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Preface

“Only a small community has concentrated on general intelligence. No
one has tried to make a thinking machine ...

The bottom line is that we really haven’t progressed too far toward a
truly intelligent machine. We have collections of dumb specialists in
small domains; the true magesty of general intelligence still awaits our
attack. ...

We have got to get back to the deepest questions of AI and general
intelligence...”

— Marvin Minsky
as interviewed in Hal’s Legacy, edited by David Stork, 2000.

Our goal in creating this edited volume has been to fill an apparent gap
in the scientific literature, by providing a coherent presentation of a body of
contemporary research that, in spite of its integral importance, has hitherto
kept a very low profile within the scientific and intellectual community. This
body of work has not been given a name before; in this book we christen it
“Artificial General Intelligence” (AGI). What distinguishes AGI work from
run-of-the-mill “artificial intelligence” research is that it is explicitly focused
on engineering general intelligence in the short term. We have been active
researchers in the AGI field for many years, and it has been a pleasure to
gather together papers from our colleagues working on related ideas from
their own perspectives. In the Introduction we give a conceptual overview of
the AGI field, and also summarize and interrelate the key ideas of the papers
in the subsequent chapters.

Of course, “general intelligence” does not mean exactly the same thing
to all researchers. In fact it is not a fully well-defined term, and one of the
issues raised in the papers contained here is how to define general intelligence
in a way that provides maximally useful guidance to practical AT work. But,



VI Preface

nevertheless, there is a clear qualitative meaning to the term. What is meant
by AGI is, loosely speaking, Al systems that possess a reasonable degree of
self-understanding and autonomous self-control, and have the ability to solve
a variety of complex problems in a variety of contexts, and to learn to solve
new problems that they didnt know about at the time of their creation. A
marked distinction exists between practical AGI work and, on the other hand:

e Pragmatic but specialized “narrow AI” research which is aimed at cre-
ating programs carrying out specific tasks like playing chess, diagnosing
diseases, driving cars and so forth (most contemporary Al work falls into
this category.)

e Purely theoretical Al research, which is aimed at clarifying issues regarding
the nature of intelligence and cognition, but doesnt involve technical details
regarding actually realizing artificially intelligent software.

Some of the papers presented here come close to the latter (purely theo-
retical) category, but we have selected them because the theoretical notions
they contain seem likely to lead to such technical details in the medium-term
future, and/or resonate very closely with the technical details of AGI designs
proposed by other authors.

The audience we intend to reach includes the Al community, and also the
broader community of scientists and students in related fields such as philoso-
phy, neuroscience, linguistics, psychology, biology, sociology, anthropology and
engineering. Significantly more so than narrow AI, AGI is interdisciplinary in
nature, and a full appreciation of the general intelligence problem and its
various potential solutions requires one to take a wide variety of different
perspectives.

Not all significant AGI researchers are represented in these pages, but we
have sought to bring together a multiplicity of perspectives, including many
that disagree with our own. Bringing a diverse body of AGI research together
in a single volume reveals the common themes among various researchers work,
and makes clear what the big open questions are in this vital and critical area
of research. It is our hope that this book will interest more researchers and
students in pursuing AGI research themselves, thus aiding in the progress of
science.

In the three years that this book has been in the making, we have noticed
a significant increase in interest in AGl-related research within the academic
Al community, including a number of small conference workshops with titles
related to “Human-Level Intelligence.” We consider this challenge to the over-
whelming dominance of narrow-Al an extremely positive move; however, we
submit that “Artificial General Intelligence” is a more sensible way to concep-
tualize the problem than “Human-Level Intelligence.” The AGI systems and
approaches described in these pages are not necessarily oriented towards emu-
lating the human brain; and given the heterogeneity of the human mind/brain
and its highly various levels of competence at various sorts of tasks, it seems
very difficult to define “Human-Level Intelligence” in any way that is generally
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applicable to Al systems that are fundamentally non-human-like in concep-
tion. On the other hand, the work of Hutter and Schmidhuber reported here
provides a reasonable, abstract mathematical characterization of general intel-
ligence which, while not in itself providing a practical approach to AGI design
and engineering, at least provides a conceptually meaningful formalization of
the ultimate goal of AGI work.

The grand goal of AGI remains mostly unrealized, and how long it will
be until this situation is remedied remains uncertain. Among scientists who
believe in the fundamental possibility of strong AI, the most optimistic se-
rious estimates we have heard are in the range of 5-10 years, and the most
pessimistic are in the range of centuries. While none of the articles contained
here purports to present a complete solution to the AGI problem, we believe
that they collectively embody meaningful conceptual progress, and indicate
clearly that the direct pursuit of AGI is an endeavor worthy of significant
research attention.
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Contemporary Approaches to Artificial
General Intelligence

Cassio Pennachin and Ben Goertzel

AGIRI - Artificial General Intelligence Research Institute
1405 Bernerd Place, Rockville, MD 20851, USA
cassio@agiri.org, ben@agiri.org - http://www.agiri.org

1 A Brief History of AGI

The vast bulk of the Al field today is concerned with what might be called
“narrow AI” — creating programs that demonstrate intelligence in one or an-
other specialized area, such as chess-playing, medical diagnosis, automobile-
driving, algebraic calculation or mathematical theorem-proving. Some of these
narrow Al programs are extremely successful at what they do. The Al projects
discussed in this book, however, are quite different: they are explicitly aimed
at artificial general intelligence, at the construction of a software program
that can solve a variety of complex problems in a variety of different domains,
and that controls itself autonomously, with its own thoughts, worries, feelings,
strengths, weaknesses and predispositions.

Artificial General Intelligence (AGI) was the original focus of the Al field,
but due to the demonstrated difficulty of the problem, not many Al researchers
are directly concerned with it anymore. Work on AGI has gotten a bit of a
bad reputation, as if creating digital general intelligence were analogous to
building a perpetual motion machine. Yet, while the latter is strongly implied
to be impossible by well-established physical laws, AGI appears by all known
science to be quite possible. Like nanotechnology, it is “merely an engineering
problem”, though certainly a very difficult one.

The presupposition of much of the contemporary work on “narrow AI”
is that solving narrowly defined subproblems, in isolation, contributes signifi-
cantly toward solving the overall problem of creating real AI. While this is of
course true to a certain extent, both cognitive theory and practical experience
suggest that it is not so true as is commonly believed. In many cases, the best
approach to implementing an aspect of mind in isolation is very different from
the best way to implement this same aspect of mind in the framework of an
integrated AGl-oriented software system.

The chapters of this book present a series of approaches to AGI. None
of these approaches has been terribly successful yet, in AGI terms, although
several of them have demonstrated practical value in various specialized do-
mains (narrow-Al style). Most of the projects described are at an early stage
of engineering development, and some are still in the design phase. Our aim
is not to present AGI as a mature field of computer science — that would be
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impossible, for it is not. Our goal is rather to depict some of the more excit-
ing ideas driving the AGI field today, as it emerges from infancy into early
childhood.

In this introduction, we will briefly overview the AGI approaches taken
in the following chapters, and we will also discuss some other historical and
contemporary Al approaches not extensively discussed in the remainder of
the book.

1.1 Some Historical AGI-Related Projects

Generally speaking, most approaches to Al may be divided into broad cate-
gories such as:

symbolic;

symbolic and probability- or uncertainty-focused;
neural net-based;

evolutionary;

artificial life;

program search based;

embedded;

integrative.

This breakdown works for AGI-related efforts as well as for purely narrow-
AT-oriented efforts. Here we will use it to structure a brief overview of the AGI
field. Clearly, there have been many more AGI-related projects than we will
mention here. Our aim is not to give a comprehensive survey, but rather to
present what we believe to be some of the most important ideas and themes in
the AGI field overall, so as to place the papers in this volume in their proper
context.

The majority of ambitious AGI-oriented projects undertaken to date have
been in the symbolic-Al paradigm. One famous such project was the General
Problem Solver [42], which used heuristic search to solve problems. GPS did
succeed in solving some simple problems like the Towers of Hanoi and crypto-
arithmetic,’ but these are not really general problems — there is no learning
involved. GPS worked by taking a general goal — like solving a puzzle — and
breaking it down into subgoals. It then attempted to solve the subgoals, break-
ing them down further into even smaller pieces if necessary, until the subgoals
were small enough to be addressed directly by simple heuristics. While this
basic algorithm is probably necessary in planning and goal satisfaction for
a mind, the rigidity adopted by GPS limits the kinds of problems one can
successfully cope with.

! Crypto-arithmentic problems are puzzles like DONALD + GERALD = ROBERT. To
solve such a problem, assign a number to each letter so that the equation comes out
correctly.
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Probably the most famous and largest symbolic Al effort in existence to-
day is Doug Lenat’s CYC project.? This began in the mid-80’s as an attempt
to create true Al by encoding all common sense knowledge in first-order pred-
icate logic. The encoding effort turned out to require a large effort, and soon
Cyc deviated from a pure AGI direction. So far they have produced a use-
ful knowledge database and an interesting, highly complex and specialized
inference engine, but they do not have a systematic R&D program aimed
at creating autonomous, creative interactive intelligence. They believe that
the largest subtask required for creating AGI is the creation of a knowledge
base containing all human common-sense knowledge, in explicit logical form
(they use a variant of predicate logic called CycL). They have a large group of
highly-trained knowledge encoders typing in knowledge, using CycL syntax.

We believe that the Cyc knowledge base may potentially be useful eventu-
ally to a mature AGI system. But we feel that the kind of reasoning, and the
kind of knowledge embodied in Cyc, just scratches the surface of the dynamic
knowledge required to form an intelligent mind. There is some awareness of
this within Cycorp as well, and a project called CognitiveCyc has recently been
initiated, with the specific aim of pushing Cyc in an AGI direction (Stephen
Reed, personal communication).

Also in the vein of “traditional AI”, Alan Newell’s well-known SOAR
project® is another effort that once appeared to be grasping at the goal of
human-level AGI, but now seems to have retreated into a role of an interest-
ing system for experimenting with limited-domain cognitive science theories.
Newell tried to build “Unified Theories of Cognition”, based on ideas that
have now become fairly standard: logic-style knowledge representation, men-
tal activity as problem-solving carried out by an assemblage of heuristics,
etc. The system was by no means a total failure, but it was not constructed
to have a real autonomy or self-understanding. Rather, it’s a disembodied
problem-solving tool, continually being improved by a small but still-growing
community of SOAR enthusiasts in various American universities.

The ACT-R framework [3], though different from SOAR, is similar in that
it’s an ambitious attempt to model human psychology in its various aspects,
focused largely on cognition. ACT-R uses probabilistic ideas and is generally
closer in spirit to modern AGI approaches than SOAR is. But still, similarly to
SOAR, many have argued that it does not contain adequate mechanisms for
large-scale creative cognition, though it is an excellent tool for the modeling
of human performance on relatively narrow and simple tasks.

Judea Pearl’s work on Bayesian networks [43] introduces principles from
probability theory to handle uncertainty in an AI scenario. Bayesian net-
works are graphical models that embody knowledge about probabilities and
dependencies between events in the world. Inference on Bayesian networks
is possible using probabilistic methods. Bayesian nets have been used with

2See www.cyc.com and [38].
3See http://ai.eecs.umich.edu/soar/ and [37].
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success in many narrow domains, but, in order to work well, they need a rea-
sonably accurate model of the probabilities and dependencies of the events
being modeled. However, when one has to learn either the structure or the
probabilities in order to build a good Bayesian net, the problem becomes very
difficult [29].

Pei Wang’s NARS system, described in this volume, is a very different
sort of attempt to create an uncertainty-based, symbolic Al system. Rather
than using probability theory, Wang uses his own form of uncertain logic — an
approach that has been tried before, with fuzzy logic, certainty theory (see,
for example, [50]) and so forth, but has never before been tried with such
explicit AGI ambitions.

Another significant historical attempt to “put all the pieces together” and
create true artificial general intelligence was the Japanese 5th Generation
Computer System project. But this project was doomed by its pure engineer-
ing approach, by its lack of an underlying theory of mind. Few people mention
this project these days. In our view, much of the AI research community ap-
pears to have learned the wrong lessons from the 5th generation Al experience
— they have taken the lesson to be that integrative AGI is bad, rather than
that integrative AGI should be approached from a sound conceptual basis.

The neural net approach has not spawned quite so many frontal assaults on
the AGI problem, but there have been some efforts along these lines. Werbos
has worked on the application of recurrent networks to a number of problems
[65, 56]. Stephen Grossberg’s work [25] has led to a host of special neural
network models carrying out specialized functions modeled on particular brain
regions. Piecing all these networks together could eventually lead to a brain-
like AGI system. This approach is loosely related to Hugo de Garis’s work,
discussed in this volume, which seeks to use evolutionary programming to
“evolve” specialized neural circuits, and then piece the circuits together into
a whole mind. Peter Voss’s a2i2 architecture also fits loosely into this category
— his algorithms are related to prior work on “neural gasses” [41], and involve
the cooperative use of a variety of different neural net learning algorithms. Less
biologically oriented than Grossberg or even de Garis, Voss’s neural system
net does not try to closely model biological neural networks, but rather to
emulate the sort of thing they do on a fairly high level.

The evolutionary programming approach to Al has not spawned any ambi-
tious AGI projects, but it has formed a part of several AGI-oriented systems,
including our own Novamente system, de Garis’s CAM-Brain machine men-
tioned above, and John Holland’s classifier systems [30]. Classifier systems are
a kind of hybridization of evolutionary algorithms and probabilistic-symbolic
AT; they are AGl-oriented in the sense that they are specifically oriented to-
ward integrating memory, perception, and cognition to allow an Al system to
act in the world. Typically they have suffered from severe performance prob-
lems, but Eric Baum’s recent variations on the classifier system theme seem
to have partially resolved these issues [5]. Baum’s Hayek systems were tested
on a simple “three peg blocks world” problem where any disk may be placed
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on any other; thus the required number of moves grows only linearly with the
number of disks, not exponentially. The chapter authors were able to replicate
their results only for n up to 5 [36].

The artificial life approach to AGI has remained basically a dream and
a vision, up till this point. Artificial life simulations have succeeded, to a
point, in getting interesting mini-organisms to evolve and interact, but no one
has come close to creating an Alife agent with significant general intelligence.
Steve Grand made some limited progress in this direction with his work on the
Creatures game, and his current R&D efforts are trying to go even further [24].
Tom Ray’s Network Tierra project also had this sort of ambition, but seems
to have stalled at the stage of the automated evolution of simple multicellular
artificial lifeforms.

Program search based AGI is a newer entry into the game. It had its ori-
gins in Solomonoff, Chaitin and Kolmogorov’s seminal work on algorithmic
information theory in the 1960s, but it did not become a serious approach
to practical AT until quite recently, with work such as Schmidhuber’s OOPS
system described in this volume, and Kaiser’s dag-based program search al-
gorithms. This approach is different from the others in that it begins with a
formal theory of general intelligence, defines impractical algorithms that are
provably known to achieve general intelligence (see Hutter’s chapter on AIXI
in this volume for details), and then seeks to approximate these impractical
algorithms with related algorithms that are more practical but less universally
able.

Finally, the integrative approach to AGI involves taking elements of some
or all of the above approaches and creating a combined, synergistic system.
This makes sense if you believe that the different Al approaches each capture
some aspect of the mind uniquely well. But the integration can be done in
many different ways. It is not workable to simply create a modular system
with modules embodying different Al paradigms: the different approaches are
too different in too many ways. Instead one must create a unified knowl-
edge representation and dynamics framework, and figure out how to manifest
the core ideas of the various Al paradigms within the universal framework.
This is roughly the approach taken in the Novamente project, but what has
been found in that project is that to truly integrate ideas from different Al
paradigms, most of the ideas need to be in a sense “reinvented” along the way.

Of course, no such categorization is going to be complete. Some of the
papers in this book do not fit well into any of the above categories: for instance,
Yudkowsky’s approach, which is integrative in a sense, but does not involve
integrating prior Al algorithms; and Hoyes’s approach, which is founded on
the notion of 3D simulation. What these two approaches have in common is
that they both begin with a maverick cognitive science theory, a bold new
explanation of human intelligence. They then draw implications and designs
for AGI from the respective cognitive science theory.

None of these approaches has yet proved itself successful — this book is
a discussion of promising approaches to AGI, not successfully demonstrated
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ones. It is probable that in 10 years a different categorization of AGI ap-
proaches will seem more natural, based on what we have learned in the in-
terim. Perhaps one of the approaches described here will have proven success-
ful, perhaps more than one; perhaps AGI will still be a hypothetical achieve-
ment, or perhaps it will have been achieved by methods totally unrelated to
those described here. Our own belief, as AGI researchers, is that an integra-
tive approach such as the one embodied in our Novamente Al Engine has an
excellent chance of making it to the AGI finish line. But as the history of
AT shows, researchers’ intuitions about the prospects of their Al projects are
highly chancy. Given the diverse and inter-contradictory nature of the differ-
ent AGI approaches presented in these pages, it stands to reason that a good
percentage of the authors have got to be significantly wrong on significant
points! We invite the reader to study the AGI approaches presented here, and
others cited but not thoroughly discussed here, and draw their own conclu-
sions. Above all, we wish to leave the reader with the impression that AGI is
a vibrant area of research, abounding with exciting new ideas and projects —
and that, in fact, it is AGI rather than narrow Al that is properly the primary
focus of artificial intelligence research.

2 What Is Intelligence?

What do we mean by general intelligence? The dictionary defines intelligence
with phrases such as “The capacity to acquire and apply knowledge”, and
“The faculty of thought and reason.” General intelligence implies an ability
to acquire and apply knowledge, and to reason and think, in a variety of
domains, not just in a single area like, say, chess or game-playing or languages
or mathematics or rugby. Pinning down general intelligence beyond this is a
subtle though not unrewarding pursuit. The disciplines of psychology, Al and
control engineering have taken differing but complementary approaches, all of
which are relevant to the AGI approaches described in this volume.

2.1 The Psychology of Intelligence

The classic psychological measure of intelligence is the “g-factor” [7], although
this is quite controversial, and many psychologists doubt that any available
IQ test really measures human intelligence in a general way. Gardner’s [15]
theory of multiple intelligences argues that human intelligence largely breaks
down into a number of specialized-intelligence components (including linguis-
tic, logical-mathematical, musical, bodily-kinesthetic, spatial, interpersonal,
intra-personal, naturalist and existential).

Taking a broad view, it is clear that, in fact, human intelligence is not
all that general. A huge amount of our intelligence is focused on situations
that have occurred in our evolutionary experience: social interaction, vision
processing, motion control, and so forth. There is a large research literature
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in support of this fact. For instance, most humans perform poorly at making
probabilistic estimates in the abstract, but when the same estimation tasks
are presented in the context of familiar social situations, human accuracy be-
comes much greater. Our intelligence is general “in principle”, but in order
to solve many sorts of problems, we need to resort to cumbersome and slow
methods such as mathematics and computer programming. Whereas we are
vastly more efficient at solving problems that make use of our in-built special-
ized neural circuitry for processing vision, sound, language, social interaction
data, and so forth. Gardner’s point is that different people have particularly
effective specialized circuitry for different specializations. In principle, a hu-
man with poor social intelligence but strong logical-mathematical intelligence
could solve a difficult problem regarding social interactions, but might have to
do so in a very slow and cumbersome over-intellectual way, whereas an indi-
vidual with strong innate social intelligence would solve the problem quickly
and intuitively.

Taking a somewhat different approach, psychologist Robert Sternberg [53]
distinguishes three aspects of intelligence: componential, contextual and ex-
periential. Componential intelligence refers to the specific skills people have
that make them intelligent; experiential refers to the ability of the mind to
learn and adapt through experience; contextual refers to the ability of the
mind to understand and operate within particular contexts, and select and
modify contexts.

Applying these ideas to AI, we come to the conclusion that, to roughly em-
ulate the nature of human general intelligence, an artificial general intelligence
system should have:

e the ability to solve general problems in a non-domain-restricted way, in
the same sense that a human can;

e most probably, the ability to solve problems in particular domains and
particular contexts with particular efficiency;

e the ability to use its more generalized and more specialized intelligence
capabilities together, in a unified way;

e the ability to learn from its environment, other intelligent systems, and
teachers;

e the ability to become better at solving novel types of problems as it gains
experience with them.

These points are based to some degree on human intelligence, and it may
be that they are a little too anthropomorphic. One may envision an AGI
system that is so good at the “purely general” aspect of intelligence that it
doesn’t need the specialized intelligence components. The practical possibility
of this type of AGI system is an open question. Our guess is that the multiple-
specializations nature of human intelligence will be shared by any AGI system
operating with similarly limited resources, but as with much else regarding
AGI, only time will tell.
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One important aspect of intelligence is that it can only be achieved by
a system that is capable of learning, especially autonomous and incremental
learning. The system should be able to interact with its environment and
other entities in the environment (which can include teachers and trainers,
human or not), and learn from these interactions. It should also be able to
build upon its previous experiences, and the skills they have taught it, to learn
more complex actions and therefore achieve more complex goals.

The vast majority of work in the AT field so far has pertained to highly spe-
cialized intelligence capabilities, much more specialized than Gardner’s mul-
tiple intelligence types — e.g. there are Al programs good at chess, or theorem
verification in particular sorts of logic, but none good at logical-mathematical
reasoning in general. There has been some research on completely general non-
domain-oriented AGI algorithms, e.g. Hutter’s AIXI model described in this
volume, but so far these ideas have not led to practical algorithms (Schmid-
huber’s OOPS system, described in this volume, being a promising possibility
in this regard).

2.2 The Turing Test

Next, no discussion of the definition of intelligence in an AI context would
be complete without mention of the well-known Turing Test. Put loosely,
the Turing test asks an Al program to simulate a human in a text-based
conversational interchange. The most important point about the Turing test,
we believe, is that it is a sufficient but not necessary criterion for artificial
general intelligence. Some Al theorists don’t even consider the Turing test as
a sufficient test for general intelligence — a famous example is the Chinese
Room argument [49].

Alan Turing, when he formulated his test, was confronted with people
who believed Al was impossible, and he wanted to prove the existence of an
intelligence test for computer programs. He wanted to make the point that
intelligence is defined by behavior rather than by mystical qualities, so that
if a program could act like a human it should be considered as intelligent
as a human. This was a bold conceptual leap for the 1950’s. Clearly, how-
ever, general intelligence does not necessarily require the accurate simulation
of human intelligence. It seems unreasonable to expect a computer program
without a human-like body to be able to emulate a human, especially in con-
versations regarding body-focused topics like sex, aging, or the experience of
having the flu. Certainly, humans would fail a “reverse Turing test” of em-
ulating computer programs — humans can’t even emulate pocket calculators
without unreasonably long response delays.

2.3 A Control Theory Approach to Defining Intelligence

The psychological approach to intelligence, briefly discussed above, attempts
to do justice to the diverse and multifaceted nature of the notion of intelli-
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gence. As one might expect, engineers have a much simpler and much more
practical definition of intelligence.

The branch of engineering called control theory deals with ways to cause
complex machines to yield desired behaviors. Adaptive control theory deals
with the design of machines which respond to external and internal stimuli
and, on this basis, modify their behavior appropriately. And the theory of
intelligent control simply takes this one step further. To quote a textbook of
automata theory [2]:

[An] automaton is said to behave “intelligently” if, on the basis of its
“training” data which is provided within some context together with
information regarding the desired action, it takes the correct action
on other data within the same context not seen during training.

This is the sense in which contemporary artificial intelligence programs are
intelligent. They can generalize within their limited context; they can follow
the one script which they are programmed to follow. Of course, this is not
really general intelligence, not in the psychological sense, and not in the sense
in which we mean it in this book.

On the other hand, in their treatise on robotics, [57] presented a more
general definition:

Intelligence is the ability to behave appropriately under unpredictable
conditions.

Despite its vagueness, this criterion does serve to point out the problem
with ascribing intelligence to chess programs and the like: compared to our
environment, at least, the environment within which they are capable of be-
having appropriately is very predictable indeed, in that it consists only of
certain (simple or complex) patterns of arrangement of a very small number
of specifically structured entities. The unpredictable conditions clause suggests
the experiential and contextual aspects of Sternberg’s psychological analysis
of intelligence.

Of course, the concept of appropriateness is intrinsically subjective. And
unpredictability is relative as well — to a creature accustomed to living in
interstellar space and inside stars and planets as well as on the surfaces of
planets, or to a creature capable of living in 10 dimensions, our environment
might seem just as predictable as the universe of chess seems to us. In or-
der to make this folklore definition precise, one must first of all confront the
vagueness inherent in the terms “appropriate” and “unpredictable”.

In some of our own past work [17], we have worked with a variant of the
Winkless and Browning definition,

Intelligence is the ability to achieve complex goals in complex environ-
ments.
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In a way, like the Winkless and Browning definition, this is a subjective
rather than objective view of intelligence, because it relies on the subjective
identification of what is and is not a complex goal or a complex environment.
Behaving “appropriately”, as Winkless and Browning describe, is a matter of
achieving organismic goals, such as getting food, water, sex, survival, status,
etc. Doing so under unpredictable conditions is one thing that makes the
achievement of these goals complex.

Marcus Hutter, in his chapter in this volume, gives a rigorous definition of
intelligence in terms of algorithmic information theory and sequential decision
theory. Conceptually, his definition is closely related to the “achieve complex
goals” definition, and it’s possible the two could be equated if one defined
achieve, compler and goals appropriately.

Note that none of these approaches to defining intelligence specify any
particular properties of the internals of intelligent systems. This is, we be-
lieve, the correct approach: “intelligence” is about what, not how. However,
it is possible that what implies how, in the sense that there may be certain
structures and processes that are necessary aspects of any sufficiently intel-
ligent system. Contemporary psychological and Al science are nowhere near
the point where such a hypothesis can be verified or refuted.

2.4 Efficient Intelligence

Pei Wang, a contributor to this volume, has proposed his own definition of
intelligence, which posits, basically, that “Intelligence is the ability to work
and adapt to the environment with insufficient knowledge and resources.”
More concretely, he believes that an intelligent system is one that works under
the Assumption of Insufficient Knowledge and Resources (AIKR), meaning
that the system must be, at the same time,

A finite system The system’s computing power, as well as its working and
storage space, is limited.

A real-time system The tasks that the system has to process, including
the assimilation of new knowledge and the making of decisions, can arrive
at any time, and all have deadlines attached with them.

An ampliative system The system not only can retrieve available knowl-
edge and derive sound conclusions from it, but also can make refutable
hypotheses and guesses based on it when no certain conclusion can be
drawn.

An open system No restriction is imposed on the relationship between old
knowledge and new knowledge, as long as they are representable in the
system’s interface language.

A self-organized system The system can accommodate itself to new knowl-
edge, and adjust its memory structure and mechanism to improve its time
and space efficiency, under the assumption that future situations will be
similar to past situations.
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Wang’s definition? is not purely behavioral: it makes judgments regarding
the internals of the AI system whose intelligence is being assessed. However,
the biggest difference between this and the above definitions is its emphasis on
the limitation of the system’s computing power. For instance, Marcus Hutter’s
AIXI algorithm, described in this volume, assumes infinite computing power
(though his related AIXTtl algorithm works with finite computing power).
According to Wang’s definition, AIXI is therefore unintelligent. Yet, AIXTI can
solve any problem at least as effectively as any finite-computing-power-based
AT system, so it seems in a way unintuitive to call it “unintelligent”.

We believe that what Wang’s definition hints at is a new concept, that we
call efficient intelligence, defined as:

Efficient intelligence is the ability to achieve intelligence using severely
limited resources.

Suppose we had a computer 1Q test called the CIQ. Then, we might say
that an AGI program with a CIQ of 500 running on 5000 machines has more
intelligence, but less efficient-intelligence, than a machine with a CIQ of 100
that runs on just one machine.

According to the “achieving complex goals in complex environments” cri-
terion, AIXI and AIXItl are the most intelligent programs described in this
book, but not the ones with the highest efficient intelligence. According to
Wang’s definition of intelligence, AIXI and AIXItl are not intelligent at all,
they only emulate intelligence through simple, inordinately wasteful program-
search mechanisms.

As editors, we have not sought to impose a common understanding of the
nature of intelligence on all the chapter authors. We have merely requested
that authors be clear regarding the concept of intelligence under which they
have structured their work. At this early stage in the AGI game, the notion
of intelligence most appropriate for AGI work is still being discovered, along
with the exploration of AGI theories, designs and programs themselves.

3 The Abstract Theory of General Intelligence

One approach to creating AGI is to formalize the problem mathematically,
and then seek a solution using the tools of abstract mathematics. One may
begin by formalizing the notion of intelligence. Having defined intelligence,
one may then formalize the notion of computation in one of several generally-
accepted ways, and ask the rigorous question: How may one create intelligent
computer programs? Several researchers have taken this approach in recent
years, and while it has not provided a panacea for AGI, it has yielded some

4In more recent work, Wang has modified the details of this definition, but the
theory remains the same.
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very interesting results, some of the most important ones are described in
Hutter’s and Schmidhuber’s chapters in this book.

From a mathematical point of view, as it turns out, it doesn’t always
matter so much exactly how you define intelligence. For many purposes, any
definition of intelligence that has the general form “Intelligence is the maxi-
mization of a certain quantity, by a system interacting with a dynamic envi-
ronment” can be handled in roughly the same way. It doesn’t always matter
exactly what the quantity being maximized is (whether it’s “complexity of
goals achieved”, for instance, or something else).

Let’s use the term “behavior-based maximization criterion” to character-
ize the class of definitions of intelligence indicated in the previous paragraphs.
Suppose one has some particular behavior-based maximization criterion in
mind — then Marcus Hutter’s work on the AIXI system, described in his
chapter here, gives a software program that will be able to achieve intelli-
gence according to the given criterion. Now, there’s a catch: this program
may require infinite memory and an infinitely fast processor to do what it
does. But he also gives a variant of AIXI which avoids this catch, by restrict-
ing attention to programs of bounded length ! and bounded time t. Loosely
speaking, the AIXItl variant will provably be as intelligent as any other com-
puter program of length up to I, satisfying the maximization criterion, within
a constant multiplicative factor and a constant additive factor.

Hutter’s work draws on a long tradition of research in statistical learning
theory and algorithmic information theory, mostly notably Solomonoft’s early
work on induction [51, 52] and Levin’s [39, 40] work on computational measure
theory. At the present time, this work is more exciting theoretically than
pragmatically. The “constant factor” in his theorem may be very large, so
that, in practice, AIXItl is not really going to be a good way to create an AGI
software program. In essence, what AIXItl is doing is searching the space of
all programs of length L, evaluating each one, and finally choosing the best
one and running it. The “constant factors” involved deal with the overhead
of trying every other possible program before hitting on the best one!

A simple AI system behaving somewhat similar to AIXItl could be built
by creating a program with three parts:

the data store;
the main program;
the meta-program.

The operation of the meta-program would be, loosely, as follows:

e At time ¢, place within the data store a record containing the complete
internal state of the system, and the complete sensory input of the system.
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e Search the space of all programs P of size |P| < [ to find the one that,
based on the data in the data store, has the highest expected value for the
given maximization criterion.’

e Install P as the main program.

Conceptually, the main value of this approach for AGI is that it solidly
establishes the following contention:

If you accept any definition of intelligence of the general form “max-
imization of a certain function of system behavior,”

then the problem of creating AGI is basically a problem of dealing with
the issues of space and time efficiency.

As with any mathematics-based conclusion, the conclusion only follows if
one accepts the definitions. If someone’s conception of intelligence fundamen-
tally can’t be cast into the form of a behavior-based maximization criterion,
then these ideas aren’t relevant for AGI as that person conceives it. How-
ever, we believe that the behavior-based maximization criterion approach to
defining intelligence is a good one, and hence we believe that Hutter’s work
is highly significant.

The limitations of these results are twofold. Firstly, they pertain only to
AGI in the “massive computational resources” case, and most AGI theorists
feel that this case is not terribly relevant to current practical AGI research
(though, Schmidhuber’s OOPS work represents a serious attempt to bridge
this gap). Secondly, their applicability to the physical universe, even in prin-
ciple, relies on the Church-Turing Thesis. The editors and contributors of this
volume are Church-Turing believers, as are nearly all computer scientists and
AT researchers, but there are well-known exceptions such as Roger Penrose. If
Penrose and his ilk are correct, then the work of Hutter and his colleagues is
not necessarily informative about the nature of AGI in the physical universe.

For instance, consider Penrose’s contention that non-Turing quantum grav-
ity computing (as allowed by an as-yet unknown incomputable theory of quan-
tum gravity) is necessary for true general intelligence [44]. This idea is not
refuted by Hutter’s results, because it’s possible that:

AGI is in principle possible on ordinary Turing hardware;

AGI is only pragmatically possible, given the space and time constraints
imposed on computers by the physical universe, given quantum gravity
powered computer hardware.

The authors very strongly doubt this is the case, and Penrose has not
given any convincing evidence for such a proposition, but our point is merely
that in spite of recent advances in AGI theory such as Hutter’s work, we have

5There are some important details here; for instance, computing the “expected
value” using probability theory requires assumption of an appropriate prior distri-
bution, such as Solomonoff’s universal prior.



14 Pennachin and Goertzel

no way of ruling such a possibility out mathematically. At points such as this,
uncertainties about the fundamental nature of mind and universe rule out the
possibility of a truly definitive theory of AGI.

From the perspective of computation theory, most of the chapters in this
book deal with ways of achieving reasonable degrees of intelligence given rea-
sonable amounts of space and time resources. Obviously, this is what the
human mind/brain does. The amount of intelligence it achieves is clearly lim-
ited by the amount of space in the brain and the speed of processing of neural
wetware.

We do not yet know whether the sort of mathematics used in Hutter’s work
can be made useful for defining practical AGI systems that operate within our
current physical universe — or, better yet, on current or near-future computer
hardware. However, research in this direction is proceeding vigorously. One
exciting project in this area is Schmidhuber’s OOPS system [48], which is a
bit like AIXItl, but has the capability of operating with realistic efficiency in
some practical situations. As Schmidhuber discusses in his first chapter in this
book, OOPS has been applied to some classic Al problems such as the Towers
of Hanoi problem, with highly successful results.

The basic idea of OOPS is to run all possible programs, but interleaved
rather than one after the other. In terms of the “meta-program” architecture
described above, here one has a meta-program that doesn’t run each possible
program one after the other, but rather lines all the possible programs up in
order, assigns each one a probability, and then at each time step chooses a
single program as the “current program”, with a probability proportional to
its estimated value at achieving the system goal, and then executes one step of
the current program. Another important point is that OOPS freezes solutions
to previous tasks, and may reuse them later.

As opposed to AIXItl, this strategy allows, in the average case, brief and
effective programs to rise to the top of the heap relatively quickly. The result,
in at least some practical problem-solving contexts, is impressive. Of course,
there are many ways to solve the Towers of Hanoi problem. Scaling up from toy
examples to real AGI on the human scale or beyond is a huge task for OOPS
as for other approaches showing limited narrow-Al success. But having made
the leap from abstract algorithmic information theory to limited narrow-Al
success is no small achievement.

Schmidhuber’s more recent Gédel Machine, which is fully self-referential,
is in principle capable of proving and subsequently exploiting performance
improvements to its own code. The ability to modify its own code allows the
Godel Machine to be more effective. Godel Machines are also more flexible in
terms of the utility function they aim to maximize while searching.

Lukasz Kaiser’s chapter follows up similar themes to Hutter’s and Schmid-
huber’s work. Using a slightly different computational model, Kaiser also takes
up the algorithmic-information-theory motif, and describes a program search
problem which is solved through the combination of program construction



Contemporary Approaches to Artificial General Intelligence 15

and the proof search — the program search algorithm itself, represented as a
directed acyclic graph, is continuously improved.

4 Toward a Pragmatic Logic

One of the primary themes in the history of Al is formal logic. However, there
are strong reasons to believe that classical formal logic is not suitable to play a
central role in an AGI system. It has no natural way to deal with uncertainty,
or with the fact that different propositions may be based on different amounts
of evidence. It leads to well-known and frustrating logical paradoxes. And it
doesn’t seem to come along with any natural “control strategy” for navigating
the combinatorial explosion of possible valid inferences.

Some modern Al researchers have reacted to these shortcomings by re-
jecting the logical paradigm altogether; others by creating modified logical
frameworks, possessing more of the flexibility and fluidity required of compo-
nents of an AGI architecture.

One of the key issues dividing Al researchers is the degree to which logical
reasoning is fundamental to their artificial minds. Some Al systems are built
on the assumption that basically every aspect of mental process should be
thought about as a kind of logical reasoning. Cyc is an example of this, as
is the NARS system reviewed in this volume. Other systems are built on
the premise that logic is irrelevant to the task of mind-engineering, that it
is merely a coarse, high-level description of the results of mental processes
that proceed according to non-logical dynamics. Rodney Brooks’ work on
subsumption robotics fits into this category, as do Peter Voss’s and Hugo de
Garis’s neural net AGI designs presented here. And there are Al approaches,
such as Novamente, that assign logic an important but non-exclusive role in
cognition — Novamente has roughly two dozen cognitive processes, of which
about one-fourth are logical in nature.

One fact muddying the waters somewhat is the nebulous nature of “logic”
itself. Logic means different things to different people. Even within the domain
of formal, mathematical logic, there are many different kinds of logic, including
forms like fuzzy logic that encompass varieties of reasoning not traditionally
considered “logical”. In our own work we have found it useful to adopt a very
general conception of logic, which holds that logic:

e has to do with forming and combining estimations of the (possibly proba-
bilistic, fuzzy, etc. ) truth values of various sorts of relationships based on
various sorts of evidence;

e is based on incremental processing, in which pieces of evidence are com-
bined step by step to form conclusions, so that at each stage it is easy to
see which pieces of evidence were used to give which conclusion

This conception differentiates logic from mental processing in general, but
it includes many sorts of reasoning besides typical, crisp, mathematical logic.
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The most common form of logic is predicate logic, as used in Cyc, in
which the basic entity under consideration is the predicate, a function that
maps argument variables into Boolean truth values. The argument variables
are quantified universally or existentially. An alternate form of logic is term
logic, which predates predicate logic, dating back at least to Aristotle and his
notion of the syllogism. In term logic, the basic element is a subject-predicate
statement, denotable as A — B, where — denotes a notion of inheritance or
specialization. Logical inferences take the form of syllogistic rules, which give
patterns for combining statements with matching terms, such as the deduction
rule

(A-BAB—-C)=A—-C.

The NARS system described in this volume is based centrally on term
logic, and the Novamente system makes use of a slightly different variety
of term logic. Both predicate and term logic typically use variables to handle
complex expressions, but there are also variants of logic, based on combinatory
logic, that avoid variables altogether, relying instead on abstract structures
called “higher-order functions” [10].

There are many different ways of handling uncertainty in logic. Conven-
tional predicate logic treats statements about uncertainty as predicates just
like any others, but there are many varieties of logic that incorporate un-
certainty at a more fundamental level. Fuzzy logic [59, 60] attaches fuzzy
truth values to logical statements; probabilistic logic [43] attaches probabili-
ties; NARS attaches degrees of uncertainty, etc. The subtle point of such sys-
tems is the transformation of uncertain truth values under logical operators
like AND, OR and NOT, and under existential and universal quantification.

And, however one manages uncertainty, there are also multiple varieties
of speculative reasoning. Inductive [4], abductive [32] and analogical reason-
ing [31] are commonly discussed. Nonmonotonic logic [8] handles some types
of nontraditional reasoning in a complex and controversial way. In ordinary,
monotonic logic, the truth of a proposition does not change when new in-
formation (axioms) is added to the system. In nonmonotonic logic, on the
other hand, the truth of a proposition may change when new information (ax-
ioms) is added to or old information is deleted from the system. NARS and
Novamente both use logic in an uncertain and nonmonotonic way.

Finally, there are special varieties of logic designed to handle special types
of reasoning. There are temporal logics designed to handle reasoning about
time, spatial logics for reasoning about space, and special logics for handling
various kinds of linguistic phenomena. None of the approaches described in
this book makes use of such special logics, but it would be possible to create
an AGI approach with such a focus. Cyc comes closest to this notion, as its
reasoning engine involves a number of specialized reasoning engines oriented
toward particular types of inference such as spatial, temporal, and so forth.
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When one gets into the details, the distinction between logical and non-
logical AT systems can come to seem quite fuzzy. Ultimately, an uncertain
logic rule is not that different from the rule governing the passage of activation
through a node in a neural network. Logic can be cast in terms of semantic
networks, as is done in Novamente; and in that case uncertain logic formulas
are arithmetic formulas that take in numbers associated with certain nodes
and links in a graph, and output numbers associated with certain other nodes
and links in the graph. Perhaps a more important distinction than logical
vs. non-logical is whether a system gains its knowledge experientially or via
being given expert rule type propositions. Often logic-based Al systems are
fed with knowledge by human programmers, who input knowledge in the
form of textually-expressed logic formulas. However, this is not a necessary
consequence of the use of logic. It is quite possible to have a logic-based Al
system that forms its own logical propositions by experience. On the other
hand, there is no existing example of a non-logical Al system that gains its
knowledge from explicit human knowledge encoding. NARS and Novamente
are both (to differing degrees) logic-based Al systems, but their designs devote
a lot of attention to the processes by which logical propositions are formed
based on experience, which differentiates them from many traditional logic-
based Al systems, and in a way brings them closer to neural nets and other
traditional non-logical Al systems.

5 Emulating the Human Brain

One almost sure way to create artificial general intelligence would be to ex-
actly copy the human brain, down to the atomic level, in a digital simulation.
Admittedly, this would require brain scanners and computer hardware far ex-
ceeding what is currently available. But if one charts the improvement curves
of brain scanners and computer hardware, one finds that it may well be plausi-
ble to take this approach sometime around 2030-2050. This argument has been
made in rich detail by Ray Kurzweil in [34, 35]; and we find it a reasonably
convincing one. Of course, projecting the future growth curves of technologies
is a very risky business. But there’s very little doubt that creating AGI in this
way is physically possible.

In this sense, creating AGI is “just an engineering problem.” We know
that general intelligence is possible, in the sense that humans — particular
configurations of atoms — display it. We just need to analyze these atom
configurations in detail and replicate them in the computer. AGI emerges as
a special case of nanotechnology and in silico physics.

Perhaps a book on the same topic as this one, written in 2025 or so, will
contain detailed scientific papers pursuing the detailed-brain-simulation ap-
proach to AGI. At present, however, it is not much more than a futuristic
speculation. We don’t understand enough about the brain to make detailed
simulations of brain function. Our brain scanning methods are improving
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rapidly but at present they don’t provide the combination of temporal and
spatial acuity required to really map thoughts, concepts, percepts and actions
as they occur in human brains/minds.

It’s still possible, however, to use what we know about the human brain to
structure AGI designs. This can be done in many different ways. Most simply,
one can take a neural net based approach, trying to model the behavior of
nerve cells in the brain and the emergence of intelligence therefrom. Or one
can proceed at a higher level, looking at the general ways that information
processing is carried out in the brain, and seeking to emulate these in software.

Stephen Grossberg [25, 28] has done extensive research on the modeling
of complex neural structures. He has spent a great deal of time and effort in
creating cognitively-plausible neural structures capable of spatial perception,
shape detection, motion processing, speech processing, perceptual grouping,
and other tasks. These complex brain mechanisms were then used in the
modeling of learning, attention allocation and psychological phenomena like
schizophrenia and hallucinations.

From the experiences modeling different aspects of the brain and the hu-
man neural system in general, Grossberg has moved on to the linking between
those neural structures and the mind [26, 27, 28]. He has identified two key
computational properties of the structures: complementary computing and
laminar computing.

Complementary computing is the property that allows different processing
streams in the brain to compute complementary properties. This leads to a
hierarchical resolution of uncertainty, which is mostly evident in models of the
visual cortex. The complementary streams in the neural structure interact,
in parallel, resulting in more complete information processing. In the visual
cortex, an example of complementary computing is the interaction between
the what cortical stream, which learns to recognize what events and objects
occur, and the where cortical stream, which learns to spacially locate those
events and objects.

Laminar computing refers to the organization of the cerebral cortex (and
other complex neural structures) in layers, with interactions going bottom-
up, top-down, and sideways. While the existence of these layers has been
known for almost a century, the contribution of this organization for control
of behavior was explained only recently. [28] has recently shed some light on
the subject, showing through simulations that laminar computing contributes
to learning, development and attention control.

While Grossberg’s research has not yet described complete minds, only
neural models of different parts of a mind, it is quite conceivable that one
could use his disjoint models as building blocks for a complete AGI design. His
recent successes explaining, to a high degree of detail, how mental processes
can emerge from his neural models is definitely encouraging.

Steve Grand’s Creatures [24] are social agents, but they have an elaborate
internal architecture, based on a complex neural network which is divided
into several lobes. The original design by Grand had explicit AGI goals, with
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attention paid to allow for symbol grounding, generalization, and limited lan-
guage processing. Grand’s creatures had specialized lobes to handle verbal
input, and to manage the creature’s internal state (which was implemented
as a simplified biochemistry, and kept track of feelings such as pain, hunger
and others). Other lobes were dedicated to adaptation, goal-oriented decision
making, and learning of new concepts.

Representing the neural net approach in this book, we have Peter Voss’s
paper on the a2i2 architecture. a2i2 is in the vein of other modern work on
reinforcement learning, but it is unique in its holistic architecture focused
squarely on AGI. Voss uses several different reinforcement and other learning
techniques, all acting on a common network of artificial neurons and synapses.
The details are original, but are somewhat inspired by prior neural net Al
approaches, particularly the “neural gas” approach [41], as well as objectivist
epistemology and cognitive psychology. Voss’s theory of mind abstracts what
would make brains intelligent, and uses these insights to build artificial brains.

Voss’s approach is incremental, involving a gradual progression through
the “natural” stages in the complexity of intelligence, as observed in children
and primates — and, to some extent, recapitulating evolution. Conceptually,
his team is adding ever more advanced levels of cognition to its core design,
somewhat resembling both Piagetian stages of development, as well as the
evolution of primates, a level at which Voss considers there is enough com-
plexity on the neuro-cognitive systems to provide AGI with useful metaphors
and examples.

His team seeks to build ever more complex virtual primates, eventually
reaching the complexity and intelligence level of humans. But this metaphor
shouldn’t be taken too literally. The perceptual and action organs of their
initial proto-virtual-ape are not the organs of a physical ape, but rather visual
and acoustic representations of the Windows environment, and the ability
to undertake simple actions within Windows, as well as various probes for
interaction with the real world through vision, sound, etc.

There are echoes of Rodney Brooks’s subsumption robotics work, the well-
known Cog project at MIT [1], in the a2i2 approach. Brooks is doing something
a lot more similar to actually building a virtual cockroach, with a focus on the
robot body and the pragmatic control of it. Voss’s approach to AI could easily
be nested inside robot bodies like the ones constructed by Brooks’s team; but
Voss doesn’t believe the particular physical embodiment is the key, he believes
that the essence of experience-based reinforcement learning can be manifested
in a system whose inputs and outputs are “virtual.”

6 Emulating the Human Mind

Emulating the atomic structure of the brain in a computer is one way to let
the brain guide AGI; creating virtual neurons, synapses and activations is
another. Proceeding one step further up the ladder of abstraction, one has
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approaches that seek to emulate the overall architecture of the human brain,
but not the details by which this architecture is implemented. Then one has
approaches that seek to emulate the human mind, as studied by cognitive
psychologists, ignoring the human mind’s implementation in the human brain
altogether.

Traditional logic-based AT clearly falls into the “emulate the human mind,
not the human brain” camp. We actually have no representatives of this ap-
proach in the present book; and so far as we know, the only current research
that could fairly be described as lying in the intersection of traditional logic-
based Al and AGI is the Cyc project, briefly mentioned above.

But traditional logic-based Al is far from the only way to focus on the
human mind. We have several contributions in this book that are heavily
based on cognitive psychology and its ideas about how the mind works. These
contributions pay greater than zero attention to neuroscience, but they are
clearly more mind-focused than brain-focused.

Wang’s NARS architecture, mentioned above, is the closest thing to a
formal logic based system presented in this book. While it is not based specif-
ically on any one cognitive science theory, NARS is clearly closely motivated
by cognitive science ideas; and at many points in his discussion, Wang cites
cognitive psychology research supporting his ideas.

Next, Hoyes’s paper on 3D vision as the key to AGI is closely inspired by
the human mind and brain, although it does not involve neural nets or other
micro-level brain-simulative entities. Hoyes is not proposing to copy the precise
wiring of the human visual system in silico and use it as the core of an AGI
system, but he is proposing that we should copy what he sees as the basic
architecture of the human mind. In a daring and speculative approach, he
views the ability to deal with changing 3D scenes as the essential capability
of the human mind, and views other human mental capabilities largely as
offshoots of this. If this theory of the human mind is correct, then one way to
achieve AGI is to do as Hoyes suggests and create a robust capability for 3D
simulation, and build the rest of a digital mind centered around this capability.

Of course, even if this speculative analysis of the human mind is correct,
it doesn’t intrinsically follow that 3D simulation centric approach is the only
approach to AGI. One could have a mind centered around another sense, or a
mind that was more cognitively rather than perceptually centered. But Hoyes’
idea is that we already have one example of a thinking machine — the human
brain — and it makes sense to use as much of it as we can in designing our
new digital intelligences.

Eliezer Yudkowsky, in his chapter, describes the conceptual foundations
of his AGI approach, which he calls “deliberative general intelligence” (DGI).
While DGI-based AGI is still at the conceptual-design phase, a great deal of
analysis has gone into the design, so that DGI essentially amounts to an orig-
inal and detailed cognitive-science theory, crafted with AGI design in mind.
The DGI theory was created against the backdrop of Yudkowsky’s futurist
thinking, regarding the notions of:
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e a Seed Al an AGI system that progressively modifies and improves its own
codebase, thus projecting itself gradually through exponentially increasing
levels of intelligence; [58]

o a Friendly AI, an AGI system that respects positive ethics such as the
preservation of human life and happiness, through the course of its pro-
gressive self-improvements.

However, the DGI theory also may stand alone, independently of these
motivating concepts.

The essence of DGI is a functional decomposition of general intelligence
into a complex supersystem of interdependent internally specialized processes.
Five successive levels of functional organization are posited:

Code The source code underlying an Al system, which Yudkowsky views as
roughly equivalent to neurons and neural circuitry in the human brain.

Sensory modalities In humans: sight, sound, touch, taste, smell. These gen-
erally involve clearly defined stages of information-processing and feature-
extraction. An AGI may emulate human senses or may have different sorts
of modalities.

Concepts Categories or symbols abstracted from a system’s experiences. The
process of abstraction is proposed to involve the recognition and then
reification of a similarity within a group of experiences. Once reified, the
common quality can then be used to determine whether new mental im-
agery satisfies the quality, and the quality can be imposed on a mental
image, altering it.

Thoughts Conceived of as being built from structures of concepts. By im-
posing concepts in targeted series, the mind builds up complex mental
images within the workspace provided by one or more sensory modali-
ties. The archetypal example of a thought, according to Yudkowsky, is
a human sentence — an arrangement of concepts, invoked by their sym-
bolic tags, with internal structure and targeting information that can be
reconstructed from a linear series of words using the constraints of syn-
tax, constructing a complex mental image that can be used in reasoning.
Thoughts (and their corresponding mental imagery) are viewed as dispos-
able one-time structures, built from reusable concepts, that implement a
non-recurrent mind in a non-recurrent world.

Deliberation Implemented by sequences of thoughts. This is the internal
narrative of the conscious mind — which Yudkowsky views as the core of
intelligence both human and digital. It is taken to include explanation,
prediction, planning, design, discovery, and the other activities used to
solve knowledge problems in the pursuit of real-world goals.

Yudkowsky also includes an interesting discussion of probable differences
between humans and AI’s. The conclusion of this discussion is that, eventu-
ally, AGI’s will have many significant advantages over biological intelligences.
The lack of motivational peculiarities and cognitive biases derived from an
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evolutionary heritage will make artificial psychology quite different from, and
presumably far less conflicted than, human psychology. And the ability to
fully observe their own state, and modify their own underlying structures and
dynamics, will give AGI’s an ability for self-improvement vastly exceeding
that possessed by humans. These conclusions by and large pertain not only
to AGI designs created according to the DGI theory, but also to many other
AGI designs as well. However, according to Yudkowsky, AGI designs based
too closely on the human brain (such as neural net based designs) may not
be able to exploit the unique advantages available to digital intelligences.

Finally, the authors’ Novamente AI project has had an interesting relation-
ship with the human mind/brain, over its years of development. The Webmind
AT project, Novamente’s predecessor, was more heavily human brain/mind
based in its conception. As Webmind progressed, and then as Novamente was
created based on the lessons learned in working on Webmind, we found that
it was more and more often sensible to depart from human-brain/mind-ish
approaches to various issues, in favor of approaches that provided greater ef-
ficiency on available computer hardware. There is still a significant cognitive
psychology and neuroscience influence on the design, but not as much as there
was at the start of the project.

One may sum up the diverse relationships between AGI approaches and
the human brain/mind by distinguishing between:

e approaches that draw their primary structures and dynamics from an at-
tempt to model biological brains;

e approaches like DGI and Novamente that are explicitly guided by the
human brain as well as the human mind,;

e approaches like NARS that are inspired by the human mind much more
than the human brain;

e approaches like OOPS that have drawn very little on known science about
human intelligence in any regard.

7 Creating Intelligence by Creating Life

If simulating the brain molecule by molecule is not ambitious enough for you,
there is another possible approach to AGI that is even more ambitious, and
even more intensely consumptive of computational resources: simulation of
the sort of evolutionary processes that gave rise to the human brain in the
first place.

Now, we don’t have access to the primordial soup from which life pre-
sumably emerged on Earth. So, even if we had an adequately powerful su-
percomputer, we wouldn’t have the option to simulate the origin of life on
Earth molecule by molecule. But we can try to emulate the type of process
by which life emerged — cells from organic molecules, multicellular organisms
from unicellular ones, and so forth.
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This variety of research falls into the domain of artificial life rather than
AT proper. Alife is a flourishing discipline on its own, highly active since the
early 1990’s. We will briefly review some of the best known projects in the
area. While most of this research still focuses on the creation and evolution of
either very unnatural or quite simplistic creatures, there are several projects
that have managed to give rise to fascinating levels of complexity.

Tierra, by Thomas Ray [45] was one of the earlier proposals toward an ar-
tificial evolutionary process that generates life. Tierra was successful in giving
rise to unicellular organisms (actually, programs encoded in a 32-instruction
machine language). In the original Tierra, there was no externally defined fit-
ness function — the fitness emerged as a consequence of each creature’s ability
to replicate itself and adapt to the presence of other creatures.

Eventually, Tierra would converge to a stable state, as a consequence of
the creature’s optimization of their replication code. Ray then decided to
explore the emergence of multicellular creatures, using the analogy of parallel
processes in the digital environment. Enter Network Tierra [46], which was a
distributed system providing a simulated landscape for the creatures, allowing
migration and exploitation of different environments. Multicellular creatures
emerged, and a limited degree of cell differentiation was observed in some
experiments [47]. Unfortunately, the evolvability of the system wasn’t high
enough to allow greater complexity to emerge.

The Avida platform, developed at Caltech, is currently the most used ALife
platform, and work on the evolution of complex digital creatures continues.

Walter Fontana’s AlChemy [14, 13] project focuses on addressing a dif-
ferent, but equally important and challenging issue — defining a theory of
biological organization which allows for self-maintaining organisms, i.e., or-
ganisms which possess a metabolic system capable of sustaining their persis-
tence. Fontana created an artificial chemistry based on two key abstractions:
constructiveness (the interaction between components can generate new com-
ponents. In chemistry, when two molecules collide, new molecules may arise
as a consequence.) and the existence of equivalence classes (the property that
the same final result can be obtained by different reaction chains). Fontana’s
artificial chemistry uses lambda calculus as a minimal system presenting those
key features.

From this chemistry, Fontana develops his theory of biological organiza-
tion, which is a theory of self-maintaining systems. His computer simulations
have shown that networks of interacting lambda-expressions arise which are
self-maintaining and robust, being able to repair themselves when components
are removed. Fontana called these networks organizations, and he was able
to generate organizations capable of self-duplication and maintenance, as well
as the emergence of self-maintaining metaorganizations composed of single
organizations.
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8 The Social Nature of Intelligence

All the AT approaches discussed so far essentially view the mind as something
associated with a single organism, a single computational system. Social psy-
chologists, however, have long recognized that this is just an approximation.
In reality the mind is social — it exists, not in isolated individuals, but in
individuals embedded in social and cultural systems.

One approach to incorporating the social aspect of mind is to create indi-
vidual AGI systems and let them interact with each other. For example, this
is an important part of the Novamente Al project, which involves a special
language for Novamente Al systems to use to interact with each other. An-
other approach, however, is to consider sociality at a more fundamental level,
and to create systems from the get-go that are at least as social as they are
intelligent.

One example of this sort of approach is Steve Grand’s neural-net architec-
ture as embodied in the Creatures game [24]. His neural net based creatures
are intended to grow more intelligent by interacting with each other — strug-
gling with each other, learning to outsmart each other, and so forth.

John Holland’s classifier systems [30] are another example of a multi-agent
system in which competition and cooperation are both present. In a classifier
system, a number of rules co-exist in the system at any given moment. The
system interacts with an external environment, and must react appropriately
to the stimuli received from the environment. When the system performs the
appropriate actions for a given perception, it is rewarded. While the individ-
uals in Holland’s system are quite primitive, recent work by Eric Baum [5]
has used a similar metaphor with more complex individuals, and promising
results on some large problems.

In order to decide how to answer to the perceived stimuli, the system
will perform multiple rounds of competition, during which the rules bid to be
activated. The winning rule will then either perform an internal action, or an
external one. Internal actions change the system’s internal state and affect the
next round of bidding, as each rule’s right to bid (and, in some variations, the
amount it bids) depends on how well it matches the system’s current state.

Eventually, a rule will be activated that will perform an external action,
which may trigger reward from the environment. The reward is then shared
by all the rules that have been active since the stimuli were perceived. The
credit assignment algorithm used by Holland is called bucket brigade. Rules
that receive rewards can bid higher in the next rounds, and are also allowed
to reproduce, which results in the creation of new rules.

Another important example of social intelligence is presented in the re-
search inspired by social insects. Swarm Intelligence [6] is the term that gener-
ically describes such systems. Swarm Intelligence systems are a new class of
biologically inspired tools.

These systems are self-organized, relying on direct and indirect commu-
nication between agents to lead to emergent behavior. Positive feedback is
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given by this communication (which can take the form of a dance indicating
the direction of food in bee colonies, or pheromone trails in ant societies),
which biases the future behavior of the agents in the system. These systems
are naturally stochastic, relying on multiple interactions and on a random,
exploratory component. They often display highly adaptive behavior to a dy-
namic environment, having thus been applied to dynamic network routing [9].
Given the simplicity of the individual agents, Swarm Intelligence showcases
the value of cooperative emergent behavior in an impressive way.

Ant Colony Optimization [11] is the most popular form of Swarm Intelli-
gence. ACO was initially designed as a heuristic for NP-hard problems [12],
but has since been used in a variety of settings. The original version of ACO
was developed to solve the famous Traveling Salesman problem. In this sce-
nario, the environment is the graph describing the cities and their connections,
and the individual agents, called ants, travel in the graph.

Each ant will do a tour of the cities in the graph, iteratively. At each
city it will choose the next city to visit, based on a transition rule. This rule
considers the amount of pheromone in the links connecting the current city
and each of the possibilities, as well as a small random component. When the
ant completes its tour, it updates the pheromone trail in the links it has used,
laying an amount of pheromone proportional to the quality of the tour it has
completed. The new trail will then influence the choices of the ants in the
next iteration of the algorithm.

Finally, an important contribution from Artificial Life research is the An-
imat approach. Animats are biologically-inspired simulated or real robots,
which exhibit adaptive behavior. In several cases [33] animats have been
evolved to display reasonably complex artificial nervous systems capable of
learning and adaptation. Proponents of the Animat approach argue that AGI
is only reachable by embodied autonomous agents which interact on their own
with their environments, and possibly other agents. This approach places an
emphasis on the developmental, morphological and environmental aspects of
the process of Al creating.

Vladimir Red’ko’s self-organizing agent-system approach also fits partially
into this general category, having some strong similarities to Animat projects.
He defines a large population of simple agents guided by simple neural net-
works. His chapter describes two models for these agents. In all cases, the
agents live in a simulated environment in which they can move around, look-
ing for resources, and they can mate — mating uses the typical genetic oper-
ators of uniform crossover and mutation, which leads to the evolution of the
agent population.

In the simpler case, agents just move around and eat virtual food, accu-
mulating resources to mate. The second model in Red’ko’s work simulates
more complex agents. These agents communicate with each other, and mod-
ify their behavior based on their experience. None of the agents individually
are all that clever, but the population of agents as a whole can demonstrate
some interesting collective behaviors, even in the initial, relatively simplistic



26 Pennachin and Goertzel

implementation. The agents communicate their knowledge about resources in
different points of the environment, thus leading to the emergence of adaptive
behavior.

9 Integrative Approaches

We have discussed a number of different approaches to AGI, each of which has
— at least based on a cursory analysis — strengths and weaknesses compared to
the others. This gives rise to the idea of integrating several of the approaches
together, into a single AGI system that embodies several different approaches.

Integrating different ideas and approaches regarding something as complex
and subtle as AGI is not a task to be taken lightly. It’s quite possible to
integrate two good ideas and obtain a bad idea, or to integrate two good
software systems and get a bad software system. To successfully integrate
different approaches to AGI requires deep reflection on all the approaches
involved, and unification on the level of conceptual foundations as well as
pragmatic implementation.

Several of the AGI approaches described in this book are integrative to
a certain extent. Voss’s a2i2 system integrates a number of different neural-
net-oriented learning algorithms on a common, flexible neural-net-like data
structure. Many of the algorithms he integrated have been used before, but
only in an isolated way, not integrated together in an effort to make a “whole
mind.” Wang’s NARS-based AI design is less strongly integrative, but it still
may be considered as such. It posits the NARS logic as the essential core
of AI, but leaves room for integrating more specialized AI modules to deal
with perception and action. Yudkowsky’s DGI framework is integrative in a
similar sense: it posits a particular overall architecture, but leaves some room
for insights from other Al paradigms to be used in filling in roles within this
architecture.

By far the most intensely integrative AGI approach described in the book,
however, is our own Novamente Al approach.

The Novamente Al Engine, the work of the editors of this volume and their
colleagues, is in part an original system and in part an integration of ideas
from prior work on narrow Al and AGI. The Novamente design incorporates
aspects of many previous Al paradigms such as genetic programming, neural
networks, agent systems, evolutionary programming, reinforcement learning,
and probabilistic reasoning. However, it is unique in its overall architecture,
which confronts the problem of creating a holistic digital mind in a direct and
ambitious way.

The fundamental principles underlying the Novamente design derive from
a novel complex-systems-based theory of mind called the psynet model, which
was developed in a series of cross-disciplinary research treatises published
during 1993-2001 [17, 16, 18, 19, 20]. The psynet model lays out a series of
properties that must be fulfilled by any software system if it is going to be an
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autonomous, self-organizing, self-evolving system, with its own understanding
of the world, and the ability to relate to humans on a mind-to-mind rather
than a software-program-to-mind level. The Novamente project is based on
many of the same ideas that underlay the Webmind AI Engine project carried
out at Webmind Inc. during 1997-2001 [23]; and it also draws to some extent
on ideas from Pei Wang’s Non-axiomatic Reasoning System (NARS) [54].

At the moment, a complete Novamente design has been laid out in detail
[21], but implementation is only about 25% complete (and of course many
modifications will be made to the design during the course of further im-
plementation). It is a C++ software system, currently customized for Linux
clusters, with a few externally-facing components written in Java. The overall
mathematical and conceptual design of the system is described in a paper
[22] and a forthcoming book [21]. The existing codebase implements roughly
a quarter of the overall design. The current, partially-complete codebase is
being used by the startup firm Biomind LLC, to analyze genetics and pro-
teomics data in the context of information integrated from numerous biolog-
ical databases. Once the system is fully engineered, the project will begin a
phase of interactively teaching the Novamente system how to respond to user
queries, and how to usefully analyze and organize data. The end result of this
teaching process will be an autonomous AGI system, oriented toward assisting
humans in collectively solving pragmatic problems.

10 The Outlook for AGI

The AGI subfield is still in its infancy, but it is certainly encouraging to
observe the growing attention that it has received in the past few years. Both
the number of people and research groups working on systems designed to
achieve general intelligence and the interest from outsiders have been growing.

Traditional, narrow Al does play a key role here, as it provides useful
examples, inspiration and results for AGI. Several such examples have been
mentioned in the previous sections in connection with one or another AGI
approach. Innovative ideas like the application of complexity and algorithmic
information theory to the mathematical theorization of intelligence and Al
provide valuable ground for AGI researchers. Interesting ideas in logic, neural
networks and evolutionary computing provide both tools for AGI approaches
and inspiration for the design of key components, as will be seen in several
chapters of this book.

The ever-welcome increase in computational power and the emergence of
technologies like Grid computing also contribute to a positive outlook for
AGI. While it is possible that, in the not too distant future, regular desktop
machines (or whatever form the most popular computing devices take 10 or
20 years from now) will be able to run AGI software comfortably, today’s
AGI prototypes are extremely resource intensive, and the growing availabil-
ity of world-wide computing farms would greatly benefit AGI research. The
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popularization of Linux, Linux-based clusters that extract considerable horse-
power from stock hardware, and, finally, Grid computing, are seen as great
advances, for one can never have enough CPU cycles.

We hope that the precedent set by these pioneers in AGI research will in-
spire young Al researchers to stray a bit off the beaten track and venture into
the more daring, adventurous and riskier path of seeking the creation of truly
general artificial intelligence. Traditional, narrow Al is very valuable, but, if
nothing else, we hope that this volume will help create the awareness that
AGI research is a very present and viable option. The complementary and
related fields are mature enough, the computing power is becoming increas-
ingly easier and cheaper to obtain, and AGI itself is ready for popularization.
We could always use yet another design for an artificial general intelligence in
this challenging, amazing, and yet friendly race toward the awakening of the
world’s first real artificial intelligence.
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Summary. Is there an “essence of intelligence” that distinguishes intelligent sys-
tems from non-intelligent systems? If there is, then what is it? This chapter sug-
gests an answer to these questions by introducing the ideas behind the NARS (Non-
axiomatic Reasoning System) project. NARS is based on the opinion that the essence
of intelligence is the ability to adapt with insufficient knowledge and resources. Ac-
cording to this belief, the author has designed a novel formal logic, and implemented
it in a computer system. Such a “logic of intelligence” provides a unified explana-
tion for many cognitive functions of the human mind, and is also concrete enough
to guide the actual building of a general purpose “thinking machine”.

1 Intelligence and Logic

1.1 To Define Intelligence

The debate on the essence of intelligence has been going on for decades, but
there is still little sign of consensus (this book itself is evidence of this).
In “mainstream AI”, the following are some representative opinions:

“Al is concerned with methods of achieving goals in situations in
which the information available has a certain complex character. The
methods that have to be used are related to the problem presented by
the situation and are similar whether the problem solver is human, a
Martian, or a computer program.” [19]

Intelligence usually means “the ability to solve hard problems”.
22]

“By ‘general intelligent action’ we wish to indicate the same scope
of intelligence as we see in human action: that in any real situation
behavior appropriate to the ends of the system and adaptive to the
demands of the environment can occur, within some limits of speed
and complexity.” [23]

Maybe it is too early to define intelligence. It is obvious that, after decades
of study, we still do not know very much about it. There are more questions
than answers. Any definition based on current knowledge is doomed to be



32 Pei Wang

revised by future work. We all know that a well-founded definition is usually
the result, rather than the starting point, of scientific research. However, there
are still reasons for us to be concerned about the definition of intelligence at
the current time. Though clarifying the meaning of a concept always helps
communication, this problem is especially important for AI. As a community,
Al researchers need to justify their field as a scientific discipline. Without a
(relatively) clear definition of intelligence, it is hard to say why Al is different
from, for instance, computer science or psychology. Is there really something
novel and special, or just fancy labels on old stuff? More vitally, every re-
searcher in the field needs to justify his/her research plan according to such
a definition. Anyone who wants to work on artificial intelligence is facing a
two-phase task: to choose a working definition of intelligence, then to produce
it in a computer.

A working definition is a definition concrete enough that you can directly
work with it. By accepting a working definition of intelligence, it does not
mean that you really believe that it fully captures the concept “intelligence”,
but that you will take it as a goal for your current research project.

Therefore, the lack of a consensus on what intelligence is does not prevent
each researcher from picking up (consciously or not) a working definition of
intelligence. Actually, unless you keep one (or more than one) definition, you
cannot claim that you are working on artificial intelligence.

By accepting a working definition of intelligence, the most important com-
mitments a researcher makes are on the acceptable assumptions and desired
results, which bind all the concrete work that follows. The defects in the def-
inition can hardly be compensated by the research, and improper definitions
will make the research more difficult than necessary, or lead the study away
from the original goal.

Before studying concrete working definitions of intelligence, we need to set
up a general standard for what makes a definition better than others.

Carnap met the same problem when he tried to clarify the concept “proba-
bility”. The task “consists in transforming a given more or less inexact concept
into an exact one or, rather, in replacing the first by the second”, where the
first may belong to everyday language or to a previous stage in the scientific
language, and the second must be given by explicit rules for its use [4].

According to Carnap, the second concept, or the working definition as it
is called in this chapter, must fulfill the following requirements [4]:

1. It is similar to the concept to be defined, as the latter’s vagueness permits.
2. It is defined in an ezact form.

3. It is fruitful in the study.

4. Tt is simple, as the other requirements permit.

It seems that these requirements are also reasonable and suitable for our
current purpose. Now let us see what they mean concretely to the working
definition of intelligence:
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Similarity (to standard usage). Though “intelligence” has no exact meaning
in everyday language, it does have some common usages with which the
working definition should agree. For instance, normal human beings are
intelligent, but most animals and machines (including ordinary computer
systems) are either not intelligent at all or much less intelligent than
human beings.

Exactness (or well-definedness). Given the working definition, whether (or
how much) a system is intelligent should be clearly decidable. For this rea-
son, intelligence cannot be defined in terms of other ill-defined concepts,
such as mind, thinking, cognition, intentionality, rationality, wisdom, con-
sciousness, and so on, though these concepts do have close relationships
with intelligence.

Fruitfulness (and instructiveness). The working definition should provide con-
crete guidelines for the research based on it — for instance, what assump-
tions can be accepted, what phenomena can be ignored, what properties
are desired, and so on. Most importantly, the working definition of in-
telligence should contribute to the solving of fundamental problems in
Al

Simplicity. Although intelligence is surely a complex mechanism, the working
definition should be simple. From a theoretical point of view, a simple
definition makes it possible to explore a theory in detail; from a practical
point of view, a simple definition is easy to use.

For our current purpose, there is no “right” or “wrong” working definition
for intelligence, but there are “better” and “not-so-good” ones. When compar-
ing proposed definitions, the four requirements may conflict with each other.
For example, one definition is more fruitful, while another is simpler. In such
a situation, some weighting and trade-off become necessary. However, there is
no evidence showing that in general the requirements cannot be satisfied at
the same time.

1.2 A Working Definition of Intelligence

Following the preparation of the previous section, we propose here a working
definition of intelligence:

Intelligence is the capacity of a system to adapt to its environment
while operating with insufficient knowledge and resources.

The environment of a system may be the physical world, or other informa-
tion processing systems (human or computer). In either case, the interactions
can be described by the experiences (or stimuli) and responses of the sys-
tem, which are streams of input and output information, respectively. For
the system, perceivable patterns of input and producible patterns of output
constitute its interface language.

To adapt means that the system learns from its experiences. It adjusts its
internal structure to approach its goals, as if future situations will be similar



34 Pei Wang

to past situations. Not all systems adapt to their environment. For instance, a
traditional computing system gets all of its knowledge during its design phase.
After that, its experience does not contribute to its behaviors. To acquire new
knowledge, such a system would have to be redesigned.

Insufficient knowledge and resources means that the system works under
the following restrictions:

Finite. The system has a constant information-processing capacity.

Real-time. All tasks have time requirements attached.

Open. No constraints are put on the knowledge and tasks that the system
can accept, as long as they are representable in the interface language.

The two main components in the working definition, adaptation and insuf-
ficient knowledge and resources, are related to each other. An adaptive system
must have some insufficiency in its knowledge and resources, for otherwise it
would never need to change at all. On the other hand, without adaptation, a
system may have insufficient knowledge and resources, but make no attempt
to improve its capacities.

Not all systems take their own insufficiency of knowledge and resources
into full consideration. Non-adaptive systems, for instance, simply ignore new
knowledge in their interactions with their environment. As for artificial adap-
tive systems, most of them are not finite, real-time, and open, in the following
senses:

1. Though all actual systems are finite, many theoretical models (for ex-
ample, the Turing Machine) neglect the fact that the requirements for
processor time and/or memory space may go beyond the supply capacity
of the system.

2. Most current Al systems do not consider time constraints at run time.
Most real-time systems can handle time constraints only if they are es-
sentially deadlines [35].

3. Various constraints are imposed on what a system can experience. For
example, only questions that can be answered by retrieval and deduction
from current knowledge are acceptable, new knowledge cannot conflict
with previous knowledge, and so on.

Many computer systems are designed under the assumption that their
knowledge and resources, though limited or bounded, are still sufficient to fulfill
the tasks that they will be called upon to handle. When facing a situation
where this assumption fails, such a system simply panics or crashes, and asks
for external intervention by a human user.

For a system to work under the assumption of insufficient knowledge and
resources, it should have mechanisms to handle the following types of situa-
tion, among others:

e a new processor is required when all existent processors are occupied;
e extra memory is required when all available memory is already full;
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a task comes up when the system is busy with something else;

a task comes up with a time requirement, so exhaustive search is not an
option;

new knowledge conflicts with previous knowledge;

a question is presented for which no sure answer can be deduced from
available knowledge.

For traditional computing systems, these types of situations usually re-
quire human intervention or else simply cause the system to refuse to accept
the task or knowledge involved. However, for a system designed under the as-
sumption of insufficient knowledge and resources, these are normal situations,
and should be managed smoothly by the system itself. According to the above
definition, intelligence is a “highly developed form of mental adaptation” [26].

When defining intelligence, many authors ignore the complementary ques-
tion: what is unintelligent? If everything is intelligent, then this concept is
empty. Even if we agree that intelligence, like almost all properties, is a matter
of degree, we still need criteria to indicate what makes a system more intel-
ligent than another. Furthermore, for AI to be an (independent) discipline,
we require the concept “intelligence” to be different from other established
concepts, because otherwise we are only talking about some well-known stuff
with a new name, which is not enough to establish a new branch of science.
For example, if every computer system is intelligent, it is better to stay within
the theory of computation. Intuitively, “intelligent system” does not mean a
faster and bigger computer. On the other hand, an unintelligent system is
not necessarily incapable or gives only wrong results. Actually, most ordinary
computer systems and many animals can do something that human beings
cannot. However, these abilities do not earn the title “intelligent” for them.
What is missing in these capable-but-unintelligent systems? According to the
working definition of intelligence introduced previously, an unintelligent sys-
tem is one that does not adapt to its environment. Especially, in artificial
systems, an unintelligent system is one that is designed under the assumption
that it only works on problems for which the system has sufficient knowledge
and resources. An intelligent system is not always “better” than an unin-
telligent system for practical purposes. Actually, it is the contrary: when a
problem can be solved by both of them, the unintelligent system is usually
better, because it guarantees a correct solution. As Hofstadter said, for tasks
like adding two numbers, a “reliable but mindless” system is better than an
“intelligent but fallible” system [13].

1.3 Comparison With Other Definitions

Since it is impossible to compare the above definition to each of the existing
working definitions of intelligence one by one, we will group them into several
categories.

Generally speaking, research in artificial intelligence has two major mo-
tivations. As a field of science, we want to learn how the human mind, and
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“mind” in general, works; and as a branch of technology, we want to apply
computers to domains where only the human mind works well currently. Intu-
itively, both goals can be achieved if we can build computer systems that are
“similar to the human mind”. But in what sense they are “similar”? To dif-
ferent people, the desired similarity may involve structure, behavior, capacity,
function, or principle. In the following, we discuss typical opinions in each of
the five categories, to see where these working definitions of intelligence will
lead Al

To Simulate the Human Brain

Intelligence is produced by the human brain, so maybe AI should attempt
to simulate a brain in a computer system as faithfully as possible. Such an
opinion is put in its extreme form by neuroscientists Reeke and Edelman, who
argue that “the ultimate goals of AI and neuroscience are quite similar” [28].

Though it sounds reasonable to identify Al with brain model, few Al re-
searchers take such an approach in a very strict sense. Even the “neural net-
work” movement is “not focused on neural modeling (i.e., the modeling of
neurons), but rather ... focused on neurally inspired modeling of cognitive
processes” [30]. Why? One obvious reason is the daunting complezity of this
approach. Current technology is still not powerful enough to simulate a huge
neural network, not to mention the fact that there are still many mysteries
about the brain. Moreover, even if we were able to build a brain model at the
neuron level to any desired accuracy, it could not be called a success of Al,
though it would be a success of neuroscience.

AT is more closely related to the concept “model of mind” — that is, a high-
level description of brain activity in which biological concepts do not appear
[32]. A high-level description is preferred, not because a low-level description
is impossible, but because it is usually simpler and more general. A distinctive
characteristic of Al is the attempt to “get a mind without a brain” — that is,
to describe mind in a medium-independent way. This is true for all models: in
building a model, we concentrate on certain properties of an object or process
and ignore irrelevant aspects; in so doing, we gain insights that are hard to
discern in the object or process itself. For this reason, an accurate duplication
is not a model, and a model including unnecessary details is not a good model.
If we agree that “brain” and “mind” are different concepts, then a good model
of brain is not a good model of mind, though the former is useful for its own
sake, and helpful for the building of the latter.

To Duplicate Human Behaviors

Given that we always judge the intelligence of other people by their behavior,
it is natural to use “reproducing the behavior produced by the human mind
as accurately as possible” as the aim of AI. Such a working definition of
intelligence asks researchers to use the Turing Test [36] as a sufficient and
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necessary condition for having intelligence, and to take psychological evidence
seriously.

Due to the nature of the Turing Test and the resource limitations of a
concrete computer system, it is out of question for the system to have pre-
stored in its memory all possible questions and proper answers in advance,
and then to give a convincing imitation of a human being by searching such
a list. The only realistic way to imitate human performance in a conversation
is to produce the answers in real time. To do this, it needs not only cognitive
faculties, but also much prior “human experience” [9]. Therefore, it must
have a body that feels human, it must have all human motivations (including
biological ones), and it must be treated by people as a human being — so it
must simply be an “artificial human”, rather than a computer system with
artificial intelligence.

As French points out, by using behavior as evidence, the Turing Test is a
criterion solely for human intelligence, not for intelligence in general [9]. Such
an approach can lead to good psychological models, which are valuable for
many reasons, but it suffers from “human chauvinism” [13] — we would have
to say, according to the definition, that the science-fiction alien creature E.
T. was not intelligent, because it would definitely fail the Turing Test.

Though “reproducing human (verbal) behavior” may still be a sufficient
condition for being intelligent (as suggested by Turing), such a goal is difficult,
if not impossible, to achieve. More importantly, it is not a necessary condition
for being intelligent, if we want “intelligence” to be a more general concept
than “human intelligence”.

To Solve Hard Problems

In everyday language, “intelligent” is usually applied to people who can solve
hard problems. According to this type of definition, intelligence is the capacity
to solve hard problems, and how the problems are solved is not very important.

What problems are “hard”? In the early days of AI, many researchers
worked on intellectual activities like game playing and theorem proving. Nowa-
days, expert-system builders aim at “real-world problems” that crop up in
various domains. The presumption behind this approach is: “Obviously, ex-
perts are intelligent, so if a computer system can solve problems that only
experts can solve, the computer system must be intelligent, too”. This is why
many people take the success of the chess-playing computer Deep Blue as a
success of Al

This movement has drawn in many researchers, produced many practically
useful systems, attracted significant funding, and thus has made important
contributions to the development of the Al enterprise. Usually, the systems are
developed by analyzing domain knowledge and expert strategy, then building
them into a computer system. However, though often profitable, these systems
do not provide much insight into how the mind works. No wonder people
ask, after learning how such a system works, “Where’s the AI?” [31] — these
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systems look just like ordinary computer application systems, and still suffer
from great rigidity and brittleness (something AT wants to avoid).

If intelligence is defined as “the capacity to solve hard problems”, then the
next question is: “Hard for whom?” If we say “hard for human beings”, then
most existing computer software is already intelligent — no human can manage
a database as well as a database management system, or substitute a word in
a file as fast as an editing program. If we say “hard for computers,” then Al
becomes “whatever hasn’t been done yet,” which has been dubbed “Tesler’s
Theorem” [13]. The view that Al is a “perpetually extending frontier” makes
it attractive and exciting, which it deserves, but tells us little about how it
differs from other research areas in computer science — is it fair to say that the
problems there are easy? If Al researchers cannot identify other commonalities
of the problems they attack besides mere difficulty, they will be unlikely to
make any progress in understanding and replicating intelligence.

To Carry out Cognitive Functions

According to this view, intelligence is characterized by a set of cognitive func-
tions, such as reasoning, perception, memory, problem solving, language use,
and so on. Researchers who subscribe to this view usually concentrate on just
one of these functions, relying on the idea that research on all the functions
will eventually be able to be combined, in the future, to yield a complete pic-
ture of intelligence. A “cognitive function” is often defined in a general and
abstract manner. This approach has produced, and will continue to produce,
tools in the form of software packages and even specialized hardware, each of
which can carry out a function that is similar to certain mental skills of human
beings, and therefore can be used in various domains for practical purposes.
However, this kind of success does not justify claiming that it is the proper
way to study Al To define intelligence as a “toolbox of functions” has serious
weaknesses.

When specified in isolation, an implemented function is often quite dif-
ferent from its “natural form” in the human mind. For example, to study
analogy without perception leads to distorted cognitive models [5]. Even if we
can produce the desired tools, this does not mean that we can easily combine
them, because different tools may be developed under different assumptions,
which prevents the tools from being combined.

The basic problem with the “toolbox” approach is: without a “big picture”
in mind, the study of a cognitive function in an isolated, abstracted, and often
distorted form simply does not contribute to our understanding of intelligence.

A common counterargument runs something like this: “Intelligence is very
complex, so we have to start from a single function to make the study
tractable.” For many systems with weak internal connections, this is often
a good choice, but for a system like the mind, whose complexity comes di-
rectly from its tangled internal interactions, the situation may be just the
opposite. When the so-called “functions” are actually phenomena produced
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by a complex-but-unified mechanism, reproducing all of them together (by
duplicating the mechanism) is simpler than reproducing only one of them.

To Develop New Principles

According to this type of opinions, what distinguishes intelligent systems and
unintelligent systems are their postulations, applicable environments, and ba-
sic principles of information processing.

The working definition of intelligence introduced earlier belongs to this cat-
egory. As a system adapting to its environment with insufficient knowledge
and resources, an intelligent system should have many cognitive functions, but
they are better thought of as emergent phenomena than as well-defined tools
used by the system. By learning from its experience, the system potentially
can acquire the capacity to solve hard problems — actually, hard problems are
those for which a solver (human or computer) has insufficient knowledge and
resources — but it has no such built-in capacity, and thus, without proper
training, no capacity is guaranteed, and acquired capacities can even be lost.
Because the human mind also follows the above principles, we would hope
that such a system would behave similarly to human beings, but the similar-
ity would exist at a more abstract level than that of concrete behaviors. Due
to the fundamental difference between human experience/hardware and com-
puter experience/hardware, the system is not expected to accurately repro-
duce masses of psychological data or to pass a Turing Test. Finally, although
the internal structure of the system has some properties in common with a
description of the human mind at the subsymbolic level, it is not an attempt
to simulate a biological neural network.

In summary, the structure approach contributes to neuroscience by build-
ing brain models, the behavior approach contributes to psychology by pro-
viding explanations of human behavior, the capacity approach contributes to
application domains by solving practical problems, and the function approach
contributes to computer science by producing new software and hardware for
various computing tasks. Though all of these are valuable for various reasons,
and helpful in the quest after Al, these approaches do not, in my opinion,
concentrate on the essence of intelligence.

To be sure, what has been proposed in my definition of intelligence is not
entirely new to the Al community. Few would dispute the proposition that
adaptation, or learning, is essential for intelligence. Moreover, “insufficient
knowledge and resources” is the focus of many subfields of Al, such as heuristic
search, reasoning under uncertainty, real-time planning, and machine learning.
Given this situation, what is new in this approach? It is the following set of
principles:

1. an explicit and unambiguous definition of intelligence as “adaptation un-
der insufficient knowledge and resources”;

2. a further definition of the phrase “with insufficient knowledge and re-
sources” as finite, real-time, and open;
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3. the design of all formal and computational aspects of the project keeping
the two previous definitions foremost in mind.

1.4 Logic and Reasoning Systems

To make our discussion more concrete and fruitful, let us apply the above
working definition of intelligence to a special type of information processing
system — reasoning system.

A reasoning system usually has the following components:

1. a formal language for knowledge representation, as well as communication
between the system and its environment;

2. a semantics that determines the meanings of the words and the truth
values of the sentences in the language;

3. a set of inference rules that match questions with knowledge, infer con-
clusions from promises, and so on;

4. a memory that systematically stores both questions and knowledge, and
provides a working place for inferences;

5. a control mechanism that is responsible for choosing premises and infer-
ence rules for each step of inference.

The first three components are usually referred to as a logic, or the logical
part of the reasoning system, and the last two as the control part of the system.

According to the previous definition, being a reasoning system is neither
necessary nor sufficient for being intelligent. However, an intelligent reasoning
system does provide a suitable framework for the study of intelligence, for the
following reasons:

e It is a general-purpose system. Working in such a framework keeps us from
being bothered by domain-specific properties, and also prevents us from
cheating by using domain-specific tricks.

e Compared with cognitive activities like low-level perception and motor
control, reasoning is at a more abstract level, and is one of the cognitive
skills that collectively make human beings so qualitatively different from
other animals.

e The framework of reasoning system is highly flexible and expendable. We
will see that we can carry out many other cognitive activities in it when
the concept of “reasoning” is properly extended.

e Most research on reasoning systems is carried out within a paradigm based
on assumptions directly opposed to the one presented above. By “fighting
in the backyard of the rival”, we can see more clearly what kinds of effects
the new ideas have.

Before showing how an intelligent reasoning system is designed, let us first
see its opposite — that is, a reasoning system designed under the assumption
that its knowledge and resources are sufficient to answer the questions asked
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by its environment (so no adaptation is needed). By definition, such a system
has the following properties:

1. No new knowledge is necessary. All the system needs to know to answer
the questions is already there at the very beginning, expressed by a set of
axioms.

2. The axioms are true, and will remain true, in the sense that they corre-
spond to the actual situation of the environment.

3. The system answers questions by applying a set of formal rules to the
axioms. The rules are sound and complete (with respect to the valid ques-
tions), therefore they guarantee correct answers for all questions.

4. The memory of the system is so big that all axioms and intermediate
results can always be contained within it.

5. There is an algorithm that can carry out any required inference in finite
time, and it runs so fast that it can satisfy all time requirements that may
be attached to the questions.

This is the type of system dreamed of by Leibniz, Boole, Hilbert, and many
others. It is usually referred to as a “decidable axiomatic system” or a “formal
system”. The attempt to build such systems has dominated the study of logic
for a century, and has strongly influenced the research of artificial intelligence.
Many researchers believe that such a system can serve as a model of human
thinking.

However, if intelligence is defined as “to adapt under insufficient knowledge
and resources”, what we want is the contrary, in some sense, to an axiomatic
system, though it is still formalized or symbolized in a technical sense. There-
fore Non-aziomatic Reasoning System (NARS) is chosen as the name for the
intelligent reasoning system to be introduced in the following sections.

Between “pure-axiomatic” systems and “non-axiomatic” ones, there are
also “semi-axiomatic” systems. They are designed under the assumption that
knowledge and resources are insufficient in some, but not all, aspects. Conse-
quently, adaptation is necessary. Most current reasoning systems developed for
AT fall into this category. According to our working definition of intelligence,
pure-axiomatic systems are not intelligent at all, non-axiomatic systems are
intelligent, and semi-axiomatic systems are intelligent in certain aspects.

Pure-axiomatic systems are very useful in mathematics, where the aim is
to idealize knowledge and questions to such an extent that the revision of
knowledge and the deadlines of questions can be ignored. In such situations,
questions can be answered so accurately and reliably that the procedure can
be reproduced by a Turing Machine. We need intelligence only when no such
pure-axiomatic method can be used, due to the insufficiency of knowledge and
resources. For the same reason, the performance of a non-axiomatic system is
not necessarily better than that of a semi-axiomatic system, but it can work
in environments where the latter cannot be used.

Under the above definitions, intelligence is still (as we hope) a matter
of degree. Not all systems in the “non-axiomatic” and “semi-axiomatic” cate-
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gories are equally intelligent. Some systems may be more intelligent than some
other systems due to a higher resources efficiency, using knowledge in more
ways, communicating with the environment in a richer language, adapting
more rapidly and thoroughly, and so on.

“Non-axiomatic” does not mean “everything changes”. In NARS, nothing
is fixed as far as the content of knowledge is concerned, but as we will see
in the following sections, how the changes happen is fixed, according to the
inference rules and control strategy of the system, which remain constant
when the system is running. This fact does not make NARS “semi-axiomatic”,
because the fixed part is not in the “object language” level, but in the “meta-
language” level. In a sense, we can say that the “meta-level” of NARS is not
non-axiomatic, but pure-axiomatic. For a reasoning system, a fixed inference
rule is not the same as an axiom.

Obviously, we can allow the “meta-level” of NARS to be non-axiomatic,
too, and therefore give the system more flexibility in its adaptation. However,
that approach is not adopted in NARS at the current stage, for the following
reasons:

e “Complete self-modifying” is an illusion. As Hofstadter put it, “below
every tangled hierarchy lies an inviolate level” [13]. If we allow NARS
to modify its meta-level knowledge, i.e., its inference rules and control
strategy, we need to give it (fixed) meta-meta-level knowledge to specify
how the modification happens. As flexible as the human mind is, it cannot
modify its own “law of thought”.

e Though high-level self-modifying will give the system more flexibility, it
does not necessarily make the system more intelligent. Self-modifying at
the meta-level is often dangerous, and it should be used only when the
same effect cannot be produced in the object-level. To assume “the more
radical the changes can be, the more intelligent the system will be” is
unfounded. It is easy to allow a system to modify its own source code, but
hard to do it right.

e In the future, we will explore the possibility of meta-level learning in
NARS, but will not attempt to do so until the object-level learning is
mature. To try everything at the same time is just not a good engineering
approach, and this does not make NARS less non-axiomatic, according to
the above definition.

Many arguments proposed previously against logical Al [2, 20], symbolic
AT [7], or AT as a whole [32, 25], are actually against a more specific target:
pure-axiomatic systems. These arguments are powerful in revealing that many
aspects of intelligence cannot be produced by a pure-axiomatic system (though
these authors do not use this term), but some of them are misleading by using
such a system as the prototype of Al research. By working on a reasoning
system, with its formal language and inference rules, we do not necessarily
bind ourselves with the commitments accepted by the traditional “logical AI”
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paradigms. As we will see in the following, NARS shares more philosophical
opinions with the subsymbolic, or connectionist movement [15, 17, 30, 34].

What is the relationship of artificial intelligence and computer science?
What is the position of Al in the whole science enterprise? Traditionally,
Al is referred to as a branch of computer science. According to our previ-
ous definitions, Al can be implemented with the tools provided by computer
science, but from a theoretical point of view, they make opposite assump-
tions: computer science focuses on pure-axiomatic systems, while Al focuses
on non-axiomatic systems. The fundamental assumptions of computer science
can be found in mathematical logic (especially first-order predicate logic) and
computability theory (especially Turing Machine). These theories take the
sufficiency of knowledge and resources as implicit postulates, therefore adap-
tation, plausible inference, and tentative solutions of problems are neither
necessary nor possible.

Similar assumptions are often accepted by Al researchers with the follow-
ing justification: “We know that the human mind usually works with insuf-
ficient knowledge and resources, but if you want to set up a formal model
and then a computer system, you must somehow idealize the situation.” It is
true that every formal model is an idealization, and so is NARS. The prob-
lem is what to omit and what to preserve in the idealization. In the current
implementation of NARS, many factors that should influence reasoning are
ignored, but the insufficiency of knowledge and resources is strictly assumed
throughout. Why? Because it is a definitive feature of intelligence, so if it were
lost through the “idealization”, the resulting study would be about something
else.

2 The Components of NARS

Non-axiomatic Reasoning System (NARS) is designed to be an intelligent rea-
soning system, according to the working definition of intelligence introduced
previously.

In the following, let us see how the major components of NARS (its formal
language, semantics, inference rules, memory, and control mechanism) are
determined, or strongly suggested, by the definition, and how they differ from
the components of an axiomatic system. Because this chapter is concentrated
in the philosophical and methodological foundation of the NARS project,
formal descriptions and detailed discussions for the components are left to
other papers [39, 40, 42].

2.1 Experience-Grounded Semantics

Axiomatic reasoning systems (and most semi-axiomatic systems) use “model-
theoretic semantics”. Informally speaking, a model is a description of a do-
main, with relations among objects specified. For a reasoning system working
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on the domain, an “interpretation” maps the terms in the system to the ob-
jects in the model, and the predicates in the systems to the relations in the
model. For a given term, its meaning is its image in the model under the
interpretation. For a given proposition, its truth value depends on whether
it corresponds to a fact in the model. With such a semantics, the reasoning
system gets a constant “reference”, the model, according to which truth and
meaning within the system is determined. Though model-theoretic seman-
tics comes in different forms, and has variations, this “big picture” remains
unchanged.

This kind of semantics is not suitable for NARS. As an adaptive sys-
tem with insufficient knowledge and resources, the system cannot judge the
truthfulness of its knowledge against a static, consistent, and complete model.
Instead, truth and meaning have to be grounded on the system’s experience
[40]. Though a section of experience is also a description of the system’s envi-
ronment, it is fundamentally different from a model, since experience changes
over time, is never complete, and is often inconsistent. Furthermore, experi-
ence is directly accessible to the system, while model is often “in the eye of
an observer”.

According to an experience-grounded semantics, truth value becomes a
function of the amount of available evidence, therefore inevitably becomes
changeable and subjective, though not arbitrary. In such a system, no knowl-
edge is “true” in the sense that it is guaranteed to be confirmed by future
experience. Instead, the truth value of a statement indicates the degree to
which the statement is confirmed by past experience. The system will use
such knowledge to predict the future, because it is exactly what “adaptive”,
and therefore “intelligent”, means. In this way, “truth” has quite different
(though closely related) meanings in non-axiomatic systems and axiomatic
systems.

Similarly, the meaning of a term, that is, what makes the term different
from other terms to the system, is determined by its relationships to other
terms, according to the system’s experience, rather than by an interpretation
that maps it into an object in a model.

With insufficient resources, the truth value of each statement and the
meaning of each term in NARS is usually grounded on part of the experience.
As a result, even without new experience, the inference activity of the system
will change the truth values and meanings, by taking previously available-but-
ignored experience into consideration. On the contrary, according to model-
theoretic semantics, the internal activities of a system have no effects on truth
value and meaning of the language it uses.

“Without an interpretation, a system has no access to the semantics of a
formal language it uses” is the central argument in Searle’s “Chinese room”
thought experiment against strong AI [32]. His argument is valid for model-
theoretic semantics, but not for experience-grounded semantics. For an intel-
ligent reasoning system, the latter is more appropriate.
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2.2 Inheritance Statement

As discussed above, “adaptation with insufficient knowledge and resources”
demands an experience-grounded semantics, which in turn requires a formal
knowledge representation language in which evidence can be naturally defined
and measured.

For a non-axiomatic reasoning system, it is obvious that a binary truth
value is not enough. With past experience as the only guidance, the system
not only needs to know whether there is counter example (negative evidence),
but also needs to know its amount, with respect to the amount of positive
evidence. To have a domain-independent method to compare competing an-
swers, a numerical truth value, or a measurement of uncertainty, becomes
necessary for NARS, which quantitatively records the relationship between a
statement and available evidence. Furthermore, “positive evidence” and “ir-
relevant stuftf” need to be distinguished too.

Intuitively speaking, the simplest case to define evidence is for a gen-
eral statement about many cases, while some of them are confirmed by past
experience (positive evidence), and some others are disconfirmed by past ex-
perience (negative evidence). Unfortunately, the most popular formal lan-
guage for knowledge representation, first-order predicate calculus, cannot
be easily used in this way. In this language, a “general statement”, such
as “Ravens are black”, is represented as a “universal proposition”, such as
“(Vz)(Raven(x) — Black(x))”. In the original form of first-order predicate
calculus, there is no such a notion as “evidence”, and the proposition is either
true or false, depending on whether there is such an object x in the domain
that makes Raven(x) true and Black(x) false. It is natural to define constants
that make the proposition true as its positive evidence, and the constants that
make it false its negative evidence. However, such a naive solution has serious
problems [40, 44]:

e Only the existence of negative evidence contributes to the truth value of
the universal proposition, while whether there is “positive evidence” does
not matter. This is the origin Popper’s refutation theory [27].

e Fvery constant is either a piece of positive evidence or a piece of negative
evidence, and nothing is irrelevant. This is related to Hempel’s conforma-
tion paradox [11].

Though evidence is hard to define in predicate calculus, it is easy to do
in a properly designed categorical logic. Categorical logics, or term logics, is
another family of formal logic, exemplified by Aristotle’s Syllogism [1]. The
major formal features that distinguish it from predicate logic are the use of
subject—predicate statements and syllogistic inference rules. Let us start with
the first feature.

NARS uses a categorical language that is based on an inheritance relation,
“—”_ The relation, in its ideal form, is a reflexive and transitive binary relation
defined on terms, where a term can be thought as the name of a concept. For
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example, “raven — bird” is an inheritance statement with “raven” as subject
term and “bird” as predicate term. Intuitively, it says that the subject is
a specialization of the predicate, and the predicate is a generalization of the
subject. The statement roughly corresponds to the English sentence “Raven is
a kind of bird”. Based on the inheritance relation, the extension and intension
of a term are defined as the set of its specializations and generalizations,
respectively. That is, for a given term T, its extension T is the set {z | z —
T}, and its intension 77 is the set {z | T — z}. Given the reflexivity and
transitivity of the inheritance relation, it can be proved that for any terms
S and P, “S — P” is true if and only if S¥ is included in P¥, and P! is
included in S’. In other words, “There is an inheritance relation from S to
P?” is equivalent to “P inherits the extension of .S, and S inherits the intension
of P”.

When considering “imperfect” inheritance statements, the above theorem
naturally gives us the definition of (positive and negative) evidence. For a
given statement “S — P7, if a term M in both S¥ and P¥, or in both P!
and ST, then it is a piece of positive evidence for the statement, because as
far as M is concerned, the proposed inheritance is true; if M in S but not
in PP, or in P! but not in S’ then it is a piece of negative evidence for
the statement, because as far as M is concerned, the proposed inheritance is
false; if M is neither in S¥ nor in P’, it is not evidence for the statement,
and whether it is also in P¥ or ST does not matter. Let us use wT, w™, and
w for the amount of positive, negative, and total evidence, respectively, then
we have wt = |S¥ N PE| + PN SI|, w™ = |SF — PE| + |PT - 81|, w =
wt +w™ = |SE|+|P!|. Finally, we define the truth value of a statement to be
a pair of numbers <f, ¢>. Here f is called the frequency of the statement, and
f =w" /w. The second component c is called the confidence of the statement,
and ¢ = w/(w+ k), where k is a system parameter with 1 as the default value.
For a more detailed discussion, see [43].

Now we have the technical basics of the experience-grounded semantics: If
the experience of the system is a set of inheritance statements defined above,
then for any term T, we can determine its meaning, which is its extension
and intension (according to the experience), and for any inheritance state-
ment “S — P”, we can determine its positive evidence and negative evidence
(by comparing the meaning of the two terms), then calculate its truth value
according to the above definition.

Of course, the actual experience of NARS is not a set of binary inheritance
statements, nor does the system determine the truth value of a statement in
the above way. The actual experience of NARS is a stream of statements,
with their truth values represented by the <f, ¢> pairs. Within the system,
new statements are derived by the inference rules, with truth-value functions
calculating the truth values of the conclusions from those of the premises. The
purpose of the above definitions is to define the truth value in an idealized
situation, and to provide a foundation for the truth value functions (to be
discussed in the following).
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2.3 Categorical Language

Based on the inheritance relation introduced above, NARS uses a powerful
“categorical language”, obtained by extending the above core language in
various directions:

Derived inheritance relations: Beside the inheritance relation defined previ-
ously, NARS also includes several of its variants. For example,

e the similarity relation < is symmetric inheritance;

e the instance relation o— is an inheritance relation where the subject
term is treated as an atomic instance of the predicate term;

e the property relation —o is an inheritance relation where the predicate
term is treated as a primitive property of the subject term.

Compound terms: In inheritance statements, the (subject and predicate)
terms not only can be simple names (as in the above examples), but also
can be compound terms formed by other terms with logical operator. For
example, if A and B are terms, we have
e their extensional intersection (AN B) is a compound term, defined by

(AN B)F = (AP N BF) and (AN B)! = (AT U BY).

o their intensional intersection (AU B) is a compound term, defined by
(AU B)F = (AF U BF) and (AU B)! = (A n BY);

With compound terms, the expressive power of the language is greatly

extended.

Ordinary relation: In NARS, only the inheritance relation and its variants
are defined as logic constants that are directly recognized by the inference
rules. All other relations are converted into inheritance relations with
compound terms. For example, an arbitrary relation R among three terms
A, B, and C is usually written as R(A, B, ('), which can be equivalently
rewritten as one of the following inheritance statements (i.e., they have
the same meaning and truth value):

o “(A,B,C)— R”, where the subject term is a compound (4, B, C), an
ordered tuple. This statement says “The relation among A, B, C (in
that order) is an instance of the relation R.”

e “A— R(x,B,C)”, where the predicate term is a compound R(x, B, C)
with a “wild-card”, . This statement says “A is such an x that satisfies
R(z,B,C).

e “B— R(A,*,C)”. Similarly, “B is such an z that satisfies R(A, z,C).”

e “C'— R(A,B,x)". Again, “C is such an x that satisfies R(A, B, x).”

Higher-order term: In NARS, a statement can be used as a term, which is
called a “higher-order” term. For example, “Bird is a kind of animal” is
represented by statement “bird — animal”’, and “Tom knows that bird
is a kind of animal” is represented by statement “(bird — animal)o—
know(Tom, x)”, where the subject term is a statement. Compound higher-
order terms are also defined: if A and B are higher-order terms, so do their
negations (—A and —B), disjunction (A V B), and conjunction (A A B).
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Higher-order relation: Higher-order relations are those whose subject term
and predicate term are both higher-order terms. In NARS, there are two
defined as logic constants:

e implication, “=", which is intuitively correspond to “if-then”;

e cquivalence, “<”, which is intuitively correspond to “if and only if”.

Non-declarative sentences: Beside the various types of statements introduced
above, which represent the system’s declarative knowledge, the formal
language of NARS uses similar formats to represent non-declarative sen-
tences:

e a question is either a statement whose truth value needs to be evalu-
ated (“yes/no” questions), or a statement containing variables to be
instantiated (“what” questions);

e a goal is a statement whose truthfulness needs to be established by the
system through the execution of relevant operations.

For each type of statements, its truth value is defined similarly to how we
define the truth value of an inheritance statement.

With the above structures, the expressive power of the language is roughly
the same as a typical natural language (such as English or Chinese). There is
no one-to-one mapping between sentences in this language and those in first-
order predicate calculus, though approximate mapping is possible for many
sentences. While first-order predicate calculus may still be better to repre-
sent mathematical knowledge, this new language will be better to represent
empirical knowledge.

2.4 Syllogistic Inference Rules

Due to insufficient knowledge, the system needs to do non-deductive inference,
such as induction, abduction, and analogy, to extend past experience to novel
situations. In this context, deduction becomes fallible, too, in the sense that
its conclusion may be revised by new knowledge, even if the premises remain
unchallenged. According to the experience-grounded semantics, the definition
of validity of inference rules is changed. Instead of generating infallible conclu-
sions, a valid rule should generate conclusions whose truth values are evaluated
against (and only against) the evidence provided by the premises.

As mentioned previously, a main feature that distinguish term logics from
predicate/propositional logics is the use of syllogistic inference rules, each
of which takes a pair of premises that share a common term. For inference
among inheritance statements, there are three possible combinations if the
two premises share exactly one term:

deduction induction abduction
M — P<fi,c;> M — P<fi,0> P — M <fi,c1>
S — M <f2, > M — S <f2, Cco> S — M <f2, Cco>

S — P<f, > S — P<f, c> S — P<f, c>
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Each inference rule has its own truth-value function to calculate the truth
value of the conclusion according to those of the premises. In NARS, these
functions are designed in the following way:

1. Treat all relevant variables as binary variables taking 0 or 1 values, and
determine what values the conclusion should have for each combination
of premises, according to the semantics.

2. Represent the truth values of the conclusion obtained above as Boolean
functions of those of the premises.

3. Extend the Boolean operators into real number functions defined on [0,
1] in the following way:

not(zx) =1—=x
and(Ty, ..., Tp) = T1 % ... * Ty,
or(1,cn) =1—=(1—x1) % ..x (1 —xp)
4. Use the extended operators, plus the relationship between truth value and
amount of evidence, to rewrite the above functions.
The result is the following:
deduction induction abduction

f=hfr f=h f=r
c=cicaf1fz ¢ = facica/(facica + 1) ¢ = ficica/(ficica + 1)

When the two premises have the same statement, but comes from different
sections of the experience, the revision rule is applied to merge the two into
a summarized conclusion:

revision

S — P<f1, c1>
S — P<f2, Co>

S — P<f, c>

Since in revision the evidence for the conclusion is the sum of the evidence in
the premises, the truth-value function is

f= frer/(1—c1)+faca/(1—c2)
T a/(l-c)tea/(1-c2)

_ a/(l-ci)+ez/(1—c2)
- Cl/(1761)+62/(1762)+1'

Beside the above four basic inference rules, in NARS there are inference
rules for the variations of inheritance, as well as for the formation and trans-
formation of the various compound terms. The truth-value functions for those
rules are similarly determined.
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Beside the above forward inference rules by which new knowledge is derived
existing knowledge, NARS also has backward inference rules, by which a piece
of knowledge is applied to a question or a goal. If the knowledge happens to
provide an answer for the question or an operation to realize the goal, it is
accepted as a tentative solution, otherwise a derived question or goal may
be generated, whose solution, combined with the knowledge, will provide a
solution to the original question or goal. Defined in this way, for each forward
rule, there is a matching backward rule. Or, conceptually, we can see them as
two ways to use the same rule.

2.5 Controlled Concurrency in Dynamic Memory

As an open system working in real time, NARS accepts new tasks all the
time. A new task may be a piece of knowledge to be digested, a question to
be answered, or a goal to be achieved. A new task may come from a human
user or from another computer system.

Since in NARS no knowledge is absolutely true, the system will try to use
as much knowledge as possible to process a task, so as to provide a better
(more confident) solution. On the other hand, due to insufficient resources,
the system cannot use all relevant knowledge for each task. Since new tasks
come from time to time, and the system generates derived tasks constantly, at
any moment the system typically has a large amount of tasks to process. For
this situation, it is too rigid to set up a static standard for a satisfying solution
[35], because no matter how careful the standard is determined, sometimes it
will be too high, and sometimes too low, given the ever changing resources
demand of the existing tasks. What NARS does is to try to find the best
solution given the current knowledge and resources restriction [40] — similar
to what an “anytime algorithm” does [6].

A “Bag” is a data structure specially designed in NARS for resource al-
location. A bag can contain certain type of items with a constant capacity,
and maintains a priority distribution among the items. There are three major
operations defined on bag:

e Put an item into the bag, and if the bag is already full, remove an item
with the lowest priority.
Take an item out of the bag by key (i.e., its unique identifier).
Take an item out of the bag by priority, that is, the probability for an item
to be selected is proportional to its priority value.

Each of the operations takes a constant time to finish, independent of the
number of items in the bag.

NARS organizes knowledge and tasks into concepts. In the system, a term
T has a corresponding concept Cp, which contains all the knowledge and
tasks in which T is the subject term or predicate term. For example, knowledge
“bird — animal <1, 0.9>" is stored within the concept Cy;-q and the concept
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Clanimal- In this way, the memory of NARS can be seen roughly as a bag of
concepts, and each concept is named by a (simple or compound) term, and
contains a bag of knowledge and a bag of tasks, all of them are directly about
the term.

[\

NARS runs by repeatedly carrying out the following working cycle:

. Take a concept from the memory by priority.
. Take a task from the task bag of the concept by priority.
. Take a piece of knowledge from the knowledge bag of the concept by

priority.

. According to the combination of the task and the knowledge, call the

applicable inference rules on them to derive new tasks and new knowledge
— in a term logic, every inference step happens within a concept.

. Adjust the priority of the involved task, knowledge, and concept, according

to how they behave in this inference step, then put them back into the
corresponding bags.

. Put the new (input or derived) tasks and knowledge into the corresponding

bags. If certain new knowledge provides the best solution so far for a user-
assigned task, report a solution.

The priority value of each item reflects the amount of resources the system

plans to spend on it in the near future. It has two factors:

Long-term factor. The system gives higher priority to more important

items, evaluated according to past experience. Initially, the user can as-
sign priority values to the input tasks to indicate their relative impor-
tance, which will in turn determine the priority value of the concepts and
knowledge generated from it. After each inference step, the involved items
have their priority values adjusted. For example, if a piece of knowledge
provides a best-so-far solution for a task, then the priority value of the
knowledge is increased (so that it will be used more often in the future),
and the priority value of the task is decreased (so that less time will be
used on it in the future).

Short-term factor. The system gives higher priority to more relevant items,

evaluated according to current context. When a new task is added into
the system, the directly related concepts are activated, i.e., their priority
values are increased. On the other hand, the priority values decay over
time, so that if a concept has not been relevant for a while, it becomes
less active.

In this way, NARS processes many tasks in parallel, but with different

speeds. This “controlled concurrency” control mechanism is similar to Hofs-
tadter’s “parallel terraced scan” strategy [14]. Also, how a task is processed
depends on the available knowledge and the priority distribution among con-
cepts, tasks, and knowledge. Since these factors change constantly, the solution
a task gets is context-dependent.
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3 The Properties of NARS

As a project aimed at general-purpose artificial intelligence, NARS addresses
many issues in Al and cognitive science. Though it is similar to many other
approaches here or there, the project as a whole is unique in its theoretical
foundation and major technical components. Designed as above, NARS shows
many properties that make it more similar to human reasoning than other Al
systems are.

3.1 Reasonable Solutions

With insufficient knowledge and resources, NARS cannot guarantee that all
the solutions it generates for tasks are correct in the sense that they will not
be challenged by the system’s future experience. Nor can it guarantee that the
solutions are optimum given all the knowledge the system has at the moment.
However, the solutions are reasonable in the sense that they are the best
summaries of the past experience, given the current resources supply. This is
similar to Good’s “Type II rationality” [10].

NARS often makes “reasonable mistakes” that are caused by the insuffi-
ciency of knowledge and resources. They are reasonable and inevitable given
the working condition of the system, and they are not caused by the errors in
the design or function of the system.

A conventional algorithm provides a single solution to each problem, then
stops working on the problem. On the contrary, NARS may provide no, one,
or more than one solution to a task — it reports every solution that is the
best it finds, then looks for a better one (if resources are still available).
Of course, eventually the system will end its processing of the task, but the
reason is neither that a satisfying solution has been found, nor that a deadline
is reached, but that the task has lost in the resources competition.

Like trial-and-error procedures [18], NARS can “change its mind”. Because
truth values are determined according to experience, a later solution is judged
as “better” than a previous one, because it is based on more evidence, though
it is not necessarily “closer to the objective fact”.

When a solution is found, usually there is no way to decide whether it
is the last the system can get. In NARS, there is no “final solution” that
cannot be updated by new knowledge and/or further consideration, because
all solutions are based on partial experience of the system. This self-revisable
feature makes NARS a more general model than the various non-monotonic
logics, in which only binary statements are processed, and only the conclusions
derived from default rules can be updated, but the default rules themselves
are not effected by the experience of the system [29].
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3.2 Unified Uncertainty Processing

As described previously, in NARS there are various types of uncertainty, in
concepts, statements, inference rules, and inference processes. NARS has a
unified uncertainty measurement and calculation sub-system.

What makes this approach different from other proposed theories on uncer-
tainty is the experience-grounded semantics. According to it, all uncertainty
comes from the insufficiency of knowledge and resources. As a result, the
evaluation of uncertainty is changeable and context-dependent.

From our previous definition of truth value, it is easy to recognize its rela-
tionship with probability theory. Under a certain interpretation, the frequency
measurement is similar to probability, and the confidence measurement is re-
lated to the size of sample space. If this is the case, why not directly use
probability theory to handle uncertainty?

Let us see a concrete case. The deduction rule takes “M — P < f1, ¢1 >”
and “S — M < fs, co >" as premises, and derives “S — P < f, ¢>" as con-
clusion. A direct way to apply probability theory would be treating each term
as a set, then turning the rule into one that calculates conditional probabil-
ity Pr(P|S) from Pr(P|M) and Pr(M]|S) plus additional assumptions about
the probabilistic distribution function Pr(). Similarly, the sample size of the
conclusion would be estimated, which gives the confidence value.

Such an approach cannot be applied in NARS for several reasons:

e For an inheritance relation, evidence is defined both extensionally and
intensionally, so the frequency of “S — P” cannot be treated as Pr(P|S),
since the latter is purely extensional.

e Fach statement has its own evidence space, defined by the extension of its
subject and the intension of its predicate.

e Since pieces of knowledge in input may come from different sources, they
may contain inconsistency.

e  When new knowledge comes, usually the system cannot afford the time to
update all of the previous beliefs accordingly.

Therefore, though each statement can be treated as a probabilistic judg-
ment, different statements correspond to different evidence space, and their
truth values are evaluated against different bodies of evidence. As a result,
they correspond to different probability distributions. For example, if we treat
frequency as probability, the deduction rule should calculate Pr3(S — P) from
Pri(M — P) and Pro(S — M). In standard probability theory, there is few
result that can be applied to this kind of cross-distribution calculation.

NARS solves this problem by going beyond probability theory, though still
sharing certain intuition and result with it [43].

In NARS, the amount of evidence is defined in such a way that it can be
used to indicate randomness (see [37] for a comparison with Bayesian network
[24]), fuzziness (see [41] for a comparison with fuzzy logic [45]), and ignorance
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(see [38] for a comparison with Dempster-Shafer theory [33]). Though dif-
ferent types of uncertainty have different origins, they usually co-exist, and
are tangled with one another in practical situations. Since NARS makes no
restrictions on what can happen in its experience, and needs to make jus-
tifiable decisions when the available knowledge is insufficient, such a unified
measurement of uncertainty is necessary.

There may be belief conflicts in NARS, in the sense that the same state-
ment is assigned different truth values when derived from different parts of
the experience. With insufficient resources, NARS cannot find and eliminate
all implicit conflicts within its knowledge base. What it can do is, when a con-
flict is found, to generate a summarized conclusion whose truth value reflects
the combined evidence. These conflicts are normal, rather than exceptional.
Actually, their existence is a major driving force of learning, and only by
their solutions some types of inference, like induction and abduction, can
have their results accumulated [39]. In first-order predicate logic, a pair of
conflicting propositions implies all propositions. This does not happen in a
term logic like NARS, because in term logics the conclusions and premises
must have shared terms, and statements with the same truth value cannot
substitute one another in a derivation (as does in predicate logic). As a result,
NARS tolerates implicitly conflicting beliefs, and resolves explicit conflicts by
evidence combination.

The concepts in NARS are uncertain because the meaning of a concept is
not determined by an interpretation that links it to an external object, but
by its relations with other concepts. The relations are in turn determined by
the system’s experience and its processing of the experience. When a concept
is involved in the processing of a task, usually only part of the knowledge
associated with the concept is used. Consequently, concepts become “fluid”
[16]:

1. No concept has a clear-cut boundary. Whether a concept is an instance
of another concept is a matter of degree. Therefore, all the concepts in
NARS are “fuzzy”.

2. The membership evaluations are revisable. The priority distribution among
the relations from a concept to other concepts also changes from time to
time. Therefore, what a concept actually means to the system is variable.

3. However, the meaning of a concept is not arbitrary or random, but rela-
tively stable, bounded by the system’s experience.

3.3 NARS as a Parallel and Distributed Network

Though all the previous descriptions present NARS as a reasoning system
with formal language and rules, in fact the system can also be described as
a network. We can see each term as a node, and each statement as a link
between two nodes, and the corresponding truth value as the strength of the
link. Priorities are defined among nodes and links. In each inference step, two
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adjacent links generate new links, and different types of inference correspond
to different combinations of the links [22, 39]. To answer a question means
to determine the strength of a link, given its beginning and ending node, or
to locate a node with the strongest link from or to a given node. Because by
applying rules, the topological structure of the network, the strength of the
links, and the priority distribution are all changed, what the system does is
much more than searching a static network for the desired link or node.

Under such an interpretation, NARS shows some similarity to the other
network-based Al approaches, such as the connectionist models.

Many processes coexist at the same time in NARS. The system not only
processes input tasks in parallel, but also does so for the derived subtasks.
The fact that the system can be implemented in a single-processor machine
does not change the situation, because what matters here is not that the
processes run exactly at the same time on several pieces of hardware (though
it is possible for NARS to be implemented in a multiple-processor system),
but that they are not run in a one-by-one way, that is, one process begins
after another ends.

Such a parallel processing model is adopted by NARS, because given the
insufficiency of knowledge and resources, as well as the dynamic nature of the
memory structure and resources competition, it is impossible for the system
to process tasks one after another.

Knowledge in NARS is represented distributedly in the sense that there
is no one-to-one correspondence between the input/output in the experi-
ence/response and the knowledge in the memory [12]. When a piece of new
knowledge is provided to the system, it is not simply inserted into the mem-
ory. Spontaneous inferences will happen, which generate derived conclusions.
Moreover, the new knowledge may be revised when it is in conflict with previ-
ous knowledge. As a result, the coming of new knowledge may cause non-local
effects in memory.

On the other hand, the answer of a question can be generated by non-
local knowledge. For example, in answering the question “Is dove a kind of
bird?”, a piece of knowledge “dove — bird” (with its truth value) stored in
concepts dove and bird provides a ready-made answer, but the work does
not stop. Subtasks are generated (with lower priority) and sent to related
concepts. Because there may be implicit conflicts within the knowledge base,
the previous “local” answer may be revised by knowledge stored somewhere
else.

Therefore, the digestion of new knowledge and the generation of answers
are both non-local events in memory, though the concepts corresponding to
terms that appear directly in the input knowledge/question usually have larger
contributions. How “global” such an event can be is determined both by the
available knowledge and the resources allocated to the task.

In NARS, information is not only stored distributively and with duplica-
tions, but also processed through multiple pathways. With insufficient knowl-
edge and resources, when a question is asked or a piece of knowledge is told, it
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is usually impossible to decide whether it will cause redundancy or what is the
best method to process it, so multiple copies and pathways become inevitable.
Redundancy can help the system recover from partial damage, and also make
the system’s behaviors depend on statistical events. For example, if the same
question is repeatedly asked, it will get more processor time.

Unlike many symbolic AI systems, NARS is not “brittle” [17] — that
is, being easily “killed” by improper inputs. NARS is open and domain-
independent, so any knowledge and question, as long as they can be expressed
in the system’s interface language, can be accepted by the system. The conflict
between new knowledge and previous knowledge will not cause the “implica-
tion paradox” (i.e., from an inconsistence, any propositions can be derived).
All mistakes in input knowledge can be revised by future experience to vari-
ous extents. The questions beyond the system’s current capacity will no longer
cause a “combinatorial explosion”, but will be abandoned gradually by the
system, after some futile efforts. In this way, the system may fail to answer a
certain question, but such a failure will not cause a paralysis.

According to the working manner of NARS, each concept as a processing
unit only takes care of its own business, that is, only does inferences where
the concept is directly involved. As a result, the answering of a question is
usually the cooperation of several concepts. Like in connectionist models [30],
there is no “global plan” or “central process” that is responsible for each
question. The cooperation is carried out by message-passing among concepts.
The generating of a specific solution is the emergent result of lots of local
events, not only caused by the events in its derivation path, but also by the
activity of other tasks that adjust the memory structure and compete for the
resources. For this reason, each event in NARS is influenced by all the events
that happen before it.

What directly follows from the above properties is that the solution to a
specific task is context-sensitive. It not only depends on the task itself and the
knowledge the system has, but also depends on how the knowledge is organized
and how the resources are allocated at the moment. The context under which
the system is given a task, that is, what happens before and after the task in
the system’s experience, strongly influences what solution the task receives.
Therefore, if the system is given the same task twice, the solutions may be
(though not necessarily) different, even though there is no new knowledge
provided to the system in the interval. Here “context” means the current
working environment in which a task is processed. Such contexts are dynamic
and continuous, and they are not predetermined situations indexed by labels
like “bank” and “hotel”.

3.4 Resources Competition

The system does not treat all processes as equal. It distributes its resources
among the processes, and only allows each of them to progress at certain
speed and to certain “depth” in the knowledge base, according to how much
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resources are available to the system. Also due to insufficient knowledge, the
resource distribution is maintained dynamically (adjusted while the processes
are running), rather than statically (scheduled before the processes begin to
run), because the distribution depends on how they work.

As a result, the processes compete with one another for resources. To speed
up one process means to slow down the others. The priority value of a task
reflects its (relative) priority in the competition, but does not determine its
(absolute) actual resources consumption, which also depends on the priority
values of the other coexisting tasks.

With insufficient processing time, it is inefficient for all the knowledge
and questions to be equally treated. In NARS, some of them (with higher
priority values) get more attention, that is, are more active or accessible,
while some others are temporarily forgotten. With insufficient memory space,
some knowledge and questions will be permanently forgotten — eliminated
from the memory. Like in human memory [21], in NARS forgetting is not a
deliberate action, but a side-effect caused by resource competition.

In traditional computing systems, the amount of time spent on a task
is determined by the system designer, and the user provides tasks at run
time without time requirements. On the other hand, many real-time systems
allow users to attach a deadline to a task, and the time spent on the task is
determined by the deadline [35]. A variation of this approach is that the task
is provided with no deadline, but the user can interrupt the process at any
time to get a best-so-far answer [3].

NARS uses a more flexible method to decide how much time to spend on
a task, and both the system and the user influence the decision. The user
can attaches an initial priority value to a task, but the actual allocation also
depends on the current situation of the system, as well as on how well the
task processing goes. As a result, the same task, with the same initial priority,
will get more processing when the system is “idle” than when the system is
“busy”.

3.5 Flexible Behaviors

In NARS, how an answer is generated is heavily dependent on what knowledge
is available and how it is organized. Facing a task, the system does not choose
a method first, then collect knowledge accordingly, but lets it interact with
available knowledge. In each inference step, what method is used to process a
task is determined by the type of knowledge that happens to be picked up at
that moment.

As a result, the processing path for a task is determined dynamically at
run time, by the current memory structure and resource distribution of the
system, not by a predetermined problem-oriented algorithm. In principle, the
behavior of NARS is unpredictable from an input task alone, though still
predictable from the system’s initial state and complete experience.
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For practical purposes, the behavior of NARS is not accurately predictable
to a human observer. To exactly predict the system’s solution to a specific task,
the observer must know all the details of the system’s initial state, and closely
follow the system’s experience until the solution is actually produced. When
the system is complex enough (compared with the information processing
capacity of the predictor), nobody can actually do this. However, it does
not mean that the system works in a random manner. Its behaviors are still
determined by its initial state and experience, so approximate predictions are
possible.

If NARS is implemented in a von Neumann computer, can it go beyond
the scope of computer science? Yes, it is possible because a computer system is
a hierarchy with many levels [13]. Some critics implicitly assume that because
a certain level of a computer system can be captured by first-order predicate
logic and Turing machine, these theories also bind all the performances the
system can have [7, 25]. This is not the case. When a system A is imple-
mented by a system B, the former does not necessarily inherit all properties
of the latter. For example, we cannot say that a computer cannot process
decimal numbers (because they are implemented by binary numbers), cannot
process symbols (because they are coded by digits), or cannot use functional
or logical programming language (because they are eventually translated into
procedural machine language).

Obviously, with its fluid concepts, revisable knowledge, and fallible in-
ference rules, NARS breaks the regulations of classic logics. However, as a
virtual machine, NARS can be based on another virtual machine which is a
pure-axiomatic system, as shown by its implementation practice, and this fact
does not make the system “axiomatic”. If we take the system’s complete expe-
rience and response as input and output, then NARS is still a Turing Machine
that definitely maps inputs to outputs in finite steps. What happens here has
been pointed out by Hofstadter as “something can be computational at one
level, but not at another level” [15], and by Kugel as “cognitive processes
that, although they involve more than computing, can still be modeled on the
machines we call ‘computers’ 7 [18]. On the contrary, traditional computer
systems are Turing Machines either globally (from experience to response) or
locally (from question to answer).

3.6 Autonomy and Creativity

The global behavior NARS is determined by the “resultant of forces” of its
internal tasks. Initially, the system is driven only by input tasks. The system
then derives subtasks recursively by applying inference rules to the tasks and
available knowledge.

However, it is not guaranteed that the achievement of the derived tasks will
turn out to be really helpful or even related to the original tasks, because the
knowledge, on which the derivation is based, is revisable. On the other hand,
it is impossible for the system to always determine correctly which tasks are
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more closely related to the original tasks. As a result, the system’s behavior
will to a certain extent depend on “its own tasks”, which are actually more
or less independent of the original processes, even though historically derived
from them. This is the functional autonomy phenomena [22]. In the extreme
form, the derived tasks may become so strong that they even prevent the
input tasks from being fulfilled. In this way, the derived tasks are alienated.

The alienation and unpredictability sometimes result in the system to be
“out of control”, but at the same time, they lead to creative and original be-
haviors, because the system is pursuing goals that are not directly assigned by
its environment or its innateness, with methods that are not directly deduced
from given knowledge.

By creativity, it does not mean that all the results of such behaviors are
of benefit to the system, or excellent according to some outside standards.
Nor does it mean that these behaviors come from nowhere, or from a “free
will” of some sort. On the contrary, it means that the behaviors are novel to
the system, and cannot be attributed either to the designer (who determines
the system’s initial state and skills) or to a tutor (who determines part of
the system’s experience) alone. Designers and tutors only make the creative
behaviors possible. What turns the possibility into reality is the system’s ex-
perience, and for a system that lives in a complex environment, its experience
is not completely determined by any other systems (human or computer). For
this reason, these behaviors, with their results, are better to be attributed to
the system itself, than to anyone else [13].

Traditional computer systems always repeat the following “life cycle”:

waiting for tasks

accepting a task

working on the task according to an algorithm
reporting a solution for the task

waiting for tasks

On the contrary, NARS has a “life-time of its own” [8]. When the system
is experienced enough, there will be many tasks for the system to process. On
the other hand, new input can come at any time. Consequently, the system’s
history is no longer like the previous loop. The system usually works on its
“own” tasks, but at the same time, it is always ready to respond to new
tasks provided by the environment. Each piece of input usually attracts the
system’s attention for a while, and also causes some long-term effects. The
system never reaches a “final state” and stops there, though it can be reset
by a human user to its initial state. In this way, each task-processing activity
is part of the system’s life-time experience, and is influenced by the other
activities. In comparison with NARS, traditional computer systems take each
problem-solving activity as a separate life cycle with a predetermined end.
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4 Conclusions

The key difference between NARS and the mainstream Al projects is not in
the technical details, but in the philosophical and methodological position.
The NARS project does not aim at a certain practical problem or cognitive
function, but attempts to build a general-purpose intelligent system by identi-
fying the “essence of intelligence”, i.e., the underlying information processing
principle, then designing the components of the system accordingly.

As described above, in the NARS project, it is assumed that “intelli-
gence” means “adaptation with insufficient knowledge and resources”, and
then a reasoning system is chosen as the framework to apply this assumption.
When designing the system, we found that all relevant traditional theories
(including first-order predicate logic, model theory, probability theory, com-
putability theory, computational complexity theory, ...) are inconsistent with
the above assumption, so all major components need to be redesigned. These
components, though technically simple, are fundamentally different from the
traditional components in nature.

Built in this way, NARS provides a unified model for many phenomena
observed in human cognition. It achieves this not by explicitly fitting psycho-
logical data, but by reproducing them from a simple and unified foundation.
In this way, we see that these phenomena share a common functional expla-
nation, and all intelligent systems, either natural or artificial, will show these
phenomena as long as they are adaptive systems working with insufficient
knowledge and resources.

The NARS project started in 1983 at Peking University. Several work-
ing prototypes have been built, in an incremental manner (that is, each with
more inference rules and a more complicated control mechanism). Currently
first-order inference has been finished, and higher-order inference is under
development. Though the whole project is still far from completion, past ex-
perience has shown the feasibility of this approach. For up-to-date information
about the project and the latest publications and demonstrations, please visit
http://wuw.cogsci.indiana.edu/farg/peiwang/papers.html.
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Summary. The Novamente AI Engine, a novel Al software system, is briefly re-
viewed. Novamente is an integrative artificial general intelligence design, which inte-
grates aspects of many prior Al projects and paradigms, including symbolic, prob-
abilistic, evolutionary programming and reinforcement learning approaches; but its
overall architecture is unique, drawing on system-theoretic ideas regarding complex
mental dynamics and associated emergent patterns. The chapter reviews both the
conceptual models of mind and intelligence which inspired the system design, and
the concrete architecture of Novamente as a software system.

1 Introduction

We present in this chapter the Novamente AI Engine, an integrative design
for an AGI. Novamente is based on over a decade of research (see [27, 26, 28,
29, 30]) and has been developed, on conceptual and software design levels, to
a significant extent. Through a decade and a half of research, we have created
a theoretical foundation for the design of Al systems displaying adaptive,
autonomous artificial intelligence, and we are in the midst of developing a
highly original, unprecedented software system atop this foundation.

Novamente incorporates aspects of many previous Al paradigms such as
agent systems, evolutionary programming, reinforcement learning, automated
theorem-proving, and probabilistic reasoning. However, it is unique in its over-
all architecture, which confronts the problem of creating a holistic digital mind
in a direct way that has not been done before. Novamente combines a com-
mon, integrative-Al friendly representation of knowledge, with a number of
different cognitive processes, which cooperate while acting on that knowledge.
This particular combination results in a complex and unique software system:
an autonomous, self-adaptive, experientially learning system, in which the co-
operation between the cognitive processes enables the emergence of general
intelligence. In short, Novamente is a kind of “digital mind.”

One way that Novamente differs from many other approaches to AGI is
that it is being developed primarily in a commercial, rather than academic,
context. While this presents some challenges in terms of prioritizing develop-
ment of different aspects of the system, we feel it has been a highly valuable
approach, for it has meant that, at each stage of the system’s development,
it has been tested on challenging real-world applications. Through our work
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on commercial applications of early, partial versions of the Novamente sys-
tem, we have become acutely aware of the urgent need for Artificial General
Intelligence, in various industries. Much is said about the information age,
knowledge discovery, and the need for tools that are smart enough to allow
human experts to cope with the unwieldy amounts of information in today’s
business and scientific worlds. We believe that the real answer for these ana-
lytical demands lies in AGI, as the current narrow techniques are unable to
properly integrate heterogeneous knowledge, derive intelligent inferences from
that knowledge and, most important, spontaneously generate new knowledge
about the world.

At the time of writing, the Novamente system is completely designed and
partially implemented. It can be applied to complex problems in specific do-
mains like bioinformatics and knowledge discovery right now, and will yield
ever greater functionality as more of the design is implemented and tested.
Of course, the design is continually changing in its details, in accordance
with the lessons inevitably learned in the course of implementation. How-
ever, these detail-level improvements occur within the overall framework of
the Novamente design, which has — so far — proved quite powerful and robust.

1.1 The Novamente AGI System

Given the pressing need for AGI from a practical perspective, there has been
surprisingly little recent R&D oriented specifically toward the AGI prob-
lem [64]. The AI discipline began with AGI dreams, but for quite some
time has been dominated by various forms of narrow Al, including logical-
inference-based Al, neural networks, evolutionary programming, expert sys-
tems, robotics, computer vision, and so forth. Many of these narrow-Al soft-
ware systems are excellent at what they do, but they have in common a focus
on one particular aspect of mental function, rather than the integration of nu-
merous aspects of mental function to form a coherent, holistic, autonomous,
situated cognitive system. Artificial General Intelligence requires a different
sort of focus. Table 2 briefly compares key properties of AGI and narrow Al
systems.

The authors and their colleagues have been working together for several
years on the problem of creating an adequate design for a true AGI system,
intended especially to lay the groundwork for AGI. We worked together during
1998-2001 on a proto-AGI system called Webmind [32], which was applied in
the knowledge management and financial prediction domains; and since 2001
we have been collaborating on Novamente.

The Novamente design incorporates aspects of many previous Al paradigms
such as evolutionary programming, symbolic logic, agent systems, and prob-
abilistic reasoning. However, it is extremely innovative in its overall architec-
ture, which confronts the problem of “creating a whole mind” in a direct way
that has not been done before. The fundamental principles underlying the sys-
tem design derive from a novel complex-systems-based theory of mind called
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the “psynet model,” which was developed by the author in a series of cross-
disciplinary research treatises published during 1993-2001 [27, 28, 29, 30].
What the psynet model has led us to is not a conventional Al program, nor
a conventional multi-agent-system framework. Rather, we are talking about
an autonomous, self-organizing, self-evolving AGI system, with its own under-
standing of the world, and the ability to relate to humans on a “mind-to-mind”
rather than a “software-program-to-mind” level.

The Novamente design is a large one, but the currently deployed imple-
mentation already incorporates many significant aspects. Due to the depth
of detail in the design, and the abundant pertinent prototyping experience
the Novamente engineering team had during the period 1997-2004, the time
required to complete the implementation will be less than one might expect
given the magnitude of the task: we estimate 1-2 years. The engineering phase
will be followed by a phase of interactively teaching the Novamente system
how to respond to user queries, and how to usefully analyze and organize data.
The end result of this teaching process will be an autonomous AGI system,
oriented toward assisting humans in collectively solving pragmatic problems.

This chapter reviews the Novamente AGI design and some of the issues
involved in its implementation, teaching and testing. Along the way we will
also briefly touch on some practical-application issues, and discuss the ways
in which even early versions of Novamente will provide an innovative, strik-
ingly effective solution to the problem of helping human analysts comprehend,
organize and analyze data in multiple, complex domains.

1.2 Novamente for Knowledge Management and Data Analysis

The Novamente AGI framework in itself is highly general, and may be ap-
plied in a variety of application contexts. For example, one could imagine
Novamente being used as the cognitive engine of an advanced robotic system;
in fact, a preliminary design for the hybridization of Novamente with James
R. Albus’s “Reference Model Architecture” for robotics [2] has been devel-
oped. Initially, however, our plan is to implement and deploy Novamente in
the context of knowledge management and data analysis. We believe that No-
vamente has some important benefits for these application areas, summarized
in Table 1. The current Novamente version is being used for management
and analysis of bioinformatic information, specifically genomic and proteomic
databases and experimental datasets; and for text understanding in the na-
tional security domain. Over the next few years, while continuing our current
application work, we envision a significantly broader initiative to apply the
system to the management and analysis of information in multiple domains.

The deployment of Novamente for knowledge management and analysis
involves attention to many different issues, most falling into the general cat-
egories of data sources and human-computer interaction. The optimal way of
handling such issues is domain-dependent. For the bioinformatics applications,
we have taken an approach guided by the particular needs of bioscientists
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Features of the Benefits for Knowledge Management,

Novamente Approach Querying and Analytics

Mixed natural /formal Flexible, agile, information-rich user interactions.

language conversational System learns from each user interaction

querying

Integrative knowledge Compact, manipulable representation of all common

representation forms of data, enables integrative analysis across
data items regardless of source or type

Powerful integrative Recognizes subtle patterns in diverse data.

cognition toolkit, including Combines known patterns to form new ones.
probabilistic inference and Interprets semantically rich user queries
evolutionary concept

creation

Probabilistic inference System shifts its focus of cognition based on user

based, nonlinear-dynamical queries, and also based on changing trends in the

attention-focusing world itself

DINI Distributed Enables implementation of massive self-organizing
Architecture Atom network on a network of commodity PC’s

Table 1: Features and benefits of the Novamente approach

analyzing datasets generated via high-throughput genomics and proteomics
equipment.

In terms of data sources, once one commits to take a knowledge integration
approach, the trickiest issue that remains is the treatment of natural language
data (“unstructured text”). Novamente may be used in two complementary
ways:

e “Information retrieval” oriented, wherein a text is taken as a series of
characters or a series of words, and analyzed statistically;

e Natural Language Processing (NLP) oriented, wherein an attempt is
made to parse the sentences in the texts and extract their meanings into
semantic-relationship form.

The information retrieval approach is appropriate when one has a large
volume of text, and limited processing time for handling it. The NLP approach
is more sophisticated and more computationally expensive.

The common weak point of existing NLP algorithms and frameworks is
the integration of semantic and pragmatic understanding into syntactic lan-
guage analysis. The Novamente design overcomes this problem by carrying
out syntactic analysis via logical unification, a process that automatically in-
corporates available semantic and pragmatic knowledge into its behavior. At
time of writing, we have not yet integrated the NLP component of Novamente
with logical unification, but our experience with a similar implementation in
the Webmind system gives us reasonable confidence here.

Regarding interaction with human users, the Novamente design supports a
variety of different modalities, including conventional search-engine and NLP
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queries, Web forms queries, dynamic visualization and automated report gen-
eration. The most innovative design we have conceived for human-Novamente
interaction, however, involves interactive conversation using a combination
of natural language and formal language. Table 3 gives a speculative exam-
ple of what we envision a dialogue in this vein might look like. The reality
of mixed human/formal language dialogue will be defined through practical
experimentation with the Novamente system in each different context.

System Characteristic Narrow AI AGI
Ability to Adapt Flexibly over Time NO YES
Ability to Integrate Dramatically NO YES
Diverse Data Sources

Ability to Deal with Unforeseen Sometimes YES
Situations

Ability to Dialogue with Humans Minimal YES
Ability to Perceive Subtle Data Sometimes YES
Patterns

Simple Algorithms Sometimes NO
Small Demand on Computing Sometimes NO
Resources

Requires Massive Human Knowledge Sometimes NO
Encoding Effort

Table 2: AGI versus narrow Al

User-interface-wise, AGI systems may live on the back end of conventional
software applications — but they may also be used to support radical new forms
of human-computer interaction. As an example of this, we propose to develop
an interface for mixed human/formal language conversation. A hypothetical
example of this sort of dialogue is given in Table 3. This sort of dialogue
does not require humans to learn to think like computers, and nor does it
require computers to try to precisely emulate humans. Rather, it involves
humans and computers each entering into one another’s modes of cognition
and description, and teaching and learning from each other in the process.

2 Enabling Software Technologies

The deep concepts underlying AGI are mathematical and theoretical, not de-
pendent on particular software or hardware technologies. However, the viabil-
ity of engineering, testing and deploying AGI systems, and applying them in
a data analysis/querying/management context, is less of an abstract matter,
and depends critically on the presence of appropriate enabling technologies.
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User: ‘‘I want information on Chinese-speaking residents of African
nations.’’

NM: Mandarin, Cantonese, or both?

User: Mandarin

NM: See the file ChineseAfrica.txt

User: Thanks

NM: Would you like information on African residents of Chinese
nations?

User: Not now. What I want is information on Chinese-speaking
residents of African nations who send their children to schools in
South America.

NM: Could you rephrase please?

User:

Find Y:

Inheritance(X, ‘‘African nation’’)

resident (Y, X)

speaks(Y, Chinese)

child_of(Z, Y)

attends(Z, W)

Inheritance(W, ‘‘school’’)

part_of (X: location(W, X), ‘‘South America’’)

NM: By

> child_of(Z, Y)

do you mean that Z is a child of Y?

User: Yes

NM: Thanks. See the file ChineseAfricaChildren.txt

V V V V V V VYV

Table 3: Hypothetical example of a mixed human/formal language conversation

Two categories of enabling technologies — distributed software architecture
and database integration — are particularly critical to practical AGI deploy-
ments. These are the subjects of the present section.

2.1 A Distributed Software Architecture for Integrative Al

Marvin Minsky, one of the fathers of Al is on record conjecturing that a
human-level artificial general intelligence could probably be made to run on a
1 Megahertz PC, if one merely knew the right design. Our AGI optimism, while
strong, is slightly different in nature. We believe that computing technology is
just now reaching the point where advanced AGI software becomes possible.
Having the correct design is still the most important thing; but the right design
without an adequate hardware platform and operating system will never leave
the world of theory.

In the 1980’s, specialized supercomputing hardware was one of the themes
of the day. Cray’s vector processing machines revolutionized computational
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physics and related areas, and Thinking Machines Corp.’s MIMD parallel
Connection Machine [38] architecture appeared poised to do the same thing
for artificial intelligence. What happened, however, was that the Connection
Machine was unable to keep pace with the incredibly rapid development of
conventional von Neumann hardware, and technology for networking tradi-
tional machines together. The last Connection Machine created before Think-
ing Machine Corp.’s dissolution, the CM-5, was less radical than its predeces-
sors, being based on traditional processors coupled in an unusually tight way.
And similarly, today’s most powerful supercomputers, IBM’s [11], are actually
distributed computers underneath — they’re specially-constructed networks of
relatively conventional processors rather than unique processors.

Given a blank slate, it’s clear that one could design a vastly more AGI-
appropriate hardware platform than the von Neumann architecture. Concep-
tually speaking, we believe the Connection Machine was on the right track.
However, modern networking technology and distributed software architec-
ture have brought the von Neumann architecture a long way from its roots,
and we believe that it is possible to use contemporary technology to create
distributed AI platforms of significant power and elegance.

Fig. 1 depicts the DINI (Distributed INtegrative Intelligence) architecture,
a generic distributed-processing-based framework for AGI-based data analy-
sis/querying/management, designed by the authors as a platform for large-
scale Novamente deployment. The mathematical structures and dynamics of
Novamente could be implemented in many ways besides DINI; and DINI could
be used as a platform for many software systems different from Novamente.
But, Novamente and DINI are a natural fit.

The key components of DINI, as shown in Fig. 1, are:

e “Analytic clusters” of machines — each cluster carrying out cognitive anal-
ysis of data, and creating new data accordingly

e Massive-scale data haven integrating multiple DBs and providing a unified
searchable interface

e “Fisher” process, extracting appropriate data from the data bank into the
Analytic Clusters

e “Miner” processes, extracting information from external databases into
the data bank
Web spiders continually gathering new information
“Mediator” process merging results from multiple analytic clusters into
the data bank
Interfaces for knowledge entry by human beings
Interfaces for simple and advanced querying
J2EE middleware for inter-process communication, scalability, transaction
control, load balancing, overall adaptive system control

The subtlest processes here are the Fisher and the Mediator.
The Fisher may respond to specific queries for information submitted by
the analytic clusters. But it also needs to be able to act autonomously — to
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Fig. 1: The DINI architecture

use heuristics to guess what data may be interesting to the analytic clusters,
based on similarity to the highest-priority data in the analytic clusters.

The Mediator exists due to the fact that diverse analytic clusters, acting
on the same data and thinking about the same problems, may produce con-
tradictory or complementary conclusions. Reconciliation of these conclusions
into a single view in the centralized DB is required. When reconciliation is
implausible, multiple views are stored in the centralized DB. Reconciliation is
carried via a logical process of “belief revision,” using formulas derived from
Novamente’s first-order inference component.

2.2 Database Integration and Knowledge Integration

A large role is played in the DINI architecture by the “data bank” component.
Much of the information in a DINT data bank will be created by AGI processes
themselves. However, there will also, generally speaking, be a large amount of
data from other sources. There is a massive number of databases out there,
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created by various organizations in academia, industry and government® —
these are useful to an AGI in carrying out practical knowledge management,
querying and analysis functions, and also in building up its intelligence and
its understanding of the world.

However, the information in databases is rarely in a format that can be fed
directly into an AGI that is still at the learning phase. Ultimately, a mature
AGI should be able to digest a database raw, figuring out the semantics of
the schema structure on its own. At the present stage, however, databases
require significant preprocessing in order to be useful for AGI systems. This is
a variant of the “database integration” problem: how to take the information
in multiple databases and make it available in a unified way.

Through surveying the approaches to database integration taken in differ-
ent domains, we have come to distinguish four different general strategies:

Federation create a common GUI for separate DB’s

Amalgamation create formal mappings between the schema of different
DB’s

Schema translation create a new RDB combining information from multi-
ple DB’s

Knowledge integration create a translator mapping DB contents into a
“universal formal knowledge representation.”

Applying AGI systems to database information requires the most robust
approach: knowledge integration. In this approach, knowledge is extracted
from databases into a schema-independent formal language. An example of
this is Cycorp’s approach to knowledge integration, which involves the con-
version of knowledge into their CycL language [18]. However, for technical
reasons we feel that the CycL approach is not sufficiently flexible to support
non-formal-logic-centric Al approaches.

One practical, and extremely flexible, form that knowledge integration
may take involves the XML language. We have created a special XML DTD
for Novamente, which consists of a set of tags corresponding to Novamente’s
internal knowledge representation. To integrate a database into Novamente,
the primary step required is to write code that exports the relational data ta-
bles involved into XML structured by the Novamente DTD. However, for best
results, a significant “amalgamation” process must be carried out beforehand,
to be sure that different overlapping databases are exported into Novamente
structures in a fully semantically compatible way. The same software frame-
work could be used to support Al approaches different from Novamente; one
would merely have to create appropriate XML transformation schemata to
translate a Novamente DTD into a DTD appropriate for the other Al system.

1Of course, the robotics and DB oriented approaches are not contradictory; they
could both be pursued simultaneously. Here however we are focusing on the DB
option, which is our focus at present and in the near future.
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3 What Is Artificial General Intelligence?

To understand why and how we pursue the holy grail of AGI, it’s necessary
to understand what AGI is, and how it’s different from what the bulk of re-
searchers in the Al field have come to refer to as “intelligence.” If narrow Al
did not exist, we wouldn’t need the term “general intelligence” at all — we’d
simply use the term “intelligence.” When we speak of human intelligence,
after all, we implicitly mean general intelligence. The notion of IQ arose in
psychology as an attempt to capture a “general intelligence” factor or g-factor
[14], abstracting away from ability in specific disciplines. Narrow AI, however,
has subtly modified the meaning of “intelligence” in a computing context, to
mean, basically, the ability to carry out any particular task that is typically
considered to require significant intelligence in humans (chess, medical diag-
nosis, calculus, ...). For this reason we have introduced the explicit notion
of Artificial General Intelligence, to refer to something roughly analogous to
what the g-factor is supposed to measure in humans.

When one distinguishes narrow intelligence from general intelligence, the
history of the AI field takes on a striking pattern. AI began in the mid-
twentieth century with dreams of artificial general intelligence — of creating
programs with the ability to generalize their knowledge across different do-
mains, to reflect on themselves and others, to create fundamental innovations
and insights. But by the early 1970’s, AGI had not come to anything near
fruition, and researchers and commentators became frustrated. AGI faded
into the background, except for a handful of research projects. In time AGI
acquired a markedly bad reputation, and any talk of AGI came to be treated
with extreme skepticism.

Today, however, things are a good bit different than in the early 1970s
when AGI lost its lustre. Modern computer networks are incomparably more
powerful than the best supercomputers of the early 1970s, and software in-
frastructure has also advanced considerably. The supporting technologies for
AGI are in place now, to a much greater extent than at the time of the early
failures of the AGI dream. And tremendously more is now known about the
mathematics of cognition, partly due to work on narrow Al, but also due to
revolutionary advances in neuroscience and cognitive psychology. We believe
the time is ripe to overcome the accumulated skepticism about AGI and make
a serious thrust in the AGI direction. The implication is clear: the same ad-
vances in computer technology that have given us the current information glut
enable the AGI technology that will allow us to manage the glut effectively,
and thus turn it into an advantage rather than a frustration.

We find it very meaningful to compare AGI to the currently popular field
of nanotechnology. Like nanotechnology, we believe, AGI is “merely an en-
gineering problem,” though certainly a very difficult one. Brain science and
theoretical computer science clearly suggest that AGI is possible if one arrives
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at the right design?. The Novamente project is not the only existing effort to
use the “right design” to create a true AGI, but it is one of a handful of such
efforts, and we believe it is more advanced than any other.

Because of the confusing history of AI, before launching into the details
of the Novamente AGI design, we feel it is worthwhile to spend a few para-
graphs clarifying our notion of general intelligence. The reader is asked to bear
in mind that “intelligence” is an informal human language concept rather than
a rigorously defined scientific concept; its meaning is complex, ambiguous and
multifaceted. In order to create useful AGI applications, however, we require
a practical working definition of the AGI goal — not a comprehensive under-
standing of all the dimensions of the natural language concept of intelligence.

3.1 What Is General Intelligence?

One well-known characterization of artificial general intelligence is Alan Tur-
ing’s famous “Turing Test” — “write a computer program that can simulate
a human in a text-based conversational interchange” [67]. This test serves
to make the theoretical point that intelligence is defined by behavior rather
than by mystical qualities, so that if a program could act like a human, it
should be considered as intelligent as a human®. However, Turing’s test is not
useful as a guide for practical AGI development. Our goal is not to create a
simulated human, but rather to create a nonhuman digital intelligent system
— one that will complement human intelligence by carrying out data analysis
and management tasks far beyond the capability of the human mind; and one
that will cooperate with humans in a way that brings out the best aspects of
both the human and the digital flavors of general intelligence.

Similarly, one might think that human IQ tests — designed to assess hu-
man general intelligence — could be of some value for assessing the general
intelligence of software programs. But on closer inspection this turns out to
be a dubious proposition as. Human 1Q tests work fairly well within a sin-
gle culture, and much worse across cultures [54] — how much worse will they
work across different types of AGI programs, which may well be as different
as different species of animals?

In [27], a simple working definition of intelligence was given, building on
various ideas from psychology and engineering. The mathematical formal-
ization of the definition requires more notation and machinery than we can
introduce here, but verbally, the gist is as follows:

General Intelligence is the ability to achieve complex goals in complex
environments.

2Though a small minority of scientists disagree with this, suggesting that there
is somethign noncomputational going on in the brain. See [36, 57]

3 Although Searle’s Chinese Room argument attempts to refute this claim, see
[59]
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The Novamente Al Engine work has also been motivated by a closely
related vision of intelligence provided by Pei Wang in his PhD thesis and
related works ([69], also this volume.) Wang’s definition posits that general
intelligence is

“[T]he ability for an information processing system to adapt to its
environment with insufficient knowledge and resources.”

The Wang and Goertzel definitions are complementary. In practice, an
AGI system must be able to achieve complex goals in complex environments
with insufficient knowledge and resources. Al researcher Shane Legg has sug-
gested? that this notion of intelligence should be labeled “cybernance” to
avoid entanglement with the ambiguities of the informal language notion of
“intelligence.”

A primary aspect of the “complex goals in complex environments” defini-
tion is the plurality of the words “goals” and “environments.” A single com-
plex goal is not enough, and a single narrow environment is not enough. A
chess-playing program is not a general intelligence, nor is a datamining engine
that does nothing but seek for patterns in consumer information databases,
and nor is a program that can extremely cleverly manipulate the multiple
facets of a researcher-constructed microworld (unless the microworld is vastly
more rich and diverse one than any yet constructed). A general intelligence
must be able to carry out a variety of different tasks in a variety of different
contexts, generalizing knowledge from one context to another, and building
up a context and task independent pragmatic understanding of itself and the
world.

One may also probe one level deeper than these definitions, delving into
the subtlety of the relationship between generalized and specialized intelli-
gence. Drawing on ideas from the formal theory of complexity (see [29]; for
related, more rigorously developed ideas, see [42]), one may define a system as
fully generally intelligent for complexity N if it can achieve any goal of com-
plexity N in any environment of complexity N. And this is where things get
interesting, because it’s clear that full general intelligence is only one aspect
of human general intelligence.

The way the human brain seems to work is:

e some of its architecture is oriented towards achieving full general intelli-
gence for small N (i.e. humans can solve any reasonably simple; problem)
e some of its architecture is oriented towards increasing problem-solving
ability for goals and environments with complexity N so large that the
human brain’s full general intelligence for complexity N is effectively zero.

For example, human visual cognition is specialized to deal with environ-
ments of great complexity, and the human brain is certainly not able to deal
equally well with all phenomena of comparable complexity. The human brain is

4Personal communication
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specialized for visual cognition, even though it brings its “general intelligence
capability” to bear on the problem in many ways. The same phenomenon
exists in many other areas, from human social cognition [15] to mathemat-
ical problem-solving (humans are not good at proving randomly generated
mathematical theorems).

Any real-world-useful general intelligence will, like the human brain, dis-
play a mix of “full general intelligence” methods focused on boosting full gen-
eral intelligence for small N, and “general intelligence leveraging specialized
intelligence methods” (GILSIM) that are different from narrow-Al methods
in that they specifically leverage a combination of specialized heuristics and
small-N full-general-intelligence methods.

As it turns out, the hard part of the practical general intelligence problem
is not the small-N full-general-intelligence part, but rather the GILSIM part.
Achieving “small-N general intelligence” is a mathematics problem, solvable
via algorithms such as genetic programming [49], reinforcement learning [66],
or Schmidhuber’s OOPS algorithm [58]. Novamente uses a combination of
several approaches here, as will be briefly discussed below.

On the other hand, contemporary mathematics has less to offer when it
comes to the task of building a system capable of supporting multiple specialized
intelligences that combine task-appropriate heuristics with limited-complexity
full general intelligence. And this is the central challenge of AGI design as we
see it. It is the challenge the Novamente design addresses.

3.2 The Integrative Approach to AGI

At least three basic approaches to AGI are possible:

1. close emulation of the human brain in software;

2. conception of a novel AGI architecture, highly distinct from the brain and
also from narrow Al programs;

3. an integrative approach, synthesizing narrow AI algorithms and struc-
tures in a unique overall framework, perhaps guided to some extent by
understanding of the human brain.

The Novamente approach lies falls on the continuum between approach 2
and approach 3. Roughly 2/3 of the Novamente design is based on existing
narrow Al approaches, and the rest was conceived de novo with AGI in mind.

Novamente emphatically does not fall into Category 1: it is not a human-
brain emulation. While the human brain was a conceptual inspiration for No-
vamente, particularly in the early design phase, the Novamente design makes
a concerted effort to do things in ways that are efficient for software running
on networks of von Neumann machines, and this is often profoundly different
from the ways that are efficient on neural wetware. Further along this chap-
ter, Table 9 reviews some of the parallels between human brain structures and
processes and Novamente structures and processes.
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The integrative approach is based on the idea that many narrow Al ap-
proaches embody good ideas about how some particular aspect of intelligence
may be implemented computationally. For instance, logic-based Al contains
many insights as to the nature of logical reasoning. Formal neural networks
embody many insights about memory, perception, classification, and reinforce-
ment learning of procedures. Evolutionary programming is an excellent tech-
nique for procedure learning, and for the creation of complex new concepts.
Clustering algorithms are good ways of creating speculative new categories
in a poorly-understood domain. Et cetera. The observation that narrow Al
approaches often model particular aspects of intelligence well leads to the idea
of synthesizing several narrow Al approaches to form an AGI architecture.
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This kind of synthesis could be conducted in two ways:

Loose integration, in which different narrow Al techniques reside in sepa-
rate software processes or software modules, and exchange the results of
their analysis with each other;

Tight integration, in which multiple narrow AI processes interact in real-
time on the same evolving integrative data store, and dynamically affect
one another’s parameters and control schemata.

The manifestation of these two types of integration in a DINI context is
shown in Figures 2 and 3. The “loose integration” approach manifests itself
in DINT as an architecture in which separate analytical clusters, embodying
separate narrow Al techniques, interact via the central data warehouse. The
“tight integration” approach manifests itself in terms of a complex analytical
cluster containing its own local DB, involving multiple narrow AI algorithms
inextricably interlinked.

Tight integration is more difficult to design, implement, test and tune,
but provides the opportunity for greater intelligence via emergent, cooperative
effects. Novamente is based on tight integration, and we believe that this is the
only approach that is viable for genuine AGI. Novamente essentially consists
of a framework for tightly integrating various Al algorithms in the context of
a highly flexible common knowledge representation, and a specific assemblage
of AT algorithms created or tweaked for tight integration in an integrative AGI
context.

3.3 Experiential Interactive Learning and Adaptive
Self-modification

We have been discussing AGI as a matter of complex software systems em-
bodying complex mathematical Al algorithms. This is an important perspec-
tive, but it must be remembered that AGI is not simply another form of engi-
neering — it is also a deeply philosophical and conceptual pursuit. Novamente
was not designed based on engineering and mathematical considerations alone.
Rather, it owes its ultimate origin to an abstract, complex-systems-theoretic
psychological /philosophical theory of mind — the “psynet model,” which was
presented by the first author in five research monographs published between
1993 and 2001 [27, 26, 28, 29, 30].

Based on the premise that a mind is the set of patterns in a brain, the
psynet model describes a specific set of high-level structures and dynamics
for mind-patterns, and proposes that these are essential to any sort of mind,
human or digital. These are not structures that can be programmed into
a system; rather they are structures that must emerge through the situated
evolution of a system — through experiential interactive learning. Novamente’s
specific structures and dynamics tie in closely with the more general ones
posited by the psynet model.
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The psynet model also contains a theory of the relation between learning
and mind that is different from the most common perspectives expressed in
the AT literature. Namely, it posits that:

Software and mathematics alone, no matter how advanced, cannot cre-
ate an AGI.

What we do believe software and mathematics can do, however, is to set
up a framework within which artificial general intelligence can emerge through
interaction with humans in the context of a rich stream of real-world data.
That is:

Intelligence most naturally emerges through situated and social expe-
rience.

It is clear that human intelligence does not emerge solely through human
neural wetware. A human infant is not so intelligent, and an infant raised
without proper socialization will never achieve full human intelligence [22].
Human brains learn to think through being taught, and through diverse social
interactions. We suggest the situation will be somewhat similar with AGI’s.
The basic AGI algorithms in Novamente are not quite adequate for practical
general intelligence, because they give only the “raw materials” of thought.
What is missing in a Novamente “out of the box” are context-specific control
mechanisms for the diverse cognitive mechanisms. The system has the capa-
bility to learn these, but just as critically, it has the capability to learn how to
learn these, through social interaction. A Novamente “out of the box” will be
much smarter than narrow Al systems, but not nearly as robustly intelligent
as a Novamente that has refined its ability to learn context-specific control
mechanisms through meaningful interactions with other minds. For instance,
once it’s been interacting in the world for a while, it will gain a sense of how
to reason about conversations, how to reason about network intrusion data,
how to reason about bioinformatics data — by learning context-dependent in-
ference control schemata for each case, according to a schema learning process
tuned through experiential interaction.

These considerations lead us straight to the concepts of autonomy, experi-
ential interactive learning, and goal-oriented self-modification — concepts that
lie right at the heart of the notion of Artificial General Intelligence. In order
for a software system to demonstrate AGI, we believe, it must demonstrate:

e a coherent autonomy as an independent, self-perceiving, self-controlling
systemn;

e the ability to modify and improve itself based on its own observations and
analyses of its own performance;

e the ability to richly interact with, and learn from, other minds (such as
human minds).
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These general points evoke some very concrete issues, to do with the differ-
ence between conventional data analysis and knowledge management systems,
and AGI systems applied to data analysis, management and querying.

A tightly-coupled, integrative Al software system may be supplied with
specific, purpose-oriented control schemata and in this way used as a datamin-
ing and/or query processing engine. This is the approach taken, for example,
in the current applications of the Novamente engine in the bioinformatics do-
main. But this kind of deployment of the Novamente software does not permit
it to develop anywhere near its maximum level of general intelligence.

For truly significant AGI to emerge, a software system must be deployed
somewhat differently. It must be supplied with general goals, and then allowed
to learn its own control schemata via execution of its procedure learning dy-
namics in the context of interaction with a richly structured environment,
and in the context of extensive meaningful interactions with other minds.
This path is more difficult than the “hard-wired control schemata” route, but
it is necessary for the achievement of genuine AGI.

The Novamente system, once fully engineered and tuned, will gain its
intelligence through processing practically-relevant data, answering humans’
questions about this data, and providing humans with reports summarizing
patterns it has observed. In addition to EIL through interactive data analy-
sis/management, we have created a special “EIL user interface” called Shape-
World, which involves interacting with Novamente in the context of a simple
drawing panel on which the human teacher and Novamente may draw shapes
and talk about what they're doing and what they see. We have also designed
an environment called EDEN (EDucational Environment for Novamente), a
virtual-reality world in which Novamente will control simulated agents that
interact with human-controlled agents in a simulated environment.

This process of “experiential interactive learning” has been one of the pri-
mary considerations in Novamente design and development. It will continually
modify not only its knowledge base, but its control schemata based on what
it’s learned from its environment and the humans it interacts with.

The ultimate limits of this process of self-improvement are hard to foresee —
if indeed there are any. It is worth remembering that source code itself is a for-
mal object, which may easily be represented in the knowledge-representation-
schema of an AGI system such as Novamente. Inferences about source code
and its potential variations and improvements would appear to lie within the
domain of computationally-achievable probabilistic reasoning. There seems
no basic reason why an AGI system could not study its own source code and
figure out how to make itself smarter. And there is an appealing exponential
logic to this process: the smarter it gets, the better it will be at improving
itself. Of course the realization of this kind of ultimate self-adaptation lies
some distance in the future. There may be significant obstacles, unforeseeable
at the current point. But, on the conceptual level at least, these ideas are a
natural outgrowth of the processes of goal-directed self-improvement that we
will be deploying in Novamente in the near term, as part of the AGI tuning



80 Goertzel and Pennachin

and teaching process. The Novamente system has been designed with a clear
focus on fulfilling short-term data analysis, management and querying needs,
but also with an eye towards the full grandeur of the long-term AGI vision.

4 The Psynet Model of Mind

In this section we will delve a little more deeply into the psynet model of mind,
the conceptual and philosophical foundation for the Novamente system.

For starters, we must clarify our use of the term “mind.” Our view is
that “mind,” like “intelligence,” is a human language concept, with a rich
abundance of overlapping meanings. The psynet model does not aim to fully
capture the human-language notion of “mind.” Rather, it aims to capture a
useful subset of that notion, with a view toward guiding AGI engineering and
the analysis of human cognition.

The psynet model is based on what Ray Kurzweil calls a “patternist”
philosophy [50]. It rests on the assumption that a mind is neither a physical
system, nor completely separate from the physical — rather, a mind is some-
thing associated with the set of patterns in a physical system. In the case of an
intelligent computational system, the mind of the system is not in the source
code, but rather in the patterns observable in the dynamic trace that the
system creates over time in RAM and in the registers of computer processors.

The concept of pattern used here is a rigorous one, which may be grounded
mathematically in terms of algorithmic information theory [29, 16]. In essence,
a pattern in an entity is considered as an abstract computer program that is
smaller than the entity, and can rapidly compute the entity. For instance, a
pattern in a picture of the Mandelbrot set, might be a program that could
compute the picture from a formula. Saying “mind is pattern” is thus tanta-
mount to positioning mind in the mathematical domain of abstract, nonphys-
ical computer programs. As cautioned above, we are not asserting this as a
complete explanation of all aspects of the concept of “mind” — but merely as
a pragmatic definition that allows us to draw inferences about the minds of
AGI systems in a useful way.

The “mind is pattern” approach to AI theory is not in itself original;
similar ideas can be found in the thinking of contemporary philosophers such
as Gregory Bateson [9], Douglas Hofstadter [39] and Daniel Dennett [20]. The
psynet model, however, takes the next step and asks how the set of patterns
comprising a mind is structured, and how it evolves over time. It seeks to
understand mind in terms of pattern dynamics, and the emergent structures
arising from pattern dynamics.

According to the psynet model, the patterns constituting a mind function
as semi-autonomous “actors,” which interact with each other in a variety
of ways. Mental functions like perception, action, reasoning and procedure
learning are described in terms of interactions between mind-actors (which
are patterns in some underlying physical substrate, e.g., a brain or a computer
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program). And hypotheses are made regarding the large-scale structure and
dynamics of the network of mind-patterns.

Consistent with the “complex goals in complex environments” character-
ization of intelligence, an intelligent system, at a given interval of time, is
assumed to have a certain goal system (which may be expressed explicitly
and/or implicitly in the system’s mind®). This goal system may alter over
time, either through “goal drift” or through the system’s concerted activity
(some goals may explicitly encourage their own modification). It is important
that an intelligent system has both general and specific goals in its goal sys-
tem. Furthermore, one particular general goal is posited as critical to the goal
system of any intelligent system: the creation and recognition of new patterns.
With this goal in its goal system, an intelligence will seek to perceive and
creation new structures in itself, as it goes about the business of achieving its
other goals; and this self-perception/creation will enhance its intelligence in
the long term.

The pattern dynamics of a cognitive system is understood to be governed
by two main “forces”: spontaneous self-organization and goal-oriented behav-
ior.

More specifically, several primary dynamical principles are posited, includ-
ing:

Association, in which patterns, when given attention, spread some of this
attention to other patterns that they have previously been associated with
in some way.

Differential attention allocation, in which patterns that have been valu-
able for goal achievement are given more attention, and are encouraged
to participate in giving rise to new patterns.

Pattern creation, in which patterns that have been valuable for goal-
achievement are mutated to yield new patterns, and are combined with
each other to yield new patterns.

Relationship reification,] in which habitual patterns in the system that are
found valuable for goal-achievement, are explicitly reinforced and made
more habitual.

For example, it is proposed that, for a system to display significant intel-
ligence, the network of patterns observable in the system must give rise to
several large-scale emergent structures:

Hierarchical network, in which patterns are habitually in relations of con-
trol over other patterns that represent more specialized aspects of them-
selves

Heterarchical network, in which the system retains a memory of which
patterns have previously been associated with each other in any way

SParenthetically, it is important that a goal set be defined over an interval of
time rather than a single point of time; otherwise the definition of “implicit goal
sets” is more difficult.
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Dual network, in which hierarchical and heterarchical structures are com-
bined, the dynamics of the two structures working together harmoniously

“Self” structure, in which a portion of the network of patterns forms into
an approximate (fractal) image of the overall network of patterns.

The psynet model is a very general construct. It does not tell you how
to build an AGI system in the engineering sense; it only tells you, in general
terms, “what an AGI system should be like.” Novamente is the third AGI-
oriented software system created with the psynet model in mind, and it is very
different from the previous two efforts. The differences between these systems
may be summarized as follows:

1994: Antimagicians, which was an experimental psynet-inspired program
in the pure self-organizing-systems vein [29, 68, 46], with very few built-in
structures and an intention for the structures and dynamics of mind to
emerge via experience. The anticipated emergence was not observed, and
it was decided to take a more engineering-oriented approach in which more
initial structures and dynamics are implanted as a “seed” for intelligent
self-organization.

1996-2001: The Webmind AI Engine, “Webmind,” developed at Web-
mind Inc., was a large-scale Java software system that derived its software
design from the psynet model in a very direct way. Portions of Webmind
were successfully applied in the domains of financial prediction and in-
formation retrieval; and a great amount of useful prototyping was done.
But it was found that directly mapping the psynet model’s constructs
into object-oriented software structures leads to serious problems with
computational efficiency.

Since 2001: Novamente, which represents an entirely different approach,
embodying a highly flexible, computationally efficient AGI framework,
which could be used to implement a variety of different AI systems. This
framework includes three main aspects: the DINI architecture, the phi-
losophy of tightly-coupled integrative Al, and the Novamente “Mind OS”
architecture to be described below. Novamente also embodies a particu-
lar choice of software objects within this framework, whose selection is
heavily shaped by the ideas in the psynet model of mind.

The relation between the psynet model of mind and Novamente is some-
what like the relationship between evolutionary theory and contemporary evo-
lutionary programming algorithms. Evolutionary theory provides the concep-
tual underpinnings for evolutionary programming, and the first evolutionary
programming algorithm, the traditional bit string GA [33], arose as a fairly
direct attempts to emulate biological evolution by natural selection [41]. But
contemporary evolutionary programming approaches such as the Bayesian
Optimization Algorithm [56] and Genetic Programming [49] achieve superior
pragmatic functionality by deviating fairly far from the biological model, and
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are only more indirectly mappable back into their conceptual inspiration. Sim-
ilarly, Novamente represents the basic concepts involved in the psynet model,
but in an indirect form that owes equally much to issues of pragmatic func-
tionality in a contemporary computing context.

5 The Novamente AGI Design

The Novamente Al Engine (“Novamente”) is a large-scale, object-oriented,
multithreaded software system, intended to operate within the DINI frame-
work. It is a C++ software system, with a few externally-facing components
written in Java. Currently, development is primarily on the Linux operating
system, but porting to other varieties of Unix or to Windows would not be
problematic®. In DINT terms, a Novamente system is a collection of analytical
clusters, most of them tightly-integrated, some of them more simple and spe-
cialized. It embodies a tightly-coupled integrative approach to AGI, in which a
number of narrow AI approaches are combined with several innovative struc-
tural and dynamical ideas, in the context of a common “universal knowledge
representation.” The structures and processes chosen for Novamente are in-
tended to allow the system to realize the abstract dynamics and emergent
structures described in the psynet model of mind.

In this section we will paint the Novamente design in broad strokes, il-
lustrating each aspect discussed in the context of data analysis, querying or
management. Later on we will delve into a few of the more important Al
processes in the system in slightly more detail. The AGIRI website contains
a periodically updated page which gives yet more depth to the portrayal,
systematically enumerating some of the key structures and dynamics of the
system.

Below we briefly describe the major aspects of Novamente design:

Nodes. Nodes may symbolize entities in the external world, they may em-
body simple executable processes, they may symbolize abstract concepts,
or they may serve as components in relationship-webs signifying complex
concepts or procedures.

Links. Links may be n-ary, and may point to nodes or links; they embody
various types of relationships between concepts, percepts or actions. The
network of links is a web of relationships.

MindAgents. A MindAgent is a software object embodying a dynamical
process such as importance updating, concept creation, or first-order log-
ical inference. It acts directly on individual Atoms, but is intended to
induce and guide system-wide dynamical patterns.

SIn fact the system has been tested on FreeBSD, and a partial Windows port
exists.
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Mind OS. The Mind OS, living within the DINI framework, enables diverse
MindAgents to act efficiently on large populations of Nodes and Links
distributed across multiple machines.

Maps. A map represents declarative or procedural knowledge, as a pattern
distributed across many Nodes and Links.

Units. A Unit is a collection of Nodes, Links and MindAgents, living on
a cluster of machines, collectively devoted to carrying out a particular
function such as: vision processing, language generation, highly-focused
concentration, ...

5.1 An Integrative Knowledge Representation

Knowledge representation is one of the huge, classic Al problems. Of course,
it is intimately bound up with the problem of cognitive algorithms — different
cognitive algorithms have different requirements for knowledge representation,
and different knowledge representations suggest different cognitive algorithms.
Novamente’s knowledge representation arose out of a search for the simplest,
most conveniently manipulable knowledge representation that was easily com-
patible with all the different AI processes in the Novamente system. Like the
Novamente system itself, Novamente’s knowledge representation is a synthe-
sis of ideas from existing narrow Al paradigms — with a significant number of
original elements added in as well, to fill roles not addressed by existing ideas
(including some roles, like system-wide attention allocation, that intrinsically
could not be filled by narrow AI approaches).
Knowledge is represented in Novamente on two levels:

Atoms, software objects that come in two species: Nodes or Links.

Maps, sets of Atoms that tend to be activated together, or tend to be ac-
tivated according to a certain pattern (e.g. an oscillation, or a strange
attractor.)

Generally speaking the same types of knowledge are represented on the
Atom level and on the map level. Atom level representation is more precise
and more reliable, but map level representation is more amenable to certain
types of learning, and certain types of real-time behavior.

Figure 5 gives a graphical example of a map — the map for the concept of
“New York” as it might occur in a Novamente system. This map is a fuzzy
node set containing the ConceptNode corresponding to the New York concept,
and also a host of other related nodes.

On the Atom level, the essential mathematical structure of Novamente’s
knowledge representation is that of a hypergraph (a graph whose edges can
span k > 2 nodes [13]). We call this hypergraph an Atomspace, meaning that
it is a hypergraph with the special properties that:

e the nodes and links are weighted with complex weight structures (Truth-
Value and AttentionValue objects);
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Fig. 4: A Novamente instance as a distributed system (each Novamente Unit is a
DINT Analytical Cluster)

the nodes and links are labeled with different “type” labels;
some of the nodes can contain data objects (characters, numbers, color
values, etc);

e some of the nodes can contain small hypergraphs internally.

Conceptually, the two weight structures associated with Novamente Atoms
involved represent the two primary schools of Al research — logic (TruthValue)
and neural networks (AttentionValue).
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Fig. 5: Example of a Novamente map

The TruthValue indicates, roughly, the degree to which an Atom correctly

describes the world. The object contains:

a probability value;

a “weight of evidence” value indicating the amount of evidence used to
derive the probability;

optionally further information such as a probability distribution function;
optionally special information about the probability of an Atom in a given
perception/action stream.

The AttentionValue is a bundle of information telling how much attention

of various kinds an Atom should get and is getting. This includes:

Long-Term-Importance (LTI), an estimate of the value of keeping the
Atom in memory instead of paging it to disk;

Recent Utility, a measure of how much value has been obtained from pro-
cessing the Atom recently;

Importance, a measure of how much CPU time the Atom should get, which
is based on activation, LTI, and recent utility.

This special Atomspace hypergraph is used in many different ways. For

instance:
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1. all nodes and links are intended to be interpreted logically, using proba-
bilistic logic;

2. some nodes and links can be seen to reflect processes of causation, and are
used for ”assignment of credit” which is a key part of adaptive attention
allocation;

3. some nodes and links can be interpreted as executable programs.

Enabling all these interpretations simultaneously requires some care.

@ == O v @ o
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Fig. 6: Predicate expressions represented as nodes and links

What about the map level of knowledge representation? Because maps are
implicitly rather than explicitly encoded in the system, there is less that can
be said about them in a compact way. But one key point is that the network
of maps in the system is also conceivable as a hypergraph — one whose nodes
are fuzzy sets of Atoms. Map-level links are defined in the natural way: the
map-level link of a certain type T, between map A and map B, is defined
as the bundle of links of type T' going between Atoms in A and Atoms in B
that are simultaneously active. Map-level links are defined implicitly by Atom-
level links. They represent a more general, diffuse kind of knowledge, which
interacts with Atom-level knowledge via a complex set of feedback effects.

In the language of the psynet model, maps are patterns, the “mind-stuff”
corresponding to the “brain-stuff” that is the Novamente software code and its
dynamic image in RAM. Atoms (nodes and links) exist on an interesting inter-
mediate level that we call “concretely-implemented mind.” That is, Atoms are
not mind-stuff, but they are parts of brain-stuff that that are “mind-indexers,”
in the sense that many Atoms are associated with specific patterns in the sys-
tem (specific instances of mind-stuff), and the rest are directly included as
components in many patterns in the system.
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The relation between Novamente structures and human brain structures
is interesting but indirect, and will be reviewed in Section 5.8 below. In brief,
there is no Novamente correlate of neurons and synapses — Novamente does
not emulate the brain on such a low level. However, there is a rough intuitive
mapping between Novamente nodes and what neuroscientist Gerald Edelman
calls “neuronal groups” [23] — tightly connected clusters of 10,000-50,000 neu-
rons. Novamente links are like bundles of synapses joining neuronal groups.
And Novamente maps are something like Edelman’s “neural maps.”

Viewed against the background of contemporary narrow Al theory, the No-
vamente knowledge representation is not all that unusual. It combines aspects
of semantic network, attractor neural network, and genetic programming style
knowledge representation. But it does not combine these aspects in a “multi-
modular” way that keeps them separate but interacting: it fuses them together
into a novel representation scheme that is significantly more than the sum of
its parts, because of the specific way it allows the cooperative action of a
variety of qualitatively very different, complementary cognitive processes.

5.2 The Mind OS

The central design concept of Novamente is to implement multiple cognitive
algorithms in a tightly-integrated way, using the hypergraph knowledge rep-
resentation described just above, in the practical context of the DINI software
architecture.

The crux of Novamente design from an Al perspective lies in the choice of
cognitive algorithms and their manner of tight integration. Before we get there,
however, there is one missing link to be filled in — the computational mechanics
of actually managing a collection of tightly integrated AI processes. This is
handled by a software component that we call the Mind OS, “Novamente
core,” or simply “the core.”

As the “OS” moniker suggests, the Mind OS carries out many of the func-
tions of an operating system. In fact it may be considered as a generic C++
server-side framework for multi-agent systems, optimized for complex and in-
tensive tasks involving massive agent cooperation. While it is customized for
Novamente Al, like DINT it is broadly extensible and could be used for many
other purposes as well.

The Mind OS is itself a distributed processing framework, designed to live
within the larger distributed processing framework of the DINI architecture”.
It is designed to operate across a cluster of tightly-coupled machines, in such a
way that a node living on one machine in the cluster may have links relating
it to nodes living on other machines in the cluster. In DINI, the Mind OS
is intended to live inside a complex analytic cluster. A complex Novamente
configuration will involve multiple functionally-specialized analytic clusters,
each one running the Mind OS.

"The current version of the Mind OS is restricted to a single SMP machine, but
has been constructed with easy extension to distributed processing in mind.
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On each machine in a Mind OS-controlled cluster, there is a table of Atoms
(an AtomTable object, which comes with a collection of specialized indices for
rapid lookup), and then a circular queue of objects called MindAgents. The
MindAgents are cycled through, and when one gets its turn to act, it acts for a
brief period and then cedes the CPU to the next MindAgent in the queue. Most
of the MindAgents embody cognitive processes, but some embody “system-
level” processes, like periodically caching the AtomTable to disk, polling for
external input (such as input from a UI), or gathering system statistics. On an
SMP machine, the Mind OS may allocate different MindAgents to the different
processors concurrently, obeying a fixed table of exclusion relationships in
doing so.

The distinction between MindAgents and psynet-model “mind actors” may
be confusing here. This distinction reflects the subtlety of the system design,
according to which the abstract mathematical structure of the system is differ-
ent from the implementation structure. The software agents (MindAgents) are
not the “mind actors” of the psynet model; rather, they are dynamic objects
designed to elicit the emergence of the mind actors of the psynet model (the
emergent maps). This separation between implementation agents and emer-
gent agents is a compromise necessary to achieve acceptable computational
efficiency.

Currently, communication with a Mind OS can be done either through
a customized Unix shell called nmshell, which is appropriate for interactive
communication, submission of control commands and debugging); through
XML, using the Novamente DTD; or through a Java/J2EE middleware layer.

A third communication medium, via a Novamente-specific functional-
logical programming language called Sasha, has been designed but not im-
plemented. There is also a Novamente knowledge encoding language called
NQL (Novamente Query Language), a modification of the KNOW language
used with the Webmind system; but this interacts with the core indirectly via
nmshell or XML.

In sum, the Novamente core is a C++ multi-agent system “OS” that sup-
ports:

Multi-threading

Flexible plugging and scheduling of heterogeneous agents

Distributed knowledge with local proxies and caches

Transaction control

Communication with external software agents through XML and scripts
Task and query processing through ticketing system

Adaptive parameter control

Dynamic, adaptive load balancing

In designing and implementing the core, great care has been taken to en-
sure computational time and space efficiency. We learned a lot in this regard
from the flaws of the Webmind Al Engine, a distributed Al architecture de-
signed in the late 1990s by a team overlapping with the current Novamente
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Fig. 7: Conceptual architecture of the Novamente “Mind OS” layer

team. The Webmind architecture was based on a fairly direct mapping of the
psynet model into object-oriented software structures. It was a massive multi-
agent system [70], using a hypergraph knowledge representation in which each
node was implemented as an autonomous software agent. These node-agents
carried out many of the same Al processes embodied in Novamente. How-
ever, the massive multi-agent system architecture proved difficult to tune and
optimize. A moderately-sized distributed Webmind instance had millions of
autonomous software agents in it (nodes, mainly); whereas by contrast, a
moderately sized distributed Novamente instance will have merely hundreds
(MindAgents).

Novamente is still a multi-agent system, but with a different architecture —
and this architectural change makes a huge difference in the sorts of efficiency
optimizations one can implement, resulting in an improvement of three orders
of magnitude in speed and two orders of magnitude in memory use. We are
extremely pleased that the Novamente Mind OS, in spite of its complexity, is
efficient and robust enough to be used at the core of Biomind LLC’s Hproduct
line. At this stage, after many years of experimenting with this sort of soft-
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ware system, we are at the relatively happy point where the “Mind OS” level
practical problems are all solved, and we can focus on the really hard part,
fine-tuning the tight dynamical integration of the cognitive Mind Agents.

5.3 Atom Types

Now we turn to a review of the specific types of nodes and links utilized in
Novamente. As with the choice of MindAgents, this assemblage of node and
link types has been chosen partly on pragmatic grounds, and partly on theo-
retical grounds. We have chosen data structures and dynamics based mainly
on the following criteria:

demonstrated power in narrow Al applications;

mutual coherence as an integrative AGI framework;

propensity for embodying the dynamics and structures posited by the
Psynet Model of Mind.

Novamente contains a couple dozen node and link types, and a nearly-
complete list is given in the AGIRI website. However, there is a layer of
conceptual abstraction between the concept of “nodes and links” and the spe-
cific node and link types. We call this layer “node and link varieties” — each
variety denotes a conceptual function rather than a mathematical or imple-
mentational category; and each variety may contain many different specific
types. Tables 4 and 5 describe the node and link varieties currently used in
Novamente.

Node Variety Description

Perceptual Nodes These correspond to particular perceived items, like
WordInstanceNode, CharacterInstanceNode, Num-
berInstanceNode, PixellnstanceNode

Procedure Nodes These contain small programs called “schema,” and
are called SchemaNodes. Action nodes that carry
out logical evaluations are called PredicateNodes.
ProcedureNodes are used to represent complex pat-
terns or procedures.

ConceptNodes These represent categories of perceptual or action or
conceptual nodes, or portions of maps representing
such categories.

Psyche Nodes These are GoalNodes and FeelingNodes (special
kinds of PredicateNodes), which play a special role
in overall system control, in terms of monitoring sys-
tem health, and orienting overall system behavior.

Table 4: Novamente node varieties
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Link Variety Description

Logical Links These represent symmetric or asymmetric logical re-
lationships among nodes (InheritanceLink, Similar-
ityLink) or among links and PredicateNodes (e.g.
ImplicationLink, EquivalenceLink)

MemberLink These denote fuzzy set membership

Associative Links These denote generic relatedness, including Heb-
bianLink learned via Hebbian learning, and a simple
AssociativeLink representing relationships derived
from natural language or from databases.

Action-Concept Links Called ExecutionLinks and EvaluationLinks, these
form a conceptual record of the actions taken by
SchemaNodes or PredicateNodes

ListLink and These represent internally-created or externally-

ConcatListLink observed lists, respectively.

Table 5: Novamente link varieties

A thorough treatment not being practical here due to space considerations,
we will give only a few brief comments on the semantics of these Novamente
Atom types.

The workhorse of the system is the ConceptNode. Some of these will repre-
sent individual concepts, others will form parts of larger concept maps. Logical
and associative links interrelate ConceptNodes. For example, we may write:

InheritancelLink New York megalopolis

meaning the there are ConceptNodes corresponding to the concepts “New
York” and “nation”, and there is an InheritanceLink pointing from one to the
other (signifying that New York is indeed a megalopolis). Or we may write:

AssociativelLink New York immigration

which just indicates a generic association between the two denoted ConceptN-
odes. An associative relationship is useful for the spreading of attention be-
tween related concepts, and also useful as a signpost telling the logical infer-
ence MindAgents where to look for possibly interesting relationships.

A more concrete relationship between New York and immigration, such as
“many immigrants live in New York”, might be represented as:

ImplicationLink lives_in_New_York is_immigrant

where lives in New York and is immigrant are PredicateNodes, and the
former predicate obeys a relationship that would be written:
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Equivalencelink (lives_in_New_York(X)) (lives_in(New_York, X))
in ordinary predicate logic, and is written more like:
EquivalencelLink lives_in_New_York (lives_in (New_York))

in Novamente’s variable-free internal representation. Variable management is
one of the most complex aspects of logic-based Al systems and conventional
programming languages as well; Novamente bypasses the whole topic, by using
a variable-free representation of predicates and schemata, based on combina-
tory logic.

SchemaNodes and PredicateNodes come in two forms: simple and complex.
Each simple one contains a single elementary schema or predicate function;
each complex one contains an internal directed-acyclic-graph of interlinked
SchemaNodes and PredicateNodes.

The set of elementary schema/predicate functions is in effect an “inter-
nal Novamente programming language,” which bears some resemblance to
functional programming languages like pure LISP or Haskell. The “actions”
carried out by SchemalnstanceNodes are not just external actions, they are
also in some cases internal cognitive actions. Complex SchemaNodes represent
complex coordinated actions that are “encapsulated” in a single node; com-
plex PredicateNodes represent complex patterns observed in the system or the
world outside, and found to be useful. ExecutionLinks and EvaluationLinks
record information about what the inputs and outputs of SchemalnstanceN-
odes and PredicatelnstanceNodes were when they executed.

Ultimately, all the AT processes carried out inside Novamente could be for-
mulated as compound schemata, although in the current core implementation,
this is not the case; the primary Al dynamics of the system are implemented
as C++ objects called MindAgents, which are more efficient than compound
schemata.

Next, FeelingNodes are “internal sensor” nodes, that sense some aspect of
the overall state of the system, such as free memory or the amount the system
has learned lately. Complex “feelings” are formed by combining FeelingNodes
in PredicateNodes, and give the system a “sense of self” in a practical manner
which allows for autonomic homeostasis to be performed and for the system to
deliberately adjust its task orientation towards an increased sense of positive
“feeling.”

Finally, GoalNodes are internal sensors like FeelingNodes, but the con-
dition that they sense may sometimes be less global; they represent narrow
system goals as well as broad holistic ones. The system is supplied with basic
goals as it is with basic feelings, but complex and idiosyncratic goals may
be built up over time. GoalNodes are used in adjusting the system’s auto-
nomic processes to support focus on goal-oriented thought processes, as well
as for the system to deliberately seek out and analyze relevant information to
meeting these goals.
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5.4 Novamente Maps

Many Atoms are significant and valuable in themselves, but some gain mean-
ing only via their coordinated activity involving other Atoms, i.e. their in-
volvement in “maps.” Maps come in many shapes and sizes; a general charac-
terization of Novamente maps would be difficult to come by. However, Table
6 enumerates several roughly defined “map categories” that we feel are useful
for understanding Novamente on the map level, in a general way.

An interesting example of the relation between Atoms and maps in No-
vamente is provided by looking at the implementation of satisfaction in the
system. Novamente has FeelingNodes which are “internal sensors” reporting
aspects of current system state. Some of these are elementary, and some are
combinations of inputs from other FeelingNodes. One important FeelingN-
ode is the Satisfaction FeelingNode, which summarizes those factors that the
system is initially programmed to consider as “desirable.” This is referred to
by the MaximizeSatisfaction GoalNode, which is the center of Novamente’s
motivational system.

On the surface, FeelingNodes look like a symbolic-Al-style representations
of system feelings. However, to pursue a human-mind analogy, these FeelingN-
odes are really more like basic limbic-system or otherwise chemically-induced
brain stimuli than they are like richly textured high-level human feelings. In
the human mind, satisfaction is much more complex than momentary plea-
sure. It involves expectations of satisfaction over various time scales, and it
involves inferences about what may give satisfaction, estimates of how satis-
fied others will be with a given course of action and thus how much pleasure
one will derive from their satisfaction, etc. Biological pleasure is in a sense the
root of human satisfaction, but the relationship is not one of identity. Changes
in the biology of pleasure generally result in changes in the experience of sat-
isfaction — witness the different subjective texture of human satisfaction in
puberty as opposed to childhood, or maturity as opposed to early adulthood.
But the details of these changes are subtle and individually variant.

So, in this example, we have a parallel between an Atom-level entity, the
Pleasure FeelingNode, and an emergent mind map, a meta-Node, the feeling
of system-wide satisfaction or “happiness.” There is a substantial similarity
between these two parallel entities existing on different levels, but not an
identity. Satisfaction is embodied in:

e a large, fuzzily defined collection of nodes and links (a “map”);
e the dynamic patterns in the system that are induces when this collection
becomes highly active (a “map dynamic pattern”).

The Satisfaction FeelingNode is one element of the map associated with
overall system satisfaction or “happiness.” And it is a particularly critical
element of this map, meaning that it has many high-weight connections to
other elements of the map. This means that activation of pleasure is likely —
but not guaranteed — to cause happiness.
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Table 6 describes some map types we find in Novamente. Figure 5 shows
an example of a map.

Map Variety Description
Concept map A map consisting primarily of conceptual nodes
Percept map A map consisting primarily of perceptual nodes,

which arises habitually when the system is pre-
sented with environmental stimuli of a certain sort

Schema map A distributed schema
Predicate map A distributed predicate
Memory map A map consisting largely of nodes denoting specific

entities (hence related via MemberLinks and their
kin to more abstract nodes) and their relationships
Concept-percept map A map consisting primarily of perceptual and con-
ceptual nodes
Concept-schema map A map consisting primarily of conceptual nodes and

SchemaNodes

Percept-concept- A map consisting substantially of perceptual, con-

schema ceptual and SchemaNodes

map

Event map A map containing many links denoting temporal re-
lationships

Feeling map A map containing FeelingNodes as a significant
component

Goal map A map containing GoalNodes as a significant com-
ponent

Table 6: Example Novamente map varieties

5.5 Mind Agents

The crux of Novamente intelligence lies in the MindAgents, which dynamically
update the Atoms in the system on an ongoing basis. Regardless of what
inputs are coming into the system or what demands are placed upon it, the
MindAgents keep on working, analyzing the information in the system and
creating new information based on it.

There are several “system maintenance” MindAgents, dealing with things
like collecting system statistics, caching Atoms to disk periodically, updating
caches related to distributed processing, handling queues of queries from users
and other machines in the same analytic cluster or other Novamente analytic
clusters. We will not discuss these further here, but will restrict ourselves to
the “cognitive MindAgents” that work by modifying the AtomTable.

Tables 7 and 8 briefly mention a few existing and possible MindAgents,
while the AGIRI website gives a complete list of MindAgents, with brief com-
ments on the function of each one on the Atom and map level. Section 7 below
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gives more detailed comments on a few of the MindAgents, to give a rough
flavor for how the system works.

Agent Description

First-Order Inference Acts on first-order logical links, producing new
logical links from old using the formulas of
Probabilistic Term Logic

Logical Link Mining Creates logical links out of nonlogical links

Evolutionary Creates PredicateNodes containing predicates that
Predicate Learning  predict membership in ConceptNodes
Clustering Creates ConceptNodes representing clusters of

existing ConceptNodes (thus enabling the cluster
to be acted on, as a unified whole, by precise
inference methods, as opposed to the less-accurate
map-level dynamics)

Importance Updating Updates Atom “importance” variables and other
related quantities, using specially-deployed
probabilistic inference

Concept Formation  Creates speculative, potentially interesting new

ConceptNodes
Evolutionary A “service” MindAgent, used for schema and
Optimization predicate learning, and overall optimization of

system parameters

Table 7: Existing Novamente Mind Agents

5.6 Map Dynamics

Much of the meaning of Novamente MindAgents lies in the implications they
have for dynamics on the map level. Here the relation between Novamente
maps and the concepts of mathematical dynamical systems theory is highly
pertinent.

The intuitive concept of a map is a simple one: a map is a set of Atoms that
act as a whole. They may act as a whole for purposes of cognition, perception,
or action. And, acting as wholes, they may relate to each other, just like Atoms
may relate to each other. Relationships between maps do not take the form
of individual links; they take the form of bundles of links joining the Atoms
inside one map to the Atoms inside another.

Map dynamics are a bit “slipperier” to talk about than Atom dynamics,
because maps are not explicitly engineered — they emerge. To tell what Atoms
are present in a system at a given time, one simply prints out the AtomTable.
To tell what maps are present, one has to do some advanced pattern recogni-
tion on the Atomspace, to determine which sets of nodes are in fact acting as
coordinated wholes. However, a map doesn’t have to be explicitly identified by
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Agent Description

Higher-Order Carries out inference operations on logical links

Inference that point to links and/or PredicateNodes

Logical Unification  Searches for Atoms that mutually satisfy a pair of
PredicateNodes

Predicate/Schema Creates speculative, potentially interesting new

Formation SchemaNodes

Hebbian Association Builds and modifies links between Atoms, based

Formation on a special deployment of probabilistic inference

that roughly emulates (but greatly exceeds in
exactness) Hebbian reinforcement learning rule

Evolutionary Schema Creates SchemaNodes that fulfill criteria, e.g. that

Learning are expected to satisfy given GoalNodes

Schema Execution Enacts active SchemaNodes, allowing the system
to carry out coordinated trains of action

Map Encapsulation  Scans the AtomTable for patterns and creates new
Atoms embodying these patterns

Map Expansion Takes schemata and predicates embodied in nodes,
and expands them into multiple nodes and links in
the AtomTable (thus transforming complex Atoms
into maps of simple Atoms)

Homeostatic Applies evolutionary programming to adaptively
Parameter tune the parameters of the system
Adaptation

Table 8: Additional, planned Novamente MindAgents

anyone to do its job. Maps exist implicitly in a dynamic Novamente system,
emerging out of Atom-level dynamics and then guiding these dynamics.

In dynamical systems terms, there are two kinds of maps: attractor maps,
and transient maps. Schema and predicate maps are generally transient,
whereas concept and percept maps are generally attractors; but this is not
a hard and fast rule. Other kinds of maps have more intrinsic dynamic va-
riety, for instance there will be some feeling maps associated with transient
dynamics, and others associated with attractor dynamics.

The sense in which the term “attractor” is used here is slightly nonstan-
dard. In dynamical systems theory [21], an attractor usually means a subset
of a system’s state space which is:

Invariant, when the system is in this subset of state space, it doesn’t leave
it;

Attractive, when the system is in a state near this subset of state space, it
will voyage closer and closer to the attracting subspace.

In Novamente, the subset of state space corresponding to a map is the set of
system states in which that map is highly important. However, in Novamente
dynamics, these subsets of state space are almost never truly invariant.
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Many maps are attractive, because Novamente importance updating dy-
namics behaves roughly like an attractor neural network. When most of a map
is highly important, the rest of the map will get lots of activation which will
make it highly important. On the other hand, Atoms linked to map elements
via inhibitory links will get less activation, and become less important.

But maps are not invariant: once a map is active, it is not guaranteed to
remain active forever. Rather, the Importance Updating Function, regulating
Novamente dynamics, guarantees that most of the time, after a map has been
important for a while, it will become less important, because the percentage
of new things learned about it will become less than the percentage of new
things learned about something else.

This combination of attractiveness and temporary invariance that we see
in connection with Novamente maps, has been explored by physicist Mikhail
Zak [74], who has called subsets of state space with this property terminal
attractors. He has created simple mathematical dynamical systems with ter-
minal attractors, by using iteration functions containing mathematical sin-
gularities. He has built some interesting neural net models in this way. The
equations governing Novamente bear little resemblance to Zak’s equations,
but intuitively speaking, they seem to share the property of leading to termi-
nal attractors, in the loose sense of state space subsets that are attractive but
are only invariant for a period of time.

Many concept maps will correspond to fixed point map attractors — mean-
ing that they are sets of Atoms which, once they become important, will tend
to stay important for a while due to mutual reinforcement. On the other hand,
some concept maps may correspond to more complex map dynamic patterns.
And event maps may sometimes manifest a dynamical pattern imitating the
event they represent. This kind of knowledge representation is well-known in
the attractor neural networks literature.

Turning to schemata, an individual SchemaNode does not necessarily rep-
resent an entire schema of any mental significance — it may do so, especially
in the case of a large encapsulated schema; but more often it will be part
of a distributed schema (meaning that SchemaNode might more accurately
be labeled LikelySchemaMapComponentNode). And of course, a distributed
schema gathers its meaning from what it does when it executes. A distributed
schema is a kind of mind map — a map that extends beyond SchemalnstanceN-
ode and SchemaNodes, bringing in other nodes that are habitually activated
when the SchemalnstanceNodes in the map are enacted. Note that this system
behavior may go beyond the actions explicitly embodied in the SchemaNode
contained in the distributed schema. Executing these SchemaNodes in a par-
ticular order may have rampant side-effects throughout the system, and these
side-effects may have been taken into account when the schema was learned,
constituting a key part of the “fitness” of the schema.

Next, percepts — items of data — coming into the system are not necessar-
ily represented by individual perceptual nodes. For instance, a word instance
that has come into the system during the reading process is going to be rep-
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resented in multiple simultaneous ways. There may be a WordInstanceNode,
a ListLink of CharacterInstanceNodes, and so forth. In a vision-endowed sys-
tem, a representation of the image of the word will be stored. These will be
interlinked, and linked to other perceptual and conceptual nodes, and perhaps
to SchemaNodes embodying processes for speaking the word or producing let-
ters involved in the word. In general, percepts are more likely to be embodied
by maps that are centered on individual perceptual nodes (the WordInstan-
ceNode in this case), but this is not going to be necessarily and universally
the case.

Links also have their correlates on the map level, and in many cases are
best considered as seeds that give rise to inter-map relationships. For example,
an InheritanceLink represents a frequency relationship between nodes or links,
but inheritance relationships between maps also exist. An inheritance relation
between two maps A and B will not generally be embodied in a single link, it
will be implicit in a set of InheritanceLinks spanning the Atoms belonging to
A and the Atoms belonging to B. And the same holds for all the other vari-
eties of logical relationship. Furthermore, the first-order inference rules from
Probabilistic Term Logic, Novamente’s reasoning system, carry over naturally
to map-level logical links.

5.7 Functional Specialization

Now we return to the DINT architecture and its specific use within Novamente.
The Novamente MindAgents are designed to be tightly integrated, so that a
large collection of MindAgents acts on a large population of Atoms in an
interleaved way. This set of Atoms may live on one machine, or on a cluster
of connected machines. This kind of tight integration is essential to making
integrative AGI work.

But, according to the Novamente design, there is also another layer re-
quired, a layer of loose integration on top of the tightly integrated layer.
A Novamente system consists of a loosely-integrated collection of “analytic
clusters” or “units,” each one embodying a tightly-connected collection of Al
processes, involving many different Atom types and MindAgents, and dedi-
cated to a particular cognitive processing in a certain particular domain, or
with a specific overall character.

The different analytic clusters interact via DINT; they all draw data from,
and place data in, the same system-wide data warehouse. In some cases they
may also query one another. And the parameters of the MindAgents inside
the various analytic clusters may be adapted and optimized globally.

The simplest multi-cluster Novamente has three units, namely:

1. a primary cognitive unit;

2. a background thinking unit, containing many more nodes with only very
important relationships among them, existing only to supply the primary
cognitive unit with things it judges to be relevant;
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3. an AttentionalFocus unit, containing a small number of atoms and doing
very resource-intensive processing on them.

Here the specialization has to do with the intensity of processing rather
than with the contents of processing.

For a Novamente to interact intensively with the outside world, it should
have two dedicated clusters for each “interaction channel”:

e one to contain the schemata controlling the interaction;
e one to store the “short-term-memory” relating to the interaction.

An “interaction channel” is a collection of sensory organs of some form,
all perceiving roughly the same segment of external reality. Each human has
only one interaction channel. But Novamente does not closely emulate either
the human body or brain, and so it can easily be in this situation, interacting
separately with people in different places around the world.

Perceptual processing like image or sound processing will best be done
in specially dedicated units, with highly modality-tuned parameter values.
Language processing also requires specialized units, dealing specifically with
aspects of language processing such as parsing, semantic mapping, and dis-
ambiguation.

The human brain contains this kind of functional specialization to a large
degree. In fact we know more about the specialization of different parts of the
brain than about how they actually carry out their specialized tasks. Each
specialized module of the brain appears to use a mixture of the same data
representations and learning processes [34]. Many Al systems contain a similar
modular structure, but each module contains a lot of highly rigid, specialized
code inside. The approach here is very different. One begins with a collection
of actors emergently providing generic cognitive capability, and then sculpts
the dynamical patterns of their interactions through functional specialization.

5.8 Novamente and the Human Brain

Having reviewed the key aspects of the Novamente design, we now briefly
return to a topic mentioned earlier, the relationship between Novamente and
the human brain. While Novamente does not attempt to emulate neural struc-
ture or dynamics, there are nevertheless some meaningful parallels. Table 9
elucidates some of the more important ones.

On a structural level, the parallels are reasonably close: Novamente’s
functionally-specialized lobes are roughly analogous to different regions of the
brain. At an intermediate level, Novamente nodes are roughly analogous to
neuronal groups in the brain, as mentioned above; and Novamente links are
like the synapse-bundles interconnecting neuronal groups. Novamente maps
are like Edelman’s neuronal maps, and also in some cases like the neural
attractors posited by theorists like Daniel Amit [4] and Walter Freeman [25].



Human Brain
Structure or
Phenomena
Neurons

Neuronal
groups
Synapses

Synaptic
Modification

Dendritic
Growth

Neural
attractors

Neural
input/output
maps

“Neural
Darwinist” map
evolution
Cerebrum

Specialized
cerebral regions

Cerebellum

Midbrain

Hypothalamus

Limbic System
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Primary Functions

Impulse-conducting cells, whose
electrical activity is a key part
of brain activity

Collections of tightly
interconnected neurons

The junction across which a
nerve impulse passes from one
neuron to another; may be
excitatory or inhibitory
Chemical dynamics that adapt
the conductance of synapses
based on experience; thought to
be the basis of learning

Adaptive growth of new
connections between neurons in
a mature brain

Collections of neurons and/or
neuronal groups that tend to be
simultaneously active
Composites of neuronal groups,
mapping percepts into actions
in a context-appropriate way
Creates new,
context-appropriate maps

Perception, cognition, emotion

Diverse functions such as
language processing, visual
processing, etc.. ..

Movement control, information
integration

Relays and translates
information from all of the
senses, except smell, to higher
levels in the brain

Regulation of basic biological
drives; control of autonormic
functions such as hunger, thirst,
and body temperature
Controls emotion, motivation,
and memory

Table 9: Novamente and the

101

Novamente Structure or
Phenomena

No direct correlate

Novamente nodes

Novamente links are like
bundles of synapses joining
neuronal groups

The HebbianLearning
MindAgent is a direct correlate.
Other cognitive MindAgents
(e.g. inference) may correspond
to high-level patterns of
synaptic modification
Analogous to some heuristics in
the ConceptFormation
MindAgent

Maps, e.g. concept and percept
maps

Schema maps

Schema learning via inference,
evolution, reinforcement
learning

The majority of Units in a
Novamente configuration
Functionally-specialized
Novamente Units

Action-oriented units, full of
action schema-maps
Schemata mapping perceptual
Atoms into cognitive Atoms

Homeostatic Parameter
Adaptation MindAgent, built-in
GoalNodes

FeelingNodes and GoalNodes,
and associated maps

human brain
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The parallels get weaker, however, when one turns to dynamics. Very lit-
tle is known about the intermediate-scale dynamics of the brain. We know
basically how neurons work, but we don’t know much about the dynamics in-
terrelating the levels of different types of neurotransmitters in different brain
regions, nor about extracellular charge diffusion, or even about the dynamical
behavior of complex collectives of real neurons. Novamente has a number of
specific cognitive dynamics (e.g. probabilistic inference) that have no known
analogues in brain dynamics; but this means little since intermediate-level
brain dynamics is so poorly understood.

5.9 Emergent Structures

The dynamics of a Novamente system is largely controlled by the structure
of the Atom hypergraph, and that the structure of the Atom hypergraph is
strongly guided, and partly explicitly formed, by the dynamics of the system.
This structural-dynamical feedback can lead to all kinds of complex emergent
structures — some existing in the system at a given time, some manifesting
themselves as patterns over time, and some spatiotemporal in nature. Maps
are one manifestation of this feedback; but there is also a higher level of or-
ganization, in which the network of maps achieves certain emergent patterns.
Among these emergent patterns are the ones identified in the psynet model
of mind: the dual network and the self.

The Dual Network

The dual network, in Novamente, takes a fairly simple and direct form:

e the heterarchical aspect consists of the subnetwork defined by symmetric
logical links and/or AssociativeLinks;

e the hierarchical aspect consists of the subnetwork defined by asymmetric
logical links and associative links, and the subnetwork defined by schemata
and their control relationships (schema A being said to control schema B
when A modifies B’s parameters significantly more than vice versa).

Schemata aside, the static aspect of the dual network is fairly straight-
forward. For instance, the ConceptNodes corresponding to different nations
may be interlinked by SimilarityLinks and AssociativeLinks: this is a small
“heterarchical network,” a subset of the overall heterarchical network within
a given Novamente’s Atom space. These nodes representing individual na-
tions may all inherit from the Nation ConceptNode (InheritanceLink being
an asymmetric logical link). This is a simple, static example of dual network
structure: elements that are related heterarchically are also close together in
their hierarchical relationships. This aspect of dual network structure falls
out pretty naturally from the intrinsic semantics of similarity, inheritance and
association.
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The control aspect of the dual network is less obvious and will only emerge
if the various MindAgents are operating together properly. For example, con-
sider a family of schemata, each concerned with recognizing some part of
speech: nouns, verbs, adjectives, etc. These schemata will have similarities
and associations with each other. They will all inherit from a handful of
more general schemata for analyzing words and their properties. But they
will also be controlled by these more general word-analysis schemata. Their
control parameters and their flow of execution will be modulated by these
more general control schemata. The coincidence of inheritance hierarchy and
control hierarchy, and the overlaying of this coincident hierarchy on the as-
sociative/similarity heterarchy, is the crux of the “dual network” structure.
It is not programmed into Novamente, but Novamente is designed so as to
encourage it to emerge.

Specifically, the emergence of this kind of dual network metapattern follows
fairly naturally from the harmonious interaction of:

inference building similarity and inheritance links;
importance updating, guiding the activation of atoms (and hence the ap-
plication of built-in primary cognitive processes to atoms) based on the
links between them;

e schema learning, which extends a schema’s applicability from one node to
another based on existing links between them (and based on observations
of past schema successes and failures, as will be explained later).

The dual network structure is a static representation of the dynamic coop-
eration of these processes. We have discussed it here on the Atom level, but
its manifestation on the map level is largely parallel, and equally important.

The Self

Just as important as the dual network is the mind structure that we call
the “self.” We stress that we are using a working definition of self, geared
towards serving as a usable guideline for AGI engineering. We deliberately
avoid ontological or existential discussions of the universal nature of selthood
and its relation to consciousness.

The “raw material” for Novamente’s self — the primary senses in which a
Novamente can self-reflect — consists of the collection of:

e patterns that the system has observed in itself as a whole, that is, the
structural and dynamical patterns within its internal dual-network;

e patterns that it has observed in its own external actions, that is, that
subnetwork of its dual network which involves tracking the procedure and
consequences of running various schema;

e patterns that the system has observed in its relationship with other intel-
ligent systems.
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What we call the self is then a collection of patterns recognized in this set.
Often the patterns recognized are very approximate ones, as the collection
of data involved is huge and diverse — even a computer doesn’t have the
resources to remember every detail of every thing it’s ever done. Furthermore,
the particular data items leading to the creation of the psynet-wide patterns
that define the self will often be forgotten, so that the self is a poorly grounded
pattern (tuning how poorly grounded it may be, and still be useful, will be a
subtle and crucial part of giving Novamente a useful, nontrivial sense of self).

On the map level, we may say that the self consists of:

e a set of self-image maps: maps that serve as an “internal images” of sig-
nificant aspects of a Novamente system’s structure or dynamics, or its
interactions with other intelligent systems;

e a larger map that incorporates various self-image maps along with other
Atoms (this is the emergent self).

The really interesting thing about the self is the feedback between declar-
ative, localized knowledge and distributed, procedural knowledge that it em-
bodies. As the collection of high-level patterns that is the self become more or
less active, they automatically move the overall behavior of the system in ap-
propriate directions. That is to say, as the system observes and reasons upon
its patterns of self, it can then adjust its behavior by controlling its various
internal processes in such a way as to favor patterns which have been observed
to contribute to coherent thought, “good feelings,” and satisfaction of goals.

We note the key role of interactions with humans in Novamente’s devel-
opment of self. While it would be theoretically possible to have self without
society, society makes it vastly easier, by giving vastly more data for self-
formation — and for a self to be able to function sufficiently in a world where
there are other selves, society is indispensable. In time, it may be interesting
to create a community of interacting Novamente Al systems. Initially, Nova-
mente will learn about itself through interacting with humans. As humans ask
it questions and chat with it, it will gain more and more information not only
about humans but about what Novamente itself is, from the point of view of
others. This will shape its future activities both explicitly and implicitly.

6 Interacting with Humans and Data Stores

The deployment of Novamente for knowledge management and analysis in-
volves attention to many issues beyond those occurring in relation to “Nova-
mente AGI” in general. Most of these issues fall into the categories of data
sources and human-computer interaction.

The optimal way of handling such issues is domain-dependent. For the
bioinformatics applications, we have taken an approach guided by the partic-
ular needs of bioscientists analyzing datasets generated via high-throughput
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genomics equipment. This section contains a brief description of our plans in
these areas.

A key conceptual point arising here is the relationship between AI and
TA (Intelligence Augmentation). Its ambitious long-term AGI goals notwith-
standing, it is very clear that in the medium term Novamente is not going
to outperform human intelligence all around. Rather, it should be viewed as
a complement to individual and collective human intelligence. Humans will
learn from Novamente’s unique insights, and Novamente will also learn from
humans. Specifically, Novamente leverages human intelligence by:

e ingesting data encoded by humans in databases;

e ingesting knowledge specifically encoded by humans for Novamente use;

e learning from its dialogues and interactions with humans;

e human construction of training sets for supervised categorization;

e learning from humans’ ratings of its own and other humans’ answers to
queries;

The design of appropriate user interfaces embodying these factors is a
significant undertaking in itself, and not one that we will enlarge on in this
chapter. Here we will restrict ourselves to a brief discussion of the key features
required, and the most salient issues that arise with them.

6.1 Data Sources

We have already discussed the conceptual issues involved with feeding Nova-
mente databases in Section 2.2 above.

As noted there, Novamente is intended to work with external databases
that have been integrated according to a “knowledge integration” method-
ology. This means that translators must be written, mapping the schemata
within DB’s into XML structured according to Novamente’s XML DTD. This
effectively maps database information into Novamente nodes and links. In this
manner, a unified data warehouse may be built up, containing a diverse mix
of data and abstract information. Table 10 and Fig. 8 show an example of

the mapping of relational database table elements into Novamente nodes and
links.

ID CompanyName EIN ParentCo CEO
2003 Postindustrial Widgets LLC 123-45-6789 2453 J. J. James
2453 The Associated 897-65-4321 null null

Amalgamated Group, Inc.

Table 10: Example RDB table
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Fig. 8: Depiction of RDB table as Novamente nodes and links

Regarding the substantial amount of knowledge in contemporary databases
as textual rather than structured, Novamente can ingest text using simplified
statistical methods, and we have experimented with this in the context of bio-
logical research papers. But, real natural language understanding is obtained
only by leaving text processing behind, and having Novamente translate back
and forth between linguistic character sequences on the one hand, and seman-
tically meaningful nodes and links on the other. This requires that natural
language processing be implemented in a very deep way, as part and parcel
of abstract Novamente cognition.

We believe the Novamente design can overcome the problems experienced
by contemporary NLP algorithms, due to its integrative approach, which in-
volves carrying out syntactic analysis via logical unification, a process that
automatically incorporates available semantic and pragmatic knowledge into
its behavior. We have not yet implemented NLP in the Novamente system,
but our experience with a similar implementation in the Webmind system
gives us reasonable confidence here. We return to this issue below.

6.2 Knowledge Encoding

Sometimes the data available in existing databases will not be enough to
bring Novamente “up to speed” on a pertinent area. A significant proportion
of human knowledge is “tacit” and is never written down anywhere, textually
or in relational or quantitative form. Furthermore, in the case of knowledge
that is expressed only in difficult-to-comprehend textual documents, Nova-
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mente’s understanding may be enhanced by providing it with portions of the
knowledge in explicit form.

For these reasons, it will sometimes be valuable to have humans encode
knowledge formally, specifically for ingestion by Novamente. There are two
different approaches here:

e “expert system” style formal language encoding of knowledge;
e knowledge entry via interactive Web forms.

The Web forms approach was prototyped at Webmind Inc. and seemed
to be a reasonable way for individuals with little training to encode large
amounts of relatively simple information. For formal language encoding, we
have developed a formal language called NQL, which is similar to Cyc-L but
has a much simpler syntax.

We caution that we are not proposing a traditional “expert systems” ap-
proach here, nor a traditional “common sense” knowledge encoding project a
la Cyc. We anticipate that well less than 1% of the knowledge in Novamente
will be placed there via human knowledge encoding. In our view, the role of
knowledge encoding should be to fill in gaps, not to supply a fundamental
knowledge base.

6.3 Querying

We have discussed how knowledge gets into Novamente — but how does it get
out? How do humans ask Novamente questions? How do they iterate with
the system to cooperatively find and produce knowledge? Our intention is to
create a prototype user interface that is integrative in nature, encompassing
a variety of complementary mechanisms.

1 Search Engine style queries
Manhattan sushi restaurants

2 Natural language queries
I want information on outstanding sushi restaurants in
Manhattan

3 Formal language queries

X: X inheritsFrom restaurant AND
Y: Y inheritsFrom sushi AND
sells(X, Y) AND quality(Y, outstanding)

4 Interactive conversation encompassing both NLP and formal lan-
guage queries

5 Web forms queries covering common cases

6 Export of data into spreadsheets and other analytic software

Table 11: Different types of queries for Novamente
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Practical experimentation with these mechanisms in a real-world data
analysis context will teach us which are found most valuable by human users
in which contexts; and this will guide further refinement of the Novamente Ul
and also of Novamente’s internal query processing mechanisms.

6.4 Formal Language Queries

For untrained users, natural language queries and natural language conversa-
tion are clearly the most desirable interaction modalities. For trained expert
users, on the other hand, there may be significant advantages to the use of
formal language queries, or of queries mixing formal with natural language.

Formal queries allow a level of precision not obtainable using natural lan-
guage. Furthermore — and this is a critical point — by having expert users
submit the same queries in both natural language and formal-language for-
mat, Novamente will gain pragmatic knowledge about query interpretation.
This is an example of how Novamente can learn from humans, who at least
initially will be far smarter than it at interpreting complex human-language
sentences.

For example, consider the query:

I want information on outstanding sushi restaurants in Manhattan
As a formal language query, this becomes simply:

Find X, Y so that:
Inheritance X ¢‘Japanese restaurant’’
location X Manhattan
sells X Y
Inheritance Y Sushi
quality Y outstanding

Or, consider:

I want information on profitable companies from the United
States that sell their services to schools.

A sentence like this poses interpretative problems for current NLP systems.
They have trouble determining which is the antecedent of “their”: “profitable
companies” or “the United States.” Making the correct choice requires real-
world understanding or extensive domain-specific system tuning. On the other
hand, for an expert user, creating an appropriate formal language query to
cover this case is easy:
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Inheritance X ‘‘United States’’
based Y X

Inheritance Y profitable

sells Y Z

buys Z W

Inheritance W ‘‘school’’

The initial Novamente NLP system may sometimes make errors resolving
sentences like the above. If a user submits this query to Novamente in both
English and formal-language form, then Novamente will observe the correct
interpretation of the sentence, and adjust its semantic mapping schemata
accordingly (via the activity of the schema learning Mind Agents). Then the
next time it sees a similar sentence, it will be more likely to make the right
judgment.

When a human child learns language, they correct their interpretations via
observing others’ interpretations of utterances in the real world. Novamente
will have fewer opportunities than humans to make this kind of observation-
based correction, but as partial compensation, it has the ability to compare
natural language sentences with expert-produced formal language renditions.
And this “language teaching” need not be done as a special process, it may oc-
cur as a part of ordinary system usage, as expert users submit formal language
queries and NL queries side by side.

6.5 Conversational Interaction

The “query/response” interaction modality is important and valuable, but
it has its limitations. Often one wishes to have a series of interactions with
persistent context —i.e., a conversation. Novamente is designed to support this,
as well as more conventional query/response interactions. We are currently
prototyping Novamente conversations in the context of the toy ShapeWorld
environment.

Conversational interaction harmonizes nicely with the idea of mixed for-
mal/natural language communication discussed above. The conversation ex-
ample given in Table 3 above illustrates this concept concretely.

As we have not currently implemented any NLP at all in Novamente,
achieving this sort of conversation with Novamente remains an R&D endeavor
with the usual associated risks. Our current applications of Novamente are
more along the lines of data analysis. However, we did prototype interactive
conversation in the related Webmind software system, to a limited extent,
and from this experience we gained a thorough understanding of the issues
involved in approaching such functionality.

6.6 Report Generation

Another useful (and much simpler) human interaction functionality is report
generation. The system will be able to automatically generate summary re-
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ports containing information pertinent to user queries, or simply summarizing
interesting patterns it has found through its own spontaneous activity. Reports
may contain:

quantitative data;

relationships expressed in formal language (predicate expressions);
natural language produced by “language generation” and “text summa-
rization” algorithms.

6.7 Active Collaborative Filtering and User Modeling

Finally, Novamente will gather information about human preferences in gen-
eral, and the preferences of its individual users, through techniques refined
in the “active collaborative filtering” community. Essentially, this means that
users will be asked to rate Novamente’s responses on several scales (e.g. use-
fulness, veracity). Furthermore, Novamente’s UI will be configured to collect
“implicit ratings” — information regarding how long they look at an informa-
tion item, what they use it for, etc. Novamente will incorporate this informa-
tion into its knowledge store, to be used as the subject of ongoing pattern
analysis, which will enable it to adapt its behavior so as to better serve future
users.

7 Example Novamente AI Processes

In this section we will briefly review a few of the most important AI pro-
cesses in the Novamente system: probabilistic inference, nonlinear attention
allocation, procedure learning, pattern mining, categorization, and natural
language processing. These processes form a decent cross-section of what goes
on in Novamente. We will illustrate each process with an intuitive example of
what the process contributes to Novamente.

Table 12 compares standard approaches to some cognitive tasks and the
approaches we have taken in Novamente.

Logical Inference
Standard Predicate, term, combinatory, fuzzy, probabilistic, nonmonotonic
Approaches or paraconsistent logic

Accurate management of uncertainty in a large-scale inference
Challenges context Inference Control: intelligent, context-appropriate guid-
ance of sequences of inferences

Probabilistic Term Logic tuned for effective large-scale uncertainty
management, coupled with a combination of noninferencial cogni-
tive processes for accurate control

Novamente
Approach
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Attention Allocation

Blackboard systems, neural network activation spreading

The system must focus on user tasks when needed, but also possess
te abilit to spontaneously direct its own attention without being
flighty or obsessive

Novamente’s nonlinear importance updating function combines
quantities derived from neural-net-like importance-updating and
blackboard-system-like cognitive utility analysis

Procedure Learning
Evolutionary programming, logic-based planning, feedforward
neural networks, reinforcement learning

Techniques tend to be unacceptably inefficient except in very nar-
row domains

A synthesis of techniques allows each procedure to be learned in
the context of a large number of other already-learned procedures,
enhancing efficiency considerably

Pattern Mining
Association rule mining, genetic algorithms, logical inference, ma-
chine learning, search algorithms

Finding complex patterns requires prohibitively inefficient search-
ing through huge search spaces

Integrative cognition is designed to home in on the specific subset
of search space containing complex but compact and significant
patterns

Human Language Processing
Numerous parsing algorithms and semantic mapping approaches
exist, like context-free grammars, unification grammars, link
grammars, conceptual graphs, conceptual grammars, etc

Integrating semantic and pragmatic understanding into the
syntax-analysis and production processes

Syntactic parsing is carried out via logical unification, in a manner
that automatically incorporates probabilistic semantic and prag-
mantic knowledge. Language generation is carried out in a simi-
larly integrative way, via inferential generalization

Table 12: Comparison of approaches to several cognitive tasks
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7.1 Probabilistic Inference

Logical inference has been a major theme of Al research since the very begin-
ning. There are many different approaches out there, including:

predicate logic, e.g. Cyc [51], SNARK [63];

combinatory logic [17, 24];

uncertain term logic, e.g. Pei Wang’s Non-Axiomatic Reasoning System
(NARS), see this volume;

probabilistic inference, e.g. Bayes nets [55], probabilistic logic program-
ming [35];

fuzzy logic [73];

paraconsistent logic [60];

nonmonotonic logic [65].

The basic task of computational logical deduction is a solved problem, but

there are still many open problems in the area of Al and logic, for instance:

inference control (what inferences to make when);

representation and manipulation of uncertainty (fuzzy vs. probabilistic vs.
multi-component truth value, etc);

optimal logical representation of specific types of knowledge, such as tem-
poral and procedural;

inferences beyond deduction, such as induction, abduction [45] and analogy
[43];

For these aspects of inference, many approaches exist with no consensus

and few unifying frameworks. Cyc is perhaps the most ambitious attempt to
unify all the different aspects of logical inference, but it’s weak on nonde-
ductive inference, and its control mechanisms are highly domain-specific and
clearly not generally adequate.

The practical need for logical inference in a national security context is

obvious. Among other things, inference can:

synthesize information from multiple DBs;

help interpret natural language;

help match user queries to system knowledge;

draw complex conclusions based on integrating a huge number of small
pieces of information.

To take a DB integration example, when Database 1 says:

‘‘Money often flows from XYZ Bank to Luxembourg.’’

and Database 2 says:

‘‘M. Jones has significant funds in XYZ bank.’’
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then abductive inference says:
‘‘Maybe M. Jones is sending money to Luxembourg.’’

which is a speculative, but possibly interesting, conclusion.

Novamente’s logical inference component consists of a number of MindA-
gents for creating logical links, both from other logical links (“inference”)
and from nonlogical links (“direct evaluation”). It involves several different
MindAgents:

LogicalLinkMiner MindAgent (builds logical links from nonlogical links)
FirstOrderInference MindAgent

HigherOrderInference MindAgent

LogicalUnification MindAgent

PredicateEvaluation Mind Agent

Temporallnference MindAgent

Here we will discuss just one of these, the FirstOrderInference (FOI)
MindAgent. This agent carries out three basic inference rules, deduction, in-
version and revision. It also converts similarity relationships into inheritance
relationships and vice versa. Fach of its inference rules is probabilistic in
character, using a special formula to take the probabilistic truth values of the
premises and outputting a probabilistic truth value for the conclusion. These
formulas are derived using a novel mathematical framework called Probabilis-
tic Term Logic (PTL). The PTL inversion formula is essentially Bayes’ rule;
the deduction formula is unique to Novamente, though it is simply derivable
from elementary probability theory. Revision is a weighted-averaging rule that
combines different estimates of the truth value of the same relationship, com-
ing from different sources. The rules deal with weight of evidence as well as
strength, and have variants dealing with distributional truth values.

The combination of deduction and inversion yields two forms of infer-
ence familiar from the literature: induction and abduction. Induction and
abduction are speculative forms of inference, intrinsically less certain than
deduction, and the corresponding formulas reflect this. Figure 9 shows the
basic patterns of deduction, induction abduction and revision. Examples of
first-order inference are shown in Table 13.

The dynamics of Novamente TruthValues under PTL can be quite sub-
tle. Unlike the NARS system and most other logical inference systems (loopy
Bayes’ nets being an exception), we do not rule out circular inference; we
embrace it. Circular inferences occur rampantly, ultimately resulting in a “at-
tractor state” of truth values throughout the system, in which all the truth
values of the Atoms are roughly (though not necessarily exactly) consistent
with each other. Interestingly, although PTL is based on formal logic, its
dynamics more closely resemble those of attractor neural networks.

Special additions to the FOI framework deal with hypothetical, subjective
and counterfactual knowledge, e.g. with statements such as



114 Goertzel and Pennachin

deduction abduction

induction revision

-
“- -

~,
- ~

‘\. -
ot

-l Old Link  -gfpwm=w=New Link

Fig. 9: First-order inference on InheritanceLinks

Joe believes the Earth is flat.
If Texas had no oil, then...

It is important that the system be able to represent these statements
without actually coming to believe “the Earth is flat” or “Texas has no oil.”
This is accomplished by the HypotheticalLink construct and some simple
related inference rules.

Higher-order inference deals with relationships such as:

ownerOf (X, Y) IFF possessionOf (Y, X)

In this example we have used traditional predicate logic notation to rep-
resent the antisymmetry of the ownership and possession relationships, but
inside Novamente things are a little different: there are no variables at all.
Instead, a combinatory logic approach is used to give variable-free represen-
tations of complex relationships such as these, as networks of PredicateNodes
and SchemaNodes (including SchemaNodes embodying the “elementary com-
binators”). Using the C combinator, for instance, the above equivalence looks
like:
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Deduction:
IBM is a US company
US companies have EIN’s
|-
IBM has an EIN

Induction:
IBM is a US company
IBM manufactures computers
|-

US companies manufacture computers

Abduction:
Widgco is a US company selling widgets in Mex