit t. The

register |v1〉 is determined by,

• µ = t · dlog2 Bmaxe maximal branching factor represents the path de-

scriptor κt
i

• α = dlog2 |Σe, represents the number of bits required to encode the

symbol set

• β = dlog2 Be, represents the number of bits required to encode each

one of the productions;

• η is a single bit used to encode h

The size of |v1〉 is

ℵ := µ + α + β + η

qubits. 2ℵ combinations can be represented. A combination can be rep-

resented by a one at a certain position of the vector. The corresponding

unitary operator L(t) is represented by a matrix of the dimension 2ℵ × 2ℵ.

The matrix is sparse, it is populated primarily with zeros. It is possible to

determine if a permutation is tensor decomposable and to chose an efficient

tensor decomposition if present [Kolda and Bader (2009)]. Additionally we

need a unitary operator T that determines if the state is the goal state

γg. As indicated in the 3-puzzle example, the circuit should recompute the

output before applying the amplification step of the Grover’s algorithm.
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11.7 A General Model of a Quantum Computer

In classical models such as the Turing machine, the end of a calculation

is indicated by a halt state. An observer must check if the calculation

halted. In a quantum Turing machine, a halt flag can be non-trivially

implemented due to entanglement and the collapse of the halt qubit after

the measurement. A solution to this problem is a universal quantum Turing

machine in [Bernstein and Vazirani (1993)], which does not incorporate

into its definition the concept on non-termination. Myers in [Myers (1997)]

argues that the models presented in [Deutsch (1985)] and [Bernstein and

Vazirani (1993)] are not truly universal because they do not allow for non-

terminating computation.

A quantum production system represents a general model of computa-

tion. This type of system is an alternative approach to the quantum Turing

machine and allows an elegant description of the Halting problem through

the iterative quantum tree search. It is possible to simulate classical uni-

versal models of computation such as the universal Turing machine by a

quantum production system as shown in [Tarrataca and Wichert (2013b)].

This model can operate independently of whether the computation termi-

nates or not. The quantum production system also provides the maximal

speedup of
√
n in the case where the Turing machine simulation allows for

n multiple computational branches [Tarrataca and Wichert (2013b)].

A quantum computer based on a quantum production system would

involve classical artificial intelligence programing languages such as OPS5

[Brownston et al. (1985)]. OPS5 programs are executed by matching work-

ing memory elements with productions in long-term memory [Forgy (1981)].

Such a programmer does not need to contend with quantum gates, nor is

it required to address the principles of quantum computation. However, a

strong artificial intelligence background is essential.

11.7.1 Cognitive architecture

Unified theories of cognition is a theory that attempts to unify all of the

theories of the mind in a single framework. Allen Newell proposed the

SOAR cognitive architecture [Laird et al. (1987)], [Newell (1990)], [Franklin

(1997)]. SOAR is an architecture of the mind: a fixed structure underlying

the flexible domain of cognitive processing as well as an architecture for

intelligent agents. All of the problem solving activity is formulated as the
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selection and application of rules to a state to achieve a goal. In SOAR,

the domain knowledge is divided into two categories:

• basic problem space knowledge represents legal moves that are repre-

sented by productions;

• control knowledge, such as, for example, heuristic functions and other

control strategies.

With basic knowledge, SOAR can proceed to perform an unguided search

using depth first. Resolving an impasse leads to learning. Impasses are

given, for example, when

• two or more productions are chosen to fire;

• no production can fire;

• one chosen production is rejected by another.

The learning mechanism is called chunking. Chunking collapses the results

of an impasse into a production that can then be fired if the same, or similar

situation occurs again [Laird et al. (1986)]. Chunking is a psychological

phenomenon that involves the association of expressions and the production

of a new, single expression [Newell (1990)]. An extension of the proposed

SOAR cognitive architecture by a quantum production system would lead

to a hybrid architecture. The quantum production system would be invoked

if an impasse were present. Such a hybrid approach would speed up the

learning process without a need for domain-specific control knowledge (see

Figure 11.11).

11.7.2 Representation

The representation of the knowledge is the most important aspect. The uni-

tary operator L that represents the long-term memory with the productions

can be represented by a permutation matrix. It is possible to determine

whether an abstract permutation is tensor decomposable and to choose an

efficient tensor decomposition if present [Kolda and Bader (2009)].

The question of how to decompose L representing a real world problem

is related to the question of how to decompose a problem into sub-problems.

A problem solving strategy is given by breaking a problem up into a set

of subproblems, solving each of the subproblems, and then composing a

solution to the original problem from the solutions of the subproblems.

How can we decompose a 15-puzzle into an 8-puzzle for example? This
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Fig. 11.11 An extension of the proposed SOAR cognitive architecture by a quantum
production system would lead to a hybrid architecture. The quantum production system
would be invoked if an impasse is present. Such an hybrid approach would speed up the
learning process without the need of domain specific control knowledge.

problem corresponds to the definition of a tensor product and the efficient

implementation of a quantum production system to be the decomposition

of L,

L =

(
a11 · B a12 · B
a21 · B a22 · B

)

= A⊗B.
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Chapter 12

Quantum Cognition

The wave function in quantum mechanics represents a superposition of

states. Suppose that an unobservable evolves smoothly and continuously;

however, during the measurement, it collapses into a definite state. Ac-

cording to most physical textbooks, the existence of the wave function and

its collapse is only present in the microscopic world and is not present

in the macroscopic world. More physical experiments indicate that wave

functions are present in the macroscopic world [Vedral (2011)]. Physical

experiments state that the size does not matter and that a very large num-

ber of atoms can be entangled [Ghosh et al. (2003)], [Amico et al. (2008)].

Clues from psychology indicate that human cognition is based on quantum

probability rather than the traditional probability theory as explained by

Kolmogorov’s axioms [Busemeyer et al. (2006)], [Busemeyer and Trueblood

(2009)], [Busemeyer et al. (2009)], [Busemeyer and Bruza (2012)]. This

approach would lead to the conclusion that a wave function can be present

at the macro scale of our daily life.

12.1 Quantum Probability

The quantum coin is a system with two states 0 and 1 with the mapping

|0〉 → 1√
2
· |0〉 +

1√
2
· |1〉 (12.1)

and

|1〉 → 1√
2
· |0〉 − 1√

2
· |1〉 (12.2)

represented by W1. If the system starts in state |0〉 and undergoes the

time evolution of two steps the probability of observing 0 becomes 1 due

223
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to the fact, of destructive interference. A Markov chain can model a fair

coin. In this case the information about the initial state is lost and a fixed

distribution is reached. If constantly observed the quantum coin has the

same behavior as a fair coin described a Markov chain. Each time the coin

is tossed the “random” effect is observed. During the evolution of a not

observed quantum coin the information about the initial state is not lost,

the system is fully deterministic. For a quantum coin the random effect

corresponding to the loss of information occurs only during the measure-

ment. When observed the quantum probabilities correspond to the classical

probability theory. If not observed, a complex vector of a length one de-

scribes the state of a system. For two state the system is described buy two

complex amplitudes ω1, ω2 and the probability that the system is in one of

the two states is s |ω1|2 and |ω2|2 with |ω1|2 + |ω2|2 = 1. The product of

complex number with is conjugate is always a real number

ω∗ · ω = (x− y · i) · (x + y · i) = x2 + y2 = |ω|2 = λ.

The quantum probabilities are also called von Neumann probabilities in

relation to the von Neumann entropy of a density matrix P

P = λ1 · |x1〉〈x1| + λ2 · |x2〉〈x2| + · · · + λn · |xn〉〈xn|
with the entropy of P

E(P ) = −
n∑

i=1

(λi · logλi)

and with probabilities λi of the presence of a state. They all sum

1 =

n∑

i=1

λi

to one. Two equivalent states represent the same state when a measure-

ment is preformed, but they can have behave differently during the unitary

evolution. Two states |a〉 and |b〉 are equivalent if

|a〉 = ei·θ · |b〉 (12.3)

with

ei·θ = cos θ + i · sin θ. (12.4)

For example |a〉 and i · |a〉 are two equivalent states for θ = π/2. For θ = π

two equivalent states are |a〉 and −|a〉. The value of θ correspond to an

angle. It can take infinite many values corresponding a circle in the complex
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Fig. 12.1 The value of θ correspond to an angle, can take infinite many values describing
a circle in the complex number plane of the radius one described by the equation ei·θ =
cos θ + i · sin θ.

number plane. The radius is described by the equation ei·θ = cos θ+ i · sin θ

(see Figure 12.1).

The circle can be extended to a sphere by adding additional third di-

mension that represents the state of one qubit. This sphere is called the

Bloch sphere, it represents the state as well as the amplitude of one qubit.

In the Bloch states |0〉 and |1〉 are represented by one dimension (see Figure

12.2).

Each proposition a is specified by a belief λ = P (a) with 0 ≤ λ ≤ 1

and by the phase θ ∈ [0, 2 · π). The state is either observable λ = P (a) or

unobservable. An unobservable state is in a superposition that is described

by the amplitude. The amplitude is the root of the belief multiplied with

the corresponding phase √
λ · ei·θ. (12.5)

As stated before the numerical degree of belief can result from either

from a frequentist approach or be determined from the nature of the uni-

verse, like for example the probability of throwing a six in a fair dice.

Alternatively it can be seen as a subjective viewpoint. On the other hand

it is difficult to attribute any meaning to the phase specified by the angle

θ when a proposition with a known belief value a is not observable. The

unobservable propositions behave differently, the law of total probability is

not valid any more. For mutually exclusive events b1, ..., bn with
n∑

i=1

P (bi) = 1
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Fig. 12.2 Bloch sphere represents the state as well as the amplitude of one qubit.
There are three axis, two represent its phase and one the two states |0〉 and |1〉. The
representation is not faithful to reality: the states |0〉 and |1〉 are not orthogonal in the
Bloch sphere representation.

the law of total probability when events b1, ..., bn are not observable is not

valid,

P (a) 6=
∣
∣
∣
∣
∣

n∑

i=1

ei·θa|bi ·
√

P (a|bi) · ei·θbi ·
√

P (bi)

∣
∣
∣
∣
∣

2

,

P (a) 6=
∣
∣
∣
∣
∣

n∑

i=1

ei·(θa|bi
+θbi ) ·

√

P (a|bi) ·
√

P (bi)

∣
∣
∣
∣
∣

2

. (12.6)

Humans when making decisions violates the law of total probability, yet

it can be explained as a quantum interference effect in a manner similar to

the explanation for the results from two-hole experiments in physics.

12.2 Decision Making

Humans when making decisions violate the law of total probability. The

violation can be explained as a quantum interference resulting from the

phase represented by the angle θ. In an experiment, the violation of the

law of total probability was demonstrated by a categorization and decision

experiment [Busemeyer et al. (2009)]. 26 participants preformed 51 trials

per condition. All together there were 26 · 51 = 1326 observation per

condition. During the experiment the participants were shown pictures
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of faces. They should categorize the person represented on the pictures as

good or bad and in the next step decide to act friendly or aggressive. There

were two experimental conditions:

• Make a decision without reporting any categorization.

• Make a decision after categorizing a face.

In the second condition the conditional probabilities of categorization im-

ages of face were determined

P (good|face) = 0.17 P (bad|face) = 0.83

mostly the faces were categorized as being bad. Then the conditional prob-

abilities of acting friendly or aggressive were determined,

P (aggressive|good) = 0.42 P (friendly|good) = 0.58

and

P (aggressive|bad) = 0.63 P (friendly|bad) = 0.37.

We can represent the experiment by a simple graph with two nodes with

the following simplification

P (good) = P (good|face) = 0.17

P (¬good) = P (bad|face) = 0.83

and

P (¬friendly|good) = 0.42 P (friendly|good) = 0.58

P (¬friendly|¬good) = 0.63 P (friendly|¬good) = 0.37,

see Figure 12.3.

For mutually exclusive events

P (good) + P (¬good) = 1

the law of total probability is

P (Friendly) =
∑

good

P (Friendly|good) · P (good) (12.7)

P (Friendly|Good) = P (good) · P (Friendly|good)+

+P (¬good) · P (Friendly|¬good) (12.8)

P (friendly) = 0.58 · 0.17 + 0.37 · 0.83 = 0.4057, (12.9)
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Fig. 12.3 A graph with two nodes and the corresponding conditional probability tables.
Each row requires one number p for P (X) = true (P (X) = false is 1 − p).

P (¬friendly) = 0.42 · 0.17 + 0.63 · 0.83 = 0.5943. (12.10)

In the first condition of the experiment a decision without reporting any

categorization was determined. The value was

P (¬friendly) = P (aggressive|face) = 0.69.

The value is incompatible with the classical probability theory, it does not

correspond to the correct value as indicated by the law of total probability

0.69 >
∑

good

P (¬friendly|good) · P (good) = 0.5943.

Why do human violate the law of total probability during decision making?

A possible explanation is given by the quantum probabilities. In quantum

probabilities the law of total probability is not valid

P (¬friendly) 6=
∣
∣
∣
∣
∣

2∑

i=1

ei·θfrendly|good ·
√

P (¬firendly|good) · ei·θgood ·
√

P (good)

∣
∣
∣
∣
∣

2

. (12.11)

We will indicate the solution for the Equation 12.11. We simplify the

Equation 12.11 to the equivalent equation
∣
∣
∣
∣
∣

2∑

i=1

ei·θαi · √αi · ei·θβi ·
√

βi

∣
∣
∣
∣
∣

2

= (12.12)

∣
∣
∣ei·θα1 · √α1 · ei·θβ1 ·

√

β1 + ei·θα2 · √α2 · ei·θβ2 ·
√

β2

∣
∣
∣

2

=
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with the complex conjugate representation
(

ei·θα1 · √α1 · ei·θβ1 ·
√

β1 + ei·θα2 · √α2 · ei·θβ2 ·
√

β2

)

·

(

ei·θα1 · √α1 · ei·θβ1 ·
√

β1 + ei·θα2 · √α2 · ei·θβ2 ·
√

β2

)∗
= (12.13)

(

ei·θα1 · √α1 · ei·θβ1 ·
√

β1 + ei·θα2 · √α2 · ei·θβ2 ·
√

β2

)

·

(

e−i·θα1 · √α1 · e−i·θβ1 ·
√

β1 + e−i·θα2 · √α2 · e−i·θβ2 ·
√

β2

)

= (12.14)

α1 · β1 + α2 · β2 +
√
α1 ·

√
α2 ·

√

β1 ·
√

β2·

(ei·(θα1−θα2+θβ1
−θβ2

) + e−i·(θα1−θα2+θβ1
−θβ2

)) =

α1 ·β1 +α2 ·β2+
√
α1 ·

√
α2 ·
√

β1 ·
√

β2 ·2 ·cos(θα1 −θα2 +θβ1 −θβ2) (12.15)

with

θ := θα1 − θα2 + θβ1 − θβ2

we can simplify to

α1 · β1 + α2 · β2 + 2 · √α1 ·
√
α2 ·

√

β1 ·
√

β2 · cos(θ). (12.16)

It should be noted that

−1 ≤ cos(θ) ≤ 1 (12.17)

and

α1 · β1 + α2 · β
2

≥ √
α1 ·

√
α2 ·

√

β1 ·
√

β2. (12.18)

If

0 ≤ α1 · β1 + α2 · β ≤ 1 (12.19)

then

0 ≤ α1 · β1 + α2 · β2 + 2 · √α1 ·
√
α2 ·

√

β1 ·
√

β2 · cos(θ) ≤ 2. (12.20)

in the case the value of a query variable has to be determined and some

variables are unknown, the probabilities are determined by normalization

as described in the section about Bayesian networks.
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The solution for the Equation 12.11 is

∣
∣
∣
∣
∣

2∑

i=1

ei·θfrendly|good ·
√

P (¬firendly|good) · ei·θgood ·
√

P (good)

∣
∣
∣
∣
∣

2

=

P (¬firendly|good) · P (good) + P (¬firendly|¬good) · P (¬good)+

2 ·
√

P (¬firendly|good) ·
√

P (¬firendly|¬good)

·
√

P (good) ·
√

P (¬good) · cos(θ). (12.21)

The Equation 12.2 is the quantum interpretation of probability. Quantum

probabilities obey the law of total probability only in the case

cos(θ) = 0, θ =
π

2

in which the interference part is canceled out. In our example with

θ = θ¬friendly|good − θ¬friendly|¬good + θgood − θ¬good

the quantum probabilities obey the law of total probability in the case

π

2
= θ¬friendly|good − θ¬friendly|¬good + θgood − θ¬good.

The quantum interpretation of probability can explain the incompatibil-

ity with the classical probability theory by the Equation 12.2. The value

P (¬friendly) for a decision without reporting any categorization was 0.69.

By Equation 12.2 we can determine the corresponding θ. We add the clas-

sical probability 0.5943 the interference term

0.69 = 0.42·0.17+0.63·0.83+2·
√

0.42·
√

0.63·
√

0.17·
√

0.83·cos(θ) (12.22)

and the value of cos(θ) is

0.247642 =
0.69.− 0.5943

0.386446
= cos(θ)

with

θ = 1.32055 ≈ 0.42 · π =
21

50
· π.
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Fig. 12.4 The relation between cos(θ) and θ for −2 · π ≥ θ ≥ 2 · π.

12.2.1 Interference

During hidden inference the interference plays an important part in the

quantum interpretation of probability. The interference is determined by

the value of cos(θ).

• For cos(θ) = 0 no interference is present.

• For 1 ≥ cos(θ) > 0 positive interference is present.

• For −1 ≤ cos(θ) < 0 negative interference is present.

The relation between cos(θ) and θ is shown in Figure 12.4 for −2 · π ≥ θ ≥
2 · π. In general

θ := θα1 − θα2 + θβ1 − θβ2

and in our example

θ = θ¬friendly|good − θ¬friendly|¬good + θgood − θ¬good.

The interference depends on the phase of each possible state and the cor-

responding global θ.

• No interference is present in the case

θ = −3 · π
2

, θ = −π

2
, θ =

π

2
, θ =

3 · π
2

.

• Positive interference is present for

θ ≤ −3 · π
2

, − π

2
≤ θ ≤ π

2
,

3 · π
2

≤ θ.

Maximal positive interference is present if the phase of each possible

state is equal

θα1 = θα2 = θβ1 = θβ2 .
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• Negative interference is present for

−3 · π
2

≤ θ ≤ −π

2
,

π

2
≤ θ ≤ 3 · π

2
.

When performing hidden inference an additional free variable for each state

is present according to the quantum interpretation of probability. The free

variable corresponds to the phase specified by the angle θ. The probabil-

ities are determined by normalization as introduced in the section about

Bayesian networks. We presented an experiment in which positive interfer-

ence is present. In the next section we present the unpacking effect and the

resulting negative interference.

12.3 Unpacking Effects

An event can be described in more or less detail. The unpacking effect is

present when the whole is less than the sum of its parts [Boven and Epley

(2003)]. With more details the unpacking effects appear. In the experiment

by two conditions were present [Busemeyer et al. (2011)], [Busemeyer and

Bruza (2012)].

• What is the probability that some one died from natural causes? This

is the packed condition.

• What is the probability that some one died from cancer? After this

what is the probability that some one died from natural causes other

than cancer?

see Figure 12.5 for the graph representation. According to classical

probability theory

Fig. 12.5 A graph with two nodes.
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P (Naturally) =
∑

cancer

P (Naturally|cancer) · P (cancer). (12.23)

It follows that

P (naturally) = P (naturally|cancer) · P (cancer)+

+P (naturally|¬cancer) · P (¬cancer). (12.24)

However for packed condition

P (naturally) < P (naturally|cancer) · P (cancer)+

+P (naturally|¬cancer) · P (¬cancer). (12.25)

According to the quantum interpretation of probability
∣
∣
∣
∣
∣

2∑

i=1

ei·θnaturally|cancer ·
√

P (¬naturally|cancer) · ei·θcancer ·
√

P (cancer)

∣
∣
∣
∣
∣

2

= P (¬naturally|cancer) · P (cancer) + P (¬naturally|¬cancer)·

·P (¬cancer) + 2 ·
√

P (¬naturally|cancer ·
√

P (¬naturally|¬cancer)

·
√

P (cancer) ·
√

P (¬cancer) · cos(θ). (12.26)

with

cos(θ) < 0.

12.4 Conclusion

Quantum cognition uses mathematical quantum theory to model cognitive

phenomena. It is assumed that the computation itself is performed on a

classical computer and not on a quantum computer. The brain is considered

a classical computer in a quantum world. Because the wave function can

be present at the macro scale of our daily life, predictions such as, hidden

inferences, are based on von Neumann probabilities. Besides probability

judgment, other effects, such as emotional judgments or order effects, can

be modeled by quantum probabilities and unitary evolution. It is assumed

that evolution adapted to the quantum world on the macro scale. Accord-

ing to the quantum cognition assumption, humans violate the law of total

probabilities because, under certain conditions, this law is not valid in the

real world.
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Chapter 13

Related Approaches

13.1 Quantum Walk

Related to Grover’s algorithm and the quantum tree search algorithm is

the quantum random walk on a graph ([Ambainis (2003)], [Kempe (2003)]

and [Ambainis (2004)]). Indeed, Grover’s algorithm can also be viewed as

a quantum walk algorithm. A quantum random walk is an analog to the

random walk. There are two types of random walk, namely, discrete- and

continuous-time. We describe the discrete-time random walk on a lattice

and the quantum random walk on a graph G = (V,E).

13.1.1 Random walk

Randomness could be nature’s way to avoid complexity when accomplish-

ing certain tasks. A fly could choose the direction of its flight randomly.

The insect flies for a time in a randomly chosen direction. Then, it ran-

domly chooses another direction, and then, another random direction is

chosen, and so forth. This process is an example of a random walk in three

dimensions. We simplify the model by describing it as a discrete random

walk on a three-dimensional lattice [Gaylord and Wellin (1995)]. At each

point, the fly can choose to fly in six directions: up, down, north, south,

west or east. Each random choice is made after a constant amount of time;

the constant flight path intervals are of equal length. In Figure 13.1, we see

a simulation of a lattice random walk in dimension three for 1000 steps. A

two-dimensional lattice walk is represented in Figure 13.2.

13.1.2 Quantum insect

In classical physics, randomness is not present. Suppose that a fly gen-

erates randomness by some quantum computing device that simulates the

235
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Fig. 13.1 Simulation of a lattice random walk in dimension three for 1000 steps.

Fig. 13.2 Simulation of a lattice random walk in dimension two for 100 steps.

behavior of a quantum coin. In this case, a true random walk is present.

Suppose that the fly is in a closed room and we do not know its position.

The fly is evolving into a superposition of several states that can be char-

acterized by its position. Each of the possible positions is associated with

a specific probability. The “quantum fly” is in a mixed state. As long
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as we make no measurements, there are no random effects. The behavior

of the system is strictly deterministic. The probability distribution repre-

sents the possible positions after several steps, and several measurements

of the quantum fly and the classical fly will differ. This difference arises

because the randomness in the quantum walk is present only during the

measurement.

13.1.3 Quantum walk on a graph

The discrete-time quantum random walk on a graph G = (V,E) can be

described by a unitary operator U on Hilbert space

H = HS ⊗HC .

HS represents the vertex of the graph and HC describes the destination

choice. The destination choice HC is also called “coin space” [Shenvi et al.

(2003)] because the choice in one dimension can be described by a quantum

coin. U is composed of the operators S and C [Aharonov et al. (2001)],

U = S · C.

A step of the quantum walk is represented by two operations [Childs (2011)]:

• Build a superposition over the neighbor states by operator C;

• Move the state to the new target destination by operator S.

A register represents a state

|jk〉 = |j〉|k〉 ⇐⇒ (j, k) ∈ E.

The neighbors of j are represented in the register |k〉 by the by operator C

[Watrous (1998)], [Tarrataca and Wichert (2013a)],

C · |j〉|k〉 = |j〉 1
√

deg(j)

∑

w:(j,w)∈E

|k ⊕ w〉 (13.1)

with deg(j) represents the degree of vertex j and
∑

m:(j,m)∈E
1

deg(j) = 1.

After applying the C operator the state of the system is moved from state

|j〉 to state |k〉 for example by a simple permutation

S · |j〉|k〉 = |k〉|j〉 (13.2)

with the effect that the quantum random walk takes places on the edges of

the graph.
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13.1.4 Quantum walk on one dimensional lattice

The most simple graph is one dimensional lattice. The quantum walk is

called the discrete walk on a line. A state is represented by a register

|n〉|0〉, |n〉|1〉

with n ∈ Z being an integer representing the position on the line and |0〉
and |1〉 being the state of the system. A step of the quantum walk is

represented by two operations C and S [Ambainis (2003)]. The Hadamard

coin is represented by the following unitary matrix

C := W1 =

(
1√
2

1√
2

1√
2
− 1√

2

)

=
1√
2
·
(

1 1

1 −1

)

. (13.3)

The unitary S operator is defined as

S · |n〉|0〉 = |n− 1〉|0〉, S · |n〉|1〉 = |n + 1〉|1〉. (13.4)

Suppose we start in location |0〉 and the state |0〉.

S · C · |0〉|0〉 = U · |0〉|0〉 =
| − 1〉|0〉 + |1〉|1〉√

2
(13.5)

after one step the result is similar to classical random walk. After two steps

U · U · |0〉|0〉 =
| − 2〉|0〉 + |0〉1〉 + |0〉|0〉 − |2〉|1〉

2
(13.6)

the probability of n = 1 is zero contrary to classical random walk. After

three steps

U ·U ·U ·|0〉|0〉 =
| − 3〉|0〉 + | − 1〉|1〉 + 2 · | − 1〉|0〉 − |1〉|0〉 + |3〉|1〉

2 ·
√

2
(13.7)

the distribution is biased towards left because of the non-symmetric coin

operator W1. A symmetric unitary coin operator [Ambainis (2003)] would

be represented by

C :=
1√
2
·
(

1 i

i 1

)

. (13.8)

In Figure 13.3 we see the comparison between the distribution of the classi-

cal random walk on a one dimensional lattice line and the quantum random

walk with a symmetric coin operator. The quantum random walk propa-

gates quadratically faster to the edges of the graph.
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Fig. 13.3 Comparison between the distribution of the classical random walk on a one
dimensional lattice and the quantum random walk with a symmetric coin operator after
50 steps [Hogg (2008)]. The walk starts at the origin. The classical walk has a peak near
the origin, it corresponds to Gaussian distribution. The probability distribution for the
quantum walk is approximately uniform near the origin and maximal near the edges of
the graph.

13.1.5 Quantum walk and search

In quantum random walk the goal states are marked through an oracle

operator as in the Grover’s algorithm [Shenvi et al. (2003)]. To obtain for

goal states with n = |V | the complexity is O(
√
n)

With the projection matrix Pm is

Pm = |x〉〈x| =








1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n








(13.9)

we get Grover’s amplification also called Grover’s diffusion operator.

Gm = 2 · Pm − Im. (13.10)

One can redefine the coin operator in order to perform Grover’s diffusion

operator [Moore and Russell (2001)]. The reformulated coin operator C is

with m := deg(j)

C · |j〉|k〉 = |j〉 ·




2√
m

·
∑

w:(j,w)∈E

|k ⊕ w〉〈k| − Im



 . (13.11)

13.1.6 Quantum walk for formula evaluation

Quantum random walk can determine the properties of a graph by generat-

ing different distributions. Quantum walk algorithms for Boolean formula

evaluation can evaluate a Boolean formula quadratically faster than any
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known classical algorithm. For a Boolean formula f(x) to the input string

x1,¬x1, · · · , xm,¬xm. Boolean formula is f(x) = 1 otherwise f(x) = 0

[Farhi and Gutmann (1998)], [Childs et al. (2007)], [Ambainis (2007)], [Am-

bainis et al. (2007)]. However one should not neglect the cost of building

the coin operators that represent the instanced formula. For example to

speed up alpha-beta search by evaluating AND-OR formulas as used in

games [Farhi et al. (2008)], [Cleve et al. (2008)], the instantiationed graph

has to be determined dynamically during the performed search.

“We conclude by mentioning some open problems. Our algorithm needs

to know the full structure of the formula beforehand to determine the coin’s

bias at each internal vertex...”, cited from [Ambainis et al. (2007)].

13.2 Adiabatic Computation

Adiabatic quantum computation is an alternative approach to quantum

computation. It is based on time evolution of a quantum system. The en-

ergy of a system can be described by a function [Farhi et al. (2000)], [Farhi

et al. (2009)].

The lowest energy that the system can assume is called the ground state and

corresponds to the global minima of the function. If the energy is dependent

on two variables it can be represented by a two dimensional function (see

Figure 13.4). A ball that is left on the slope will descend until it reaches

the lowest point in the valley and will stay there. The corresponding point

is stationary. If the function describing the energy of the system is changed

very slowly the ball will be resting in a location which is the minimum point

of the new equation. If one starts with a solution to the first simple func-

tion one will end up the process with a solution to a complicated function.

The Hamiltonian H , which is the operator that is responsible for the time

evolution of the state vector x(t). In quantum physics H is represented by

the Schrödinger equation. The equation describes a linear superposition of

different states at time t represented by the vector x(t)

i · h · d

dt
x(t) = H · x(t) (13.12)

with i =
√
−1 and h being the Planck’s constant. The Hamiltonian opera-

tor H is related to the total energy of the system. The initial Hamiltonian

Hinit is in the ground state that corresponds to the solution of the initial

simple problem. Then the initial Hamiltonian is changed very slowly until
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Fig. 13.4 The energy of a system can be described by a function. The lowest energy that
the system can assume is called the ground state and corresponds to the global minima
of the function. If the energy is dependent on two variables it can be represented by a
two dimensional function.

it becomes the final Hamiltonian Hfinal.

Hiniu
slowly−→ Hfinal. (13.13)

As the Hamiltonian is slowly changed multiple qubits are close to a point

representing to the ground state. Adding a slight amount of energy by

slowly changing the Hamiltonian keeps the system in the ground state. If we

change the Hamiltonian to fast the system could go out of the ground state.

It is not clear if the adiabatic computation is more or less efficient than a

computation on a classical computer. For some problems, its efficiency

could be better than the efficiency of classical computers.

13.2.1 Quantum annealing

Quantum annealing is a method for finding the global minimum of a func-

tion [Brooke et al. (1999)], [Johnson et al. (2011)]. A minimum of a function

can be determined by gradient descent. Gradient descent starts at a ran-

dom point of the function and moves down in the direction of steepest

descent. It continues until it cannot proceed downward anymore. Often,

a local (not necessarily global) minimum is found. Gradient descent is

the basis of many learning and optimization algorithms, such as the back-

propagation algorithm [Hertz et al. (1991)]. Quantum annealing attempts

to avoid local minima by means of a quantum fluctuation parameter that
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replaces a state by a randomly selected neighboring state. In simulated an-

nealing [Hertz et al. (1991)], the temperature plays a role that is related to

quantum fluctuation. In simulated annealing, the neighborhood stays the

same throughout the search. The temperature determines the probability

of moving out of a local minimum. At the beginning, the temperature is

high, and the probability of moving out of a minimum is high. Then, it is

slowly reduced until the probability of moving out of a minimum is zero.

In quantum annealing, the quantum fluctuation parameter replaces a

local minimum state with a randomly selected neighboring state in some

fixed radius. The neighborhood extends over the whole search space at the

beginning, and then, it is slowly reduced until the neighborhood shrinks to

those few states that differ minimally from the current states. In a quantum

system, the quantum fluctuation can be performed directly by an adiabatic

process rather than needing to be simulated. These processes are based on

quantum tunneling. The Heisenberg’s uncertainty principle is given by

∆(G)∆(K) ≥ |〈x|[G,K] · x〉|
2

. (13.14)

The principle is applied to the momentum and location of moving particles

and is represented by

∆(x)∆(p) ≥ h

2
(13.15)

where x is the position and p the momentum of a particle and h the Planck

constant. It represents the relation between

∆(x)∆(p) ≈ h (13.16)

the position uncertainty times the momentum uncertainty. This relation is

also valid for energy E and time t

∆(E)∆(t) ≈ h. (13.17)

This arrangement contradicts the first law of thermodynamics, which is the

conservation of energy, where the sum of the amount of energy of a system

remains constant. In quantum physics, there is uncertainty between the

energy E and the time t.

∆(E) ≈ h

∆(t)
. (13.18)

This uncertainty means that some energy can be borrowed, to overcome

some mountain and go out of a minimum as long as we repay it in the time

interval [Hey and Walters (2003)]

∆(t) ≈ h

∆(E)
. (13.19)
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Quantum tunneling is based on the Heisenberg uncertainty principle, as

shown, and the wave-particle duality of matter represented by the wave

propagation.

Quantum annealing can speed up some machine learning tasks that are

based on a gradient descent method, such as the back-propagation algo-

rithm that is used in artificial neural networks. It is an alternative to the

simulated annealing that is used in the learning and optimization tasks.

Adiabatic quantum computers based on quantum annealing do not corre-

spond to a universal Turing machine. Rather, they are related to analog

computers.

13.3 Quantum Neural Computation

Neuroimaging indicates how information processing is implemented in the

brain and when specific structures and processes are invoked. For example,

fMRI measures local properties of the cerebral blood flow and is based on

blood oxygen level dependence. Changes of activity associated with various

stimulus conditions are correlated with brain activity. However: “It is un-

clear that we will come to a better understanding of mental processes simply

by observing which neural loci are active while subjects perform a task ”,

[Kosslyn (1999)]. In this section, we will describe the relationship between

three quantum computation principles that speed up the computation and

the human brain.

Human vision is based on information integration and is non-reversible.

Hubel and Wiesel’s discoveries provided a large amount of influence on the

ways that neuroscientists think about the brain [Hubel (1988)]. They have

inspired several models for pattern recognition. In these models, the neu-

ral units have a local view, unlike the common fully-connected networks

[Fukushima (1980)], [Wichert (1993)], [Riesenhuber and Poggio (1999)],

[Fukushima (1989)], [Cardoso and Wichert (2010)]. They gradually reduce

the information from the input layer through the output layer. This task

is accomplished by integrating local features into more global features in

sequential transformations. Its purpose is to classify topological data by

gradually reducing the information from the input layer through the output

layer. Each of these transformations is composed of two different steps. The

first step reduces the information by representing it with previously learned

templates. The second step blurs the information to allow positional shifts,
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Fig. 13.5 Changes of activity associated with various stimulus conditions are corre-
lated with the brain activity. A cluster indicates a brain activity during an experiment
[Wichert et al. (2002)].

giving the model some invariance under shifts and distortions. A quantum

neural model should perform a reversible computation. Neurons do not

perform a reversible computation, neither do neural networks. Associative

memory, as introduced in this book, is non-reversible.

A quantum associative memory should be represented by an operator W

and the Grover’s algorithm to recall the patterns. For a question pattern,

a superposition of all possible stored answer patterns would be generated

by the operator W , which acts as an oracle [Tay et al. (2010)]. The op-

erator W indicates the solution. In the next step, the Grover’s algorithm

performs the phase amplification. Quantum computation is based on two

principles that are the basis of quantum algorithms. The resulting quantum

algorithms are capable of performing a quadratic computation faster than

a classical algorithm. The corresponding principles can be integrated into

the unified theories of human cognition, such as SOAR.

A non-computable process involves the possibility of generating true ran-

domness [Penrose (1991)]. Classical physics leads to the paradox of free

will in a deterministic world. The question concerning randomness is highly

metaphysical. In classical physics, randomness does not exist; in quantum

physics, it cannot be explained. Besides randomness, quantum computation

cannot offer any non-computable schema such as that claimed by the quan-

tum mind or the quantum consciousness hypothesis [Nunn et al. (1994)].
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On the other hand, quantum cognition assumes that the brain is a classical

computer in a quantum world. Because a wave function can be present at

the macro scale, predictions such as the hidden inference are based on von

Neumann probabilities and not on classical probability theory.

13.4 Epilogue

Quantum computation is based on two principles to speed up the compu-

tation:

• The QFT can determine the period of a wave.

• Grover’s algorithm can speed up the search quadratically for a given

number of possible solutions.

These two principles can be combined together in a quantum counting al-

gorithm to estimate the number of possible solutions. It appears that in

some domains of artificial intelligence, such as neural associative memories,

diagnostic reasoning or sub-symbolic problem solving quantum algorithms

other than quantum annealing are less useful. However, a symbolical ar-

tificial intelligence framework allows an elegant description of a possible

universal quantum computer model that is capable of faster execution of

programs.

The geometrical structure of the world can be used to speed up problem

solving. This structure is present in simple Euclidian geometry as expe-

rienced by humans. It is also present in the geometrical structure of the

world, as described by the quantum physics results with Grover’s algorithm,

which is based on the Householder reflection.
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