

RECENT ADVANCES
IN ARTIFICIAL

NEURAL
NETWORKS
Design and
Applications

Edited by

Lakhmi Jain, Ph.D.
University of South Australia

Anna Maria Fanelli, Ph.D.
University of Bari, Italy

Boca Raton London New York Washington, D.C.
CRC Press

International Series on
Computational Intelligence

L.C. Jain, R.P. Johnson, Y. Takefuji, and L.A. Zadeh
Knowledge-Based Intelligent Techniques in Industry

L.C. Jain and C.W. de Silva
Intelligent Adaptive Control: Industrial Applications in the
Applied Computational Intelligence Set

L.C. Jain and N.M. Martin
Fusion of Neural Networks, Fuzzy Systems, and Genetic Algorithms:
Industrial Applications

H.-N. Teodorescu, A. Kandel, and L.C. Jain
Fuzzy and Neuro-Fuzzy Systems in Medicine

C.L. Karr and L.M. Freeman
Industrial Applications of Genetic Algorithms

L.C. Jain and B. Lazzerini
Knowledge-Based Intelligent Techniques in Character Recognition

L.C. Jain and V. Vemuri
Industrial Applications of Neural Networks

H.-N. Teodorescu, A. Kandel, and L.C. Jain
Soft Computing in Human-Related Sciences

B. Lazzerini, D. Dumitrescu, L.C. Jain, and A. Dumitrescu
Evolutionary Computing and Applications

B. Lazzerini, D. Dumitrescu, and L.C. Jain
Fuzzy Sets and Their Application to Clustering and Training

L.C. Jain, U. Halici, I. Hayashi, S.B. Lee, and S. Tsutsui
Intelligent Biometric Techniques in Fingerprint and Face Recognition

Z. Chen
Computational Intelligence for Decision Support

L.C. Jain
Evolution of Engineering and Information Systems and Their Applications

The CRC Press

Series Editor
L.C. Jain, Ph.D., M.E., B.E. (Hons), Fellow I.E. (Australia)

H.-N. Teodorescu and A. Kandel
Dynamic Fuzzy Systems and Chaos Applications

L. Medsker and L.C. Jain
Recurrent Neural Networks: Design and Applications

L.C. Jain and A.M. Fanelli
Recent Advances in Artifical Neural Networks: Design and Applications

M. Russo and L.C. Jain
Fuzzy Learning and Applications

J. Liu
Multiagent Robotic Systems

M. Kennedy, R. Rovatti, and G. Setti
Chaotic Electronics in Telecommunications

H.-N. Teodorescu and L.C. Jain
Intelligent Systems and Techniques in Rehabilitation Engineering

I. Baturone, A. Barriga, C. Jimenez-Fernandez, D. Lopez, and S. Sanchez-Solano
Microelectronics Design of Fuzzy Logic-Based Systems

T. Nishida
Dynamic Knowledge Interaction

C.L. Karr
Practical Applications of Computational Intelligence for Adaptive Control

© 2000 by CRC Press LLC

PREFACE

Neural networks are a new generation of information processing
paradigms designed to mimic some of the behaviors of the human
brain. These networks have gained tremendous popularity due to their
ability to learn, recall and generalize from training data. A number of
neural network paradigms have been reported in the last four decades,
and in the last decade the neural networks have been refined and widely
used by researchers and application engineers.

The main purpose of this book is to report recent advances in neural
network paradigms and their applications. It is impossible to include all
recent advances in this book; hence, only a sample has been included.

This book consists of 10 chapters. Chapter 1, by Ghosh and Taha,
presents the architecture of a neuro-symbolic hybrid system. This
system embeds initial domain knowledge and/or statistical information
into a custom neural network, refines this network using training data,
and finally extracts refined knowledge in the form of refined rule base.
Two successful applications of this hybrid system are described.

Chapter 2, by Karayiannis and Behnke, presents an axiomatic approach
for formulating radial basis function neural networks. The batch and
sequential learning algorithms are developed for reformulated radial
basis function neural networks. This approach is demonstrated on
handwritten digit recognition.

Chapter 3, by Vassilas, is on efficient neural network-based
methodology for the design of multiple classifiers. An increase in speed
in the neural network training phase as well as in the selection of fuzzy
and statistical supervised classifiers is achieved by size reduction and
redundancy removal from the data set. The catalog of self-organizing
feature maps together with the index table is used as a compressed
representation of the original data. This technique is demonstrated on
land-cover classification of multi-spectral satellite image showing
increased speed.

© 2000 by CRC Press LLC

Versino and Gambardella describe the design of a self-organizing map-
like neural network which learns to associate actions with perceptions
under the supervision of a planning system in Chapter 4. This novel
technique is validated in learning fine motion in robotics.

Chapter 5, by Fernández-Delgado, Presedo, Lama, and Barro, is on a
new neural network called MART for adaptive pattern recognition of
multichannel input signals. A real application related to the
multichannel signal processing is presented to demonstrate the ability
of this network to solve complex problems.

Caudell and Healy present their research on a new version of the lateral
priming adaptive resonance theory network in Chapter 6. They
demonstrate that this architecture not only has one of the highest
bounds on learning convergence, but also has strong empirical evidence
of excellent generalization performance.

Chapter 7, by Aboulenien and De Wilde, discusses an intelligent agent
that employs a machine learning technique in order to provide
assistance to users dealing with a particular computer application. The
authors present actual results from a prototype agent built using this
technique applied on flight reservation domain.

Chapter 8, by Halici, Leblebicioglu, Özgen, and Tuncay, presents some
applications of neural networks in process control. The authors show
that hybrid methods using neural networks are very promising for the
control of nonlinear systems.

Chapter 9, by Howlett, de Zoysa, and Walters, is on monitoring internal
combustion engines by neural network based virtual sensing. It is
necessary to reduce the quantities of polluting gases emitted by this
engine and to decrease the amount of fuel consumed per kilometer. The
use of neural networks for monitoring the parameters of this engines is
proposed.

Pedrycz presents a novel approach to pattern classification using a
concept of fuzzy Petri nets in Chapter 10. The learning scheme is
illustrated with the aid of numeric examples.

© 2000 by CRC Press LLC

This book will be useful for application engineers, scientists, and
research students who wish to use neural networks for solving real-
world problems.

We would like to express our sincere thanks to Berend-Jan van der
Zwaag, Irene van der Zwaag-Tong, Ashlesha Jain, Ajita Jain and
Sandhya Jain for their help in the preparation of the manuscript. We are
grateful to the authors for their contributions, and thanks are due to
Dawn Mesa, Lyn Meany, and Suzanne Lassandro for their editorial
assistance.

Lakhmi Jain, Australia
Anna Maria Fanelli, Italy

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CONTENTS

Chapter 1.
A neuro-symbolic hybr id int elligent architecture with
applications
J. Ghosh and I. Taha

1. Introduction
2. Knowledge based module for representation of initial domain

knowledge
3. Extraction of supplementary rules via the statistical analysis

module
3.1 Extraction of correlation rules
3.2 Reducing the input dimensionality

4. The mapping module
5. The discretization module
6. Refining input characterization
7. Rule extraction

7.1 First technique (BIO-RE)
7.2 Second technique (Partial-RE)
7.3 Third technique (Full-RE)

8. Rule evaluation and ordering procedure for the refined expert
system
8.1 The rule ordering procedure

9. The integrated decision maker
10. Application: controlling water reservoirs

10.1 Implementation results
10.2 Rule extraction

11. Application of the statistical approach
12. Discussion
References

© 2000 by CRC Press LLC

Chapter 2.
New radial basis neural networks and their application
in a large-scale handwritten digit recognition problem
N.B. Karayiannis and S. Behnke

1. Introduction
2. Function approximation models and RBF neural networks
3. Reformulating radial basis neural networks
4. Admissible generator functions

4.1 Linear generator functions
4.2 Exponential generator functions

5. Selecting generator functions
5.1 The blind spot
5.2 Criteria for selecting generator functions
5.3 Evaluation of linear and exponential generator functions

5.3.1 Linear generator functions
5.3.2 Exponential generator functions

6. Learning algorithms based on gradient descent
6.1 Batch learning algorithms
6.2 Sequential learning algorithms
6.3 Initialization of supervised learning

7. Generator functions and gradient descent learning
8. Handwritten digit recognition

8.1 The NIST databases
8.2 Data preprocessing
8.3 Classification tools for NIST digits
8.4 Role of the prototypes in gradient descent learning
8.5 Effect of the number of radial basis functions
8.6 Effect of the initialization of gradient descent learning
8.7 Benchmarking reformulated RBF neural networks

9. Conclusions
References

© 2000 by CRC Press LLC

Chapter 3.
Eff icient neural network-based methodology for the
design of multiple classifiers
N. Vassilas

1. Introduction
2. Proposed methodology

2.1 Data quantization using self-organizing maps
2.2 Training set reduction and classification of SOFM

prototypes for supervised techniques
2.3 Fast clustering and labeling of SOFM prototypes for

unsupervised techniques
2.4 Efficient indexed classification

3. Modifications of supervised algorithms
3.1 Classification using the BP algorithm
3.2 Classification using the LVQ algorithm
3.3 The Pal-Majumder fuzzy classifier
3.4 Classification using the k-NN algorithm

4. Multimodular classification
5. Land-cover classification

5.1 Supervised classification
5.2 Multimodular classification
5.3 Unsupervised classification

6. Summary
References

Chapter 4.
Learning fine motion in robotics: design and experiments
C. Versino and L.M. Gambardella

1. How to find the path?
2. The model-based system
3. The sensor-based system
4. Perception clustering
5. Action triggering
6. All together
7. Why use a SOM-like network?
8. Planner vs. HEKM
9. Conclusions
References

© 2000 by CRC Press LLC

Chapter 5.
A new neural network for adaptive pattern recognition
of multichannel input signals
M. Fernández-Delgado, J. Presedo, M. Lama, and S. Barro

1. Introduction
2. Architecture and functionality of MART

2.1 Bottom-up propagation in a single-channel block
2.2 Class selection
2.3 Top-down propagation in a single-channel block
2.4 The orientation system
2.5 Class manager

3. Learning in MART
3.1 Expected values
3.2 Channel credits
3.3 Class radii
3.4 Global vigilances
3.5 Other characteristics

4. Analysis of the behavior of certain adaptive parameters
5. A real application example
6. Discussion
References

Chapter 6.
Lateral pri ming adaptive resonance theory (LAPART)-2:
innovation in ART
T.P. Caudell and M.J. Healy

1. Introduction
2. ART-1, Stacknet, and LAPART-1

2.1 Binary patterns
2.2 ART-1 architecture
2.3 Stacknet
2.4 LAPART-1

3. The LAPART-2 algorithm
3.1 Forcing learning to occur
3.2 Constraints on the input data

4. The learning theorems
5. Numerical experiments

© 2000 by CRC Press LLC

5.1 Method
5.2 Results

6. Discussion
7. Conclusion
References

Chapter 7.
Neural network learning in a travel reservation domain
H.A. Aboulenien and P. De Wilde

1. Introduction
2. Agents
3. Neural network role
4. Agent architecture

4.1 Problem domain
4.2 Data
4.3 Network training

5. Operation
6. Summary
References

Chapter 8.
Recent advances in neural network applications in
process control
U. Halici, K. Leblebicioglu, C. Özgen, and S. Tuncay

1. Introduction
2. Process control
3. Use of neural networks in control
4. Case study I: pH control in neutralization system

4.1 Neutralization system
4.2 Neural network control of the neutralization system
4.3 Results
4.3.1 Conventional PID controller performance
4.3.2 NN controller performance

5. Case study II: adaptive nonlinear-model predictive control
using neural networks for control of high purity industrial
distillation column
5.1 Multicomponent high-purity distillation column

© 2000 by CRC Press LLC

5.2 Adaptive nonlinear-model predictive controller using
neural networks

5.2.1 Linear-model predictive controller
5.2.2 Nonlinear-model predictive controller
5.2.3 Adaptive nonlinear-model predictive controller via neural

networks
5.3 Identification
5.4 Development of the neural network model
5.5 Control application

6. Case study III : PI controller for a batch distill ation column
with neural network coefficient estimator
6.1 Binary batch distillation column
6.2 PI controller with neural network as a parameter estimator

6.3 Results
7. Case study IV: a rule-based neuro-optimal controller for

steam-jacketed kettle
7.1 Analysis of the kettle
7.2 A rule-based neuro-optimal controller for nonlinear

MIMO systems
7.2.1 MIMO systems
7.2.2 Rule derivation
7.2.3 Neural network
7.3 Results

8. Remarks and future studies
References

Chapter 9.
Monitor ing internal combustion engines by neural
network based virtual sensing
R.J. Howlett, M.M. de Zoysa, and S.D. Walters

1. Introduction
2. The engine management system
3. Virtual sensor systems
4. Air-fuel ratio
5. Combustion monitoring using the spark plug
6. The ignition system of a spark-ignition engine
7. Neural-networks for use in virtual sensors

© 2000 by CRC Press LLC

8. AFR estimation using neural network spark voltage
characterization
8.1 The spark voltage characterization method
8.2 Neural network training procedure
8.3 The multi-cylinder engine
8.3.1 Equal sample intervals
8.3.2 Unequal sample intervals
8.3.3 Integration of instantaneous values
8.3.4 Radial basis functions
8.3.5 Discussion
8.4 The single-cylinder engine
8.4.1 Single-speed test
8.4.2 Multi-speed tests

9. Conclusions
References

Chapter 10.
Neural architectures of fuzzy Petr i nets
W. Pedrycz

1. Introduction
2. The generalization of the Petri net and its underlying

architecture
3. The architecture of the fuzzy Petri net
4. The learning procedure
5. Interfacing fuzzy Petri nets with granular information
6. Experiments
7. Conclusions
References

© 2000 by CRC Press LLC

This book is dedicated to all our students

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 1

A NEURO-SYMBOLIC HYBRID
INTELLIGENT ARCHITECTURE WITH

APPLICATIONS

J. Ghosh
Department of Electrical and Computer Engineering

University of Texas
Austin, TX 78712-1084

U.S.A.
ghosh@ece.utexas.edu

I. Taha
Military Technical College

Cairo, Egypt
ismail.taha@mailexcite.com

Hybrid Intelligent Architectures synergistically combine the strengths of
diverse computational intelligence paradigms and avail of both domain
knowledge and training data to solve difficult learning tasks. In partic-
ular, several researchers have studied some aspects of combining sym-
bolic and neural/connectionist approaches, such as initializing a network
based on existing rules, or extracting rules from trained neural networks.
In this chapter, we present acomplete systemthat embeds initial domain
knowledge and/or statistical information into a custom neural network,
refines this network using training data, and finally extracts back refined
knowledge in the form of a refined rule base with an associated infer-
ence engine. Two successful applications of this hybrid architecture are
described.

1 Introduction

The synergistic use of multiple models to difficult problems has
been advocated in a variety of disciplines. Such approaches can
yield systems that not only perform better, but are also more com-
prehensive androbust. A strong motivation for such systems was
voiced by Kanal in his classic 1974 paper [17], prompting work on
combining linguistic and statistical models, and heuristic search with
statistical pattern recognition. In nonlinear control, multiple model
methods, such as gain-schedule control, have a long tradition (see
http://www.itk.ntnu.no/ansatte/JohansenTor.Arne/mmamc/address.html
for a detailed list of researchers).

Sentiments on the importance of multiple approaches have also been
voiced in the AI community, for example, by Minsky [27]:

“ To solve really hard problems, we’ll have to use several differ-
ent representations.... It is time to stop arguing over which type of
pattern-classification technique is best.... Instead we should work at
a higher level of organization and discover how to build manage-
rial systems to exploit the different virtues and evade the different
limitations of each of these ways of comparing things.”

Indeed, there are several examples of successful multi-model approaches
in the “learning” community – from the theory of neural network en-
sembles and modular networks [31] to multistrategy learning [26]. Hy-
bridization in a broader sense is seen in efforts to combine two or more
of neural network, Bayesian, GA, fuzzy logic and knowledge-based sys-
tems [1], [4], [25], [35]. The goal is again to incorporate diverse sources
and forms of information and to exploit the somewhat complementary
nature of different methodologies.

The main form of hybridization of interest in this chapter involves the
integration of symbolic and connectionist approaches [6], [8], [13], [15],
[18], [24], [35], [41]. Such combinations have attracted widespread inter-
est for several reasons that are founded on the complementary strengths
and weaknesses of these two approaches. For example, in many applica-
tion domains, it is hard to acquire the complete domain knowledge and

© 2000 by CRC Press LLC

represent it in a rule based format. Moreover, the acquired knowledge
may be uncertain or inconsistent [16], [30]. Expert systems can also suf-
fer from the brittleness of rules and lead to problems when the domain
theory is noisy [33]. Data driven connectionist models, on the other hand,
can be trained in a supervised or unsupervised fashion to perform rea-
sonably well even in domains with noisy training data. However, they
cannot as readily incorporate existing domain knowledge or provide a
symbolic explanation of results. Finally we note that in many real life
situations, there is some amount of existing domain knowledge (which a
purely model free neural network cannot exploit) as well as domain data
that may be acquired over time. Being able to use both knowledge and
data is paramount, specially in “non-stationary” scenarios that demand
continuous model tuning or refinement, thus further motivating hybrid
methods.

In this chapter, we present a comprehensiveHybrid Intelligent Archi-
tecture (HIA) that augments a knowledge base system with connection-
ist and statistical models to help the former refine its domain knowl-
edge and improve its performance and robustness. Figure 1 shows the
key modules of HIA.

CORsDORs

Extracted Prior Domain Knowledge

Data

Sets

AvailableAvailable

Domain

Analysis
Statistical

Data Sets

Reduced

Inputs

Mapping

Module

 (NLA)

Module

M
od

ul
e

D
is

cr
et

iz
at

io
n

Connectionist

Module

Architecture

Initial
Connectionist

Module
Extraction

Rule

Concepts
Learned

Updated

Rules

Output
NN

Decisions

Hybrid

In
te

gr
at

ed

D
ec

is
io

n

M
ak

er

Expert

System

Decisions
Output

ES

Knowledge

Module
Based

Training

Output

Decisions

Initial Rule
Based System

Domain
Operational
Rules

First and Higher
Order Correlation

Rules

Knowledege

Figure 1. Major components of the Hybrid Intelligent Architecture.

© 2000 by CRC Press LLC

The (optional) rule based system represents the initial domain theory ex-
tracted from domain experts in a rule-based format. The acquired rules
are mapped into an initial connectionist architecture with uniform struc-
ture. The (optional) statistical module analyzes the available data sets
and extracts certain correlations between different input parameters and
also between input parameters and output decisions. The extracted sta-
tistical information is used to provide the mapped initial connectionist
architecture with first and higher order input-input and input-output cor-
relation rules. It is also used to provide supplementary rules to an initial
rule-based system.

Before training the initial connectionist architecture, a fuzzy subsystem
incorporating a coarse coding scheme is used to discretize the input pa-
rameters into multi-interval inputs with initial mean and variance for each
interval. During the training phase of the connectionist architecture, an
Augmented Backpropagation Algorithm (ABA) with momentum term is
used to refine the discretization parameters and thus enhance the domain
parameters. Therefore, the connectionist architecture can improve the ef-
ficiency of the domain theory and incorporate it in its topology.

At the end of the training phase, the final connectionist architecture, with
the updated weights and links, can be viewed as a revised domain the-
ory. It can be used to update the initial expert system with new learned
concepts. Moreover, it can be converted back, if needed, to a rule based
format to achieve the power of explanation [2], [12], [40]. Furthermore,
one can use an integrated decision maker to combine the decisions taken
by the updated expert system and the trained connectionist architecture
and provide the combined decisions to the user.

The rest of this chapter describes in detail the different modules of HIA.
In Sections 2-6, we elaborate upon the concepts of discretizing continu-
ous inputs into multi-interval inputs, mapping available domain knowl-
edge into a connectionist architecture, and enhancing the discretization
parameters during the training phase. Sections 7-9 summarize options
for rule extraction and output integration. Sections 10 and 11 describe
two applications of HIA: (1) controlling water reservoirs of the Colorado
river around Austin, and (2) characterizing and classifying the Wiscon-
sin Breast Cancer Data Set. In the concluding section we comment on the

© 2000 by CRC Press LLC

relation between HIA and some other hybrid and fuzzy approaches, sum-
marize the significance of the current work and point to future directions.
Further details on HIA can be found in [34].

2 Knowledge Based Module for Represen-
tation of Initial Domain Knowledge

As depicted in thebottom left of Figure 1, availabledomain information
can be divided into two parts: the knowledge that represents the opera-
tional rules of the domain and the data sets that represent the historical
records of the application domain.

The first module in HIA is a knowledge based module that is used to
represent the initial domain knowledge through a well-defined format
namedDomain Operational Rule (DOR)format. The DORs are built
using only the basic domain primitives that can be acquired easily from
the domain without consuming much time or effort. The basic compo-
nents needed to build the DORs are: (i) the domain objects and their
attributes; (ii) the relationship between the domain objects; and (iii) the
valid range of the attributes. These basic components represent the initial
domain theory and may not be sufficient for representing the complete
problem in a rule-based format. However, they can be used to build an
initial rule-based expert system. TheDOR format is a general rule-based
format that can be used to represent rule-based systems with and without
certainty factors. In case of rule-based systems without certainty factors,
the value ofcf is replaced by “1” in each rule. The following rules de-
scribe the syntax of the DOR format using the Backus-Naur Form (BNF):

If Compound-Condition [OR Compound-Condition]�
cf
�!Consequent+

Compound-Condition ::= Simple-Condition j Simple-Condition “AND”
Compound-Condition

Simple-Condition ::= [NOT] Boolean-Expression

Consequent ::= Output-V ariable

where the symbol ::= means“to be written as”, j a vertical bar to rep-
resent choices,[�] is an optional term that can be repeated one time,[�]�

is an optional term that can be repeated zero or more times, and[�]+ is a

© 2000 by CRC Press LLC

term that can be repeated one or more times.

In many real applications, rules are not always fully true. Therefore, each
rule represented in the DOR format has an attached certainty factor value,
cf , which indicates the measure of belief, or disbelief if it is negative, in
the rule consequent provided the premises (left hand side) of the rule are
true. It is important to mention that:

� Rule consequents in the DOR format are not permitted to be used
as conditions in any other rule. Such a restriction was introduced
to avoid increasing the number of hidden layers of the connection-
ist architecture and hence reduces its complexity. This restriction
leads to a simpler uniform connectionist network, as seen later.

� In spite of this restriction, the DOR format can be used for rule-
based systems that allow rule consequents to be used as conditions
(premises) in other rules. Such systems can be represented in the
DOR format by replacing the condition, say of ruleRn, that has
appeared as a consequent in another rule, say ruleRm, by the left
hand side of the latter rule (Rm).

� The DOR format does not have any restriction on the number of
conditions per rule or the order of logical operators in any of its
rules.

� The rules represented in the DOR format are mapped directly into
a corresponding initial connectionist architecture without any limi-
tation on the number or the order of the operators in each rule. An-
other approach of mapping domain operational rules into an initial
connectionist architecture is to convert them to another set of rules
with only conjuncted (anded) premises to simplify the mapping op-
eration [8]. The latter approach simplifies the mapping phase but it
increases the complexity of the mapped connectionist architecture.

3 Extraction of Supplementary Rules via
the Statistical Analysis Module

In many application domains, extracting complete domain operational
rules from domain representatives suffers from the knowledge acquisi-

© 2000 by CRC Press LLC

tion bottleneck [16], [30]. Therefore, we need to seek another source of
information to get more prior knowledge from the application domain,
such as statistical information from available datasets. We have inves-
tigated two simple statistical approaches to extract prior domain knowl-
edgefrom theavailabledatasets. Asshown inFigure2, thefirst approach
is to extract the first and the higher order correlation coefficients of the
available data sets to generate supplementary and constraint rules to the
DORs extracted by the knowledge based module. The second approach is
to project the input features vector into a lower dimensional input space
and only deal with the most intrinsic input features [7], [14]. These two
approaches can be done independently and their results can be combined
with the extracted initial DORs. The following subsection presents how
supplementary correlation rules can be extracted from available data sets
and then used to update the initial rule-based system. Then the next sub-
section presents how input features can be projected into a lower dimen-
sional input space.

Reduced input

Statistical
Correlation
Approach

rules
correlation

Available
Data
Sets

order correlation
First and higher

coefficients
Supplementary

feature vectors
Approach
Projection

Data
Input feature

vectors
(P-dimensional)

Rule-Based
System

NLA

Architecture
Connectionist

Initial

(M-dimensional
M < P)

Figure 2. Two statistical approaches to extract additional domain knowledge.

3.1 Extraction of Correlation Rules

The correlation approach of the statistical module analyzes available data
sets by extracting“certain” correlation rules between each pair of inputs
and also between each input-output parameter. In addition, it extracts
the main statistics of each input and output parameter (e.g., the mean

© 2000 by CRC Press LLC

and the variance). These statistics are used later to initialize the adaptive
parameters of the discretization module.

Assume thatX represents an input feature vector andY represents an
output decision vector; letCCX = CO(X)p

�X
andCCXY = CO(X;Y)p

�X�Y
, where

CO(�) represents the covariance matrix. ThusCCX is the input corre-
lation coefficients matrix andCCXY represents the cross-correlation
coefficients matrix between the input and the output vectorsX andY .
After computingCCX andCCXY , a threshold value,�0, is chosen based
on the application domain (usually�0 � 0:80). Based on the chosen
threshold�0 and the elements of the correlation coefficients matrices
CCX andCCXY , the statistical module starts generating COrrelation
Rules, named CORs. The statistical analysis module extracts input-input
and input-output CORs based on the following algorithm:

1. Let cij be the correlation coefficient between any two pair of pa-
rametersXi andXj.

2. IF cij � �0
THEN create the CORR1:

IF Xi
w1� ! Xj (R1)

where the value ofw1 represents the confidence level of the gener-
ated rule andw1 = cij.

3. IF cij � ��0
THEN create the CORR2:

IF NOT Xi
w2� ! Xj (R2)

where the value ofw2 equals the magnitude ofcij.

4. IF ��0 > cij < �0
THEN no rule is generated and the statistical module at this point
can not conclude any certain correlation between these two pa-
rameters.

© 2000 by CRC Press LLC

The CORs generated by the statistical module are represented in the
same DOR format to match the initial rule-based module extracted by
the knowledge-based module. Therefore, the CORs and the DORs can
be combined together with no additional overhead.

The CORs generated by the statistical module can be used as a constraint
or as supplementary rules to the DORs and hence help initializing the
connectionist architecture with more prior domain knowledge. The fol-
lowing three cases describe how CORs extracted by the statistical module
can be used to simplify, maintain, and support the DORs.

1. Case1:
Assume that the knowledge-based module extracts ruleR3, from
the domain experts, and the statistical analysis module extracts rule
R4 based on the correlation betweenX1 andX2.

IF X1 AND X2
w3� ! Y1 (R3)

IF X1
w4� ! X2 (R4)

Therefore, ruleR4 can be used to simplify the previous DORR3

and a new ruleR5 is generated to replace bothR3 andR4. Note
thatw4 should be� 0.80.

IF X1
w5� ! Y1, (R5)

wherew5 = w3 � w4. Note that the new ruleR5 does not depend
onX2 which is highly correlated withX1 based on the CORR4.
The logical interpretation of ruleR5 results from combining the
semantics of bothR3 andR4 as follows:

“IF X1 is true THENX2 is true (withw4 confidence measure) AND
IF X1 AND X2 are both true THENY1 is true with a confidence
level = w3” . This interpretation can be simplified to:“IF X1 is
true; which implicitly implies thatX2 is true; THENY1 is true
with a confidence level= w5” which represents the semantics of
ruleR5.

2. Case2:
If the knowledge-based module extracts ruleR3 and the statistical
module extracts ruleR6.

© 2000 by CRC Press LLC

IF NOT X1
:96
� ! X2 (R6)

In this case ruleR3 cannot be fired any more whatever the value
of X1 (i.e., in either cases ifX1 is true or false) becauseR6 is
considered as a constraint (in this example a strong contradiction)
rule to the DORR3.

3. Case3:
The statistical module can extract CORs which do not exist in the
DORs. As an example, if the statistical module extracts ruleR7

IF X3
:89
� ! Y2 (R7)

and there were no other rules in the DORs to represent the logical
relationship betweenX3 andY2. In this case the generated COR
R7 is added to the extracted DORs.

Based on the previous cases, the statistical module can provide the DORs
with either a constraint or supplementary CORs. Moreover, if there were
no DORs extracted from the application domain, the statistical module
is used to generate correlation rules and represent it in the same DOR
format. See the experimental results presented in Section 11.

After combining the rules extracted by the knowledge-based and the sta-
tistical modules and representing them in the DOR format, the Node-
Links Algorithm (NLA) is used to map these combined rules into an
initial connectionist architecture.

3.2 Reducing the Input Dimensionality

In many application domains the input data are noisy and may have some
redundancy. To obtain better network performance it is important to re-
tain the most intrinsic information in the input data and reduce network
complexity at the same time, if it is possible. We use Principal Compo-
nent Analysis (PCA), a well known technique in multivariate analysis,
for this purpose [7], [14].

As a preprocessing step, the correlation matrices represented byCCX

of Equation 1 are used first to determine highly correlated input pairs.

© 2000 by CRC Press LLC

Then, PCA is applied after one variable is removed from each highly
correlated pair. This typically enhances the PCA algorithm performance
while reducing the connectionist architecture input dimensionality. The
resulting feature vector from the PCA algorithm is used as an input to the
constructed neural network.

The experimental results presented in Section 11 illustrate how we used
the statistics of a public domain data set to extract additional prior do-
main knowledge.

4 The Mapping Module

The Node-Links Algorithm (NLA) utilizes a set of mapping principles
to map the initial domain theory, represented in the DOR/COR format,
into an initial connectionist architecture that can learn more new domain
concepts during the training phase. It results in a three layer AND-OR
tree, as exemplified by Figure 3. Note that a Negated Simple-Condition
is translated into a negative initial weight (�0:6 or �0:7) for the corre-
sponding link. Also, the NLA creates a hidden node even when there is
only oneSimple-Conditionin the premise. This type of hidden node is
namedself-andedhidden node, because it ANDs one input node with it-
self. Therefore, output nodes are viewed as OR nodes and hidden nodes
are viewed either as AND or asself-andednodes. The NLA creates a
light link between eachself-andednode, as well as each AND node, and
all other input and output nodes that are not linked with it. Introducing
suchself-andedhidden nodes and light links provides the initial connec-
tionist architecture with the power to learn more domain knowledge and
extract new features during the training phase. The overhead due to the
introduction of the self-anded nodes and their related links is much less
than that incurred by interrupting the training phase and adding, heuris-
tically, a random number of hidden nodes [9]. The initial connectionist
architecture generated by the NLA has only three layers, independent of
the hierarchy of the initial rule-based system and regardless of the nature
of the application domain. Moreover, all hidden nodes functionally im-
plement soft conjunctions and use the sigmoid activation function, which
clearly improves the training phase of the initial connectionist architec-
ture. This is in contrast to models that have variable network structure,

© 2000 by CRC Press LLC

based on the application domain, and hidden units with different func-
tionalities [6], [10], [44].

IF A Q1

IF B AND C

IF B OR C AND D

IF A AND C OR B AND D

IF A AND B AND D

IF NOT B

 W1

W2

W3

W4

W5

W6

W8

Q2

Q3

Q2

Q1

Q2

Q1

A B C D E

Q1 Q2 Q3 Q4

W1

IF E AND D OR C

W4W4

W5

W8

(NLA)

CONNECTIONIST
ARCHITECTURE

NODE-LINKS ALGORITHM
 SYSTEM

RULE-BASED

INITIALIF C OR E
W7 Q4

W5

A Simple Rule Based System represented in the DOR format

W3

W7
W2

W6

W7

W3

-0.7

A Corresponding Initial Connectionist Architecture
Light links to and from the self-anded node due to the last step of the NLA

Generated by the NLA

Figure 3. From rule-based system to initial connectionist architecture using the
Node-Links Algorithm.

5 The Discretization Module

Measured inputs in control domains are often continuous. Since the op-
erational rules that represent the system use multi-interval ranges to de-
scribe the application domain, a discretization function is needed to map
continuous inputs into multiple interval inputs. Assume that a continuous
measured inputz always lies in the range[a; b]. A discretization function
is used to map it into a corresponding vectorX: (x1; x2; :::; xn), where
xi 2 [0; 1], 8i andn is the number of discretized intervals. In a basic
symbolic system, exactly one of thexis is set to 1 for a givenz value,
and all others are zero. However, we prefer a continuous discretization

© 2000 by CRC Press LLC

approach to a binary discretization since it allows “coarse coding,” i.e.,
more than one interval can be active at the same time with different cer-
tainty values, based on the value of the measured inputz. Coarse coding
is a more robust representation of noisy data, which is a prime objective
here. This discretization process is a typical fuzzification approach for
determining the degree of membership of the measured inputz in each
interval i. The value of each elementxi is interpreted as the measure of
belief thatz falls in theith interval [43].

A Gaussian function with mean�i and standard deviation�i is selected to
represent the distribution of the measured inputz over each intervali; so
n Gaussian curves are used to fuzzifyz into n intervals.1 The technique
is illustrated in Figure4, whereacontinuousmeasured input z getsfuzzi-
fied into an input vectorX, resulting inx1 = 0:25 and dx2 = 0:75. This
fuzzification is done as a preprocessing phase to the initial connectionist
architecture. The output of the fuzzification process,X, represents the ac-
tivation values of the input nodes of the initial connectionist architecture,
where each interval is represented by an input node. If the application do-
main hask continuous measured inputs the fuzzification approach results
in a total of

Pk
i=0 nk input nodes, wherenk is the number of discretized

intervals of thekth measured input.

1.0

a bµ1 µ2 µ3 µ4 µ5

σ1 σ2 σ4 σ5

A continuous range between [a,b]

Degree of membership

σ3

A Measured input feature z

0.5

0.25

0.75

The discretization result X = [0.25,0.75,0,0,0]

Figure 4. Discretizing a continuous measured input inton intervals usingn
Gaussian functions.

1The choice of the differentiable Gaussian function instead of the typical triangular
membership functions used in fuzzy logic is important as it facilitates membership
adaptation, as described in the next section.

© 2000 by CRC Press LLC

6 Refining Input Characterization

The initial connectionist architecture is trained by the output vectors (Xs)
of the fuzzification function. Assuming that the measured input values
are normally distributed within each intervali with mean�i and standard
deviation�i, the Gaussian functions:

xi = fi(z) = e
� 1

2
(
z��i
�i

)2 (1)

are used to discretize the measured input valuez. An Augmented ver-
sion of the Backpropagation Algorithm,ABA , with momentum term is
used to train the initial architecture and stochastically search for the opti-
mal weights to and from all hidden nodes (anded and self-anded nodes).
Moreover, the ABA is used to refine the initial discretization parameters
�i and�i for each intervali. The ABA calculates the stochastic gradi-
ent descents of the output error with respect to�i and�i and propagates
them one more step back to the fuzzification function, i.e., to the external
inputs of the connectionist architecture. Refining the discretization pa-
rameters (�i, �i) helps the connectionist architecture to extract features
from the measured inputs that are more discriminating and thus enhances
the decision process. The chain rule was used to derive the derivative of
the output error,E, with respect to�i and�i:

@E

@�i
=

@E

@fi(z)
�
@fi(z)

@�i
=

1

�2i
� (z � �i) �

h�1X

j=0

wij �
@E

@wij

(2)

@E

@�i
=

@E

@fi(z)
�
@fi(z)

@�i
=

(z � �i)
2

�i3
�
h�1X

j=0

wij �
@E

@wij

(3)

where the term
Ph�1

j=0 wij �
@E
@wij

represents the gradient descent of the

output error propagated back to all theh hidden nodes linked toith input
node. Note that the@E

@wij
s do not need to be recomputed as they are already

obtained from updating the weights into the hidden units. The center and
width of theith interval are adjusted as follows:

�inew = �iold � � �
@E

@�i
+MomentumTerm (4)

�inew = �iold � � �
@E

@�i
+MomentumTerm (5)

© 2000 by CRC Press LLC

7 Rule Extraction

Extraction of symbolic rules from trained neural networks is an important
feature of comprehensive hybrid systems, as it helps to:

1. Alleviate the knowledge acquisition problem and refine initial do-
main knowledge.

2. Provide reasoning and explanation capabilities.

3. Support cross-referencing and verification capabilities.

4. Alleviate the “catastrophic interference” problem of certain ANNs
[32]. For models such as MLPs it has been observed that if a
network originally trained on one task (data set) is subsequently
trained on a different task (statistically different data set), then its
performance on the first task degrades rapidly. In situations with
multiple operating regimes, one can extract rules before the task
or environment changes and thus obtain different rule sets for dif-
ferent environmental conditions. Together with a mechanism for
detecting the current environment, this presents one solution to the
“context discovery” and “context drift” problems.

Other uses of rule extraction include improving acceptability of the prod-
uct, transfer of knowledge to a more suitable form, and induction of sci-
entific theories.

The rule extraction module of HIA maps the trained connectionist archi-
tecture back into a rule based format. This mapping is much harder than
the mapping from an initial rule based system to an initial connectionist
architecture because: (i) one should guarantee that the extracted domain
concepts should not contradict with certain concepts that are known to be
true about the domain, (ii) one should refine uncertain domain concepts,
and (iii) new concepts may get extracted. An efficient rule extraction
module should be able to deal with these three issues.

Several issues should be carefully considered while designing a rule ex-
traction technique:

© 2000 by CRC Press LLC

1. Granularity of the explanation feature: is the level of detailed
hypotheses and evidence that the system can provide with each of
its output decisions.

2. Comprehensiveness of the extracted rules:in terms of the
amount of embedded knowledge captured by them. This directly
determines thefidelityof the extracted rules in faithfully represent-
ing the embedded knowledge.

3. Comprehensibility: indicated by the number of rules and number
of premises in each extracted rule from a trained network.

4. Transparency of the extracted rules:in terms of how well the
decisions or conclusions can be explained.

5. Generalization Capability: on test samples.

6. Portability: is the capability of the rule extraction algorithm to
extract rules from different network architectures.

7. Modifiability: is the ability of extracted rules to be updated when
the corresponding trained network architecture is updated or re-
trained with different data sets.

8. Theory Refinement Capability: that can alleviate the knowledge
acquisition bottleneck due to the incompleteness, inconsistency,
and/or inaccuracy of initially acquired domain knowledge.

9. Stability or Robustness: is a measure of how insensitive the
method is to corruptions in the training data or initial domain
knowledge.

10. Complexity and Scalability: Computational issues that are rele-
vant for large datasets and rule bases.

These issues, in addition to others, should be used to measure the quality
and performance of rules extracted from trained neural networks. Note
that these issues also depend on the rule representation, insertion and
network training methods used. Also, it is difficult to simultaneously
optimize all of the above criteria. For example, a very comprehensive
technique may extract too many rules, with some of them having many

© 2000 by CRC Press LLC

premises, thus degrading the robustness and comprehensibility of the re-
sulting rule base.

A variety of rule-extraction techniques have been proposed in the re-
cent literature [2], [36], [39]. Also see the rule extraction home page at:
http://www.fit.qut.edu.au/˜robert/rulex.html . The
methodology behind most of the techniques for rule extraction from
MLPs can be summarized in two main steps:

1. For each hidden or output node in the network, search for different
combinations of input links whose weighted sum exceeds the bias
of the current node.

2. For each of these combination generate a rule whose premises are
the input nodes to this combination of links. All premises of a rule
are conjuncted.

Either [28], KT [9] and Subset [40] are three notable rule extraction al-
gorithms in this category, which we describe as Link Rule Extraction
Techniques.

In this section we summarize three recent techniques for extracting rules
from trained feedforward ANNs. The first approach is a binary Black-box
Rule Extraction technique. The second and the third approaches belong
to the Link Rule Extraction category. Details can be found in [36].

7.1 First Technique (BIO-RE)

The first approach is namedBinarized Input-Output Rule Extrac-
tion (BIO-RE) because it extracts binary rules from any neural network
trained with “binary” inputs, based on its input-output mapping. It is sur-
prisingly effective within its domain of applicability. The idea underlying
BIO-RE is to construct a truth table that represents all valid input-output
mappings of the trained network. BIO-RE then applies a logic minimiza-
tion tool, Espresso [29], to this truth table to generate a set of optimal
binary rules that represent the behavior of the trained networks. For ex-
ample, an extracted rule:“ IF Y1 AND NOT Y2 � !O1” , is rewritten as
“ IF X1 > �1 AND X2 � �2 � !O1” , where�i is set to be the threshold
of Xi (seeTable2 for examples). TheBIO-RE approach issuitablewhen

© 2000 by CRC Press LLC

the input/output variables are naturally binary or when binarization does
not significantly degrade the performance. Also the input size (n) should
be small.

7.2 Second Technique (Partial-RE)

The idea underlying Partial-RE algorithm is that it first sorts both positive
and negative incoming links for each hidden and output node in descend-
ing order into two different sets based on their weight values. Starting
from the highest positive weight (sayi), it searches for individual incom-
ing links that can cause a nodej (hidden/output) to be active regardless
of other input links to this node. If such a link exists, it generates a rule:

“ IF Nodei
cf
� !Nodej”, where cf represents the measure of belief in

the extracted rule and is equal to the activation value ofnodej with this
current combination of inputs. If a nodei was found strong enough to
activate a nodej, then this node is marked and cannot be used in any
further combinations when checking the same nodej. Partial-RE con-
tinues checking subsequent weights in the positive set until it finds one
that cannot activate the current nodej by itself. Partial-RE performs the
same procedure for negative links and small combinations of both posi-
tive and negative links if the required number of premises in a rule is> 1.
Partial-RE algorithm is suitable for large size problems, since extracting
all possible rules is NP-hard and extracting only the most effective rules
is apractical alternative. See Table3 for examples.

7.3 Third Technique (Full-RE)

Full-RE first generates intermediate rules in the format:

IF [(c1 �X1 + c2 �X2 + � � �+ cn �Xn) >= �j]
cf
� !Consequentj,

where:ci is a constant representing the effect of theith input (Xi) on
Consequentj and�j is a constant determined based on the activation
function of nodej to make it active. If nodej is in the layer above node
i thenci represents the weight valuewji of the link between these two
nodes. In cases where the neural network inputs (Xis) are continuous
valued inputs, then a range ofXi values may satisfy an intermediate rule,
and one would want to determine a suitable extremum value in such a

© 2000 by CRC Press LLC

range. To make this tractable, each input range has to be discretized into
a small number of values that can be subsequently examined. Thus, each
input featureXi 2 (ai; bi) is discretized intok intervals [21]. When Full-
RE finds more than one discretization value of an inputXi that can satisfy
the intermediate rule (i.e., the rule has more than one feasible solution)
then it chooses the minimum or the maximum of these values based on
the sign of the corresponding effect parameterci. If ci is negative then
Full-RE chooses the minimum discretization value ofXi; otherwise it
chooses the maximum value. However, all selected discretization values
should satisfy the left hand side (the inequality) of the intermediate rule
and the boundary constraints of all input features of this inequality. Final
rules extracted by Full-RE are represented in the same format of Partial-
RE except that each�i is replaced by one of the discretization boundaries
(saydi;l) selected by Full-RE as described earlier. SeeTable 4for exam-
ples.

8 Rule Evaluation and Ordering Proce-
dure for the Refined Expert System

To evaluate the performance of rules extracted from trained networks
by any of the three presented techniques (or by any other rule extrac-
tion approach), a simple rule evaluation procedure which attaches three
performance measures to each extracted rule is developed. The three per-
formance measures used to determine the order of the extracted rules are:

(i) The soundness measure:it measures how many times each rule is
correctly fired.

(ii) The completeness measure:a completeness measure attached
to a rule represents how many unique patterns are correctly identi-
fied/classified by this rule and not by any other extracted rule that is in-
spected by the inference engine before this rule. For each extracted set of
rules with the same consequent, if the sum of the completeness measures
of all rules in this set equals the total number of input patterns having the
corresponding output then this set of extracted rules is 100% complete
with respect to that consequent. An extracted rule with zero complete-
ness measure but having a soundness measure> 0 means that there is a

© 2000 by CRC Press LLC

preceding rule(s), in the order of rule application, that covers the same
input patterns that this rule covers. Such a rule may be removed.

(iii) The false-alarm measure:it measures how many times a rule is
misfired over the available data set. While the values of both the com-
pleteness and false-alarm measures depend on the order of rule applica-
tion and the inference engine the soundness measure does not.

8.1 The Rule Ordering Procedure

An expert system requires a set of rules as well as an inference engine
to examine the data, determine which rules are applicable, and prioritize
or resolve conflicts among multiple applicable rules. A simple way of
conflict resolution is to order the rules, and execute the first applicable
rule in this ordering. Finding the optimal ordering of extracted rules is
a combinatorial problem. So the following“greedy” algorithm to order
any set of extracted rules, based on the three performance measures, is
developed. The rule ordering algorithm first creates a listL that contains
all extracted rules. Assume that the listL is divided into two lists, a head
list (Lh) and a tail list (Lt), whereLh is the list of all ordered rules and
Lt is the list of all remaining (unordered) rules2. Initially, Lh is empty
andLt includes all the extracted rules. A performance criteria is used to
select one rule fromLt to be moved to the end ofLh, and the process
continues tillLt is null.

The steps of the rule ordering algorithm are as follows:

1. InitializeLh = f g, Lt = fall extracted rulesg.

2. WHILE Lt 6= f g, DO
(a) Fire all rules inLh in order.

(b) Compute the completeness and false-alarm measures for
each rule inLt using the available data set.

(c) IF 9 a rule with zero false-alarm
THEN this rule is moved fromLt to the end ofLh

3.
2i.e., the ordering of rules inLt has no effect.
3If 9 more than one rule with zero false-alarmTHEN select the one with the highest
completeness measure out of these rules to be moved fromLt to the end ofLh.

© 2000 by CRC Press LLC

ELSE Among all rules inLt select the one with the highest
(Completeness - False-alarm) measure; add this rule
to the end ofLh, delete it fromLt.

(d) IF 9 any rule inLt with a zero completeness measure then
remove this rule fromLt. This means that the rules inLh

cover this rule.

3. END DO.

In this chapter, all rules extracted by our approaches are ordered using
the above rule ordering algorithm. Also, the measures attached to all
extracted rules assume that an inference engine that fires only one rule
per input (namely, the first fireable rule) is used.

9 The Integrated Decision Maker

The main objective of combining or integrating different learning mod-
ules is to increase the overall generalization capability. Since the set of
extracted rules is an “approximated symbolic representation”of the em-
bedded knowledge in the internal structure of the corresponding trained
network, it is expected that when an input is applied to the extracted rules
and the trained network, they will usually both provide the same output
decision (see Table 6 for examples). The integration module should be
able to choose the“better” output decision when the two decisions dif-
fer, and to compute the certainty factor of the final output decision. When
the two output decisions are different, the integration module can use the
following selection criteria to select a suitable decision.

1. Select the sub-system (i.e., the set of extracted rules or the trained
ANN) with the highest overall performance if none of the follow-
ing conditions are satisfied:

2. For any mismatched pair of output decisions, check the value of
the neural network output decision (i.e., the activation value of the
corresponding output node of the neural net before thresholding).
(a) If the extracted rule-base is indicated by Rule 1, but the neural

network output is significantly high, then choose the neural
network instead to provide the final decision. Also, report that

© 2000 by CRC Press LLC

the extracted rule-base was not able to identify this case, so
that a new rule can be asserted in the current knowledge base
to handle such cases in the future.

(b) If the neural network is indicated by Rule 1, but the network
output is significantly low, then choose the extracted rule-
base instead to provide the final output of this case. Also,
report that the neural network was not able to identify this
case, so that it can be retrained. This case can also be applied
if the difference between the two highest activation values of
the neural network output nodes is not significant.

This simple heuristic criterion of selecting one of the two mismatched
output decisions was applied for all the three architectures and their cor-
responding set of extracted rules using the breast cancer problem. The
implementation results are given inTable 6.

10 Application: Controlling Water
Reservoirs

There are several dams and lakes on the Colorado river near Austin. The
decision of specifying the amount of water that should be released from
any of these dams and lakes is a complicated process. The Lower Col-
orado River Authority (LCRA) determines this decision for each dam or
lake based on the current elevation of the water in the lake, the inflow
rate from upstream dams and lakes, the outflow rate from the current
lake, the predicted weather (rain fall rate), the predicted elevation of the
downstream dams and lakes, and many other factors.

The LCRA uses upstream and downstream gages to monitor and fore-
cast lake levels. There are two main modes of operation for the Highland
Lakes: the first is a daily operation in which downstream demands for
water are met by daily releases from Lake Buchanan and Travis to sup-
plement the flow of the lower river. The second is for flood control, which
primarily concerns Lake Travis since it is the only reservoir with a ded-
icated flood pool. When the Colorado river downstream from Highland
Lake approaches the warning stage at any of the following downstream
gages, the rules of the flood control operating mode are used to determine

© 2000 by CRC Press LLC

water release.

We acquired the 18 main operational rules for controlling the flood gates
on the Colorado river in the greater Austin area from different documents
issued by the LCRA after the 1991 Christmas flood around Austin [19].
Two of the rules regulating the control of Mansfield Dam on Lake Travis,
expressed in DOR format, are:

If Projected-Level(Lake-Travis,t0)>= 710 AND
Projected-Level(Lake-Travis,t0)<= 714 AND
Projected-Level(Lake-Austin,t1)<= 24.8 AND
Projected-Level(Bastrop,t2)<= 26.7

Then
Open-Up-To 10 Flood-Gates.

If Projected-Level(Lake-Travis,t0)<= 710 AND
Projected-Level(Lake-Travis,t0)>= 691 AND
Projected-Level(Lake-Austin,t1)<= 20.5 AND
Projected-Level(Bastrop,t2)<= 25.5

Then
Open-Up-To 6 Flood-Gates.

Lake Austin and Bastrop are downstream from Mansfield Dam,t0 is the
time when the water level at Lake Travis is measured, andt1 � t0 and
t2� t0 are the approximate times taken for the released water from Lake
Travis to reach Lake Austin and Bastrop respectively (approx. 2 hrs and
24 hrs). All values are measured in feet above mean sea level.

10.1 Implementation Results

The HIA knowledge based module was used to implement the extracted
domain knowledge in the DOR format. A data set representing 600 pat-
terns was gathered from the LCRA historical records of the different
dams and lakes. The acquired data set was divided into two sets. The first
one had 400 patterns and was used as the training set; the second served
as the validation set. Each pattern includes the measured elevation of
three lakes at some given time and the corresponding best decision based
on the extracted domain knowledge represented by the DOR.

© 2000 by CRC Press LLC

The coarse coding scheme described in Section 5 was used to discretize
each input (measured elevationz) into a multi-interval input vector (X).
Each discretized intervali corresponds to one specific DORSimple-
Condition and has an initial mean�i and standard deviation�i. The
Node-Links Algorithm (NLA) was used to map the DORs into a one
hidden layer initial connectionist architecture. The resulting architecture
has 23 input nodes (representing the different discretized intervals), 18
hidden nodes (representing either AND orself-andedsoft conjunction
concepts), and 8 output nodes representing the possible decisions at any
time (i.e., how many flood gates should be opened).

During the training phase, the Augmented Backpropagation Algorithm
(ABA) with momentum term stochastically searched the weight space
to find the optimal weights and also used the partial derivatives of the
output error, as described by Equations 2 through 5, to refine the initial
discretization parameters (�i and�i) of the 23 input nodes. Note that
each input node in the mapped architecture corresponds to a discretized
interval.

By the end of the learning process, we found that the means (�) of seven
different intervals were shifted and the standard deviations (�) of four
of them were also significantly changed from their initial values. The
change in the values of the discretization parameters readily reflects how
the ABA exploits the training data set to refine the initial domain knowl-
edge represented by the rule based module. Actually, any change in the
discretization parameters directly affects the input of the connectionist
architecture and hence its output decisions. Therefore, any refinement in
these parameters enhances the output performance of the trained connec-
tionist architecture.

After the training phase, the validation set (200 patterns) was used to
observe how the HIA will perform in real flood situations. The deci-
sions taken by the HIA, which uses the ABA for training the mapped
connectionist architecture and also for refining domain parameters, were
compared with the decisions taken by two different connectionist archi-
tectures. The first one is an MLP (with one hidden layer) initialized ran-
domly without any prior domain knowledge and trained by the conven-
tional backpropagation with a momentum term. The second is an MLP

© 2000 by CRC Press LLC

(also with one hidden layer) initialized by the same initial rules that were
used to initialize the HIA and trained by the conventional backpropaga-
tion with a momentum term (i.e., no refinement of discretization param-
eters was done).

Table 1. Test results of Colorado river problem.

No. HIA MLP MLP
of with refined DOR initialized randomly with initial DOR

epochs MSE % match MSE % match MSE % match
1 0.096 76.176 1.367 64.0 0.344 70.9
10 0.015 93.323 0.889 68.5 0.248 72.6
20 0.014 94.234 0.334 71.7 0.103 74.7
30 0.013 94.234 0.233 72.38 0.094 76.3

The output decisions taken by the three architectures (to specify how
many flood gates should be opened at a given time) were compared
with the desired decisions that should be taken in each situation based
on LCRA operational rules. Table 1 provides a summary of the testing
results. The presented results are the average of 10 runs. They represent
the performance of each architecture when the test data sets were applied.
Two parameters are presented for each architecture, the mean square er-
ror and the percentage of patterns for which the maximum output value
matched with the desired decision based on the LCRA operational rules.
Note that the LCRA selects only one decision per pattern, while the neu-
ral network indicates support for each decision by the value of the cor-
responding output. To compute MSE, we used a target value of “1” for
output node corresponding to the desired decision and “0” for all other
outputs. The implementation results depicted in Table 1 show that:

� The randomly initialized MLP did not perform well compared with
the other two architectures.

� The MLP initialized by the initial domain rules and trained with
the conventional backpropagation performed somewhat better than
the randomly initialized MLP. However, the performance of this
architecture did not improve much on further training.

� The HIA did perform much better than the other two architectures
and its performance improved significantly by increasing the num-
ber of training epochs.

© 2000 by CRC Press LLC

The improved performance of the HIA is mainly due to the continuous
refinement of the discretization parameters during each training epoch.

10.2 Rule Extraction

After the learning phase, the connectionist module of HIA was examined
by Partial-RE to find out if any new rules were created during the train-
ing. Some of the extracted rules were already there in the initial DORs
and others were subsets of existing rules. However, some new and use-
ful rules were also found. For example, in the initial rule based system
extracted from the LCRA documents, there was a rule specifying that:
if the predicted level of Lake Travis is between 681 and 691 feet msl
(mean sea level) then release up to 5,000 cfs (cubic feet per second) if
the river, with the release, is no higher than 20.5 ft. at Austin and 25.1
ft. at Bastrop. HIA extracted three new and useful fine rules instead of
the previous coarse rule. The first new rule extracted by HIA is: if the
predicted level of Lake Travis is between 681 and 683 feet msl then wa-
ter does not need to be released if the river is no higher than 16.0 ft. at
Austin and 18.0 ft. at Bastrop. The second rule is: if the predicted level
of Lake Travis is between 683 and 685 feet msl then release up to 3,000
cfs if the river, with the release, is no higher than 16.0 ft. at Austin and
18.0 ft. at Bastrop. The third rule is: if the predicted level of Lake Travis
is between 685 and 691 feet msl then release up to 5,000 cfs if the river,
with the release, is no higher than 20.5 ft. at Austin and 25.1 ft. at Bas-
trop. The previous three new extracted rules are useful where they refine
the original coarse rule based on the combination of the upstream (Lake
Travis) and downstream (Lake Austin and Bastrop) conditions which pri-
marily determine the decision on releasing water. More comprehensive
rules can be extracted by applying the Full-RE technique.

11 Application of the Statistical Approach

The statistical approaches introduced in Section 3 were not used in the
water reservoirs control problem because the extracted DORs were rea-
sonably comprehensive. In this section, we report results of applying the
statistical module to the breast cancer classification problem where there
is no pre-existing domain knowledge (i.e., no DORs) but a public domain

© 2000 by CRC Press LLC

Table 2. Rules extracted from network“Cancer-Bin” by BIO-RE technique.

Cancer Performance Measures
No. Rule Body Class Sound- Complete- False

ness ness Alarm

R1 If X3 � 3:0 andX7 � 3:3

andX8 � 2:7 andX9 � 1:5 Benign 391/444 391/444 2/683
R2 If X1 � 4:1 andX3 � 3:0

andX7 � 3:3 andX9 � 1:5 Benign 317/444 8/444 0/683
R3 If X1 � 4:1 andX3 � 3:0

andX8 � 2:7 andX9 � 1:5 Benign 316/444 7/444 0/683
R4 If X1 � 4:1 andX3 � 3:0

andX7 � 3:3 andX8 � 2:7 Benign 316/444 7/444 0/683
R5 If X1 � 4:1 andX7 � 3:3

andX8 � 2:7 andX9 � 1:5 Benign 314/444 5/444 0/683
R6 If X1 � 4:1 andX3 � 3:0 Malignant 200/239 199/239 15/683
R7 If X3 � 3:0 andX7 � 3:3 Malignant 187/239 27/239 2/683
R8 If X3 � 3:0 andX8 � 2:7 Malignant 187/239 3/239 0/683
R9 If X1 � 4:1 andX7 � 3:3 Malignant 167/239 7/239 1/683
R10 If X1 � 4:1 andX9 � 1:5 Malignant 100/239 1 3
R11 Default Class Benign 5/444 5/444 0/239

Total For Benign Rules 423/444 2/683
Total For Malignant Rules 237/239 21/683

Overall Performance% 96:63% 3:37%

data set is available [3], [23].

The Wisconsin breast cancer data set has nine inputs (X1 � � �X9) and
two output classes (Benign orMalignant). The available 683 instances
were divided randomly into a training set of size 341 and a test set of size
342. In all experiments, an MLP network is trained using the backprop-
agation algorithm with momentum as well as a regularization term [11].
The dimensionality of the breast-cancer input space is reduced from 9 to
6 inputs using PCA. BIO-RE, Partial-RE, and Full-RE are used to extract
rules from Cancer-Bin, Cancer-Norm, and Cancer-Cont networks respec-
tively, where the first network is trained with a binarized version of the
available data, Cancer-Norm is trained with normalized input patterns,
and Cancer-Cont is trained with the original data set after dimensionality
reduction. Tables 2, 3, and 4 present three setsof ordered rules extracted
by the three rule extraction techniques, along with the corresponding per-
formance measures.

© 2000 by CRC Press LLC

Table 3. Rules extracted from network“Cancer-Norm” by Partial-RE technique.

Cancer Performance Measures
No. Rule Body Class CF Sound- Complete- False

ness ness Alarm

If X2 � 3:0

R1 andX3 � 3:0 Benign 0.99 412/444 412/444 6/683
andX7 � 3:3

If X1 � 4:1

R2 andX3 � 3:0 Benign 0.99 324/444 1/444 0/683
andX7 � 3:3

R3 If X2 � 3:0

andX3 � 3:0 Malignant 0.99 222/239 219/239 15/683
If X1 � 4:1

R4 andX7 � 3:3 Malignant 0.99 137/239 8/239 0/683
andX8 � 2:7

If X1 � 4:1

R5 andX2 � 3:0 Benign 0.84 327/444 4/444 0/683
andX7 � 3:3

R6 If X1 � 4:1

andX2 � 3:0 Malignant 0.99 198/239 2/239 0/683
If X1 � 4:1

R7 andX2 � 3:0 Benign 0.84 333/444 9/444 1/683
andX3 � 3:0

R8 If X1 � 4:1

andX3 � 3:0 Malignant 0.99 200/239 3/239 2/683
If X2 � 3:0

R9 andX3 � 3:0 Benign 0.99 409/444 1/444 0/683
andX8 � 2:7

Total For Benign Rules 427/444 7/683
Total For Malignant Rules 232/239 17/683

Overall Performance% 96:49% 3:51%

Table 5 provides an overall comparison between the performance of the
extracted rules and their corresponding trained networks. It shows that
the three techniques were successfully used with approximately the same
performance regardless of the nature of the training and testing data sets
used for each network. Also, it shows that binarizing and scaling the
breast cancer data set did not degrade the performance of the trained net-
works or of the rules extracted by BIO-RE and Partial-RE from these
networks(“Cancer-Bin” and “Cancer-Norm” respectively). This is due
to the fact that the original input features of the breast cancer problem
have the same range (1,10).Table 6shows the impact of the integration

© 2000 by CRC Press LLC

Table 4. Rules extracted from network“Cancer-Cont” by Full-RE technique.

Cancer Performance Measures
No. Rule Body Class CF Sound- Complete- False

ness ness Alarm

R1 If X1 < 8 andX3 < 3 Benign 0.96 394/444 394/444 5/683
R2 If X2 � 2 andX7 � 3 Malignant 0.83 227/239 223/239 18/683
R3 If X1 < 8 andX7 < 3 Benign 0.75 300/444 27/444 1/683
R4 If X1 � 8 Malignant 0.89 123/239 9/239 1/683
R5 If X1 < 8 andX2 < 2 Benign 0.79 369/444 4/444 1/683

Total For Benign Rules 425/444 7/683
Total For Malignant Rules 232/239 19/683

Overall Performance% 96:19% 3:80%

Table 5. Performance comparison between the sets of extracted rules and their
corresponding trained networks for the breast-cancer problem.

Neural Network Extracted Rules
ratio % correct ratio % correct

Binarized Training 333/341 97.65 331/341 97.07
Network Testing 317/342 92.69 329/342 96.20

(Cancer-Bin) Overall 650/683 95.17 660/683 96.63
Normalized Training 329/341 96.48 331/341 97.07

Network Testing 325/342 95.03 328/342 95.91
(Cancer-Norm) Overall 654/683 95.75 659/683 96.49

Continuous Training 334/341 97.95 330/341 96.77
Network Testing 331/342 96.78 327/342 95.61

(Cancer-Cont) Overall 665/683 97.36 657/683 96.19

method. It is important to mention that the limited gains due to the in-
tegration is because of the high degree of agreement between the two
modules. Only22, 20, and14 out of683 outcomes were different respec-
tively for the three experiments. The integration mechanism was able to
select correctly20, 17, and14 of these mismatches respectively.

12 Discussion

Symbolic and neural subsystems can be combined in a wide variety
of ways [24]. HIA has the flavor of a transformational hybrid system,
whose prototype is the Knowledge Based Neural Network (KBNN) that

© 2000 by CRC Press LLC

Table 6. Overall performance of HIA after applying the integration mechanism
using the breast-cancer database.

#both #both #disagreed #correct
correct wrong on decisions on

mismatches

Cancer-Bin 647 14 22 20/22

Cancer-Norm 647 16 20 17/20

Cancer-Cont 653 16 14 14/14

Overall Performance
ratio % correct

Cancer-Bin 667/683 97.77

Cancer-Norm 664/683 97.22

Cancer-Cont 667/683 97.77

achieves theory refinement in four phases [8], [13], [15], [36], [42]:

� The rule base representation phase, where the initial domain
knowledge is extracted and represented in a symbolic format (e.g.,
a rule base system).

� The mapping phase, where domain knowledge represented in sym-
bolic form is mapped into an initial connectionist architecture.

� The learning phase, where this connectionist architecture is trained
by a set of domain examples.

� The rule extraction phase, where the trained (and thus modified)
connectionist architecture is mapped back to a rule based system
to provide explanation power.

The main motivation of such KBNN systems is to incorporate the com-
plementary features of knowledge based and neural network paradigms.
Knowledge-Based Artificial Neural Network (KBANN) [41] is a notable
system that maps domain knowledge, represented in propositional logic
(Horn clauses), into a neural network architecture which is then trained
using the backpropagation algorithm to refine its mapped domain knowl-
edge. The KBANN algorithm has been applied to two problems from
molecular biology and the reported results show that it generalizes better

© 2000 by CRC Press LLC

than other learning systems. However, KBANN maps binary rules into a
neural network and it is not clear how it can deal with rules with certainty
factors. Also, it adds new hidden nodes before the training phase starts,
but the difficult question ofhow many hidden nodes should be addedis
not answered.

RAPTURE is another hybrid system for revising probabilistic knowledge
bases that combines connectionist and symbolic learning methods [22].
RAPTURE is capable of dealing with rule based systems that use cer-
tainty factors. However, the structure of the mapped network by RAP-
TURE is domain dependent and the number of network layers, being
determined by the hierarchy of the rule base, can become large. Another
notable example is the Knowledge Based Conceptual Neural Network
(KBCNN) model. KBCNN revises and learns knowledge on the basis of
a neural network translated from a rule base which encodes the initial
domain theory [8], [9]. In fact, the KBCNN model has some similarities
with both KBANN and the RAPTURE.

Researchers have also combined connectionist systems with fuzzy logic
to obtain Fuzzy Logic Neural Networks (FLNN). In FLNNs, the neural
network subsystem is typically used to adapt membership functions of
fuzzy variables [5], or to refine and extract fuzzy rules [20], [37], [38]. A
standard fuzzy logic system has four components:

� A fuzzifier, which determines the degree of membership of a crisp
input in a fuzzy set.

� A fuzzy rule base, which represents the fuzzy relationships be-
tween input-output fuzzy variables. The output of the fuzzy rule
base is determined based on the degree of membership specified
by the fuzzifier.

� An inference engine, which controls the rule base.

� A defuzzifier, which converts the output of the fuzzy rule base into
a crisp value.

Such fuzzy logic systems often suffer from two main problems. First,
designing the right membership function that represents each input and
output variable may be nontrivial. A common approach is to design an

© 2000 by CRC Press LLC

initial membership function, usually triangular or trapezoidal in shape,
and subsequently refine it using some heuristic. The second problem is
the lack of a learning function that can be adapted to reason about the
environment.

These two problems can be alleviated by combining both fuzzy logic and
neural network paradigms. In FLNN hybrid systems, a neural network
architecture is used to replace the fuzzy rule base module of standard
fuzzy logic systems. The Max and Min functions are commonly used
as activation functions in this network. Then, a supervised or unsuper-
vised learning algorithm is used instead of the inference engine to adapt
network parameters and/or architecture. After training the network with
available domain examples, the adapted network is used to refine initial
membership functions and fuzzy rule base. Moreover, it may be used to
extract new fuzzy rules.

The first five modules of HIA are superficially similar to both KBNN and
FLNN hybrid systems. HIA is capable of revising initial domain knowl-
edge and extracting new rules based on training examples. However, it
has the following distinguishing features: (1) it generates a uniform neu-
ral network architecture because of the constrained DOR format; (2) the
neural network architecture generated by HIA has only three layers, inde-
pendent of the initial rule base hierarchy; (3) it revises the input charac-
terization parameters using a coarse coding fuzzification approach dur-
ing the training phase which may enhance system performance; (4) it
combines a statistical module along with its knowledge based and neural
network modules to extract supplementary domain knowledge.

Much of the power of HIA is derived from its completeness. It provides
a mechanism for conflict resolution among the extracted rules, and for
optional integration of the refined expert system and the trained neural
network.

For the problem of controlling the flood gates of the Colorado river in
greater Austin, we observe that refining the input characterization along
with the domain knowledge incorporated in a connectionist model sub-
stantially enhanced the generalization ability of that model. This appli-
cation also showed the capability of HIA to extract new and useful op-

© 2000 by CRC Press LLC

erational rules from the trained connectionist module. The breast cancer
classification problem shows how the statistical module of HIA can en-
hance the topology of the connectionist module in cases where there is
no available prior domain knowledge or in cases where the input fea-
tures have substantial redundancy. It is remarkable that, using the Full-
RE technique, the data set can be characterized with high accuracy using
only five rules.

It will be worthwhile to apply HIA to a wider range of problems where
both domain knowledge and training data are available, but none is suf-
ficiently comprehensive on its own.

Acknowledgments

This research was supported in part by ARO contracts DAAG55-98-
1-0230 and DAAD19-99-1-0012, and NSF grant ECS-9900353. Ismail
Taha was also supported by the Egyptian Government Graduate Fellow-
ship in Electrical and Computer Engineering. We are thankful to Prof. B.
Kuipers for bringing the Colorado river problem to our attention.

References

[1] Aggarwal, J.K., Ghosh, J., Nair, D., and Taha, I. (1996), “A com-
parative study of three paradigms for object recognition - bayesian
statistics, neural networks and expert systems,”Advances In Image
Understanding: A Festschrift for Azriel Rosenfeld, Boyer, K. and
Ahuja, N. (Eds.), IEEE Computer Society Press, pp. 241-262.

[2] Andrews, R., Diederich, J., and Tickle, A. (1995), “A survey and
critique of techniques for extracting rules from trained artificial
neural networks,”Knowledge-Based Systems, vol. 8, no. 6, pp. 373-
389.

[3] Bennett, K. and Mangasarian, O. (1992), “Robust linear program-
ming discrimination of two linearly inseparable sets,”Optimization
Methods and Software 1, Gordon and Breach Science Publishers.

© 2000 by CRC Press LLC

[4] Jain, L.C., and Martin, N.M. (Eds.) (1999),Fusion of Neural Net-
works, Fuzzy Systems and Genetic Algorithms, CRC Press.

[5] Challo, R., McLauchlan, R., Clark, D., and Omar, S. (1994), “A
fuzzy neural hybrid system,”IEEE International Conference on
Neural Networks, Orlando, FL, vol. III, pp. 1654-1657.

[6] Fletcher, J. and Obradovic, Z. (1993), “Combining prior symbolic
knowledge and constructive neural network learning,”Connection
Science, vol. 5, no. 3-4, pp. 365-375.

[7] Friedman, J.H. (1994), “An overview of predictive learning and
function approximation,”From Statistics to Neural Networks, Proc.
NATO/ASI Workshop, Cherkassky, V., Friedman, J., and Wechsler,
H., editors, Springer-Verlag, pp. 1-61.

[8] Fu, L. (1993), “Knowledge-based connectionism for revising do-
main theories,”IEEE Transactions on Systems, Man, and Cyber-
netics, vol. 23, no. 1, pp. 173-182.

[9] Fu, L. (1994),Neural Networks in Computer Intelligence, McGraw-
Hill, Inc.

[10] Gallant, S.I. (1988), “Connectionist expert systems,”Comm. of
ACM, vol. 31, no. 2, pp. 152-169.

[11] Ghosh, J. and Tumer, K. (1994), “Structural adaptation and general-
ization in supervised feed-forward networks,”Journal of Artificial
Neural Networks, vol. 1, no. 4, pp. 431-458.

[12] Giles, C. and Omlin, C. (1994), “Pruning recurrent neural networks
for improved generalization performance,”IEEE Transactions on
Neural Networks, vol. 5, no. 5, pp. 848-851.

[13] Glover, C., Silliman, M., Walker, M., and Spelt, P. (1990), “Hybrid
neural network and rule-based pattern recognition system capable
of self-modification,”Proceedings of SPIE, Application of Artificial
Intelligence VIII, pp. 290-300.

[14] Gonzalez, R. (1993),Digital Image Processing, Addison-Wesley.

© 2000 by CRC Press LLC

[15] Hendler, J. (1989), “Marker-passing over microfeatures: towards a
hybrid symbolic/connectionist model,”Cognitive Science, vol. 13,
pp. 79-106.

[16] Jackson, P. (1990),Introduction to Expert Systems, Addison-
Wesley.

[17] Kanal, L. (1974), “Patterns in pattern recognition,”IEEE Trans. In-
formation Theory, IT-20:697-722.

[18] Lacher, R., Hruska, S., and Kuncicky, D. (1992), “Backpropagation
learning in expert networks,”IEEE Transactions on Neural Net-
works, vol. 3, no. 1, pp. 62-72.

[19] LCRA (1992). “The flooding of the Colorado: how the system
worked to protect central Texas,” Technical report, Lower Colorado
River Authority, P.O. Box 220, Austin, Texas 78767-0220.

[20] Lin, C. and Lee, C. (1991), “Neural-network-based fuzzy logic con-
trol and decision system,”IEEE Transactions on Computers, vol.
40, no. 12, pp. 1320-1326.

[21] Liu, H. and Setiono, R. (1995), “Chi2: feature selection and dis-
cretization of numeric attributes,”Proceedings of the Seventh Inter-
national Conference on Tools with Artificial Intelligence, pp. 388-
391.

[22] Mahoney, J. and Mooney, R. (1993), “Combining connectionist and
symbolic learning to refine certainty factor rule bases,”Connection
Science, vol. 5, no. 3-4, pp. 339-364.

[23] Mangasarian, O. and Wolberg, H. (1990), “Cancer diagnosis via
linear programming,”SIAM News, vol. 23, pp. 5, pp. 1-18.

[24] McGarry, K., Wertmer, S., and MacIntyre, J. (1999), “Hybrid neural
systems: from simple coupling to fully integrated neural networks,”
Neural Computing Surveys, vol. 2, pp. 62-93.

[25] Medsker, L.R. (1995),Hybrid Intelligent Systems, Kluwer Aca-
demic, Norwell, MA.

© 2000 by CRC Press LLC

[26] Michalski, R. (1993), “Toward a unified theory of learning: multi-
strategy task-adaptive learning,”Readings in Knowledge Acquisi-
tion and Learning: Automating the Construction and Improvement
of Expert Systems, Buchanan, B. and Wilkins, D., editors, Morgan
Kaufmann, San Mateo.

[27] Minsky, M. (1991), “Logical versus analogical or symbolic versus
connectionist or neat versus scruffy,”AI Magazine, vol. 12, no. 2,
pp. 34-51.

[28] Ourston, D. and Mooney, R. (1990), “Changing the rules: a compre-
hensive approach to theory refinement,”Proceedings of the Eighth
National Conference on Artificial Intelligence, AAAI Press, pp.
815-820.

[29] Ruddel, R. and Sangiovanni-Vincentelli, A. (1985), “Espresso-MV:
algorithms for multiple-valued logic minimization,”Proceedings of
Cust. Int. Circ. Conf., Portland.

[30] Scott, A., Clayton, J., and Gibson, E. (1991),A Practical Guide to
Knowledge Acquisition, Addison-Wesley.

[31] Sharkey, A. (1996), “On combining artificial neural networks,”
Connection Science, vol. 8, no. 3/4, pp. 299-314.

[32] Sharkey, N. and Sharkey, A. (1994), “Understanding catastrophic
interference in neural nets,” Technical Report CS-94-4, Dept. of CS,
Univ. of Sheffield, UK.

[33] Sun, R. (1994),Integrating Rules and Connectionism for Robust
Commonsense Reasoning, John Wiley and Sons.

[34] Taha, I. (1997),A Hybrid Intelligent Architecture for Revising Do-
main Knowledge, Ph.D. thesis, Dept. of ECE, Univ. of Texas at
Austin, December.

[35] Taha, I. and Ghosh, J. (1997), “Hybrid intelligent architecture and
its application to water reservoir control,”International Journal of
Smart Engineering Systems, vol. 1, pp. 59-75.

© 2000 by CRC Press LLC

[36] Taha, I. and Ghosh, J. (1999), “Symbolic interpretation of artificial
neural networks,”IEEE Trans. Knowledge and Data Engineering,
vol. 11, no. 3, pp. 448-463.

[37] Takagi, H. and Hayashi, I. (1992), “NN-driven fuzzy reasoning,”
Fuzzy Models for Pattern Recognition, Bezdek, J. and Pal, S., edi-
tors, IEEE Press, pp. 496-512.

[38] Tazaki, E. and Inoue, N. (1994), “A generation methods for fuzzy
rules using neural networks with planar lattice architecture,”IEEE
International Conference on Neural Networks, Orlando, FL, vol.
III, pp. 1743-1748.

[39] Tickle, A.B., Andrews, R., Golea, M., and Diederich, J. (1998),
“The truth will come to light: directions and challenges in extract-
ing the knowledge embedded within trained artificial neural net-
works,” IEEE Transactions on Neural Networks, vol. 9, no. 6, pp.
1057-1068.

[40] Towell, G. and Shavlik, J. (1993), “The extraction of refined rules
from knowledge-based neural networks,”Machine Learning, vol.
13, no. 1, pp. 71-101.

[41] Towell, G. and Shavlik, J. (1994), “Knowledge-based artificial neu-
ral networks,”Artificial Intelligence, vol. 70, no. 1-2, pp. 119-165.

[42] Towell, G., Shavlik, J., and Noordwier, M. (1990), “Refinement of
approximate domain theories by knowledge-based artificial neural
network,”Proceedings of Eighth National Conference on Artificial
Intelligence, pp. 861-866.

[43] Wang, L. and Mendel, J. (1992), “Generating fuzzy rules by learn-
ing examples,”IEEE Transactions on Systems, Man, and Cybernet-
ics, vol. 22, no. 6, pp. 1414-1427.

[44] Wilson, A. and Hendler, J. (1993), “Linking symbolic and subsym-
bolic computing,”Connection Science, vol. 5, no. 3-4, pp. 395-414.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 2

NEW RADIAL BASIS NEURAL
NETWORKS AND THEIR APPLICATION

IN A LARGE-SCALE HANDWRITTEN
DIGIT RECOGNITION PROBLEM

N.B. Karayiannis
Department of Electrical and Computer Engineering

University of Houston
Houston, Texas 77204-4793

U.S.A.
Karayiannis@UH.EDU

S. Behnke
Institute of Computer Science

Free University of Berlin
Takustr. 9, 14195 Berlin

Germany
behnke@inf.fu-berlin.de

This chapter presents an axiomatic approach for reformulating radial ba-
sis function (RBF) neural networks. With this approach the construction
of admissible RBF models is reduced to the selection of generator func-
tions that satisfy certain properties. The selection of specific generator
functions is based on criteria which relate to their behavior when the
training of reformulated RBF networks is performed by gradient descent.
This chapter also presents batch and sequential learning algorithms de-
veloped for reformulated RBF networks using gradient descent. These
algorithms are used to train reformulated RBF networks to recognize
handwritten digits from the NIST databases.

1 Introduction

A radial basis function(RBF) neural network is usually trained to map
a vectorxk 2 IRni into a vectoryk 2 IRno, where the pairs(xk;yk); 1 �
k � M , form thetraining set. If this mapping is viewed as a function
in the input spaceIRni , learning can be seen as a function approxima-
tion problem. From this point of view, learning is equivalent to finding
a surface in a multidimensional space that provides the best fit for the
training data. Generalization is therefore synonymous with interpolation
between the data points along the constrained surface generated by the
fitting procedure as the optimum approximation to this mapping.

Broomhead and Lowe [3] were the first to explore the use of radial basis
functions in the design of neural networks and to show how RBF neu-
ral networks model nonlinear relationships and implement interpolation.
Micchelli [33] showed that RBF neural networks can produce an inter-
polating surface which exactly passes through all the pairs of the training
set. However, the exact fit is neither useful nor desirable in practice as it
may produce anomalous interpolation surfaces. Poggio and Girosi [38]
viewed the training of RBF neural networks as an ill-posed problem,
in the sense that the information in the training data is not sufficient to
uniquely reconstruct the mapping in regions where data are not available.
From this point of view, learning is closely related to classical approxi-
mation techniques such as generalized splines and regularization theory.
Park and Sandberg [36], [37] proved that RBF neural networks with one
layer of radial basis functions are capable of universal approximation.
Under certain mild conditions on radial basis functions, RBF networks
are capable of approximating arbitrarily well any function. Similar proofs
also exist in the literature for feed-forward neural models with sigmoidal
nonlinearities [7].

The performance of a RBF neural network depends on the number and
positions of the radial basis functions, their shapes, and the method used
for learning the input-output mapping. The existing learning strategies
for RBF neural networks can be classified as follows: 1) strategies se-
lecting radial basis function centers randomly from the training data [3],
2) strategies employing unsupervised procedures for selecting radial ba-
sis function centers [5], [6], [25], [34], and 3) strategies employing su-

© 2000 by CRC Press LLC

pervised procedures for selecting radial basis function centers [4], [13],
[17], [20], [21], [38].

Broomhead and Lowe [3] suggested that, in the absence ofa priori
knowledge, the centers of the radial basis functions can either be dis-
tributed uniformly within the region of the input space for which there
is data, or chosen to be a subset of training points by analogy with
strict interpolation. This approach is sensible only if the training data are
distributed in a representative manner for the problem under considera-
tion, an assumption that is very rarely satisfied in practical applications.
Moody and Darken [34] proposed a hybrid learning process for train-
ing RBF neural networks with Gaussian radial basis functions, which
is widely used in practice. This learning procedure employs different
schemes for updating theoutput weights, i.e., the weights that connect
the radial basis functions with the output units, and the centers of the
radial basis functions, i.e., the vectors in the input space that represent
the prototypesof the input vectors included in the training set. Moody
and Darken used thec-means (ork-means) clustering algorithm [2] and
a “P -nearest-neighbor” heuristic to determine the positions and widths
of the Gaussian radial basis functions, respectively. The output weights
are updated using a supervised least-mean-squares learning rule. Pog-
gio and Girosi [38] proposed a fully supervised approach for training
RBF neural networks with Gaussian radial basis functions, which up-
dates the radial basis function centers together with the output weights.
Poggio and Girosi used Green’s formulas to deduct an optimal solution
with respect to the objective function and employed gradient descent to
approximate the regularized solution. They also proposed that Kohonen’s
self-organizing feature map [29], [30] can be used for initializing the ra-
dial basis function centers before gradient descent is used to adjust all of
the free parameters of the network. Chenet al. [5], [6] proposed a learn-
ing procedure for RBF neural networks based on theorthogonal least
squares(OLS) method. The OLS method is used as a forward regres-
sion procedure to select a suitable set of radial basis function centers. In
fact, this approach selects radial basis function centers one by one until
an adequate RBF neural network has been constructed. Cha and Kas-
sam [4] proposed a stochastic gradient training algorithm for RBF neural
networks with Gaussian radial basis functions. This algorithm uses gradi-
ent descent to update all free parameters of RBF neural networks, which

© 2000 by CRC Press LLC

include the radial basis function centers, the widths of the Gaussian ra-
dial basis functions, and the output weights. Whitehead and Choate [42]
proposed an evolutionary training algorithm for RBF neural networks.
In this approach, the centers of radial basis functions are governed by
space-filling curves whose parameters evolve genetically. This encoding
causes each group of co-determined basis functions to evolve in order to
fit a region of the input space. Royet al. [40] proposed a set of learn-
ing principles that led to a training algorithm for a network that contains
“truncated” radial basis functions and other types of hidden units. This
algorithm uses random clustering and linear programming to design and
train the network with polynomial time complexity.

Despite the existence of a variety of learning schemes, RBF neural net-
works are frequently trained in practice using variations of the learn-
ing scheme proposed by Moody and Darken [34]. These hybrid learn-
ing schemes determine separately the prototypes that represent the ra-
dial basis function centers according to someunsupervisedclustering or
vector quantization algorithm and update the output weights by asuper-
visedprocedure to implement the desired input-output mapping. These
approaches were developed as a natural reaction to the long training
times typically associated with the training of traditional feed-forward
neural networks using gradient descent [28]. In fact, these hybrid learn-
ing schemes achieve fast training of RBF neural networks as a result of
the strategy they employ for learning the desired input-output mapping.
However, the same strategy prevents the training set from participating in
the formation of the radial basis function centers, with a negative impact
on the performance of trained RBF neural networks [25]. This created
a wrong impression about the actual capabilities of an otherwise pow-
erful neural model. The training of RBF neural networks using gradient
descent offers a solution to the trade-off between performance and train-
ing speed. Moreover, such training can make RBF neural networks seri-
ous competitors to feed-forward neural networks with sigmoidal hidden
units.

Learning schemes attempting to train RBF neural networks by fixing the
locations of the radial basis function centers are very slightly affected by
the specific form of the radial basis functions used. On the other hand,
the convergence of gradient descent learning and the performance of the

© 2000 by CRC Press LLC

trained RBF neural networks are both affected rather strongly by the
choice of radial basis functions. The search for admissible radial basis
functions other than the Gaussian function motivated the development
of an axiomatic approach for constructing reformulated RBF neural net-
works suitable for gradient descent learning [13], [17], [20], [21].

2 Function Approximation Models and
RBF Neural Networks

There are many similarities between RBF neural networks and function
approximation models used to perform interpolation. Such function ap-
proximation models attempt to determine a surface in a Euclidean space
IRni that provides the best fit for the data(xk; yk), 1 � k � M , where
xk 2 X � IRni andyk 2 IR for all k = 1; 2; : : : M . Micchelli [33] con-
sidered the solution of the interpolation problems(xk) = yk; 1 � k �
M , by functionss : IRni ! IR of the form:

s(x) =
MX
k=1

wk g(kx� xkk
2): (1)

This formulation treats interpolation as a function approximation prob-
lem, with the functions(�) generated by the fitting procedure as the best
approximation to this mapping. Given the form of the basis functiong(�),
the function approximation problem described bys(xk) = yk; 1 � k �
M , reduces to determining the weightswk; 1 � k �M , associated with
the model (1).

The model described by equation (1) is admissible for interpolation if
the basis functiong(�) satisfies certain conditions. Micchelli [33] showed
that a functiong(�) can be used to solve this interpolation problem if the
M�M matrixG = [gij] with entriesgij = g(kxi�xjk

2) is positive def-
inite. The matrixG is positive definite if the functiong(�) is completely
monotonicon (0;1). A functiong(�) is called completely monotonic on
(0;1) if it is continuous on(0;1) and its`th order derivativesg(`)(x)
satisfy(�1)` g(`)(x) � 0; 8x 2 (0;1), for ` = 0; 1; 2; : : :.

RBF neural network models can be viewed as the natural extension of
this formulation. Consider the function approximation model described

© 2000 by CRC Press LLC

by:

ŷ = w0 +
cX

j=1

wj g(kx� vjk
2): (2)

If the functiong(�) satisfies certain conditions, the model (2) can be used
to implement a desired mappingIRni ! IR specified by the training
set (xk; yk); 1 � k � M . This is usually accomplished by devising a
learning procedure to determine its adjustable parameters. In addition
to the weightswj; 0 � j � c, the adjustable parameters of the model
(2) also include the vectorsvj 2 V � IRni; 1 � j � c. These vec-
tors are determined during learning as the prototypes of the input vec-
tors xk; 1 � k � M . The adjustable parameters of the model (2) are
frequently updated by minimizing some measure of the discrepancy be-
tween the expected outputyk of the model to the corresponding inputxk
and its actual response:

ŷk = w0 +
cX

j=1

wj g(kxk � vjk
2); (3)

for all pairs(xk; yk); 1 � k �M , included in the training set.

The function approximation model (2) can be extended to implement any
mappingIRni ! IRno, no � 1, as:

ŷi = f

0
@wi0 +

cX
j=1

wij g(kx� vjk
2)

1
A ; 1 � i � no; (4)

wheref(�) is a non-decreasing, continuous and differentiable everywhere
function. The model (4) describes a RBF neural network with inputs from
IRni , c radial basis function units, andno output units if:

g(x2) = �(x); (5)

and�(�) is a radial basis function. In such a case, the response of the
network to the input vectorxk is:

ŷi;k = f

0
@ cX
j=0

wij hj;k

1
A ; 1 � i � no; (6)

© 2000 by CRC Press LLC

x

...

ŷ1 ŷ2 ŷno

P P P

�(kx� v1k) �(kx� v2k) �(kx� v3k) ... �(kx� vck)

Figure 1. A radial basis function neural network.

whereh0;k = 1; 8k, andhj;k represents the response of the radial basis
function located at thejth prototype to the input vectorxk, that is,

hj;k = �(kxk � vjk)

= g(kxk � vjk
2); 1 � j � c: (7)

The response (6) of the RBF neural network to the inputxk is actually the
output of the upper associative network. When the RBF neural network
is presented withxk, the input of the upper associative network is formed
by the responses (7) of the radial basis functions located at the prototypes
vj; 1 � j � c, as shown in Figure1.

The models used in practice to implement RBF neural networks usually
contain linear output units. An RBF model with linear output units can be
seen as a special case of the model (4) that corresponds tof(x) = x. The

© 2000 by CRC Press LLC

choice of linear output units was mainly motivated by the hybrid learning
schemes originally developed for training RBF neural networks. Never-
theless, the learning process is only slightly affected by the form off(�)
if RBF neural networks are trained using learning algorithms based on
gradient descent. Moreover, the form of an admissible functionf(�) does
not affect the function approximation capability of the model (4) or the
conditions that must be satisfied by radial basis functions. Finally, the use
of a nonlinear sigmoidal functionf(�) could make RBF models stronger
competitors to traditional feed-forward neural networks in certain appli-
cations, such as those involving pattern classification.

3 Reformulating Radial Basis
Neural Networks

A RBF neural network is often interpreted as a composition of localized
receptive fields. The locations of these receptive fields are determined by
the prototypes while their shapes are determined by the radial basis func-
tions used. The interpretation often associated with RBF neural networks
imposes some implicit constraints on the selection of radial basis func-
tions. For example, RBF neural networks often employ decreasing Gaus-
sian radial basis functions despite the fact that there exist both increasing
and decreasing radial basis functions. The “neural” interpretation of the
model (4) can be the basis of a systematic search for radial basis func-
tions to be used for reformulating RBF neural networks [13], [17], [20],
[21]. Such a systematic search is based on mathematical restrictions im-
posed on radial basis functions by their role in the formation of receptive
fields.

The interpretation of a RBF neural network as a composition of receptive
fields requires that the responses of all radial basis functions to all inputs
are always positive. If the prototypes are interpreted as the centers of re-
ceptive fields, it is required that the response of any radial basis function
becomes stronger as the input approaches its corresponding prototype.
Finally, it is required that the response of any radial basis function be-
comes more sensitive to an input vector as this input vector approaches
its corresponding prototype.

© 2000 by CRC Press LLC

Lethj;k = g (kxk � vjk
2) be the response of thejth radial basis function

of a RBF neural network to the inputxk. According to the above inter-
pretation of RBF neural networks, any admissible radial basis function
�(x) = g(x2) must satisfy the following three axiomatic requirements
[13], [17], [20], [21]:

Axiom 1: hj;k > 0 for all xk 2 X andvj 2 V.

Axiom 2: hj;k > hj;` for all xk;x` 2 X andvj 2 V such thatkxk �
vjk

2 < kx` � vjk
2.

Axiom 3: If rxkhj;k � @hj;k=@xk denotes the gradient ofhj;k with
respect to the corresponding inputxk, then:

krxkhj;kk
2

kxk � vjk2
>
krx`hj;`k

2

kx` � vjk2
;

for all xk;x` 2 X andvj 2 V such thatkxk � vjk
2 <

kx` � vjk
2.

These basic axiomatic requirements impose some rather mild mathemat-
ical restrictions on the search for admissible radial basis functions. Nev-
ertheless, this search can be further restricted by imposing additional re-
quirements that lead to stronger mathematical conditions. For example,
it is reasonable to require that the responses of all radial basis functions
to all inputs are bounded, i.e.,hj;k < 1; 8j; k. On the other hand, the
third axiomatic requirement can be made stronger by requiring that:

krxkhj;kk
2 > krx`hj;`k

2 (8)

if kxk � vjk2 < kx` � vjk2. Sincekxk � vjk2 < kx` � vjk2,

kr
xk
hj;kk

2

kxk � vjk2
>
kr

xk
hj;kk

2

kx` � vjk2
: (9)

If kr
xk
hj;kk

2 > kr
x`
hj;`k

2 andkxk � vjk2 < kx` � vjk2, then:

krxkhj;kk
2

kxk � vjk2
>
kr

xk
hj;kk

2

kx` � vjk2
>
kr

x`
hj;`k

2

kx` � vjk2
; (10)

© 2000 by CRC Press LLC

and the third axiomatic requirement is satisfied. This implies that condi-
tion (8) is stronger than that imposed by the third axiomatic requirement.

The above discussion suggests two complementary axiomatic require-
ments for radial basis functions [17]:

Axiom 4: hj;k <1 for all xk 2 X andvj 2 V.

Axiom 5: If rxkhj;k � @hj;k=@xk denotes the gradient ofhj;k with
respect to the corresponding inputxk, then:

krxkhj;kk
2 > krx`hj;`k

2;

for all xk;x` 2 X andvj 2 V such thatkxk � vjk
2 <

kx` � vjk
2.

The selection of admissible radial basis functions can be facilitated by
the following theorem [17]:

Theorem 1:The model described by equation (4) represents a RBF neural
network in accordance with all five axiomatic requirements if and only if
g(�) is a continuous function on(0;1), such that:

1. g(x) > 0; 8x 2 (0;1),

2. g(x) is a monotonically decreasing function ofx 2 (0;1), i.e.,
g0(x) < 0; 8x 2 (0;1),

3. g0(x) is a monotonically increasing function ofx 2 (0;1), i.e.,
g00(x) > 0; 8x 2 (0;1),

4. limx!0+ g(x) = L, whereL is a finite number.

5. d(x) = g0(x) + 2 x g00(x) > 0; 8x 2 (0;1).

A radial basis function is said to beadmissible in the wide senseif it
satisfies the three basic axiomatic requirements, that is, the first three
conditions of Theorem 1 [13], [17], [20], [21]. If a radial basis func-
tion satisfies all five axiomatic requirements, that is, all five conditions of
Theorem 1, then it is said to beadmissible in the strict sense[17].

© 2000 by CRC Press LLC

A systematic search for admissible radial basis functions can be facili-
tated by considering basis functions of the form�(x) = g(x2), with g(�)

defined in terms of agenerator functiong0(�) as g(x) = (g0(x))
1

1�m ,
m 6= 1 [13], [17], [20], [21]. The selection of generator functions that
lead to admissible radial basis functions can be facilitated by the follow-
ing theorem [17]:

Theorem 2:Consider the model (4) and letg(x) be defined in terms of
the generator functiong0(x) that is continuous on(0;1) as:

g(x) = (g0(x))
1

1�m ; m 6= 1: (11)

If m > 1, then this model represents a RBF neural network in accordance
with all five axiomatic requirements if:

1. g0(x) > 0; 8x 2 (0;1),

2. g0(x) is a monotonically increasing function ofx 2 (0;1), i.e.,
g00(x) > 0; 8x 2 (0;1),

3. r0(x) = m
m�1

(g00(x))
2 � g0(x) g

00
0(x) > 0; 8x 2 (0;1),

4. limx!0+ g0(x) = L1 > 0,

5. d0(x) = g0(x) g
0
0(x)� 2 x r0(x) < 0; 8x 2 (0;1).

If m < 1, then this model represents a RBF neural network in accordance
with all five axiomatic requirements if:

1. g0(x) > 0; 8x 2 (0;1),

2. g0(x) is a monotonically decreasing function ofx 2 (0;1), i.e.,
g00(x) < 0; 8x 2 (0;1),

3. r0(x) = m
m�1

(g00(x))
2 � g0(x) g

00
0(x) < 0; 8x 2 (0;1),

4. limx!0+ g0(x) = L2 <1,

5. d0(x) = g0(x) g
0
0(x)� 2 x r0(x) > 0; 8x 2 (0;1).

© 2000 by CRC Press LLC

Any generator function that satisfies the first three conditions of Theo-
rem 2 leads to admissible radial basis functions in the wide sense [13],
[17], [20], [21]. Admissible radial basis functions in the strict sense can
be obtained from generator functions that satisfy all five conditions of
Theorem 2 [17].

4 Admissible Generator Functions

This section investigates the admissibility in the wide and strict sense of
linear and exponential generator functions.

4.1 Linear Generator Functions

Consider the functiong(x) = (g0(x))
1

1�m , with g0(x) = a x + b and
m > 1. Clearly,g0(x) = a x + b > 0; 8x 2 (0;1), for all a > 0 and
b � 0. Moreover,g0(x) = a x+ b is a monotonically increasing function
if g00(x) = a > 0. Forg0(x) = a x + b, g00(x) = a, g000(x) = 0, and

r0(x) =
m

m� 1
a2: (12)

If m > 1, thenr0(x) > 0; 8x 2 (0;1). Thus,g0(x) = a x + b is an
admissible generator function in the wide sense (i.e., in the sense that it
satisfies the three basic axiomatic requirements) for alla > 0 andb � 0.
Certainly, all combinations ofa > 0 andb > 0 also lead to admissible
generator functions in the wide sense.

Forg0(x) = a x+ b, the fourth axiomatic requirement is satisfied if:

lim
x!0+

g0(x) = b > 0: (13)

Forg0(x) = a x+ b,

d0(x) = (a x+ b) a� 2 x
m

m� 1
a2: (14)

If m > 1, the fifth axiomatic requirement is satisfied ifd0(x) < 0; 8x 2
(0;1). Fora > 0, the conditiond0(x) < 0 is satisfied byg0(x) = a x+b
if:

x >
m� 1

m + 1

b

a
: (15)

© 2000 by CRC Press LLC

Sincem > 1, the fifth axiomatic requirement is satisfied only ifb = 0 or,
equivalently, ifg0(x) = a x. However, the valueb = 0 violates the fourth
axiomatic requirement. Thus, there exists no combination ofa > 0 and
b > 0 leading to an admissible generator function in the strict sense that
has the formg0(x) = a x+ b.

If a = 1 andb = 2, then the linear generator functiong0(x) = a x + b

becomesg0(x) = x+2. For this generator function,g(x) = (x+2)
1

1�m .
If m = 3, g(x) = (x + 2)�

1
2 corresponds to the inverse multiquadratic

radial basis function:

�(x) = g(x2) =
1

(x2 + 2)
1
2

: (16)

For g0(x) = x + 2, limx!0+ g0(x) = 2 and limx!0+ g(x) =
2

1�m .
Sincem > 1, g(�) is a bounded function if takes nonzero values. How-
ever, the bound ofg(�) increases and approaches infinity as decreases
and approaches 0. Ifm > 1, the conditiond0(x) < 0 is satisfied by
g0(x) = x + 2 if:

x >
m� 1

m+ 1
2: (17)

Clearly, the fifth axiomatic requirement is satisfied only for = 0, which
leads to an unbounded functiong(�) [13], [20], [21].

Another useful generator function for practical applications can be ob-
tained fromg0(x) = a x + b by selectingb = 1 anda = Æ > 0. For
g0(x) = 1 + Æ x, limx!0+ g(x) = limx!0+ g0(x) = 1. For this choice
of parameters, the corresponding radial basis function�(x) = g(x2) is
bounded by 1, which is also the bound of the Gaussian radial basis func-
tion. If m > 1, the conditiond0(x) < 0 is satisfied byg0(x) = 1 + Æ x
if:

x >
m� 1

m+ 1

1

Æ
: (18)

For a fixedm > 1, the fifth axiomatic requirement is satisfied in the limit
Æ !1. Thus, a reasonable choice forÆ in practical situations isÆ � 1.

The radial basis function that corresponds to the linear generator function
g0(x) = a x + b and some value ofm > 1 can also be obtained from the

© 2000 by CRC Press LLC

decreasing functiong0(x) = 1=(a x + b) combined with an appropriate
value ofm < 1. As an example, form = 3, the generator function
g0(x) = a x + b leads tog(x) = (a x + b)�

1
2 . For a = 1 and b =

2, this generator function corresponds to the multiquadratic radial basis
function (16). The multiquadratic radial basis function (16) can also be
obtained using the decreasing generator functiong0(x) = 1=(x+2)with
m = �1. In general, the functiong(x) = (g0(x))

1
1�m corresponding to

the increasing generator functiong0(x) = a x + b andm = mi > 1,
is identical with the functiong(x) = (g0(x))

1
1�m corresponding to the

decreasing functiong0(x) = 1=(a x+ b) andm = md if:

1

1�mi

=
1

md � 1
; (19)

or, equivalently, if:
mi +md = 2: (20)

Sincemi > 1, (20) implies thatmd < 1.

The admissibility of the decreasing generator functiong0(x) = 1=(a x+
b) can also be verified by using directly the results of Theorem 2. Con-
sider the functiong(x) = (g0(x))

1
1�m , with g0(x) = 1=(a x + b) and

m < 1. For alla > 0 andb > 0, g0(x) = 1=(a x+ b) > 0; 8x 2 (0;1).
Sinceg00(x) = �a=(a x + b)2 < 0; 8x 2 (0;1), g0(x) = 1=(a x + b)
is a monotonically decreasing function for alla > 0. Sinceg000(x) =
2a2=(a x+ b)3,

r0(x) =
2�m

m� 1

a2

(a x+ b)4
: (21)

For m < 1, r0(x) < 0; 8x 2 (0;1), andg0(x) = 1=(a x + b) is an
admissible generator function in the wide sense.

Forg0(x) = 1=(a x+ b),

lim
x!0+

g0(x) =
1

b
; (22)

which implies thatg0(x) = 1=(a x+ b) satisfies the fourth axiomatic re-
quirement unlessb approaches 0. In such a case,limx!0+ g0(x) = 1=b =

© 2000 by CRC Press LLC

New Radial Basis Neural Networks 53

1. Forg0(x) = 1=(a x+ b),

d0(x) =
a

(a x+ b)4

�
a
m� 3

m� 1
x� b

�
: (23)

If m < 1, the fifth axiomatic requirement is satisfied ifd0(x) > 0; 8x 2
(0;1). Sincea > 0, the conditiond0(x) > 0 is satisfied byg0(x) =
1=(a x+ b) if:

x >
m� 1

m� 3

b

a
: (24)

Once again, the fifth axiomatic requirement is satisfied forb = 0, a value
that violates the fourth axiomatic requirement.

4.2 Exponential Generator Functions

Consider the functiong(x) = (g0(x))
1

1�m , with g0(x) = exp(�x), � >
0, andm > 1. For any�, g0(x) = exp(�x) > 0; 8x 2 (0;1). For
all � > 0, g0(x) = exp(�x) is a monotonically increasing function of
x 2 (0;1). For g0(x) = exp(�x), g00(x) = � exp(�x) andg000(x) =
�2 exp(�x). In this case,

r0(x) =
1

m� 1
(� exp(�x))2: (25)

If m > 1, thenr0(x) > 0; 8x 2 (0;1). Thus,g0(x) = exp(�x) is an
admissible generator function in the wide sense for all� > 0.

Forg0(x) = exp(�x); � > 0,

lim
x!0+

g0(x) = 1 > 0; (26)

which implies thatg0(x) = exp(�x) satisfies the fourth axiomatic re-
quirement. Forg0(x) = exp(�x); � > 0,

d0(x) = (� exp(�x))2

1

�
�

2

m� 1
x

!
: (27)

© 2000 by CRC Press LLC

Form > 1, the fifth axiomatic requirement is satisfied ifd0(x) < 0; 8x 2
(0;1). The conditiond0(x) < 0 is satisfied byg0(x) = exp(�x) if:

x >
m� 1

2�
=

�2

2
> 0; (28)

where�2 = (m�1)=�. Regardless of the value� > 0, g0(x) = exp(�x)
is not an admissible generator function in the strict sense.

Consider also the functiong(x) = (g0(x))
1

1�m , with g0(x) = exp(��x),
� > 0, andm < 1. For any�, g0(x) = exp(��x) > 0; 8x 2
(0;1). For all � > 0, g00(x) = �� exp(��x) < 0; 8x 2 (0;1),
andg0(x) = exp(��x) is a monotonically decreasing function. Since
g000(x) = �2 exp(��x),

r0(x) =
1

m� 1
(� exp(��x))2 : (29)

If m < 1, thenr0(x) < 0; 8x 2 (0;1), andg0(x) = exp(��x) is an
admissible generator function in the wide sense for all� > 0.

Forg0(x) = exp(��x), � > 0,

lim
x!0+

g0(x) = 1 <1; (30)

which implies thatg0(x) = exp(��x) satisfies the fourth axiomatic re-
quirement. Forg0(x) = exp(��x), � > 0,

d0(x) = (� exp(��x))2

�
1

�
+

2

1�m
x

!
: (31)

Form < 1, the fifth axiomatic requirement is satisfied ifd0(x) > 0; 8x 2
(0;1). The conditiond0(x) > 0 is satisfied byg0(x) = exp(��x) if:

x >
1�m

2 �
=

�2

2
; (32)

where�2 = (1 � m)=�. Once again,g0(x) = exp(��x) is not an ad-
missible generator function in the strict sense regardless of the value of
� > 0.

© 2000 by CRC Press LLC

It must be emphasized that both increasing and decreasing exponential
generator functions essentially lead to the same radial basis function. If
m > 1, the increasing exponential generator functiong0(x) = exp(�x),
� > 0, corresponds to the Gaussian radial basis function�(x) = g(x2) =
exp(�x2=�2), with �2 = (m� 1)=�. If m < 1, the decreasing exponen-
tial generator functiong0(x) = exp(��x), � > 0, also corresponds to
the Gaussian radial basis function�(x) = g(x2) = exp(�x2=�2), with
�2 = (1 � m)=�. In fact, the functiong(x) = (g0(x))

1
1�m correspond-

ing to the increasing generator functiong0(x) = exp(�x); � > 0, with
m = mi > 1 is identical with the functiong(x) = (g0(x))

1
1�m corre-

sponding to the decreasing functiong0(x) = exp(��x); � > 0, with
m = md < 1 if:

mi � 1 = 1�md; (33)

or, equivalently, if:
mi +md = 2: (34)

5 Selecting Generator Functions

All possible generator functions considered in the previous section sat-
isfy the three basic axiomatic requirements but none of them satisfies
all five axiomatic requirements. In particular, the fifth axiomatic require-
ment is satisfied only by generator functions of the formg0(x) = a x,
which violate the fourth axiomatic requirement. Therefore, it is clear that
at least one of the five axiomatic requirements must be compromised in
order to select a generator function. Since the response of the radial basis
functions must be bounded in some function approximation applications,
generator functions can be selected by compromising the fifth axiomatic
requirement. Although this requirement is by itself very restrictive, its
implications can be used to guide the search for generator functions ap-
propriate for gradient descent learning [17].

5.1 The Blind Spot

Sincehj;k = g(kxk � vjk
2),

r
xk
hj;k = g0(kxk � vjk

2)rxk(kxk � vjk
2)

= 2 g0(kxk � vjk
2) (xk � vj): (35)

© 2000 by CRC Press LLC

The norm of the gradientrxkhj;k can be obtained from (35) as:

krxkhj;kk
2 = 4 kxk � vjk

2
�
g0(kxk � vjk

2)
�2

= 4 t(kxk � vjk
2); (36)

wheret(x) = x (g0(x))2. According to Theorem 1, the fifth axiomatic
requirement is satisfied if and only ifd(x) = g0(x)+2 x g00(x) > 0; 8x 2
(0;1). Sincet(x) = x (g0(x))2,

t0(x) = g0(x) (g0(x) + 2 x g00(x))

= g0(x) d(x): (37)

Theorem 1 requires thatg(x) is a decreasing function ofx 2 (0;1),
which implies thatg0(x) < 0; 8x 2 (0;1). Thus, (37) indicates that
the fifth axiomatic requirement is satisfied ift0(x) < 0; 8x 2 (0;1).
If this condition is not satisfied, thenkr

xk
hj;kk

2 is not a monotonically
decreasing function ofkxk � vjk

2 in the interval(0;1), as required
by the fifth axiomatic requirement. Given a functiong(�) satisfying the
three basic axiomatic requirements, the fifth axiomatic requirement can
be relaxed by requiring thatkr

xk
hj;kk

2 is a monotonically decreasing
function of kxk � vjk

2 in the interval(B;1) for someB > 0. Ac-
cording to (36), this is guaranteed if the functiont(x) = x (g0(x))2

has a maximum atx = B or, equivalently, if there exists aB > 0
such thatt0(B) = 0 and t00(B) < 0. If B 2 (0;1) is a solution
of t0(x) = 0 and t00(B) < 0, then t0(x) > 0; 8x 2 (0; B), and
t0(x) < 0; 8x 2 (B;1). Thus,krxkhj;kk

2 is an increasing function
of kxk � vjk

2 for kxk � vjk
2 2 (0; B) and a decreasing function of

kxk � vjk
2 for kxk � vjk2 2 (B;1). For all input vectorsxk that sat-

isfy kxk � vjk2 < B, the norm of the gradientrxkhj;k corresponding
to thejth radial basis function decreases asxk approaches its center that
is located at the prototypevj. This is exactly the opposite behavior of
what would intuitively be expected, given the interpretation of radial ba-
sis functions as receptive fields. As far as gradient descent learning is
concerned, the hypersphereRB = fx 2 X � IRni : kx� vk2 2 (0; B)g
is a “blind spot” for the radial basis function located at the prototypev.
The blind spot provides a measure of the sensitivity of radial basis func-
tions to input vectors close to their centers.

The blind spotRBlin
corresponding to the linear generator function

© 2000 by CRC Press LLC

g0(x) = a x+ b is determined by:

Blin =
m� 1

m+ 1

b

a
: (38)

The effect of the parameterm to the size of the blind spot is revealed by
the behavior of the ratio(m�1)=(m+1) viewed as a function ofm. Since
(m � 1)=(m + 1) increases as the value ofm increases, increasing the
value ofm expands the blind spot. For a fixed value ofm > 1, Blin = 0
only if b = 0. For b 6= 0, Blin decreases and approaches 0 asa increases
and approaches infinity. Ifa = 1 andb = 2, Blin approaches 0 as
approaches 0. Ifa = Æ andb = 1, Blin decreases and approaches 0 asÆ
increases and approaches infinity.

The blind spotRBexp
corresponding to the exponential generator function

g0(x) = exp(�x) is determined by:

Bexp =
m� 1

2�
: (39)

For a fixed value of�, the blind spot depends exclusively on the param-
eterm. Once again, the blind spot corresponding to the exponential gen-
erator function expands as the value ofm increases. For a fixed value of
m > 1, Bexp decreases and approaches 0 as� increases and approaches

infinity. For g0(x) = exp(�x), g(x) = (g0(x))
1

1�m = exp(�x=�2) with
�2 = (m � 1)=�. As a result, the blind spot corresponding to the expo-
nential generator function approaches 0 only if the width of the Gaussian
radial basis function�(x) = g(x2) = exp(�x2=�2) approaches 0. Such
a range of values of� would make it difficult for Gaussian radial ba-
sis functions to behave as receptive fields that can cover the entire input
space.

It is clear from (38) and (39) that the blind spot corresponding to the
exponential generator function is much more sensitive to changes ofm
compared with that corresponding to the linear generator function. This
can be quantified by computing for both generator functions the relative
sensitivity ofB = B(m) in terms ofm, defined as:

Sm
B =

m

B

@B

@m
: (40)

© 2000 by CRC Press LLC

For the linear generator functiong0(x) = a x + b, @Blin=@m =
(2=(m+ 1)2) (b=a) and

Sm
Blin

=
2m

m2 � 1
: (41)

For the exponential generator functiong0(x) = exp(�x), @Bexp=@m =
1=(2 �) and

Sm
Bexp

=
m

m� 1
: (42)

Combining (41) and (42) gives:

Sm
Bexp

=
m + 1

2
Sm
Blin

: (43)

Sincem > 1, Sm
Bexp

> Sm
Blin

. As an example, form = 3 the sensitiv-
ity with respect tom of the blind spot corresponding to the exponen-
tial generator function is twice that corresponding to the linear generator
function.

5.2 Criteria for Selecting Generator Functions

The response of the radial basis function located at the prototypevj to
training vectors depends on their Euclidean distance fromvj and the
shape of the generator function used. If the generator function does not
satisfy the fifth axiomatic requirement, the response of the radial basis
function located at each prototype exhibits the desired behavior only if
the training vectors are located outside its blind spot. This implies that
the training of a RBF model by a learning procedure based on gradient
descent depends mainly on the sensitivity of the radial basis functions to
training vectors outside their blind spots. This indicates that the criteria
used for selecting generator functions should involve both the shapes of
the radial basis functions relative to their blind spots and the sensitivity
of the radial basis functions to input vectors outside their blind spots.
The sensitivity of the responsehj;k of thejth radial basis function to any
inputxk can be measured by the norm of the gradientrxkhj;k. Thus, the
shape and sensitivity of the radial basis function located at the prototype
vj are mainly affected by:

© 2000 by CRC Press LLC

1. the valueh�j = g(B) of the responsehj;k = g(kxk � vjk
2) of the

jth radial basis function atkxk � vjk2 = B and the rate at which
hj;k = g(kxk � vjk

2) decreases askxk � vjk2 increases aboveB
and approaches infinity, and

2. the maximum value attained by the norm of the gradientrxkhj;k
at kxk � vjk2 = B and the rate at whichkrxkhj;kk

2 decreases as
kxk � vjk

2 increases aboveB and approaches infinity.

The criteria that may be used for selecting radial basis functions can be
established by considering the following extreme situation. Suppose the
responsehj;k = g(kxk�vjk

2) diminishes very quickly and the receptive
field located at the prototypevj does not extend far beyond the blind spot.
This can have a negative impact on the function approximation ability of
the corresponding RBF model since the region outside the blind spot con-
tains the input vectors that affect the implementation of the input-output
mapping as indicated by the sensitivity measurekrxkhj;kk

2. Thus, a gen-
erator function must be selected in such a way that:

1. the responsehj;k and the sensitivity measurekrxkhj;kk
2 take sub-

stantial values outside the blind spot before they approach 0, and

2. the responsehj;k is sizable outside the blind sport even after the
values ofkrxkhj;kk

2 become negligible.

The rate at which the responsehj;k = g(kxk � vjk
2) decreases relates

to the “tails” of the functionsg(�) that correspond to different generator
functions. The use of a short-tailed functiong(�) shrinks the receptive
fields of the RBF model while the use of a long-tailed functiong(�) in-
creases the overlapping between the receptive fields located at different
prototypes. Ifg(x) = (g0(x))

1
1�m andm > 1, the tail ofg(x) is deter-

mined by how fast the corresponding generator functiong0(x) changes
as a function ofx. As x increases, the exponential generator function
g0(x) = exp(�x) increases faster than the linear generator function
g0(x) = a x + b. As a result, the responseg(x) = (g0(x))

1
1�m dimin-

ishes quickly ifg0(�) is exponential and slower ifg0(�) is linear.

The behavior of the sensitivity measurekrxkhj;kk
2 also depends on the

properties of the functiong(�). Forhj;k = g(kxk�vjk
2),rxkhj;k can be

© 2000 by CRC Press LLC

obtained from (35) as:

rxkhj;k = ��j;k (xk � vj); (44)

where
�j;k = �2 g

0(kxk � vjk
2): (45)

From (44),

krxkhj;kk
2 = kxk � vjk

2 �2
j;k: (46)

The selection of a specific functiong(�) influences the sensitivity measure
krxkhj;kk

2 through�j;k = �2 g0(kxk � vjk
2). If g(x) = (g0(x))

1
1�m ,

then:

g0(x) =
1

1�m
(g0(x))

m
1�m g00(x)

=
1

1�m
(g(x))m g00(x): (47)

Sincehj;k = g (kxk � vjk
2), �j;k is given by:

�j;k =
2

m� 1
(hj;k)

m g00(kxk � vjk
2): (48)

5.3 Evaluation of Linear and Exponential Generator
Functions

The criteria presented above are used here for evaluating linear and ex-
ponential generator functions.

5.3.1 Linear Generator Functions

If g(x) = (g0(x))
1

1�m , with g0(x) = a x + b andm > 1, the response
hj;k = g(kxk � vjk

2) of thejth radial basis function toxk is:

hj;k =

1

a kxk � vjk2 + b

! 1
m�1

: (49)

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

1:6

1:4

1:2

1

0:8

0:6

0:4

0:2

0

Figure 2. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = 1 + Æ x, m = 3, andÆ = 10.

For this generator function,g00(x) = a and (48) gives:

�j;k =
2a

m� 1
(hj;k)

m

=
2a

m� 1

1

a kxk � vjk2 + b

! m
m�1

: (50)

Thus,krxkhj;kk
2 can be obtained from (46) as:

krxkhj;kk
2 =

�
2 a

m� 1

�2

kxk � vjk
2

1

a kxk � vjk2 + b

! 2m
m�1

: (51)

Figures 2and 3 show the responsehj;k = g(kxk � vjk
2) of the jth

radial basis function to the input vectorxk and the sensitivity measure
kr

xk
hj;kk

2 plotted as functions ofkxk � vjk2 for g(x) = (g0(x))
1

1�m ,
with g0(x) = 1 + Æ x, m = 3, for Æ = 10 andÆ = 100, respectively.
In accordance with the analysis,krxkhj;kk

2 increases monotonically as

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

16

14

12

10

8

6

4

2

0

Figure 3. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = 1 + Æ x, m = 3, andÆ = 100.

kxk�vjk
2 increases from 0 toB = 1=(2 Æ) and decreases monotonically

askxk�vjk2 increasesaboveB and approaches infinity. Figures2 and 3
indicate that, regardless of the value ofÆ, the responsehj;k of the radial
basis function located at the prototypevj is sizable outside the blind spot
even after the values ofkrxkhj;kk

2 become negligible. Thus, the radial
basis function located at the prototypevj is activated by all input vectors
that correspond to substantial values ofkrxkhj;kk

2.

5.3.2 Exponential Generator Functions

If g(x) = (g0(x))
1

1�m , with g0(x) = exp(�x) andm > 1, the response
hj;k = g(kxk � vjk

2) of thejth radial basis function toxk is:

hj;k = exp

�
kxk � vjk

2

�2

!
; (52)

where �2 = (m � 1)=�. For this generator function,g00(x) =
� exp(�x) = � g0(x). In this case,g00 (kxk � vjk

2) = � (hj;k)
1�m and

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

2

1:8

1:6

1:4

1:2

1

0:8

0:6

0:4

0:2

0

Figure 4. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = exp(� x), m = 3, and� = 5.

(48) gives:

�j;k =
2�

m� 1
hj;k

=
2

�2
exp

�
kxk � vjk

2

�2

!
: (53)

Thus,kr
xk
hj;kk

2 can be obtained from (46) as:

kr
xk
hj;kk

2 =
�
2

�2

�2

kxk � vjk
2 exp

�2
kxk � vjk

2

�2

!
: (54)

Figures 4 and 5 show the response hj;k = g(kxk � vjk
2) of the jth

radial basis function to the input vectorxk and the sensitivity measure
krxkhj;kk

2 plotted as functions ofkxk � vjk2 for g(x) = (g0(x))
1

1�m ,
with g0(x) = exp(�x),m = 3, for � = 5 and� = 10, respectively. Once
again,krxkhj;kk

2 increases monotonically askxk�vjk2 increases from
0 to B = 1=� and decreases monotonically askxk � vjk

2 increases

© 2000 by CRC Press LLC

krxkhj;kk
2

hj;k

kxk � vjk
2

B

h
j;
k

an
d

kr
x

k
h
j;
k
k2

10210110010�110�210�3

4

3:5

3

2:5

2

1:5

1

0:5

0

Figure 5. The responsehj;k = g(kxk � vjk
2) of thejth radial basis function

and the norm of the gradientkrxk
hj;kk

2 plotted as functions ofkxk �vjk
2 for

g(x) = (g0(x))
1

1�m , with g0(x) = exp(� x), m = 3, and� = 10.

aboveB and approaches infinity. Nevertheless, there are some signifi-
cant differences between the responsehj;k and the sensitivity measure
krxkhj;kk

2 corresponding to linear and exponential generator functions.
If g0(x) = exp(�x), then the responsehj;k is substantial for the input
vectors inside the blind spot but diminishes very quickly for values of
kxk � vjk

2 aboveB. In fact, the values ofhj;k become negligible even
beforekrxkhj;kk

2 approaches asymptotically zero values. This is in di-
rect contrast with the behavior of the same quantities corresponding to
linear generator functions, which are shown in Figures 2 and 3.

6 Learning Algorithms Based on Gradient
Descent

Reformulated RBF neural networks can be trained to mapxk 2 IRni into
yk = [y1;k y2;k : : : yno;k]

T 2 IRno, where the vector pairs(xk;yk); 1 �
k � M , form the training set. Ifxk 2 IRni is the input to a reformulated
RBF network, its response iŝyk = [ŷ1;k ŷ2;k : : : ŷno;k]

T , whereŷi;k is the

© 2000 by CRC Press LLC

actual response of theith output unit toxk given by:

ŷi;k = f(�yi;k)

= f
�
wT

i hk
�

= f

0
@ cX
j=0

wij hj;k

1
A ; (55)

with h0;k = 1; 1 � k � M , hj;k = g (kxk � vjk
2) ; 1 � j � c, hk =

[h0;k h1;k : : : hc;k]
T , andwi = [wi;0wi;1 : : : wi;c]

T . Training is typically
based on the minimization of the error between the actual outputs of the
networkŷk; 1 � k �M , and the desired responsesyk; 1 � k �M .

6.1 Batch Learning Algorithms

A reformulated RBF neural network can be trained by minimizing the
error:

E =
1

2

MX
k=1

noX
i=1

(yi;k � ŷi;k)
2: (56)

Minimization of (56) using gradient descent implies that all training ex-
amples are presented to the RBF network simultaneously. Such training
strategy leads tobatchlearning algorithms. The update equation for the
weight vectors of the upper associative network can be obtained using
gradient descent as [21]:

�wp = ��r
wpE

= �
MX
k=1

"op;k hk; (57)

where� is the learning rate and"op;k is theoutput error, given as:

"op;k = f 0(�yp;k) (yp;k � ŷp;k): (58)

Similarly, the update equation for the prototypes can be obtained using
gradient descent as [21]:

�vq = ��rvqE

= �
MX
k=1

"hq;k (xk � vq); (59)

© 2000 by CRC Press LLC

where� is the learning rate and"hq;k is thehidden error, defined as:

"hq;k = �q;k

noX
i=1

"oi;k wiq; (60)

with �q;k = �2 g
0 (kxk � vqk

2). The selection of a specific functiong(�)
influences the update of the prototypes through�q;k = �2 g

0(kxk�vqk
2),

which is involved in the calculation of the corresponding hidden error
"hq;k. Sincehq;k = g (kxk � vqk

2) andg(x) = (g0(x))
1

1�m , �q;k is given
by (48) and the hidden error (60) becomes:

"hq;k =
2

m� 1
(hq;k)

m g00(kxk � vqk
2)

noX
i=1

"oi;k wiq: (61)

A RBF neural network can be trained according to the algorithm pre-
sented above in a sequence ofadaptation cycles, where an adaptation
cycle involves the update of all adjustable parameters of the network. An
adaptation cycle begins by replacing the current estimate of each weight
vectorwp; 1 � p � no, by its updated version:

wp +�wp = wp + �
MX
k=1

"op;k hk: (62)

Given the learning rate� and the responseshk of the radial basis func-
tions, these weight vectors are updated according to the output errors
"op;k; 1 � p � no. Following the update of these weight vectors, the cur-
rent estimate of each prototypevq, 1 � q � c, is replaced by:

vq +�vq = vq + �
MX
k=1

"hq;k (xk � vq): (63)

For a given value of the learning rate�, the update ofvq depends on the
hidden errors"hq;k; 1 � k �M . The hidden error"hq;k is influenced by the
output errors"oi;k; 1 � i � no, and the weightswiq; 1 � i � no, through
the term

Pno
i=1 "

o
i;k wiq. Thus, the RBF neural network is trained according

to this scheme by propagating back the output error.

This algorithm can be summarized as follows:

1. Select� and�; initialize fwijg with zero values; initialize the pro-
totypesvj; 1 � j � c; seth0;k = 1; 8k.

© 2000 by CRC Press LLC

2. Compute the initial response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

3. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

4. SetEold = E.

5. Update the adjustable parameters:

� "oi;k = f 0(�yi;k)(yi;k � ŷi;k); 8i; k.

� wi wi + �
PM

k=1 "
o
i;k hk; 8i.

� "hj;k =
2

m�1
g00 (kxk � vjk

2) (hj;k)
m Pno

i=1 "
o
i;k wij; 8j; k.

� vj vj + �
PM

k=1 "
h
j;k (xk � vj); 8j.

6. Compute the current response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

7. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

8. If: (Eold � E)=Eold > �; then: go to 4.

6.2 Sequential Learning Algorithms

Reformulated RBF neural networks can also be trained “on-line” byse-
quentiallearning algorithms. Such algorithms can be developed by using
gradient descent to minimize the errors:

Ek =
1

2

noX
i=1

(yi;k � ŷi;k)
2; (64)

© 2000 by CRC Press LLC

for k = 1; 2; : : : ;M . The update equation for the weight vectors of the
upper associative network can be obtained using gradient descent as [21]:

�wp;k = wp;k �wp;k�1

= ��rwpEk

= � "op;k hk; (65)

wherewp;k�1 andwp;k are the estimates of the weight vectorwp be-
fore and after the presentation of the training example(xk;yk), � is the
learning rate, and"op;k is the output error defined in (58). Similarly, the
update equation for the prototypes can be obtained using gradient descent
as [21]:

�vq;k = vq;k � vq;k�1

= ��rvqEk

= � "hq;k (xk � vq); (66)

wherevq;k�1 andvq;k are the estimates of the prototypevq before and
after the presentation of the training example(xk;yk), � is the learning
rate, and"hq;k is the hidden error defined in (61).

When an adaptation cycle begins, the current estimates of the weight
vectorswp and the prototypesvq are stored inwp;0 andvq;0, respectively.
After an example(xk;yk); 1 � k � M , is presented to the network, each
weight vectorwp; 1 � p � no, is updated as:

wp;k = wp;k�1 +�wp;k = wp;k�1 + � "op;k hk: (67)

Following the update of all the weight vectorswp; 1 � p � no, each
prototypevq; 1 � q � c, is updated as:

vq;k = vq;k�1 +�vq;k = vq;k�1 + � "hq;k (xk � vq;k�1): (68)

An adaptation cycle is completed in this case after the sequential pre-
sentation to the network of all the examples included in the training set.
Once again, the RBF neural network is trained according to this scheme
by propagating back the output error.

This algorithm can be summarized as follows:

1. Select� and�; initialize fwijg with zero values; initialize the pro-
totypesvj; 1 � j � c; seth0;k = 1; 8k.

© 2000 by CRC Press LLC

2. Compute the initial response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

3. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

4. SetEold = E.

5. Update the adjustable parameters for allk = 1; 2; : : : ;M :

� "oi;k = f 0(�yi;k)(yi;k � ŷi;k); 8i.

� wi wi + � "oi;k hk; 8i.

� "hj;k =
2

m�1
g00 (kxk � vjk

2) (hj;k)
m Pno

i=1 "
o
i;k wij; 8j.

� vj vj + � "hj;k (xk � vj); 8j.

6. Compute the current response:

� hj;k = (g0 (kxk � vjk
2))

1
1�m ; 8j; k.

� hk = [h0;k h1;k : : : hc;k]
T ; 8k.

� ŷi;k = f(wT
i hk); 8i; k.

7. ComputeE = 1
2

PM
k=1

Pno
i=1(yi;k � ŷi;k)

2.

8. If: (Eold � E)=Eold > �; then: go to 4.

6.3 Initialization of Supervised Learning

The training of reformulated RBF neural networks using gradient de-
scent can be initialized by randomly generating the set of prototypes that
determine the locations of the radial basis function centers in the input
space. Such an approach relies on the supervised learning algorithm to
determine appropriate locations for the radial basis function centers by
updating the prototypes during learning. Nevertheless, the training of re-
formulated RBF neural networks by gradient descent algorithms can be
facilitated by initializing the supervised learning process using a set of
prototypes specifically determined to represent the input vectors included

© 2000 by CRC Press LLC

in the training set. This can be accomplished by computing the initial set
of prototypes using unsupervised clustering or learning vector quantiza-
tion (LVQ) algorithms.

According to the learning scheme often used for training conventional
RBF neural networks [34], the locations of the radial basis function cen-
ters are determined from the input vectors included in the training set
using thec-means (ork-means) algorithm. Thec-means algorithm be-
gins from an initial set ofc prototypes, which implies the partition of the
input vectors intoc clusters. Each cluster is represented by a prototype,
which is evaluated at subsequent iterations as the centroid of the input
vectors belonging to that cluster. Each input vector is assigned to the
cluster whose prototype is its closest neighbor. In mathematical terms,
the indicator functionuij = uj(xi) that assigns the input vectorxi to the
jth cluster is computed as [9]:

uij =

(
1; if kxi � vjk2 < kxi � v`k2; 8` 6= j,
0; otherwise:

(69)

For a given set of indicator functions, the new set of prototypes is calcu-
lated as [9]:

vj =

PM
i=1 uij xiPM
i=1 uij

; 1 � j � c: (70)

The c-means algorithm partitions the input vectors into clusters repre-
sented by a set of prototypes based onhard or crisp decisions. In other
words, each input vector is assigned to the cluster represented by its clos-
est prototype. Since this strategy fails to quantify the uncertainty typi-
cally associated with partitioning a set of input vectors, the performance
of thec-means algorithm depends rather strongly on its initialization [8],
[26]. When this algorithm is initialized randomly, it often converges to
shallow local minima and produces empty clusters.

Most of the disadvantages of thec-means algorithm can be overcome
by employing a prototype splitting procedure to produce the initial set
of prototypes. Such a procedure is employed by a variation of thec-
means algorithm often referred to in the literature as the LBG (Linde-
Buzo-Gray) algorithm [31], which is often used for codebook design in
image and video compression approaches based on vector quantization.

© 2000 by CRC Press LLC

The LBG algorithm employs an initialization scheme to compensate for
the dependence of thec-means algorithm on its initialization [8]. More
specifically, this algorithm generates the desired number of clusters by
successively splitting the prototypes and subsequently employing thec-
means algorithm. The algorithm begins with a single prototype that is
calculated as the centroid of the available input vectors. This prototype is
split into two vectors, which provide the initial estimate for thec-means
algorithm that is used withc = 2. Each of the resulting vectors is then
split into two vectors and the above procedure is repeated until the de-
sired number of prototypes is obtained. Splitting is performed by adding
the perturbation vectors�ei to each vectorvi producing two vectors:
vi+ei andvi�ei. The perturbation vectorei can be calculated from the
variance between the input vectors and the prototypes [8].

7 Generator Functions and Gradient
Descent Learning

The effect of the generator function on gradient descent learning al-
gorithms developed for reformulated RBF neural networks essentially
relates to the criteria established in Section 5 for selecting generator
functions. These criteria were established on the basis of the response
hj;k of the jth radial basis function to an input vectorxk and the norm
of the gradientr

xk
hj;k, that can be used to measure the sensitivity

of the radial basis function responsehj;k to an input vectorxk. Since
rxkhj;k = �rvjhj;k, (46) gives

krvjhj;kk
2 = kxk � vjk

2 �2
j;k: (71)

According to (71), the quantitykxk � vjk2 �2
j;k can also be used to mea-

sure the sensitivity of the response of thejth radial basis function to
changes in the prototypevj that represents its location in the input space.

The gradient descent learning algorithms presented in Section 6 attempt
to train a RBF neural network to implement a desired input-output map-
ping by producing incremental changes of its adjustable parameters, i.e.,
the output weights and the prototypes. If the responses of the radial ba-
sis functions are not substantially affected by incremental changes of the
prototypes, then the learning process reduces to incremental changes of

© 2000 by CRC Press LLC

the output weights and eventually the algorithm trains a single-layered
neural network. Given the limitations of single-layered neural networks
[28], such updates alone are unlikely to implement non-trivial input-
output mappings. Thus, the ability of the network to implement a desired
input-output mapping depends to a large extent on the sensitivity of the
responses of the radial basis functions to incremental changes of their
corresponding prototypes. This discussion indicates that the sensitivity
measurekrvjhj;kk

2 is relevant to gradient descent learning algorithms
developed for reformulated RBF neural networks. Moreover, the form of
this sensitivity measure in (71) underlines the significant role of the gen-
erator function, whose selection affectskrvjhj;kk

2 as indicated by the
definition of�j;k in (48). The effect of the generator function on gradient
descent learning is revealed by comparing the responsehj;k and the sen-
sitivity measurekrvjhj;kk

2 = krxkhj;kk
2 corresponding to the linear

and exponential generator functions.

According to Figures 2 and 3, the response hj;k of the jth radial basis
function to the inputxk diminishes very slowly outside the blind spot,
i.e., askxk � vjk2 increases aboveB. This implies that the training vec-
tor xk has a non-negligible effect on the responsehj;k of the radial basis
function located at this prototype. The behavior of the sensitivity mea-
surekrvjhj;kk

2 outside the blind spot indicates that the update of the
prototypevj produces significant variations in the input of the upper as-
sociative network, which is trained to implement the desired input-output
mapping by updating theoutput weights. Figures 2and 3 also reveal the
trade-off involved in the selection of the free parameterÆ in practice. As
the value ofÆ increases,krvjhj;kk

2 attains significantly higher values.
This implies that thejth radial basis function is more sensitive to up-
dates of the prototypevj due to input vectors outside its blind spot. The
blind spot shrinks as the value ofÆ increases butkr

vj
hj;kk

2 approaches
0 quickly outside the blind spot, i.e., as the value ofkxk�vjk2 increases
aboveB. This implies that the receptive fields located at the prototypes
shrink, which can have a negative impact on the gradient descent learn-
ing. Increasing the value ofÆ can also affect the number of radial ba-
sis functions required for the implementation of the desired input-output
mapping. This is due to the fact that more radial basis functions are re-
quired to cover the input space. The receptive fields located at the proto-
types can be expanded by decreasing the value ofÆ. However,krvjhj;kk

2

© 2000 by CRC Press LLC

becomes flat as the value ofÆ decreases. This implies that very small val-
ues ofÆ can decrease the sensitivity of the radial basis functions to the
input vectors included in their receptive fields.

According to Figures 4 and 5, the response of the jth radial basis func-
tion to the inputxk diminishes very quickly outside the blind spot, i.e.,
askxk � vjk2 increases aboveB. This behavior indicates that if a RBF
network is constructed using exponential generator functions, the inputs
xk corresponding to high values ofkrvjhj;kk

2 have no significant effect
on the response of the radial basis function located at the prototypevj.
As a result, the update of this prototype due toxk does not produce sig-
nificant variations in the input of the upper associative network that im-
plements the desired input-output mapping. Figures 4 and 5 also indicate
that the blind spot shrinks as the value of� increases whilekrvjhj;kk

2

reaches higher values. Decreasing the value of� expands the blind spot
butkr

vj
hj;kk

2 reaches lower values. In other words, the selection of the
value of� in practice involves a trade-off similar to that associated with
the selection of the free parameterÆ when the radial basis functions are
formed by linear generator functions.

8 Handwritten Digit Recognition

8.1 The NIST Databases

Reformulated RBF neural networks were tested and compared with com-
peting techniques on a large-scale handwritten digit recognition problem.
The objective of a classifier in this application is the recognition of the
digit represented by a binary image of a handwritten numeral. Recogni-
tion of handwritten digits is the key component of automated systems de-
veloped for a great variety of real-world applications, including mail sort-
ing and check processing. Automated recognition of handwritten digits is
not a trivial task due to the high variance of handwritten digits caused by
different writing styles, pens, etc. Thus, the development of a reliable sys-
tem for handwritten digit recognition requires large databases containing
a great variety of samples. Such a collection of handwritten digits is con-
tained in theNIST Special Databases 3, which contain about 120000
isolated binary digits that have been extracted from sample forms. These

© 2000 by CRC Press LLC

(a)

(b)

(c)

Figure 6. Digits from the NIST Databases: (a) original binary images, (b)32�32
binary images after one stage of preprocessing (slant and size normalization),
and (c)16� 16 images of the digits after two stages of preprocessing (slant and
size normalization followed by wavelet decomposition).

digits were handwritten by about 2100 field representatives of the United
States Census Bureau. The isolated digits were scanned to produce bi-
nary images of size40 � 60 pixels, which are centered in a128 � 128
box. Figure 6(a) shows some sample digits from 0 to 9 from the NIST
databases used in these experiments. The data set was partitioned in three
subsets as follows: 58646 digits were used for training, 30367 digits were
used for testing, and the remaining 30727 digits constituted the validation
set.

8.2 Data Preprocessing

The raw data from the NIST databases were preprocessed in order to re-
duce the variance of the images that is not relevant to classification. The
first stage of the preprocessing scheme produced a slant and size nor-
malized version of each digit. The slant of each digit was found by first
determining its center of gravity, which defines an upper and lower half
of it. The centers of gravity of each half were subsequently computed
and provided an estimate of the vertical main axis of the digit. This axis
was then made exactly vertical using a horizontal shear transformation.
In the next step, the minimal bounding box was determined and the digit
was scaled into a32 � 32 box. This scaling may slightly distort the as-
pect ratio of the digits by centering, if necessary, the digits in the box.
Figure 6(b) shows the same digits shown in Figure 6(a) after slant and
size normalization.

© 2000 by CRC Press LLC

The second preprocessing stage involved a 4-level wavelet decomposi-
tion of the32� 32 digit representation produced by the first preprocess-
ing stage. Each decomposition level includes the application of a 2-D
Haar wavelet filter in the decomposed image, followed by downsampling
by a factor of 2 along the horizontal and vertical directions. Because
of downsampling, each decomposition level produces four subbands of
lower resolution, namely a subband that carries background information
(containing the low-low frequency components of the original subband),
two subbands that carry horizontal and vertical details (containing low-
high and high-low frequency components of the original subband), and a
subband that carries diagonal details (containing the high-high frequency
components of the original subband). As a result, the 4-level decompo-
sition of the original32 � 32 image produced three subbands of sizes
16� 16, 8� 8, and4� 4, and four subbands of size2� 2. The32� 32
image produced by wavelet decomposition was subsequently reduced to
an image of size16� 16 by representing each2� 2 window by the aver-
age of the four pixels contained in it. This step reduces the amount of data
by 3/4 and has a smoothing effect that suppresses the noise present in the
32 � 32 image [1]. Figure 6(c) shows the images representing the digits
shown in Figures 6(a) and 6(b), resulting after the second preprocessing
stage described above.

8.3 Classification Tools for NIST Digits

This section begins with a brief description of the variants of thek-
nearest neighbor(k-NN) classifier used for benchmarking the perfor-
mance of the neural networks tested in the experiments and also outlines
the procedures used for classifying the digits from the NIST databases
using neural networks. These procedures involve the formation of the
desired input-output mapping and the strategies used to recognize the
NIST digits by interpreting the responses of the trained neural networks
to the input samples.

Thek-NN classifier uses feature vectors from the training set as a refer-
ence to classify examples from the testing set. Given an input example
from the testing set, thek-NN classifier computes its Euclidean distance
from all the examples included in the training set. Thek-NN classifier
can be implemented to classify all input examples (no rejections allowed)

© 2000 by CRC Press LLC

or to selectively reject some ambiguous examples. Thek-NN classifier
can be implemented using two alternative classification strategies: Ac-
cording to the first and most frequently used classification strategy, each
of thek closest training examples to the input example has a vote with
a weight equal to 1. According to the second classification strategy, the
ith closest training example to the input example has a vote with weight
1=i; that is, the weight of the closest example is 1, the weight of the
second closest example is1=2, etc. When no rejections are allowed, the
class that receives the largest sum of votes wins the competition and the
input example is assigned the corresponding label. The input example
is recognizedif the label assigned by the classifier and the actual label
are identical orsubstitutedif the assigned and actual labels are different.
When rejections are allowed and thek closest training examples to the
input example have votes equal to 1, the example isrejectedif the largest
sum of votes is less thank. Otherwise, the input example is classified
according to the strategy described above.

The reformulated RBF neural networks and feed-forward neural net-
works (FFNNs) tested in these experiments consisted of256 = 16� 16
inputs and 10 linear output units, each representing a digit from 0 to 9.
The inputs of the networks were normalized to the interval[0; 1]. The
learning rate in all these experiments was� = 0:1. The networks were
trained to respond withyi;k = 1 andyj;k = 0; 8j 6= i, when presented
with an input vectorxk 2 X corresponding to the digit represented by
theith output unit. The assignment of input vectors to classes was based
on a winner-takes-all strategy. More specifically, each input vector was
assigned to the class represented by the output unit of the trained RBF
neural network with the maximum response. In an attempt to improve
the reliability of the neural-network-based classifiers, label assignment
was also implemented by employing an alternative scheme that allows
the rejection of some ambiguous digits according to the strategy de-
scribed below: Suppose one of the trained networks is presented with
an input vectorx representing a digit from the testing or the validation
set and let̂yi; 1 � i � no, be the responses of its output units. Let
ŷ(1) = ŷi1 be the maximum among all responses of the output units, that
is, ŷ(1) = ŷi1 = maxi2I1fŷig, with I1 = f1; 2; : : : ; nog. Let ŷ(2) = ŷi2
be the maximum among the responses of the rest of the output units, that
is, ŷ(2) = ŷi2 = maxi2I2fŷig, with I2 = I1 � fi1g. The simplest classi-

© 2000 by CRC Press LLC

fication scheme would be to assign the digit represented byx to thei1th
class, which implies that none of the digits would be rejected by the net-
work. Nevertheless, the reliability of this assignment can be improved by
comparing the responsesŷ(1) andŷ(2) of the two output units that claim
the digit for their corresponding classes. If the responsesŷ(1) and ŷ(2)

are sufficiently close, then the digit represented byx probably lies in a
region of the input space where the classes represented by thei1th and
i2th output units overlap. This indicates that the reliability of classifica-
tion can be improved by rejecting this digit. This rejection strategy can
be implemented by comparing the difference�ŷ = ŷ(1) � ŷ(2) with a
rejection parameterr � 0. The digit corresponding tox is acceptedif
�ŷ � r and rejectedotherwise. An accepted digit isrecognizedif the
output unit with the maximum response represents the desired class and
substitutedotherwise. The rejection rate depends on the selection of the
rejection parameterr � 0. If r = 0, then the digit corresponding tox is
accepted if�ŷ = ŷ(1) � ŷ(2) � 0, which is by definition true. This im-
plies that none of the input digits is rejected by the network ifr = 0. The
rejection rate increases as the value of the rejection parameter increases
above 0.

8.4 Role of the Prototypes in Gradient Descent
Learning

RBF neural networks are often trained to implement the desired input-
output mapping by updating the output weights, that is, the weights that
connect the radial basis functions and the output units, in order to min-
imize the output error. The radial basis functions are centered at a fixed
set of prototypes that define a partition of the input space. In contrast,
the gradient descent algorithm presented in Section 6 updates the proto-
types representing the centers of the radial basis functions together with
the output weights every time training examples are presented to the net-
work. This set of experiments investigated the importance of updating the
prototypes during the learning process in order to implement the desired
input-output mapping. The reformulated RBF neural networks tested in
these experiments containedc = 256 radial basis functions obtained in
terms of the generator functiong0(x) = 1+Æ x, with g(x) = (g0(x))

1
1�m ,

m = 3 and Æ = 10. In all these experiments the prototypes of the

© 2000 by CRC Press LLC

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

1000 2000

%
 S

ub
st

itu
tio

n

Adaptation cycles

testing set
validation set

(a)

1.6

1.8

2

2.2

2.4

1000 2000 3000 4000 5000

%
 S

ub
st

itu
tio

n

Adaptation cycles

testing set
validation set

(b)

Figure 7. Performance of a reformulated RBF neural network tested on the
testing and validation sets during its training. The network was trained (a) by
updating only its output weights, and (b) by updating its output weights and
prototypes.

© 2000 by CRC Press LLC

RBF neural networks were determined by employing the initialization
scheme described in Section 6, which involves prototype splitting fol-
lowed by the c-means algorithm. Figure 7 summarizes the performance
of the networks trained in these experiments at different stages of the
learning process. Figure 7(a) shows the percentage of digits from the
testing and validation sets substituted by the RBF network trained by up-
dating only the output weights while keeping the prototypes fixed during
the learning process. Figure7(b) showsthepercentageof digits from the
testing and validation sets substituted by the reformulated RBF neural
network trained by updating the prototypes and the output weights ac-
cording to the sequential gradient descent learning algorithm presented
in Section 6. In both cases, the percentage of substituted digits decreased
with some fluctuations during the initial adaptation cycles and remained
almost constant after a certain number of adaptation cycles. When the
prototypes were fixed during learning, the percentage of substituted dig-
its from both testing and validation sets remained almost constant after
1000 adaptation cycles. In contrast, the percentage of substituted digits
decreased after 1000 adaptation cycles and remained almost constant af-
ter 3000 adaptation cycles when the prototypes were updated together
with the output weights using gradient descent. In this case, the percent-
age of substituted digits reached 1.69% on the testing set and 1.53% on
the validation set. This outcome can be compared with the substitution of
3.79% of the digits from the testing set and 3.54% of the digits from the
validation set produced when the prototypes remained fixed during learn-
ing. This experimental outcome verifies that the performance of RBF
neural networks can be significantly improved by updating all their free
parameters during learning according to the training set, including the
prototypes that represent the centers of the radial basis functions in the
input space.

8.5 Effect of the Number of Radial Basis Functions

This set of experiments evaluated the performance on the testing and
validation sets formed from the NIST data of various reformulated RBF
neural networks at different stages of their training. The reformulated
RBF neural networks containedc = 64, c = 128, c = 256, and
c = 512 radial basis functions obtained in terms of the generator func-

© 2000 by CRC Press LLC

1.5

2

2.5

3

3.5

4

4.5

1000 2000 3000 4000 5000 6000 7000 8000

%
 S

ub
st

itu
tio

n

Adaptation cycles

64 radial basis functions
128 radial basis functions
256 radial basis functions
512 radial basis functions

(a)

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000 6000 7000 8000

%
 S

ub
st

itu
tio

n

Adaptation cycles

64 radial basis functions
128 radial basis functions
256 radial basis functions
512 radial basis functions

(b)

Figure 8. Performance of reformulated RBF neural networks with different
numbers of radial basis functions during their training. The substitution rate was
computed (a) on the testing set, and (b) on the validation set.

© 2000 by CRC Press LLC

tion g0(x) = 1 + Æ x as�(x) = g(x2), with g(x) = (g0(x))
1

1�m , m = 3
and Æ = 10. All networks were trained using the sequential gradient
descent algorithm described in Section 6. The initial prototypes were
computed using the initialization scheme involving prototype splitting.
Figures 8(a) and 8(b) plot the percentage of digits from the testing and
validation sets, respectively, that were substituted by all four reformu-
lated RBF neural networks as a function of the number of adaptation
cycles. Regardless of the number of radial basis functions contained by
the reformulated RBF neural networks, their performance on both test-
ing and validation sets improved as the number of adaptation cycles in-
creased. The improvement of the performance was significant during the
initial adaptation cycles, which is consistent with the behavior and con-
vergence properties of the gradient descent algorithm used for training.
Figures 8(a) and 8(b) also indicate that the number of radial basis func-
tions had a rather significant effect on the performance of reformulated
RBF neural networks. The performance of reformulated RBF neural net-
works on both testing and validation sets improved as the number of
radial basis functions increased fromc = 64 to c = 128. The best per-
formance on both sets was achieved by the reformulated RBF neural net-
works containingc = 256 andc = 512 radial basis functions. It must
be noted that there are some remarkable differences in the performance
of these two networks on the testing and validation sets. According to
Figure 8(a), the reformulated RBF neural networks withc = 256 and
c = 512 radial basis functions substituted almost the same percentage
of digits from the testing set after 1000 adaptation cycles. However, the
network withc = 512 radial basis functions performed slightly better
on the testing set than that containingc = 256 radial basis functions
when the training continued beyond 7000 adaptation cycles. According
to Figure 8(b), the reformulated RBF network withc = 256 radial ba-
sis functions outperformed consistently the network containingc = 512
radial basis functions on the validation set for the first 6000 adaptation
cycles. However, the reformulated RBF network withc = 512 radial
basis functions substituted a smaller percentage of digits from the vali-
dation set than the network withc = 256 radial basis functions when the
training continued beyond 7000 adaptation cycles.

© 2000 by CRC Press LLC

0

1

2

3

4

5

500 1000 1500 2000 2500 3000 4000 5000 6000 7000

%
 S

ub
st

itu
tio

n

Adaptation cycles

training set
testing set

validation set

(a)

0

1

2

3

4

5

500 1000 1500 2000 2500 3000

%
 S

ub
st

itu
tio

n

Adaptation cycles

training set
testing set

validation set

(b)

Figure 9. Performance of reformulated RBF neural networks with 512 radial
basis functions during their training. The substitution rates were computed on
the training, testing, and validation sets when gradient descent training was ini-
tialized (a) randomly, and (b) by prototype splitting.

© 2000 by CRC Press LLC

8.6 Effect of the Initialization of Gradient Descent
Learning

This set of experiments evaluated the effect of the initialization of the
supervised learning on the performance of reformulated RBF neural net-
works trained by gradient descent. The reformulated RBF neural network
tested in these experiments containedc = 512 radial basis functions con-
structed as�(x) = g(x2), with g(x) = (g0(x))

1
1�m , g0(x) = 1 + Æ x,

m = 3, andÆ = 10. The network was trained by the sequential gradi-
ent descent algorithm described in Section 6. Figures9(a) and 9(b) show
the percentage of digits from the training, testing, and validation sets
substituted during the training process when gradient descent learning
was initialized by randomly selecting the prototypes and by prototype
splitting, respectively. When the initial prototypes were determined by
prototype splitting, the percentage of substituted digits from the training
set decreased below 1% after 1000 adaptation cycles and reached values
below 0.5% after 3000 adaptation cycles. In contrast, the percentage of
substituted digits from the training set decreased much slower and never
reached values below 1% when the initial prototypes were produced by a
random number generator. When the initial prototypes were initialized by
prototype splitting, the percentage of substituted digits from the testing
and validation sets decreased to values around 1.5% after the first 1000
adaptation cycles and changed very slightly as the training progressed.
When the supervised training was initialized randomly, the percentage
of substituted digits from the testing and validation sets decreased much
slower during training and reached values higher than those shown in
Figure 9(b) even after 7000 adaptation cycles. This experimental out-
come indicates that initializing gradient descent learning by prototype
splitting improves the convergence rate of gradient descent learning and
leads to trained networks that achieve superior performance.

8.7 Benchmarking Reformulated RBF Neural
Networks

The last set of experiments compared the performance of reformulated
RBF neural networks trained by gradient descent with that of FFNNs

© 2000 by CRC Press LLC

Table 1. Substitution rates on the testing set (Stest) and the validation set (Sval)
produced for different values ofk by two variants of thek-NN classifier when
no rejections were allowed.

k-NN classifier k-NN classifier
(equal vote weights) (unequal vote weights)

k Stest Sval Stest Sval

2 2.351 2.128 2.210 2.018
4 2.025 1.917 2.029 1.852
8 2.055 1.959 1.969 1.836

16 2.259 2.099 1.897 1.832
32 2.496 2.353 1.923 1.875
64 2.869 2.724 2.002 1.949

Table 2. Substitution rates on the testing set (Stest) and the validation set (Sval)
produced by different neural-network-based classifiers when no rejections were
allowed. FFNNs and reformulated RBF neural networks (RBFNNs) were trained
with different numbersc of hidden units by gradient descent. The training of
reformulated RBF neural networks was initialized randomly and by prototype
splitting.

FFNN RBFNN RBFNN
(+ splitting)

c Stest Sval Stest Sval Stest Sval

64 2.63 2.40 2.31 2.02 2.24 2.03
128 1.82 1.74 1.92 1.75 1.93 1.75
256 1.81 1.59 1.84 1.59 1.62 1.47
512 1.89 1.63 1.81 1.57 1.60 1.41

with sigmoidal hidden units and thek-NN classifier. The success rate
was first measured when these classifiers were required to assign class
labels to all input vectors corresponding to the digits from the testing and
validation sets. Table 1 summarizes the substitution rates produced on
the testing and validation sets by the two variants of thek-NN algorithm
used for recognition when no rejections were allowed. The values ofk
were powers of two varying from 2 to 64. When each of thek closest
training examples voted with weight 1, the smallest substitution rate was
recorded fork = 4. When each of thek closest training examples voted
according to their distance from the input example, the smallest substi-
tution rate was recorded fork = 16. In this case, increasing the value
of k up to 16 decreased the substitution rate. This can be attributed to

© 2000 by CRC Press LLC

the fact that the votes of allk training examples were weighted with val-
ues that decreased from1 to 1=k, which reduced the contribution of the
most distant among thek training examples. This weighting strategy im-
proved the performance of thek-NN classifier, as indicated byTable 1.
When no rejections were allowed, the performance of both variants of
thek-NN classifier was inferior to that of the neural networks tested in
these experiments. This is clearly indicated byTable 2, which summa-
rizes the substitution rates produced on the testing and validation sets by
FFNNs and reformulated RBF neural networks. The number of hidden
units varied in these experiments from 64 to 512. The sets of prototypes
used for initializing the supervised training of reformulated RBF neural
networks were produced by a random number generator and by the pro-
totype splitting procedure outlined in Section 6. The performance of the
trained FFNNs on both testing and validation sets improved consistently
as the number of hidden units increased from 64 to 256 but degraded
when the number of hidden units increased from 256 to 512. In contrast,
the performance of reformulated RBF neural networks on both testing
and validation sets improved consistently as the number of radial basis
function units increased fromc = 64 to c = 512. Both reformulated
RBF neural networks trained withc = 512 radial basis functions out-
performed the best FFNN. Moreover, the performance of the best FFNN
was inferior to that of the reformulated RBF neural network trained with
c = 256 radial basis functions using the initialization scheme employing
prototype splitting. The best overall performance among all classifiers
evaluated in this set of experiments was achieved by the reformulated
RBF neural network trained withc = 512 radial basis functions by gra-
dient descent initialized by prototype splitting.

The success rate of thek-NN classifier and the neural-network-based
classifiers was also measured when these classifiers were allowed to re-
ject some ambiguous digits in order to improve their reliability. Thek-
NN classifier was implemented in these experiments by assigning votes
equal to 1 to thek closest training examples. This variant of thek-NN
classifier does not reject any digit ifk = 1. The percentage of digits re-
jected by this variant of thek-NN classifier increases as the value ofk
increases. The rejection of digits by the FFNN and reformulated RBF
neural networks was based on the strategy outlined above. According to
this strategy, the percentage of the rejected digits increases as the rejec-

© 2000 by CRC Press LLC

0

0.5

1

1.5

2

0 2 4 6 8 10

%
 S

ub
st

itu
tio

n

% Rejection

k-NN
FFNN

reformulated RBF initialized randomly
reformulated RBF initialized by prototype splitting

(a)

0

0.5

1

1.5

2

0 2 4 6 8 10

%
 S

ub
st

itu
tio

n

% Rejection

k-NN
FFNN

reformulated RBF initialized randomly
reformulated RBF initialized by prototype splitting

(b)

Figure 10. Performance of thek-NN classifier, a feed-forward neural network
and two reformulated RBF neural networks tested on the NIST digits. The sub-
stitution rate is plotted versus the rejection rate (a) on the testing set, and (b) on
the validation set.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

tion parameterr increases above 0. Forr = 0, no digits are rejected and
classification is based on a winner-takes-all strategy. Figure 10 plots the
percentage of digits from the testing and validation sets substituted at dif-
ferent rejection rates by thek-NN classifier, an FFNN with 256 hidden
units, and two reformulated RBF neural networks with 256 radial basis
functions. Both RBF neural networks were trained by the sequential gra-
dient descent algorithm presented in Section 6. The supervised learning
process was initialized in one case by randomly generating the initial set
of prototypes and in the other case by determining the initial set of proto-
types using prototype splitting. The training of all neural networks tested
was terminated based on their performance on the testing set. When no
rejections were allowed, all neural networks tested in these experiments
performed better than various classification schemes tested on the same
data set [10], none of which exceeded the recognition rate of 97.5%. In
this case, all neural networks outperformed thek-NN classifier, which
classified correctly 97.79% of the digits from the testing set and 97.98%
of the digits from the validation set. When no rejections were allowed,
the best performance was achieved by the reformulated RBF neural net-
work whose training was initialized by the prototype splitting procedure
outlined in Section 6. This network classified correctly 98.38% of the
digits from the testing set and 98.53% of the digits from the validation
set. According to Figure10, thepercentageof digits from thetesting and
validation sets substituted by all classifiers tested in these experiments
decreased as the rejection rate increased. This experimental outcome ver-
ifies that the strategy employed for rejecting ambiguous digits based on
the outputs of the trained neural networks is a simple and effective way
of dealing with uncertainty. Regardless of the rejection rate, all three neu-
ral networks tested in these experiments outperformed thek-NN classi-
fier, which substituted the largest percentage of digits from both testing
and validation sets. The performance of the reformulated RBF neural
network whose training was initialized by randomly generating the pro-
totypes was close to that of the FFNN. In fact, the FFNN performed
better at low rejection rates while this reformulated RBF neural network
outperformed the FFNN at high rejection rates. The reformulated RBF
neural network initialized by the prototype splitting procedure outlined
in Section 6 performed consistently better on the testing and validation
sets than the FFNN. The same RBF network outperformed the reformu-
lated RBF neural network initialized randomly on the testing set and on

the validation set for low rejection rates. However, the two reformulated
RBF neural networks achieved the same digit recognition rates on the
validation set as the rejection rate increased. Among the three networks
tested, the best overall performance was achieved by the reformulated
RBF neural network whose training was initialized using prototype split-
ting.

9 Conclusions

This chapter presented an axiomatic approach for reformulating RBF
neural networks trained by gradient descent. According to this approach,
the development of admissible RBF models reduces to the selection of
admissible generator functions that determine the form and properties of
the radial basis functions. The reformulated RBF neural networks gen-
erated by linear and exponential generator functions can be trained by
gradient descent and perform considerably better than conventional RBF
neural networks. The criteria proposed for selecting generator functions
indicated that linear generator functions have certain advantages over ex-
ponential generator functions, especially when reformulated RBF neural
networks are trained by gradient descent. Given that exponential gener-
ator functions lead to Gaussian radial basis functions, the comparison of
linear and exponential generator functions indicated that Gaussian radial
basis functions are not the only, and perhaps not the best, choice for con-
structing RBF neural models. Reformulated RBF neural networks were
originally constructed using linear functions of the formg0(x) = x+ 2,
which lead to a family of radial basis functions that includes inverse mul-
tiquadratic radial basis functions [13], [20], [21]. Subsequent studies, in-
cluding that presented in the chapter, indicated that linear functions of the
form g0(x) = 1+ Æ x facilitate the training and improve the performance
of reformulated RBF neural networks [17].

The experimental evaluation of reformulated RBF neural networks pre-
sented in this chapter showed that the association of RBF neural net-
works with erratic behavior and poor performance is unfair to this pow-
erful neural architecture. The experimental results also indicated that the
disadvantages often associated with RBF neural networks can only be
attributed to the learning schemes used for their training and not to the

© 2000 by CRC Press LLC

models themselves. If the learning scheme used to train RBF neural net-
works decouples the determination of the prototypes and the updates of
the output weights, then the prototypes are simply determined to satisfy
the optimization criterion behind the unsupervised algorithm employed.
Nevertheless, the satisfaction of this criterion does not necessarily guar-
antee that the partition of the input space by the prototypes facilitates the
implementation of the desired input-output mapping. The simple reason
for this is that the training set does not participate in the formation of
the prototypes. In contrast, the update of the prototypes during the learn-
ing process produces a partition of the input space that is specifically
designed to facilitate the input-output mapping. In effect, this partition
leads to trained reformulated RBF neural networks that are strong com-
petitors to other popular neural models, including feed-forward neural
networks with sigmoidal hidden units.

The results of the experiments on the NIST digits verified that refor-
mulated RBF neural networks trained by gradient descent are strong
competitors to classical classification techniques, such as thek-NN, and
alternative neural models, such as FFNNs. The digit recognition rates
achieved by reformulated RBF neural networks were consistently higher
than those of feed-forward neural networks. The classification accuracy
of reformulated RBF neural networks was also found to be superior to
that of thek-NN classifier. In fact, thek-NN classifier was outperformed
by all neural networks tested in these experiments. Moreover, thek-NN
classifier was computationally more demanding than all the trained neu-
ral networks, which classified examples much faster than thek-NN clas-
sifier. The time required by thek-NN to classify an example increased
with the problem size (number of examples in the training set), which
had absolutely no effect on the classification of digits by the trained neu-
ral networks. The experiments on the NIST digits also indicated that the
reliability and classification accuracy of trained neural networks can be
improved by a recall strategy that allows the rejection of some ambiguous
digits.

The experiments indicated that the performance of reformulated RBF
neural networks improves when their supervised training by gradient de-
scent is initialized by using an effective unsupervised procedure to deter-
mine the initial set of prototypes from the input vectors included in the

© 2000 by CRC Press LLC

training set. An alternative to employing the variation of thec-means al-
gorithm employed in these experiments would be the use of unsupervised
algorithms that are not significantly affected by their initialization. The
search for such codebook design techniques led to soft clustering [2],
[11], [14], [18], [19] and soft learning vector quantization algorithms
[12], [15], [16], [18], [19], [24], [27], [35], [41]. Unlike crisp cluster-
ing and vector quantization techniques, these algorithms form the pro-
totypes on the basis ofsoft instead of crisp decisions. As a result, this
strategy reduces significantly the effect of the initial set of prototypes
on the partition of the input vectors produced by such algorithms. The
use of soft clustering and LVQ algorithms for initializing the training of
reformulated RBF neural networks is a particularly promising approach
currently under investigation. Such an initialization approach is strongly
supported by recent developments in unsupervised competitive learning,
which indicated that the same generator functions used for constructing
reformulated RBF neural networks can also be used to generate soft LVQ
and clustering algorithms [19], [20], [22].

The generator function can be seen as the concept that establishes a direct
relationship between reformulated RBF models and soft LVQ algorithms
[20]. This relationship makes reformulated RBF models potential targets
of the search for architectures inherently capable of merging neural mod-
eling with fuzzy-theoretic concepts, a problem that attracted considerable
attention recently [39]. In this context, a problem worth investigating is
the ability of reformulated RBF neural networks to detect the presence
of uncertainty in the training set and quantify the existing uncertainty by
approximating any membership profile arbitrarily well from sample data.

References

[1] Behnke, S. and Karayiannis, N.B. (1998), “Competitive neural trees
for pattern classification,”IEEE Transactions on Neural Networks,
vol. 9, no. 6, pp. 1352-1369.

[2] Bezdek, J.C. (1981),Pattern Recognition with Fuzzy Objective
Function Algorithms,Plenum, New York, NY.

[3] Broomhead, D.S. and Lowe, D. (1988), “Multivariable functional

© 2000 by CRC Press LLC

interpolation and adaptive networks,”Complex Systems, vol. 2, pp.
321-355.

[4] Cha, I. and Kassam, S.A. (1995), “Interference cancellation using
radial basis function networks,”Signal Processing,vol. 47, pp. 247-
268.

[5] Chen, S., Cowan, C.F.N., and Grant, P.M. (1991), “Orthogonal
least squares learning algorithm for radial basis function networks,”
IEEE Transactions on Neural Networks,vol. 2, no. 2, pp. 302-309.

[6] Chen, S., Gibson, G.J., Cowan, C.F.N., and Grant, P.M. (1991),
“Reconstruction of binary signals using an adaptive radial-basis-
function equalizer,”Signal Processing,vol. 22, pp. 77-93.

[7] Cybenko, G. (1989), “Approximation by superpositions of a sig-
moidal function,”Mathematics of Control, Signals, and Systems,
vol. 2, pp. 303-314.

[8] Gersho, A. and Gray, R.M. (1992),Vector Quantization and Signal
Compression,Kluwer Academic, Boston, MA.

[9] Gray, R.M. (1984), “Vector quantization,”IEEE ASSP Magazine,
vol. 1, pp. 4-29.

[10] Grother, P.J. and Candela, G.T. (1993), “Comparison of handprinted
digit classifiers,”Technical Report NISTIR 5209, National Institute
of Standards and Technology, Gaithersburg, MD.

[11] Karayiannis, N.B. (1996), “Generalized fuzzyc-means algorithms,”
Proceedings of Fifth International Conference on Fuzzy Systems,
New Orleans, LA, pp. 1036-1042.

[12] Karayiannis, N.B. (1997), “Entropy constrained learning vector
quantization algorithms and their application in image compres-
sion,” SPIE Proceedings vol. 3030: Applications of Artificial Neu-
ral Networks in Image Processing II, San Jose, CA, pp. 2-13.

[13] Karayiannis, N.B. (1997), “Gradient descent learning of radial basis
neural networks,”Proceedings of 1997 IEEE International Confer-
ence on Neural Networks, Houston, TX, pp. 1815-1820.

© 2000 by CRC Press LLC

[14] Karayiannis, N.B. (1997), “Fuzzy partition entropies and entropy
constrained clustering algorithms,”Journal of Intelligent & Fuzzy
Systems,vol. 5, no. 2, pp. 103-111.

[15] Karayiannis, N.B. (1997), “Learning vector quantization: A re-
view,” International Journal of Smart Engineering System Design,
vol. 1, pp. 33-58.

[16] Karayiannis, N.B. (1997), “A methodology for constructing fuzzy
algorithms for learning vector quantization,”IEEE Transactions on
Neural Networks, vol. 8, no. 3, pp. 505-518.

[17] Karayiannis, N.B. (1998), “Learning algorithms for reformulated
radial basis neural networks,”Proceedings of 1998 International
Joint Conference on Neural Networks, Anchorage, AK, pp. 2230-
2235.

[18] Karayiannis, N.B. (1998), “Ordered weighted learning vector quan-
tization and clustering algorithms,”Proceedings of 1998 Interna-
tional Conference on Fuzzy Systems,Anchorage, AK, pp. 1388-
1393.

[19] Karayiannis, N.B. (1998), “Soft learning vector quantization and
clustering algorithms based in reformulation,”Proceedings of 1998
International Conference on Fuzzy Systems,Anchorage, AK, pp.
1441-1446.

[20] Karayiannis, N.B. (1999), “Reformulating learning vector quanti-
zation and radial basis neural networks,”Fundamenta Informaticae,
vol. 37, pp. 137-175.

[21] Karayiannis, N.B. (1999), “Reformulated radial basis neural net-
works trained by gradient descent,”IEEE Transactions on Neural
Networks, vol. 10, no. 3, pp. 657-671.

[22] Karayiannis, N.B. (1999), “An axiomatic approach to soft learning
vector quantization and clustering,”IEEE Transactions on Neural
Networks, vol. 10, no. 5, pp. 1153-1165.

[23] Karayiannis, N.B. and Bezdek, J.C. (1997), “An integrated ap-
proach to fuzzy learning vector quantization and fuzzyc-means

© 2000 by CRC Press LLC

clustering,”IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp.
622-628.

[24] Karayiannis, N.B., Bezdek, J.C., Pal, N.R., Hathaway, R.J., and Pai,
P.-I (1996), “Repairs to GLVQ: A new family of competitive learn-
ing schemes,”IEEE Transactions on Neural Networks,vol. 7, no.
5, pp. 1062-1071.

[25] Karayiannis, N.B. and Mi, W. (1997), “Growing radial basis neural
networks: Merging supervised and unsupervised learning with net-
work growth techniques,”IEEE Transactions on Neural Networks,
vol. 8, no. 6, pp. 1492-1506.

[26] Karayiannis, N.B. and Pai, P.-I (1995), “Fuzzy vector quantiza-
tion algorithms and their application in image compression,”IEEE
Transactions on Image Processing, vol. 4, no. 9, pp. 1193-1201.

[27] Karayiannis, N.B. and Pai, P.-I (1996), “Fuzzy algorithms for learn-
ing vector quantization,”IEEE Transactions on Neural Networks,
vol. 7, no. 5, pp. 1196-1211.

[28] Karayiannis, N.B. and Venetsanopoulos, A.N. (1993),Artificial
Neural Networks: Learning Algorithms, Performance Evaluation,
and Applications,Kluwer Academic, Boston, MA.

[29] Kohonen, T. (1989),Self-Organization and Associative Memory,
3rd Edition, Springer-Verlag, Berlin.

[30] Kohonen, T. (1990), “The self-organizing map,”Proceeding of the
IEEE, vol. 78, no. 9, pp. 1464-1480.

[31] Linde, Y., Buzo, A., and Gray, R.M. (1980), “An algorithm for vec-
tor quantization design,”IEEE Transactions on Communications,
vol. 28, no. 1, pp. 84-95.

[32] Lippmann, R.P. (1989), “Pattern classification using neural net-
works,” IEEE Communications Magazine, vol. 27, pp. 47-54.

[33] Micchelli, C.A. (1986), “Interpolation of scattered data: Distance
matrices and conditionally positive definite functions,”Construc-
tive Approximation, vol. 2, pp. 11-22.

© 2000 by CRC Press LLC

[34] Moody, J.E. and Darken, C.J. (1989), “Fast learning in networks
of locally-tuned processing units,”Neural Computation, vol. 1, pp.
281-294.

[35] Pal, N.R., Bezdek, J.C., and Tsao, E.C.-K. (1993), “Generalized
clustering networks and Kohonen’s self-organizing scheme,”IEEE
Transactions on Neural Networks, vol. 4, no. 4, pp. 549-557.

[36] Park, J. and Sandberg, I.W. (1991), “Universal approximation us-
ing radial-basis-function networks,”Neural Computation, vol. 3,
pp. 246-257.

[37] Park, J. and Sandberg, I.W. (1993), “Approximation and radial-
basis-function networks,”Neural Computation, vol. 5, pp. 305-316.

[38] Poggio, T. and Girosi, F. (1990), “Regularization algorithms for
learning that are equivalent to multilayer networks,”Science, vol.
247, pp. 978-982.

[39] Purushothaman, G. and Karayiannis, N.B. (1997), “Quantum Neu-
ral Networks (QNNs): Inherently fuzzy feedforward neural net-
works,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp.
679-693.

[40] Roy, A., Govil, S., and Miranda, R. (1997), “A neural-network
learning theory and a polynomial time RBF algorithm,”IEEE
Transactions on Neural Networks,vol. 8, no. 6, pp. 1301-1313.

[41] Tsao, E.C.-K., Bezdek, J.C., and Pal, N.R. (1994), “Fuzzy Kohonen
clustering networks,”Pattern Recognition, vol. 27, no. 5, pp. 757-
764.

[42] Whitehead, B.A. and Choate, T.D. (1994), “Evolving space-filling
curves to distribute radial basis functions over an input space,”
IEEE Transactions on Neural Networks,vol. 5, no. 1, pp. 15-23.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 3

EFFICIENT NEURAL NETWORK-BASED
METHODOLOGY FOR THE DESIGN OF

MULTIPLE CLASSIFIERS

N. Vassilas
Institute of Informatics and Telecommunications

National Research Center “Demokritos,” Ag. Paraskevi, Attiki
Greece

A neural network-based methodology for time and memory efficient
supervised or unsupervised classification in heavily demanding
applications is presented in this chapter. Significantly increased speed
in the design (training) of neural, fuzzy and statistical classifiers as well
as in the classification phase is achieved by: (a) using a self-organizing
feature map (SOFM) for vector quantization and indexed representation
of the input data space; (b) appropriate training set reduction using the
SOFM prototypes followed by necessary modifications of the training
algorithms (supervised techniques); (c) clustering of neurons on maps
instead of clustering the original data (unsupervised techniques); and
(d) fast indexed classification. Finally, a demonstration of this method-
ology involving the design of multiple classifiers is performed on
Land-Cover classification of multispectral satellite image data showing
increased speed with respect to both training and classification times.

1 Introduction

Within the last decade, advances in space, sensor and computer
technology combined with the launch of new sophisticated satellites
have made it possible to amass huge amounts of data about the earth
and its environment daily [1]. Applications such as environmental
monitoring and resource management as well as geological and
geophysical data analysis involve processing large amounts of spatial

© 2000 by CRC Press LLC

data. Often, these data are collected from multiple sources, stored in
Geographical Information Systems (GIS), and may include
multispectral satellite images (e.g., Landsat TM, SPOT, NOAA
AVHRR), grid data (e.g., digital elevation maps, geological/geo-
physical maps) and point or local measurements (e.g., data from local
stations, drill data). Therefore, it is evident that more powerful
methodologies are needed for efficient data processing in heavily
demanding applications such as the one considered in this paper,
namely, satellite image classification.

Recently, several techniques have been proposed for multispectral
satellite image classification. These include traditional statistics, neural
networks and fuzzy logic and can be divided into two general
categories: (a) supervised techniques in which labeled training samples
are used for optimizing the design parameters of the classification
system [2]-[7], and (b) unsupervised techniques (automatic classifica-
tion) using a data clustering algorithm [8]-[12].

Although supervised techniques generally perform better in the
production of thematic maps (e.g., classification in land-cover
categories, geological categories, etc.), unsupervised techniques are
mainly used when no training sets are available and constitute a
valuable objective alternative as they do not depend on previous
knowledge or a photointerpreter's experience. These algorithms first
cluster the data according to a similarity criterion, then assign a label to
each cluster (usually a grey level or color) that corresponds to a
(thematic) category and, finally, substitute each pixel of the original
image with the cluster label to which it belongs. The traditional
classification scheme using a supervised algorithm or a clustering
algorithm is shown in Figure 1.

In a number of recent works [2]-[7], neural network models have
successfully been applied for the classification of multispectral satellite
images and, more generally, of multisource remotely sensed data.
However, for training sets consisting of several thousand patterns
belonging to many (often more than ten) categories and large volumes
of data, the neural network training and/or classification times reported
are quite long, ranging in some cases from a few hours to a few weeks
on a conventional computer [4]. The inherent computational
complexity in the training, clustering or classification phase of several

© 2000 by CRC Press LLC

other algorithms such as the Pal-Majumder’s fuzzy classifier [13], [14],
the k-nearest neighbors algorithm [15], the various hierarchical
clustering procedures [15] and clustering based on scale-space analysis
[11], to name a few, also prohibit their use in heavily demanding
applications. Therefore, taking into account that additional training and
classification trials must usually be performed before selecting a
particular classification model, its architecture, and, its design
parameters, the need for a methodology for fast model design and
classification is evident.

Supervised ClassificationMulti-spectral

Image

Thematic

MapClustering

Figure 1. Traditional supervised/unsupervised classification.

In this paper, a methodology based on self-organizing feature maps and
indexing techniques is proposed and demonstrated for classifying
multispectral satellite images in land-cover categories. The aim is to
improve memory requirements for storing the satellite data and at the
same time increase training and classification speed without a
significant compromise of final performance. This can be accomplished
through quantization of the input space, indexed representation of
image data, reduction of training (and, possibly, validation) sets,
appropriate modification of the training algorithms and, finally,
indexed classification.

Results using neural, fuzzy and statistical classifiers show that it is
possible to obtain good land-cover maps with the proposed
methodology in much shorter times than the classical method of pixel-
by-pixel classification. Furthermore, the increased speed achieved
allows the design of multiple independent classifiers needed by
multimodular systems that combine the decisions of individual
classifiers through a voting scheme. One such system that resolves
“don’t know” cases (i.e., classifiers not in agreement) through local
spatial voting is shown to further improve the final result.

© 2000 by CRC Press LLC

2 Proposed Methodology

In this section, a methodology for efficient classification of multi-
spectral data is presented with the following advantages:

• memory savings through data quantization,

• increased training speed in supervised algorithms, due to training
set size reduction achieved by redundancy removal,

• increased clustering speed in automatic classification, due to the
relatively small number of prototypes (quantized data points),

• increased classification speed by using fast indexing techniques.

Although the method can be applied to multisource data without loss of
generality, we will restrict the presentation to multispectral satellite
images consisting of n bands with M×N pixels each. The image is
represented in the n-dimensional euclidean space Rn by a set of M×N
points, whereby the grey level values (intensities) in each band at a
particular pixel are interpreted as the coordinates of the corresponding
point in Rn (see Figure 2). In other words, the grey levels of each pixel
are stacked into a vector (also called the spectral signature of the pixel)
that specifies a point in Rn.

1

2

n
M

N

g1

g2

gn

Figure 2. Representation of multispectral images of M×N pixels and n bands.
The spectral signature of a pixel is represented by a point (g1, g2, …, gn) ∈ Rn
where gi corresponds to the grey level of the i-th spectral band, i = 1, 2, …, n.

© 2000 by CRC Press LLC

2.1 Data Quantization Using Self-Organizing Maps

The first stage of the proposed methodology involves quantization of
the input data space using Kohonen's self-organizing feature maps
(SOFM) [16]. Using the euclidean distance metric, the SOFM
algorithm performs a Voronoi tessellation of the input space and the
asymptotic weights of the network (usually a 1-D or 2-D lattice of
neurons) can then be considered as a catalogue of vectors or prototypes,
with each such prototype representing all data from its corresponding
Voronoi cell.

 Index
Table

SOFM
PROTOTYPES

Prototype#1
Prototype#2

…

Prototype#k

…

 Multispectral
Image

Figure 3. Representation of multispectral images by the index table and
SOFM prototypes. The index table stores pointers from pixels to their nearest
prototypes.

Following input data quantization, the next step is to derive an indexing
scheme that maps each input sample (pixel) to its corresponding
prototype. This is achieved by storing, in a 2-D array of the same
dimensions as the original image, a pointer to the pixel’s closest
prototype. This array will be called the index table and, along with the
SOFM prototypes, constitutes an indexed (compressed) representation
that can be used in place of the original image (see Figure 3). Although
SOFM training as well as index table production are performed with
off-line computations, it is worth noting that the speed can be
significantly increased a) by using the branch-and-bound [17] or
partition [5] variants of the nearest neighbor algorithm for sequential
implementations, or b) through parallel implementations. Recent works
on systolic array implementations of Kohonen's algorithm, which

© 2000 by CRC Press LLC

exploit synaptic-level parallelism and allow for fast computations
needed in SOFM training and index table construction, can be found in
[18], [19].

In general, the larger the number of neurons on the map the better the
approximation of the original data space and the smaller the
quantization distortion (provided that the map self-organizes).
However, from experience, map sizes of up to 16×16 neurons (i.e., 256
prototypes) should suffice in most applications. In the case of large
volumes of multispectral data from n bands with 256 grey levels/band,
compression ratios of approximately n:1, when 256 prototypes are
used, are readily attainable.

2.2 Training Set Reduction and Classification of
SOFM Prototypes for Supervised Techniques

In this section, we demonstrate how fast tuning the parameters of
supervised algorithms can be performed using the SOFM prototypes.
The training phase involves the use of appropriately selected training
and, possibly, validation samples of known classification, with the
latter being used to avoid overtraining [20]. In satellite image
classification applications, these data sets are usually composed of
several thousands of pixels and, along with the complexity of the
classification task (i.e., the number of categories as well as the optimal
shapes of class boundaries), are responsible for the long training times
observed. Therefore, it is plausible to seek a reduction of these sets
through quantization, preserving at the same time most of the
information contained in the original sets. There are two main reasons
for this: a) it removes redundancy from the training set, and b) such a
reduction speeds up the validation set performance evaluation
computed at regular intervals during the training phase.

Using the proposed methodology, a reduction of the training and
validation sets can be achieved as follows. First, both sets are quantized
by substitution of each sample (spectral signature) with its closest
SOFM prototype. In general, the number of prototypes is much smaller
than the size of either data set, therefore leading to the existence of
many duplicated quantized samples (they fall in the same Voronoi cell).
Second, for each class label, we partition the data sets in groups of

© 2000 by CRC Press LLC

identical samples and compute the multiplicity of each group. The
reduced sets will have as many different samples as the number of
groups under each label with each sample followed by its multiplicity
in the group. These multiplicity counts are used in order to preserve the
between- and within-class relative frequencies needed to specify
optimal boundary placement in overlapping regions (note that identical
samples belonging to different classes will both exist in the reduced
set). As will be shown in Section 3, simple algorithmic modifications,
taking into account sample multiplicities, allow for fast training of
supervised models with reduced training and validation sets.

Finally, in the next stage of the proposed methodology the so trained,
supervised models are used to classify the weight vectors associated
with the neurons of the map (i.e., the catalogue of SOFM prototypes)
rather than the original multispectral data. The result obtained is a
catalogue of labels (e.g., grey levels or colors) following the same order
as the SOFM prototypes (see Figure 4).

Catalogue of

SOFM

Prototypes

Catalogue of

LabelsSupervised Classifier

Figure 4. Creation of the catalogue of labels by supervised models based on
the reduced training and validation sets.

2.3 Fast Clustering and Labeling of SOFM
Prototypes for Unsupervised Techniques

Typically, automatic classification involves clustering of the data space
followed by label assignment. However, due to the large number of
data points (up to M×N different spectral signatures), clustering
performed on the original image data is inefficient in terms of both
memory and time.

In the proposed methodology clustering is performed on the neurons of
the map (i.e., the catalogue of SOFM prototypes), thus achieving an
increased speed of orders of magnitude, allowing the use of even the

© 2000 by CRC Press LLC

most computationally demanding algorithms such as hierarchical
algorithms [15].

Following clustering, the next step is the assignment of arbitrary labels
to each cluster. These clusters, along with their labels, will represent
the automatic classification categories (see Figure 5).

Catalogue of

SOFM

Prototypes

Clustering & Arbitrary

Label Assignment
Catalogue of

Labels

Figure 5. Creation of the catalogue of labels by unsupervised models based on
fast clustering and arbitrary label assignment.

2.4 Efficient Indexed Classification

The traditional pixel by pixel classification using supervised or
unsupervised techniques requires computational time proportional to
the original image dimensions (see Figure 1). The classification of
SOFM prototypes and production of the catalogue of labels allows for
fast indexed classification by avoiding expensive computations. The
final result (thematic map) is now obtained by following the pointers of
the index table and accessing the corresponding labels as shown in
Figure 6. For large satellit e images, an increase in speed of two or three
orders of magnitude is possible at this stage.

3 Modifications of Supervised Algorithms

Next, we present the neural, fuzzy and statistical supervised classifiers
used in this work as well as the modifications needed in order to take
advantage of reduced training and validation sets. In particular, we
show how to take into account sample multiplicities when updating
weights of neural networks and how to accommodate these
multiplicities into fuzzy and statistical classifiers in order to accelerate
their computational performance.

© 2000 by CRC Press LLC

Thematic

Map

Catalogue of

Labels

Index

Table

Figure 6. Fast indexed classification using the index table and catalogue of labels.

As far as neural networks are concerned, the goal is for the weight
updates to be equivalent to those that correspond to the unreduced but
quantized training sets. Hence, under these modifications and assuming
that the complexity of the classification task is not significantly
affected by the quantization process, training time is reduced
approximately in proportion to the ratio between the original
(redundant) training set size and the number of prototypes (provided
that most of the prototypes exist in the reduced set with few belonging
to different classes).

3.1 Classification Using the BP Algorithm

The first classifier used is a multi-layered feedforward network trained
with the back propagation (BP) algorithm [21]. In order to speed up the
convergence to a local minimum of the error surface, by allowing for
relatively large adaptation gain (learning rate) parameters, the on-line
back propagation version [22] is used in the simulations. In on-line BP,
the weights are updated following each input presentation, whereby
input patterns are provided in random order. Moreover, by multiplying
the weight updates that correspond to a training pattern x with its
multiplicity mult(x), pattern multiplicities are easily incorporated into
the learning procedure. In fact, such a technique implicitly assumes that
a group of mult(x) inputs is presented in succession to the network and

© 2000 by CRC Press LLC

can be considered a hybrid algorithm, as all patterns within the group
cause a batch weight update (in the batch BP version, identical patterns
contribute the same amount of weight change) while different groups
affect learning in an on-line fashion.

This technique can also be used to balance classes in the training set
when they are not equally represented. To speed up learning, one can
induce larger weight changes for patterns of poorly represented
categories than those of well represented categories. If Ni signifies the
number of patterns in class i and Nmax = max{ Ni}, then Nmax/Ni can be
used as the amplification factor of weight changes induced by patterns
from class i. For the unbalanced training set of our simulations, an
increase of speed by approximately 4 times was achieved using the
above technique. As is the case with the batch and on-line BP versions,
selection of network parameters (e.g., adaptation gain) is problem
dependent and must be performed after experimentation. However,
from experience, the adaptation gain for hybrid algorithms can be
selected to be the same as that for the on-line BP version without
destroying stochastic convergence.

3.2 Classification Using the LVQ Algorithm

The second neural classifier used in this work is a single-layered
network trained with the LVQ algorithm [16], [23]. Although the LVQ
algorithm is reputably fast, further improvement on training time can be
achieved by following the training set reduction procedure suggested in
Section 2.2. To incorporate the multiplicities of the input patterns when
updating the reference vectors, the adaptation gain .(t) at time t must
be changed to .
(t) = [1 – (1 – .(t))mult(x)]. It can easily be verified that
this modification: a) is equivalent to assuming a repetitive presentation
of pattern x mult(x) times, considering a constant adaptation gain
throughout these repetitions, and b) does not significantly affect the
convergence properties of the algorithm (groups are randomly
presented and the adaptation gain follows a staircase decaying function
with flat portions corresponding to patterns of the same group).

© 2000 by CRC Press LLC

3.3 The Pal-Majumder Fuzzy Classifier

The fuzzy classifier used in this work is similar to the one proposed by
Pal and Majumder [13], [14] for vowel and speaker recognition and
will be denoted as the PM classifier. To make it easier for readers who
are unfamiliar with this, a short presentation of this algorithm follows.

Let, xp = (x1
p , x2

p,…, xn
p) denote the p-th original pattern (p = 1, …, P) of

the training set, with xi
p being its i-th feature element (i = 1, …, n). The

patterns xp are transformed into the fuzzy patterns yp = (y1
p, y2

p,…, yn
p) by

assigning a membership function �i(·) to each of the features xi
p (this is

called the fuzzification process):

yp,i = �i(xp,i) = (1 + | (x,
_
 i - xp,i) / E |F)-1 ∀i = 1, …, n, ∀p = 1, …, P(1)

where x
_

i = (1/P) �
P
p=1 xi

p
 is the mean value of the i-th feature in the

training set and E, F are constants determining the shape of the mem-
bership functions (spread and steepness of the symmetric membership
function).

A new test pattern, x = (x1, x2, …, xn) presented to the fuzzy classifier,
is first transformed to a fuzzy pattern y = (y1, y2, …, yn) using equation
(1) and in the sequel it is compared to each class through fuzzy
similarity scores. Let C1, C2, …, CC signify the sets of training pattern
indices p that correspond to each of the C classes and let N1, N2, …, NC
be their respective cardinalities. The similarity scores are found by first
computing the similarity vectors sc(y) = (sc1, sc2, …, scn), c = 1, 2, …, C,
between pattern y and each of the C classes, where

sci = (1/Nc) �p s
 p

,ci ∀p ∈ Cc and c = 1, 2, …, C (2)

and

s p
,ci = (1 + Wi | 1 - yi / yp,i |)

-2z. (3)

The positive constants indicate the relative sensitivity of the clas-
sification process to the i-th feature (the lower this value, the higher the
sensitivity), and z is a positive integer.

© 2000 by CRC Press LLC

Having computed s1(y), s2(y), …, sC(y) we then classify y to class c if
|sc(y)| < | sj(y)| ∀j ≠ c (this is the defuzzification process) with |sc(y)| =
�

n
i=1 sci for c = 1, 2, …, C.

It is evident that, by classifying the SOFM prototypes instead of the
original pixels (M×N spectral signatures), this algorithm can efficiently
be used in multispectral satellite image classification with the proposed
methodology. The reduced training sets result in a further increase in
speed of the classification process by P'/P where P' = �

P
p=1 mult(p) and

P are the sizes of the original and reduced training sets respectively.
The only modifications needed on the original algorithm, to incorporate
the group multiplicities, are in the computation of the feature means,

x,
_
 i = (1/P') �P

,p =1 mult(p) xp,i , ∀i = 1, 2, …, n, (4)

in the cardinalities Nc = �p∈Cc mult(p) and in equation (2):

sci = (1/Nc) �p mult(p) s p
,ci ∀p ∈ Cc and c = 1, 2, …, C. (5)

3.4 Classification Using the k-NN Algorithm

The final supervised classifier used in this work is one of the simplest
and most popular statistical classification methods, namely, the k-
nearest neighbors (k-NN) algorithm [15]. According to the k-NN
algorithm, a new input pattern x is assigned to the class voted by the
majority of its k nearest (in euclidean distance sense) training patterns
xp, p = 1, 2, …, P.

As was the case with neural and fuzzy classifiers, instead of classifying
the original image on a pixel-by-pixel basis, the reduced training set is
used to classify the catalogue of SOFM prototypes to a corresponding
catalogue of labels followed by the fast indexed classification of
Section 2.4. The necessary modifications to incorporate the group
multiplicities of the reduced training set in the k-NN algorithm are the
following: if pi signifies the index of the i-th nearest neighbor to x then
we need only find the k' ≤ k nearest neighbors such that

�
k'
i =1

 mult(pi) ≥ k (6)

© 2000 by CRC Press LLC

and k' has the minimum value that satisfies equation (6). Since k' ≤ k, a
further increase of the speedup factor is expected.

4 Multimodular Classification

The design of several supervised classification models with
independent decisions allows for further improvement of final
classification results through the use of multimodular decision making
architectures. In a sense, the process of combining the power of
different classifiers to obtain optimal classification results simulates the
common practice followed by some patients who visit several
“independent” doctors in order to obtain uncorrelated diagnoses and
then follow the treatment suggested by the majority of them. By
analogy, classification results obtained by a single classifier may be
absolutely dependent on the particular design and properties of the
classifier. Such dependence may have serious effects on final
performance, especially when there is significant overlap of the
categories and the optimum (in the Bayesian sense) boundaries are non-
linear. Taking into consideration the computational complexity of the
overall multimodular system, the increase in speed achieved by the
proposed methodology in the design of each individual classifier can
prove quite beneficial.

The multimodular architecture considered in this work utilizes the
simple voting schemes suggested by Battiti and Colla [24]. In their
experiments on optical character recognition, multiple neural network
classifiers were used and independence of their individual decisions
was guaranteed by using different: a) input features, b) number of
hidden units, c) initial random weights, and/or d) network models. Each
classifier (module) was then allocated a vote and the final decision was
made by following a relative or absolute majority rule. Their results
with different combinations of modules show an overall superiority of
the multimodular system in terms of classification accuracy, with
respect to individual classifiers.

In this work, we extend the above to multimodular classification
systems that incorporate not only neural but also fuzzy and statistical
classifiers. Independence of individual decisions is guaranteed by using
different classification models. Absolute majority rules are then applied

© 2000 by CRC Press LLC

for a primal classification. Depending on the majority rule, input
patterns may be rejected from classification (don’t know cases resulting
from classifier disagreement) and performances can be plotted in the
accuracy/ rejection plane, whereby an increase in the rejection rate
should result in an increase of classification accuracy provided that
rejected patterns are close to class boundaries. This added flexibility
offers design options that can be exploited when desired performance
levels must be obtained even at the expense of an increased rejection
rate.

To resolve the problem of don’t know pixels in the primal classification
result we may exploit the spatial property of the image data. To this
end, a don’t know pixel may be given the label of the majority of its
local neighbors found in a window centered around the don’t know
pixel. Such a technique can be viewed as spatial noise filtering. This
cleans the final image and homogenizes its classification regions.

5 Land-Cover Classification

In this section we apply the proposed methodology for supervised and
unsupervised classification of a multispectral Landsat TM 512×512
image over Lesvos island in Greece, with a spatial resolution of 30m,
into the following four land-cover categories: a) forest, b) sea, c)
agricultural and d) bare rock-inhabited areas. The satellite data
consisted of the first 3 bands (256 grey levels each) that correspond to
the red, green and blue regions of the visible spectrum. The original
image is shown in Figure 7a.

After delineation of small polygonal regions from each land-cover
category by an expert, two sets consisting of 6011 and 3324 samples
(3-D spectral signatures) were selected for training the supervised
models and testing their classification performance, respectively. In
order to assess the generalization capabilities of the supervised
algorithms during training, the first of these sets was further randomly
split to generate a training set of 4209 samples and a validation set
consisting of 1802 samples. The number of patterns in the selected four
categories of each of the three sets are shown in Table 1. For the
unsupervised models, the same sets of labeled pixels can be used to
assess their performance. In Section 5.3, we compare the performance

© 2000 by CRC Press LLC

of the Fuzzy Isodata automatic classifier with its supervised counter-
parts.

 (a) (b)

Figure 7. (a) Original multispectral satellite image used in the simulations, and
(b) the self-organized map of 16×16 neurons.

Table 1. Number of patterns in each of the four categories for the three data sets.

Set Total Forest Sea Agric. Rock

Training 4209 1375 1054 1434 346
Validation 1802 589 451 614 148
Test 3324 1098 637 944 645

All programs were run on a SUN ULTRA II Enterprise workstation
(64MB, 167MHz). A map of 16×16 neurons was trained with 105
random presentations of the 3-D spectral signatures in 23.12 sec. The
adaptation gain .(t) of Kohonen’s SOFM algorithm was selected to
tend to zero according to .(t) = .0 /(1 + K.· t) with an initial gain .0 =
0.3 and a rate of decay K. = 0.002. The popular rectangular
neighborhood function was considered, with a neighborhood size d(t)
shrinking with time according to d(t) = dmin + d0/(1 + Kd· t) where dmin =
1, d0 = 7 and Kd = 0.0025. The self-organized map produced with the
above settings is depicted in Figure 7b.

Following SOFM training, the storage of asymptotic weights into the
catalogue of SOFM prototypes (256 prototypes × 3 floats/prototype × 4

© 2000 by CRC Press LLC

bytes/float × 8 bits/byte = 3 × 213 bits) and the index table construction
(5122 indices × 8 bits/index = 221 bits) required 54.30 sec.

The SOFM prototypes and index table can also be used for representing
the original satellite image (3 bands × 5122 greys/band × 8 bits/grey = 3
× 221 bits) in a compressed form. The compression ratio achieved in
this case is 3 × 221 / (3 × 213 + 221) = 2.96 while higher ratios can be
obtained for more data bands and/or smaller maps, although caution
should be exercised with the latter since small maps may lead to large
quantization distortions. The quantized image produced by following
the indices and rounding the elements of the prototype vectors to their
nearest integers is visually almost indistinguishable from Figure 7a.

5.1 Supervised Classification

The next step is to compress the training and validation sets as
explained in Section 2.2. The new sets have 284 and 252 patterns
respectively. This is very close to the number of SOFM prototypes. The
typical strategy followed in the design of supervised classifiers is to
stop training when performance on the validation set is maximized.
This approach is used to avoid the well known problem of overtraining
[20] and may require experimentation that involves several trials with
different parameter values. In the results shown below, a slightly
different strategy was used. Instead of maximizing the performance of
the validation set alone, we maximized a linear combination of the
training and validation performances with coefficients of the linear
combination, the 0.3 and 0.7, respectively. The reason for this
modification was to assure not only overtraining avoidance but also a
good model performance on the training set. Parameter tuning through
repetitive experimentation and assessment of training and validation
performance at regular intervals adds to “real” training time and
provides an additional reason for the importance of the proposed
methodology.

Table 2 shows the results obtained with the BP, LVQ, PM and k-NN
classifiers in terms of final performance on the training, validation and
test sets of Table 1, while Table 3 shows the respective increases in
training speeds achieved by the proposed methodology. A 3-10-4
feedforward network was trained with the BP algorithm using an

© 2000 by CRC Press LLC

adaptation gain of 0.5 (2.0) and momentum parameter of 0.7 (0.8), both
following a staircase decay by a factor of 0.7 every 500 epochs, for the
classical (proposed) methodology. Training and validation set per-
formances were assessed every 20 epochs for both methodologies. The
training times shown in Table 3 do not take into account the parameter
tuning phase and correspond to 1500 epochs (6313500 presentations)
for the classical methodology and 220 epochs (62480 presentations) for
the proposed methodology. The increase in training speed for the BP
classifier, achieved with the proposed methodology, was more than 500
with no significant change in classification accuracy.

Table 2. Performance of the four supervised classifiers for the classical and
proposed methodologies (F-forest, S-sea, A-agricultural, R-rock).

 Classical Method Proposed Method
Model Category Training Valid. Test Training Valid. Test
 F 98.25% 98.64% 94.72% 96.51% 97.62% 91.80%
 S 100.00% 100.00% 100.00% 99.91% 100.00% 98.27%
BP A 96.44% 94.79% 93.22% 96.58% 95.11% 94.92%
 R 89.60% 91.22% 95.19% 93.64% 92.57% 97.36%
 Total 97.36% 97.06% 95.40% 97.15% 96.95% 95.01%
 F 97.16% 98.47% 93.90% 97.53% 98.64% 94.26%
 S 100.00% 100.00% 100.00% 99.91% 99.78% 98.12%
LVQ A 97.07% 95.77% 94.70% 96.37% 95.60% 94.70%
 R 90.46% 91.22% 96.12% 89.31% 89.86% 94.26%
 Total 97.29% 97.34% 95.73% 97.05% 97.17% 95.13%
 F 96.58% 97.45% 93.99% 92.80% 92.02% 86.25%
 S 97.82% 96.45% 84.77% 99.62% 99.33% 89.48%
PM A 94.42% 92.83% 92.06% 88.84% 87.95% 85.06%
 R 95.09% 94.59% 98.45% 94.22% 93.92% 97.52%
 Total 96.03% 95.39% 92.54% 93.28% 92.62% 88.72%
 F 97.75% 97.96% 92.35% 97.82% 98.13% 92.53%
 S 100.00% 100.00% 100.00% 99.91% 99.78% 98.12%
k-NN A 97.84% 94.79% 92.58% 97.42% 95.60% 93.64%
 R 91.62% 92.57% 96.12% 87.57% 87.16% 93.49%
 Total 97.84% 96.95% 94.61% 97.36% 96.78% 94.10%

Training of the LVQ classifier was performed with 24 reference vectors
(6 reference vectors per category) and a linearly decaying adaptation
gain (initial gain equal to 0.3, decay slope = −0.3/5000) for both
methodologies. Performances on the training and validation sets were

© 2000 by CRC Press LLC

assessed every 100 iterations. From Tables 2 and 3, we can infer that
with no significant change in classifier performance, the increase in
training speed achieved was about 4.5. The entries in these tables show
that the LVQ algorithm is one of the most appropriate for satellite
image classification due to its high speed and good generalization
capabilities as long as the dimensionality of the data is relatively small
(e.g., 3-D in this application).

Table 3. Increase in training speed for the four classifiers.

 Classical Method Proposed Method
Classifier Number of

Presentations
Time
(sec)

Number of
Presentations

Time
(sec)

Speedup

BP 6313500 2847.47 62480 5.31 536.25
LVQ 1000 0.58 2200 0.13 4.51
PM - 75.25 - 0.55 136.82
k-NN - 14.57 - 0.26 56.04

Unlike the stochastic training nature of neural classifiers, the fuzzy PM
and k-NN classifiers use static (non-adaptive) training. However,
optimum selection of the PM and k-NN design parameters can only be
achieved through repetitive classification of the training and validation
sets. As with neural classifiers, optimum model selection corresponded
to maximization of the combined training and validation performance
index by assessing it for various sets of design parameters. In this way,
the parameters selected for the PM model were E = 0.1, F = 9.0, z = 9
and Wi = 0.8 (i = 1, 2, 3) for the original data sets and E = 0.1, F = 12.0,
z = 12 and Wi = 0.8 (i = 1, 2, 3) for the reduced data sets. For the k-NN
classifier, k = 5 was found to be the optimal value of k for both the
original and reduced data sets. Table 2 shows that the non-adaptive
nature of these algorithms results in a worse generalization than their
neural counterparts for either methodology. The increase in speed due
to reduced training and validation sets was about 136 and 56 times for
the PM and k-NN classifiers respectively. The training times shown in
Table 3 correspond to the time needed to assess training and validation
performance for a given parameter set of the PM algorithm and for k =
5 for the k-NN algorithm.

Finally, Table 4 shows the increase in speed achieved in classifying the
original 512×512 satellite image. The times reported for the classical
method correspond to pixel-by-pixel classification using those

© 2000 by CRC Press LLC

classifiers that have been trained with the original data sets. The times
reported for the proposed method include the times for classifying the
SOFM prototypes (20ms, 20ms, 370ms and 160ms for the BP, LVQ,
PM and k-NN classifiers respectively) and the time for the indexed
classification (120ms for all classifiers). The increase in speed achieved
for the BP and LVQ algorithms was about 72 and 24 times
respectively, while that for the PM and k-NN algorithms was about
7112 and 2926 respectively, a very impressive result. The final
classification results using the original data sets are shown in Figure 8
and those for the reduced data sets are shown in Figure 9.

Table 4. Increase in classification speed of the four algorithms.

 Classical Method Proposed Method
Classifier Time (sec) Time (sec) Speedup

BP 10.11 0.14 72.21
LVQ 3.45 0.14 24.64
PM 3485.00 0.49 7112.25
k-NN 819.38 0.28 2926.35

5.2 Multimodular Classification

The design of multimodular classification systems in such demanding
applications is often prohibited by the time it takes to train the
individual classifiers and then classify the data with each one in turn.
For the four classifiers used in this work, the total training time (not
counting the necessary repetitive trials) is 2937.87 sec while the total
classification time is 4317.94 sec.

Using the proposed methodology, the total training and classification
times are 6.25 sec and 1.05 sec, respectively, thus encouraging the use
of such multimodular classification systems. In this work, the combined
decision is based on an absolute majority voting scheme. In particular,
we require at least three out of the four classifiers to be in agreement in
order to accept the decision. Pixels for which there is not enough
agreement (i.e., no three individual classifiers agree on a common class
label) are labeled temporarily as “don’t knows”. Don’t know pixels are
then resolved locally at the next stage by giving them the label of the
majority of their labeled spatial neighbors found in a 3×3 window
centered around them.

© 2000 by CRC Press LLC

 (a) (b)

 (c) (d)

 - Sea - Forest - Agricultural - Rock Class labels:

Figure 8. Classification results using the original data sets for the following
algorithms: (a) BP, (b) LVQ, (c) PM, and (d) k-NN.

Figures 10a and 10b show the classification results obtained using a
multimodular classifier on the original and reduced data sets,
respectively. Qualitative evaluation and comparison with Figures 8 and
9 shows superior classification quality due to more homogeneous
regions.

© 2000 by CRC Press LLC

 (a) (b)

 (c) (d)

 - Sea - Forest - Agricultural - Rock Class labels:

Figure 9. Classification results using the reduced data sets for the following
algorithms: (a) BP, (b) LVQ, (c) PM, and (d) k-NN.

The time needed to combine the decisions of the four classifiers (only
for the SOFM prototypes), indexed classification, and resolving 9309
don’t know pixels through local information was 0.15 sec for the
proposed methodology. The corresponding time for the classical
methodology was 0.42 sec (5790 don’t know pixels).

© 2000 by CRC Press LLC

 (a) (b)

 - Sea - Forest - Agricultural - Rock Class labels:

Figure 10. Multimodular classification results using: (a) the classical
methodology, and (b) the proposed methodology.

5.3 Unsupervised Classification

The experiments performed in this section mainly consider two of the
most popular clustering algorithms, namely the Isodata [15], [25] and
Fuzzy Isodata [26] algorithms. However, in order to stress the
efficiency of the proposed methodology some practical remarks on the
hierarchical min-max statistical algorithm [15] have also been included.

Classification results for 8 categories (subclusters) using the proposed
methodology for the Isodata and Fuzzy Isodata algorithms are shown in
Figures 11a and 11b, respectively. Convergence of the Isodata
algorithm was achieved in 34.71 msec (13 iterations) while Fuzzy
Isodata was terminated in 0.967 sec, at 100 (preselected maximum
number) iterations. The additional indexed classification time, common
to all algorithms, was 0.12 sec.

Figure 11c shows the classification result obtained in 11.90 sec with the
hierarchical min-max algorithm. The computational complexity
prohibits direct use of this algorithm on the original data (this is a
disadvantage when compared with the proposed methodology). On the
other hand, direct application of the Isodata and Fuzzy Isodata
algorithms to the original data is possible (see Figures 12a and 12b) at a

© 2000 by CRC Press LLC

cost of about 1024 times (5122/256) longer clustering time per iteration.
In fact, clustering in 8 categories required 172.63 sec for Isodata (63
iterations) and 542.31 sec for Fuzzy Isodata (50 iterations), while the
time for classification was 1.02 sec for both algorithms.

 (a) (b)

 (c) (d)

Figure 11. Classification results in 8 categories with the proposed method-
ology using: (a) Isodata, (b) Fuzzy Isodata, and (c) hierarchical min-max
algorithm. The classification result in 4 categories using Fuzzy Isodata with
the proposed methodology is shown in (d).

© 2000 by CRC Press LLC

 (a) (b)

Figure 12. Unsupervised classification in 8 categories with the classical
methodology using: (a) Isodata, and (b) Fuzzy Isodata.

From the above, the increase in clustering speed per iteration, achieved
by using the proposed methodology, is about 2.74/(2.67×10-3) = 1026
for Isodata and 10.84/(9.67×10-3) = 1121 for Fuzzy Isodata (see Table
5). On the other hand, comparisons in terms of classification speed
show an increase in speed, due to indexing techniques, of 1.02/0.12 =
8.5 for both algorithms. At this point, it is important to note that if
SOM training and index table construction (requiring 77.42 sec) are not
off-line computations, the increase in speed in the first user trial will be
smaller. However, for any additional classification trials (with different
numbers of clusters) performed by the user for optimizing results, the
increase in speed will be as stated above.

Table 5. Computational times and clustering gain (per iteration) for a map of
16×16 neurons. The symbol ∞ means extremely large clustering time.

Clustering Algorithm Classical Method Proposed Method Speedup
Isodata 2.74 sec 2.67 msec 1026
Fuzzy Isodata 10.84 sec 9.67 msec 1121
Hierarchical ∞ 11.90 sec ∞

Finally, as far as classification performance is concerned, qualitative
evaluation of Figures 11 and 12 through photointerpretation shows very
satisfactory results. Quantitative evaluation of the results is also
possible through the labeled sets used in the supervised case. For

© 2000 by CRC Press LLC

example, Tables 6-8 show classification performances (in the form of
confusion matrices) on training, validation and test data sets using the
proposed methodology with the Fuzzy Isodata algorithm. Such a
tabular display of the results is useful as it conveys information about
the percentage of correct or incorrect data classifications per category
(rows of the confusion matrix) and about class overlapping in each
cluster (columns of the confusion matrix). Confusion matrices assist the
user in finding the optimum number of clusters and/or merging clusters
to larger ones so as to satisfy the needs of a particular application.

Table 6. Confusion matrix for the training data set.

Category Total SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8
F 1375 4 0 0 0 1046 0 291 34
S 1054 1043 0 0 0 0 0 11 0
A 1434 0 463 255 30 1 460 37 188
R 346 0 1 13 326 0 6 0 0

Table 7. Confusion matrix for the validation data set.

Category Total SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8
F 589 0 0 0 0 458 0 124 7
S 451 445 0 0 0 0 0 6 0
A 614 0 217 108 16 1 178 21 73
R 148 0 1 5 139 0 3 0 0

Table 8. Confusion matrix for the test data set.

Category Total SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8
F 1098 1 7 0 0 728 1 308 53
S 637 556 0 0 0 1 0 80 0
A 944 0 296 151 28 1 228 39 201
R 645 0 0 16 629 0 0 0 0

The first column of Tables 6-8 refers to the category, the second
contains the number of data samples per category and the last 8
columns show the classification results for the 8 subclusters. For
example, 255 out of 1434 training samples of category A and 13 out of
346 training samples of category R were classified in subcluster SC3
(see Table 6).

© 2000 by CRC Press LLC

Next, the 8 subclusters are merged to form 4 new clusters (C1, C2, C3,
C4) being in 1-1 correspondence with the 4 categories (F, S, A, R) as
follows: all initial subclusters with the majority of their data in category
F (i.e., columns SC5 and SC7 of Tables 6-8) are merged to form cluster
C1, those with data majority in S (i.e., SC1) form cluster C2, and so on.
The result of merging and the new confusion matrices are shown in
Tables 9-11.

Table 9. Cluster merging for the training set.

Category Total C1 = F C2 = S C3 = A C4 = R
F 1375 1337 4 34 0
S 1054 11 1043 0 0
A 1434 38 0 1366 30
R 346 0 0 20 326

Total 4209 1386 1047 1420 356
Performance 96.75% 97.24% 98.96% 95.26% 94.22%

Table 10. Cluster merging for the validation set.

Category Total C1 = F C2 = S C3 = A C4 = R
F 589 582 0 7 0
S 451 6 445 0 0
A 614 22 0 576 16
R 148 0 0 9 139

Total 1802 610 445 592 155
Performance 96.67% 98.81% 98.67% 93.81% 93.92%

Table 11. Cluster merging for the test set.

Category Total C1 = F C2 = S C3 = A C4 = R
F 1098 1036 1 61 0
S 637 81 556 0 0
A 944 40 0 876 28
R 645 0 0 16 629

Total 3324 1157 557 953 657
Performance 93.17% 94.35% 87.28% 92.80% 97.52%

The last row of Tables 9-11 shows the total classification accuracy as
well as the individual accuracies in the four categories for the
respective data sets. The individual accuracies are computed as 100%
times the ratio of the correctly classified pixels over the total number of

© 2000 by CRC Press LLC

pixels in each category. For example, since 1366 out of the 1434 pixels
of category A are correctly classified, the percentage in the last row
will be 95.26%. The overall accuracy is found by adding the diagonal
elements and then dividing by the total pixels in the data set. A direct
comparison of the results shown in Tables 9-11 with those of Table 2
shows that unsupervised algorithms may compete in terms of
performance with their supervised counterparts. However, a direct
clustering to 4 categories (thus, avoiding the merging steps) would
result in representing forest and sea pixels in the same category, since
their spectral signatures differ less (in euclidean distance) than pixels
within the agricultural category. The result would be a map with two
agricultural subcategories, one category for the rock and one category
for sea and forest.

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •C4

C1

C2

C3

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

SC7

SC4

SC3

SC5

SC2

SC6

SC8

SC1

 (a) (b)

Figure 13. (a) Initial subclusters, and (b) final clusters, for a 16×16 map.

Figure 13a shows the 8 subclusters on the map that correspond to those
of Tables 6-8, with dots specifying the position of neurons in the
lattice. Figure 13b shows the result of merging and Figure 11d the final
classification into 4 categories. Cluster/sub-cluster connectedness is a
result of self-organization, while their relative position on the map
follows the similarity of their spectral signatures. For example, cluster
C2 that corresponds to the sea category is the exclusive neighbor of
cluster C1 (forest) and, therefore, most incorrect classifications will be
in the forest category rather than in the other categories. This is in
agreement with the entries of Tables 9-11.

© 2000 by CRC Press LLC

6 Summary

The methodology described in this paper offers time and memory
savings for supervised and unsupervised model design and clas-
sification of large volumes of multi-dimensional spatial data using self-
organizing maps and indexing techniques. The catalogue of SOFM
prototypes together with the index table can be used as a compressed
representation of the original data.

An increase in speed in the neural network training phase as well as in
selecting the design parameters of fuzzy and statistical supervised
classifiers is achieved by size reduction and redundancy removal from
the training (and validation) sets in such a way as to preserve most of
the information contained in the original data sets. On the other hand,
an increase in clustering speed for unsupervised algorithms is achieved
due to the relatively small number of SOFM prototypes that represent
the original data space, permitting the use of even the most
computationally complex algorithms.

Finally, efficient indexed classification, leading to increased speed, is
possible by first classifying the “few” SOFM prototypes (relative to the
original image data) followed by fast indirect addressing through the
index table. Results on land-cover classification of multispectral
satellite data show significant increases in speed of training, clustering
and classification for a variety of neural, fuzzy and statistical
algorithms.

© 2000 by CRC Press LLC

References

[1] Richards, J.A. (1993), Remote Sensing Digital Image Analysis: An
Introduction, 2nd ed., Springer-Verlag, Berlin-Heidelberg.

[2] Benediktsson, J.A., Swain, P.H., and Ersoy, O.K. (1990), “Neural
network approaches versus statistical methods in classification of
multisource remote sensing data,” IEEE Trans. Geosci. Remote
Sensing, vol. 28, no. 4, pp. 540-552.

[3] Bischof, H., Schneider, W., and Pinz, A.J. (1992), “Multispectral
classification of landsat-images using neural networks,” IEEE
Trans. Geosci. Remote Sensing, vol. 30, no. 3, pp. 482-490.

[4] Heermann, P.D. and Khazenie, N. (1992), “Classification of
multispectral remote sensing data using a back propagation neural
network,” IEEE Trans. Geosci. Remote Sensing, vol. 30, no. 1, pp.
81-88.

[5] Salu, Y. and Tilton, J. (1993), “Classification of Multispectral
image data by the binary diamond neural network and by
nonparametric, Pixel-by-Pixel Methods,” IEEE Trans. Geosci.
Remote Sensing, vol. 31, no. 3, pp. 606-617.

[6] Charou, E., Ampazis, N., Vassilas, N., Perantonis, S., Feizidis, C.,
and Varoufakis, S. (1994), “Land-use classification of satellite
images using artificial neural network techniques,” Proceedings of
Integration, Automation and Intelligence in Photogrammetry,
Remote Sensing and GIS - LIESMARS, Wuhan, P.R.China, pp.
368-377.

[7] Cappellini, V., Chiuderi, A., and Fini, S. (1995), “Neural networks
in remote sensing multisensor data processing,” Proceedings of the
14th EARSeL Symposium'94 (Sensors and Environmental
Applications of Remote Sensing), J. Askne (ed.), Rotterdam: A.A.
Balkema, Geteborg, pp. 457-462.

[8] Narendra, P.M. and Goldberg, M. (1977), “A non-parametric
clustering scheme for LANDSAT,” Pattern Recognition, vol. 9,
pp. 207-215.

© 2000 by CRC Press LLC

[9] Goldberg, M. and Shlien, S. (1978), “A clustering scheme for
multispectral images,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 8, no. 2, pp. 86-92.

[10] Cannon, R.L., Dave, J.V., Bezdek, J.C., and Trivedi, M.M. (1986),
“Segmentation of a thematic mapper image using the fuzzy c-
means clustering algorithm,” IEEE Trans. Geosci. Remote
Sensing, vol. 24, no. 3, pp. 400-408.

[11] Wong, Y.F. and Posner, E.C. (1993), “A new clustering algorithm
applicable to multispectral and polarimetric SAR images,” IEEE
Trans. Geosci. Remote Sensing, vol. 31, no. 3, pp. 634-644.

[12] Baraldi, A. and Parmiggiani (1995), F., “A neural network for
unsupervised categorization of multivalued input patterns: an
application to satellite image clustering,” IEEE Trans. Geosci.
Remote Sensing, vol. 33, no. 2, pp. 305-316.

[13] Pal, S.K. and Majumder, D.D. (1977), “Fuzzy sets and decision
making-approaches in vowel and speaker recognition,” IEEE
Trans. Systems, Man and Cybernetics, vol. 7, pp. 625-629.

[14] Pao, Y.H. (1989), Adaptive Pattern Recognition and Neural
Networks, Addison-Wesley, Reading, Massachusetts.

[15] Duda, R.D. and Hart, P.E. (1973), Pattern Classification and
Scene Analysis, Wiley, New York.

[16] Kohonen, T. (1989), Self-Organization and Associative Memory,
3rd ed., Springer, Berlin-Heidelberg-New York.

[17] Niemann, H. and Goppert, R. (1988), “An efficient branch-and-
bound nearest neighbour classifier,” Pattern Recognition Letters,
vol. 7, pp. 67-72.

[18] Lehmann, C., Viredaz, M., and Blayo, F. (1993), “A generic
systolic array building block for neural networks with on-chip
learning,” IEEE Trans. Neural Networks, vol. 4, no. 3, pp. 400-
407.

© 2000 by CRC Press LLC

[19] Ienne, P., Thiran, P., and Vassilas, N. (1997), “Modified self-
organizing feature map algorithms for efficient digital hardware
implementation,” IEEE Trans. Neural Networks, vol. 8, no. 2, pp.
315-330.

[20] Haykin, S. (1994), Neural Networks: A Comprehensive
Foundation, MacMillan, Englewood Cliffs, New Jersey.

[21] Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986),
“Learning representations by back propagating errors,” Nature,
vol. 323, pp. 533-536.

[22] Fogelman Soulie, F. (1991), “Neural network architectures and
algorithms: a perspective,” in T. Kohonen, K. Makisara, O.
Simula, and J. Kangas (eds.), Artificial Neural Networks, pp. 605-
615, Elsevier, Amsterdam, The Netherlands.

[23] Kohonen, T., Kangas, J., Laaksonen, J., and Torkkola, K. (1992),
LVQ_PAK: The Learning Vector Quantization Program Package,
Helsinki University of Technology, Espoo, Finland.

[24] Battiti, R. and Colla, A.M. (1994), “Democracy in neural nets:
voting schemes for classification,” Neural Networks, vol. 7, pp.
691-707.

[25] Ball, G.H. and Hall, D.J. (1967), “A clustering technique for
summarizing multivariate data,” Behavioral Science, vol. 12, pp.
153-155.

[26] Bezdeck, J.C. (1976), “A physical interpretation of fuzzy
ISODATA,” IEEE Trans. Systems, Man and Cybernetics, vol. 6,
pp. 387-389.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 4

LEARNING FINE MOTION
IN ROBOTICS:

DESIGN AND EXPERIMENTS

C. Versino andL.M. Gambardella
IDSIA, Corso Elvezia 36
6900 Lugano, Switzerland

cristina@idsia.ch , luca@idsia.ch
http://www.idsia.ch

Robotics research devotes considerable attention topath finding. This is
the problem of moving a robot from a starting position to a goal avoiding
obstacles. Also, the robot path must beshortandsmooth. Traditionally,
path finders are eithermodel-basedor sensor-based. While model-based
systems address the path finding problemgloballyusing a representation
of the workspace, sensor-based systems consider itlocally, and rely only
on robot sensors to decide motion. Both methods have limitations, which
are rather complementary. By integrating the two methods, their respec-
tive drawbacks can be mitigated. Thus, in [15] a model-based system (a
planner working on an artificial potential field) and a sensor-based sys-
tem (a Hierarchical Extended Kohonen Map) which cooperate to solve
the path finding problem have been described. Along related lines, sev-
eral authors [5], [6], [8], [12] have proposed to build automatically the
sensor-based system as the result of a learning process, where a local
planner plays the role of the teacher. In particular, [5], [8] employ a
Self-Organizing Map (SOM) and [6] use a dynamical variant of SOM
(DSOM) based on a Growing Neural Gas network [2]. In these works,
the decision of using a SOM-like network seems to be justified by its
data topology-conservingcharacter which is supposed to favor in some
way the learning of suitable< perception; action > pairs. None of these
works provide experimental evidence for this reasonable, but not obvi-
ous, claim.

In this chapter we describe a SOM-like neural network which learns to
associate actions to perceptions under the supervision of a planning sys-
tem. By reporting this experiment the following contributions are made.
First, the utility of using a hierarchical version of SOM instead of the
basic SOM is investigated.Second, the effect of cooperative learning due
to the interaction of neighboring neurons is explicitly measured.Third,
the beneficial side-effect which can be obtained by transferring motion
knowledge from the planner to the SOM is highlighted.

1 How to Find the Path?

A path finderis an algorithm to guide a robot from a starting location to
a goal avoiding theobstacles in theworkspace (Figure 1).

Figure 1. An instance of the path finding problem (left) and a solution to it
(right). The white rectangle is the robot, the black circle is the goal, the gray
shapes are the obstacles.

A good path finder generates short and smooth paths, and, for this to
be possible, it requires bothhigh leveland low levelmotion skills. At
high level, it should be able to reason on the trajectory performed by
the robot as awhole. This is to recover from dead-ends (Figure 1) and
to optimize the path length. At low level, the path finder should be able
to decide on eachsingle stepof the robot trajectory: this is to propose
actions that approach the robot to the goal while avoiding collisions. Low
level strategies are also referred to asfine motionstrategies.

© 2000 by CRC Press LLC

Traditionally, path finders are eithermodel-basedor sensor-based.
Model-based algorithms use amodelof the workspace (a map, a cam-
era image or other representations) to generate an obstacle-free path to
the goal, while sensor-based algorithms rely only on the robot on-board
sensorsto gather information for motion. Thus, model-based systems
address the path finding problem in aglobal way, while sensor-based
systems consider it in alocal way.

Advantages and drawbacks of each method are as follows.

A model-based system is able to compute short paths and to recover from
dead-ends, because it works on a complete description of the workspace.
However, when such a description is not available, a model-based system
is of no use. Also, a model-based system requires considerable computa-
tional time to generate the actual robot path, because it needs to evaluate
through simulation many alternative paths to select the best one.

A sensor-based system does not need a complete model of the workspace
and this is already an advantage in itself. Also, it is computationally
inexpensive as it just reacts to sensor readings. But a sensor-based sys-
tem generates sub-optimal paths, and it may get trapped into dead-ends.
Moreover, it is difficult to program a sensor-based system, as we have to
predict every possible situation the robot will encounter, and specify a
corresponding correct action.

Our research is about the integration of a model-based system and
a sensor-based system so that they cooperate and solve the path finding
problem in an efficient way [3], [4].The focus of this chapter, though,
is on the automatic construction of the sensor-based system. Instead
of being pre-programmed, this is shaped by a learning process where
the model-based system plays the role of teacher. In this way, the
programming bottleneck typical of sensor-based systems is bypassed.

2 The Model-Based System

Traditional model-based systems solve the path finding problem by
searching in the space of the robotfree configurations, the so-calledC
space [11].C is made of all robot positions and orientations that are at-

© 2000 by CRC Press LLC

tainable given its kinematics and the obstacles in the workspace. A robot
configuration is a multi-dimensional point inC, while the obstacles are
forbidden regions in theC space. The drawback of the search techniques
based onC is that to determine which configurations are reachable is
computationally very expensive.

Figure 2. The artificial potential field (left), the field on a discretized workspace.

To reduce this complexity, more recent model-based approaches have
suggested to search for a collision-free path by using a “direct”
workspace representation of the obstacles and the robot [10]. As an ex-
ample, a camera image which gives a view from above of the robot in
the workspace is a 2-dimensional direct representation (Figure 1, left).
Most of the techniques based on direct representations use then anarti-
ficial potential field V (Figure 2, left) as heuristic to guide the search in
the workspace [7]: the robot just needs to follow the fieldV . At a given
location of the workspace,V is the combination of an attractive force
towards the goal and of repulsive forces exerted by the obstacles. The
computation of the potential field is a one-off step, which needs to be
re-executed when either the goal or the obstacles change.

The idea of following the potential field works well if the robot can be
modelled as a “point”. But when we consider the robot real shape and
size we need to extend the potential field metaphor as described below.

First V is created on a discretized workspace (Figure 2, right) and the
motion of the robot is guided by a number ofcontrol pointsci positioned
on itsshape [10] (Figure3, left). Thesepointscan be thought of as “field

© 2000 by CRC Press LLC

sensors”. LetV (ci) be the field value associated to control pointci, what-
ever the robot position.

c1 c2

c3c4

g

Figure 3. The control points chosen on the robot shape (left). The robot position
and orientation in the workspace is its configuration (right).

At any time during motion, the robotconfigurationg is its position and
orientation in the workspace (Figure 3, right). When at configuration g,
the potential field valueVg of the robot is a combination of the field value
of its control points (Equation 1). Roughly speaking,Vg indicates how
close is the robot in attaining the goal.

Vg =
X
i

aiV (ci) (1)

Solving the path finding problem is then equivalent to searching for a
sequence of collision-free configurations that brings the robot from its
initial configuration to the goal. To reduce the search space, the potential
field V is used as a heuristic evaluation of the different robot configu-
rations. In what follows, a single configuration transition is described to
illustrate how the search process takes place.

Supposeg is the current robot configuration (Figure 3, right). To decide
where to move the robot next, i.e., to decide its next configurationg0, a
set of neighboring configurations is generated by slightly varyingg along
the robot motion degrees of freedom. This gives rise to, say, a set of four
configurationsfg1; g2; g3; g4g (Figure4). Next, for each configuration gi,
its potential field valueVgi is evaluated using Equation 1.

These values are sorted in increasing order:fVg1; Vg2; Vg4; Vg3g. The final
step is to determine which is the configuration with the smallest potential

© 2000 by CRC Press LLC

g4g3g2g1

Figure 4. The neighboring configurations.

g4g2g1

Figure 5. Collision check for robot configurations.

field value that is also collision-free. SinceVg1 is the smallest value, we
start by simulatingg1 to check whether it produces a collision with some
obstacle. Note that this verification is feasible because an image of the
robot environment is available, making it possible to explore “mentally”
the consequences of an action. After inspection,g1 andg2 are discarded
(they both collide). Finally,g4 is accepted as the next configuration for
the robot:g0 = g4.

It may happen that all neighboring configurations ofg produce colli-
sions. This means that the robot is in alocal minimumof Vg. Typically,
a local minimum arises in a dead-end on the robot path (Figure 1). To
recover from a local minimum, alternative configurations to the current
one can be generated according to various rules, ranging from simply
backtracking one step in the robot configuration search-tree to more
sophisticated high-level motion strategies [3], [4].

We are now in a position to understand why the planner is compu-
tationally expensive. First, it calculates a great number of candidate
configurations, because it cannot guess which configurations are accept-
able. Second, the order of evaluation of the candidate configurations
depends only on their potential values; the robot shape is not taken into
account.The planner does not learn from its own experience.

© 2000 by CRC Press LLC

In short, a planner is a very general method to solve path finding
problems: it may be applied to robots ofany size and shape. However,
this generality is paid in terms of efficiency. When it is foreseen to work
with a robot of agiven size and shape, the flexibility provided by a
planning system is less important, and the time needed to plan the robot
motion is the main issue. This is why we propose to construct acustom
sensor-based system, a system which is tailored to a robot of a given size
and shape.

3 The Sensor-Based System

Suppose that a robot of a given size and shape is chosen. While us-
ing the planner to solve instances of the path finding problem, knowl-
edge for fine motion can be collected and expressed as a set of pairs
< perception; action >. Each pair refers to a single step of the robot tra-
jectory, and describes a sensory perception (Figure 6) and the action se-
lected by theplanner for that perception (Figure 7). To be morespecific,
the perception is made of a vectoro of readings of 24 obstacle proxim-
ity sensors, together with the relative goal directiong, a two-dimensional
vector of unitary length. The planner actiona is a triple representing a
x-translation, ay-translation, and a rotation with respect to the robot’s
current position and orientation. Both the xy-translations and the rota-
tion take discrete values, and can be either positive, negative or null.

g

+

Figure 6. The robot perception: distance from the obstacles (left), relative goal
direction (right).

The pairs< perception; action > are the basis to build “automatically’
the custom sensor-based system: for this purpose, asupervised learning

© 2000 by CRC Press LLC

Figure 7. The action selected by the planner.

approach is used. A pair< perception; action > is learnt incrementally
by the following steps:

1. the sensor-based system gets the perception as input;

2. it generates a tentative action according to its current knowledge;

3. this action is compared to the target action selected by the planner,
and the difference between the two is used to change and improve
the behavior of the sensor-based system.

This sequence of steps is repeated for every example available. As a
sensor-based system we use anArtificial Neural Network(ANN).

Before describing the ANN structure, let us observe that, in general,
learning ishard. It cannot be achieved just by forcing through the ANN
thousands of examples. To facilitate learning, we can take advantage of a
good characteristic of the path finding problem, namely thatsimilar per-
ceptions require similar actions. This is not always true, but it is true most
of the time. As an example, consider the two robot perceptions shown in
Figure 8. Theonly difference between the two is a small variation in the
goal position. The action “move to the right” which is suitable for the
first case may also be applied to the second.

This property suggests a modular architecture for the ANN, by which its
operation is logically divided into two steps (Figure 9). Given an input
perception, the ANNfirst determines which is the most similar percep-
tion out of the ones experienced so far (step(A)). Second, it triggers the
action associated to the prototypical perception selected at the first step

© 2000 by CRC Press LLC

⇒

Figure 8. Similar perceptions require similar actions.

ANN

perception

clustering

Α

action

triggering

Β ANN action

planner action

perception

Figure 9. The two step operation of the ANN.

(step(B)). (A) is a clustering operation that aims at grouping together
similar experiences into a single “prototypical perception”. In this way,
similar perceptions all contribute to the learning of the same (or simi-
lar) action, while different perceptions (perceptions which may require
different actions) do not interfere one with the other because they are
mapped to different prototypical perceptions by the clustering step.

Both step(A) and(B) require learning, and can be globally addressed
by the Hierarchical Extended Kohonen Map algorithm. We start by de-
scribing step(A).

4 Perception Clustering

In (A) (Figure 9) the ANN learns the concept of similar perceptions.
The task is to construct a set of prototypical perceptions out of a set of
perceptions experienced by the robot during motion. This clustering task
is solved by the basicKohonen Map(KM) algorithm [9].

© 2000 by CRC Press LLC

Kohonen Map. A KM isatwo-layered network (Figure10) consisting
of an input layer of neurons directly and fully connected to an output
layer. Typically, the output layer is organized as a two-dimensional grid
G. wr is the fan-in weight vector (reference vector) associated to the
neuron placed at positionr onG.

input layer

output layer

r

G

w r

Figure 10. The KM network architecture.

The network is trained byunsupervisedlearning on a set of examples
fx(1); : : : ; x(T)g. For each examplex, the following sequence of steps
is executed.

1. x is presented to the input layer.

2. A competitionbetween the neurons takes place. Each neuron cal-
culates the distance between its reference vectorwr and input pat-
ternx.

d(x; wr) = kx� wrk
2 (2)

The neurons whose weight vector is the closest tox is thewinner
of the competition.

s = argmin
r

d(x; wr) (3)

3. s is awarded the right to learn the input pattern, i.e. to move closer
to it in data space:

wnew
s = wold

s + �(t) �
�
x� wold

s

�
(4)

© 2000 by CRC Press LLC

s
x

ws
new

ws
old

X

Figure 11. The KM learning step.

Figure 11 illustrates the weight change process of neuron s in the
original data space.

In Equation 4,�(t) is the learning rate, a real parameter that de-
creases linearly with the pattern presentation numbert.

�(t) = �(0) �
�
1�

t

T

�
(5)

4. A special trait of the Kohonen algorithm is that the learning step is
extended also to theneighborsof the winners. The neighbors of
s are those output elements whose distance tos, measured on the
grid G, is not greater than a neighborhood parametern(t). Like-
wise to�, n decreases linearly with time.

n(t) =
�
n(0) �

�
1�

t

T

��
(6)

At the beginning of the learning process, the neighborhood param-
eter is large, and many neurons share the learning step. As time
progresses, fewer neurons are allowed to become closer to the
presented input pattern. Figure 12 shows how the neighborhood
shrinks in time.

The KM can be used fordata quantization: an input patternx can be
represented by the reference vectorws that wins whenx is presented
to the KM. Also,similar input patterns are mapped onto neighboring

© 2000 by CRC Press LLC

initial neighborhood

final neighborhood

s

Figure 12. The neighborhood size shrinks as learning proceeds.

locations on the grid (Figure 13). This is because neurons that are close
on G are also close in the original data space, a property induced by
step 4 of the KM algorithm. Thus, the quantization process preserves the
topology informationcontained in the original data. We will show how
this topology preserving representation proactively helps the learning of
fine motion.

X

Figure 13. The KM maps similar input data to neighboring locations on the grid.

Back to perception clustering. If a KM is trained with perceptions as
inputs, then its reference vectors will represent prototypical perceptions.

To be more specific about the KM structure, remember that a percep-
tion is made of a vectoro of readings of 24 obstacle proximity sensors,
together with the relative goal directiong, a two-dimensional vector (Fig-
ure 6). These two vectors could be joined into a single input vector for

© 2000 by CRC Press LLC

the KM. If we do so, each neuron in the network will represent an obsta-
cle perception and a given goal direction. However, this representation is
not “economic”, as it will be made clear by the following example.

Figure 14. The robot perception while moving in the free space: obstacle per-
ception (left), goal perceptions (right).

+

+

+

Figure 15. The reference vectors of the trained1� 3 KM.

Imagine the robot is moving in the free space. The only obstacle percep-
tion it can experience is that shown in Figure 14, left. In this case, the
only varying input parameter is the goal direction. Suppose that the robot
has experienced the goal directions shown in Figure 14, right. If we use,
say, a1� 3 KM to cluster this input information, the training of the KM

© 2000 by CRC Press LLC

would produce theprototypical perceptions depicted in Figure 15. From
this representation it is clear that the information concerning the obstacle
perception is unnecessarily repeated three times.

To avoid repetitions a Hierarchical Kohonen Map (HKM) [13] may be
used instead of the “flat” KM.

Hierarchical Kohonen Map. A HKM is a KM network (super-
network) composed by a hierarchical arrangement of many subordinated
KMs (sub-networks) (Figure16).

super-net
sub-net

sub-net

Figure 16. Architecture of the Hierarchical Kohonen Map.

A HKM is used to process input components insequence.

As an example, suppose we want to process an input vectorx which is
the combination of two component vectorsx1 andx2. To processx1 and
x2 separately, wesplit the input presentation into two steps (Figure17).

1. x1 is presented as input to the super-netG. Let neurons be the
winner of the competition onx1 in G.

2. Then,x2 is presented as input pattern to sub-netGs, i.e. the KM
associated to the winners in G. Now, a neuronv in Gs is selected
as the winner of the competition onx2.

The learning rule for the HKM is the same as the one presented for the
simple KM. The only difference is that now we have two neighborhood
parameters, one for the super-network and one for the sub-nets.

© 2000 by CRC Press LLC

G

x

s

v

x1 x2

Gs

Figure 17. The HKM processes input components in sequence.

In short, in our learning case there are three reasons for preferring a hi-
erarchical architecture to a “flat”. First, it avoids unnecessary repetition
of o weights for differentg directions, which would be costly in terms
of memory requirements. Second, it deals naturally with the economic
input representation ofg as a 2 dimensional vector. A flat network would
need either a more distributed coding forg (as in [12]) or a weighting of
g (as in [5], [6]) so that during the matching stepg does not lose impor-
tance with respect too, whose dimensionality is rather high. Third, by
processing the input information in two stages, we hope to simplify the
adaptation process of the SOM to the perception data distribution.

Experimental results on perception clustering. To experiment with
the HKM, we designed for the rectangle-shaped robot the workspace
shown in Figure18. In thisworkspace, theplanner solvedanumber of in-
stances of the path finding problem. Each new instance was obtained by
changing the robot initial position while keeping fixed the goal position.
In all, the planner generated about 500 pairs< perception; action >.

The HKM super-network is a4�6 grid of neurons, while each sub-net is
an array of 10 neurons(Figure19). For thesub-netsan array arrangement
is preferred, because the data to cluster (the goal directions) are points
distributed on a circle.

© 2000 by CRC Press LLC

Figure 18. The workspace for the experiments.

obstacle perception goal direction

Figure 19. The HKM net structure.

Theresult of the training phase isdepicted graphically in Figures20–21.

Figure 20 shows the reference vectors of the super-network. They rep-
resent prototypical obstacle perceptions experienced by the robot during
motion. For example, neuron1 #0 is the perception of free space, neuron
#5 is the perception of a wall on the right-hand side, neuron #7 is the
perception of a wall behind the robot’s back, and neuron #17 is the per-
ception of a narrow corridor. Observe thetopology preservingcharacter
of the KM: the perception similarity varies in a continuous way on the
map. Therefore, similar perceptions activate neighboring locations on the
grid.
1Neurons are numbered from the upper-left corner to the right.

© 2000 by CRC Press LLC

Figure 21 shows the reference vectors of three sub-nets, namely those
corresponding to neurons #0, #7, #17 in the super-network. They repre-
sent prototypical goal directions experienced by the robot for the corre-
sponding obstacle perception. The goal direction has been represented as
a white vector departing from the center of the robot shape. Again, the
topology preservingcharacter of the network can be appreciated: the goal
direction varies on the array structure in a continuous way.

Figure 20. The obstacle perceptions learned by the super-network. (From [15]. With
permission.)

Figure 21. The goal directions learned by three sub-nets. (From [15]. With permission.)

© 2000 by CRC Press LLC

5 Action Triggering

In step (B) (Figure9) theANN learns to associate theplanner actions to
prototypical perceptions. This learning phase takes advantage of the or-
dered perception representation generated by the HKM at previous step.
We introduce briefly the required extension to the basic KM algorithm
(EKM) [14], which makes it possible to train the KM network by super-
vised learning.

Extended Kohonen Map. From the architecture point of view, the KM
network is augmented by adding to each neuronr on the competitive grid
G a fan-out weight vectorzr to storetheneuron output value(Figure22).

input layer

output layer

r

G

zr

w r

Figure 22. Extended Kohonen Map architecture.

The computation in the EKM network proceeds as follows. When an in-
put patternx is presented to the input layer, the neurons onG compete to
respond to it. The competition involves the neurons fan-in weight vectors
wr, and consists of the computation of the distance betweenx and each
wr. The neurons, whose fan-in vectorws is the closest tox, is the win-
ner of the competition, and its fan-out vectorzs is taken as the network
output answer tox.

During the training phase, both the input patternx and the desired output

© 2000 by CRC Press LLC

valuey proposed by the teacher are learnt by the winning neuron and by
its neighbors on the grid. The learning step consists of moving the fan-
in weight vectors of the selected neurons closer tox, and their fan-out
weight vectors closer to y (Figure23, right).

This learning style has been described as acompetitive-cooperative
training rule [13]. It iscompetitivebecause the neurons compete through
their fan-in weight vectors to respond to the presented input pattern. As
a consequence, only that part of the network which is relevant to deal
with the current input data undergoes the learning process. Moreover,
neighboring locations on the grid will correspond to fan-in weight
vectors that are close to each other in input data space. The rule is also
cooperativein that the output value learnt by the winning neuron is
partially associated to the fan-out weight vectors of its neighbors. If the
input-output function to be learnt is a continuous mapping, then spread-
ing the effect of the learning of an output value to the neighborhood of
the winner represents a form of generalization which accelerates the
course of learning [13].

x
ws

new

ws
old

X

s

y

Y

zs
new

zs
old

Figure 23. The learning step for the Extended Kohonen Map.

Back to action triggering. To apply the EKM to the action learning
problem, we add to every neuron in each sub-network of the HKM a
fan-out weight vector that will specify the action to perform for a given
obstacle perception and a given goal direction. The complete ANN
architecture is a Hierarchical Extended Kohonen Map (HEKM) and is
shown in Figure24.

© 2000 by CRC Press LLC

obstacle perception goal direction

action

Figure 24. The HEKM network architecture.

Experimental results on action triggering. Some results for the per-
ception clustering module have already been presented. Let us show the
corresponding actions learnt by the ANN.

In Figure 25 we have represented the goal directions and the robot ac-
tions learnt by sub-network #0, the network responsible for moving the
robot in the free-space. In each cell, the gray rectangle is the robot initial
configuration, while the black rectangle represents the new robot con-
figuration reached by performing the corresponding action. Similarly,
Figures 26–27 show the actions learnt by the sub-networks which are
responsible, respectively, to deal with the perception of a wall behind the
robot’s back, and that of a narrow corridor.

Again the topology preserving character of the network may be appre-
ciated by observing how the learnt actions vary in a continuous way on
each sub-network.

6 All Together

Some instances of the path finding problem are presented in Figure 28
together with the solutions found by the ANN in cooperation with the
planner. In these trajectories the planner takes control only when the ac-
tion proposed by the ANN would lead to a collision.

© 2000 by CRC Press LLC

Figure 25. Obstacle perception, goal directions and actions learnt by sub-net #0.

Figure 26. Obstacle perception, goal directions and actions learnt by sub-net #7.

These paths illustrate the ANN ability to deal with several motion sit-
uations, namely avoiding a wall to the right-hand side, going around a
column, entering doors, going zig-zag.

It is important to stress that, although the ANN has been trained on fine
motion with respect to afixedgoal, the knowledge it has acquired is “gen-
eral” because the goal position is not specified in absolute coordinates,
but relatively to the robot. The second row of Figure 28 shows the very
same ANN guiding the robot to new goal positions.

Figure 27. Obstacle perception, goal directions and actions learnt by sub-net #17.

© 2000 by CRC Press LLC

Figure 28. The robot solving the path finding problem with the fixed goal used
during the training phase (first row) and with new goal positions (second row).
(From [15]. With permission.)

7 Why Use a SOM-Like Network?

We would like now to discuss the following claim: the data topology-
preserving character of the HEKM favors the learning of fine motion.

This statement can be proved experimentally by performing two separate
training sessions. In the first session, the neighborhood parameters (one
for the super-net, one for the sub-nets) are set to 0, while in the second
session they are set to values other than 0 (4 and 5, respectively). In this
way, the effect of cooperation during learning can be studied.

To evaluate the two methods, an error criterion and a performance cri-
terion are used. The error measure is the mean squared error between
the network output action and the target action proposed by the plan-
ner, while the performance criterion is the percentage of optimal actions
learnt by the network. By definition, the optimal actions are those pro-
posed by the planner.

Let us comment on the plots of error and performance as a function of
thenumber of trainingcycles(Figure29). Asfar astheerror isconcerned
(top plot), one can see that without cooperation (curve with black dots) a

© 2000 by CRC Press LLC

certain error level is reached quite rapidly, but afterwards, no significant
improvement is observed. On the contrary, with cooperation (curve with
white dots) it takes more time to reach the very same error level, but the
final error is lower. This type of behavior seems to be typical for cooper-
ating agents, as it is reported in [1]. In our experiment, a possible expla-
nation for this could be that, when the cooperation between the neurons is
active, it takes more time to find a good “compromise” to satisfy compet-
ing learning needs. However, once the compromise is met, the final result
gets improved. A corresponding behavior is observed in the performance
curves (bottom plot). Without cooperation a certain performance level is
achieved quite rapidly (42%), but after that point no further improvement
occurs. With cooperation, the same performance level is obtained later,
but the final result is more satisfactory (65%).

8 Planner Vs. HEKM

We conclude by highlighting an interesting side effect which is obtained
by transferring motion knowledge from the planner to the HEKM.

Our planner is adiscretesystem. By the term “discrete” we refer to the
fact that, at each step of the robot trajectory, the planner generates a fi-
nite number of neighboring configurations, and chooses among these the
one which approaches the goal closest while avoiding collisions. The
HEKM, on the contrary, tends to produce actions which look like be-
ing continuous. That is because the action learnt by the network for a
given perception is a kind of average action performed by the planner in
similar perceptual states. To illustrate this point, we let the planner and
the HEKM solve the same path finding problem asstand-alonesystems
(Figure 30). One can immediately appreciate qualitative differences in
the two paths. The discrete nature of the planner is evident in the left plot:
the robot motion is optimal in terms of path length, but quite abrupt. On
the contrary, in the HEKM path (right plot) smoothness has been traded
against optimality. This observation also accounts for the “sub-optimal”
performance level reached by theHEKM (Figure29) at theend of train-
ing.

© 2000 by CRC Press LLC

Figure 29. Error (top) and performance (bottom) without cooperation (black
dots) and with cooperation (white dots). (From [15]. With permission.)

9 Conclusions

This chapter has presented a HEKM which learns fine motion under the
control of a planner.

© 2000 by CRC Press LLC

Figure 30. The planner (left plot) and the ANN (right plot) solving the same
instance of path finding as stand-alone systems. (From [15]. With permission.)

When invoked, the planner proposes an action, but to do so it needs to
explore all possible robot configurations and this is expensive. This is
why we capture the planner experience under the form of<perception,
action> pairs and use these as training examples to build automatically
the sensor-based HEKM. The result is that the HEKM learns to avoid
collisions, acquiring an “implicit” model of the real robot through the
perception-action mapping it implements. Of course the HEKM is not
fault-free: when the action computed by the HEKM would lead to a col-
lision, control is taken over by the planner, which proposes its action, and
this can be treated as a new training example for the HEKM. Therefore,
when the HEKM is started as a “tabula rasa”, the planner is in charge
of proposing the robot action most of the times. But, as the HEKM be-
comes more competent, control is gradually shifted to the HEKM, and
the planner is invoked only in faulty cases. Overall, the integration of
the planner and the HEKM improves the performance of the robot in
cluttered environments because it decreases both the number of collision
checks required and the number of times the planner is activated.

It is also worth noting that the integrated planner-HEKM system is able
to take advantage from whatever knowledge is available about the en-
vironment. When a model of the workspace is available, we can let the
planner be in charge of high-level navigation while the HEKM takes care
of fine motion. But if the environment is unknown, we can still use the

© 2000 by CRC Press LLC

trained sensor-based HEKM as a stand-alone system to control the robot
because the HEKM does not rely on a model of the workspace. The only
constraint is to perform the training of the HEKM in a known environ-
ment so that the planner can act as a teacher. Then, as we have shown,
most of the fine motion knowledge acquired in one environment can be
transferred to another one.

This chapter also provides answers to a number of questions concerning
the design and properties of the HEKM.First, we discussed the util-
ity of using a hierarchical KM instead of the usual “flat” version. The
HEKM is more economic in terms of the way memory cells are used.
It avoids unnecessary weight repetitions and allows for compact input
representations. Clearly, one limitation of the current architecture is the
fixed number of neurons. A growing network, able to increase the num-
ber of neurons where a more detailed representation is needed, could
be used instead [2], [6].Second, we measured the effect of cooperative
learning due to the interaction between adjacent neurons. We found that
with cooperation learning is slowed down on the short run. But the ben-
efits appear later on, resulting in a more satisfactory final performance.
Our interpretation is that, at the beginning of learning, neighboring neu-
rons work to meet a compromise to competing needs: this effort becomes
rewarding on the long run.Third, we pointed out the complementary na-
ture of the paths generated by the planner and by the HEKM as stand-
alone systems. The HEKM produces sub-optimal but smooth solutions,
whereas the planner seeks for optimality while sacrificing the continuity
of motion. The integration of these two attitudes leads to good results.

Acknowledgments

Cristina Versino was supported by the project No. 21-36365.92 of the
Fonds National de la Recherche Scientifique, Bern, Suisse.

References

[1] Clearwater, S.H., Hogg, T., and Huberman, B.A. (1992), “Coop-
erative problem solving,”Computation: The Micro and the Macro
View, Huberman, B.A. (Ed.), World Scientific.

© 2000 by CRC Press LLC

[2] Fritzke, B. (1995), “A growing neural gas network learns topolo-
gies,” Advances in Neural Information Processing Systems 7,
Tesauro, G., Touretzky, D.S., and Leen, T.K. (Eds.), MIT Press,
Cambridge, MA, pp. 625-632.

[3] Gambardella, L.M. and Versino, C. (1994), “Robot motion plan-
ning. Integrating planning strategies and learning methods,”Proc.
AIPS94 - The Second International Conference on AI Planning Sys-
tems, Chicago, USA, June.

[4] Gambardella, L.M. and Versino, C. (1994), “Learning high-level
navigation strategies from sensor information and planner experi-
ence,”Proc. PerAc94, From Perception to Action Conference, Lau-
sanne, Switzerland, September 7-9, pp. 428-431.

[5] Heikkonen, J., Koikkalainen, P., and Oja, E. (1993), “Motion be-
havior learning by self-organization,”Proc. ICANN93, Interna-
tional Conference on Artificial Neural Networks, Amsterdam, The
Netherlands, September 13-16, pp. 262-267.

[6] Heikkonen, J., Millán, J. del R., and Cuesta, E. (1995), “ Incremen-
tal learning from basic reflexes in an autonomous mobile robot,”
Proc. EANN95, International Conference on Engineering Applica-
tions of Neural Networks, Otaniemi, Espoo, Finland, August 21-23,
pp. 119-126.

[7] Khatib, O. (1986), “Real-time obstacle avoidance for manipula-
tors and mobile robots,”The International Journal of Robotics Re-
search, vol. 5, no. 1.

[8] Knobbe, A. J., Kok, J. N., and Overmars, M.H. (1995), “Robot
motion planning in unknown environments using neural networks,”
Proc. ICANN95, International Conference on Artificial Neural Net-
works, Paris, France, October 9-13, pp. 375-380.

[9] Kohonen, T. (1984),Self-Organization and Associative Memory,
Springer Series in Information Sciences, 8, Heidelberg.

[10] Latombe, J.-C. (1991),Robot Motion Planning, Kluwer Academic
Publishers.

© 2000 by CRC Press LLC

[11] Lozano-Perez, T. (1982), “Automatic planning of manipulator
transfer movements,”Robot Motion, Brady et al. (Eds.), The MIT
Press.

[12] Mill án, J. del R. (1995), “Reinforcement learning of goal-directed
obstacle-avoiding reaction strategies in an autonomous mobile
robot,” Robotics and Autonomous Systems, vol. 15, no. 3, pp. 275-
299.

[13] Ritter, H., Martinetz, T., and Schulten, K. (1992),Neural Computa-
tion and Self-Organizing Maps. An Introduction, Addison-Wesley
Publishing Comp.

[14] Ritter, H. and Schulten, K. (1987), “Extending Kohonen’s self-
organizing mapping algorithm to learn ballistic movements,”Neu-
ral Computers, Eckmiller, R. and von der Marlsburg, E. (Eds.),
Springer, Heidelberg.

[15] Versino, C. and Gambardella, L.M. (1996), “Learning fine motion
by using the hierarchical extended Kohonen map,” in Von der Mals-
burg, C., Von Seelen, W., Vorbruggen, J.C., and Sendroft, B. (Eds.),
Proc. ICANN96, International Conference on Artificial Neural Net-
works, Bochum, Germany, 17-19 July, vol. 1112 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 221-226.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 5

A NEW NEURAL NET WORK FOR
ADAPTI VE PATTERN RECOGNITION
OF MULTICHANNEL INPUT SIGNALS

M. Fernández-Delgado1,2, J. Presedo1, M. Lama1, and S. Barro1

1Department of Electronics and Computer Science
University of Santiago de Compostela
15706 Santiago de Compostela, Spain

2Department of Informatics
University of Extremadura

Cáceres, Spain
eldelga@usc.es

MART (Multichannel ART) is a neural computational architecture
which is based on ART architecture and aimed at pattern recognition on
multiple simultaneous information input paths. This chapter describes
the characteristic aspects of MART architecture, how it operates in
pattern recognition and its flexibility in adapting itself to the temporal
evolution of input information fed into the network. Finally, a real
application is presented demonstrating its potential for solving complex
problems, above all in the field of multichannel signal processing.

1 Introduction

The neural computational model ART was introduced by Carpenter and
Grossberg in the 1980s, and developed through various versions, such
as ART1 [5], ART2 [4], ART-2A [8] and ART3 [6]. These networks
have contributed a number of valuable properties with respect to other
neural architectures, amongst which could be mentioned its on-line and
self-organizing learning. On the other hand, these networks make it
possible to resolve the dilemma between plasticity and stability, allowing
both the updating of the classes learned and the immediate learning of

new classes without distorting the already existing ones. This property
enables it to be used in problems in which the number of classes is not
limited a priori, or in which there is an evolution in the classes over time.
These characteristics are shared by a great number of variants of the
ART architecture, which are acquiring more operational and application
possibilities. Thus, mentioning only a small number of the most
representative examples, many networks have been proposed such as
ARTMAP [9], which enables supervised learning, Fuzzy ART [7] and
Fuzzy ARTMAP [10], which adapt themselves to the processing of
fuzzy patterns, or HART (Hierarchical ART) [3], integrated by a series
of ART1 networks which carry out cascade clustering tasks on input
patterns. Nevertheless, this wide range of options lacks certain
characteristics which, to our way of thinking, are especially interesting
in order to tackle certain problems typical to pattern recognition such
as:

• In many pattern recognition applications there are various paths or

channels of information about the same event or system under
analysis. This is the case, for example, with monitoring of systems
by means of multiple sensors that supply complementary or
alternative views of the system behavior. In these cases, the joint
consideration of the information given by all of the sensors enables
us to increase the reliability of the final result, making it easier to
detect noise and eliminate ambiguities.

• Supervised learning does not permit the reconfiguration of a neural

network during its routine application. In the case of ART networks,
however, the representations of the classes to which belong the
input patterns are constructed on-line, starting from a total absence
of a priori information on these patterns and their associated classes.
Nevertheless, this type of network does not adapt the capability of
discrimination between classes of patterns during its operation, since
they operate with a fixed vigilance parameter. Thus they cannot
adapt their behavior to the typical characteristics of each class to be
recognized nor to their possible temporal evolution.

• ART networks carry out a partitioning or clustering operation on

the input space, on the basis of a vector of features that describe the

© 2000 by CRC Press LLC

input patterns, a measure of the distance between these patterns and
the classes to be discerned, and a (vigilance) threshold to be applied
to the distance obtained between the input pattern to be classified
and previously recognized classes. Each one of these classes
(associated to a cluster in the input space) includes a series of
patterns. Thus, it is possible for classes to exist whose patterns are
much more similar amongst themselves than with those associated to
other classes. ART networks presume that the patterns of all classes
have the same variability, as they use a single vigilance for all of
them.

• In many pattern recognition problems the different classes have a

different representativeness about the input patterns. The relevance
of a class usually depends on the specific criteria of the problem
tackled (appearance frequency of input patterns associated to this
class, level of danger associated to this class, etc.). ART networks
do not supply any mechanisms for selectively evaluating the different
classes learned.

The relevance, which to our understanding these properties have, leads
us to propose a new model of neural computational architecture, which
we have called MART [14]-[16]. Maintaining those aspects of ART
architecture that are especially relevant, we have incorporated the
capability for the adaptation of those parameters that determine the
operation of the network, adapting its values to the application and to
the set of patterns to be processed. At the same time, MART deals
jointly, although in a selective and adaptive manner, with multiple
channels of information and internal representations of the classes learnt
from the input data submitted to the network during its operation. In the
following section we will describe the structure and operation of
MART, in order to later deal with its properties for the learning of
information. We will then present an illustrative example of the
operation on artificially generated patterns, in order to later deal with its
application in a real problem such as the recognition of morphological
patterns of heart beats on multiple derivations of electrocardiographic
signals. Finally we will summarize the main contributions of MART to
neural computation, along with the future lines of study on which our
work is focused.

© 2000 by CRC Press LLC

2 Architecture and Functionality of
MART

As we said before, MART is a neural computation architecture for the
pattern recognition, which operates simultaneously over multiple
channels or inputs of information. Figure 1 shows its structure, made up
of I blocks, each one of which is associated to the processing of the
input pattern in a different signal channel. Each one of these blocks
determines the local similarity (relative to channel i) between the input
pattern and the expected values of the learnt classes, through processing
of the patterns showed previously to the network in that channel. The
F4 block, located on the top of the figure, is governed by a competitive
“winner-takes-all” mechanism, in which the only active output, uk=1, is
associated to the class with maximum global (over the set of channels)
similarity (we will call this class “winning class”). This class propagates
its expected value downwards through the single channel blocks, with
the aim of determining the local differences, relative to each channel,
with the input pattern. The Orientation System evaluates these
differences, determining whether they are or are not sufficiently low in
order to assign the input pattern to the winning class (resonance or reset
respectively). Finally, the Class Manager controls the dynamic creation
and suppression of classes as it becomes necessary in the classification
process.

2.1 Bottom-Up Propagation in a Single-Channel
Block

Figure 2 shows the structure of a single-channel block of MART. The
input pattern in channel i, Ei=(Ei1,...,EiJ), Eij∈ [0,1], ∀j, is presented in
the units of layer F1i, where it is propagated towards F2i. The
connection weight vector zik=(zi1k,...,ziJk) between the units of F1i and
unit F2ik stores the expected value of class k in channel i. The output of
unit F2ik is determined by the expression:

kfL ikiik ∀= ,),(zE (1)

© 2000 by CRC Press LLC

where the function f(x,y) evaluates the dissimilarity between the vectors
x and y, 0≤f(x, y)≤1, being 0 the value associated to a total coincidence
between them. The vector L i=(L i1,...,LiK) is propagated towards layer
F3i, whose output is:

kLT ikkik ∀−=),1(η (2)

In this expression, ηk is an output item of the Class Manager (see Figure
4) which verifies ηk=1 when the unit k in F4 is committed (i.e.,
associated to a learnt class), otherwise ηk=0.

2.2 Class Selection

The input items for block F4 (local similarities) are integrated for the
different channels generating the global similarities Pk:

Figure 1. Block diagram of MART.

d
I

d
1

{η }
k

{u }
k

{E }ij

{E }ij

{E }1j {E }
Ij

{re }
k

1k
{upd } {upd }

Ik

{T } {T }
1k Ik

. . .
new_class

{init }
k

F4

Orientation

Block 1

Channel

Single Single

Channel

Block I

System

Manager

Class

© 2000 by CRC Press LLC

∑
=

=
I

i
ikkk TreP

1

The input items rek come from the Orientation System and, as will be
seen, their value is 1 for those classes which have been temporarily reset
for having shown an excessively high difference with the input pattern,
for which Pk = 0. During the first comparison between the input pattern

and the learnt classes no unit is reset, in such a manner that Pk=Σi=1
ITik,

∀ k. The binary output items uk of F4 are governed by the expression:

() () kPPPPclassnewinitu lk
kl

lk
kl

k ∀

 −Γ∧

 −∧∧= ∧∧

><
 ,_ τ

where the symbols ∨ and ∧ designate the OR and AND binary
operators, respectively, and the functions τ(x) and Γ(x) are governed by
the following expressions:

(3)

(4)

Figure 2. Diagram of the single-channel block i.

iKi1

i1 iJF1i

iF2

ziJ1

iJKz

i1 iK
i1Kz

zi11

i1L LiK

i1 iK. . .

Ti1 TiK u1 uK

E
i1

E iJ di

ηK
η

1

init K

1init

iKupd

i1upd

. . .

. . .

M i1 iKM

.

...

. . . i

F3i

iF5

To F4 From F4

...
...

...

© 2000 by CRC Press LLC

<
≤

=
x

x
x

01

00
)(τ

≤
<

=Γ
x

x
x

01

00
)(

The new_class and init=(init 1,...,initK) input items are binary, and come
from the Class Manager: new_class=1 is associated to the creation of a
new class, because the input pattern does not resonate with any of the
learnt ones. The init vector is only non-zero when new_class=1, in
which case its only non-zero component is the one associated to the unit
k’ selected by the Class Manager to be initialized. Thus, if new_class=1,
then uk=init k (from expression (4)) and the unit k’ is the only active unit
in F4. Otherwise, new_class=0=initk, ∀ k, and the value of uk will be
determined by the functions τ and Γ, from expression (4), being zero
except for the minimum index unit with the maximum Pk (a class which
shows the greatest global similarity with the input pattern). We will
denote this unit by means of the index k1, due to it being the winner in
this first cycle of comparison between the input pattern and the classes
learnt: in this way, uk1=1, uk=0, ∀ k≠k1.

2.3 Top-Down Propagation in a Single-Channel
Block

The vector u=(u1,...,uK) is propagated towards the F5i layers of the I
single-channel blocks, whose output takes the form of:

kLuM ikkik ∀= , (5)

These output items are zero, except for the unit k1, for which it is
Mik1=Lik1=f(Ei,zik1) (difference between the input pattern and the
expected value of the active class k1 in channel i). Finally, the output di
of the single-channel block i is determined according to the expression:

),(
1

11∑
=

===
K

k
ikiikiki fLMd zE

which represents the difference between the input pattern and the
expected value of class k1 in that channel. This output is propagated

(6)

© 2000 by CRC Press LLC

towards the Orientation System, whose structure and functioning will be
dealt with in the following section.

2.4 The Orientation System

The basic objective of this module, as shown in Figure 3, is to determine
the global result of the pattern-class comparison. For this reason, the
block “Channel Credits” determines the global difference d between the
input pattern and a given class from the local differences di and the
channel credits xi, which constitute an indirect measure of the signal
quality in the different channels. The global difference is calculated
through the following expression:

∑
=

=
I

i
ii dxd

1

The value obtained for the global difference d is compared with the
global vigilance ρk1

g associated to the class k1 (one of the K outputs of
the block “Global Vigilances”, in Figure 3). This parameter establishes
the discrimination capability of the system in the comparisons with the k1
class, having an adaptive value which is limited to the range ρmin≤ρk1

g≤
1. This comparison takes place in the block “Reset Evaluation”, which
determines the output items rek of the Orientation System based on the
expression:

[] [] kdutretpatternnewtretre g
kkkkk ∀−Γ∧∧∨∧=+ ,)()()(_)()1(ρ (8)

in such a manner that if d<ρk1

g and rek1(t)=0 then rek1(t + 1)=0 and the
state of the system, with the unit k1 active in F4, is maintained stable,
reaching resonance with the input pattern. In this case, as shall be seen
in the following section, the information associated with the resonant
class k1 is updated and the resonance is maintained until the presentation
of a new input pattern. On the other hand, if d≥ρk1

g and rek1(t)=0, then
rek1(t+1)=1 and, from the expression (3), Pk1=0, class k1 being inhibited
for the competition in F4 (rek1 remains active until the presentation of a
new input pattern, the instant in which the new_pattern(t) output of
block “Detection of New Pattern” is activated, taking again rek1 to

(7)

© 2000 by CRC Press LLC

zero). When this occurs, a new winner k2 is determined in F4 and the
comparison cycle is repeated, rek2 being evaluated according to ρk2

g and
the new value of d. If the result is a new reset, the process is repeated
until either a resonance with one of the learnt classes is reached, or until
all are reset, in which case the Class Manager determines the creation of
a new class. This class will be, if in F4 there exist uncommitted nodes
(not associated to learnt classes), the one with the minimum k’ index. If
there is no uncommitted node, it will select the class with minimum
relevance (determined through its class credit), as we will see in the next
section.

2.5 Class Manager

Figure 4 shows the structure of the Class Manager block, which
controls the creation and dynamic suppression of classes throughout the
processing, being activated when the input pattern belongs to an as of

Figure 3. Structure of the Orientation System. For clarity the figure does not
show the neural organization of the different blocks.

new_pattern

re k

d

K r
k

ρ
k
g

K ρ
k
a

K

new_class

EIj

upd updK

E
1j

Detection of

dku
i 1kT IkT

. . .K KK I

J

J

K

Ω

Vigilances

Channel
Credits

Ik1k

Class Radii

Vigilances
Global

Updating

Updating of
Expected Values

Evaluation
Reset

New Pattern
Detection of

First Comparison

© 2000 by CRC Press LLC

yet unlearned class. In this case, all the classes learned beforehand (for
which ηk=1) have been reset (rek=1) and the “Creation of a New Class”
block activates its new_class output, based on the following expression:

kk

K

k

reclassnew ∨= ∧
=

η
1

_

When new_class=1, the “Class Selection” block determines the class k’
which is going to be created, establishing initk’=1, inick=0, ∀ k≠k’.
Other input data to this block are the credits of class µk (k=1,...,K),
which evaluate the associated relevance of the different classes. As
previously mentioned, these parameters allow us to perform a selective
evaluation of the classes learned according to their relevance. In a later
section we will describe the rule which governs the evolution of the

class credits; for the present suffice it to know that µk∈[0,1] , µk=1
being the credit associated with the maximum relevance. Finally, the
input data ηk also take part in the creation of a new class (we should
remember that ηk=1 for those units k of F4 associated to learned

(9)

Figure 4. Structure of the Class Manager.

re k

K

K

K
µ

ηk

K

u k

K

init

new_class
new_class

init

k

Class Credits

Initialised Classes

Creation of a New Class

Class Selection

k
k

© 2000 by CRC Press LLC

classes). The output of the “Class Selection” block is determined by the
following expression:

kclassnewinic lk
kl

lk
kl

k ∀

 −Γ∧

 −∧= ∧∧

><
 ,)()(_ ςςςςτ

where ςk is defined in the following manner:

kkkk ∀+−= ,)1(ηξµς
l

K

l

ηξ ∧
=

=
1

and the functions τ(x) and Γ(x) are the ones previously defined. In this
manner if new_class=0, initk=0, ∀ k; i.e., a new class is created only
when new_class=1. In this case, if there exists some unit in F4 that is
not associated to learned classes (for which ηk=0), then ςk=ηk and
initk=1 for this unit (if there are various, the unit selected is the one with
the minimum index k). On the contrary, if all the units in F4 are
associated to learned classes (ηk=1, ∀ k), ςk=(1-µk) and the class
selected is the one with the minimum class credit µk, i.e., the one that
has the least relevance at that time.

At this point we end the description of the structure and working of
MART in order to tackle aspects associated with its plasticity and
adaptation according to the information extracted for the input patterns
over time. This description is included in the following section.

3 Learning in MART

The MART network uses an unsupervised, “on-line” learning, typical of
ART networks, for the determination and updating of the expected
values of the different classes which are being identified during the
processing. Nevertheless, it also provides other learning mechanisms,
including channel credits and credits, radii and global vigilances
associated to the classes learnt, as will be seen in this section.

(10)

© 2000 by CRC Press LLC

3.1 Expected Values

The expected value zik of class k in channel i is updated with each input
pattern which matches this class. Nevertheless, in order to avoid
possible classification errors provoking strong distortions in this
expected value, it is desirable to use a threshold ρk

u (updating vigilance),
more restrictive than global vigilance ρk

g, and to update only in those
channels i in which the local difference di is lower than the global
vigilance. The following rule governs class expected value learning:

[] kjiEupdoldzupdinicEinicnewz ijikzijkikzkijkijk ,, ,)()1()(∀+−+= αα

(11)

When a new unit k is created, initk=1 and zijk(new)=Eij. In the case of
resonance with class k, zik only evolves if updik=1, which occurs when
d<ρk

u in those channels i where di<ρk
g. We can see that, if updik=1, then

we have, from the expression (11):

kjiEoldznewz ijzijkzijk ,,)()1()(∀+−= αα (12)

where the parameter 0≤αz≤1 determines the speed of change in the
expected value of the resonant class.

3.2 Channel Credits

Channel credits, associated to the weights inside the block “Channel
Credits”, in the Orientation System (see Figure 3), have an initial value
of xi=1/I , ∀i. The credit of a channel represents its weight in the global
classification developed by MART over every input pattern. Channel
credits update according to the result of the comparison between the
pattern presented to the network and the class which has results the
most similar to it. This measure of similarity does not take into account
the own channel credits, and the most similar class, k1, will be that with

greatest Σi=1
ITik1, during the first comparison (in this stage the output Ω

of the block “Detection of First Comparison”, in the Orientation
System, is activated). In effect, except for specific cases associated with
the appearance of patterns which belong to classes not learnt by the

© 2000 by CRC Press LLC

network yet, the local difference in each channel with the most similar
class should be reduced. In order to do this, a channel with repeatedly
high local differences di can be considered to be associated with a higher
noise content and lower signal quality, and as such, its credit should be
lowered. On the contrary, if the local differences in this first comparison
are reduced, this can be considered as a reliable channel with regard to
the classification process, and as such, its credit should be increased. In
this way, an indirect estimation of the noise-to-signal ratio is used to
determine the credit or weight factor of each channel in the integration
and evaluation of multi-channel information.

Obviously, the full functionality of the channel credits is reached when
there is a temporal continuity in the input signals, which allows to use
the information associated to previous times in order to make a
prediction, in this case, about the signal quality in every signal channel.
Learning is carried out on the basis of the following expression:

[] idxoldxnewx iiii ∀∆+Θ= ,)()()((13)

The function ∆xi(x) determines the value of the increase in xi on the
basis of the following expression:

≤≤∆−

<≤

−

−
∆−

<≤

−∆

=∆

1

01

)(

2

21
12

1

1
1

xx

x
x

x

x
x

x

xx

i

ii
ii

i

i

i

i

δ

δδ
δδ

δ

δ
δ

where ∆x is a fixed amount, independent of the signal channel. In this
way, the increase ∆xi(x) is positive for reduced values of x (0≤x≤δi1) and
negative for high values of x (δi1≤x≤1), reproducing in this manner the
behavior outlined previously. The parameters ∆x, δi1 and δi2, ∀ i, must
be determined for each application, if we have a set of input patterns
which are representative of those which will be presented to the network
during its normal operation. Lastly, the function Θi(x) limits the values
of x in the range 0 ≤ x ≤ 2/I.

(14)

© 2000 by CRC Press LLC

3.3 Class Radii

For each class learnt, MART establishes an adaptive average of the
global differences which have been obtained with those patterns
assigned to that class over the time. This average is an approximate
measurement of the radius of the cluster associated to the class in the
input space and, as will be seen, constitutes the basis for the updating of
the global vigilance for this class. Class radii correspond to the weights
inside the block “Class Radii”, in the Orientation System (see Figure 3).
The learning of the radius associated to a class takes place with each
resonance between a new input pattern and that class or, for the first
time, when this class is created, and it is governed by the following
expression:

[]{ } kddoldroldrclassnewuoldrunewr rkkrkkkk ∀++−+= ,)))(()()(1(_)()(αδα

(15)
where the function δ(x) is 1 if x=0 and 0 in the opposite case. The radius
remains constant for non-winning classes (uk=0). If new_class=1,
rk(new)=0 for the class k’ created, since in this case uk’=1. On the other
hand, in the case of resonance, radius is equal to the global difference, if
rk(old)=0, otherwise being updated as a weighted sum of its previous
value and the global difference d (expression (16)), weighted by a
variation factor αr. In this manner, the radius of a class is adapted to the
variability existent between the patterns belonging to it.

kdoldrnewr rkrk ∀+−= ,)()1()(αα (16)

3.4 Global Vigilances

The learning of global vigilances for each class allows the adaptation of
the system's discrimination capacity to the level of variability of the input
patterns. For this, for each resonance MART compares the global
difference d with the radius rk of the resonant class. The increments in
the variability are translated into increases in d with respect to rk, and it
is then advisable to increase ρk

g in order to avoid false negatives when
the input pattern is not assigned to class k and creates a redundant class.
On the contrary, reductions in variability reduce d against rk, which
allows the reduction of the global vigilance in order to adapt the

© 2000 by CRC Press LLC

discrimination capability to the new situation. Figure 5 shows an
example of the time evolution in the variability of the input patterns.
Initially (t=0) the variability is small, and the vigilance is low for that
class, from the radius associated to it. Later (t=N), this variability grows
up, and it is advisable to increase the vigilance in order to avoid that
input patterns belonging to that class lead to the creation of redundant
classes. Finally (t=M), the variability of the input patterns reduces again,
which decreases the radius associated to that class and its vigilance.

Global vigilances are associated to the weights of the block “Global
Vigilances”, in the Orientation System (see Figure 3). The expression
that controls the learning of global vigilances is the following:

() () { ++= classnewuoldunew refk
g
kk

g
k _ ρρρ

() ()[] } kclassnewrdold k
g
k ∀∆−++ ,_ sgn ρρθ (17)

where the functions sgn(x) and θ(x) are defined by the following
equations:

>
=
<−

=
01

00

01

)sgn(

x

x

x

n

≤
<≤

<
=

x

xx

x

x min

minmin

11

1)(ρ
ρρ

θ

Figure 5. Illustration of the temporal evolution of the variability of the input
patterns associated to a class and updating of its representative.

t = 0

representant of class

representant at t=N

representant at t=0

representant at t=M

representant at t=0
class radius

representant at t=N

t = N

t = M

class radius

class radius

© 2000 by CRC Press LLC

Parameter ρk
g remains constant, except in the creation of a new class k’,

in which case ρk
g has the initial value ρref, and when resonance is

achieved with class k’’ . In this case, ρk’’
g increases its value in ∆ρ if

d>rk’’ and decreases in the same amount if d<rk’’ , maintaining a lower
limit ρmin which is associated to the maximum discrimination capability
that a class may possess. In this way, MART is able to selectively
evaluate the different classes learnt by means of an individualized and
adaptive consideration in its discrimination capability.

3.5 Other Characteristics

As commented in Section 1, another path for the selective evaluation of
the classes learnt is associated with “class credits”, which corresponds
with the connection weights inside the block “Class Credits”, in the
Class Manager (see Figure 4). These credits allow the evaluation of the
relevance of each class throughout the operation of the network. The
credit µk associated to class k has an initial value µk=1 at the moment of
its creation, increasing in a constant factor ∆p with each input pattern
assigned to it, and decreasing in a constant factor ∆n in the opposite
case, always within the range 0≤µk≤1.

On the other hand, MART dynamically manages the classes learnt,
creating a class when faced with the appearance of a pattern not
belonging to any of them, or deleting a class when its credit is set to
zero. For this reason, the output items ηk from the block “Initialized
Classes”, in the Class Manager (see Figure 4), allow discrimination
between those committed units in F4 (ηk=1) and those which are not

channel 1

channel 2

channel 3

channel 4

class 1 class 2 class 3 class 4 class 5

Figure 6. Classes used in the generation of patterns.

© 2000 by CRC Press LLC

assigned to a class yet. For each unit k, ηk=1 when it is committed,
maintaining this value while its credit µk is not zero. When µk=0, this
class is “forgotten” and unit k remains uncommitted until it is re-
committed to a new class, thus enabling the dynamic creation/
elimination of classes as and when necessary.

4 Analysis of the Behavior of Certain
Adaptive Parameters

In order to illustrate the operation of MART we now give an application
example on a set of 2,000 artificially generated patterns with I=4 signal
channels, a pattern length of J=125 values in each channel, and input
data in the range 0≤Eij≤1. These patterns were generated from 5 basic
morphologies, each one of these being labeled as belonging to a class
identified with the morphology from which each pattern derived. The
distance function f(x, y) used is the city-block distance between the
input pattern x and the representative of class y. Figures 6 and 7 show
the original classes and some of the patterns generated from them,
respectively.

Figure 8 shows an example operation, although in this case, for reasons
of clarity, it is represented on 2 signal channels, the credit x2 being
notably lower than x1. The lower left-hand section shows the input
pattern in F11 and F12. This pattern propagates to F21 and F22: the
competitive process in F4 selects class 1 as the one that is most similar
to the input pattern, its representative (expected value) being shown in
both channels with the upper left-hand section. At the same time, the

Figure 7. Examples of patterns.

class 1 class 1 class 2 class 2 class 3 class 3 class 4 class 4 class 5 class 5

channel 1

channel 2

channel 3

channel 4

© 2000 by CRC Press LLC

right-hand section shows the area resulting from subtracting the input
pattern and the expected value of the winning class in both channels,
together with the channel credits and global difference and vigilance.
The area of difference (local difference) is lower in channel 1 and
somewhat higher in channel 2. Nevertheless, the reduced credit value x2
attenuates the contribution of channel 2 to the global difference d, the
value of which is lower than the global vigilance associated to class 1,
and brings about a situation of resonance with the input pattern.

Figure 9 shows a second example in which the input pattern undergoes a
reset with its most similar class (class 2). The latter wins the competitive
process in F4, but the descending propagation generates a greater
difference in channel 2, the credit of which is higher than the one
associated with channel 1, leading to a situation of reset (first
comparison). In the second comparison class 3 is the winning class in
F4. The descending propagation provokes a higher difference in channel
1, but lower in channel 2, reaching resonance on the basis of the
weighting relative to the respective channel credits.

Figure 8. Example of resonance between an input pattern and its most similar class.

F1F1

F2 F2

d ρ
1
g< => RESONANCE

1

1

2

2

Class 1

Channel 1 Channel 2

Difference

x1 x2

Class 1

Difference

© 2000 by CRC Press LLC

With the aim of illustrating the working of the channel credits xi in the
MART operation we distorted the input pattern, although only in
channel 1, by means of the substitution of a part of the original input
pattern Eij for randomly generated values. Figure 10 demonstrates how
the appearance of noise leads to significant rises in the local differences
in channel 1 in the first comparison, differences which are thus useful in
order to estimate the high noise/signal ratio associated to this channel.
The figure also demonstrates the reduction in the channel credit x1,
which is produced in those intervals where noise is added to the signal
(elevations in d1) suitably reflecting the drop in reliability in channel 1
with regard to the final classification process of the input patterns. We
should also emphasize the high level of stability in those credits

d ρg> 2

RESET

F1F1

F2 F21

1

2

2

Channel 1 Channel 2

Class 2

2

1F1

F21

Channel 1 Channel 2

Class 3

F22

F1

2nd COMPARISON

2

Difference Difference

Class 2

1st COMPARISON

d ρ< 3
g

RESONANCE

Class 3

Difference Difference

x1 x 2

x1 2x

Figure 9. Example of reset between an input pattern and its most similar
class, and the subsequent resonance after the comparison of the pattern with
another class.

© 2000 by CRC Press LLC

associated with the remaining channels, in which the signal quality does
not undergo any noticeable difference throughout the process.

noise intervals

0.25

0.25

0.25

0.25

channel 1

channel 3

channel 2

channel 4

x1 d1

Figure 10. Evolution of the channel credits xi in response to the addition of
noise in channel 1.

Another interesting aspect of the operation of MART is associated with
the evolution of the global vigilances associated to the different classes.
In order to illustrate this point we added noise to the patterns belonging
to class 1 at certain instances of the processing. Figure 11 shows the
evolution of the vigilances ρ1

g and ρ2
g; it can be seen how addition of

noise leads to a noticeable increase in the global difference associated
with those patterns that resonate with class 1; the one associated with
class 2 remains approximately constant. These increases lead to a rise in
the radius associated with class 1 (r1) and, thus, in the vigilance ρ1

g of
this class, whilst ρ2

g undergoes no significant alterations. In turn, the
disappearance of the added noise brings about an immediate decrease in
r1 and ρ1

g. Consequently, this figure shows the capability of MART’s
vigilance to adapt itself to the properties of the input data, more
specifically to the variability that these patterns demonstrate over time.

5 A Real Application Example

In the previous section we analyzed the operation of MART on a set of
artificial patterns, with the aim of highlighting some of the most
interesting characteristics of learning in MART. We now show, albeit
briefly, the application of MART in a real problem.

© 2000 by CRC Press LLC

ART networks have indeed been employed in a wide variety of
problems. Amongst these we could mention the extraction of rules from
massive data for weather forecasting [21], recognition of aerial images
[20] or written characters [23], identification of patterns in turbulent
fluids [17], creation of semantic associations between terms on a text
database [24], detection of patterns in satellite images [28], recognition
and retrieval of aircraft parts in databases [12], etc. There also exist
applications aimed at the automatic monitoring of signals in chemical
plants [29] and nuclear power stations [22].

Channel 1

Channel 2

Normal morphology Abnormal morphology Abnormal morphology

N N N N N N NA A A N AA ANN N

Presence of noise

Figure 12. ECG interval on 2 derivations in which beats with normal (N) and
aberrant (A) morphologies are indicated. A signal interval with noise present
is also indicated.

Figure 11. Evolution of the global differences, radii and global vigilances
associated to classes 1 and 2.

High variability zones

0.4

0.3

0.2

0.1

0.4

0.3

0.2

0.1

d
ρ1

g
r1

ρmin r2
ρ2

g

© 2000 by CRC Press LLC

Finally, one of the principal application environments of these networks
is biomedicine, especially cardiovascular medicine, where we find
examples aimed at the extraction of information from ECG signals
([26],[27],[18]) or the prediction of the risk of myocardial infarct on the
basis of clinical and electrocardiographic data [13]. It is in this setting
that the problem we deal with in this section is taken, the recognition of
morphological patterns in heart beats, more specifically from ventricular
activation complexes or QRS complexes, on multiple ECG derivations
([1],[15]). Figure 12 shows a signal interval over 2 derivations, in which
different beats can be seen. Those beats associated to normal cardiac
activity (N) have similar morphologies (normal morphology). On the
other hand, cardiac complication generally become apparent at the
electrocardiographic level, associated to beats with aberrant
morphologies, such as the ones labeled “A” in the figure. The presence
of different points of origin of the heart beats generally means an
unfavorable prognosis for the patient, due to which it is of great
importance to recognize this situation in real time. Different origins
normally give rise to different morphologies in the electrical
manifestation of the beat associated to them, due to which it is essential
to detect all the beat morphologies that are produced over time and
classify each new beat detected in accordance with them. In Figure 12, a
signal interval with significant noise can also be seen; this distorts the
morphology of beats and makes its correct morphological
characterization difficult.

Although this problem belongs to the already classic field of pattern
recognition, it has a series of typical properties which make it especially
complex and, on the other hand, suitable for the use of MART in its
resolution:

• The morphological characterization of beats on various ECG

derivations is very important, given that it significantly increases the
information available in the single-channel case. This, then, is a
problem for which the use of a multichannel pattern recognition
system such as MART is suitable.

• Heartbeat morphologies vary substantially between different patients

and according to the derivation of the ECG under consideration, and

© 2000 by CRC Press LLC

even for the same patient over time. Thus it is impossible to
construct a sufficiently representative training set, which renders
supervised approaches inadequate for this problem.

• Any new morphology is important and should be learned

immediately, since it may reflect the appearance of complications in
the mechanism of generation and propagation of beats. Furthermore,
any morphology may change substantially throughout processing.
All this requires the learning of new classes as well as the adaptation
of the ones that have already been learned, i.e., to resolve the
dilemma between stability and plasticity. This need precludes
solutions involving off-line learning, making ART architecture-based
networks prime candidates for this problem.

• The determination of a reduced set of representative characteristics

of the heart-beat morphology may turn out to be extremely complex,
which would make operation directly onto the ECG signal itself
prudent.

• The signal may be contaminated by noise from different origins,

which may significantly alter the morphology of the beats. Thus the
pattern recognition system must be able to adapt its discrimination
capability according to the noise level or, alternatively, to the
morphological variability shown by the input patterns at each instant.
As they use a fixed vigilance during the processing, ART networks
do not allow such an adaptation, as opposed to MART, which does
so by means of its capability to adapt its vigilance parameters.

• Classes formed by morphological patterns that are very similar

amongst themselves may co-exist with others made up of patterns
with a high level of variability in their morphology. As a
consequence, it is advisable to adapt the discrimination capability of
the system to the typical characteristics of each class. MART
demonstrates this property, as it uses a different vigilance for each
class, with an evolution that depends on the patterns assigned to it.

© 2000 by CRC Press LLC

• The appearance of artifacts that imitate true beats leads to the
creation of spurious morphological classes, which should be
rejected. With this aim, MART’s ability to dynamically suppress
classes is interesting, because it favors the elimination of those
classes with the lowest degree of representativeness (class credit)
amongst the input patterns.

We now go on to describe how this problem has been resolved using
MART. Our data set consists of a group of 20 electrocardiographic
registers from the MIT-BIH Arrhythmia Database [19]. This database
was chosen due to it being widely known, and due to the high number of
beat morphologies that it contains. Furthermore, a morphological
labeling of its beats is supplied, which allows a rigorous validation of the
solution applied to the problem. The input to MART in each channel
(the MIT-BIH database has I=2 signal channels) is J=128 ECG samples
corresponding to an interval of 256 msec., which included the whole of
the QRS complex associated with each of the beats analyzed. The
maximum number of classes to be learned was set at K=15. Amplitude
scaling was performed on the input patterns so that its maximum value
was 1 and its minimum value 0. The distance measure used f(x,y) is the
city-block distance between the input pattern in each channel and the
expected value of each class, as is shown in the following expression:

{ }
{ } { }∑

=
==

=

−

−
−=

J

j ilk
Jl

ilk
Jl

ilk
Jl

ijk

ijiki

zminzmax

zminz
E

J
f

1
,...1,...,1

,...,11
),(zE

This distance, traditionally used in electrocardiographic pattern
recognition [11], was chosen due to its intuitive character (area between
the vectors to be compared), its relative ease of calculation and the
existence of works that prove its superiority with regard to other
distance measurements on the ECG signal [25]. It should be borne in
mind that the expected value of the class k in the channel i,
zik=(zi1k,...,ziJk), is not scaled to [0,1] , as occurs with the input, given the
learning rule associated to it (expression (12)), which is the reason why
it is necessary to include this scaling into the distance calculation. Figure
13 shows how the morphologies of the expected values of the different
morphological classes are codified in the weights zijk associated to each

(18)

© 2000 by CRC Press LLC

one of them, being used in order to determine the distance with the
input data.

It is important to point out that, given that MART dynamically creates
and suppresses classes, the classes created by MART do not generally
coincide with those determined by the database. In this sense, the
appearance of noise usually leads to the creation of redundant classes
(which occurs when beats belonging to the same morphological class in
the database divide into two or more classes in the MART network)
although the use of adaptive channel vigilances and credits help to
reduce this phenomenon.

Figure 14 shows the evolution of the channel credits and local
differences, together with the number of classes created since the
beginning of the processing of the register 105 of the MIT-BIH
database. It can be seen that the principal increment in the number of
classes is produced in instants (1) and (2), where noise appears in both
channels. Nevertheless, the first of the increments, which occurs when x1
is high, is notably greater than the second one, where x1 has already
been reduced in response to the reduction in quality in channel 1.

Figure 13. Values of the connection weights zijk, where the expected value of
class k in channel i is stored. The shaded unit in F2i is the one that is
associated to the class whose expected value has the greatest morphological
similarity with the input pattern in channel i.

F2i

F1i

. . .
K)

. . .
J)

.

.

Expected value of class 1 Expected value of class K

in channel i

Input pattern

© 2000 by CRC Press LLC

Figure 15 shows the number of classes created by MART, with and
without channel credits, throughout the processing of register 200 of the
MIT-BIH database. Both figures make it evident that the use of channel
credits to a great degree prevents the proliferation of classes by
lowering the contribution to the final result of less reliable or noisy
channels. In this case, the low and high ranges for the local differences
are determined by the parameters δ11=δ21=0.05 and δ12=δ22=0.20,
where ∆x=0.0025.

Figure 14. Temporal evolution of channel credits, local differences and the
number of classes created by MART on register 105 of MIT-BIH Arrhythmia
Database.

Processing Time

N
um

be
r

of
 c

la
ss

es

with channel credits

without channel credits

Figure 15. Temporal evolution of the number of classes created by MART on
register 200, with and without channel credits.

1

d1

2x

2d

x

(2)(1)

channel 2

channel 1

time

0.5

0.5

Number of classes created

© 2000 by CRC Press LLC

With regard to the evolution of the class vigilances, the values used
were ρmin=ρref=0.15, with ∆ρ=0.002. More specifically, the adaptation
capability of the vigilances was another reducing factor in the number of
classes created by MART, as can be seen in Figure 16, by relaxing the
discrimination capability in the presence of noise, thus preventing the
creation of redundant classes.

Finally we will briefly comment on the results obtained in the application
of MART to this problem ([1],[15]). The most revealing piece of data is
the lower percentage of characterization errors (1.1%), which illustrates
MART’s high capacity for morphological discrimination. This parameter
only measures errors due to the assignation of beats to classes to which
in reality they do not belong, considering any beat assigned to a
redundant, but morphologically similar class to be correct. Another
illustrative parameter is the redundant class creation ratio: the number of
classes created by MART is on average 5.7 times higher than the real
number. Although this ratio may appear to be high, it is in fact
reasonable, bearing in mind, on one hand, the discrimination capability
that is necessary in order to distinguish between classes, and, on the
other hand, the noise level, and the high level of variability associated to
some of them. However, the percentage of error due to the assignation
of beats to redundant classes is 23%, in spite of the number of classes
created by MART being almost six times higher than the original one.
This means that the majority of the beats (over 76%) are assigned to the
class to which they belong, it becoming evident that there is a noticeable
capacity for limiting the population of redundant classes. Lastly, we

Figure 16. Temporal evolution of the number of classes created by MART
during the processing of register 200, using constant and adaptive vigilances.

Processing Time

N
um

be
r

of
 c

la
ss

es

with adaptive vigilances

with constant vigilances

© 2000 by CRC Press LLC

would point out that the use of MART for the morphological pattern
recognition on multichannel ECG is operative at the present inside a
monitoring system of patients in a ICCU developed by our research
group ([2],[15]).

6 Discussion

We do not wish to finish off this chapter without having emphasized
some of the principal characteristics that MART contributes in context
of neural networks and, more specifically, in that of networks based on
the ART model. Amongst these, there are its express orientation
towards the recognition of multichannel patterns and its ability for the
continuous adaptation to the characteristics of the input pattern. In this
sense, besides the obvious capacity for learning and updating of the
classes to be discerned, MART offers greater operational flexibility than
other neural networks aimed at pattern recognition, allowing the
dynamic suppression of classes, selective evaluation of the different
signal channels according to the signal quality at each moment in time
and adaptation to the variability of the patterns associated to the
different classes.

MART’s adaptation possibilities reach the height of their functionality in
the operation on patterns associated to signals that evolve continually
over time. It is here where, for example, the channel credits are
associated with an indirect measurement of the signal/noise ratio. These
characteristics of MART, which make it unique in the field of neural
computation, endow this architecture with an important practical scope.
This has become evident when tackling a real and complex problem,
such as that of the real time morphological characterization of beats on
multichannel ECG.

Lastly, our current objectives include developing new MART-based
applications, principally in the field of processing signals of a
physiological origin, an area in which our group has wide experience,
and to continue improving the performance of MART with regard to its
capabilities for the recognition of multichannel patterns and on-line
learning guided by network input patterns.

© 2000 by CRC Press LLC

Acknowledgments

Authors wish to acknowledge the support from Xunta de Galicia, under
project XUGA20608B97, and from the Spanish Ministry of Education
and Culture (CICYT), under project 1FD97-0183.

References

[1] Barro, S., Fernández-Delgado, M., Vila, J.A., Regueiro, C.V. and
Sánchez, E., (1998), “An adaptive neural network for the
classification of electrocardiographic patterns on multichannel
ECG,” IEEE Eng. in Medicine and Biology Magazine, vol. 17, pp.
139-150.

[2] Barro, S., Presedo, J., Castro, D., Fernández-Delgado, M., Fraga,
S., Lama, M. and Vila, J., (1999), “Intelligent tele-monitoring of
critical patients,” IEEE Engineering in Medicine and Biology
Magazine, vol. 18, no. 4, pp. 80-88.

[3] Bartfai, G., (1996), “An ART-based modular architecture for
learning hierarchical clusterings,” Neurocomputing, vol. 13, pp. 31-
45.

[4] Carpenter, G.A. and Grossberg, S., (1987), “ART2: Self-
organizing of stable category recognition codes for analog input
patterns,” Applied Optics, vol. 16, no. 23, pp. 4919-4930.

[5] Carpenter, G.A. and Grossberg, S., (1988), “The ART of adaptive
pattern recognition by a self-organizing neural network,”
Computer, vol. 21, pp. 77-87.

[6] Carpenter, G.A. and Grossberg, S., (1990), “ART3: Hierarchical
Search Using Chemical Transmitters in Self-Organizing Pattern
Recognition Architectures,” Neural Networks, vol. 3, pp. 129-152.

[7] Carpenter, G.A. and Grossberg, S., (1991), “Fuzzy ART: Fast
stable learning and categorization of analog patterns by an adaptive
resonance system,” Neural Networks, vol. 4, pp. 759-771.

© 2000 by CRC Press LLC

[8] Carpenter, G.A., Grossberg, S. and Rosen, D.B., (1991), “ART-
2A: An Adaptive Resonance Algorithm for Rapid Category
Learning and Recognition,” Neural Networks, vol. 4, pp. 493-504.

[9] Carpenter, G.A., Grossberg, S. and Reynolds, J.H., (1992),
“ARTMAP: supervised real-time learning and classification of
nonstationary data by a self-organizing neural network,” Neural
Networks, vol. 4, pp. 565-588.

[10] Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H. and
Rosen, D.B., (1992), “Fuzzy ARTMAP: A neural network
architecture for incremental supervised learning of analog
multidimensional maps,” IEEE Transactions on Neural Networks,
vol. 3, no. 5, pp. 698-712.

[11] Cashman, P., (1978), “A pattern-recognition program for the
continuous ECG processing in accelerated time,” Computers and
Biomedical Research, no. 11, pp. 311-323.

[12] Caudell, T.P., Smith, S.D.G., Escobedo, R. and Anderson, M.,
(1994), “NIRS: large scale ART-1 neural architectures for
engineering design retrieval,” Neural Networks, vol. 7, no. 9, pp.
1339-1350.

[13] Downs, J., Harrison, R.F., Kennedy, R.L. and Cross, S.S., (1996),
“Application of the fuzzy ARTMAP neural network model to
medical pattern classification tasks,” Artificial Intelligence in
Medicine, vol. 8, pp. 428-493.

[14] Fernández-Delgado, M. and Barro, S., (1998), “MART: A
multichannel ART-based neural network,” IEEE Transactions on
Neural Networks, vol. 9, pp. 139-150.

[15] Fernández-Delgado, M., (1999), MART: una nueva arquitectura
de computación neuronal y su aplicación al diseño de un sistema
inteligente de monitorización de pacientes, Ph.D. Thesis, Dept. of
Electronics and Computer Science, University of Santiago de
Compostela. In Spanish.

© 2000 by CRC Press LLC

[16] Fernández-Delgado, M., Presedo, J. and Barro, S., (1999),
“Multichannel pattern recognition neural network,” Proceedings of
the International Work-Conference in Artificial and Natural
Neural Networks (IWANN-99), Alicante (Spain), pp. 719-729.

[17] Ferre-Gine, J., Rallo, R., Arenas, A. and Giralt, F., (1996),
“Identification of coherent structures in turbulent shear flows with a
fuzzy ARTMAP neural network,” International Journal of Neural
Systems, vol. 7, no. 5, pp. 559-568.

[18] Ham, F.M. and Han, S., (1996), “Classification of cardiac
arrhythmias using ARTMAP,” IEEE Transactions on Neural
Networks, vol. 43, no. 4, pp. 425-430.

[19] Harvard-MIT division of Health Sciences and Technology, “The
MIT-BIH arrhythmia database CD-ROM,” (1992), 2nd ed.

[20] Healy, M.J., Caudell, T.P. and Smith, D.G.S., (1993), “A neural
architecture for pattern sequence verification through inferencing,”
IEEE Transactions on Neural Networks, vol. 4, no. 1, pp. 9-20.

[21] Healy, M.J. and Caudell, T.P., (1997), “Acquiring rule sets as a
product of learning in a logical neural architecture,” IEEE
Transactions on Neural Networks, vol. 8, no. 3, pp. 461-473.

[22] Keyvan, S., Durg, A. and Nagaraj, J., (1997), “Application of
artificial neural networks for the development of a signal
monitoring system,” Expert Systems, vol. 14, no. 2, pp. 69-79.

[23] Kim, H.J., Jung, J.W. and Kim, S.K., (1996), “On-line Chinese
character recognition using ART-based stroke classification,”
Pattern Recognition Letters, vol. 17, pp. 1311-1322.

[24] Muñoz, A., (1996), “Creating term associations using a hierarchical
ART architecture,” Lecture Notes on Computer Science, Springer-
Verlag, vol. 1112, pp. 171-177.

[25] Rappaport, S.H., Gillick, L., Moody, G.B. and Mark, R.G., (1982),
“QRS morphology classification: quantitative evaluation of
different strategies,” Computers in Cardiology, pp. 33-38.

© 2000 by CRC Press LLC

[26] Suzuki, Y. and Ono, K., (1992), “Personal computer system for
ECG ST-segment recognition based on neural networks,” Medical
& Biological Engineering & Computing, vol. 30, pp. 2-8.

[27] Suzuki, Y., (1995), “Self-organizing QRS-wave recognition in
ECG using neural networks,” IEEE Transactions on Neural
Networks, vol. 6, no. 6, pp. 1469-1477.

[28] Waldemark, J., (1997), “An automated procedure for cluster
analysis of multivariate satellite data,” International Journal of
Neural Systems, vol. 8, no. 1, pp. 3-15.

[29] Whiteley, J.R., Davis, J.F., Mehrotra, A., and Ahalt, S.C., (1996),
“Observations and problems applying ART2 for dynamic sensor
pattern interpretation,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and humans, vol. 26, no. 4, pp. 237-
423.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 6

LATERAL PRIMING ADAPTIVE
RESONANCE THEORY (LAPART)-2:

INNOVATION IN ART

T.P. Caudell
Department of Electrical and Computer Engineering

and
The Albuquerque High Performance Computing Center

University of New Mexico
Albuquerque, N.M. 87131

U.S.A.
tpc@eece.unm.edu

M.J. Healy

Phantom Works
The Boeing Company

PO Box 3707 Mail Stop 7L-66
Seattle, Washington 98124-2207

U.S.A.
Michael.J.Healy@boeing.com

In this chapter, we present the results of a study of a new version of the
LAPART adaptive inferencing neural network [1], [2]. We will review
the theoretical properties of this architecture, called LAPART-2,
showing it to converge in at most two passes through a fixed training
set of inputs during learning, and showing that it does not suffer from
template proliferation. Next, we will show how real-valued inputs to
ART and LAPART class architectures are coded into special binary
structures using a preprocessing architecture called Stacknet. Finally,
we will present the results of a numerical study that gives insight into
the generalization properties of the combined Stacknet/LAPART-2
system. This study shows that this architecture not only learns quickly,
but maintains excellent generalization even for difficult problems.

1 Introduction

A Holy Grail of neural networks is fast learning with good
generalization. In many neural architectures, these two trade off against
each other, making it difficult to achieve them simultaneously. In this
chapter, we present a version of the LAPART adaptive inferencing
neural network architecture [1]-[3] that has excellent learning and
generalization properties. LAPART architectures are constituted from
two or more ART architectures bilaterally connected with adaptive
connections. The centerpiece of the chapter is the theorem that under
certain broad conditions, LAPART-2 converges in at most two passes
or epochs through a fixed set of binary training inputs, where an epoch
is the single-time application of a complete list of input patterns to a
neural network for learning. In [4], Georgiopoulos, Heileman and
Huang proved the upper bound n-1 on the number of epochs required
for convergence for the similar ARTMAP architecture, where n is the
size of the binary pattern input space; they also proved that the bound
can decrease with increasing vigilance parameter values, ρ. ARTMAP
performs a function similar to LAPART; both require binary-valued
input patterns although, as we will show, they can process real-valued
input patterns in a manner equivalent to that of Fuzzy ARTMAP
through the use of stack interval pre-processing networks [6]. The
ARTMAP result can be thought of as an n pass, or finite-pass,
convergence result. In these terms, LAPART-2 is then a 2-pass, or
fixed-pass, convergence result. To our knowledge this is the first fixed-
pass convergence result of its kind.

LAPART-2 is a byproduct of theoretical and empirical investigations
into the learning properties of the previous version, LAPART-1. Based
upon formal modeling of the semantics of neural networks [7],
LAPART-1 was developed specifically to learn logical inference
relationships, or rules, between classes of objects from an application.
Both the classes and the rules are formed in the synaptic memory of the
network according to neural design principles embodied in ART-1 [8],
but with a logical design principle from the formal semantic analysis:
adaptive neural network connections implement logical implication [7],
[9]. The logic, however, changes to adapt to the data. The underlying
reason for this is that many inferences made by a neural network prove
to be unsound when tested on new data, so the logic must be corrected.

© 2000 by CRC Press LLC

We regard this principle as a point of departure not only for theories of
learning with neural networks, but for learning in general.

The overarching question facing us is the following: Can a neural
network – ART-1 or LAPART, for example – adapt its logic so that,
from some point in time forward, its inferences are valid provided that
it is presented with data sufficiently similar to that which it has
previously experienced? A positive answer has been provided for ART-
1 with a learning parameter set within a range of values commonly
used [10]: ART-1 converges on a fixed training set of binary input
patterns in a number of presentation epochs that can be calculated from
information about the data. The required information is the number N
of different sizes of input patterns, where the size of a binary-valued
pattern is the number of 1-valued components it possesses. If all input
patterns have the same size, then only a single epoch is required. This is
an N -pass convergence result for unsupervised learning in terms of the
stratification of the input space into size classes. This result is
especially interesting in that it specializes to one-pass convergence for
fixed input pattern size.

The inferences made by an ART-1 network are simply its self-
organized classification decisions: The nodes in the F2 (classification)
layer of the network compete in a winner-take-all fashion, and a binary
template pattern comprising adaptive connections from the winner to
the F1 (comparison) layer is compared with the input pattern to
determine if the input belongs in the corresponding class of patterns.
Thus, the classes have two representations: F2 nodes and templates. An
ART-1 network has converged on a fixed training set of patterns when
all inputs have a direct access template in the system – one that causes
immediate classification. The point here is that the logic of a trained
ART-1 system is valid not only for the training patterns, but for any
future input patterns that have direct access templates in the ART-1
memory. However, conditions for other ART-type architectures, in
particular LAPART-1, are difficult to derive because of the phenomena
that can occur in the more complex situations of inference learning.
Assumptions must be made, either upon the architecture in the form of
added design constraints or upon the data in the form of “domain
constraints.” The former is the basis for the design change to create
LAPART-2, and the latter is the basis for the hypothesis that makes our
two-pass convergence theorem possible.

© 2000 by CRC Press LLC

The LAPART-1 architecture has been described in [1], [2], [3]. It
couples two ART-1 networks, designated subnetworks A and B, in such
a way that if subnetwork A attempts to assign a class Ai to a binary
input pattern IA the result is an inference that subnetwork B will assign
its simultaneously-occurring input IB to a class Bj. The inference is the
result of a strong connection between the F2 nodes for classes Ai and Bj
in the two subnetworks, and this is denoted Ai → Bj. In LAPART, each
inference is tested in subnetwork B through its own vigilance pattern
matching operation; if the subnetwork B vigilance system is not
aroused (hence, the match of IB to the Bj template pattern is accepted),
the inference and, therefore, the subnetwork A classification decision
were valid. Otherwise, the subnetwork A decision is assumed invalid.
This is where the LAPART logic must adapt: The subnetwork A class
templates must be modified appropriately if a mistaken inference is to
result in a lasting correction. On the other hand, the inferencing
connections between A and B classes, once formed, are assumed always
correct. Further, they are assumed exclusive: Each subnetwork A class
can infer only a single subnetwork B class. The phenomena that
characterize the complexity of learning with LAPART-1 stem from
these assumptions.

In Section 2, we briefly review the architecture and operation of ART-
1, Stacknet, which converts real-valued input patterns to a binary
structure, and LAPART-1. In Section 3 we present the LAPART-2 [11]
algorithm as a means of addressing a phenomenon that can impede
learning significantly in LAPART-1. Section 4 presents the learning
theorems stating that a LAPART-2 network converges in two passes
through a fixed training set. Along with this, we state a theorem
showing that the architecture does not generate more templates than
there are input examples. Section 5 describes the generalization study
and its numerical results. Section 6 is the Discussion.

2 ART-1, Stacknet, and LAPART-1

In this section we briefly review the architecture and operation of ART-
1, Stacknet, which converts real-valued input patterns to a binary
structure, and LAPART-1.

© 2000 by CRC Press LLC

2.1 Binary Patterns

First, we briefly review some notation and terminology. We shall
regard a binary pattern X as a string of numerical 1s and 0s. Certain
operations are defined upon binary patterns. First, if n is the number of
0-1 components, each denoted Xk, we write length(X) = n. For any two
binary patterns X and Y having the same length, we refer to their com-
ponent-wise minimum X ∧ Y, where the minimum operation on com-
ponents has the properties, 0 ∧ 0 = 0, 1 ∧ 1 = 1, 0 ∧ 1 = 0, 1 ∧ 0 = 0.
For a set, S, of binary patterns all having the same length, with S = {X1,
X2,…,XN}, let ∧ S denote the pattern minimum over the set, ∧S = X1
∧ X2 ∧… ∧ XN. We define the size, |X|, of a binary pattern to be the
number of 1s it contains. Finally we denote a “subset” relationship as
X ⊆ Y, indicating that for every component in binary pattern X that has
a 1 value, the same component in Y also has a 1 value.

2.2 ART-1 Architecture

To support our discussion of the LAPART architecture, we briefly
summarize the function of an ART-1 network [8]. ART-1 is called an
unsupervised learning architecture because it autonomously classifies
its input patterns and “remembers” the classes in the form of binary
connection-weight template patterns. An ART-1 network has three
main layers of nodes. These layers consist of m1 input (I) nodes, m1
matching (F1) nodes, and m2 classification (F2) nodes. The I layer
serves as the network input interface, with each input node, Ik,
supplying excitatory input to its corresponding F1 node, F1k. Each
binary input pattern I, where length(I) = m1, specifies the activation
values of the input nodes for the duration of the presentation of I as the
current input. Thus, if input pattern component Ik has the binary value
1, then input node Ik has an activation value of 1 for that pattern, and 0
otherwise. Since the activation value Ik of each input node is directly
transmitted to the corresponding node F1k through the Ik → F1k
connection, which has a fixed weight of unity, the initial pattern of
activation values over F1 is identical with the input pattern. The F1 and
F2 layers interact through adaptive connections, under the control of
the gain control (GC) and vigilance (VIG) nodes. The template pattern
for each class comprises the connection weights in the unique set of
adaptive connections associated with an F2 node. At any time, each

© 2000 by CRC Press LLC

template, Ti for class i, corresponding to node F2i for (1 ≤ i ≤ m2), has
the form

Ti = ∧ S, (1)

where S is the set of binary input patterns that has previously been
assigned to the class corresponding to Ti and, consequently, may have
contributed to the adaptive recoding of the template pattern. An input
pattern may contribute to a template at one time and yet may become
associated with a different template at a later time, as templates
continue to undergo recoding. This effect will occur until the ART-1
network has perfectly learned its input space. The authors of the ART-1
architecture characterize the behavior of its unsupervised classification
algorithm through stability results in [8]. Further results in [10] include
a key learning theorem that states that if a fixed set of patterns is
repeatedly presented to an ART-1 network, the algorithm will converge
(i.e., perfect learning of the input set will occur) in a finite number of
epochs, with the input patterns arbitrarily re-ordered on each epoch.
Perfect learning means that each training pattern I in the set will have a
maximal subset template Ti with Ti ⊆ I, where Ti is the largest such
template |Ti| �� _7i' | for all Ti ⊆ I. As a consequence, I will resonate
directly with Ti; that is, I will be classified as a member of class i (this
is called the direct access property [8]). Finally, no recoding of Ti will
occur, since Ti ⊆ I.

Since the vigilance nodes of its ART-1 subnetworks play a fundamental
role in the operation of a LAPART network, we review the role of a
vigilance node. During the F2 competition following input of a binary
pattern I, some F2 node, F2j say, wins the competition and tentatively
becomes the exclusive class representative for I. However, if its
associated template pattern Tj is such that

| I ∧ Tj | / | I | < ρ, (2)

where ρ is the ART-1 vigilance parameter, then the vigilance node,
VIG, becomes activated. When this happens, a reset occurs over the F2
layer, and F2j becomes suppressed for the duration of the presentation
of I. This eliminates F2j from the competition for representing I during

© 2000 by CRC Press LLC

the current input presentation. When no more resets occur, resonance is
said to have occurred, and the input has finally been assigned a class.
The ART-1 classification algorithm can be summarized as one that
solves the combinatorial optimization problem stated as follows:

 maximize | I ∧ Tµ | / (β + | Tµ |)
 w.r.t. µ

 subject to | I ∧ Tµ | / | I | ≥ ρ (3)

A solution value i for µ is the index of the F2 node F2i that represents
the class assigned to I with associated template Ti.

For each ART-1 input pattern, unsupervised learning occurs in two
phases: (1) recognition of the input pattern as a member of some class,
and (2) updating of the class template through synaptic learning.
During a resonance, the commonality of the input pattern and template
is synaptically learned by the network by adapting the template weight
values. This is expressed in the following binary pattern equation:

Ti-new = I ∧ Ti-old (4)

which leads to the template property expressed in equation (1). When a
class is first established, all connection-weight values in its template are
1s. Many of these are changed to 0s via the learning process as the
network assigns input patterns to the class.

The next subsection presents a preprocessing network that converts a
single real-valued input into a multicomponent pattern containing
binary-valued components. The resulting coded pattern is well suited
for the processing of an ART-1 network.

2.3 Stacknet

The neural network described in this sub-section, called Stacknet [6],
transforms (codes) real-valued components into binary patterns that
possess an important property vis-à-vis the processing that occurs
within ART-1 networks: binary patterns that are “similar” in an ART-1
sense correspond to real values that are similar in magnitude. This is

© 2000 by CRC Press LLC

not true of the usual binary-coded-decimal format used in digital
computers, in which 0 and 1 are coefficients of powers of 2. The
codings used here are referred to as stack numerals and are similar to
“thermometer codes” where a real number is mapped into an interval
defined by real-valued minimum and maximum values. This interval is
quantized into m subintervals, one of which contains the real input
value. Associated with each subinterval is a logical variable. The stack
numeral is constructed by setting all of the logical variables for
subintervals less than or equal to the one containing the real-valued
input to TRUE (or 1) and those above to FALSE or UNCERTAIN (0).
If the interval is thought of as being a vertical structure, the set of
logical variables forms a stack of 1s topped by 0s, totaling m
components high. The precision of representation is set by the choice of
the max, min, and m stack parameters and can be easily matched to the
accuracy of a measured input value.

-

+
+

+

-
-

1

1

0

Analog Value: 2.0

out
put

activation

1

-1 +1 0

(a) (b)

s 1

s 2

s 3

δ

Figure 1. (a) A simple example of a neural implementation of a stack numeral.
The complement stack has a different connectivity. (b) The activation function
for the stack units with threshold δ.

A simple Stacknet is depicted in Figure 1. The connection strengths of
stack inputs are all unity. Each stack node si (1 ≤ i ≤ m) has an
activation threshold of magnitude δ > 0. Thus, stack node s1 can be
activated by a signal from the analog source node of magnitude δ.
When activated, it emits a signal of strength unity through the
connection to its corresponding ART-1 F1 node. Simultaneously, it
emits a signal of strength unity through a system of (m-1) inhibitory
connections to higher stack nodes s2., s3.,… sm.. These connections each
have weight δ, so that the connection-weighted inhibitory signal
arriving at each target node above s1 has strength 1· δ = δ. The

© 2000 by CRC Press LLC

consequence of this is that an input signal of strength x ≥ δ to the stack
network from the analog source node is required to activate s1.
However, if δ≤ x<2· δ, only s1 will be activated, for the inhibitory
weighted signal δ from s1 arriving at each higher of the m–1 target
nodes s2., s3.,… sm causes the total connection-weighted input ti into
target node si (i >1) to be below threshold, that is

ti = x – (1 • δ) < 2δ − δ = δ

or ti < δ

which is below threshold, implying that all higher nodes will remain in
their off state. Similarly, stack node s2 sends out a set of m-2 inhibitory
connections of strength δ to stack nodes s3., s4.,… sm.. In general, stack
node si inhibits the m – i higher nodes. As a consequence, stack node si

will be activated if and only if the input analog signal has strength
x ≥ i · δ. Thus, an analog number δ ≤ x ≤ (m+1)· δ in magnitude can be
represented to within an absolute precision of magnitude δ by the
Stacknet network. Thus, if n· δ ��[����Q�����Â δ stack nodes 1, 2,...,n will
be activated, producing the binary pattern

I = [1111…1000…0]

where there are n 1s and m-n 0s. Stacknet takes a single real-valued
input and produces a binary-valued output pattern of fixed length m.

Two stack numeral binary patterns are similar in the ART1 sense if and
only if they fall into a class which is represented by the same template
pattern. If the real-valued inputs were coded as powers of two, the
usual representation on digital computers, this equivalence would not
hold. For example, the numbers 127 and 128 represented in powers of
two require 8 bits, with low-order binary digits to the right, yielding the
patterns 01111111 and 10000000, respectively, with a difference in bits
equaling 8 out of 8 total, or 100%. By contrast, if δ = 1 a stack
representation requires a minimum of 128 stack nodes (bits) to exactly
code the numbers 1, 2, ..., 127, 128, yielding a difference in bits
equaling 1 out of 128 total, or less than 1%. Stack numerals require
more binary components but are more appropriate for coding numbers
for ART-1 networks.

© 2000 by CRC Press LLC

Now suppose that several Stacknets, each reading from a different
analog source node, are arranged in an input array for an ART-1
system. Here, the total number of binary-valued components that will
be generated will be m = m3 . m4, where m3 is the number of real-valued
inputs to be represented and m4 is the length of each output stack
(assuming uniform stack size). Let X = (x1, x2, …, xm1) be an array of
real-valued variables that are input to the array of Stacknets, and then
I = (I 1, I2,…Im2) denotes the concatenation of binary stack outputs that
represent the components of X to a precision δ, each of length m4, so
m1 = m3 . m4. The ART-1 network receives this composite pattern at its
F1 layer.

Finally, as pointed out in the Introduction, ART-1 converges on a fixed
training set of binary-valued input patterns in a number of presentation
epochs equal to the number N of different sizes of input patterns, where
the size of a binary-valued pattern is the number of 1-valued
components it possesses. If all input patterns have the same size, then
only a single epoch is required. Stacknet has a variant that
accomplishes this through the use of complement coding. If I is the
normal “positive” binary-valued ART-1 input pattern of length m, then
we can define the complement “negative” of this pattern to be a pattern
I c of length m, as I c = 1 – I, where 1 is a pattern of all 1 components.
By concatenating the positive and negative patterns together, we form a
pattern C = (I c, I) of length 2m. If | I | = n, then | I c | = m – n.
Therefore, | C | = | I | + | I c | = m, independently of n. Using
complement coding of stacks representing real-valued inputs will allow
ART-1 learning to converge in a single epoch for any set of input data.

2.4 LAPART-1

The basic LAPART-1 network architecture [1] is based upon the lateral
coupling of two ART-1 subnetworks, referred to as A and B. The
interconnects between these two subnetworks force an interaction of
the respective classifications performed by the ART-1 subnetworks on
their inputs. This modifies their unsupervised learning properties to
allow the learning of inferencing relationships between their respective
input domains. This can be thought of as supervised learning, or
supervised classification. In actuality, however, it is much more
general. The usual sense of classification is that of creating a partition

© 2000 by CRC Press LLC

of the inputs, that is, separating them into disjoint sets, with a label (the
desired output specified by the “teacher”) attached to each element of
the partition. With the LAPART architecture, we may actually label
sets with sets – in other words, the network extracts rules with
antecedent and consequent predicates. In this discussion, the sets in
question will be referred to as classes, because they are sets labeled by
ART-1 F2 nodes and coded in templates. Also, the inputs, ART layers,
and templates will be labeled with an A or B referring to the A and B
ART-1 subnetworks.

In a typical LAPART application, two ART-1 subnetworks are
presented with a sequence of pairs of simultaneously-occurring input
patterns IAk and IBk for subnetworks A and B, respectively. As A and B
form class templates for their inputs, the LAPART-1 network learns
inference relations between their classes by forming strong F2A → F2B
interconnections between pairs of simultaneously-activated F2A and
F2B nodes. Convergence of a LAPART network in a finite number of
passes through a training set requires that it reach the following
operational state: Presentation of any input pair (IA, IB) from the set
shall result in pattern IA being immediately assigned a class in ART-1
subnetwork A through direct access to the class template. Through a
strong, learned inferencing connection, the class F2A node shall signal
a unique F2B node to which it is connected, forcing it to become
activated. This results in the inferred B class template being read out
over the F1B layer just as pattern IB reaches the F1B layer. The
ensuing vigilance test in subnetwork B shall then confirm that the
inferred class is an acceptable match for IB. That is, the network B
vigilance node shall remain inactive. Further, the B class template shall
be a subset template for IB. In summary, a final pass through the data
shall result in no resets and no synaptic strength changes (i.e., no
learning).

To show how a LAPART-1 network learns class-to-class inferences, or
rules, from example input pairs, we give a brief summary of its
algorithm. Initially, subnetworks A and B are untrained ART-1
networks. Their F2 nodes are fully interconnected by F2A → F2B
connections which are too weak to carry a signal of significant strength;
that is, there are no learned inferences. As it processes each input
pattern pair (IA, IB), the LAPART network does one of two things: It

© 2000 by CRC Press LLC

either forms a new rule or tests a previously learned one. It forms a new
rule exactly when subnetwork A forms a new class for its input IA. That
is, if A has no acceptable template pattern for IA it selects a previously
uncommitted F2A node, F2Ai according to the ART-1 algorithm. Then,
it modifies the adaptive F1A→ F2Ai and F2Ai → F1A connections so
that the newly committed template pattern TAi equals the input IA. We
denote the newly initialized class by Ai. Following the selection of
F2Ai, meanwhile, subnetwork B has been allowed to read its input IB. It
selects a node F2Bj and either initializes a new template TBj or recodes
(modifies) a previously committed one. A subnetwork B class, Bj, has
now been selected simultaneously with the newly initialized subnet-
work A class Ai. Finally, the F2Ai → F2Bj connection strength increases
to a maximum, implementing an inference relationship, or rule, Ai→ Bj.
We write the rule in the form of an implication formula because the
future presentation of an input pair for which Ai is the resonating class
for the A input will result in the inference through the strong F2Ai →
F2Bj connection that class Bj is appropriate for the B input. This strong
connection will remain the sole one from Ai to a subnetwork B class
node.

If subnetwork A already contains a class template TAi that resonates
with IA on the other hand, then it also has a previously learned class-to-
class inference relationship Ai → Bj. Thus, F2Ai primes F2Bj through
the strong F2Ai → F2Bj connection, forcing F2Bj to become active and
read out the class Bj template over the F1B layer. Thus, when it is
allowed to read its input, IB, subnetwork B performs its vigilance
pattern-matching test using the template pattern TBj instead of one that
would have been selected through the ART-1 winner-take-all
competition in layer F2B. This is where the LAPART network tests an
existing rule: If the pattern match between the inferred class template
TBj and the input pattern IB is not acceptable, that is if

 | IB ∧ TBj | / | IB | < ρB,

where ρB is the vigilance threshold for subnetwork B, then a reset
occurs in subnetwork B – the inference has been disconfirmed. Through
the fixed, strong connection VIGB → VIGA between the two vigilance
nodes, subnetwork A is subsequently forced to also undergo a reset,

© 2000 by CRC Press LLC

which we call a lateral reset. A lateral reset overrides subnetwork A’s
autonomous, or unsupervised, classification decision and forces it to
find an alternative class for its input. The entire process must then be
repeated using the reduced set of nodes obtained by inactivating F2Ai
and therefore F2Bj. Finally, the network either forms a new rule or
modifies the templates that are linked through a pre-existing one.

It is interesting to ask whether the LAPART-1 algorithm always
converges to the state in which no more resets or template
modifications occur – all inferences are correct and learning has ceased.
If it does not, are there conditions that can be specified under which it
can be guaranteed to converge? Is there, at least, a set of well-defined
necessary conditions for convergence? Unfortunately, it cannot be
guaranteed that a LAPART-1 network will reach an operational state of
convergence on the training set. Our attempts at addressing this issue
resulted in the design of the LAPART-2 network and proofs of
theorems stating that a LAPART-2 network converges in two passes
through a training set.

3 The LAPART-2 Algorithm

In this section, we describe the LAPART-2 architecture [11], which
implements neural network design constraints that we derived in order
to resolve issues with LAPART-1. The LAPART-2 architecture is
identical with the LAPART-1 architecture except in the procedure for a
lateral reset. The modified lateral reset procedure results in a rule
extraction neural network that converges in two passes through a set of
training data, given that certain sufficient conditions hold for the data.
Two-pass supervised learning is a special case of this, since, as
mentioned before, rule consequents in supervised learning are simply
class labels assigned by the teacher.

3.1 Forcing Learning to Occur

In LAPART-1, a lateral reset merely disqualifies the active F2A node,
forcing ART-1 subnetwork A to select an alternative resonant node
from the set of all F2A nodes that have not yet undergone a reset for the
current input pair. As in the example let this pair be (IA, IB). It can
happen that IA has a direct access template TAi whose choice results in

© 2000 by CRC Press LLC

a lateral reset, while a subsequently chosen template TAi' results instead
in a valid inference; yet the latter template is also a subset template for
IA (necessarily, it is smaller, having fewer binary 1 components). That
no learning can occur in subnetwork A as a consequence of this
(because only subset templates were chosen) means that the originally
chosen template can remain the direct access template for IA
afterwards. This allows the same sequence of events in subsequent
passes to be repeated for the pair (IA, IB), ensuring that the lateral reset
(signaling an incorrect inference) will be repeated.

The LAPART-2 learning algorithm overcomes this learning deficit by
allowing the choice of only an uncommitted F2A node to represent IA
following a lateral reset. As a consequence, learning will occur, and in
two forms. First, the uncommitted template will be re-coded as IA. This
recoding represents the network’s current state of knowledge about the
new class, which consists of a single example. Since there is no A→ B
inference generated, the procedure for adding a new A class, Ai', comes
into play; subnetwork B produces a class template TBj' that resonates
with IB in the usual ART-1 fashion. Unless this is a subset template for
IB or else corresponds to an uncommitted F2B node, an existing B-
class template will be modified. The second form of learning that
occurs is the learning of a strong connection F2Ai'→ F2Bj', which
implements a newly learned inference relationship, Ai'→ Bj'.

3.2 Constraints on the Input Data

We shall state two learning theorems in Section 4, the most important
result being the convergence of LAPART-2 in two passes through a
fixed set of input pattern pairs. See [11] for an additional theorem.
Unfortunately, the algorithmic modifications leading to the LAPART-2
architecture are insufficient, by themselves, for a proof of convergence.
For this reason, the hypotheses of the learning theorems state
assumptions that apply to the input data pattern pairs. Let mA1 and mB1
be the number of input pattern components IAk and IBl in the inputs to
subnetworks A and B, respectively, and let KA and KB be integers such
that 0 < KA < mA1 and 0 < KB < mB1. Hypothesis (i) is the statement
that the input patterns for each ART-1 subnetwork have a fixed size,
KA for subnetwork A and KB for subnetwork B. This may appear to be
a strong constraint. However, it is less strong an assumption than is

© 2000 by CRC Press LLC

routinely applied with ARTMAP and Fuzzy ARTMAP [4], [5]: In
applications of these architectures, it is normally assumed that each
input pattern is complement coded, with the effect of making all input
patterns the same size.

Hypothesis (ii) in the Two-pass Learning theorem is more complex: It
is meant to ensure that LAPART-2 is a consistent learner (see [13]). A
consistent learner is a machine which, given consistent training data,
can successfully learn some specified target concept from that data. In
the learning of class-to-class inferences (rule extraction), we apply the
assumption that the input pattern pairs are consistent and, as a result,
are able to prove that LAPART-2 converges. In the context of
LAPART, consistency means that the pattern minimum (∧) of the
subnetwork B input patterns with which each subnetwork A input
pattern is paired can form a template with which each one of them
would pass the vigilance test. Without this hypothesis, there could be a
subnetwork A input pattern IA for which the LAPART network was
incapable of learning correct B inferences; there would always be some
B input pattern IB associated with IA that would cause a lateral reset.

4 The Learning Theorems

We can now state the learning theorems for the LAPART-2 neural
network architecture. See [11] for the details of the proofs. Only the
hypotheses pertaining to the data are stated explicitly. The neural
network behavioral hypotheses are implicit in the statement in the
theorems. In the following, let L be a LAPART-2 network with mA and
mB input nodes for subnetworks A and B and with vigilance values ρA
and ρB. Let MA and MB be sets of input patterns for subnetworks A and
B, respectively, and let M be a set of input pattern pairs (IAk, IBk,h),
with IAk ∈ MA, IBk,h ∈ MB (k = 1,…,N; h= 1,…, nk). Finally, let MBk =
{ IBk,h | h = 1, …, nk }. The first theorem follows:

Theorem (Two-pass Learning) Let L be a LAPART-2
network whose inputs have the following two properties:

(i) | IAk | = KA, | IBk,h | = KB (0 < KA < mA; 0 < KB < mB).

© 2000 by CRC Press LLC

(ii) For an arbitrary subset S ⊆ MB and for any IAk ∈ MA, if
an associated pattern IBk,h is in S (i.e., if IBk,h ∈ S ∩ MBk)

and ∧ S ��ρB • KB

then (∧ S) ∧ (∧ MBk) ��ρB • KB.

Then, if each of the elements of M is input to L in each of
several passes, with the elements arbitrarily ordered in each
pass, there will be no resets and no new templates in
subnetworks A and B, and no changes in class assignments
in subnetwork A, following the second pass. Recoding can
occur only in subnetwork B templates following the second
pass. Any such recoding will occur only on the third pass
and will have no effect upon the class assignments and
inference relationships that L has learned in the first two
passes.

Although hypothesis (i) is essential, it is also one that is commonly
applied in studies of ARTMAP and LAPART type architectures, and is
even considered essential for the correct performance of ARTMAP [4],
[5]. It is hypothesis (ii), together with the LAPART-2 modification
itself, that is uniquely responsible for the two-step convergence result.
This hypothesis, however, is difficult to verify for a given application.
It specifies that any template that could conceivably be associated with
the subnetwork B input patterns that are paired with a single
subnetwork A input pattern must admit all of them. For the intended
rule extraction applications of LAPART, in which sets of A inputs (rule
antecedents) are to be associated with sets of B inputs (rule
consequents), it would be impractical to check this. Also, the condition
is rather strong – probably stronger than necessary – and is not likely to
hold in some cases. See [11] for a further modification of the LAPART
architecture that addresses this issue. In the csae of pure clasification
problems, like those presented in Section 5, hypothesis (ii) may easily
be shown to hold true.

Theorem (LAPART Data Compression) Let L be a
LAPART network which is processing input pattern pairs
(IAk, IBk,h) from a set M. Suppose that the B inputs all have
the same size | IBk,h | = KB for all applicable values k, h.
Then, the number of laterally connected template pairs

© 2000 by CRC Press LLC

(TAi, TBj) generated by L does not exceed the number of
input pairs (IAk, IBk,h) in M.

Notice that the LAPART Data Compression theorem requires no
constraint on the architecture – it can be any of LAPART-1 or 2
variants. The only restriction on the input data is that the B component
of all input pattern pairs be the same size. This is much weaker than the
hypotheses in the Two-pass Learning theorem. A consequence of the
LAPART Data Compression theorem is that the number of Ai → Bj
rules extracted can be no greater than the number of input data pairs.
Neither template proliferation nor rule proliferation is a problem with a
LAPART network. The following section further explores the
properties of LAPART-2 architectures through numerical simulations.

5 Numerical Experiments

With most learning systems, it is frequently possible to achieve near
perfect learning on a fixed training set of data at the expense of either
using a large enough set of synaptic weights in the network or reduced
performance on an independent testing set of data. The former effect is
addressed by the template proliferation result mentioned above. The
latter effect is referred to as poor generalization or over-training. Since
a theoretical understanding of generalization in LAPART class
architectures is still under development, this section addresses the topic
through a series of numerical experiments on challenging problems in
classification. Note that this class of problem has been used in these
studies because of the simplicity of their correctness analysis and the
availability of independent theoretical bounds on performance. Note
also that issues in generalization exist equally in non-classification type
problems, such as inference and rule learning [2], [3].

5.1 Method

Three classification problems were selected to study generalization in
LAPART-2 learning [12]. Each problem has the properties of being a
two-class problem, with two real-valued feature-space dimensions (x0,
x1) for input into the A subnetwork, with statistical overlap between
the two class boundaries, and the ability to generate the data ordered

© 2000 by CRC Press LLC

pairs algorithmically. The input variables are confined to the [0,1]
interval. The three study problems are:

1) two equal sized rectangular uniformly distributed classes with
50% overlap in the x0 dimension,

2) two overlapping normally distributed classes each with different
means of (0.333, 0.5) and (0.666, 0.5) respectively, and the same
sigmas (0.166, 0.166),

3) two overlapping normally distributed classes each with the same
means of (0.5, 0.5) and differing sigmas (0.166, 0.166) and (0.333,
0.333) respectively.

A computer simulation of LAPART-2 was used to experiment with the
three study problems. For each problem, training and testing data sets
were independently created using a numerical random number
generator that modeled the appropriate statistical distribution. A total of
1000 ordered pairs were produced for a data set (training and testing),
500 for Class 1 and 500 for Class2.

LAPART-2 was configured using complement coded stack (CCS)
representations for inputs to both the A and B subnetworks [6]. The
input to subnetwork A consisted of two concatenated CCS
representations, one for each input dimension, using 1024 bits in the
positive stack. The input to unit B was a single CCS representation
using 2 bits in the positive stack. The two classes were labeled 10 and
01 respectively.

An experiment consisted of training a LAPART-2 network on the
training set until convergence, then computing a performance measure
using the testing data set with learning disabled. Since the details of
learning in this class of network depends on presentation order of the
training data, the performance measures from training with twenty
different random orderings were averaged and standard deviations were
computed. In addition, statistics for the number of learned templates in
the A subnetwork was collected. This gives an indication of the degree
of data compression realized by the network. Convergence was
declared for a training session when at the end of a presentation epoch,
each training pattern had a direct access template [8] in both the A and

© 2000 by CRC Press LLC

B subnetworks. Notice that this requirement is more demanding than is
required for the conclusion of the Two-pass Learning theorem.

(a) Overlapping Rectangular Distributions

0
100
200
300
400
500
600
700
800
900

1000

0 0.2 0.4 0.6 0.8 1
Rho

Ave

SD A
ve

 &
 S

D
 N

um
. T

es
t

C
or

re
ct

 /
10

00

(b) Overlapping Rectangular Distributions

0
50

100
150
200
250
300
350
400
450

0 0.2 0.4 0.6 0.8 1
Rho

Ave

SD

A
ve

 &
 S

D
 N

um
. A

T

em
pl

at
es

Figure 2. Overlapping Rectangular Distributions: (a) the average and standard
deviation for the number of correctly classified testing samples out of 1000 as
a function of rho for the A subnetwork; (b) the average and standard deviation
for the number of A unit templates as a function of rho.

Since learning in ART-class architectures is also dependent upon the
vigilance parameter [8], ρ, the average performance was computed on a
grid of ten vigilance settings (0.1, 0.2,…,0.9, 0.95) for the A

© 2000 by CRC Press LLC

subnetwork. The vigilance setting for the B subnetwork was fixed at
1.0. This is standard for classification problems, since binary coded
class labels are used as inputs to the B subnetwork. Finally, a Bayesian
classifier was applied to the testing data and performance was
calculated, giving a basis for comparison.

(a) Offset Normal Distributions

0
100
200
300
400
500
600
700
800
900

1000

0 0.2 0.4 0.6 0.8 1
Rho

Ave

SD A
ve

 &
 S

D
 N

um
. T

es
t

C
or

re
ct

 /
10

00

(b) Offset Normal Distributions

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

Rho

Ave

SD A
ve

 &
 S

D
 N

um
. A

T

em
pl

at
es

Figure 3. Offset Normal Distributions: (a) the average and standard deviation
for the number of correctly classified testing samples out of 1000 as a function
of rho for the A subnetwork; (b) the average and standard deviation for the
number of A unit templates as a function of rho.

© 2000 by CRC Press LLC

(a) Overlapping Normal Distributions

0
100
200
300
400
500
600
700
800
900

1000

0 0.2 0.4 0.6 0.8 1
Rho

Ave

SD A
ve

 &
 S

D
 N

um
. T

es
t

C
or

re
ct

 /
10

00

(b) Overlapping Normal Distributions

0
50

100
150
200
250
300
350
400
450
500

0 0.2 0.4 0.6 0.8 1
Rho

Ave

SD A
ve

 &
 S

D
 N

um
. A

T

em
pl

at
es

Figure 4. Aligned Normal Distributions: (a) the average and standard
deviation for the number of correctly classified testing samples out of 1000 as
a function of rho for the A subnetwork; (b) the average and standard deviation
for the number of A unit templates as a function of rho.

5.2 Results

The averages and standard deviations for the number of correctly
classified testing data set members are given for the three problems as a
function of A subnetwork ρ value in Figures 2a, 3a, and 4a. The
averages and standard deviations for the number of A subnetwork
templates are give in Figures 2b, 3b, and 4b. Table 1 gives a summary

© 2000 by CRC Press LLC

of the LAPART-2 performance results, including Bayesian
performance for comparison.

Table 1. Summary of Performance Results for A subnetwork Rho=0.1. The
numbers in parentheses are the standard deviations resulting from the
averaging of 20 different orderings of the training data set. “Performance”
measures the average percentage correct classification on the independent
testing data sets.

A Rho = 0.1 Problem 1
(Rect)

Problem 2
(Norm)

Problem 3
(Norm)

Training Epochs 1.4 (0.5) 1.3 (0.45) 1.8 (0.40)
A Templates 260 (10) 200 (40) 335 (50)
Bayesian Perf ~75% ~84% ~73%
LAPART Perf 75% (1%) 81% (4%) 65% (5%)

6 Discussion

The testing data set performance of LAPART-2 closely matches that of
a Bayesian classifier for each of the three problems. A lower average
accuracy is to be expected, given that we are applying a nonstatistical
method to a problem defined in terms of statistical information. Note
that the performance varies very little with respect to the A subnetwork
vigilance (ρ) over wide ranges of the parameter, and that performance
is generally better at lower values. This is partially due to the larger
maximum hyperbox size allowed by smaller ρ values, resulting in
greater loss of binary 1s in the template patterns formed using
complement-coded stack input patterns [2].

Note also that convergence occurs on the average in less than two
epochs, as predicted by the Two-Pass Learning theorem stated in a
previous section. In many cases, only a single epoch was required to
perfectly learn the training data.

One important question deals with the ratio of the number of learned A
subnetwork templates to the total number of training samples. If this
ratio is near 1, it would indicate a high degree of pattern memorization.
This is usually a predictor of poor generalization performance.
However, LAPART-2 demonstrated a ratio of around 0.25. This

© 2000 by CRC Press LLC

indicates that very little memorization is occurring, consistent with the
good testing performance data. Some memorization is to be expected
given the propensity of LAPART-2 to create templates accessed by
only one training pattern [11]. Note that because of the use of stack
input representations, a “point hyperbox” is not really a point – it codes
a small region of feature space within a stack interval.

7 Conclusion

LAPART-2 has a distinct advantage over LAPART-1 that stems from
the modification that forces learning to occur in response to each lateral
reset. We have stated that a LAPART-2 network, given the
assumptions upon the input data that we described, converges in two
passes through a set of training data, with the pattern pairs arbitrarily
ordered on each pass. The convergence bound for ARTMAP is greater,
varying with the size mA1 of the binary input space for subnetwork A
and with its vigilance value ρB [4]. Finally, in [11], we proved that
template proliferation does not occur despite the requirement that a new
subnetwork A class be initialized with each lateral reset.

Our results are especially significant in that they apply to rule
extraction with a network that partitions its input and output spaces (A
and B) into classes, as opposed to simple class labeling. Thus, each
subnetwork A input can be associated with many subnetwork B inputs.
This allows for the learning of rules as class-to-class inference
relationships as well as inferencing under uncertainty.

The numerical studies presented in this chapter demonstrate that
LAPART-2 has one of the tightest bounds known on learning
convergence. Additionally, they provide empirical evidence that this
need not compromise generalization performance. These results have
many implications for the utility of this architecture in future
application domains.

© 2000 by CRC Press LLC

Acknowledgements

We would like to acknowledge the support of the University of New
Mexico Albuquerque High Performance Computing Center, the
University of New Mexico Department of Electrical and Computer
Engineering, and The Boeing Company.

References

[1] Healy, M.J., Caudell, T.P., and Smith, S.D.G. (1993), “A neural
architecture for pattern sequence verification through inferencing,”
IEEE Transactions on Neural Networks, Vol. 4, No. 1, pp. 9-20,
January.

[2] Healy, M.J. and Caudell, T.P. (1997), “Acquiring rule sets as a
product of learning in a logical neural architecture,” IEEE Trans.
on Neural Networks, Vol. 8, pp. 461-475.

[3] Caudell, T.P. and Healy, M.J. (1996), “Studies of inference rule
creation using LAPART,” presented at the IEEE Conference on
Neural Networks, Washington, D.C., (ICNN`96). Published in the
Proceedings of the Fifth IEEE International Conference on Fuzzy
Systems, (FUZZ-IEEE), New Orleans, LA, pp. ICNN 1-6.

[4] Georgiopoulos, M., Huang, J., and Heileman, G.L. (1994),
“Properties of learning in ARTMAP,” Neural Networks, Vol. 7,
No. 3, pp. 495-506.

[5] Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and
Rosen, D.B. (1992), “Fuzzy ARTMAP: a neural network
architecture for incremental supervised learning of analog
multidimensional maps,” IEEE Transactions on Neural Networks,
Vol. 3, pp. 698-713.

[6] Healy, M.J. and Caudell, T.P. (1993), “Discrete stack internal
representations and fuzzy ART1,” Proceedings of the INNS World
Congress on Neural Networks, Portland, Vol. II, pp. 82-91, July.

© 2000 by CRC Press LLC

[7] Healy, M.J. (1993), “On the semantics of neural networks,” in
Caudell, T.P. (Ed.), Adaptive Neural Systems: The 1992 IR\&D
Technical Report, Technical Report BCS-CS-ACS-93-008,
available from the author c/o The Boeing Company, PO Box 3707,
7L-66, Seattle, WA, 98124-2207.

[8] Carpenter, G.A and Grossberg, S. (1987), “A massively parallel
architecture for a self organizing neural pattern recognition
machine,” Computer Vision, Graphics, and Image Processing, 37,
pp. 54-115.

[9] Healy, M.J. (1999), “A topological semantics for rule extraction
with neural networks,” Connection Science, vol. 11, no. 1, pp. 91-
113.

[10] Georgiopoulos, M., Heileman, G.L., and Huang, J. (1991),
“Properties of learning related to pattern diversity in ART1,”
Neural Networks, Vol. 4, pp. 751-757.

[11] Healy, M.J. and Caudell, T.P. (1998), “Guaranteed two-pass
convergence for supervised and inferential learning,” IEEE Trans.
of Neural Networks, Vol. 9, pp. 195-204.

[12] Caudell, T.P. and Healy, M.J. (1999), “Studies of generalizations
for the LAPART-2 architecture,” Proceedings of the IJCNN.

[13] Heilman, G.L., Georgiopoulos, M., Healy, M.J., and Verzi, S.J.
(1997), “The generalization capabilities of ARTMAP,”
Proceedings of the IJCNN, Houston, TX.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 7

NEURAL NETWORK LEARNING IN A
TRAVEL RESERVATION DOMAIN

H.A. Aboulenien and P. De Wilde

Department of Electrical and Electronic Engineering
Imperial College of Science, Technology and Medicine

London, U.K.
{ h.aboulenien , p.dewilde } @ic.ac.uk

This chapter presents an intelligent agent that employs a machine
learning technique in order to provide assistance to users dealing with a
particular computer application. Machine learning is a sub-field of
artificial intelligence (AI) that includes the automated acquisition of
knowledge. The aim is intelligent systems that learn, that is, improve
their performance as a result of experience. The agent learns how to
assist the user by being trained by the user using hypothetical examples
and receiving user feedback when it makes a wrong decision. The main
aim is to reduce work for the end-user by building a software agent that
acts as a personal assistant. The proposed interface agent will
potentially have the features of natural language interface and learning
through interaction. The achievement of these innovations is mainly
based on neural network learning techniques. The chapter presents
preliminary results from a prototype agent built using this technique
and applied on flight reservation domain.

1 Introduction

One of the obvious difficulties for building intelligent machines has
been for many years the passive nature of computers. Computers do
only what they were programmed to do and do not learn to adapt to
changing circumstances. At the same time, it will become more and
more difficult for untrained computer users to cope with the increasing
complexity of computer applications and the growth of the computers’

direct-manipulation interfaces. One of the aims for building intelligent
machines, and also one of the biggest challenges, is to create a simple
user interface so that the human-computer interaction will become as
natural for end-users as picking up a phone or reading a newspaper.

Artificial intelligence researchers and software companies have set high
hopes on so-called Software Agents which learn users' interests and can
act autonomously on their behalf to contribute in solving the learning
problem [1]. The learning approach has several advantages. First, it
requires less work from the end-user and application developers.
Second, the agent can easily adapt to the user over time and become
customised to individual and organisational preferences and habits.
Despite the huge diversity in this rapidly evolving area of agents’
research, the most promising one in solving the human-computer
interaction problems is called Interface Agents. Interface agents can be
characterised as systems, which employ artificial intelligence
techniques to provide assistance to users with a particular computer
application [2].

An important property that any interface agent should have is the
ability to communicate with the human user via some kind of natural
language. This is based on the belief that computers will not be able to
perform many of the tasks people do every day until they, too, share the
ability to use their language. Despite more than twenty years of
research into natural language understanding, the solutions for actual
problems such as a natural language computer interface still suffer from
inadequate performance. This problem is due to the fact that these
systems depend on exact knowledge of how human language works.
However, even now there is no complete and formal description of
human language available. It has been argued that there is some
evidence that the human brain is specially structured for language [3].
However, today's computer architecture is totally different from the
human brain.

In an attempt to model the human mind/brain, it has been necessary to
oversimplify the structure and the function. This has led to the
development of an important area of research, namely neural
computing. This area belongs to a larger research paradigm known as
computational intelligence which aims to model functions associated

© 2000 by CRC Press LLC

with intelligence, at the signal level as a dynamical system. Neural
computing is the study of Artificial Neural Networks (ANNs).

In this chapter, the main aim is to introduce the interface part of the
proposed agent that communicates with the user and learns through this
interaction to be able to assist him/her in the travel reservation domain.
The learning machine of this agent is based on neural network
techniques. In the next section, we introduce a brief definition of
agents. Section 3 presents the main features of neural networks. The
rest of the chapter explains the implementation of the proposed
interface agent and some of the simulation results.

2 Agents

Software agents have evolved from multi-agent systems, which in turn
form one of three broad areas, which fall under distributed artificial
intelligence (the other two being distributed problem solving and
parallel artificial intelligence). Although the term agent is a widely used
term in computing, AI and other related areas, it is poorly defined.
Perhaps the most general way in which the term agent is used is to
denote a hardware or (more usually) software-based computer system
that enjoys the following: [4]

• Autonomy: Agents operate without the direct intervention of
humans or other agents and have some kind of control over their
own actions and internal state.

• Social Ability: Agents interact with other agents (and possibly
humans) via some kind of agent-communication language.

• Reactivity: Agents perceive their environment (which may be the
physical world, a user via a graphical user interface, a collection of
other agents, the INTERNET or perhaps all of these combined) and
respond in a timely fashion to changes that occur in it.

• Pro-activeness: Agents do not simply act in response to their
environment; they are able to exhibit goal-directed behaviour by
taking the initiative.

There are sometimes other agent's attributes, which are considered
secondary attributes to those mentioned above such as mobility,
continuity, robustness and rationality. Our proposed interface agent

© 2000 by CRC Press LLC

aimed to enjoy most of the mentioned attributes except the mobility
feature. Generally, the implementation of interface agents is focused on
autonomy and learning. The interactivity (social ability) attribute will
be gained through the architecture of integrating many agents in a
collaborative scheme.

3 Neural Network Role

Our aim was to benefit from the features of artificial neural networks
(ANNs), which mimic the biological nervous system to perform
information processing and learning. On top of the superficial
resemblance, ANNs exhibit a surprising number of human brain
characteristics such as learning, generalisation and robustness. One of
the most important features of ANNs is the ease with which they can
learn (modify the behaviour in response to the environment). Learning
in ANNs is the process of adjusting the connection weights between the
nodes. Neural networks are often required to learn an input/output
mapping from existing data or learn from input data only when the
output is not known. In the last case, ANNs are capable of abstracting
the essence of a set of input data, i.e., learning to produce something
never seen before. ANNs perform the equivalent of inductive learning
in the symbolic paradigm.

Once trained, a network's response can be, to a degree, insensitive to
minor variations in its inputs. Generalisation in learning enables ANNs
to learn from incomplete data. This ability to see through noise and
distortion to the pattern that lies within is vital to pattern recognition in
a real-world environment. Producing a system that can deal with the
imperfect world in which we live overcomes the literal mindedness of
the conventional computer. This attribute is mainly due to its structure,
not by using human intelligence, embedded in the form of ad hoc
computer programs. Computer programs play no role. Parallelism
allows ANNs to model complex relations and to perform complex tasks
at speeds in excess of other algorithms (this feature can only be fully
exploited if their hardware implementation is used). The above features
are the main contribution of ANNs to intelligent systems [5].

As a matter of fact, ANNs have proved to complement conventional
symbolic artificial intelligent techniques in applications where the

© 2000 by CRC Press LLC

theory is poor and the data are rich, such as pattern recognition, pattern
matching, and adaptive non-linear control. Some researchers claim that
ANNs will replace current AI, but there are many indications that the
two will co-exist and be combined into systems in which each
technique performs the tasks for which it is suited [6].

4 Agent Architecture

In this section, we introduce a brief description of the proposed
interface agent’s building blocks. Figure 1 shows the interface agent
architecture [7].

Unit

Classification

Neural
 Hybrid
Rule-Based
System

Network
Associative
Memory
Bank

Domain

 Interface / Cooperation Unit with the Peers

User’s

Input

 Classified

 task

 Relevant

Keywords

Output

Information

Task

Knowledge

Figure 1. The interface agent architecture.

• Task Classification Unit (TCU): This is the interface part where
the user-system interactions are performed. The TCU accepts the
input request as natural language sentences from the user. The
sentences represent the required task that is required to deal with.
TCU applies approximate string matching and neural network
learning techniques to analyse the input sentences, then classifies
the task according to a search process in its heuristic database
system (concept maps).

• Neural Network Associative Memory (NNAM): This part of the
agent acts as a heteroassociative memory which is responsible for

© 2000 by CRC Press LLC

generating keywords related to the classified task received from the
TCU, though it works as a look-up table implemented using ANN
technique.

• Hybrid Rule-Based System (HRBS): HRBS applies simple rules
on the agent's knowledge domain, using the keywords, which are
generated from NNAM, to infer the actual information required in
executing the user's task.

• Peers Co-operation Unit (PCU): It is a channel to cooperate with
other agents to ask and answer questions.

In the rest of this chapter, the discussion is mainly concentrated on the
implementation issues of the task classification unit, in which the
neural network learning techniques are applied.

4.1 Problem Domain

Travel reservation is considered as a problem domain to apply the ideas
of agent-user interaction through natural language interface and
learning over time in order to be able to assist the user. The aim is to
build a task classification unit that is able to classify the user's input
request to a specific task category.

By natural language interface is meant manipulating a short sentence or
phrase and allowing misspelling and/or ungrammatical cases. We do
not claim that the agent deals with this problem in a satisfactory way
from the semantic or lexical analysis point of view. Since a deep text
analysis cannot be undertaken in an unrestricted semantic environment,
the approach must be to limit the task in order to analyse the user's
input text as well as possible. It has been claimed that most of the
successful natural language understanding systems share two
properties: they are focused on a particular domain rather than allowing
discussion of any arbitrary topic, and they are focused on a particular
task rather than attempting to understand language completely [8].

In order to be able to assist users, an agent must be provided with
knowledge of its domain. The agent is given a minimum of background
knowledge and learns the appropriate behaviour either from the user or
from other agents. By learning is meant learning by example and
accumulating the experience from interacting with and observing its
user.

© 2000 by CRC Press LLC

To tackle the problems of learning and natural language interface, it is
assumed that the agent's vocabulary is restricted to the task domain
language, i.e., the whole language is divided into many sub-languages.
Later, the results will show that the neural network approach is able to
associate the user's input sentence (information as a stream of words)
with the user's concept within this restricted domain. This assumption
enables us to design a simple user-agent interface form to accept
unrestricted simple natural sentences or phrases.

4.2 Data

Twenty-five e-mails written in the English language are collected from
persons with different native languages. Each e-mail contains a few
sentences or phrases representing the three specified categories in the
airline travel reservation area. These three categories are:

1. Asking about travel reservation.
2. Asking about travel confirmation.
3. Asking about travel cancellation.

It has been asked that every respondent write a short sentence or a
phrase representing as much as possible of the meaning without any
concern about the correct grammar. The e-mails contain a mix of
formal and informal English language. The only correction, which has
been made before this set of data has been applied on the neural
network for training, was a spelling check. In this approach, it is
assumed that:

• The user's sentences (most of the input stream of words) are within
the vocabulary domains.

• The sentences are not differentiated according to their grammar.
• The user's input sentences are not compound (simple requests

within the domain language).

The collected e-mails (dataset) consist of a combination of more than
one hundred sentences and phrases. This dataset contains more than
three hundred different words. A few no-meaning phrases are added to
represent the neutral category in the classification process. The neutral
category is supposed to include all the common words that have no
effect on the task identification process (reservation, confirmation or

© 2000 by CRC Press LLC

cancellation) such as a country name. Part of the dataset is chosen as a
training group (approximately 30% of the whole dataset). All the
sentences and phrases are contained in the test group.

Two types of ANN architectures have been trained using this dataset: a
Multi-Layer Feedforward Network (MLF) and a Single-Layer
Perceptron Network (SLP). With certain adjustments to the initial
weights, learning constant and steepness coefficient, both neural
network architectures give the same result. Changing the input
representation from unipolar (where active neurons are represented by
+1 and 0 represents in-active neurons) to bipolar (where active neurons
are represented by +1 and in-active neurons are represented by -1) has a
slight effect on the network performance. The activation of a neuron
depends on the presence of the word that the neuron represents in the
input stream of words. The order of the training data has more
influence on the training process. This is due to the finite size of the
training set. Here is an example to explain what training order effect
means. The word Egypt has the following weights according to the
training set in which the word is encountered four times (one time per
category).

 reservation confirmation cancellation neutral
Egypt -4.414566 -8.017722 -0.757465 6.551010

However, the ideal weights for such a word should be approximately
the same for all categories but the neutral category. In the actual case,
there are differences because of the finite size and the order of the
training set (order means which category was trained first). If the words
appeared many times in a random category order, this problem could be
overcome. On the other hand, this will elongate the training time. It has
been deduced that, in order to obtain a fair word-to-concept map
distribution from any trained neural network, the training dataset must
be carefully selected. In other words, the training sentences and phrases
should be prepared such that the neutral (common) words must be
represented equally for all the defined categories in the training dataset.
This is the main reason for adding the no-meaning phrases: to teach the
neural network how to neutralise the effect of the presence (absence) of
these words in the user’s input sentence/phrase. The neutral category
contains all the words which should have equal weights towards the

© 2000 by CRC Press LLC

three categories mentioned above such as London, to, on, for, …
and/or from.

The other factor which affects the learning time is the training set size.
The two architectures are trained with different size training sets. It is
obvious that the larger the training set the longer the training time. In
the next section, we will explain two learning processes which
complement each other to compensate the above mentioned pitfalls in
the training set.

4.3 Network Training

There are two types of training for either an MLF network or an SLP
network: an off-line training and an on-line training. The off-line
training aim is to construct concept maps from the training examples.
These concept maps relate the each input sentence/phrase to a specific
concept in the problem domain. The off-line training takes place before
all the operations in order to assign connection weights to all the words
in the training set patterns. A pattern consists of a unipolar (bipolar)
representation of the training sentence or phrase. For example, the
sentence could be:

Due to unforeseen circumstances I have to cancel my flight to London

Then the pattern would be:

-1 -1 -1 -1 -1 -1 -1 1 -1 … -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1….

Each input neuron represents a word and each output neuron represents
a category. The learning is according to the generalised Delta learning
rule: [9]

)(

,......,2,1)()(

1

ii

J

j

jiji

jiii

netfo

ywnet

njynetfodc

=

=

=′−

∑
=

where

© 2000 by CRC Press LLC

ijw is the weight that connects the output of the jth neuron with the
input to the ith neuron

o is the output vector
c is the scaling factor
f is the activation function (sigmoid function)
f′ is the activation function first derivative
y is the input vector
d is the target vector

Figure 2 is the graphical representation of the classified words into the
correct category after the off-line training is completed.

Booked

Flight

That

My
TheAble

Sorry

Cancellation Category

Confirmation

Confirm

Check

Confirmation Category

Cancel

Cancellation

Not

Travel

Return

A

Make

Reserve
Book

Reservation Category

Ticket

Reservation

Going

 Neutral Category

Figure 2. Word classification sample based on the collected data.

Table 1 shows a sample of the weights for some words after SLP1
network training that takes place based on the collected dataset. Before
the training all the words were assigned small random weights.

1 SLP results show a clearer relation between words and categories than MLF.

© 2000 by CRC Press LLC

Table 1. SLP training results (sample).

CATEGORIES WORD
RESERVATION CONFIRMATION CANCELLATION NEUTRAL

a* 8.160717 -6.392762 -9.916912 -11.262650
able -3.469685 -1.873571 7.569377 -4.008598
airline 1.778800 -6.574209 -2.470539 -7.258359
belgium -0.636226 -6.133667 -3.362907 3.883109
book 26.382210 -13.742558 -8.563011 -7.614223
booked -2.502439 8.311028 -2.922199 -3.853302
cancel -21.769215 -24.374889 53.473717 -20.940538
cancellation -21.756435 -12.751144 31.506802 -2.847031
check -14.144594 22.119167 -2.908264 -2.108434
confirm -16.029274 34.444370 -20.502920 -8.255243
confirmation -21.811161 13.502781 -17.121601 -5.858447
egypt -4.414566 -8.017722 -0.757465 6.551010
flight 2.957987 3.815885 -7.900447 -8.968528
going 5.197784 -8.156089 -7.538003 5.770500
make 11.682374 -6.972619 -1.942448 -14.292900
my -5.785409 2.654307 1.096750 3.675545
need -3.990644 -0.253858 -8.594911 5.843002
not -3.469685 -1.873571 7.569377 -4.008598
reservation 1.135525 2.715665 1.451366 0.494692
reserve 20.650588 -4.416985 -2.991275 -8.332147
return 6.652804 -1.805905 -2.937553 -0.380169
send* -0.74305 3.753846 -3.041971 3.572052
sorry -6.61513 -5.857497 2.198464 -0.346198
the* -14.7968 2.616945 -0.955008 2.513896
ticket 1.48133 5.895713 2.516594 0.510546
travel 8.168785 -7.046576 1.490917 -8.466378
trip -7.755359 -6.876982 -0.422680 5.903522
want -4.800109 -5.958756 -3.849468 6.855282

Inspection of the above results indicates that there is a strong
connection between some words and a specific category. For example:
words like book, reserve and make are directly related to the
reservation category, while words like check and confirm are
connected to the confirmation category. On the other hand, words like
reservation and ticket are common among more than two categories.
We intentionally added words like send to the training set to illustrate
the effect of the unequal representation of the neutral words. The word
send has appeared only twice in the training dataset: one time in a
confirmation training example and the second time within the no-

© 2000 by CRC Press LLC

meaning phrases. It can be seen from the table that this word is related
to both confirmation and neutral categories; however, it is supposed to
be in the neutral category only. Finally, it can be noticed that some
words like the and a are assigned into a certain category and this is
interpreted as language dependent. In other words, most of the users
use a when they ask about a ticket reservation and they use the when
they ask about the ticket confirmation.

The other learning process is called the on-line training. The on-line
training takes place during the user-agent interaction cycle. The
network adapts some of its weights according to the user's direct
response in order to correct the misclassified sentence/phrase to a
different category. Also, it assigns weights for new words. The on-line
learning rule is:

)(iiij od −εµ

where
µij is a multiplicative factor
ε is an on-line learning coefficient
d, o as defined above in the off-line training.

Each word has been assigned a correctness level value which is
dependent on how many times the word is used before. The
multiplicative factor is inversely related to the word correctness level
value. Any word in the user's input and not belonging to the domain
dictionary is considered new. The newer the word the higher the
multiplicative factor and vice versa. The correctness level value of a
word is increased each time the word is encountered in the input stream
of words and the user's request is classified correctly. Hence, the
change in the weights of the more often used words is much slower
than the change in the weights of the new words during the on-line
learning. The on-line learning coefficient is a small number defined by
the user to control the speed of the on-line training process.

The on-line training is a complementary process to the off-line training.
Also, it introduces a solution to the lack of enough data in the training
set which leads to some sort of incorrect bias in the network weights. In
addition, the whole learning process time is divided between those two
processes.

© 2000 by CRC Press LLC

5 Operation

Figure 3 shows the block diagram of the task classification unit in the
interface agent. Once the off-line training process has been completed,
the system is ready to move to inference and on-line training through
agent-user interaction. The interaction cycle works as follows:

Neural Network

Search Concept

Maps

of words

stream
Spelling Correction

 Dictionary

I/
O

 p
or

t

A
G
E
N
TR

E

S

U

Input

Feedback

Output

Request

Figure 3. Task classification unit block diagram.

• Step1) User-system interaction: The user's information is provided
as a simple sentence or phrase at the I/O port.

• Step2) Approximate string matching: Given the domain dictionary
string set, the user's input stream of words is matched against the
dictionary items to correct any spelling errors in the input words. A
non-matching text item can be computed with a dictionary directly,
using an iterative character-by-character matching scheme that
determines the smallest number of single-character operations
(insertions, deletions, substitutions, and transpositions) required to
transform one of the words into the other. This is a well-known
technique of approximate string matching [10]. It is assumed at this
stage that the dictionary contains the travel domain vocabulary
only. This means some correct English words might be considered
misspelled and corrected according to this vocabulary domain. For
example:

© 2000 by CRC Press LLC

(Not in the dictionary) reverse → reserve (Nearest match)

The output of this step is the correct stream of words (if found) and
the rest will be considered new words, even the wrong ones, until
the system receives a feedback from the user in step5.

• Step3) Pattern generation: Some of the input neurons are activated
according to the words presented in the user's input. The input
neurons in the neural network are chosen large enough to
accommodate the new words. The rest of the neurons that are not
active indicate the absence of the corresponding words from the
input stream of words. A new word can be assigned to any unused
neuron or a neuron that represents the neutral word, which has the
least correctness level value. This is the process of generating the
patterns from the input stream of words. The generating patterns
guide the neural network to an initial state (via a trajectory) in the
concept maps that have been constructed during the off-line training
phase.

• Step4) Search process: The neural network continues the search
process to classify the input pattern to a certain category according
to the off-line training. The output of this step is either directed to
the I/O port to get a feedback from the user or is considered correct
by the agent. This decision is mainly dependent on a factor defined
by the user, called agent's confidence level. This factor should be
increased with time as the neural network weights settle to the right
direction. The outputs are the classified category and/or the words
that were considered new or wrong in step2.

• Step5) User-system interaction: The user response to the output of
the previous step is provided as corrected words, a corrected
category and/or an acceptance of the agent’s decision.

• Step6) On-line learning: According to the user's feedback, the
agent corrects the words, adds new words to the dictionary and
updates the neural network weights according to the on-line
learning rule.

Table 2 presents some examples of the agent-user interaction.

© 2000 by CRC Press LLC

Table 2. Simulation transcription.

Example (1):
 User Input: ,
G OLNH WR ERRN DQ DLUOLQH WLFNHW WR /RQGRQ
 Agent Reply: The input is considered as category 1, travel reservation(C/W?)
 New words: No words to correct.
 User feedback: &RUUHFW

Example (2):

User Input:

&RQWDFW WKH WUDYHO DJHQF\ WR FDQFHO P\

WLFNHW WR /RQGRQ
 Agent Reply: The input is classified into category 3, travel cancellation(C/W?)
 New words: agency, contact
 User feedback: &RUUHFW

Example (3):

 User Input: $UUDQJH PH D WULS WR &DLUR
 Agent Reply: The input can not be identified, unknown(C/W?)
 New words: arrange, Cairo
 User feedback: 1R� &DWHJRU\ �� UHVHUYDWLRQ &DLUR
 Agent Reply: Done

6 Summary

We have introduced the task classification unit in an interface agent
that relies on the neural network learning techniques to acquire the
knowledge it needs to assist its user. It is designed to achieve the
properties of interacting with the user through natural language
interface and learning over time. The ability to build such systems is
based on the assumption of the restricted vocabulary domain. The agent
learns gradually to better assist the user. We argued that such a gradual
learning approach is beneficial as it allows the user to incrementally
become confident with the agent’s decision. The implemented task
classification unit has been tested with real world data in the travel
reservation domain. The results show that the system is able to classify
the user's input correctly and learn over time.

© 2000 by CRC Press LLC

References

[1] Maes, P. (1995), “Intelligent software: programs that can act
independently will ease the burdens that computers put on people,”
Scientific American, vol. 273, no. 3, pp. 66-68.

[2] Maes, P. (1994), “Agents that reduce work and information
overload,” Communications of the ACM, vol. 37, no. 7, pp. 31-40.

[3] Pun, C. and Li, Y. (1998), “Machine translation with corpus-base
support,” Proceedings of Fourth International Conference on
Computer Science and Informatics North Carolina, pp.158-161.

[4] Wooldridge, M. and Jennings, N.R. (1995), “Intelligent agents:
theory and practice,” The Knowledge Engineering Review, vol. 10,
no. 2, pp.115-152.

[5] Tsui, K.C., Azvine, B., and Plumbley, M. (1996), “The roles of
neural and evolutionary computing in intelligent software
systems,” BT Technology Journal, vol. 14, no. 4, pp. 46-54.

[6] Wasserman, P. (1989), Neural Computing Theory and Practice,
Van Nostrand Reinhold, New York.

[7] Aboulenien, H.A. and De Wilde, P. (1998), “A simple interface
agent,” Proceedings of Fourth International Conference on
Computer Science and Informatics North Carolina, pp. 190-192.

[8] Russell, P. and Norvig, P. (1995), Artificial Intelligence: A
Modern Approach, 2nd ed., Prentice-Hall, New Jersey.

[9] Zurada, J. (1992), Introduction to Artificial Neural Systems, West
Publishing Company, St. Paul.

[10] Salton, G. (1989), Automatic Text Processing, Addison-Wesley,
New York.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 8

RECENT ADVANCES IN NEURAL
NETWORK APPLICATIONS

IN PROCESS CONTROL

U. Halici1, K. Leblebicioglu1, C. Özgen1, 2, and S. Tuncay1
Computer Vision and Intelligent Systems Research Laboratory,

1Department of Electrical and Electronics Engineering,
2Department of Chemical Engineering

Middle East Technical University, 06531, Ankara, Turkey
{ halici ,kleb ,cozgen } @metu.edu.tr , tuncay@ec.eee.metu.edu.tr

You must understand the process before you
can control it and the simplest control system
that will do the job is the best.

William L. Luyben (1990)

This chapter presents some novel applications of neural networks in
process control. Four different approaches utilizing neural networks are
presented as case studies of nonlinear chemical processes. It is
concluded that the hybrid methods utilizing neural networks are very
promising for the control of nonlinear and/or Multi-Input Multi-Output
systems which can not be controlled successfully by conventional
techniques.

1 Introduction

Classical control techniques such as Proportional Integral (PI) control
or Proportional Integral Derivative (PID) control are successfully
applied to the control of linear processes. Recently, linear Model
Predictive Control (MPC) has also successfully been accomplished in
the control of linear systems. However, about 90% of the chemical and
biological processes are highly nonlinear and most of them are Multi-

© 2000 by CRC Press LLC

Input Multi-Output (MIMO). When the system is nonlinear and/or
MIMO the above conventional techniques usually fail to control such
systems. Nowadays, the systems used in industry require a high degree
of autonomy and these techniques are not capable of achieving this [9].

The need to meet demanding control requirements in increasingly
complex dynamical control systems under significant uncertainty
makes the use of Neural Networks (NNs) in control systems very
attractive. The main reasons behind this are their ability to learn to
approximate functions and classify patterns and their potential for
massively parallel hardware implementation. In other words, they are
able to implement (both in software and hardware) many functions
essential to controlling systems with a higher degree of autonomy.

Due to their ability to learn complex nonlinear functional relationships,
neural networks (NNs) are utilized in control of nonlinear and/or
MIMO processes. During the last decade, application of NNs in
identification and control has been increased exponentially [24], [64].

The wide spread of application has been due to the following attractive
features:

1. NNs have the ability to approximate arbitrary nonlinear functions;
2. They can be trained easily by using past data records from the

system under study;
3. They are readily applicable to multivariable systems;
4. They do not require specification of structural relationship between

input and output data.

This chapter contains four different approaches utilizing NNs for the
control of nonlinear processes. Each of them is examined as a case
study and tested on nonlinear chemical processes. While the first case
study is utilizing NN in the usual way, the other three case studies are
novel hybrid approaches.

In case study I, a simple NN control system having a neuro-estimator
and a neuro-controller is developed to control a neutralization system,
which shows a highly nonlinear characteristic. The system is tested for
both set point tracking and disturbance rejection. The performance is
compared with a conventional PID controller.

© 2000 by CRC Press LLC

In case study II, a new structure, which incorporates NNs with the
linear MPC to extend its capacity for adaptive control of nonlinear
systems, is proposed. The developed controller is utilized in the control
of a high-purity distillation column using an unsteady-state simulator.
Its set point tracking and disturbance rejection capabilities are tested
and compared with a linear MPC controller.

In case study III, an approach, which incorporates NNs with PI
controllers, is presented. The main problem with the PI type controllers
is the determination of proportional and integral constants for each
operating (bias) point. The neural network is used to make an
interpolation among the operating points of the process to be controlled
and produce the related integral and proportional constants. The
controller is tested in control of a binary batch distillation column.

In case study IV, a new method is proposed to control multi-input
multi-output (MIMO) nonlinear systems optimally. An “optimal” rule-
base is constructed, which is then learned and interpolated by a NN.
This rule-based neuro-optimal controller is tested in the control of a
steam-jacketed kettle.

The organization of the rest of this chapter is as follows: in the next two
sections the concept of process control and use of NNs in process
control are presented. The other next four sections are dedicated to case
studies. The last section contains the remarks and future studies.

2 Process Control

In the development, design, and operation of process plants, the process
engineers are involved with five basic concepts: state, equilibrium,
conservation, rate, and control.

The identification of a system necessitates the definition thermo-
dynamic state according to which all the properties of a system are
fixed. Chemical, physical and biological systems can not be carried
beyond the limits of thermodynamic equilibrium , which limits the
possible ranges of chemical and physical conditions for the processes
taking place in the system.

© 2000 by CRC Press LLC

Conservation of mass, momentum and energy require that certain
quantities be conserved in the process because of the mass, energy and
momentum balances. The type and size specifications of process
equipment of a system depend on the amounts of throughput and also
on the rates at which physical, chemical and biological processes take
place in the equipment. This concept is covered in the field of chemical
and biological kinetics.

A process can be feasible both thermodynamically and kinetically but
can still be inoperable because of poor operating performance. This can
be a result of uncontrollability of the process or because of uneconomic
conditions. Therefore, control of a system for a satisfactory operating
performance, physically and economically, is as important for the
design and operation of a process system as the concept of equilibrium
and rate of processes [25].

Process control is the regulation of chemical, physical and biological
processes to suppress the influence of external disturbances, to ensure
the stability of the process and to optimize the performance of the
process.

Some important features of process control can be listed as [25]:

• The study of process control necessitates first the study of time-
dependent changes. The problems can not be formulated without a
dynamic structure. The control of any process can only be studied
by a detailed analysis of the unsteady-state behavior which can be
obtained from the dynamic model of the process.

• Also, process control systems are information-processing systems.
They receive information, digest it, act on it and generate
information as signals.

• All process control systems are integrated systems of components,
in which each component affects the overall performance of the
system. Therefore, a global approach which considers the whole
system and its environment as an entity is important.

• Most process control systems are feedback systems in which
information generated by the system are processed again to regulate
the behavior of the system.

© 2000 by CRC Press LLC

• Finally, the economical concerns should be among the performance
objectives of the process control system.

Process control systems in chemical, biological and physical process
industries are characterized by constantly changing performance
criteria, primarily because of the changes of the market demand. Also,
these processes are highly nonlinear and can not be well modeled.
Thus, the control has to be done to update the manipulated variables
on-line to satisfy the changing performance criteria on the face of
changing plant characteristics. Various control techniques based on
different performance criteria and process representations are used to
solve these problems.

During the operation of a plant, several requirements must be satisfied
and can be considered as performance criteria. Some of them are listed
below [58]:

1. Safety and environmental regulations,
2. Product specifications,
3. Operational constraints,
4. Economics.

These criteria must be translated to mathematical expressions in order
to write a control law. They can further be classified as objectives
(functions of variables to be optimized dynamically) and constraints
(functions of variables to be kept within bounds).

Translation of performance criteria to mathematical expressions may
require some assumptions. These assumptions are made not only to
simplify the solution of the problem, but also to make the problem
manageable for implementation in the existing hardware.

All controllers use a representation or a model of the process.
Generally, in chemical and biological processes, models are nonlinear
and also the model parameters are not well known. Thus there is always
a mismatch between the model prediction and the actual process output.
Additional reasons for the differences are due to changes in operating
points and equipment.

© 2000 by CRC Press LLC

Mismatches between a plant and its model result in unsatisfactory
trading of the performance criteria. The tuning parameters can help the
trade-off between the fast set point tracking and smooth manipulated
variable response. It is always desirable to minimize the amount of on-
line tuning by using a model of the process at the design stage that
includes a description of the uncertainties.

Even if an uncertainty description is used, there is always a need for
updating the model parameters on-line in an adaptive way. Model
Predictive Controllers, MPC, are those controllers in which the
control law is based on a process model [17]. MPC is a control scheme
in which the controller determines a manipulated variable profile that
optimizes some open-loop performance objective on a time interval
extending from the current time to the current time plus a prediction
horizon [15]. MPC is suitable for problems with a large number of
manipulated and controlled variables, constraints imposed on both the
manipulated and controlled variables, changing control objectives
and/or equipment failure, and time delays. A model of the process is
employed directly in the algorithm to predict the future process outputs.

Usually, in many process control problems, system models are not well
defined; either they are missing or system parameters may vary with
respect to time. NNs are convenient for obtaining input-output models
of systems since they are able to mimic the behavior of the system after
training them. Even if the NN model or identification may have
mismatches with the plant at the beginning, it becomes better and better
as the on-line training progresses. Furthermore, on-line training makes
the NN model handle the time varying parameter changes in the plant,
directly.

By training the NN to learn the “inverse model” of a plant it can be
used as a “controller” for the plant. Also, NN controllers can be used in
MPC structures both as estimator and/or controller parts.

Since chemical and biological processes are usually very complex,
instead of using NN alone in control of these processes, using them
together with conventional approaches such as PI or PID control
techniques or recent techniques such as rule based expert systems or
fuzzy logic, in a hybrid manner, improves the performance of the
overall controller.

© 2000 by CRC Press LLC

3 Use of Neural Networks in Control

In control systems applications, feedforward multi-layer NNs with
supervised training are the most commonly used. A major property of
these networks is that they are able to generate input-output maps that
can approximate any function with a desired accuracy. NNs have been
used in control systems mainly for system identification and control.

In system identification, to model the input-output behavior of a
dynamical system, the network is trained using input-output data and
network weights are adjusted usually using the backpropagation
algorithm. The only assumption is that the nonlinear static map
generated by the network can adequately represent the system's
dynamical behavior in the ranges of interest for a particular application.
NN should be provided information about the history of the system:
previous inputs and outputs. How much information is required
depends on the desired accuracy and the particular application.

When a multi-layer network is trained as a controller , either as an
open-loop or closed loop, most of the issues are similar to the
identification case. The basic difference is that the desired output of
network, that is the appropriate control input to be fed to the plant, is
not available but has to be induced from the known desired plant
output. In order to achieve this, one uses either approximations based
on a mathematical model of the plant (if available), or a NN model of
the dynamics of the plant, or, even, of the dynamics of the inverse of
the plant. NNs can be combined to both identify and control the plant,
thus forming an adaptive control structure.

We will now introduce some basic ways in which NN training data can
be obtained in tasks relevant to control [37]:

• Copying from an existing controller: If there is a controller
capable of controlling a plant, then the information required to train
a neural network can be obtained from it. The NN learns to copy
the existing controller. One reason for copying an existing
controller is that it may be a device that is impractical to use, such
as a human expert. In some cases, only some finite input-output
command pairs of a desired controller are known. Then an NN can

© 2000 by CRC Press LLC

be trained to emulate the desired controller by interpolating these
input-output command pairs.

• System Identification: In the identification case, training data can
be obtained by observing the input-output behavior of a plant. In
more complex cases, the input to the model may consist of various
delayed values of plant inputs and the network model may be a
recursive one.

• Identification of System Inverse: In this scheme, input to the
network is the output of the plant and the target output of the
network is the plant input. Once the plant inverse NN is obtained, it
is fed by the desired plant output and its output is then the desired
control input to the plant. The major problem with inverse
identification is that the plant's inverse is not always well defined.

• Model Predictive Controller: First a multi-layer network is
trained to identify the plant's forward model, then another NN, i.e.,
the controller, uses the identifier as the plant's estimator in an MPC
structure. This scheme has an advantage of being an adaptive
controller, but it necessitates the computation of the Jacobian of the
identifier NN.

There are many advanced networks for more complex system
identification of control problems. The reader is referred to [3], [4],
[37] for a list of references.

The system identification part is the backbone of almost all
neurocontroller architectures so we will discuss this concept in more
detail for SISO plants suggested in [38]. These models have been
chosen for their generality as well as for their analytical tractability.
The models of the four classes of plants can be described by the
following nonlinear difference equations:

Model I:

∑
−

=
+−+−=+

�

�

�����������J�����
Q

L

SLS PNXNXLN\N\ α (1)

© 2000 by CRC Press LLC

Model II:

∑
−

=
−++−=+

�

�

�������������I���
P

L

LSSS LNXQN\N\N\ β (2)

Model III:

�����������J�����������I��� +−++−=+ PNXNXQN\N\N\ SSS
(3)

Model IV:

))1(),..,();1(),..,((f)1(+−+−=+ mkukunkykyky ppp (4)

where (u(k), yp(k)) represents the input-output pair of the plant at time k
and f:Rn→R, g:Rm→R are assumed to be differentiable functions of
their arguments. It is further assumed that f and g can be approximated
to any desired degree of accuracy on compact sets by multilayer NNs.
Due to this assumption, any plant can be represented by a generalized
NN model.

To identify a plant, an identification model is chosen based on prior
information concerning the class to which it belongs. For example
assuming that the plant has a structure described by model III, we have
two types of identifiers:

1. Parallel model: In this case, the structure of the identifier is
identical to that of the plant with f and g replaced by the corresponding
NNs, N1 and N2 respectively. This model is described by the equation

���������������Ö������Ö����Ö
�� +−++−=+ PNXNX1QN\N\1N\ SSS

(5)

2. Serial-parallel model: The model is described by the equation:

���������������Ö������Ö����Ö
�� +−++−=+ PNXNX1QN\N\1N\ SSS

(6)

When a plant is identified, a proper controller can be designed based on
the identification model. When external disturbances and/or noise are
not present in the system, it is reasonable to adjust the control and
identification parameters simultaneously. However, when noise and/or

© 2000 by CRC Press LLC

disturbances are present, controller parameter updating should be
carried out over a slower time scale to ensure robustness.

A number of applications of NNs to process control problems have
been reported. A widely studied application involves a nonlinear-model
predictive controller [5], [22], [23], [48], [49], [51], [65]. Piovoso et al.
have compared NN to other modeling approaches for IMC, global
linearization and generic model control and they have found that NNs
give excellent performance in the case of severe process/model
mismatch [46]. Seborg and co-workers have used radial basis function
NN for nonlinear control and they have applied their approaches to
simulated systems as well as an actual pH process [39], [47], [48], [49],
[53]. They have found the NN based controllers to be superior to other
methods in terms of their ease of design and their robustness. NNs are
often viewed as black box estimators, where there is no attempt to
interpret the model structure [61]. NNs have been used in nonlinear
process identification [11], in IMC [13], [39], in adaptive control [7],
[16], in tuning conventional PID controllers [63], and in both modeling
and control of nonlinear systems [16]. The model adaptation of NN
based nonlinear MPC has been studied in [29] and [30].

Narendra et al. explained how neural networks can be effectively used
for identification and control of nonlinear dynamic systems, where an
NN is trained by a backpropagation algorithm for adjustment of
parameters [38]. They studied multilayer and recurrent NN in a unified
configuration for modeling. Simulation studies on low order nonlinear
dynamic systems showed that such modeling and control schemes are
practically feasible and they proposed that the same methods can also
be used successfully for the identification and control of multivariable
systems of higher dimensions.

Bhat et al. discussed the use of multilayer NN trained by back-
propagation algorithm for dynamic modeling and control of chemical
processes [6]. They proposed two approaches for modeling and control
of nonlinear systems. The first approach utilizes a trained NN model of
the system in a model based control work frame and the second
approach utilizes an inverse model of the plant extracted using NN in
the internal model control structure. They implemented the first
approach on a CSTR where pH is the controlled variable. Their results
showed that NN is better in representing the nonlinear characteristics of

© 2000 by CRC Press LLC

the CSTR than classical convolution model and, also, the controller
performance is superior to convolution model-based control.

Willis et al. discussed NN models from the process engineering point
of view and explained some approaches for use of NN in modeling and
control applications [65]. They considered some industrial applications
whereby an NN is trained to characterize the behavior of the systems,
namely industrial, continuous and fed-batch fermenters, and a
commercial scale, industrial, high purity distillation column. They
pointed out that NNs exhibit potential as soft sensors. They also
explained a methodology for use of NN models in MPC structure to
control nonlinear systems. The results of their simulation studies on a
highly nonlinear exothermic reactor have indicated that although there
are many questions to be answered about NN for optimum utilization
(e.g., topology, training strategy, modeling strategy, etc.), NN are a
promising and valuable tool for alleviating many current process
engineering problems.

Nguyen et al. have presented a scheme for use of NNs to solve highly
nonlinear control problems. In their scheme, an emulator, which is a
multilayered NN, learns to identify the dynamic characteristics of the
system [41]. The controller, which is another multi-layered NN, learns
the control of the emulator. Then this controller is used in order to
control the actual dynamic system. The learning process of the
emulator and the controller continues during the control operation so as
to improve the controller performance and to make an adaptive control.

Tan described a hybrid control scheme for set point change problems
for nonlinear systems [59]. The essence of the scheme is to divide the
control into two stages, namely, a coarse control stage and a fine
control stage, and use different controllers to accomplish a specific
control action at each stage. For the coarse stage, a modified multilayer
NN with backpropagation training algorithm is used, which drives the
system output into a predefined neighborhood of the set point. The
controller then switches to the fine control stage at which a
linearization of the system model is identified around the current set
point, and is controlled with an appropriated PID controller. Simulation
results have shown that there are some difficulties that can be faced in
the development of such a hybrid control scheme, such as the criteria
for the controller switching stages, and the possibility of abrupt changes

© 2000 by CRC Press LLC

in control input in the controller switching phase. The applicability of
this control scheme to nonlinear control problems is discussed.

Dreager et al. have proposed a new nonlinear MPC algorithm for
control of nonlinear systems [13]. For the prediction step, their
algorithm utilizes a NN model for a nonlinear plant. They have applied
this algorithm to a pH system control and also a level control system.
They have compared the performance of their nonlinear MPC
algorithm with that of a conventional PI controller on these two
systems. Results have indicated that the proposed controller
outperforms with respect to the PI controller.

Hamburg et al. examined various methods, especially NN, with respect
to their use to detect nuclear material diversions, considering speed and
accuracy [19]. The NN technique is enhanced with the use of a
computer simulation program for creating the training data set. This
simulation approach provided the opportunity of including outliers of
various types in a data set for training the NN because an actual process
data set used for training possibly might not have outliers. They
compared the methods on their ability to identify outliers and reduce
false alarms. These methods were tested on data sets of nuclear
material balances with known removals. The results obtained by the
NNs were quite encouraging.

Sablani et al. used NNs to predict the overall heat transfer coefficient
and the fluid to particle heat transfer coefficient, associated with liquid
particle mixtures, in cans subjected to end-over-end rotation [50].
These heat transfer coefficients were also predicted by means of a
dimensionless correlation method on the same data set. The results
showed that the predictive performance of the NN was far superior to
that of dimensionless correlations.

Noriega and Wang presented a direct adaptive NN control strategy for
unknown nonlinear systems [43]. They described the system under
consideration as an unknown NARMA model, and a feedforward NN
was used to learn the system. Taking NN as a neuro model of the
system, control signals were directly obtained by minimizing either the
instant difference or the cumulative differences between a set point and
the output of the neuro model. They applied the method in flow rate
control and successful results were obtained.

© 2000 by CRC Press LLC

Since 1990, there are too many academic papers on NN controllers and
applications in process control, though there are a few real applications.
Nowadays advantages and disadvantages of NNs have been well
understood. New studies, such as hybrid structures, are constructed in
which NNs can appear in several stages emphasizing their advantages.

In the following sections four case studies are presented to show the
applications of NNs in conjunction with other techniques for control of
complex processes.

4 Case Study I: pH Control in
Neutralization System

pH control problem is very important in many chemical and biological
systems and especially in waste treatment plants. The neutralization
process is very fast and occurs as a result of a simple reaction.
However, from the control point of view it is a very difficult problem to
handle because of its high nonlinearity due to the varying gain (in the
range of 1 up to 106) and varying dynamics with respect to the
operating point (see Figure 1). Introduction of NNs in modeling of
processes for control purposes is very useful due to their flexibility in
applications.

Figure 1. Titration curve of strong acid – strong base system.

© 2000 by CRC Press LLC

In the literature, dynamic mathematical models of pH systems are
available [18], [36]. Many control algorithms have been applied to pH
control including adaptive, linear model-based, nonlinear internal
model, and nonlinear generic model [10], [21], [45], [54], [55].

In this section, a control system having a neuro estimator and a neuro
controller is presented and it is used in the control of a pH neutral-
ization system [40].

4.1 Neutralization System

The neutralization system is a highly nonlinear one, whose nonlinearity
is reflected in the S shape of the titration curve given in Figure 1. The
stirred tank neutralization system that we considered is shown in Figure
2. It has a feed which is composed of one component (acid) and a
titrating stream (base). For simplicity, perfect mixing is assumed and
the level is kept constant.

∞

Acid
F1, C1

Base
F2, C2

pH

FT

Figure 2. Scheme for the pH process for nonlinear neutralization system.

The material balance can easily be written as [35]

 211122) C F - (F C F C F
dt

dC
V H

H ++= (7)

Assuming the neutralization reaction is very fast, the equilibrium
equation can be written as follows [66]:

21 CCC
C

K
H

H

w +=+ (8)

© 2000 by CRC Press LLC

Using Equations (7) and (8) the change of hydrogen ion concentration
can be written as

&.9

&)��&
&

.
��)��)&)�&

GW

G&

+Z

+

+

Z
+

��
�

������

�

+

−+

= (9)

and

)log(pH HC−= (10)

where

 C1 = concentration of acid (M)
 C2 = concentration of base (M)
 F1 = flow rate of acid (lt/min)
 F2 = flow rate of base (lt/min)
 CH = concentration of hydrogen ion (M)
 V = volume of tank (lt)
 Kw = water dissociation constant = 1×10–14

Nominal values are
 C1s = 0.01 M;
 C2s = 0.01 M;
 F1s = 0.3 lt/min;
 V = 3 lt

CH is the process state variable while F2 is selected as the manipulated
variable.

4.2 Neural Network Control of the Neutralization
System

The structure of the NN controller system is shown in Figure 3. The
controller system has a NN controller and a NN estimator.

The estimator is trained by taking the error between the desired plant
output and the estimator output. On the other hand the controller is
trained by taking the error between the estimator output and a reference

© 2000 by CRC Press LLC

point. So the controller assumes that the estimator output matches the
plant output.

 y re
+

 –

PLANT
NN

CONTROLLER

NN
ESTIMATOR

u(k) y(k)

 +

–

y(k+1)

Performance
measure

adapt
∝

Figure 3. NN controller system used for the neutralization system.

The neural estimator is a multilayer feedforward NN with 10 neurons in
the input layer, 20 in the hidden layer and one in the output layer. The
values of the initial weights are chosen randomly between –0.1 and 0.1.
The backpropagation algorithm is used to train the network. The value
of learning rate α is decided by using 1-dimensional search. The input
vector for the neuro estimator is chosen as:

[]������������������� PNXNXNXPN\N\N\N −−−−=[(11)

and the output is yestimated(k+1).

After training the neural estimator the controller starts and the window
data for the estimator are updated. The neural controller is also a
multilayer feedforward NN with 10 neurons in the input layer, 10 in the
hidden layer and one in the output layer. The values of the initial
weights are chosen randomly between –0.1 and 0.1. The input of the
neuro controller is

[]������������������ PNXNXNXPN\N\N\N −−−=[(12)

© 2000 by CRC Press LLC

and the output is u(k+1).

Again the backpropagation algorithm is used for training the neuro
controller; however, learning rate α is chosen as a function of the
square of the error, Pk. At sampling time, k, α is calculated as a
function of the Pk, according to the set of linguistic rules:

 If Pk is LARGE then α is 0.1.
 If Pk is MEDIUM then α is 0.01.
 If Pk is SMALL then α is 0.001.

The linguistic variables for Pk can be chosen as fuzzy sets, but here
they are divided arbitrarily into regions as

 LARGE = [25 – 16]
 MEDIUM = [16 – 09]
 SMALL = [09 – 00]

4.3 Results

The NN control system described in Section 4.2 is used for control of
the neutralization system. Also a PID controller is designed for
comparison. These controllers are compared for set point tracking and
disturbance rejection cases.

In set point tracking the initial steady state point in pH is taken as 2.0
and a change of 5.0 is considered to reach a neutral point of pH = 7.0.

In disturbance rejection the system is considered to be at the neutral
point at the start as pH of 7.0 and then a –20% load change is given to
the flow rate of acid at t = 25 min and a +20% change is given to the
concentration of the base solution at t = 100 min to test the performance
of the controllers.

4.3.1 Conventional PID Controller Performance

Tuning of the PID controller is done with Ziegler-Nichols rules [36],
[52]. The responses of the system for set point tracking and disturbance
rejection are given in Figures 4 and 5. It is seen that the conventional
PID controller has failed to control the neutralization system.

© 2000 by CRC Press LLC

4.3.2 NN Controller Performance

The output of the neural estimator in comparison with the actual plant
output is shown in Figure 6 for different inputs. The responses of the
NN controller for set point tracking and disturbance rejection are given
in Figures 7 and 8.

As can be seen in Figure 7 despite the oscill ations seen in the first 40
minutes the NNC brings the system to set point and is better than a
conventional PID. It is seen from Figure 8 that NNC works better for
disturbance rejection compared to set point tracking.

Figure 4. Set point tracking by PID Controller.

Figure 5. Disturbance rejection by PID Controller.

© 2000 by CRC Press LLC

Figure 6. Neural estimator output and actual output for different inputs.

Figure 7. Set point tracking by NN Controller.

© 2000 by CRC Press LLC

Figure 8. Disturbance rejection by NN Controller.

5 Case Study II: Adaptive Nonlinear-
Model Predictive Control Using Neural
Networks for Control of High Purity
Industrial Distillation Column

In recent years, considerable interest has been devoted to a special class
of model based control techniques referred to as Model Predictive
Control (MPC) [15], [17]. The basic idea behind MPC algorithm is to
use a process model to decide how to adjust the available manipulated
variables, in response to disturbances and changing production goals.
Control design methods based on the MPC concept have gained high
popularity due to their ability to yield high performance control
systems. The distinctive feature of the MPC technique is to predict the
future behavior of the process outputs based on a non-parametric
model, namely, impulse response or discrete convolution model. These
can be directly and easily obtained from samples of input-output data
without assuming a model structure. Therefore, the MPC technique is
especially useful for processes exhibiting unusual dynamic behavior
[13].

MPC technique is based on a linear model and, therefore, it is not very
well suited for the control of nonlinear systems. Because of this, there

© 2000 by CRC Press LLC

have been numerous efforts to extend the linear MPC technique for the
control of nonlinear systems [8], [33].

In this work, a new Adaptive Nonlinear-Model Predictive Controller
(AN-MPC) utilizing a NN in the MPC work frame is proposed for the
adaptive control of nonlinear SISO systems. This technique is used in
the control of top-product composition of a distillation column as an
application [26], [27].

5.1 Multicomponent High Purity Distillation
Column

The performance of the proposed controller is tested on an industrial
multi-component high-purity distillation column using an unsteady-
state simulation program. The simulation used represents the
distillation column in the catalytic alkylation section of the styrene
monomer plant of YarÕmca Petroleum Refinery, in Izmit, Turkey. In
this case study, instead of obtaining the off-line training data from the
actual system, the simulator is used because of practical reasons. Since
it is a high purity distillation column, it exhibits highly nonlinear
characteristics. The unsteady-state simulation package, which is named
as DAL, is developed by Alkaya, in 1991 [2].

The distillation column, which has 52 valve trays, was designed to
separate Ethyl-Benzene (EB) from a mixture of Ethyl-Benzene,
Methyl-Ethyl-Benzene and Di-Ethyl-Benzene having a mole fraction
0.951, 0.012 and 0.037 respectively with a desired top product
composition of 0.998. In the process, the top product composition of
Ethyl-Benzene is controlled by manipulating the reflux rate as shown in
Figure 9.

5.2 Adaptive Nonlinear-Model Predictive
Controller Using Neural Networks

5.2.1 Linear Model Predictive Controller

Linear MPC technique may utilize an impulse response model as
shown in equation (13) to predict the future behavior of the controlled
output as a function of the respective manipulated variable.

© 2000 by CRC Press LLC

 Feed

 Reflux XEB

 XF

LC

CC

PC

FC

LC

Figure 9. Distillation column.

∑
=

−++ ∆+=
T

i
ininn mhCC

1
11

ˆ (13)

where

C
^

 n+1 represents the predicted value of the output for the n+1th
sampling,

Cn represents the actual value of the output at nth sampling,
hi’s represent the impulse response coefficients relating the

controlled output to step changes in manipulated variable,
T represents the MPC model horizon, which determines the

number of impulse response coefficients,
∆mi’s represent the implemented step changes in manipulated

variable along model horizon prior to n+1th sampling.

Defining rn+1 as the set point of the output for the n+1th sampling, the
linear MPC law based on equation (13) is formulated as follows:

© 2000 by CRC Press LLC

∑
=

−++ ∆−−=∆
7

L

LLQLQQQ KPK&UP

�

�� ��� (14)

In equation (14), ∆mn, which is the value of the step change in
manipulated variable at nth sampling, is computed to bring the predicted
response to set point at n+1th sampling.

5.2.2 Nonlinear-Model Predictive Controller

While the impulse response coefficients, hi, obtained for a linear system
at an operating point can be successfully used for other points, they can
only be used for a nonlinear system by local linearization. Thus, there
will always be a deviation between the predicted values of the output
and the actual system output in nonlinear systems. Therefore, in such
systems, this deviation may result in poor control performance when
equation (14) is used directly.

However, if the modeling error that comes out at n+1th sampling is
estimated somehow, then the linear MPC law can be re-formulated to
obtain nonlinear MPC law as given below:

i

T

i
ininnnn hmhCPrm /)(

2

*
111

* ∑
=

−+++ ∆−−−=∆ (15)

where ∆m* 's are the step changes in manipulated variable, and Pn+1 is
the deviation at n+1th sampling as defined below:

111
ˆ

+++ −= nnn CCP (16)

5.2.3 Adaptive Nonlinear-Model Predictive Controller via Neural
Networks

A Nonlinear-Model Predictive Controller (NMPC) based on equation
(15) can be used to control a nonlinear process, unless there is a change
in the process conditions. However, if the system parameters change
during control operation, then the process model must be adapted to
reflect the changes through the use of the estimator for Pn+1.

© 2000 by CRC Press LLC

In the NMPC structure, the process is represented by a combination of
a linear model and a NN model. The NN used in the NMPC provides
an estimate for the deviation between the predicted value of the output
computed via linear model and actual nonlinear system output, at a
given sampling time. The adaptation of the process model is achieved
by updating the NN model via on-line training using the real-time data
obtained from the process. Therefore, by continuously training the NN
for changes in process dynamics, the NMPC can be used as an
Adaptive Nonlinear-Model Predictive Controller (AN-MPC) without
any further modification. The resulting AN-MPC structure is shown in
Figure 10.

m

P

r

NN

Linear MPC Nonlinear
Process

C

ANMPC

Figure 10. AN-MPC Structure using NN.

In this control structure, the NN is trained at each sampling time, with
the present and T previous values of system input-output data with
respect to the deviation. Trained NN is used to estimate deviation
between the predicted and the actual value of the output. Consequently,
AN-MPC computes the value of the manipulated variable, which
should be implemented at the present sampling time using equation
(15). The NN used in this study is a multi-layer feed-forward NN as
shown in Figure 11.

Input vector to NN, Uk∈R2T+1, is composed of two sub-input vectors:
present and T past values of output and input of the nonlinear system.

[]T**
1

*
1 ,..,,,,..,, TnnnTnnn

k mmmCCC −−−−=U (17)

© 2000 by CRC Press LLC

Pn+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 Cn

Cn-1

Cn-T

m*
n

m*
n-T+1

m*
n-T

Figure 11. Multilayer NN used in AN-MPC.

Input
Layer

Hidden
Layers

Output
Layer

As explained before, the NN is trained such that its output vector,
which has a single element Pn+1, is the deviation of the nonlinear model
from its linear MPC model for next sampling.

Since the deviation Pn+1 is a function of present and past values of the
process input and output, these two components of the input vector are
shifted in a forward direction at each sampling.

The training of NN is done using backpropagation algorithm. Two
types of training strategies, off-line training and on-line training, are
used in this particular application. In off-line training the NN is trained
to obtain the deviation around an initial operating point prior to control
operation. The data required for this are obtained by utilizing a step
response experiment where K consecutive step inputs are applied to the
system, in the open-loop. That is, the system output resulting from K
consecutive step inputs (one step change at each sampling) is observed
and compared with the MPC prediction, at each sampling. The
difference among them constitutes the deviation for each sampling.

In on-line training NN is continuously trained to obtain the deviation
using on-line data for adaptive control purposes using AN-MPC. Thus

© 2000 by CRC Press LLC

at each sampling, actual output is observed and compared with its
predicted value to compute the deviation. Then, this input-output and
deviation data obtained from the system are used to train the NN, at
each sampling.

5.3 Identification

The first step in the development phase of the AN-MPC for the
distillation column is identification, where impulse response
coefficients representing the relationship between reflux rate and EB
composition at the top at a sampling period ∆t are determined.
Consequently, when a unit step input is given to the reflux rate, the top
product EB mole fraction changes from 0.9988 to 0.9995 within 7.06
hours which is the response time of the process (Figure 12).

Therefore, settling time of the process is found to be 6.5 hours. Since,
the settling time is too large, the model horizon, T, is chosen as 50.
From this, sampling period is calculated as 0.13 hours (7.8 minutes)
and impulse response coefficients are determined as given in Table 1.

Having determined the impulse response coefficients and MPC model
horizon, T, the discrete convolution model (Equation 13) relating top
product EB mole fraction to reflux rate is found, where C and ∆m stand
for top product EB mole fraction and step change in reflux rate,
respectively.

0.9988
0.9989
0.9990
0.9991
0.9992
0.9993
0.9994
0.9995
0.9996

0 2 4 6 8

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 12. Unit Step Response.

© 2000 by CRC Press LLC

Table 1. Impulse Response Coefficients.

i hI ×105 i hI ×105 i hI ×105 i hI ×105 i hI ×105

1 2.7 11 2.8 21 1.2 31 0.6 41 –0.2
2 3.3 12 1.8 22 1.9 32 1.6 42 0.8
3 2.4 13 2.4 23 1.4 33 0.6 43 0.8
4 2.4 14 2.0 24 0.4 34 0.5 44 –0.2
5 3.4 15 1.0 25 1.4 35 0.6 45 0.8
6 2.6 16 2.0 26 1.4 36 0.6 46 0.8
7 2.6 17 1.6 27 0.4 37 0.6 47 –0.2
8 2.6 18 2.2 28 1.4 38 0.5 48 0.8
9 2.3 19 1.2 29 0.8 39 0.8 49 –0.2
10 1.8 20 1.2 30 0.6 40 0.8 50 0.8

5.4 Development of the Neural Network Model

The second step in the development of AN-MPC is the development of
a NN model representing the deviation of the linear MPC model from
the actual (nonlinear) system through off-line training. This is
accomplished in three steps: 1. Obtaining the training data for the NN
by utilizing an open-loop step response experiment; 2. Determination
of a suitable NN architecture by following a trial and error procedure;
3. Off-line training of NN by using the data obtained in the first step.
This enables the NN model to operate satisfactorily at the start.
Otherwise, the initial modeling uncertainty for the NN can be too large
and the system may become unstable at the beginning of the control
operation.

The off-line training data for NN model are obtained through a step
response experiment where 50 arbitrary consecutive step changes are
introduced to manipulated variables as shown in Table 2, and the
response is observed as shown in Figure 13. At each sampling time, by
using the linear model of equation (13), the system response, and
equation (16), deviation of linear model predictions from the actual
output is calculated. Then, using these data the training vectors for the
NN are created.

A 10–8 order of magnitude error in Pn+1 results in a 10–3 order of
magnitude change in the control input, which is acceptable for this
application. Therefore training of the NN is terminated when the error

© 2000 by CRC Press LLC

in training is less than or equals to 1×10–8. Since the model horizon, T,
is chosen as 50, the number of nodes in the input layer is 102. By
following a trial-error procedure a suitable NN architecture satisfying
the training-stop criteria is determined as a three-layered feed-forward
NN, having 104 and 50 nodes in the first and second hidden layers with
sigmoid type activation functions, and an output node with an identity
type activation function.

Table 2. Step Changes in Reflux Rate.

t

(h)

∆m

(lbmol/h)

t

(h)

∆m

(lbmol/h)

t

(h)

∆m

(lbmol/h)
0.00 2.10 2.21 0.21 4.42 2.10
0.13 2.20 2.34 0.19 4.55 2.20
0.26 –0.20 2.47 0.78 4.68 4.40
0.39 –0.14 2.6 1.78 4.81 –1.10
0.52 –6.00 2.73 1.90 4.94 –2.20
0.65 –4.50 2.86 1.30 5.07 –3.20
0.78 2.10 2.99 1.40 5.20 –0.19
0.91 2.20 3.12 –0.17 5.33 –0.21
1.04 4.40 3.25 –0.19 5.46 –3.45
1.17 –1.10 3.38 –0.70 5.59 –2.78
1.30 –2.20 3.51 –0.50 5.72 –0.19
1.43 –3.20 3.64 2.10 5.85 0.21
1.56 –0.19 3.77 2.20 5.98 0.19
1.69 –0.21 3.90 –0.20 6.11 0.78
1.82 –3.45 4.03 –0.14 6.24 1.80
1.95 –2.78 4.16 –6.00 6.37 1.90
2.08 –0.19 4.29 –4.50

0.9988
0.99881
0.99882
0.99883
0.99884
0.99885
0.99886
0.99887
0.99888

0 1 2 3 4 5 6 7

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 13. Response of the Distillation Column to changes given in Table 2.

© 2000 by CRC Press LLC

5.5 Control Application

After obtaining the linear MPC model, model horizon and NN model,
which represents the deviation of linear MPC model from the actual
system, these two models are combined in an MPC workframe. AN-
MPC is obtained, in which on-line training of NN is maintained
continuously to adapt the controller for changes in process operating
conditions. The AN-MPC is tested for its set point tracking and
disturbance rejection capabilities. In order to test the performance of
the AN-MPC and compare it with that of linear MPC for disturbance
rejection capability, the Ethyl-Benzene (EB) mole fraction in feed
composition was decreased by 3% (from the steady-state value of
0.9513 to 0.9228), keeping relative mole fractions of Di-Ethyl-Benzene
and Methly-Ethyl-Benzene constant. The open-loop response of the
process, for this –3% disturbance in the feed composition, is given in
Figure 14.

0.9750

0.9800

0.9850

0.9900

0.9950

1.0000

0.00 2.00 4.00 6.00 8.00

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 14. Open-loop Response.

The closed-loop response of the process with the linear MPC and the
corresponding control inputs are given in Figures 15 and 16,
respectively. The closed-loop response of the process with AN-MPC
and corresponding control inputs are given in Figures 17 and 18,
respectively.

As it can be seen from Figure 14, when –3% disturbance is introduced
to EB mole fraction in feed, the EB mole fraction in top product
changes from 0.9988 to 0.9797 within 7 hours. When the linear MPC is
used to control the system, the controlled response shows some

© 2000 by CRC Press LLC

deviation from set point (Figure 15) and control input is very
oscillatory (on-off type) changing between zero reflux and total reflux.
Obviously, such behavior of the reflux rate for a distillation column is
not practically acceptable. Whereas, when the AN-MPC is used to
control the system, the controlled response, as shown in Figure 17,
shows little deviation from the set point and, in this case, it matches the
set point after 5 hours. Furthermore, the control input (Figure 18)
exhibit much smoother behavior than that of linear MPC and they
change within reasonable limits.

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.00 2.00 4.00 6.00 8.00

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 15. Closed-loop response of the distillation column, which is under
control of linear MPC, to a –3% step change in EB Feed Composition.

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00

0,00 2,00 4,00 6,00 8,00 10,00

Time(h)

R
ef

lu
x

R
at

e(
m

ol
/s

)

Figure 16. Control actions (reflux rate changes) of linear MPC for a –3% step
change in EB feed composition.

In order to test performance of the AN-MPC and to compare it to that
of linear MPC for set point tracking capability, the set point is changed
in the EB mole fraction from 0.9988 to 0.9900. For this change, the

© 2000 by CRC Press LLC

closed-loop response and respective control actions of linear MPC are
as shown in Figures 19 and 20, and the closed-loop response and
respective control actions with AN-MPC are shown in Figures 21 and
22 respectively.

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.00 2.00 4.00 6.00 8.00

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 17. Closed-loop response of the distillation column, which is under
control of AN-MPC, to a –3% step change in EB feed composition.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 2.00 4.00 6.00 8.00

Time(h)

R
ef

lu
x

R
at

e(
m

ol
/s

)

Figure 18. Control actions (reflux rate changes) of AN-MPC for a –3% step
change in EB feed composition mole fraction.

As can be seen from the Figures 19 and 20, the controlled output using
linear MPC is oscillatory and does not match with the new set point and
the respective control input shows high oscillations. However, control
input of AN-MPC is quite smooth and exhibits very small oscillations
compared to that of linear MPC. Furthermore, the output controlled
with the AN-MPC matches the set point within 6 hours with a very
small oscillation compared to that of linear MPC as it can be observed
in Figures 21 and 22.

© 2000 by CRC Press LLC

0.9600
0.9650
0.9700
0.9750
0.9800
0.9850
0.9900
0.9950
1.0000

0.00 2.00 4.00 6.00 8.00

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 19. Closed-loop response of the distillation column, with linear MPC,
to a set point change of –0.0088 in EB.

0.00

4.00

8.00

12.00

16.00

20.00

24.00

0.00 2.00 4.00 6.00 8.00

Time(h)

R
ef

lu
x

R
at

e(
m

ol
/s

)

Figure 20. Control actions (reflux rate changes) of linear MPC for a set point
change of –0.0088 in EB mole fraction.

0.9600
0.9650
0.9700
0.9750
0.9800
0.9850
0.9900
0.9950
1.0000

0.00 2.00 4.00 6.00 8.00

Time(h)

E
B

 M
ol

e
F

ra
ct

io
n

Figure 21. Closed-loop response of the distillation column, with AN-MPC, to
a set point change of –0.0088 in EB mole fraction.

© 2000 by CRC Press LLC

0.00

4.00

8.00

12.00

16.00

20.00

24.00

0.00 2.00 4.00 6.00 8.00

Time(h)

R
ef

lu
x

R
at

e(
m

ol
/s

)

Figure 22. Control actions (reflux rate changes) of AN-MPC for a set point
change of –0.0088 in EB mole fraction.

6 Case Study III: PI Controller for a
Batch Distillation Column with Neural
Network Coefficient Estimator

The main problem with the conventional PI type controllers is the
determination of proportional and integral coefficients for each
operating (bias) point. In this section, a control method in which a NN
is incorporated as an online parameter estimator for the PI-type
controller is proposed and used in the control of a binary batch
distillation column [60].

6.1 Binary Batch Distillation Column

Batch distillation is an important unit operation where small quantities
of high technology/high value added chemicals and bio-chemicals are
to be separated. The other separation unit, which is widely used in the
chemical industry, is the continuous distillation column. Unlike batch
distillation, the mixture, which is separated, is continuously supplied to
the column in the continuous distillation case. The most outstanding
feature of batch distillation is its flexibility. This flexibility allows one
to deal with uncertainties in feed stock or product specification. The
operation of a batch distillation column can be described as three
periods: start up, production and shutdown periods. The column usually
runs under total reflux in the start up period until it reaches the steady

© 2000 by CRC Press LLC

state where the distillate composition reaches the desired product purity
[12], [35].

We will consider a basic separation system as depicted in Figure 23.
This column is used to separate two components in the liquid mixture
by taking advantage of the boiling points; that is, the component with
the lower boiling point will tend to vaporize more readily and therefore
can be selectively collected in the vapor boiled off from the liquid [35].

The basic requirement of the simulation to be developed is to compute
the overhead or distillate composition (condenser product) as a function
of time. If we consider a binary mixture, the lighter component will
have a higher composition in the distillate than in the kettle (bottoms).
However as the total amount of binary is reduced due to continued
withdrawal of the distillate, the concentration in the light component in
the distillate will decrease and get to an eventually low level. This
decrease in the more volatile component concentration while inevitable
can be delayed by increasing the reflux ratio during the distillation at
the expense of the distillate (product) flow rate.

Condenser

Controller

M b
x b

M D

R

Output

Figure 23. Binary batch distillation column with composition controller.

Dynamic simulation of the batch distillation column and investigation
of an automatic control system for distillate composition have been
done in the study by using the assumptions [35]:

1. Reflux drum and tray holdups are constant;

© 2000 by CRC Press LLC

2. Binary system with constant volatility;
3. Equimolar overflow;
4. Vapor-liquid equilibrium is attained in each tray;
5. Vapor holdup is negligible when compared with liquid holdup.

The variables for the column model are:

 H = Liquid holdup (mole)
 G = Vapor holdup (mole)
 L = Liquid flow rate (mole/sec)
 R = Reflux rate (mole/sec)
 Mb = Kettle holdup (mole)
 C = Condenser holdup (mole)
 t = Time (sec)

At liquid phase, total molar balance for the plate i is given by

LL

L
//

GW

G+
−= +� (18)

Since Hi is assumed to be constant, thus dHi/dt = 0, we conclude that
Li+1 = Li = Li–1 = L1 = R. In nth tray the vapor phase total molar balance
gives

LL 99
GW

G*L −= +� (19)

Since the vapor holdup is assumed to be constant, Vi+1 = Vi = Vi-1 = ... =
V1 = V. Total molar balance for the kettle gives

VR
dt

dMb −=

Mb(0)=Mb
0 (20)

Since dMb/dt ≠ 0 the total amount of liquid in the kettle changes
significantly with time. The component balance for the kettle, trays,
and condenser gives:

© 2000 by CRC Press LLC

Kettle:

()
b

bb VyRx
dt

xMd
−= 1

 (21)

Mb(0) xb(0) = Mb
0 xb

0

Plate 1:

112
1 VyRxVyRx

dt

dx
H b −−+= (22)

x1(0) = xb
0

where H is the constant liquid holdup on each of the trays. The initial
liquid composition on each of the trays is taken as the initial kettle
composition xb

0, which would occur if the column is initially charged
with a single liquid.

Plate 2:

2213
2 VyRxVyRx

dt

dx
H −−+= (23)

x2(0) = xb
0

Plate i:

iiii
i VyRxVyRx

dt

dx
H −−+= −+ 11

 (24)

xi(0) = xb
0

Plate N:

111G
1 9\5[9\5[

GW

G[
+ −−+= −� (25)

xN(0) = xb
0

Condenser:

GQ
G 5[9\

GW

G[
& −= (26)

xd(0) = xb
0

© 2000 by CRC Press LLC

The vapor phase concentrations are calculated from the simple vapor
liquid equilibrium relation based on the relative volatility α (Raoult’s
Law).

L

L

L
[

[
\

���� −+
=

α
α

 (27)

All the equations given above are used to compute the bottoms holdup
Mb(t), and still composition xb(t), the plate compositions x1(t), x2(t), ... ,
xi(t), ... , xN(t) and the distillate composition xd(t) [35]. In this study,
there are 13 trays in the batch distillation column.

There are two basic operation methods for the batch distillation
column. The first one is constant reflux rate and variable product
composition. The second one is variable reflux and constant product
composition of the key component (top product in this case). In this
study the aim is to achieve desired constant product composition.
Therefore, reflux ratio, R, should be changed during the batch
distillation operation. In literature, different methods have been applied
to the distillate control problem. The majority of these efforts tried to
solve the problem by using optimal control techniques. In these studies,
Pontryagin’s maximum principle was used in order to maximize the
distillate composition [57].

If the column at a bias point is uncontrolled, then the distillate
composition xd(t) would drop off substantially after some time, where it
should remain at the relatively high value to give a product of the
required purity. In order to remedy this situation we will add to the
model the equations for an automatic control system.

Basically a feedback configuration is considered for the control
purpose. The term ‘feedback’ comes from the way in which such a
controller works. The variable to be controlled, in this case the distillate
composition xd(t), is sensed (measured) and then compared with the
desired value, the set point xdset, to form an error e(t).

e(t) = xdset – xd(t) (28)

An ideal controller would keep the error at zero e(t) = 0, for which the
distillate composition would equal the set point xdset = xd(t). However, a

© 2000 by CRC Press LLC

real controller can not achieve this ideal performance, and it is
attempted to design a controller that comes as close as possible to this
ideal.

Once the controller generates the error, it is used to modify the
manipulated variable within the system to be controlled. In this case the
manipulated variable is the reflux rate, R. The manipulation of R will
be done according to the controller equation,

∫++=
t

I
css edt

T
eKRR

0

)
1

((29)

where
 Rss = steady state reflux
 Kc = controller gain
 TI = controller integral time

This equation describes the action of a proportional integral controller;
the first term, Kce, is the proportional part and the second term,

()∫
t

Ic edtTK
0

/ (30)

is the integral part. We will now consider briefly how each of these
sections contribute to the controller of the reflux rate, R. If we had an
ideal situation in which the error is always zero, the controller equation
simply reduces to R = Rss and the reflux rate would be equal to the
steady state value; that is, the batch distillation column would be
operating in such a way that the distillate composition is always equal
to set point (from error equation).

This situation could never be achieved in practice since the batch
distillation column operates in an unsteady state so that xd(t) is always
changing with time and, therefore, does not remain at the set point xdset.
If the distillation column has some error e(t) ≠0, the proportional term
will change the reflux rate, R, according to the equation R = Rss + Kce.
If the error is positive xdset > xd (t), so that the distillate composition is
too low, the proportional control term will increase R, which is the

© 2000 by CRC Press LLC

correct action in order to increase xd(t). On the other hand if the error is
negative corresponding to xdset < xd(t), the reflux rate, R, is reduced by
the proportional control term, which again is the correct action to
reduce xd(t). Thus the proportional control action always moves the
reflux rate, R, in the right direction to bring xd(t) closer to the set point
xdset. The integral control action removes the offset or steady state error.
However, it may lead to an oscillatory response of slowly decreasing
amplitude or even increasing amplitude, both of which are undesirable
[44]. In the rest of the discussion proportional constant Kc is denoted as
Kp and the integral term Kc/T is denoted as KI. In the following section,
the role of the NN in the control method of the batch distillation
column is explained. Furthermore, several simulation results are also
given.

6.2 PI Controller with Neural Network as a
Parameter Estimator

The main problem with the PI type controller is the determination of
proportional and integral constants (Kp, KI) for each operating (bias)
point. In order to solve this problem, a NN parameter estimator is
incorporated into PI control method as shown in Figure 24.

y ref

+

 –

PLANT

PI
CONTROLLER

u (k) y (k)

NN
parameter estimator

K p , K I

e (k)

y init
 off-line
training

Figure 24. The structure of the PI controller with NN parameter estimator.

© 2000 by CRC Press LLC

The NN shown in Figure 25 is trained for parameter estimation.
Actually, the aim of the neural network is to make an interpolation
among the operating points of the distillation column and produce the
related integral and proportional constants. Hence, a training pair for
the neural network is in the form of ([yinitial, yref], [KI, KP]). The initial
and desired bias points actually refer to the initial material
concentration and the desired material concentration at the top tray.
After training, the neural network can be used as an online parameter
estimator for the PI-type controller. As an alternative point of view, the
bias points can be seen as the antecedent and the corresponding integral
and proportional constants can be seen as the consequent part of an If-
Then rule. In this case NN performs an interpolation in the rule space
of the system.

Hidden
Layer

Input
Layer

Output
Layer

Kp

KI

Bias
Point

Desired
Point

Figure 25. Neural network for parameter estimation.

6.3 Results

In this study, the number of the training pairs is 20 and the training
algorithm is the standard backpropagation algorithm. After 50 epochs
the mean-square error was reduced to 0.0001. Figure 26 shows a
simulation result produced by NN and PI control. The initial
concentration for the distillate is 0.5 and the desired concentration is
0.9. NN produced the proportional and integral constants as 8 and 12. It
can be seen from the graph that the produced constants yield a
satisfactory result. The steady state error is approximately 0.5%.

© 2000 by CRC Press LLC

Figure 26. Distillate composition, xd vs time.

Figure 27. Reflux ratio versus time.

In Figure 27, the corresponding reflux change is given. At the
beginning of the operation, reflux ratio decreases in order to increase
the distillate composition. After distillate composition reaches its
steady state, reflux ratio increases in order to fix the distillate ratio to
set point value. It should be noted that, since batch distillation column
is used in this study, the material in the still decreases with time.
However, the simulation duration is not sufficiently long to observe the
fall in the composition in our cases.

© 2000 by CRC Press LLC

Since the amount of maximum overshoot is small, the relative stability
of the system is quite good. Figure 28 shows the other two simulations.
In the upper part of the Figure 28a, initial distillate composition is 0.5
and the desired (final) composition is 0.8. NN produced the
proportional and integral constants as 30 and 20 respectively. In this
case, the steady state error is zero; so the PI controller with estimated
parameters worked better than the case as shown in Figure 26. The
lower part of the Figure 28b shows the simulation results with the
initial composition 0.5 and final composition 0.85. It can be seen that
desired composition is achieved by the PI control with the help of the
NN.

Figure 28. Distillate composition versus time.

In this study, controller parameters are tuned experimentally to achieve
fast rise time and small steady-state error and they are used in training
the NN. However, some conventional techniques such as the Ziegler-
Nichols method can be used for tuning.

© 2000 by CRC Press LLC

7 Case Study IV: A Rule-based Neuro-
Optimal Controller for Steam-Jacketed
Kettle

In this section, a new method is proposed for the optimal control of
multi-input multi-output (MIMO) systems. The method is based on a
rule-base derived optimally, which is then interpolated by neural
networks.

The design of controllers for MIMO systems has always been a hard
problem even for the linear ones [56]. The only prevailing idea used in
the control of linear MIMO system is decoupling, if possible at all.
During the last decade there have been serious attacks on this problem
by methods that are especially constructed to control nonlinear plants,
such as neuro-control and sliding mode control techniques [1], [34],
[42], [56], [62]. Most of these techniques are quite complicated and
possibly work for a particular case only.

The fuzzy control techniques had limited application in MIMO systems
control mainly because of the facts that the derivation of rules is not
easy (usually not available) and the number of rules is usually large,
depending on the number of outputs and states.

Ours is a new attempt to this unsettled problem using a rule-base
combined with neural networks. On the other hand there are interesting
details and generalizations which will be discussed in the following
sections.

7.1 Analysis of the Kettle

The steam-jacketed kettle system has a wide application area in
industry. It is especially used in chemical processes. The dynamic
response and control of the steam-jacketed kettle shown in Figure 29
are to be considered in this study. The system consists of a kettle
through which water flows at a variable rate, wi kg/min. The inlet
water, whose flow rate may vary with time, is at temperature Ti = 5°C.
The kettle water, which is well agitated, is heated by steam condensing
in the jacket at temperature TV. This is a three-input two-output system.

© 2000 by CRC Press LLC

Flow rate of inlet water, flow rate of outlet water and flow rate of steam
are the control inputs of our system. Temperature and the mass of the
water inside the kettle are the outputs [12].

Figure 29. The kettle.

The following assumptions are made for the kettle [12]:

1. The heat loss to the atmosphere is negligible;
2. The thermal capacity of the kettle wall, which separates steam from

water, is negligible compared with that of water in the kettle;
3. The thermal capacity of the outer jacket wall, adjacent to the

surroundings, is finite, and the temperature of this jacket wall is
uniform and equal to the steam temperature at any instant;

4. The kettle water is sufficiently agitated to result in a uniform
temperature;

5. Specific internal energy of steam in the jacket, Uv, is assumed to be
constant;

6. The flow of heat from the steam to the water in the kettle is
described by the expression

q = U(Tv–To)

where
 q = flow rate of heat, J/(min)(m2)
 U = overall heat transfer coefficient, J/(min)(m2)(°C)
 Tv = steam temperature, °C
 To = water temperature, °C.

, Tv

© 2000 by CRC Press LLC

The mathematical model of the system can be obtained by making an
energy balance on the water side and on the steam side. The symbols
used throughout this analysis are defined as follows:

TI = temperature of inlet water, °C
To = temperature of outlet water, °C
wI = flow rate of inlet water, kg/min
wo = flow rate of outlet water, kg/min
wv = flow rate of steam, kg/min
wc = flow rate of condensate from kettle, kg/min
m = mass of water inside the kettle, kg
m1 = mass of jacket wall, kg
V = volume of the jacket steam space, m3
C = heat capacity of water, J/(kg)(°C)
C1 = heat capacity of metal in jacket wall, J/(kg)(°C)
A = cross sectional area for heat exchange, m2

t = time, min
Hv = specific enthalpy of steam entering, J/kg
Hc = specific enthalpy of steam leaving, J/kg
Uv = specific internal energy of steam in jacket, J/kg
ρv = density of steam in jacket, kg/m3

Energy balance and mass balance equations for the water and steam
side can be written as [12]:

�� RYRRLL

R
778$&7Z&7Z

GW

G7
P& −+−= (31)

oi ww
dt

dm −= (32)

�������� RY

Y

FYFYY

Y
778$

GW

G
9+8++Z

GW

G7
&P −−−−−=

ρ
 (33)

ov
v ww

dt

d
V −=

ρ
 (34)

As can be seen from the equations, the system is a nonlinear one. The
state, input and output vectors are:

© 2000 by CRC Press LLC

=

v

v

o

T

m

T

ρ

x

=

o

v

i

w

w

w

u

=
m

Toy (35)

7.2 A Rule-Based Neuro-Optimal Controller for
Nonlinear MIMO Systems

7.2.1 MIMO Systems

It is assumed that a MIMO plant is given with a known mathematical
model as shown below

))(()(

))(),(()(

tt

ttt

xgy

uxfx

=
=�

 (36)

where x(t), f(x(t), u(t))∈Rn, u(t)∈Rm and y(t), g(x(t))∈Rp. The system
output y(t) is supposed to track a reference signal yd(t) ∈Rp.

7.2.2 Rule Derivation

The controller is developed using a rule-base in which the rules are
developed by making use of the mathematical model of the plant in an
optimal sense. That is, since a model is available, by partitioning the
state-space and the output-space and defining a representative for each
partition, one can determine the control signals (i.e., rules) optimally,
using a suitably chosen cost function.

Suppose that each component of the state vector has Ni, i = 1, 2, … , n
regions and the output vector has Ok, k = 1, 2, …, p components. Then
there is a total of (�

n
i=1Ni)(�

p
k=1Ok) rules to be derived. If the system

state is initially at the ith partition (the representative of which is xi) and
the system's initial and desired states are at partitions Ov and Ok (their
representatives are yv and yk, respectively), the associated rule can be
found optimally by solving the optimal control problem of minimizing
the cost function in time interval [0, tf]

© 2000 by CRC Press LLC

() ()

() () ()∫∫ +−−

+−−=

ff t

d

t
T

d

kf
T

kf

ttdttttt

tt

0

T

0

)(
2

1
)()()()(

2

1

)()(
2

1
)J(

uRuyyQyy

yyHyyu

 (37)

subject to the state equation

()

())()(

)0(

)(),()(

tt

ttt

i

xgy

xx

uxfx

=
=
=�

 (38)

Usually H, Q and R are diagonal matrices with suitably chosen
diagonal entries. The vector function yd(t) can be taken as any smooth
function with

vd yy =)0(, kfd t yy =)(

0)()0(== fdd tyy �� (39)

Furthermore, the constraints on u(t), that is, |ui (t)| ≤ Bi, i = 1, 2, …, m,
can easily be incorporated in our steepest descent like optimal control
problem solver [20]. What is supposed to be done is implicitly an
interpolation in the function space of optimal controls. Here, it is
assumed that the mapping between the given initial-final partitions and
the associated optimal control functions is continuous. Therefore, if the
number of the partitions is sufficiently high, the approximation error in
constructing the optimal control function by a semi-infinite neural
network, to be explained in the next section, will be quite small.

7.2.3 Neural Network

In order to be able to generate the control inputs so that the system
output trajectory follows an optimal path between arbitrarily specified
initial and final output states, one has to train a multilayer perceptron-
like neural network [20]. This neural network should accept present
output y(to) and desired output y(tf) as its inputs and should generate the
optimal control signal u(t) to accomplish the task. The structure of the
controller utilizing NN is shown in Figure 30.

© 2000 by CRC Press LLC

y ref

PLANT

NN
CONTROLLER

u (k) y (k)

OPTIMAL
CONTROLLER

 off-line
training

y (t) desired

y bias

Figure 30. The structure of the rule-based neuro-optimal controller.

For training, input signals produced by optimal control and initial and
final points of outputs should be used. It is interesting to note that, at
least theoretically, the neural network is a semi-infinite dimensional
one [31], [32] in the sense that it is a mapping between the finite
dimensional input space and the infinite dimensional output space (i.e.,
control functions).

The output neurons produce discrete values of input function in [to, tf]
interval. Therefore, the neural network can produce the samples of the
control signal.

For example, if the number of outputs is n for a single input system,
then y(to), y(tf) are n-dimensional vectors as

y(to)=[y1(to) y2(to) ... yn(to)]

y(tf)=[y1(tf) y2(tf) ... yn(tf)]

Furthermore, if [to, tf] interval is divided into m parts with sampling
period T, a typical training pair is in the form of

([y1(to) y2(to) ... yn(to) ... y1(tf) y2(tf) … yn(tf)], [u(0) u(T) ... u(mT)])

where the [u(0) u(T) … u(mT)] is the discrete input vector, which
moves the system from y(to) to y(tf) and is produced by the optimal
control. After a training operation, the neural network responds

© 2000 by CRC Press LLC

immediately and acts as a real-time controller. In fact, the neural
network produces the optimal control vector for the control horizon
[tpresent, tfuture] at tpresent. The control horizon tfuture-tpresent is much larger
than the sampling duration. As mentioned already, the mapping
between the input-output space and optimal control functions is
assumed to be continuous. The data (i.e., the optimal control functions
obtained by solving the optimal control problem) represent evaluations
of this mapping at particular instants. So, the problem of conflicting
rules does not exist.

7.3 Results

In our simulation, the output temperature range is chosen as [5°C,
75°C] and the mass range in the tank is chosen as [10kg, 20kg]. There
is no need to partition the rest of the states because these are related
with the temperature of the steam entering the jacket. Since the
temperature of the steam entering is constant, single partition is enough
for these states. We divide temperature range into seven regions and
mass range into two regions. Therefore, we get 7×7×2×2 = 196 rules
from optimal control and we use these 196 rules in order to train our
neural networks. Since we have three inputs, three neural networks are
constructed, each of them has four inputs, two hidden layers having 100
and 50 neurons and an output layer consisting of 25 neurons. The
training algorithm is the backpropagation algorithm having a
momentum term. After training, neural networks work as a real time
controller. For example, with the initial values for outlet water
temperature and mass of the water as [10kg, 5°C] and reference inputs
as [15kg, 42°C], our results obtained by on-line NN controllers are
given in Figures 31-35. For comparison, the results obtained by the
optimal control are also shown in these figures. In Figure 36, water
temperature in the kettle, which is controlled by a neural network in
real time, is given together with the desired trajectory.

According to Figure 36, neuro-controller performance is satisfactory
when compared with the optimal controller performance. After the
training stage, the neural network can be used as an online controller.
In addition, the output of the neural network can be considered as a
function, because it estimates the control functions between two
sampling (measurement) intervals. Secondly, the control functions are

© 2000 by CRC Press LLC

the optimal ones because the training pairs of the neural network
consist of control functions produced by solving the associated optimal
control problems.

Figure 31. Trajectories for output 1: mass of the water inside the kettle.

* Desired trajectory, - Trajectory from neuro-controller.

Figure 32. Trajectories for output 2: temperature of the water inside the kettle.

* Desired trajectory, - Trajectory from neuro-controller.

© 2000 by CRC Press LLC

Figure 33. Controlled input 1: flow rate of inlet water.

* Output from optimal control, - Output from neural network.

Figure 34. Controlled input 2: flow rate of steam.

* Output from optimal control, - Output from neural network.

© 2000 by CRC Press LLC

Figure 35. Controlled input 3: flow rate of outlet water.

* Output from optimal control, - Output from neural network.

Figure 36. Trajectory for the temperature of water.

* Desired trajectory, - Trajectory produced by on-line NN controller.

© 2000 by CRC Press LLC

8 Remarks and Future Studies

Today's chemical and biological processes in industry are very
complex. They are usually nonlinear and/or MIMO. System models of
these processes are usually not well defined; either they are missing or
system parameters may be time varying. Due to their learning and
generalization capabilities, NNs are good candidates for obtaining
input-output models of systems. Furthermore, model plant mismatches
and the time varying parameter changes in the plant can be overcome
by the online training of NNs.

Furthermore, NNs by the “inverse model” of a plant can be used as a
“controller” for the plant. Also, NN controllers can be used in MPC
structure both as estimator and/or controller parts.

Instead of using NNs alone in control of these processes, they can be
combined with conventional approaches such as PI or PID control,
optimal control techniques or techniques such as rule based expert
systems or fuzzy logic, in a hybrid manner. Such an approach improves
the performance of the overall controller.

In this chapter different approaches utilizing neural networks for
control of nonlinear processes are presented. Each of them is examined
as a case study and tested on nonlinear chemical processes.

In case study I, an NN controller is developed to control a
neutralization system which exhibits highly nonlinear dynamics. The
controller's performance is tested for both set point tracking and
disturbance rejection problems. The NN controller's results are
compared with that of the conventional PID controller tuned with
Ziegler-Nichols technique. The PID controller failed to control the
system by showing oscillatory behavior. However, the NN controller
has been able to bring the system to set point, by reducing the
oscillations observed at the beginning. Moreover, this NN controller
has been able to reject disturbances introduced to the system
successfully.

In case study II, linear MPC is used together with NNs to control
nonlinear systems. A multilayer NN is used to represent the deviation
between the nonlinear system and its linear MPC model. The NN is

© 2000 by CRC Press LLC

trained off-line so that the controller operates satisfactorily at the start-
up phase. Furthermore, the training of NN is continued on-line using
the real-time data obtained from the process. Thus the resultant
structure is an adaptive nonlinear MPC controller, AN-MPC.

The performance of the AN-MPC is tested on a simulation of a multi-
component high-purity distillation column. Performance tests for
disturbance rejection and set point tracking abilities showed that the
AN-MPC drives this process quite efficiently, especially in case of set
point changes. In contrast, the linear MPC has not been able to control
the system for load and set point changes. The success of the hybrid
structure, AN-MPC, is because of the fact that the linear MPC
determines the coarse control action and NN does the fine tuning. The
AN-MPC controller can be generalized further by considering not only
the next future sampling instance but next K of them to improve the
performance. This generalization is planned as a future work. Current-
ly, we are working to extend the structure to control a MIMO plant.

A hybrid control method which is the combination of PI control and
NN is introduced in case study III. The method eliminates the
controller (PI) tuning problem with the help of the NN. Therefore, it
reduces the parameter estimation time at each operating point. The
proposed method was tested in the binary batch distillation column and
encouraging results were obtained. The hybrid structure of the method
uses advantages of each individual method that constructs the hybrid
structure. In order to increase the operating range of the proposed
controller, the NN must be trained by a large training set which covers
the desired wide operating range. However, the major problem is the
training pair derivation for NN. In this study training pairs are
determined by heuristic methods. For each bias point in the training set,
the proportional and integral constants are determined by a trial and
error procedure. Therefore, the training pair extraction process can be a
time consuming task for engineers who are not experts in batch
distillation. Furthermore, the disturbance rejection and robustness
issues of the method were not investigated in this study. Hence, they
can be studied as a future work.

In case study IV, an optimal neurocontroller has been suggested for
controlling MIMO systems. The proposed controller structure was
tested by simulation studies on a simple steam-jacketed kettle system.

© 2000 by CRC Press LLC

The preliminary results obtained so far have shown that this method is
worth pursuing further. The only disadvantage of the method is that the
number of rules to be derived in a complex plant control can be
prohibitively large which also makes the derivation time too long. On
the other hand, the method is very simple and can be made adaptive
with some effort. Studies are continuing to generalize the method to
cover the disturbance rejection and robustness problems as well.

All these case studies showed that the hybrid methods utilizing NNs are
very promising for the control of nonlinear and/or MIMO systems that
can not be controlled by conventional techniques.

Acknowledgments

This work is partially supported under the grant AFP-03-04-DPT-
98K12250, Intelligent Control of Chemical Processes.

References

[1] Ahmed, M.S. and Tasaddug, I.A. (1998), “Neural servocontroller
for nonlinear MIMO plant,” IEEE Proceedings Control Theory
Applications, vol. 145, pp. 277-291.

[2] Alkaya, D. and Özgen, C. (1991), “Determination of a suitable
measurement in an industrial high purity distillation column,”
Proc. of AIChE Annual Meeting on Distillation Column Design
and Operation, Los Angeles, CA, pp. 118-124.

[3] Antsaklis, P.J. (1990), “Special issue on neural networks for
control systems,” IEEE Control Sys. Mag., vol. 10, pp. 3-87.

[4] Antsaklis, P.J. (1992), “Special issue on neural networks for
control systems,” IEEE Control Sys. Mag., vol. 12, pp. 8-57.

[5] Bhat, N. and McAvoy, T.J. (1989), “Use of neural networks for
dynamic modeling and control of chemical process systems,”
Proc. Amer. Contr. Conf., pp. 1336-1341.

© 2000 by CRC Press LLC

[6] Bhat, N. and McAvoy, T.J. (1990), “Use of neural networks for
dynamic modeling and control of chemical process systems,”
Comput. and Chem. Eng., vol. 14, pp. 573-583.

[7] Boskovic, J.D. and Narendra, K.S. (1995), “Comparison of linear,
nonlinear and neural network based adaptive controllers for a class
of fed-batch fermentation processes,” Automatica, vol. 31, pp.
817-840.

[8] Brengel, D.D, and Seider, W.D. (1988), “Multistep nonlinear
predictive controller,” Ind. Eng. Chem. Res., vol. 28, p. 1812.

[9] Cai, Z.X. (1997), Intelligent Control: Principles, Techniques and
Applications, World Scientific Publishing.

[10] Chan, H.C. and Yu, C.C. (1995), “Autotuning of gain-scheduled
pH control: an experimental study,” Ind. Eng. Chem. Res., vol. 34,
pp. 1718-1729.

[11] Chen, S., Billings, S.A. and Grant, P.M. (1990), “Nonlinear system
identification using neural networks,” Int. J. of Control, vol. 51,
pp. 1191-1199.

[12] Coughanowr, D.R. and Koppel, L.W. (1965), Process Systems
Analysis and Control, McGraw-Hill.

[13] Cutler, C.R. and Ramaker, B.L. (1979), “Dynamic matrix control –
a computer control algorithm,” AIChE National Meeting, Houston,
Texas.

[14] Dreager, A. and Engell, S. (1994), “Nonlinear model predictive
control using neural plant models,” NATO-ASI on Model Based
Process Control, Turkey.

[15] Eaton, J.W. and Rawlings, J.B. (1992), “Model predictive control
of chemical processes,” Chemical Engineering Science, vol. 47,
pp. 705-720.

[16] Etxebarria, V. (1994), “Adaptive control of discrete systems using
neural networks,” IEE Proc. Control Theory Appl., vol. 141, pp.
209-215.

© 2000 by CRC Press LLC

[17] Garcia, C.E., Prett, D.M., and Morari, M. (1989) “Model
predictive control: theory and practice - a survey,” Automatica,
vol. 25, pp. 335-348.

[18] Gustafsson, T.K., Skrifvars, B.O., Sandstrom, K.V., and Waller
K.V. (1995), “Modeling of pH for control,” Ind. Eng. Chem. Res.,
vol. 34, pp. 820-827.

[19] Hamburg, J.H., Booth, D.E., and Weinroth, G.J. (1996), “A neural
network approach to the detection of nuclear material losses,”
Journal of Chemical Information and Computer Sciences, vol. 36,
pp. 544-553.

[20] Haykin, S. (1996), A comprehensive Foundation of Neural
Networks, Prentice-Hall, NJ.

[21] Henson, M.A. and Seborg, D.E. (1994), “Adaptive nonlinear
control of a pH neutralization process,” IEEE Trans. on Control
Systems Technology, vol. 2, pp. 169-182.

[22] Hernandez, E. and Arkun, Y. (1990), “Neural networks modeling
and an extended DMC algorithm to control nonlinear processes,”
Proc. Amer. Contr. Conf., pp. 2454-2459.

[23] Hernandez, E. and Arkun, Y. (1992), “A study of the control
relevant properties of backpropagation neural net models of
nonlinear dynamical systems,” Comp. and Chem. Eng., vol. 16, pp.
227-240.

[24] Hunt, K.J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J.
(1992), “Neural networks for control systems – a survey,”
Automatica, vol. 28, pp. 1083-1099.

[25] Johnson, E.F. (1967), Automatic Process Control, McGraw-Hill,
New York.

[26] Karahan, O., Ozgen, C., Halici, U., and Leblebicioglu, K. (1997),
“A nonlinear model predictive controller using neural networks,”
Proc. of IEEE International Conference on Neural Networks,
Houston, USA, pp. 690-693.

© 2000 by CRC Press LLC

[27] Karahan, O. (1997), An Adaptive Nonlinear Model Predictive
Controller Using A Neural Network, M.Sc. Thesis, Chem. Eng.
Dept., METU, Ankara, Turkey.

[28] Kirk, D.E. (1970), Optimal Control, Prentice-Hall, NJ.

[29] Koulouris, A. (1995), Multiresolution Learning in Nonlinear
Dynamic Process Modeling and Control, Ph.D. Thesis, MIT.

[30] Koulouris, A. and Stephanopoulos, G. (1997), “Stability of NN-
Based MPC in the presence of unbounded model uncertainty,”
AIChE Symp. Series, vol. 93, pp. 339-343.

[31] Kuzuoglu, M. and Leblebicioglu, K. (1996), “Infinite dimensional
multilayer perceptions,” IEEE Trans. Neural Networks, vol. 7, pp.
889-896.

[32] Leblebicioglu, K. and Halici, U. (1997), “Infinite dimensional
radial basis function neural networks for nonlinear transformations
on function spaces,” Nonlinear Analysis, vol. 30, pp. 1649-1654.

[33] Li, S., Lim, K.Y., and Fisher, D.G. (1989), “A state-space
formulation for model predictive control,” AIChE Journal, vol. 35,
pp. 241-249.

[34] Linkens, D.A. and Nyogesu, H.O. (1996), “A hierarchical
multivariable fuzzy controller for learning with genetic
algorithms,” Int. Journal of Control, vol. 63, pp. 865-883.

[35] Luyben, W.L. (1990), Process Modeling, Simulation and Control
for Chemical Engineers, McGraw-Hill.

[36] McAvoy, T.J. (1972), “Time optimal and Z-N control,” Ind. Eng.
Chem. Process Res., vol. 11, pp. 71-78.

[37] Miller, W.T., Sutton, R.S., and Werbos, P.J. (1990), Neural
Network for Control, MIT Press.

[38] Narendra, K.S. and Parthasarathy, K. (1990), “Identification and
control of dynamical systems using neural networks,” IEEE Trans.
on Neural Networks, vol. 1, pp. 1-16.

© 2000 by CRC Press LLC

[39] Nehas, E.P., Henson, M.A., and Seborg, D.E. (1992), “Nonlinear
internal model control strategy for neural network models,”
Comput. and Chem. Eng., vol. 16, pp. 1039-1057.

[40] Nesrallah, K. (1998), Simulation Study of an Adaptive Fuzzy
Knowledge Based Controller and Neural Network Controller on a
pH System, M.Sc. Thesis, Chem. Eng. Dept., METU, Ankara,
Turkey.

[41] Nguyen, D.H. and Widrow, B. (1991), “Neural networks for self-
training control system,” Int. J. Control, vol. 54, pp. 1439-1451.

[42] Nie, J. (1997), “Fuzzy control of multivariable nonlinear servo-
mechanisms with explicit decoupling scheme,” IEEE Trans. on
Fuzzy Systems, vol. 5, pp. 304-311.

[43] Noriega, J.R. and Wang, H. (1998), “A direct adaptive neural
network control for unknown nonlinear systems and its
application,” IEEE Trans. on Neural Networks, vol. 9, pp. 27-34.

[44] Ogata, K. (1990), Modern Control Engineering, Prentice-Hall Inc.

[45] Palancar, M.G., Aragon, J.M., Miguens, J.A., and Torrecilla, J.S.
(1996), “Application of a model reference adaptive control system
to pH control: effects of lag and delay time,” Ind. Eng. Chem. Res.,
vol. 35, pp. 4100-4110.

[46] Piovoso, M., Kosanovich, K., Rohhlenko, V., and Guez, A. (1992),
“A comparison of three nonlinear controller designs applied to a
nonadiabatic first-order exothermic reaction in a CSTR,” Proc.
Amer. Cont. Conf., pp. 490-494.

[47] Pottman, M. and Seborg, D. (1993), “A radial basis function
control strategy and its application to a pH neutralization process,”
Proc. 2nd European Cont. Conf., pp. 206-212.

[48] Pottman, M. and Seborg, D. (1992), “Identification of nonlinear
processes using reciprocal multiquadratic functions,” J. Process
Control, vol. 2, pp. 189-203.

© 2000 by CRC Press LLC

[49] Pottmann, M. and Seborg, D. (1992), “A nonlinear predictive
control strategy based on radial basis function networks,” Proc.
IFAC DYCORD Symposium, pp. 536-544.

[50] Sablani, S.S., Ramaswamy, H.S., Sreekanth, S., and Prasher, S.O.
(1997), “Neural network modeling of heat transfer to liquid
particle mixtures in cans subjected to end-over-end processing,”
Food Research International, vol. 30, pp. 105-116.

[51] Saint-Donat, J., Bhat, N., and McAvoy, T.J. (1991), “Neural net
based model predictive control,” Int. J. Control, vol. 54, pp. 1453-
1468.

[52] Seborg, D.E., Edgar, T.F., and Mellichamp, D.A. (1989), Process
Dynamics and Control, Wiley Series, NY.

[53] Seborg, D. (1994), “Experience with nonlinear control and
identification strategies,” Proc. Control’94, pp. 217-225.

[54] Sing, C.H. and Postlethwaite, B. (1997), “pH control: handling
nonlinearity and deadtime with fuzzy relational model-based
control,” IEE Proc. Control Theory Appl., vol. 144, pp. 263-268.

[55] Skogestad, S. (1996), “A procedure for SISO controllability
analysis – with application to design of pH neutralization
processes,” Computers Chem. Eng., vol. 20, pp. 373-386.

[56] Skogestad, S. and Postlethwaite, I. (1997), Multivariable Feedback
Control, John Wiley & Sons.

[57] Sorensen, E. and Skogestad, S. (1996) “Optimal startup procedures
for batch distillation,” Computers and Chem. Eng., vol. 20, pp.
1257-1262.

[58] Stephanopoulos, G. (1984), Chemical Process Control: An
Introduction to Theory and Practice, Prentice-Hall Int., NJ.

[59] Tan, S. (1992), “A combined PID and neural control scheme for
nonlinear dynamical systems,” Proc. SICICI 92, pp. 137-143.

© 2000 by CRC Press LLC

[60] Tuncay, S. (1999), Hybrid Methods in Intelligent Control, M.Sc.
Thesis, EE Eng. Dept., METU, Ankara, Turkey.

[61] Ungar, L.H., Hartman, J.E., Keeler, J.D., and Martin, G.D. (1996),
“Process modeling and control using neural networks,” Int. Conf.
on Intelligent Systems in Process Engineering, AIChE Symp.
Series, pp. 312-318.

[62] Utkin, V.I. (1992), Sliding Modes in Control Optimization,
Springer-Verlag, Berlin.

[63] Wang, M. and Li, B.H. (1992), “Design of a neural network based
controller for control system,” Proc. of SICICI’92, pp. 1333-1339.

[64] Widrow, B. and Lehr, M.A. (1990), “30 years of adaptive neural
networks: perception, madaline and backpropagation,”
Proceedings of the IEEE, vol. 78, pp. 1441-1457.

[65] Willis, M.J., DiMassimo, C., Montague, G.A., Tham, M.T., and
Morris, A.J. (1991), “Artificial neural networks in process
engineering,” IEE Proc-D, vol. 138, pp. 3-11.

[66] Wright, A.W. and Kravaris, C. (1991), “Nonlinear control of pH
processes using the strong acid equivalent,” Ind. Eng. Chem. Res.,
vol. 30, pp.1561-1572.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 9

MONITORING INTERNAL
COMBUSTION ENGINES BY NEURAL

NETWORK BASED VIRTUAL SENSING

R.J. Howlett, M.M. de Zoysa, and S.D. Walters
Transfrontier Centre for Automotive Research (TCAR)
Engineering Research Centre, University of Brighton

Brighton, U.K.
R.J.Howlett@Brighton.ac.uk

Over the past two decades the manufacturers of internal-combustion
engines that are used in motor vehicles have been very successful in
reducing the harmful side effects of their products on the environment.
However, they are under ever-increasing pressure to achieve further
reductions in the quantities of polluting gases emitted by the engine,
and a decrease in the amount of fuel consumed per kilometer. At the
same time, vehicle characteristics that are desirable to the driver must
not be compromised. Satisfying these diverse requirements requires
precise engine control and comprehensive monitoring of the operational
parameters of the power unit. Engines are highly price sensitive, and it
is desirable to achieve the increased level of measurement that is
required for enhanced control without additional sensory devices. Thus,
the indirect estimation of quantities of interest using virtual-sensor
techniques, without direct measurement using dedicated sensors, is a
research area with considerable potential. Intelligent-systems techni-
ques, such as neural networks, are attractive for application in this area
because of their capabilities in pattern recognition, signal analysis and
interpretation. For this reason, the use of neural networks in the
monitoring and control of motor vehicle engines is an area of research
which is receiving increasing attention from both the academic and
commercial research communities. A virtual-sensor technique, the
Virtual Lambda Sensor, is described here which uses a neural network
for the estimation of air-fuel ratio in the engine.

1 Introduction

The internal-combustion engine is likely to be the most common motor-
vehicle power plant until well into the twenty-first century, although
new variants such as the Gasoline Direct Injection (GDI) and High
Speed Direct Injection (HSDI) Diesel engines may supplant more
conventional engine variants.

There are two recurrent themes in the area of automotive engine design:
fuel economy and the reduction of harmful emissions from the exhaust.
The emission of exhaust gases from Internal-Combustion (IC) engines
is a major cause of environmental pollution. In addition the exhaust
contains carbon dioxide, which is believed to contribute to the
greenhouse effect and global warming. To reduce damage to the
environment, governments in the United States, Europe, and parts of
the rest of the world have introduced regulations that govern the
permissible levels of pollutant gases in the exhaust. All manufacturers
of motor-vehicles are required to undertake measures to ensure that
their vehicles meet emission standards when they are new. In addition,
the vehicle owner is required to ensure that the vehicle continues to
meet in-service standards, by submitting it to periodic testing during
routine maintenance. In the future, an on-board diagnostic system must
be provided which carries out continuous monitoring.

Emission standards have been tightened progressively for over twenty
years, to the point where emissions have been reduced by
approximately an order of magnitude, measured on a per-vehicle basis.
However, regulations are becoming even more stringent. Although
existing methods of emission control are adequate to meet current
regulations, they need improvements to enable them to meet future
legislation [1]. The 1998 California Clean Air Act requires 10% of a
manufacturer’s fleet to be zero-emission vehicles (ZEVs), an 84%
decrease in hydro-carbon (HC) emissions, a 64% decrease in oxides of
nitrogen (NOx) output and a 60% reduction in carbon monoxide (CO)
production for the entire fleet by the year 2003 [2].

On January 1, 1993, mandatory emission standards were introduced in
Europe. This required all new petrol (gasoline) fueled vehicles in

© 2000 by CRC Press LLC

Europe to be fitted with three-way auto-catalysts, thus bringing
European standards to comparable levels with the US standards that
had been introduced in the 1980s. In 1997, the second stage of
regulations was brought into effect which covered both petrol and
diesel vehicles. These regulations brought European standards into
conformance with US standards up to 1996. The third stage of
regulations, which sets standards for year 2000 and beyond, has been
proposed. These regulations, when brought into effect, will require
petrol-fueled vehicles with electronically controlled catalytic converters
to be fitted with on-board diagnostic systems [1].

2 The Engine Management System

In order to achieve these standards it is necessary to maintain strict
control of the operating parameters of the engine using a
microprocessor-based Engine Management System (EMS) or Engine
Control Unit (ECU). The EMS implements control strategies which aim
to achieve optimum efficiency and high output power when required,
while at the same time maintaining low emission levels. At the same
time, in a spark-ignition engine, the EMS must operate the engine in a
region favorable to the operation of a three-way catalytic converter,
which further reduces the harmful content of the exhaust. The engine
must also exhibit good transient response and other characteristics
desirable to the operator, known among motor manufacturers as
driveability, in response to movements of the driver’s main control, the
throttle or accelerator pedal. The EMS governs the amount of fuel
admitted to the engine (via the fuel-pulse width), the point in the
engine-cycle at which the mixture is ignited (the ignition timing), the
amount of exhaust gas recirculated (EGR), and other parameters in
advanced engine designs, for example, the valve timings. It determines
values for these parameters from measured quantities such as speed,
load torque, air mass flow rate, inlet-manifold pressure, temperatures at
various points, and throttle-angle. Figure 1 illustrates the function of the
EMS, which must essentially determine values for the Controlled
Variables from a knowledge of the Measured Variables, in order to
achieve the System Aims.

© 2000 by CRC Press LLC

IC

Spark Ignition

Engine

Controlled
Aims

Measured

Throttle angle

Fuel pulse width

Ignition timing

Fuel economy

Low emissions

High output power

Air flow rate

Inlet manifold vacuum pressure

Engine speed

Inlet air temperature

Coolant temperature, etc.

Emissions

CO, CO
2

, NO x
Unburnt hydrocarbons

Depend on tim ing, load,
speed, air-fuel-ratio, etc.

Variables

Variables

Valve tim ing

EGR etc.

Figure 1. Internal combustion engine control.

The exact detail of the strategies which are used in commercial EMS
products is a secret which is guarded closely by the manufacturers. One
method which can be used for the selection of fuel pulse width and
ignition timing values involves the use of maps which are look-up
tables held in ROM. The EMS measures the engine speed using a
sensor on the crankshaft and estimates the load, often indirectly from
the inlet manifold (vacuum) pressure. These values are then used as
indices for the look-up tables. Algorithmic and mathematical methods
are also used. Research is taking place to develop improved engine
control by incorporating neural networks and other intelligent-systems
techniques into the EMS.

It has been mandatory in the US for some time, and now is also
required in Europe, that, in addition to engine control, the EMS is
required to perform on-board diagnostic (OBD) functions. Future OBD
systems will be required to warn the driver, by means of a malfunction
indicator lamp (MIL), of faults in the emission-control system which
could lead to emission levels that are greater than those permitted.

The high level of accurate control necessary for engines to meet
emissions standards requires that the EMS is supplied with
comprehensive information about the operational parameters of the
engine. Modern engines are equipped with a range of sensory devices
which enables the measurement of quantities of interest. Speed,

© 2000 by CRC Press LLC

manifold pressure, air mass flow rate, temperature at various points
such as the air inlet are examples of quantities that are measured in
many engines. In addition, parameters such as crank-angle and
camshaft position are measured on more sophisticated power units.
Accurate measurement of the ratio between the masses of injected
petrol and air, known as the air-fuel ratio, is very valuable as an
indicator of the point on its characteristics at which the engine is
operating. Accurate air-fuel ratio measurement is difficult to achieve
economically using conventional methods.

3 Virtual Sensor Systems

As engine control increases in sophistication the number of engine
parameters which must be measured also increases. However,
manufacturers are reluctant to install new sensors in the engine because
of economic considerations. Engines are extremely price sensitive and
additional sensors can only be economically justified if they provide
very considerable improvements which could not be otherwise attained.
Techniques which allow deductions to be made about quantities of
interest without the installation of new sensors, by interpreting data
from existing sensory devices in a new way, are especially valuable in
this respect. The virtual-sensor technique allows an estimate to be made
of a quantity of interest without the necessity for a sensor dedicated to
the measurement. An example, which is described later in this chapter,
is the Spark Voltage Characterization method of estimating the air-fuel
ratio in the engine cylinder by analysis of the voltage signal at the spark
plug.

Virtual-sensor systems require abilities in the domains of pattern-
recognition, signal analysis and modeling. Neural networks have been
shown to possess distinct strengths in these areas. For example, a neural
network based virtual-sensor system is described in the literature that
allows the prediction of emission levels from commonly measured
quantities [3].

© 2000 by CRC Press LLC

4 Air-Fuel Ratio

A parameter that is of considerable importance in determining the
operating point of the engine, its output power and emission levels is
the air-fuel ratio (AFR). The air-fuel ratio is often defined in terms of
the excess air factor, or lambda ratio:

lambda = AFR / AFRst (1)

where AFR = the current air-fuel ratio
and AFRst = the stoichiometric air-fuel ratio

Lambda is defined such that a lambda-ratio of unity corresponds to an
air-fuel ratio of approximately 14.7:1 at normal temperature and
pressure, when the fuel is petrol or gasoline. This is termed the
stoichiometric ratio, and corresponds to the proportions of air and fuel
which are required for complete combustion. A greater proportion of
fuel gives a lambda-ratio of less than unity, termed a rich mixture,
while a greater proportion of air gives a lambda-ratio of greater than
unity, termed a weak or lean mixture. Maximum power is obtained
when the lambda-ratio is approximately 0.9 and minimum fuel
consumption occurs when the lambda-ratio is approximately 1.1.

Current engines reduce emission levels to within legislative limits by
converting the exhaust gases into less toxic products using three-way
catalytic converters. For optimum effect, three-way catalytic converters
require that the lambda-ratio is closely maintained at the stoichiometric
ratio (unity). In modern engines, a lambda-sensor, mounted in the
exhaust stream, determines whether the lambda is above or below unity
from the amount of oxygen present. The EMS uses this to adjust the
fuel pulse width to keep the lambda-ratio approximately at unity. Power
units currently under development, for example the gasoline direct
injection (GDI) engine, may involve operation in lean-of-stoichiometric
regions of the characteristics of the engine. Precise control of the air-
fuel ratio is of considerable importance here also [4].

The lambda-sensor that is installed in most production vehicles has a
voltage-lambda characteristic which effectively makes it a binary

© 2000 by CRC Press LLC

device. It can be used to indicate whether the value of lambda is above
or below unity, but it is unable to provide an accurate analogue
measurement of air-fuel ratio. Accurate measurements can be made
using what are referred to as wideband lambda-sensors, but they are
very expensive, and in fact, even the currently used binary lambda-
sensor represents an undesirable cost penalty.

The Spark Voltage Characterization method, described in detail later in
this Chapter, allows the air-fuel ratio to be estimated from an analysis
of the voltage signal at the spark plug, and so potentially offers the
advantage that it permits the elimination of the lambda-sensor.

5 Combustion Monitoring Using the
Spark Plug

Although it is not usually considered as a sensor, the spark plug is in
direct contact with the combustion processes which are occurring in the
cylinder. The use of the spark plug as a combustion sensor in spark
ignition (SI) engines offers a number of advantages over other sensory
methods. Many comparable techniques, such as pressure measurements
or light emission recording by fiber-optics, require that the combustion
chamber is modified; this can itself affect the combustion processes.
Secondly, the price sensitivity of engines demands that the installation
of a new sensor must result in very considerable improvements for it to
be economically justifiable. The spark plug is already present in a spark
ignition engine, eliminating the need to make any potentially
detrimental modifications to the cylinder head, or combustion chamber,
and avoiding additional costs which would result from the installation
of new equipment. As the spark plug is in direct contact with the
combustion, it is potentially an excellent observer of the combustion
process. Analyzing the spark plug voltage (and possibly current)
waveforms, therefore, potentially provides a robust and low-cost
method for monitoring phenomena in the combustion chamber.

A method of using the spark plug as a combustion sensor which has
received attention in the literature is known as the Ionic-Current
method. This has been investigated for measuring combustion pressure,
AFR and for the detection of fault conditions such as misfire and

© 2000 by CRC Press LLC

knocking combustion. In the ionic-current system, the spark plug is
used as a sensor during the non-firing part of the cycle. This is done by
connecting a small bias voltage of about 100 volts to the spark plug and
measuring the current. This current is due to the reactive ions in the
flame which conduct current across the gap when the voltage is applied.
The ions are formed during and after combustion, and the type and
quantity of ions present depend on the combustion characteristics. The
ionization current is also dependent on the pressure, temperature, etc.
and therefore is rich in information but very complex [5]. Much work
has been done on the use of ionic-currents for monitoring combustion,
mainly to estimate combustion pressure, and so the method can act as a
replacement for combustion-pressure sensors. Ionic-current systems
have also been proposed for AFR and ignition-timing estimation, and
misfire and knocking detection [6], [7]. More recently, neural networks
have been applied to the analysis of ionic-current data for spark-
advance control and AFR estimation [8], [9].

The ionic-current method appears attractive because only minor
modifications are required to adapt the engine. However, high-voltage
diodes or other switching methods are needed to isolate the ionic-
current circuitry from the ignition system, when the high voltage is
generated to initiate combustion. These have been prone to failure in
the past. The 100V power supply is also an additional component
which is required at additional expense.

A second spark plug based sensor technique, which is covered in depth
in this chapter, is termed Spark Voltage Characterization (SVC). The
SVC technique has a number of features in common with the ionic-
current method. The SVC method involves the analysis of the time-
varying voltage that appears across the spark plug, due to the ignition
system, for monitoring combustion phenomena in the cylinder. This
analysis can be carried out using a neural network. Using the spark plug
as the combustion sensor, this technique has many of the advantages of
the ionic-current method. However, as the SVC method involves
analyzing the ignition voltage waveform itself, it eliminates the need
for an additional bias power supply, and for the associated high-voltage
switching circuitry. The use of SVC for estimating the in-cylinder air-
fuel ratio is described later in this chapter.

© 2000 by CRC Press LLC

6 The Ignition System of a Spark-Ignition
Engine

Figure 2 shows the essential elements of an inductive-discharge
ignition-system, as typically installed in a spark-ignition engine. The
ignition-coil is essentially a high-voltage transformer, increasing the
battery voltage (approximately 12V) to an extra high tension (EHT)
pulse. This high voltage creates a spark between the contacts of the
spark plug and initiates combustion. The contact-breaker was once a
mechanical component in almost all engines, but in modern electronic
ignition systems, it is replaced by a semiconductor switch such as an
automotive specification transistor or thyristor.

LT
Winding

HT
Winding

Contact
Breaker

Contact
Capacitor

To Distributor
/ Spark PlugIgnition

Coil

Battery

Figure 2. The ignition system.

The contact-breaker closes and current builds up in the low-tension
(LT) winding of the coil resulting in the storage of energy; however, the
speed at which this occurs is limited by the resistance of the coil. At an
appropriate point in the engine-cycle, when an air-fuel mixture has been
injected into the cylinder via the inlet-valve (in a port injection engine),
and compressed so that the piston lies just before top-dead-center, the
contact-breaker opens. The magnetic field in the coil collapses rapidly,
with an equally rapid change in magnetic flux, and a high-voltage pulse
is induced into the high-tension (HT) winding of the coil. A pulse of
approximately 10kV appears across the spark plug terminals, igniting

© 2000 by CRC Press LLC

the petrol-air mixture. The resulting combustion drives the power
stroke of the engine.

Each cylinder in a four-stroke engine experiences one power stroke for
every two revolutions of the crankshaft. In a multi-cylinder engine a
mechanical switch geared to the crankshaft and known as a distributor
is often used to switch the ignition-pulse to the correct cylinder.
Alternative systems make use of multiple coils instead of a distributor.
In a dual-spark or wasted-spark system each cylinder receives a spark
once every crankshaft revolution instead of every 720 degrees of
rotation. This requires multiple coils, in a multi-cylinder engine, but
enables the distributor to be eliminated, and is common practice.
Single-cylinder engines also commonly use this principle, as it allows
the ignition system to be triggered directly from the crankshaft.

Figure 3 illustrates the spark-voltage waveform obtained from a typical
ignition system. The spark plug voltage waveform has a number of
predictable phases. As the EHT pulse is generated by the ignition-
system the potential difference across the gap rises to between
approximately six and 22 kV, before breakdown occurs. Breakdown is
accompanied by a fall in voltage, giving a characteristic voltage spike
of approximately 10 µs in duration. This is followed by a glow-
discharge region of a few milliseconds duration, which appears as the
tail of the waveform.

5

10

kV

|| | |||
1 2 3 4 5 6 ms

Spark Plug
Voltage

Figure 3. A typical spark voltage waveform.

© 2000 by CRC Press LLC

Empirical observation of the spark plug voltage characteristic has
shown that variations in engine parameters lead to changes in the shape
of the voltage characteristic. It is predictable that the time-varying
voltage exhibits certain major features, for example, a large peak early
in the waveform. However, it is not easy to predict the detailed
variations that occur as the engine parameters are varied. The signal-to-
noise ratio is poor and random variations occur between sparks even
when the operating parameters of the engine are kept constant.

The breakdown voltage across the electrode-gap of a spark plug in an
operating IC engine is dependent on the interactions of many
parameters, for example, the combustion chamber and electrode
temperatures, the compression pressure, the electrode material and
configuration, and the composition of the air-fuel gas mixture [10],
[11]. All of these factors may be attributed to physical properties and
processes; for example, the composition of the air-fuel mixture
influences the breakdown voltage mainly through temperature and
pressure changes.

The spark plug cathode electrode temperature has a significant effect on
breakdown voltage, due to increased electron emission at elevated
temperatures. The maximum spark plug temperature, when keeping
other parameters constant, is achieved when the lambda-ratio is equal to
0.9, that is, the value for maximum power output. Under lean, and to a
lesser extent, rich mixture conditions, the voltage rises; this is largely
due to a reduction in the heat released by combustion. Given a constant
set of engine operating conditions, an increase in lambda-ratio results in
an increased pressure at ignition. This has been attributed to an increase
in the ratio of specific heats (the gamma-ratio) of the air-fuel mixture;
an increase in gas pressure results in a consequent rise in breakdown
voltage [10]-[12].

Changes in lambda-ratio, and therefore in breakdown voltage, lead to
subtle changes in the overall shape of the ignition spark waveform.
Given a constant ignition system energy, an increase in breakdown
voltage results in more energy being used within the breakdown phase.
This leaves less energy available for following phases of the spark, i.e.,
the arc and glow discharge phases. The observed result is a reduction in
the glow-discharge duration.

© 2000 by CRC Press LLC

However, factors other than change in lambda are also likely to have an
effect on the spark-voltage characteristic. For example, the temperature
and pressure inside the cylinder, both of which are related to load, are
relevant. In addition, the speed of the engine will determine the degree
of in-cylinder turbulence which will also have an effect. Thus, if the
voltage characteristic of the spark is to be used to determine the
lambda-value, the effects of other parameters also must be
accommodated.

To summarize, changes in the value of the lambda-ratio would be
expected to influence both the breakdown voltage and the time-varying
voltage characteristic of the arc and glow discharge phases. A formal
relationship between the value of lambda and the instantaneous voltage
at any particular point on the spark-voltage characteristic is not easily
discernible and may not exist. However, theoretical considerations
indicate a possible correlation between the vector formed by periodic
sampling of the voltage at the spark plug over the spark time, termed
the spark-voltage vector, and the lambda-ratio. With suitable pre-
processing and training, a neural network is a suitable tool for
associating the spark-voltage vector and lambda-ratio. This forms the
basis of the Spark Voltage Characterization technique.

7 Neural Networks for Use in Virtual
Sensors

Neural networks possess a number of specific qualities which make
them invaluable in pattern-recognition applications and which are not
easily achieved by other means. Some of the important qualities of
neural networks can be summarized as follows:

• They learn by example and can be conditioned to respond correctly
to a stimulus.

• They can automatically perform knowledge abstraction and statis-
tical analyses on data which is presented to them and this infor-
mation becomes encoded into the internal structure of the network.

© 2000 by CRC Press LLC

• They can generalize so as to respond correctly even in the presence
of noise or uncertainty making them suitable for use in poor signal-
to-noise environments.

The use of neural networks for application to IC engine sensing [3],
[13], [14], diagnostic monitoring [14]-[17] and control [18]-[20] is
described in the literature, and new papers appear with increasing
frequency. The contribution that neural networks can make in this area
may be summarized as follows:

• Neural networks can interpret sensory data which is already present,
or available at low cost, so as to extract new information.

• Neural networks can be used for the detection of specific signatures
from new or existing sensors in OBD systems, in order to detect and
identify fault conditions.

• Neural networks, and the related technology, fuzzy systems, can be
valuable in achieving the non-linear mappings necessary for
efficient engine-modeling and the implementation of advanced
control strategies.

The SVC method makes use of the pattern-recognition abilities of the
neural network for the interpretation of spark voltage vectors. The
function of the neural network in this application was to categorize
voltage vectors presented to it, differentiating between vectors
corresponding to different values of lambda. Certain types of neural
network are known to possess useful properties in this area, for
example, the multi-layer perceptron (MLP). The MLP is essentially a
static network, but it is routinely adapted to process dynamic data by
the addition of a tapped delay-line. The delay-line is implemented
algorithmically in software, forming the Time-Delay Neural Network
[21]. It may be considered that the MLP projects n-element vectors,
applied to it as inputs, into n-dimensional input space. Vectors
belonging to different classes occupy different regions of this input-
space. During the back-propagation learning or training process, a
training-file containing exemplar vectors is repeatedly presented to the
MLP, and it iteratively places hyper-plane partitions in such positions
as to separate the classes attributed to the vectors. During the recall or
the operational phase, a vector to be classified is presented to the MLP,

© 2000 by CRC Press LLC

which categorizes it by determining where the vector lies in n-
dimensional space in relation to the hyper-planes [22].

Feed-forward networks with sigmoidal non-linearities, such as the
MLP, are very popular in the literature; however, networks which
incorporate radially symmetric processing elements are more
appropriate for certain classification applications. The Radial Basis
Function (RBF) network is a neural classifier devised in its original
form by Moody and Darken [23], but developed and enhanced by others
[24]. Usually, the hidden layer consists of elements which perform
Euclidean distance calculations, each being followed by a Gaussian
activation function. A clustering algorithm is used to calculate the
appropriate placings for the cluster centers; for example the k-means
algorithm is widely used. In its most elementary form the output layer
performs a linear summation of the non-linear outputs of the basis
function elements. Alternatively, there can be advantages in the use of
the basis neurons as a pre-processing layer for a conventional multi-
layer feed-forward neural network, for example an MLP. The non-
linear transformation effected by the basis neurons can be considered to
move input-vectors into a space of a higher dimension. In some
circumstances, the vectors are more easily separated in this higher-
dimension space, than in space of their intrinsic dimension. In cases
where the topology of the input-space is amenable, the use of RBF
networks can lead to improved classification ability; benefits can also
accrue in terms of shortened convergence times [24].

The neural network architecture best suited to a particular application
depends largely on the topology of the input space (and, of course, on
the criteria chosen for the comparison). However, the two network
paradigms can be briefly compared as follows:

• The MLP achieves a concise division of the input space, with
unbounded or open decision regions, using a comparatively small
number of hidden neurons. The RBF network forms bounded or
closed decision regions, using a much larger number of pattern
(hidden) nodes, to provide a more detailed division of the input
space.

• The MLP generally attains a higher classification speed, in its
operational or recall mode, than a functionally comparable RBF

© 2000 by CRC Press LLC

network. This is due to the more compact representation, which
requires fewer hidden neurons.

8 AFR Estimation using Neural Network
Spark Voltage Characterization

Here, a Virtual Lambda Sensor for the estimation of in-cylinder air-fuel
ratio is described. The system exhibited a similar level of functionality
to the conventional lambda sensor, which determines whether the air-
fuel ratio is rich, correct or weak. However, the Virtual Lambda Sensor
exhibited the advantage that no dedicated hardware sensor was
required.

8.1 The Spark Voltage Characterization Method

The Virtual Lambda Sensor employed the spark voltage characteriz-
ation method. The correlation between the spark-voltage vector and the
lambda-ratio, discussed in Section 6, was exploited by training a neural
network to associate specific spark voltage vectors with lambda-values.
After training, the neural network was able to determine whether the
lambda was correct, rich or weak, when it was presented with a spark
voltage vector obtained from the engine operating with that mixture
strength. It is recognized that factors other than the lambda would also
have an effect on the spark-voltage vector, for example, changes in
speed, load, etc. However, initially, the effect of these other parameters
was ignored, and experiments were conducted under conditions where
only the lambda was varied and other parameters were held constant.
Later phases of the work will be concerned with accommodating
changes in these other engine parameters.

Two stages in the investigation are presented. Firstly, experimental
work using a multi-cylinder engine is described. A number of practical
problems are identified, which lead to the second stage of the
investigation, where a single-cylinder engine is used.

© 2000 by CRC Press LLC

8.2 Neural Network Training Procedure

Figure 4 shows the experimental arrangement that was used. The
engine was equipped with a dynamometer which presented the engine
with a “dummy” load that could be varied as desired. The resulting
load-torque could be measured and the output power calculated. The
throttle setting and air-fuel ratio could be manually adjusted. The air-
fuel ratio that resulted from this adjustment was measured by an
exhaust gas analyzer. The ignition-system was modified by the addition
of a high-voltage test-probe at the spark plug to enable the voltage to be
measured and recorded.

A current transformer was fitted to the high-tension line to permit the
recording of current data. However, no benefit was obtained from the
use of current data and so results are not described.

Engine

Dynamo
-meter

Load

Fuel Pulse
Width

EMU

Throttle

Exhaust

Exhaust
Gas

Analyser

Spark Plug

Spark Plug
Voltage

λ > >
>

>
A-D

Converter
DSP

Pre-Proc. Neural
Custom

Network

Predicted
λ

Measured λ
(training phase)

Figure 4. Spark voltage waveform capture system.

An MLP network, with a single hidden layer, and sigmoidal activation
units, was used as a spark-voltage vector classifier. The architecture is
illustrated in Figure 5. The backpropagation learning algorithm was
applied to the MLP during training, which is a supervised training
paradigm. This required that the training-file contain spark-voltage
vectors, and desired-output vectors. The fuel pulse width and

© 2000 by CRC Press LLC

dynamometer were adjusted to give an engine speed and a lambda-ratio
of the desired values. Instantaneous spark-voltage vectors of the form
Vn = (v1, v2,…,vn) were created by recording the voltage at the spark
plug at measured intervals of time. Each spark-voltage vector was
associated with a desired-output vector, Dr = (0,0,1), Dc = (0,1,0), and
Dw = (1,0,0), depending on whether the lambda-value, measured by the
exhaust gas analyzer, was rich, correct or weak, respectively. Three sets
of spark-voltage vectors and their associated desired-output vectors
were obtained, Sr, Sc and Sw, corresponding to rich, correct and weak
lambda values. These vectors were combined into a single training-file,
F = {Sr ∪ Sc ∪ Sw}. Similar files, having the same construction, but
using data that was not used for training, were created for test purposes.

Input Layer Hidden Layer Output Layer

Input Vector Output Vector

Learning

Algorithm

Weight
Changes

Desired Output
Values

Figure 5. The architecture of the MLP neural network.

The MLP neural network was trained using cumulative back-
propagation. The criterion used to determine when the training process
should be terminated was based on ensuring that all neuron output
values matched the corresponding desired-output value to within a
selected convergence threshold Tc. For example, at the termination of
the learning phase, the output of the jth output neuron is

cj Ty −≥ 1 ∀ jn Sv ∈ and cj Ty ≤ ∀ im Sv ∈ ()ri ,...1= ji ≠ .

© 2000 by CRC Press LLC

8.3 The Multi-Cylinder Engine

An engine test-bed was used that was based on a 1400cc four-cylinder
petrol-fueled spark-ignition engine of the type used in many domestic
motor-cars. The experiments were conducted at a fixed engine speed of
1500 rpm, with an ignition-timing of 10 degrees before TDC and a
wide-open throttle. Stoichiometric, lean and very lean air-fuel ratios
were used which corresponded to lambda-ratios of 1.0, 1.2 and 1.4.
These values of AFR produced output-torque values of 98.5, 85.0 and
62.8 Nm respectively.

8.3.1 Equal Sample Intervals

Three sets of training-files were constructed. Voltage data were
recorded over the full duration of the spark using a fixed sampling
interval for each file. The sampling intervals which were used for the
three files were 10 µs, 20 µs and 40 µs respectively. Similar files were
constructed for testing, using data which was not used for training. An
MLP neural network, which executed a custom C-language
implementation of the cumulative back-propagation algorithm, was
trained using this data. In recall, the test-files were applied to the
trained MLP network, where the output of the neural network was
modified by a layer which executed a winner-takes-all paradigm. Table
1 shows the performance of the system under these conditions.

Table 1. Correct classification rate for various sampling intervals:
single sampling interval.

Sampling Interval
(µs)

40 20 10

Correct Classification Rate
(%)

71 75 74

8.3.2 Unequal Sample Intervals

A second set of measurements was made with emphasis given to the
peak region of the spark by using an increased sampling rate during the
peak region compared to that used during tail times. The aim was to
capture important transient variations in this region. Three training-files
were constructed. Instantaneous voltage measurements were recorded

© 2000 by CRC Press LLC

every 2 µs over the peak region for all three files, and then different
sampling intervals of 10 µs, 20 µs and 40 µs were used for each file
during the remainder of the spark duration. Table 2 shows the results.

Table 2. Correct classification rate for various sampling intervals;
peak region emphasized.

Sampling Interval
(µs)

40 20 10

Correct Classification Rate
(%)

84 80 82

8.3.3 Integration of Instantaneous Values

In an attempt to reduce the effect of the random variations which were
observed in successive spark waveforms, integration of instantaneous
voltage values over a number of cycles was performed. Different
sampling intervals were used during the peak and tail times, as
described in Section 8.3.2, and different scale-factors were applied over
the two regions. An MLP network was trained using training data
which had been pre-processed in this way and a comparison was made
using different sizes of training file. The network was trained using files
containing 45, 60 and 75 training records, and tested in recall using 45
training records which had not been used in training. Table 3 shows the
results that were obtained.

Table 3. Correct classification rate for various numbers of training sets :

data integration used and peak region emphasized.

No Training Records

45 60 75

Correct Classification Rate
(%)

86 87 93

8.3.4 Radial Basis Functions

In order to investigate whether the use of RBF elements would enhance
the classification rate, the data used in Section 8.3.3 were applied to an
RBF pre-processing layer, the outputs of which fed an MLP network.

© 2000 by CRC Press LLC

60%

84% 88%
76% 72%

0%

20%

40%

60%

80%

100%

No of Basis Nodes

Correct
Classification

Rate

20

30

35

40

50

Figure 6. Graph showing correct classification rate for various numbers of
hidden/basis nodes: peak region emphasized.

A version of the k-means clustering algorithm, which used semi-
supervised learning, was applied to the RBF layer during training. The
results which were obtained during recall, when varying numbers of
basis nodes were used, are illustrated in Figure 6.

8.3.5 Discussion

Table 1 shows that the neural network could differentiate between the
different classes of lambda on the basis of the spark voltage vector with
a correct classification rate of between approximately 71 and 75%.
With peak region emphasis, an improvement was obtained, as
illustrated in Table 2, which shows a correct classification rate of
between 80 and 84%. One interpretation of these results is that there
was increased information available in the peak region of the spark. As
the sampling interval was varied between 10 µs and 40 µs, no
significant corresponding variation in classification rate was observed.
The results presented in Table 3 show two things: firstly, an
improvement in classification rate was observed when integration of
instantaneous values was implemented; secondly, further improvements
were obtained as the size of the training file was increased. The best
classification rate that was obtained under these circumstances was
93%. The best classification rate obtainable using the RBF network was
88%, which was worse than the best rate obtained using the MLP
network.

 .

© 2000 by CRC Press LLC

Inspection of the spark waveforms showed that random variations in the
shape of successive spark-voltage vectors occurred even when engine
parameters were kept as close to constant as practicably possible. The
effect could be reduced by the use of integration over successive
engine-cycles, as shown by improved results in Table 3. However, this
could be an obstacle to the use of this technique for cycle-by-cycle
lambda measurement, which is what is ultimately desired.

Observation of the output of the exhaust-gas analyzer showed that there
were wide short-term variations in the lambda-ratio, even when the
engine parameters were kept as constant as practically possible. These
variations could be inherent to engine cyclic variations. A contributory
factor could also be that the lambda value that was measured using the
exhaust-gas analyzer was an average of the lambda in all four cylinders
of the engine. The lambda-value in each cylinder was unlikely to be the
same. The recorded spark-voltage vectors were those from only one of
these four cylinders. The correlation between the spark-voltage vector
obtained from one cylinder and the mean of the lambda-values in all
four cylinders was likely to be poor.

The results in Table 3 indicated that better classification was obtained
as the size of the training-file increased. However, the inherent
instability of the engine made it impossible to maintain constant
conditions for the time necessary to collect the required amount of
training data.

8.4 The Single-Cylinder Engine

A single-cylinder engine offered a number of advantages over a multi-
cylinder power unit. The correlation between the spark voltage vector,
measured at the only spark plug of the single cylinder engine, and the
lambda measured via the exhaust, was likely to be better than was
obtainable in a multi-cylinder unit. The single-cylinder engine would
also be likely to offer inherently increased lambda stability, allowing
the capture of larger quantities of consistent data, which was required
for improved classification.

The experimental arrangement that was used was similar to that shown
in Figure 4, the power unit being a single-cylinder four-stroke engine

© 2000 by CRC Press LLC

that had a capacity of 98.2cc. The engine was modified to enable
manual adjustment to be made to the air-fuel ratio. This was measured
using the same exhaust gas composition analyzer as had been used
before. The ignition timing was fixed at 24 degrees before top-dead-
center. A regenerative electric dynamometer was installed which
allowed the load torque to be adjusted to a desired value.

8.4.1 Single-Speed Test

A fixed engine speed of 2800 rpm was selected. Rich, stoichiometric
and lean air-fuel ratios were used which corresponded to lambda-ratios
of 0.8, 1.0 and 1.2. These values were different to those selected for the
multi-cylinder engine, because of the different characteristics of the two
power units, but comparable for the purpose of this experiment. The
experimental procedure that was described in Section 8.2 was followed.
The MLP neural network was trained using a training-file composed of
spark-voltage vectors and desired-output vectors. In recall, unseen
training data were used. Experiments were conducted with a range of
sample intervals. Under these circumstances the neural network virtual-
sensor was able to determine the correct lambda-value, 0.8, 1.0 or 1.2
with a correct classification rate of approximately 100%. This
performance was superior to that obtained with the multi-cylinder
engine, where the best classification rate obtained was 93% (Table 3).

8.4.2 Multi-Speed Tests

A more comprehensive set of tests was carried out on the single-
cylinder engine using a more closely spaced range of lambda values,
i.e., 0.9, 1.0 and 1.1. A range of speeds and training file sizes was also
used. Spark-voltage vectors and desired-output vectors were recorded at
speeds of 2800 rpm, 3500 rpm and 4200 rpm. These speed-values
corresponded approximately to the lower, middle and upper regions of
the working speed range of the engine. Integration over a number of
successive cycles was used to reduce the effects of random variations.
Three training-files were created, one for each speed. Three similar
files, containing data that was not used during training, were
constructed for test purposes.

In order to investigate the effects of different numbers of training
records, training-files of a number of different sizes were constructed.

© 2000 by CRC Press LLC

The number of records (input-output vector pairs) in the training-file of
an MLP network which leads to optimum classification has been the
subject of much investigation; however, it has not proved amenable to
formal analysis. Investigations described in the literature have indicated
that a number of training-records comparable with, or exceeding, the
number of weights in the network would lead to good classification
ability over a representatively large body of test data. If an MLP
network has P, Q and R neurons in the input, hidden and output layers,
respectively, the number of weights in the network, Nw, equals (P + 1)Q
+ (Q + 1)R. Letting the number of records in the training file be Nt, then
Nt = 1Â1w where 1 is the normalized size of the training file, and
1 < 1 < 10 for good classification performance. The optimum value of 1
depends on the shape of the P-dimensional feature space, which is, in
turn, determined by the problem domain. Generally, large values of 1
lead to better classification and generalization; however, adoption of
this criterion often leads to a large training-file size and an extended
time requirement for network convergence.

80

85

90

95

100

2800 3500 4200

Engine Speed

Correct
Classification

Rate

0.31

0.63

1.25

2.5

Figure 7. Correct classification rate against engine speed for various
normalized training file sizes.

Figure 7 shows the classification performance which was obtained at
different speeds and for different values of 1. At 2800 rpm the neural
network virtual-sensor could determine the lambda-ratio with a correct
classification rate of approximately 100% when either of the largest two
file sizes were used during training. Smaller training file sizes resulted
in poorer classification rates. At higher speeds the classification rate
was not as good. Increasing the size of the training file resulted in an

© 2000 by CRC Press LLC

improvement in performance to an extent; however, only a small
improvement was evident as the 1 is increased from 1.25 to 2.5. This
suggested that the decrease in classification ability was due to some
inherent change in input data as the speed was increased.

No conclusive reason has been found for the decrease in classification
rate with speed and this phenomenon requires further investigation.
There are two suggested possible reasons:

• Increased instability in the engine as the speed is increased could
result in wider variations in the actual lambda-value about the
nominal value. If this was so the signal-to-noise ratio of the data
would effectively increase with the speed. This would impair the
ability of the neural network to correctly categorize the spark
voltage vectors.

• The same sample rate was used for all speeds. At higher speeds
fewer measurements were made per revolution. It is possible that
the reduced classification rate at higher speeds was due to the
worsening of the sampling resolution caused by this.

9 Conclusions

A Virtual Lambda Sensor, using the Spark Voltage Characterization
technique, has been introduced here. The system implements neural
network analysis of the spark-voltage vector, in order to provide an
estimate of the in-cylinder air-fuel ratio. The experimental work shows
that the virtual-sensor can provide analogous functionality to the
conventional lambda-sensor, but without the need for the usual
hardware sensor. The Virtual Lambda Sensor is capable of determining
when the lambda-ratio is stoichiometric, or when it deviates from this
value by approximately ±10% (lambda = 1.0 ± 0.1), with the engine
operating under fixed speed and load conditions.

A description has been given of the relatively early stages of the
development of the technique. To be practicable as a replacement for
the conventional lambda-sensor in a commercial engine, improvements
to the Virtual Lambda Sensor are necessary in two respects: firstly, the
accuracy of the estimation must be improved, 1% is an aim imposed by

© 2000 by CRC Press LLC

the catalytic converter; and secondly, variations in speed, load, etc.,
must be accommodated.

Improved accuracy demands that the neural network is trained with
lambda data which is of higher consistency. Although quantitative
measurements are not presented here, observation of the output voltage
from the exhaust-gas analyzer using an oscilloscope showed that the
lambda-value, under constant engine conditions, could vary from its
nominal value by up to approximately 7%. The accuracy which has
been achieved is probably close to the best achievable using the current
methodology. However, initial results obtained using a more
sophisticated experimental methodology have demonstrated improved
accuracy.

A mechanism for dealing with variations in speed, load, etc., is the
creation of overlays to the neural network weight-matrix for different
physical conditions. However, this is likely to impose a large training
time penalty. Mathematical analysis of the dynamic physical system is
also being implemented to provide guidance about the optimum pre-
processing of the data before it is used in the neural network training
phase.

Acknowledgment

This work was carried out at the Transfrontier Centre for Automotive
Research (TCAR) which is financially supported by the European
Union under the Interreg II Programme of the European Regional
Development Fund, grant number ES/B3/01.

© 2000 by CRC Press LLC

References

[1] Kimberley, W. (1997), “Focus on emissions,” Automotive
Engineer, Vol. 22, No.7, pp. 50-64.

[2] Boam, D.J., Finlay, I.C., Biddulph, T.W., Ma, T.A., Lee, R.,
Richardson, S.H., Bloomfield, J., Green, J.A., Wallace, S., Woods,
W.A. and Brown, P. (1994), “The sources of unburnt hydrocarbon
emissions from spark ignition engines during cold starts and warm-
up,” Proceedings of The Institution of Mechanical Engineers.
Journal of Automobile Engineering, Part D, 208, pp. 1-11.

[3] Atkinson, C.M., Long, T.W. and Hanzevack, E.L. (1998), “Virtual
sensing: a neural network-based intelligent performance and
emissions prediction system for on-board diagnostics and engine
control,” Proceedings of the 1998 SAE International Congress &
Exposition, vol. 1357, pp. 39-51.

[4] Cardini, P. (1999), “Focus on emissions: going for the burn,”
Automotive Engineer, vol. 24, no. 8, pp. 48-52.

[5] Eriksson, L. and Nielsen, L. (1997), “Ionization current
interpretation for ignition control in internal combustion engines,”
Control Engineering Practice, vol. 5, no 8, pp. 1107-1113.

[6] Balles, E.N., VanDyne, E.A., Wahl, A.M., Ratton, K. and Lai,
M.C. (1998), “In-cylinder air/fuel ratio approximation using spark
gap ionization sensing,” Proceedings of the 1998 SAE
International Congress & Exposition, vol. 1356, pp. 39-44.

[7] Ohashi, Y., Fukui, W., Tanabe, F. and Ueda, A. (1998), “The
application of ionic current detection system for the combustion
limit control,” Proceedings of the 1998 SAE International
Congress & Exposition, vol. 1356, pp. 79-85.

[8] Hellring, M., Munther, T., Rognvaldsson, T., Wickstrom, N.,
Carlsson, C., Larsson, M., and Nytomt, J. (1998), “Spark Advance
Control using the Ion Current and Neural Soft Sensors,” SAE
Paper 99P-78.

© 2000 by CRC Press LLC

[9] Hellring, M., Munther, T., Rognvaldsson, T., Wickstrom, N.,
Carlsson, C., Larsson, M. and Nytomt, J. (1998), “Robust AFR
estimation using the ion current and neural networks,” SAE Paper
99P-76.

[10] Champion Spark Plugs. (1987), Straight Talk About Spark Plugs.

[11] NGK Spark Plug Co. Ltd. (1991), Engineering Manual For Spark
Plugs, OP-0076-9105.

[12] Pashley, N.C. (1997), Ignition Systems For Lean-burn Gas
Engines, Ph.D. Thesis, Department of Engineering Science,
University of Oxford, U.K.

[13] Frith, A.M., Gent, C.R. and Beaumont, A.J. (1995), “Adaptive
control of gasoline engine air-fuel ratio using artificial neural
networks,” Proceedings of the Fourth International Conference on
Artificial Neural Networks, no. 409, pp. 274-278.

[14] Ayeb, M., Lichtenthaler, D., Winsel, T. and Theuerkauf, H.J.
(1998), “SI engine modeling using neural networks,” Proceedings
of the 1998 SAE International Congress & Exposition, vol. 1357,
pp. 107-115.

[15] Wu, Z.J. and Lee, A. (1998), “Misfire detection using a dynamic
neural network with output feedback,” Proceedings of the 1998
SAE International Congress & Exposition, vol. 1357, pp. 33-37.

[16] Ribbens, W.B., Park, J., and Kim, D. (1994), “Application of
neural networks to detecting misfire in automotive engines,” IEEE
International Conference on Acoustics, Speech and Signal
Processing, vol. 2, pp. 593-596.

[17] Ortmann, S., Rychetsky, M., Glesner, M., Groppo, R., Tubetti, P.
and Morra, G. (1998), “Engine knock estimation using neural
networks based on a real-world database,” Proceedings of the 1998
SAE International Congress & Exposition, vol. 1357, pp. 17-24.

© 2000 by CRC Press LLC

[18] Muller, R. and Hemberger, H.H. (1998), “Neural adaptive ignition
control,” Proceedings of the 1998 SAE International Congress &
Exposition, vol. 1356, pp. 97-102.

[19] Lenz, U. and Schroder, D. (1998), “Air-fuel ratio control for direct
injecting combustion engines using neural networks,” Proceedings
of the 1998 SAE International Congress & Exposition, vol. 1356,
pp. 117-123.

[20] Baumann, B., Rizzoni, G. and Washington, G. (1998), “Intelligent
control of hybrid vehicles using neural networks and fuzzy logic,”
Proceedings of the 1998 SAE International Congress &
Exposition, vol. 1356, pp. 125-133.

[21] Hush, D.R. and Horne, B.G. (1993), “Progress in supervised neural
networks,” IEEE Signal Processing Magazine, pp. 8-39.

[22] Hush, D.R., Horne, B. and Salas, J.M. (1992), “Error surfaces for
multilayer perceptrons,” IEEE Transactions on Systems, Man and
Cybernetics, vol.22, no.5, pp.1152-1161.

[23] Moody, J. and Darken, C.J. (1989), “Fast learning in networks of
locally tuned processing units,” Neural Computation, vol.1, pp.
281-294.

[24] Leonard, J.A., Kramer, M.A. and Ungar, L.H. (1992), “Using
radial basis functions to approximate a function and its error
bounds” IEEE Transactions on Neural Networks, vol.3, no.4, pp.
625-627.

[25] Fu, L. (1994), Neural Networks in Computer Intelligence,
McGraw-Hill, New York.

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

CHAPTER 10

NEURAL ARCHITECTURES
OF FUZZY PETRI NETS

W. Pedrycz

Department of Electrical & Computer Engineering
University of Alberta, Edmonton

Canada T6G 2G7
&

Systems Research Institute
Polish Academy of Sciences

Warsaw, Poland
pedrycz@ee.ualberta.ca

In this chapter, we discuss a novel approach to pattern classification
using a concept of fuzzy Petri nets. In contrast to the commonly
encountered Petri nets with their inherently Boolean character of
processing tokens and firing transitions, the proposed generalization
involves continuous variables. This extension makes the nets to be fully
in rapport with the panoply of the real-world classification problems.
The introduced model of the fuzzy Petri net hinges on the logic nature
of the operations governing its underlying behavior. The logic-driven
effect in these nets becomes especially apparent when we are concerned
with the modeling of its transitions and expressing pertinent
mechanisms of a continuous rather than an on-off firing phenomenon.
An interpretation of fuzzy Petri nets in the setting of pattern
classification is provided. This interpretation helps us gain a better
insight into the mechanisms of the overall classification process. Input
places correspond to the features of the patterns. Transitions build
aggregates of the generic features giving rise to their logical
summarization. The output places map themselves onto the classes of
the patterns while the marking of the places correspond to the class of
membership values. Details of the learning algorithm are also provided
along with an illustrative numeric experiment.

1 Introduction

In recent years, Petri nets [5] have started to gain in importance in the
areas of knowledge representation, robot planning, and expert systems,
see, for instance, [1], [2], [3], and [4]. Surprisingly, little research has
been done on the use of Petri net in pattern classification. On the other
hand, most classification pursuits are easily formalized in the setting of
Petri nets once these architectures become generalized in a way that
they reflect a continuous character omnipresent in most of the
classification tasks. The approach taken here dwells on the existing
fuzzy set-based augmentation of the generic version of Petri nets [6],
[7]. Fuzzy sets contribute not only to a way in which an issue of partial
firing of the transitions can be addressed but they provide a significant
level of parametric flexibility. This flexibility becomes indispensable in
the case of training of such fuzzy Petri nets – the feature not being
available in their standard binary counterparts. The objective of this
study is to investigate fuzzy Petri nets in the framework of pattern
recognition and make them conceptually and computationally viable as
pattern classifiers.

The material of the chapter is arranged into 7 sections. We start off
with a brief introduction to Petri nets along with their fuzzy set-based
generalization. This generalization helps us capture and formalize the
notion of continuous rather than straight on-off firing mechanism. In
Section 3, we analyze the details of the fuzzy Petri net providing all
necessary computational details. Subsequently, Section 4 deals with a
process of learning in the nets. The main objective of such learning is
to carry out some parametric optimization so that the network can
adjust to the required training set of patterns (being composed of pairs
of marking of input and output places). A way of interfacing fuzzy Petri
nets with the modeling environment is discussed in Section 5.
Numerical experiments are reported in Section 6 while conclusions are
covered in Section 7.

© 2000 by CRC Press LLC

2 The Generalization of the Petri Net and
Its Underlying Architecture

Let us briefly recall the basic concept of a Petri net. Formally speaking,
a Petri net [4], [5] is a finite graph with two types of nodes, known as
places (P) and transitions (T). More formally, the net can be viewed as
a triple (P, T, F) where

∅=∩ TP

∅≠∪ TP

)PT()TP(F ×∪×⊆

TP)F(codomain)F(domain ∪=∪

In the above, F is called the flow relation. The elements of F are the
arcs of the Petri net.

Each place comes equipped with some tokens that form a marking of
the Petri net. The flow of tokens in the net occurs through firings of the
transitions; once all input places of a given transition have a nonzero
number of tokens, this transition fires. Subsequently, the tokens are
allocated to the output places of the transition. Simultaneously, the
number of tokens at the input places is reduced. The effect of firing of
the transitions is binary: the transition either fires or does not fire.

An important generalization of the generic model of the Petri net is to
relax the Boolean character of the firing process of the transition.
Instead of subscribing to the firing-no firing dichotomy, we propose to
view the firing mechanism as a gradual process with a continuum of
possible numeric values of the strength (intensity) of firing of a given
transition. Then the flow of tokens can also take this continuity into
consideration meaning that we end up with the marking of the places
that become continuous as well. Evidently, such a model is in rapport
with a broad class of real-world phenomena including pattern
classification. The generalization of the net along this line calls for a
series of pertinent realization details. In what follows, we propose a
construct whose functioning adheres as much as possible to the logic
fabric delivered by fuzzy sets. In this case, a sound solution is to adopt

© 2000 by CRC Press LLC

the ideas of fuzzy logic as the most direct way of implementation of
such networks.

3 The Architecture of the Fuzzy Petri Net

The topology of the fuzzy Petri net as being cast in the framework of
pattern classification is portrayed in Figure 1. As it will be shown
further on, this setting nicely correlates with the classification activities
encountered in any process of pattern recognition.

input places transitions output places

input layer transition layer output layer
Figure 1. A general three layer topology of the fuzzy Petri net.

The network constructed in this manner comprises three layers:

• an input layer composed of “n” input places;

• a transition layer composed of “hidden” transitions;

• an output layer consisting of “m” output places.

© 2000 by CRC Press LLC

The input place is marked by the value of the feature (we assume that
the range of the values of each of the features is in the unit interval).
These marking levels are processed by the transitions of the network
whose levels of firing depend on the parameters associated with each
transition such as their threshold values and the weights (connections)
of the incoming features. Subsequently, each output place corresponds
to a class of patterns distinguished in the problem. The marking of this
output place reflects a level of membership of the pattern in the
corresponding class.

The detailed formulas of the transitions and output places rely on the
logic operations encountered in the theory of fuzzy sets. The i-th
transition (more precisely, its activation level zi) is governed by the
expression

)xr(sw[Tz jijij

n

1j
i →=

=
], j = 1, 2, …, n; i = 1, 2, …, hidden,

where:

- wij is a weight (connection) between the i-th transition and the j-th
input place;

- rij is a threshold level associated with the level of marking of the j-th
input place and the i-th transition; and

- the level of marking of the j-th input place is denoted by xj

Moreover, “t” is a t-norm, “s” denotes an s-norm, while → stands for
an implication operation expressed in the form

}batc|]1,0[csup{ba ≤∈=→ (1)

where a, b are the arguments of the implication operator confined to the
unit interval. Note that the implication is induced by a certain t-norm.
In the case of two-valued logic, (1) returns the same truth values as the
commonly known implication operator, namely

 ==

=

 >

=→
otherwise 1,

0b and 1a if ,0

otherwise 1,

ba if ,b
ba a, b ∈{0,1}

© 2000 by CRC Press LLC

The j-th output place (more precisely, its marking yj) summarizes the
levels of evidence produced by the transition layer and performs a
nonlinear mapping of the weighted sum of the activation levels of these
transitions (zi) and the associated connections vji

yj = f(∑
=

hidden

1i
iji zv), j = 1, 2, …, m (2)

where “f” is a nonlinear monotonically increasing function (mapping)
from R to [0,1].

The role of the connections of the output places is to modulate an
impact the firing of the individual transition exhibits on the
accumulation of the tokens at this output place (viz. the membership
value of the respective class). The negative values of the connections
have an inhibitory effect meaning that the value of the class
membership becomes reduced.

Owing to the type of the aggregation operations being used in the
realization of the transitions, their interpretation sheds light on the way
in which the individual features of the problem are treated. In essence,
the transition produces some higher level, synthetic features out of
these originally encountered in the problem and represented in the form
of the input places. The weight (connection) expresses a global
contribution of the j-th feature to the i-th transition: the lower the value
of wij , the more significant the contribution of the feature to the
formation of the synthetic aggregate feature formed at the transition
level. The connection itself is weighted uniformly regardless of the
numeric values it assumes. The more selective (refined) aggregation
mechanism is used when considering threshold values. Referring to (1),
one easily finds that the thresholding operation returns 1 if xj exceeds
the value of the threshold rij . In other words, depending on this level of
the threshold, the level of marking of the input place becomes
“masked” and the threshold operation returns one. For the lower values
of the marking, such levels are processed by the implication operation
and contribute to the overall level of the firing of the transition.

One should emphasize that the generalization of the Petri net proposed
here is in full agreement with the two-valued generic version of the net
commonly encountered in the literature. Consider, for instance, a single

© 2000 by CRC Press LLC

transition (transition node). Let all its connections and thresholds be
restricted to {0, 1}. Similarly, the marking of the input places is also
quantified in a binary way. Then the following observations are valid:

- only those input places are relevant to the functioning of the i-th
transition for which the corresponding connections are set to zero
and whose thresholds are equal to 1. Denote a family of these
places by 3

- the firing level of the i-th transition is described by the following
formula,

)xr(Tz jij

n

Pj
i →=

∈

It becomes apparent that the firing level is equal to 1 if and only if the
marking of all input places in 3 assume 1; the above expression for the
transition is nothing but an and-combination of the levels of marking of
the places in 3, namely

j

n

Pj
i xTz

∈
=

(let us recall that any t-norm can be used to model the and operation;
moreover all t-norms are equivalent when operating on the 0-1 truth
values).

4 The Learning Procedure

The learning completed in the fuzzy Petri net is the one of parametric
nature, meaning that it focuses on changes (updates) of the parameters
(connections and thresholds) of the net. The structure of the net is left
unchanged. These updates are carried in such a way so that a certain
predefined performance index becomes minimized. To help concentrate
on the detailed derivation of the learning formulas, it is advantageous to
view a fully annotated portion of the network as illustrated in Figure 2.

© 2000 by CRC Press LLC

input layer

zi

transition layer output layer

rij

wij

vki
yk

Figure 2. Optimization in the fuzzy Petri net; a section of the net outlines all
notation being used in the learning algorithm.

The performance index to be minimized is viewed as a standard sum of
squared errors. The errors are expressed as differences between the
levels of marking of the output places of the network and their target
values. The considered on-line learning assumes that the modifications
to the parameters of the transitions and output places occur after
presenting an individual pair of the training sets, say marking of the
input places (denoted by x) and the target values (namely, the required
marking of the output places) expressed by t. Then the performance
index for the input-output pair reads as

∑
=

−=
m

1k

2
kk)yt(Q (3)

The updates of the connections are governed by the standard gradient-
based method

Q)iter()1iter(paramparamparam ∇−=+ α (4)

where ∇paramQ is a gradient of the performance index Q taken with
respect to the parameters of the fuzzy Petri net. The iterative character
of the learning scheme is underlined by the parameter vector regarded
as a function of successive learning epochs (iterations).

© 2000 by CRC Press LLC

The intensity of learning is controlled by the positive learning rate (α).
In the above scheme, the vector of the parameters, param, is used to
encapsulate all the elements of the structure to be optimized. Further on
they will be made more detailed, as we will proceed with a complete
description of the update mechanism. With the quadratic performance
index (3) in mind, the following holds

∑
=

∇−−=∇
m

1k
kkk y)yt(2Q paramparam

Moving into detailed formulas refer again to Figure 2. Moreover, the
nonlinear function associated with the output place (2) is a standard
sigmoid nonlinearity described as

)zexp(1

1
y

k
k −+

=

For the connections of the output places we obtain

ikk
ki

k z)y1(y
v

y
−=

∂
∂

k=1, 2, …,m, i=1, 2, …, hidden. Observe that the derivative of the
sigmoidal function is equal to yk(1 – yk).

Similarly, the updates of the threshold levels of the transitions of the
net are expressed in the form

ij

i

i

k

ij

k

r

z

z

y

r

y

∂
∂

∂
∂

=
∂
∂

 i=1, 2, …,n.

In the sequel, we obtain

kikk
i

k v)y1(y
z

y
−=

∂
∂

and

)xr(
r

)w1(A))xr(w)xr(w(
r

A
r

z
jij

ij
ijjijijjijij

ijij

i →
∂
∂−=→−→+

∂
∂=

∂
∂

© 2000 by CRC Press LLC

where the new expression, denoted by A, is defined by taking the t-
norm over all the arguments but “j”,

)]xr(sw[TA lilil

n

jl
1l

→=
≠
=

The calculations of the derivative of the implication operation can be
completed once we confine ourselves to some specific realization of the
t-norm that is involved in its development. For the product (being a
particular example of the t-norm), the detailed result reads as

 >−=

 >

∂
∂=→

∂
∂

otherwise ,0

xr if ,
r

x

otherwise ,1

xr if ,r
x

r
)xr(

r
jij

ij
2

j
jij

ij

j

ij
jij

ij

The derivatives of the connections of the transitions (transition nodes)
are obtained in a similar way. We get

ij

i

i

k

ij

k

w

z

z

y

w

y

∂
∂

∂
∂

=
∂
∂

 k=1, 2, …,m, i=1, 2, …,hidden, j=1, 2,…,n

Subsequently, one derives

))xr(1(A))xr(w)xr(w(
w

A
w

z
jijjijijjijij

ijij

i →−=→−→+
∂

∂=
∂
∂

There are two aspects of further optimization of the fuzzy Petri nets
that need to be raised in the context of their learning:

• the number of nodes in the transition layer. The optimization of the
number of the transition nodes of the fuzzy Petri net falls under the
category of structural optimization that cannot be handled by the
gradient-based mechanisms of the parametric learning. By
increasing the number of these nodes, we enhance the mapping
properties of the net as each transition can be fine-tuned to fully
reflect the boundaries between the classes. Too many of these
transitions, however, could easily develop a memorization effect
that is well-known in neural networks.

© 2000 by CRC Press LLC

• the choice of specific t-norm and s-norm. This leads us to an aspect
of a semi-parametric optimization of the fuzzy Petri net. The choice
of these norms does not impact the architecture of the net; yet in
this optimization we cannot resort ourselves to the gradient-based
learning. A prudent way to follow would be to confine to a family
of t-norms and s-norms that can be systematically exploited one by
one.

5 Interfacing Fuzzy Petri Nets with
Granular Information

In addition to the design of the fuzzy Petri net, we are also concerned
with its interfacing of the environment in which it has to perform. It is
accomplished by defining a certain functional module that helps
transform physical entities coming from the environment into more
abstract and logic-inclined entities to be used directly by the fuzzy Petri
net. The essence of such interfaces is in information granulation and the
use of such granules as a bridge between a numeric information
generated by the physical environment and the logical layer of
information granules visible at the level of the Petri net itself. In what
follows, we elaborate on these two phases in more detail:

(i) Construction of information granules. The granulation of
information can be carried out in different ways. The use of Fuzzy C-
Means or other fuzzy clustering technique is a viable way to follow. Let
us briefly recall that the crux of clustering is to form information
granules – fuzzy sets (fuzzy relations) – when starting from a cloud of
numeric data. The result of clustering comes in the form of the
prototypes of the clusters and a fuzzy partition summarizing a way the
entire data set becomes divided (split) into clusters. As the name
stipulates, the partitioning assigns elements to different clusters to some
degree with the membership values between 0 and 1. For “c” clusters
we end up with “c” prototypes, v1, v2, …, vc.

(ii) Determination of the activation levels of information granules. Any
new input x “activates” the i-th cluster according to the formula

© 2000 by CRC Press LLC

∑
= −

=
c

1i
2

j

2
i

i

||||

||-||

1
)(u

vx

vx
x

where ||.|| is a distance function defined between x and the respective
prototype. The calculations shown above form a core of the interface
structure of the fuzzy Petri net, see Figure 3. The activation levels are
directly used as the marking of the input places.

Information granules
Fuzzy Petri net

X

Figure 3. Interfacing the world with the fuzzy Petri net.

An important issue arises when the input (x) is not numeric but comes
as some less specific information granule. In particular, we may
anticipate a granular information represented in the form of a certain
numeric interval, see Figure 4.

X
v1.0

Figure 4. An interval-based information granule and distance calculations.

Taking into consideration the interval-based information granule, the
distance function needs some modification. The calculations are carried
out in the form

||vz||min||vX|| iXzi −=− ∈

© 2000 by CRC Press LLC

where X is the numeric granule. (Note that the above formula deals
with a certain coordinate of x and prototype v, say x and v.) These
computations provide us with an optimistic (that is minimal) value of
the distance function. This, in turn, activates the linguistic granules to a
higher extent in comparison to what it would have been in the pure
numeric case. Subsequently, the activation levels sum up to the value
higher than 1 (recall that this sum of the activation levels is always
equal to one in the case of numeric inputs coming from the modeling
environment). In this sense this sum (or its departure from one) can
serve as a useful indicator of the granularity level of the input
information.

To quantify this observation, we discuss a one-dimensional case and
consider three prototypes located at 1.0, 4.0, and 7.0, respectively. The
nonnumeric information is represented as an interval distributed around
x with the bounds located at x–d and x+d.The distance is computed as
discussed above. The plots of the activation of the first information
granule distributed around 1.0 are illustrated in Figure 5.

Subsequently, Figure 6 visualizes a sum of the activation levels of the
linguistic granules implied by the interval-valued input. Observe that
with the increase of “d”, the sum starts to exceed 1.

6 Experiments

In this section, we discuss some experimental results. For illustrative
purposes we focus on the classification problems that involve only two
features.

Experiment 1. The patterns themselves are generated by two fuzzy
functions

)xt)s(xtxx()x,(xf 2121211 =

)x(s)2.0tx()x,x(f 21212 = (5)

In these two functions, the t- and s-norms are implemented using the
product (atb=ab) and probabilistic sum (asb=a+b–ab), respectively,
a,b∈[0,1]. The overbar denotes a complement of the feature’s value,

© 2000 by CRC Press LLC

x = 1 – x, x∈[0,1]. Note that the first function is a multivalued (fuzzy)
Exclusive-Or function (XOR) whereas the second one assumes its high
truth values at the upper corner of the unit square. The values assumed
by these two functions are treated as continuous class memberships.
The two variables of the functions form the features. The plots
contained in Figures 7 and 8 portray the functions themselves as well as
the classification boundaries occurring between the classes (viz. the
curves along which the membership grades in two classes are equal).

2 3 4 5 6 7 8 9 10 11 12

0.00

0.25

0.50

0.75

1.00

x

d=0.0

d=0.5

d=2.0

d=3.0

Figure 5. Activation level (membership grade) of the first prototype regarded
as a function of x for selected values of information granularity (d).

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

1.00

1.25

1.50

1.75

2.00 Σ

x

d=0.5

d=2.0d=3.0

Figure 6. Sum of activation levels (Σ) of the linguistic granules for some
selected values of “d”.

© 2000 by CRC Press LLC

(a)

(b)

Figure 7. Plots of the two logic functions used in the experiment (a) f1 and (b) f2.

© 2000 by CRC Press LLC

Figure 8. Classification boundaries between the classes.

Note that the problem itself is nonlinear; furthermore the classification
boundaries give rise to the disjoint classification regions.

Let us now set up a topology of the fuzzy Petri net. The network has
four input places. These correspond to the two original features and
their complements. The output layer consists of two output places
reflecting the number of the classes occurring in the classification
problem. The number of transitions (viz. the size of the transition layer,
denoted by “hidden”) varies from 2 to 8 throughout the topologies of
the Petri nets. The learning was completed in an on-line version
meaning that the updates of the connections (parameters) of the Petri
net are carried out for each input-output pair of the training data. The
experiment involves a standard training-testing scenario: the training
was done based on 100 patterns generated randomly (over [0,1]× [0,1])
from the model (5); the testing set involves another 100 patterns again
governed by (5). The corresponding data sets are illustrated in Figures
9 and 10.

The learning rate (α) was set to 0.02; the intent was to assure a stable
learning process not allowing for any oscillations. Obviously, one can
increase the value of the learning rate and therefore accelerate learning

© 2000 by CRC Press LLC

without sacrificing its stability. Nevertheless, the issue of efficiency of
learning was not a primary concern in this experiment. This is
particularly so, as the learning itself is rather fast and does not require a
significant number of learning epochs.

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(b)

Figure 9. A set of training data (100 patterns): (a) first class, and (b) second
class; the darker the pattern, the lower its class membership grade.

© 2000 by CRC Press LLC

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(b)

Figure 10. A set of testing data (100 patterns): (a) first class, and (b) second
class; the darker the pattern, the lower its class membership grade.

The learning results summarized in the form of the performance index
are provided in Table 1. They show the behavior of the fuzzy Petri net
on the training set vis-à-vis the results obtained for the testing set.
Several conclusions can be drawn from these results:

© 2000 by CRC Press LLC

Table 1. Performance of the fuzzy Petri net (training and testing set) for
various number of the transition nodes.

number of
transition nodes

2 3 4 5 6 7 8

training set 2.367 0.140 0.079 0.069 0.070 0.050 0.062
testing set 2.155 0.121 0.069 0.067 0.053 0.043 0.073

- It becomes apparent that the number of transition nodes equal to 4

gives rise to a useful architecture that is not excessively large and
still produces good classification results. Going toward a higher
number of the transition nodes and eventually accepting an
excessive size of the network does not yield a significant decrease
in the values of the optimized performance index.

- There is an apparent jump in the performance of the network
equipped with two transitions and the other versions of the net
equipped with three or more transitions.

The following series of figures, Figures 11 to 13, illustrate more details
dealing with the learning and performance of the fuzzy Petri net. This
concerns a way in which the learning proceeds, visualizes the resulting
firing levels of the transitions of the net, and illustrates the values of the
classification errors reported for the individual patterns.

0 100 200 300 400

1e-02

1e-01

1e+00

1e+01

1e+02

learning epoch
Figure 11. Performance index Q in successive learning epochs.

© 2000 by CRC Press LLC

(a)

(b)

Figure 12. Characteristics of the transitions (transition nodes) regarded as
functions of input variables x1 and x2 (continued on next page).

© 2000 by CRC Press LLC

(c)

(d)

Figure 12 (continued).

© 2000 by CRC Press LLC

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

data
(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

data
(b)

Figure 13. Results of the network and the data: (a) first output; (b) second output.

The connections of the classifier are provided in the form of the
following matrices (that are the connections and thresholds of the fuzzy
Petri net):

© 2000 by CRC Press LLC

W =

0.2966 0.6169 0.3866 0.0018

0.9950 0.9031 0.0332 0.0016

0.9986 0.4364 0.7385 0.9956

0.0066 0.0838 0.9968 0.9843

R =

0.8697 0.2157 0.0000 0.7429

0.9749 0.6158 0.9763 0.9106

0.7987 0.9722 0.0000 0.5869

0.8721 0.2364 0.2674 0.0000

V =

0.8616- 3.2047 2.1980- 0.6068

3.6591 4.3472- 2.1462 3.8568-

Experiment 2. Here we study two other two-variable fuzzy functions
governed by the expressions

]x)x1[(s)]x1)(sx3.0[()x,x(f 2121211 −−=

))]x1(s4.0)(x1[(s]xx[)x,x(f 1221212 −−=

As a matter of fact, these give rise to the generalization of the
exclusive-OR problem. The functions are also shown in Figure 14. The
class boundaries clearly underline the nonlinear character of the
classification problem, see Figure 15.

The results of learning for different sizes of the hidden layer (that is the
number of transitions) are summarized in Table 2. Apparently the
minimized error becomes significantly reduced at h = 5 and afterwards
remains fairly stable (this effect is visible for both the learning and
testing set).

Table 2. Performance of the fuzzy Petri net (both training and testing set) for
various number of the transition nodes.

number of
transition nodes

2 3 4 5 6 7 8

learning set 4.6357 0.5376 0.3087 0.0415 0.0424 0.0487 0.0463
testing set 6.0824 0.6922 0.4991 0.0986 0.1169 0.1057 0.0976

© 2000 by CRC Press LLC

(a)

(b)

Figure 14. 3-D plots of the two-variable logic functions, f1(a) and f2(b).

© 2000 by CRC Press LLC

Figure 15. Classification boundaries in the two-class classification problem.

7 Conclusions

In this chapter, we have proposed a new approach to pattern
classification, dwelling on the concept of the fuzzy Petri net. Two
features of this architecture are definitely worth underlining. The first
one concerns a transparent form of the classification model where each
component of the fuzzy Petri net (places and transitions) comes as a
clearly defined functional entity. The elements in the transition layer
give rise to the combination of the original features thus producing new
aggregates (synthetic features). The output places are used to aggregate
evidence about class membership. Secondly, the Petri network exhibits
a high level of parametric flexibility by coming equipped with a
significant number of adjustable parameters (such as threshold levels of
the transitions and the connections of the transition nodes as well as the
output places).

The complete learning scheme has been proposed and illustrated with
the aid of numeric examples. While the experiments dealt primarily
with some specific forms of the t- and s-norms, it would be advisable to
experiment with a wide range of such logic operators and view this as

© 2000 by CRC Press LLC

an extra component of flexibility available in the design of such
generalized Petri nets. The neuro-like style of performance of the
proposed Petri net model being applied to classification problems
provides us with a different and definitely interesting insight into the
classification activities that is primarily based on features viewed as
important resources utilized toward pattern classification.

The study has laid down the fundamentals of the new and general
pattern recognition scheme. More specific application areas worth
revisiting in this setting deal with scene analysis and computer vision
where one can easily encounter parallel threads of classification
pursuits.

Acknowledgment

Support from the Natural Sciences and Engineering Research Council
of Canada (NSERC) is gratefully acknowledged.

References

[1] Cao, W.T. and Sanderson, A.C. (1995), “Task sequence planning
using fuzzy Petri nets,” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 25, pp. 755-768.

[2] Garg, M.L., Ahson, S.I., and Gupta, P.V. (1991), “A fuzzy Petri
net for knowledge representation and reasoning,” Information
Processing Letters, vol. 39, pp. 165-171.

[3] Konar, A. and Mandal, A.K. (1996), “Uncertainty management in
expert systems using fuzzy Petri nets,” IEEE Trans. on Knowledge
and Data Engineering, vol. 8, pp. 96-105.

[4] Looney, C.G. (1988), “Fuzzy Petri nets for rule-based decision
making,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 18,
pp. 178-183.

[5] Murata, T. (1989), “Petri nets: properties, analysis, and
applications,” Proc. of the IEEE, vol. 77, pp. 541-580.

© 2000 by CRC Press LLC

[6] Pedrycz, W. and Gomide, F. (1994), “A generalized fuzzy Petri net
model,” IEEE Trans. on Fuzzy Systems, vol. 2, pp. 295-301.

[7] Pedrycz, W. (1997), Fuzzy Sets Engineering, CRC Press, Boca
Raton, Fl.

© 2000 by CRC Press LLC

	Recent Advances in Artificial Neural Networks - Design and Applications
	International Series on Computational Intelligence
	Preface
	Copyright
	The Editors
	Contents
	1.A NEURO-SYMBOLIC HYBRID INTELLIGENT ARCHITECTURE WITH APPLICATIONS
	1 Introduction
	2 Knowledge Based Module for Represen-tation of Initial Domain Knowledge
	3 Extraction of Supplementary Rules via the Statistical Analysis Module
	3.1 Extraction of Correlation Rules
	3.2 Reducing the Input Dimensionality

	4 The Mapping Module
	5 The Discretization Module
	6 Refining Input Characterization
	7 Rule Extraction
	7.1 First Technique (BIO-RE)
	7.2 Second Technique (Partial-RE)
	7.3 Third Technique (Full-RE)

	8 Rule Evaluation and Ordering Proce-dure for the Refined Expert System
	8.1 The Rule Ordering Procedure

	9 The Integrated Decision Maker
	10 Application: Controlling Water Reservoirs
	10.1 Implementation Results
	10.2 Rule Extraction

	11 Application of the Statistical Approach
	12 Discussion
	Acknowledgments
	References

	2.NEW RADIAL BASIS NEURAL NETWORKS AND THEIR APPLICATION IN A LARGE- SCALE HANDWRITTEN DIGIT RECOGNITION PROBLEM
	1 Introduction
	2 Function Approximation Models and RBF Neural Networks
	3 Reformulating Radial Basis Neural Networks
	4 Admissible Generator Functions
	4.1 Linear Generator Functions
	4.2 Exponential Generator Functions

	5 Selecting Generator Functions
	5.1 The Blind Spot
	5.2 Criteria for Selecting Generator Functions
	5.3 Evaluation of Linear and Exponential Generator Functions

	6 Learning Algorithms Based on Gradient Descent
	6.1 Batch Learning Algorithms
	6.2 Sequential Learning Algorithms
	6.3 Initialization of Supervised Learning

	7 Generator Functions and Gradient Descent Learning
	8 Handwritten Digit Recognition
	8.1 The NIST Databases
	8.2 Data Preprocessing
	8.3 Classification Tools for NIST Digits
	8.4 Role of the Prototypes in Gradient Descent Learning
	8.5 Effect of the Number of Radial Basis Functions
	8.6 Effect of the Initialization of Gradient Descent Learning
	8.7 Benchmarking Reformulated RBF Neural Networks

	9 Conclusions
	References

	3.EFFICIENT NEURAL NETWORK-BASED METHODOLOGY FOR THE DESIGN OF MULTIPLE CLASSIFIERS
	1 Introduction
	2 Proposed Methodology
	2.1 Data Quantization Using Self-Organizing Maps
	2.2 Training Set Reduction and Classification of SOFM Prototypes for Supervised Techniques
	2.3 Fast Clustering and Labeling of SOFM Prototypes for Unsupervised Techniques
	2.4 Efficient Indexed Classification

	3 Modifications of Supervised Algorithms
	3.1 Classification Using the BP Algorithm
	3.2 Classification Using the LVQ Algorithm
	3.3 The Pal-Majumder Fuzzy Classifier
	3.4 Classification Using the
	NN Algorithm

	4 Multimodular Classification
	5 Land-Cover Classification
	5.1 Supervised Classification
	5.2 Multimodular Classification
	5.3 Unsupervised Classification

	6 Summary
	References

	4.LEARNING FINE MOTION IN ROBOTICS: DESIGN AND EXPERIMENTS
	1 How to Find the Path?
	2 The Model-Based System
	3 The Sensor-Based System
	4 Perception Clustering
	5 Action Triggering
	6 All Together
	7 Why Use a SOM-Like Network?
	8 Planner Vs. HEKM
	9 Conclusions
	Acknowledgments
	References

	5.A NEW NEURAL NETWORK FOR ADAPTIVE PATTERN RECOGNITION OF MULTICHANNEL INPUT SIGNALS
	1 Introduction
	2 Architecture and Functionality of MART
	2.1 Bottom-Up Propagation in a Single-Channel Block
	2.2 Class Selection
	2.3 Top-Down Propagation in a Single-Channel Block
	2.4 The Orientation System
	2.5 Class Manager

	3 Learning in MART
	3.1 Expected Values
	3.2 Channel Credits
	3.3 Class Radii
	3.4 Global Vigilances
	3.5 Other Characteristics

	4 Analysis of the Behavior of Certain Adaptive Parameters
	5 A Real Application Example
	6 Discussion
	Acknowledgments
	References

	6.LATERAL PRIMING ADAPTIVE RESONANCE THEORY (LAPART)-2: INNOVATION IN ART
	1 Introduction
	2 ART-1, Stacknet, and LAPART-1
	2.1 Binary Patterns
	2.2 ART-1 Architecture
	2.3 Stacknet
	2.4 LAPART-1

	3 The LAPART-2 Algorithm
	3.1 Forcing Learning to Occur
	3.2 Constraints on the Input Data

	4 The Learning Theorems
	5 Numerical Experiments
	5.1 Method
	5.2 Results

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

	7.NEURAL NETWORK LEARNING IN A TRAVEL RESERVATION DOMAIN
	1 Introduction
	2 Agents
	3 Neural Network Role
	4 Agent Architecture
	4.1 Problem Domain
	4.2 Data
	4.3 Network Training

	5 Operation
	6 Summary
	References

	8.RECENT ADVANCES IN NEURAL NETWORK APPLICATIONS IN PROCESS CONTROL
	1 Introduction
	2 Process Control
	3 Use of Neural Networks in Control
	4 Case Study I: pH Control in Neutralization System
	4.1 Neutralization System
	4.2 Neural Network Control of the Neutralization System
	4.3 Results
	4.3.1 Conventional PID Controller Performance
	4.3.2 NN Controller Performance

	5 Case Study II: Adaptive Nonlinear-Model Predictive Control Using Neural Networks for Control of High Purity Industrial Distillation Column
	5.1 Multicomponent High Purity Distillation Column
	5.2 Adaptive Nonlinear-Model Predictive Controller Using Neural Networks
	5.2.1 Linear Model Predictive Controller
	5.2.2 Nonlinear-Model Predictive Controller
	5.2.3 Adaptive Nonlinear-Model Predictive Controller via Neural Networks

	5.3 Identification
	5.4 Development of the Neural Network Model
	5.5 Control Application

	6 Case Study III: PI Controller for a Batch Distillation Column with Neural Network Coefficient Estimator
	6.1 Binary Batch Distillation Column
	6.2 PI Controller with Neural Network as a Parameter Estimator
	6.3 Results

	7 Case Study IV: A Rule-based Neuro-Optimal Controller for Steam- Jacketed Kettle
	7.1 Analysis of the Kettle
	7.2 A Rule-Based Neuro-Optimal Controller for Nonlinear MIMO Systems
	7.2.1 MIMO Systems
	7.2.2 Rule Derivation
	7.2.3 Neural Network

	7.3 Results

	8 Remarks and Future Studies
	Acknowledgments
	References

	9.MONITORING INTERNAL COMBUSTION ENGINES BY NEURAL NETWORK BASED VIRTUAL SENSING
	1 Introduction
	2 The Engine Management System
	3 Virtual Sensor Systems
	4 Air-Fuel Ratio
	5 Combustion Monitoring Using the Spark Plug
	6 The Ignition System of a Spark-Ignition Engine
	7 Neural Networks for Use in Virtual Sensors
	8 AFR Estimation using Neural Network Spark Voltage Characterization
	8.1 The Spark Voltage Characterization Method
	8.2 Neural Network Training Procedure
	8.3 The Multi-Cylinder Engine
	8.3.1 Equal Sample Intervals
	8.3.2 Unequal Sample Intervals
	8.3.3 Integration of Instantaneous Values
	8.3.4 Radial Basis Functions
	8.3.5 Discussion

	8.4 The Single-Cylinder Engine
	8.4.1 Single-Speed Test
	8.4.2 Multi-Speed Tests

	9 Conclusions
	Acknowledgment
	References

	10.NEURAL ARCHITECTURES OF FUZZY PETRI NETS
	1 Introduction
	2 The Generalization of the Petri Net and Its Underlying Architecture
	3 The Architecture of the Fuzzy Petri Net
	4 The Learning Procedure
	5 Interfacing Fuzzy Petri Nets with Granular Information
	6 Experiments
	7 Conclusions
	Acknowledgment
	References

