
PowerShell  
and Python 
Together

Targeting Digital Investigations
—
Chet Hosmer



PowerShell and 
Python Together

Targeting Digital Investigations

Chet Hosmer



PowerShell and Python Together: Targeting Digital Investigations

ISBN-13 (pbk): 978-1-4842-4503-3  ISBN-13 (electronic): 978-1-4842-4504-0
https://doi.org/10.1007/978-1-4842-4504-0

Copyright © 2019 by Chet Hosmer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,  
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/9781484245033. 
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Chet Hosmer
Longs, SC, USA

https://doi.org/10.1007/978-1-4842-4504-0


To the latest addition of our family – “Cousin Vinny” – one 
of the sweetest, very loving, and curious Yellow Labs ever, 

who constantly interrupts our daily lives in the most 
wonderful ways.



v

Table of Contents

Chapter 1: An Introduction to PowerShell for Investigators �����������������1

A Little PowerShell History������������������������������������������������������������������������������������2

How Is PowerShell Used Today? ���������������������������������������������������������������������������3

How Do You Experiment with PowerShell? �����������������������������������������������������������3

Navigating PowerShell ISE ������������������������������������������������������������������������������3

PowerShell CmdLets ���������������������������������������������������������������������������������������7

What Is a CmdLet?�������������������������������������������������������������������������������������������7

Introduction to Some Key CmdLets �����������������������������������������������������������������8

Challenge Problems: Investigative CmdLets to Explore ��������������������������������������18

Challenge One: Executing a “Find” Based on File Extension �������������������������18

Challenge Two: Examining Network Settings ������������������������������������������������19

Challenge Three: Examining Firewall Settings ����������������������������������������������20

Challenge Four: Your Chance to Explore ��������������������������������������������������������20

Summary�������������������������������������������������������������������������������������������������������������20

Chapter 2: PowerShell Pipelining �������������������������������������������������������23

What Is CmdLet Pipelining? ��������������������������������������������������������������������������������23

Example 1: Get-Service ���������������������������������������������������������������������������������23

Example 2: Get-Process���������������������������������������������������������������������������������27

About the Author ���������������������������������������������������������������������������������ix

About the Technical Reviewer �������������������������������������������������������������xi

Acknowledgments �����������������������������������������������������������������������������xiii

Introduction ����������������������������������������������������������������������������������������xv



vi

Adding a Transcript to Track Your Activities ��������������������������������������������������������37

Challenge Problem: CmdLet Experimentation �����������������������������������������������������41

Summary�������������������������������������������������������������������������������������������������������������43

Chapter 3: PowerShell Scripting Targeting Investigation �������������������45

Basic Facts About PowerShell Scripts ����������������������������������������������������������������46

Example 1: The EventProcessor PowerShell Script���������������������������������������������46

EventLog CmdLets �����������������������������������������������������������������������������������������47

Retrieving More Specific Eventlog Information ���������������������������������������������49

Creating the Script �����������������������������������������������������������������������������������������50

EventProcessor Get-Help Result ��������������������������������������������������������������������62

EventProcessor Script Execution �������������������������������������������������������������������66

Resulting Directory ����������������������������������������������������������������������������������������67

HTML Output Report ��������������������������������������������������������������������������������������67

Remote Access ���������������������������������������������������������������������������������������������������68

Example 2: USB Device Usage Discovery ������������������������������������������������������������70

Create the Script ��������������������������������������������������������������������������������������������72

USBAcquire Script Execution �������������������������������������������������������������������������83

USBAcquire Get-Help Result ��������������������������������������������������������������������������84

Challenge Problem: Create File Inventory List with Hashes ��������������������������������85

Summary�������������������������������������������������������������������������������������������������������������86

Chapter 4: Python and Live Investigation/Acquisition �����������������������89

What Is “By Example”? ���������������������������������������������������������������������������������������90

Directing PowerShell with Python �����������������������������������������������������������������91

Launching PowerShell CmdLets from Python �����������������������������������������������94

Creating a System Files Baseline with PowerShell and Python ��������������������97

Overview of Python Execution with PowerShell ������������������������������������������117

Table of ConTenTsTable of ConTenTs



vii

Challenge Problem: Perform Remote Script Execution �������������������������������������118

Summary�����������������������������������������������������������������������������������������������������������119

Chapter 5: PowerShell/Python Investigation Example ���������������������121

Enable PowerShell Remoting ����������������������������������������������������������������������������122

Gathering and Analyzing Remote Evidence�������������������������������������������������������126

Invoking Remote Access �����������������������������������������������������������������������������������130

Building a PowerShell Script for DnsCache Acquisition ������������������������������������131

Python Script and PowerShell CacheAquire Script �������������������������������������������136

Overview of Client DNS Cache Acquisition and Search �������������������������������������144

Challenge Problem: Multiple Target Computer DNSCache Acquisition ��������������144

Summary�����������������������������������������������������������������������������������������������������������145

Chapter 6: Launching Python from PowerShell ��������������������������������147

Reversing Roles from PowerShell to Python �����������������������������������������������������147

Examine the PowerShell Script �������������������������������������������������������������������148

Examine the Corresponding Python Script ��������������������������������������������������149

Executing the Combined PowerShell to Python Scripts ������������������������������150

Extracting Possible Proper Names from Text Documents ���������������������������������150

Examine the PowerShell Script �������������������������������������������������������������������151

Examine the Corresponding Python ProperNames Script ���������������������������153

Executing the Combined PowerShell to Python ProperNames Scripts ��������162

Extracting EXIF Data from Photographs ������������������������������������������������������������164

PowerShell Script ����������������������������������������������������������������������������������������164

pyGeo�py Python Script ��������������������������������������������������������������������������������166

Executing the Combined PowerShell to Python exifxtract Scripts ��������������177

Summary�����������������������������������������������������������������������������������������������������������178

Table of ConTenTsTable of ConTenTs



viii

Chapter 7: Loose Ends and Future Considerations ���������������������������181

Loose Ends ��������������������������������������������������������������������������������������������������������181

Future Considerations ���������������������������������������������������������������������������������������186

Summary�����������������������������������������������������������������������������������������������������������187

Appendix A: Challenge Problem Solutions����������������������������������������189

Chapter 1: Investigative CmdLets to Explore ����������������������������������������������������190

Challenge One: Executing a “Find” Based on File Extension �����������������������190

Challenge Two: Examining Network Settings ����������������������������������������������192

Challenge Three: Examining Firewall Settings ��������������������������������������������193

Chapter 2: CmdLet Experimentation �����������������������������������������������������������������194

Transcript of Commands and Responses ����������������������������������������������������������195

Chapter 3: Create File Inventory List with Hashes ��������������������������������������������203

Sample PowerShell Script Output ���������������������������������������������������������������206

HTML Screenshots���������������������������������������������������������������������������������������206

Chapter 4: Perform Remote Script Execution ���������������������������������������������������208

Example A: Acquire Remote Processes from PLUTO������������������������������������209

 Example B: Acquire Remote Services from PLUTO ��������������������������������������210

Example C: Acquire Remote IP Configuration from PLUTO ��������������������������211

 Chapter 5: Multiple Target Computer DNSCache Acquisition ����������������������������212

Index �������������������������������������������������������������������������������������������������213

Table of ConTenTsTable of ConTenTs



ix

About the Author

Chet Hosmer is the founder of Python 

Forensics, Inc., a nonprofit organization 

focused on the collaborative development 

of open-source investigative technologies 

using Python and other popular scripting 

languages. Chet has been researching 

and developing technology and training 

surrounding forensics, digital investigation, 

and steganography for decades. He has made 

numerous appearances to discuss emerging cyber threats, including 

National Public Radio’s Kojo Nnamdi Show, ABC’s Primetime Thursday, 

and ABC News (Australia). He has also been a frequent contributor to 

technical and news stories relating to cybersecurity and forensics with 

IEEE, The New York Times, The Washington Post, Government Computer 

News, Salon.com, and Wired magazine.

Chet is the author of Defending IoT Infrastructures with the Raspberry 

Pi (Apress, 2018), Passive Python Network Mapping (Syngress, 2015), 

Python Forensics (Syngress, 2014), and Integrating Python with Leading 

Computer Forensics Platforms (Syngress, 2016). He coauthored Data 

Hiding (Syngress, 2012) with Mike Raggo and Executing Windows 

Command Line Investigation (Syngress, 2016) with Joshua Bartolomie and 

Rosanne Pelli.

Chet serves as a visiting professor at Utica College in the Cybersecurity 

graduate program, where his research and teaching focus on advanced 

steganography/data hiding methods and the latest active cyber defense 

methods and techniques. Chet is also an adjunct professor at Champlain 



x

College, where his research and teaching focus on applying Python 

and other scripting languages to solve challenging problems in digital 

investigation and forensics.

Chet resides in the Grand Strand area of South Carolina with his wife 

Janet, son Matthew, two Labrador Retrievers (Bailey and Vinny), and feline 

tenants Lucy, Rosie, and Evander. 

abouT The auThorabouT The auThor



xi

Gary C. Kessler, PhD, CCE, CISSP, is a 

Professor of Cybersecurity and Chair 

of the Security Studies & International 

Affairs Department at Embry-Riddle 

Aeronautical University in Daytona Beach, 

Florida. His academic background is in 

mathematics and computer science, and 

his research interests include network 

protocols, digital forensics, and cybersecurity 

management and policy, particularly related to 

maritime and aviation. Gary is also an adjunct 

professor at Edith Cowan University (Perth, WA) and American Marine 

University (Sarasota, FL).

Gary started the undergraduate and graduate digital forensics 

programs at Champlain College (Burlington, VT) and has been affiliated 

with the National Internet Crimes Against Children (ICAC) program and 

Vermont, Northern Florida, and Hawaii Task Forces since 1999. He is also 

a frequent speaker at national and international conferences, notably the 

annual National Cyber Crime Conference.

Gary is also a member of the advisory board of the Maritime and Port 

Security Information Sharing & Analysis Organization (MPS_ISAO), holds 

a USCG master merchant mariner certificate, and is a Master SCUBA Diver 

Trainer. More information about Gary can be found at www.garykessler.net. 

About the Technical Reviewer

https://www.garykessler.net


xiii

Acknowledgments

I’m deeply appreciative of Joe Giordano, the driving force behind 

cybersecurity research and development, and ultimately education for 

the past four decades. Your quiet, humble, and persistent work has and is 

making a true impact on the security of our nation.

I want to thank Scott vonFischer, Tony Ombrellaro, and Dave Bang 

for providing the catalyst for this book. Your forward thinking, ensuring 

that your teams learn and apply the latest scripting environments to solve 

challenging problems in forensics and incident response, has been a true 

inspiration.

To my students at Utica and Champlain colleges, who constantly 

surprise, challenge, and inspire me to find new ways to share my decades 

of experience in software and scripting development to tackle the 

challenges of cybercrime investigation.

To Dr. Gary Kessler for his tireless validation of my scripts and writing. 

He always delivers sound advice on how to make both better.

To the whole team at Apress, especially Rita Fernando and Laura 

Berendson, for your constant encouragement, dedication, and patience 

throughout this project.

To my wonderful wife Janet, who always provides me with insights and 

a point of view about a challenge that I never thought of. These insights 

often, if not always, lead to new solutions and approaches that constantly 

improve my work.



xv

The endeavor to integrate PowerShell and Python came about a couple 

of years ago. I was providing training for a large utility and began by 

teaching the members of the secure operations center, or SOC, on how to 

apply Python scripts during investigations and incident response. A few 

months later, they asked for similar training – this time using PowerShell 

as the scripting engine for the SOC team. Based on this, I quickly realized 

that PowerShell was perfect for acquisition of information across the 

enterprise, and Python was good at performing analysis of data that had 

been acquired by other tools.

Now, of course, PowerShell advocates will say that PowerShell 

scripts can be developed to perform detailed analysis. Likewise, 

Python advocates will say Python scripts can be developed to perform 

very capable evidence acquisition. I agree with both advocates – but 

only to a point. The real question is… if we combine the best of both 

environments, does 1 + 1 = 2 or does 1 + 1 = 11? I believe that the answer 

falls somewhere in the middle.

Thus, the purpose of the book along with the research and 

experimentation that went into it was to build a model, in fact two models, 

to integrate and leverage the best capabilities of Python and PowerShell 

and apply the result to digital investigation. It is important to note that 

this is a work in progress. I believe that the continued development of 

advanced PowerShell and Python capabilities that leverage the models 

provided here has great potential and should be pursued.

Introduction



xvi

Therefore, I encourage you to experiment with the models that I have 

presented here and use them to develop new solutions that are desperately 

needed to acquire and analyze evidence collected before, during, and after 

a cyber incident, a cyber breach, as well as physical or cybercrimes. I also 

encourage you to share your work and innovations with others in our field 

to benefit those that fight cybercrime every day.

InTroduCTIonInTroduCTIon



1© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_1

CHAPTER 1

An Introduction 
to PowerShell for 
Investigators
PowerShell provides a great acquistion engine for obtaining a vast array of 

information from live systems, servers, peripherals, mobile devices, and 

data-driven applications like Active Directory.

Because of Microsoft’s decision to open PowerShell and provide the 

ability to acquire information from other non-Microsoft platforms such as 

Mac and Linux, the breadth of information that can be accessed is virtually 

limitless (with the proper credentials). Combine that with a plethora of 

built-in and third-party CmdLets (pronounced “command let”) that can be 

filtered, sorted, and piped together, and you have the ultimate acquistion 

engine.

By adding a bridge from PowerShell to Python, we can now leverage 

the rich logical machine learning and deep analysis of the raw information 

acquired by PowerShell. Figure 1-1 depicts the core components that we 

will integrate in this book. The result will be a workbench for developing 

new innovative approaches to live investigations and incident response 

applications.



2

 A Little PowerShell History
PowerShell is a Microsoft framework that includes a command shell 

and a scripting language. PowerShell has traditionally been used by 

system administrators, IT teams, incident response groups, and forensic 

investigators to gain access to operational information regarding the 

infrastructures they manage. Signifcant evolution has occurred over the 

past decade as depicted in Figure 1-2.

Figure 1-1. PowerShell and Python

Figure 1-2. PowerShell evolution

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



3

 How Is PowerShell Used Today?
PowerShell is most typically used to automate administrative tasks and 

examine the details of running desktops, servers, and mobile devices.  

It is used to examine both local and remote systems using the Common- 

Object- Model (COM) and the Windows Management Interface (WMI). 

Today, it can be used to examine and manage remote Linux, Mac, and 

Network devices using the Common Information Model (CIM).

 How Do You Experiment with PowerShell?
PowerShell is typically already installed on modern Windows desktop 

and server platforms. If not, you can simply open your favorite browser 

and search for “Windows Management Framework 5” and then download 

and install PowerShell. PowerShell and PowerShell ISE (the Integrated 

Scripting Environment) are free.

I prefer using PowerShell ISE as it provides:

 1. An integrated environment that aids in the discovery 

and experimentation with CmdLets

 2. The ability to write, test, and debug scripts

 3. Easy access to context-sensitive help

 4. Automatic completion of commands that speed 

both the development and learning

 Navigating PowerShell ISE
Once you have PowerShell ISE installed, you can launch it on a Windows 

Platform by clicking the Start Menu (bottom left corner for Windows 8-10) 

and then search for PowerShell ISE and click the App as shown in Figure 1- 3.

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



4

Note You can run powerShell and powerShell ISe with User 
privledge; however, to gain access to many of the rich acquisition 
functions needed, running powerShell as Administrator is required. 
a word of caution as well. running as adminstrator or user and 
executing Cmdlets can damage your system or delete important 
files! proceed with caution!

I typically add this to my Windows Taskbar for easy access as shown in 

Figure 1-4. I have added both PowerShell and PowerShell ISE. The icon on 

the right in the highlighted box is ISE, and the one on the left is PowerShell. 

Figure 1-3. Launching PowerShell on Windows 10

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



5

By right-clicking the PowerShell ISE icon, then right-clicking again on the 

Windows PowerShell ISE selection you can choose to run PowerShell ISE 

as administrator. By doing so, you will have the ability to execute the widest 

range of PowerShell CmdLets and scripts.

Once launched, ISE has three main windows as shown in Figure 1-5. 

Note that the scripting pane is not displayed by default but can be selected 

for view from the toolbar. I have annotated the three main sections of the 

application:

 1. Scripting Panel: This panel provides the ability to 

create PowerShell Scripts that incorporate multiple 

commands using the included PowerShell scripting 

language. Note that this is not where we typically 

start when developing PowerShell Scripts. Rather, 

we experiment in the Direct Command Entry Panel 

first; then once we have perfected our approach, we 

can then create scripts.

 2. Direct Command Entry Panel: This panel is used 

to execute PowerShell CmdLets. The commands 

entered here are much more powerful than 

the ancestor Windows Command Line or DOS 

commands. In addition, the format and structure 

Figure 1-4. Windows taskbar launching PowerShell ISE as 
administrator

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



6

of these commands is much different and follows 

some strict rules. I will be explaining the verb–noun 

format and structure and providing more details 

and some examples in the next section.

 3. Command Help Panel: This panel provides detailed 

help and information regarding every CmdLet 

available to us. However, I rarely use this area and 

instead request direct help using the Get-Help 

CmdLet to get information regarding CmdLets of 

interest, to learn how they operate, get examples of 

their use, and get details of all the options that are 

available.

Figure 1-5. PowerShell ISE interface

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



7

 PowerShell CmdLets
Before we dive directly into entering PowerShell CmdLets, a few words of 

warning:

 1. There are literally thousands of possible CmdLets.

 2. There are hundreds of thousands of possible options 

if you consider all the possible variations.

 3. There are new CmdLets, variations, and updates to 

existing CmdLets being created every day.

 4. Each CmdLet contains detailed help and examples.

It is important to update CmdLet Help every day to ensure you have 

access to the latest information regarding CmdLets that you are using or 

plan to use.

 What Is a CmdLet?
A CmdLet is typically a lightweight Windows PowerShell script that 

performs a specific function. The reason I state typically here is that some 

CmdLets are quite extensive, and with the ability to create your own 

CmdLet, their complexity and use of system resources can vary based on 

the developer’s objective.

A CmdLet then is a specific order from a user to the operating system, 

or to an application to perform a service, such as “display all the currently 

running processes” or “show me all the services that are currently 

stopped.”

All CmdLets are expressed as a verb–noun pair and have a help file 

that can be accessed using the verb–noun pair Get-Help <CmdLet name>. 

So yes, even help is just another CmdLet. Updating help is vital to keep 

help associated with current all the currently installed CmdLets and to 

install help for new CmdLets that are created and updated every day.  

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS

http://whatis.techtarget.com/definition/lightweight
http://searchwindowsserver.techtarget.com/definition/PowerShell
http://searchenterpriselinux.techtarget.com/definition/script
http://whatis.techtarget.com/definition/function
http://searchwindowsserver.techtarget.com/definition/command
http://searchcio-midmarket.techtarget.com/definition/operating-system
http://searchsoftwarequality.techtarget.com/definition/application


8

As you might guess, this is just another CmdLet and this is the first CmdLet 

you should use. Specifically:

Update-Help

You can execute this CmdLet from the Direct Command Entry Panel 

as shown in Figure 1-6. The help files will be updated for all installed 

modules. We will discuss modules in a future chapter, but for now this will 

update all the standard PowerShell modules. Additional modules such 

as Active Directory, VMWare, SharePoint, and hundreds of others allow 

acquisition to numerous devices and services.

 Introduction to Some Key CmdLets
One of the first questions you might ask is, “What CmdLets are available?” 

Or more specifically, “What CmdLets are available targeting specific 

information?” This section will introduce you to a few key CmdLets: 

Get- Help, Get-Process, and Get-Member.

Figure 1-6. Update-Help CmdLet execution

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



9

 Get-Help

Let’s say we are interested in getting information about currently running 

services. In order to find the CmdLets that relate to this topic I would enter:

Get-Help services

Note that I did not request information about a specific CmdLet, rather 

I asked the help system to provide me with information regarding any 

CmdLet that could relate to services. Figure 1-7 displays an abbreviated 

output.

Note that depending on what version of PowerShell you are working 

with, the current version of the help file, and what CmdLets are installed, 

your list may differ.

The next step is to select one or more CmdLets and Get-Help for 

those CmdLets. Looking through the abbreviated list, Get-Service sounds 

promising, so I will request help on that specific CmdLet by typing:

Get-Help Get-Service

Figure 1-7. Search for CmdLets related to services

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



10

Figure 1-8 displays the abbreviated output. Note that there are multiple 

options related to the execution of the Get-Help CmdLet. For this example, 

I used the simplest form. However, optionally I could have used other 

forms of the CmdLet such as:

Get-Help Get-Service -Detailed

or

Get-Help Get-Service -Examples

Examining the output, we notice the detailed syntax presented to us for 

each command. This CmdLet allows us to obtain information regarding 

services on a local or remote computer. The option -ComputerName allows 

us to specify more than one computer, each separated by a comma. By 

using:

Get-Help Get-Service -Examples

the help system will provide numerous examples demonstrating the use of 

the CmdLet (Figure 1-9).

Figure 1-8. Get-Help Get-Service abbreviated output

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



11

 Get-Process

Another useful CmdLet is Get-Process; much like Get-Service it returns 

information regarding processes running on a local or remote computer. 

Taking a deeper look at Get-Process using Get-Help (see Figure 1-10), we 

first notice six different fundamental variants of Get-Process. Technically 

these are called parameter sets, which allow us to run the Get-Process 

CmdLet six separate ways.

Figure 1-9. Get-Help with examples

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



12

Examining the first parameter set (see Figure 1-11), we find that all 

the parameters are optional. This is signified by the square brackets that 

surround each parameter.

This allows us to simply type the command without including any 

additional parameters as shown in Figure 1-12 with abbreviated output.

Figure 1-10. Get-Help Get-Process

Figure 1-11. Get-Process

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



13

What if I would like to obtain information only related to the process 

associated with the Google Chrome browser? In Figure 1-13, I break out 

the specific -Name Parameter that we need to utilize in order to accomplish 

this.

Figure 1-12. Get-Process with no additional parameters

Figure 1-13. Get-Process -Name parameter

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



14

You notice that the -Name Parameter is optional; however, if it is 

specified, you must specify a String indicating the specific type of data you 

must provide (the content of which would be the name of the process). You 

also notice that following the word String there are two square brackets. 

This indicates that you can optionally include a list of names. Each name 

needs to be separated by a comma. Figure 1-14 shows an example.

 Get-Member

As you have seen, PowerShell CmdLets provide useful results when using 

them to obtain information (or evidence) from a target system. In addition 

to the simple output, each CmdLet also returns an object that provides 

access to additional properties and methods. The Get-Member CmdLet 

will display the available properties and methods for a CmdLet.

Figure 1-14. Get-Process example using -Name parameter

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



15

Note that as with any CmdLet, you can utilize the Get-Help CmdLet 

to obtain details and examples regarding Get-Member. For example, the 

command would be:

Get-Help Get-Member

To illustrate the value of obtaining additional properties of a CmdLet, 

look at the standard output of the Get-Service CmdLet as shown in 

Figure 1-15.

What if additional information evidence is required? For example, 

what if it was important to know how the service was started? In order 

to answer this question, we need to interrogate and obtain additional 

properties from the object.

Figure 1-15. Standard output of the Get-Service CmdLet

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



16

To extract the method and property details of an object, we need to 

utilize a pipe to direct the output object to the Get-Member CmdLet. Pipes 

operate similarly in most command line and shell environments. However, 

in PowerShell they are object and context specific.

The CmdLet that we wish to interrogate in this example, Get-Service,  

is not executed, but rather the object information is passed to the  

 Get- Member CmdLet as shown in Figure 1-16. Note the name of the 

property we are looking for is StartType.

Figure 1-16. Get-Member example

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



17

Now that we know the name, we can specify that property StartType 

displays a customized output as shown in Figure 1-17. This is the simplest 

form of piping we can perform. The Get-Service CmdLet is executed, and 

the results are piped to the Select-Object CmdLet.

The Select-Object CmdLet then displays the specific properties 

specified. The -Property argument of the Select-Object CmdLet accepts 

string names that are to be displayed. Again, each is separated by a 

comma.

Figure 1-17. Get-Service with name, status, and StartType

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



18

 Challenge Problems: Investigative CmdLets 
to Explore
To become comfortable with PowerShell, the ISE, and the CmdLets that 

you are likely to utilize during investigations, you need to experiment  

with them directly. To help this process along, I have put together a set  

of challenge problems at the end of each chapter. Remember to use  

Get- Help with each of the CmdLets, and make sure you use -Detailed and 

-Examples options when examining the CmdLets. I have also provided 

solutions to each of the challenge problems in the Appendix, so try these 

on your own and then check your results.

 Challenge One: Executing a “Find” Based on File 
Extension
Many of you may be familiar with Windows Command Line dir command, 

which will list the contents of a specific directory. All traditional Windows 

and DOS commands have equivalent PowerShell commands. An effortless 

way to find the equivalent is to use a PowerShell CmdLet to find the 

associated PowerShell CmdLet as shown in Figure 1-18. To learn more 

about Get-Alias and Get-ChildItem, use the PowerShell Help system.

Figure 1-18. Using Get-Alias

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



19

Now that you know about the Get-ChildItem CmdLet, use this to find 

all files on your system with the .jpg extension.

Feel free to experiment with other parameters provided with Get- 

ChildItem. Also, make sure you access Get-Help using the -Examples 

switch and study those examples.

 Challenge Two: Examining Network Settings
At this point you might be thinking, “If PowerShell simply replaces 

Windows Command Line, then why not just use the Windows Command 

Line?” As was learned earlier in this chapter, the help system can provide a 

list of available commands surrounding a specific word or phrase.

Try typing:

Get-Help ip

This will provide all PowerShell CmdLets that involve IP. You will see 

a number of possible CmdLets that allow you to examine your network 

configuration. Notice that this is much more powerful than using Windows 

Command Line. For this challenge, take a deep look at just three of these 

CmdLets:

Get-NetIPAddress

Get-NetIPConfiguration

Get-NetIPInterface

Start by using the PowerShell help system to understand the 

capabilities of each CmdLet and examine the examples provided. Then 

experiment with each of the commands and take a close look at your own 

network settings. Were you aware of all the settings?

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



20

 Challenge Three: Examining Firewall Settings
For this challenge problem, find possible firewall related CmdLets. 

Specifically get information regarding the firewall settings on your system. 

Once you have examined the basic information find and execute a CmdLet 

that will examine any “Service Filters” that are enabled. Did you discover 

any surprises?

 Challenge Four: Your Chance to Explore
For this challenge, use the help system and keywords that you would be 

interested in probing your system for.

 Summary
This chapter introduced the goals of this book, specifically how the 

integration of PowerShell and Python would provide value to investigators.

In addition, a brief evolution of PowerShell was covered to better 

understand how PowerShell today is relevant to investigations. The basic 

setup and execution of PowerShell and where to obtain the latest trusted 

version were provided. An overview of PowerShell ISE and the PowerShell 

help system was provided along with the importance of updating the help 

system. Next, PowerShell CmdLets and the verb–noun vernacular were 

introduced followed by a brief discussion and examples of how to identify 

specific CmdLets of interest. Several CmdLets were demonstrated to 

provide details regarding the depth of information that can be acquired 

with PowerShell. Finally, a set of challenge problems were presented to 

encourage you to dive in and experiment with PowerShell.

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



21

Looking forward to Chapter 2, we’ll find that one of the key elements 

of PowerShell CmdLets is the ability to create PowerShell variables and 

string together multiple commands in a method called Pipelining. We will 

establish several investigative challenges and solve them with PowerShell 

variables and Pipelining. In addition, we will introduce several new 

CmdLets that will allow us to sort, filter, and format the output. Chapter 2  

is key as it provides a prelude to how we will be integrating PowerShell 

with Python.

Chapter 1  an IntroduCtIon to powerShell for InveStIgatorS



23© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_2

CHAPTER 2

PowerShell Pipelining
Pipelining is the key feature within PowerShell that will help us facilitate 

the integration of Python and PowerShell. The examples and illustrations 

in this chapter were chosen to explain pipelining and provide insight into 

CmdLet and methods that are useful during investigations.

 What Is CmdLet Pipelining?
CmdLet Pipelining creates an assembly line of commands to be executed 

in a specific sequence while moving the data or results from each CmdLet 

as well. The best way to describe this is with a couple of investigation- 

related examples.

 Example 1: Get-Service
Assume that we want to see what services are currently running on a 

system we are investigating. The filtering down of the output from one 

CmdLet to another is one of the most common uses of the pipeline. In 

addition, we would like to display the output in a table format. Figure 2-1 is 

a sample pipeline that will solve this challenge.



24

As you can see, the pipeline starts with the Get-Service CmdLet 

without any command line parameters.

Note You could of course add command line parameters before  
the pipe symbol | such as -ComputerName which would allow the 
Get- Service CmdLet to execute a remotely on the specified computer.

The Get-Service CmdLet produces an object that is passed across the 

Pipeline to the next Cmdlet in the chain.

The Where-Object CmdLet performs a filtering action that evaluates 

the Get-Service CmdLet Object Property Status equal to “Running.” The 

resulting output of the Where-Object CmdLet filters the results to only 

include those services that are currently running. The result is then passed 

to the next Pipeline CmdLet.

Figure 2-1. Pipeline illustration for display of running services

Chapter 2  powerSheLL pipeLiNiNG



25

Finally, Format-Table CmdLet produces a table result display with 

the filter services using the default output associated with Get-Service. 

Figure 2-2 depicts the actual command in action – the results were 

truncated for brevity.

Note By using the Get-Service | Get-Member operation, you can 
reveal all the methods and properties available within the Get-Service 
CmdLet object allowing for additional filtering options.

Reporting which services are stopped can be equally important during 

an investigation. For example, sophisticated malicious software will 

disable virus protection, firewalls, and other defensive services designed 

for protection. Figure 2-3 changes the command to display only the 

services that are currently stopped. Again, the results were truncated for 

brevity.

Figure 2-2. Challenge solution

Chapter 2  powerSheLL pipeLiNiNG



26

One final note: If you want more information regarding Format-Table, 

remember to use Get-Help as shown in Figure 2-4.

Figure 2-3. Displaying stopped services

Figure 2-4. Format-Table CmdLet overview

Chapter 2  powerSheLL pipeLiNiNG



27

 Example 2: Get-Process
Details related to running processes are also important and can provide 

additional information regarding what processes are connected to. 

For example, it might be important in a live investigation to determine 

what active Internet connections are in use by Google Chrome. For this 

example, let’s first break this down into the individual components and 

introduce the concept of variables in PowerShell.

 PowerShell Variables

What are PowerShell variables: A variable in PowerShell is simply a named 

place in memory assigned to hold data values. All variable names in 

PowerShell begin with a $ making them easy to identify. One additional 

note: Variable names in PowerShell are NOT case sensitive; thus, 

$ipAddress and $IPaddress represent the same variable. You can assign 

values to variables such as:

$InvestigatorName = "Chet Hosmer"

or

$CaseNumber = "BC-0234"

 PowerShell Automatic Variables

In addition, there are several built-in or automatic variables that are 

available but cannot be changed by the user. Several examples are shown 

in Figure 2-5.

Chapter 2  powerSheLL pipeLiNiNG



28

 Breaking Down the CmdLet Usage for Example 2

Now that we have a general idea about variables, we will put them to use in 

gather information from Get-Process. In order to reduce the output from 

Get-Process, let’s focus on just one running process. On my test system I 

have Google Chrome installed and running. On your system you may be 

using other browsers such as Internet Explorer or Firefox. Substitute the 

name of your browser to target the processes that are created by them. 

Also, the process named svchost is always running, therefore you can 

substitute that as well. The command within PowerShell to do this is as 

follows, and the results are shown in Figure 2-6.

Get-Process -Name chrome

Figure 2-5. Example of automatic variables

Chapter 2  powerSheLL pipeLiNiNG



29

A key piece of information that is needed from the Get-Process CmdLet 

is the Process ID associated in my example with Google Chrome. We 

can use this Process ID to correlate the process with associated Internet 

activity. As you probably guessed we will be using yet another CmdLet 

in PowerShell to examine the connections between Google Chrome and 

the Internet. In order to accomplish this, a command will be constructed 

to store the results of the CmdLet into a variable, named $id, instead of 

simply displaying the results:

$id = Get-Process -Name Chrome `

   | select -ExpandProperty Id

Notice that I used the tick (`) character and then Shift+Enter to 

continue the command on the next line for easy display. The results of 

the Get-Process -Name Chrome command are then piped to select the 

-ExpandProperty command to specify only the Id field. You can of course 

enter this command on a single line, but it is a nice way to make this more 

readable.

Figure 2-6. Get-Process -Name Chrome

Chapter 2  powerSheLL pipeLiNiNG



30

Figure 2-7 stores the results of the Get-Process ID value into the 

variable $id. Then by specifying the $id variable name on the next line 

(followed by the Enter key of course), the content of the $id variable is 

displayed.

 Adding the NetTCPConnections CmdLet

The $id variable can now be utilized as a parameter to other CmdLets. 

For example, the CmdLet Get-NetTCPConnections has a parameter 

-OwningProcess, which allows us to restrict the output of the CmdLet to 

target specific Process IDs. Examining Get-NetTCPConnections using  

Get- Help, the following information is obtained (see Figure 2-8).

Figure 2-7. Store the Get-Process CmdLet results in the variable $id

Chapter 2  powerSheLL pipeLiNiNG



31

 How to Discover CmdLets?

One of the questions you might be asking is with thousands of CmdLets 

how would I know which one to use to obtain and associated TCP 

connections with the Owning Process? The answer is using Get-Help. The 

design of the help system built into PowerShell is key to getting the most 

out of PowerShell and the associated CmdLets. Since the Help system is 

updated everyday it is designed to keep pace with new CmdLets that are 

created along with any updates to existing CmdLets. However, you can also 

find CmdLets that are related to specific keywords. For example, see how 

to use Get-Help using a keyword instead of a CmdLet in Figure 2-9.

Figure 2-8. Get-NetTCPConnections help

Figure 2-9. Get-Help using a keyword instead of a CmdLet

Chapter 2  powerSheLL pipeLiNiNG



32

When you provide Get-Help with a keyword as in this case TCP it will 

report known CmdLets that have any association with TCP. As you can see, 

Get-NetTCPConnection is the first hit. Once you know the name of the 

CmdLet, you can then use Get-Help with the CmdLet name to determine 

how to use it as I did in Figure 2-8.

 Using PowerShell Variables with CmdLets

Executing the Get-NetTCPConnection CmdLet using the -OwningProcess 

parameter and specifying $id will generate only the TCP Connections 

associated with the Google Chrome id values discovered earlier using Get- 

Process. The command to accomplish this is as follows, with an example 

output shown in Figure 2-10.

Get-NetTCPConnection -State Established -OwningProcess $id | 

Format-Table -Autosize

Figure 2-10. Executing Get-NetTCPConnection with a variable for 
Process ID

Chapter 2  powerSheLL pipeLiNiNG



33

As you can see, the command line parameters -State and 

-OwningProcess are utilized:

• For -State, Established is specified as the argument. 

This will list only the TCP connections that are 

currently connected, as I’m only interested in current 

connections right now.

• For -OwningProcess, instead, the variable $id is 

specified, which contains a list of Process IDs associated 

with Google Chrome. The reason this works is that 

the definition provided by Get-Help for the parameter 

-OwningProcess is stated as follows:

[-OwningProcess <UInt32[]>]

The definition states that -OwningProcess requires an Unsigned 

Integer with a length of 32 bits. The two brackets [] following UInt32 

indicate that it can accept a list of values.

As you can see, only one of the Chrome Process IDs (specifically, 

108404) is associated with established Internet connections. Therefore, the 

other Google Chrome processes that were identified do not make direct 

Internet connections, only 108404 does.

This is a great example of how to use an intermediate variable to store 

the contents of a command. However, we can perform this operation 

using a single command. Armed with the knowledge of the workings of 

Get-Process, PowerShell variables, and Get-NetTCPConnections, a single 

command can be created that eliminates the need for the $id variable. In 

order to take this next step, the ForEach-Object CmdLet is needed.

Chapter 2  powerSheLL pipeLiNiNG



34

 ForEach-Object

ForEach-Object allows the processing of each subsequent result from the 

previous command on the pipeline. In this example, that would be each 

result generated by the Get-Process -Name Chrome command.

Figure 2-11 uses Get-Help to provide an explanation of the For-Each- 

Object.

 Creating a Single Pipeline Solution to Example 2

Get-Process -Name Chrome | ForEach-Object {Get-NetTCPConnection 

-State Established -OwningProcess $_.Id -ErrorAction 

SilentlyContinue}| Format-Table -Autosize

In this example (see the results of the operation in Figure 2-12), the 

components are broken down as follows:

Get-Process -Name Chrome

• Obtains process details for all processes named Chrome.

ForEach-Object { }

Figure 2-11. Get-Help overview of ForEach-Object

Chapter 2  powerSheLL pipeLiNiNG



35

• Processes each iteration (in simpler terms each output 

supplied by Get-Process via the pipe.

{Get-NetTCPConnection -State Established 

-OwningProcess $_.Id -ErrorAction SilentlyContinue}

• Executes the Get-NetTCPConnection CmdLet for each 

result.

• -State Established filters the output to only include 

currently established connections.

• -OwningProcess $_.Id specifies the Process ID that 

connection information will be extracted. The $_.Id 

syntax is used to obtain the Process ID of the Owning 

Process from each iterative result of the Get-Process 

CmdLet. The specific property is addressed using the 

following syntax:

• $_.Id

 This syntax breaks down as follows:

• $_ represents the current object passed over the 

pipe.

• .Id specifies which specific property value is 

associated with the operation.

• -ErrorAction -SilentlyContinue is used to ignore 

any errors that may occur during the Get- 

NetTCPConnection CmdLet. For example, if the 

Process ID is not linked to a specified TCPConnection 

the CmdLet will throw and exception. This parameter 

allows those exceptions to be ignored.

• Format-Table -Autosize is used to format the output in 

a more compact format.

Chapter 2  powerSheLL pipeLiNiNG



36

 Resolving Remote IP Addresses

These results bring up the next investigative question, what do the IP 

addresses referenced by the Chrome browser refer to? There is of course 

a CmdLet that can discover this information directly. The IP address 

72.21.207.216 was arbitrarily selected from the list in Figure 2-12. The 

Resolve-DnsName CmdLet was then used to obtain information regarding 

this remote IP address.

Resolve-DnsName 72.21.207.216

The Resolve-DnsName CmdLet successfully resolved the IP address 

with developer.amazonservices.com (see Figure 2-13).

Figure 2-12. Final solution to map Google Chrome IP connections

Chapter 2  powerSheLL pipeLiNiNG



37

To find out more information regarding Resolve-DnsName, try your 

hand at using Get-Help.

 Adding a Transcript to Track Your Activities
Documentation of your investigative actions is important (to say the least). 

One of the simple methods of capturing your actions and the result data is 

to use yet another CmdLet in PowerShell:

Start-Transaction

Stop-Transaction

As with all CmdLets in PowerShell obtaining information regarding the 

use and options associated with CmdLets is by using Get-Help. This may 

sound a bit redundant; however, many people still turn to Google or other 

search engines to obtain this knowledge. This is certainly useful in certain 

circumstances, but the Help system in PowerShell is not only powerful and 

well thought out, but is also updated daily. Therefore, in order to get the 

latest, most up-to-date, and accurate information about CmdLets, use  

Get- Help. Figure 2-14 provides the results relating to Start-Transcript.

Figure 2-13. Resolve DnsName

Chapter 2  powerSheLL pipeLiNiNG



38

For this example, the -Path parameter is specified in order to direct 

the output of the transcript to a specific file as shown in Figure 2-15. 

To demonstrate the -Append parameter of Start-Transcript, the Stop- 

Transcript CmdLet was used, and then Transcript was restarted. To 

accomplish this, just start the second Start-Transcript CmdLet using the 

same -Path parameter, and then add the -Append option as shown in 

Figure 2-15. This allows you to concatenate PowerShell sessions in the 

same output file.

Figure 2-14. Get-Help Start-Transcript

Chapter 2  powerSheLL pipeLiNiNG



39

Listing 2-1 depicts the resulting transcript file. Note that yet another 

new CmdLet was added here, Out-File – this directs the output of the Get- 

Process CmdLet to the IP-Result.txt file on the desktop. Thus, the transcript 

does not include the Get-Process or Get-Service output, but rather that 

result is stored in the designated output files. This would likely be your 

case folder. The Start and End Time strings of each appended transaction 

are highlighted. Note that PowerShell uses local time; in this example, the 

transcript started on November 27, 2018, at 16:09:03, or 4:09 pm.

Listing 2-1. PowerShell Transcript

**********************

Windows PowerShell transcript start

Start time: 20181127160903

Username: PYTHON-3\cdhsl

RunAs User: PYTHON-3\cdhsl

Configuration Name:

Machine: PYTHON-3 (Microsoft Windows NT 10.0.17134.0)

Host Application: C:\WINDOWS\system32\WindowsPowerShell\v1.0\

PowerShell_ISE.exe

Figure 2-15. PowerShell Start- and Stop-Transcript

Chapter 2  powerSheLL pipeLiNiNG



40

Process ID: 148432

PSVersion: 5.1.17134.407

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.17134.407

BuildVersion: 10.0.17134.407

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

**********************

Transcript started, output file is C:\Users\cdhsl\PS- 

TRANSCRIPTS\DEMO.txt

PS C:\WINDOWS\system32> Get-Process -Name chrome | Out-File  

C:\Users\cdhsl\Desktop\IP-Result.txt

PS C:\WINDOWS\system32> Stop-Transcript

**********************

Windows PowerShell transcript end

End time: 20181127160930

**********************

**********************

Windows PowerShell transcript start

Start time: 20181127161013

Username: PYTHON-3\cdhsl

RunAs User: PYTHON-3\cdhsl

Configuration Name:

Machine: PYTHON-3 (Microsoft Windows NT 10.0.17134.0)

Host Application: C:\WINDOWS\system32\WindowsPowerShell\v1.0\

PowerShell_ISE.exe

Process ID: 148432

PSVersion: 5.1.17134.407

PSEdition: Desktop

Chapter 2  powerSheLL pipeLiNiNG



41

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.17134.407

BuildVersion: 10.0.17134.407

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

**********************

Transcript started, output file is  C:\Users\cdhsl\PS- 

TRANSCRIPTS\DEMO.txt

PS C:\WINDOWS\system32> Get-Service | Format-Table -AutoSize | 

Out-File C:\Users\cdhsl\Desktop\Services.txt

PS C:\WINDOWS\system32> Stop-Transcript

**********************

Windows PowerShell transcript end

End time: 20181127161306

**********************

 Challenge Problem: CmdLet 
Experimentation
Working with PowerShell cannot be learned by simply reading this text 

or any other for that matter. Instead, you must experience PowerShell by 

interacting with it. Table 2-1 provides a short list of some popular CmdLets 

that are useful during an investigation. I have only chosen CmdLets that 

retrieve or acquire information for you to experiment with.

Chapter 2  powerSheLL pipeLiNiNG



42

Warning if you decide to experiment with other CmdLets that 
modify the system, do so at your own risk. powerShell CmdLets can 
modify, damage, delete, and even destroy your system.

For each of the CmdLets specified in Table 2-1, do the following:

 1. Review the help for each CmdLet including Details 

and Examples, that is,

 a. Get-Help -Detailed

 b. Get-Help -Examples

Table 2-1. Challenge Problem CmdLets

Get-process Get-Service

Get-Netipaddress Get-NetipConfiguration

Get-Netipv4protocol Get-Netipv6protocol

Get-NettCpConnection test-NetConnection

Get-Netroute Get-MpComputerStatus

Get-Mpthreat Get-NetFirewallSetting

Get-NetFirewallportFilter Get-Volume

Get-Childitem Get-itemproperty

Get-eventLog Get-LocalUser

Get-LocalGroup Get-Content

Get-Location Set-Location

Start-transcript Stop-transcript

Format-table

Chapter 2  powerSheLL pipeLiNiNG



43

 2. After review, describe what the CmdLet does 

and consider how it could be valuable during an 

investigation.

 3. Execute each CmdLet with a minimum of one 

parameter, experiment with others as well.

 4. Use Pipelining to assemble CmdLets, start with 

something simple like piping the CmdLet output to 

the Format-Table CmdLet, then try other options as 

well.

 5. Make sure that your Start, and Stop the transcript 

during your experimentation, this will serve as a 

record of your actions and result. These can be 

referenced later when you are trying to duplicate a 

complex command.

Solutions to this Challenge Problem can be found in the Appendix and 

in the book’s source code, available at www.apress.com/9781484245033.

 Summary
This chapter focused on several key areas of PowerShell and introduced 

several new CmdLets and their application. In addition, the creation and 

use of PowerShell variables was introduced. Two example pipelines were 

created to demonstrate how to approach pipelining within PowerShell. 

In Chapter 3, new CmdLets will be introduced, and the development of 

multiple complete PowerShell scripts will be developed.

Chapter 2  powerSheLL pipeLiNiNG

http://www.apress.com/9781484245033


45© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_3

CHAPTER 3

PowerShell 
Scripting Targeting 
Investigation
This chapter will move beyond single line commands and pipelining, 

in order to create actual PowerShell scripts. PowerShell scripts deliver 

the ability to automate repetitive tasks that require specific CmdLets, 

Pipelines, Variables, Structures, etc. Another simple way to describe 

PowerShell scripts is that they allow you to create new and more 

powerful and targeted CmdLets to solve a specific challenge. Once you 

have developed a command that does exactly what you need, it is quite 

beneficial to create a script that encapsulates or abstracts the complexity of 

the command.

In this chapter, we will go through two examples. One will be to create 

a specific and ultimately useful investigation script that will acquire and 

process system event logs. The second example will be a scenario where 

we examine USB device usage.



46

 Basic Facts About PowerShell Scripts
Before we begin, here are some basic facts about PowerShell scripts:

 1. Scripts are a simple text file that contains a series of 

PowerShell commands.

 2. To prevent the execution of malicious scripts, 

PowerShell enforces an execution policy, which by 

default is set to “restricted” such that PowerShell 

scripts will NOT execute by default. Thus, you must 

set the execution policy to allow script execution.

 3. To execute a PowerShell script, you either must 

execute them within the PowerShell ISE and provide 

the full path to the script or the directory containing 

the script must be in your Windows path.

 Example 1: The EventProcessor PowerShell 
Script
The acquisition of data from event logs is a common practice during 

forensic investigations and incident response activities. This is also a 

useful activity for system administrators to perform daily.

The collection of meaningful data from log files that are likely 

distributed across the investigation environment can be time consuming, 

and if not done consistently and completely, it will lead to problems. 

Therefore, developing a targeted PowerShell script to perform this 

operation would yield significant value to investigators.

Chapter 3  powerShell SCripting targeting inveStigation



47

 EventLog CmdLets
Of course, PowerShell already contains general-purpose CmdLets that 

address basic collection of data from event logs; thus, identifying and 

selecting one of the available CmdLets is the first step. To do this we once 

again turn to the built-in PowerShell Help system. Requesting Help using 

the keyword EventLog returns the CmdLet list as shown in Figure 3-1.

After reviewing the Synopsis, Get-EventLog seems to be a likely target 

CmdLet for acquiring events from event logs.

Figure 3-2 displays the basic help information and usage associated 

with the Get-EventLog CmdLet.

Figure 3-1. CmdLets referring to the keyword EventLog

Chapter 3  powerShell SCripting targeting inveStigation



48

Figure 3-3 depicts several usage examples. Each identifies a different 

log file and requests the newest 20 events. Note that if the security event 

log is requested, you must have administrative privileges in order to 

access this.

Figure 3-2. Get-Help Get-EventLog results

Figure 3-3. Sample Get-EventLog requests

Chapter 3  powerShell SCripting targeting inveStigation



49

 Retrieving More Specific Eventlog Information
Figure 3-4 shows the results after the execution of Get-EventLog.

Get-EventLog -logName system -Newest 20

Based on what we learned in Chapter 2 regarding PowerShell 

pipelining, we can perform more specific or targeted acquisitions of event 

log data. For example, what if we only want to see events that are of type 

error or warning and filter out the general informational messages?

Taking into consideration the excerpt of the Get-Help Get-EventLog 

result shown in Figure 3-5, the possible EntryTypes listed are:

• Error

• Information

• FailureAudit

• SuccessAudit

• Warning

Figure 3-4. Get-EventLog sample results

Chapter 3  powerShell SCripting targeting inveStigation



50

Based on this, a more refined command could be created that will 

extract only the target events Warning or Error and specify specific 

properties associated with the event log to be displayed.

Get-Eventlog -LogName system -Newest 20 | Select-Object 

-Property TimeGenerated, Source, EntryType, Message | where 

{$_.EntryType -eq "warning" -or $_.EntryType -eq "error"}

This command yields the result shown in Figure 3-6.

 Creating the Script
Based on this fundamental understanding of Get-EventLog, let’s define a 

challenge problem.

Figure 3-5. Get-Help excerpt for Get-EventLog

Figure 3-6. Get-EventLog with specific fields and EntryTypes 
warning or error

Chapter 3  powerShell SCripting targeting inveStigation



51

 Step One: Define the Challenge

Before you write the script, consider what are the basic challenges that 

investigators face when retrieving event logs, and how could a PowerShell 

script be developed that will address these challenges. Ask yourself:

 1. What event log or logs need to be collected? Based 

on the investigation, will specific event log(s) need 

to be acquired?

 2. From what computer or computers should the log 

files be collected?

 3. How many of the most recent records should be 

collected?

 4. Is an optional filter based on EventType useful?

 5. What specific fields should be generated from the 

event log?

• By using Get-Member we can see the common 

properties of interest include: Category, EntryType, 

EventID, MachineName, Message, Source, 

TimeGenerated, TimeWritten and UserName.

 6. Where is the output to be generated, that is, the 

standard output for a file?

 7. How will others use the script?

 a. Do we need to provide help?

 b. How will they enter the parameters?

Once you have identified the challenges and are able to answer them, 

you will now have a working definition for your script and can proceed to 

step two.

Chapter 3  powerShell SCripting targeting inveStigation



52

 Step Two: Create the Script in Stages

Based on the definition created in Step One, specific parameters need to 

be defined for our script:

• TargetLog

• TargetComputer

• TargetCount

• TargetEntryType

• ReportTitle

Listing 3-1 shows the complete EventProcessor script. I’ll also show the 

Get-Help results, the sample execution, and the resulting report later on.

Listing 3-1. EventProcessor Script

<#

.synopsis

EventProcessor EventLog Capture Automation Version 1.0

- User Specified Target EventLog

- User Specifies the number of newest Log Entries to Report

-  User Specifies the Entry Type to target, for example warning, 

error, information etc.

-  User Specifies the target computer or computers to extract 

the logs

- User Specifies the HTML Report Title

The script will produce an HTML output file containing details 

of the EventLog acquisition.

.Description

This script automates the extraction of information from the 

specified log file

Chapter 3  powerShell SCripting targeting inveStigation



53

.parameter targetLogName

Specifies the name of the log file to process

.parameter eventCount

Specifies the maximum number of newest events to consider in 

the search

.parameter eventType

Specifies the eventType of interest

.parameter targetComputer

Specifies the computer or computers to obtain the logs from

.parameter reportTitle

Specifies the HTML Report Title

.example

EventProcessor

Execution of EventProcessor without parameters uses the default 

settings of

eventLog system

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -targetLogName security

This example specifies the target eventLog security

and uses the default parameters

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -reporTitle "ACME Computer Daily Event Log 

Report"

This example provides a custom Report Title

Chapter 3  powerShell SCripting targeting inveStigation



54

.example

EventProcessor -targetLogName security -eventCount 20 

-entryType warning -targetComputer Python-3

This example specifies all the parameters, targetLogName, 

eventCount, entryType and targetComputer

#>

# Parameter Definition Section

param(

    [string]$targetLogName = "system",

    [int]$eventCount = 20,

    [string]$eventType="Error",

    [string]$reportTitle="Event Log Daily Report",

    [string[]]$targetComputer=$env:COMPUTERNAME

)

# Get the current date and tme

$rptDate=Get-Date

$epoch=([DateTimeOffset]$rptDate).ToUnixTimeSeconds()

# Create HTML Header Section

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color: 

black; border-collapse: collapse;}

TD {border-width: 1px; padding: 3px; border-style: solid; 

border-color: black;}

</style>

<p>

<b> $reportTitle $rptDate </b>

<p>

Event Log Selection: <b>$targetLogName </b>

<p>

Chapter 3  powerShell SCripting targeting inveStigation



55

Target Computer(s) Selection: <b> $targetComputer </b>

<p>

Event Type Filter: <b> $eventType </b>

<p>

"@

# Report Filename Creation

$ReportFile = ".\Report-"+$epoch+".HTML"

# CmdLet Pipeline execution

Get-Eventlog -ComputerName $targetComputer -LogName 

$targetLogName -Newest $eventCount -EntryType $eventType |

 ConvertTo-HTML -Head $Header -Property TimeGenerated, 

EntryType, Message |

 Out-File $ReportFile

The EventProcessor script is broken down into four major sections. 

The development of PowerShell scripts should include each of these 

sections for completeness.

 1. Script Header (including Help and Examples)

 2. Parameter Definition

 3. Local Variable Definition

 4. CmdLet Execution Using Parameters and Local 

Variables

Let’s take a deeper look at the script construction.

Note You can use this sample as a baseline since it provides a good 
boilerplate for a powerShell script.

Chapter 3  powerShell SCripting targeting inveStigation



56

Script Header

The script header contains key information used to define the script and 

conforms to a strict format in order to deliver help details when processed 

by the Get-Help CmdLet.

.Synopsis Section

The .synopsis section provides a quick overview of the purpose of the 

script and what is expected from the user (Listing 3-2).

Listing 3-2. .Synopsis Section

<#

.synopsis

EventProcessor EventLog Capture Automation Version 1.0

- User Specified Target EventLog

- User Specifies the number of newest Log Entries to Report

-  User Specifies the Entry Type to target, for example warning, 

error, information etc.

-  User Specifies the target computer or computers to extract 

the logs

- User Specifies the HTML Report Title

The script will produce an HTML output file containing details 

of the EventLog acquisition.

.Description Section

The .description section provides a succinct definition of the script  

(Listing 3-3).

Chapter 3  powerShell SCripting targeting inveStigation



57

Listing 3-3. .Description Section

.Description

This script automates the extraction of information from the 

specified log file

.Parameters Section

This section defines of each command line parameter utilized by the script 

in detail (Listing 3-4).

Listing 3-4. .Parameters Section

.parameter targetLogName

Specifies the name of the log file to process

.parameter eventCount

Specifies the maximum number of newest events to consider in 

the search

.parameter eventType

Specifies the eventType of interest

.parameter targetComputer

Specifies the computer or computers to obtain the logs from

.parameter reportTitle

Specifies the HTML Report Title

Note that in this script, all the parameters are optional since during the 

definition, as you will see later, the default values for each parameter are 

provided. This allows the user to execute the script by typing:

 .\EventProcessor

.Examples Section

In this section several sample script command line executions are provided 

along with a definition of what each variant provides (Listing 3-5).

Chapter 3  powerShell SCripting targeting inveStigation



58

Listing 3-5. .Examples Section

.example

EventProcessor

Execution of EventProcessor without parameters uses the default 

settings of

eventLog system

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -targetLogName security

This example specifies the target eventLog security

and uses the default parameters

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -reporTitle "ACME Computer Daily Event Log 

Report"

This example provides a custom Report Title

.example

EventProcessor -targetLogName security -eventCount 20 

-entryType warning -targetComputer Python-3

This example specifies all the parameters, targetLogName, 

eventCount, entryType and targetComputer

#>

Chapter 3  powerShell SCripting targeting inveStigation



59

 Parameter Definition

The parameter definition section of the script defines the details of each 

available parameter for the script (Listing 3-6).

Listing 3-6. Parameter Definition Section

# Parameter Definition Section

param(

    [string]$targetLogName = "system",

    [int]$eventCount = 20,

    [string]$eventType="Error",

    [string]$reportTitle="Event Log Daily Report",

    [string[]]$targetComputer=$env:COMPUTERNAME

)

Each parameter defines a type, name, and the default value assigned. 

For example:

• The $reportTitle parameter is of type string and has a 

default value of “Event Log Daily Report”.

• The $targetComputer parameter is also of type string, 

but a set of values is possible. In other words, the user 

could enter multiple computer names, each separated 

by a comma. This also contains a default value. This is a 

PowerShell automatic variable that defines the name of 

the computer the script is executing on.

• The $targetLogName parameter defines the event log 

to be targeted. Note that this could have been defined 

as with $targetComputer to accept a list of log names. 

However, the standard CmdLet Get-EventLog only 

supports a single target log. To support a list, the  

Get- EventLog CmdLet would need to be executed 

Chapter 3  powerShell SCripting targeting inveStigation



60

multiple times once for each identified log. This would 

certainly make the script more complicated, but also 

potentially even more useful.

• The $EventType parameter allows for the specification 

of what event type the report should contain. In other 

words, filter in just the desired event type.

• Finally, the $eventCount parameter is defined as an 

integer value. It specifies the maximum number of log 

entries to display that meet the criteria specified.

 Local Variable Definition

The local variable section is used to create a few local variables needed for 

this script (Listing 3-7).

Listing 3-7. Local Variable Definition Section

# Get the current date and tme

$rptDate=Get-Date

$epoch=([DateTimeOffset]$rptDate).ToUnixTimeSeconds()

# Create HTML Header Section

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color: 

black; border-collapse: collapse;}

TD {border-width: 1px; padding: 3px; border-style: solid; 

border-color: black;}

</style>

<p>

<b> $reportTitle $rptDate </b>

<p>

Chapter 3  powerShell SCripting targeting inveStigation



61

Event Log Selection: <b>$targetLogName </b>

<p>

Target Computer(s) Selection: <b> $targetComputer </b>

<p>

Event Type Filter: <b> $eventType </b>

<p>

"@

# Report Filename Creation

$ReportFile = ".\Report-"+$epoch+".HTML"

The local variables are as follows:

• $ReportDate: Obtains the current system date to be 

used in the report.

• $epoch: Obtains the number of seconds that have 

elapsed since the current epoch. Note that this is 

different for each operating system. This variable will 

be used to create a unique HTML filename.

• $Header: Defines a standard HTML header section to 

be used when generating the resulting HTML file. Note 

that this variable uses the parameter ReportTitle in 

order to customize the report heading.

• $ReportFile: This variable combines the string 

“Report-” with the epoch value and the extension 

.html.

 CmdLet Pipeline Execution

The core of the script is the execution of the Get-EventLog CmdLet using a 

pipeline to include the parameters specified (Listing 3-8).

Chapter 3  powerShell SCripting targeting inveStigation



62

Listing 3-8. CmdLet Pipeline Execution

# CmdLet Pipeline execution

Get-Eventlog -ComputerName $targetComputer -LogName 

$targetLogName -Newest $eventCount -EntryType $eventType |

 ConvertTo-html -Head $Header -Property TimeGenerated, 

EntryType, Message |

 Out-File $ReportFile

The pipeline has several key components and transitions:

 1. The Get-EventLog CmdLet specifies the 

-ComputerName, -LogName, -Newest and 

EntryType using the parameters $targetComputer, 

$targetLogName, $eventCount, and $eventType.

 2. The output of the Get-EventLog CmdLet is piped 

to the ConvertTo-html CmdLet which utilizes the 

local variable $Header, and the properties passed 

from the Get-EventLog CmdLet TimeGenerated, 

EntryType, and Message to form the columns of the 

HTML report.

 3. Finally, the output from ConvertTo-html is piped to 

the Out-File CmdLet which utilizes the local variable 

$ReportFile as the filename to write the results.

 EventProcessor Get-Help Result
Since the script contains a detailed header section it is possible to use the 

Get-Help CmdLet to provide help to those who will be using the newly 

created script. The following example provides the output from the  

Get-Help CmdLet using the -Full option which provides all the details  

and examples (Listing 3-9).

Chapter 3  powerShell SCripting targeting inveStigation



63

Listing 3-9. EventProcessor Get-Help

PS C:\PS> Get-Help .\EventProcessor.ps1 -Full

NAME

    C:\PS\EventProcessor.ps1

SYNOPSIS

    EventLog Automation Version 1.0

    Step One

    - User Specified Target EventLog

    - User Specifies the number of newest Log Entries to Report

    -  User Specifies the Entry Type to target, for example 

warning, error, information etc.

    -  User Specifies the target computer or computers to 

extract the logs

    - User Specifies the HTML Report Title

SYNTAX

     C:\PS\EventProcessor.ps1 [[-targetLogName] <String>] 

[[-eventCount] <Int32>] [[-eventType] <String>] 

[[-reportTitle]

    <String>] [[-targetComputer] <String[]>] 

[<CommonParameters>]

DESCRIPTION

     This script automates the extraction of information from 

the specified log file

PARAMETERS

    -targetLogName <String>

        Specifies the name of the log file to process

        Required?                    false

        Position?                    1

Chapter 3  powerShell SCripting targeting inveStigation



64

        Default value                system

        Accept pipeline input?       false

        Accept wildcard characters?  false

    -eventCount <Int32>

         Specifies the maximum number of newest events to 

consider in the search

        Required?                    false

        Position?                    2

        Default value                20

        Accept pipeline input?       false

        Accept wildcard characters?  false

    -eventType <String>

        Specifies the eventType of interest

        Required?                    false

        Position?                    3

        Default value                Error

        Accept pipeline input?       false

        Accept wildcard characters?  false

    -reportTitle <String>

        Specifies the HTML Report Title

        Required?                    false

        Position?                    4

        Default value                Event Log Daily Report

        Accept pipeline input?       false

        Accept wildcard characters?  false

Chapter 3  powerShell SCripting targeting inveStigation



65

    -targetComputer <String[]>

         Specifies the computer or computers to obtain the  

logs from

        Required?                    false

        Position?                    5

        Default value                $env:COMPUTERNAME

        Accept pipeline input?       false

        Accept wildcard characters?  false

    <CommonParameters>

         This cmdlet supports the common parameters: Verbose, 

Debug, ErrorAction, ErrorVariable, WarningAction, 

         WarningVariable, OutBuffer, PipelineVariable, and 

OutVariable. For more information, see about_Common

         Parameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

OUTPUTS

    ------------------------ EXAMPLE 1 ------------------------

    PS C:\>EventProcessor

     Execution of EventProcessor without parameters uses the 

default settings of

    eventLog system

    eventType warning

    eventCount 20

    targetComputer the computer running the script

Chapter 3  powerShell SCripting targeting inveStigation



66

    ------------------------ EXAMPLE 2 ------------------------

    PS C:\>EventProcessor -targetLogName security

    This example specifies the target eventLog security

    and uses the default parameters

    eventType warning

    eventCount 20

    targetComputer the computer running the script

    ------------------------ EXAMPLE 3 ------------------------

     PS C:\>EventProcessor -reporTitle "ACME Computer Daily 

Event Log Report"

    This example provides a custom Report Title

    ------------------------ EXAMPLE 4 ------------------------

     PS C:\>EventProcessor -targetLogName security -eventCount 

20 -entryType warning -targetComputer Python-3

     This example specifies all the parameters, targetLogName, 

eventCount, entryType and targetComputer

 EventProcessor Script Execution
To illustrate the script execution, a sample command and results are 

provided here:

PS C:\PS> .\EventProcessor.ps1 -reportTitle "Python Forensics 

Daily Log Report" -eventCount 100 -eventType error

Chapter 3  powerShell SCripting targeting inveStigation



67

 Resulting Directory
As designed, the script produces an HTML Report File with the appended 

Epoch value denoting when the script was executed (see Figure 3-7). Since 

the .html extension was added, the file system properly identifies the 

resulting file as a Google Chrome HTML Document.

 HTML Output Report
Examining the report file Report-1544369607 using a browser provides 

sample results from the PowerShell script execution. The output includes 

the defined report title, the event log that was selected, the target 

computer, and the event type that was selected along with the resulting last 

100 events with an event type of error. Note that the results were truncated 

here for brevity.

Figure 3-7. Resulting report HTML file

Chapter 3  powerShell SCripting targeting inveStigation



68

 Remote Access

Note Setting up access to remote systems using the 
-Computername option (that is available for many Cmdlets) can 
be difficult to setup within a workgroup. it is much easier when a 
Domain Controller is present, or your environment utilizes active 
directory. So please consult your system administrator when 
attempting to use the -Computername Cmdlet parameter.

There is an easier method that can provide even greater flexibility and is 

more secure. The method is to create a remote PowerShell session with 

the target machine. Once the session is established, the commands that 

you enter from within PowerShell or PowerShell ISE are executed on the 

remotely connected machine. The advantage is not only simplicity, but 

it also allows you to execute any CmdLet, even those that don’t support 

-ComputerName as a parameter.

Figure 3-8. Resulting HTML report

Chapter 3  powerShell SCripting targeting inveStigation



69

Here is a simple example that creates a PowerShell session with a 

machine on my local network with the computer name Levovo-Upstairs. 

In order to create the session, you must provide the credentials for a user 

on the remote machine with Admin rights. The command will pop up a 

dialog box requesting the password for the specified account, as shown in 

Figure 3-9.

Once the connection is made, you can see that the PowerShell prompt 

has changed to:

[Lenovo-Upstairs]: PS C:\Users\Remote-Admin\Documents>

At this point, PowerShell commands that are typed are being executed 

on the remote computer Lenovo-Upstairs not on the local machine. In the 

example shown in Figure 3-10, the newest 20 warning messages contained 

in the system event log on the Lenovo-Upstairs machine are acquired.

Figure 3-10. Remote access of the system event log

Figure 3-9. Enter-PSSession credential request

Chapter 3  powerShell SCripting targeting inveStigation



70

To exit the remote session the CmdLet Exit-PSSession is issued and 

PowerShell is now back operating on the local machine again. This is 

shown in Figure 3-10.

 Example 2: USB Device Usage Discovery
Obtaining the recent USB devices used can certainly be important when 

performing forensic investigations or incident response actions. This can 

either help determine if information was exfiltrated from the system, or if 

USB insertion could be the cause of malware infection.

The first part of that process is to determine what USB devices have 

been detected. On Microsoft Windows systems, the registry provides a 

history of devices attached by examining details kept under HKEY_Local_

Machine. Figure 3-11 shows the specific USBSTOR keys found on my local 

machine.

Note on different versions of windows the registry key of interest 
may be different. if so, you will need to change the registry key 
definitions used in this example.

Chapter 3  powerShell SCripting targeting inveStigation



71

Figure 3-11. Registry history of USB access

Chapter 3  powerShell SCripting targeting inveStigation



72

 Create the Script
Now that we understand the scenario, let’s go through the two steps again 

to create the script we need.

 Step One: Recent Accessing USB Activity

The question is how can evidence of USB activity be collected using 

PowerShell? Also, could a script be developed that would aggregate USB 

usage across our network?

Let’s start by accessing the registry and USBSTOR on a local machine.

PowerShell provides a general-purpose CmdLet that can be applied to 

many items including the registry: The CmdLet is Get-ItemProperty.

The Get-Help for Get-ItemProperty is shown in Listing 3-10.

Listing 3-10. Get-Help Get-ItemProperty

PS C:\PS> Get-Help Get-ItemProperty

NAME

    Get-ItemProperty

SYNOPSIS

    Gets the properties of a specified item.

SYNTAX

     Get-ItemProperty [[-Name] <String[]>] [-Credential 

<PSCredential>] [-Exclude <String[]>] [-Filter <String>] 

[-Include

     <String[]>] -LiteralPath <String[]> [-UseTransaction] 

[<CommonParameters>]

     Get-ItemProperty [-Path] <String[]> [[-Name] <String[]>] 

[-Credential <PSCredential>] [-Exclude <String[]>] [-Filter

Chapter 3  powerShell SCripting targeting inveStigation



73

    <String>] [-Include <String[]>] [-UseTransaction] 

[<CommonParameters>]

DESCRIPTION

     The Get-ItemProperty cmdlet gets the properties of the 

specified items. For example, you can use this cmdlet to 

get the value

     of the LastAccessTime property of a file object. You can 

also use this cmdlet to view registry entries and their 

values.

RELATED LINKS

    Online Version: http://go.microsoft.com/fwlink/?LinkId=821588

    Clear-ItemProperty

    Copy-ItemProperty

    Move-ItemProperty

    New-ItemProperty

    Remove-ItemProperty

    Rename-ItemProperty

    Set-ItemProperty

REMARKS

     To see the examples, type: "get-help Get-ItemProperty 

-examples".

     For more information, type: "get-help Get-ItemProperty 

-detailed".

     For technical information, type: "get-help Get-ItemProperty 

-full".

    For online help, type: "get-help Get-ItemProperty -online"

Chapter 3  powerShell SCripting targeting inveStigation



74

Using this CmdLet to acquire recent USB activity can be accomplished 

like this. In order to make this easier to understand, for this example the 

“Friendly Name” Property of the USB device will be acquired. Please see 

Figure 3-12.

PS C:\PS> Get-ItemProperty -Path HKLM:\SYSTEM\

CurrentControlSet\Enum\USBSTOR\*\* | Select FriendlyName

Figure 3-12. Using Get-ItemProperty CmdLet to acquire USB activity

Chapter 3  powerShell SCripting targeting inveStigation



75

Using the Remote Access method, we now acquire the USB activity 

on the remote computer Lenovo-Upstairs. For this, the Enter and Exit 

PSSession method is used and the command is executed on the remote 

computer. As you can see, the SanDisk Cruzer USB device was identified 

on both the local and remote computers.

Invoke-Command PowerShell CmdLet

In cases where only a single remote command needs to be executed, this 

can be accomplished by using the Invoke-Command PowerShell CmdLet 

instead of setting up a remote PowerShell session. This can be useful when 

developing scripts that will acquire evidence from multiple computers. As 

always using Get-Help will provide the details on how to utilize the Invoke- 

Command CmdLet (Listing 3-11).

Listing 3-11. Invoke-Command

PS C:\PS> Get-Help Invoke-Command

NAME

    Invoke-Command

SYNOPSIS

    Runs commands on local and remote computers.

SYNTAX

Figure 3-13. Access USB activity on a remote computer

Chapter 3  powerShell SCripting targeting inveStigation



76

     Invoke-Command [[-ConnectionUri] <Uri[]>] [-ScriptBlock] 

<ScriptBlock> [-AllowRedirection] [-ArgumentList 

<Object[]>] [-AsJob]

     [-Authentication {Default | Basic | Negotiate | 

NegotiateWithImplicitCredential | Credssp | Digest | 

Kerberos}] [-CertificateThumbprint

     <String>] [-ConfigurationName <String>] [-Credential 

<PSCredential>] [-EnableNetworkAccess] [-HideComputerName] 

[-InDisconnectedSession]

     [-InputObject <PSObject>] [-JobName <String>] 

[-SessionOption <PSSessionOption>] [-ThrottleLimit <Int32>] 

[<CommonParameters>]

     Invoke-Command [[-ConnectionUri] <Uri[]>] [-FilePath] 

<String> [-AllowRedirection] [-ArgumentList <Object[]>] 

[-AsJob] [-Authentication

     {Default | Basic | Negotiate | 

NegotiateWithImplicitCredential | Credssp | Digest | 

Kerberos}] [-ConfigurationName <String>] [-Credential

     <PSCredential>] [-EnableNetworkAccess] [-HideComputerName] 

[-InDisconnectedSession] [-InputObject <PSObject>] 

[-JobName <String>]

     [-SessionOption <PSSessionOption>] [-ThrottleLimit <Int32>] 

[<CommonParameters>]

     Invoke-Command [[-ComputerName] <String[]>] [-ScriptBlock] 

<ScriptBlock> [-ApplicationName <String>] [-ArgumentList 

<Object[]>] [-AsJob]

     [-Authentication {Default | Basic | Negotiate | 

NegotiateWithImplicitCredential | Credssp | Digest | 

Kerberos}] [-CertificateThumbprint

Chapter 3  powerShell SCripting targeting inveStigation



77

     <String>] [-ConfigurationName <String>] [-Credential 

<PSCredential>] [-EnableNetworkAccess] [-HideComputerName] 

[-InDisconnectedSession]

     [-InputObject <PSObject>] [-JobName <String>] [-Port 

<Int32>] [-SessionName <String[]>] [-SessionOption 

<PSSessionOption>] [-ThrottleLimit

    <Int32>] [-UseSSL] [<CommonParameters>]

     Invoke-Command [[-ComputerName] <String[]>] [-FilePath] 

<String> [-ApplicationName <String>] [-ArgumentList 

<Object[]>] [-AsJob]

     [-Authentication {Default | Basic | Negotiate | 

NegotiateWithImplicitCredential | Credssp | Digest | 

Kerberos}] [-ConfigurationName

     <String>] [-Credential <PSCredential>] 

[-EnableNetworkAccess] [-HideComputerName] 

[-InDisconnectedSession] [-InputObject <PSObject>]

     [-JobName <String>] [-Port <Int32>] [-SessionName 

<String[]>] [-SessionOption <PSSessionOption>] 

[-ThrottleLimit <Int32>] [-UseSSL]

    [<CommonParameters>]

     Invoke-Command [[-Session] <PSSession[]>] [-ScriptBlock] 

<ScriptBlock> [-ArgumentList <Object[]>] [-AsJob] 

[-HideComputerName]

     [-InputObject <PSObject>] [-JobName <String>] 

[-ThrottleLimit <Int32>] [<CommonParameters>]

     Invoke-Command [[-Session] <PSSession[]>] [-FilePath] 

<String> [-ArgumentList <Object[]>] [-AsJob] 

[-HideComputerName] [-InputObject

     <PSObject>] [-JobName <String>] [-ThrottleLimit <Int32>] 

[<CommonParameters>]

Chapter 3  powerShell SCripting targeting inveStigation



78

     Invoke-Command [-VMId] <Guid[]> [-ScriptBlock] 

<ScriptBlock> [-ArgumentList <Object[]>] [-AsJob] 

[-ConfigurationName <String>] -Credential

     <PSCredential> [-HideComputerName] [-InputObject 

<PSObject>] [-ThrottleLimit <Int32>] [<CommonParameters>]

     Invoke-Command [-ScriptBlock] <ScriptBlock> [-ArgumentList 

<Object[]>] [-AsJob] [-ConfigurationName <String>] 

-Credential <PSCredential>

     [-HideComputerName] [-InputObject <PSObject>] 

[-ThrottleLimit <Int32>] -VMName <String[]> 

[<CommonParameters>]

     Invoke-Command [-VMId] <Guid[]> [-FilePath] <String> 

[-ArgumentList <Object[]>] [-AsJob] [-ConfigurationName 

<String>] -Credential

     <PSCredential> [-HideComputerName] [-InputObject 

<PSObject>] [-ThrottleLimit <Int32>] [<CommonParameters>]

     Invoke-Command [-FilePath] <String> [-ArgumentList 

<Object[]>] [-AsJob] [-ConfigurationName <String>] 

-Credential <PSCredential>

     [-HideComputerName] [-InputObject <PSObject>] 

[-ThrottleLimit <Int32>] -VMName <String[]> 

[<CommonParameters>]

     Invoke-Command [-ScriptBlock] <ScriptBlock> [-ArgumentList 

<Object[]>] [-AsJob] [-ConfigurationName <String>] 

-ContainerId <String[]>

     [-HideComputerName] [-InputObject <PSObject>] [-JobName 

<String>] [-RunAsAdministrator] [-ThrottleLimit <Int32>] 

[<CommonParameters>]

Chapter 3  powerShell SCripting targeting inveStigation



79

     Invoke-Command [-FilePath] <String> [-ArgumentList 

<Object[]>] [-AsJob] [-ConfigurationName <String>] 

-ContainerId <String[]>

     [-HideComputerName] [-InputObject <PSObject>] [-JobName 

<String>] [-RunAsAdministrator] [-ThrottleLimit <Int32>] 

[<CommonParameters>]

     Invoke-Command [-ScriptBlock] <ScriptBlock> [-ArgumentList 

<Object[]>] [-InputObject <PSObject>] [-NoNewScope] 

[<CommonParameters>]

DESCRIPTION

     The Invoke-Command cmdlet runs commands on a local or 

remote computer and returns all output from the commands, 

including errors. By using a single Invoke-Command command,

     you can run commands on multiple computers.

     To run a single command on a remote computer, use the 

ComputerName parameter. To run a series of related commands 

that share data, use the New-PSSession cmdlet to create a

     PSSession (a persistent connection) on the remote computer, 

and then use the Session parameter of Invoke-Command to run

     the command in the PSSession. To run a command in a 

disconnected session, use the InDisconnectedSession 

parameter. To run a command in a background job, use the

    AsJob parameter.

     You can also use Invoke-Command on a local computer to 

evaluate or run a string in a script block as a command. 

Windows PowerShell converts the script block to a command

     and runs the command immediately in the current scope, 

instead of just echoing the string at the command line.

Chapter 3  powerShell SCripting targeting inveStigation



80

     To start an interactive session with a remote computer, 

use the Enter-PSSession cmdlet. To establish a persistent 

connection to a remote computer, use the New-PSSession

    cmdlet.

     Before using Invoke-Command to run commands on a remote 

computer, read about_Remote (http://go.microsoft.com/

fwlink/?LinkID=135182).

RELATED LINKS

    Online Version: http://go.microsoft.com/fwlink/?LinkId=821493

    Enter-PSSession

    Exit-PSSession

    Get-PSSession

    New-PSSession

    Remove-PSSession

Using the USB activity acquisition method as a starting point, the 

Invoke-Command method can be used to perform this command 

remotely. In this example, target and user are first created as variables. The 

command is embedded in the -ScriptBlock. As before, the user must enter 

the Admin credentials for the remote computer (Figure 3-14).

Chapter 3  powerShell SCripting targeting inveStigation



81

The results to the Invoke command are shown in Figure 3-15.

 Step Two: Create the USBAcquire PowerShell Script

Now that we have perfected the method, a simple PowerShell script can 

be created to perform this operation for us, with the user supplying the 

target computer name and the Admin user. The full script is listed here 

as Listing 3-12. I’ll show the Get-Help result and a sample execution later 

as well.

Figure 3-14. Invoke-Command method USBAcquire

Figure 3-15. Invoke-Command method USBAcquire results

Chapter 3  powerShell SCripting targeting inveStigation



82

Listing 3-12. USBAcquire Script

<#

.synopsis

Collect USB Activity from target computer

- User Specifies the target computer

The script will produce details of USB Activity

on the specified target computer

.Description

This script collects USB Activity and target computers

.parameter targetComputer

Specifies the computer to collect the USB Activity

.parameter UserName

Specifies the Administrator UserName on the Target Computer

.example

USBAcquire ComputerName

Collects the USB Activity on the target Computer

#>

# Parameter Definition Section

param(

    [string]$User,

    [string]$targetComputer

)

Invoke-Command -ComputerName $targetComputer -Credential 

$User -ScriptBlock {Get-ItemProperty -Path HKLM:\SYSTEM\

CurrentControlSet\Enum\USBSTOR\*\* | Select FriendlyName}

Chapter 3  powerShell SCripting targeting inveStigation



83

As you can see, the USBAcquire has the same four major sections as 

the EventProcessor script from Example One: Script Header parameter 

definition, Local variable definitions, and cmdlet execution using 

parameters and local variables. Refer back to that section if you need a 

refresher.

 USBAcquire Script Execution
The execution and results of the script are demonstrated in Figures 3-16 

and 3-17.

PS C:\PS> .\USBAcquire.ps1 -targetComputer PYTHON-3 -user 

PYTHON-3\USER-NAME-HIDDEN

Figure 3-16. USBAcquire script execution requesting credentials

Chapter 3  powerShell SCripting targeting inveStigation



84

 USBAcquire Get-Help Result
The script contains a proper heading section; thus, user help can be 

obtained using the Get-Help CmdLet, shown in Listing 3-13.

Listing 3-13. USBAcquire Get-Help

PS C:\PS> Get-Help .\USBAcquire.ps1

NAME

    C:\PS\USBAcquire.ps1

SYNOPSIS

    Collect USB Activity from target computer

    - User Specifies the target computer

Figure 3-17. Results USBAcquire PowerShell script

Chapter 3  powerShell SCripting targeting inveStigation



85

    The script will produce details of USB Activity

    on the specified target computer

SYNTAX

     C:\PS\USBAcquire.ps1 [[-User] <String>] [[-targetComputer] 

<String>] [<CommonParameters>]

DESCRIPTION

    This script collects USB Activity and target computers

RELATED LINKS

REMARKS

     To see the examples, type: "get-help C:\PS\USBAcquire.ps1 

-examples".

     For more information, type: "get-help C:\PS\USBAcquire.ps1 

-detailed".

     For technical information, type: "get-help C:\PS\

USBAcquire.ps1 -full".

 Challenge Problem: Create File Inventory 
List with Hashes
Based on what you have learned about PowerShell scripts and Remote 

Access methods, your challenge is to leverage this knowledge to solve the 

following problem.

Develop a PowerShell script that will create an inventory of a computer 

detailing all directories and files found. The script will allow the user to 

specify:

• Target Computer

• Starting Directory

• Output File

Chapter 3  powerShell SCripting targeting inveStigation



86

Your script should produce an HTML file that contains the following 

information:

• Directory

• FileName

• FileSize

• LastWriteTime

• Owner

• FileAttributes (i.e., ReadOnly, Hidden, System, Archive)

The script will recurse all the folders beginning with the Starting 

Directory.

Hint You will be focusing on the Cmdlet get-Childitem.

Finally, your script will contain full Help information.

A sample script solution can be found in Appendix A and at  

www.apress.com/9781484245033.

 Summary
This chapter focused on the construction of PowerShell scripts that can be 

used by investigators to obtain information from event logs and recent USB 

activity. The Get-EventLog CmdLet and Get-ItemProperty were the focus 

of our acquisitions.

Chapter 3  powerShell SCripting targeting inveStigation

http://www.apress.com/9781484245033


87

In addition, the creation of PowerShell sessions was covered as an 

additional method to obtain evidence from remote computers when 

proper credentials are available using the Enter-PSSession CmdLet. Also, 

the Invoke-Command PowerShell CmdLet was covered that allows for 

the execution of a single command or script without creating a persistent 

session.

Chapter 4 will introduce, compare, and contrast PowerShell and 

Python and begin the process of combining these two powerful scripting 

languages.

Chapter 3  powerShell SCripting targeting inveStigation



89© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_4

CHAPTER 4

Python and Live 
Investigation/
Acquisition
Searching is the mainstay of digital investigation. What has changed over 

the past decade is the vast amount of data to search, the various types of 

content to search, and the type of information that is needed to connect 

the dots of specific criminal activity.

Today, digital data is connected to all criminal activity. Using this data 

to understand (and potentially prove) the motive, opportunity, and/or 

means to commit the crime is paramount. In many cases, we can utilize 

this data to develop a profile of a suspect(s) and predict future activities. In 

addition, we can discover the location, behaviors, and content of specific 

digital devices whether they be phones, tablets, computers, drones, 

watches, or a wide range of IoT devices.

Currently, many still think about digital evidence as static data that 

is examined after we image digital media. This is changing of course, 

especially in Digital Forensic Incident Response, or DFIR, activities. 

Collecting, examining, and reasoning about “live” evidence is not new – I 

began writing about this and developing solutions as far back as 2006.1

1 https://gcn.com/Articles/2006/07/27/Special-Report%2D%2DLive-
forensics-is-the-future-for-law-enforcement.aspx

https://gcn.com/Articles/2006/07/27/Special-Report%2D%2DLive-forensics-is-the-future-for-law-enforcement.aspx
https://gcn.com/Articles/2006/07/27/Special-Report%2D%2DLive-forensics-is-the-future-for-law-enforcement.aspx


90

As the need for immediate response, early indications and warning, 

detection of aberrant behavior, and anticipation of bad actions before 

they occur becomes vital in society, “live” forensics will eventually work 

hand in hand with traditional postmortem practices. Thus, by leveraging 

PowerShell to acquire specific targeted evidence, we can take the next step 

in processing and reasoning about actions as they happen.

All of this provides significant opportunities to develop new methods 

of detection, reasoning, analysis, and of course evidence of criminal 

activity. However, before we can fly, run, walk, or even crawl, we need 

to tackle some basic challenges and develop software that integrates 

PowerShell-driven acquisition with the power of Python. There are two 

fundamental ways to approach this:

• Method 1: Launch PowerShell CmdLets or scripts and 

then collect and post-process the results in Python.

• Method 2: Execute PowerShell CmdLets or scripts and 

pipe the results to waiting Python scripts.

Method 1 will be examined in this chapter and Method 2 will be 

addressed in Chapter 5. In both cases, the methods will be explored by 

example.

 What Is “By Example”?
There are literally hundreds of books on Python in existence, and most 

are focused on how to program and typically take the approach of 

teaching you the intricacies of the language. These texts are designed for 

those pursuing a career in computer science, software engineering, web 

development, or Big Data processing.

Our goal here is to apply Python to specific digital investigation 

challenges and combine Python and PowerShell to create solutions. 

Interestingly enough, along the way you will learn new scripting techniques.

Chapter 4  python and Live investigation/aCquisition



91

The best analogy I can think of is learning about a new culture. You 

can read about the Mayan culture, watch movies about their history, and 

examine maps of the countries where they resided. Or you can travel there 

and walk through their world, speak with the Maya people, explore their 

sacred sites, and experience the culture firsthand.

 Directing PowerShell with Python
Since the end date of Python 2.7 is approaching, Python 3.7 will be used 

for all the Python-based examples for this book. Python 2 and 3 contain 

a formidable amount of built-in standard libraries along with thousands 

of third-party libraries. Whenever possible, Python standard libraries will 

be used in order to ensure the broadest cross-platform compatibility. You 

can obtain Python 3.7 directly from www.python.org. As of this writing, the 

latest version available is Python 3.7.2, as shown in Figure 4-1.

Chapter 4  python and Live investigation/aCquisition

http://www.python.org


92

In addition to the latest version of Python, I highly recommend the use 

of a Python Integrated Development Environment. My favorite is WingIDE.

The personal edition is free and works fine for most Python 

development and scripting challenges. The web site provides great 

tutorials on how to configure and use WingIDE can be found at:

www.wingware.com

Figure 4-1. Download Python 3.7.2 (www.python.org)

Chapter 4  python and Live investigation/aCquisition

http://www.wingware.com
http://www.python.org


93

Figure 4-2. Wingware/WingIDE home page (www.wingware.com)

Chapter 4  python and Live investigation/aCquisition

http://www.wingware.com


94

 Launching PowerShell CmdLets from Python
Now that you have the basic tools available (PowerShell installed and 

running, Python installed and running, and WingIDE to experiment), you 

are set to perform the first integration of Python and PowerShell.

In Chapters 1 and 2, the discovery, use, and forensic applications 

of CmdLets were covered. I’m sure that you have already experimented 

with an assortment of additional CmdLets. Therefore, what if we could 

execute a PowerShell CmdLet from Python and capture the results? Since 

PowerShell is an executable process, so we will use Python’s standard 

library providing the ability to launch processes. This is done using the 

subprocess standard library. In Python in order to utilize any standard or 

third-party libraries, you must import them. This is done with a simple 

import statement. In this case, the statement simply is:

import subprocess

This provides access to the methods and properties contained in the 

subprocess library. Many options are available – the most popular is using 

the check.output method which executes the specified process and returns 

the result. Here is an example:

runningProcesses = subprocess.check_output("powershell 

-Executionpolicy ByPass -Command Get-Process")

One of the nice features of the WingIDE Python Integrated 

Development is the ability to experiment with commands within the 

interactive shell as shown in Figure 4-3. The three greater-than signs 

(>>>) are the interactive shell prompt. This is the same prompt you would 

receive if you launched Python from the command line or terminal 

window.

Chapter 4  python and Live investigation/aCquisition



95

The breakdown of each of the elements of the subprocess code is as 

follows and in Figure 4-4.

• A. The result of the command will be stored in the 

variable named runningProcesses. You can, of course, 

use any allowable variable name. I use camel case when 

defining variables in Python starting with a lowercase 

letter and then capitalizing each subsequent word. This 

makes it easy to identify variables in your code.

• B. The assignment operator or = equal sign assigns 

the results of the subprocess command to the variable 

runningProcesses.

• C. subprocess.check_output is the selected method 

from the subprocess library. It takes a single parameter 

enclosed in quotes and defines the command line you 

wish to execute.

• D. The quoted string inside the parenthesis specifies 

the command to execute. E-H defines each element of 

the powershell command to execute.

• E. powershell is the command, or in this case the 

process to execute.

Figure 4-3. Executing a PowerShell CmdLet from the Python shell

Chapter 4  python and Live investigation/aCquisition



96

• F. -Executionpolicy ByPass, by default, PowerShell 

will not execute scripts or CmdLets without explicit 

permission. The parameter -Executionpolicy specifies 

the policy for the PowerShell command. The parameter 

ByPass tells PowerShell to block nothing and issue no 

warnings or prompts.

• G. -Command specifies that what follows is a PowerShell 

Command. In this case it is a simple CmdLet, but could 

be a more complex pipeline-based command. If you 

desire to execute a PowerShell script, this would be 

changed to -File and would be followed by a valid .ps1 

filename.

• H. Get-Process is the specific CmdLet that is to be 

executed. In this example the Get-Process CmdLet is 

executed with no parameters.

In Python 3.x, the subprocess.check_output() method returns a byte 

string, where in Python 2.7 it returned a simple string. Therefore, to display 

the output from the Command, the runningProcesses variable needs to be 

decoded as shown here:

print(runningProcesses.decode())

Figure 4-4. Python subprocess command breakdown

Chapter 4  python and Live investigation/aCquisition



97

Executing this command within the WingIDE Python interactive shell 

delivers the results shown in Figure 4-5. Note the results are truncated for 

brevity.

At this point you might be saying why would I go through the trouble 

to execute a PowerShell Command or CmdLet from Python? In order to 

answer that question let’s take this example to the next level.

 Creating a System Files Baseline 
with PowerShell and Python
Let’s say you wish to establish a baseline of what drivers are currently 

installed under Windows, specifically c:\windows\system32\drivers\. You 

could target any directory, subdirectories, or the whole system for that 

matter, but system drivers run with privilege, and detecting new drivers, 

modifications of existing drivers, or removal of a driver could be useful 

during an investigation.

Figure 4-5. Printing out the contents of the runningProcesses variable

Chapter 4  python and Live investigation/aCquisition



98

Obtaining information regarding files is accomplished using the Get- 

ChildItem CmdLet within PowerShell. This CmdLet has many features, 

properties, and methods associated with it. What we are interested in to 

create the baseline is:

 1. The hash of each file for creating a known good 

hashset used by forensic software

 2. The name of each file

It is quite straightforward to obtain this information from PowerShell 

using the Pipeline command shown as follows. The truncated results are 

depicted in Figure 4-6 and the command breakdown is described in detail 

in Figure 4-7.

Get-ChildItem c:\windows\system32\drivers\ |

Get-FileHash | Select-object -Property Hash, Path | Format- 

Table -HideTableHeaders

The breakdown of the Pipeline command is shown as follows and in 

Figure 4-7.

• A. Get-ChildItem CmdLet specifying the target folder 

windows\system32\drivers.

Figure 4-6. Obtain file hash and path using PowerShell (note output 
is truncated)

Chapter 4  python and Live investigation/aCquisition



99

• B. The output of the Get-ChildItem CmdLet is piped 

to the Get-FileHash CmdLet which will, by default, 

generate the SHA-256 hash of each file.

• C. The result of the Get-FileHash CmdLet will be piped 

to the Select-Object CmdLet which will extract just 

the SHA-256 hash value and the File Path of the two 

outputs that are needed.

• D. The results of the Select-Object CmdLet are then 

passed to the Format-Table CmdLet which removes the 

Table Header from the output.

Creating a PowerShell script with input parameters will make this 

command a bit more useful and re-useable. The complete script is shown 

in Listing 4-1.

Listing 4-1. HashAquire.ps1 Script

<#

.synopsis

Collect Hash and Filenames from specified folder

- User Specifies the target computer

- User Specifies the target folder

Figure 4-7. PowerShell Pipeline breakdown Get-ChildItem,  
Get- FileHash, Select-Object, and Format-Table

Chapter 4  python and Live investigation/aCquisition



100

The script will produce a simple ascii output file containing

SHA-256Hash and FilePath

.Description

This script collects Hash and Filenames from specified computer 

and folder

.parameter targetComputer

Specifies the computer to collect the specified file hash 

information

.parameter UserName

Specifies the Administrator UserName on the Target Computer

.parameter outFile

Specifies the full path of the output file

.example

HashAcquire

Collects the file hashes on the target Computer

#>

# Parameter Definition Section

param(

    [string]$TargetFolder="c:/windows/system32/drivers/",

    [string]$ResultFile="c:/PS/baseline.txt"

)

Get-ChildItem $TargetFolder | Get-FileHash | Select-Object 

-Property Hash, Path | Format-Table -HideTableHeaders | Out- 

File $ResultFile -Encoding ascii

The script has the standard sections in order to provide the proper  

Get- Help support, as shown in Listing 4-2.

Chapter 4  python and Live investigation/aCquisition



101

Listing 4-2. Get-Help Results for the HashAquire.ps1 PowerShell 

Script

PS C:\PS> Get-Help .\HashAcquire.ps1

NAME

    C:\PS\HashAcquire.ps1

SYNOPSIS

    Collect Hash and Filenames from specified folder

    - User Specifies the target computer

    - User Specifies the target folder

     The script will produce a simple ascii output file 

containing

    SHA-256Hash and FilePath

SYNTAX

     C:\PS\HashAcquire.ps1 [[-TargetFolder] <String>] 

[[-ResultFile] <String>] [<CommonParameters>]

DESCRIPTION

     This script collects Hash and Filenames from specified 

computer and folder

RELATED LINKS

REMARKS

     To see the examples, type: "get-help C:\PS\HashAcquire.ps1 

-examples".

     For more information, type: "get-help C:\PS\HashAcquire.ps1 

-detailed".

     For technical information, type: "get-help C:\PS\

HashAcquire.ps1 -full".

Chapter 4  python and Live investigation/aCquisition



102

The script contains two input parameters TargetFolder and ResultFile.

# Parameter Definition Section

param(

    [string]$TargetFolder="c:/windows/system32/drivers/",

    [string]$ResultFile="c:/PS/baseline.txt"

)

Using the default parameters, the script creates the baseline.txt file. 

The abbreviated results are shown in Figure 4-8. By supplying a parameter 

for specifying the target folder, this script can now be applied to any 

legitimate folder.

Note access to certain folders will require administrator privilege. 
Make sure that you are running powershell as admin.

PS C:\PS> .\HashAcquire.ps1

 Creating the Baseline with Python

Now that we have a reliable method of extracting the hash and filename 

using the HashAcquire.ps1 PowerShell script, we can use Python to create 

a baseline from these results. However, for this we will create a Python 

script/program instead of using the interactive shell.

Figure 4-8. baseline.txt abbreviated results

Chapter 4  python and Live investigation/aCquisition



103

The plan is to launch the PowerShell script from Python and extract 

the results from the created text file. You can specify the name and location 

of the resulting file by using the ResultFile parameter provided by the 

script.

Note the current powershell script only processes the specified 
directory. however, the get-Childitem CmdLet has an optional 
parameter that could be used to specify sub-folder acquisition as 
well. that parameter is -recurse, by using:

Get-Help Get- ChildItem

you will find that get-Childitem has many options and example 
usage.

The next step is to store the extracted results in a Python dictionary to 

produce a baseline. Once the dictionary baseline is created, the resulting 

dictionary can be stored and used for comparison. This way you can detect 

any new, modified, or deleted files from a target folder.

Note python dictionaries, much like traditional Webster-style 
dictionaries, have a Key and a value, which are typically referred to 
as a Key/value pair. in python, both the Key and the value can be 
complex, the only rule being that the Key must be a hashable type 
such as an integer, long, string, or tuple. the value part of the Key/
value pair can be a list or other nonhashable data type. in addition, 
the dictionary’s keys must be unique (much like real dictionaries).

Chapter 4  python and Live investigation/aCquisition



104

The complete CreateBaseline.py script is shown in Listing 4-3.

Note For the powershell and python scripts throughout the rest 
of the book, the directory c:\ps was created to hold the scripts and 
results.

also, do not try to copy and paste the python scripts from the 
book text.  python uses a method of strict indentation that can 
be corrupted through the copy and paste process.  the publisher 
has provided access to the source code files at: www.apress.
com/9781484245033.

Listing 4-3. CreateBaseLine Python Script

'''

Step One Create a baseline hash list of target folder

December 2018, Python Forensics

'''

''' LIBRARY IMPORT SECTION '''

import subprocess       # subprocess library

import argparse         # argument parsing library

import os               # Operating System Path

import pickle           # Python object serialization

'''ARGUMENT PARSING SECTION '''

def ValidatePath(thePath):

    ''' Validate the Folder thePath

        it must exist and we must have rights

        to read from the folder.

Chapter 4  python and Live investigation/aCquisition

http://www.apress.com/9781484245033
http://www.apress.com/9781484245033


105

        raise the appropriate error if either

        is not true

    '''

    # Validate the path exists

    if not os.path.exists(thePath):

        raise argparse.ArgumentTypeError('Path does

        not exist')

    # Validate the path is readable

    if os.access(thePath, os.R_OK):

        return thePath

    else:

        raise argparse.ArgumentTypeError('Path is not readable')

#End ValidatePath

''' Specify and Parse the command line, validate the arguments 

and return results'''

parser = argparse.ArgumentParser('File System Baseline Creator 

with PowerShell- Version 1.0 December 2018')

parser.add_argument('-b', '--baseline',

required=True,

help="Specify the resulting dictionary baseline file")

parser.add_argument('-p', '--Path',

required=True, type= ValidatePath,

help="Specify the target folder to baseline")

parser.add_argument('-t', '--tmp',

required=True,

help="Specify a temporary result file for the PowerShell Script")

Chapter 4  python and Live investigation/aCquisition



106

args = parser.parse_args()

baselineFile = args.baseline

targetPath   = args.Path

tmpFile      = args.tmp

''' MAIN SCRIPT SECTION '''

if __name__ == '__main__':

    try:

        ''' POWERSHELL EXECUTION SECTION '''

         command = "powershell -ExecutionPolicy ByPass

-File C:/PS/HashAcquire.ps1"+"

-TargetFolder "+ targetPath+" -ResultFile "+ tmpFile

        print(command)

         powerShellResult = subprocess.run(command, 

stdout=subprocess.PIPE)

        if powerShellResult.stderr == None:

            ''' DICTIONARY CREATION SECTION '''

            baseDict = {}

            with open(tmpFile, 'r') as inFile:

                for eachLine in inFile:

                    lineList = eachLine.split()

                    if len(lineList) == 2:

                        hashValue = lineList[0]

                        fileName  = lineList[1]

                        baseDict[hashValue] = fileName

                    else:

                        continue

Chapter 4  python and Live investigation/aCquisition



107

            with open(baselineFile, 'wb') as outFile:

                pickle.dump(baseDict, outFile)

                print("Baseline: ", baselineFile,

" Created with:", "{:,}".format(len(baseDict)), "Records")

                print("Script Terminated Successfully")

        else:

            print("PowerShell Error:", p.stderr)

    except Exception as err:

        print ("Cannot Create Output File: "+str(err))

        quit()

Those new to Python might find this script a bit complicated. 

Therefore, the script has been broken down into the following sections 

here:

 1. LIBRARY IMPORT

 2. ARGUMENT PARSING

 3. MAIN

 4. POWERSHELL EXECUTION

 5. DICTIONARY CREATION

LIBRARY IMPORT: As the name implies, this is where the needed 

Python libraries are loaded. They include:

• subprocess: Used to launch the PowerShell script

• os: Used for file and folder validation

• argparse: Used for parsing the command line 

arguments

• pickle: Used to store the resulting dictionary to a file for 

later use

Chapter 4  python and Live investigation/aCquisition



108

ARGUMENT PARSING: This section sets up and then processes user 

command line arguments. For this script, the required arguments include 

the following:

• -b specifies the resulting dictionary baseline filename.

• -p specifies the target path to be used by the PowerShell 

script to store the extracted hash and filenames.

• -t specifies the tmp file that will be used by the 

PowerShell script to store the hash data.

The argparse library in Python automatically processes the command 

line and validates that the user has entered all the required arguments and 

will provide help if requested. Figure 4-9 depicts the test folder and the 

result of executing the script with only the -h option.

Figure 4-9. Execution of the CreateBaseline.py script requesting help

Chapter 4  python and Live investigation/aCquisition



109

The argument processing section results in the creation of three 

variables:

 1. [-b] baselineFile: Which specifies the resulting 

baseline dictionary file. This file will be created by 

the Python script.

 2. [-p] targetPath: Which is passed to the PowerShell 

script to specify which folder to baseline. This is 

used by the PowerShell script.

 3. [-t] tmpFile: Which is passed to the PowerShell 

script to specify the resulting temporary text file 

that will hold the intermediate results. The Python 

script uses this temporary file once generated by the 

PowerShell script.

MAIN: The main section performs the core elements of the script once 

the preliminary setup is complete.

POWERSHELL EXECUTION: This section launches the PowerShell 

script. It first creates a variable named command that will be used by the 

subprocess.run() method to launch the PowerShell script. Note that the 

execution in this case specifies a file, -File vs. a command, -Command 

that was used in the previous examples. It specifies the PowerShell script 

HashAcquire.ps1. Upon completion of the subprocess command, the 

standard error or stderr result is checked for successful completion. 

The result should be None. If not, the Python script will report the error 

returned.

DICTIONARY CREATION: If the PowerShell command was completed 

successfully, the temporary result file is then processed by the Python 

script in order to create the dictionary. Since the format of the resulting 

file is defined in the PowerShell script, processing each line of the file to 

extract the hash value and file path can be accomplished using a Python 

iteration loop. A dictionary entry is created for each line using the Hash 

Chapter 4  python and Live investigation/aCquisition



110

Value as the Key and the File Path as the Value of the KEY/VALUE pair. 

Once all the lines have been processed, the Python pickle library is used 

to store the created dictionary in the file specified on the command line 

which is now contained in the variable baselineFile. The Python script will 

then report details of the script. If any errors or exceptions occur during 

the Python script, the script will report the exception.

Figure 4-10 shows a successful execution of the CreateBaseline.py 

Python combined with the HashAcquire.ps1 PowerShell script. As you can 

see, the script produced 447 dictionary entries for the files contained in the 

c:/windows/system32/drivers/ folder. In addition, the two specified files 

baseline.txt and baseline.pickle were created in the c:/PS/ folder.

 Verifying the Baseline with Python

The next step is to create a Python Script that will verify that the current 

version of the selected folder has not changed. Basically, we are creating 

a simple tripwire of sorts. What are the specific validations that should be 

accomplished by the verification script?

Figure 4-10. Python/PowerShell script combined script execution

Chapter 4  python and Live investigation/aCquisition



111

 1. Have any files been added?

 2. Have any files been deleted?

 3. Have any files been changed?

We are going to reuse the HashAcquire.ps1 PowerShell script and 

make some modifications to the processing of each entry returned by 

HashAcquire.ps1. For the most part, the VerifyBaseline.py script looks 

almost identical to the CreateBaseline.py script. The only modifications 

include:

 1. Addition of the BASELINE DICTIONARY LOAD 

SECTION

 2. Addition of the DICTIONARY TEST SECTION and 

associated dictionary validation functions

Listing 4-4 contains the full verification Python script. Note the 

HashAcquire.ps1 PowerShell script is unchanged.

Listing 4-4. Verify Baseline Python Script

'''

Step Two Verify a baseline hash list against a target folder

December 2018, Python Forensics

'''

''' LIBRARY IMPORT SECTION '''

import subprocess       # subprocess library

import argparse         # argument parsing library

import os               # Operating System Path

import pickle           # Python object serialization

"'ARGUMENT PARSING SECTION "'

Chapter 4  python and Live investigation/aCquisition



112

def ValidatePath(thePath):

    ''' Validate the Folder thePath

        it must exist and we must have rights

        to read from the folder.

        raise the appropriate error if either

        is not true

    '''

    # Validate the path exists

    if not os.path.exists(thePath):

        raise argparse.ArgumentTypeError('Path does not exist')

    # Validate the path is readable

    if os.access(thePath, os.R_OK):

        return thePath

    else:

        raise argparse.ArgumentTypeError('Path is not readable')

#End ValidatePath ===================================

''' Specify and Parse the command line, validate the arguments 

and return results'''

parser = argparse.ArgumentParser('File System Baseline 

Validation with PowerShell- Version 1.0 December 2018')

parser.add_argument('-b', '--baseline',required=True,

help="Specify the source baseline file to verify")

parser.add_argument('-p', '--Path',

type= ValidatePath, required=True,

help="Specify the target folder to verify")

parser.add_argument('-t', '--tmp', required=True,

help="Specify a temporary result file for the PowerShell Script")

Chapter 4  python and Live investigation/aCquisition



113

args = parser.parse_args()

baselineFile = args.baseline

targetPath   = args.Path

tmpFile      = args.tmp

def TestDictEquality(d1,d2):

    """ return True if all keys and values are the same

        otherwise return False """

    if all(k in d2 and d1[k] == d2[k] for k in d1):

        if all(k in d1 and d1[k] == d2[k] for k in d2):

            return True

        else:

            return False

    else:

        return False

    '''

    return all(k in d2 and d1[k] == d2[k]

               for k in d1) \

        and all(k in d1 and d1[k] == d2[k]

               for k in d2)

    '''

def TestDictDiff(d1, d2):

     """ return the subset of d1 where the keys don't exist in 

d2 or the values in d2 are different, as adict """

    diff = {}

    for k,v in d1.items():

        if k in d2 and v in d2[k]:

            continue

Chapter 4  python and Live investigation/aCquisition



114

        else:

            diff[k+v] = "Baseline Missmatch"

    return diff

''' MAIN SCRIPT SECTION '''

if __name__ == '__main__':

    try:

        ''' POWERSHELL EXECUTION SECTION '''

        print()

         command = "powershell -ExecutionPolicy ByPass -File  

C:/PS/HashAcquire.ps1"+" -TargetFolder "+ targetPath+" 

-ResultFile "+ tmpFile

        print(command)

        print()

         powerShellResult = subprocess.run(command, 

stdout=subprocess.PIPE)

        if powerShellResult.stderr == None:

            ''' BASELINE DICTIONARY LOAD SECTION '''

            # Load in the baseline dictionary

            with open(baselineFile, 'rb') as baseIn:

                baseDict = pickle.load(baseIn)

            ''' DICTIONARY CREATION SECTION '''

            # Create a new dictionary for the target folder

            newDict  = {}

            with open(tmpFile, 'r') as inFile:

                for eachLine in inFile:

                    lineList = eachLine.split()

Chapter 4  python and Live investigation/aCquisition



115

                    if len(lineList) == 2:

                        hashValue = lineList[0]

                        fileName  = lineList[1]

                        newDict[hashValue] = fileName

                    else:

                        continue

            ''' DICTIONARY TEST SECTION '''

            if TestDictEquality(baseDict, newDict):

                print("No Changes Detected")

            else:

                diff = TestDictDiff(newDict, baseDict)

                print(diff)

        else:

            print("PowerShell Error:", p.stderr)

    except Exception as err:

        print ("Cannot Create Output File: "+str(err))

        quit()

 Overview of the New Code Sections in  
VerifyBaseline.py

DICTIONARY LOAD: This section loads the specified dictionary from the 

saved pickle file that was created in the CreateBaseline.py script. The pickle.

load() method is used to restore the dictionary from the specified file.

DICTIONARY TEST: This section utilizes two newly created functions:

• TestDictEquality()

• TestDictDiff()

Chapter 4  python and Live investigation/aCquisition



116

The TestDictEquality function compares the newly created dictionary 

of the target folder with the saved dictionary that was loaded using the 

pickle.load() method. The two dictionaries

• baseDict

• newDict

contain the dictionaries to compare. The dictionaries contain the 

SHA-256 Hash (key) and Filename (Value) for each dictionary. Python 

provides many useful built-in mechanisms to compare and iterate 

through dictionaries. The TestDictEquality function verifies that the two 

dictionaries are an exact match. And if they are, True is returned by the 

function. If they are not equivalent, then the function returns False. To 

determine what discrepancies exist, the TestDictDiff() function is called 

only when inequality exists.

The TestDictDiff function compares the contents of the baseDict with 

the newDict and creates a new dictionary to hold any mismatching values. 

The dictionary containing any differences is returned by the TestDictDiff 

function. Once returned, the contents of the diffDictionary are displayed.

Figure 4-11 displays the execution of the VerifyBaseline.py script 

including the new help results and no changes detected.

Figure 4-11. Verify baseline execution and help with no changes

Chapter 4  python and Live investigation/aCquisition



117

Figure 4-12 shows the execution of the VerifyBaseline.py script which 

identifies two innocuous files added to the c:/windows/system32/drivers 

directory.

 Overview of Python Execution with PowerShell
This example provides a nice model for the execution and post-processing 

of PowerShell results from Python. More importantly, this model can be 

extended for several other uses. For example:

 1. By modifying the PowerShell script and parameters, 

the target ComputerName could be added. The 

PowerShell Script could next add the Invoke-

Command CmdLet and then perform remote 

acquisitions, something that would be much more 

difficult to do from Python only. Thus, we’re using 

PowerShell as the acquisition engine and Python as the 

backed processor. Here is an example of the modified 

PowerShell Command that would be necessary:

Invoke-Command -ComputerName $targetComputer 

-Credential $User

-ScriptBlock {Get-ChildItem $TargetFolder |  

Get-FileHash | Select-Object -Property Hash,  

Path | Format-Table -HideTableHeaders | Out-File 

$ResultFile -Encoding ascii}

Figure 4-12. Verify baseline execution with detected changes

Chapter 4  python and Live investigation/aCquisition



118

 2. The acquisition CmdLet Get-ChildItem could 

be replaced with a plethora of other acquisition-

oriented CmdLets such as:

• Get-Process

• Get-Service

• Get-NetTCPConnections

• Get-NetFirewallSetting

• Or any other local or network values of investigative 

interest

Then, without modification the Python CreateBaseline 

and VerifyBaseline scripts can be applied to create 

baselines and then detect any changes across your 

environment.

 3. The interface model using subprocess.run() can be 

applied to other acquisitions of PowerShell scripts. 

Using the model of creating simple ASCII result files 

that can ingested line by line from Python, establish 

a solid interface between Python and PowerShell. 

You could of course return the data via standard out. 

However, this method is less stable when generating 

significant output from PowerShell.

 Challenge Problem: Perform Remote Script 
Execution
Utilizing what you have learned about the execution of PowerShell scripts 

from Python and the model that has been provided:

Chapter 4  python and Live investigation/aCquisition



119

 1. Expand upon the solution provided by exploring 

other PowerShell CmdLets that provide investigative 

or incident response value. Adjust the PowerShell 

and Python scripts as required.

 a. Get-Process

 b. Get-Service

 c. Get-NETTCPConnections

 d. Get-FirewallSettings

 2. Modify the PowerShell and Python scripts to include 

access to other computers. This will require changes 

to both scripts in order to provide the name(s) of the 

additional computer. In addition, the PowerShell 

script will need to add the appropriate Invoke-

Command CmdLet.

 Summary
This chapter focused on the execution of PowerShell CmdLets and scripts 

directed via Python. The chapter covered the key method for interfacing 

with PowerShell using the Python subprocess library.

In addition, methods for delivering PowerShell results to Python for 

post-processing were discussed. A reusable model for this integration 

delivers a baseline for the integration of PowerShell and Python.

Finally, the Python language, libraries, and data types were discussed 

by example. These included argument parsing, subprocess usage, 

dictionaries, functions, and the general Python program structure.

Chapter 5 will expand on PowerShell and Python integration with 

additional examples and methods.

Chapter 4  python and Live investigation/aCquisition



121© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_5

CHAPTER 5

PowerShell/Python 
Investigation Example
The ability to gather remote activities during incident response situations 

is one of the key strengths of PowerShell. The infrastructure provided with 

the latest version of PowerShell significantly reduces the network setup 

required and offers significant security.

Integrating PowerShell and Python provides a viable platform for 

local and remote investigations. The “old” way of connecting to machines 

remotely is by using DCOM (Distributed Component Object Model) and/

or RPCs (Remote Procedure Calls). These methods of integration involve 

significant complexities, and in some cases vulnerabilities, based upon the 

number of ports that need configuration.

The new method is called PowerShell Remoting. Remember, we saw 

the basics of this in Chapter 3, using the Invoke-Command CmdLet. In 

this chapter, we will take a much deeper look at PowerShell Remoting. 

However, before using the new PowerShell Remoting capability, it may 

need to be enabled in your environment. One of the nice features of 

PowerShell Remoting is that it runs over HTTPS, and it is done over a 

single port – port 5985.



122

 Enable PowerShell Remoting
The first step is to enable PowerShell Remoting on your investigative 

machine (the one you are performing the investigation from). You 

probably already guessed that we are going to do this with a PowerShell 

CmdLet. Interestingly enough, this one is titled Enable-PSRemoting. As 

always, you start with Get-Help in order to understand the parameters and 

options (Listing 5-1).

Listing 5-1. Get-Help Enable-PSRemoting

PS C:\PS> Get-Help Enable-PSRemoting

NAME

    Enable-PSRemoting

SYNOPSIS

    Configures the computer to receive remote commands.

SYNTAX

     Enable-PSRemoting [-Confirm] [-Force] 

[-SkipNetworkProfileCheck] [-WhatIf] [<CommonParameters>]

DESCRIPTION

     The Enable-PSRemoting cmdlet configures the computer to 

receive Windows PowerShell remote commands that are sent by 

using the WS-Management technology.

     By default, on Windows Server® 2012, Windows PowerShell 

remoting is enabled. You can use Enable-PSRemoting to 

enable Windows PowerShell remoting on other supported 

versions of Windows and to re-enable remoting on Windows 

Server 2012 if it becomes disabled.

Chapter 5  powerShell/python InveStIgatIon example



123

     You have to run this command only one time on each 

computer that will receive commands. You do not have to 

run it on computers that only send commands. Because the 

configuration starts listeners, it is prudent to run it 

only where it is needed.

     Beginning in Windows PowerShell 3.0, the Enable-PSRemoting 

cmdlet can enable Windows PowerShell remoting on client 

versions of Windows when the computer is on a public 

network.

     For more information, see the description of the 

SkipNetworkProfileCheck parameter.

     The Enable-PSRemoting cmdlet performs the following 

operations:

    -  Runs the Set-WSManQuickConfighttp://go.microsoft.

com/fwlink/?LinkID=141463 cmdlet, which performs the 

following tasks:

    ----- Starts the WinRM service.

    -----  Sets the startup type on the WinRM service to 

Automatic.

    -----  Creates a listener to accept requests on any IP 

address, if one does not already exist.

    -----  Enables a firewall exception for WS-Management 

communications.

    -----  Registers the Microsoft.PowerShell and Microsoft.

PowerShell.Workflow session configurations, if it 

they are not already registered.

Chapter 5  powerShell/python InveStIgatIon example



124

    -----  Registers the Microsoft.PowerShell32 session 

configuration on 64-bit computers, if it is not 

already registered.

    ----- Enables all session configurations.

    -----  Changes the security descriptor of all session 

configurations to allow remote access.

    -----  Restarts the WinRM service to make the preceding 

changes effective.

     To run this cmdlet, start Windows PowerShell by using the 

Run as administrator option.

     CAUTION: On systems that have both Windows PowerShell 3.0 

and Windows PowerShell 2.0, do not use Windows PowerShell 

2.0 to run the Enable-PSRemoting and Disable-PSRemoting 

cmdlets. The commands might appear to succeed, but the 

remoting is not configured correctly. Remote commands and 

later attempts to enable and disable remoting, are likely 

to fail.

RELATED LINKS

    Online Version: http://go.microsoft.com/fwlink/?LinkId=821475

    Disable-PSSessionConfiguration

    Enable-PSSessionConfiguration

    Get-PSSessionConfiguration

    Register-PSSessionConfiguration

    Set-PSSessionConfiguration

    Disable-PSRemoting

Chapter 5  powerShell/python InveStIgatIon example



125

REMARKS

     To see the examples, type: "get-help Enable-PSRemoting 

-examples".

     For more information, type: "get-help Enable-PSRemoting 

-detailed".

     For technical information, type: "get-help Enable- 

PSRemoting -full".

    For online help, type: "get-help Enable-PSRemoting -online"

When executing PSRemoting, use the -Force option to eliminate the 

need for user confirmation throughout the process. Figure 5-1 depicts the 

CmdLet execution.

Note Since this is already enabled on the local machine, it provides 
the following feedback. windows remote management (winrm) 
is likely to be required when enabling pSremoting. each system, 
network, and oS configuration is different, so consult your system 
administrator for assistance. microsoft and third parties provide 
information on proper setup. please consult these guides for more 
information. also, this setup needs to be done on the computers that 
you wish to investigate as well.

https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/enable-psremoting?view=pow
ershell- 6

https://docs.microsoft.com/en-us/windows/desktop/
winrm/winrm-powershell-commandlets

www.howtogeek.com/117192/how-to-run-powershell-
commands- on-remote-computers/

Chapter 5  powerShell/python InveStIgatIon example

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-6
https://docs.microsoft.com/en-us/windows/desktop/winrm/winrm-powershell-commandlets
https://docs.microsoft.com/en-us/windows/desktop/winrm/winrm-powershell-commandlets
https://www.howtogeek.com/117192/how-to-run-powershell-commands-on-remote-computers/
https://www.howtogeek.com/117192/how-to-run-powershell-commands-on-remote-computers/


126

Note one final note regarding the enabling of powerShell remoting. 
the network configuration for all of your adapters must be set to 
private not public for security reasons. please again contact your 
system administrator to make these changes, as parameters depend 
upon the operating system and version you are using.

 Gathering and Analyzing Remote Evidence
Utilizing a combination of PowerShell and Python to gather evidence from 

systems other than the one we are running on is critical in order to expand 

the scope of our investigations. Let’s first look at a very useful PowerShell 

CmdLet for both local and remote investigations: Get-DNSClientCache.

DNS Client cache, or DNS resolver cache, is a local database 

maintained by the operating system. It contains evidence of recent visits to 

web sites and other Internet locations. Simply put, DNS Client cache is just 

a  record of recent DNS lookups that speeds access to already resolved web 

site IP addresses. Note that clearing the history of your web browser to hide 

your activity does not include the Operating Systems DNS resolver cache. 

Many cleaning programs will clear this cache, but it can be overlooked by 

users and it may provide important evidence of recent activity.

The DNS, or Doman Name System, provides a translation from friendly 

names like microsoft.com, google.com, and python-forensic.org to the IP 

addresses they reside at. Each time you enter an address in your browser 

Figure 5-1. Enable PowerShell Remoting

Chapter 5  powerShell/python InveStIgatIon example



127

like www.amazon.com, a DNS lookup is performed to translate the human 

readable address into an IP address that can be accessed.

Starting the Get DNSClientCache process after clearing the cache 

produces the following results.

PS C:\WINDOWS\system32> Get-DnsClientCache | Select-Object 

-Property Entry

Of course, nothing is returned from the CmdLet because the cache is 

empty.

In order to add data to the DnsClientCache open a web browser and 

load the Google home page as shown in Figure 5-2.

Executing the CmdLet now delivers some expected and not-expected 

results (Listing 5-2).

Figure 5-2. Launch browser and navigate to the Google home page

Chapter 5  powerShell/python InveStIgatIon example

http://www.amazon.com


128

Listing 5-2. Results from the Get-DnsClientCache CmdLet

PS C:\WINDOWS\system32> Get-DnsClientCache | Select-Object 

-Property Entry

Entry

-----

beacons.gcp.gvt2.com

beacons.gcp.gvt2.com

beacons.gcp.gvt2.com

google.com

google.com

google.com

google.com

google.com

google.com

bolt.dropbox.com

The stored DNS locations for google.com would of course be expected 

since the google.com page was opened. However, what is the beacons.gcp.

gvt.com lookup? It is owned by google according to online research and is 

used by google to track activity and to provide automated assist when you 

type in the Google search window. The bolt.dropbox.com is unrelated to 

the www.google.com access, rather it was accessed due to a routine sync as 

Dropbox is running on the system.

As with other CmdLets, Get-ClientDnsCache has additional properties 

and member functions associated with it. They can be examined by piping 

the output of Get-ClientDnsCache to Get-Member as shown in Figure 5-3.

Chapter 5  powerShell/python InveStIgatIon example

http://www.google.com


129

One good example is the TimeToLive property, which provides 

information regarding how long the DNS Client cache entry will persist in 

seconds. The knowledge that these entries only exist for a specific period 

certainly requires some urgency in collecting this information during an 

investigation. See Listing 5-3.

Listing 5-3. Obtaining the Time to Live for Each DnsClientCache 

Entry

PS C:\WINDOWS\system32> Get-DnsClientCache | Select-Object 

-Property Entry, TimetoLive

Entry                      TimetoLive

-----                      ----------

www.gstatic.com                    17

ssl.gstatic.com                   292

Figure 5-3. Member methods and properties for Get- DnsClientCache

Chapter 5  powerShell/python InveStIgatIon example



130

www.google.com                    244

apis.google.com                   131

apis.google.com                   131

apis.google.com                   131

apis.google.com                   131

apis.google.com                   131

apis.google.com                   131

apis.google.com                   131

google.com                        292

google.com                        292

google.com                        292

google.com                        292

google.com                        292

google.com                        292

fonts.gstatic.com                 292

fonts.gstatic.com                 292

encrypted-tbn0.gstatic.com        292

 Invoking Remote Access
A more significant application of Get-DnsClientCache is of course to 

execute this CmdLet remotely targeting systems under investigation.  

Using the Invoke-Command, targeting of the Lenovo-Upstairs computer in 

order to capture the recent DnsClientCaches is shown in Listing 5- 4.  

The output was abbreviated in order to highlight more interesting 

locations, specifically the access to dfinews.com, forensicsmag.com, and 

steganography.com.

Chapter 5  powerShell/python InveStIgatIon example



131

Listing 5-4. Remote Invocation of Get-DnsClientCache

PS C:\WINDOWS\system32> Invoke-Command -ComputerName Lenovo- 

Upstairs -Credential Lenovo-Upstairs\Remote-Admin -ScriptBlock 

{Get-DnsClientCache | Select-Object -Property Entry |Out- String}

Entry

-----

www.dfinews.com

www.dfinews.com

www.forensicmag.com

www.forensicmag.com

www.forensicmag.com

www.forensicmag.com

www.forensicmag.com

...

... reduced results for brevity

...

steganography.com

steganography.com

www.wired.com

www.wired.com

www.wired.com

www.wired.com     

 Building a PowerShell Script for DnsCache 
Acquisition
Unfortunately, there were hundreds of cached entries to sort through 

when this CmdLet was launched. Filtering or searching these results would 

be a tedious process for investigators. Therefore, why not create a Python 

Chapter 5  powerShell/python InveStIgatIon example



132

script that leverages a PowerShell script to search the results based on a 

list of suspicious web sites or keywords of interest? Using the PowerShell 

script model that was created in Chapter 4, only a few simple tweaks are 

necessary to have application here:

 1. Change the synopsis

 2. Change the description

 3. Modify the input parameters

 4. Utilize the Get-ClientDnsCache CmdLet

Listing 5-5 shows the PowerShell script.

Listing 5-5. CacheAcquire.ps1 PowerShell Script

<#

.synopsis

Collect ClientDnsCache

- User Specifies the target computer

The script will produce a simple ascii output file containing 

the recent DnsCache from the target computer

.Description

This script collects DnsCache from the Target Computer

.parameter targetComputer

Specifies the computer to collect the USB Activity

.parameter user

Specifies the Administrator UserName on the Target Computer

.parameter resultFile

Specifies the full path of the output file

Chapter 5  powerShell/python InveStIgatIon example



133

.example

./CacheAcquire.ps1 -user Lenovo-Upstairs\Remote-Admin 

-targetComputer Lenovo-Upstairs -resultFile cache.txt

Collects the recent DnsCache from the target computer

#>

# Parameter Definition Section

param(

    [string]$user,

    [string]$targetComputer,

    [string]$resultFile

)

# Obtain the ClientDnsCache from target computer and store the 

result in a local variable

$r = Invoke-Command -ComputerName $targetComputer -Credential 

$user -ScriptBlock {Get-DnsClientCache | Select-Object 

-Property Entry | Out-String}

# Write the resulting list in simple ascii to a specified  

local file

$r | Out-File $resultFile -Encoding ascii

One important note: When using the Invoke-Command, any output 

file creation takes place on the remote system. Therefore, capture the result 

of the script in a variable ($r in this example) and then pipe the variable to 

the requested local file.

Sample execution of the script from within PowerShell ISE is shown in 

Figures 5-4 to 5-6.

Chapter 5  powerShell/python InveStIgatIon example



134

Figure 5-6. Resulting cache.txt file

Figure 5-5. Resulting cache list

Figure 5-4. CacheAcquire.ps1 execution and credential entry

Chapter 5  powerShell/python InveStIgatIon example



135

As with previous PowerShell scripts, using Get-Help will provide the 

details necessary to allow other users to also leverage the script (Listing 5-6).

Listing 5-6. Display Help for the CacheAcquire PowerShell Script

PS C:\PS> Get-Help .\CacheAcquire.ps1

NAME

    C:\PS\CacheAcquire.ps1

SYNOPSIS

    Collect ClientDnsCache

    - User Specifies the target computer

     The script will produce a simple ascii output file 

containing the recent DnsCache from the target computer

SYNTAX

     C:\PS\CacheAcquire.ps1 [[-user] <String>] 

[[-targetComputer] <String>] [[-resultFile] <String>] 

[<CommonParameters>]

DESCRIPTION

    This script collects DNS cache from the Target Computer

RELATED LINKS

REMARKS

     To see the examples, type: "get-help C:\PS\CacheAcquire.ps1 

-examples".

     For more information, type: "get-help C:\PS\CacheAcquire.

ps1 -detailed".

     For technical information, type: "get-help C:\PS\

CacheAcquire.ps1 -full".

Chapter 5  powerShell/python InveStIgatIon example



136

 Python Script and PowerShell CacheAquire 
Script
Now that we have a reliable PowerShell script to acquire DNS cache from 

remote computers, the next step is to build a Python script that will launch 

the PowerShell script, then search the subsequent results. The general 

concept is to search the acquired DNS cache using a set of keywords that 

are provided to the Python script from a file. See Listing 5-7.

Listing 5-7. AcquireDNS.py

'''

Acquire DNS Scripts from a Remote Computer

Version 1.0 January 2018

Author: Chet Hosmer

PYTHON Version 3.x is Required

'''

''' LIBRARY IMPORT SECTION '''

import subprocess       # subprocess library

import argparse         # argument parsing library

import os               # Operating System Path

''' ARGUMENT PARSING SECTION '''

def ValidateFile(theFile):

    ''' Validate the File exists

        it must exist and we must have rights

        to read from the folder.

        raise the appropriate error if either

        is not true

    '''

Chapter 5  powerShell/python InveStIgatIon example



137

    # Validate the file exists

    if not os.path.exists(theFile):

        raise argparse.ArgumentTypeError('File does not exist')

    # Validate the file is readable

    if os.access(theFile, os.R_OK):

        return theFile

    else:

         raise argparse.ArgumentTypeError('File is not 

readable')

#End ValidateFile ===================================

''' Specify and Parse the command line, validate the arguments 

and return results'''

parser = argparse.ArgumentParser('Remote Client DNS Cache with 

PowerShell  - Version 1.0 January 2018')

parser.add_argument('-c', '--computer',  required=True,

                     help="Specify a target Computer for 

Aquistion")

parser.add_argument('-u', '--user',      required=True,

                    help="Specify the remote user account")

parser.add_argument('-t', '--tmp',       required=True,

                     help="Specify a temporary result file for 

the PowerShell Script")

parser.add_argument('-s', '--srch',      required=True,

                     type=ValidateFile, help="Specify the 

keyword search file")

Chapter 5  powerShell/python InveStIgatIon example



138

args = parser.parse_args()

computer = args.computer

user     = args.user

tmp      = args.tmp

srch     = args.srch

print("DNS Cache Acquisition\n")

print("Target:       ", computer)

print("User:         ", user)

print("Keyword File: ", srch)

'''KEYWORD LOADING SECTION '''

print("Processing Keyword Input")

try:

    with open(srch, 'r') as keywordFile:

        words = keywordFile.read()

        word = words.lower()

        words = words.strip()

        wordList = words.split()

        wordSet = set(wordList)

        keyWordList = list(wordSet)

        print("\nKeywords to search")

        for eachKeyword in keyWordList:

            print(eachKeyword)

        print()

except Exception as err:

    print("Error Processing Keyword File: ", str(err))

    quit()

Chapter 5  powerShell/python InveStIgatIon example



139

''' MAIN SCRIPT SECTION '''

if __name__ == '__main__':

    try:

        "' POWERSHELL EXECUTION SECTION "'

        print()

         command = "powershell -ExecutionPolicy ByPass -File  

C:/PS/CacheAcquire.ps1"+" -targetComputer "+ 

        computer+ " -user "+user+ "

        -resultFile "+tmp

        print("Executing: ", command)

        print()

         powerShellResult = subprocess.run(command, 

stdout=subprocess.PIPE)

        if powerShellResult.stderr == None:

            '''DNS CACHE SEARCHING SECTION '''

            hitList = []

            try:

                with open(tmp, 'r') as results:

                    for eachLine in results:

                        eachLine = eachLine.strip()

                        eachLine = eachLine.lower()

                        for eachKeyword in keyWordList:

                            if eachKeyword in eachLine:

                                hitList.append(eachLine) 

            except Exception as err:

                print("Error Processing Result File: ", str(err))

Chapter 5  powerShell/python InveStIgatIon example



140

            '''RESULT OUTPUT SECTION '''

            print("Suspicous DNS Cache Entries Found")

            for eachEntry in hitList:

                print(eachEntry)

            print("\nScript Complete")

        else:

            print("PowerShell Error:", p.stderr)

    except Exception as err:

        print ("Cannot Create Output File: "+str(err))

        quit()

The script has been broken down into the following sections. Each will 

be explained:

• LIBRARY IMPORT

• ARGUMENT PARSING

• KEYWORD LOADING

• POWERSHELL EXECUTION

• DNS CACHE SEARCHING

• RESULT OUTPUT

LIBRARY IMPORT: As the name implies, this is where the needed 

Python libraries are loaded. They include:

• subprocess: Used to launch the PowerShell script

• os: Used for file and folder validation

• argparse: Used for parsing the command line 

arguments

Chapter 5  powerShell/python InveStIgatIon example



141

ARGUMENT PARSING: This section sets up and then processes user 

command line arguments. For this script the required arguments include 

the following:

• -c specifies the target computer name.

• -u specifies the remote computer user name.

• -t specifies the tmp file that will be used by the 

PowerShell script to store the acquired DNS cache data.

• -s specifies the local file that contains keywords to 

search.

The argparse library in Python automatically processes the command 

line and validates that the user has entered all the required arguments. 

The library will also provide help if requested. To obtain the help, simply 

execute the script with only the -h option as shown in Listing 5-8.

Listing 5-8. Python Script Help Output Using the -h Switch

usage: Remote Client DNS Cache with PowerShell- Version 1.0 

January 2018

       [-h] -c COMPUTER -u USER -t TMP -s SRCH

optional arguments:

  -h, --help            show this help message and exit

  -c COMPUTER, --computer COMPUTER

                        Specify a target Computer for Aquistion

  -u USER, --user USER  Specify the remote user account

  -t TMP, --tmp TMP      Specify a temporary result file for the 

PowerShell Script

  -s SRCH, --srch SRCH  Specify the keyword search file

Chapter 5  powerShell/python InveStIgatIon example



142

KEYWORD LOADING: This section opens the designated keyword 

file and creates a list of unique keywords found in the file (Figure 5-7). The 

section strips any extraneous characters from each entry, and ensures that 

all entries are in lowercase to enable the best search matching.

POWERSHELL EXECUTION: This section launches the PowerShell 

script. It first creates a variable named command that will be used by the 

subprocess.run() method to launch the PowerShell script. It specifies the 

PowerShell script CacheAcquire.ps1. Upon completion of the subprocess 

command, the standard error or stderr result is checked for successful 

completion. The result should be None. If not, the Python script will report 

the error generated by PowerShell.

Figure 5-7. Sample keywords file

Chapter 5  powerShell/python InveStIgatIon example



143

DNS CACHE SEARCHING: This section processes each line from 

the cache results generated by PowerShell. Each line is then checked 

to determine if any of the unique keywordsv are found. If a keyword is 

detected, that entire line is stored in the Python hitList variable.

RESULT OUTPUT: This section iterates through each entry of the 

Python hitList variable and prints each result to the screen.

Figure 5-8 depicts the successful execution of the AcquireDNS.py 

Python script that leverages the CacheAcquire.ps1 PowerShell script. The 

script was executed from the Windows command line with administrator 

privilege.

C:\PS>python AcquireDNS.py -c PYTHON-3

-u PYTHON-3\USER-HIDDEN -t c:\ps\tmp.txt -s c:\ps\keywords.txt

Figure 5-8. Acquire DNS remote in action

Chapter 5  powerShell/python InveStIgatIon example



144

The script output first shows:

 1. Details of the extracted command line arguments:

 a. Target Computer

 b. Remote User Name

 c. Local Keyword File

 2. The decoded list of keywords that were extracted 

from the local keyword file

 3. The details of the PowerShell command line 

generated from the inputs

 4. The matching DNS cache entries that contain 

keywords from the keyword list

 Overview of Client DNS Cache Acquisition 
and Search
This example expands on the model that leverages the PowerShell 

acquisition strengths with a Python script that can search the results. More 

importantly, this model was used to acquire Client DNS cache data from a 

specified remote computer using the Invoke-Command CmdLet.

The Python script could be expanded to include a list of computers 

and relevant user accounts in order to automate the acquisition and the 

automated search of Client DNS cache on demand.

 Challenge Problem: Multiple Target 
Computer DNSCache Acquisition
Utilizing what you have learned about the execution of PowerShell scripts 

from Python and the model that has been provided:

Chapter 5  powerShell/python InveStIgatIon example



145

• Expand upon the solution provided by loading a list of 

target computes along with the required user accounts.

• In addition to searching each of the resulting Client 

DNS cache results, determine which DNS entries were 

common across all the computers that were accessed.

 Summary
This chapter focused on the execution of PowerShell CmdLets and 

scripts directed via Python to acquire Client DNS cache from both the 

local computer and a specified remote device. The chapter delivered yet 

another PowerShell script that can be used either standalone or driven by 

the accompanying Python script to access, process, and search the results.

Finally, the Python language, libraries, and data types were discussed 

by example. These included argument parsing, subprocess usage, 

dictionaries, functions, and the general Python program structure.

Chapter 6 will discuss some future considerations that can expand 

upon the combination of PowerShell and Python for investigative use. In 

addition, the included appendix provides both PowerShell and Python/

PowerShell combined examples that deliver a solid baseline for future 

investigations and expansion.

Chapter 5  powerShell/python InveStIgatIon example



147© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_6

CHAPTER 6

Launching Python 
from PowerShell
So far, the approach to integrating Python with PowerShell has been to 

launch PowerShell scripts from Python as a subprocess. In this chapter, the 

roles will be reversed, and PowerShell will feed data to Python scripts. One 

of the key elements of PowerShell is pipelining the process of transferring 

the results of one CmdLet to the next. With that in mind, why not treat 

Python as just another pipeline element and execute Python scripts driven 

by data acquired by PowerShell?

 Reversing Roles from PowerShell to Python
A PowerShell script and a Python script are both necessary to illustrate this 

method. We will start with a simple PowerShell script to pass a string of 

data across the pipe and display that data from the Python script.



148

 Examine the PowerShell Script
Let’s examine the details of the PowerShell script shown in Figure 6-1. The 

script is broken down into four simple steps:

 1. Define a local variable $Python with the full path 

to the Python executable of your choice. For this 

example, Python 3.x will be again used.

 2. Define a local variable $Script that defines the full 

path to the Python script that will be executed.

 3. Define a local variable $Message that will be passed 

via the pipeline to the Python script.

 4. This line passes the contents of the variable message 

to the Python script. The key element here is the 

ampersand (&) that directs PowerShell to launch the 

external program.

Figure 6-1. BasicOne.ps1 PowerShell script

Chapter 6  LaunChing python from powerSheLL



149

 Examine the Corresponding Python Script
Examining the corresponding Python script shown in Figure 6-2, we see 

that it is broken down into four sections as well:

 1. A comment block that defines what the script will 

perform.

 2. Import of the Python Standard Library sys. This is 

needed to process the data passed across the pipeline.

 3. Print messages delivered from Python to 

demonstrate that the Python script is executing.

 4. Processes each line delivered to the script via the 

pipeline and print the contents of each line. Note 

that in this example there is only one line passed.

Figure 6-2. BasicOne.py Python script

Chapter 6  LaunChing python from powerSheLL



150

 Executing the Combined PowerShell to Python 
Scripts
Figure 6-3 depicts the resulting output generated by the PowerShell script 

driving the Python script. You’ll notice that that the output from both the 

PowerShell script (write-host CmdLet) and the Python (print) statements 

appear in the PowerShell output.

Using this method, now let’s examine a more interesting use of the 

BasicOne method shown here.

 Extracting Possible Proper Names from Text 
Documents
In this example, the PowerShell script will utilize the Get-ChildItem 

CmdLet and Get-Content CmdLet to obtain the contents of text files and 

pass the entire contents to a Python script. The Python script will process 

the content passed, again using the BasicOne method and attempt to 

extract possible proper names.

Figure 6-3. Execution of BasicOne.ps1 driving BasicOne.py

Chapter 6  LaunChing python from powerSheLL



151

When examining simple text data during a forensic investigation, it 

is often useful to extract and rank proper names by the highest number 

of occurrences. The Python language has built-in capabilities that will 

perform this extraction swiftly and easily.

BUT FIRST, WHAT IS A PROPER NAME?

Linguistics defines proper names as those words that represent a person, 

place, group, organization, or thing that typically begins with a capital letter. 

for example, proper names in a single word (such as David, Smith, Carol, 

washington, Canada, pentagon, Congress, or apple) can provide context 

and value to the investigation. in normal texts, these proper names are most 
likely capitalized and quite easy to strip, identify, count, and sort. it should be 

noted that not everyone would routinely capitalize proper names; however, 

smartphones, text messaging apps, e-mail programs, word processors, and 

even the Skype chat window automatically capitalize these for us. thus, 

extracting and ranking them can provide a quick look and provide perspective 

to an investigation.

 Examine the PowerShell Script
Figure 6-4 shows the PowerShell script that will deliver the content of these 

files to the more complex Python script that will perform the extraction 

and ranking of the possible proper names. Note, for this example, a new 

element has been added to allow the processing of multiple files.

Chapter 6  LaunChing python from powerSheLL



152

The script has been broken down into six steps. Each step is defined here:

 1. Define a local variable $Python with the full path to 

the Python executable of your choice.

 2. Define a local variable $Script that identifies the full 

path to the Python script that will be executed.

 3. Define a local variable $targetPath that identifies the 

target path and file types to process.

 4. Utilize the Get-ChildItem CmdLet to obtain the 

names of the files that match the extension provided.

Figure 6-4. PowerShell ProperNames script

Chapter 6  LaunChing python from powerSheLL



153

 5. Write information to the host that includes the list 

of files that were discovered by the Get-ChildItem 

CmdLet.

 6. Using a ForEach loop, process each file listed in the 

local variable $files. Within the loop the script prints 

out the name of each file, then extracts the raw 

content of the file and pipes the resulting content to 

the Python script.

 Examine the Corresponding Python 
ProperNames Script
The Python script shown in Listing 6-1 is broken down into six major 

sections described here:

 1. LIBRARY IMPORT

 2. STOP WORDS LIST DEFINITION

 3. DEFINING PSEUDO CONSTANTS

 4. EXTRACT PROPER NAMES

 5. MAIN PROGRAM ENTRY

 6. PRINT RESULTING POSSIBLE PROPER NAMES

LIBRARY IMPORT: As the name implies, this is where the needed 

Python libraries are loaded. They include:

• sys: As demonstrated in BasicOne, this library allows us 

to process command line input delivered by PowerShell.

• re: The Python regular expression library is used in this 

script to strip out extraneous character from the text in 

order to simplify the search for proper names.

Chapter 6  LaunChing python from powerSheLL



154

• datetime: As the name implies, this library provides 

methods for display and calculating time and date 

details.

STOP WORDS LIST DEFINITION: This section creates a list of stop 

words that are used to within the script eliminate words that do not 

provide probative value when assessing proper names. They are in fact 

words that commonly start sentences that would be capitalized. Thus, 

eliminating these words from the results produces improved results.

DEFINING PSEUDO CONSTANTS: Traditional constants do not exist in 

the Python language, however, by capitalizing these variable alerts the reader 

that these variables should not be altered. In this case the variables MIN_SIZE 

and MAX_SIZE define the limits on possible proper names. By changing 

these values, you can widen or narrow the range of possible proper names.

EXTRACT PROPER NAMES FUNCTION: This is the core function of 

the script that processes the content piped from the PowerShell script. The 

function will be called for each line processed from standard input. The 

function extract possible proper names from the string input and add them 

to the dictionary. If the name already exists in the dictionary the function 

updates the dictionary value which contains the occurrences for that 

specific possible proper name.

MAIN PROGRAM ENTRY: The main program first prints several 

heading messages. Then creates an empty properNamesDictionary. Then 

as in the BasicOne.py example the script processes each line from the 

system standard input provided by the PowerShell script. Each line is 

then converted using the regular expression to eliminate any non-alpha 

characters. Each converted string is passed the ExtractProperNames 

function along with the current properNamesDictionary. This process is 

then repeated for each line provided to the script.

PRINT RESULTING POSSIBLE PROPER NAMES: The final section 

sorts the resulting dictionary by occurrences (highest first) and then prints 

out each proper name and the associated counts.

Chapter 6  LaunChing python from powerSheLL



155

Listing 6-1. Python ProperNames.py Script

'''

Copyright (c) 2019 Python Forensics and Chet Hosmer

Permission is hereby granted, free of charge, to any person 

obtaining a copy of this softwareand associated documentation 

files (the "Software"), to deal in the Software without 

restriction, including without limitation the rights to use, copy, 

modify, merge, publish, distribute, sublicense, and/or sell copies 

of the Software, and to permit persons to whom the Software is 

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be 

included in all copies or substantial

portions of the Software.

 ProperNames Demonstration

 Version 1.3

 January 2019

 Requirement: Python 3.x

 usage:

 stdin | python properNames.py

 Script will process the piped data

'''

''' LIBRARY IMPORT SECTION '''

# import standard module sys

import sys

# import the regular expression library

# in order to filter out unwanted characters

import re

Chapter 6  LaunChing python from powerSheLL



156

# import datetime method from Standard Library

from datetime import datetime

''' STOP WORDS LIST DEFINITION SECTION '''

# COMMON STOP WORDS LIST

# What are stop_words: Words which are

# typically filtered

# out when processing natural language data (text)

# feel free to add additional words to the list

STOP_WORDS = [

"able","about","above","accordance","according",

"accordingly","across","actually","added","affected",

"affecting","affects","after","afterwards","again",

"against","almost","alone","along","already","also",

"although","always","among","amongst","announce",

"another","anybody","anyhow","anymore","anyone",

"anything","anyway","anyways","anywhere","apparently",

"approximately","arent","arise","around","aside",

"asking","auth","available","away","awfully","back",

"became","because","become","becomes","becoming",

"been","before","beforehand","begin","beginning",

"beginnings","begins","behind","being",

"believe","below","beside","besides","between",

"beyond","both","brief","briefly","came","cannot",

"cause","causes","certain","certainly","come",

"comes","contain","containing","contains","could",

"couldnt","date","different","does","doing","done",

"down","downwards","during","each","effect","eight",

"eighty","either","else","elsewhere","end",

"ending","enough","especially","even","ever",

"every","everybody","everyone","everything",

Chapter 6  LaunChing python from powerSheLL



157

"everywhere","except","fifth","first","five",

"followed","following","follows","former","formerly",

"forth","found","four","from","further",

"furthermore","gave","gets","getting",

"give","given","gives","giving","goes",

"gone","gotten","happens","hardly","has","have",

"having","hence","here","hereafter","hereby",

"herein","heres","hereupon","hers","herself",

"himself","hither","home","howbeit","however",

"hundred","immediate","immediately","importance",

"important","indeed","index","information",

"instead","into","invention","inward","itself",

"just","keep","keeps","kept","know","known",

"knows","largely","last","lately","later","latter",

"latterly","least","less","lest","lets","like",

"liked","likely","line","little","look","looking",

"looks","made","mainly","make","makes","many",

"maybe","mean","means","meantime","meanwhile",

"merely","might","million","miss","more","moreover",

"most","mostly","much","must","myself","name",

"namely","near","nearly","necessarily","necessary",

"need","needs","neither","never","nevertheless",

"next","nine","ninety","nobody","none","nonetheless",

"noone","normally","noted","nothing","nowhere",

"obtain","obtained","obviously","often","okay",

"omitted","once","ones","only","onto","other",

"others","otherwise","ought","ours","ourselves",

"outside","over","overall","owing","page","pages",

"part","particular","particularly","past","perhaps",

"placed","please","plus","poorly","possible","possibly",

"potentially","predominantly","present","previously",

"primarily","probably","promptly","proud","provides",

Chapter 6  LaunChing python from powerSheLL



158

"quickly","quite","rather","readily","really","recent",

"recently","refs","regarding","regardless",

"regards","related","relatively","research",

"respectively","resulted","resulting","results","right",

"run","said","same","saying","says","section","see",

"seeing","seem","seemed","seeming","seems","seen",

"self","selves","sent","seven","several","shall",

"shed","shes","should","show","showed","shown",

"showns","shows","significant","significantly",

"similar","similarly","since","slightly","some",

"somebody","somehow","someone","somethan",

"something","sometime","sometimes","somewhat",

"somewhere","soon","sorry","specifically","specified",

"specify","specifying","still","stop","strongly",

"substantially","successfully","such","sufficiently",

"suggest","sure","take","taken","taking","tell",

"tends","than","thank","thanks","thanx","that",

"thats","their","theirs","them","themselves","then",

"thence","there","thereafter","thereby","thered",

"therefore","therein","thereof","therere",

"theres","thereto","thereupon","there've","these",

"they","think","this","those","thou","though","thought",

"thousand","through","throughout","thru","thus",

"together","took","toward","towards","tried","tries",

"truly","trying","twice","under","unfortunately",

"unless","unlike","unlikely","until","unto","upon",

"used","useful","usefully","usefulness","uses","using",

"usually","value","various","very","want","wants",

"was","wasnt","welcome","went","were","what","whatever",

"when","whence","whenever","where","whereafter","whereas",

"whereby","wherein","wheres","whereupon","wherever",

"whether","which","while","whim","whither","whod",

Chapter 6  LaunChing python from powerSheLL



159

"whoever","whole","whom","whomever","whos","whose",

"widely","will","willing","wish","with","within","without",

"wont","words","world","would","wouldnt",

"your","youre","yours","yourself","yourselves"]

''' DEFINING PSEUDO CONSTANTS SECTION '''

# PSEUDO CONSTANTS,

# Feel Free to change the minimum and

# maximum name length

MIN_SIZE = 3      # Minimum length of a proper name

MAX_SIZE = 20     # Maximum length of a proper name

''' EXTRACT PROPER NAMES SECTION '''

def ExtractProperNames(theString, dictionary):

    ''' Input String to search,

        Output Dictionary of Proper Names

    '''

    # Extract each continuous string of characters

    wordList = theString.split()

    # Now, let's determine which words are possible

    # proper names and create a list of them.

    '''

    For this example words are considered possible

    proper names if they are:

    1) Title case

    2) Meet the minimum and maximum length criteria

    3) The word is NOT in the stop word list

    The Python built in string method string.istitle()

    is used to identify title case

Chapter 6  LaunChing python from powerSheLL



160

    '''

    for eachWord in wordList:

        if eachWord.istitle() and len(eachWord) >=

              MIN_SIZE and len(eachWord) <= MAX_SIZE and

              eachWord.lower() not in STOP_WORDS:

            '''

            if the word meets the specified conditions

              it is added to the properNamesDictionary

            '''

            try:

                # if the word exists in the dictionary

                  # then add 1 to the occurances

                cnt = properNamesDictionary[eachWord]

                properNamesDictionary[eachWord] =

                   cnt + 1

            except:

                # If the word is not yet in the

                  # dictionary

                # add it and set the number of

                # occurances to 1

                properNamesDictionary[eachWord] = 1

        else:

            # otherwise loop to the next possible word

            continue

    # the function returns the created

    #   properNamesDictionary

    return properNamesDictionary

Chapter 6  LaunChing python from powerSheLL



161

# End Extract Proper Names Function

''' MAIN PROGRAM ENTRY SECTION '''

'''

Main program for Extract Proper Names

'''

if __name__ == "__main__":

    ''' Main Program Entry Point '''

    print("\nPython Proper Name Extraction ")

    print("Python Forensics, Inc. \n")

    print("Script Started", str(datetime.now()))

    print()

    # Create empty dictionary

    properNamesDictionary = {}

    for eachLine in sys.stdin:

        txt = re.sub("[^A-Za-z']", ' ', eachLine)

        '''

        Call the ExtractProperNames function

        which returns a Python dictionary of possible

        proper names along with the number of occurances

        of that name.

        This function performs all the heavy lifting

        of extracting out each possible proper name

        '''

        properNamesDictionary =

           ExtractProperNames(txt,

           properNamesDictionary)

Chapter 6  LaunChing python from powerSheLL



162

    # Once all the standard input lines are read

    # the value is the number of occurrences of the

    # proper name

    # This approach will print out the possible

    # proper names with

    # the highest occurrence first

    '''

    PRINT RESULTING POSSIBLE PROPER NAMES

    SECTION '''

    print()

    for eachName in sorted(properNamesDictionary,

        key=properNamesDictionary.get, reverse=True):

        print('%4d'  %

             properNamesDictionary[eachName],end="")

        print( '%20s' % eachName)

    print("\n\nScript Ended", str(datetime.now()))

    print()

# End Main Function

 Executing the Combined PowerShell to Python 
ProperNames Scripts
The PowerShell script was then executed against a small directory of text 

files. The files were stored in the C:\PS\Text folder for ease of access. You 

can change the target folder variable $targetPath to modify the target 

folder. See Figure 6-5.

Chapter 6  LaunChing python from powerSheLL



163

Figure 6-5. Resulting output PowerShell/Python combination 
(output reduced for brevity)

Chapter 6  LaunChing python from powerSheLL



164

The output is broken down into three sections:

Section 1: This is the output generated by the Write- 

Host CmdLet within the PowerShell script.

Sections 2–3: These are the results generated by 

the Python script processing of the BookOne.

txt. The output is repeated for BookTwo.txt as the 

PowerShell loops through all the text files found in 

the specified directory.

After examining the output of the combined PowerShell/Python 

scripts even with the abbreviated output, you will likely be able to 

determine the text that these possible proper names were extracted from. 

This is only one possibility of processing the content of files acquired by 

PowerShell and then delivering that output to Python for post-processing.

This combination provides a baseline model that can be duplicated 

for additional results. Also, by inserting Invoke-Command sequences in 

the PowerShell script, you can collect files and file contents throughout 

the enterprise. Now let’s look at another approach that passes a list of file 

names to the Python script vs. the content of the files themselves.

 Extracting EXIF Data from Photographs
For this example, the PowerShell script will be kept small and the heavy 

lifting will be off-loaded to the Python script where we will leverage key 

libraries to extract EXIF data including the geo-location information 

contained in the EXIF headers of JPEG images.

 PowerShell Script
The PowerShell script in Figure 6-6 is broken down into four common 

elements with a slight twist.

Chapter 6  LaunChing python from powerSheLL



165

 1. Define a local variable $Python with the full path to 

the Python executable of your choice.

 2. Define a local variable $Script that defines the full 

path to the Python script that will be executed.

 3. Define a local variable $files that stores the set 

of files that match the search criteria *.jpg. The 

$jpegList local variable extracts the full path of each 

file and eliminates the headers leaving just the list of 

files that we intend to process.

 4. This line passes the contents of the local variable 

$jpegList to the Python script. The key element 

here is the ampersand (&) that directs PowerShell 

to launch the external program. The Python script 

will receive each full pathname acquired by the 

PowerShell script, one per line passed via stdin.

Figure 6-6. PowerShell PhotoMap.ps1 script

Chapter 6  LaunChing python from powerSheLL



166

 pyGeo.py Python Script
The Python script depicted in Listing 6-2 is broken down into eight major 

sections described here:

 1. LIBRARY IMPORT

 2. DEFINING PSEUDO CONSTANTS

 3. EXTRACT GPS DICTIONARY

 4. EXTRACT LATTITUDE AND LONGITUDE

 5. CONVERT GPS COORDINATES TO DEGRESS

 6. MAIN PROGRAM ENTRY

 7. GENERATE RESULTS TABLE

 8. GENERATE CSV FILE

LIBRARY IMPORT: As the name implies, this is where the needed 

Python libraries are loaded. They include:

• os: The Python standard os library is used to access 

operating system methods such as to validate the 

existence of files or directories.

• sys: As demonstrated in BasicOne, this library allows 

us to process command line input delivered by 

PowerShell.

• datetime: As the name implies, this library provides 

methods for display and calculating time and date 

details.

• PIL: The third-party Python Image library provides 

methods to access and extract EXIF data including 

geolocation information.

Chapter 6  LaunChing python from powerSheLL



167

• prettytable: The third-party Python library provides 

the ability to tabularize data within a simple text-based 

table structure.

EXTRACT GPS DICTIONARY: This function is passed a filename to 

process, and verifies that the file is a valid image, and contains geolocation 

information. If it does, the geolocation information is collected, with GPS 

Dictionary and basic EXIF data is returned.

EXTRACT LATITUDE AND LONGITUDE: This function extracts the 

GPSLatitude and GPSLongitude and the associated reference from the GPS 

Dictionary provided. These values are not stored as degrees which most 

mapping programs require. Therefore, they are converted to degrees using 

the ConvertToDegress function. The orientation is then set accordingly. 

For example, if the latitude reference is South, then the latitude in degrees 

must be set to a negative value.

CONVERT TO DEGRESS: This function converts the GPS Coordinates 

stored in the EXIF data to degrees.

MAIN PROGRAM ENTRY: The main program first prints several 

heading messages. Then creates an empty picture list. Then as in the 

BasicOne.py example, the script processes each line from the system 

standard input provided by the PowerShell script. Each line contains 

the full path of files identified by the associated PowerShell script. Each 

filename is then appended to the picture list.

Next, an empty latLonList is created to hold the results of the GPS 

extraction from each picture. Each file is verified to exist, then the Extract 

GPS Dictionary is called. If the resulting GPS Dictionary contains data, the 

Extract Latitude Longitude function is called. Providing that valid latitude 

/ longitude data is found, the base name of the file, the latitude and 

Longitude data are appended to the latLonList.

GENERATE RESULTS TABLE: The generate results table section 

produces a pretty table of results from the latLonList. Once the table is 

created, it is printed so the results of the extraction can be displayed in 

PowerShell.

Chapter 6  LaunChing python from powerSheLL



168

GENERATE CSV FILE: Finally, the script generates a comma separated 

value (CSV) file LatLon.csv. This is formatted such that it can be imported 

into a Web-based mapping tool.

Listing 6-2. pyGeo.py Python Script

'''

EXIF Data Acquistion

January 2019

Version 1.1

'''

'''

Copyright (c) 2019 Chet Hosmer, Python Forensics

Permission is hereby granted, free of charge, to any person 

obtaining a copy of this software and associated documentation 

files (the "Software"), to deal in the Software without 

restriction, including without limitation the rights to use, 

copy, modify, merge, publish, distribute, sublicense, and/

or sell copies of the Software, and to permit persons to whom 

the Software is furnished to do so, subject to the following 

conditions:

The above copyright notice and this permission notice shall be 

included in all copies or substantial

portions of the Software.

'''

# Usage Example:

# fileList | python pyExif.py

#

# Requirement: Python 3.x

#

Chapter 6  LaunChing python from powerSheLL



169

# Requirement: 3rd Party Library that is

#              utilized is: PILLOW

#              to install PILLOW utilize the follow CMD

#              from the command line

#

#              pip install PILLOW

#

# The Script will extract the EXIF/GEO data from jpeg

# files piped into the script and generate tabular list # of 

the extracted EXIF and geo location data along with # the 

creation of a CSV file with LAT/LON Data

#

''' LIBRARY IMPORT SECTION '''

# Python Standard: Operating System Methods

import os

# Python Standard : System Methods

import sys

# Python Standard  datetime method from Standard Library

from datetime import datetime

# import the Python Image Library

# along with TAGS and GPS related TAGS

# Note you must install the PILLOW Module

# pip install PILLOW

from PIL import Image

from PIL.ExifTags import TAGS, GPSTAGS

# Import the PrettyTable Library to produce

# tabular results

from prettytable import PrettyTable

Chapter 6  LaunChing python from powerSheLL



170

''' EXTRACT GPS DICTIONARY SECTION '''

#

# Extract EXIF Data

#

# Input: Full Pathname of the target image

#

# Return: gps Dictionary and selected exifData list

#

def ExtractGPSDictionary(fileName):

    try:

        pilImage = Image.open(fileName)

        exifData = pilImage._getexif()

    except Exception:

        # If exception occurs from PIL processing

        # Report the

        return None, None

    # Interate through the exifData

    # Searching for GPS Tags

    imageTimeStamp = "NA"

    cameraModel = "NA"

    cameraMake = "NA"

    gpsData = False

    gpsDictionary = {}

    if exifData:

        for tag, theValue in exifData.items():

            # obtain the tag

            tagValue = TAGS.get(tag, tag)

Chapter 6  LaunChing python from powerSheLL



171

            # Collect basic image data if available

            if tagValue == 'DateTimeOriginal':

                imageTimeStamp =

                              exifData.get(tag).strip()

            if tagValue == "Make":

                cameraMake = exifData.get(tag).strip()

            if tagValue == 'Model':

                cameraModel = exifData.get(tag).strip()

            # check the tag for GPS

            if tagValue == "GPSInfo":

                gpsData = True;

                # Found it !

                # Use a Dictionary to hold the GPS Data

                # Loop through the GPS Information

                for curTag in theValue:

                    gpsTag = GPSTAGS.get(curTag, curTag)

                    gpsDictionary[gpsTag] =

                                     theValue[curTag]

        basicExifData = [imageTimeStamp,

                         cameraMake, cameraModel]

        return gpsDictionary, basicExifData

    else:

        return None, None

# End ExtractGPSDictionary ============================

''' EXTRACT LATTITUDE AND LONGITUDE SECTION '''

#

Chapter 6  LaunChing python from powerSheLL



172

# Extract the Lattitude and Longitude Values

# From the gpsDictionary

#

def ExtractLatLon(gps):

    # to perform the calcuation we need at least

    # lat, lon, latRef and lonRef

    try:

        latitude     = gps["GPSLatitude"]

        latitudeRef  = gps["GPSLatitudeRef"]

        longitude    = gps["GPSLongitude"]

        longitudeRef = gps["GPSLongitudeRef"]

        lat = ConvertToDegrees(latitude)

        lon = ConvertToDegrees(longitude)

        # Check Latitude Reference

        # If South of the Equator then

             lat value is negative

        if latitudeRef == "S":

            lat = 0 - lat

        # Check Longitude Reference

        # If West of the Prime Meridian in

        # Greenwich then the Longitude value is negative

        if longitudeRef == "W":

            lon = 0- lon

        gpsCoor = {"Lat": lat,

                   "LatRef":latitudeRef,

                   "Lon": lon,

                   "LonRef": longitudeRef}

Chapter 6  LaunChing python from powerSheLL



173

        return gpsCoor

    except:

        return None

# End Extract Lat Lon =======================================

''' CONVERT GPS COORDINATES TO DEGRESS '''

#

# Convert GPSCoordinates to Degrees

#

# Input gpsCoordinates value from in EXIF Format

#

def ConvertToDegrees(gpsCoordinate):

    d0 = gpsCoordinate[0][0]

    d1 = gpsCoordinate[0][1]

    try:

        degrees = float(d0) / float(d1)

    except:

        degrees = 0.0

    m0 = gpsCoordinate[1][0]

    m1 = gpsCoordinate[1][1]

    try:

        minutes = float(m0) / float(m1)

    except:

        minutes=0.0

    s0 = gpsCoordinate[2][0]

    s1 = gpsCoordinate[2][1]

    try:

Chapter 6  LaunChing python from powerSheLL



174

        seconds = float(s0) / float(s1)

    except:

        seconds = 0.0

     floatCoordinate = float (degrees + (minutes / 60.0) + 

(seconds / 3600.0))

    return floatCoordinate

''' MAIN PROGRAM ENTRY SECTION '''

if __name__ == "__main__":

    '''

    pyExif Main Entry Point

    '''

    print("\nExtract EXIF Data from JPEG Files")

    print("Python Forensics, Inc. \n")

    print("Script Started", str(datetime.now()))

    print()

    ''' PROCESS PIPED DATA FROM POWERSHELL SECTION '''

    pictureList = []

    # Process data from standard input as a file list

    for eachLine in sys.stdin:

        entry = eachLine.strip()

        if entry:

            pictureList.append(entry)

    print("Processing Photos ...")

    print()

    # CDH

Chapter 6  LaunChing python from powerSheLL



175

    # Created a mapping object

    ''' PROCESS EACH JPEG FILE SECTION '''

    latLonList = []

    for targetFile in pictureList:

        if os.path.isfile(targetFile):

            gpsDictionary, exifList =

                    ExtractGPSDictionary(targetFile)

            if exifList:

                TS = exifList[0]

                MAKE = exifList[1]

                MODEL = exifList[2]

            else:

                TS = 'NA'

                MAKE = 'NA'

                MODEL = 'NA'

            if (gpsDictionary != None):

                # Obtain the Lat Lon values from

                # the gpsDictionary

                #   Converted to degrees

                # The return value is a dictionary

                #   key value pairs

                dCoor = ExtractLatLon(gpsDictionary)

                if dCoor:

                    lat = dCoor.get("Lat")

                    latRef = dCoor.get("LatRef")

                    lon = dCoor.get("Lon")

Chapter 6  LaunChing python from powerSheLL



176

                    lonRef = dCoor.get("LonRef")

                    if ( lat and lon and

                         latRef and lonRef):

                        latLonList.append(

                          [os.path.basename(targetFile),

                          '{:4.4f}'.format(lat),

                          '{:4.4f}'.format(lon),

                          TS, MAKE, MODEL])

                    else:

                        print("WARNING",

                              "No GPS EXIF Data for ",

                              targetFile)

                else:

                    continue

            else:

                continue

        else:

            print("WARNING", " not a valid file", targetFile)

    # Create Result Table Display using PrettyTable

    ''' GENERATE RESULTS TABLE SECTION '''

    ''' Result Table Heading '''

    resultTable = PrettyTable(['File-Name',

                      'Lat','Lon',

                      'TimeStamp',

                      'Make', 'Model'])

    for loc in latLonList:

Chapter 6  LaunChing python from powerSheLL



177

        resultTable.add_row( [loc[0], loc[1],

                              loc[2], loc[3],

                              loc[4], loc[5] ])

    resultTable.align = "l"

    print(resultTable.get_string(sortby="File-Name"))

    ''' GENERATE CSV FILE SECTION '''

    # Create Simple CSV File Result

    with open("LatLon.csv", "w") as outFile:

        # Write Heading

        outFile.write("Name, Lat, Long\n")

        # Process All entries and write

        # each line comma separated

        for loc in latLonList:

            outFile.write(loc[0]+","+

                          loc[1]+","+

                          loc[2]+"\n")

    print("LatLon.csv File Created Successfully")

    print("\nScript Ended", str(datetime.now()))

    print()

 Executing the Combined PowerShell to Python 
exifxtract Scripts
The final step is to execute the PowerShell script which will pass the 

identified filenames to the Python script. The folder C:\PS\Photos contains 

a set of JPEG photographs to examine. By changing the $files variable in 

the PowerShell script, you can specify an alternative directory to examine. 

See Figure 6-7.

Chapter 6  LaunChing python from powerSheLL



178

The script processed a sample directory with nine JPEG image files. 

The results included the table of filenames associated with extracted  Lat/

Lon values. The LatLon.csv file was also created. The resulting Lat/Lon 

results can be then imported into web resources such as Google Maps to 

provide a visual mapping of the results.

 Summary
This chapter focused on the development of a model to execute Python 

scripts from PowerShell. The model used the standard PowerShell piping 

model to acquire specific data and provide the output to the specified 

Python scripts using the PowerShell piping method.

These examples focused on small PowerShell scripts that perform 

discrete acquisitions, and then ultimately used Python’s rich capabilities to 

perform the heavy lifting to process the results.

Figure 6-7. Execution of photoMap.ps1

Chapter 6  LaunChing python from powerSheLL



179

This model provides a rich baseline for experimentation, acquisition, 

and combination of PowerShell and Python. In some ways, this model 

seems slightly more streamlined than the subprocess method used to 

execute PowerShell scripts from Python. Both have their place of course, 

whether to control and automate existing PowerShell scripts or to drive 

output from PowerShell to Python.

Chapter 6  LaunChing python from powerSheLL



181© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_7

CHAPTER 7

Loose Ends and 
Future Considerations
Having developed two solid approaches for the integration of PowerShell 

and Python (i.e., Python subprocessing and PowerShell pipelining), 

there are a couple of loose ends and future considerations that need to be 

addressed.

 Loose Ends
The first involves using the PowerShell Invoke-Command CmdLet without 

needing to respond to a login pop-up each time, as shown in Figure 7-1.



182

This can be accomplished by creating a new credential object using 

the PowerShell System Management Automation PSCredential system. 

Figure 7-2 shows a simple PowerShell script that acquires the system event 

log from the computer PLUTO, using the Remote-Admin user credentials. 

This requires only four steps:

 1. Create two local PowerShell variables: 

$targetComputer (the computer name you wish 

to access) and $userName (the username on the 

remote computer).

 2. Create a plaintext string, $password, with the 

password associated with the remote user. Note the 

password is blacked out here. When embedding 

passwords in PowerShell scripts, it is vital that you 

keep the script secure from unauthorized access.

Figure 7-1. Windows PowerShell credential request

Chapter 7  Loose ends and Future Considerations



183

 3. This step contains two important parts:

 a. First, the plaintext password is converted to 

the secure string, $securePassword. The secure 

string created by the ConvertTo- SecureString 

CmdLet can then be utilized with other 

CmdLets or functions that require a parameter 

with the type SecureString.

 b. Next, the secure credential object, $credential, is 

created. This requires $userName and the newly 

created $securePassword as parameters.

 4. Finally, the newly created $credential PowerShell 

variable can be passed as the -Credential parameter 

within the Invoke-Command CmdLet.

Execution of the script acquires the system event log from the PLUTO 

computer as shown in Figure 7-3. Note the output was truncated for 

brevity.

Figure 7-2. PowerShell script to collect a remote event log with 
embedded credentials

Chapter 7  Loose ends and Future Considerations



184

The second improvement leveraged the embedded credential 

approach. The main reason for embedding credentials (beyond 

convenience) is so that scripts can acquire data from multiple remote 

computers from the same script without the requirement for interaction. 

One method to accomplish this is to create a list of target computer names 

to access. PowerShell lists are useful and can be used to loop through 

multiple selections using the foreach operator. Figure 7-4 shows an example 

that acquires system logs from two computers defined in a PowerShell list.

Note For this example, the username and password for each target 
will be the same to keep the illustration simple. the example can 
be expanded to include unique usernames and passwords for each 
target as well, of course.

Figure 7-3. EventProcessCred.ps1 sample execution

Figure 7-4. Acquiring system event logs from multiple target 
computers with embedded credentials

Chapter 7  Loose ends and Future Considerations



185

This script is broken down into three steps:

 1. This section creates a PowerShell object 

$listOfTargets which is a simple list of strings. Each 

string represents the name of a target computer. 

The newly created list has no elements. The 

$listOfTargets is then populated using the Add 

method that is associated with the PowerShell list 

object that was created.

 2. The default $remoteUser variable is created and 

set to “Remote-Admin” which is the remote user 

Admin account that will be used. In addition, the 

$securePassword is created that will be used to 

access each remote target. Note the $credential 

is not created yet because it needs to be created 

uniquely for each target acquisition.

 3. Finally, a loop is created that will do the following:

 a. Display the name of the Host being processed 

each time through the loop.

 b. Combine the current $targetComputer and the 

default $remoteUser name to create the unique 

$userName for this target. For example:

PLUTO\Remote-Admin.

 c. Using the PowerShell System.Management.

Automation capability, the unique $credential 

is then created each time through the loop, 

using the $userName and $securePassword 

PowerShell variables.

Chapter 7  Loose ends and Future Considerations



186

 d. Then the Invoke-Command to acquire the 

system event log is executed with the current 

$targetComputer and the associated $credential 

required for access.

The abbreviated script output is shown in Figure 7-5.

Future Considerations
Integrating PowerShell and Python and combining two very powerful 

scripting environments has been a joy to work on. The research, 

experimentation, and model creation have been trying at times; however, 

the result is two viable and useful methods that will allow for the 

expansion of investigative solutions.

A rich basis for digital investigators can be found with the literally 

thousands of PowerShell CmdLets available to acquire material evidence 

from target computers locally or remotely. Combining that with the 

versatility and power of the Python environment brings forth the 

opportunity for boundless innovations and solutions.

Given these two models for integration, I challenge you to develop 

and expand new solutions that combine the best of both environments. I 

still think of PowerShell as a potent acquisition engine and Python as the 

backend analysis and processing component. However, that’s only my 

view – you may have different ideas. So, run with those as well, the models 

provided here can support a wide range of possibilities.

Figure 7-5. Multiple target computer system event log execution

Chapter 7  Loose ends and Future Considerations



187

 Summary
This chapter focused on a couple of loose ends that will improve the 

automation aspects of PowerShell by embedding credentials with 

PowerShell scripts. This embedding enables multiple simultaneous 

acquisitions of evidence that can then be delivered to or driven by Python 

elements. This will certainly expand the reach of investigators and speed 

the acquisition and analysis of acquired evidence.

Good luck, and I look forward to communicating and collaborating 

on new investigative solutions that combine PowerShell and Python in 

unique ways.

Chapter 7  Loose ends and Future Considerations



189© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0

 APPENDIX A

Challenge Problem 
Solutions
The appendix contains solutions to several of the challenge problems 

presented in Chapter 1 through Chapter 5. Note that not all challenge 

problems are solved here as this is not meant to be a crossword puzzle 

cheat section. Rather, it provides key insights that will be needed to solve 

the challenges.

I firmly believe the only way to become proficient with Python, 

PowerShell, or the combination of both is to practice. One of the best 

ways to do this is to define a challenge you would like to solve, then 

start small and try different approaches. Then, and only then, integrate 

your experiments into scripts or programs. Note that this is slightly 

counter to traditional computer science approaches to waterfall or even 

spiral development; however, I believe this is the best way to learn. In 

one of my first books Python Forensics1 I coined the phrase “test then 

code.” At the time this was very fitting for the development of Python 

scripts, and I strongly believe that it still aligns well today for both 

PowerShell and Python.

1 Syngress, 2014.

https://doi.org/10.1007/978-1-4842-4504-0


190

The appendix is broken down by chapter for easy reference.

Note Just a reminder that many of the CmdLets and scripts require 
administrator privilege.

 Chapter 1: Investigative CmdLets to Explore

 Challenge One: Executing a “Find” Based on File 
Extension
PS C:\WINDOWS\system32> Get-Help Get-ChildItem

NAME

    Get-ChildItem

SYNOPSIS

    Gets the files and folders in a file system drive.

 Example A: Find All Files with .jpg Extension

PS C:\WINDOWS\system32> get-childitem C:\ -include *.jpg 

-recurse -force

Directory: C:\$Recycle.Bin\S-1-5-21-1545112040-36671619-

2396729391-1001\$RPSE7Z2\PHOTO

Mode                LastWriteTime         Length Name

----                -------------         ------ ----

-a----        8/15/2018  11:24 AM          26903 20-fake- 

images-10.jpg

-a----        8/15/2018  11:21 AM          37651 20-fake- 

images-20.jpg

Appendix A  ChALLenge probLem SoLutionS



191

-a----        8/21/2018   8:01 AM          85175 area-51- 

caller.jpg

-a----        7/30/2018   9:52 AM         177153 jets.JPG

-a----        8/21/2018   7:54 AM          137948 moon_landing_

hoax.jpg

Directory: C:\IMAGES

Mode                LastWriteTime        Length Name

----                -------------        ------ ----

-a----         9/3/2018   2:58 PM        624744 Biking.jpg

-a----         9/3/2018   2:58 PM       1224201 Castle.JPG

-a----         9/3/2018   2:58 PM        446759 Cat.jpg

-a----         9/3/2018   2:58 PM        600630 Deutchland.JPG

-a----         9/3/2018   2:58 PM        304930 Disney.jpg

-a----         9/3/2018   2:58 PM         96831 dscn0011.jpg

-a----         9/3/2018   2:58 PM          98012 kinderscout.jpg

-a----         9/3/2018   2:58 PM        252607 Munich.JPG

-a----         9/3/2018   2:58 PM       3352190 Rome.jpg

-a----         9/3/2018   2:58 PM         91329 Turtle.jpg

-a----         9/3/2018   2:58 PM          5459 zzz.jpg

--- OUTPUT truncated for brevity

 Example B: Display Hidden System Files in C:\

PS C:\WINDOWS\system32> Get-ChildItem c:\ -Hidden -System

Directory: C:\

Mode                LastWriteTime        Length  Name

----                -------------        ------  ----

d--hs-         2/5/2017   1:43 PM                $Recycle.Bin

d--hs-        1/21/2019   4:09 PM                Config.Msi

d--hsl         2/5/2017   1:49 PM                 Documents and 

Settings

Appendix A  ChALLenge probLem SoLutionS



192

d--hs-        1/31/2019   8:05 AM                 System Volume 

Information

-arhs-        7/16/2016   7:43 AM        384322  bootmgr

-a-hs-        7/16/2016   7:43 AM             1  BOOTNXT

-a-hs-        1/12/2019  11:32 AM     5111406592  hiberfil.sys

-a-hs-        1/28/2019  11:20 PM    3891789824  pagefile.sys

-a-hs-       12/20/2018   1:56 PM      268435456  swapfile.sys

 Challenge Two: Examining Network Settings

 Example A: Get Basic TCP Network Settings

PS C:\WINDOWS\system32> Get-Help Get-NetIPConfiguration

NAME

    Get-NetIPConfiguration

SYNOPSIS

    Gets IP network configuration.

PS C:\WINDOWS\system32> Get-NetIPConfiguration -All

InterfaceAlias       : Ethernet

InterfaceIndex       : 8

InterfaceDescription : Realtek PCIe GBE Family Controller

NetProfile.Name      : hoz  3

IPv4Address          : 192.168.86.36

IPv6DefaultGateway   :

IPv4DefaultGateway   : 192.168.86.1

DNSServer            : 192.168.86.1

Appendix A  ChALLenge probLem SoLutionS



193

 Example B: Get Current TCP Connections

PS C:\WINDOWS\system32> Get-NetTCPConnection | select-object 

-Property LocalAddress, RemoteAddress, State, OwningProcess | 

Format-Table -AutoSize

LocalAddress  RemoteAddress        State OwningProcess

------------  -------------        ----- -------------

192.168.86.36 52.114.74.45   Established         67228

192.168.86.36 162.125.9.3      CloseWait        132676

192.168.86.36 162.125.33.7     CloseWait        132676

192.168.86.36 23.32.68.10    Established        156280

192.168.86.36 162.125.18.133 Established        132676

192.168.86.36 162.125.34.129 Established        132676

192.168.86.36 162.125.9.7      CloseWait        132676

192.168.86.36 17.249.156.16  Established         17736

192.168.86.36 162.125.18.133 Established        132676

192.168.86.36 162.125.9.4      CloseWait        132676

192.168.86.36 162.125.34.129 Established        132676

 Challenge Three: Examining Firewall Settings

 Example A: Check the Current Local Firewall State

PS C:\WINDOWS\system32> get-Help Get-NetFirewallProfile

NAME

    Get-NetFirewallProfile

SYNOPSIS

     Displays settings that apply to the per-profile configurations  

of the Windows Firewall with Advanced Security.

PS C:\WINDOWS\system32> Get-NetFirewallProfile | Select-Object 

-Property Enabled, Profile

Appendix A  ChALLenge probLem SoLutionS



194

Enabled Profile

------- -------

   True Domain

   True Private

   True Public

 Chapter 2: CmdLet Experimentation
In Chapter 2, the Start and Stop Transcript CmdLets will be used to capture 

the results of each CmdLet output. The resulting transcript is included at the 

end of this section with a selection of CmdLets that were experimented with.

PS C:\WINDOWS\system32> Get-Help Start-Transcript

NAME

    Start-Transcript

SYNOPSIS

     Creates a record of all or part of a Windows PowerShell 

session to a text file.

PS C:\WINDOWS\system32> Get-Help Stop-Transcript

NAME

    Stop-Transcript

SYNOPSIS

    Stops a transcript.

PS C:\WINDOWS\system32> Start-Transcript c:\PS\Transcript\

transcript.txt

Transcript started, output file is c:\PS\Transcript\transcript.

txt

Appendix A  ChALLenge probLem SoLutionS



195

 Transcript of Commands and Responses
Note: Some output was abbreviated.

**********************

Windows PowerShell transcript start

Start time: 20190131103013

Username: PYTHON-3\cdhsl

RunAs User: PYTHON-3\cdhsl

Configuration Name:

Machine: PYTHON-3 (Microsoft Windows NT 10.0.17134.0)

Host Application: C:\WINDOWS\system32\WindowsPowerShell\v1.0\

PowerShell_ISE.exe

Process ID: 41620

PSVersion: 5.1.17134.407

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.17134.407

BuildVersion: 10.0.17134.407

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

**********************

Transcript started, output file is c:\PS\Transcript\transcript.txt

PS C:\WINDOWS\system32> Get-Process -ComputerName .

Appendix A  ChALLenge probLem SoLutionS



196

Handles  NPM(K)    PM(K)   WS(K)      CPU(s)      Id  SI  ProcessName

-------  ------    -----   -----      ------      --  --  -----------

    470      22     6524    4172    2,793.53   55708   2  AdobeCollabSync

    277      14     2692     708        0.17   56592   2  AdobeCollabSync

    238      23     9184     156        0.23  113824   2   ApplePhoto 

Streams

    487      28    19988   22108       14.77   79164   2   Application 

FrameHost

    166       9     2084     100        0.09  183548   2  AppVShNotify

    157       8     1804     104        0.02  209908   0  AppVShNotify

    375      25     5160    2020        2.17   17736   2  APSDaemo

   1326      74   232108  173896       43.73  184112   2  POWERPNT

   1210      86   380800  397292      240.86   41620   2  powershell_ise

    941      91    50384   10732        3.31  166420   0  PRSvc

    307      28    31836    1536        1.66   35788   2   QtWebEngine 

Process

    339      15     6444    3408        3.67   12076   2  RAVBg64

    345      16     7136    4712        3.77   23452   2  RAVBg64

    608      26    19760    1536        0.41    6204   0  RealSenseDCM

      0      14     1388   20876      167.36      96   0  Registry

    449      20    10136   15780        9.48   17068   2  RemindersServer

    220       9     1792     160        0.08    2540   0   RtkAudio 

Service64

    126       9     1532     528        0.05  216496   2  rundll32

    120       7     1384    6136        0.00  168436   0  SearchFilterHost

   1241      83    57844   54048       52.45  161508   0  SearchIndexer

     52       3      504     208        0.41     452   0  smss

    220      13     5172    5116      223.39    2364   0  svchost

    155       9     1696     424        0.09   14104   2   TUAuto 

Reactivator64

Appendix A  ChALLenge probLem SoLutionS



197

    329      20     6296    11196     851.14   60052   2   TuneUpUtilities 

App64

   1167      34    46024    32928  12,831.14   63708   0   TuneUpUtilities 

Service64

    198      14     2912     3408       2.34    4224   0  UploaderService

    124       8     1400      316       0.52   15912   2  WavesSvc64

    110       8     2624      156       0.02    4380   0  WavesSysSvc64

    156      10     1528       36       0.02     724   0  wininit

    247      10     2668     2528       3.83  215952   2  winlogon

   1754      91   200124   197816     415.23   67228   2  WINWORD

    343      14    15340    13956     971.41   15696   0  WmiPrvSE

    308      17    11144     8360     319.03   24228   0  WmiPrvSE

    237      10     2348      764       0.61  132372   0  WUDFHost

PS C:\WINDOWS\system32> Get-Process -Name chrome

Handles  NPM(K)    PM(K)    WS(K)     CPU(s)      Id  SI  ProcessName

-------  ------    -----    -----     ------      --  --  -----------

    271      21    18696    24180       0.16   26420   2  chrome

    338      32    94600    49056      11.11   48132   2  chrome

    273      25    36024    36760       1.44   76284   2  chrome

    558      30    92792    67576      26.75   83340   2  chrome

    343      30    80788    87232       3.33   88260   2  chrome

    266      19    13940    17364       0.08  115852   2  chrome

    142      11     1988     7236       0.05  128480   2  chrome

    356      33    97140    78868       3.84  128952   2  chrome

    223      10     2100     7252       0.03  148004   2  chrome

    267      21    21652    23044       0.25  149520   2  chrome

    273      22    26964    26600       0.30  197144   2  chrome

   1639      73   115292   110896      64.27  214792   2  chrome

Appendix A  ChALLenge probLem SoLutionS



198

PS C:\WINDOWS\system32> Get-MpThreat

None reported

PS C:\WINDOWS\system32> get-service | where-object {$_.Status 

-eq "Stopped"}

Status   Name               DisplayName

------   ----               -----------

Stopped  AJRouter           AllJoyn Router Service

Stopped  ALG                Application Layer Gateway Service

Stopped  AppIDSvc           Application Identity

Stopped  AppReadiness       App Readiness

Stopped  AppVClient         Microsoft App-V Client

Stopped  AppXSvc            AppX Deployment Service (AppXSVC)

Stopped  AssignedAccessM... AssignedAccessManager Service

Stopped  AxInstSV           ActiveX Installer (AxInstSV)

Stopped  BcastDVRUserSer...  GameDVR and Broadcast User 

Service_...

Stopped  BDESVC             BitLocker Drive Encryption Service

Stopped  BluetoothUserSe...  Bluetooth User Support 

Service_2a63...

Stopped  Bonjour Service    Bonjour Service

Stopped  CaptureService_... CaptureService_2a637185

Stopped  CertPropSvc        Certificate Propagation

Stopped  ssh-agent          OpenSSH Authentication Agent

Stopped  SupportAssistAgent Dell SupportAssist Agent

Stopped  svsvc              Spot Verifier

Stopped  swprv               Microsoft Software Shadow Copy 

Prov...

Stopped  TermService        Remote Desktop Services

Stopped  TieringEngineSe... Storage Tiers Management

Stopped  TrustedInstaller   Windows Modules Installer

Stopped  tzautoupdate       Auto Time Zone Updater

Appendix A  ChALLenge probLem SoLutionS



199

Stopped  UevAgentService     User Experience Virtualization 

Service

Stopped  UmRdpService        Remote Desktop Services UserMode 

Po...

Stopped  upnphost           UPnP Device Host

Stopped  VacSvc             Volumetric Audio Compositor Service

Stopped  vds                Virtual Disk

Stopped  VMAuthdService     VMware Authorization Service

Stopped  vmicguestinterface Hyper-V Guest Service Interface

Stopped  vmicheartbeat      Hyper-V Heartbeat Service

Stopped  vmickvpexchange    Hyper-V Data Exchange Service

Stopped  vmicrdv             Hyper-V Remote Desktop 

Virtualizati...

Stopped  vmicshutdown       Hyper-V Guest Shutdown Service

Stopped  vmictimesync        Hyper-V Time Synchronization 

Service

Stopped  vmicvmsession      Hyper-V PowerShell Direct Service

Stopped  vmicvss             Hyper-V Volume Shadow Copy 

Requestor

Stopped  VMnetDHCP          VMware DHCP Service

Stopped  VMUSBArbService    VMware USB Arbitration Service

Stopped  VMware NAT Service VMware NAT Service

PS C:\WINDOWS\system32> Get-Location

Path

----

C:\WINDOWS\system32

PS C:\WINDOWS\system32> Set-Location C:\PS

Appendix A  ChALLenge probLem SoLutionS



200

PS C:\PS> Test-NetConnection

ComputerName           : internetbeacon.msedge.net

RemoteAddress          : 13.107.4.52

InterfaceAlias         : Ethernet

SourceAddress          : 192.168.86.36

PingSucceeded          : True

PingReplyDetails (RTT) : 24 ms

PS C:\PS> Get-Disk | Format-List *

DiskNumber            : 0

PartitionStyle        : GPT

ProvisioningType      : Fixed

OperationalStatus     : Online

HealthStatus          : Healthy

BusType               : SATA

UniqueIdFormat        : FCPH Name

OfflineReason         :

UniqueId              : 5000039751D8A26D

AdapterSerialNumber   :

AllocatedSize         : 1000203837440

BootFromDisk          : True

FirmwareVersion       : AX0P3D

FriendlyName          : TOSHIBA MQ01ABD100

Guid                  : {ea267102-e3e3-4a17-b349-e5e0161bc012}

IsBoot                : True

IsClustered           : False

IsHighlyAvailable     : False

IsOffline             : False

IsReadOnly            : False

IsScaleOut            : False

IsSystem              : True

Appendix A  ChALLenge probLem SoLutionS



201

LargestFreeExtent     : 1048576

Location              : Integrated : Adapter 0 : Port 0

LogicalSectorSize     : 512

Manufacturer          :

Model                 : TOSHIBA MQ01ABD100

Number                : 0

NumberOfPartitions    : 6

Path                  :  \\?\scsi#disk&ven_toshiba&prod_mq01abd1

00#4&1b6d0cbc&0&000000#{53f56307-b6bf-

11d0-94f2-00a0c91efb8b}

PhysicalSectorSize    : 4096

SerialNumber          :            X6LSTAXNT

Signature             :

Size                  : 1000204886016

PSComputerName        :

CimClass              :  ROOT/Microsoft/Windows/Storage:MSFT_

Disk

CimInstanceProperties :  {ObjectId, PassThroughClass, 

PassThroughIds, 

PassThroughNamespace...}

CimSystemProperties   :  Microsoft.Management.Infrastructure.

CimSystemProperties

DiskNumber            : 2

PartitionStyle        : MBR

ProvisioningType      : Fixed

OperationalStatus     : Online

HealthStatus          : Healthy

BusType               : USB

UniqueIdFormat        : Vendor Specific

OfflineReason         :  USBSTOR\DISK&VEN_DYMO&PROD_PNP&REV_1.00\

7&347EDADD&0&15314622032011&0:PYTHON-3

Appendix A  ChALLenge probLem SoLutionS



202

AdapterSerialNumber   :

AllocatedSize         : 4193792

BootFromDisk          : False

FirmwareVersion       : 1.00

FriendlyName          : DYMO PnP

Guid                  :

IsBoot                : False

IsClustered           : False

IsHighlyAvailable     : False

IsOffline             : False

IsReadOnly            : False

IsScaleOut            : False

IsSystem              : False

LargestFreeExtent     : 0

Location              : Integrated : Adapter 0 : Port 0

LogicalSectorSize     : 512

Manufacturer          : DYMO

Model                 : PnP

Number                : 2

NumberOfPartitions    : 1

PhysicalSectorSize    : 512

SerialNumber          : 15314622032011

Signature             : 6975421

Size                  : 4193792

PSComputerName        :

CimClass              :  ROOT/Microsoft/Windows/Storage:MSFT_

Disk

CimInstanceProperties :  {ObjectId, PassThroughClass, 

PassThroughIds, 

PassThroughNamespace...}

Appendix A  ChALLenge probLem SoLutionS



203

CimSystemProperties   :  Microsoft.Management.Infrastructure.

CimSystemProperties

PS C:\PS> Stop-Transcript

**********************

Windows PowerShell transcript end

End time: 20190131103856

**********************

 Chapter 3: Create File Inventory List 
with Hashes
#

# Simple file Inventory Script

#

# Function to convert size values to human readable

function GetMBSize($num)

{

    $suffix = "MB"

    $MB = 1048576

    $num = $num / $MB

    "{0:N2} {1}" -f $num, $suffix

}

# Set Report Title

$rptTitle = "File Inventory"

# Get the current date and tme

$rptDate=Get-Date

# Set the target Directory and parameters

$targetDirectory = "c:\"

Appendix A  ChALLenge probLem SoLutionS



204

# Create HTML Header Section

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color: 

black; border-collapse: collapse;}

TD {border-width: 1px; padding: 3px; border-style: solid; 

border-color: black;}

</style>

<p>

<b> $rptTitle</b>

<p>

<b> Date: $rptDate </b>

<p>

<b> Target: $targetDirectory </b>

<p>

"@

# Provide script output for user

Write-Host "Create Simple File Inventory"

$dir = Get-ChildItem $targetDirectory -File

# Create an empty array to hold values

$outArray = @()

# Loop through each file found

foreach ($item in $dir)

{

     # create and object to hold item values from separate 

CmdLets

     $tempObj = "" | Select "FileName", "Attribute", "Size", 

"HashValue"

Appendix A  ChALLenge probLem SoLutionS



205

    # Get the fullname including path

    $fullName  = $item.FullName

    # Get the attributes assoicated with this file

    $attributes = $item.Attributes

    $size       = GetMBSize($item.Length)

    # Generate the SHA-256 Hash of the file

     $hashObj = Get-FileHash $fullName -ErrorAction Silently 

Continue

    # Get just the Hash Value

    $hashValue = $hashObj.Hash

    # if hash value could not be generated set to Not Available

    if ([string]::IsNullOrEmpty($hashValue))

    {

        $hashValue = "Not Available"

    }

    # Fill in the tempObj

    $tempObj.FileName  = $fullName

    $tempObj.Attribute = $attributes

    $tempObj.Size      = $size

    $tempObj.HashValue = $hashValue

    # Add the tempObj to the outArray

    $outArray += $tempObj

    # Clear the output array

    $tempObj = $null

}

$outArray | ConvertTo-Html -Head $Header -Property FileName, 

Attribute, Size, HashValue |

 Out-File test.html

Appendix A  ChALLenge probLem SoLutionS



206

#$outArray | ConvertTo-Html | out-file test.html

Write-Host "Script Completed"

Write-Host "test.html created"

 Sample PowerShell Script Output
PS C:\PS> C:\PS\testInventory.ps1

Create Simple File Inventory

Scan the C: Drive for Hidden and System Files Only

Script Completed

test.html created

PS C:\PS>

 HTML Screenshots

 

Note by adding the -System argument to the get-Childitem 
command, you would obtain the system files in the c:\ directory.

Appendix A  ChALLenge probLem SoLutionS



207

 

Note by changing the script $targetFolder and adding the -recurse 
to the get-Childitem command, you can process the entire C:\ drive. 
running the script against the c:\pS\ folder including the -recurse 
parameter we get the following result (truncated for brevity).

Note by changing the $mb variable to $Kb = 1024 you can then 
produce results in Kilobytes, modify the script, and give that a try.

Appendix A  ChALLenge probLem SoLutionS



208

 

Also, utilizing the Invoke-Command CmdLet, you can extend this 

example to collect file inventories of remote systems.

 Chapter 4: Perform Remote Script Execution
Remote PowerShell Command Execution directly from Python:

Appendix A  ChALLenge probLem SoLutionS



209

 Example A: Acquire Remote Processes 
from PLUTO
import subprocess

runningProcess = subprocess.check_output("PowerShell 

-Executionpolicy byPass

                  -Command Invoke-Command -ComputerName PLUTO

-Credential PLUTO\Remote-Admin -ScriptBlock {Get-Process}")

print runningProcess.decode()

 Sample Execution

Appendix A  ChALLenge probLem SoLutionS



210

 Example B: Acquire Remote Services  
from PLUTO
import subprocess

runningServices = subprocess.check_output("PowerShell 

-Executionpolicy byPass

                 -Command Invoke-Command -ComputerName PLUTO

-Credential PLUTO\Remote-Admin -ScriptBlock {Get-Service}")

print runningServices.decode()

Appendix A  ChALLenge probLem SoLutionS



211

 

 Example C: Acquire Remote IP Configuration 
from PLUTO

import subprocess

ipConfig = subprocess.check_output("PowerShell -Executionpolicy 

byPass

                 -Command Invoke-Command -ComputerName PLUTO

-Credential PLUTO\Remote-Admin -ScriptBlock { Get- NetIP 

Configuration -All}")

print ipConfig.decode()

Appendix A  ChALLenge probLem SoLutionS



212

 Chapter 5: Multiple Target Computer 
DNSCache Acquisition
Examining the scripts given in Chapter 6 provides the needed methods 

necessary to complete and advance this challenge. I challenge you to 

complete this one entirely on your own.

Appendix A  ChALLenge probLem SoLutionS



213© Chet Hosmer 2019 
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0

Index

A
argparse library, 108

B
[-b] baselineFile, 109

C
Client DNS cache data, 144
CmdLet experimentation, 

commands and  
responses, 194–203

CmdLet pipelining
challenge problem, 41–43
Format-Table, 25–26
Get-Help, 26, 37–38
Get-Process (see Get-Process)
Get-Service, 23–26
PowerShell transcript, 39–41
Resolve-DnsName, 36–37
Start-Transcript, 37–39
Where-Object, 24

CmdLets investigation
find execution

hidden files, 191
.jpg extension, 190–191

firewall settings,  
local state, 193–194

network settings, TCP, 192, 193
Command-Information-Model 

(CIM), 3
Common-Object-Model (COM), 3

D
Disable-PSRemoting cmdlets, 124
Distributed Component Object 

Model (DCOM), 121
DNS CACHE SEARCHING, 143
DNS Client cache/DNS resolver 

cache, 126
Doman Name System (DNS), 126

E
Enable-PSRemoting

cmdlet, 122–123
Get-Help, 122
Windows PowerShell  

remoting, 123
WinRM service, 124, 126

Enable-PSRemoting cmdlet, 122
Enter-PSSession cmdlet, 80

https://doi.org/10.1007/978-1-4842-4504-0


214

EventProcessor
EventLog CmdLets, 47–48
Get-Help, 62–66
HTML report file, 67–68
script execution, 66

EXIF data extraction
photoMap.ps1, extraction, 178
PowerShell script, 164
pyGeo.py Python Script, 166

F
File Inventory List, Hashes, 203–205

HTML, 206–208
PowerShell Script, 206

foreach operator, 184

G
Get-DNSClientCache

Cmdlet, 128
Google home page,  

navigation, 127
TimeToLive property, 129–130

Get-Process
automatic variables, 27–28
-ExpandProperty command, 29
ForEach-Object, 34
Get-Help, 31–32
Get-NetTCPConnections, 30–32
Name Chrome command, 28–29
OwningProcess, 32–33
Process ID, 29–30

remote IP addresses, 36–37
Single Pipeline Solution, 34–36
variables, 27

H
hitList variable, 143
-h option, 108

I, J, K
Integrated Scripting Environment 

(ISE), 3
Interactive shell, 102
Invoke-Command CmdLet, 133, 144

L, M
Loose ends

EventProcessCred.ps1, 184
Invoke-Command CmdLet, 181
PowerShell credential  

request, 182
system event log, 183, 186

N, O
-Name Parameter, 14

P, Q
PowerShell

evolution, 2
ISE, 3

Index



215

Python, 2
PowerShell CacheAquire script

AcquireDNS.py, 136–139
argument parsing, 141
dns cache searching, 143
DNS remote, 143
library import, 140
loading keywords, 142

PowerShell CmdLets, 7–8
Get-Help services, 9–11
Get-Member, 14, 16–17
Get-Process, 11–14

PowerShell execution, 142
PowerShell pipelining, see CmdLet 

pipelining
PowerShell scripts

basic facts, 46
CacheAcquire, 132
cache.txt file, 134–135
challenge problem, 51, 85–86
CmdLet pipeline execution, 61–62
.description section, 56–57
DNS cache, 135
EventProcessor (see 

EventProcessor)
example section, 57–58
Get-EventLog, 49–50
local variable section, 60–61
parameter, 57, 59–60, 133
remote access, 68–69
script header, 56
.synopsis section, 56
USB device (see USB device)

Proper names, extraction
forensic investigation, 151
PowerShell/Python 

combination, 162–164
PowerShell script, 151–152
Python script, 153–162

[-p] targetPath, 109
Python

argument parsing, 108–109
baseline.txt file, 102
challenge problem, 118–119
CmdLet, 94–95
CreateBaseLine Python  

Script, 104–108, 110
dictionary creation, 109
HashAcquire.ps1 PowerShell 

script, 102, 110
HashAquire.ps1 PowerShell 

Script, 99–102
library import, 107
main section, 109
PowerShell command, 95–96
pickle.load() method, 115–116
pipeline command, 98–99
PowerShell, 91–93, 117–118
Powershell execution, 109
run() method, 109
subprocess.check_output() 

method, 95, 96
TestDictDiff() function, 116
TestDictEquality() function, 116
VerifyBaseline.py script, 110–117
WingIDE, 92–93, 97

Index



216

Python script
ExtractProperNamesFunction, 154
library import, 153
pseudo constants, 154
Python ProperNames.py  

Script, 155–159, 161–162
stop words list, 154

R
Remote Access method, 75
Remote Invocation,  

Get-DnsClientCache, 130–131
Remote Procedure Calls (RPCs), 121
Remote Script execution

remote IP, PLUTO, 211–212
remote processes, PLUTO, 209
remote services, PLUTO, 210

Reversing roles, PowerShell  
script, 148

EXIF data, extraction (see EXIF 
data extraction)

Proper names extraction (see 
Proper names, extraction)

Python script, 149–150

S
SkipNetworkProfileCheck 

parameter, 123
Start-Transcript, 37–39
-System argument, 206

T
[-t] tmpFile, 109

U, V
USB device

Get-ItemProperty, 72–74
Invoke-Command, 75–79, 81
registry history, 70–71
remote computer, 75
USBAcquire script, 82–85

W, X, Y, Z
Windows Management Interface 

(WMI), 3
WingIDE, 92–93, 97
WS-Management technology, 122

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to PowerShell for Investigators
	A Little PowerShell History
	How Is PowerShell Used Today?
	How Do You Experiment with PowerShell?
	Navigating PowerShell ISE
	PowerShell CmdLets
	What Is a CmdLet?
	Introduction to Some Key CmdLets
	Get-Help
	Get-Process
	Get-Member


	Challenge Problems: Investigative CmdLets to Explore
	Challenge One: Executing a “Find” Based on File Extension
	Challenge Two: Examining Network Settings
	Challenge Three: Examining Firewall Settings
	Challenge Four: Your Chance to Explore

	Summary

	Chapter 2: PowerShell Pipelining
	What Is CmdLet Pipelining?
	Example 1: Get-Service
	Example 2: Get-Process
	PowerShell Variables
	PowerShell Automatic Variables
	Breaking Down the CmdLet Usage for Example 2
	Adding the NetTCPConnections CmdLet
	How to Discover CmdLets?
	Using PowerShell Variables with CmdLets
	ForEach-Object
	Creating a Single Pipeline Solution to Example 2
	Resolving Remote IP Addresses


	Adding a Transcript to Track Your Activities
	Challenge Problem: CmdLet Experimentation
	Summary

	Chapter 3: PowerShell Scripting Targeting Investigation
	Basic Facts About PowerShell Scripts
	Example 1: The EventProcessor PowerShell Script
	EventLog CmdLets
	Retrieving More Specific Eventlog Information
	Creating the Script
	Step One: Define the Challenge
	Step Two: Create the Script in Stages
	Script Header
	.Synopsis Section
	.Description Section
	.Parameters Section
	.Examples Section

	Parameter Definition
	Local Variable Definition
	CmdLet Pipeline Execution

	EventProcessor Get-Help Result
	EventProcessor Script Execution
	Resulting Directory
	HTML Output Report

	Remote Access
	Example 2: USB Device Usage Discovery
	Create the Script
	Step One: Recent Accessing USB Activity
	Invoke-Command PowerShell CmdLet

	Step Two: Create the USBAcquire PowerShell Script

	USBAcquire Script Execution
	USBAcquire Get-Help Result

	Challenge Problem: Create File Inventory List with Hashes
	Summary

	Chapter 4: Python and Live Investigation/Acquisition
	What Is “By Example”?
	Directing PowerShell with Python
	Launching PowerShell CmdLets from Python
	Creating a System Files Baseline with PowerShell and Python
	Creating the Baseline with Python
	Verifying the Baseline with Python
	Overview of the New Code Sections in  VerifyBaseline.py

	Overview of Python Execution with PowerShell

	Challenge Problem: Perform Remote Script Execution
	Summary

	Chapter 5: PowerShell/Python Investigation Example
	Enable PowerShell Remoting
	Gathering and Analyzing Remote Evidence
	Invoking Remote Access
	Building a PowerShell Script for DnsCache Acquisition
	Python Script and PowerShell CacheAquire Script
	Overview of Client DNS Cache Acquisition and Search
	Challenge Problem: Multiple Target Computer DNSCache Acquisition
	Summary

	Chapter 6: Launching Python from PowerShell
	Reversing Roles from PowerShell to Python
	Examine the PowerShell Script
	Examine the Corresponding Python Script
	Executing the Combined PowerShell to Python Scripts

	Extracting Possible Proper Names from Text Documents
	Examine the PowerShell Script
	Examine the Corresponding Python ProperNames Script
	Executing the Combined PowerShell to Python ProperNames Scripts

	Extracting EXIF Data from Photographs
	PowerShell Script
	pyGeo.py Python Script
	Executing the Combined PowerShell to Python exifxtract Scripts

	Summary

	Chapter 7: Loose Ends and Future Considerations
	Loose Ends
	Future Considerations
	Summary

	Appendix A:Challenge Problem Solutions
	Chapter 1: Investigative CmdLets to Explore
	Challenge One: Executing a “Find” Based on File Extension
	Example A: Find All Files with .jpg Extension
	Example B: Display Hidden System Files in C:\

	Challenge Two: Examining Network Settings
	Example A: Get Basic TCP Network Settings
	Example B: Get Current TCP Connections

	Challenge Three: Examining Firewall Settings
	Example A: Check the Current Local Firewall State


	Chapter 2: CmdLet Experimentation
	Transcript of Commands and Responses

	Chapter 3: Create File Inventory List with Hashes
	Sample PowerShell Script Output
	HTML Screenshots

	Chapter 4: Perform Remote Script Execution
	Example A: Acquire Remote Processes from PLUTO
	Sample Execution

	Example B: Acquire Remote Services from PLUTO
	Example C: Acquire Remote IP Configuration from PLUTO

	Chapter 5: Multiple Target Computer DNSCache Acquisition

	Index



