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Foreword by Leonardo Cascini

Nowadays, the society hardly accepts loss of lives and damages to properties
caused by natural hazards and require a safer, reliable and resilient community
much more than in the past. An effective way to face with this problem is a proper
risk management strategy that is usually developed through several steps. The first
one is risk analysis that calls for the evaluation of factors generating the risk,
namely the hazards and related consequences. Generally speaking, hazard analysis
requires the estimation of the spatial and temporal probability of an adverse event in
a given area. The consequence analysis involves identifying and quantifying the
elements at risk (i.e. people and properties) and estimating their vulnerability.

Focusing on the hazard analysis, several methods are currently available
depending on the size of the study area, the available dataset, the time given to
technicians to estimate the risk and other relevant factors (e.g. financial resources).
The scientific literature describes steps and procedures for the applicability of these
methods over either small or large areas, suggesting for all of them the proper
individuation of the area affected by the adverse existing or potential event. To this
aim, the availability of a good inventory of the events occurred in the past is a
requirement of particular concern.

In this regard, difficulties in gathering information dramatically increase as the
size of the area to be investigated increases or even when Authorities, in charge
of the land management, prompt the technicians to provide inventory and hazard
zoning maps in a short time and on the basis of the available dataset only. In such a
case, the main questions for technicians are what are the chances to provide con-
sistent answers to so complex and demanding questions? And more in general,
which are the most suitable methods that, in case of data availability, may be used
to provide quantitative and as objective as possible analysis over large areas?

The book Natural Hazards GIS-Based Spatial Modeling Using Data Mining
Techniques provides consistent answers to these questions, and more in general, it
applies as a reference point for the specialists involved in such challenging tasks.
The well-known expertise of the authors allows the readers to go in-depth to all the
available procedures and suggests them new approaches that will be diffusely
adopted in a near future to real case studies, provided that GIS-based spatial models
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are properly calibrated and validated. Moreover, the book covers a number of
hazards that usually are analysed separately, thus providing a comprehensive
overview of potentialities and limits of the proposed approaches.

These represent real strong points of the text and a guarantee of quality for all
people, directly or indirectly, involved in the risk management process since it
allows verifying if the methods adopted by technicians are based on well-known,
consistent and advanced procedures, independently from the specific field of
application. Indeed, I wish all the best to the authors, the editors and the publisher
having in mind that the entire new proposal to succeed must have many of the
components of the book that I had the pleasure of presenting.

Fisciano, Italy Leonardo Cascini
Director of LARAM School

Department of Civil Engineering
University of Salerno
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Foreword by Manfred F. Buchroithner

Having grown up in the mountains of the Eastern Alps, I was exposed to natural
hazards and disasters from my early childhood on. I witnessed snow avalanches,
mud flows, floodings and inundations, landslides, heavy (gully) erosion, rockfalls,
forest fires as well as heavy ice- and hailstorms which frequently lead to windthrow
and deadfall. All these experiences influenced my later research activities and my
consciousness of their importance.

Later, in the 1980s and 1990s, data mining slowly began to penetrate the geo-
sciences, I was introduced to this promising field by colleagues from informatics,
both from East and West. Thus, in my function as Vice Chairman of the European
Association of Remote Sensing Laboratories (EARSeL), I tried to be instrumental
in setting up conferences and workshops dealing with this topic. This intention was
corroborated by my decades-long research activities in High Asia, in particular in
Pamir, Hindu Kush, Tian Shan and the Nepalese Himalaya, as well as in the Andes,
and the cumbersome search for data from these regions where I also experienced
several earthquakes of noticeable intensity. Fieldwork in desert areas, but also in
other regions like the Sahel, made me aware of droughts. By means of GIS-based
spatial modelling using data mining techniques all the mentioned geohazards will
become predictable with a higher degree of certainty.

Out of the approximately 70 Ph.D. students I had the pleasure to supervise and
evaluate so far, some 25–30 dealt with natural disasters resp. hazards. All these
doctoral researchers had to base their studies upon their own but also on existing
data. Hence, data mining also played an important role for their work, not to
mention remote sensing and GIS-based modelling. I would have been happy if I
could have referred them to a book like the present one. Therefore, I can—in
times of “big data” in the widest sense—only congratulate the two editors Hamid
Reza Pourghasemi and Mauro Rossi for their decision and effort to publish a
book about Natural Hazards GIS-Based Spatial Modeling Using Data Mining
Techniques.
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In this sense, and based on my firm personal conviction, I am sure that in times
of an increasing number of natural events the present book is filling an important
gap in the textbooks resp. compendia dealing with natural hazards. May it find its
way into many libraries and private bookshelfs, be they analogue or digital.

Dresden, Germany
October 2017

Manfred F. Buchroithner
Professor Emeritus
Senior Professor

TU Dresden
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Foreword by Nicola Casagli

The reduction of disaster risks, including those caused by natural hazards, is one
of the main problems of the Planet, addressed by most governments and interna-
tional organizations.

Population growth, deforestation and climate change open new challenges for
the safety and the protection of citizens and communities, which require a strong
co-operation between scientists and policy makers.

The UNISDR Sendai Framework for Disaster Risk Reduction 2015–2030
considers the “understanding” of risk as the first priority in the global effort for the
mitigation of the consequences of disasters.

In particular, it is necessary to better understand the risk of natural hazards in all
its components, such as probability of occurrence, magnitude and intensity, vul-
nerability and exposure of people and assets, and their changes in space and in time.

Such knowledge is the starting point for any action of risk prevention, mitiga-
tion, preparedness and response, in order to reduce the environmental impact, to
improve the resilience of communities and the safety of the citizens.

This general objective requires international and interdisciplinary research to
better understand the Earth system dynamics, the effects of climate change, the
population variations, the past and future trends.

In this framework geographic information system and remote sensing play a
crucial role, as they provide scientists and policy makers with powerful tools for the
rapid acquisition of relevant data, for representing risk factors and their spatial
distribution and properties, and for supporting forecasting models and scenario
analyses.

Data mining has been strongly developed in recent years in many fields of
application, due to the availability of large digital data collections, the increased
capacity of big data storage and processing, and the new technology of data har-
vesting (remote sensing, sensor networks) and analysis (machine learning, pattern
recognition).
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This book provides an updated review of the scientific state of the art at inter-
national level on these topics, focusing on the three main categories of natural
disasters: geophysical (landslide and earthquakes), hydrological (floods and ero-
sion) and climatological (subsidence and wildfires).

Several advanced techniques of data mining are presented by the authors,
showing how the scientific community has already developed effective tools for
extracting relevant information from large and complex datasets.

Florence, Italy Nicola Casagli
Professor at University of Florence
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Foreword by Norman Kerle

Natural hazards have been a challenge throughout human history. People’s attitude
towards the multitude of threats has been highly variable, from fatalistically
accepting hazards to trying to outsmart nature through advanced engineering. In
recent decades, it has become increasingly clear that only a comprehensive
understanding of the nature of hazards, when properly integrated in a risk assess-
ment context, is the key to successful coexistence. It is clear that naturally occurring
processes such as earthquakes, flooding or landsliding cannot be stopped or fun-
damentally altered in their mechanics, and that attempts to tame nature that became
popular in the first half of the twentieth century rarely succeed. Instead, we have
seen tremendous progress in understanding risk, resulting in better planning and
management tools. Disasters still occur regularly and are as much a reminder of the
prevalence of potentially damaging phenomena and processes, as of the fact that the
number of human being and their accumulated wealth continues to grow, leading to
more frequent and costly encounters with hazardous events. The latter development
especially applies to dense urban area, with a rapidly rising number of megacities,
of which many are located in highly exposed regions such as flood plains, or close
to fault lines or low-lying coastal stretches. The number of disaster events has
actually been declining in the last decade, which can be seen as a promising signal
that risk management can yield fruits. Also, unusually severe events such as
typhoons causing hundreds of thousands of fatalities that marked especially the
1970s have declined in number, being now more limited to less predictable
earthquake or tsunami events.

Reducing risk and mitigating consequences can be done through avoiding
exposure, i.e. relocating communities or establishing effective early warning and
evacuation, or by reducing vulnerability, such as through people better under-
standing the threat and adequate counter measures, or though the enforcement of
better building codes. However, all measures begin with a clear understanding
of the hazard, which determines who is affected when, where, how often and with
what severity. Like most natural processes, hazards are highly variable in their
behaviour, defying easy statistical analysis and posing a challenge to decision
makers (a “100-year flood” is a typical example). In addition, the often massive
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changes to natural systems due to anthropogenic activities have fundamentally
altered the nature of many hazards: floods occur more often or more quickly, while
deforested mountain slopes fail more readily. Many of these changes have accel-
erated in the last few years or decades, leaving too little time to understand their
effect on nature and the frequency of events. Since all those changes lead to a
reconfiguration of older exposure scenarios (through hazard zones now having
different shapes), changes in vulnerability (since it is a function of both hazard type
and magnitude), risk is again becoming an increasingly uncertain property. Even
where complex risk assessments have been done, often based on historical data,
hazard events and their associated consequences often substantially depart from
expectations.

How then do we best deal with those changing hazard scenarios? Geospatial data
and methods have become the best tool chest in disaster risk management.
Numerous methods have been developed to observe the environment with a huge
array of remote sensing and many other data gathering techniques, while the col-
lected information is processed with sophisticated statistical or modelling tools.
With the exception of seismic activity, every natural hazard is well understood in its
genesis and relevant parameters, allowing a detailed assessment of a given threat.
The most commonly used input in hazard assessment remains the data from past
events. Landslide inventories, or the extent of earlier flood events, are used in
empirical modelling. There are limits though. With extensive remote sensing
databases only stretching back to the 1970, and base data such as on geology or
water table depth being coarse or patchy in many parts of the work, the modelling
basis is often thin and incomplete. Especially, to assess the susceptibility to a given
hazard over larger areas, next to empirical analysis modelling based on physical
parameters known to be relevant remains desirable. However, detailed physical
modelling quickly reaches its limits, when parameters vary spatially. This natural
complexity quickly leads to significant simplifications, with, for example, only
standard parameters such as slope, aspect, land cover and rainfall records being
used to assess the susceptibility of a slope to failure. More detailed studies that
consider all system properties and information from diverse sensor and databases
are desirable, but yield new challenges, not least due to vast amounts of data and
parameters.

With the growing amounts of geospatial information, data mining has been
gaining in relevance, allowing complex multivariate data to be processed, the most
explanatory environmental parameters to be identified, and hidden patterns and
trends to be found. With growing computing power and better models, this has
morphed into advanced machine learning, where sophisticated models can deter-
mine the nature also of complex environmental systems based on limited input data.
Numerous approaches have been developed, from basis decision trees to complex
but less transparent artificial neural networks (ANN), to more advanced approaches
based on random forests or convolutional neural networks that can learn complex
processes also based on training data from other locations. Despite all this
sophistication, however, the number of challenges remains high, precluding a ready
use of those recent methods. Problems as diverse as dealing with a small number of
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training sites (e.g. when landslide inventories are small or events are very infre-
quent), how to sample from a larger pool or extensive area, how to deal with fuzzy
or poorly defined boundaries of relevant natural features, or how to work with point
data of features with a polygon shape, still pose problems.

For those reasons, a book that assesses the diverse use of spatial modelling with
machine learning in hazard assessment is timely and useful. The present book spans
a wide area, addressing hazards as diverse as the susceptibility of landslides or wild
fires, erosion and land subsidence, floorplan analysis, as well as earthquake and
rainfall prediction. Numerous methods are demonstrated and evaluated in a range of
case studies set in eight countries in Europe and Asia. The chapters compare many
comparative analysis studies where different machine learning tools are evaluated,
but also show how multiple hazards can be assessed in a common spatial modelling
framework. Finally, one chapter also shows how an analysis based on spatial
segments derived with object-based image analysis (OBIA) can lead to more
realistic scenarios. Problems with more opaque methods are critically assessed,
such as the black box nature of ANN, or the frequent overfitting resulting from
models that is also well known from OBIA. Hence, the book can help researchers to
understand the advantages and disadvantages of different machine learning-based
spatial modelling techniques. By illuminating problems and showing solutions, it
can also be valuable for decision makers who need to identify suitable operational
tools to aid in their hazard assessment work.

Enschede, The Netherlands
October 2017

Prof. Dr. Norman Kerle
Professor of Remote Sensing and

Disaster Risk Management
University of Twente
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Foreword by Saro Lee

Prof. Dr. Saro Lee is from Korea Institute of Geosciences and Mineral Resources
(KIGAM) and Korea University of Science and Technology (UST), Daejeon,
Korea. He studied many years on GIS-based spatial modelling in different geo-
logical fields. We applied many data mining/machine learning models in diverse
natural hazards cases such as landslides, flood, and ground subsidence in these
years.

In general, spatial modelling in GIS is known as an important tool in the modern
digital world. When the mentioned tools combine to data mining/machine learning
techniques, it could serve as a good source of information to widespread sciences
community such as students, researchers and academic staffs.

The book Natural Hazards GIS-Based Spatial Modeling Using Data Mining
Techniques introduces to readers as an ensemble of GIS and RS tools by data
mining techniques for spatial modelling on geological, hydrological, and climato-
logical disasters. It will be able to solve limitation of traditional and statistical
models applied in the mentioned fields. These algorithms cause both increasing
accuracy in dealing with complex and uncertain problems and developing new
application in different research areas.

The proposed book is a collection of essays with fourteen chapters that written
by many famous researchers of different countries. In general, chapters consisted of
different cases such as gully erosion modelling, landslides mapping, land subsi-
dence cases, multi-hazard assessment, flood susceptibility and hazard modelling,
earthquake events modelling, and fire susceptibility mapping.

The editors (Dr. Hamid Reza Pourghasemi and Dr. Mauro Rossi) state in the
preface that this book will become the reference of choice for researchers in different
fields including land surveying, remote sensing, cartography, GIS, geophysics,
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geology, natural resources, and geography. I know two editors, they have many peer
review publications according to Google Scholar; so, I am especially pleased to
introduce this book to readers by different multi-disciplinary experts.

Daejeon, Korea Prof. Dr. Saro Lee
Korea Institute of Geosciences and

Mineral Resources (KIGAM)
Korea University of Science and

Technology (UST)
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Preface

Natural hazards such as landslides, floods, earthquakes, forest fires, droughts and
erosion processes impact severely every year structures, infrastructures and popu-
lation producing financial damages and human casualties. Based on the Centre for
Research on the Epidemiology of Disasters (CRED) database, 22.3 million people
were killed by natural disasters between 1900 and 2006, an average of about
208,000 people per year. A proper evaluation of the susceptibility, hazard and risk
posed by these natural phenomena is fundamental for planners, managers and
decision makers in developed and developing countries. In this context, geographic
information system (GIS) and remote sensing (RS) tools can be effectively used in
order to assess and manage the hazard and risk before, during and after the
occurrence of these natural events. A large variety of expert knowledge, statistical
and analytical methods and models were applied worldwide, according to data
availability and accessibility. However, choosing the best and efficient method or
model remains one of the main concerns in the scientific literature.

Traditional methods for modelling natural hazards rely upon the use of deter-
ministic conceptual descriptions linking the spatial and temporal occurrence of the
natural phenomena and the geo-environmental settings in which they occur. Errors
and uncertainties in using such models are inevitable, mainly due to the limited
knowledge (i.e. lack of accurate spatial and temporal information) of the
geo-environmental factors, but also to the simplified (i.e. inappropriate) modelling
schema adopted in such deterministic description. Another important limitation is
the absence of precise borders/classes for some conditioning factors commonly
used in the modelling and represented as categorical (i.e. classified) variables, such
as soil, land use and lithology. In addition, the determination of natural border for
continuous factors such as elevation, slope, distance from linear elements, topo-
graphic indices and density elements is very difficult. In these conditions, the use of
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deterministic modelling tools is not straightforward and may lead to biased esti-
mates of hazard and risk.

These issues have led to the use of data mining techniques to model geological,
hydrological, soil erosion and other geo-environmental processes. These algorithms
may increase the accuracy in dealing with complex and uncertain problems, and
they have been largely applied in other scientific fields with positive outcomes.
Data mining techniques proved to be effective in assessing the susceptibility, hazard
and risk posed by natural disasters, often leading to highly accurate predictions,
even where limited information on these phenomena are available.

In this book, we give and overview of the application of data mining algo-
rithms for the spatial modelling of natural hazards in different study areas. The
book is a collection of essays written by expert researchers from different coun-
tries. We believed that the book could be a useful guide for researchers, students,
organizations and decision makers in different fields including land surveying,
remote sensing, cartography, GIS, geophysics, geology, natural resources and
geography that in their work are facing problems related to the hazard manage-
ment and more generally to the land use planning.

The book contains the following 12 chapters:

1. Gully Erosion Modeling Using GIS-Based Data Mining Techniques in
Northern Iran; A Comparison Between Boosted Regression Tree and
Multivariate Adaptive Regression Spline;

2. Concepts for Improving Machine Learning Based Landslide Assessment;
3. Assessment of the Contribution of Geo-environmental Factors to Flood

Inundation in a Semi-arid Region of SW Iran: Comparison of Different
Advanced Modelling Approaches;

4. Land Subsidence Modelling Using Data Mining Techniques. The Case Study
of Western Thessaly, Greece;

5. Application of Fuzzy Analytical Network Process Model for Analyzing the
Gully Erosion Susceptibility;

6. Landslide Susceptibility Prediction Maps: From Blind-Testing to Uncertainty
of Class Membership: A Review of Past and Present Developments;

7. Earthquake Events Modelling Using Multi-criteria Decision Analysis in Iran;
8. Prediction of Rainfall as One of the Main Variables in Several Natural Disasters;
9. Landslide Inventory, Sampling and Effect of Sampling Strategies on Landslide

Susceptibility/Hazard Modelling at a Glance;
10. GIS-Based Landslide Susceptibility Evaluation Using Certainty Factor and

Index of Entropy Ensembled with Alternating Decision Tree Models;

xviii Preface



11. Evaluation of Sentinel-2 MSI and Pleiades 1B Imagery in Forest Fire
Susceptibility Assessment in Temperate Regions of Central and Eastern
Europe. A Case Study of Romania;

12. Monitoring and Management of Land Subsidence Induced by
Over-exploitation of Groundwater.

Shiraz, Iran Dr. Hamid Reza Pourghasemi
Perugia, Italy Dr. Mauro Rossi
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Gully Erosion Modeling Using
GIS-Based Data Mining Techniques
in Northern Iran: A Comparison
Between Boosted Regression
Tree and Multivariate Adaptive
Regression Spline

Mohsen Zabihi, Hamid Reza Pourghasemi, Alireza Motevalli
and Mohamad Ali Zakeri

Abstract Land degradation occurs in the form of soil erosion in many regions of
the world. Among the different type of soil erosion, high sediment yield volume in
the watersheds is allocated to gully erosion. So, the purpose of this research is to
map the susceptibility of the Valasht Watershed in northern Iran (Mazandaran
Province) to gully erosion. For this purpose, spatial distribution of gullies was
digitized by sampling and field monitoring. Identified gullies were divided into a
training (two-thirds) and validating (one-third) datasets. In the second step, eleven
effective factors including topographic (elevation, aspect, slope degree, TWI, plan
curvature, and profile curvature), hydrologic (distance from river and drainage
density), man-made (land use, distance from roads), and lithology factors were
considered for spatial modeling of gully erosion. Then, Boosted Regression Tree
(BRT) and Multivariate Adaptive Regression Spline (MARS) algorithms were
implemented to model gully erosion susceptibility. Finally, Receiver Operating
Characteristic (ROC) used for the assessment of prepared models. Based on the
findings, BRT model (AUC = 0.894) had better efficiency than MARS model)
AUC = 0.841) for gully erosion modeling and located in very good class of
accuracy. In addition, altitude, aspect, slope degree, and land use were selected as
the most conditioning agents on the gully erosion occurrence. The results of this
research can be used for the prioritization of critical areas and better decision
making in the soil and water management in the Valasht Watershed. In addition, the
used models are recommended for spatial modeling in other regions of the worlds.
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Department of Watershed Management Engineering,
Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran
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1 Introduction

1.1 Soil Erosion by Water and Its Types

One of the main causes of land degradation in the entire world is soil erosion by
water which caused extensive changes in the earth’s surface (Pimentel 2006). The
main cause of water erosion is runoff that caused by rainfall. Water erosion is due to
the movement of organic and mineral particles of soil by water and the accumu-
lation of degraded materials in the downstream places (Franzluebbers 2010).
Substances that are destroyed by water erosion reduce water quality, reduce water
capacity of dams, threaten aquatic life, and increase the risk of flood and other
harmful environmental issues (Robertson et al. 2004; Sadeghi and Zakeri 2015).

Soil erosion can be considered as a major change; because the rate of soil degra-
dation is 10 to 40 times higher than the rate of soil formation by innate proceedings
and several kilometers of agricultural land are lost every year due to soil degradation
(Luffman et al. 2015). There are various forms of water erosion, including splash,
sheet, rill, gully and tillage erosion, landslides and river or stream bank erosion
(Osman 2014). This article studies the gully erosion, axially. In fact, the effects of
various factors, such as land use, rainfall, soil, lithology and topography lead to
erosion called Gully (Dotterweich et al. 2013; Conoscenti et al. 2014; Superson et al.
2014; Luffman et al. 2015). One of the important sedimentation factors in different
parts of the earth is Gully erosion (Vanwalleghem et al. 2005; Bouchnak et al. 2009).
The extent of soil loss caused by the gully destruction from 10 tomore than 90% of the
total sediment produced by various types of destruction of water, that is variable and
significant amount of erosion (Poesen et al. 2003). This type of erosion is a serious
problem in many parts of the world (Martı ́nez-Casasnovas 2003). It can be a main
factor in road destruction (Jungerius et al. 2002) and can be affected onwater pollution
or threaten the aquatic Creatures (Wantzen 2006).

1.2 GIS Techniques for Gully Erosion Modeling

In order to understand the various processes governing soil erosion, the need for
modeling this phenomenon is essential. By modeling, it is possible to estimate
runoff and sediment in order to maintain and control measures. To reduce the effects
of water and wind erosion, issues such as understanding the effective factors of
erosion, assessing the both internal and external effects of erosion, identifying
strategies and assessing the performance of protective operations are important,
which is the modeling of the first step to accomplish these (Franzluebbers 2010).
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Today, the use of Geographic Information System (GIS) as a tool for modeling is
common. This system can be used to preserve process and analyze geospatial
factors such as soil, land use, topography, etc. In general, the use of GIS can be very
useful and accelerated in hydrologic modeling (Jain et al. 2001; Jungerius et al.
2002). Recently, GIS and data mining techniques have been increased for modeling
of natural hazards and different types of land degradation. In this regards, gully
erosion as an effective factor on soil and water resources degradation have been
conducted using different algorithms by many researches (Dube et al. 2014;
Monsieurs et al. 2015; Shruthi et al. 2015; Bergonse and Reis 2016; Goodwin et al.
2017). In this Regards, Different methods have been conducted for spatial modeling
of gully erosion in last years; these methods are Logistic Regression (Akgun and
Turk 2011; Conoscenti et al. 2014), Conditional Analysis (Conoscenti et al. 2013),
Classification and Regression Trees (Geissen et al. 2007), Weights of Evidence
(Rahmati et al. 2016), Frequency Ratio (Rahmati et al. 2016), and Random Forest
(Kuhnert et al. 2010). However, the low number of studies used BRT and MARS
methods for gully erosion susceptibility mapping. Gutiérrez et al. (2009) in order to
model gully as an independent variable against an independent variable used two
methods, including Classification and Regression Trees (CART) and MARS. They
founded a better efficiency of MARS for gully predicting with the area under the
curves of 0.98 and 0.97 for the training and validation datasets, while CART
presented values of 0.96 and 0.66, respectively. Gutiérrez et al. (2011) used the
MARS model to predict gully creation locations. The results showed that this model
is a good performance in geomorphic research. In addition, Gutiérrez et al. (2015)
used MARS algorithm for gully erosion susceptibility mapping in two basins in
Italy and Spain using topographical properties. Based on the findings of this study,
the use of topographic properties as an independent factor in the prediction of gully
erosion has been acceptable in both regions. So, the aim of this study is gully
erosion modeling based on BRT and MARS data mining techniques and their
comparison in Iran. Moreover, the BRT method is not used for gully erosion
modeling so far. This can be considered as distinguishing aspects of this study
comparing with previous researches.

2 Materials and Methods

2.1 Study Area

The Valasht Watershed is located in 30 km of southwest of the Chalus City in the
Mazandaran Province. This area is belonging to the Chalus River Basin. The
Valasht Watershed between latitudes of 36° 32′ 19′′ to 36° 34′ 39′′ north and
longitudes of 51° 15′ 00′′ to 51° 19′ 26′′ east, with an area of 1544 ha. The altitude
variation of Valasht Watershed is from 1005 to 1839 m. The Valasht Watershed as
an isolate topographical almost is circular (like bowl) and small. The lithology of
study area was delineated using Chalus Sheet at 1:100,000-scale and is presented in
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Table 1. The land use is divided into 8 categories, including: dense forestland with
an area of 245 ha (18.9%), thin forest with area of 304.5 ha (19.7%), dry farming
with area of 776.5 ha (50.3%), irrigated farming with area of 5.84 ha (0.4%),
orchard with area of 49.8 ha (3.2%), rangeland with area of 97.1 ha (6.3%), resi-
dential with area of 41.2 ha (2.66%), and lake with area of 23.73 ha (1.53%),
respectively. The location of the study area is shown in Fig. 1.

2.2 Methodology

This study consists of several main steps, including (i) Gully erosion inventory
mapping, (ii) preparation of gully erosion effective factors, (iii) gully erosion sus-
ceptibility spatial modeling using two data mining techniques, (iv) assessment of
the variables importance applied on gully erosion, and (v) accuracy assessment of
gully erosion susceptibility models. The details of this research as flowchart are
given in Fig. 2.

2.3 Gully Erosion Inventory Mapping

For modeling of gully erosion, spatial distribution of gullies was digitized by
Global Positioning System (GPS) and extensive field survey. It can be stated that
the majority of gullies type was linear with the mechanism of shear stress Then,
two-thirds of the samples (76) were selected as training and one-third of locations
(32) were used for validation purposes (Stumpf and Kerle 2011; Pourghasemi et al.
2013; Pourghasemi and Kerle 2016). Also, the existence (1) or absence (0) of Gully
was defined in relation to the factors influencing gullies occurrence and gullies
(Rahmati et al. 2016).

Table 1 Lithology of the Valasht Watershed

Code Lithology Age Era

QAL Recent loose alluvium in the river channels Quaternary Cenozoic

Q2 Young alluvial fans and terraces, river terraces, and
mainly cultivated

Quaternary Cenozoic

k2L1 Globotruncana limestone, marly limestone Cretaceous Mesozoic

k2LM2 Globotruncana limestone, marl, marly limestone Cretaceous Mesozoic

K2M Marl, marly limestone, limestone Cretaceous Mesozoic

K2VT Undivided Upper Cretaceous volcanites Cretaceous Mesozoic
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2.4 Preparation of Gully Erosion Effective Factors

Gully occurrence is a result of several factors that it is important to identify and
conceptualize these factors. According to the mechanism of formation of gully,
several factors control the development of gullies (Li et al. 2017). It is worthwhile
to identify the factors associated with the creation and development of gully ero-
sion. In fact, the preparation of the different layers in order to consider the gully
erosion controlling factors is essential. Thus, effective factors in this study are
defined as: slope aspect, elevation, drainage density, land use, lithology, plan
curvature, profile curvature, distance from river, distance from road, slope degree,
and Topographic Wetness Index (TWI).

(a)(b)

(c)

Fig. 1 Location of the Valasht watershed in Iran
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Fig. 2 The flowchart of gully erosion susceptibility spatial modeling
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2.5 Man-Made Factors

Many factors can affect the type and amount of gully erosion in a watershed. One of
these factors is the improper land use (Dube et al. 2014; Rahmati et al. 2016).
Changes in forest and turning it to agricultural land, commercial and residential,
provide gully erosion potential creation and its development. Therefore, identifying
and studying the relationship between changes in different land uses is possible in
order to identify and management of gully erosion (Sadeghi et al. 2007; Desta and
Adunga 2012; Dube et al. 2014; Dymond et al. 2016). The land use map was
extracted using supervised classification of Landsat 7/ETM + images (year 2014)
and the maximum likelihood method. The land use map reclassified to eight types
including forestland, thin forest, dry farming, irrigated farming, orchard, rangeland,
thin forest, and, irrigated farming, residential and lake (Fig. 3a). In addition to
improper of land use, road construction with poor drainage due to changes along the
route on vegetation, hydrology, and soil will disrupt the natural balance of areas,
will increase surface runoff on the road and thus, causes the initiation and devel-
opment of gully erosion (Desta and Adunga 2012; Dymond et al. 2016). Naturally,
susceptibility of areas near the road due to incorrect drainage and excess runoff is
greater than other regions in a watershed (Desta and Adunga 2012; Bergonse and
Reis 2016; Dymond et al. 2016; Li et al. 2017). The distance from road map for the
Valasht Watershed was prepared based on general directorate of roads and urban
development (Fig. 3b).

2.6 Topographic Factors

The impact of topographic features on the hydrological response of a basin is an
undeniable in connection with the excess runoff and its focus on the formation of
gully erosion and development (Conforti et al. 2011; Desta and Adunga 2012;
Luffman et al. 2015; Barnes et al. 2016; Bergonse and Reis 2016). Landform
characteristic (elevation, slope aspect, slope degree, TWI, plan curvature, and
profile curvature) were prepared from Digital Elevation Model (DEM) with a pixel
size of 10 m � 10 m. Elevation levels play a significant role in climate indices.
According to Li et al. (2017) climatic conditions vary by changing elevation and the
potential of gully erosion occurrence will be different (Fig. 3c). Slope aspect plays
an important role in obtaining the required moisture to creating runoff and occur-
rence of gully erosion (Conforti et al. 2011; Barnes et al. 2016; Bergonse and Reis
2016). This layer was prepared from DEM and classified into nine categories
(Fig. 3d). Gully erosion is created in hilly region or mountainous areas with steep
slopes. In fact, the slope is a key factor for the critical drainage of a region (Valentin
et al. 2005). Steep sloping areas have high-velocity runoff and have high gully
potential initial conditions; although, climate and soil conditions are the same
(Valentin et al. 2005; Desta and Adunga 2012) (Fig. 3e). The TWI indicated that
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geomorphic pattern of topography to rainfall or wet condition (Beven et al. 1984).
The TWI is calculated according to Eq. (1).

TWI ¼ ln
As

tan b

� �
ð1Þ

where, As is the specific catchment area (meter) which is determined by the
up-slope area via generic spot, and per unit contour length; b is the local slope
(degree) (Fig. 3f). Plan curvature has a major role in triggering of the gully. The
impact of plan curvature on gully erosion in association with convergence or
divergence water flow and its focus is to water fall (Valentin et al. 2005; Conforti
et al. 2011; Desta and Adunga 2012) (Fig. 3g). Profile curvature morphometric
parameters that have an important impact on start of gully process, So that concave
topography (depression region), are more sensitive to initial of gully appearance
(Desta and Adunga 2012) (Fig. 3h).

2.7 Hydrological Factors

Hydrological controlling factors are described often, in relation to the amount of
surface runoff and its density (Tebebu et al. 2010; Desta and Adunga 2012;
Ollobarren et al. 2016). Naturally, distance from rivers and drainage density factors
in a region increase the potential of triggering gully erosion (Shellberg et al. 2016).
So, the distance from river for the Valasht Watershed was prepared according to
topographical map (Fig. 3i). Drainage density was extracted from stream network;
the sum of the drainage lengths in the total cells of watershed was divided on total
area of the watershed cells (Montgomery and Dietrich 1989) (Fig. 3j).

2.8 Lithology Factor

Geology is an intrinsic factor in relation to shear stress and the hydraulic con-
ductivity of the water to start the process of gully (Dai and Lee 2002; Rahmati et al.
2017). Also, formation types in a rock unit (Marl, silt and etc.) are very important at
the initiation of gully erosion (Rahmati et al. 2017). The lithology of the Valasht
Watershed was delineated using Chalus Geological Sheet at 1:100,000-scale
(Fig. 3k). Based on geological survey of Iran (GSI 1997), most gullies (Fig. 4) are
located in units of K2M and K2LM2 including: marl, marly limestone, limestone
and Globotruncana limestone, marl, and marly limestone, respectively (Table 1).
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Fig. 3 Effective factors in spatial modeling of gully erosion in the Valasht Watershed
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Fig. 3 (continued)

10 M. Zabihi et al.



2.9 Gully Erosion Susceptibility Spatial Modeling
Using Data Mining Techniques

2.9.1 Boosted Regression Tree (BRT)

BRT method has been used by different researchers in several studies (Schapire
2003; Leathwick et al. 2006; Elith et al. 2008; Youssef et al. 2015; Liu et al. 2016;
Naghibi et al. 2016; Salazar et al. 2016). This method combines the techniques of
statistical and machine learning algorithms (Breiman et al. 1984). BRT method is
defined with two algorithms: a series of models can be fitted with an average of
decision trees and output model can be combined to calculate the overall prediction
using the boosting (Friedman 2001). BRT is a comparative method to combine
many simple models for providing acquisition of proper functioning (Elith et al.
2008; Schapire 2003). High speed in large data analysis and less sensitivity to
over-fitting are the advantages of BRT (Liu et al. 2016; Salazar et al. 2016).
Performance of this algorithm depends on the setting of boosted trees and pruning
trees (Leathwick et al. 2006; Elith et al. 2008). BRT fit many decision trees to

Fig. 4 Some of identified gully erosion in the Valasht Watershed
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increase the accuracy of the model. The BRT algorithm is presented in Eq. (1)
(Schonlau 2005; Naghibi et al. 2016):

MVC : sign
XM
m

am � cm xð Þ
" #

ð2Þ

where, MCV: Majority Vote Classification, am : log 1�rmð Þ=rmð Þ which rm: com-
pute the (weighted) misclassification rate, Fit classifier cm to the weighted data. In
this equation, recalculate weights wi = wi exp(m I(yi 6¼ Cm)) that initialize weights
equal to wi = 1/n For m = 1 to the next category of cm (Schonlau 2005).

2.9.2 Multivariate Adaptive Regression Splines (MARS)

Alike BRT, recently from the MARS models used for spatial modeling in envi-
ronmental sciences (Felicísimo et al. 2013; Conoscenti et al. 2016; Pourghasemi
and Rossi 2016). The MARS method is implemented using non-parametric mod-
eling techniques (Friedman 1991). This method can be implemented regardless of
the link between the dependent and independent factor (Friedman 1991; Zabihi
et al. 2016). The MARS method is based on basis functions for each explanatory
variable and is defined as follows:

Max 0; x� kð Þ or Max 0; k � xð Þ ð3Þ

where, k is a knots and observations is one of the explanatory variables and x is an
independent variable (Friedman 1991; Zabihi et al. 2016). Thus, MARS model is
described as follows:

Ŷ ¼ cþ
XM
m

bmHm xð Þ ð4Þ

where, y is the dependent variable predicted by the function, c is a constant, M is
the number of terms, and (x) is the explanatory variables. Hm is basis functions and
bm, coefficients that are determined by minimizing the sum of squared residuals
(Friedman 1991; Zabihi et al. 2016). In MARS model, the best model is selected
based on the minimization of the Generalized Cross validation (GCV) (Friedman
1991; Golub et al. 1979). The determination of GCV is based on Eq. (5).

GCV ¼
1
N

PN
i¼1 yi � f̂ xið Þ� �2
1� C Hð Þ

N

h i2 ð5Þ
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where, N is the number of data and C (H) a dependent variable that increases with
the number of basis function (BF) in the model and is calculated based on the
following equation:

C Hð Þ ¼ Hþ 1ð Þþ dH ð6Þ

where, d is retribution for each basis function is considered in the model and H is
number of basic functions in Eq. 4 (Friedman 1991; Zabihi et al. 2016). The MARS
model doesn’t consider assumptions about the relationship between the response
variable and the conditioning factors. Because the use of a similar iterative
approach, MARS method is similar to machine learning algorithms.

2.10 Assessment of Variables Importance
Applied to Gully Erosion

To better understanding of Gully behavior and its progression, the effect of multiple
factors need to be measured simultaneously in the process of gully erosion
(Rahmati et al. 2017). So, identifying the most important of effective factors on
gully erosion and prioritization of involved factors should be provided. This is kind
of sensitivity analysis of factors affecting on modeling of gully erosion. In the
present study, BRT model was implemented for determination of effective factors
on gully erosion, too. In addition, multicollinearity examination was performed to
determine the effective factors. Multicollinearity analysis is one of the methods that
indicate non-independent gully erosion conditioning factors which can be observed
in the dataset because of their high correlation (Dormann et al. 2013). In this
regards, Variance Inflation Factor (VIF) and tolerance are two commonly indices
(Mousavi et al. 2017) that applied in the present study. In the case of VIF, values
greater than 5 or 10 for each conditioning factor is not acceptable and it should be
removed for further analysis in the process of modeling (O’Brien 2007). Also,
values less than 0.2 or 0.1 of tolerance shows multicollinearity problem (O’Brien
2007; Mousavi et al. 2017).

2.11 Accuracy Assessment of Gully Erosion
Susceptibility Models

Receiver Operational Curve (ROC) is a suitable method for verifying and com-
paring model predictions. (Swets 1988; Pourghasemi et al. 2012; Hong et al. 2016;
Motevalli and Vafakhah 2016; Pham et al. 2016). The ROC curve is a graph of
sensitivity (y-axis) versus 1—specificity (x-axis) (Beguería 2006). Five classes of
capability are defined based on the AUC: 50–60% (low accuracy), 60–70%
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(medium accuracy), 70–80% (well accuracy), 80–90% (very well accuracy), and
90–100% (high accuracy) (Yesilnacar 2005; Rahmati et al. 2017).

3 Results and Discussion

3.1 Examination of Multicollinearity

The results of examination of multicollinearity are presented in Fig. 5 (tolerance)
and Fig. 6 (VIF). As is shown in Fig. 5, it can be seen that aspect (0.88), profile
curvature (0.86), lithology (0.80), land use (0.79), altitude (0.61), and distance from
roads (0.57) have the highest values of tolerance in the study area, respectively. In
addition, TWI has been devoted to the last rank with the minimum value of tol-
erance (0.30). By the way, based on VIF calculation results provided in Fig. 6, all
of independent factors don’t have any multicollinearity problem for gully erosion
susceptibility modeling. In this case, TWI, distance from river, plan curvature,
drainage density, slope, and distance from the roads with the values of 3.31, 2.69,
2.10, 2.09, 1.79, and 1.74 is devoted in rank 1 to 6 of VIF. Other affecting factors,
including altitude, land use, lithology, profile curvature, and aspect are located in
next ranks. Based on these descriptions, there is no problem in term of multi-
collinearity of factors in the current study. In other words, all of selected condi-
tioning factors on gully erosion susceptibility can be used for further analyses and
investigations.

Aspect; (0.88)

DEM; (0.61)

Drainage Density; (0.47)
Land use; (0.79)

Lithology; (0.80)

Plan Curvature; (0.47)

Profile Curvature; (0.86)

Distance from River; (0.37)

Distance from Road; (0.57)
Slope; (0.55)

TWI; (0.30)

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5 Tolerance values of gully erosion effective factors for multicollinearity analysis
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3.2 Application of BRT Model

BRT as an advanced data mining technique was implemented for gully erosion
susceptibility modeling in the Valasht Watershed, northern Iran. At first, the
importance of conditioning factors on gully erosion susceptibility is specified using
BRT model which is presented in Fig. 7. Based on our findings, altitude (DEM) is
the most important factor (with the value of 43.03%) for gully erosion susceptibility
in the current study. This result indicated that the gully erosion susceptibility
depends on altitude. Other factors including aspect (13.64%), slope degree (7.21%),
land use (7.12%), distance from road (5.34%), distance from river (5.33%), drai-
nage density (5.20%), plan curvature (3.79), TWI (3.52%), profile curvature
(3.51%), and lithology (2.26%) are located in next ranks. It is obvious that the
topographic factors have a significant relationship with gully erosion susceptibility.
Based on the results of Le Roux and Sumner (2012), the most important topo-
graphic factor in the gully erosion occurrence was slope in the Eastern Cape
Province of South Africa. Based on their results, the upslope area in the topographic
wetness index has a significant effect on gully erosion. Although, prioritization of
condition factors in Le Roux and Sumner (2012) study were not exactly consistent
with the current research finding, but both researches have been acknowledged the
significant role of topographic factors in the occurrence of gully erosion. These
differences may be attributed by different study areas.

According to gully erosion susceptibility map produced by the BRT model
(Fig. 8) and corresponding calculation results (Fig. 9), the highest area of the
Valasht Watershed with the value of 42.85% or 661.64 ha is covered by moderate
class of gully erosion susceptibility. The highest class of susceptibility is devoted to
rank 2 (24.84%). Also, 343.36 and 155.44 ha of the study area are located in very

Fig. 6 Variance Inflation Factor (VIF) values of effective factors on gully erosion after
multicollinearity analysis
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high and low classes of gully erosion susceptibility, respectively (Fig. 9). As is
shown in Fig. 8, in the point of spatial distribution of gully erosion susceptibility,
high and very high classes are covered the middle part of the watershed; while low
class of susceptibility envelope the around of the mentioned watershed.

3.3 Application of MARS Model

The next machine learning (data mining) model used for gully erosion susceptibility
mapping was MARS. The final map of gully erosion susceptibility produced by
MARS model is provided in Fig. 10. The mentioned map created by Eq. 7. The
final map of gully erosion susceptibility was divided to four classes based on the
natural break method containing low, moderate, high, and very high classes the
same with BRT algorithm (Basofi et al. 2015; Colkesen et al. 2016). According to
MARS model results (Fig. 10), the classes of gully erosion susceptibility including
low, moderate, high, and very high have covered 13.12, 32.86, 27.57, and 26.45%
of area (Fig. 9) in the Valasht Watershed. In the point of spatial distribution view,
the low class of susceptibility has an irregular spatial distribution which has a low
area in the Valasht Watershed, too. The high and very high classes of susceptibility
are located in the middle of study area toward outlet of watershed (Fig. 10).
Because of high volume of eroded soil and sediment in gully erosion process, it is
very important and necessary to prevent from entering of this sediment to the

 DEM (43.03)

Aspect (13.64)

 Slope (7.21)

Landuse (7.12)

Distance from Road (5.34)

Distance from River (5.33)

Drainage Density (5.20)

Plan Curvature (3.79)

TWI (3.52)

Profile Curvature (3.51)

Lithology (2.26)
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Fig. 7 The percent of importance of each conditioning factor based on BRT model

16 M. Zabihi et al.



Fig. 8 Gully erosion susceptibility map produced by BRT model

Fig. 9 Gully erosion
susceptibility classes
according to BRT and MARS
models
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Valasht Lake in the output of mentioned watershed. This subject can be considered
by managers and decision makers for selecting of appropriate solution of the
mentioned problem.

GESMMARS ¼0:1874707þ 0:5021102 Southð Þþ 0:1453134 max 0; 1:438846� PlanCð Þð Þ
þ 0:3666469 Southð Þ Forestð Þþ 0:4623038 Southwestð Þ Qalð Þ � 0:6258331

Rangelandð Þ K2l2ð Þ � 3:886562 Eastð Þ max 0; ProfC � 2:044398ð Þð Þ
� 0:001312126 Southð Þ max 0;DEM� 1170:622ð Þð Þ � 0:004548146 Southð Þ
max 0; 1170:622� DEMð Þð Þ � 0:8485331 Southð Þðmaxð0;Drainage Density
� 4:288856ÞÞ þ 0:6355912 Southð Þðmax 0;Drainage Density� 3:590517ð Þ
� 0:001046979 Southð Þðmaxð0; 317:6476� DisRoadÞÞþ 0:09513996 Southwestð Þ
max 0;Drainage Density� 2:57988ð Þð Þþ 0:006357844 Southwestð Þ
max 0; 40� DisRiverð Þð Þþ 0:05349974 Southwestð Þ max 0; Slope � 65:36047ð Þð Þ
� 0:1220924 Southwestð Þ max 0; Slope� 78:49104ð Þð Þ � 0:01029525

max 0;DEM� 1349:472ð Þð Þ Rangelandð Þþ 0:002747312 max 0; 1292:027� DEMð Þð Þ
RainfedAgricultureð Þ � 0:2422385ðmaxð0; 2:199255� DrainageDensityÞÞ
Rangelandð Þ � 0:2070098 max 0;DrainageDensity� 2:199255ð Þð Þ Rangelandð Þ
þ 1:42692 Rangelandð Þ max 0; PlanC � 0:6826829ð Þð Þþ 0:01334593 Rangelandð Þ
max 0;DisRiver � 219:54ð Þð Þþ 0:002243662 Rangelandð Þ
max 0; 219:54� DisRiverð Þð Þþ 0:001496906 Rangelandð Þðmaxð0;DisRoad�
416:173ÞÞþ 0:0006178245 Rangelandð Þ max 0; 416:173� DisRoadð Þð Þ
þ 0:05900507 K2mð Þðmaxð0; 1:438846� PlanCÞÞ � 0:0004876583

max 0; 1391:002� DEMð Þð Þ max 0; 1:438846� PlanCð Þð Þ � 0:002044421

max 0;DEM� 1391:002ð Þð Þ max 0; 1:438846� PlanCð Þð Þþ 0:002543124

ðmaxð0;DEM� 1483:44ÞÞ max 0; 1:438846� PlanCð Þð Þ þ 1:770632e� 05

max 0; 1292:027� DEMð Þð Þðmaxð0; 130:384� RoadÞÞ � 3:821526e� 05

max 0;DEM� 1514:782ð Þð Þðmax 0; Slope� 23:52937ð Þ � 0:06118585ðmaxð0;
1:320009� DrainageDensityÞÞðmax 0; 1:438846� PlanCð Þ
� 0:03516613ðmaxð0;DrainageDensity� 1:320009ÞÞ max 0; 1:438846� PlanCð Þð Þ
þ 0:006461668 max 0; 1:438846� PlanCð Þð Þðmaxð0; 29:24419� SlopeÞÞ
� 0:005925642 max 0; 2:044398� ProfCð Þð Þ max 0; 41:59864� Slopeð Þð Þ

ð7Þ

Based on the obtained results, the rank of conditioning factors was different in
BRT and MARS models. This is due to the nature of the applied models. Although,
BRT model consider the reaction between each conditioning factor, but MARS
model doesn’t take into account it.

3.4 Assessment of BRT and MARS Models

Assessment is one of the most important phases in the modeling process (Chung-Jo
and Fabbri 2003; Zabihi et al. 2016). For this purpose, an independent dataset of

18 M. Zabihi et al.



Fig. 10 Gully erosion susceptibility map produced by MARS model

Fig. 11 The ROC of BRT
and MARS models for spatial
modeling of gully erosion
susceptibility
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gully erosion implemented for validation of the used models. In this regards, from
109 observed gully erosion in field surveys, 33 locations (30%) applied for vali-
dation step that not considered in training phase. Also, 70 percent of locations (76
cases) used for constructing of gully erosion susceptibility model in the study
watershed. To assess the accuracy of implemented models (BRT and MARS), ROC
was employed by reconciling two gully erosion susceptibility maps (Figs. 8 and 9)
and existing locations of gully erosion (locations for validation step). The results of
ROC calculation are provided in Fig. 11 and Table 2. Based on the findings of this
research, BRT model has the better performance versus MARS model. The value of
AUC in BRT model was equal to 0.894 and prediction accuracy obtained 89.4%,
while, AUC and prediction accuracy of MARS model are equal to 0.841 and
84.1%, respectively. Accordingly, the accuracy of two used models is located in
very good class, but BRT model had the best performance in the current study. So,
the results of BRT model can be used for decision making and soil erosion man-
agement. Detailed information about ROC calculation is presented in Fig. 11 and
Table 2.

BRT and MARS methods have been used in some studies in the past to model
phenomena related to soil and water management. In this regards, Conoscenti et al.
(2015) using logistic regression (LR) and MARS techniques tried to assess sus-
ceptibility to earth-flow landslide. Their finding showed that Overall accuracy of
implemented models was excellent. However, AUC values of MARS proved a
higher predictive power of mentioned model (AUC = 0.881–0.912) with respect to
LR models (AUC = 0.823–0.870). Wang et al. (2015) applied three mathematical
methods such as LR, bivariate statistical analysis (BS), and MARS to create
landslide susceptibility maps. The findings of their research showed that the MARS
method has a better prediction rate (79%) when compared to LR (75%) and BS
(77%). Naghibi et al. (2016) used three machine learning models including BRT,
CART, and Random Forest (RF) for groundwater potential mapping. Based on their
results, the best prediction model was BRT while CART and RF models selected
for predicting locations of springs, respectively. Zabihi et al. (2016) compared
MARS and RF models for groundwater spring potential mapping in Iran. They
indicated MARS and RF as good estimators for groundwater spring potential in the
Bojnourd Township, northeast of Iran. The advantage of BRT model based on
Naghibi et al. (2016) study about groundwater potential mapping is modeling of
different types of effective factors on considered events and overcoming in the lost
data situation. In addition, assessment of BRT in modeling of different fields

Table 2 Detailed information of ROC computation in BRT and MARS models

Models Area
(AUC)

Standard
error

Asymptotic
significant

Asymptotic 95% confidence
interval

Lower
bound

Upper
bound

MARS 0.841 0.025 0.000 0.792 0.889

BRT 0.894 0.019 0.000 0.856 0.931
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including groundwater spring potential mapping, landslide susceptibility mapping,
and ecology are confirmed (Abeare 2009; Aertsen et al. 2011; Naghibi and
Pourghasemi 2015; Youssef et al. 2015).

The data mining algorithms are as a new method that implemented for modeling
by researchers in recent years. On the opposite side, statistics and statistical mod-
eling as old methods are the traditional fields. In this field, quantification, collection,
analysis, interpretation, and drawing are performed by data. But, data mining
algorithm trying to investigates large existing databases in order to discover patterns
and relationships in the data (Benjamini and Leshno 2005). The size of data is one
of differences between new and old methods of modeling. In addition, the use of
data mining methods in recent years proved the capability of it’s against old models
(Conoscenti et al. 2015). With these explanations and because of dynamics of the
natural systems and its uncertainty, the application of data mining techniques can
lead to understanding the natural systems and finally the management of mentioned
system.

4 Conclusion

Land degradation is one of the most concerns that managers, decision makers, and
researchers have always faced in recent years. Among different types of land
degradation, soil erosion is most important of its. Nevertheless, gully erosion
because of high contribution in the rate of output sediment should be seriously
considered. In this regards, determination of susceptible zones to gully erosion in a
watershed is the first step for soil erosion control and management. So, the present
study is planned to map the gully erosion susceptibility in northern Iran
(Mazandaran Province). For achieving this aim, eleven effective factors on gully
erosion including altitude, aspect, slope degree, distance from road, distance from
river, drainage density, plan curvature, profile curvature, TWI, land use, and
lithology are determined based on literature review, availability, and accessibility to
information. There are no multicollinearity problems based on tolerance and VIF
indices. Therefore, all of considered effective factors are implemented in investi-
gations and analyses. Application of data mining BRT and MARS models for
spatial modeling of gully erosion susceptibility was the next step of this research. In
the used models validation step, although both models have been located in very
good class based on prediction accuracy value, but BRT model with the AUC value
of 0.894 is selected and preferred for identifying susceptible zones to gully erosion.
Results of BRT model revealed among studied conditioning factors, altitude
(DEM), Aspect, and slope with the value of 43.03, 13.64, and 7.21% are assigned
to rank 1 to 3 of important factors, respectively. It should be said that the BRT
model unify the important advantages of tree-based models. This model doesn’t
need for initial data transformation or deletion of outliers. In addition, fitting
complex nonlinear relationships is one of other advantages of BRT method (Elith
et al. 2008). Also, feature selection and pruning are the benefits of the tree-based
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methods. Feature selection is a process which the most important and effective
factors are selected for modeling and making decision. With applying these cases,
the results are more accurate and acceptable. High speed in large data analysis and
less sensitivity to over-fitting are the advantages of BRT (Liu et al. 2016; Salazar
et al. 2016). Running with at least two factors is one of the disadvantages of
aforementioned model. Working well with a large number of predictor variables,
detecting and identifying interactions between variables, efficient and fast algo-
rithm, despite its complexity, and Robust to outliers are the advantages of the
MARS model. Difficulty to understand, and susceptibility to overfitting are the dis
advantages of MARS algorithm. These results of current study can be applied for
appropriate management of soil and water resources in the Valasht Watershed.
Also, the results of the current study can be used as an important key of man-
agement in correct decision making including selection of critical and high sensitive
to gully erosion for its control by policy makers, planners, and managers. In other
words, the prioritization of different areas of gully erosion control in a watershed is
the most important practical application of these results. Finally, more researches is
recommended in order to comparison of findings and the final conclusions in the
study area and other regions.
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Concepts for Improving Machine
Learning Based Landslide Assessment

Miloš Marjanović, Mileva Samardžić-Petrović, Biljana Abolmasov
and Uroš Đurić

Abstract The main idea of this chapter is to address some of the key issues that were
recognized in Machine Learning (ML) based Landslide Assessment Modeling
(LAM). Through the experience of the authors, elaborated in several case studies,
including the City of Belgrade in Serbia, the City of Tuzla in Bosnia andHerzegovina,
Ljubovija Municipality in Serbia, and Halenkovice area in Czech Republic, eight key
issues were identified, and appropriate options, solutions, and some new concepts for
overcoming them were introduced. The following issues were addressed: Landslide
inventory enhancements (overcoming small number of landslide instances), Choice
of attributes (which attributes are appropriate and pros and cons on attribute selection/
extraction), Classification versus regression (which type of task is more appropriate in
particular cases), Choice of ML technique (discussion of most popular ML tech-
niques), Sampling strategy (overcoming the overfit by choosing training instances
wisely), Cross-scaling (a new concept for improving the algorithm’s learning
capacity), Quasi-hazard concept (introducing artificial temporal base for upgrading
from susceptibility to hazard assessment), and Objective model evaluation (the best
practice for validating resulting models against the existing inventory). All of them
are followed by appropriate practical examples from one of abovementioned case
studies. The ultimate objective is to provide guidance and inspire LAM community
for a more innovative approach in modeling.
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1 Introduction

Machine Learning (ML) techniques overtook the primacy in the field of Landslide
Assessment Modeling (LAM) in the past couple of decades. Heuristic, statistical,
and deterministic approaches gradually gave way to ML. This is evident from the
publishing trends in the main thematic journals and conferences that involve LAM.
Numerous comparative LAM studies show this increasing trend, mostly regarding
comparisons between heuristic versus statistic (Shahabi et al. 2014; Yalcin et al.
2011), statistic versus deterministic (Ciurleo et al. 2017), but most importantly,
statistic and/or heuristic versus ML (Steger et al. 2016; Choi et al. 2012; Erener
et al. 2016; Yilmaz 2009). There are also numerous comparative studies that fol-
lowed, and regarded comparisons between different ML techniques (Pradhan 2013;
Pham et al. 2016; Youssef et al. 2016; Chen et al. 2017). Some of the above will be
briefly discussed hereinafter to depict the general state of the matter and illustrate
the trend of transition to ML techniques in LAM.

In their work, Yao et al. (2008) performed landslide susceptibility mapping
based on support vector machines (SVM) for Hong Kong case study using one class
and two class SVM methods and compared them to logistic regression models.
They have concluded that two class SVM outputs better results compared to logistic
regression and they recommended cross-validation usage for avoiding overesti-
mation of landslide class.

Gallus and Abecker (2008) compared logistic regression, Gaussian Process
models and the SVM for LAM for Voralberg case study (Austria), and they also
showed that kernel-based methods outperformed logistic regression in their models.

Goetz et al. (2015) evaluated six different methods for LAM: generalized linear
model logistic regression (GLM or LR), generalized additive models (GAM),
weights of evidence (WofE), SVM, random forest classification (RF), and bootstrap
aggregate classification trees with penalized discriminant analysis (BPLDA) for
multiple areas of Lower Austria. Their study showed small differences of prediction
performances between statistical and ML approach for LAM. RF and BDPA
showed the best prediction performance, but visually the GAM and GLM were with
best interpretation. Their general conclusion is that SVM, RF and BPLDA are
useful for high-dimensional prediction problems, with large number of predictors.

Kavzoglu et al. (2014) compared multi-criteria decision analysis (MCDA), SVM
and support vector regression (SVR) to predict the shallow landslide susceptibility
of Trabzon province (NE Turkey) using 10 different predictors. Their results
showed that the MCDA and SVR gave satisfactory results and they outperformed
logistic regression method by 8% (of overall accuracy), but in their case study
MCDA method produced slightly better results than the SVM method.

The study of Park et al. (2013) compared the abilities of frequency ratio (FR),
analytic hierarchy process (AHP), logistic regression (LR), and artificial neural
network (ANN) for LAM for the Inje area (Korea). Their results indicate that FR
had the best performance, followed by AHP, LR, and ANN. They also found that
all results were acceptable, but it should be highlighted that they did not include
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geological factors as predictors. Their results should be considered with caution
regarding LAM, due to lower accuracy compared to similar studies in the available
literature (Yilmaz 2009; Marjanović 2013; Youssef et al. 2016; Ciurleo et al. 2017).

Yilmaz (2009) compared Conditional Probability (CP), LR, ANN, and SVM for
producing landslide susceptibility maps of Koyulhisar area in Turkey. His results
showed that maps obtained by SVM and ANN have a slightly better accuracy
compared to conventional statistical methods, but he also stated that all models
were with similar accuracies.

Marjanović (2013) compared five modelling methods: stability index, AHP,
Fuzzy sets, CP, and SVM for landslide susceptibility of Fruška Gora (Serbia). The
study showed that SVM outperformed other methods, wherein stability index had
the lowest performance (lowest area under the curve AUC, referring to Random
Operating Characteristic or ROC curve).

Tsangaratos and Ilia (2017) in their review paper compared results from three
different studies that have used SVM, Naïve Bayes (NB), AHP and LR for LAM,
and they also concluded that SVM, NB and LR (all of them had >80% accuracy)
outperformed AHP (with 69% accuracy).

Although Ciurleo et al. (2017) did not deal with ML technique, it is safe to infer
some conclusions from their work. They suggested that statistical (simple bivariate)
approach based on the informative value method, tends to reach similar perfor-
mance as a deterministic TRIGRS model (based on Richards infiltration model
coupled with infinite slope model). At the expense of somewhat higher overesti-
mation of high landslide susceptibility class, they emphasize that a simple statistical
approach was sufficient even for a large-scale study. The simplicity of the bivariate
model is contrasted with the complexity of the TRIGRS model, which requires
numerous physical and mechanical properties (limiting the application only to a
well investigated sites). Given such circumstances, it is possible to assume that ML
would perform equally well as simple bivariate statistics, which is probably the first
next thing this research will attempt to compare.

Steger et al. (2016) challenged ML techniques, Random Forest and SVM in
particular, with LR and general additive models. The conclusion was again that the
ML techniques considerably outperform the others, but they also emphasized that
model validation cannot rely only on performance metrics, but also include qual-
itative and spatial context of output maps, thereby drawing attention to biases that
each model inherits from the input data.

There are also reports of better performance of non-ML technics in comparison
to ML techniques (Yalcin et al. 2011; Choi et al. 2012). However, the validation
metrics in these was questionable, as they both gave way to non-ML techniques,
disregarding their large number of false positives (overestimations).

The current ML practice in LAM is becoming oversaturated with case studies
that merely reapply familiar techniques or several of them simultaneously. Very
slight differences between most popular ML techniques are compared, but even
such comparative studies lead to “yet another Landslide Assessment map”, with
little or no innovation in the process. Sudden heaps in numbers of research papers
are taking place only when entirely new, or some useful but forgotten ML technique
comes into play, but even then, mere re-application is usually taking place.
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On the other hand, LAM researchers, especially the inexperienced ones, are
agonized with several common issues, and driven to cope with the same problems,
usually making same mistakes. Herein, the most common of these issues were
identified and will be addressed in the respective sub-chapters. The objective is to
try to guide potential novice LAM community throughout, and inspire new ideas to
build upon. The following issues are included: landslide inventory enhancements,
choice of attributes and attribute selection, choice of ML task—classification versus
regression, choice of ML technique, sampling strategy, cross-scaling, Quasi-Hazard
—artificially introducing temporal base, and objective model evaluation. Each of
these will be elaborated in separate sub-chapters, followed by a brief overall con-
clusion. All addressed issues for consideration are complemented with practical
examples from our experiences, in various case studies.

1.1 Case Studies

Practical examples addressing target issues will be demonstrated on completed and
ongoing case studies. Hereinafter, landsliding history, setting and other character-
istics of these case study areas will be briefly described.

• The City of Belgrade in Serbia, which has over 1.6 million inhabitants within the
area of 3222 km2, was assessed for landslide susceptibility in several occasions
(Božović et al. 1981; Gojgić et al. 1995), including detailed landslide mapping
during 2006–2010 (Lokin et al. 2012), but there are also ongoing aspects of this
study area. It is especially in focus after the 2014 disastrous flooding and land-
sliding events in Serbia, wherein 1.6 million people were affected across Serbia,
with 51 casualties, around 32,000 evacuated, total damage up to 1.53
billion USD or 5% of Gross Domestic Product (GDP). The area includes central
and eastern suburban parts of the City, since northern outskirts are flat plains with
no landsliding potential (Fig. 1a), the geological setting is relatively complex,
with Cretaceous flysch and limestone base, overlain by Neogene clays, marls,
which together with Quaternary deluvial deposits, host the most of the landslides.
Deep-seated composite slides are dominant, many with active or temporarily
suspended kinematic status (270 of around 1000 landslides), and the largest ones
are about 850,000 m2, while average size is around 90,000 m2.

• The City of Tuzla in Bosnia and Herzegovina was a subject of “Detailed flood and
landslide risk assessment for the urban areas of Tuzla and Doboj” in 2015–16. It
followed a general landslide risk assessment for the entire Bosnia and
Herzegovina in 2015, as a detailed example of the proposed methodology with
ML implementation (Marjanović and Đurić 2016). The city is located in the
north-eastern part of the Tuzla Canton in Federation of Bosnia and Herzegovina
(Fig. 1b). The territory of the inner case study area covers around 113 km2, with a
total population of 120,441. It was previously known as unstable terrain, with
steep slopes and pronounced relative height differences over short distances, with
an average slope of 11° and maximum slope of 56°. The historical landslide

30 M. Marjanović et al.



Fig. 1 Case studies setting: a The City of Belgrade, b The City of Tuzla, c Ljubovija
Municipality, d Halenkovice Area (registered landslides are given as red contours)
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inventory contains 941 records, with largest landslides of over 400,000 m2, and an
average size of 17,900 m2. These are primarily hosted in high-plasticity soft clay
and incoherent to moderately coherent sedimentary rock, and mainly shallow
translational slides, but there is a great number of flows as well. The area was in
focus, particularly after Bosnia and Herzegovina suffered the aftermath of floods
and landslides in 2014, with 90,000 evacuated, 25 killed, while the total damage
was estimated at around 2 billion USD, or 15% of GDP.

• Ljubovija Municipality in Serbia was also in focus after the 2014 events and is
being approached from several aspects in an ongoing study, including deter-
ministic, heuristic and ML landslide susceptibility modeling methods. Ljubovija
is located in the westernmost part of Serbia, occupying an area of around
331 km2, with population of 3929 (2011 census) (Fig. 1c). The terrain is
dominated by smaller but steep valleys of the Drina River tributaries, with a
maximum slope of 65°. Geologically, the most of the area is covered by
Paleozoic schist formations, which host landslides in their thick weathering
crusts, generally well known for instabilities. Shallow slides and debris flows
were the most common types in the May 2014 event, which is unusual (in
western Serbia, geological and geotechnical engineering practice indicates that
slides are more abundant than flows due to geological setting and climate).
Therefore, the attention in this study area was directed to flows. There were 271
landslide occurrences recorded in 2014, mostly active or suspended, with an
average size of about 2,000 m2, while the largest one was over 90,000 m2.

• Halenkovice area (60 km2) is located in the southeastern Czech Republic, close
to Brno (Fig. 1d). It has been investigated for shallow movements (Marjanović
2014; Kircher et al. 2000; Bíl and Müller 2008) which are typically hosted in a
deluvial mantle, developing translational shallow earth-sides. Due to a high
clayey and loamy proportions in the mantle, the instabilities are pervasive even
on relatively gentle slopes (maximal just over 30°, average around 9°). As of
2013, there were 24 active and 113 dormant landslides, with an average size of
about 42,000 m2, although in many cases multiple instances were merged
together as a single landslide polygon. The area is sparsely populated so these
landslides do not pose imminent threats to human lives or property.

2 Landslide Inventory Enhancements

Landslide Assessment is usually practiced as landslide susceptibility, i.e. the spatial
probability of landslide occurrence (Varnes 1984), whereas landslide hazard is its
temporal extension that is usually difficult to finalize since it requires historical data
on frequency and/or magnitude of registered landslides. The latter is rarely archived
for any meaningful return periods, e.g. 50-year periods or longer, therefore land-
slide susceptibility is largely preferred to hazard assessment. In any case, the
analysis first requires an inventory of registered landslides. In hazard case, the
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inventory is multi-temporal, whereas for susceptibility studies the inventory usually
contains landslides originating from a single massive landsliding event, or more
often, all historical landslides ever-recorded in the target area. Landslide inventory
standards usually require further details about landslide type, activity status and
other useful pieces of information, depending on the level of acquisition detail (e.g.
landslides recorded via remote sensing will not contain as many details as those
mapped in the field), and they are usually implying that the instances are mapped as
polygon features. For detailed scales, features are even further split into source and
accumulation parts (Guzzetti et al. 2012). Furthermore, in all ML implementations
for LAM the original polygonal geometry of the inventory is converted to raster
format of desired resolution, as landslide localities or so-called positives, which are
used for sampling, learning, and validating protocols. This also led to sampling
non-landslide localities, so-called negatives. The final raster is usually called class
label comprising landslide and non-landslide binary classes.

The key problem with any landslide inventory is usually the scarcity of landslide
instances in comparison to the size of the target area (Malamud et al. 2004). In western
Serbia, it is quite often that landslides cover less than 10% of the target area (Đurić
et al. 2017), which entails further difficulties. Optimal operative resolution is defined
by the smallest distinguishable size of recorded landslides, which means that the
smallest ones might be represented by a single pixel. Thus, there would generally be
too few landslide and too many non-landslide instances to train and validate the
models on, especially in detailed studies where only source areas are considered, so
even fewer landslide instances are available. In addition, validation requires about
10–20% of landslide instances and equal number of non-landslide instances
(Marjanović et al. 2011; Lombardo et al. 2014; Cama et al. 2016), although there are
some other views that support against balanced, and suggest splitting that is pro-
portional to the original class distribution (Oommen et al. 2011), which is still less
practical in the LAS due to the landslide samples scarcity. It is understood that
validation instances never took part in the analysis, but serve only for validation
purposes, which introduces another deduction of the training instances count. For
instance, in the case of Ljubovijamunicipality the initial number of all landslide pixels
was 427 against 386,780 non-landslide pixels (30 m resolution), or 427 available
landslide instances for training and validating over an area of about 355 km2

(Fig. 2a). One way of dealing with such shortcoming was to increase the resolution of
landslide pixels. One-fold resolution increase resulted in 1708 instances (Fig. 2b),
which then made it easier to sample for training (e.g. randomly, uniformly distributed
or by some other sampling strategies (see Section “Sampling strategy”) and spare 10–
20% for validation. Ideally (Hastie et al. 2009), there should be up to 25% for
validation, 25% for testing and 50% for training, but this is a very general rule of
thumb, and does not apply in the cases with strong class size disproportion (herein
non-landslides � landslides). Testing and validating sets are usually separated
(training set for training the model, validating set tuning the model, testing set to
challenge it against unseen instances, as in real-world applications), but it is appli-
cable in data-rich situation (Hastie et al. 2009), which is usually not the case in LAM.

Another way is to account for acquisition precision and precision of the
conversion of vector polygon to raster, thereby using one-half pixel dimension
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(e.g. 15 m) as a tolerance buffer. In the case of Ljubovija, 1475 landslide instances
were generated (Fig. 2c), providing similarly improved sampling choice as with the
previous technique with resolution increase. Non-landslide instances usually do not
require any intervention, and it would not be justified to use the same artificial boost
of resolution, unless the input data support it (i.e. inputs resolution should dictate
the pixel reduction).

3 Choice of Attributes

Beside class label (landslide/non-landslide), which is (as previously described)
obtained from the landslide inventory, ML learning protocol training/testing requires
attributes (also called predictors, independent variables, features, dimensions - in the
context of input space dimensions), that are appended to each training instance. Set
of attributes must be the same in training and testing/validating samples. These are
usually separated into conditioning and triggering factors, depending on their tem-
poral stationarity, as will be explained in greater detail later on. Conditioning factors
are usually in the focus of susceptibility assessment, while hazard assessment can
benefit from using triggering factors (see Section “Quasi-hazard”). There is
more-or-less common ground among researchers on which conditioning factor
attributes are relevant for LAM. These are chiefly geological (Yilmaz 2009; Pradhan
2013; Dumlao and Victor 2015), morphometric (Foumelis et al. 2004; Sharma et al.
2012; Kukemilks and Saks 2013), and environmental attributes (Heymann et al.
1994; Jones 2002; Shahabi et al. 2014), acquired from various sources, including
corresponding thematic maps, elevation data, satellite imagery and linked products.
Developing of GIS and Geostatistics allowed even further synthesizing of additional
attributes from existing inputs, such as XY-lat/long coordinates, various spatial
buffers or interpolations, higher-order derivatives, etc. (Fig. 3). Using XY coordi-
nates works only if there is a high spatial autocorrelation of landslide distribution,
which is not always the case (unlike other phenomena such as temperature vs.
latitude for instance).

Fig. 2 Rasterization of landslide polygons from the inventory—a detail of Ljubovija Municipality
case study: a Direct rasterization at 30 m resolution, b Direct rasterization at 15 m resolution,
c Rasterization at 30 m resolution with 15 m tolerance buffer around polygons
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Attributes can be either numeric or discrete (such as lithological or land cover
maps). Discrete attributes usually require some additional processing, i.e. quan-
tification of discrete values (e.g. in Weka software for ML, only class labels can be
discrete in the classification task). One way is to assign an expert-driven weights for
each class of discrete attribute, thereby transforming it into a numerical input.
Another choice is to generate binary (dummy) attributes, e.g. 5-class discrete
attribute will be split into 5 new binary attributes, wherein each class (1) will be
represented against all remaining 4 classes (0) put together (one vs. all, Fig. 4).

Given all these possibilities to generate higher-order morphometric, synthetic
and dummy attributes, the operative number of attributes can grow considerably,
thereby increasing the dimensionality of ML model. However, high-dimensionality
is not always in the best interest of the model, as it can entail redundancy and poorer
generalization. It is therefore advisable to optimize it by introducing some attribute
selection or extraction technique.

When processing operative attributes, one can basically turn to ranking-and-
selecting, or correlating-and-extracting approaches (Hall and Holmes 2003).
The former rank the attributes by their importance and leave to the user to decide
whether to reject any or possibly use the ranking in the weighting process for
simple modeling approaches. The latter implies cross-correlating attributes against
the class label and making a reduced subset of attributes.

Several ranking techniques are very popular in LAM: gain ratio, information
gain (IG), principal components, etc. All these are based on entropy values, which
determines how informative (useful) an attribute is for revealing the classification/
regression rule within the class label. In fact, all tree-based ML algorithms work by
using these rankers for shaping the classification/regression rule (Mitchell 1997), so
it is safe to say that attribute selection is somewhat redundant for tree-based ML
implementation, as it is performed during the learning process. Anyhow, attributes
are ranked from the most important to the least important, which then leaves the
user to define a threshold which will be used as a criterion for excluding unim-
portant attributes (reducing feature space dimensionality). One way of defining it is
using leave-last-out approach (Marjanović 2014), wherein the modeling is

Fig. 3 Examples of synthetic attributes for The City of Belgrade case study: a Distance to stream,
b Kriged depths to groundwater, c Latitude
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performed repeatedly by using smaller and smaller attribute sets. In every succes-
sive run, the lowest ranked attribute is left out of the attribute set. The threshold is
reached when performance parameters are starting to drop significantly, e.g. if it
drops more than 2–3% of the given evaluation parameter. In the example of
Halenkovice study, the threshold can be drawn at attribute 21, meaning that least
ranked attributes between 21 and 26 could be easily excluded without affecting the
prediction performance (Fig. 5). Naturally, there is no need to test all ranks from 26
to 1, but it is simply verifiable via removing several least-ranked attributes to see if
anything drastic happens. In most cases, these rankers create similar ranking lists,
but some differences may occur.

Correlation Feature Selection (CFS) is one of the widely-used examples for
feature extraction (Witten et al. 2011). It creates reduced attributes subsets that
contain only attributes correlated with the class label, but uncorrelated with each
other. It rarely increases performance (Table 1), but if the performance remains
similar, it is justified to practice this technique for saving time and hardware
capacity. Given that at the current state of software/hardware development, time
consumptions for processing model variants with complete and reduced attribute
sets do not differ much, the attribute extraction is not entirely justified.

Fig. 4 Example of generating dummy attributes from discrete rasters: a Engineering geological
units, b Unit of solid rock against other, c Unit of weathered rock against other, d Unit of
uncoherent rock against other

36 M. Marjanović et al.



4 Classification Versus Regression

Another fundamental problem that is commonly taken for granted is the choice of
the ML task. Namely, the task can be to map and predict landslide class, or more
commonly, to map the spatial probability (susceptibility) of landslides. ML
implementation offers two different task definitions to adjust to these two approa-
ches. The latter, i.e. probabilistic mapping, implies the regression ML task. The
chosen ML algorithm is therein used to learn a regression function from supplied
training instances. Training instances have a numeric character, i.e. they represent
landslide probabilities in a range [0–1]. It is convenient that there are extreme
examples with 0 or 1 probability, but also intermediate examples with probabilities
e.g. 0.2, 0.5, 0.7 etc., which helps the algorithm to learn about such inexplicit cases
and predict better. This is sometimes difficult to determine if there is no reliable
evidence (temporal/historical record of failure probability over the specified return
period, which is common for hazard analysis, or a static factor of safety as a
reference for the probability of failure). For instance, if there are active landslides, it
is advisable to assign them probability 1, while dormant landslides (by definition)
are inactive within two years, which would mean that their annual probability
should be 0.5 or less. It is possible to use some deterministic models, which outputs
factor of safety, as learning support for assigning probabilities, but in regional case
studies deterministic models are not very applicable for large scales. After the
training is completed, all unused instances are projected along regression function
learned by a particular ML algorithm. Direct output is a susceptibility map with a
0–1 span of probability (Fig. 6a).

The other option, i.e. mapping landslide class across the area, implies the
classification ML task, wherein the algorithm learns from the training set of

Fig. 5 Accuracy versus IG rank of attributes in leave-last-out concept for Halenkovice case study,
using the SVM algorithm in a typical classification task (after Marjanović 2014)
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landslide and non-landslide instances how to map specific class. This case is more
in use when practitioners have difficulties assigning probabilities to their invento-
ried landslides. Instead, they would rather keep the original discrete class labels,
e.g. by activity status: active = 1, suspended = 2, dormant = 3, marginally stable
slopes = 4 and non-landslides = 5 (any number can be assigned instead of 1, 2, 3,
4, 5 because these numbers represent just the class name). Learned classification
function is then used to separate each unseen instance into either of these landslide
classes. Resulting map is discrete, usually binary (landslide vs. non-landslide) or it
can involve multi-class case, e.g. 1–5, depending on the number of classes intro-
duced in the training. Even though discrete, these maps can be transformed into
probabilistic susceptibility maps if the model is iteratively run and the final result is
obtained by averaging all intermediate models (Fig. 6). Iterations are usually
implying different sets of training samples, so that each intermediate model has a
different layout of training instances. Many ML algorithms, especially ensemble

Table 1 AUC comparison
before and after attribute
selection for The City of
Belgrade case study, using
SVM and RF algorithms and
their CFS and IG ranker (first
10 best-ranked attributes)
variants

Model ROC area

Class 0 Class 1 Class 2 Average AUC

SVM 0.68 0.56 0.82 0.69

SVM_CFS 0.62 0.55 0.53 0.57

SVM_IG 0.69 0.56 0.83 0.69

RF 0.70 0.58 0.78 0.68

RF_CFS 0.63 0.57 0.60 0.60

RF_IG 0.69 0.58 0.78 0.68

Class 0 = non-landslide, class 1 = dormant landslide, class
2 = active landslide

Fig. 6 Landslide susceptibility (a), and a classified landslide prediction map (b), from
Halenkovice case study, using SVM algorithm (after Marjanović 2014). Note how classification
task can result in either probabilistic or class-specific predictive maps
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multi/meta-techniques, such as Random Forest, allocate probability of class pre-
diction per each predicted instance, which (similarly as above mentioned averaging)
can be used to produce a 0–1 span of values to transform predictive maps to
probabilistic.

5 Choice of ML Technique

Choosing the most appropriate ML technique to perform desired classification/
regression task is fundamental. Users are usually practicing techniques they are
most familiar with, but which one generalizes better in particular cases cannot be
determined beforehand. It is therefore advisable to use several techniques simul-
taneously and observe which one best suits a particular case study. There is no
general preference, as all the techniques have their pros and cons (Table 2). One
could go for quick-yielding techniques that do not require deeper understanding of
their black-box concepts, such as Extreme Learning (EL) or similar ANN, or even
ensemble learning techniques such as Random Forests (RF). Others might prefer
simple, but effective techniques, such as Decision Trees (DT), especially if they
would like some insight in the function-making process (grey-box). DTs are therein
unique, and drift from typical black-box, because they allow user to observe the
aggregated rules that lead to a specific classification/regression function. In any
case, it is quite important to optimize the chosen algorithm and to use at least a
couple of them, and cross-compare results. Optimization usually requires to define
the best pairs or triplets of relevant algorithm parameters, e.g. misclassification
penalty C and kernel dimension c in SVM, number of hidden layers and iterations
in ANN, number of trees and number of randomly sampled attributes in RF. Some
reports (Caruana and Niculescu-Mizil 2006) are suggesting that best-yielding
techniques in general are ensemble learning algorithms, such as RF, closely fol-
lowed by SVM, EL, ANN, therein outperforming DT and LR. Similar findings to
this general comparison is found within LAM (Pradhan 2013; Pham et al. 2016;
Steger et al. 2016; Youssef et al. 2016; Chen et al. 2017), and a brief discussion of
our experience with these will follow hereupon. For particular details about these
(popular) techniques in general, we suggest Witten et al. (2011), Mitchel (1997),
and Hastie et al. (2009), wherein most of these are explained in detail.

The obtained values of the overlay measure (AUC) indicate a good performance
for all four models with slight differences (Table 3 and Fig. 7). The values of TP
(true positive) rate indicate that all four models have similar capability to correctly
predict landslide instances. The RF-based model has the smallest distribution of
misclassification of landslide (FPrate) and the largest distribution of correctly
classified non-landslide instances (TNrate) compared to other models. Conversely,
the EL-based model has the largest value of FPrate and the smallest value of TNrate
compared to other models (Table 3). RF model gives the least overestimations of
target landslide class, while other methods perform similarly in this respect (Fig. 7).
However, RF does have significantly higher FNrate (Table 3), which indicate that it
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underestimates the landslide class. A tradeoff threshold between contingency table
indices is needed to select the model of choice. As a rule of thumb, it is usually
better to choose the model that has less FN, but other aspects of the model (e.g.
spatial and geomorphic plausibility) also need consideration (Steger et al. 2016).

Some of the advantages of SVM compared to other ML techniques, which make
this technique very popular are: the capability to provide a good generalization if
the parameters of kernel function are appropriately optimized. It is also robust and
provides unique classification rule when using the same training samples (unlike
ANN, wherein randomization effectively influences weights at the node level and
results in slightly different outcomes while using the same training sample). RF is

Table 2 Pros and cons overview of some ML classifiers from our perspective

ML
technique

Pros Cons

DTa Relatively fast (in both learning and
classifying), deals well with nominal
and numeric data, deals well with
NoData, easily optimized, easy to
interpret (especially when pruned)

Lower accuracy, sensitive to sampling
strategy (tends to create too complex
models with large training sets, and has
low performance with small training
sets), tends to overfit, performs poor
with high-dimensional data

LR Relatively fast (in both learning and
classifying), deals well with
high-dimensional data, no optimization
required, outputs class probability for
interpretation

Lower accuracy, sensitive to sampling
strategy, deals badly with nominal data
(requires indirect transformation to
scaled/scored numeric), handles only
linearly separable relation, tends to
overfit and overestimate (high FP)

ANNb Accurate, deals well with nominal
(indirectly) and numeric data, suitable
for high-dimensional data

Relatively slow, sensitive to sampling
strategy (deals badly with redundant
and noisy data in training), tends to
overfit, requires extensive optimisation,
not interpretable

EL Accurate, fast, deals well with nominal
(indirectly) and numeric data, suitable
for high-dimensional data, no
optimization required

Sensitive to sampling strategy, tends to
overfit and overestimate, not
interpretable

SVMc Accurate, deals well with nominal
(indirectly) and numeric data, deals
well with noisy and redundant data,
works well with high-dimensional data,
works well (better) with small training
sets

Relatively slow, deals badly with
NoData, not easy to optimize (2–3
fitting parameters), tends to overfit, not
interpretable

RF Accurate, fast, deals well with nominal
and numeric data, deals well with
NoData, as well as with redundant and
noisy data in training, easy to optimize,
somewhat interpretable

Works badly with small training sets,
works badly with high-dimensional
data (due to random choice of attributes
at the individual trees’ node level)

aC4.5
bPerceptron feed-forward
cwith radial-basis-function kernel

40 M. Marjanović et al.



also a very popular technique in LAM because it avoids overfit, due to the Law of
Large Numbers. Another advantage is RF’s capability to handle less informative
attributes. Recently introduced EL technique was also identified as one of the best
performing and fastest models in terms of processing time (even faster than RF, and
much faster than SVM and ANN).

Table 3 Performance of various models implemented in Ljubovija Municipality case study

Model TPrate TNrate FPrate FNrate AUC

ANN 0.83 0.54 0.46 0.17 0.77

SVM 0.86 0.60 0.40 0.14 0.73

RF 0.73 0.78 0.22 0.27 0.76

EL 0.89 0.39 0.61 0.12 0.76

Fig. 7 Landslide (binary) predictions, for Ljubovija Municipality case study, derived by: a ANN,
b SVM, c RF, and d EL
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6 Sampling Strategy

As indicated before, ML concept implies training and testing protocols. Training
protocol is used for learning a classification or regression function based on the
sample dataset, i.e. the training dataset. The two most commonly used strategies for
sapling are random and uniform strategies. However, the nature of the landsliding
process indicates the spatial variability and heterogeneity, demonstrating that
landslides do not occur uniformly and usually cover only a small percentage of the
whole study area. Therefore, using the training data set that contains randomly
chosen samples or that contains uniformly distributed samples (e.g. 100 � 100 m
grid) is not appropriate. Considering the relatively small number of landslide
instances and the nature of landslides regarding their spatial distribution, the more
suitable, two-step, sampling procedure is herein proposed. The first step includes
the definition of all landslide areas as landslide polygons (if raster data are used),
and all areas that are highly unlikely to host landslide (based on the expert
knowledge) as non-landslide polygons. Second step randomly selects a half of all
landslide instances as training landslide samples, ensuring that they are distributed
across all landslide polygons from the inventory, considering the size of each
landslide polygon, and selecting the same number of instances from non-landslide
polygons in the same manner. By using this proposed balanced sampling strategy,
both classes (landslide—1 and non-landslide—0) are equally represented, and thus
the possibility that the ML model favors the majority classes (non-landslide—0)
during the learning/training protocol is avoided. The rest of the instances that have
not been sampled for training dataset are used for testing protocol as testing/
validating dataset. These are subjective (expert-driven) criteria, which are depen-
dent on the particular case study and experience of the practitioner. Beside expert
knowledge, another way to sample non-landslide instances, recommended by
Tsangaratos and Benardos (2014), is to use Mahalanobis distance metric
(Mahalanobis 1936). This objective approach would involve the sampling that is
based on the distance from the existing (recorded) landslides, wherein furthest areas
are potentially interesting for sampling non-landslide instances (Kornejady et al.
2017). Namely, using Mahalanobis distance, which is a probabilistic distance (that
considers the spatial variance, following a general geographic law that closer
entities are similar), can result in successful grouping of non-landslide instances.
Thereby, distant pixels are less likely to interfere and confuse the learning algo-
rithm, and can be regarded as “safe” non-landslides. This procedure is considered
superior to purely random sampling (Kornejady et al. 2017).

In order to determine how the proposed sampling strategy can contribute to the
improvement of the model the following experiment was conducted in Ljubovija
case study. Dataset (S), used to represent the entire Ljubovija territory, contains the
total of 387,207 instances (30 � 30 m grid cells), out of which only 1475 (0.38%)
instances represent landslides. Originally, the number of landslide instances was
even smaller, but after introducing a 15 m tolerance buffer (see Section “Landslide
inventory enhancements”) their number has been increased. The entire dataset was
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sampled to determine the training split using all three sampling methods separately,
random, uniform and customized, labeled Srtr, S

u
tr and Sctr, respectively. Remaining

instances, i.e. instances that were not included in the training datasets, were used for
testing/validating (separately for every sampling method), labeled Srte, S

u
te and Scte,

respectively. Apart from enhancement of the inventory for increasing the number of
landslide instances, the proposed strategy implies limiting the area for sampling
non-landslide instances to areas that are arbitrarily chosen by the expert as
least-likely landslide-prone areas (ridge zones, alluvial deposits, exclusion of the
landslide upslope area, exclusion of the areas that are not suitable for landslide
progression spatially or geologically, gentle slopes with less than 5°, etc.). It is also
suggested to group non-landslide samples in clusters to achieve better performance
(Conoscenti et al. 2016). Contents and spatial distribution of training and testing
datasets are presented in Table 4 and Fig. 8.

Based on the training datasets, Srtr and Sutr contents, it is evident that the use of
random and uniform strategy resulted in very small numbers of landslide instances
(almost none), which was expected given that the probability of their selection
during the sampling was small due to the very small percentage of landslide
instances and their heterogeneous spatial distribution. On the other hand, the use of
proposed strategy has contributed to balance dataset, with the original spatial dis-
tribution of landslide instances.

RF technique with default parameters was used to build models for this exper-
iment. Therein, the LAM is considered as a classification task (landslide—1 and
non-landslide—0). The measures of validation that were used include TPrate,
FPrate, FNrate, TNrate and AUC (Bradley 1997). Results are shown in Table 5.

When the models were built with Srtr and Sutr datasets and then tested on corre-
sponding Srtr and Sutr datasets, the results for the TNrate and FPrate were excellent
(Table 5). Contrarily, the values of TPrate and FNrate were very bad. Further, the
comprehensive measure (AUC) indicates that the same models would have been
derived even if the random class scoring was performed. This result reflected the
nature of both training datasets in which almost all of the instances are
non-landslides. Thus, during the training protocol, RF was not fed by the data on

Table 4 Number of training instances in various sampling strategies (indexes next to sample lable
S: tr—training, te—testing, r—random, u—uniform, c—custom)

Dataset Sampling
strategy

# of landslide
instances

# of non-landslide
instances

Total # of
instances

Srtr Randomly 5 1469 1474

Srte S� Srtr 1470 384,263 385,733

Sutr Uniformly 3 1471 1474

Sute S� Sutr 1472 384,261 385,733

Sctr Custom
sampling

737 737 1474

Scte S� Sctr 738 384,995 385,733
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the landslides and consequently could not learn to classify instances of landslides.
When more balanced training dataset, Sptr, was used for training protocol, the model
learned to classify landslide instances to a much greater extent. In addition, the
AUC measure value indicates that these are “good” models. The TNrate and FPrate
values indicate that the model has misclassified a great number of instances as

Fig. 8 Distribution of sampling instances by various strategies: a random, b uniform, c custom
sampling strategy (expert-defined areas for sampling non-landslide instances), and d landslide
inventory

Table 5 Performance of RF model using different sampling strategies for Ljubovija Municipality
case study (indexes next to sample lable S: tr—training, r—random, u—uniform, c—custom)

Training set Testing set TPrate TNrate FPrate FNrate AUC

Srtr Srte 0.001 1.000 0.000 0.999 0.565

Sutr Sute 0.001 1.000 0.000 0.999 0.566

Sctr Scte 0.936 0.391 0.609 0.064 0.825
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landslides. This problem can be solved to a certain degree, as explained in
Section “Classification versus Regression”, by taking more classes for landslide
probability or by switching to a regression task.

Each study can be specific in some way. During the sampling procedure,
researchers need to be led by the fact that the ML relay on the data. Furthermore,
the applied sampling strategy needs to include significant information as much as
possible required for learning.

7 Cross-Scaling Concept

Cross-scaling is a recently proposed concept (Marjanović 2014), that has not yet
received enough attention. It relies on the fact that input data are introduced as
rasters of different resolution and support, wherein the relationship between reso-
lution to support is very delicate and often neglected. From ML point of view, an
algorithm cannot learn well if the input resolution is too coarse, as it would learn
from large-sized pixel (pixel � support) that give average value of target attribute
that is otherwise much more spatially variable within the large-sized pixel area. On
the other hand, if the resolution is too fine (pixel � support), the algorithm might
learn redundant detailed information, that can distract it from learning a good
general classification/regression rule. Both cases might lead to overfit, so it is
usually proposed to optimize the operative resolution to best fit the original data
support. However, cross-scaling concept goes a step further. It exploits the possi-
bility to learn from data resolutions that are slightly coarser than optimal
(pixel > support), because it can introduce subtle generalizations of attributes’
values and help the ML algorithm avoid the overfit. It is understood that only
upscaling is allowed, i.e. sampling should go as much as the highest data resolution
allows (if the best resolution within the dataset is 25 m, only enlarging the pixel
sampling grid is allowed, e.g. 50 or 100 m).

In the City of Belgrade case study three different spatial resolutions of input
datasets were used: 25, 50 and 100 m. The highest resolution was 25 m and included
morphological and geological conditioning factors, as well as all interpolated factors
(Fig. 3), whereas environmental factors were only available at 100 m resolution
(CORINE land cover). Landslide class label was divided into: 0—non-landslides, 1
—dormant landslides, and 2—active landslides. Suggested cross-scaling concept
was implemented as follows:

1. training on 25 m set and testing on 25 m set,
2. training on 50 m set and testing on 25 m set,
3. training on 100 m set and testing on 25 m set,
4. training on 50 m set and testing on 50 m set,
5. training on 100 m set and testing on 50 m set.
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All these combinations were tested by two different ML techniques, SVM and
RF, wherein prediction of target landslide label classes was placed as a typical
classification task. Result support the cross-scaling hypothesis, as they showed that
regardless of the ML technique (SVM or RF) performance is improving for most
cross-scaled variants, but especially combination 5 (training on 100 m set and
testing on 50 m set). What is additionally important, class 2 (landslides) witnesses
significant AUC improvement, from about 0.5 to 0.7 in SVM variants, while in RF
variants the improvement is less drastic (Table 6). Figure 9, visually illustrates these
findings on a detail regarding the right Danube River bank near Grocka (Serbia).
Reduction of false positives is apparent in combination 100–25 cross-scaled RF
model, while true positive improvement is demonstrated in 100–25 cross-scaled
SVM model. The prediction rate curves (for initial 50–50 and cross-scaled 50–100
variants) also indicate that predictive power is slightly increased, while success rate
curves are clearly showing better fitting skill of the cross-scaled variant (Fig. 10).

Similarly, for Halenkovice area cross-scaling also gave improvements in the
implementation of SVM algorithm for landslide prediction. Training over 10 m
data and testing also over 10 m data initially gave poor performance (AUC = 0.57)
with highly underestimated landslide class (Fig. 11a). Training over 30 m data and
testing on 10 m gave significant improvements (AUC = 0.70), with slight over-
estimation of landslide class (Fig. 11b). Even better results (AUC = 0.74) were
achieved with the combination that trains on 20 m and tests on 10 m data
(Fig. 11c), meaning that fine tuning is necessary to find the best resolution
combination.

Table 6 AUC ROC model performance comparison of original and cross-scaled models in the
validation area (only) for The City of Belgrade case study

Model, resolution combo ROC area

Class 0 Class 1 Class 2 Average AUC

SVM, 25–25 0.52 0.49 0.55 0.52

SVM, 50–25 0.52 0.49 0.54 0.51

SVM, 100–25 0.61 0.51 0.67 0.60

SVM, 50–50 0.51 0.49 0.53 0.51

SVM, 100–50 0.63 0.53 0.72 0.63
RF, 25–25 0.64 0.50 0.67 0.60

RF, 50–25 0.37 0.46 0.46 0.43

RF, 100–25 0.69 0.56 0.72 0.66

RF, 50–50 0.65 0.52 0.64 0.60

RF, 100–50 0.69 0.57 0.72 0.66
Class 0 = non-landslide, class 1 = dormant landslide, class 2 = active landslide
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8 Quasi-hazard Concept

As mentioned before (see Section “Landslide inventory enhancements”), LAM is
usually practiced as a landslide susceptibility, i.e. spatial probability of landslide
occurrence. We are supporting the view that susceptibility should remain as static as
possible, and include conditioning factors that do not change drastically over time,
although there are opposite views which involve even rainfall data within the

Fig. 9 Details on landslide prediction for the City of Belgrade case study: a RF model trained on
25 and tested on 25 m resolution dataset, b RF model trained on 100 and tested on 25 m resolution
dataset, c SVM model trained on 25 and tested on 25 m resolution dataset, d SVM model trained
on 100 and tested on 25 m resolution dataset
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susceptibility analysis (Marjanović et al. 2011). When attempting to extend the
analysis temporally, practitioners come across incomplete historical data regarding
the landslide frequency/magnitude for longer return periods (e.g. several decades).
Herein, it is proposed to overcome this problem by introducing the temporal base of
the trigger. This is justified only if the triggering process is unambiguous. For
instance, when the field evidence supports that shallow landslides within a specified
area are directly mobilized by rainfall that exceeds specified threshold (intensity/
duration), it can be expected that the dynamics of the landslides will correspond to

Fig. 10 Success and prediction rates curves for RF, 100–50 model

Fig. 11 Landslide prediction for Halenkovice case study: a SVM model trained on 10 and tested
on 10 m resolution dataset, b SVM model trained on 30 and tested on 10 m resolution dataset,
c SVM model trained on 20 and tested on 10 m resolution dataset (after Marjanović 2014)
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the dynamics of the rainfall, and that the rainfall is the likely trigger. In most of our
case studies, the triggering mechanism was more complex, except for Tuzla and
partly Ljubovija. Hereinafter, a quasi-hazard concept will be elaborated for the
Tuzla case study.

Landslides in the Tuzla area are mainly shallow translational slides or debris
flows, and it is justified to assume their direct link to landslide triggering factor.
Some calculations based on 2010 rainfall event in Tuzla (Mumic et al. 2013),
suggest that 72 h rainfall that exceeds the threshold of 100 mm triggers landslides.
It is first necessary to perform a standard susceptibility assessment based on some
modeling approach, preferably ML-based. Therein, standard geological, morpho-
metric and environmental attributes were used as input conditioning factors and
landslide susceptibility, with a relative scale 0–1, i.e. low to high landslide sus-
ceptibility was created (Fig. 12a). Secondly, the procedure required detailed studies
and prediction of rainfall patterns for specific return periods. Historical rainfall from
1981 to 2010 period were analyzed on annual level, and given as relative rainfall
intensity in 0–1 range, interpolated over the entire study area (Fig. 12b). Finally,
multiplying susceptibility and rainfall intensity map in their relative scales gave the
quasi-hazard map, which highlights the areas of high spatial probability of land-
slides and areas of high annual rainfall intensity that can trigger landslides
(Fig. 12c). Overlapping of high susceptibility and high trigger intensity (calculated
for a specific period of time) highlights high quasi-hazard, thereby answering:
where (overlap of high susceptibility and high trigger intensity), when (within a
return period specified by the trigger), and (partly) what magnitude of landslides
can be expected (entirely relative 0–1 scale) within a given area. It is still far from
the exact probabilities that can be only quantified when all essential information is
supplied. The latter should include the true landslide frequency in specified return
period (which would require process monitoring for longer time and over a larger
area), estimations of volume of transported material, the velocity of the process
(even more detailed monitoring), separately mapped source and accumulation
zones, and so forth, which is all usually missing in regional scale landslide
inventories.

9 Objective Model Evaluation

One of the most important and a mandatory step is to clarify the validity of the
ML-based model results. Which of the measures or analyzing techniques should be
used for selecting the best performing model is an issue for many scientists. In most
of the landslide modeling studies the authors compare the model outcome map with
the original landslide inventory map. Usually the first approach is to perform a visual
comparison and examination of similarity between those two maps, which is then
followed by application of some of the statistical measures. The simplest and a very
popular way to quantify similarity between two raster maps is to do a cell by cell
(pixel by pixel) spatial match to get the total number of matching cells or to get the
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proportion of observations classified correctly, i.e. accuracy. Considering the great
importance of the model evaluation, many statistical measures are introduced and
used for that purpose. Some of the most commonly used for landslide model eval-
uation are Relative Operating Characteristic (ROC) curve, sensitivity, specificity,
area under the ROC curve (AUC) and kappa statistics and its variations. ROC curve

Fig. 12 Quasi-hazard procedure: a Landslide susceptibility model, b Landslide trigger model
(annual rainfall intensity for 1981–2010), c Quasi-hazard model
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is well-established measure used for validation of ML classification, which is
derived (constructed) from the confusion matrix. The confusion matrix (contingency
table) depicts how the distribution of classes in a map derived fromML-based model
differs from the original map. In the two-class problem (positive—landslide and
negative—non-landslide) it contains four values: True Positive (TP), False Negative
(FN), False Positive (FP), and True Negative (TN). Those values are also known as
hits, misses, false alarm references and correct rejections, respectively. In an n-class
task (n > 2), ROC curve is constructed for each class using a class contingency table,
one class versus all other classes. Generally, when model outcomes are discrete class
labels (landslide—1 and non-landslide—0), validation produces only one point in
the ROC space of a class defined with values of TPrate—sensitivity and FPrate—(1
—specificity) (Fig. 13a). In the case of probabilistic (regression) ML-based models,
the number of points that define a ROC curve depends on the number of considering
decision thresholds (Fig. 13b). The AUC is used as a single measure of model
evaluation, approaching a value of 1 for good models, while a value of 0.5 denotes a
random guess model (Bradley 1997).

The common and well-established raster map comparison measure is kappa
statistic. The kappa statistic measures the differences between the observed
agreement among two maps and the agreement that might be achieved solely by
chance due to the alignment of those two maps (Aronoff 2005; Cohen 1960). The
standard kappa index that was introduced by Cohen (1960) is, as previously
mentioned measures, derived from the confusion matrix and it is calculated as:

Kappa ¼ PðOÞ � PðEÞ
1� PðEÞ ð1Þ

where P(O) represents observed agreement and P(E) is the proportion of agreement
that may be expected to arise by chance.

Pontius and Millones (2011) were one of the many authors which criticized the
kappa statistics (Brennan and Prediger 1981; Feinstein and Cicchetti 1990; Foody
2002; Spitznagel and Helzer 1985). They indicated that the main issues with the
kappa and its variations is that they attempt to compare accuracy to a baseline of

Fig. 13 ROC curve for a discrete two class models, and b regression models
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randomness, which is not a reasonable in the case of map construction/classification.
However, even though kappa statistic and its variations are criticized), they are still
very popular as evaluation measures for landslide models (Baeza et al. 2016; Bui
et al. 2016; Moosavi and Niazi 2016; Shirzadi et al. 2017).

Considering the importance of a choice of evaluation measures, the objective of
the following experiment (examples) is to provide insight into the most common
used measures in landslide modeling and to discuss on the factors that must be
considered when performing model evaluation with respect to the map similarity
assessment.

Some of the possible landslide ML-based model outcomes derived from com-
mon landslide testing datasets which represent the study area, where landslides
cover only a small percentage (approximately 1%) over the whole study area, are:

• ML model significantly better classifies class non-landslide (0),
• ML model equally well classifies both classes (landslide-1 and non-landslide -

0), and
• ML model significantly better classifies class landslide (1).

Confusion matrices for all three examples are presented in (Table 7).
All three models are further evaluated using the previously described measures

and the results are presented in Table 8.
Some of the advantages of the accuracy measure are that it is very easy to

interpret and is simple to calculate, which are the main reasons why it is very
popular. Nevertheless, this measure does not consider the distribution/proportion of
each class in the dataset. This is obvious in example 1), where the values of
accuracy indicated that the model derived almost perfect results, despite the fact that
it is not capable to correctly classify landslides. Therefore, during the testing pro-
tocol, in most of the published landslide-related studies, this measure is usually
used together with measures such as Kappa and AUC.

Table 7 Confusion matrices

(1) Example/model Model outcomes class 1 0

Original class 1 9900 100 10,000

0 90 10 100
P

9990 110 10,100

(2) Example/model Model outcomes class 1 0

Original class 1 9000 1000 10,000

0 10 90 100
P

9010 1090 10,100

(3) Example/model Model outcomes class 1 0

Original class 1 1000 9000 10,000

0 1 99 100
P

1001 9099 10,100
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Considering that Kappa has a range from −1 to +1 and AUC from 0 to +1, it can
be concluded that the derived Kappa and AUC values for examples 1 and 3 indicate
almost the same. The agreement of model outcome classification and the original
map is almost equivalent to chance, i.e. random guess. Contrarily, in example 2,
Kappa and AUC have a disagreement. According to Landis and Koch (1977),
which proposed arbitrary ranges of kappa values to be used as “benchmarks” for the
interpretation of Kappa values (for 0.8–1.0 almost perfect, 0.6–0.8 substantial, 0.4–
0.6 moderate, 0.2–0.4 fair, 0–0.2 slight, and � 0 poor), the results of example 2
indicated that the performance of the model can be evaluated as “slight”. According
to the common interpretation find in the literature, for AUC values higher then 0.90,
the performance of model 2 can be evaluated as “excellent”. Therefore, which
measures should be used remains arbitrary. In order to answer this question, it is
necessary to look at the confusion matrix or TPrate, TNrate, FPrate and FNrate. The
example 2 is specific because it emphasizes the non-landslide class (almost 99%) in
testing dataset. The ML model for this example equally well classifies both classes,
90% instances of both classes are classified correctly, which can be observed based
on values of TPrate and TNrate. Since that AUC values present the overlay measure
of the performance of the model, giving the equal importance to each class, the high
values of TPrate and TNrate will produce the high value of AUC. The low values of
kappa, derived for example 2, can be explained by one of the two kappa paradoxes
defined by Feinstein and Cicchetti (1990). It states that if the expected agreement P
(E) is large, then the chance correction process can convert a relatively high value
of observed agreement P(O) into a relatively low value of kappa (Eq. 1). Therefore,
the high obtained agreement value (P(O) = 0.90) and the high expected agreement
value (P(E) = 0.89) for example 2 produced low value of kappa. This paradox is
caused by high prevalence, i.e. by the large disagreement between the distributions
of data across the classes.

To give a detailed insight into the behavior of the derived landslide models,
many authors used two additional performance measures, success rate curve
(SRC) and prediction rate curve (PRC) (Chung and Fabbri 2003; Jaafari et al. 2015;
Kavzoglu et al. 2014; Wang et al. 2015). The success rate curve assesses how many
landslides are correctly classified (detected) during the training protocol (process) of
modeling and measures a goodness of fit assuming that the model is “correct”. The
prediction rate assesses how many landslides are correctly classified (detected)
during the validation (test) process and provides the validation of the prediction
regardless of the prediction model (Chung and Fabbri 2003). Same as ROC curve,
both curves have a corresponding value of the area under the rate curve, the area
under the success rate curve (AUSRC) and the area under the prediction rate curve

Table 8 Comparison of different evaluation measures

Example/Model Accuracy Kappa TPrate TNrate FPrate FNrate AUC

1 0.98 0.06 0.10 0.99 0.01 0.900 0.54

2 0.90 0.14 0.90 0.90 0.10 0.100 0.90

3 0.11 0.00 0.99 0.10 0.9 0.01 0.54
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(AUPRC), which provide information on model’s accuracy (performance) and
prediction power (generalization), respectively (Kornejady et al. 2017).

10 Conclusions

To conclude this chapter, a short recapitulation of essential points arising from the
addressed issues will be given hereinafter.

Landslide inventories can be enhanced by locally increasing resolution of
polygon to raster transformation or introducing buffer zone around converging
polygons on behalf of precision tolerance and geometry issues that can happen
during conversion. This will provide more landslide instances to work with, either
for training protocol, or for validation. Although it can create redundant instances
(grid pixel < support) it is useful for learning, especially with algorithms that are
not sensitive to redundant training instances (see Table 2). However, such inter-
vention is not recommended for all data in general (for non-landslide instances, or
for general data downscaling below the support limits of the input data).

Operative attributes are to be chosen wisely, wherein attribute extraction can be
considered mostly if there are large numbers of attributes (e.g. >20, when synthetic
attributes are introduced). Special caution is advised when using discrete attributes
(such as lithology or land cover), and includes their disaggregation to binary
sub-attributes.

Once the inputs are resolved (class label and attributes), one needs to decide
whether to run classification or regression task, depending on what type of the
analysis would be preferable, exclusive (e.g. predicting landslide propagation for
planning purposes) or probabilistic (e.g. defining acceptable landslide risk in the
management process). Practitioners should be encouraged to explore possibilities of
ML techniques they are most comfortable with, but should remain tuned for
important breakthroughs in ML community. Even when routinely applying their
preferable techniques, they are advised to strategize with sampling landslide and
non-landslide instances before the training procedure. Presented experiment indi-
cates that two-stepped balanced sampling strategy (in which equal number of
landslide and non-landslide instances is included to learn both classes equally well)
provides better model outcomes.

Optimizing operative resolution, and trying to intermix them is further encour-
aged, because some better generalization capacity of cross-scaled ML algorithms
was experimentally confirmed.

If the research objective requires not only spatial, but also the temporal distri-
bution of landslide zones, it is possible to use good knowledge of the dynamics of
the trigger to support a quasi-hazard outcomes. However, these should be only used
as a preliminary quantitative assessment, with relative (0–1) scale of the landsliding
magnitude.

Finally, in order to obtain more accurate interpretation of model evaluation,
beside the accuracy, Kappa and AUC, which are largely used, it is necessary to
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observe visual interpretation and additional values such as values from the con-
fusion matrix (TP, TN, FP and FN) or values of TPrate, TNrate, FPrate and FNrate,
as well as success and prediction rates of their models Using those additional
measures, practitioners can gain more insight into the model performance and its
validation. These measures put together provide a convergence of evidence to
improve reliability in the model evaluation.
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Assessment of the Contribution
of Geo-environmental Factors to Flood
Inundation in a Semi-arid Region of SW
Iran: Comparison of Different Advanced
Modeling Approaches

Davoud Davoudi Moghaddam, Hamid Reza Pourghasemi
and Omid Rahmati

Abstract Floods are a hazard for artificial structures and humans. From natural
hazard management point of view, present the new techniques to assess the flood
susceptibility is considerably important. The aim of this research is on one hand to
evaluate applicability of different machine learning and advanced techniques
(MLTs) for flood susceptibility analysis and on the other hand to investigate of the
contribution of geo-environmental factors to flood inundation in a semi-arid part of
SW Iran. Here, we compare the performance of six modeling techniques namely
random forest (RF), maximum entropy (ME), multivariate adaptive regression
splines (MARS), general linear model (GLM), generalized additive model (GAM),
and classification and regression tree (CART)for first time to spatial predict the
flood prone-area at Tashan Watershed, southwestern Iran. In the first step of study,
a flood inventory map with 169 flood events was constructed through field surveys.
These flood locations were then spatially randomly split into train, and validation
sets with two different proportions of ratio 70 and 30%. Ten flood conditioning
factors such as landuse, lithology, drainage density, distance from roads, topo-
graphic wetness index (TWI), slope aspect, distance from rivers, slope angle, plan
curvature and altitude were considered in the analysis. In addition, learning vector
quantization (LVQ) was used as a new supervised neural network algorithm to
analyse thevariable importance. The applied models were evaluated for perfor-
mance appliyng the area under the receiver operating characteristic curve (AUC).
The result demonstrated that CART had the AUC value of 93.96%. It was followed
by ME (88.58%), RF (86.81%), GAM (81.35%), MARS (75.62%), and GLM
(73.66%).
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1 Introduction

As a global phenomenon, flooding causes loss of human lives, socio-economic
damages, and widespread devastation. The development of techniques can help
managers and decision makers greatly in reducing damages through flood hazard
management methods focusing on non-structural measures (Liu et al. 2015). This
includes improved landuse planning, flood warning and insurance, the planning of a
flood resilient environment, flood forecasting, and detecting the susceptible areas to
flooding (Cherqui et al. 2015; Kazakis et al. 2015; Lumbroso et al. 2011).
Regarding the last item, several index-based models such as weights-of-evidence
(Rahmati et al. 2015a; Tehrany et al. 2014b), multi criteria evaluation (Rahmati
et al. 2015b), frequency ratio (Lee et al. 2012; Rahmati et al. 2015a), and logistic
regression (Pradhan 2009) have been used for flood susceptibility mapping. In these
years, the subject of flood hazard modeling has grown rapidly, resulting in the
application of some machine learning techniques (MLTs). For instance, Tehrany
et al. (2013) applied decision tree algorithm in flood susceptibility analysis at
Kelantan, Malaysia. Also, in Johor River Basin, Malaysia, Kia et al. (2012)
investigated the performance of artificial neural network (ANN) to identify the
flood susceptible zones. Lohani et al. (2012) used a neural network-based method
with several geo-environmental factors to recognize the flood-prone sites in Bhakra
region, India. Tehrany et al. (2015b) utilized different kernel functions of support
vector machine (SVM) method to assess relations among flood occurrences and
several predictor variables for producing a flood susceptibility zonation map. The
mentioned studies demonstrated that flood modeling can be precisely carried out
using MLTs in comparison with non-linear and simple multivariate and bivariate
methods such as logistic regression and frequency ratio due the dynamic of
ecosystems and non-linear and complex structures of watersheds. Although the
precision of aforementioned techniques is still debated; however, more reliable,
accurate, rapid and less expensive methods are needed to improve prediction
accuracy of the flood susceptibility zonation map.

Base on the aforementioned literature, the performance of machine learning tech-
niques is better than statistical multivariate and bivariate approaches in various
researches (Witten et al. 2011). Thus, the principal target of this research is to use
CART,GAM,GLM,MARS,ME andRFmodels for flood susceptibilitymapping, and
for this aim, Tashan Watershed in southwestern Iran was chosen. The considerable
difference between current study and previous flood modeling studies is that six
machine learning techniques were used and the modeling results are compared in the
TashanWatershed.Theproposedmodels have not been applied before for preparing the
flood susceptibility map (FSM). Therefore, application of the CART, GAM, GLM,
MARS, ME and RFmodels in flood susceptibility mapping belongs novelty to the this
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research. Furthermore, because no such studies have been performed based on the
machine learning and/or statistical models so far in the Tashan Watershed, therefore,
this study is an essential work to sustainable development planning. The particular aims
of current research are to (1) investigate of the contribution of geo-environmental
factors to flood inundation in a semi-arid part of SW Iran, (2) explore and evaluate the
prediction capability of CART, GAM, GLM, MARS, ME, and RF models for gener-
ating FSM, (3) compare the accuracy of mentioned techniques to find the best of them
that is more accurate to recognize flood-prone areas.

2 Study Area

The authors selected the Tashan Watershed in SW Iran as case study for preparing
FSMs. This region is located in the Khuzestan Province, between 30° 37′ 53″ N and
30° 56′ 11″ N latitude and 50° 03′ 37″ E and 50° 15′ 56″ E longitude (Fig. 1). The
area of this watershed is about 369 km2. The altitude of the Tashan Watershed
changes between 238 and 1968 m.a.s.l. 317.3 mm is recorded as the mean annual
point precipitation in the weather station (IMO 2014). Regarding to the geological
survey of Iran (GSI 1997), about 57% of the lithology of Tashan Watershed falls
within the low level pediment fan and other Quaternary deposits (Qt2). More than half
of the area (about 56%) is covered by rangelands areas. Because of physiographic
conditions, the TashanWatershed is always exposed toflood risk. For example, Fig. 2
displays the severity of the flash flood that occurred in December 2013.

3 Methods

The adapted methodology of this research is indicated in Fig. 3 as a flowchart.

3.1 Flood Inventory Map

In an area, the future flooding can be estimated using and analyzing the records of
past flood inundation events (Pradhan 2009). Therefore, a flood inventory map is
necessary to study the dependence among the conditioning factors and the flooding.
The preparation of an accurate flood-inundation inventory database is required
(Jebur et al. 2013). In this study, from the field surveys and available information
(e.g. documentary sources of Iranian Water Resources Department), a flood inun-
dation database/inventory containing 169 inundation occurrences was prepared for
the study area. We randomly partition the database into a calibration phase (i.e.
118 (70%) of the inundation occurrences), and a validation phase (i.e. 51 (30%) of
the inundation occurrences) (Oh and Pradhan 2011; Ohlmacher and Davis 2003).
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4 Flood Conditioning Factors

For modelling the flood susceptibility, the role of factors on the flood inundation
events must be specified (Kia et al. 2012). Thus, using the literature review ten
conditioning factors was selected. These thematic data layers are landuse, lithology,

Fig. 1 Flood locations map with the hill-shaded map of Tashan Watershed, SW Iran
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drainage density, distance from roads, topographic wetness index (TWI), slope
aspect, distance from rivers, slope angle, plan curvature and altitude.

By applying topographic maps (1:50,000-scale), the digital elevation model
(DEM) was produced in resolution of 30 m. Some of these factors such as altitude,
aspect, and slope angle maps were constructed on the basis of DEM in ArcGIS 10.3
software and illustrated in Figs. 4a–c.

For characterizing the curvature of watersheds and studying the convergence and
divergence of surface flow, the plan curvature map can be applied (Fig. 4d).

Using the prepared database, the distance from river and road maps were con-
structed. The buffers of road and river were generated in 1500 and 500 m intervals,
respectively, as shown in Fig. 4e–f.

The drainage density map was created using topographic maps and was clas-
sified applying quantile classification scheme into four classes (Fig. 4g).

Ln (a/tanb) is defined as the TWI (Fig. 4h), where b and a are the slope angle at
the point andcumulative upslope area draining through a point, respectively (Beven
and Kirkby 1979).

The 1:100,000-scale geology map of Khuzestan Province was utilized for
preparing the lithology map of study area (Fig. 4i). Different types of lithological
formations cover in the Tashan Watershed which classified into five classes
(Table 1).

Regarding the maximum likelihood algorithm and supervised classification
technique and applying Landsat 7/ETM + images, the landuse map was created.

Fig. 2 Photographs showing the severity of the flood that occurred in study area
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Agriculture, rangeland, residential area and forest are the land-use types of Tashan
Watershed (Fig. 4j).

5 Variable Importance Analysis

Variable importance analysis is aimed at finding the contributions by the inputs
conditioning factors to the accuracy in a model output. To quantitatively assesse the
relative contribution, learning vector quantization (LVQ) algorithm was used. LVQ
is a supervised learning technique and was developed by Kohonen (1995) which
allows analyzing the variable importance. In this study R package lvq is used to find
most important independent variables.

Fig. 3 Methodological flow chart employed in this study
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Fig. 4 Input predictor variables: a altitude, b slope aspect, c slope angle, d plan curvature,
e distance from river, f distance from road, g drainage density, h TWI, i lithology, and j landuse
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Fig. 4 (continued)

Table 1 Lithology of the study area

Code Formation Lithology Geological
age

Ek Bangestan
Group

Limestone and shale Cretaceous

Mgs Gachsaran Anhydrite, salt, grey and red marl Miocene

OMa Asmari Jointed limestone with intercalations of shale Miocene

Plb Bakhtyari Conglomerate and sandstone Pliocene

Qt2 – Pediment fan and valley terrace deposits Quaternary
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6 Application of Models

Classification and Regression Tree (CART)

CART is a ‘decision tree’ algorithm to be applied both for classification and
regression. It creates a tree-like structure using all inundation conditioning factors to
make two child nodes repeatedly. Appling a difference of diversity or impurity
measures, the best predictor is chosen. With respect to the given factor, the aim is to
create groups of the data which are as homogeneous as possible (Kurt et al. 2008).
A full detail of the CART model is provided in Breiman et al. (1984).

Generalized Additive Model (GAM)

One of the most important extensions of the GLMs is GAM that makes it easy to
check nonlinear relations among explanatory and response variables so long as
being less lead to overfitting in natural hazard analysis than the other models
(Brenning 2009; Goetz et al. 2011; Hastie and Tibshirani 1990). Unlike most
machine learning techniques, the model fit of the GAM can be understandable and
explainable so easily (Brenning 2008; Goetz et al. 2011). The fundamental concept
of a GAM model is applying the linear function of any co-variate as applied in a
general linear model with an empirically fitted smooth function to reveal a general
trend and to choose the proper functional form (Hastie and Tibshirani 1990). Hence
a GAM utilizes a combination of nonlinear and linear reconstruction in an additive
manner.

General linear model (GLM)

The regression methods in compare with logistic, linear, and log-linear regression
models have been usually applied to study of flood hazard analysis. The main aim of
the logistic regression is to determine the best method to show the relation among
multiple independent variables and a dependent variable (i.e. response variable)
(Ozdemir and Altural 2013). The simplest form of LRmodel can be demonstrated as:

L ¼ 1
1þ e2

ð1Þ

where, L is the estimated possibility of a flood happening. Because R can vary from
−∞ to +∞, the flood possibility changes between 0 and 1 as a sigmoid curve.
Parameter R is described as:

R ¼ B0 þB1X1 þB2X2 þ � � � þBnXn ð2Þ

where, B0 and n are the intercept and the number of flood conditioning factors,
respectively. Values of Bi (i = 0, 1, 2,…, n) denote the slope coefficients and Xi are
the flood conditioning factors. Considering Eqs. (1) and (2), the logistic regression
can be shown in the following form:
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LogitðLÞ ¼ 1
1þ e�B0 þB1X1 þB2X2 þ ��� þBnXn

ð3Þ

Multivariate adaptive regression splines (MARS)

The MARS is relatively an efficient machine learning model that combines math-
ematical structure of splines, classical linear regression, and binary recursive par-
titioning to construct a local analysis/method in which the relations among the
factors/predictors (i.e. independent factors) and response (i.e. dependent factor) are
either non-linear or linear (Felicísimo et al. 2013). The general expression of MARS
can be described as a sum of basic functions (Eq. 4):

Y ¼ b0 þ
XM

m¼1

bmHm xð Þ ð4Þ

where y, n, Hm(x), and b0 is the predicted value by the MARS model, the number of
basic functions in the model, constant basis function, and initial constant of
equation, respectively. The basic functions and complete algorithm of MARS are
presented by Friedman (1991) and Hastie et al. (2001).

Maximum Entropy (ME)

Maximum entropy (ME) model illustrates the distribution of floods as a probability
distribution (PD) that assigns a non-negative value to each pixel of the study area
(Phillips et al. 2006). Graham et al. (2008) indicated that this method is quite robust
to spatial errors in occurrence data and utilizes presence only (i.e. flood locations)
datasets to predict the flood susceptibility. ME model applies a Gibbs probability
distribution for spatial prediction of the phenomena, which completely discussed in
Phillips et al. (2006). In current study, maximum entropy modeling was conducted
applying of free “MaxEnt” software (version 3.3.3) (Phillips et al. 2004).

Random Forest (RF)

Random forest (RF) is flexible ensemble classifiers based upon decision trees
algorithm which fits a big number of regression trees to each of subsamples, the first
developed by Breiman (2001). RF considers the predictions of every single
regression tree model applying a rule based method.

In flood susceptibility modeling based on RF technique, the samples (i.e. flood
locations) which are not applied for the calibration of the k-th tree in the bagging
process are distinguished as a separate subset called out-of-bag (OOB). The OOB
indicators can be utilized by the k-th-tree to assess model accuracy (Peters et al.
2007). Therefore, this model can prepare an unbiased estimation of the prediction
error without performing an external validation (Breiman 2001). Additionally, RF
presents other important advantages which make it interesting for its application in
flood hazard modeling:
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• It is relatively robust to outliers, noise and spurious data.
• It can be run efficiently on large databases with different types of data.
• It determines most vital variables in the prediction.
• It is computationally easier than other common machine learning models such as

ANNs.
• It can surmount the limitation of black-box models such as SVM and ANNs.

RF needs two parameters to be determined for modeling: (1) the number of
factors/variables (i.e. mtry), (2) the number of trees (i.e. ntree), to be chosen from the
accessible set of features stochastically. The average of the outcomes of all the trees
is considered as a last result of RF model (Breiman 2001; Cutler et al. 2007). For
this research, the “randomForest” package of R software (R Development Core
Team 2015) was applied for performing RF model, and then the last constructed
map was transported into GIS environment to prepare the FSM.

Validation and Comparison of the FSMs

The flood susceptibility maps (FSMs) must be validated and it is an essential step in
modeling process. The capability of the machine learning methods was evaluated
applying a non-dependent threshold approach: the receiver operating characteristic
(ROC) curve. The area under ROC curve (AUC) has been generally used in various
studies to appraise the accuracy of FSMs (Rahmati et al. 2015a; Tehrany et al.
2014a, b, 2015a). The curve of prediction-rate can be used to the validation and
illustrates how well the model predicts the flood occurrences (Lee and Pradhan
2007; Naghibi and Pourghasemi 2015; Tien Bui et al. 2012).

7 Results

Assessing the contribution of predictor variables in identifying flood-prone areas
Result from LVQ method is shown in Fig. 5. This indicated that landuse

(VI = 77.1%), distance from road (VI = 72.9%), distance from river (VI = 70.7%),
lithology (VI = 69.4%), and drainage density (VI = 66.3%) are the most significant
factors, followed by slope angle (VI = 65.4%), altitude (VI = 65.3%), TWI
(VI = 64.3%), slope aspect (VI = 48.8%), and plan curvature (VI = 46.7%). Thus,
these factors were selected as input variables to modeling and produce the FSMs,
because they have significant contribution on flooding in the study area.
Comparison of flood susceptibility maps

In this research, six flood susceptibility maps from CART, GAM, GLM, MARS,
ME and RF machine learning models were prepared in ArcGIS 10.3 software
(Figs. 6a–f). There are many schemes for classifying susceptibility levels (Ayalew
et al. 2004; Suzen and Doyuran 2004). The natural break technique can determine
break points by picking the category limits which maximize the differences between
categories and minimize the differences within category. Consequently, the flood
susceptibility maps were divided to four categories and according to natural break
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classification scheme into low, moderate, high, and very high susceptible groups
(Table 2) (Pourghasemi et al. 2012). Regarding to the FSMs of CART, GAM,
GLM, MARS, ME and RF, low class of FSMs covered 62.70,51.64, 52.56, 52.56,
58.22, and 46.82% of the Tashan Watershed, respectively, while the total of very
high and high categories for CART, GAM, GLM, MARS, ME and RF are 27.91,
33.74, 32.26, 32.27, 24.6 and 34.96%, respectively. Therefore, it is clear that ME
considered the lowermost value of area corresponding to high and very high sus-
ceptibility, while RF and GAM have highest value for these two classes.

Performance and validation of flood susceptibility techniques

The outcomes of the six models of flood susceptibility were validated applying the
validation dataset of the flood inventory with the application of the AUC value
(Devkota et al. 2013). It can be observe in Fig. (7a–f), the AUC values for the

Fig. 5 Variables importance analysis using LVQ algorithm

Table 2 The distribution of the flood susceptibility classes and areas with respect to the flood
occurrence

Susceptibility class Area (%)

CART GAM GLM MARS ME RF

Low 62.70 51.64 52.56 52.56 58.22 46.82

Moderate 9.40 14.61 15.18 15.17 17.18 18.22

High 4.01 14.13 13.03 13.04 14.22 19.08

Very high 23.90 19.61 19.23 19.23 10.38 15.88
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CART, GAM, GLM, MARS, ME and RF models are 93.96, 81.35, 73.66, 75.62,
88.58, and 86.81%, respectively. The logical relations among AUC value and
model precision can be described into the following groups: 90–100% (excellent);
80–90% (very good); 70–80% (good); 60–70% (average); and 50–60% (poor)
(Yesilnacar 2005). Thus, it can be concluded that CART technique has the highest
prediction capability (AUC = 93.96%) and excellent accuracy in predicting the
flood-prone areas in the Tashan Watershed, while the GLM technique has the
lowest prediction capability (AUC = 73.66%). Furthermore, the results indicate
that the GAM (AUC = 81.35%), ME (AUC = 88.58%) and RF (AUC = 86.81%)
techniques have very good accuracy and MARS technique (AUC = 75.62%) has
reasonably good accuracy for identifying flood-prone areas.

8 Discussions

The maps of flood susceptibility zone are considered as a final export that would be
beneficial for future planning of urban development projects and sustainable land
use management and also these exports are the first significant step in flood risk and
hazard evaluations (Pradhan and Youssef 2011; Tehrany et al. 2014a, b). So it is
needed to accurately recognize flood prone areas with high proficiency based on
several techniques and past flood events. Because the precision of different pro-
posed approaches for analyzing flood susceptibility is debated as yet (Rahmati et al.
2015a), investigations of new MLTs for the evaluation of floods are extremely
essential. These researches will assist to provide a sufficient scientific background
and then to gain some useful outcomes (Tien Bui et al. 2015). Progress in the
interdisciplinary field of the GIS and machine learning has presented very new
MLTs that have been distinguished as having superior overall efficiency (Witten
et al. 2011). Some advanced MLTs such as the RF, GLM, MARS, and CART have
been applied in other subjects with great precision (Liu et al. 2013; Naghibi and
Pourghasemi 2015; Trigila et al. 2015; Vorpahl et al. 2012; Youssef et al. 2015),
howsoever, the assessment of these techniques for flood susceptibility mapping has
still not been carried out. In the present study, we addressed for first time this issue
with the investigation and comparison of the six MLTs (i.e. CART, GAM, GLM,
MARS, ME and RF) for flood susceptibility analysis.

The comparison of several MLTs has allowed us to better assess limits and
strengths of each technique and the statistical reliability of the flood prone areas.
According to validation results, all FSMs are considered to have acceptable and
representable appearance (AUC > 70%). CART technique exposed the totally
foremost cross-validated performance, followed by ME technique. Conversely,
both visual assessment and quantitative validation—through ROC curve—agreed
on GLM technique to be the minimum performing model approach. This may be
due to the fact that GLM model has a linear predictor system which consequently
leads to lower capability in comparison with other MLTs (Agresti 1996; Crawley
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1993). Nevertheless, the GLM technique presents a remarkable simplicity of
application and also has acceptable results for flood susceptibility mapping.

It is a obvious reality that the accuracy of the resulting MLTs is impressed by the
conditioning factors which are applied to generate the FSMs, hence the analysis of
contribution of predictor variables (i.e. importance of each conditioning factors) is

Fig. 6 Flood susceptibility map produced from: aCART, bGAM, cGLM, dMARS, eME, and fRF
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considered a key point (Tehrany et al. 2015a). Overall, our findings showed that the
most influencing variables/factors on flooding were land use, distance from road,
distance from river, lithology, and drainage density. This agrees with Tehrany et al.
(2013) and Tehrany et al. (2015a) in that landuse is most important predictor in
flood susceptibility mapping.

In flood hazard analysis, accuracy and time are two key parameters of modeling
that are needed for flood control/mitigation measures and flood warning programs
(Mustafa et al. 2015; Tehrany et al. 2015a). From a computational time of MLTs
viewpoint, Tehrany et al (2015b) stated that the SVM model (with various kernel
functions) requires considerable time for the data analysis, which can be considered
as one of the disadvantages of SVM (Pourghasemi et al. 2013). In this study, similar
to SVM, a disadvantage of RF technique is its long run time. This result also is in
very concurrence with study of Rahmati et al. (2016).

Lohani et al. (2012) demonstrated that ANFIS model needed a large amount of
parameters to delineate the flood prone areas. Hence, application of ANFIS model
in flood susceptibility analysis needs a large amount of parameters, which is very
inconvenient to use, especially in data-scarce regions. In contrast, based on our
results, an advantage of the ME, CART techniques is that they don’t require a large
amount of parameters for learning.

Fig. 6 (continued)
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Fig. 7 ROC curve: a CART, b GAM, c GLM, d MARS, e ME, and f RF
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9 Conclusion

Delineation of the flood susceptible areas, using advanced machine learning models
is one of the main demands of research in natural hazard management. Our aim was
to assess the applicability of six machine learning models namely, CART, GAM,
GLM, MARS, ME, and RF, which have been widely applied for geo-hazards and
environmental modeling, but which have not been wholly explored for flood sus-
ceptibility modeling. In first, a flood inventory dataset was prepared using the 169
flood locations (obtainable from extensive field surveys and IranianWater Resources
Department) that occured in the study area (Tashan Watershed in SW Iran).

Flooding is managed mostly by several geomorphological and geo-environmental
factors. The relations among flood occurrence and these factors/predictors (altitude,
slope angle, slope aspect, topographic wetness index (TWI), plan curvature, distance
from roads, distance from rivers, drainage density, land use and lithology) have been
assessed using the six advanced machine learning techniques in a flood susceptibility
map. Validation results showed that the CART model displayed significantly better
predictive efficiency than other applied machine learning techniques.

Since there is no guideline with respect to most influencing conditioning factors
on flooding, our research prepares a quantitative assessment of the effect of the
factor contribution on model performance using learning vector quantization
(LVQ) algorithm to evaluate the variable importance analysis. Based on this
analysis, landuse, distance from road, distance from river, lithology, and drainage
density were recognized as the vital factors affecting the accuracy of flood sus-
ceptibility models.

One of the benefits of MLTs is that there is no classification needed for con-
ditioning factors, whilst for common bivariate statistical techniques (e.g. FR,
WOE), reclassification before flood modeling is needed. Furthermore, unlike the
other machine learning models such as artificial neural networks (ANNs), the
CART and ME techniques can prepare good information (such as factor importance
analysis, response curves) for understanding of the flood occurrence process. These
results can produce real interpretations. In addition, CART and ME techniques
could handle huge geospatial data and perform minimum time which is an effective
parameter of early warning system in flood hazard studies. Hence, as a final con-
clusion of our work, we could say that the applied MLTs (particularly CART and
ME techniques) provided cost effective and accurate results.
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Land Subsidence Modelling Using Data
Mining Techniques. The Case Study
of Western Thessaly, Greece

Paraskevas Tsangaratos, Ioanna Ilia and Constantinos Loupasakis

Abstract The main objective of the present study was to investigate land subsi-
dence phenomena and prepare a land subsidence map using spatio-temporal analysis
of groundwater resources, remote sensing techniques and data mining methods. The
methodology was implemented at the wider plain area extending northwest of
Farsala town, Thessaly, Greece, covering an area of approximately 145 Km2. In
order to estimate the spatio-temporal trend concerning groundwater level the
non-parametric Mann–Kendall test and Sen’s Slope estimator were applied, whereas
a set of Synthetic Aperture Radar images, processed with the Persistent Scatterer
Interferometry technique, were evaluated in order to estimate the spatial and tem-
poral patterns of ground deformation. In a test site where ground deformation rate
values derived by the analysis of SAR images, Support Vector Machines was uti-
lized to predict the subsidence deformation rate based on three variables, namely:
thickness of loose deposits, the Sen’s Slope value of groundwater trend and
the Compression Index of the formation covering the area of research. Based on the
Support Vector Machine model, a land subsidence map was then produced for the
entire research area. The outcomes of the study indicated a strong relation between
the thickness of the loose deposits and the deformation subsidence rate and a clear
trend between the subsidence deformation rate and the groundwater fluctuation. The
r square value for the validation dataset within the test site was estimated to be 0.75.
The land subsidence map produced by the Support Vector Machine model was
validated by field surveys and measurements and showed good predictive perfor-
mance. In conclusion, the subsidence model proposed in this study allows the
accurate identification of surface deformations and can be helpful for the local
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authorities and government agencies to take measures before the evolution of severe
subsidence phenomena and therefore for timely protection of the affected areas.

Keywords Land subsidence � Remote sensing techniques �Water table fluctuation
Support vector machine

1 Introduction

Land subsidence is considered among the most frequent geological hazards
worldwide that usually occurs as a consequence of a number of physical and human
induced phenomena, namely: natural compaction of unconsolidated fine-grained
deposits, groundwater over-exploitation, collapse of natural or manmade cavities,
oxidation of peat-rich materials and tectonic activity (Galloway and Burbey 2011).
In general, land subsidence involves a gradual settling or a sudden sinking of
discrete segments of ground surfaces causing extensive deformations over large
areas. Land subsidence may lead to damages to private and public buildings,
bridges, roads, railroads, storm drains, sewer and canals systems, the failure of well
casings and changes in the morphology of streams, canals and drains. Land sub-
sidence incidents due to aquifers over–exploitation have been reported worldwide
with immense socio-economic impacts, mainly in coastal areas and urbanized
deltas, with notable examples located in Mexico, China, Thailand, Italy, Spain,
Japan and the USA (Galloway et al. 1998; Tomás et al. 2005; Stramondo et al.
2007; Raspini et al. 2013). Several cases showing areas affected by land subsidence
due to aquifers over–exploitation have also been reported in Greece. Kalochori and
Sindos villages at the west Thessaloniki plain (Stiros 2001; Psimoulis et al. 2007;
Raucoules et al. 2008; Loupasakis and Rozos 2009; Raspini et al. 2014; Svigkas
et al. 2016), Anthemountas basin at the east of Thessaloniki (Koumantakis et al.
2008; Raspini et al. 2013), Thessaly plain in central Greece (Soulios 1997;
Kaplanidis and Fountoulis 1997; Marinos et al. 1997; Salvi et al. 2004; Ganas et al.
2006; Apostolidis and Georgiou 2007; Kontogianni et al. 2007; Rozos et al. 2010;
Vassilopoulou et al. 2013; Apostolidis and Koukis 2013; Ilia et al. 2016), the area
extending at the west-northwest of the Amyntaio opencast coal mine at Florina
Prefecture, Northern Greece (Tzampoglou and Loupasakis 2016; Loupasakis et al.
2014; Soulios et al. 2011), Messara valley in Crete (Mertikas and Papadaki 2009)
and Thriasio plain at the west of Athens (Kaitantzian et al. 2014) are some of the
well-known cases.

Despite the fact that there is a well established theory that describes land
subsidence phenomena, modelling of the phenomenon is often a challenging task.
The exact mechanism responsible for land subsidence is defined in each case by
complex interrelations between geological, hydro-geological, morphological and
tectonic settings and also human activities; therefore the full understanding of these
phenomena requires the intervention of multiple scientific specialties. The most
common approach for simulating land subsidence involves the use of deterministic
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methods that apply either the conventional consolidation theory or more compli-
cated soil deformation constitutive laws (Brinkgreve et al. 2006). Such methods
require highly accurate geotechnical and hydrological data, and produce 2-D or 3-D
simulation providing quantitative estimations of the expected deformation rates
(Gambolati et al. 2005; Loupasakis and Rozos 2009; Raspini et al. 2014). However,
in most cases such data are not available and numerous assumptions have to be
adopted.

Another approach that quite recently has been used for modelling land subsi-
dence is based on the evaluation of the relation between the distribution of past
ground deformations and land subsidence related variables which, as a result,
provides a series of susceptible, hazardous and risk maps. Key aspect in this
approach is the assumption that future land subsidence is likely to occur in situa-
tions that have lead to land subsidence in the past and present. This approach has
been applied in medium scale studies enabling knowledge driven or data driven
methods to assess data providing both qualitative and quantitative results (Teartisup
and Kerdsueb 2013).

Data driven methods and specifically data mining methods (e.g. artificial neural
network and decision trees), have been widely used to assess the land subsidence
occurring as a consequence of underground mining (Kim et al. 2009; Choi et al.
2011; Oh et al. 2011; Lee et al. 2012; Malinowska 2014). Kim et al. (2009)
evaluated ground subsidence hazard using artificial neural network within a GIS
environment, whereas Galve et al. (2009) performed land subsidence susceptibility
mapping in Ebro Valley (NE Spain) using nearest neighbour distance (NND) and
probabilistic analysis. Choi et al. (2011) produced land subsidence susceptibility
maps based on fuzzy relations in Taebaek, Korea, while similar maps were con-
structed by Oh et al. (2011) in Samcheok, Korea, using the frequency ratio, weight
of evidence, logistic regression, and artificial neural network methods. Few cases
have also been reported concerning data mining methods and land subsidence due
to groundwater withdraw (Modoni et al. 2013; Zhu et al. 2013b, 2015).

In contrast to classical statistical approaches, data mining methods do not rely on
the nature of data and on assumptions that data are drawn from a given probability
distribution (Fayyad et al. 1996). Data mining methods involve processes that
extract patterns from data sets which are then used to gain insight into relational
aspects of the phenomena being studied and to predict outcomes to aid decision
making (Flentje et al. 2007). As reported by many researchers the advantage of data
mining methods for the analysis of land subsidence is their ability to handle
non-linear problems and their robustness regarding noisy or incomplete data (Kim
et al. 2009; Malinowska 2014).

The main objective of the present study was (i) to examine land subsidence
phenomena due to groundwater withdraw, (ii) to define critical aspects for under-
standing their underlying mechanism and (iii) to provide a land subsidence sus-
ceptibility map using spatio-temporal analysis of groundwater resources, remote
sensing techniques and data mining methods.

Specifically, the analysis presented in this study considers lithological and
geotechnical data, water table measurements, land use information, distribution of
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human activities and spatio-temporal measurements of past displacement derived
from remote sensing techniques. The analyses of the above data allowed predicting
the deformation rate by implementing a Support Vector Machine (SVM). SVM was
selected as a promising alternative since the presence of a regularization parameter,
which controls the trade-off between training error and validation error, provides the
tool to avoid over-fitting during the training phase. Additional, SVM is tolerant to
“noisy” data and presents robustness towards small datasets. In our case, the remote
sensing data measuring the evidence of past land subsidence were considered as
dependent variable, whereas a number of land subsidence related variables were
considered as the independent variables that influence and explain the evolution of
the phenomena. In order to analyze the spatial and temporal trend of the ground-
water resources and to implement the SVM model, the “e1071” package (Meyer
et al. 2017) was used in R Studio (ver.0.99.489) (RStudio Team 2015), whereas
ArcGIS 10.1 (ESRI 2013) was used for compiling the data and producing the land
subsidence map.

Our research was focused in Thessaly plain, Central Greece, where land subsi-
dence phenomena related to reservoir compaction have been observed since the early
90’s (Apostolidis and Georgiou 2007; Kontogianni et al. 2007; Rozos et al. 2010;
Vassilopoulou et al. 2013; Apostolidis and Koukis 2013; Modis and Sideri 2015; Ilia
et al. 2016). Based on piezometric level measurements conducted between 1980 and
2005, the aquifer systems of the study area were subject to excessive
over-exploitation (Apostolidis 2014). In particular, at Farsala—Stavros plain area,
the consistent over-exploitation during the last three decades led to the complete
draining of the overlaying shallow unconfined aquifer and the progressive draw-
down of the successive confined—artesian aquifers. According to Rozos et al.
(2010), this phenomenon resulted to the compaction of the compressible intercalated
clayey horizons and the manifestation of intensive land subsidence since 2002.

A brief description of land subsidence mechanism and the detection and mon-
itoring techniques is provided in the following paragraphs while a more detail
analysis of the case of Thessaly plain will be presented.

2 Land Subsidence Modelling Due to Over-Exploitation
of Aquifers

The mechanism behind land subsidence triggered by over-exploitation of aquifers
and groundwater withdrawal is based on the principle of effective stress, a principle
proposed by Karl Terzaghi in 1925 (Terzaghi 1925). Terzaghi’s principle states that
when a saturated soil is subjected to a total stress r, this stress can be expressed by:

r ¼ r0 þ u

where: u, the pressure acting on water and on granular structure and r′, the effective
stress supported by granular structure only.
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In general, excessive groundwater withdrawal from aquifer systems decreases
the pore water pressure and increases the normal effective stress, which results in
the compaction of the hydrostratigraphic units and eventually leads to land subsi-
dence (Galloway and Burbey 2011).

In many aquifers system, the most prolific layers, in terms of water storage,
represented by sand and gravel horizons, are intercalated by fine grain layers. These
layers, when subjected to increasing geostatic loads tend to consolidate leading to
the reduction of the overall thickness of the aquifer layers. The lowering of the
water pressure in the sand and gravel causes slow release of water from clay and silt
confining units, lens and interbeds. As these fine-grained deposits are particularly
susceptible to consolidation, the total volume of the normally consolidated
fine-grained deposits and weakly cemented sediments of the exploited aquifer is
reduced. The ultimate effect is the non-reversible lowering of the land surface. So,
land subsidence phenomena accompanying the groundwater over-exploitation can
be attributed to deformation of porous matrix of aquitards (Fig. 1).

In a 1D model the groundwater level drawdown in aquifers and the soil
deformation could be simulated by the consolidation of aquitards in vertical
direction. Thus, the amount of land subsidence could be estimated based on the
level drop of groundwater and the thickness and compressibility of the soil layers.

Concerning the detection and monitoring of land subsidence phenomena several
methods have been used that could be separated into ground-based and remotely
sensed geodetic surveys and techniques. Both techniques are based on the accurate
measuring of the vertical and horizontal displacement of the land surface. During
the last two decades, Earth Observation (EO) techniques, especially Global
Positioning System (GPS) and Differential Interferometric Synthetic Aperture
Radar (DInSAR) technologies have been widely applied in land subsidence
(Galloway et al. 1998; Dixon et al. 2006; Herrera et al. 2009; Hu et al. 2009;
Galloway and Burbey 2011; Osmanoglu et al. 2011; Chaussard et al. 2013; Raspini
et al. 2013, 2014; Zhu et al. 2013a, 2015; Svigkas et al. 2016).

Fig. 1 Land subsidence mechanism due to the overexploitation of the aquifers
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DInSAR technique analyzes phase variations or interference between two dif-
ferent radar images gathered over the same area at different times with the same
acquisition mode and properties (Gabriel et al. 1989; Massonnet and Rabaute 1993;
Massonnet and Feigl 1998; Rosen et al. 2000). The main objective of DInSAR
techniques is to retrieve measurements of the surface displacement that occurred
between the two different acquisitions. Within the DInSAR techniques, Permanent
Scatterers Interferometry (PSI) technique was the first technique specifically
implemented for the processing of multi-temporal radar imagery (Ferretti et al.
2001). The algorithm focuses on ground resolution elements containing a single
dominant scatterer having stable radiometric characteristics, namely Permanent
Scatterers (PS) points. These points, strongly correlated in time, are the points on
the surface at which velocities along with the Line of Ssight (LOS) deformation rate
are going to be estimated. Most of the times, PSs can be manmade constructions
(rooftops, roads etc.), natural formations (protruding rocks etc.) or even more
custom made reflectors. Areas with frequent surface changes (urban areas, culti-
vated areas) or areas with no PSs (lakes, forests etc.) are areas with low coherence.
This is due to the fact that there is a different or low amount of micro-wave
backscattering to the satellite at each acquisition. For those areas there is no
information regarding the deformation rates. Over urban areas, where many PS can
be identified, LOS (Line of Sight) deformation rate can be estimated with accuracy
theoretically better than 0.1 mm/yr (Colesanti et al. 2003). In the present study PSI
technique was utilized to detect and monitor past LOS deformation rates that would
serve as evidence of past land subsidence, while land subsidence was estimated
based on the level drop of groundwater, the thickness and compressibility of the
formations within the research area.

3 The Study Area

The study area is located in Thessaly basin, central Greece, at the wider plain area
extending northwest of Farsala town, covering an area of approximately 145 Km2

(Fig. 2). The morphology of the wider area appears very flat, with low landscape
variation. Two major rivers Enipeas and Farsaliotis cross the area. The area has been
undergoing intensive cultivation, mainly cotton, corn, sugar beet, tomato and cereals
crops which consume large volumes of irrigation water (Dimopoulos et al. 2003).

Based on the Köppen climate classification system (Aguado and Burt 2012), the
climate of the wider area of research is characterized as Mediterranean type
(Csa) having hot dry summer and a mild winter. The rainy season is from October
to May accounting to almost 90% of the total amount of annual rainfall which
approximately reaches 31.7–87.7 mm/month. December appears to be the rainiest
month (87.7 mm) followed by November (86.2 mm), while the driest month
appears to be August (10.4 mm) followed by July (14.1 mm). The annual average
mean temperature is 15.13 °C with the highest and lowest average temperature
being 20.94 and 9.39 °C respectively. The climate data were obtained from the
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University of East Anglia Climate Research Unit (CRU) and referred to a period
over 107 years between 1901 and 2008 (Jones and Harris 2008).

The wider area of west Thessaly plain belongs mainly to the Pindos geotectonic
zone and is characterized by a variety of geological formations. Mesozoic Alpine
formations belonging to the Pelagonian, Sub-Pelagonian and Pindos geotectonic
zone, occupy most of the area while post-Alpine deposits cover the lowlands of the
basin. The Mesozoic Alpine formations that constitute the bedrock of the Quaternary
deposits consist of Schist—chert formation (sh), Ophiolites (o) and Limestones
(Le) while the post-Alpine deposits include Neogene (Ne), Pleistocene and
Holocene deposits (Mariolakos et al. 2001; Rozos and Tzitziras 2002; Apostolidis
2014).

As presented in Fig. 3, the coarser deposits consisting of sands and gravels
(sd–gr, gr–sd) occupy the riverbeds, while the rest of the plain is covered by the
finer clayey silts and silty clays (cl–sl, with ranging percentage of intercalated sands
and gravels. Normal faults in E–W direction have mainly structured the basin
(Bornovas et al. 1969; Katsikatsos et al. 1983).

Considering the hydro-geological setting, highly productive aquifers are devel-
oped in the Quaternary deposits which constitute of Pleistocene sand and gravel
horizons and brown and grey clayey silt to silty clay intercalations. These alter-
nations of permeable coarse-grained deposits (aquifers) with impermeable to low
permeability strata (aquitards) create shallow unconfined aquifers and a number of
successive semi-confined to confined aquifers, sometimes artesian (Paleologos and
Mertikas 2013). A great number of wells exploit the unconfined aquifers for

Fig. 2 The study area
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irrigation purposes due to the intense agricultural activity in the area. The discharge
rates of the wells range between 50 and 100 m3/h, with groundwater flowing from
eastwards to westwards of the basin (Kallergis 1971, 1973; Mariolakos et al. 2001).
The recharge of these systems are mainly from the infiltration of the surface water
but also through the lateral infiltration of the karstic aquifers developed in the
carbonate formations of the Narthaki Mountain (Rozos et al. 2010).

Concerning the reported damages due to land subsidence, the majority of them
affected roads and private buildings in the town of Farsala and the villages of Agios
Georgios, Stavros and Anochori. Figure 4 presents the spatial distribution of the
surface raptures while Fig. 5 illustrates some characteristic photos.

Fig. 3 Engineering geological settings of the wider study area. Modified after Apostolidis (2014)

Fig. 4 Surface ruptures
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Farsala

Agios Georgios

Stavros

Anochori

Fig. 5 Damages in Farsala, Agios Georgios, Stavros, Anochori
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4 Data and Methods

The applied methodology could be distinguished into three phases: (a) the first
phase involved defining the geological, hydro-geological and tectonic settings of
the study area, the estimation of the physical and geo–technical properties of the
geological formations and also the analysis of the spatial and temporal trend of
groundwater level, (b) the second phase involved the analysis of the PSI data, while
the final phase (c) involved a normalization process and the construction of the land
subsidence map, which was conducted by implementing the SVM method. Figure 6
illustrates the flowchart of the applied methodology, whereas details of each phase
are described in the following paragraphs.

During the first phase, the geological, hydro-geological and tectonic settings of
the study area, the physical and geo–technical properties of the geological

Fig. 6 Flowchart of the
followed methodology
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formations and also the spatial and temporal trend of groundwater level were
investigated. In many studies the thickness of the susceptible deposits has been
directly linked with the amount of land subsidence (Xu et al. 2008; Zhu et al.
2013a, 2015). Also the Compression Index, which is a measure of the volume
decreases due to increase in load, influences significantly the extent of surface
deformability. The two variables were estimated by investigating previous studies
and numerous borehole data (Fig. 7) (SOGREAH 1974; Apostolidis and Koukis
2013; Apostolidis 2014).

During this phase, the data series of Sen Slope’s value, a metric able to provide the
fluctuation per unit time and estimate the magnitude of the detected trend in the
groundwater level was derived (in our case Qm/year) (Sen 1968; Hirsch et al. 1982).
The yearly groundwater table fluctuation was estimated by processing nine
groundwater monitoring wells, with data obtained from the department of Hydrology
of the Thessaly Prefecture referring to the time period from 1980 to 2005 and for the
low–level season (September). Only the yearly records of September were analyzed,
since in most of the groundwater monitoring wells it was the month with the lowest
groundwater table level. The trend of this month concerning the groundwater table
could serve as good indicator of the overall pressure the aquifer is subject to. Before
the application of the Sen’s Slope estimator the common and modified Mann–
Kendall method (Mann 1945; Kendall and Stuart 1967; Hamed and Rao 1998) was
applied in order to identify trends in the groundwater level time—series data.

For the spatialization of the land subsidence related variables (thickness of loose
deposits, Compression Index, and trend of groundwater level) Kriging interpolation
technique was utilized (David 1977). Specifically, ordinary and universal kriging
were used while experimental semivariograms were fitted with various theoretical
models like spherical, exponential and Gaussian in order to select the most
appropriate (Kumar and Remadevi 2006; Gundogdu and Guney 2007). The least

Fig. 7 Geotechnical boreholes and groundwater monitoring wells

Land Subsidence Modelling Using Data Mining … 89



root mean square error (RMSE) value, for every semivariogram model was
estimated and the one with the lowest value was selected as more accurate (Johnson
et al. 2001).

During the second phase, the analysis of the available PSI data, the necessary
training and validation datasets were obtained. According to Raspini et al. (2013)
SAR interferometry and in particular PSI techniques are considered as valuable
tools for the early stage detection of the vertical deformations caused by the
overexploitation of the aquifers. PSI data were derived from a descending data set
provided by the German Space Agency (DLR) acquired in 1995–2003 by the
European Space Agency (ESA) satellites ERS1 and ERS2. This set of data were
processed within the framework of the Terrafirma project, that was supported by the
Global Monitoring for Environment and Security (GMES) Service element
Program, promoted and financed by the European Space Agency (ESA) (Adam
et al. 2011). The negative displacement rate values indicate a movement away from
the sensor (down lift), while the positive values represent a movement towards the
sensor (up lift).

The next phase involved as a first step, the normalization of all variables in order
to receive equal attention during the training process. The normalized values ranged
between 0.1 and 0.9, using the Max-Min normalization procedure as follows:

vnew ¼ v�Min vð Þ
Max vð Þ �Min vð Þ � u� lð Þþ l

where vnew is the normalized data matrix, v is the original data matrix, and u and
l are the upper and lower normalization boundaries.

The next step involved the separation of the entire database randomly into a
training dataset, for training the model and a validation dataset for evaluating the
predictive power of the developed model. The training dataset included 70% of the
total data, while the remaining 30% was included into the validation dataset.

As mentioned earlier, SVMwas chosen among data mining techniques in order to
model land subsidence phenomena and construct a land subsidence map. SVM is a
non-parametric kernel-based technique (Vapnik 1998; Moguerza and Munoz 2006).
It is really efficient in solving linear and non-linear classification and regression
problems in a sophisticated robust manner (Cherkassky and Mulier 2007).
According to Yao et al. (2008) SVM modelling differs from other discriminant type
solutions since it utilizes an optimum linear hyperplane in order to separate data
patterns and uses kernel functions in order to convert the original non-linear data
patterns into a format that is linearly separable in a high-dimensional feature space.

In SVM regression (Vapnik 1995), the main objective is to find a function f(x) that
has at most e deviation from the actually obtained targets yi for all the training data,
and at the same time is as “flat” as possible. This means that errors are allowed as
long as they are less than e. The e—epsilon intensive loss function ensures existence
of global minimum and at the same time optimization of reliable generalization
bound.
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In the case of linear analogous, the linear function f(x) is given by the following
equation:

f xð Þ ¼ w; xh iþ b

where, the vector x presents the independent variables and vector w represents the
vector of weights which has to be estimated by the model, and b is the “bias” term.

“Flatness” in the case of linear function f(x) means that w has to be small. This
can be achieved by minimizing the norm wk k2¼ wjwh i and the problem could be
solved by handling it as a convex optimization problem:

minimize 1
2 wk k2

subject
yi � w; xih i � b� e
w; xih iþ b� yi � e

�

The above assumes that function f exists and approximates all pairs (xi, yi) with e
precision. In order to allow for some errors, one could introduce slack variables ni,
ni
* to cope with otherwise infeasible constraints of the optimization problem (Smola

and Schölkopf 2004). The convex optimization problem formulates into (Vapnik
1995):

minimize 1
2 wj jj j2 þC

Pl
i¼1

ni; þ n�i
� �

subject
yi � w; xih i � b� eþ ni
w; xih iþ b� yi � eþ n�i

ni; n
�
i � 0

8<
:

The constant C > 0 determines the trade-off between the “flatness” of f and the
amount up to which deviations larger than e are tolerated. This corresponds to
dealing with a so called e-insensitive loss function nj je described by

nj je¼
0 if nj j � e
nj j � e otherwise

�

Extension of linear classification formulation to non-linear SVM can be achieved
using the Kernel trick (Schölkopf and Smola 2002). Although many kernel func-
tions have been proposed, the most commonly used are linear, polynomial, radial
basis function and sigmoid.

In the present study the radial basis function (RBF) Gaussian kernel was
implemented, which is influenced by the kernel width (c) and the regularization
(C) parameters (Tien Bui et al. 2016). The RBF Gaussian kernel is a defined by the
following equation:

K xi; xj
� � ¼ exp �c xi � xj

�� ��2� �

Parameter C determines the tradeoff between the model complexity (“flatness”)
and the degree to which deviations larger than e are tolerated in optimization
formulation for example, if C is too large (infinity), then the objective is to
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minimize the empirical risk only, without regarding model complexity part in the
optimization formulation.

Parameter e controls the width of the e-insensitive zone, used to fit the training
data. The value of e can affect the number of support vectors used to construct the
regression function. The bigger e, the fewer support vectors are selected. On the
other hand, bigger e-values result in more ‘flat’ estimates. Hence, both C and
e-values affect model complexity, however in a different manner.

In the present study, a grid search algorithm along with cross validation to find
the optimum value for C, c and ɛ were used. The leave-one-out cross-validation was
employed to determine the optimal parameters and the set of values with the best
leave-one-out cross-validation performance was selected for further analysis.

The next phase was to apply the SVM model that has been trained within a test
area, to the entire research area and produce the land subsidence map, with the
optimal parameters found in the previous step. Finally, the third phase ends with the
validation of the predictive performance of the model. This was achieved by
measuring two statistical metrics, the root mean squared error (RMSE) and the r
square (R2) (Willmott et al. 1985). RMSE is a quadratic scoring rule that measures
the average magnitude of error, which is estimated by the differences between
prediction and actual observations, whereas r square, provides a measure of how
well observed outcomes are replicated by the model, based on the proportion of
total variation of outcomes explained by the model.

5 Results

Based on the analysis of the geotechnical borehole data that provided information
about the depth of bedrock formations that cover the area, a map which illustrates
the spatial distribution of the thickness of the loose deposits was produced by
applying ordinary Kriging method (Penížek and Borůvkav 2006) with the Gaussian
model resulted in the minimum RMSE error and so considered the best-fit model.
The maximum thickness was estimated to be 270 m and the minimum 30 m.
Figure 8 shows the normalized values. Higher values were estimated in the area
close to Stavros and Polineri villages, while lower values were estimated close to
the town of Farsala.

From the same geotechnical database and the analysis of over 60 oedometer tests
(Fig. 7), the Compression Index of the Quaternary deposits was estimated
(Apostolidis 2014). The value of Compression Index was equal to the average value
(when more than one oedometer test have been conducted in the same borehole) of
the dominant sediment layer in that location. The red brown to black brown clays
and the silty clays-clayey silts present higher values ranging between 0.060 and
0.835, while the alternating loose sandy clay or silty sand horizons present lower
values ranging between 0.040 and 0.450. Figure 9 illustrates the normalized values
of the Compression Index that has been produced after the implementation of an
ordinary Kriging method, fitted to a Gaussian function that produced the lowest
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RMSE. Higher values are located between the town of Farsala and the village of
Vasilis while lower values are estimated at the northwest of the area.

Concerning the fluctuation per unit time and the magnitude of the trend in the
groundwater level the analysis showed significant downward trend (Table 1).

The 445YEB monitoring well showed the highest values, −1.699 m/year, fol-
lowed by SR4 (−1.504 m/year) and PZ46 (−1.400 m/year). The lowest values with
statistical significant downward trend were recorder in LB117 (−0.595 m/year) and
in LB119 (−1.080 m/year). The spatial distribution of the normalized Sen’s Slope
values is illustrated in Fig. 10.

Fig. 8 Spatial distribution of the thickness of loose deposits

Fig. 9 Spatial distribution of the compression index (Cc)
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Based on the performed PSI analysis, 5848 PSs were identified in the data set
acquired at the descending orbit of ERS1/2 from 19/6/1995 to 18/10/2003. Based on
the mean deformation rate values and a threshold of ±1.50 mm/year, the 94.19% of
the total PSs were stable. About 5.06% of the PSs show a downwards rate greater
than −1.50 mm/year, indicating subsiding movement. Figure 11 presents the spatial
distribution of the deformation rates at the test area. It is clear that the subsidence
phenomena affect the town of Farsala as well as the plain area extending to the north.
The area north of Vasilis village presented the highest recorded deformation rate
reaching up to values of −20.339 mm/year, whereas the majority of the PSs had
deformation rates ranging between −8.00 and −12.00 mm/year.

Table 1 Results of trend analysis

Groundwater wells monitoring
network (1980–2005)

Mann–Kendal trend
low—level season

Sen’s slope estimator low
—level season

Test Z Significance Q m/year

LB70 −5.14 sig.decrease −1.196

PZ11 −2.11 sig.decrease −1.225

SR4 −5.73 sig.decrease −1.504

SR6 −4.45 sig.decrease −1.146

LB117 −3.20 sig.decrease −0.595

LB119 −5.67 sig.decrease −1.080

445YEB −2.24 sig.decrease −1.699

PZ6 −5.95 sig.decrease −1.310

PZ46 −2.42 sig.decrease −1.400

Fig. 10 Spatial distribution of Sen Slope’s value
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Passing to the predictive phase, a number of 119 PSs that presented subsiding
movements greater than −1.50 mm/year were selected within the test area and
separated into a training and validation dataset. PSs located at areas covered by
bedrock formations were excluded from the analysis. Following the developed
methodology, for each PS point of the training and validation dataset, the values of
thickness of the loose deposits, Sen’s Slope value and Compression Index were
obtained by applying the tool Extract Multi Values to Points, a tool found within
the Extraction toolset, component of the Spatial Analyst toolbox (ESRI 2013). The
next step was the implementation of the SVM method in order to predict defor-
mation rate based on the three variables. During the implementation and after
performing a tuning process, the optimal values C, e and c were estimated to be
1.55, 0.14 and 0.46, respectively.

A multi-linear regression analysis (MLR) (Montgomery et al. 2012) was also
conducted in order to provide a base regression model and compare it with the one
produced by the SVM model. Table 2 illustrates the results from the implemen-
tation of SVM and MLR, in which the SVM model outperforms the MLR model.
The R2 value in the training dataset was estimated for the SVM model to be 0.81
and the RMSE 1.93, while the R2 for the same dataset and the MLR model was
estimated to be 0.42 and the RMSE 3.16. The same pattern of accuracy was
identified in the validation dataset. Specifically, the R2 value was estimated for the
SVM model to be 0.75 and the RMSE 2.43, while the R2 for the MLR model was
estimated to be 0.20 and the RMSE 2.79.

The final step was to produce the land subsidence map, based on the SVM model
for the entire research area. Figure 12 illustrates the spatial distribution of the land
subsidence values, with higher values estimated close to Vasilis village, Farsala
station, the villages of Stavros and Anochori and the town of Farsala.

Fig. 11 PSI deformation rate measurements
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6 Discussion

According to the US National Research Council (1991), the detailed mapping,
characterization and the simulation of subsidence is the most essential phase that
has to precede the design and implementation phase of mitigation methods. The
most common practice concerning the mitigation measures in areas of land subsi-
dence problems involves mainly the regulation of groundwater pumping systems,
the design of alternative water supply and also the construction of maps that pro-
vide, in most cases, the spatial distribution of land subsidence (Raspini et al. 2013).

In this context, the motivation of the present study was to produce a land
subsidence map in order to early detect surface deformations and serve as a helpful
tool to local authorities. The results of the study indicated areas that although
presented minor reported damages, exhibit high probability of land subsidence.
Based on the fact that the present management of the groundwater resources will
continue in the future, severe subsidence phenomena may appear in Vasilis,
Dendraki and Anochori villages. The same phenomena will probably continue to be
present in the village Stavros and would probably expand to the east. According to
the SVM model, the town of Farsala seems to be less influenced by land subsi-
dence; however it should be noticed that the model does not consider any other

Table 2 Results of the validation analysis

Model Training dataset Validation dataset

RMSE R2 RMSE R2

Multi-linear regression 3.16 0.42 2.79 0.20

Support vector machine 1.93 0.81 2.43 0.75

Fig. 12 Land subsidence map
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variables that could influence the phenomena, such as the building density, the
infrastructure distribution and human interventions, which would certainly alter the
observed deformation rates. The above mentioned areas are covered by formations
with high Compression Index values and are also characterized by successive thick
layers of loose deposits.

Based on the analysis of the groundwater level data, it appears that a significant
drawdown takes place within the research area. Even though a natural recharge of
aquifers takes place every year which is mainly provided by rainfall, infiltration of
irrigation waters, leakage from the bed of the two major rivers and subsurface flow
from the mountain ranges bounding the plain, a constant drawdown overall ten-
dency occurs. According to Manakos (2010), the over-exploitation of the water
resources in the wider Thessaly plain has resulted to the systematic groundwater
level dropdown and also to the degradation of the quality of the water in the
majority of the aquifer systems.

The high accuracy (r square value 0.75) achieved by the SVM model is an
indication of the sufficiency and applicability of the conceptual model that is based
on the thickness of loose deposits, the Sen’s slope value and the Compression
Index. These three variables could be considered as the independent variables that
influence the evolution of the land subsidence and better describe the mechanism of
the phenomena in the study area. Furthermore, the low accuracy of the MLR model
(r square value 0.20) is an indication of the non-linear and complex nature of land
subsidence phenomena that can be better modelled by more advanced methods such
as SVM. The SVM model appears to be ideal for such complex problems since it
performs better in regression problems with small number of training data and
avoids over-fitting.

The outcomes of the study are also in agreement with previous studies that
promote remote sensing data and EO techniques as valuable tools concerning the
verification and validation of land subsidence and as a cost-efficient method for the
management of land subsidence related hazards (Raspini et al. 2014).

Overall, the outcomes of the present study are in agreement with the theory
concerning the mechanism of land subsidence evolution, suggesting that an
excessive lowering of the groundwater level leads to the radical change of the
geostatic loads triggering or accelerating the consolidation of compressible ground
layers.

7 Conclusion

The present study provides a methodological approach for the investigation of land
subsidence phenomena by utilizing spatio-temporal analysis of groundwater
resources, remote sensing techniques and data mining methods, implemented at the
wider Farsala plain located in western Thessaly, Greece.
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The SVM method was utilized to predict the land subsidence deformation rate
based on three related variables, namely: thickness of loose deposits, the Sen’Slope
value of groundwater trend and the Compression Index of the formation covering
the area of interest.

The high accuracy achieved by the SVM model (r square value 0.75) was an
indication of the efficiency and applicability of the conceptual model that was based
on those three variables to describe the mechanism of land subsidence in the study
area.

The conducted analysis detected areas that exhibit deformation which, however,
have no records of damages. It is most certain that the continuing over-exploitation
of the water resources will trigger further land subsidence phenomena and expand
the affected areas. This early detection of surface deformations allows taking mit-
igation measures before severe land subsidence phenomena occur and therefore
allows for timely protection of the affected areas.
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Application of Fuzzy Analytical Network
Process Model for Analyzing the Gully
Erosion Susceptibility

Bahram Choubin, Omid Rahmati, Naser Tahmasebipour,
Bakhtiar Feizizadeh and Hamid Reza Pourghasemi

Abstract Soil erosion is one of the most important processes in land degradation
especially in semi-arid areas such as Iran. Awareness from susceptible areas to
erosion is essential for decreasing the damages and restoration of the eroded areas
and achieving the sustainable development goals. Thus, the main purposes of this
study are prioritizing the effective variables in engender and extend of gully erosion
and predicting the gully erosion susceptibility map in the Kashkan-Poldokhtar
Basin, Iran. In order to achieve this purpose, the fuzzy analytical network process
(Fuzzy ANP) was applied by means of considering the interrelationship network
within the effective criteria on the gully erosion. The assessing step were conducted
by the fuzzy approach in associate with the expert’s opinions for determining the
susceptible areas to gully erosion. Eventually, gully erosion susceptibility map was
produced based on Fuzzy ANP weights and GIS aggregation functions. Results
were validated by applying the known gullies collected in field surveys by GPS.
The ROC curve was applied to investigate the susceptibility model’s performance.
Results of the Fuzzy-ANP was revealed that drainage density, soil texture, and
lithology are most important factors for gully erosion. In addition, results delivered
the accuracy of 90.4% for the study area which is very acceptable. This research
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highlights that Fuzzy ANP as an efficient approach for producing the susceptibility
map of gully erosion, especially in an environment with incomplete datasets.

Keywords Gully erosion � Susceptibility � Fuzzy ANP � GIS � Iran

1 Introduction

Soil is the most important resources of any country in the world, which disregarding
it is caused that the achieving to the sustainable development goals would be
impossible. Nowadays, soil erosion and soil degradation are serious challenges that
persistently have an increasing trend. Soil erosion induced by water is one of the
most important processes in land degradation, especially, in semi-arid environments
(Kheir et al. 2007; Zucca et al. 2006; McCloskey et al. 2016; Choubin et al. 2018).
In this context, gully erosion is the most effective occurrences in soil and land
degradation among the various water erosion forms (Poesen et al. 2003; Fox et al.
2016).

Gully erosion known as natural hazard which is caused many damages,
including; destruction of agricultural lands, contamination of the water quality
(Chen et al. 2016; Mukai 2017), economic and environmental problems and
destruction of the ecosystems both in aquatic and terrestrial habitats (Ibáñez et al.
2016; Zakerinejad and Maerker 2015). Therefore, predicting and determining
susceptible areas to gully erosion is necessary for controlling gully and conser-
vating soil and water resources (Conoscenti et al. 2013, 2014).

Previous studies have used different methods for representing the prone areas to
gully erosion, for instance, logistic regression (Chaplot et al. 2005; Conoscenti et al.
2014), frequency ratio (Rahmati et al. 2016), weights-of-evidence (Dube et al. 2014),
multivariate adaptive regression splines (Gόmez-Gutiérrez et al. 2015), stochastic
gradient treeboost (Angileri et al. 2016), conditional probability (Conoscenti et al.
2013; Rahmati et al. 2017), analytical hierarchy process (Svoray et al. 2012), and
classification and regression trees (Geissen et al. 2007).

Since many drivers are effective on the gully erosion, including; rainfall,
landuse, lithology, topography, and soil (Nazari Samani et al. 2010; Cui et al. 2012;
McCloskey et al. 2016), multi-criteria decision making (MCDM) methods can be
helped to ascertain of priority factors.

Analytic Network Process (ANP) is one the most effective GIS based MCDM
technique, which is introduced (Saaty 1996) to overcome the shortcomings was
associated with Analytic Hierarchy Process (AHP). Therefore, the substantial dif-
ferent between AHP and ANP is related to their structure (hierarchical in versus
network, respectively), which ANP is proposed for decision making with depen-
dencies and feedbacks (Saaty 2003). Problems in nature are not merely hierarchical
and there are relationships between the components. Hence in contrast to the other
MCDM methods such as AHP, the ANP method considers the internal and external
relationships between criteria.
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Within this article, we aim to represent a new technique based on the both
expert’s opinion and fuzzy approach for prioritizing effective variables in engender
of gully erosion. Technically speaking, fuzzy decision making methods can be
employed to find out solutions for complex and ambiguous problems such as gully
erosion (Uygun and Dede 2016). In the present study, the integrated Fuzzy
Analytical Network Process (Fuzzy-ANP) is proposed as a novel method for
assessing the most effective parameters on gully erosion. In the first step, criteria
and dimensions which are cause the gully erosion are discerned through both
literature reviews and experts opinions. Then, interrelationship network obtained
through the group ideas and Fuzzy ANP approach was implemented to determine
the weights of variables associated with the network. based on this statement, the
main objectives of this research are; (i) prioritizing the effective variables in
engender and extend of gully erosion by considering the interrelationship network
among the criteria, (ii) predicting the spatial distribution of gullies by fuzzy ANP
method, and (iii) assessing the fuzzy approach associated with the expert’s opinions
in determining the prone areas to gully erosion.

2 Materials and Methods

2.1 Study Area

The study area is the Kashkan-Poldokhtar basin with the area of 245 km2 which is
located in Iran between 33° 2′ and 33° 13′N latitude, and 47° 23′ and 47° 37′E
longitude. The elevation ranges from 461 to 2191 m (Fig. 1). Average precipitation
in the study area is 385 mm/year. The temperature varies from 25 to 48 °C for
summer, and from −5 to 11 °C for winter. Altitude changes in the study area causes
changing in vegetation type. Shrublands and chestnut forests are mostly at altitudes
above 1000 m, whereas grassland is prominence in the altitudes below 1000 m.
Deforestation, overgrazing, anthropogenic infrastructures such as buildings, roads
and other human activates are the most important reasons of land degradation in the
study area. Figure 2 indicates examples of influences of these activates on land
degradation in the study area.

2.2 Methodology

2.2.1 Data Collection

Data for this study divided in two sections. The first section was represented how
field surveys to the construction of the gully erosion inventory map, and the second
section aims to describe of the effective factors on gully erosion accordingly.
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Gully Erosion Inventory Map

The preparation of the gully erosion inventory map is a fundamental step in geo-
morphological analyses and stochastic modelling. In our previous study (Rahmati
et al. 2017), a verified gully inventory map was produced using multiple field
surveys, Total Station (TS) survey, and the Geographic Object-Based Image

Fig. 1 Location of the study area and occured gullies
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Analysis (GEOBIA) method. According to results of monitoring reports of the
watershed management department of Lorestan province, the gullies monitored
almost occurred in the 2010–2016. The gullies which is exist in the study area are
mostly formed by concentrated runoff (i.e. shear stress process). Locations of the
recorded gullies were represented in Fig. 1. This gully erosion inventory was used
for validation of gully erosion susceptibility model.

Fig. 2 Some gullies in the study area
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Effective Drivers on the Gully Erosion

To predicting the gully erosion map determining the effective drivers in the creation
of the gully is important (De Vente et al. 2009; Rahmati et al. 2016). In the present
study, using the literature review and data availability, effective factors were
selected (Zakerinejad and Maerker 2015; Mukai 2017). The selected factors are;
soil texture, drainage density, distance to streams, landuse, distance to road,
lithology, steepness, slope aspect, plan curvature, altitude, and topographic wetness
index (TWI) (Fig. 3). Details of the obtaining these factors are as follow:

Soil texture is one of the most important factors in the occurrence of gully
erosion that was reported in many studies (e.g., Poesen et al. 2003; Dube et al.
2014; Deng et al. 2015). In order to obtain the soil texture map, we collected soil
samples during field surveys. Totally, 75 samples (with weight about 0.5 kg in each
location) were collected. The location of the each sample recorded by GPS. Soil
samples in the laboratory were analyzed and soil textures were determined through
hydrometer method. Soil texture types are including; sandy loam, silty loam, sand,
sandy clay loam, silty clay, loamy sand, and salty sand. Eventually, the soil texture
map was constructed based on the Zhao et al. (2009) procedure (Fig. 3a).

Drainage density and distance to streams (Fig. 3b,c) are also rest of factors
which are effected the gully erosion (Dube et al. 2014). Line density and Euclidean
distance tools in GIS were used to construct these layers.

According to the literature review (e.g., Serpa et al. 2015), the landuse types is
one of the important factors in gully erosion occurrence, especially agricultural
area. The ETM+ 1 satellite image was used to landuse mapping (in May 27th, 2014).
To conduct the maximum likelihood supervised classification a total of 180 samples
considered through field survey. Agriculture, fragmented forest, residential, and
rangeland are classified landuses which are shown in Fig. 3d. Another factor is the
distance to road, which is the cause of gully erosion because of the collecting and
concentrating upstream runoff in the distinct locations (near bridges) to transferring
it to the downstream. Distance to road prepared in GIS environment through
Euclidean distance tool (Fig. 3e). Lithology is also one of the most important
factors in investigating the natural hazard occurrences (Pourghasemi and Kerle
2016). Lithology classes in view of susceptibility to erosion was obtained from a
geological map in the scale of the 1:100,000 based on Nekhay et al. (2009) (see
Table 1 and Fig. 3f). Topographic wetness index also has been applied to quantify
topographic control on hydrological processes for identifying hydrological flow
paths and saturation zones in modeling (Moore et al. 1991). This index is calculated
by two components of the upstream contributing area (As) and the slope gradient (b)
as Eq. (1):

TWI ¼ lnðAs= tan bÞ ð1Þ

1Landsat Enhanced Thematic Mapper plus.
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Fig. 3 Effective factors on the gully erosion: a soil texture, b drainage density, c distance to
streams, d landuse, e distance to road, f lithology, g TWI, h altitude, i steepness, j slope aspect, and
k plan curvature
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Fig. 3 (continued)
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TWI map is shown in Fig. 3g.
Other considered indices that were applied to extract gully erosion susceptibility

map are including topographic factors (i.e. steepness, slope aspect, altitude, and
plan curvature). A 1/25,000 topographic map was applied to produce the Digital
Elevation Model (DEM) with 10 m spatial resolution. The topographic factors were
prepared in GIS environment using the DEM layer. Literature reviews are
demonstrated the influences of the topographic attributes on the gully erosion ini-
tiation (Zakerinejad and Maerker 2015). Topographic factors are presented in
Fig. 2h–k for altitude, steepness, slope aspect, and plan curvature, respectively.

2.2.2 Fuzzy Analytical Network Process (Fuzzy ANP)

Description

Analytic Network Process (ANP) is introduced by Saaty (1996) to overcome the on
limitations of AHP method, which no considers mutual independence between
criteria. Summarily, stages of ANP are in bellow (Saaty 1996):

1. Constructing f the network structure from a problem, and estimation of the
relative weights of the criteria based on the pairwise comparison.

2. Creating the initial supermatrix based on the weights acquired from the previous
step (including; weights of the clusters and nodes with consideration of inter-
relationships among criteria).

3. Createing the weighted supermatrix by multiplying the initial supermatrix by
cluster weights.

4. Finally, calculating the limit supermatrix by multiplying the weighted super-
matrix, which obtained from step 3, n times by itself.

More details from stages of ANP represented in Saaty (1996).
Preferences scale for the pairwise comparison in ANP is alike the AHP, but

subjective preferences have great influence on results. It is recognized that the
linguistic assessment of human judgments and preferences are always subjective,

Table 1 Lithology classes in terms of susceptibility to erosion (Nekhay et al. 2009)

Classes Geological materials

Hardly susceptible to
erosion (HSE)

Igneous rock (volcanic, basic, acidic)

Very little susceptible to
erosion (VLSE)

Well cemented rock: dolomite, limestone Compact siliceous
rocks: phyllite, schist, quartzy sandstone, quartzite and similar

Moderately susceptible to
erosion (MSE)

Rocks that are not as well consolidated: conglomerate, limestone,
calcareous, gypsum, sandstone with little quartz, sand, and marl

Easy susceptible to erosion
(ESE)

Soft formations: marl, gypsum, argillite, pelites, homogeneous
clay, shale

Very easy susceptible to
erosion (VESE)

Quaternary sediments: low level piedmont fan and valley terrace
deposits, sand and clay
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vague, and uncertain. It is difficult and non-reasonable to provide numerical and
exact values in pairwise comparison judgments. It feels which there is more con-
fident to accept interval judgments than fixed value (Gholipour et al. 2014). So,
conventional ANP seems to be insufficient to catch decision maker‘s requirements
explicitly (Samanlioglu and Ayağ 2016). Hence, fuzzy set theory (with interval
numbers) incorporated with the ANP helps to reduce the uncertainties and over-
coming the ambiguous in the human preferences (Uygun and Dede 2016;
Samanlioglu and Ayağ 2016; Choubin et al. 2017). Therefore, in this study weights
of criteria in step 1 of the ANP are calculated by using fuzzy extent analysis.
Table 2 indicates fuzzy linguistic terms and corresponding triangular fuzzy num-
bers for relative importance in Fuzzy ANP in the pairwise comparisons.
Stages of fuzzy extent analysis are described below (Chang et al. 2015):

1. Calculation of the fuzzy synthetic extent (Sk) with regards to the k th object:

Sk ¼
XQ
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Table 2 Linguistic scale for relative importance in Fuzzy ANP (Uygun and Dede 2016)

Linguistic variables Fuzzy
number

Triangular fuzzy
number

Triangular fuzzy reciprocal
number

Equally important (EI) *1 (1, 1, 1) (1, 1, 1)

Weekly important
(WI)

*3 (1, 3, 5) (1/5, 1/3, 1)

Strongly important
(SI)

*5 (3, 5, 7) (1/7, 1/5, 1/3)

Very important (VI) *7 (5, 7, 9) (1/9, 1/7, 1/5)

Absolutely important
(AI)

*9 (7, 9, 9) (1/9, 1/9, 1/7)
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2. Calculating of the degree of possibility of M1(l1, m1, u1)� M2(l2, m2, u2):

VðM1 �M2Þ ¼
1; m1 �m2

l2�u1
ðm1�u1Þ�ðm2�l2Þ m1\m2; u1 � l2
0; otherwise

8<
:

9=
; ð6Þ

The degree of possibility of a convex fuzzy number greater than k in the convex
fuzzy numbers Mk and k = 1, 2,…, K shown as:

V M�M1;M2; . . .;Mk; . . .;MKð Þ ¼ min
k¼1;2;...;K

V M�Mkð Þ ð7Þ

3. Computation of the vector of weights
If we assume that

d0ðApÞ ¼ minVðSp� SkÞ; p 2 f1; 2; . . .k; . . .;Kg ð8Þ

Then, the vector of weights can be defined as:

w0 ¼ ðd0ðA1Þ; d0ðA2Þ; . . .; d0ðAnÞÞT ð9Þ

where Ai and i = 1, 2,…, n indicate in ith component and n number of components.
4. Finally, computation of the weights of criteria based on the normalization

w ¼ ðdðA1Þ; dðA2Þ; . . .; dðAnÞÞT ð10Þ

where w is a nonfuzzy number.
After calculating the weights, for each of the attributes in each table of the

pairwise comparison, weights directly transfer to designed network in Super
Decision software. Judgments in super decision can be carried in the five ways
(Graphical, Verbal, Matrix, Questionnaire, and Direct). Since weights in our study
were extracted by fuzzy sets, therefore, our judgments exerted through way into
designed network.

Designing the Network Based on the Effective Factors on Gully Erosion

Based on questionnaires and opinions of the academic and soil experts, structure of
network with considering interrelationship among criteria was designed. In Fig. 4,
the developed network structure for evaluating gully erosion is presented. The
interdependence relationships between the variables are observable through the
direction of the arrows. One-sided arrows indicate the influence of a criterion on
another, whereas two-sided arrows demonstrate mutual effects between the vari-
ables. ANP is considered both inner and external dependence between factors. In
this study, we have no inner dependencies, so loops that are representative of inner
dependence are not shown.
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2.2.3 Validation of the Fuzzy ANP Method

The skill of fuzzy ANP in the extraction of the gully erosion susceptibility map was
evaluated by receiver operating characteristics (ROC) curves (Fawcett 2006; Swets
1988). The area under the ROC curve (AUC) measures the overall performance of
predictive models (Pereira et al. 2012). The AUC value closer to 1 indicates the
better performance in predicting gully erosion susceptibility. A detailed classifi-
cation of the AUC was presented by Yesilnacar (2005) as follows: poor accuracy
(50–60%), moderate accuracy (60–70%), good accuracy (70–80%), very good
accuracy (80–90%), and excellent accuracy (90–100%).

3 Results and Discussion

3.1 Fuzzy ANP Results in Estimating the Relative
Importance of Factors

Table 3 represents the normalized weights of the effective factors on the gully erosion.
As can be seen, the soil texture factor is the most important factor (0.1862), while
drainage density is the second most important factor (0.1695). The relative importance
of soil texture and drainage density are in agreement with the Rahmati et al. (2017).

Among the all factors plan curvature is the less important factors in the gully
erosion (0.0186). Figure 5 illustrates the relative importance of factors. Effective
factors are soil texture, drainage density, lithology, distance to stream, steepness,
altitude, distance to road, slope aspect, landuse, TWI, and plan curvature, respectively.

Fig. 4 The interrelationship network structure among criteria for the gully erosion susceptibility
evaluation
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3.2 Relative Importance of Classes in Each Factor

Results of the Fuzzy ANP in estimating the importance of classes in each factor is
shown in Fig. 6. The sum of the classes’ weight in each factor is equal with 1.
Among the soil texture classes, sandy loam and sand are the most important and the

Table 3 The normalized weights of the effective factors on the gully erosion

Factors Weights

Altitude 0.0782

Distance from road 0.0521

Distance from streams 0.1304

Drainage density 0.1695

Landuse 0.0335

Lithology 0.1490

Plan curvature 0.0186

Slope aspect 0.0484

Soil texture 0.1862

Steepness 0.1062

TWI 0.0279
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Fig. 5 The relative importance of factors
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Fig. 6 Relative importance of classes in each factor: a soil texture, b drainage density, c distance
to streams, d landuse, e distance to road, f lithology, g TWI, h altitude, i steepness, j slope aspect,
and k plan curvature
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less important classes, respectively, in building gully erosion (Fig. 6a). In drainage
density factor, the highest and the lowest classes (more than 1.56 and less than
0.74 km/km2) are known as the most important classes (Fig. 6b). Shellberg et al.
(2016) and Rahmati et al. (2017) mentioned that poor drainage network due to
concentrating the runoff is the cause of gully erosion, in addition to the high
drainage density. 50 m distance to river have the most weight (about 0.55), while
distances more than 150 m have the weight about 0.03 (Fig. 6c). Fuzzy ANP results
denoted that the agricultural areas are the most important landuse in the occurrence
of the gully erosion (Fig. 6d). This is in agreement with the Serpa et al. (2015) and
Rahmati et al. (2016). Results of distance from road indicated that with decreasing
the gully erosion, the distance to road increases (Fig. 6e). The weight of the
lithology resistance classes was represented in Fig. 6f. Geological materials with
the very easy susceptibility to erosion (VESE) have the value about 0.43, while
materials with the hardly susceptibility to erosion (HSE) have the value about 0.03
(Fig. 6f). Assessment of TWI confirmed that the highest class is most important in
comparison with other classes (weight value of it is about 0.47; Fig. 6g). In the case
of altitude, the results indicated that as the altitude increases the gully erosion
susceptibility entirely decreases (Fig. 6h). Figure 6i disclosed that gentle slopes
have the high gully susceptibility, it is because of surface flow accumulation in
these areas, in consequence, is caused the gully initiation (Valentin et al. 2005;
Rahmati et al. 2015). Results of the slope aspect demonstrated that slopes facing
flat, south, and east have highest probability of gully erosion occurrence, respec-
tively (Fig. 6j). Water flows from the hillside of the mountains and joins in flat
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Fig. 6 (continued)
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areas (i.e. lower terrains) which cause gullying. Since south and east faces have low
vegetation cover and high duration of sunlight exposition, these aspects are more
susceptible to gully erosion. Investigation of plan curvature indicated that flat
curvature is the most important class in occurrence of the gully. This result is
similar to the results of other researches such as Conforti et al. (2011) and Rahmati
et al. (2017), which mentioned flat, concave, and convex curvatures are most
important area to gully erosion development, respectively.

3.3 Developing the Gully Erosion Susceptibility Map

The final weights were calculated based on the designed network in Super decision
software. Limit supermatrix (Table 4) indicates the weight of the each class in the
designed network, which was computed by Fuzzy ANP method. To extraction of
the gully erosion susceptibility map weights of limit supermatrix was employed.
Final weights in Table 4 are established based on the clusters weight (Table 3 and
Fig. 5) and classes’ weight in each cluster (Fig. 6). Means that by applying relative
important of the both each cluster and each class limit supermatrix is constructed.

Figure 7 shows the gully erosion susceptibility map in study area. This map was
produced in GIS environment by obtained weight through Fuzzy ANP method.
After overlaying the layers, the resulted map reclassified into four category using
the equal interval classification scheme. The final map was classified in low,

Table 4 Limit supermatrix

Clusters Class Weight Clusters Class Weight

Altitude <712 0.0371 Distance to
road

<100 0.0285

712–1030 0.0263 100–200 0.0168

1030–1485 0.0119 200–300 0.0054

>1485 0.0030 >300 0.0014

Distance to
streams

<50 0.0712 Drainage
density

<0.74 0.0510

50–100 0.0420 0.74–1.17 0.0303

100–150 0.0135 1.17–1.56 0.0017

>150 0.0036 >1.56 0.0865

Landuse Agriculture 0.0185 TWI <4.5 0.0011

Fragmented
forest

0.0033 4.5–6.75 0.0094

Residential 0.0113 6.75–10.2 0.0042

Range 0.0004 >10.2 0.0132

Lithology HSE 0.0052 Slope aspect F 0.0265

VLSE 0.0097 N 0.0013

MSE 0.0264 E 0.0026

ESE 0.0432 S 0.0156

VESE 0.0645 W 0.0024
(continued)
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Fig. 7 Gully erosion susceptibility map

Table 4 (continued)

Clusters Class Weight Clusters Class Weight

Steepness <15 0.0487 Soil texture Loamy sand 0.0225

15–25 0.0341 Sand 0.0046

25–35 0.0170 Sandy clay
loam

0.0334

35–45 0.0039 Sandy loam 0.0577

>45 0.0024 Silty clay 0.0075

Plan curvature Convex 0.0014 Silty loam 0.0369

Flat 0.0138 Silty sand 0.0236

Concave 0.0034
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medium, high, and very high categories, which are contained 55, 104, 74, and
12 km2 of the study area, respectively. High and very high susceptibility zones are
in the locations with flat curvature, gentle slope, low slope percent, low elevation,
and high drainage density, which mostly are in the central area of the watershed.

3.4 Validation of the Fuzzy ANP Method

To investigate the susceptibility model’s performance the ROC curve was applied
(Rahmati et al. 2016, 2017). The validation of Fuzzy ANP method was investigated
considering the total 65 gully erosion features. Figure 8 depicts ROC curve of gully
erosion susceptibility model based on the complete gully inventory, which was
constructed using pROC-package, an open-source package for R (Robin et al.
2011). The area under the curve (AUC) in ROC exhibits the predicting performance
of a model by displaying the capability of the model to simulate the predetermined
occurrences or non-occurrences. Results indicated that AUC value for Fuzzy ANP
model is 0.904. Thus, this method indicates 90.4% accuracy for study area which it
have excellent performance in gully erosion susceptibility mapping according to the
Yesilnacar (2005) classification.

Fig. 8 ROC curve of gully erosion susceptibility model based on the complete gully inventory
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4 Conclusion

Despite the hazardous attributes of gullies erosion, many researchers have con-
centrated on investigating the gully erosion susceptibility. In this study, Fuzzy ANP
as a new approach was used to extracting the gully susceptibility map. Primarily,
the effective factors in building the gully erosion such as soil texture, drainage
density, distance to streams, landuse, distance to road, plan curvature, lithology,
TWI, steepness, slope aspect, and altitude were obtained. Then, relative important
of the criteria were determined through Fuzzy ANP and gully susceptibility map
constructed after overlaying the layers. Then, the location of 65 gully erosion
features was recorded through field surveys to evaluate the model performance.
Fuzzy ANP method applies knowledge and intuition of the experts to resolve the
problems. The major advantage of the ANP method in comparison with the tra-
ditional methods (such as AHP) is considering the direct and indirect influences
which criteria have on gully erosion (with a network structure). Incorporation of the
Fuzzy with ANP method leads to reduce the uncertainties and overcoming the
ambiguous in the human preferences according to interval judgments rather than
fixed value judgments. Results of the Fuzzy ANP was revealed that soil texture,
drainage density, and lithology are most important factors in occurring the gully
erosion. After the obtaining the weights through Fuzzy ANP, gully erosion sus-
ceptibility map was produced. Skill of the predicting map was confirmed using
ROC curve and AUC value. Results of our study demonstrate that Fuzzy ANP
method could be an efficient method for producing the gully susceptibility map
especially in developing countries such as Iran, which is overly exposed to the
erosion hazards. Furthermore, natural resources planners and managers will be able
that understand and find vulnerable areas to gully erosion to controlling it and to
reducing the damages.
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Landslide Susceptibility Prediction
Maps: From Blind-Testing
to Uncertainty of Class Membership:
A Review of Past and Present
Developments

Andrea G. Fabbri and Chang-Jo Chung

Abstract This contribution reviews the spatial characterization originally stimu-
lated by mineral exploration and later by environmental concern. Research network
programmes of the European Commission triggered cross-breeding of disciplines
and approaches to hazard prediction in particular for the Deba Valley study area in
northern Spain. Examples of results of spatial prediction modelling using blind tests
to obtain prediction-rate curves and uncertainty patterns allow considerations on the
role of such modelling for research, surveying and civil protection.

Keywords Spatial prediction modelling � Cross-validation � Blind tests
Landslide hazard � Empirical likelihood ratio � Prediction-rate curves
Uncertainty of class membership � Prediction patterns

1 Introduction to Spatial Characterization

With all probability the idea of digitizing geological maps came about as a reaction
to Allais (1957) report on the statistical distribution of mineral deposits in Africa as
directly proportional to the area of study without particular connection to geology.
Of course we disagreed about that. The report had a political weight and so did,
although we were unaware of it, our first employment at the GSC, the Geological
Survey of Canada. For us the Survey had a short name of GSC and was then a well
respected federal branch of the Department (Ministry) of Energy, Mines and
Resources, EMR. It appeared that a political strategy to stressing the relevance of
the GSC was to start a pilot project on statistical methods for mineral exploration.
At that time, it was 1969, a well known young scientist, Dr. Frits P. Agterberg, head
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of the Geomathematics Section, was paving the way to such area of application. It
fell upon one of us co-authors, AGF, to collect data on several Canadian study areas
rich in mineral deposits. It became an opportunity for working at constructing
databases of mineral deposits, occurrences and showings (i.e., indicators of likely
presence of exploitable mineralization, or just of mineralization, or of possible
mineralization). At the time, it seemed like a shot in the dark to construct databases:
nobody new how to do that and whether that would be any useful…! From a
regional point of view, such features as mineral occurrences appeared point like
with some kind of geographical coordinates for location. In addition to that they had
to have a list of characteristics such as genetic type of mineralization, amount of
ore, reserves proven or suspected, mineral associations and geologic descriptions of
host rocks at the location point and at its surroundings.

Beside ensuring the geologic and metallogenic quality of the objects to be
described, was the fact that there were literally thousands and thousands of them.
Furthermore, many maps were available that used different scales, projections, area
cover and legends. Data on mineral prospects existed as separate compilations,
public and/or private, using different location accuracies, metric and non-metric
units for grade of ore and tonnage. The standardization of such spatial and
non-spatial information became a major part of the effort.

Later on, a project was approved entitled “Quantification of Geological
Variables” that officialised that activity of database construction. It was the end of
the 1960s and at that time digitizing was done manually with transparent grids to
get density contouring of points and statistics for 10 km square cells (with grids of
20 � 20 points), thousands of them! But in the 1970s, the other co-author, CJC, a
mathematician-statistician, joined our Geomathematics Section and the quantifica-
tion and analyses tasks led to the much referred to 1972 GSC Paper 71–41 on
mineral exploration potential (Agterberg et al. 1972), and subsequently to a first
paper on databases for mineral potential evaluation (Fabbri 1975). Many more
contributions followed and much discussion was to take place on the assessment of
mineral potential by quantitative spatial techniques.

Mineral exploration remained an important field for the GSC and the Canadian
geological community of prospectors for some years to come, however, by 1986most
of the prospectors and exploration geologists were out of work and became private
consultants: mineral exploration was not considered so important any more. By then,
progress had been made in the area of digital data capture and picture processing
(early version of geographic information systems) with a book on “Image Processing
of Geological Data (Fabbri 1984) and on SIMSAG, a software package for mineral
resource evaluation (Chung 1983). We were heavily committed to what became later
known as geographical information systems or GIS (Burrough 1986; Aronoff 1989;
Bonham-Carter 1994). Those experiences became the basis for the spatial prediction
modelling work that followed. In 1986 a NATO Advanced Study Institute on
“Quantitative Analysis of Mineral and Energy resources” was held at Il Ciocco, in
Castelvecchio Pascoli, Italy and produced a volumewith that title (Chung et al. 1988).
Nevertheless, the interest on mineral exploration was by then at an historical low.

Of course, as it happens for most attitudes in society, as well as in scientific
fields, a new trend brought in environmental and security concerns and more and
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more advanced technologies, including remote sensing and various types of data
interpretations and analyses. That became a critical area of development, training
and research when later on one of us co-authors, AGF, joined the International
Institute for Aerospace Surveys and Earth Sciences, ITC, in the Netherlands
heading the Division of Geological Surveying. Much attention was paid to the
development of GIS as an analytical instrument for capturing and managing spatial
information, predictive modelling with emphasis on land use planning, environ-
mental security of resources, prediction of natural hazards, risk assessment and the
use of remotely sensed data from several new sensors. This became the focus of
another NATO Advanced Study Institute on “Deposits and Geo-Environmental
Models for Resource Exploitation and Environmental Security” held in Mátraháza,
Hungary, in 1998, that also produced a volume with that title in 2002 (Fabbri et al.
2002a). Its unusual focus was on the environmental footprints of mineral resources,
spatial data integration and prediction modelling.

It was, however, in the beginning of the 1990s, that the other co-author, a former
colleague from the GSC, CJC, proposed to set-up a consistent mathematical frame-
work for spatial prediction modelling (Chung and Fabbri 1993). That framework has
continued being developed since, under a variety of scientific circumstances and
opportunities. Fortunately it also led to much international research and cooperation.

2 Cross Breeding of Persuasions, Curiosities and Strivings

It was also in the 1990s that a number of European Commission’s network research
projects started to materialize. Structured management and integration of activities
of several research teams was a necessary condition for support of those projects.
They became vehicles of opportunities for collaboration and exchange of methods
and ideas between countries, institutions and disciplines. The focus was on the
relationships between environment and natural hazard and coincided with the new
emphasis on training and research in environmental geosciences at ITC in the
Netherlands. This became even more explicit when one of us, AGF, joined in 2002
the Department of Environmental Sciences and Territory, DISAT, of the University
of Milano-Bicocca in Milan, Italy. It is partly due to those projects that many of the
developments and application described in Sect. 4 were made possible. In particular
the sequential progress the six projects documented was used as an argument to
reconsider the field of GIS from mostly management and representation of spatial
data into a complete analytical methodology (Fabbri 2007, p. 4).

1. “Geomorphology and Environmental Impact Assessment: a network of
researchers in the European Community” (1993–1996) HC&M, ERBCXRXCT
930311;

2. “New Technologies for Landslide Hazard Assessment and Management in
Europe”, NEWTECH (1996–1998) CEC Environmental Programme,
ENV-CT96-024;
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3. “A European Research Network for the Application of Geomorphology and
Environmental Impact Assessment to Transportation Systems”, GETS (1998–
2001) TMR, ERBFMRXCT970162;

4. “Quantitative Indicators and Indices of Environmental Quality: a Euro-Latin
American Network for Environmental Assessment and Monitoring”, ELANEM
(1999–2002) INCO-DC, ERBIC18CT980290;

5. “Assessment of Landslide Risks and Mitigation in mountain Areas”, ALARM
(2001–2004) EVG1-2001-00018.

6. European Commission’s Project Mountain Risks: from prediction to manage-
ment and governance (MRTN-CT-2006-035978, 2007–2010).

Those projects revealed that geo-information was becoming more and more rele-
vant and that, to represent and comprehend natural and environmental risks,
desirable cross-disciplinary applications beside the physical sciences had to involve
both economics and sociology. Predicting future events goes beyond documenting
the past ones and that was hard to learn. Some of the teams in those networks
preferred to limit their research to specific traditional study areas focussing on static
detail of geomorphologic cartography. Other teams, however, became definitely
committed to a novel use of geo-information for predictive modelling of hazards
and risks (Remondo et al. 2003a, b; Zêzere et al. 2004).

Furthermore, those network projects have to be seen as very precious to
cross-breeding of experiences. Two examples of the many doctoral theses that
originated from those projects are the ones by (Remondo 2001) and by Bonachea
(2006). They provided us much material for further training from a study area in
northern Spain, in the Deba Valley.

Such cross breeding could take place through those network projects and the
joint papers that were produced were a proof of it (Bonachea et al. 2005; Fabbri and
Cendrero 1995; Fabbri et al. 2000, 2002b, 2003). The focus, indeed, was the
exchange of concepts across disciplines. For instance the INCO project ELANEM
that dealt with environmental indicators and indices and the human factor, e.g., the
HDI or human development index (Cendrero et al. 2002). Another novel aspect was
the human impact on geomorphic processes (Remondo et al. 2005b).

A number of advanced short courses could be offered to the young researchers
involved in the EC projects, e.g., in Lisbon and Oviedo (Portugal and Spain) in 1996,
in Vechta (Germany) in 1999, in Florence (Italy) in 2004 during the 32nd
International Geological Congress, also as part of graduate courses at the DISAT in
Milan during 2003–2011, and eventually atWIT, theWessex Institute of Technology
at Ashurst Lodge in the UK in 2012 (WIT 2012). In addition, several visiting fel-
lowships made it possible for those researchers to work at foreign institutions.

3 What Are the Results of Applying Models?

Let us now consider the evolution of spatial modelling during the past two decades.
Since the proposal of a basicmathematical framework for data integration in spatial data
analysis that was made in 1992 (Chung and Fabbri 1993), experiments via many
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applications and study areas brought to a number of developments. The single critical
reason for applying models of spatial relationships was for us to arrive at the classifi-
cation of a study area: i.e., a classification inwhich relatively few classeswere to express
the clustering of events. Also, under certain conditions and assumptions, the classes
were to identify not only areas with known events but also areas with future events,
whose characteristics were identical or similar to the ones containing known events.

Examples of conditions were that the events should be of uniform type, thus
justifying the similarity of spatial setting and/or phenomena typology, or that the
spatial/temporal distribution within the study area be a representative sample of the
generating process. Examples of assumptions were that sub-areas of the study area
or temporal sub-sets of the events had comparable characteristics so that they could
be used to generate comparable classifications.

Initially the events of concern were mineral occurrences of consistent genetic
type due to the emphasis on mineral exploration. Later on, the concern on envi-
ronmental impact and natural hazards led to focusing on hazards and risks caused
by floods, avalanches and landslides. Many applications were directed to landslide
hazard due to its impact and the availability of cartographies and compilations of
mass movements. The spatial representation of the hazardous events was in many
cases that of shallow translational mass movements rendered as polygons of their
trigger areas. Their spatial distribution had to be related with the polygons of the
mapping units in corresponding categorical data layers as well as the values in
continuous data layers. These data layers, making up the spatial database of
co-registered digital maps, had to express the typical hazardous conditions. The
event distribution was considered as direct evidence in support of a proposition,
DSP or direct supporting pattern. Categorical and continuous field layers were
considered instead as indirect evidence, ISP or indirect supporting patterns. The
ISPs represent the spatial evidence relatively to the DSP. Such numerical spatial
support was for a mathematical proposition of the type that “a point in the study
area is affected by a trigger zone of a shallow translational landslide given the
presence of the categorical mapping unit and the continuous value of the
corresponding data layers.”

Different interpretations of the spatial relationships between DSP and ISP were
proposed and compared: for instance, based on Fuzzy Sets, Likelihood Ratio,
Logistic and Linear Regression, and Bayesian Probability. These were some of the
spatial prediction models considered, for what we named “favourability modelling”
as an all compassing term. Their application in the study area was to compute and
combine spatial evidence and led to different and comparable relative classifications
of all pixels.

The comparability of the different classifications was obtained via the generation
of equal-area classes using rank order statistics. The equal-area classes with the
higher computed values were, hopefully, to contain higher proportions of events
than the subsequent classes. This, however, could not be obtained unless the rel-
ative size of the classes was sufficiently large. The aggregation of adjacent ranked
classes was done to obtain monotonically decreasing proportions of the events in
the ordered classes, representing the relative fitting of the events in the classes.
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Such a fitting distribution of known events, however, could not describe the
classification power of the database and of its spatial relationships to generate
classes with greater or smaller proportion of future events. Those relationships
were to provide a measure of relative quality of the classes as predictors and that
requires particular strategies.

For assessing the prediction quality of the classifications, the set of events
needed to be preferably separated into temporal or spatial subsets: e.g., one, pos-
sibly older, to obtain a classification and the other, possibly younger, to calculate
the proportion of the younger events distributed among the classes generated using
only the older events. Such later events were not to be used for the classification.
This led to the development of a variety of cross-validation strategies via so called
“blind tests”, i.e., pretend not to know the existence of the later events for classi-
fication. Prediction-rate tables, histograms and cumulative curves were thus used to
interpret the different classifications obtained in separate experiments over the study
area.

The classification results were termed prediction patterns and the associated
prediction-rate curves could then be used to assess the relative quality of the
classifications obtained by modelling the DSP/ISP spatial relationships and
cross-validating such distribution of past events with that of the distribution of
“future” events. For instance, the steeper were the prediction-rate curves at the
origin, the better could be considered the classes, and conversely the shallower
became the curves the less significant the classes would be.

The modelling of prediction-rate curves was also the key to evaluating the
impact of the landslide hazard prediction patterns on risk assessment. Under given
realistic scenarios, the prediction-rate curve could be converted into a probability of
occurrence curve to be used in combination with the prediction pattern to satisfy a
risk equation with the introduction of vulnerability and exposed element patterns.

The term prediction referred to the capability of a classification to generate
classes containing high numbers of future events. While the prediction-rate curves
could represent the relative “goodness” of a prediction pattern, little was known that
far of its reliability, stability or robustness.

For that, iterative procedures were developed in which incremental variations of
the DSP in number and/or distribution were used to obtain sets of prediction
patterns whose prediction-rate curves could be compared, averaged or otherwise
combined. The iterative procedures led to assessing the uncertainty of class
membership of each future event predicted. They also permitted to generate a new
averaged prediction pattern as combination of the iterated predictions, termed
Target Pattern. Of that we could compute statistical measures such as the variance,
thus obtaining an Uncertainty Pattern and a Combination Pattern, using a given
threshold of variance to threshold the Target Pattern.

Due to a multitude of unsatisfactory applications found in the scientific literature
on the subject, strategies of blind testing for the interpretation of prediction patterns
had to be stressed and demonstrated (Fabbri and Chung 2008). Later on, the
development of their application in the area of natural hazard for training
decision-makers was proposed (Fabbri and Chung 2009). A recent version of a
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computer system for spatial prediction modelling, SPM, to be used as a tool for
research and training was documented (Fabbri and Chung 2012) for regional and
local surveys. A more advanced version of it is the spatial target mapping system,
STM, used in training (Fabbri and Chung 2009) and in the experiments discussed in
the next section.

4 Exploiting the Deba Valley Database

Our efforts to interpret the results of spatial data integrations concerned study areas
in different mountainous regions in the world. Besides Colombia, Canada and Italy,
where our first applications of spatial prediction modelling of landslide hazard were
made, European Commission network projects, student supervision and scientific
collaboration permitted more applications in Portugal, Spain, Austria, Korea,
Germany, Belgium and Slovenia. In particular, a study area rich with data and with
hundreds of landslides that became available is a database of the Deba Valley, in
the Basque Country of northern Spain. Support for its construction was from the EC
Network Project NEWTECH (see Sect. 2) and its study became the focus of two
doctoral theses: one on hazard prediction (Remondo 2001) and a second one that
used it in part to extend research to landslide risk assessment (Bonachea 2006). In
addition, the spatial database became an opportunity for international collaboration
thus permitting the comparison of different approaches and experiments (Remondo
et al. 2003a, b; Fabbri et al. 2002b, 2003; Remondo et al. 2005a, 2008). It even-
tually became part of the training material for documentation and exercises for
advanced courses on spatial prediction modelling for natural hazard prediction and
risk assessment (WIT 2012; Fabbri and Chung 2009).

Some critical results from its analysis make the database and the problems it
represents still a worthwhile challenge today and probably in the future. Let us
consider some blind testing experiments for cross-validation that led to the gen-
eration of uncertainty maps that characterize the Target Pattern in the Deba Valley
study area.

The study area database used by us consists of the following seven data layers to
become DSP and ISPs: (1) one-pixel trigger zone distribution of shallow transla-
tional landslides and associated flows with their sequential identification and sep-
aration into 906 pre-1997 and 217 post-1997, i.e., 1998–2001; (2 and 3) the
distribution of 26 and 9 categorical map units, respectively, of lithology and
land-use; and (4–7) four continuous digital maps derived from the digital elevation
model, elevation, aspect, curvature and slope. The resolution of pixels of all the
seven data layers is 10 m x 10 m. The study area occupies 1,393,541 pixels,
906 + 217 pixel corresponding with the distribution of the landslides. Figure 1
shows the locations of the landslides in the Deba Valley. Because the average area
occupied by each landslide is relatively small, i.e., about 400 m2, only one pixel
was used to locate its trigger zone.
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The empirical likelihood ratio, ELR, is one of several models used for estab-
lishing spatial relationships. It is based on the ratio between two density functions
of the spatial evidence (i.e., the presence of map units, ISP): that in the presence of
the landslide pixels (the DSP) and the one in their absence. Under a number of
assumptions, the ELR is computed from the different ISPs, integrated and used to
rank the likelihood of occurrence of future hazardous occurrences. The ranks refer
to space, and possibly also to time intervals, should information on their time of
occurrence be available.

Tables 1 and 2 show the ELR values for the map units of the lithology and the
land use data layers, respectively, not shown here. In Table 1, the ELR values for
muddy flysch, marly limestone and calcareous flysch are higher than 2 and there-
fore considered significant. The value 2 is just an arbitrary one that represents a
density function in the presence of the trigger areas that is twice that in their
absence in the study area. That is so only for land use unit grassland and cultiva-
tions in Table 2. It means that those four map units are the most effective ones in
supporting the proposition of the presence of landslides. This was because the
contribution of the other categorical units resulted either weaker or null. As to the
continuous data layers, their contribution is always below 2, except for the cur-
vature ISP slightly above 2, showing a rather marginal contribution to the predic-
tion rates and the prediction pattern of Fig. 2. The ELR values provide measures of
relevance of the ISPs in predictive capability. Here the integrated ELR values of the
six ISPs, ranging between 0 and infinity, are sequenced in descending order so that

Fig. 1 Locations of the 906 pre-1997 shallow translational landslides, as white dots, and of the
217 post-1997, as black dots. The Deba Valley study area is in dark grey and its outside in light
grey. The size of the dots, representing single pixel landslides, has been exaggerated for visibility.
UTM northings and eastings of centres of pixels are at top left and bottom right
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200 ranks of equal-area corresponding to the 0.5% of the area of study, could be
generated and grouped for visibility into the eleven classes shown in the legend of
the illustration. Maintaining fixed the groupings does facilitate the comparison of
patterns. Ranking of equal-area classes is considered a fundamental procedure for
evaluating and comparing the prediction patterns used in different analyses. The
integrated ELR values themselves are not considered an interpretable function
beyond their ranks.

Table 1 Two empirical frequency distribution functions and the corresponding empirical
likelihood ratio function for the units of lithology from the Deva Valley study area

Lithology
unit

Description Frequency at
906 pre-1997
landslides

Frequency at
non-landside
areas

Likelihood
ratio

1 Silicoclastic-calcareous
Flysch

0.000 0.0001 0.0000

2 Muddy Flysch 0.1300 0.0549 (2.3732)
3 Stratified limestone 0.0011 0.0017 0.648

4 Marly limestone 0.0265 0.0116 (2.2934)
5 Marl 0.2748 0.1988 1.3824
6 Sandstone and

conglomerate
0.0033 0.0093 0.3547

7 Sandy Flysch 0.1391 0.1842 0.7549

8 Massive limestone 0.0177 0.1508 0.1508

9 Calcareous lutite and
sandy marl

0.0331 0.0787 0.4208

10 Marly limestone 0.1998 0.1110 1.7990
11 Calcarenite, marl and

calcareous breccia
0.0232 0.0220 1.0524

12 Calcareous Flysch 0.0408 0.0091 (4.4765)
13 Pyroclastics 0.0044 0.0174 0.02539

14 Lavas 0.0563 0.0812 0.6933

15 Polygenic breccias 0.0000 0.0002 0.0000

16 Siliceous breccias 0.0000 0.0002 0.0000

17 Well graded gravel 0.000 0.0007 0.0000

18 Poorly graded gravel 0.0010 0.0007 1.7441
19 Clayey gravel 0.0044 0.0189 0.2341

20 Well graded sand 0.0000 0.0002 0.0000

21 Poorly graded sand 0.0000 0.0013 0.0000

22 Silty sand 0.0298 0.0174 1.7175
23 Clayey sand 0.0000 0.0014 0.0000

24 Silt and fine sand 0.0033 0.0067 0.4922

25 Residual clay 0.0022 0.0086 0.2576

26 Anthropogenic deposits 0.0000 0.0017 0.0000

Likelihood ratio values higher than 1 are in bold and those higher than 2 are also within brackets
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Table 2 Two empirical frequency distribution functions and the corresponding empirical
likelihood ratio function for the units of land-use from the Deba Valley area

Land use
classes

Description Frequency at 906
pre-1997 landslides

Frequency at
non-landslide areas

Likelihood
ratio

1 Water bodies 0.0000 0.0003 0.0000

2 Very dense
forest

0.0066 0.0476 0.1392

3 Dense deciduous
forest

0.0353 0.0986 0.3582

4 Half open
deciduous forest

0.0000 0.0261 0.0000

5 Very dense
coniferous

0.2804 0.4370 0.6416

6 Scrubs and
bushes

0.0408 0.0593 0.6887

7 Grasslands and
cultivations

0.6082 0.2444 (2.4883)

8 Areas without
vegetation

0.0287 0.0868 0.3308

The only likelihood ratio value higher than 2 is in bold within brackets

Fig. 2 Empirical likelihood ratio prediction pattern of the Deba Valley study area obtained using
the distribution of the 906 pre-1997 landslides as DSP, not shown here, and as ISPs the six
categorical and continuous data layers. The locations of the 217 post-1997 landslides used for
cross-validation are as magnified black dots

136 A. G. Fabbri and C.-J. Chung



The relatively weak support of the continuous ISPs can be interpreted in many
ways, however, it is not surprising given the limited spatial support of only 906
landslide pixels used to classify the remainder of (1,393,541–906 =) 1,392,635
pixels of the study area!

The relative quality or “goodness” of the classification as a prediction can be
assessed by considering the proportion of future events, here the 217 post-1997
landslides, falling within each equal area class, as described in the prediction-rate
histogram of Fig. 3. The 200 classes each consist of approximately 6967 pixels.

In the illustration of Fig. 3 the histogram shows a weak monotonically
decreasing trend. It only covers 5 classes with the highest predicted values of 3%
each of the study area. The top 15% is the only part of conveniently high values of
prediction rates. Histograms of equal-area classes are convenient for eventually
setting the levels of hazard as high, intermediate, low, etc. It is implicit in the
concept of classification that we have to have a monotonically decreasing set of
classes in which the faster is the decrease the sharper is the classification.

Figure 4 shows the entire cumulative prediction-rate curve of the 217 post-1997
landslides. Interpreting the curve in terms of costs-benefits we have that the highest
10% class contains 40% of the validation landslides, the highest 15% contains 50%,
and the highest 20% contains close to 60%. Further increments of the study area
that could be considered as hazardous do not contain conveniently higher pro-
portions of predicted occurrences. The higher is the curve inclination near the origin
the greater becomes the proportion of validation-occurrence distribution through
higher classes, i.e., the better are their prediction scores. This type of cumulative
curve can be of general use in the assessment of the quality of predictions.

Fig. 3 Prediction-rate histogram of the of the 217 post-1997 landslides in the prediction pattern
of Fig. 2. Only the top 15% of the highest predicted values is shown that provide a slow
monotonically decreasing set of columns
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One critical question, given the observed quality of the database for prediction
modelling, is the following: “What is the degree of certainty of the 0.5% classes
from the 906 pre-1997 landslides used as DSP, and the six ISPs, used for predicting
the locations of the 217 post-1997 landslides?”

Let us provide a measure of uncertainty of class membership of the classifica-
tion. We could proceed in many ways using different strategies. For instance, one
strategy that can be used is to repeat the predictions with 50 landslides less than the
906, i.e., 856, and successively iterate that 18 times to predict each time the
remaining 50. Such a “50-less” procedure will produce 18 prediction patterns and
the corresponding 18 prediction-rate curves, shown in Fig. 6. This is termed
sequential elimination. Sequential selection or random selection can also be used to
obtain further uncertainty measures of the prediction patterns. From the spread of
cumulative curves shown in Fig. 6 we obtain a visual impression of the variation of
prediction scores around the average at the sequential increments of study area
considered as hazardous.

A new prediction pattern can be generated considering the values for each pixel
of the study area (18 in our case) and computing their average with the associated
variance, for instance. We have termed the average pattern as the Target Pattern
and the variance pattern as the Uncertainty Pattern. The Target Pattern, not shown
here, is visually identical to the prediction pattern shown in Fig. 2, however, it is
accompanied by the Uncertainty Pattern, whose pixels have variance values. This
can be used to threshold the Target Pattern at a tentative % threshold of variance.
The sample average and variance used here are just one example of statistics that
can be used to generate Target and UncertaintyPatterns. Various other statics can
also be used to generate and interpret these patterns (Fabbri and Chung 2014).

As an example, the 2% Combination Pattern shown in Fig. 5 shows all pre-
dicted values of the Target Pattern at or below the 2% variance. The light grey
areas indicate the distribution of uncertainty of class membership above the 2%.
The distribution of the 217 post-1997 landslides over the 2% Uncertainty Pattern

Fig. 4 Cumulative prediction-rate curve for the 217 post-1997 landslides in the prediction pattern
of Fig. 2
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obtained with the “50-less” iterative procedure separates the predicted (validation)
landslides in areas with uncertainty above the variance threshold from the ones in
areas with uncertainty below it. For instance, the area occupied by the pixels with
variance � 2% consists of 846,268 pixels, i.e., 37.49% of the study area. It contains
70 post-1997 landslides pixels, i.e., 47.62% of the 217. The selection of the 2% as
variance threshold is just a tentative one to exemplify a strategy. Only a solid
knowledge of the processes represented in the database can guide to a preferable
statistics to obtain Uncertainty Patterns and their threshold for generating
Combination Patterns.

Each prediction pattern of the 18 generated has provided a prediction-rate curve
and an average curve computed for the Target Pattern, as shown in Fig. 6. Here we
can see another use of the cumulative prediction-rate curve for comparing different
prediction patterns. In this case the patterns were obtained by sequential
elimination of 50 occurrences in each. Also the prediction patterns generated with
different mathematical models can be compared in a similar manner.

These experiments and their results are now part of the training material in
spatial prediction modelling for courses on natural hazards and risk assessment.
Besides revealing some of the properties and limitations of the database, they also
offer opportunity for further experimentation to refine and change the analytical
strategy as a data mining process. This is still a challenge today in spite of the many
new mathematical models being proposed.

Fig. 5 Combination Pattern for uncertainty (variance) values � 2% and the corresponding part of
the Target Pattern for iterative cross-validation strategy “50 less” (Target Pattern not shown here
but visually similar to the prediction pattern in Fig. 2). The locations of the 217 post-1997
landslides used for cross-validation are as magnified black dots
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Let us review other studies that made use of the data on the Deba Valley study
area. The Uncertainty Pattern of class membership has been used to identify the
areas with lower uncertainty of hazard class membership when obtaining a risk
pattern (Fabbri et al. 2014). Other strategies of analysis were selected according to
the known or suspected characteristics of the database and the processes it portrays.

For example, suspecting that the zone of influence of the occurrences of the
landslide trigger zones is limited to their immediate surroundings, pixel neigh-
bourhoods of 5, 9 or larger were used for the modelling of spatial relationships and
the relative statistics then applied to the remainder of the study area. This generated
different prediction patterns for interpretation (Fabbri et al. 2008).

Furthermore, assuming the boundaries of categorical mapping units of ISPs to be
fuzzy and/or the continuous ISP to be noisy, the ISPs were gradually modified
(fuzzyfied) and the analyses repeated to obtain again different prediction patterns to
evaluate and compare them along with their impacts on risk assessment (Fabbri and
Chung 2014). Another strategy applied was the one of selecting sub-regions of the
study area for predictions and validations, or different spatial or temporal subsets of
the landslides (Fabbri and Chung 2016). Also experiments were made in training
sessions substituting the ELR model with other models comparing the respective
prediction-rate curves. Only minor differences in the resulting prediction patterns
were obtained. That revealed that the result of prediction modelling was in our case
essentially driven by the data and not by the models.

Furthermore, other collaborative studies were made sharing the Deba Valley
database for advanced modelling. Using the same study area and a larger number of
ISPs, mostly derived from the digital terrain model, Melchiorre et al. (2006)
modelled landslide susceptibility by Artificial Neural Networks. They used likeli-
hood ratio criteria to exclude less significant ISPs and compared prediction patterns
obtained with all of them with those obtained by a reduced set. The reduced set

Fig. 6 The 18 cumulative prediction-rate curves from the “50 less” cross-validation analyses
performed to generate the corresponding 18 prediction patterns to obtain the Target Pattern,
whose prediction-rate curve is shown as heavier solid black curve
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appeared to moderately improve the resulting prediction-rate curves, particularly
when lithology was part of the ISPs. To test the robustness of the patterns, database
subdivisions were generated partitioning it 10 times into training, validation and test
sets. While it remains a matter of debate whether the database justified the usage of
such a sophisticated methodology, it is of interest to observe how the quality of the
prediction patterns obtained was similar in all of their experiments and how it was
considered important to employ iterative processes. Similarly, in another study with
the same database, Felicisimo et al. (2013) studied prediction patterns obtained by
four new mathematical models: multiple logistic regression, multivariate adaptive
regression splines, classification and regression trees, and maximum entropy. All
models appeared to perform similarly and the inclusion of lithology as ISP provided
somewhat better results. The analyses were iteratively replicated using sets of
randomized samples.

Such experiments have led to novel results and considerations on the signifi-
cance of the spatial data for the purpose of prediction. Testing for uncertainty,
robustness or reliability is considered a critical part of the modelling. The different
prediction patterns eventually have to be interpreted and explained in geomor-
phologic terms for the processes in the study area, a challenging task that has to
follow the mathematical modelling. What is remarkable is the richness of the
approaches by different teams sharing the database. Such sharing seems a rare
opportunity in spatial analysis.

5 Concluding Remarks

A review was made of the development by the authors of spatial characterization
originally stimulated by mineral exploration and later by environmental concern.
Research network programmes of the European Commission brought together
different expertises and backgrounds, encouraging cross-breading of disciplines and
approaches, some particularly related to research work in the Deba Valley study
area of northern Spain. Its spatial database constructed for landslide hazard pre-
diction and risk assessment has become not only a scientific ground for cooperation
and also useful material for training young scientists, graduate students and
decision-makers. The experimental results have now a general significance that
transcends the study area. In addition, not all the possibilities of experiments have
been exhausted. The steps from the application of spatial prediction models to
cross-validations by blind testing and the iterative calculation of Target Patterns
and Uncertainty Patterns, or robustness or reliability, are now beyond the stage of
research. They have turned into application challenges at institutional levels. It is
now up to surveys and civil protection or environmental agencies to construct and
analyze spatial databases for hazard and risk assessment under their jurisdiction and
produce maps of the likelihood of future hazardous events for current practice.
Encouraging is the present conditions of ubiquitous availability of spatial data in
easily accessible digital formats that facilitate the construction of spatial databases.
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Nevertheless, the hazard situation is worrisome in many parts of the world con-
sidering: (1) the progressive invasion of urbanizations into hazardous grounds that
aggravate the impact of hazardous processes and exposure to risk; (2) the frequent
occurrence of wildfires in forested areas, mostly man-induced, that reduce soil
cohesion; and (3) the increasing variability of climatic conditions in the direction of
global warming, that increase the intensity of hazardous processes.

The present challenges of spatial prediction modelling are: (1) to redirect sci-
entific activity in spatial prediction modelling from the preference for formulating
new sophisticated models to the accurate analysis, improvement and exploitation of
spatial databases for data mining and knowledge extraction, (2) to share those
databases to compare and contrast different models and study areas, (3) to stan-
dardize cross-validation procedures that by many are still interpreted in more
restrictive and unsatisfactory ways, and (4) for decision-makers to establish and
maintain a tighter connection with the reality of natural hazards and the spa-
tiotemporal expression of hazard representations.

The authors are committed to experiments of spatial prediction modelling for
measuring uncertainty, leading to the separation of occurrences into more cohesive
groupings, to the extension of predictions from one area to another with similar
geomorphologic characteristics and to a more generalized procedure for evaluating
and comparing modelling results.
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Earthquake Events Modeling Using
Multi-criteria Decision Analysis in Iran

Marzieh Mokarram and Hamid Reza Pourghasemi

Abstract Kerman Province in Iran is known as an earthquake prone area, with
different serious damages. In this study, GIS-based ordered weight averaging
(OWA) with fuzzy quantifier algorithm is used to model earthquake events in north
of Kerman Province, Iran. For this aim, at first using attraction model was tried to
increase DEM resolution from 30 to 10 m. Then, using the mentioned DEM,
three layers such as aspect, slope, and elevation was prepared. Also, different layers
including lithology, land use, river, road, fault, and earthquake occurrences were
prepared in ArcGIS software. Subsequently, the importance of each factor in
earthquake events was defined using trapezoidal membership function. Finally, the
earthquake events map with different risk level (six levels) was prepared using
OWA method. The results showed that with decreasing risk (no trade-off), many
parts of the study area had not earthquake events hazard. While, with increasing risk
(no trade-off), all of the study area had earthquake events hazard. Low level of risk
and no trade-off had the highest area in the very low class (98%), while high level
of risk and average trade-off had the highest area in the very low class (15.62%).
So, for the study where has high earthquake should use low level risk maps in order
to better management and damage decreasing.
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1 Introduction

Iran is one of 10 countries which are determined as earthquake prone areas.
Many earthquakes in Iran are related to the 21st century. 14 earthquakes of

magnitude *7.0 have killed more than 14,600 people. The earthquakes have
occurred mostly in urban and rural lands. Unfortunately, there are no detailed
statistics from the casualties of earthquakes in Iran (Iranian Studies Group). By
increasing population, the risk of earthquake is increasing; so, it is important to
study this natural hazard and to decrease its mortal effects. In the literature review,
here are different methods for studying of earthquake. Such as Yagoub (2015) used
remote sensing and GIS application for preparing earthquake map in UAE (1984–
2012). To preparing hazard mapping of earthquake was used seven parameters such
as geology, soil, slope, land use, historical earthquake events, fault line, and roads.
The results showed that map made could helpful in proper use of land for planning
and population reduction. Champatiray et al. 2005, Lillesand et al. 2008, Roustaei
et al. 2005 using Remote Sensing (RS) images with different resolution investigated
changes of land surface before and after earthquake. Theilen-Willige et al. (2012)
used RS and Geographic Information Systems (GIS) for determination of prone
areas to earthquakes. The results showed that the use of geographic data such as
satellite images and topographic information was useful for determination of prone
areas and reduce the risk of damage.

GIS and RS had been widely used to identify and predict risk areas (Balaji et al.
2002; Laefer et al. 2006; Roy et al. 2000). GIS and RS using a variety of models
have a great ability to analyze data spatially (Henning 2011; Miles and Ho 1999).
So in the study used ordered weighted averaging (OWA) in GIS for earthquake
events modeling.

One of the methods for preparing earthquake mapping with different risk levels is
OWA algorithm. OWA is a type of multi-criteria evaluation that is often used for
environmental engineering analysis (vanWesten et al. 2000; Malczewski et al. 2003;
Komac 2006a; Malczewski 2006; Gorsevski and Jankowski 2008, 2010; Mokarram
and Aminzadeh 2010;Mokarram and Hojati 2016). Kerman Province one of the most
cites in Iran where is prone to earthquakes. Kerman province is not exception in this
case and by having huge and active fault, every year will be observed a lot of earth-
quakes which some of them cause a lot of damages. So in the study aim is Earthquake
events modeling using multi-criteria decision analysis in north of Kerman region.
Kerman region over 2000 years of history, has witnessed many moderate to strong
earthquakes. So investigation of earthquake in the study is very importance that using
OWAmethod was studied it. In general, OWA is a relatively novel technique that has
been used less in natural sciences (e.g., earthquake events). In the study is prepared six
maps with different multi-criteria evaluation for earthquake that considering the state
budget and different management can use each one of them. Thus, the region was
selected OWA method to investigate earthquake events susceptibility. In fact by
changing the parameters, OWA can made a wide range of effective decisions to
earthquake managements (Fig. 1).
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2 Materials and Methods

2.1 Case Study

The study area was located in north of Kerman Province, Iran. The area of the study
area is about 8854 km2, and is located at latitudes of 29° 40΄ to 31° 18΄ N and
longitude of 56° 54΄ to 58° 11΄ E (Fig. 2). The elevation of the study area ranges
from 219 to 3539 m a.s.l. The principal agricultural crops consisted of wheat, beans,
barley, and rice. In term of geology, the case study consists of cretaceous limestone,
young conglomerate (Neogene–Quaternary) and quaternary sediments (IV period).

Data Preparation

Earthquake points in the study are was prepared from Natural Resources and
Watershed management of Fars Province, Iran. For earthquake events mapping in
the study area different layers including aspect, altitude, lithology, slope degree,
land use, distance from rivers, distance from roads, and distance from faults were
used. Lithology and fault maps derived from geological maps in 1:100,000-scale.
Roads and rivers extracted from a topographical map in a scale of 1:25,000. For
creating Digital Elevation Model (DEM) was used SRTM DEM and slope degree
and aspect layers are extracted of it, respectively. Land use/land cover maps were
derived from Landsat 7 ETM+ satellite images with spatial resolution of 15 m.

At first, using attraction model was tried to enhance resolution of the built DEM
from 30 to 10 m (http://earthexplorer.usgs.gov). Subsequently, using the built
DEM, slope degree and aspect maps were prepared in ArcGIS v.10.2 software
(Fig. 2). According to Fig. 2, many parts of south and southeast of the study area
have the elevation more than 2500 m. Also, the slope value is between 0 and 84
degrees that the most slope value is in southeast and east directions (green and
brown color). The aspect value is between –1 (flat) –360 (north), so that aspects of
south and east are sensitive to earthquake (Yagoub 2015) (Table 1).

Fig. 1 Location of the study area
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Fig. 2 Slope degree, aspect, and DEM maps for the study area

Table 1 Impact of elevation, slope degree, and aspect

Parameters Class Description

Elevation (m) >2500 Low sensitive to earthquake

<2500 Very sensitive to earthquake

Slope (°) 0–30 Low sensitive to earthquake

30–60 Medium sensitive to earthquake

>60 Very sensitive to earthquake

Aspect Flat, North, Northeast Low sensitive to earthquake

East, Southeast, South Medium sensitive to earthquake

Southwest, West, Northwest Very sensitive to earthquake
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The earthquake points in the study area consisted of 104 points where are shown
in Fig. 1. According to Fig. 1, earthquake points were divided to training and
validation data (70% of the database for training and 30% for testing). For
preparing raster maps for distance of road, fault and river, using buffer tools in
ArcGIS were made the buffer maps for them (Yagoub 2015). According to Table 2
were prepared buffer maps using distance from features where show in Fig. 3.

The land use map for study area was prepared from Organization of Agriculture
Jahad Fars that consist of as Forest, wood land, garden, agriculture, salt land, bare
land, range, urban, and sand dune (Fig. 4). So, there is low the possibility of
earthquake in the green areas (Yagoub 2015).

Finally, for preparing earthquake events map was used sensitivity map of geo-
logical formations to earthquake. So, for determination of formations sensitivity,
geological formations map in six classes was produced by Iranian Geological
Organization and is shown in Fig. 5. The description of each class is given in
Table 3.

2.2 Methods

In the current study after preparing thematic layers with 10 m spatial resolution
(Mertens et al. 2004), were applied fuzzy method and Analytical Hierarchy Process
(AHP) techniques for overlaying of layers and preparing final earthquake events
map.

2.2.1 Fuzzy Inference

Zadeh (1965) defined a fuzzy set by trapezoidal membership functions from
properties of objects. According to membership function (MF) was prepared fuzzy
map for slope, elevation, sensitive, land use and aspect. The MF for these
parameters was shown in the following (Yagoub 2015):

Table 2 Distance from faults, rivers and roads

Distance from faults (km)

Class 1 (<2) Class 2 (2–5) Class 3 (5–10) Class 4 (10–30)

Distance from rivers (m)

Class 1 (0–50) Class 2 (50–100) Class 3 (100–150) Class 4 (>150)

Distance from roads (m)

Class 1 (0–500) Class 2 (500–1000) Class 3 (1000–1500) Class 4 (>1500)
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lAðxÞ ¼ f ðxÞ ¼
0 x�m

x� m=n� m m � x � m

1 x� n

8><
>:

9>=
>;

ð1Þ

where x is the input data and m, n are the limit values.
For distance of river, distance of fault, and distance of road the following MF

was used (Yagoub 2015):

Fig. 3 Distance from Faults, rivers, and road maps in the study area
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Fig. 4 Land use map for the
study area

Fig. 5 Geological formations
map of the study area
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lAðxÞ ¼ f ðxÞ ¼
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>;

ð2Þ

where, x is the input data and m, n are the limit values.

2.2.2 Analytical Hierarchy Process (AHP)

AHP (Saaty 1980) as MCDA (Multi-criteria decision analysis) procedure is applied
for the elicitation of criteria weights. Using pairwise comparison in AHP can apply
the quantitative and qualitative data in various studies (Malczewski 1999). This
method uses a matrix of pairwise comparison of each of the parameters that
according to the Table 4, the parameters are valued between 1 and 9.

Table 3 Description of geological formations sensibility classes of lithology to erosion

Classes Sensitivity
classes

Description Age

1 Very low
sensitive

Limestone rock Quaternary

2 Very low
sensitive

Bedded to massive fossiliferous
limestone

Cretaceous,
Cenozoic,
Early-Middle.
Triassic

3 Low
sensitive

Hale and chert, bedded to massive
orbitolina limestone

Cretaceous,
Early-Middle.
Triassic, Cambrian

4 Low
sensitive

Bedded argillaceous limestone and
calcareous shale, bedded sandstone

Jurassic, Pleeocene

5 Very
sensitive

Piedmont conglomerate and sandstone,
shelly limestone

Carboniferous,
Devonian, Pliocene

6 Very
sensitive

Bedded argillaceous—limestone, low
level piedmont fan and valley terrace
deposits

Early-Middle.
Jurassic, Quaternary

Table 4 Scales for pairwise comparisons (Saaty and Vargas 1991)

Intensity of importance Definition

1 Equal importance

3 Moderate importance of one over another

5 Essential importance

7 Demonstrated importance

9 Absolute importance

2, 4, 6, and 8 Intermediate values between the two adjacent judgments
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2.3 Ordered Weighted Averaging (OWA)

One of the methods of multi-criteria evaluation is OWA. based on criterion weights
and criterion map layers, the OWA combination operator associates with the i-th
location, a set of order weights w = w1, w2,…,wn such that wj 2[0, 1], j = 1,2,…,n,PN

j¼1 wj ¼ 1, so on are defined as follows (Yager 1988; Malczewski et al. 2003):

OWAt ¼
XN
j¼1

ð ujwjPn
j¼1 ujwj

Þmtf ð3Þ

where mi1� mi2� … � min is the sequence obtained by reordering the attribute
values ai1, ai2,…, ain, and uj are the criteria weights reordered according to the
attribute value mij. OWA operator from smallest (OR) to largest (AND) showed in
Table 5.

In general the different process of OWA method is as following (Fig. 6).

3 Results and Discussion

3.1 Fuzzy Method

As regards changes of each parameters effective on earthquake is linearly, trape-
zoidal membership function (MF) in order to determine fuzzy map for each
parameter was used in ArcGIS software (Hadji et al. 2016; Mahalingam and Olsen
2016). The maximum and minimum values for membership functions are deter-
mined in Table 6. For example, the MF value for DEM >3000 m is 1, whereas the

Table 5 The OWA weight of each criteria (Malczewski 2006)

a Quantifier Order Weights (wik) GIS combination
procedure

ORness Trade-off

a != 0 At least one wi1 = 1; wik = 0,
(1 < k � n)

OWA (OR) 1.0 0

a = 0.1 At least a few a OWA a a

a = 0.5 A few a OWA a a

a = 1 Half (identity) wik = 1/n,
1 � k � n

OWA (WLC) 0.5 1

a = 2 Most a OWA a a

a ! ∞ All win = 1; wik = 0,
(1 � k < n)

OWA (AND) 0 0.0

aThe set of order weights depends on values of sorted criterion weights and parameter
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value of smaller than 1200 m has a MF = 0; in contrast, MF is between 0 and 1 for
the value of 1200–3000 m. This law was applied for all of the factors in order to
determine membership functions (MFs) (Table 6).

Earthquake maps according to OWA 
operators

Functions of input and output

Make rules

OWA operators

Fuzzy membership 
function

Elevation

AspectStreamRoadFault

SlopeLand useLithology

Criterion maps

Local weighted ciriterion maps

Calculate local OWA 

Output maps

Order weights OWA operators

Fig. 6 The stage of determine the earthquake events map using OWA method in the study area

Table 6 Maximum and minimum values of criteria (Yagoub 2015)

Parameters Minimum Maximum

Land use Forest, wood land, garden,
agriculture, and range

Rock bodies, bare land, salt land,
sand dune, and urban

Distance from roads
(m)

>1500 <500

Distance from faults
(km)

0–1000 >4000

Distance from rivers
(m)

>10 <2

Geological
formations
sensitivity

5–6 <2

Aspect Flat South

Elevation (m) >3000 <1200

Slope (°) >60 <30
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The fuzzy maps prepared for the earthquake events parameters are shown in
Fig. 7, where MF is closer to 0 with decreasing earthquake, while MF is closer to 1
with increasing earthquake.

According to Fig. 7 geology and land use map had MF of closer to 1 in east and
southeast of the study area. While for other parameters MF was closer to 0 in east
and southeast of the study area. The MF of closer to 1 indicated the area with the
high earthquake for the study area (Fig. 8).

3.2 Computation of Criterion Weight

In the current research, the AHP method was used as the pairwise comparison
method for comparing two criteria (Yagoub 2015). According to Fig. 7, distance
from faults and distance from rivers had the highest and lowest weight,
respectively.

Finally to overly the input data and prepare the earthquake event, the OWA
method was used. In the present study, eight order weights were used for each
parameter. According to Table 8, gives six typical sets of order weights for eight
factors:

According to the standardized criterion maps and the corresponding criterion
weights, authors of the present study applied the OWA operator using Eq. (3) for the
selected values of fuzzy quantifiers: at least one, at least a few, a few, identity, most,
almost all, and all. Each quantifier is associated with a set of order weights that are

calculated according to Eq. (3). The
P j

k¼1 uk
� �/

and
P j

k¼1 uk
� �/

−
Pj�1

k¼1 uk
� �/

values for each Quantifier show in Table 8 for the i-th location and eight criterion
values and for six linguistic quantifiers: from at least one (a = 0) to all (a = 1)
(Table 7).

Finally, OWA was used to overlay each parameter and prepare the earthquake
events map. As it mentioned, six ordered weights were used to the eight parameters
that were rank-ordered for each parameter. Figure 9 shows the six alternative
earthquake events patterns. According to Fig. 9, with an average risk (Fig. 9d) all
effective parameters of the earthquake events received some weights (0.11).
According to Fig. 9, (d) some parts of the study area had high values (drake blue
color), a medium value (yellow color) and a low value.

According to Fig. 9a, with decreasing the risk (no trade-off), the area with a high
earthquake events was determined. Thus, almost all of the study area had low value
that show in the area had low events of the earthquake.

Also, with increasing the risk (no trade-off) (Fig. 9f), all the study area had the
high value that show that in the area had high earthquake event. According to
Fig. 9f, almost all parts of the study area had a high earthquake value.

Figure 9b, showed a low risk with an average trade-off that show the east and
southeast of the study area had more value than the other parts.
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Fig. 7 Fuzzy map of studied area for each earthquake events factors
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Figure 9c, showed a high risk with an average trade-off that in comparison with
Fig. 9b, had lower risk for determination of earthquake events. Figure 9e, showed
an average risk with no trade-off that had more risk.

According to Table 8, the OWA maps were classified into four classes as shown
in Fig. 10 is true. It was determined that high risk areas (Table 8 of class 4 (0.75–
1)) were more than the low risk areas (Table 8 of class 1 (0–0.25)). According to
Fig. 10 and Table 8, low level of risk and no trade-off (2) had the highest area in the
very low class (between 0 and 0.25) while high level of risk and no trade-off (3) had
the highest area in the very high class (between 0.75 and 1).

With decreasing risk (no trade-off), almost all of parts of the study area were
found to has not earthquake event. On the other hand, with increasing risk (no
trade-off), all of the study had earthquake event.

This paper applied OWA operators to prepare different earthquake events maps
with different risk levels. From these maps, the appropriate map can be chosen by
the used different financial situations and appropriate risk levels for decisions. For
example, with low risk, only the some parts of the study has high earthquake
events, and for high risk conversely. There is not any study on mapping earthquake
events through the use of OWA while there are some studies using OWA method
for preparing other hazard map such as landslide susceptibility (Gorsevski et al.
2006; Ayalew et al. 2004, Ayalew and Yamagishi 2005; Guzzetti et al. 2005;
Komac 2006b; Feizizadeh and Blaschke 2013). In fact using OWA method can be
select any degree of trade-off among criteria, ranging from no trade-off to full
trade-off, depending on the decision-making strategy.

4 Conclusions

This research evaluated the spatial distribution of earthquake events with different
risk levels evaluation using OWA with fuzzy quantifier approach. The results
showed that with decreasing risk (no trade-off), almost all of the study area had not
earthquake. In addition, with increasing risk (no trade-off), all of the study area had
good earthquake. Based on the importance of public health and level of finance for
different regions, the findings of this study can be used to determine the appropriate
risk levels for earthquake event. Based on the different conditions of the study area,
such as the financial condition of the people and government, age distribution of the
population, etc., the earthquake events map with the appropriate risk level can be
used.

Fig. 8 Factor weights using pairwise comparison matrix for the input data
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Table 7 Computing
P j

k¼1 uk
� �/

and
P j

k¼1 uk
� �/

−
Pj�1

k¼1 uk
� �/

for the i-th location and eight

criterion values for the linguistic quantifiers

j Quantifier Criterion
weights uk

P j
k¼1 uk

� �/ P j
k¼1 uk

� �/� Pj�1
k¼1 uk

� �/

Distance
from faults

(a) At least one
(a ! = 0)

0.341 1 1

Lithology 0.154 1 0

Slope 0.119 1 0

Aspect 0.093 1 0

DEM 0.087 1 0

Land use 0.073 1 0

Distance
from roads

0.073 1 0

Distance
from rivers

0.059 1
1

0
0

Distance
from faults

(b) At least a few
(a ! = 0.1)

0.341 0.898 0.898

Lithology 0.154 0.932 0.0348

Slope 0.119 0.952 0.020

Aspect 0.093 0.966 0.014

DEM 0.087 0.977 0.011

Land use 0.073 0.986 0.009

Distance
from roads

0.073 0.994 0.009

Distance
from rivers

0.059 1 0

Distance
from faults

(c) A few
(a ! = 0.5)

0.341 0.584 0.584

Lithology 0.154 0.704 0.120

Slope
Aspect

0.119
0.093

0.784
0.841

0.080
0.057

DEM 0.087 0.891 0.050

Land use 0.073 0.931 0.040

Distance
from roads

0.073 0.970 0.038

Distance
from rivers

0.059 1 0.030

Distance
from faults

(d) Half (identity)
(a ! = 1)

0.341 0.125 0.125

Lithology 0.154 0.25 0.125

Slope 0.119 0.375 0.125

Aspect 0.093 0.5 0.125

DEM 0.087 0.625 0.125

Land use 0.073 0.75 0.125
(continued)
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Table 7 (continued)

j Quantifier Criterion
weights uk

P j
k¼1 uk

� �/ P j
k¼1 uk

� �/� Pj�1
k¼1 uk

� �/

Distance
from roads

0.073 0.875 0.125

Distance
from rivers

0.059 1 0.125

Distance
from faults

(e) Most (a ! = 2) 0.341 0.116 0.116

Lithology 0.154 0.245 0.129

Slope 0.119 0.377 0.132

Aspect 0.093 0.500 0.123

DEM 0.087 0.630 0.131

Land use 0.073 0.752 0.121

Distance
from roads

0.073 0.884 0.132

Distance
from rivers

0.059 1 0.116

Distance
from faults

(f) All (a ! ∞) 0.341 0 0

Lithology 0.154 0 0

Slope 0.119 0 0

Aspect 0.093 0 0

DEM 0.087 0 0

Land use 0.073 0 0

Distance
from roads

0.073 0 0

Distance
from rivers

0.059 1 1
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Fig. 9 Earthquake events maps of OWA results for selected fuzzy linguistic quantifiers
(description of a to f is in the Table 7)
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Prediction of Rainfall as One
of the Main Variables in Several
Natural Disasters

Vahid Moosavi

Abstract Rainfall is one of the main variables in several natural disasters such as,
floods, drought, groundwater depletion and landslides. Therefore, development of
robust models for rainfall forecasting is essential in environmental studies. The
chief goal of this research is to use Group Method of Data Handling (GMDH)
besides signal processing approaches to forecast rainfall in monthly time steps. To
that end, three different signal processing approaches i.e. Ensemble empirical mode
decomposition (EEMD), wavelet transform (WT) and wavelet packet transform
(WPT) were used combined with GMDH model. Four stations were used to apply
aforementioned modeling techniques. Results of this research showed that all three
abovementioned signal processing approaches can enhance the ability of the
GMDH model. The ability of EEMD-GMDH and wavelet packet-GMDH were
relatively close to each other. However, wavelet packet-GMDH outperformed
EEMD-GMDH model to some extent. The other important note was the effect of
exogenous data on the ability of all models. It was shown that forecasting rainfall
without using exogenous data does not produce acceptable results.

Keywords Polynomial neural network � GMDH � Rainfall forecasting
Wavelet � Wavelet packet � Ensemble empirical mode decomposition (EEMD)

1 Introduction

Rainfall is one of the main variables contributing in several natural disasters. The
shortage of rainfall can cause drought while its excessive amounts can lead to
floods, landslides etc. Rainfall links the atmosphere and land processes. Great
amounts of rainwater can cause inundation problems, floods, and consequently
significant damage over large areas. River floods happen when water levels rise
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over the highest part of the river bank because of heavy rains and thunderstorms.
Coastal floods which can be defined as the inundation of lands along the coasts is
mainly generated by heavy rainfalls besides onshore winds. Flooding happens once
exhaustive precipitation falls during a short period of time or moderate precipitation
gathers over several days.

Rainfall can also affect the ecological processes. It can affect the plant, animal
and human populations. Shortage of rainfall causes tree mortality mainly in forest
boundaries, decreases tree growth and increases leaf shedding. This procedure
cause an increase in the canopy openness and consequently the insolation of
understory vegetation which itself leads to drying of the accumulated litter. It
significantly increases the risk of deforestation and forest fires. Plant die off caused
by drought is a significant effect of rainfall scarcity. Lack of water is a main
environmental factor which limits the plant productivity. Deteriorating the crop
yield caused by climate, undoubtedly is more than losses from all other reasons,
because both the severity and duration of the water stress induced by climate
conditions are dangerous.

Furthermore, rainfall is one of the most important triggering factors which can
induce Landslides. Landslides are of the main natural disasters in many regions.
They can impose serious threats to life and property in target areas. Rainfall is the
main trigger of landslides particularly in heavy or prolonged rainfalls. Mainly, this
effect is due to increasing the pore water pressures in the soil. While the soil fills
with water, the resistance to movement is reduced significantly because of the
buoyancy. Moreover, fluid can exert a pressure downward and deliver a hydraulic
push to the landslide. It can also decrease the slope stability.

The rainfall is also a chief component of the water cycle and is the major source
of groundwater recharge. Groundwater is an invaluable resource for agricultural,
industrial, and civic purposes. Results of unsustainable groundwater management
and consumption have been a severe problem in global scale, particularly in
developing countries (Zhan 2005; Mackay et al. 2014). Rainfall on the plain can be
the source of direct recharge. The accumulated water in rivers, behind dams etc.,
which is the result of rainfall is of the main sources of groundwater recharge.
Rainwater scarcity can affect all these sources and extremely affect the groundwater
resources as the most important water resource in the word.

As mentioned, rainfall as the first component in the hydrologic cycle can affect
several different processes. Therefore, forecasting rainfall in different time steps can
help mangers to deal with these problems. Physics based numerical models are of
important models used in rainfall forecasting. The mentioned models inaugurate a
main equation which simplifies the physical process of precipitation and solve it
using appropriate initial conditions and boundary states with numerical approaches.
These models are very robust and useful, however, a great deal of data are
mandatory for modeling, calibration and simulation processes (Yoon et al. 2011).
Obtaining sufficient data for model development are usually expensive, time con-
suming and labor intensive. Therefore, when adequate data is not in hand and when
getting precise estimates is more essential than regarding the physical properties of
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the phenomena, empirical models can be a good alternative to make suitable results
with an easier calibration process (Daliakopoulos et al. 2005).

Artificial intelligence approaches, such as Artificial Neural Network (ANN),
Adaptive Neuro-Fuzzy Inference System (ANFIS), Support vector regression
(SVR) and Linear Genetic Programming (LGP), have been applied in different
hydrological studies (Sànchez-Marrè et al. 2004; Daliakopoulos et al. 2005; Wieland
et al. 2010; Talei et al. 2010; Alves et al. 2011; Alvisi and Franchini 2011; Yoon
et al. 2011; Young et al. 2011; Millie et al. 2012; Fallah-Mehdipour et al. 2013; He
et al. 2014; Moosavi et al. 2014; Li et al. 2015; Moosavi et al. 2015; Si et al. 2015;
Yoon et al. 2016). One of the most important types of artificial intelligence models is
Group Method of Data Handling (GMDH). GMDH proposed by Ivakhnenko (1966)
is a method which works by sorting the progressively intricate models and evalu-
ating them based on predefined standards (Ravisankar and Ravi 2010). The chief
improvement of this model is to make logical functions using feed forward network
according to quadratic polynomial. In this method regression technique is used to
calculate weights (Kalantary et al. 2009). Generally, GMDH networks outperform
common regression techniques and other artificial intelligence methods (Najafzadeh
2015). Several researchers have used GMDH in different fields e.g. energy, manu-
facturing, system identification, advertising, economic, geology and hydrology
(Witczak et al. 2006; Amanifard et al. 2008; Mehrara et al. 2009; Kalantary et al.
2009; Najafzadeh et al. 2013; Najafzadeh and Lim 2015). Artificial intelligence
techniques such as GMDH have a notable flexibility and ability in modeling
hydrologic processes. However, these techniques are not capable to cope with the
problem of non-stationarity in data in their single form (Cannas et al. 2006; Moosavi
et al. 2013). As existing non-stationary data handling methods are not acceptably
advanced (Adamowski and Chan 2011), further investigations to solve this problem
is inevitable. Specific signal processing approaches for instance wavelet transform
and Ensemble Empirical Mode Decomposition (EEMD) may be used to cope with
the non-stationarity of natural data. Wavelets can be defined as mathematical
functions which provide a time-scale illustration of the time series and their rela-
tionships. These functions can be used to assess non-stationary hydrological time
series. These approaches can make suitable decompositions of the original time
series to sub-series in order to improve the performance of AI models by taking
suitable information on different resolutions (Adamowski 2007; Kisi 2009; Nourani
et al. 2009; Adamowski and Sun 2010; Nourani et al. 2011; Quiroz et al. 2011; Kim
et al. 2014; Moosavi et al. 2013, 2015). As decomposition in ordinary wavelet
transform is only performed on the approximation component, the results of
decomposition in higher levels are not preferred. This decomposition process cannot
be used to obtain required information. Wavelet packet transform can deal with this
problem. In fact, the necessary frequency resolution can be attained applying
wavelet packet transform.

The other useful signal processing method is Empirical Mode Decomposition
(EMD). EMD is an automatic decomposition approach that produce an effective
analysis technique for signals which are non-stationary and non-linear (Yu et al.
2015). Despite various benefits, conventional EMD has restrictions such as
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end-point effect and mode mixing problem. End-point effect can be removed simply
and efficiently using end-points continuation (Zhao and Huang 2001; Han et al.
2014). The mode mixing which is typically affected by signal intermittency dis-
parate frequencies exist in a single IMF. Ensemble empirical mode decomposition
(EEMD) is the advanced version of EMD method. The key benefit of this method is
the decomposition of a signal into a set of wholly adaptive basis functions named
Intrinsic Mode Functions (IMF) (Liu et al. 2012). EEMD can overcome the mode
mixing problem. Altogether, EEMD is a more effective method than EMD with
high reliability and can effectively reduce the noise in the signal (Feng et al. 2012).
Wavelet transform and EEMD methods have been widely used in different fields
(Adamowski 2007; Kisi 2009; Nourani et al. 2009; Adamowski and Sun 2010;
Breaker and Ruzmaikin 2011; Nourani et al. 2011; Guo and Tse 2013; Moosavi
et al. 2013, 2014, 2015; Mariyappa et al. 2014; Moosavi and Niazi 2015).
Nonetheless, to the best of our knowledge, there is no published research about
coupling wavelet, wavelet packet analysis and ensemble empirical mode decom-
position (EEMD) with GMDH model to forecast rainfall in different time steps. The
main goal of this study is to assess the ability of GMDH for rainfall prediction and
the effect of wavelet and wavelet packet transforms as well as EEMD as signal
processing approaches on its performance.

2 Materials and Methods

2.1 Study Area and Data

This study was performed on four different stations in four different provinces of
Iran i.e. Khorasan Razavi (Mashhad), Alborz (Karaj), East Azerbaijan (Maraghe)
and Khozestan (Ramhormoz). Figure 1 shows the four studied stations and their
location in Iran. The climate in these regions are different. Average long term
(30 years) temperature of Maraghe, Karaj, Mashhad and Khozestan are 12, 16, 15
and 25, respectively. Average long term (30 years) precipitation of Maraghe, Karaj,
Mashhad and Khozestan are 300, 255, 245 and 320, respectively.

Two different data sets were used in all modeling approaches. The first dataset
includes rainfall data without exogenous data to predict rainfall in different time
steps. The second dataset includes exogenous data in addition to rainfall data. The
exogenous data were evaporation (E), maximum and minimum temperature (T) and
humidity (H). All data are monthly. The lengths of the used data are different in
different stations because of the difference in the availability of data. The length of
dataset is more than 15 years. The data were divided into two categories i.e. training
set (70%) and testing set (30%). In this study, three signal processing approaches
i.e. EEMD, wavelet and wavelet packet transforms were used combined with
GMDH modeling approach to forecast one, two, three and four-month ahead
rainfalls. Figure 2 shows the flowchart of the study. Below are some explanations
about the proposed methods.
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2.2 Group Method of Data Handling (GMDH)

The Group Method of Data Handling (GMDH) algorithm as an inductive
self-organizing black-box modeling approach was proposed by Ivakhnenko (1971)
based on Darwin’s theory of natural selection. This method is similar to back
propagation artificial neural network. However, it has several differences in the
internal structure of processing element. In the common multilayer perceptron
(MLP) neural network, neurons are linked to all nodes of the preceding layer of the
network. Nevertheless, each node contains a portion of information obtained from

Fig. 1 Iran map and study areas
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two nodes of the preceding layer. This process can explain a complicated system
without tracking the whole route of input-output. Commonly, the linking between
inputs and output is performed in a nonlinear form. This process can be demon-
strated using the Volterra series (Volterra 1959):
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Fig. 2 Flow chart of the study
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The discrete form of this series can be described as Kolmogorov-Gabor poly-
nomial (Ivakhnenko 1971; Mehra 1977):

y ¼ a0 þ
XN
i

aixi þ
XN
i

XN
i

aijxixj þ
XN
i

XN
i

XN
i

aijkxixjxk þ � � � ð2Þ

in which x is the input matrix, N shows the number of inputs, and a is the coef-
ficients matrix (Farlow 1984).

A least-squares approach were used to calculate weights. Therefore, Eq. 3 were
used as objective function in the optimization process (Najafzadeh et al. 2013):

E ¼
PM

i¼1 yi � Gið Þ2
M

! min ð3Þ

2.3 Hybrid Wavelet-GMDH Model

Wavelet transform (WT) as a good alternative for Fourier transform uses wavelet
functions instead of sines and cosines for filtering and decomposing data (Aghajani
et al. 2016). WT can be defined as a spectral analysis in time domain which decom-
poses data in a time-frequency space to produce a timescale explanation of procedures
and their relations (Daubechies 1990). This method can reveal the information within
the signal in both the time and scale (frequency) domains (Nourani et al. 2009).
Therefore, it can deal with the basic disadvantage of Fourier analysis, which is that the
Fourier spectrum provides a widespread explanation of the properties of the
non-stationary processes providing amapping procedure that is localized in frequency
but global in time (Pal and Devara 2012). Another benefit of this method is the ability
to choose the mother wavelet based on the features of the studied time series.

There are two kinds of wavelet transform namely continuous wavelet transform
(CWT) and discrete wavelet transform (DWT). CWT of a signal can be defined as
follows:

CWTw
x ðs; sÞ ¼

1ffiffiffiffiffi
sj jp Zþ1

�1
xðtÞw� t � s

s

� �
dt ð4Þ
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where s is the scale parameter, s is the translation parameter and * symbolizes the
complex conjugate (Cannas et al. 2006). The mother wavelet w is the transforming
function. However, it needs a huge quantity of calculation time and resources.
Discrete wavelet transform (DWT) needs less computational time and is simpler
than CWT. DWT scales and positions are usually based on powers of two (dyadic
scales and positions). DWT can estimate general behaviors (low frequency) and
local behaviors (high frequency) of data using low pass and high pass filters. The
use of these features usually leads to better performance of AI models
(Christopoulou et al. 2002; Moosavi et al. 2013). DWT can be represented as:

wj;kðtÞ ¼
1ffiffiffiffiffiffiffi
s j0
�� ��q w

t � ks0s
j
0

s j0

 !
ð5Þ

where j and k are integers that control the scale and translation respectively, s0 is a
fixed dilation step (Cannas et al. 2006) and s0 is a translation factor that depends on
the abovementioned dilation step. The selection of the appropriate wavelet trans-
form for an application is a very important step in this case. Therefore, mother
wavelet and decomposition level should be optimized. In this way, different mother
wavelets such as “Haar”, “db”, “rbio” and “bior” were used to decompose original
datasets in 1, 2, 3, 4 and 5 levels. After decomposing the time series, the obtained
sub-series were used as an input for the GMDH model. In this step, the wavelet
based coefficients of rainfall is forecasted. Afterwards, inverse wavelet transform
was performed on the resulted coefficients to obtain the actual rainfalls. Figure 3
shows the steps of hybrid wavelet-GMDH modeling process.
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Fig. 3 Wavelet-GMDH modeling process
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2.4 Hybrid Wavelet Packet-GMDH Model

The wavelet packet decomposition as a generalized form of the ordinary wavelet
transform produces a richer signal analysis rather than conventional wavelet
transform (Garcia et al. 2000). This method provided finer resolution decomposi-
tion. Figures 4 and 5 shows the wavelet and wavelet packet transformation pro-
cesses. As shown in this figure, in ordinary wavelet transform, the original signal is
divided into an approximation and a detail. Subsequently, the approximation is
decomposed to approximation and detail components and the process is reiterated.
Therefore, in an n-level decomposition process, there are n + 1 probable ways to
decompose a specific signal. Nevertheless, in wavelet packet transform, the details
can be split in addition to approximations. In fact, the original signal is divided into

Fig. 4 Schematic demonstration of the wavelet based decomposition process in 3 levels
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an approximation and a detail in the first step. Then, both approximation and detail
components are decomposed to new approximation and details in the next step
(Moosavi and Niazi 2015).

With the intention of developing combined wavelet packet-GMDH model, the
original data were decomposed into approximation coefficients (low frequency) and
detail coefficients (high frequency). This procedure was iteratively performed using
different mother wavelets in different levels. It finally resulted in a wavelet
decomposition tree as shown in Fig. 5. In this study, different mother wavelets such
as “Haar”, “db”, “rbio” and “bior” were used to decompose original datasets in 1, 2,
3, 4 and 5 levels using Matlab software. Afterwards, the decomposed data were
used in the GMDH model. In this step, the wavelet packet based coefficients of
rainfall is predicted. Afterwards, the inverse process of wavelet packet based
transformation was applied on the resulted coefficients to obtain the actual rainfalls.
Figure 6 shows the steps of hybrid wavelet packet-GMDH modeling process.

Fig. 5 Schematic demonstration of the wavelet packet based decomposition process in 3 levels
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2.5 Hybrid EEMD-GMDH Models

The EMD method like wavelet transform can decompose a complex dataset into a
definite number of intrinsic mode functions (IMFs) which can fulfil two conditions.
First, the number of extrema and the number of zero crossings cannot be different or
the difference should not be more than one. Second, the average of the envelope
defined by local maxima and that defined by the local minima should be zero for
each data point (Manjulaa and Sarma 2012). As mentioned before, mode mixing is a
major problem of the EMD. It can be defined as a particular IMF that encompasses
signals with extremely different scales or a signal of the same scale appears in
changed IMF components (Wu and Huang 2009). In order to deal with this problem,
a novel approach suggested by Wu and Huang (2009) was used in this study. They
proposed the ensemble empirical mode decomposition (EEMD) with the average of
an ensemble of trails as the true IMF components. All trails contain the decompo-
sition results of the signal in addition to a white noise of finite amplitude.

In order to apply this method on the original data sets, at first, a white noise
series were added to the original data. In the next step, the new signals were
decomposed to IMFs using EMD. These steps were reiterated by diverse white
noises to get the equivalent IMF components. The number of iterations is named the
ensemble number. The decomposed data using EEMD was imported to GMDH
model to develop combined EEMD-GMDH model. In fact in this step, the IMFs
and the residue of the rainfall signal is estimated. In the final step, the mentioned
component were accumulated to calculate the final rainfall forecasting results.
Figure 7 shows the steps of hybrid EEMD-GMDH modeling process.
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2.6 Evaluation Criteria

Coefficient of determination (R2), root mean squared error (RMSE), normalized
RMSE (NRMSE) and the range of errors were calculated and used for comparing
the performance and ability of the mentioned models (Sreekanth et al. 2009).

r2 ¼
Pn

i¼1 ðoi � �oÞðei � �eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðoi � �oÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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q
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1
CA
2

ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðoi � eiÞ2
n

s
ð7Þ

NRMSE ¼ RMSE
range of observed data

ð8Þ

where o, e and n, are observed rainfall values, predicted rainfall values and number
of data, respectively.

3 Results and Discussion

As mentioned before, GMDH based modeling as an iterative process was per-
formed in order to predict one, two, three and four-month ahead rainfall. In this
approach, the polynomial coefficients were calculated by conventional least square
method. Figures 8 and 9 demonstrate the results of GMDH modeling for the four
studied stations for one month ahead rainfall forecasting for the two aforementioned
data sets. These figures show the results for test datasets. Because the results of test
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Fig. 8 Results of GMDH modeling using rainfall data. a Mashhad, b Karaj, c Maragheh and
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datasets are more useful to evaluate and compare the performance of different
models, as these datasets were not used in the training process and are new for the
models. Using test datasets for evaluation can help determining and omitting over
fitted models. In these figures, Part “a” shows the comparison between the observed
and predicted rainfall. Scatter plot of observed and predicted rainfall is shown in
Part “b”. Part “c” also demonstrates the histogram of error. The RMSE, R2,
Normalized RMSE (NRMSE) and the range of errors are also reported for all
models. Figure 8 shows that when the rainfall is the only variable used in the
modeling process, the results are not satisfactory. However, Fig. 9 shows that the
GMDH has a moderate performance in rainfall modeling for all stations using the
exogenous data. The trend and behavior of rainfall are determined relatively well,
but the values are not estimated precisely. The first parts of Table 1 show the results
of one, two, three and four-month ahead rainfall forecasting for the GMDH model
using the rainfall data without exogenous data. As it is shown in this table, the
performance of the model is not good. This performance is exacerbated when the
time step increased. The first parts of Table 2 show the results of one, two, three
and four-month ahead rainfall forecasting for the GMDH model using the rainfall
data in addition to exogenous data. As it is obvious in this table, the performance of
the model is not very good but is better than just using the rainfall data.

For developing the combined wavelet-GMDH model, the main signals were split
into different sub-series using various mother wavelets and levels. Figure 10
demonstrates the main and decomposed rainfall values for all stations, using db4
mother wavelet in level 4, as an example. This figure shows the approximation and
detail components obtained from the decomposition of the rainfall data for all
stations. As decomposition process were done in four levels (for instance), one
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Fig. 9 Results of GMDH modeling using rainfall data in addition to exogenous data. a Mashhad,
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approximation and four detail components are produced. The approximation
component demonstrates the low frequency fluctuation of the main signal and the
detail components show the high frequency oscillations. In the next step, the
combined wavelet-GMDH model was produced using wavelet based decomposed
data. Then, the invers process of wavelet based decomposition were performed on
the predicted components of target to determine the actual rainfall data. The mother
wavelet “db4” and level “2” was selected as the optimum mother wavelet and
decomposition level, respectively (according to the results). Figure 11 shows the
results of the hybrid wavelet-GMDH model using rainfall data. This shows that
although wavelet-GMDH based modeling with rainfall data can enhance the per-
formance of single GMDH model to some extent but the overall performance is still
unacceptable.

Figure 12 shows the results of the hybrid wavelet-GMDH model using rainfall
data in addition to exogenous data. The performance is better than previous
modeling condition. It means that using exogenous data can improve the perfor-
mance of the modeling. Results indicated that wavelet transform can moderately
enhance the ability of the GMDH model. Wavelet improved the R2 and RMSE to
some extent, however, it could not significantly decrease the range of errors. The
second parts of Table 1 show the results of one, two, three and four month-ahead
rainfall forecasting for the wavelet-GMDH model using the rainfall data without
exogenous data. The second parts of Table 2 show the results of one, two, three and
four month-ahead rainfall forecasting for the wavelet-GMDH model using the
rainfall data as well as exogenous data. As it is shown in this table, the prediction
ability of the model is exacerbated when the time step increased. The model can
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Fig. 10 Results of wavelet decomposition on rainfall data. a Mashhad, b Karaj, c Maragheh and
d Ramhormoz
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forecast rainfall for the first months moderately, however, it does not appropriately
worked for the three last time steps.

With the intention of producing combined wavelet packet-GMDH model, the
wavelet packet analysis were applied on original data and the wavelet packet tree
were produced. Figure 5 (section B) displays a schematic diagram of a wavelet
packet tree obtained from applying a db4 mother wavelet in level 3, as an example.
The mentioned tree demonstrates that details are split to their sub-components as
well as approximations. As this figure shows, there are several nodes (j, k) in the
wavelet packet tree.

The node j shows the depth inside the transformation tree and k shows the
position of the node in the tree. For example, node (0, 0) shows the original data.
Node (1, 0) is produced applying a Low-pass filter and Node (1, 1) is produced
applying a high-pass filter on the original data. These nodes demonstrate the
approximation and detail components in level 1, respectively. Thereafter, nodes (2,
0) and (2, 1) are created from Node (1, 0) and this procedure continues to the
predefined level. The coefficients obtained from the last level were then imported to
the hybrid wavelet packet-GMDH models. Figure 13 shows the original and the
results of wavelet packet decomposition for both studied stations, using db4 mother
wavelet in level 3, as an example. After using the coefficients obtained from
wavelet packet transform as inputs for the GMDH model, the wavelet packet tree
were reconstructed. In this case the estimated target components were used.
Eventually, the inverse process of wavelet packet transformation were applied on
the reconstructed wavelet packet tree. This results the actual rainfall values.
Figures 14 and 15 show the outcomes of the best wavelet packet-GMDH model for
all stations using rainfall data without and with exogenous data, respectively. As
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this figure shows, wavelet packet analysis improved the performance of the GMDH
model significantly specially when using exogenous data.

In the next step, the original data were decomposed using EEMD method to
combine EEMD signal processing approach with GMDH model. Figure 16 shows
the original and EEMD based split rainfall values for all stations, as an example.
This figure shows different IMFs each of which represent a distinct feature. The first
IMFs have higher frequencies and can show the random information of the initial
rainfall signal. The next IMFs show the periodic trends of the original signal. IMF6,
IMF 7 and “r” can be considered as trend components. After decomposing data by
EEMD, the rainfall prediction is transformed into the estimation of each IMF and
the residue “r”. In fact, GMDH modeling approach was used to forecast each IMF
and the residue “r”. Figures 17 and 18 show the results of hybrid EEMD-GMDH
model for rainfall forecasting using rainfall data without and with exogenous data,
respectively. It shows that the performance is enhanced in comparison with GMDH
in its single form and wavelet-GMDH model. The performance of EEMD-GMDH
model is close to the wavelet packet-GMDH model. However, wavelet
packet-GMDH model slightly outperforms EEMD-GMDH in most of the stations.

The third and fourth parts of Table 1 show the results of one, two, three and
four-month ahead rainfall forecasting for the wavelet packet-GMDH and
EEMD-GMDH models using the rainfall data without exogenous data, respectively.
As it is shown in this table, the performance of the model has been improved in
comparison with single GMDH and hybrid wavelet-GMDH models. However, the
performance is not satisfactory yet. This performance is exacerbated when the time
step increased. The third and fourth parts of Table 2 show the results of one, two,
three and four-month ahead rainfall forecasting for the wavelet packet-GMDH and
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Fig. 12 Results of wavelet-GMDH modeling using rainfall data in addition to exogenous data.
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EEMD-GMDH models using the rainfall data in addition to exogenous data,
respectively. As it is shown in this table, the prediction ability of the model is
significantly enhanced. The maximum absolute error is also considerably decreased.

EMD analysis can be used when the signal does not provide satisfactory
information in its global form. As this method provides a time-frequency analysis, it
can extract local information in time series. Dividing the specific signal into dif-
ferent frequency bands, it can be analyzed in interested frequency ranges. The
produced IMFs in the EEMD method, show various frequencies (high to low). In
fact, the first IMF is related to high frequency component and the last IMF cor-
responds to low frequency component. The problem of mode mixing that indicates
a single IMF including signals of intensely different scales or a signal with the same
scale performing in different IMF components and regularly producing intermit-
tency of the mentioned signal is solved in EEMD method. The EEMD removes the
mode mixing problem and provide a proper distribution of time frequency of the
analyzed time series (Wu and Huang 2009). One of the main difficulties of wavelet
analysis is to find a mother wavelet which is as close as possible to analyzed signal.
Empirical mode decomposition has no such deficiency since it has no basic func-
tions and is fully adaptive to the signal itself. One of the key advantages of
empirical mode decomposition over wavelet decomposition is the ability to estimate
subtle fluctuations in frequency. However, wavelet transform can enhance the
GMDH modeling ability to some extent. In both wavelet and wavelet packet
transforms, db4 was the best mother wavelet. Daubechies (db) wavelet family is
one of the most widespread wavelet family used in wavelet based signal processing
studies, due to orthogonal and compact support abilities. The names of this family
wavelets are written dbN, where N shows the order. The superior performance of
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the wavelet packet transform may be related to its higher ability to deal with the
problem associated with nonstationary signals. Wavelet packet transform offers a
level by level decomposition and transformation process from the time to the
frequency domain. In contrast to wavelet transform, the frequency domains are of
equal width because the wavelet packet transform decomposes high frequency
sub-bands as well as low frequency sub-bands. This transformation provides more
detailed decomposition of a signal. Decomposition of high frequency components
provides several base function at a specific scale. WPT provides more than 22

n�1

different ways to translate a specific signal. It may be the reason of the better
performance of combined wavelet packet-GMDH model in comparison with
ordinary and combined wavelet-GMDH modeling methods.

4 Conclusion

This study examined the ability of three hybrid models for rainfall forecasting. The
single form GMDH model was also performed as an initial test. It was demonstrated
that GMDH model in its single form had a moderate performance in rainfall
modeling. All three signal processing models improved the performance of GMDH.
The performance of EEMD-GMDH and wavelet packet-GMDH models were close
to each other, however, the ability of wavelet packet was relatively better than
EEMD-GMDH transform. EEMD can extract different aspects and properties of the
signal. This details can be then imported to the artificial intelligence models. EEMD
is particularly suitable for studying periodic signals that includes both high and low
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frequency components. The performance of signal processing wavelet packet
approach is significant in comparison with the wavelet transform and EEMD signal
processing approach since wavelet packet can produce a more detailed information
about the frequency resolution. These signal analysis methods can manage the
nonstationarity in the time series. Stationarity can be defined as preserving the
properties throughout the path of the signals. It is extensively documented that in
real and natural applications data are seldom stationary and isotropic. As artificial
intelligence approaches have point based performance, the original time series
cannot be considered as a single structure. Actually, these models consider the data
independently without considering the adjacent data. Therefore, signal processing
approaches can help these models to better recognize the properties of the data and
the relationship between dependent and independent variables. Thus, using pow-
erful signal processing methods e.g. wavelet packet transform and EEMD as pre-
processing techniques can help modelers to cope with the difficulty of simulating
the natural events. The other important note is the effect of exogenous data on the
performance of the models. It was shown that using appropriate variables can
significantly improve the ability of all modeling approaches. Application of other
AI models such as multilayer perceptron (MLP), radial basis function (RBF) and
Support vector regression (SVR), and other signal processing approaches such as
bi-dimensional empirical mode decomposition (BEMD) and multi-dimensional
ensemble empirical mode decomposition (MEEMD), in addition to combining
EEMD and wavelet transform can be suggested as future works.
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Landslide Inventory, Sampling
and Effect of Sampling Strategies
on Landslide Susceptibility/Hazard
Modelling at a Glance

Isik Yilmaz and Murat Ercanoglu

Abstract Landslides have a significant portion of responsibility on the damages
and losses caused by natural hazards such as earthquakes, floods, storms, and
tsunamis all over the world. Thus, landslides and their consequences are of great
importance among the scientists and authorities who want to minimize these effects
for a long time. This procedure simply begins with the preparation of landslide
database and inventory maps, which constitutes a fundamental basis for the further
steps including landslide susceptibility, hazard, and risk assessments. In this aspect,
this procedure can be considered as one of the most important stages for any
landslide work to minimize the undesired consequences of landslides. This stage
can be realized using some statistical techniques such as simple random, systematic,
stratified and cluster sampling strategies in the literature. In this chapter, firstly,
basic landslide definitions and concepts were discussed. Then, landslide inventory,
susceptibility and hazard concepts were pointed out and linked to the sampling
strategies with the recent literature. Although, every considered method has pros
and cons, it could be concluded that the sampling carried out in the rupture zones of
landslides as polygon features or seed cell approach representing the pre-failure
conditions seem to be more realistic to obtain more accurate maps. The other
important issue pointed out in this chapter is on the selection of data mining
technique(s). Since landslides are complex processes and can be affected by many
factors, this stage is very important to reflect the landslide conditions with huge
amount of data. In many cases, the researchers generally encounter to struggle with
huge amount of data related to the landslide initiation and/or mechanisms. Thus, the
selection of data mining techniques deserve the necessary precaution and is elab-
orately discussed overall the chapter.
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1 Introduction

Outbreak consequences and undesired effects of landslides both on human beings
and on environment are an ever increasing phenomenon throughout the world
similar to the other natural hazards such as earthquakes, floods, storms, tsunamis
etc. The main reasons for this situation can be sourced from the increase in pop-
ulation, unconsciously built settlements and the extraordinary climatologic changes.
Unfortunately, people tend to live in hazardous areas due to economic reasons
particularly in developing and/or under developed countries. As a matter of fact,
these natural events have been occurring since the beginning of the Earth; but, if the
human beings or the other living creatures are involved and suffered from these
events, they are transformed into the natural hazards.

Landslides, one of the most hazardous natural events on the Earth, directly and/
or indirectly affect the human life and the inhabitants. Although it plays an
important part on the evolution of the Earth, many countries have been suffering
from landslides and their consequences. Generally speaking, governments, local or
general authorities, institutions, and agencies have been struggling with these
events all around the world. When compared with the 20 years’ period before, it
could be concluded that the people recently have been more informed and con-
scientious on combating with landslides.

One of the most important stages of landslide hazard mitigation efforts is the
construction of the landslide database and preparation of landslide inventory maps.
This could be done by different methods as will be explained in the following
sections. But, the crucial point in this context is related to the selection of landslide
and non-landslide data (e.g. point or polygon), which is mainly based on sampling
strategy employed for the analyses. Actually, this stage is fundamentally linked to
the inventory and susceptibility stages; but, landslide hazard and risk mapping
stages are also influenced by this procedure. In other words, preparation of landslide
inventory maps and database is the key point to any landslide mapping procedure.
Particularly, during the database creation and analysis stage, statistical analyses
have significant importance. In conjunction with the developments in GIS
(Geographical Information Systems) and computer technology, it is now possible to
assess huge data sets using some statistical techniques to create automatic, random
or data-driven information related to landslide assessments. Thus, utilization of
statistical techniques is indispensable during these stages. The statistical concepts
related to this chapter can be found in Peck et al. 2008), Borzyszkowski and
Sokolowski (1993), Pratt et al. (1995), Cochran (1977).

In this chapter, the readers will find some informative knowledge on landslides,
landslide inventory mapping concepts related to landslide susceptibility/hazard and
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most recently used sampling strategies in landslide assessments. A detailed and
recent literature survey was conducted on the subject and the outcomes were
elaborately discussed in the following lines.

2 Landslides

Natural disasters which are resulted from the Earth’s natural processes cause loss of
life and damages to properties worldwide. The natural disasters include mainly
earthquakes, landslides, hurricanes, tsunamis, floods, volcanic eruptions, and torna-
does. Landslides disturbing many parts of the world may be accepted to be one of the
most common and the most crucial natural disasters. Therefore, the landslides are
commonly answered for significant loss of money and life (Figs. 1 and 2).

Cruden and Varnes (1996) defines the landslide as “it is the movement of a mass
of rock, debris, or earth down a slope, under the influence of gravity”. Landslides
can be classified depending on the type of movement (fall, topple, slide, spread,
and flow) (Fig. 3) and type of material (rock, soil, or their combination) that failed
as suggested by Varnes (1978) and Cruden and Varnes (1996) (Table 1). Herein
this classification, rock is defined to be intact hard and/or firm bedrock before the
slope movement. Soil is composed of poorly cemented, unconsolidated particles

Fig. 1 A landslide occurred in Koyulhisar (Sivas, Turkey) (photo taken by the author)
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and can be classified into two categories such as; coarse fragments (debris) and fine
fragments (earth).

In fall (Fig. 4a), soil/rock masses displace in steep slopes and start to free fall,
bounce/roll downslope. Topple (Fig. 4b) failure involve a forward rotation around
an axis below the soil/rock mass and its movement. Lateral spreading (Fig. 4c) is a
movement by horizontal extension, shear/tensile fractures which generally initiated

Fig. 2 Loss of life and damages to properties by the landslide occurred in Koyulhisar (Sivas,
Turkey) (photos taken by the author)

Fig. 3 Classification of slope movements (Varnes 1978)
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by liquefaction of soil during earthquake and occur on gentle slopes. In slide
(Fig. 4d), soil/rock masses displace along one or more discontinuity planes. In
rotational slides, masses move along a curved and concave slide plane with a speed
from extremely slow to extremely rapid. However, failure surface in transla-
tional sliding is more/less planar or wavy, and movement of the mass is generally
parallel to the ground surface. Flow (Fig. 4e) is a rapid mass movement of mixture
of water, soil, rock and moves in shear surfaces which are closely spaced and
non-persistent. Sometimes, failures may occur to be combination of more than one
type of movement (fall, topple, slide, spread, flow), and this is classified as complex
movement (Fig. 4f).

Landslides can also be classified into mainly 2 categories of “active” and
“inactive” (young inactive, mature inactive and old inactive) based on the activity
according to the suggested classification system by Keaton and De Graff
(1996). According to Wieczorek (1984), landslides can be classified to be active
and dormant (young, mature and old) (Fig. 5).

Active landslide category includes landslides that currently moved or movement
(s) have been recorded in the past and they have been still moving. The recent
activities can be assessed by vegetation disruption, fresh cracks, etc. Water accu-
mulation in depressions which is formed by mass movement and/or embankment of
streams (Wieczorek 1984).

In young dormant landslides, relatively fresh landforms are observed, but his-
torical movements were not recorded. Cracks cannot be observed because they are
generally eroded. However, the scarps of landslides are observed to be rounded and
sediments filled the depressions and/or landslide ponds.

Table 1 Summary of Varnes’ (1978) classification system (after Hungr et al. 2014)

Movement type Rock Debris Earth

Fall Rock fall Debris fall Earth fall

Topple Rock topple Debris topple Earth topple

Rotational
sliding

Rock slump Debris slump Earth slump

Translational
sliding

Block slide Debris slide Earth slide

Lateral
spreading

Rock spread – Earth spread

Flow Rock creep Talus flow Dry sand flow

Debris flow Wet sand flow

Debris avalanche Quick clay flow

Solifluction Earth flow

Soil creep Rapid earth flow

Loess flow

Complex Rock slide-debris
avalanche

Cambering, valley
bulging

Earth slump-earth
flow
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Fig. 4 Some example photos for; a fall, b topple, c lateral spreading, d slide, e flow, and f complex
slide (photos taken by the author)

Fig. 5 Classification of the landslides according to the activity (after Wieczorek 1984)
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Inmature dormant landslides, landslide landforms are observed to be smoothed by
erosion and/or revegetation. Rounded main scarp, eroded toe, new drainage occurred
in landslide area is generally observed. Mounded topography and benches on slopes
are covered by dense vegetation in a widespread manner (Wieczorek 1984).

Mostly rounded and subtle scarp, mounded topography and benches, greatly
eroded landslide landforms with possible glens, canyons, closed and filled
depressions, new and dense vegetation which is similar with the vegetation in
outside of the landslide boundaries are observed in old dormant landslides
(Wieczorek 1984).

3 Susceptibility/Hazard Assessment

The land use and urbanization strategies are also effected by the severity of land-
slide. It can be accepted that the knowledge is still incomplete according to the
recent years’ experiences related with recognition, understanding and treatment of
landslide hazard. Combination or one of four main preventive measures such as
drainage, modification of slope geometry, retaining structures and internal slope
reinforcement are commonly used to control and prevent the landslides. In order to
choose and design the favourable and cost effective remedial measures, conditions
and processes caused the landslide occurrences must be clearly understood. It is
hoped that forthcoming developed techniques which are new, cheaper and more
efficient will minimize the impact of a landslide in the future.

However, there are fewpreventivemeasures for landslides, establishment of realistic
reliable landslide prone zones on amapwould be very useful tool in urban planning and
effective land management in order to solve problems caused by landslides.

Assessment of landslide prone and susceptible areas is an essential prerequisite
in hazard mitigation, disaster management and safe city and urban planning. Mainly
three types of maps are qualitatively/quantitatively prepared such as landslide
susceptibility, hazard and risk maps.

Unstable conditions sourced from presence or probable occurrence of slope
failures in the future are described in landslide hazard maps. However, landslide
susceptibility maps are prepared by real local and/or site properties to classify the
relative probability of landsliding in the future. In the preparation of the landslide
susceptibility maps, prior failures obtained from landslide inventory, factors of
geological, geomorphological, hydrogeological, topographical, etc. should be con-
sidered. On the other hand, landslide potential with the expected losses of life and
property by the occurrence of landslide are described on the landslide risk maps.

Landslide susceptibility maps which is the early stage of the assessment of
landslides can serve to reduce the losses. However, there is no agreement on the
standard assessment model type/procedure, many researchers used a number of
various models in landslide susceptibility assessment and landslide susceptibility
mapping. These models can be divided into the two main groups to be deterministic
and non-deterministic which is more frequently used and known as probabilistic.
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Probabilistic models had been frequently used and many methodologies based on
inventory of landslides, geomorphological analysis, qualitative and statistical
bivariate analysis, multivariate analysis in many published researches such as; Brabb
et al. (1972), Degraff and Romersburg (1980), Carrara (1983), Carrara et al. (1991),
Jade and Sarkar (1993), Baeza (1994), Chung et al. (1995), Irigaray (1995), Rengers
et al. (1998), Chung and Fabbri (1999), Fernández et al. (2003), Yilmaz and Yildirim
(2006), etc. And, many other researchers such as Ives and Messerli (1981), Ward
et al. (1982), Rupke et al. (1988), Cascini et al. (1991), Van Westen (2000), Chacón
et al. (1994, 1996), Gokceoglu and Aksoy (1996), Chung and Fabbri (1999),
Barredo et al. (2000), Van Westen et al. (2000), Dai et al. (2001), Lee and Min
(2001), Carrara et al. (2003), Yilmaz (2009a, b, 2010a), Yilmaz and Keskin (2009),
Bednarik et al. (2012), Holec et al. (2013), etc. used various models such as heuristic,
deterministic, statistical, fuzzy-logic, artificial neural networks, neuro-fuzzy, support
vector machine, etc. in order to establish landslide susceptibility models.

In general, data mining can be defined as a tool describing and analysing a large
amount of data set. It can be considered as one of the most useful techniques when
analysing large amount of data and producing landslide susceptibility, hazard and
risk maps. When the recent landslide literature has been examined, of the above
mentioned data mining techniques, it is clear that ANN (Artificial Neural Network),
DT (Decision Tree), LR (Logistic Regression) and SVM (Support Vector Machine)
techniques have been more commonly used among the researchers. In the authors’
opinion, the main reasons behind this situation are sourced from the characteristics of
these methods such as their high capability of reflecting the nonlinear features of
landslide occurrences and the complex relations of the considered parameters. Of
course, all these techniques have advantages and disadvantages. For example, ANN
has a black box nature and may include overfitting or underfitting problems during
the analyses. However, when used correctly, it gives by far the most powerful results.
It is very clear that it is not easy, to some extent, impossible, to solve these com-
plicated natural processes by the linear models. In addition, landslide researchers
generally select the pixels or points for evaluating the landslide process for the
analyses instead of using polygons or sub-basins/catchments as the slope units.

GIS is a very important tool when analysing the landslide events and producing
landslide maps. However, many GIS programs have no capability of performing
such analyses by themselves. Therefore, the researchers have to use external sta-
tistical packages and have to transform the outputs into a GIS platform. Perhaps, the
most lacking part of the GIS programs is the absence of these data mining tech-
niques although its utilization is indispensable in these analyses.

4 Landslide Inventory Maps

A landslide inventory is a data set presenting a single event, a regional event, or
multiple events (Yilmaz 2010b) which are very crucial clues for future landsliding.
Landslide inventory map which is the most basic landslide map shows the locations
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and outlines of landslides. Some examples for landslide inventory maps are shown
in Figs. 6 and 7.

As it was reported by Guzzetti et al. (2012); landslide inventory maps can be
prepared for various aims (Brabb 1991). One of these aims is documentation of extend
of landslides in areas small to large watersheds and from regions to states or national
scales (Cardinali et al. 2001; Brabb and Pampeyan 1972; Antonini et al. 1993; Duman
et al. 2005; Delaunay 1981; Radbruch-Hall et al. 1982; Brabb et al. 1989; Cardinali
et al. 1990; Trigila et al. 2010). Another aim can be defined to be preliminary step in
landslide susceptibility, hazard, risk assessment (Cardinali et al. 2002, 2006; Guzzetti
et al. 2005, 2006a, b; Van Westen et al. 2006, 2008; Balteanu et al. 2010). By
investigating the types, distribution and patterns of landslides, inventory maps are
prepared for explanation of geological and/or morphological characteristics (Guzzetti
et al. 1996). The landslide inventory maps also serve to the determination of the
landscape evolution dominated by mass wasting processes (Hovius et al. 1997, 2000;
Malamud et al. 2004, 2004; Guzzetti et al. 2008, 2009; Parker et al. 2011).

The first and crucial step in landslide susceptibility/hazard mapping is definition
of areas and compilation of a landslide map (Galli et al. 2008; Van Westen et al.
2008; Fell et al. 2008; De Graff et al. 2012). The landslide susceptibility/hazard
mapping is impossible without a complete landslide inventory map, and the quality
of resulting map is strongly influenced by quality, reliability, and completeness of
the landslide inventory.

The compulsory component of the assessment of landslide susceptibility, hazard
and/or risk is the preparation of consistent and precise landslide inventory
map. However, landslide inventory maps have been prepared in all over the world
for many years, the appropriate method, reliability, eligibility, entirety and reso-
lution of the landslide inventory maps are rarely agreed. The deficiencies on the
appropriate information related with the value of inventory maps and the consis-
tency of the methods for completing inventories may make the hazard or risk
assessment highly questionable.

However, the standard mapping method is realized in the field, a landslide
inventory map can be prepared by interpretation of aerial photographs and/or
satellite imageries (Soeters and Van Westen 1996; Van Westen et al. 2006) with the
detail information about type of movement, dimension, activity, morphology, etc.
for each landslides (Holec et al. 2013; McCalpin 1984). Because mapping by field
works may sometimes be handicapped by few difficulties such as; old and very
large size landslides, the landslides covered by vegetation, forest, agricultural lands
and disrupted by other landslides and/or erosion, etc. Nevertheless, the prepared
map must then be checked by field works in order to ensure the completeness and
reliability of the inventory for landslide susceptibility/hazard assessment.

During the mapping of landslides, classification of the landslides according to
the activity must also be taken under consideration and must be indicated on the
map. Activity categories allow to estimate how recently slopes moved and the type
of hazard represented. As it was known that the movement/failure probability in
active landslides is more than older landslides which may move/fail less likely as
single and small slide masses.
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Fig. 6 Landslide inventory map which was used to be an input parameter in landslide hazard
mapping in Hlohovec–Sered’ landslide area in south-west Slovakia (Bednarik et al. 2012)
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5 Sample and Sampling in Statistics

The key is to have representative samples of location specific condition and of
course landslides. And, they must be selected randomly. The two main questions
are which part of the landslides and how they will be randomly sampled.

In statistics, samples are parts of a population and represent a subset of man-
ageable size. Sample points, sampling units and observations are defined to be
elements of sample (Peck et al. 2008). Because of the size of the population which
is very large, sample census and/or listing all values of the population is mostly
impossible and not practical (Borzyszkowski and Sokolowski 1993). Therefore,
selection and/or collection of a set of data from statistical population is required. As
it was defined by Pratt et al. (1995); a complete sample can be defined to be set of
objects selected from the main population which contain objects that meet well
defined criteria of the selection.

The most important thing in sampling is to avoid selecting an unrepresentative
and/or biased sample(s). In order to have a representative and unbiased sample, it
must be selected from a population by a method which is independent with the
features of objects. The main difference between random and non-random sampling
techniques is related with their probability sampling and non-probability sampling
characteristics. Non-random sampling techniques use non-probabilistic sampling,
and sampling is effected by judgement of researcher. Therefore, non-random
sampling is generally very biased and non-representative. However, random

Fig. 7 Landslide inventory map which was used to be an input parameter in small-scale landslide
susceptibility assessment for the territory of Western Carpathians (Holec et al. 2013)
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sampling techniques are called as probability sampling and reduces bias and
samples are representative. As it was defined by Cochran (1977); random sample
can be defined to be sample where every discrete member of population has a
known, non-zero chance of being selected as part of sample.

Random sampling method, random number generation and sampling frame is
required in random sampling. Figure 8 shows random sampling methods and can
be classified mainly:

a. Simple random sampling method,
b. Systematic sampling method,
c. Stratified sampling method,
d. Cluster sampling method.

A simple random sampling is an elementary type of sampling methods and it can
be accepted to be an element of further complex sampling methods. The probability
to be chosen of all objects are the same in simple random sampling. Systematic
sampling method is a kind of simple random sampling method where samples are
selected in an ordered systematic way. Stratified Sampling Method can be applied
by dividing the population into homogeneous subgroups and sample is selected
from each group using random simple or systematic sampling method. As in
stratified sampling method, population is similarly divided into clusters in Cluster
Sampling Method and a sample is then randomly selected from clusters. If the
individuals in the population are not known, but groups in population are known,
cluster sampling method is used.

Fig. 8 Sampling from the circles numbered 1–18; a simple random sampling: 7 circles are
selected at random, b cluster sampling method: circles lying within the squares are selected until
reaching 7 circles
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6 Sampling Strategy

Different inventory maps for sampling where the landslides are generally shown/
drawn to be point, scarp and seed-cell (Fig. 9) are in use by researchers, however,
there is no agreement. In the landslide literature, there are mainly four sampling
strategies and these are represented in Fig. 9 as for the different landslide locations.
Of these, the seed cell approach was introduced by Suzen and Doyuran (2004) by
applying a buffer zone (“4 pixel*resolution” meter sized) of a landslide body
(Fig. 9, Landslide A). This approach considers approximately 2/3 of the zone of
depletion starting from just out of the scarp, drawn by a buffer zone outside the
landslide location, expressing the pre-failure conditions. The second commonly
used approach is that a polygon is drawn of the main scarp which is distinguished
from the accumulation/depletion zone approach (Fig. 9, Landslide B). The other
most commonly used approach is to consider all point samples from the whole
depletion zone of the landslide bodies (Fig. 9, Landslide C). This approach is
generally used when there are deep-seated large landslides. Finally, the fourth
approach is that the sampling could be done by as points at the upper part of the
scar (Fig. 9, Landslide D).

Almost every sampling strategy has pros and cons, but the main principle is that
the sampling strategy taken into account should be representative for the area
studied. As it was reported by Nefeslioglu et al. (2008) that the conceptive dis-
tinction related with the various sampling strategies applied is frequently ignored
and not stated anymore. Only a few study emphasized on this difference in literature.
In the analyses by Dai and Lee (2003), the source area was used after the separation
of source area and run-out zone. Fernandez et al. (2003) had explained the analysis
of rupture zone in mapping of landslide susceptibility. Remondo et al. (2003) pro-
posed the hypothesis of landslide rupture, and the rupture zone was considered by
Santacana et al. (2003) in susceptibility assessment of landslide. Suzen and Doyuran

Fig. 9 A schematic representation of different sampling strategies
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(2004) suggested the extraction of undisturbed morphological conditions from the
close vicinity of the landslide polygon itself. Selected factor cells defined on the
upper edge of the main scarps of landslides were included in the landslide suscep-
tibility assessment by Clerici et al. (2006) and Nefeslioglu et al. (2008).

Yilmaz (2010b) had compared the results from different sampling strategies such
as; point, scarp and seed cells in production of the landslide susceptibility maps for
a case location in Turkey. The comparison obtained from the study allowed to the
quantitative estimation of differences between inventories of point, scarp and seed
cells. In the study of Yilmaz (2010b), 3 different inventory maps were firstly
prepared by different strategies for sampling. The first one was prepared by drawing
polygons of main scarp which is visible from accumulation/depletion or rupture
zone. Second map was constructed by considering the suggested method of
seed-cell (Suzen and Doyuran 2004). The last map was produced by plotting of
locations to be a point selected on upper part of scar. As the main result of the
analysis, Yilmaz (2010b) reported that the unreliable result was obtained from
“point sampling” while the most realistic result was obtained from “scarp”. The
accuracies obtained from “scarp” was relatively similar with the result obtained
from “seed-cell” because of the sampled areas of both of them are very close one
another. Similarly, Nefeslioglu et al. (2008) had also pointed out that the sampling
procedure applied in the presence data gathered from which the samples represent
pre-failure conditions (the seed cell concept in that study) of landslides were pro-
duced more realistic landslide susceptibility maps. As discussed previously, the
most important issue in sampling strategy procedure is the representation capacity
of the selected elements on the overall data, whether they are point or polygon.
However, as stated by Yilmaz (2010b), the areal extent or coverage of the land-
slides is also a significant parameter when selecting the type of sampling element
(i.e. point or polygon). In other words, since a point can be defined by a single X, Y
coordinate, it has no capability of representing the whole landslide body itself. On
the other hand, particularly for small-sized landslides, it could be more logical to
use point data when the areal extent is too small to draw by considering the scale of
the map.

In the sampling strategy concept, there is one more important issue, which
should be considered before applying any method to produce landslide suscepti-
bility, hazard or risk map, called data partitioning. When partitioning the data in
landslide analyses, there is no rule of thumb either for landslides or for nonlandslide
data. Indeed, this partition procedure is needed in many applications to represent
how well the applied methodology works. In other words, the researchers generally
divide the overall data for training and validation stages to evaluate the efficiency of
the so-produced maps. A recent work is performed on this subject by Ercanoglu
et al. (2016) what the ratio should be on partitioning of data for training and
validation stages. In general, the researchers subjectively select this ratio ranging
from 50 to 90% for training, while the left parts (ranging from 50 to 10%, summing
up to 100%) of the data were considered for the validation stage. Ercanoglu et al.
(2016) evaluated that the partitioning the overall data as 75% for training and 25%
for validation stages produced more reliable and powerful results.
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7 GIS and Data Mining in Landslide Assessments

In the beginning of the 1980s, the computer technology and the GIS applications
and software have witnessed a real “boom” with respect to the development and
usefulness. When considered with the old technologies, the speed and capability of
the GIS components have been emerged extensively. Today, it could be concluded
that the utilization of GIS in any landslide assessment (i.e. susceptibility, hazard or
risk) is indispensable. Main reasons for this situation comes from the fact that it
provides many advantages in data mining, organization and analysis as well as the
representation of the results. There are too many parameters and data sources and
layers, sometimes reaching up to hundreds of millions pixels according to the scale
and the resolution, in landslide assessments and mapping. Thus, there is a necessity
of managing and organizing the data to produce an output (i.e. a map of suscep-
tibility, hazard or risk) in such a work. In addition, there are many uncertainties
related to the landslide assessments sourced from the nature of the landslides.
Therefore, to model or to assess any landslide mapping work, some traditional
modelling approaches such as geomorphological assessments, basic overlying
techniques etc. were disappeared in the recent landslide literature. New techniques,
commonly data driven methods, such as SVM (Support Vector Machines), ANN
(Artificial Neural Networks), MLM (Machine Learning Methods), come to the fore
based on the landslide inventory and the considered parameters expressed by the
GIS layers in the recent landslide literature. Perhaps, the data mining concept is
much more important in such a big data environment to model the landslides and
their future prediction since the susceptibility, hazard and risk of the landslides are
related to the future conditions. In other words, it could be concluded that this
necessity was sourced from the number of data and the uncertainty since the
landslides were seldom linked to a single cause. Linear models have no capability
of modelling such this case, but, nonlinear ones have the opportunity to reflect the
actual conditions and lacking of the data related to the uncertainties.

Since the landslide related studies are very difficult tasks due to the huge spatial
and temporal variables and the considered parameters, data mining techniques and
GIS may be helpful in assessing the landslide phenomenon since they explain the
collected or gathered data in many ways. For example, these methods show us how
to find the useful knowledge or information in such a big database related to the
landslides including the millions of pixels. In addition, it helps us to remove
inconsistent and noisy data to represent more important and beneficial way to solve
the complex landslide phenomenon.

8 Conclusions

To minimize the effects of landslides on lives, properties and the environment, the
first crucial point is to prepare landslide inventory map and to construct a reliable
landslide database. This stage also influences the results of the further assessments
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such as landslide susceptibility, hazard or risk. Thus, in every landslide study, the
required attention should be paid for this stage. Of course, the produced maps
should be considered by the decision makers and should be used in engineering
applications before they were built.

Generally, the other important aspect of this chapter was revealed that there were
two major approaches for sampling procedures to build a landslide database. The
first one is based on the sampling strategy carried out in the zone of depletion or
rupture zone as landslide polygons or point samplings. The other one is based on the
pre-failure conditions such as seed cell approach. In general, the researchers use
simple random, systematic, stratified and cluster samplings in landslide assessments.
Non-random sampling procedure is rarely preferred since it is a completely sub-
jective procedure. Whether it shows pre-failure or after failure conditions, based on
the landslide literature, the researchers generally obtain reliable results reflecting the
landslide locations. There is no a generally accepted approach or methodology for
this subject. However, it could be concluded that both types of sampling could be
used, but the selection depends upon the performances of the final maps. In other
words, sampling strategy representing the pre-failure conditions is very logical way
to represent the landslide conditions will be occurred in the future (i.e. for landslide
susceptibility mapping) because of the fact that they were selected from very close
vicinity of the landslide bodies before they moved. Contrary, based on the very
well-known principle of uniformitarianism (“today and past are key to the future”) in
geology science, the samples taken from inside the landslided bodies represent the
failure conditions, and they will reflect the same conditions will be occurred in the
future for a landslide. The landslide type is also a significant issue herein this subject.
If an earth flow type landslide is considered for a landslide analysis, utilization of any
point sampling strategy taken from the scarp would be appropriate to reflect the
landslide initiation conditions. However, for a deep-seated large sized earth slide, it
would not be wise to represent this landslide with a single point. Consequently, it
should be noted that the selected samples should represent the population (i.e.
landslided and nonlandslided areas) they belong in any sampling strategy. Since the
landslide researchers struggle with huge number of data, this stage should be per-
formed accurately. Utilization of GIS and data mining techniques may be helpful in
this context to solve huge number of data and complexity problems. By doing so,
more reliable and powerful landslide maps could be produced.
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GIS-Based Landslide Susceptibility
Evaluation Using Certainty Factor
and Index of Entropy Ensembled
with Alternating Decision Tree Models

Wei Chen, Hamid Reza Pourghasemi, Aiding Kornejady
and Xiaoshen Xie

Abstract Up to now, numerous models have been developed and put to use by
modelers to portray susceptibility of an area to landsliding. What keep them going
might be the slightest differences in performance. These differences, however small,
still would surprisingly make huge progress in identifying well suited areas for
strategic planning. This kept in mind, we aimed to map landslide susceptibility over
a critical landslide prone area, the Longhai Region, Baoji City, in China, using two
models namely certainty factor (CF) and index of entropy (IOE) ensemble with
alternating decision tree (ADTree). As inputs, 93 landslides together with 14 pre-
disposing factors were mapped. Both CF and IOE models pointed at three main
factors as the most important ones including residential land use, areas nearby
roads, and normalized difference vegetation index (NDVI). Although obtained
ADTrees for both models were similar, slightly different results were obtained.
IOE-ADTree was more practical, since it better predicts highly susceptible areas.
The receiver operating characteristic (ROC) curve cleared further the differences so
that IOE-ADTree with 84% fitting ability and 85.3% generalization capacity out-
performed CF-ADTree with the respective values of 83.9 and 83.8%. Therefore, the
IOE-ADTree exhibits as a promising ensemble model for the study area.
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1 Introduction

Landslides, as geological hazards, have caused notable losses to industrial and agri-
cultural productions as well as people’s lives and property worldwide (Khavaninzadeh
et al. 2010). Also, it is likely to cause great economic losses even slow down the pace
of society progress (Singh 2010). In China, around 9710 landslides took place in 2016,
which caused a sizable damage to 614 people, either dead or injured, and $0.45 billion
worth of economic loss (http://www.cigem.gov.cn). Therefore, landslide spatial pre-
diction is not only very meaningful and helpful to the research field, but also is
convenient to the decision makers from all over the world.

In the past few decades, various approaches have been widely used for landslide
susceptibility mapping including qualitative and quantitative methods, respectively
(Kayastha et al. 2013). The qualitative method is subjective and expert
knowledge-based (Kayastha et al. 2013), such as analytical hierarchy process (Kumar
and Anbalagan 2016; Pourghasemi et al. 2012c). Quantitative method is objective
which produces the probabilities of landslides occurrence in an area (Guzzetti et al.
1999; Kayastha et al. 2013). Nowadays, rapid development of GIS has motivated
many researchers to map landslide susceptibility using various statistical models such
as certainty factor (Devkota et al. 2013; Kanungo et al. 2011; Pourghasemi et al.
2013d; Prefac et al. 2016; Sujatha et al. 2012), frequency ratio (Kayastha 2015;Kumar
and Anbalagan 2015; Ramesh and Anbazhagan 2015; Shahabi et al. 2015), index of
entropy (Constantin et al. 2011; Devkota et al. 2013; Jaafari et al. 2014; Wang et al.
2015), evidential belief function (Althuwaynee et al. 2012; Zhang et al. 2016), and
weights of evidence (Chen et al. 2016a; Kayastha et al. 2012).

In addition, various data mining techniques have been used to map landslide sus-
ceptibility, such as artificial neural network (Chen et al. 2017e; Lee et al. 2004; Pham
et al. 2017; Zare et al. 2013), support vector machines (Chen et al. 2016b, d; Kavzoglu
et al. 2014), decision trees (Lombardo et al. 2015; Saito et al. 2009), maximum entropy
(Chen et al. 2017b;Davis andBlesius 2015; Felicísimo et al. 2013), alternating decision
tree (Chen et al. 2017f; Hong et al. 2015; Pham et al. 2016), random forests (Chen et al.
2017d; Pourghasemi and Kerle 2016; Trigila et al. 2015), and classification and
regression trees (Chen et al. 2017g; Youssef et al. 2015b).

The present study aimed at producing an ensemble of certainty factor and index
of entropy with a data mining technique namely alternating decision tree to predict
the landslide susceptibility for the Longhai area (China). The novelty of this study
is that hybrid integration approach of alternating decision tree and bivariate cer-
tainty factor and index of entropy models is a relatively new contribution that has
been rarely used for landslide spatial prediction.
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2 Study Area

The study area is situated at the Longhai Region of the Baoji City, China (Fig. 1). It
accounts for an area of 1186 km2, within latitudes of 34° 16′N to 34° 40′N and
longitudes of 106° 18′E to 106°56′E. The Longhai Railway traffic line and the roads
extend 330 km across the study area. The altitude of the study area ranges from 626
to 2410 m asl. On average, the area experiences rainy days from July to September.
The average annual rainfall is more than 600 mm. The study area has many steep
slopes with angles up to 68° in mountainous regions.

3 Materials and Methods

3.1 Making a List of Landslides

Correct understanding the interconnection between the condition predictors and a
failure event is very important to predict landslide susceptibility (Devkota et al.
2013; Pourghasemi et al., 2013a). In general, the information involves the landslide
location, type, and the time of occurrence. This activities are crucial when preparing
a reliable and accurate landslide inventory map (Chen et al. 2016d). In this study,
firstly, according to historical records, interpretation of aerial photographs, and
several field inspections, 93 landslides were recorded and mapped (Fig. 1).
Secondly, 70% (65) and 30% (28) of the landslides were randomly split and used
respectively for training and validation of the models using ArcGIS 10 software
(Hussin et al. 2016).

3.2 Landslide Predictors

Reviewing different studies, 14 landslide predictors were selected for assessing
landslide spatial prediction, including slope degree, altitude, slope angle, STI
(Sediment Transport Index), SPI (Stream Power Index), TWI (Topographic
Wetness Index), plan curvature, profile curvature, NDVI, land use, lithological
units, distance to roads, distance to rivers, and distance to faults.

Slope Aspect
Slope aspect, as the direction that slopes face, is an essential factor to analyze
landslides susceptibility (Çevik and Topal 2003). This factor often controls the
lineament, rainfall, wind effect, and exposition to sunlight (Dahal et al. 2008;
Ercanoglu et al. 2004). We divided slope aspect into nine different directional
classes: flat, north, north-east, north-west, south-east, south, south-east, west, and
east (Fig. 2a).
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Fig. 1 The map of the study area
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Fig. 2 The map of landslide predictors: a slope aspect, b altitude, c slope angle, d STI, e SPI,
f TWI, g plan curvature, h profile curvature, i NDVI, j land use, k lithological units, l distance to
roads, m distance to rivers, and n distance to faults
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Altitude
Altitude is in charge of the phreatic water level, vegetation, and overall geography.
Commonly, the potential of landslides occurrence is high at intermediate elevations
(Oh and Pradhan 2011; Wang et al. 2015). The ASTER GDEM data (http://www.
gscloud.cn) with 30 m spatial resolution was used to produce the altitude map.
Then, it was categorized into 6 classes with 300 m intervals as follows: <900, 900–
1200, 1200–1500, 1500–1800, 1800–2100 and >2100 m (Fig. 2b).

Fig. 2 (continued)

230 W. Chen et al.

http://www.gscloud.cn
http://www.gscloud.cn


Slope Angle
Slope angle, as a description of the degree of inclination, has been always con-
tributed to analyze landslide susceptibility. Generally, the grater the slope angle, the
higher of the failure potential of slope (Dahal et al. 2008; Ercanoglu and Gokceoglu
2002). The slope degree was obtained from the 30 m � 30 m grid size DEM in
ArcGIS 10.0 and values of slope angle were reclassified into eight groups with an
interval of 8°, such as <8°, 8°–16°, 16°–24°, 24°–32°, 32°–40°, 40°–48°, 48°–56°
and >56° (Fig. 2c).

STI
The STI shows the effect of erosion and deposition. Its values were adopted to
analyze the landslides susceptibility by many researchers (Conforti et al. 2011;
Yilmaz 2009). Generally, he higher the values have the higher the possibility of
landslides occurrence. For this study, the STI was prepared from the DEM and was
categorized as <10, 10–20, 20–30, 30–40 and >40 with an interval of 10, respec-
tively (Fig. 2d).

SPI
As another important factor influencing landslide occurrence, the SPI represents the
erosion power of stream (Moore and Grayson 1991). The erosion will break the
structure and decrease the strength of the rocks in the toe, and then landslides will
occur easily (Conforti et al. 2011). We obtained the SPI map from DEM, and
regrouped it into five categories with an interval of 50, namely <50, 50–100, 100–
150, 150–200 and >200 (Fig. 2e).

TWI
The values of TWI are influenced by the condition of soil, geography, and volume
of runoff (Wang et al. 2016). Thus, it was considered as another factor influencing
landslide susceptibility. We categorized TWI values into five groups with 0.5
intervals, viz. <1.5, 1.5–2.0, 2.0–2.5, 2.5–3.0 and >3.0 (Fig. 2f).

Plan Curvature
The plan curvature signifies the concavity and convexity of a slope in parallel with
the valley (Erener and Düzgün 2010; Lee and Min 2001). We obtained the plan
curvature map from the DEM layer, and categorized it into five ranges using natural
break (NB) method as follows: −8.60 to −1.38, −1.38 to −0.41, −0.41 to 0.35,
0.35–1.32 and 1.32–9.10 (Fig. 2g).

Profile Curvature
The profile curvature indicates the curvature of a slope perpendicular to the valley
(Chen et al. 2016a; Yesilnacar and Topal 2005). We derived profile curvature map
from DEM layer and categorized it into five classes using NB scheme: −11.64 to
−1.80, −1.80 to −0.56, −0.56 to 0.43, 0.43–1.67 and 1.67–9.44 (Fig. 2h).

NDVI
NDVI is related to the transpiration of plants, the sunlight, and photosynthesis
(Pourghasemi et al. 2013b, c). Therefore, NDVI also provides a crude estimate of
the vegetation. We produced the NDVI map using the LANDSAT-8 images (http://
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www.gscloud.cn) using Eq. (1). Five different groups were prepared using natural
break method, such as −0.15 to 0.24, 0.24–0.38, 0.38–0.51, 0.51–0.61 and 0.61–0.
76 (Fig. 2i).

NDVI =
B5� B4
B5þB4

ð1Þ

where, B5 and B4 are the infrared and red bands imbedded in LANDSAT-8 satellite
(Chen et al. 2017a; Pourghasemi et al. 2014).

Land Use
Land use is constantly used to predict landslide spatial pattern (Leventhal and Kotze
2008). To some extent, the landslide stability is related to the types of vegetation
and the covering dimensions (Fell et al. 2008). Commonly, a lower landslide
potential is always associated with the more types and the larger covering area
(Leventhal and Kotze 2008). In the current study, the following five classes were
considered: grass land, forest land, farm land, residential areas, and water bodies
(Fig. 2j).

Lithology Units
Lithology is pivotal to analyze landslide spatial pattern. Different rocks have dif-
ferent mechanical properties and can manifest different stability states (Constantin
et al. 2011; Das et al. 2012). The lithological units were grouped into five groups
namely granite, diorite, metamorphic rocks, glutenite, and sand and gravel
(Fig. 2k).

Distance to Roads
According to recent studies, the road construction, as a human-made agent, can
sometimes trigger slope failures (Jaafari et al. 2014; Zhao et al. 2015). Therefore,
involving such influential factor is substantial to this study. The map of distance to
roads was divided into five buffers with an interval of 200 m, including <200, 200–
400, 400–600, 600–800 and >800 m (Fig. 2l).

Distance to Rivers
The river erosion has significant impacts on the evolving process of landslides
(Chen et al. 2016c; Tien Bui et al. 2012a). Hence, we prepared the map of prox-
imity to rivers and then categorized the values into five ranges with 100 m intervals:
<100, 100–200, 200–300, 300–400 and >400 m (Fig. 2m).

Distance to Faults
Fault is the external manifestation of stress being broken (Tien Bui et al. 2012b).
This process will lessen the strength of soil and rocks. We obtained the distribution
of faults from geological maps and then categorized the proximity values to faults
into five ranges with 1000 m intervals: <1000, 1000–2000, 2000–3000, 3000–4000
and >4000 m (Fig. 2n).
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3.3 Modeling of Landslide Susceptibility

3.3.1 Certainty Factor

Certainty factor, as a GIS-based bivariate statistical model, has been attracted many
researchers mainly due to both simplicity and robust factors integration algorithm
(Devkota et al. 2013; Kanungo et al. 2011). First, the model rates the thematic
layers through an equation based on the conditional probability and the prior
probability assumptions (Eq. 2). The calculated CF values range between +1 and
−1, representing the model being certain of recognizing the landslide and
non-landslide areas (Heckerman 1985). So that, higher CF values reflect that the
model is more certainty about recognizing landslide locations correctly and vice
versa. The medium ranges indicate the uncertainty of the model to judge about the
susceptibility of a specific area (Devkota et al. 2013).

CF ¼
ppa�pps

ppa� 1�ppsð Þ if ppaipps
ppa�pps

pps� 1�ppað Þ if ppahpps

(
ð2Þ

where, ppa and pps are the respective landslide conditional and prior probability
which can be expressed as follows:

ppa ¼ SL
SC

; pps ¼ SLt
SBt

ð3Þ

where, SL is the landslide areas in a particular class, SC is the class area within a
particular factor, SLT is the whole area of the landslides in the basin, and SBT is the
basin whole area.

The predictors’ classes were rated following the equations above (Chen et al.
2016c). To combine the map of predictors, we used the following expression by
renaming factors as X and Y (Pourghasemi et al. 2013d; Chen et al. 2016c; Devkota
et al. 2013; Hong et al. 2017):

Z ¼
X þ Y � XY X; Y � 0

X þY
1�minð Xj j; Yj jÞ X � Y\0
X þ Y þXY X; Y\0

8<
: ð4Þ

3.4 Index of Entropy

Many authors have discussed and studied entropy, each of which pointed out a
specific aspect of it. Shannon, by relying on Boltzmann law, first raised this issue to
explain the pattern of an unknown phenomenon (Shannon 1948). Shannon’s
entropy, also known as the index of entropy, as an inherent property stored inside
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the environmental data lies in information theory. He pointed out that the more
entropy exists in our data, there equivalently would be more information to explore.
Nowadays, this feature is increasingly being used in different scientific fields,
mostly environmental sciences and natural processes (Pourghasemi et al. 2012b)
with different metaphorical interpretations of the entropy such as instability,
imbalance, and uncertainty in a system (Shi and Jin 2009). Apart from the fun-
damentals, the main strength of the model is the ability to compute the classes’ rate
and factors’ weights itself as an ideal package which makes researchers free and
needles of other expertise and expert-knowledge-based methods. Instead, the cal-
culation process draws heavily on the actual recorded data. The mathematics
follow:

FRij ¼ bij
aij

ð5Þ

Pij ¼ FRijPNj

j�1 FRij

ð6Þ

Hj ¼ �
XNj

i¼1

Pij log2 Pij; j ¼ 1; . . .; n ð7Þ

Hjmax ¼ log2 Nj ð8Þ

Ij ¼ Hjmax � Hj

Hjmax
; I ¼ ð0; 1Þ; j ¼ 1; . . .; n ð9Þ

Wj ¼ Ij � FRij ð10Þ

where, b is landslide area in each class divided by the landslides whole area and a is
the class area within a particular factor divided by the basin whole area. More
details on the mathematical process are given in Pourghasemi et al. (2012a),
Youssef et al. (2015a), Chen et al. (2017c) and Hong et al. (2017). The final
susceptibility value was calculated by Eq. 11 (Devkota et al. 2013).

IOE ¼
Xn
i¼1

Z
mi

� C �Wj ð11Þ

where, i is the total number of conditioning factors, Z is the number of classes of the
factor that own the most classes, mi is the number of classes within each specific
factor, C is the calculated rate of each class, and Wj is the final weight of each
factor.
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3.5 Alternating Decision Tree

The concept of machine learning methods argue the things to be learned including
classification learning, association learning, clustering, and numeric prediction
(Witten et al. 2011). Machine learning methods not only are being used for pre-
diction purposes, but also offer a bright insight into the data and the problem space.
Decision trees, as profound machine learning methods, aim at producing an intel-
ligible yet operational result of the learning process. Inputs are sets of instances that
are to be classified, associated, and clustered to predict a target phenomenon. Each
instance is exclusive in essence, in that, it is formed with unique attributes and
features. Decision trees try to recast the relationship between nodes of a tree as
independent instances to summarize combination of these instances and the attri-
butes therein, and to classify them as to landslide or non-landslide localities.
However, finding a flat-file (summarized laws) in the tree may cause some over-
simplification especially when encountering large amount of data and attributes.
Hence, modelers offered recursive pattern learning. Test set are the data to analyze
how well the concept has been learned. In general, decision trees, as an output
representation style, follows a technique called “divide-and-conquer” (Witten et al.
2011). It is simply a visualized set of rules, like what goes on in the mind of a chess
player about moves and endgame probabilities, but more summarized, more
organized, more structured, and more analyzed due to the recursive property of it.

Alternating decision trees combine boosting, as an algorithm for reducing bias
and converting weak learning process to strong one, and decision trees to produce
decision rules (Hong et al. 2015). ADTs’ graphical rule sets form leafs. Each branch
ends in an outcome and goes for another rule until it reaches the root (Holmes et al.
2002; Pham et al. 2016). Although the simpler ADT, a heavily pruned one, will end
in low performance, but an unpruned tree submissively follows the training set
ending in overfitting problems and a weak generalized tree. But, ADT claims that it
can make a simpler tree, yet with less errors and more interpretable results (Freund
and Mason 1999; Pfahringer et al. 2001). Each node begins performing a test on
one or more attributes based on a function or predefined constant value such as the
average of the training set values. Then, nodes split successively throughout the leaf
node based on a weight number proportional to the number of training instances.
Attributes are tested over and over in a path with different constants (rules) (Rokach
2010). Once a set of instances reach the leaf node, a classification will be estab-
lished over them. The final prediction probability forms from summation of all the
weights contributed to the root (Freund and Mason 1999).

3.6 Descriptions of Ensemble Modeling

Ensemble models have reportedly outperformed the traditional statistical methods
(Tien Bui et al. 2012a, 2013). They give more insights on the nature of the
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phenomenon and corresponding factors as they solve the problem of
time-consuming process of running several methods (Nefeslioglu et al. 2010; Jebur
et al. 2014; Umar et al. 2014). The secondary maps obtained from CF and IoE
models were used as inputs to ADTree model in ArcGIS and Weka software.

4 Results and Discussions

4.1 Inferences of CF-ADTree Model

After preparing thematic layers in ArcGIS environment, the CF values were cal-
culated according to Eqs. 2–4 which is presented in Table 1. As shown, the range
between 0 to 200 meters from roads, residential areas in land use map, and the
range between 0.24 to 0.38 in NDVI map with the respective CF values of 0.78,
0.777, and 0.738 had the highest landslide susceptibility, likewise the highest
importance in the modeling process. These results support the fact that areas nearby
roads can be more susceptible to landslide more mainly due to the unsupervised
constructions without a proper foundation and compactness. Similarly, residential
areas are responsible for the redistribution of the old landslides. The CF values
correspond to NDVI are one of the unique examples of vegetation-soil mutual
relationship in which besides the positive functionality of roots in reinforcement of
soils, they can adversely exert a downward force on soil as an extra load when
facing high-velocity winds. The factor importance results (CF values) were fol-
lowed by lithological units (sand and gravel; 0.645), TWI (2.5–3; 0.561), slope
angle (<8; 0.501), altitude (<900; 0.445), distance to rivers (<100, 0.435), SPI
(150–200; 0.415), slope aspect (southwest; 0.346), profile curvature (0.43–1.67;
0.321), distance to faults (<1000; 0.242), STI (<10; 0.226), and plan curvature
(−0.97 to −0.76; 0.176). Unexpected results, such as slope angle, have roots in the
fact that the stronger factors (those with more tangible and understandable landslide
distribution pattern) outweigh the weaker, less important, and less influential ones.

After calculation of CF values and factors’ secondary maps, the Weka software
was used to implement the ADTree algorithm running for 10 iterations on the land-
slide dataset (Fig. 3). The positive and negative values in Fig. 3 correspond to
landslide and non-landslide area, respectively. The alternating tree consists of 10
decision nodes. Parallel decision nodes, those in the same level specifically in the first
level, represent the little or no interaction. That is, NDVI values less than −0.714
increases the landslide susceptibility irrespective to DEMvalues less than−0.469, but
with a different contribution (weights) to the final output (the root). But the lower
nodes should be interpreted correspond with their ancestral decision nodes (Freund
andMason 1999). The reached path to root is shown in Fig. 3 as NDVI (�−0.714)—
slope aspect (<0.215)—STI (�−0.425)—TWI. The final landslide susceptibility
indices were categorized into four classes based on equal area classification method
(Tien Bui et al. 2016b), including very high (VH) (10%), high (H) (20%), moderate
(M) (20%), and low (L) (50%) (Fig. 4).
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Fig. 3 Decision tree for classifying landslide susceptibility using CF-ADTree model

Fig. 4 Landslide spatial prediction map generated from CF-ADTree model
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4.2 Inferences of IOE-ADTree Model

Equations 5–10 were applied to the dataset to calculate classes’ rate and factors’
weight which are summarized in Table 1. As a result, residential areas in land use
map had the highest importance order with the IOE values of (2.607), followed by
distance to roads (0–200; 1.88), NDVI (0.24–0.38; 1.807), altitude (<900; 0.459),
lithological unit (sand and gravel; 0.355), TWI (2.5–3; 0.342), slope angle (<8;
0.256), slope aspect (southwest; 0.11), profile curvature (0.43–1.67; 0.094), dis-
tance to rivers (<100; 0.087), STI (<10; 0.072), distance to faults (<1000; 0.045),
SPI (150–200; 0.041), and plan curvature (−0.97 to −0.76; 0.019). This is exactly
in line with the Wj values where land use factor had highest weight as the highest
importance (0.582), followed by NDVI (0.474) and distance to roads (0.414). In
this regard, plan curvature had the lowest importance in susceptibility modeling.
Apparently, both models (CF and IOE) are speaking in the same way in which the
orders of factors are almost alike. Although some slight differences in orders rest on
the fact that different mathematical algorithm may infer differently, it could not stop
the influential classes from gleaming, so that, the same exact classes were identified
as highly important ones in both models. This, as an interesting result, can also lead
to the same ADTrees and correspondingly to nearly identical susceptibility maps
which makes it hard to find the premier model.

Expectedly, the IOE-ADTree was the same as CF-ADTree; same nodes, same
instances, same path, and even same weights (Fig. 5). The final landslide suscep-
tibility indices were also categorized into four classes based on equal area classi-
fication method (Tien Bui et al. 2016b), including very high (10%), high (20%),
moderate (20%), and low (50%) (Fig. 6).

4.3 Model Performance and Comparison

The ROC curve was adopted here to validate the models’ results. It is a graphical
plot that illustrates the performance of the model. The area under the curve
(AUC) is the measure of differences between models. When using training set, the
curve reflects the goodness-of-fit of a model (known as AUSRC), while test set
validates the models in terms of prediction power and generalization of a model
(known as AUPRC) (Jr and Schneider 2001; Pearce and Ferrier 2000). ROC curve
was made plotting “sensitivity” (correctly detected landslide locations) as vertical
axis versus the “100-specificity” (correctly detected non-landslide locations) as
horizontal axis (Fig. 7).

As shown in Fig. 7a, CF-ADTree, and IOE-ADTree with the respective AUSRC
values of 0.839 and 0.840 are well qualified in terms of fitting well on the training
set. So far, IOE-ADTree is comparatively performing better than CF-ADTree
regarding practicality and goodness-of-fit. According to Fig. 7b, IOE-ADTree
interestingly has even higher predictive power than CF-ADTree. This property, a
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Fig. 5 Decision tree for classifying landslide susceptibility using IOE-ADTree model

Fig. 6 Landslide spatial prediction map derived from IOE-ADTree model
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model with a high fitting ability and even higher generalization, is very special
among modelers. So, now it is possible to introduce the IOE-ADTree as the premier
ensemble model as to assessing landslide susceptibility in the study area which
supports its beneficial property of computing weights and rates congruently.

In addition to the AUSRC and AUPRC in the validation process, the Wilcoxon
signed-rank (Wilcoxon 1945) tests was also used to test the significant differences
between the two models. According to the results (Table 2), the obtained P-value is
less than 0.05 and the z values exceeded the critical values (−1.96 to +1.96), which
indicates that the two landslide models is clearly significantly different.

In order to demonstrate the superiority of hybrid models, the susceptibility maps
obtained from two single bivariate models were reclassified into four classes using
the same method (Figs. 8 and 9). The relative frequency ratio (FR) values were
calculated for each susceptibility class. According to the study reviews, these values
should follow a decreasing pattern from VH to L class (Pradhan and Lee 2010; Tien
Bui et al. 2016a). The results summarized in Table 3 attested to such decreasing
pattern. Results also show that the ensemble models could concentrate more
landslides in the very high class, and the IOE-ADTree model could improve the
performance of IOE model more significantly than the CF-ADTree ensemble
model. Therefore, it can be concluded that the result of the present study is
reasonable.

Fig. 7 ROC curves of CF-ADTree and IOE-ADTree models: a training accuracy; b predictive
accuracy

Table 2 Comparison of the
two models using Wilcoxon
signed-rank test (two-tailed)

Parameters CF-ADTree versus IOE-ADTree

Z value −2.537

p value 0.011

Significance Yes
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Fig. 8 Landslide spatial prediction map generated from CF model

Fig. 9 Landslide spatial prediction map derived from IOE model
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5 Conclusions

Since producing landslide susceptibility maps is the primary prescription to address
most hazardous areas, it is of prime importance to choose a more realistic method
and also to compile more relative landslide-conditioning factors. Nowadays,
ensemble modeling remains an active area of interest in different scientific fields, in
a sense that modeling community is shifting towards hybrid models. In the current
study, two ensemble models with a robust computational algorithm (CF-ADTree
and IOE-ADTree) together with 14 landslide-conditioning factors were employed.
As the first analysis, CF and IOE models both suggested three main factors namely
land use (residential areas), distance to roads (0–200 m), and NDVI (0.24–0.38) as
highly important ones in modeling process and susceptibility of the area to land-
sliding. Therefore, both human-made and natural agents are simultaneously con-
tributing to landslide occurrence. Alternating decision trees helped abovementioned
bivariate statistical models fuse to a summarized yet powerful machine learning
technique to recursively learn the spatial pattern, so that only 10 nodes were
established and tested. Relying on AUSRC and AUPRC tests, IOE-ADTree
ensemble model with the respective values of 0.840 and 0.853 was found to be
more fitted and more generalized in the study area, whose 39% was identified as
highly susceptible to landslide occurrence. Since both models had the same figu-
ration of decision tress, so the successful results of the IOE-ADTress may lies in the
more powerful and complicated algorithm of IOE model. Finally, more pragmatic
actions are required to implement in the area of concern.

Acknowledgements This research was supported by China Postdoctoral Science Foundation
funded project (Grant No. 2017M613168), Scientific Research Program Funded by Shaanxi
Provincial Education Department (Program No. 17JK0511), and College of Agriculture, Shiraz
University (Grant No. 96GRD1M271143).

Table 3 Frequency ratio analysis for landslide susceptibility maps

Class CF CF-ADTree IOE IOE-ADTree

Landslide
(%)

FR Landslide
(%)

FR Landslide
(%)

FR Landslide
(%)

FR

Very high
(VH)

51.61 5.16 56.99 5.70 55.91 5.59 63.44 6.34

High (H) 36.56 1.83 32.26 1.61 32.26 1.61 25.81 1.29

Moderate
(M)

10.75 0.54 9.68 0.48 10.75 0.54 8.60 0.43

Low (L) 1.08 0.02 1.08 0.02 1.08 0.02 2.15 0.04
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Evaluation of Sentinel-2 MSI
and Pleiades 1B Imagery in Forest Fire
Susceptibility Assessment in Temperate
Regions of Central and Eastern Europe.
A Case Study of Romania

Bogdan-Andrei Mihai, Ionuț Săvulescu, Marina Vîrghileanu
and Bogdan Olariu

Abstract Romania is a Carpathian country that experiences an increasing number
of wildfire events. The production of a reliable model for the zonation of the
monthly forest fire susceptibility degrees with a National scale coverage was the
target of the SIAFIM project. Our approach is oriented towards the integration of
complementary satellite imagery in the evaluation of forest fire susceptibility with
the help of data mining techniques. A complex of ground reflectance calibrated
spectral data and vegetation radiometric-biophysical indices is produced at two
different scales and spectral resolutions from Sentinel-2 MSI multispectral imagery
and Pleiades 1B ortho imagery from the month of August, in the region of
Domogled-Valea Cernei, south western Romania. The main objective is the pro-
duction and the evaluation of the representative indices from the available satellite
imagery for the mapping of the forested surfaces sensitive to wildfire hazards. The
analysis confirmed the reliability of some indices for the assessment of forest fire
susceptibility in temperate regions of Central and Eastern Europe: LAI, SAVI,
RedNDVI, Cab. Leaf Area Index (LAI) offer interesting information for the
selected forest stands, between 0.06 and 0.2: pine stands on limestone steep slopes,
Banat black pine stands and beech on shallow soil.
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1 Introduction

Wildfire in temperate regions of Central and Eastern Europe is a natural hazard and
a risk factor, on the background of climatic changes (Flannigan et al. 2000; Dale
et al. 2001; Bowman et al. 2009). Romania is a country with an increasing rate of
the extreme natural phenomena, including wildfires in forested regions and
neighbouring rural/urban areas (Joint Research Center 2014). Particularly, after
2000, the National database from the IGSU (National Emergency Inspectorate)
shows an increasing rate of forest fire events. Between 2000 and 2004, the average
surface affected by wildfires in Romania was 7.77 ha, while the period 2010–2014
is featured by 20.19 ha. The economic losses for 2001–2014 are evaluated at 815
thousand euros.

For the first time in Romania, the SIAFIM project—Satellite Image Analysis for
Fire Monitoring (http://www.intergraph.ro/siafim/index.htm), financed by
European Space Agency/Romanian Space Agency (2012–2015), produced a set of
12 monthly maps of forest fire susceptibility levels at National scale, at 100 m
resolution, as a base layer for a specific product to be developed and used by forest
and environmental managers.

Forest fire hazard modelling is a difficult task because it integrates a big amount of
processed data, with an increased variety and complexity (Chuvieco et al. 2010,
2014). Most of the geospatial information cannot be produced directly from satellite
imagery (Chuvieco et al. 2004; Chuvieco 2000). Data mining techniques can help
finding adequate solutions to map these features from remote sensing data (Datcu
et al. 2003). The large data volumes available in digital format, from simple grids to
multi-channel satellite imagery opened new directions in forest fires analysis and
monitoring (Mithal et al. 2011), employing a complex set of algorithms, from simple
spatial statistics and predictive model development (Han et al. 2003) to machine
learning like Support Vector Machine/SVM, random forest/RF (Cortez and Morais
2007; Arpaci et al. 2014) and neural networks/ANN (Cheng andWang 2008) etc. An
interesting approach is the integration of satellite imagery in forest fire related data
mining approaches (Hsu et al. 2002), at different scales and resolutions. This started
mainly with the development of data clustering and then with the spectral indices
calculation on multispectral data, using NOAA/AVHRR multi-temporal imagery
and the NDVI (Fernandez et al. 1997), and continued with the development of object
base image analysis strategies (Datcu and Seidel 2000). Different contributions focus
on the application of data mining on satellite imagery in: forest fire zones pattern
recognition on NOAA/AVHRR data validated with SPOT XS imagery (Tay et al.
2003), forest fire prediction with weather data and MODIS data in Slovenia
(Stojanova et al. 2006) and with fuzzy sets on MODIS imagery (Angayarkkani and
Radhakrishnan 2009), fire scar object-oriented approach on multi-temporal
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geostationary satellite imagery on METEOSAT-SEVIRI data in Portugal, validated
with AQUA and MODIS data (Umamaheshwaran et al. 2007), modelling of fire
effects like smoke plumes using data mining on MISR-MODIS multi-temporal data
(Mazzoni et al. 2007), fire scar mapping from imagery in Mediterranean region with
MODIS data (Quintano et al. 2011). A general remark is that the approaches focus
on more complex data layer structure with different weights in forest fire suscepti-
bility (Pourtaghi et al. 2016; Pourghasemi 2016), while the use of satellite data is
more or less adapted to larger regions and lower spatial resolution, as the wildfire
phenomena need imagery of higher spectral and temporal resolution like MODIS
data. This is the reason of our approach, covering a smaller mountain region in
temperate forest zone (about 5600 ha), which need the integration of higher spatial
resolution imagery in forest fire prediction.

The recent advances in Earth Observation domain (European Forest Fire
Information System EFFIS ESA COPERNICUS programmehttp://effis.jrc.ec.
europa.eu/) and the launch of a large family of complementary optical sensors
with improved resolutions during the last five years, creates new opportunities for
the production of imagery and derived data for natural hazard evaluation, mapping
and monitoring.

The 13-band multispectral imagery from Sentinel-2A MSI instrument active from
2015 (Drusch et al. 2012; Frampton et al. 2013; Agapiou et al. 2014; Main-Knorn
et al. 2015) and continued with S-2B, in 2017, is already explored in the field of
wildfire hazards modelling (Huang et al. 2016) and radiometric-biophysical indices
production at Global and regional scales (Delegido et al. 2011; Richter et al. 2012;
Majasalmi and Rautiainen 2016). All this open access data offers good opportunities
for large fire monitoring, but there are a lot of events, mainly in temperate regions,
affecting smaller areas of few hectares which can be mapped and monitored only
with very high resolution imagery.

Pleiades 1B ortho imagery is an example of VHR (Very High Resolution)
images (2 m resolution multispectral data, 0.5 m resolution panchromatic data)
with a superior pixel depth at 12 bits, especially designed for security and defence
purposes, including natural hazard monitoring during the extreme events (Maxant
et al. 2013). This commercial imagery is produced on pre-order unlike Sentinel-2
MSI (5-day temporal resolution from 2017), but it can provide the key features of
the event effects, if obtained immediately afterwards (ex. burned area detailed
mapping and inventorying). Usually, the Pleiades 1B products are integrated into
multi-sensor approach related to wildfire hazards (see http://www.bigdataearth.com/
major-events/2016-fort-mcmurray-wildfire-satellite-imagery/).

The objective of this paper is the evaluation of some representative radiometric
and biophysical indices to be used for the identification and mapping of the highly
susceptible forest stands to forest fires. These data layers derived from comple-
mentary satellite imagery are analysed together with the recorded burned area
polygons at local scale, in order to extract the significant thresholds for these indices
that could be assigned to other stands on larger areas.
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1.1 Study Area

The assessment of the forest fire susceptibility for the entire territory of Romania is
a difficult task, particularly when the susceptibility model training is performed
selecting random areas with point samples on different imagery coverage. This is
almost impossible for many of the regions where wildfire events in the official
records are those that affect more than one hectare.

This was the reason we select a test area from southwestern part of the Romanian
Carpathians, where forest fire affects every summer some stands like the protected
Banat black pine (Pinus nigra ssp. Banatica) and the beech stands (Fagus silvatica
moesiaca). This region (Fig. 1) is a group of mountains and plateaus featured by an
intensive tectonical fragmentation along the Cerna River Valley, Northern from the
Danube River Defile. It is centred on the Mehedinți Mountains ridge (1466 m a.s.l.
in Vârful lui Stan Peak), a limestone ridge on granitic bedrock, with a lot of
protected landscape elements (around Domogled Peak—1105 m, there are sharp
ridges with Banat black pine stands). This area from the Danube River to the north
and the northeast is affected by longer dry periods between July and September,
under the Submediterranean climatic influence (Pătroescu et al. 2007; Clima
României 2008). This creates favourable conditions for wildfire ignition and
spreading, on the forest stands covering shallow soils with little clay horizon and
especially on limestone rocks (Török-Oance and Török-Oance 2002). It is the effect
of high temperatures combined with the anthropogenic activity like grazing, traffic
and tourism, as in Băile Herculane resort area, famous for thermal and mineral
springs since Roman times. The local forestry district official statistics (2000–2013)
records a lot of forest fires in Domogled Mountain protected area (297 ha). After the
year 2000, the magnitude and the recurrence of forest fires increased to 4–5 bigger
events per summer.

2 Satellite Images Processing

The analysis is focused on the integration of two complementary satellite images
(Table 1), centred on the same study area, in order to produce a reliable set of
indices and to map the vegetation types, especially the exposed forest stands and
other features usually affected by wildfires.

Both datasets were calibrated for the production of the upper level products
containing the ground surface reflectance. Pleiades ortho image features a limited
spectral resolution, offering only the reflectance in four spectral channels, from
visible to near infrared. After the atmospheric correction using FLAASH processor,
the topographic correction was not performed, because the available elevation
dataset, produced from topographic map is limited to a resolution of only 10 m. In
this context we used visual interpretation combined with field observation for the
mapping of the fire affected stands.
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The Sentinel-2 MSI, L1C product from ESA Copernicus archive, is limited to
10 m spatial resolution but it features a higher spectral resolution (13 channels),
with an adequate coverage of the peak reflectance intervals for vegetation canopies
(Drusch et al. 2012). After the atmospheric correction of the product using the

Fig. 1 The study area, centred on Mehedinți Mountains—Domogled Ridge, south-western
Romanian Carpathians. Sentinel-2A MSI from August 31, 2015, natural colours (ESA-Copernicus
Scientific Hub)

Table 1 Basic features of satellite data sources

Satellite
image
product

Source Date Spatial
resolution

Spectral
resolution

Radiometric
resolution
(pixel depth)

Processing
level

Pleiades 1B
Ortho

Astrium/
Airbus
Defence and
Space
TradsymSrl
Bucharest

2013/
08/20

2.0 m
MS
0.5 m
Pan

4 bands
(visible,
NIR)

12 bits L1B
Orthorectified
UTM/
WGS-84

Sentinel-2A
MSI L1C

ESA
Copernicus
Scientific
hub

2015/
08/31

10, 20,
60 m MS
—native

13 bands
(visible,
NIR,
SWIR)

12 bits L1C-TOA
calibrated tile
Orthorectified
UTM/
WGS-84
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Sen2Cor processor (ESA SNAP 5.0), the dataset is resampled to the essential
ground reflective bands, covering visible, near infrared and short wave infrared
intervals. Topographically normalised L2A data is obtained after the illumination
correction process using a 10 m spatial resolution DEM (digital elevation model),
generated from contour lines (Romania Topographic Map, scale 1:25,000, pro-
duced by Romanian Military Topographic Directorate). Because of the higher
spectral resolution in infrared (7 bands), the L2A product is used as a key data
source in vegetation radiometric and biophysical indices production.

The processing workflow follows two directions adapted to the integration of
data extracted from the complementary satellite imagery. First, a complex of
radiometric and biophysical indices is generated from the ground reflectance cali-
brated data of both type of imageries. The 13-band Sentinel-2 imagery allows the
calculation of a high number of radiometric, as well as biophysical indices, but only
some of them are relevant for our purpose. Although it offers a fine spatial reso-
lution, the indices derived from Pleiades 1B ortho image are limited because of the
four spectral channels with a high correlation degree.

Secondly is the evaluation of the separability of the land cover classes and forest
types, in order to select the relevant bands and indices for the identification of the
areas potential susceptible to wildfires.

For data processing purpose, a separate layer is derived from the vector file
representing the forest fire scars inventory 2000–2013, collected from the archives
of the local forestry district of Băile Herculane. The polygons are spatially and
statistically overlaid with each radiometric and biophysical index. Zonal statistics
tool made possible the production of two parameters like mean and standard
deviation for the areas where fires have occurred. These values are essential in
building a Gaussian distribution of the indices values for the thresholds definition in
forest stand fire susceptibility modelling for the entire area of study. The first
standard deviation values were used to define the specific thresholds for each index
according to the forest fire susceptibility level.

Finally, a thematic classification of land cover correlated to forest stands
typology is obtained from Sentinel-2 MSI calibrated data in order to validate the
characteristic thresholds of some indices.

3 Derived Products and Evaluation

Decorrelated datasets help to discriminate between forest stand classes. Indeed,
each index should bring different information about the components of the cano-
pies, from greenness to moisture content, chlorophyll content and quality etc. The
available datasets represented by the spectral bands of the images were stacked
together with the derived data like different radiometric and biophysical indices.
The primary reflectance data is usually limited in information and correlated, like in
the case of visible bands of Pleiades 1B image and for a smaller part of the
Sentinel-2 MSI image (bands 1, 2, 3 and 4).
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Figure 2 shows the separability diagrams between thematic classes (forest stands
and land cover types) in different spectral bands, radiometric and biophysical
indices. It is easy to note that forest stands, including Banat black pine and the
sparse beech stands of shallow soil or bedrock (limestone, sandstone, schyst and
granite) have a good separability on Sentinel-2 red-edge bands and some nor-
malised indices. The best separability is reflected by the standard deviation shifting
featuring the spectral reflectance for the selected classes.

From the complex of radiometric and biophysical indices created on calibrated
Sentinel-2 and Pleiades 1B data, only those having the highest separability and
being significant for the determination of the areas susceptible to wildfires are
selected (Table 2). Biophysical (LAI, Cab) and radiometric (RedNDVI, SAVI)
indices have been proved to be the most useful according to the temperate climatic
conditions of Romania. Each of those datasets is the subject of a zonal statistics
approach, that return the mean and standard deviation in and outside of the burned
area polygons, collected from the records of the local forestry district at Băile
Herculane, 2000–2013. Each of the fire affected forest stand is almost homogenous
as regards the species and the environmental conditions. For example, forest fire
areas correspond very well with Banat black pine and beech canopies on shallow
soil or bedrock. The polygons can be assigned to data samples with a Gaussian
distribution of the environmental parameters. This is a step in drawing the char-
acteristic thresholds for the segmentation of each index layer following the
Gaussian distribution of the extracted data, at one and two standard deviations from
the mean value (Table 2).

A set of 3723 random points (with a density of one point per hectare) is used for
the extraction of the corresponding values of each raster-index. From those, 292
points overlap the burned areas polygons recorded between 2000 and 2013. The
mean and standard deviation parameters of the indices values within the burned
areas are used for the thresholds establish. The level which shows the most exposed
vegetation areas to fire is situated in the first standard deviation interval, as observed
from the overlay between the largest burned area polygons and the layers featuring
the selected indices. The segmentation process of the indices derived for the entire
study area image, based on the thresholds, is structured in five classes corre-
sponding to the interval between the mean values and the first of the three standard
deviations (Fig. 3).

For most of the selected indices—LAI, SAVI, Cab, RedNDVI—the first stan-
dard deviation interval indicates the vegetation areas with high burning potential.
High exposure is revealed for areas covered with black pine (in all vegetation cases
related with the slope—Fig. 4), pastures or even sparse beech forest developed on
soils having high porosity, high level of stoniness and low water retention potential,
according to the documentation from the Mehedinți county Office for Pedological
Studies and Agrochemistry. From these vegetation categories the pine remarks itself
as being the best fuel, containing a high level of resin and growing on high level of
stoniness soils (Pătroescu et al. 2007). This aspect is very well captured by SAVI,
an index showing the canopy typology and state, taking into account the soil
spectral properties. The beech forest developed on deep soils which contain a high
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Fig. 2 The separability of thematic classes evaluated for spectral data and derived indices for
Sentinel-2 (a and b) and Pleiades 1B (c), using the mean spectral reflectance and standard
deviation values
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Fig. 3 Radiometric and biophysical indices produced from Sentinel-2A MSI imagery. The
segmentation is based on the standard deviation defined threshold
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level of clay and water, are very resistant to fire ignition and spreading (Mihai and
Săvulescu 2014). These forest stands falls between the second and the third stan-
dard deviation values of all the indices. Low burning potential is also specific to
areas where the fuel has been exhausted by fire events in the last year (2015 for
Sentinel-2 and 2013 for Pleiades) and where the vegetation didn’t have enough time
to recover.

Because of the limited spectral resolution of the Pleiades imagery, the number of
derived indices is low: NDVI, GNDI and NDWI (Fig. 5). The same as Sentinel-2,
mean and standard deviation values are used for segmentation threshold definition.
According to different authors (Gitelson et al. 1996), in comparison with the NDVI,
where the first two standard deviations are used for the definition of the burning
potential, GNDVI is five time more sensitive to the chlorophyll content, being
useful for differencing the vegetation stress and senescence.

The thematic classification generated from Sentinel-2 image (Fig. 6) can help the
identification of forest canopies with a higher susceptibility to forest fires, using the
spatial overlay between the most representative indices and the forest stand-land
cover. The thematic classification used the SVM (Support Vector Machine) algo-
rithm, based on an adequate volume of ROI polygons: five degree polynomial
kernel with gamma factor of 0.05 for the production of the hyperplanes between
classes.

Fig. 4 Black pine forest stands, highly susceptible to forest fires on the steep slopes of Domogled
Mountain, near Băile Herculane resort (Photo I. Săvulescu, April 2014)
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4 Discussion and Conclusion

The statistical approach shows the distribution of forest stand data and land cover
features according to the values of the indices. Figure 7 is an example of statistical
correlation between mean and standard deviation of the vegetation classes and LAI
values, in this case. This example shows that the mean and the standard deviation of
the Banat black pine stands class have a good correspondence with the interval
defined by the first standard deviation of LAI. This demonstrates the reliability and
the validation of the characteristic segmentation thresholds.

The current approach covers a limited region with protected forest stands and
integrates recent satellite data offering reliable information on burned areas, from the
months of August, featured by the most frequent events. In this context, we produced
data at higher spatial resolution (10 m and, even 2 m), in comparison with other
approaches focused on larger areas like tropical forests from Amazonia (Anderson

Fig. 5 Pleiades 1B ortho imagery, for the study area of Domogled-Băile Herculane and the three
derived spectral indices
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2012; Matricardi et al. 2010), boreal forests from Canada (Serbin et al. 2013) and
Mediterranean vegetation from Spain (Maffei and Menenti 2014). Most of them
tested different indices on MODIS imagery at coarser spatial resolution and very few
on medium resolution imagery like Landsat. Caspard et al. (2015) produced data for
the vegetation recovery after forest fires in Reunion Island by integrating higher
resolution imagery, like SPOT, Pleiades and WorldView-2. All these contributions
tested a limited number of indices like LAI, SAVI and NDVI. This case study applies
a larger collection of indices for a detailed analysis of the forest fire susceptibility in a
protected area with forest stands at risk (Domogled-Valea Cernei National Park).

The selected indices are evaluated with statistical parameters and validated with
the canopy spatial coverage data. We propose a collection of complementary
radiometric and biophysical indices and characteristic thresholds to be used for the
temperate region forests, and mainly for mountain and hilly regions of Central and
Eastern Europe in order to separate the forest fire susceptibility different canopies.

Fig. 6 Thematic classification of Sentinel-2 MSI derived data (10 m resolution) and the spatial
configuration of burned areas (2000–2013) in Domogled-Băile Herculane area
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The approach of using two satellite imagery types with complementary char-
acteristics, at two different spatial scales offers the advantage to explore two series
of spectral reflectance measurements collected right after forest fire events.
Sentinel-2 MSI images have an advantage in comparison with Pleiades 1B, because
of the superior spectral resolution in the infrared domain. In the same time, they
have a good temporal resolution of five days, which is useful for these phenomena,
especially when they affect larger surfaces of hectares. Pleiades 1B are superior in
spatial resolution, and this is an advantage for isolated features recognition like fire
ignition point, but their spectral resolution is rather limited, while the temporal one
is strictly controlled between archive data or pre-ordered imagery.

SAVI returns good results, being a measure of the reflectance in red of the pixels
showing sparse vegetation areas. This index includes in the NDVI equation the L
factor which indicates the variation of the soil pixels in the vegetation plots. In
temperate regions, the sparsely vegetation is an indicator of the limited conditions
for growing. For example, the Banat black pine is a species which can grow in these
limited conditions, resulting a high exposure to fire events.

The indices successfully used in the Mediterranean region for this type of
analysis (i.e. NDBR—Normalized Difference Burning Ratio, indices that evaluate
the water content in the soil, MSI—Moisture Stress Index, NPCRI—Normalized
Pigment Chlorophyll Ratio Index) cannot be applied in the temperate areas, where
our study area is located. For example, high values of vegetation density in the
Mediterranean region are associated with a high burning potential, opposite to the
situations observed in the temperate region.

Fig. 7 Statistical correspondence and validation between selected canopies and LAI values,
produced from Sentinel-2 MSI imagery from August, 31 2015
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Still, there are some limitations in the use of the indices related to the vegetation
specific features such as chlorophyll, carbon or water content. For example, the
vegetation index fAPAR, didn’t have a good result because it evaluates the carbon
content and nutrients cycle, which does not help in differentiating the burning
potential. Despite this, in temperate regions, the vegetation indices are more suit-
able for the identification/mapping of the forest fire susceptibility.

Acknowledgements The research was done in the framework of SIAFIM project (Satellite Image
Analysis for Fire Monitoring), 2012–2015, financed by ROSA-Romanian Space Agency and
ESA-European Space Agency.
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Monitoring and Management of
Land Subsidence Induced
by Over-exploitation of Groundwater

Maryam Dehghani and Mohammad Reza Nikoo

Abstract Most plains in Iran are subject to land subsidence due to over-exploitation
of groundwater mainly for agricultural purposes. Synthetic Aperture Radar
(SAR) interferometry has shown its ability to provide precise measurements of the
ground surface displacement at high spatial and temporal resolution. In SAR
interferometry, the processed interferograms are combined together via interfero-
gram stacking or time series analysis. Stacking is a temporal averaging of the
interferograms which results in mean displacement velocity. However, time series
analysis of a significant number of interferograms enables us to study the short-term
as well as ling-term behavior of the subsidence. In this research, three different case
studies were accomplished for subsidence monitoring. The subsidence in the
Varamin plain was studied using 13 ENVISAR ASAR images spanning between
2003/08/03 and 2005/11/20. The maximum subsidence rate extracted from Small
Baseline Subset (SBAS) time series was estimated as 0.4 m/year. The second case
study was to monitor the subsidence in the Neyshabour plain. In this area, the
interferogram stacking using 9 ENVISAT ASAR images spanning between 2004/
01/10 and 2005/06/18 was applied. The maximum subsidence rate was estimated as
0.16 m/year. Groundwater level measurements made at piezometric wells were
applied to compare to the interferometry results. The piezometric wells mostly show
the increase in water level depth caused by over-exploitation of groundwater. The
groundwater information jointly with stratigraphic profiles highly correlate with
subsidence in the area. In the last case study, the Persistent Scatterer Interferometry
(PSI) which is a proper method of time series analysis in areas with high decorre-
lation effects, was used in the Shahriar plain. A hybrid method of conventional and
PSI was proposed in order to address the problem of monitoring the high-rate
deformation. There are 22 ENVISAT ASAR images available in the study area
spanning between 2003 and 2008. The maximum subsidence rate was estimated as
0.25 m/year. The time series analysis results were then compared to the groundwater
level information at piezometric wells. Due to the low correlation between water
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level decline and subsidence rate at some piezometric wells, it can be concluded that
other geology and hydrogeological factors play important role in controlling the
subsidence occurrence. To show this, two data mining methods including
Multi-Layer Perceptron (MLP) neural network as well as Support Vector Regression
(SVR) were applied to model the subsidence in Shahriar plain using 6 different
geology and hydrogeology factors as input and the subsidence rate extracted from
interferometry as output of the model. These models can be further applied to
estimate the subsidence rate in pixels in which the interferometry technique cannot
measure the deformation due to some reasons including insufficient correlation.

Keywords Subsidence � Interferometry � Persistent scatterer
Groundwater information � Data mining

1 Introduction

Deficiency in precipitation over an extended period makes people exploit
groundwater mostly used for agricultural activities. Over-exploitation of ground-
water causes increasing of the effective stress within an aquifer system which
consists of compressible fine-grained sediments. Hence, the fine-grained interbeds
within aquifer system are generally compacted due to the changes in stress. This
leads to land subsidence which results in damage to structures and buildings.

Land subsidence caused by exploitation of groundwater is considered as a main
concern in different parts of the world (e.g. Poland and Davis 1969; Tolman and
Poland 1940; Galloway et al. 1998, 1999). In Iran which suffers from lack of
rainfall, land subsidence mainly occurs in the cultivated areas. In some cases, the
subsidence extends to the residential areas causing environmental consequences
including damage to buildings, pipelines, roadways, well casings and surface
runoff. Moreover, earth fissures may be appeared on the ground surface subject to
land subsidence. Sinkholes as devastating consequences are common phenomena in
areas subject to land subsidence. Sediment compaction within the aquifer system as
a result of groundwater withdrawal makes such big spaces.

Geological Survey of Iran (GSI) jointly with other organizations such as
National Cartographic Center (NCC), initiated a comprehensive program in 2004 to
monitor the subsidence in most parts of Iran. The first and foremost step is to
measure the ground deformation caused by subsidence. Precise leveling and Global
Positioning System (GPS) observations as two reliable sources of information have
been vastly used for subsidence monitoring; however, these techniques are able to
measure the amount of displacement only at the leveling and GPS stations. Hence,
the spatial pattern of the subsidence can be barely identified using the leveling and
GPS measurements.

Interferometric Synthetic Aperture Radar (InSAR) as a space-based method can
measure the ground surface displacement at large coverage and high spatial reso-
lution (Galloway et al. 1998; Lundgren et al. 2001; Dehghani et al. 2013). Using
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two SAR satellite images taken at different times, this technique is able to measure
the land surface deformation occurred between two acquisitions. InSAR has been
utilized in different studies to monitor the land subsidence (Dehghani et al. 2010,
2013). Similarly, InSAR has been widely applied to study the subsidence behavior
in several parts of Iran since 2006. In most studies carried out in Iran, besides the
subsidence spatial pattern, its temporal behavior has been studied as well using
interferometry time series analysis. Various methods of time series analysis were
employed based on the study areas characteristic and the data availability.
Conventional InSAR fails to measure the deformation when there is large amount
of vegetation and/or the temporal and spatial sampling of the data is poor. In this
case, a newly-developed approach, namely Persistent Scatterer Interferometry
(PSI) based on InSAR, has been used. The main goal of this article is to present the
history of using InSAR in different parts of Iran as well as the results achieved. The
next section is devoted to introduce the InSAR followed by time series analysis
techniques. The results of applying InSAR to different areas will be presented in
Sect. 3. Section 4, finally, presents important conclusions on monitoring
subsidence.

2 SAR Interferometry Method

SAR Interferometry makes use of phase measurements of two Single Look
Complex (SLC) SAR images taken at different times to produce the deformation
map. The phase difference, namely as interferometric phase composes of different
components including deformation (/D;x;i), earth curvature (/Curv;x;i), topographic
effect (/topo;x;i), atmospheric signal (/Atm;x;i), and noise phenomenon due to
decorrelation (/N;x;i) as shown in Eq. 1:

wx;i ¼ Wf/D;x;i þ/Curv;x;i þD/topo;x;i þD/Atm;x;i þ/N;x;ig ð1Þ

It should be noted that the interferometric phase is wrapped which means that its
value is in the [−p,p) interval. W{.} presents the wrapping operator.

In order to retrieve the component due to the deformation phase /D;x;i, several
steps has to be accomplished according to Fig. 1. The method starts with two
SLC SAR images: master and slave images. A critical procedure in InSAR is image
coregistration which is the pixel-to-pixel alignment of two SAR images (Li and
Bethel 2008). The phase difference between master and slave images, which is
called interferogram, is then computed.

The phase component due to earth curvature is estimated using the spatial
baseline value and subtracted from the interferogram. A residual phase, called
residual orbital error, however is remained due to imprecise baseline value which
can be further easily estimated and removed from the interferometric phase.
Topographic contribution to the phase is removed by means of an available Digital
Elevation Model (DEM). In this differential interferogram, each phase cycle is
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called a fringe originated from ground displacement of half the radar wavelength.
Once the differential interferogram is generated, it is low-pass filtered using an
adaptive power-spectrum filter to suppress the phase noise mainly induced by the
decorrelation of master and slave images. It should be noted that the phase com-
ponent due to atmosphere is further reduced through the time series analysis. Phase
unwrapping as a procedure of adding up the consecutive fringes is then performed
in order to produce a continuous deformation field. Finally the displacement is
calculated by using a multiplication factor of k

4p. The displacement interferogram is
finally resampled from the slant-range radar geometry into the geographic coordi-
nate system. This interferogram illustrates the ground surface displacement between
master and slave acquisitions; however, it is possible to infer the spatial and tem-
poral behavior of the subsidence by using considerable number of differential
interferograms through the time series analysis (Lanari et al. 2004). Time series
analysis enables us to study the short-term and long-term behavior of a
continuously-occurring phenomenon such as subsidence. The spatial and temporal
separation between the master and slave, namely spatial and temporal baselines,
should be small enough to essentially decrease the decorrelation phenomenon. The
coherent interferograms processed are then applied in the time series analysis to
generate the subsidence time series as well as the mean subsidence velocity map. In
the next section, two different approaches of time series analysis will be introduced.

Fig. 1 Block diagram of conventional interferometry
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2.1 Conventional Time Series Analysis

InSAR time series analysis is used in order to study the temporal behavior of land
subsidence. If we generate as many independent interferograms as acquisition dates,
we are able to obtain the subsidence time series in a least square inversion process
(Dehghani et al. 2010). Time series analysis method in which the interferograms
with small temporal and spatial baselines are processed is named as Small Baseline
Subset (SBAS). Several algorithms for SBAS have been presented in different
studies (Berardino et al. 2002, Dehghani et al. 2009a, b, 2010). The steps of the
simplest one is depicted in Fig. 2.

In the first processing stage, a plane is fitted to the phase values outside the
deformation area and then subtracted from the interferograms to remove the
residual orbital effect (e.g. Funning et al. 2005). The flattened interferograms are
then inverted using a least squares approach in order to estimate the deformation at

Fig. 2 Flowchart of the conventional time series analysis
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each acquisition. A smoothing constraint is added into the least square inversion to
decrease different errors such as noise, atmospheric effects and unwrapping errors
(e.g. Schmidt and Burgmann 2003; Lundgren et al. 2001). The smoothing factor
used in the smoothing constraint is determined optimally by considering the Root
Mean Square Error (RMSE) of the least squares inversion problems (Dehghani
et al. 2009a, b).

Time series analysis results involves two different products including defor-
mation time series and mean displacement velocity map. The former is used to
monitor the temporal behavior of the deformation while the latter indicates the main
features of the deformation. The presented method has been applied to monitor the
subsidence in many parts of Iran a couple of which will be presented in Sect. 3.

When the number of interferograms is less than the image acquisitions, it is not
possible to apply the Least squares inversion due to the rank deficiency of the
design matrix. In other words, the system of equations is underdetermined as there
are fewer equations than unknowns. In this case, a method called “interferograms
stacking” which temporally averages the coherent interferograms is applied.
Accordingly, long-term behavior, i.e. deformation rate �/x, of the subsidence signal
is obtained as follows:

�/x ¼
PN

k¼1 /
k
xPN

k¼1 t
k
x

ð2Þ

where /k
x is the phase of the xth pixel in the kth coherent interferogram with the

temporal baseline of tk. Interferogram stacking as well as the SBAS time series
analysis approach requires the coherent interferograms which can spatially be
unwrapped. If the study area is covered by a large amount of vegetation or the
spatial and temporal sampling of the available datasets is poor, the conventional
interferometry cannot be used appropriately to measure the deformation due to the
loss of decorrelation.

2.2 Persistent Scatterer Interferometry

In the late 1990s, it was discovered that some targets exist on the ground, named as
Persistent Scatterer (PS) whose backscattering characteristics is somehow constant
in time. The deformation can be easily estimated over these PS points over long
time period using Persistent Scatterer Interferometry (PSI).

There are various algorithms of PSI being different in two main issues: (i) PS
pixels identification, and (ii) phase unwrapping. Among all PSI algorithms,
Stanford Method for PS (StaMPS) method developed by Hooper et al. (2007) is the
most appropriate one for deformation monitoring in areas lacking man-made fea-
tures such as cultivated lands subject to subsidence. In this technique, the amplitude
dispersion index is firstly utilized to select the PS candidates (Ferretti et al. 2001).
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The PS pixels are finally identified according to the phase analysis (Hooper et al.
2007). The phase unwrapping in StaMPS includes two main steps: (i) temporal
unwrapping which is the unwrapping of phase difference between nearby pixels
over time using Nyquist sampling criterion, (ii) spatial unwrapping in which the
pixels are spatially unwrapped using a cost function resulted from the first step
(Hooper 2010).

StaMPS can be well applied when the deformation rate is low; however, in the
reverse case, i.e. high deformation rate, the Nyquist sampling criterion stating that
the phase difference between two nearby pixels in time should be less than half a
cycle is not met. In this case, the deformation rate is underestimated. In 2013 a
method which is a combination of conventional and persistent scatterer interfer-
ometry, i.e. StaMPS, was developed to address this problem (Dehghani et al. 2013).
The main idea of the method is to decrease the deformation rate by subtracting a
mean rate extracted from a couple of coherent interferograms processed by con-
ventional interferometry so as to reduce the likelihood of aliasing. In the presented
method, the PS pixels are identified using the amplitude and phase analysis pro-
posed by StaMPS. The unwrapping step is applied on the phase from which the low
pass component of the deformation is subtracted. Figure 3 illustrates the flowchart
of the proposed method.

Fig. 3 flowchart of the hybrid method
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The proposed algorithm based on StaMPS is originally developed for subsidence
monitoring due to the number of reasons: (1) subsidence phenomenon is mostly
occurred in the cultivated lands lacking in man-made features. Hence, StaMPS can
be efficiently used to identify PS points; (2) in most cases, the subsidence rate is so
high to meet the Nyquist sampling criterion. As a result the subsidence rate is
underestimate; however, the proposed method can therefore estimate the subsidence
rate correctly.

Conventional interferometry as well as the hybrid method are applied on dif-
ferent areas located in Iran to monitor the subsidence occurred by over-exploitation.
In most case studies, the results obtained by interferometry are compared with
groundwater information. In the next section, the results of some are presented.

3 Interferometry Monitoring of Subsidence in Iran

In most parts of Iran, lack of precipitation makes people extract water from aquifer
systems. This results in groundwater level decline followed by subsidence. Since
2006, SAR interferometry approach as one of the essential steps in monitoring
subsidence have been employed in various areas including Tehran-Shahriar,
Ghazvin, Karaj, Varamin, Hashtgerd, Mashhad, Neyshabour, Mahyar, Sirjan,
Rafsanjan, Kerman, Ardebil, Hamedan, Fasa, Darab plains, etc. We selected three
case studies on which three different methods of interferogram stacking, SBAS and
hybrid have been applied as presented in this section.

3.1 Case Study 1: Varamin Plain

Varamin plain located in south of Tehran province is subject to subsidence due to
the exploitation of groundwater. Figure 4 depicts sinkhole as a consequence of the
subsidence in Varamin plain.

In order to study the short term and long-term charactersitic of the subsidence,
SBAS approach was applied. 13 ENVISAR ASAR SLC images spanning between
2003/08/03 and 2005/11/20 were used to process 22 differential small baseline
interferograms. Acquisition geometry of the available radar data as well as the
processed interferograms are presented in Fig. 5.

Time series analysis method presented in Sect. 2.1 was employed in order to
generate deformation time series. To indicate the main objects of the deformation,
mean subsidence velocity map was calculated by utilization of the time series
analysis results (Fig. 6).

According to Fig. 6, the maximum subsidence rate along the line-of-sight
(LOS) which belongs to the residential areas is 40 cm/yr. which is a cause for
concern. Some closed patches probably due to unwrapping error in some single
interferograms are presented as uplift which should be ignored in the interpretation
process.
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Fig. 4 Sinkhole as a consequence of subsidence in Varamin plain

Fig. 5 Acquisition geometry of radar data: temporal baselines against spatial baselines. Solid
lines indicate the processed interferograms
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The mean subsidence velocity map presents the long-term average of the surface
deformation. However, the time series analysis allows for identifying the short-term
behavior of the subsidence such as seasonal fluctuations (e.g. Lanari et al. 2004).
Hence, in order to study the temporal evolution of the deformation, deformation
time series at a selection of points are presented. These points are located in various
parts of the study area: (i) within the area of the maximum subsidence rate,
(ii) along the margin of the subsidence and (iii) outside the subsidence area.
Deformation time series as the chronological sequence of the deformation are
demonstrated in Fig. 7.

Deformation time series at the selected points are characterized by nearly con-
stant long-term rate on which the seasonal fluctuations due to discharge and
recharge of the aquifer system are superimposed. For instance, the deformation
sequences of points A and B show the decelerated subsidence in the recovery
season, i.e. from September 2004 to March 2005. The reason for this change is
groundwater aquifer recharge occurred in winter season.

According to the time series plots of points C and D, the seasonal effects are less
pronounced probably due to insufficient recharge of the aquifer system. Moreover,
in points E and F, no subsidence signal is observed since these points are located
outside the subsidence area. An absence of bias in the time series plots of points E
and F indicates that the residual orbital and atmospheric errors have been efficiently
removed through the time series analysis process.

As a conclusion, the study area is subsiding with a rather constant rate indicating
that the compaction of the aquifer system occurs inelastically associated with
over-exploitation of groundwater. Other important factor affecting the subsidence
rate is the soil types which constitutes the aquifer system. The subsidence is
insignificant when the aquifer system composes of gravel and sand which are

Fig. 6 Mean subsidence velocity map of Varamin subsidence. Maximum subsidence rate is
estimated as 40 cm/yr
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non-compressible sediments (Dehghani et al. 2010). Integration of the
Interferometry results with other sources of information such as geology and
hydrogeological parameters in order to model the subsidence is considered as
further studies in Varamin plain.

Fig. 7 Deformation time series at different points: a A, b B, c C, d D, e E and f F whose locations
are shown in Fig. 6. Solid lines in the plots indicate the regression line fitted to the plots
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3.2 Case Study 2: Neyshabour Plain

During the last two decades, Neyshabour plain, located in northeast of Iran has been
subject to land subsidence associated with the compaction of the aquifer system.
Groundwater level has been monitored monthly by the Water Management
Organization through piezometer installations. The aquifer hydraulic heads have
been significantly declined due to the over-exploitation of groundwater to provide
water for agricultural purposes. The aquifer system composed of highly com-
pressible fine-grained sediments has experienced remarkable compaction leading to
high-rate land subsidence. Expansion of subsidence to Neyshabour city as a his-
torical city in Iran would be a cause for concern. Subsidence monitoring as the first
step to mitigate its negative effects is required.

Interferometry as the most efficient method to monitor the subsidence in
Neyshabour has been employed. 9 ENVISAT ASAR images spanning between
2004/01/10 and 2005/06/18 were utilized to process 8 coherent interferograms.
Rank deficiency in Least Squares solution associated with insufficient number of
interferograms, made us use interferogram stacking approach instead of time series
analysis. Acquisition geometry of available data in the area is illustrated in Fig. 8.

The mean subsidence velocity map as the main product of stacking enables us to
identify the long-term behavior of the subsidence. Spatial pattern of the subsidence
shows a complex form surrounding Neyshabour city. The maximum deformation
rate along the line-of-sight (LOS) is estimated as 16 cm/yr. as observed in Fig. 9.

Fig. 8 Acquisition geometry of available radar data in Neyshabour area. Solid lines indicate the
processed interferograms
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Groundwater level measurements made at piezometric wells were applied to
compare to the interferometry results. Three groups of piezometric wells located
outside, in the middle and along the margin of the subsidence area have been
selected for investigation. The temporal water level fluctuations at these wells are
illustrated in Fig. 10. As observed in Fig. 10, the piezometric wells mostly show
the increase in water level depth caused by over-exploitation of groundwater.

The water level depth of piezometric wells which are located outside the sub-
sidence area does not show a significant increase except for W6. The reason is
probably due to the soil type constituting the aquifer system at this location.

Fig. 9 Mean displacement velocity map of Neyshabour plain

Fig. 10 Water level depth variations of piezometric well located: a outside (W6, W9 and W7),
b in the margins (W5, W17, W8 and W33) and c in the middle of the subsidence area (W32, W16,
W31 and W14)
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Coarse-grained non-compressible sediments does not allow for remarkable com-
paction of the aquifer system.

Among the piezometric wells which are located along the margin of the subsi-
dence (Fig. 10b), the maximum water level decline of more than 15 m during
10 years belongs to W5, showing the high subsidence rate as well. A small water
level decline in other wells (Fig. 10b, c) produces the high subsidence rate.
Therefore, it is observed that subsidence is a function of both the hydraulic head
decrease and other important factors including the soil type of sediments composing
the aquifer system.

For better interpretation of the subsidence in the Neyshabour plain, stratigraphic
profiles at three exploration wells whose locations are depicted in Fig. 9 were
investigated (see Fig. 11). It should be noted that these exploration wells are the
only ones available in the study area. All of the three exploration wells are located
in the margin of the subsidence area. According to Fig. 11, fine-grained sediments
including clay and silt is the most frequent constituent composing the aquifer
system. An increase of effective stress caused by water level withdrawal leads to
considerable compaction.

Another issue to be considered is a time delay between the water level decline
and compaction of the aquifer. This happens because of the low vertical hydraulic
conductivity of compressible sediments. In addition, other geology and hydroge-
ological parameters including specific storage coefficient, permeability and

Fig. 11 Stratigraphic profiles at the exploration wells within the study area
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thickness and depth of the underlying interbeds will determine the correlation
between water level decline and subsidence happening in an area.

3.3 Case Study 3: Shahriar Plain

The southwestern part of the Tehran basin, Shahriar plain, has experienced sig-
nificant land subsidence caused mainly by groundwater extraction from pumping
wells. An annual water level decline of 40 cm makes the effective stress of the
aquifer system increase resulting into compaction. In addition to the damage to
buildings and structures, large fractures hav been produced on the ground as
consequences of subsidence. The subsidence in the area was first detected by
leveling measurements made by NCC (Arabi et al. 2005). However, leveling
measurements allow for identification of subsidence rate at leveling stations.
Therefore, the spatial pattern of the subsidence cannot be recognized.

Among the various techniques available, radar interferometry provides precise
deformation measurements at high spatial resolution. In two other case studies of
Varamin and Neyshabour, though the area is covered by the agricultural fields, the
decorrelation effects were insignificant. Hence, the conventional interferometry
could be easily applied to measure the deformation. However, in Shahriar plain, the
conventional interferometry fails to capture the subsidence signal due to the poor
spatial and temporal sampling of the data available. Large spatial and temporal
baselines cause high decorrelation making unwrapping results inaccurate.

Persistent scatterer interferometry as a proper method to address the decorrela-
tion problem has been employed in Shahriar plain. As discussed in Sect. 2.2,
StaMPS algorithm is the most appropriate method to select the PS pixels in the
cultivated lands. However, when the deformation rate is too high compared to the
temporal sampling of the data, it underestimates the displacement due to the
Nyquist sampling criterion applied in the temporal unwrapping step. The combined
method of conventional and StaMPS was developed in order to mitigate the like-
lihood of aliasing.

There are 22 ENVISAT ASAR images available in the study area spanning
between 2003 and 2008. A radar image acquired in 24 December 2004 was selected
as a single master to maximize the stack coherence. Figure 12 shows the acquisition
geometry of the radar data.

After single-master interferograms generation, PS pixels are selected based on
the amplitude and phase stability analysis of StaMPS. 9 pairs of images with the
small spatial and temporal baselines were selected to process coherent interfero-
grams. A deformation model representing the linear component of the subsidence
was estimated based on simple stacking presented in Sect. 2.1. Roughly estimated
deformation model was subtracted modulo-2p from each wrapped interferogram.
StaMPS unwrapping process was then applied on the residual interferometric phase.
If the main part of the deformation consists of the linear component, which is the
case in the study area, the residual phase can be correctly unwrapped based on
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Nyquist sampling criterion. The linear deformation term was finally added back to
the unwrapped residual phase.

The mean subsidence velocity map was calculated using the time series analysis
results (Fig. 13). Maximum subsidence rate along the line-of-sight (LOS) was
estimated as 25 cm/yr.

Fig. 12 Radar data available in the study area, temporal versus spatial baseline

Fig. 13 Mean displacement velocity map of Shahriar plain
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Groundwater level information shows a decline of 9 m in 20 years. Moreover,
the ability of the aquifer system to yield water has dramatically decreased due to
insignificant recharge (Shemshaki et al. 2005). Subsidence time series in Shahriar
plain has been investigated at points including the piezometric wells. The selected
wells are located in various parts of the study area: (i) outside, (ii) in the margin and
(iii) in the middle of the subsidence area. The deformation evolutions at these points
were compared to the water level fluctuations (Fig. 14).

Piezometric wells of W19 and W23 are located outside the deformation and their
deformation time series as well as water level fluctuations are illustrated in Fig. 14a,
e. There is no deformation observed in these wells though the groundwater level has
significantly declined. One of the important factors affecting the compaction is the
existence of find-grained compressible sediments. Therefore, for better interpreta-
tions, the geological boreholes logs for the piezometric wells illustrating different
soil types at depth were employed. The geological borehole logs at these wells
mainly consist of coarse-grained non-compressible sediments. Hence, despite the
water level declines, no significant compaction occurs at both piezometric wells.

The second group of piezometric wells, i.e. W17 and W16, was located in the
margin of the subsidence. The rate of water level decline over 10 years is 5 and 30 m
inW17 andW16, respectively (Fig. 14b, f). The subsidence rate atW17 is higher than
that at W17 as well. More gravel and sand as coarse-grained sediments is observed in
W17 than in W16. Therefore, high water level decline produces little compaction.

W3 and W9 are two piezometric wells which are located in the middle of the
subsidence. The subsidence rate at W3 and W9 is nearly the same (Fig. 14c, g). In
W9 the water level dropped periodically while in W3 it has dramatically declined
since 2002. According to the geological borehole logs, the sediments at W3 is
mainly composed of fine-grained sediments while there is a small percentage of
coarse-grained sediment exists in W9.

Due to the low correlation between water level decline and subsidence rate at
some piezometric wells, it can concluded that other geology and hydrogeological
factors play important role in controlling the subsidence occurrence. To show this,
two data mining methods including Multi-Layer Perceptron (MLP) neural network
as well as Support Vector Regression (SVR) were applied to model the subsidence
in Shahriar plain using different geology and hydrogeological information.

3.3.1 Subsidence Modelling Based on Data Mining Methods

An expert system using two data mining models, namely Support Vector
Regression (SVR) and Multi-Layer Perceptron (MLP) neural network was devel-
oped for predicting the subsidence rate (SR). The developed MLP and SVR models
took into account 6 factors (input variables) including frequency of fine-grained
sediments, thickness of fine-grained sediments, groundwater depth, amount of water
level decline, transmissivity and storage coefficient on subsidence rate (output
variable). Using the results previously obtained, 14,661 different input-output
patterns were extracted. 70 and 30% of these data (10,263 and 4398 data sets,
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respectively) were utilized for training and testing (validating) the data mining
models, respectively.

To verify the performance of the SVR and MLP data mining models for sub-
sidence rate (SR) estimation, six different statistical error indices, namely Scatter
Index (SI), Root Mean Square Error (RMSE), Correlation Coefficient (CC), Nash–
Sutcliffe (NS) and Root Mean Relative Error (RMRE) are used in the validation
process stage of the models:

Bias ¼ 1
n

Xn
i¼1

ðsri � sr�i Þ ð3Þ

SI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ððsr�i � SR�Þ � ðsri � SRÞÞ2
q

SR
ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðsri � sr�i Þ2
s

ð5Þ

CC ¼
Pn

i¼1 sri � sr�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 sr

2
i

Pn
i¼1 sr

�2
i

q ð6Þ

NS ¼ 1�
Pn

i¼1 ðsri � sr�i Þ2Pn
i¼1 ðsri � SRiÞ2

ð7Þ

RMRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

sri � sr�i
sr�i

����
����

s
ð8Þ

where sr�i and sri are respectively ith estimated and real subsidence rate (SR) and n
is the number of data set. Also SR� and SR denote the average estimated and
observed SR, respectively.

The Nash–Sutcliffe (NS) coefficient is determined for both data mining models
to ensure that the overfitting is not occurred (Table 1). The values of Nash–Sutcliffe
coefficient are calculated for both the training and validating stages. The closer the
Nash–Sutcliffe coefficient to one, the better the accuracy of the developed data
mining models. According to the Table 1, the Nash–Sutcliffe coefficient is 0.991
and 0.993 for MLP and SVR models in training stage, respectively. The SVR
model with more Nash–Sutcliffe coefficients in both training and validation stages
indicates that the SVR is more accurate for subsidence rate prediction.

The values of six different statistical error indices (Eq. 3–8), calculated for the
SVR and MLP models are presented in Table 2. The comparison of the statistical
error indices makes the judgments to be made on each model’s performance easier.
Based on the obtained results, in terms of the Bias error, the MLP model is better
than SVR in both training and validation stage. But SVR model outperforms MLP
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in other statistical error indices. Regarding the SI, RMSE, CC and NS error indices
the SVR method outperforms the MLP model. Therefore, it can be concluded that
SVR model is more precise than MLP model.

Scatter plots of estimated versus real SR for the SVR and MLP models (Figs. 15
and 16) confirm the fact that the SVR model outperforms the MLP model in
predicting subsidence rate in both training and validation stages.

To make this comparison more visually, bar charts to mark the performance of
the SVR and MLP data mining models with respect to the different statistical error
indices is presented in Fig. 17.

The samples are categorized in three different classes based on the subsidence
rate; Class 1, 2 and 3 include samples with the SR < 80, 80 < SR < 160 and
SR > 160 mm/yr, respectively for further assessments. To compare more precisely
the SVR with MLP data mining models Fig. 18 shows six bar charts representing
statistical error indices including Bias, SI, RMSE, CC, NS and RMRE. As an
example, Fig. 18c compares the RMSE for both the SVR and MLP models in all
the subsidence rate categories and the heights of bars are lower than that for the
SVR model in all classes when compared to the MLP model, and thus the former
has a greater accuracy in its estimation of subsidence rate. Figure 18d, e also clearly
shows that the SVR model performs better than MLP model in terms of CC and NS,

Table 2 Comparison of the SVR and MLP models performance in subsidence rate prediction
using the training and validation data set

Statistical error indices Stage

Train Test

Data mining models SVR MLP SVR MLP

Bias Value 0.17 0.06 0.54 0.26

Rank 2 1 2 1

SI Value 1.01 0.09 0.09 0.10

Rank 1 2 1 2

RMSE Value 4.58 5.09 5.24 5.68

Rank 1 2 1 2

CC Value 0.9983 0.9979 0.9979 0.9975

Rank 1 2 1 2

NS Value 0.993 0.991 0.991 0.989

Rank 1 2 1 2

Summation of rankings 6 9 6 9

Table 1 Nash–Sutcliffe coefficient for SVR and MLP models in subsidence rate prediction

Stage Data mining models

SVR MLP

Train 0.993 0.991

Validation 0.991 0.989
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respectively. In summary, the accuracy of subsidence rate estimation of the SVR
model is greater than MLP when all the error indices are taken into account.

For making a final decision, the values of statistical error indices calculated for
the SVR and MLP models for three different categories of SR are presented in
Table 3. In addition, in the row below the obtained statistical errors, the ranks are
determined, where the first rank belongs to the one with the best performance. The
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Fig. 15 Scatter plots comparing the performances of SVR and MLP data mining models for
estimation SR in training stage
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Fig. 16 Scatter plots comparing the performances of SVR and MLP data mining models for
estimation SR in validation stage
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Table 3 Performance comparison of the SVR and MLP data mining models for subsidence rate
ratio (SR) estimation in validation stage

Statistical error indices Subsidence rate class Data mining models

SVR MLP

Bias (mm/year) SR < 80 Value 0.29 −0.05

Rank 2 1

80 < SR < 160 Value 1.54 1.42

Rank 2 1

SR > 160 Value −1.57 −1.69

Rank 1 2

Totala Value 0.54 0.26

Rank 2 1

SIb SR < 80 Value 0.16 0.18

Rank 1 2

80 < SR < 160 Value 0.058 0.061

Rank 1 2

SR > 160 Value 0.03 0.04

Rank 1 2

Totala Value 0.09 0.10

Rank 1 2

RMSE (mm/year) SR < 80 Value 4.2 4.6

Rank 1 2

80 < SR < 160 Value 7.4 7.8

Rank 1 2

SR > 160 Value 5.1 6.9

Rank 1 2

Totala Value 5.2 5.7

Rank 1 2

CCb SR < 80 Value 0.993 0.991

Rank 1 2

80 < SR < 160 Value 0.9984 0.9982

Rank 1 2

SR > 160 Value 1.000 0.999

Rank 1 2

Totala Value 0.998 0.997

Rank 1 2

NSb SR < 80 Value 0.965 0.958

Rank 1 2

80 < SR < 160 Value 0.884 0.871

Rank 1 2

SR > 160 Value 0.943 0.897

Rank 1 2
(continued)
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comparison of the statistical error indices in the class of total makes the judgments
to be made on each model’s performance easier. To this regard, one can say that in
terms of the Bias and RMRE, the MLP is better than SVR model. To draw on a fair
judgment, other statistical error indices should be analyzed as well. Regarding the
SI, RMSE, CC, and NS statistical error indices the SVR data mining model out-
performs the MLP model.

To make a general assessment, the ranks are summed for each category of
subsidence rate as well as the total class where the lower the rank, the better
performance for the model is expected. For all the statistical error indices
(Summation of rankings), the SVR model (with a total score of 8) has a superior
performance compared to MLP model (with a total score of 10) in all categories of
subsidence rate (last row in Table 3).

High performance of data mining methods in modelling the Shahriar subsidence
shows the significant dependence of the subsidence on geology and hydrogeology
characteristics of the aquifer system. The available hydrogeology information of the
Tehran basin includes transmissivity, storage coefficient, frequency and thickness of
fine-grained sediments, groundwater depth, and amount of water level decline of
the Tehran aquifer system. Hydrogeology properties of the aquifer system were
used as input variables of the model while the subsidence rate is taken as the model
output. The subsidence rate could be precisely modelled using the developed data
mining models. These models can be further applied to estimate the subsidence rate
in pixels in which the interferometry technique cannot measure the deformation due
to some reasons including insufficient correlation. Subsidence rate prediction in
non-PS pixels is considered as future work.

Table 3 (continued)

Statistical error indices Subsidence rate class Data mining models

SVR MLP

Totala 0.991 0.989

Rank 1 2

RMREb SR < 80 Value 1.22 1.11

Rank 2 1

80 < SR < 160 Value 0.21 0.22

Rank 1 2

SR > 160 Value 0.15 0.17

Rank 1 2

Totala Value 1.03 0.94

Rank 2 1

Summation of rankings SR < 80 8 10

80 < SR < 160 7 11

SR > 160 6 12

Total 8 10
aAll data in the validation data set are utilized
bThese error indices are dimensionless
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4 Conclusion

SAR interferometry technique has shown its ability to study the land subsidence as
a result of over-exploitation of groundwater at high spatial resolution. The accuracy
of Interferometry has evaluated in several studies using GPS and leveling mea-
surements (e.g. Dehghani et al. 2009a, 2013). Interferometry is able to measure the
surface deformation with the accuracy of better than sub-centimeter. Two different
interferometry approaches have been presented in this chapter: conventional and
persistent scatterer interferometry. Conventional interferometry can efficiently be
used in case where the spatial and temporal decorrelation is neglected. Time series
analysis using the coherent interferogram was applied to study the temporal evo-
lution of the subsidence in Varamin plain. Long-term as well as short-term behavior
was monitored. The mean subsidence velocity map was also generated utilizing the
time series analysis results. When the number of coherent interferograms are
insufficient to produce a network, interferogram stacking can be employed to cal-
culate the mean displacement velocity map. However, when the area is covered by
remarkable amount of vegetation, the conventional interferometry is not able to
measure the deformation due to decorrelation effect. Persistent scatterer interfer-
ometry as a proper method to address the decorrelation problem can be applied to
monitor the subsidence. If the subsidence rate is so high to violate the Nyquist
sampling criterion, the subsidence rate will be underestimated. In this study, a
combined method of conventional and persistent scatterer interferometry was
proposed to measure the high deformation rate in Shahriar plain.

The results obtained from all the interferometry approaches can be easily
compared with the groundwater level information measured at the piezometric
wells. This was done in Shahriar and Neyshabour plains. High correlation between
subsidence signal and water level information was observed in Neyshabour plain.
However, other important factors rather than water level fluctuations affect the
subsidence occurrence in Shahriar plain. One of these factors is the geological type
constituting the aquifer system. The existence of fine-grained deposits in the aquifer
system causes high compaction when the groundwater level drops. Other
geotechnical information are required to model the compaction of the aquifer
system. Interferometry results as a valuable information source can be efficiently
applied to determine the hydrogeological parameters of the aquifer system.

In order to show the dependencies of the subsidence phenomenon in Shahriar
plain, two data mining models, i.e. MLP and SVR, were applied in order to model
the subsidence rate based on the geology and hydrogeology properties of the aquifer
system. The modeling results demonstrate the high performance of data mining
models; however, SVR can outperform MLP for estimation of subsidence rate.
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