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Preface

During recent years, rapid technological developments and breakthroughs in various
industrial automatization processes with the support of modern machines, big data
storages, and clouds of computers operating in parallel led to a significant increase
in system complexity and dynamic processes. This makes a manual supervision
and maintenance of machines, system components, and production chains more and
more unaffordable and thus unrealistic to be conducted in a reasonable amount of
time with reasonable efforts and costs for companies.

Therefore, automated predictive maintenance (APdM) has more and more
become a central cornerstone in today’s industrial applications and systems ranging
from online manufacturing rails and production lines through (cyber) security
problems and infrastructure management to energy fabrication, maritime systems,
and exploitation facilities. This is because APdM addresses not only strategies
for the early detection and prediction of significant machine wearing towards
component failures, degraded performance of the system, undesired situations and
occurrences, or downtrends in product quality but also for taking appropriate
actions upon the recognition and prediction of such occasions. Such actions are
indispensable for reducing waste, repair, and production costs, or even customer
complaints, and thus, in the long run, also for increasing the income of companies;
for guaranteeing higher quality of production items, network functionality, software,
and user front ends; and finally for reducing the pollution of the environment.
In the extreme case of catastrophic system failures, any severe damage to the
infrastructure, machine, or system and severe risks for operators working with the
system can be avoided by predictive maintenance.

The necessity of APdM in theory and practice is reflected in several method-
ological and application-oriented developments during the last 15–20 years, where,
according to the ISI Web of Knowledge/Science database (Thomson Reuters)—
www.webofknowledge.com—the number of publications permanently grew from
around 100 per year around the beginning of the 2000s up to more than 500 per year
around 2017, and the number of citations grew even more intensively. Furthermore,
APdM became an essential component in today’s Industry 4.0 environments and
applications, and several objectives with associated calls have been established
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viii Preface

during the recent years under the umbrella of the Horizon 2020 Framework
Programme “Nanotechnologies, Advanced Materials, Advanced Manufacturing and
Processing, and Biotechnology.”

In a typical predictive maintenance framework, embedded system models play
a key role for producing (quality) forecasts, for indicating arising problems and
faults at an early stage, or for conducting any deeper diagnosis about upcoming
expected (as predicted) anomalous process behaviors in various forms. The high
dynamics in today’s processes or parts of processes often has the effect that already
modeled/learned dependencies become outdated, which requires system models to
self-adapt over time in order to maintain their predictive performance and to expand
their “knowledge” and “validation range.” This is hardly considered in the current
state of the art of predictive maintenance; therefore, it is a central aspect in this
book to show new trends in this direction—in fact, most of the chapters are dealing
with (data-driven) modeling, optimization, and control (MOC) strategies, which
possess the ability to be trainable and adaptable on the fly based on changing system
behavior and nonstationary environmental influences.

Apart from this, several new applications in the context of predictive maintenance
as well as combinations of MOC methodologies to successfully establish predictive
maintenance are demonstrated in this book. According to the essential steps in
predictive maintenance systems from early anomaly and fault detection during the
process through the prognostics of eventually arising problems in the (near) future
to their diagnosis and proper reactions on these (through optimization, control for
repair, and self-healing), the book is structured into three main parts, where in each
of them, important real-world systems and application scenarios are discussed:

• Anomaly detection and localization
• Prognostics and forecasting
• Diagnosis, optimization, and control

Furthermore, the first three chapters round off the whole book by discussing
important aspects, principal concepts, and requirements and which are of general
relevance in predictive maintenance systems and thus can be of significant impor-
tance in any of the three methodological steps (book parts).

Finally, the editors are very grateful to all authors and reviewers for contributing
with substantial and very valuable material to make this volume become alive and to
set another cornerstone in the research and publication history of predictive mainte-
nance methodologies and applications. The first editor acknowledges the support by
the “LCM—K2 Center for Symbiotic Mechatronics” within the framework of the
Austrian COMET-K2 program. We also acknowledge Mary E. James and Menas
Donald Kiran for establishing the contract with Springer and supporting us in any
organizational aspects. We hope that the volume will be a useful basis for further
fruitful investigations and fresh ideas as well as a motivation and inspiration for
newcomers to join this important and still emerging field of research.

Linz, Austria Edwin Lughofer
Douai, France Moamar Sayed-Mouchaweh
October 2018
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Prologue: Predictive Maintenance
in Dynamic Systems

Edwin Lughofer and Moamar Sayed-Mouchaweh

1 From Predictive to Preventive Maintenance in Dynamic
Systems: Motivation, Requirements, and Challenges

Predictive maintenance (PdM) relies on real-time monitoring and diagnosis of
system components, processes, and production chains [35]. The primary strategy
is to take action when items or parts show certain behaviors that usually result
in machine failure, degraded performance, or a downtrend in product quality.
Originally, predictive maintenance was motivated by the execution of system checks
at predetermined intervals to analyze the health of equipment, machines, or compo-
nents in machineries [46]. During recent years, predictive maintenance also has been
more and more applied in (cyber) security problems, infrastructure management,
energy fabrication and power plants, maritime systems, exploitation facilities as
well as in production chains or in factories of the future, see [35] and several
chapters in this book below. In this sense, it became an essential component in
today’s Industry 4.0 environments and applications [23, 68], and several objectives
with associated calls have been established under the umbrella of the Horizon
2020 framework programme “Nanotechnologies, Advanced Materials, Advanced
Manufacturing and Processing, and Biotechnology”—there, it is typically addressed
in the context of zero-defect manufacturing [48], where predictive maintenance
aspects place strong contributions in various prognostics tasks as well as in the
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2 E. Lughofer and M. Sayed-Mouchaweh

context of refurbishments and remanufacturing of industrial equipments, where
predictive maintenance plays a strong role in performing functional diagnosis and
in providing appropriate repairing actions.

Compared to classical quality control and to condition monitoring [41, 47],
which basically operate in a kind of retrospective and reactive manner [70], i.e.,
problems such as severe wearings and failures of machines [12] and tools [54] or
downtrends in production quality (e.g., production parts not meeting the quality
boundaries) [57, 72] are recognized after they have de facto happened, a central
aspect of predictive maintenance in all kinds is to recognize untypical system
behavior [5, 46] or to identify undesired trends [45, 69] at an early stage. Ideally,
this should be achieved as early as possible (by long-term predictions), in order to
have enough time for appropriate reactions to avoid bad quality, to decrease the
likelihood of machine (components) failures, and to even reduce risks for operators
in subsequent processing stages [26]. In the extreme case of catastrophic system
failures, any severe damage to the infrastructure, machine(s), or to the whole system
and thus any severe risks for operators working with the system can be avoided
by predictive maintenance. This makes predictive maintenance extremely important
for reducing waste, repair and production costs, finally even for omitting customer
complaints and thus, in the long run, also for increasing the income of companies,
for guaranteeing higher quality of production items, network functionality, software
and user front-ends, and finally for reducing the pollution of the environment.

Apart from work-programmes within the scope of Horizon 2020 specifically
dedicated to predictive maintenance aspects, the necessity of predictive maintenance
in theory and practice is thus also reflected in several developments during the last
15 to 20 years, where, according to the Isi Web of Knowledge/Science data base
(Thomson Reuters)—www.webofknowledge.com—the number of publications per-
manently grew from around 100 per year around the beginning of the 00’s up to
more than 500 per year around 2017, and the number of citations grew even more
intensively. Figure 1 depicts this tremendous explosion of both over the years.

Automatization in predictive maintenance (APM) is an essential aspect to deal
with the ever-increasing system complexity and open-loop characteristics of com-
ponents and installations, which more and more makes a manual supervision and
maintenance of machines, system components, and production chains unaffordable
and thus unrealistic to be conducted in a reasonable amount of time with reasonable
efforts and costs for companies. Manual supervision thus becomes more and more a
bottleneck, also because of being affected by human inconsistencies occurring over
time subject to fatigue, boredom, uncertainty, or different cognitive abilities during
different daytimes and workloads [1]. In some cases, different operators/experts
may have even different modes of operation and especially different experience
levels [43, 44], such that contradictory monitoring and reaction behavior among
them could severely affect the consistency of the manual supervision over time.
This may result in irregular and infrequent machining and system cycles.

In order to increase the level of automatization and the consistency of operation
(modes), the so-called system models are typically required, which are able to
automatically and permanently produce (quality) forecasts, for indicating arising

www.webofknowledge.com
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Fig. 1 Upper: the development of the number of papers appearing in the field of predictive
maintenance per year from 1990 on; lower: the same for the development in terms of the number
of cites; based on the Isi Web of Knowledge/Science data base, www.webofknowledge.com/

problems and faults at an early stage or for conducting any deeper diagnosis about
upcoming expected (as predicted) anomal process behaviors in various forms (see
also Sect. 2). With such models, it is possible to provide consistent outputs over
time, i.e., the same (or very similar) current process trend(s) (reflected in states
(e.g., samples) gathered from the process) will always produce the same (or very
similar) model outputs. This is because, models do not get tired or are not affected
by any “vague” knowledge. On the other hand, models may also suffer by low
experience, e.g., when being established for only very particular system modes or
based on an insufficient (historic) data basis; furthermore, high dynamics in today’s
processes or parts of processes often has the effect that already modeled/learned
dependencies become outdated (even when being established based on enriched
data). Both situations require system models to self-adapt and self-evolve over time
in order to expand their “knowledge” and “validation range” properly with new data
(reflecting dynamics, changes, etc.) [3, 27, 60] and to refine their parameters and
structures for increasing their “significance” with more data—which is necessary
for the models to maintain or even improve their predictive performance. This

www.webofknowledge.com/


4 E. Lughofer and M. Sayed-Mouchaweh

has been hardly addressed in the current state-of-the-art approaches of predictive
maintenance (systems) so far, and therefore it is a central aspect in this book to
show new trends in this direction.

Another important aspect is the fuzzy transition between predictive maintenance
and preventive maintenance [20, 35, 74], the latter dealing with the prevention of
faults, severe wearings, and quality downtrends before they occur or at least before
they develop into major defects. In a predictive maintenance system, upon the
prediction or early detection of any sort of problems, typically there exist tools for
conducting diagnosis, optimization, and control in order to rebalance the process
[52]. These mostly avoid severe defects and thus contribute also to preventive
maintenance. The third part of the book will be dedicated to these more extended
aspects of predictive maintenance.

2 Components and Methodologies for Predictive
Maintenance

An example of a realization of a predictive maintenance framework is shown in
Fig. 2. This should serve for readers to provide a more clear picture what a predictive
maintenance system is about and especially which components are required and can
be expected and how these interplay, from an early detection of a problem to a

Fig. 2 An example of a predictive maintenance framework and the interplay of components
therein; essential components to realize a well-functioning and high-performance system and
which are contained in the three parts of this book (Parts 1 to 3) are highlighted in bold font
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fully automated reaction by optimization and self-healing strategies. It is based on
the past experience of the editors developing for and working with several such
systems within applied research projects. In case when there are no data recordings
performed or when analytical, physical-based models are sufficient and available,
the modeling component has expert knowledge as source instead of a data base
containing sensor measurements, etc.

Addressing significant system dynamics, in the example shown in Fig. 2 realized
by feeding back the current process states and achieved targets (QCs) to a self-
adaptation component for forecast models/methods, will be a central aspect of this
book going beyond state-of-the-art. The operational environments of the majority
of dynamic systems are very tough (e.g., offshore and far shore wind farms).
This is because a lot of interferences and noises are added to the collected data
entailing to decrease significantly its quality. This impacts the decision quality
and its efficiency for scheduling the predictive maintenance actions. Therefore, it
is important to develop advanced signal processing techniques that can improve
significantly the quality of data before using them to feed up the decision model or
step. Finally, the time-varying conditions of dynamic systems entail a variation in
the degradation trends. The latter are accelerated in some operation conditions and
significantly reduced in other operation conditions. Therefore, it is important to link
the degradation trends to the system operation conditions. It is worth to mention
that for some complicated components, the degradation trend may be reversed. This
behavior is known to be a self-healing phenomenon. The latter impacts significantly
the forecasting precision of the time to failure. Another challenge or requirement for
the predictive maintenance in complex dynamic systems is the multi-degradation
process. Indeed, since a complex system is composed of a set of interconnected
stages/components (also termed as multistage processes [56]), a degradation in
one stage/component propagates to other stages/components. This entails a multi-
degradation process that needs to be taken into account adequately in order to
establish methods and models for predicting quality and health states across multiple
stages and in order to be able to efficiently schedule the maintenance actions.

In the following subsections, we discuss the essential components in a predictive
maintenance system in more detail.

2.1 Models as Backbone Component

To establish APdM sufficiently well, system models are required serving as back-
bone for either the explicit detection of problems, the forecast of health and quality
indicators, or for the automatic and in-line optimization and control of processes.
These models can rely on analytical-based, knowledge-based, or purely data-driven
models, which are describing the natural behavior of a system under normal,
problem-free operation conditions or which are able to forecast arising problems
and faults in the (near) future based on the current process trends.
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In this book, one strong focus (in most of the chapters) will be placed on the
usage of data-driven models, i.e., models generated fully from or operating on
data, mostly with the usage of machine learning, soft computing, and statistical
techniques which are more or less automatized (subject to some parametrization and
final model selection efforts, for which typically an expert is needed). It is already
well-known and widely accepted that data-driven models provide a complementary
approach to maintenance planning by analyzing significant data sets of individual
machine performance and environment variables [11]. They have been used in
various PdM applications ranging from power plants [19] and turbines [71] through
railway infrastructures [25] and cyber-physical systems [58] to manufacturing and
production systems [49].

In the case of data-driven models, a wide variety and thus a great support
of methods and techniques for self-adaptation and self-evolution of parameters
and structures over time exist, either originating from the fields of data-stream
mining [21, 30], incremental (machine) learning [60], or evolving (intelligent)
systems [3, 27, 39] (see also Wikipedia for their definitions): three lines of research
which started to develop in parallel during the 00’s and emerged to wider research
communities since 2010. These methods open up the possibility to follow dynamical
changes of the system (also termed as drifts [28, 42]) or to integrate new operation
modes not respected so far on demand and on the fly [33, 34, 78] (the latter is a
special strength of evolving methods and systems [4]), and thus to maintain model
performance and furthermore the performance of the whole predictive maintenance
chain. This may become in particular essential in the case of dynamic systems,
where process setups or measurement settings may change over time [2, 62] or
where nonstationary environmental influences may happen [32, 60], such that
older (input/output) relations/dependencies established within the models become
outdated (thus leading to deteriorations of model performance). Furthermore, in
particular systems it may be time consuming and expensive to capture data in
advance for a whole run-to-failure process (including also undesired, “bad” states).
A possibility to improve this situation is to build an online forecasting model
(indicator) that can update (correct) and self-evolve its structure and parameters
over time and on the fly in response to the reception of new data during the system
run time. The point is that such dynamic, self-adaptive, and self-evolving modeling
issues have been rarely addressed within the scope of predictive maintenance
systems so far and is thus a sophisticated issue, which is addressed in various
chapters in this book (thus significantly going beyond state-of-the-art).

Additionally, knowledge-based models, established through the formulation and
coding of the (long-term, cognitive) expertise of experts (expert systems) [7, 20], and
analytical, physical-based models may be used as supportive tools (also in a hybrid
context with data-driven models [37]) to improve the reliability and precision of
the remaining useful life (RUL) of machines and components [61] and to optimize
the scheduled operations of maintenance [36]—e.g., by rule-based models for root-
cause analysis of quality and machine functionality downtrends [73] or by model-
based reasoning concepts [64].
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In physical model-based approaches [16], such as unknown-input observers,
algebraic methods, parameter estimation, parity space, and analytical redundancy,
the physical laws describing the system dynamics in normal operation conditions are
used to estimate the remaining useful life or to forecast health/quality indicators.
Since, due to cost and security concerns, describing the degradation dynamics by
physical laws for the majority of industrial systems is often unfeasible, reliability
tests are performed in order to provide this information. Reliability tests [76]
during the design step aim at characterizing a component’s life cycle in each of
the following phases: the break-in phase, the normal operating phase, and the aging
or degradation phase. The latter [31] is often modeled by a power law, Gamma
process, the Wiener Process, and their variants in order to calculate the mean time to
failure when designing the system and mean time before failures after maintenance
actions. However, reliability tests are time consuming and very costly. In addition,
they are generated under laboratory conditions and not in real conditions. This
may impact the precision of the predictions in particular when the real operation
conditions are much different from the laboratory ones. Hence, data-driven models
(as discussed in the paragraphs above) are often a promising or, depending on the
efforts for establishing the models or the reliability tests, even a necessary alternative
to physical-based models.

2.2 Methods and Strategies to Realize Predictive Maintenance

Predictive maintenance is mainly based on the following methodological modules:
data acquisition and preprocessing, health indicators construction, (early) anomaly
detection and localization, forecasting and prognostics of system/machine health
state or potentially arising problems/downtrends (including remaining useful life
prediction or fault prognostics), and corrective actions when undesired systems
states are detected or predicted.

Data Acquisition, Pre-processing, and Health Indicator Construction
Data acquisition aims at capturing different kinds of measurements that can
characterize the degradation process of the system components. To this end, several
sensors are used to record various environmental, physical, electrical, acoustic, or
mechanical signals. There are two additional data sources: logs data and warning
events that provide information about the status of the different components, and
service and inspection reports that give details about the performed inspection
and repair actions. The data transmission and storage equipment belong to data
acquisition. The data pre-processing aims at extracting fault indicators using
signal processing (time, frequency, time–frequency domains, etc.) and artificial
intelligence (residuals, virtual sensors, etc.) techniques. These techniques include:
vibration monitoring, thermographic inspection, oil analysis, visual inspection, X-
ray radiography, electrical insulation analysis, ultrasonic and acoustic emission
analysis, nondestructive analysis, performance testing, etc.
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Health indicators construction [31] aims at defining degradation indicators that
monitor the performance (health) evolution of a system or one of its component over
time. It can be based on the use of one feature (fault indicator) defined through the
pre-processing step or the combination of several features. In both cases, the goal of
health indicators is to decide when a degradation occurs in order to trigger the fault
prognostics and diagnosis modules. The latter aims at estimating, starting from the
current time, the time left before a system or one of its components becomes unable
to perform its expected task or mission.

Anomaly Detection and Localization
It concerns the detection and localization of any form of atypical appearances
in the system or at machines during on-line processing modes. Often, such
anomalies are reflected in real faults actually happening at the system (and thus
requiring an immediate reaction), but they could be also early indicators for arising
problems in various forms (downtrend in production quality, weakening in machine
functionality, weakening in component lifetime, etc.). In a data-driven context,
anomalies or faults are typically reflected by measurement recordings which deviate
from the past regular behavior or do not fit into the characteristics (density, shape,
spread, etc.) of past sample occurrences [8, 13, 34, 40]. Anomaly detection often
operates in a fully unsupervised manner, which means that no quality information
about the current process/system/product states needs to be available to establish
appropriate predictors or forecast models. This makes it often attractive in predictive
maintenance systems, since:

1. The automatization capability of such an approach is expected to be very high:
the on-going, regular measurement recordings can be immediately taken as
representatives for the anomaly-free production process—and a characterization
can be built upon these, which can be further used as an anomaly-free reference
situation.

2. Annotation effort in terms of labeling costs for historic data samples [43] can be
completely avoided—as is required in case of when establishing classifiers [17]
within a decision support tool [66, 75] for actively classifying states into normal
and abnormal through direct binary classification.

3. There is no necessity to have a kind of product quality index or even a failure
index permanently measured over time, which is often costly to obtain (especially
if manually taken), and which thus ends up in very small data set sizes for model
training [45], or which in some systems is not really profitable or possible to
install at all [31, 63].

On the other hand, there is no real target in the prediction of the current system state,
just a hypothesis about an anomal behavior is provided, which makes it typically
difficult to identify the problem and especially to find its reason. Furthermore, the
training of (anomaly-free) reference models and/or statistical representatives from
training data, especially finding the optimal training parameters, is challenging,
as no classical statistical evaluation procedures such as cross-validation or boot-
strapping [24] can be used (as these are requiring target values to be able to calculate
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errors and to perform parameter and model selection). Indeed, evaluation of the
models may be based on data recorded during anomal or fault phases, but such data
is also often rarely available and/or costly to collect [8, 10].

Anomaly/fault localization is an essential aspect in large-scale and distributed
systems, where it is hard to find the detected problem by manual checking through
all parts of the systems. In fact, due to the localization of the problem, it makes
it much easier to identify the type of problem and its reason, so it is an important
prerequisite of fault diagnosis aspects and further optimization cycles, see below.

Prognostics and Forecasting
It concerns the prognosis of potentially arising problems in the (near) future. The
trade-off between the prediction horizon versus the forecast quality plays an essen-
tial role to establish meaningful prognosis [6]. The model should be still accurate
enough to deliver reliable predictions, while the prediction and thus reaction time
should be still long enough to properly conduct meaningful interventions in the
process or in the runtime of machines before some components/parts get broken
or something runs completely out of the rudder. Opposed to anomaly detection
operating in a more or less unsupervised manner, prognostics has a clear target
goal under examination (such as a machine health indicator, a quality criterion
for production parts, or an indicator for the level of component wearings), whose
concrete values are predicted into the future by an established forecast model
[19, 38]. The monitoring of the predicted values is then typically achieved by
comparing them with upper and lower allowed limits of the respective indicator,
but can be also in form of checking for drifting states or other atypical trends
of the indicators. Upon the prediction of undesired values (as an outcome of
the monitoring module), operators may be informed and certain actions may be
triggered (either in manual or automatic way, the latter being addressed in the
subsequent paragraph). In a data-driven context, the forecast models are either
established through fixed parameter settings (e.g., for machines in production
systems) [22] or by current process values trends which are dynamically changing
and recorded over time and which reflect the actual system (machine) status [45, 69].
From these trends, it is a challenge to predict the lifetime of a component or the
health state of a machine or the expected quality of production parts. As important
trends may last over a longer time frame, the modeling is often confronted with
severe curse of dimensionality, which can be adequately addressed with time-series-
based transformation or compression techniques [14].

A specific variant of prognostics and forecast is the estimation of the remaining
useful life (RUL) [61] (e.g., often applied in supervising the charge-state of batteries
[53]). To perform RUL in precise and reliable manner is a very challenging
task, in particular when the system is complex formed by multiple interacted and
nonlinear dynamic components working in strongly nonstationary environments. In
general, there are two techniques used to estimate the RUL: model-based and data-
driven approaches. (Analytical) Model-based approaches [31, 67] exploit physical
knowledge about the system dynamics in order to model the degradation trends,
often at component level. They model degradations caused by tear and wearing,
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crack, fissures, clogging, and corrosion phenomena. Data-driven approaches com-
prise statistical [80] and artificial intelligence [50, 65] techniques as well as Auto
Regressive Moving Average (ARMA), particle filter, artificial neural networks,
support vector machines, hidden Markov modes, etc.

Corrective Actions through Diagnosis, Optimization, and Control
When a degradation or a fault is detected or predicted, the corrective actions
must be defined and planned. These actions are defined in order to maximize the
system availability (breakdown of equipment, components, etc.) and to reduce its
maintenance costs (labor cost, energy cost, etc.). In order to schedule these actions,
several requirements must be defined such as the maintainability, availability,
and severity. Maintainability measures the effort and cost for the maintenance
according to skill level required and the availability of getting spare parts and
service. Availability defines the time that a component is actually available to
perform a task according to the time that it should be available. In this context, also
the type and severity of a fault/problem plays a central role—faults are typically
classified according to its severity into four categories [55]: catastrophic, critical,
marginal, and negligible. A catastrophic or critical fault has much more priority
for maintenance actions than a marginal fault. This is due to the fact that their
impacts on availability and maintenance costs are more important than in the case
of a marginal fault. To find out the level of fault intensity and severity and also the
type of the fault, fault diagnosis methodologies are required, see [15, 29, 51, 59].

According to the fault severity, the system can still be operational but may
lose of its efficiency or performance (e.g., a slower response or becoming less
effective). In this case, a fault-tolerant control system (FTC) can be activated in order
to alleviate or accommodate the fault consequences. FTC systems are defined in
[79] as control systems that possess the ability to accommodate system component
failures automatically. They are capable of maintaining overall system stability and
acceptable performance in the event of failures. Further control strategies can be
achieved through formulating a model-based predictive control (MPC) problem as a
chance-constrained problem, which ensures that the constraints, e.g., bounds on the
degradation level, are satisfied subject to some confidence level (see also Chap. 18).
In this sense, any severe degradation or even system failures can be avoided in
advance.

Optimization also may play a central role in order to balance out undesired
situations in the system [52]. Often, optimization is part of the whole control-loop
(as, e.g., in MPC) where it typically has to be conducted numerically in a fast manner
(to meet on-line reaction demands), but optimization may be also used to provide
suggestions to operators/experts for an improved behavior of the system process
(e.g., improved production quality by adjusting machine parameters [9], see also
Chap. 17 in this book). In the latter case, this often results in general multi-objective
or even many-objective optimization problems, where heuristics-based evolutionary
algorithms [18] can be used for providing adequate parameter settings/changes
which are non-dominated solutions [77].
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3 Beyond State-of-the-Art—Contents of the Book

The book basically addresses the data-driven autonomous aspect and the self-
adaptation and self-evolution aspect in prediction maintenance systems in order
to prevent manual operations (such as expert-based corrective actions) and high
development times for system models and in order to be able to follow dynamical
changes of the system, to integrate new operation modes and systems states, and to
properly respect nonstationary environmental influences on demand and on the fly.

According to the essential steps in predictive maintenance systems as discussed
in the previous section, the book is structured into three main parts, where in each
of them important real-worlds systems and application scenarios are discussed:

• Anomaly detection and localization
• Prognostics and forecasting
• Diagnosis, optimization, and control

Additionally, there is a general section, which, apart from this introductory chapter,
comprises the next two chapters and addresses aspects which are of general
relevance and importance in predictive maintenance systems and do not directly
fall into any of the aforementioned steps, but can be of significant importance (to be
applied) in any of these. Their content can be summarized in the following way:

Chapter 2: Smart Devices in Production System Maintenance
Chapter 2 discusses the requirements and applicability of smart devices—which
are electronic, mobile devices, which provide functionalities via sensor-based infor-
mation processing and communication—in (general) production systems, with a
specific focus on particular maintenance actions in these (Sect. 3). These include: (1)
local data analysis and communication for condition monitoring, (2) remote expert
solutions to accelerate machine failure handlings (with the usage of mobile devices),
and (3) process data visualization for process monitoring which is interconnected
with the productions software landscape through the usage of smart devices. After
discussing several variants for smart devices, the authors also provide insights into
the market view of smart devices (in order to give a clue to readers about support
and popularity of the different variants) and demonstrate a standard implementation
approach for smart devices. The latter consists of four essential steps, namely: (1)
demonstration (to find out whether the combination of hardware and software is
working in general), (2) proof of concept (to find out the functionality within the
concrete maintenance use case), (3) pilot project (functionality of the business case
temporarily), and (4) rollout (functionality of the business case in the long term).
The authors clearly underline the necessity and usage of smart devices in different
maintenance actions and also provide limitations of the current realizations and
installations (hardware limitations, user acceptance, and information compression
issues) as well as resulting challenges to be addressed in the future in order to make
smart devices better applicable and acceptable in production maintenance. All in all,
the chapter provides a round picture how an advanced and elegant communication
with users and operators working with predictive maintenance systems can be
established through smart devices.
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Chapter 3: On the Relevance of Preprocessing in Predictive Maintenance for
Dynamic Systems
Chapter 3 treats the problem of data preprocessing in order to make it meaningful
and usable for any type of predictive maintenance system. It studies all the steps
involved in data preprocessing required to build robust, accurate, and long-lasting
models for highly dynamic systems. More precisely, this chapter presents the most
known techniques, and tools used in six preprocessing steps: data cleaning, data
normalization, data transformation, missing values treatment, feature engineering
(including feature selection and extraction), and imbalanced data treatment. The
chapter discusses the links between the preprocessing techniques used and the
characteristics of available data about the dynamic system behavior. Finally, this
chapter uses two public data sets (PHM Data Challenge 2014 and PHM Data
Challenge 2016) in order to evaluate the presented preprocessing techniques for
a fault detection problem (classification) and a remaining useful life estimation
(regression). The evaluation of these techniques is performed in both, off-line and
dynamic on-line learning scenarios.

The first part of the book after the general section comprises seven chapters,
where the first five chapters are solely dealing with anomaly/fault detection and
the latter two also with identification and localization issues. Their content can be
summarized in the following way:

Chapter 4: A Context-Sensitive Framework for Mining Concept Drifting Data
Streams
Chapter 4 demonstrates a context-sensitive framework for an appropriate handling
of drifts in data streams. The latter either denotes changes in the underlying data
distribution (input space drift), in the underlying relationship between model inputs
and targets (joint drift), or in the prior probabilities of the target class resp. in
the distribution of the target vector (target concept drift) [28]. Thus, in a more
general context, a drift can be seen as a (significant) change in the system, which
furthermore may point to an anomaly or not, depending on the intensity of the
drift, its outlook and characteristics, and its effect on the reference base model (e.g.,
whether its accuracy is deteriorating or not). The authors propose three components:
an incremental classifier, a concept drift detector, and an online repository of
past concepts. The intensity of the learning process (by using an ensemble of
classifiers) changes significantly according to the intensity of changes over time.
This allows to speed up the learning time. The changes are monitored using the drift
detector SeqDrift2. The latter uses the sample variance during a time window and
assumes that the data samples follow a normal distribution. The online repository
is based on the use of decision tree forest and Fourier spectra classifiers. These
classifiers are updated or new classifiers are created in response to drifts (changes)
in order to properly handle significant dynamics in the (PdM) system. In order
to ensure that the memory does not overflow in the repository, newly created
spectra are aggregated with the most similar existing ones. The proposed scheme
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is evaluated according to the classification accuracy and memory consumption
using synthetic (rotating hyperplane with noises, noisy RBF) and real data sets
(stemming from various application scenarios such as electricity, flight, cover type,
and occupancy detection). The interest of this chapter is to observe the link between
the drift detection and the problem of predictive maintenance. Indeed, a drift can
be considered as a degradation, and the actions required for the classifier’s creation
and updating can be used to understand the degradation dynamics and its evolution.
Therefore, the proposed generic scheme for drift detection and handling can be used
for the aid of predictive maintenance.

Chapter 5: Online Time Series Changes Detection Based on Neuro-Fuzzy
Approach
Chapter 5 handles the problem of online change detection in multidimensional data
series. The change is considered to be a consequence of a fault occurrence and its
detection is interpreted as an anomaly or fault detection. The chapter presents an
online adaptive fuzzy clustering approach that allows monitoring changes in the
data structure and adapting the system parameters to these changes. It therefore
is able to account for system dynamics and is able to handle large volumes of data
through online sequential processing of incoming observations. It is guided by fuzzy
sequential clustering of time series with the use of probabilistic and possibilistic
procedures as well as of a wavelet-neural network. The latter is learned by a robust
algorithm conducting synaptic weights adjustments, which enables suppressing
abnormal outliers present in real time series. The evaluation of this approach on
data streams shows the simplicity of its numerical implementation and its high
performance.

Chapter 6: Early Fault Detection in Reciprocating Compressor Valves by
Means of Vibration and pV Diagram Analysis
Chapter 6 handles the problem of condition-based maintenance of reciprocating
compressors, in particular broken valves. The goal is to perform an automated fault
detection procedure allowing to reduce, and even to eliminate, the unscheduled
shutdowns and the frequency of on-site inspections. The chapter presents two
independent fault detection methods. The first one is based on vibration analysis,
while the second method is based on the analysis of pressure–volume diagram
(pV). The goal of this analysis is to extract appropriate features which allow a good
separation between faultless and faulty conditions in the feature space. The crux
of the whole approach is that it is robust with respect to compressors equipped with
different sensors and with different types of valves. It can be also robustly applied to
compressors working in varying load and pressure conditions, and reference models
can be trained using only faultless conditions, i.e., in a fully unsupervised manner.
Thus, time-intensive and costly collection of faulty data samples can be avoided.
The obtained results show that even small fissures or leaks in the valve can be
detected by the presented approaches.
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Chapter 7: A New HHT Technique for Fault Detection in Rolling Element
Bearings
Chapter 7 discusses the problem of the detection of faults entailing imperfections
in rotating machinery. These imperfections are related to defects in rolling element
bearings subject to dynamic loadings. Bearing defects are caused by fatigue damage
resulting in micro-cracks and localized defects that lead to cracks. One important
challenge that this chapter addresses is to detect the bearing damage in early stage
because when the bearing damage propagates, the statistical indicators extracted
by signal processing techniques may generate confusing diagnostic results. This
chapter proposes an enhanced Hilbert–Huang transform technique in order to detect
incipient bearing damages under variable load and speed conditions. Hilbert–
Huang transform is a time–frequency domain technique that applies both, time
and frequency information, to investigate transient feature properties. The proposed
approach is evaluated using tests of different controlled bearing conditions. The
obtained results demonstrate the potential of the proposed approach to perform
bearing fault detection in real applications as gearboxes.

Chapter 8: Comparison of Genetic and Incremental Learning Methods for
Neural Network-Based Electrical Machine Fault Detection
Chapter 8 discusses the problem of condition monitoring and predictive mainte-
nance of induction motors, in particular the inter-turns short-circuit in the stator
windings. These faults are primary faults that happen after insulation breakdown.
The early detection of these faults, in particular in incipient stage, may lead to sig-
nificant improvements of availability, quality, and productivity of production lines.
This chapter proposes an approach based on a combination of a genetic algorithm
and incremental feed-forward neural networks (NNs) that learn parameters in a
stream-like dynamic manner. The purpose of the neural networks is to detect and
determine the number of shorted turns in the stator windings of induction machines.
The aim of the genetic algorithm is to find a suitable number of hidden layers
and neurons per layer, which basically determine the neural network generalization
ability. The proposed approach is evaluated in a real dynamic environment subject to
mechanical asymmetries, voltage unbalance, and measurement noise. The obtained
results demonstrate that the proposed approach is able to detect shorted turns
successfully.

Chapter 9: Evolving Fuzzy Model for Fault Detection and Fault Identification
of Dynamic Processes
Chapter 9 presents an evolving fuzzy modeling approach, which relies on the
recursive calculation of local densities of data clouds, which are further associated
with fuzzy rules. The local density is actually a measure which determines the
closeness and the membership degree of the data to the existing data clouds. Based
on this measure, new fuzzy rules are evolved when the partial densities between new
samples and existing clouds are lower than a predefined threshold. In this sense,
the evolving fuzzy model has an open structure to add new rules (modeling local
regions) on demand and on the fly. As the learning procedure of the model starts
with known/labeled data for the normal process operation and for (different types of)



Prologue: Predictive Maintenance in Dynamic Systems 15

anomalies (faults), the model is capable of identifying the same types of operation
modes the next time they appear. Anomaly/fault identification is thus automatically
achieved according to the maximal global density of the current sample in those
various data clouds which represent the different anomaly (fault) modes. Due to
the incrementally adaptive and evolving characteristics of the fuzzy models over
time, significant system dynamics in the form of drifting normal (or anomal) system
states can be properly handled, as is successfully verified based on data (including
four different types of faults) from a heating, ventilation, and air condition (HVAC)
process (achieving high true positive fault recognition rates with low false positive
rates).

Chapter 10: An Online RFID Localization in the Manufacturing Shopfloor
Chapter 10 presents an approach for locating equipments and trolleys manually over
large manufacturing shopfloor areas (based on radio frequency identification (RFID)
technology), which, when being conducted manually, results in time-consuming
activities and significantly increased workloads for operators. Location of such
equipments is important in the maintenance, repair, and overhaul (MRO) industry,
especially, when faults or failures of the equipment are elicited or prognosticated
and thus should be repaired or exchanged as early as possible. The authors develop
an evolving model based on a novel evolving intelligent system, namely evolving
Type-2 Quantum Fuzzy Neural Network (eT2QFNN), which features an interval
type-2 quantum fuzzy set with uncertain jump positions and which is used to address
the nonstationary, dynamic characteristics of manufacturing shopfloor, which makes
a location of manufacturing objects and equipments difficult. The eT2QFNN is
equipped with a rule growing mechanism, so it can generate its rules automatically
in a single-pass learning mode, and thus it automatically expands its knowledge
whenever new location states appear. The effectiveness of the approach has been
experimentally validated using real-world RFID localization data from a real-
world manufacturing shopfloor environment in Singapore using four RFID tags as
references.

The second part of the book comprises four chapters, which are dealing
with prognostics and forecast aspects, basically based on time-series data (except
Chap. 11, which demonstrates a physical model-based approach) and which are
applicable in predictive maintenance systems. Their content can be summarized in
the following way:

Chapter 11: Physical Model-Based Prognostics and Health Monitoring to
Enable Predictive Maintenance
Chapter 11 presents an overview of methods, techniques and tools used to treat
the problem of fault prognostics and its challenges, in particular for complex
systems. The latter are represented by complex dynamic responses that evolve in
nonstationary environments. The chapter focuses on the use of fault prognostics
in order to develop predictive maintenance concepts. It divides the state-of-the-art
methods into data-driven and physical model-based approaches. Then, the chapter
compares their advantages and drawbacks according to the system complexity
(dynamics, size, environmental conditions, etc.), the precision of the estimation of
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remaining useful life (RUL), and the capacity of interpretation of the degradation
situation and development dynamics. The chapter gives hints for the selection of
the method to be used to perform the fault prognostics by showing clearly the
relationship to the system characteristics and to the available data (usage, load, and
condition) about its functioning. The chapter highlights also the benefit to combine
diagnostics and prognostics in particular for critical applications and to bridge the
gap between the system highest level (asset, functions, etc.) and its lowest level
(components). Finally, the chapter discusses the problem of fault prognostics to
enable predictive maintenance using three case studies: maritime systems, railway
infrastructure, and wind turbines. The equipment and structure health monitoring
aspects are treated using these three case studies. The interest of these case studies
is related to their complexity, to their cost and exploitation high costs, and to their
varying dynamic environments.

Chapter 12: On Prognostic Algorithm Design and Fundamental Precision
Limits in Long-Term Prediction
Chapter 12 deals with the long-term prediction of health condition indicators, which
in predictive maintenance systems could appear as various performance metrics
such as health indices of system components (indicating the remaining useful life
(RUL)), indicators measuring the degree of wearing of machines (or particular
parts therein), or as quality criteria of production parts in manufacturing systems.
The authors provide a formal mathematical definition of the prognostic problem
and a rigorous analysis for performance metrics based on the concept of Bayesian
Cramer–Rao lower bounds (BCRLBs) for the predicted state mean square error
(MSE) in prognostic algorithms. Furthermore, a step-by-step design methodology
to tune prognostic algorithm hyper-parameters is explored, allowing to guarantee
that the obtained results do not violate fundamental precision bounds for Time-of-
Failure estimates. It is shown how this design procedure allows to detect situations
in which the prognostic algorithm implementation generates results that violate the
fundamental precision boundaries (and thus requiring actions by operators or by an
automatized optimization component). The concepts are applied to the problem of
end-of-discharge (EoD) time prognostics in lithium-ion batteries as an illustrative
example.

Chapter 13: Performance Degradation Monitoring and Quantification: A
Wastewater Treatment Plant Case Study
Chapter 13 presents an approach to perform the fault diagnosis of wastewater
treatment plants, in particular its blowers and pumps. The challenge that the
presented approach addressed is to detect early and in reliable manner nonlinear
changes in the performance of the wastewater treatment plants generated by wear,
tear, and clogging situations. The early and reliable detection of changes and further
on their analysis contributes to the establishment of a predictive maintenance plan
and is crucial in order to increase the availability, to reduce the operational costs, and
to improve the maintenance task scheduling of the wastewater treatment plants. The
presented approach uses key performance indicators in order to recognize or even
prognose a degradation in the pumping systems and the blowers of the aeration pro-
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cess. The presented approach is based on a divide-and-conquer concept by breaking
the system into individual components (blowers and pumps). This decomposition
of the system into individual components allows to break a complex problem
into smaller and easier-to-solve problems and to take into account the dependence
between a component and its degradation dynamics. The key performance indicator
used in this chapter is the relative mean error between expected and real observations
over one day. The observations represent the wastewater flow generated by the
external recirculation pump, its frequency, blower diffuser position, and its current.
The obtained results show that the presented approach is able to detect and quantify
the effects of clogging situations.

Chapter 14: Fuzzy Rule-Based Modeling for Interval-Valued Data: An appli-
cation to High and Low Stock Prices Forecasting
Chapter 14 proposes an interval fuzzy rule-based model (iFRB) for financial interval
time series forecasting and volatility estimation, which plays an important role in
many maintenance-related applications in the area of financial markets, such as risk
management, derivatives pricing and portfolio selection, as well as supplements the
information by the time series of the closing price values. The iFRB is similar to a
classical Takagi–Sugeno fuzzy model but by applying affine interval consequents.
The learning of the models is achieved through the usage of evolving participatory
learning (ePL) paradigm, which is able to process the data in incremental sample-
wise manner, and thus the parameters of the model are successively updated, and
which is also able to evolve new clusters (representing new states/modes) whenever
the arousal index exceeds a predefined threshold. Hence, the approach is able to
properly compensate significant system dynamics due to possible changing financial
states (such as varying psychological factors, and several political occasions) over
time, and it is able to predict a range of possible future values (interval). It thus
can be seen as a promising forecast model not only for stock prices but also for
other types of health and quality indicators, especially when uncertainties in model
outputs should be expressed in the form of prediction intervals. The approach
is empirically evaluated on the prediction of the main index of the Brazilian
stock market, the IBOVESPA. The results indicate that the iFRB method appears
as a promising alternative to traditional univariate and multivariate time series
benchmark models as well as to interval multilayer perceptron neural networks for
interval-valued financial time series forecasting.

The third part of the book comprises again four chapters, which are dealing with
deeper analysis concepts (in terms of problem/fault diagnosis and reasoning aspects)
and possibilities how to early react on (based on optimization and repair) and/or
even prevent problems/faults (due to control strategies) in predictive maintenance
systems. Their content can be summarized in the following way:

Chapter 15: Reasoning from First Principles for Self-Adaptive and
Autonomous Systems
Chapter 15 provides concepts for automated model-based reasoning, which is to
use a model of a system directly to reason about the system. In a certain instance,
i.e., model-based diagnosis, the systems model can be used for identifying root
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causes in case of an observed behavior that contradicts the expected one (e.g., a
fault or machine failure). A model in model-based diagnosis (MBD) comprises
the systems structure including its components and interconnections, as well as
the component models. The health state of components, i.e., a predicate indicating
whether a component is working as expected or not, is used to indicate a root cause.
The reasoning concepts can be further used for the intrinsic diagnosis of a problem
(leading to a not properly working system)—the authors suggest two different
variants, model-based diagnosis and abductive diagnosis and formulate them in a
mathematical way. The authors also discuss the use of model-based reasoning and
diagnosis for self-adaptation, which is understood as the ability of a system to adapt
to dynamic and changing operating conditions autonomously, i.e., without requiring
human intervention. In the context of reasoning and diagnosis, self-adaptation can
be seen as a form of self-optimization and—healing behavior, which is also known
as autonomic computing where a system can detect, diagnose, and repair localized
faults originating from software or hardware. The concepts of repair and self-repair
are again mathematically formalized by the authors in a generic sense, and thus they
could be applied to any predictive maintenance system.

Chapter 16: Decentralized Modular Approach for Fault Diagnosis of a Class of
Hybrid Dynamic Systems: Application to a Multicellular Converter
Chapter 16 proposes an approach to perform the diagnosis of faults in discretely
controlled continuous systems. The latter is a class of hybrid dynamic systems in
which the discrete and continuous dynamics cohabit. The discrete dynamics are
described by discrete state variables, while the continuous dynamics are described
by continuous state variables. Discretely controlled continuous systems are com-
posed by a plant with continuous dynamics and supervisory discrete control. The
presented approach exploits the modularity of the system by dividing it into several
discrete components. Then, the local model for each of the latter is built. This local
model includes the normal discrete modes as well as the ones reached in response
to the occurrence of faults impacting the discrete behavior of this component.
The continuous dynamic behavior is defined by a set of analytical redundancy
relations (ARRs). The latter are used to generate residuals. The abstraction of
these residuals generates events that are used to enrich the local discrete models.
Then, a local diagnoser is built for each discrete component based on the use
of the corresponding enriched local model. The proposed approach is illustrated
and evaluated using a three-cellular power converter. The latter is based on the
combination of three switches (cells of commutation) allowing the current flowing
from the voltage source toward the output load. The obtained results show the
ability of the presented approach to diagnose faults impacting the switches’ normal
behaviors (stuck close/stuck open).

Chapter 17: Automated Process Optimization in Manufacturing Systems
Based on Static and Dynamic Prediction Models
Chapter 17 proposes an approach for the automated optimization of process
parameters in manufacturing systems in order to automatically compensate possible
downtrends in product quality at an early stage. The approach relies on the
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combination of: (1) static predictive mappings which are able to predict expected
quality criteria at the end of a production stage based on machine parameter settings,
(2) dynamic time-series-based forecast models which are able to forecast quality
criteria during the runtime of production based on process values trends, and (3)
a many-objective optimization strategy (using the predictive mappings and the
forecast models as surrogate models) in order to automatically balance out undesired
process behavior/trends that lead to a deterioration of product quality, which in turn
may even lead to customer complaints, etc. The time-series-based forecast models
possess the ability to self-adapt their parameters and to evolve their structures on
demand and on the fly. Thus, they are able to compensate certain system dynamics
due to new production charges and types, nonstationary environmental influences,
or other unexpectedly arising system drifts. This is achieved with different levels of
flexibility due to forgetting concepts, incremental updates of the latent variables
space (required for reducing dimensionality of the high-dimensional time-series
space), and incremental splitting of model components (rules). Several results
are included from a micro-fluidic chip production process, where a reduction of
the many-objective optimization problem to a (three-dimensional) multi-objective
one could be achieved and heuristics-based solvers (using co-evolution strategy)
could be successfully applied to produce parameter settings and process values
trends leading to significantly improved product quality (omitting further waste and
unnecessary machine wearings), compared to standard settings as having been used
by operators for months and years.

Chapter 18: Distributed Chance-Constrained Model Predictive Control for
Condition-Based Maintenance Planning for Railway Infrastructures
Chapter 18 develops a model predictive control (MPC) approach for condition-
based maintenance planning under uncertainty for railway infrastructure systems
composed of multiple components. To keep the balance between robustness and
optimality, the authors formulate the MPC optimization problem as a chance-
constrained problem, which ensures that the constraints, e.g., bounds on the
degradation level, are satisfied with a given probabilistic guarantee. In this sense,
degradation or even system failures can be avoided in advance, which abandons the
necessity of problem detection and reaction (by reasoning and healing) at all. By
comparing the chance-constrained MPC approaches with a deterministic approach
(considering the mean values of the uncertain parameters) and a traditional time-
based maintenance approach (performing grinding and replacing at a predetermined
optimal interval), on a particular real-world example dealing with the optimal
treatment of squats (a type of rolling contact fatigue), the authors show that despite
their high computational requirements, chance-constrained MPC approaches are
cost efficient and robust in the presence of uncertainties.
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Smart Devices in Production System
Maintenance

Eike Permin, Florian Lindner, Kevin Kostyszyn, Dennis Grunert, Karl Lossie,
Robert Schmitt, and Martin Plutz

1 Introduction

The introduction of the iPhone about 10 years ago radically changed the market for
mobile phones. Featuring a large screen with a touch display, it combined several
functions and features that all required separate devices before. Suddenly, a camera,
an MP3 player, a telephone, an internet-ready small computer, and many more could
be held in one’s hand. It was not the first smartphone to enter the market, but the
iPhone was the first successful one, thus kick-starting a market turnover.

Today, more actively sending mobile devices than people can be found in
most industrialized countries. The maturity as well as the saturation for these
devices can be described as quite high in the majority of these markets. Still,
smart devices are mostly used in a private environment—as personal organizer and
device for surfing the web, etc. On the other hand, current studies are predicting
a high growth potential for such devices in the industrial environment, mostly
in automation and factory control: by the year 2025, according to a study from
PricewaterhouseCoopers, 75% of all smart devices will be found in the area of
industrial automation [1]. This is a major turnover in the market for these devices.
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Fig. 1 The stepwise approach towards Industry 4.0

Smart devices are very often perceived as key enablers for company digitaliza-
tion, as they are rather cheap and provide simple ways to introduce smart capabilities
into an industrial environment. In a wider sense, they play a key role as technical
assistance systems for the integration of workers in a digitalized factory (see Fig. 1).

Typically, the first step of a producing company towards Industry 4.0—a term,
that was introduced in 2011 to describe the endeavors of the federal government and
the industry to enable German industry to be prepared for the future of production—
or Smart Manufacturing lies in the collection and processing of data, thus turning
them into information. Smart devices as technical assistance systems depict the next
logical step in the usage of this information on the shop floor and in real time.
Integrating and connecting all machinery is typically addressed as a third step,
as this means higher efforts regarding machine control, interfaces, networks, and
many more. Only then, technically more sophisticated topics such as autonomy or
decentralized control can be addressed [2].

When looking at the Industrial Internet of Production, smart devices represent
the communication and information exchange layer, thus clustering, evaluating,
and aggregating all data coming from the different software layers, machines, and
sensors, as depicted in Fig. 2 [3]. Today, most of them are commonly used as
representation layer, while storage intensive calculations, etc., are run on external
servers and computer. With increasing calculation power and storage, more and
more data integration, analytics, and modelling can be achieved locally on these
devices.

Four major fields have been identified for the initial industrial application of
smart devices: logistics, assembly instructions, quality control, and maintenance. In
logistics, glasses can be used as a hands-free option to display real-time information
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Fig. 2 Internet of production

regarding, e.g., which parts to pick up, where to ship them, etc. First successful
applications have already been introduced to the market. In manual assembly, a
shift towards more customized or individual products leads to a higher complexity
and variety for the workers, which again depicts an interesting field of action for
smartglasses: Assembly instructions can be provided locally, with a direct view on
the final product. First studies show savings potentials of up to 30% in assembly
time when compared to classic, paper-based descriptions [4]. In quality control,
smart devices can display evaluation instructions directly to the quality personnel.
Through guided processes and direct feedback of pictures or videos, this process
again can be digitalized and thus upgraded efficiently.

For maintenance, smart devices and especially glasses depict a promising
technical solution to provide instructions and historical information as well as close
the feedback loop directly. When it comes to data sources, the maintenance process
depends heavily on everything that happened to the specific equipment over time.
Starting from first engineering drawings to production information and the service
history, the digital twin of the equipment to be maintained plays a major role for the
personnel involved, see Fig. 3. The three major distinctions towards the machine or
equipment to be maintained are: equipment as planned (design phase), equipment
as built (after manufacturing and assembly), and equipment as serviced (history of
earlier repairs and services). All of these together constitute the current status of the
system to be maintained, while at the same time might be documented in totally
different systems [5]. The role of the digital twin as storage tank for all information
from the history of a system has thus been stressed extensively in the scientific
literature, as, e.g., in [6].
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Fig. 3 Different databases and lifecycle steps for a system under maintenance

The following chapter provides an introduction of the possibilities and challenges
for smart devices in maintenance processes. The chapter is structured as follows:
after the introduction, an overview over the state of the art is given in the second
section, including a definition of terms and descriptions of the individual smart
devices as well as market shares of the devices and potentials each smart device
offers. In the third section, application examples in maintenance are given, including
local data analytics and communication for condition monitoring, remote expert
solutions, and process data visualization for process monitoring. The fourth section
focuses on limitations and challenges smart devices face, including hardware
limitations, user acceptance, information compression on smart devices, and legal
aspects. The fifth section briefly summarizes the content of the entire chapter.

In the context of the book “Predictive Maintenance in Dynamic Systems,” the
chapter at hand introduces smart devices as mobile user interfaces, which provide
possibilities to integrate humans into modern IT infrastructures in manufacturing
companies and thus help humans to take on new roles in maintenance processes. The
chapter shows that local data analysis and condition monitoring, process monitoring,
and remote expert solutions for maintenance are among the benefits that smart
devices provide in the field of predictive maintenance.

2 State of the Art

This section provides a general introduction to smart devices. First, important terms
and concepts are presented. Different devices are then categorized and character-
ized. A view on the market introduces the different vendors and operating systems
as well as their importance based on market share. Based on the hardware properties,
device selection criteria for different applications and boundary conditions are
derived.
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2.1 Definition of Terms

In general, smart devices are electronic, mobile devices, which provide functionali-
ties via sensor-based information processing and communication. Smart devices can
run applications, programmed for various use cases. With cameras, microphones,
and other sensors, they connect humans to the environment and the digital world [7].

For presenting information to humans, Milgram has defined a reality–virtuality
continuum, which characterizes different levels of integrating virtual content into
the real world. Different devices can be classified on this continuum as shown in
Fig. 4 [8].

In virtual reality, the content is separated from the real world by using head-
mounted displays [9]. The headset’s position is tracked and movements are trans-
lated into the virtual reality. The user can interact and manipulate the virtual
world with position-tracked controllers, which often represent the users’ hands
or tools [10]. Assisted reality overlays information, e.g., user manuals or process
information with the real world. Mixed reality merges virtual and real world
even more than assisted reality. The visual elements are augmented in such a
way that they appear to be part of the real world. This requires tracking of the
headset’s position, which can be either visually or sensor based (e.g., gyroscopes or
accelerometers). Visual tracking is often marker based. Without markers, methods
of computer vision are used to identify objects and their position. For augmented
and mixed reality applications, a mix of these tracking methods is usually used.
Augmented reality has the highest degree of merging real and virtual content.
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Devices like Microsoft HoloLens project holograms in the viewer’s field of view.
Their position can be fixed in real environments, and the user can move freely
around the objects.

2.2 Physical Devices/Hardware

There are different types of smart devices, which comply with the definition above.
They differ in hardware design but also in functionality. Popular devices used today
are smartphones, tablets, smartglasses, and smartwatches. Smartphones and tablets
are quite similar and are therefore described together.

2.2.1 Smartphones and Tablets

Smartphones are handheld computer devices, which feature wireless network
connectivity (via WLAN and cellular networks) and other wireless technology-
like location services (GPS, GLONASS, and Galileo), Bluetooth, and NFC [11,
12]. The telephone function is becoming more and more of a minor matter,
in view of the large range of functions provided by smartphones. Smartphone
operating systems (i.e., Android and iOS) can run applications programmed for a
wide range of industrial use cases. Smartphone CPU and GPU performance has
multiplied in recent years. Therefore, they are increasingly capable of running
compute-intensive applications. For user interaction, current smartphones generally
have large (high-resolution) touchscreens on the front. Most smartphones integrate
cameras (front and/or back) and other sensors, like gyroscopes, accelerometers,
barometers, proximity sensors, and ambient light sensors [13]. Depending on the
CPU and GPU usage, modern smartphones provide between 1 and 2 days of
battery life.

The technological innovations stagnated in recent years and improvements are
mainly limited to ever-faster processors and better cameras. It can be concluded
that smartphones as device category are commonly used in private sectors and
characterized by high technological maturity levels.

From a technological perspective, tablets mainly have the same functionalities as
smartphones. Usually, they do not provide telephone features. The touchscreen size
typically varies between 7 and 13 in. Regarding sensors and wireless connectivity,
they are on a par with smartphones. Tablets usually deliver greater performance and
battery life due to their larger size, enabling manufacturers to pack larger batteries.

2.2.2 Smartglasses

Apart from their shape, smartglasses are relatively similar to smartphones. They
provide similar functionalities in a different construction. Smartglasses (optical
head-mounted displays) project information into the user’s field of vision through
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mainly three technologies: optical see-through displays, video see-through displays
[14], and retinal projection [15]. It can be distinguished between monocular and
binocular smartglasses, whereas monocular smartglasses use a single display unit.
In addition, smartglasses are characterized by different levels of combining real and
virtual world as described above [16].

Most smartglasses also feature a wide variety of sensors like gyroscopes,
accelerometers, microphones, and cameras. They can use the sensors to track their
position and orientation in space, which is necessary for augmented and mixed
reality applications.

Smartglasses in general suffer from short battery life between 1 and 6 h. Extended
battery life can be achieved using wired external batteries [15]. The field of view of
smartglasses is still rather small, compared to the human eye (20–60◦ horizontally
vs. 180◦), which causes a limited area where the virtual information can be placed
without turning the head [17]. Compared to smartphones and tablets, smartglasses
are characterized by lower technological maturity. This is mainly due to low battery
life, less hardware robustness, and poor ergonomics (low resolution, low field of
view, and mostly high weight; see sect. 4).

2.2.3 Smartwatches

Smartwatches are another hardware category used in manufacturing environments.
In general, smartwatches are wrist-worn devices, featuring computational power,
integrated sensors, and can connect to other devices through the internet [18].

Concerning the hardware, smartwatches mostly integrate touchscreens for infor-
mation display and interaction. They include sensors, which are, e.g., gyroscopes,
accelerometers, barometers, light sensors, and heart rate sensors. Bluetooth and
WLAN are used for wireless connectivity and GPS and/or GLONASS for localiza-
tion [19]. In addition, many watches are waterproof or water resistant. Battery life
ranges from one to multiple days, depending on usage and processing requirements
of the running applications [18].

Smartwatches are mostly designed to function in interaction with a smartphone.
They can relay notifications and alarms from the smartphone to the user’s wrist.
The smartphone acts as an interface between the watch and external systems such
as MES or CAQ-systems [20].

Compared to smartphones and tablets, smartwatches have some key advantages
for providing information. Because they are wrist worn, information can be accessed
quicker, with less obstruction and “hands-free” [19]. In addition, haptic feedback
can be more reliable than acoustic or vibration feedback coming from a smartphone
in a person’s pocket (e.g., in loud manufacturing environments) [20].

Disadvantages are the low processing power and the small screen. However,
smartwatches are still a rather young device category, and huge improvements have
been made in the last few years.
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2.3 Market View

For assessing vendors and operating systems, it is useful to differentiate between
the different device categories. Especially, the smartglasses vendors have little to no
overlap to the well-established leaders on the smartphone and tablet market.

Smartphones and Tablets The single biggest vendors for smartphones and tablets
are Samsung and Apple with 34.2% in the third quarter 2017 on the smartphone,
respectively, 40.8% on the tablet market, see Fig. 5 [21, 22]. Regarding operating
systems (OS), there are only two with significant market share: Android and iOS.
Android is based on Linux and is developed by the Open Handset Alliance, which is
led by Google. In the first quarter 2017, it had a market share of 85.0%. During the
same period, iOS, which is Apple’s smartphone and tablet OS, had a market share
of 14.7% [23]. Most other smartphone and tablet vendors are using Android, which
they customize to provide features not available by default.

Smartglasses The market for smartglasses is much smaller, compared to the
smartphone and tablet market. In 2016, only 16 million head-mounted displays
were sold [24]. In the same time, 1.5 billion smartphones and 175 million tablets
were sold [22, 25]. Vendors in the smartglasses market are new startups mixed with
traditional electronic manufacturers. Notable manufacturers are, e.g., Atheer, Epson,
Google, Meta, Microsoft, ODG, and Vuzix. There are no reliable sales numbers
indicating the market leader. What can be said though is that Android is the leading
operating system for smartglasses [15]. One important exception is the Microsoft
HoloLens, which runs a version of Windows 10. Microsoft has also presented a
platform called “Windows Mixed Reality” which provides a framework for AR apps
and hardware.

Smartwatches Their sales numbers are projected to double from 2017 to 2021,
see Table 1. Apple’s WatchOS, Samsung’s Tizen, and Google’s Wear OS are the
relevant operating systems. Whereas WatchOS and Tizen are exclusive to Apple and
Samsung, respectively, Wear OS can be used by every interested hardware vendor.
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Fig. 5 Smartphone and tablet market share for the third quarter 2017 [21, 22]
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Table 1 Sales of wearables
as forecasted 2017 (in million
units) [24]

Device 2016 2017 2018 2021

Smartwatch 34.80 41.50 48.20 80.96
Head-mounted display 16.09 22.01 28.28 67.17
Total 50.89 63.51 76.48 148.13

Fig. 6 Implementation approach for smart devices

2.4 Device Selection and Potentials

Different categories and smart devices have been established in the previous section.
For their application, it is important to match the expected operating conditions with
the specific suitability of the device. Choosing a smart device that does not meet
the requirements of a specific use case is one of the biggest threats in application
projects with wearable devices—even if the use case per se might have big potentials
regarding productivity gains.

In order to prevent such mistakes, a guideline will be introduced to specifically
guide stakeholders in the process of device selection as well as potential and effort
estimation. Figure 6 shows a general approach for an implementation procedure.

The approach follows the phases “Demo,” “Proof of Concept,” “Pilot project,”
and “Rollout.” Within the first phase, decision makers should find out, whether the
targeted combination of software and hardware works in general. This can easily
be found out during a short demo that might only take some minutes, therefore has
almost no effort but will result in no measurable benefit except for the fact that
afterwards the solution has been falsified or verified under laboratory conditions.
When this demo phase has been passed, a proof of concept should follow to analyze
if the targeted solution also works in the use case’s boundary conditions. While the
demo might have proved to work under laboratory conditions, realistic conditions
might result in the opposite. In case, the solutions also pass this phase of the
implementation procedure, the assumed business case should be verified within
a proof of concept project. That means that the solution should temporarily be
implemented to evaluate if its application over weeks or months results in the desired
productivity gains. After the business case has been proven, a rollout is the final step
to constantly gather positive productivity effects.
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The following criteria are important aspects for device selection but do not
claim to be exhaustive. In maintenance, many processes are manual and require
the worker to use both hands. In general, devices, which allow hands-free operation,
are better suited for these processes. A higher degree of automation usually requires
less human interaction, which makes them less suited for smart device support. In
addition, the duration of processes is an important factor. Because humans need
time ( 200 ms) to react to visual stimuli [26], longer processes, like maintenance
(which normally is not bound to strict cycle times), are better suited for smart device
applications. The longest process duration is limited to the device’s battery life.
Processes which require many and/or very complex steps to perform are better suited
for smart device application. The device can provide a detailed explanation and
visualization for every step. This is especially useful for processes, which are not
performed regularly, like special repair tasks. It is also possible to support workers
on how to use the required tools to perform these tasks.

The environment conditions in which the smart devices will be used are an
important factor regarding device selection. First, there is temperature, which the
manufacturers only guarantee a specific window of operation for the devices to work
properly in. The same applies to humidity. This makes some devices unsuitable
for rough environment conditions, e.g., maintenance applications in very humid
parts of the world. Excessive noise can impede the use of, e.g., voice commands
or acoustic feedback, like alarms. When using smart devices, dirt can also have a
negative impact, especially for touchscreen usage. The same applies to vibrations.
From an organizational perspective, processes with a lot of necessary documentation
are better suited for smart device usage. The documentation can be done right on the
device, accessing the company’s databases, providing seamless integration. Also,
if additional data is required for performing the required tasks, smart devices can
easily provide with the information. Therefore, processes with a lot of additionally
necessary information are better suited for smart device usage.

In the early phases of the introduced implementation approach, device selection
can be supported by tools using the described criteria. The tools can prevent decision
makers from being already stopped in a demo phase of a solution (see Fig. 7).

Besides an overview of different smart devices that are available at the market
and their detailed technical specifications, the tools can offer a questionnaire
that allows users to systematically describe their use cases. After sending the
questionnaire, a knowledge- and experience-based matching algorithm is applied
that gives recommendations about preferred hardware for the entered use case.
In addition, a rough estimation of implementation efforts is made which depends
on several factors, but especially depends on the integration level into existing IT
infrastructure, which usually requires customization and integration programming
efforts.

Finally, knowledge exchange between users of the platform is offered to comple-
ment the systematic guideline approach with human interactions like commenting
the guideline results in order to continuously improve the guideline’s underlying
heuristics [27].
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Fig. 7 Evaluation tool for smartglasses selection [27]

To give an example of the evaluation, two different application scenarios will be
presented. The first example is a maintenance application in an indoor automotive
assembly environment (climate controlled). It is an unplanned manual repair and
therefore requires guidance on the system’s components and their interaction. The
worker is supported by providing manuals for the equipment. The general process
duration is high, compared to, e.g., assembly lines with a fixed cycle time. For the
second scenario, a repair task of a construction machine will be considered. The
maintenance takes place in hot, humid conditions in the field. There is less routine
of the mechanic, because he is not specially trained for the task. Figure 8 shows
a comparison of the two applications and their suitability for smart device usage
derived from the criteria described above.

These radar charts can provide a decision-making basis for assessing smart
device potentials in maintenance and other industry-related use cases. They can be
used for a preselection of suitable processes. However, the specific suitability of a
process must be examined in detail, as there are always new devices on the market
and this classification can only provide an orientation.
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Fig. 8 Machine maintenance in climate-controlled assembly shop (left) compared to maintenance
in a construction environment with hot and humid conditions (right)

3 Application Examples in Maintenance

This section provides examples for different applications for the use of smart devices
in production system maintenance. First, an example for local data analysis and
communication for condition monitoring is given. This includes the presentation of
a real-time worker information system as the core of solutions for worker assistance
in condition monitoring tasks. Second, the application of smart devices for remote
expert solutions is presented. Remote expert solutions enable maintenance engineers
to communicate with machine experts via video live stream, to collaborate on
fixing problems. Finally, an example is presented which shows how smart devices
have changed the way information is displayed to workers in case of process data
visualization for process monitoring.

Critical to the successful use of smart devices in the industrial environment
is the integration and linking into the relevant system landscape. Instead of a
stand-alone solution, planning systems such as enterprise resource planning (ERP),
manufacturing execution systems (MES), computer-aided quality (CAQ), and the
machine itself exchange data. This is the prerequisite to use smart devices as an
integral part in the different applications. Common use cases for smart devices in
maintenance applications are found in the area of condition monitoring, remote
expert solutions as well as process monitoring [28, 29].

Condition monitoring describes the process of recording machine data for check-
ing the current machine status. This allows the identification of irregularities or
errors in the system. Moreover, a condition monitoring system can make predictions
about the future system behavior by means of a combination of the analysis of the
current system state and historical data. Thus, the monitoring system can detect
faulty states early or plan maintenance activities and intervals. Remote expert
solutions help to accelerate and improve the maintenance process. Those systems
enable engineers to communicate with experts via live streams. Being able to look
into the machine while simultaneously displaying all the relevant information on
the spot also makes it possible to predict the future state of the machine. Finally,
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systems connected to other systems such as ERP provide an overview of the state of
the entire system on the shop floor. The combination of these three use cases enables
companies to use smart devices on a large scale for predictive maintenance.

3.1 Local Data Analysis and Communication for Condition
Monitoring

Condition monitoring enables the maintenance engineer to identify the current
system status and allows the derivation of future recommendations for action.
Prerequisite is the use of real-time machine data in order to interpret and analyze
it and to derive actions subsequently. This is useful, e.g., for troubleshooting,
maintenance, or predicting future system states. For applications, providing real-
time information of the machine to the worker, a direct information exchange
between the machine and smart devices is necessary. Information here is often time
critical and requires short-term action and intervention options (e.g., in the event
of sudden malfunctions or tool changes). Therefore, in the following a real-time
worker information system is presented, see Fig. 9. It enables direct communication
between smart devices (e.g., tablets and smartglasses) and the machine control.
The system supports the machine operator in planned and unplanned maintenance
activities.

Fig. 9 Communication between machine and device
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As stated, data exchange between mobile terminal and machine control is
a prerequisite for real-time systems. Direct socket communication enables the
data exchange and eliminates a separate arithmetic unit. Smartphones and tablets
are used as hardware. Communication with the machine control system takes
place, for example, via OPC-UA. For this purpose, the control technologic PLC
interface (programmable logic controller) is implemented device-specific. By this,
transmission is enabled for many different devices. Other (manufacturer-specific)
protocols can also be implemented in the system. A communication protocol
ultimately defines the rules and syntax of how data of specific inputs and outputs
can be got or set (read and write functions). By constantly retrieving actual data
from the controller, real-time information such as machine status or tool condition
is transferred and further processed in the information system. The data transport is
done wirelessly, e.g., over Wi-Fi.

The information system forms the core of solutions for worker assistance in con-
dition monitoring tasks. In addition to the real-time machine data, the information
system also provides a library with specific video manuals and documentation,
e.g., manuals in PDF file format. Particularly in the field of “training,” users
can use video manuals, for example how to replace a tool during maintenance.
This is displayed directly on the tablet or the glasses conveniently and location-
independent. It gives the worker the information he or she needs without being
dependent on paper-based instructions or PC terminals. When using smartglasses,
the operator can open these manuals parallel to her or his work, since the glasses
provide the information via an integrated, semitransparent display.

The direct communication between the device and machine enables real-time
data analysis within the information system. For monitoring reasons, the operator
can see the latest machine and order information, such as progress, remaining
time, machine status, or overall system effectiveness (OEE). This promises real-
time transparency for the employee, because the controller transfers raw data
continuously to the smart device. The smart devices then further process and
visualize the data locally, condense it into key performance indicators (KPI), and
perform automatic updates.

In case of unexpected disturbances, interruptions, or errors, the user automati-
cally receives information, e.g., as a pop-up. Predefined error libraries and codes
give the machine operator direct messages via the smart device. Examples of such
error and fault information are opened safety devices such as doors or necessary
tool changes in the mechanical machining of components. The interpretation of
the raw data for a possible incident, the derivation of instructions for the user, and
their communication also take place directly in the information system on the smart
device. A manual error analysis by error retrieval at the machine terminal is obsolete.
This reduces the reaction times in case of unexpected disturbances and can increase
the OEE. So, all the required information, such as manuals or repair information for
the specific error, are available directly during maintenance.

The described system for machine-related operator support represents a tangible
extension of the classical interface between machine control and worker. In the age
of Industry 4.0, the system enables direct retrieval, local processing of data as well as
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the visualization of the correspondingly condensed information via smart devices. In
this way, the system supplements the classical human–machine interface (HMI) on
the machine terminal by using a flexible and real-time-capable information system
directly at the shop floor.

Current challenges and research requirements lie in particular in the integration
of different control systems and corresponding communication protocols. In addi-
tion to actual data exchange strategies, this also includes the interpretation of the
control-specific raw data and the subsequent information compression. In addition,
current systems are often limited to communication between a device and a single
machine control. In industrial use cases, direct communication from one device to
multiple controllers is desirable. For this, it is necessary to define meaningful access
routines. For example, a pairing of device and machine could be done via a scan of a
machine ID (e.g., QR code) or the automatic recognition of surrounding production
machines via Bluetooth or NFC. In the field of predictive maintenance in particular,
the predictive models must be further improved and generalized. These improved
and generalized models can provide more accurate predictions for wider use cases.

3.2 Remote Expert Solutions

In manufacturing companies, machine downtimes can considerably influence the
productivity and result in high costs. New studies show that 82% of surveyed
companies have been confronted with unplanned machine failures within the last
few years. Most typical reasons were hardware- and software-based malfunctions
followed by human errors. On average, machine failures lasted for 4 h and involved
costs of two million dollars. Almost 50% of companies believe that downtimes can
be decreased when machines are able to request for help by themselves and when
they use cloud-based functions to support failure diagnostics [30].

To accelerate machine failure handlings supported by machine experts, mobile
devices with remote expert systems can be applied. Those systems enable mainte-
nance engineers to communicate with machine experts via internet connection and
provide a live video stream showing the failed machine. Thus, the machine expert
can immediately support the troubleshooting and provide professional instructions
for a proper failure handling. For maintenance engineers, smartglasses serve as a
practical platform for remote expert systems. Their mobility allows them to stay
on the shop floor and to use the integrated camera module for sharing their own
perspective of the failed machine. The integrated headset enables speech-based
communication while being hands-free. Since the machine expert can be consulted
immediately without regard to the current location, travel costs can be saved. The
machine expert can use a computer or a tablet PC. Similar to classical applications
with video conference functionalities, remote expert systems have to be installed
on the devices of both conversation partners. As shown in Fig. 10, those systems
provide different functions and options depending on the specific device and role of
the user.
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Fig. 10 Connection of maintenance engineer and machine expert via remote expert system

Since most available smartglasses on the market use popular operating systems
such as Android, the access to the camera module is standardized. Moreover, remote
expert systems connect to a local wireless router with the device-integrated wireless
module. The external machine expert, who receives the camera image, can easily
guide the maintenance engineer through the troubleshooting and failure handling
processes. To support these processes, remote expert systems provide different
useful functionalities. For example, the machine expert can add and remove different
elements such as symbols, textboxes, images, or checklists to the camera image
via drag and drop. Due to automatic synchronization with the smartglasses of the
maintenance engineer, those elements will also show up on their screens. This way,
the machine expert is able to guide the maintenance engineer to the right spot of the
machine and to write comments that can include information about the next steps.

Remote expert systems allow immediate failure handling guided by machine
experts and therefore, downtimes and resulting costs can be decreased. For machine
suppliers, those systems provide new opportunities to create profitable business
models. Up to now, 81% of companies state that aftersales services do not
significantly contribute to the profitability due to limited capacities, which result
into long reaction times [31]. The ad hoc connection of service employees and
customers via a remote expert system can be considered as one feasible approach
for an efficient use of personnel capacities.
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3.3 Process Data Visualization for Process Monitoring

One essential target of Industry 4.0 is to provide employees with the information
they need at the right time to carry out their processes efficiently and to fulfill current
quality requirements. This can be realized with modern process data visualization
systems that are interconnected with the production’s software landscape. Available
systems providing CAD, CAM, ERP, MES, MDA, and CAQ functionalities are used
as different data sources [4]. Instead of classical computer terminals, smart devices
are used, providing a high grade of mobility. With their application, information
does not need to be actively requested at a fixed location on the shop floor. Smart
devices can display information at any time when it is needed without considering
the employee’s current location. Audio or vibration signals are typical instruments
to gain the employee’s attention. Figure 11 illustrates how process visualization
systems combine different data sources of the production’s software environment.
Employees who are equipped with such a system can be provided with various
information such as technical product specifications, process and quality data as
well as machine condition data. The final choice of information that is visualized
on the screen is adapted to the individual needs and functions of the specific system
user. For example, machine operators receive information about single processes,
while maintenance engineers mainly receive condition data of machines that are
under their responsibility.

In case of an occurring machine failure, maintenance engineers can use the
integrated menu structure to get access to digital machine handbooks (machine as
planned), to specific information about machine components (machine as built),

Fig. 11 Process monitoring through mobile devices
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and to machine-related maintenance histories (machine as serviced). Such a high
availability of information promotes time-efficient troubleshooting and failure
handling. With the help of data processing algorithms, various key performance
indicators such as the overall equipment effectiveness (OEE) of machines can
be calculated and displayed. Predictive algorithms inform machine operators and
maintenance engineers about future quality outcomes and machine states. In case of
predicted qualities that are outside the tolerances, process chains and parameters can
be adapted. Maintenance engineers can be informed about possible machine failures
before their occurrence. To provide an impression of modern process monitoring
applications, an example is given in the following. Figure 12 shows a system that
visualizes a precision glass molding process.

In contrast to grinding and polishing processes for production of optical lenses,
precision glass molding describes a replicative molding process. With short cycle
times and its ability for production of complex lens geometries with stable qualities,
this technology depicts an optimal approach for mass production. In addition, due to
the fact that every lens geometry requires a specific and expensive mold, precision
glass molding can mostly be found in productions with high output rates of the
same products. During the molding process, force and temperature sensors deliver
data from different positions within the mold. Since the molding of the glass blank
cannot be observed visually, the data acquired during the process is combined with
a simulation that visualizes the molding based on a three-dimensional model. Thus,
besides the monitoring of the current process, this system supports gaining new
process knowledge because it visualizes the correlations between the geometrical
specifications of the mold and the resulting forming, forces, and temperatures. This
knowledge enables the optimization of process parameters and mold designs. From
a maintenance perspective, the acquired data can help to derive the current and
future wear state of the tool. This can support maintenance engineers to initiate
tool repairs or changes before the output quality is considerably influenced [32, 33].

Fig. 12 Process monitoring
during precision glass
molding [32]
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Process data visualization is an important component of Industry 4.0, which
increases process and machine state transparency and therefore, promotes process
knowledge building and an increase of experience regarding machine behaviors.
From a short-term perspective, visible process data supports operators and mainte-
nance engineers to fulfill predefined quality requirements and to decrease machine
downtimes. The long-term application allows continuous optimizations of process
parameters and maintenance strategies, e.g., event-based maintenance, that enables
preventions of discard, rework, and machine downtimes.

4 Limitations and Challenges

This chapter provides and discusses current limitations and challenges related to
the use of smart devices for industrial maintenance applications. First, hardware
limitations are discussed. These hardware limitations include human-related lim-
itations like wearing comfort, application-related limitations, which are set by
limited accuracies of sensors and cameras, and environment-related limitations
like high temperature or dust. The second subsection focusses on user acceptance
and emphasizes that an appropriate and practical system design is required to
achieve general user acceptance. After that, information compression, which is
necessary due to the compact design and reduced possibilities of user interaction
on smart devices, is discussed. Finally, legal aspects are considered by describing
legislative requirements originating from EU directions referring to safety and
health requirements for the workplace, work equipment, and data protection.

4.1 Hardware Limitations

In addition to the variety of possibilities, using smartglasses in industrial environ-
ments also leads to certain limitations and challenges. These challenges can be
divided into three categories:

• Human-related limitations
• Application-related limitations
• Environment-related limitations

Human-related limitations, for instance, include wearing comfort. Smartglasses
should not affect the user’s comfort, even if the user wears them over a longer
period. Weight of the smartglasses as well as the glasses’ fit to the user’s head are
crucial factors in terms of wearing comfort and will also contribute to the user’s
acceptance for the smartglasses.

Application-related limitations are limits that result from the hardware sets in
terms of accuracy of sensors and cameras. Since sensors have a defined range of
measurement inaccuracy, not all glasses are suited for all applications. Smartglasses
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can only be utilized, if their sensors and cameras fulfill the requirements, which
the application defines. For example, if smartglasses are used for technical service
through remote expert software, the smartglasses’ camera has to be capable of
recording high-resolution videos, even when the caller is in motion, so that the
receiver of the call can also identify small details (e.g., a tool identification plate) in
the streamed video. Another application-related limitation is the battery. The battery
life has to be suitable for the applications. As bigger and heavier smartglasses tend
to have a bigger battery, the trade-off between comfort and battery life has to be
evaluated for every application case.

Environment-related limitations are limits that result from environmental influ-
ences on smartglasses. Environmental influences include water, dust, temperature
(hot and cold), and atmospheric corrosion. The IP Code provides information on
the degree of the device’s solid particle protection and liquid ingress protection.
Dust and water can damage smartglasses, if they are not selected according
to their IP Code. High or low temperatures can also damage smartglasses. As
smartphones tend to have a less efficient battery during very low temperatures,
the same applies to smartglasses, since they use the same type of lithium-ion
battery. Many smartglasses are approved for temperatures near to room temperature.
The temperatures of many production facilities exceed these temperature values,
though. Another environmental aspect is explosion protection. Electrical devices
can possibly become a source of ignition and only the use of certified, intrinsically
safe devices is allowed in explosion-hazardous areas. As many smartglasses lack
an approval for explosion-hazardous areas, their usage within these areas is strictly
limited.

4.2 User Acceptance

Nowadays, working population represents a cross section of different generations
and corresponding backgrounds regarding the use of and the familiarity with
digital solutions in their daily work. Future digitalized production systems—Smart
Factories—require workers to operate with and within the world of data. Here,
smart devices represent important interfaces between worker and interconnected
production machines and software systems. The worker’s specific technical affinity
is strongly related to his or her generation and level of training. However, as the
smartphone shows, the professional or generation background does not prevent a
widespread use of smart devices across almost all sections of population in the
private sector.

The industrial sector faces similar characteristics for its future. However, this
requires a broad user acceptance by appropriate and practical system design.
General requirements for the system design and its interfaces can be derived from
ISO 9241—Ergonomics of Human-System Interaction. This series of standards
defines boundary conditions and design rules/guidelines for physical aspects such
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as workplace design and posture. Furthermore, major topics of those standards are
related to software ergonomics. Here, aspects such as dialogue management, user
interfaces, or interactive system features are considered [34].

Besides generalized guidelines such as ISO 9241, specific end-user require-
ments need to be taken into account when designing smart device applications
for maintenance purposes. A participative approach represents a key success
factor. Therefore, maintenance personnel and experts should be actively included
during the system development by structured gathering and incorporating their
requirements and feedbacks. Figure 13 provides a recommendation of methods to
systematically include end-user requirements and feedbacks during different phases
of the development, implementation, and rollout of smart maintenance systems-
based mobile devices.

Besides the general system design, the user acceptance regarding the implemen-
tation of new systems correlates with its level of adaption during the rollout period.
The introduction of digital applications in operational processes such as mainte-
nance activities is always related to a change to the employee’s way of working.
Therefore, change management is a crucial and central aspect for the rollout of
smart device applications in maintenance. Experienced maintenance worker might
feel left behind or less valued in case their established and proven procedures are
replaced—respectively adapted—by new technologies such as interactive failure
documentation using augmented reality or guided repair procedures via remote
expert solutions. This aspect can be described according to the worker-specific
perception of its own competence. A generalized development of this perception
during the implementation of changes is visualized in Fig. 14.

It can be seen that the worker’s reaction to those changes develops from an initial
shock, refusal, stepwise acceptance of the new technologies and a related perception
of decreased competence towards a learning curve characterized by improved
knowledge and integration. According to this model, the process results in a percep-
tion of increased competence [35]. However, it needs to be pointed out that it is in
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Fig. 13 Recommended methods and approaches towards participative system design
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1. Shock
„That can‘t be true.“

2. Refusal
„That is not true.“

3. Rational understanding
„Maybe it is true.“

4. Emotional acceptance
„Somehow it is true.“

5. Learning
„Ok, let‘s try.“

6. Knowledge
„It really works....“

7. Integration
„It is normal“
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Fig. 14 Perception of competences during the rollout of changes [31]

the nature of things that employees might be skeptical of changes and corresponding
implications on their daily work and perception of own competences. Thus, it is
all the more important to include the end-user in the development of smart device
applications for maintenance following a participative approach as outlined before.

4.3 Information Compression on Smart Devices

Smart devices provide several advantages such as capability for mobile applications.
However, due to their compact design and reduced possibilities for user inputs and
interactions, the provision of information is not comparable to classic methods
such as printed documentation or PC terminals. Documents such as drawings,
quality plans or working instructions (e.g., pdfs) are generally provided as extensive
information containing all details. Consequently, workers might be overstrained, as
documentation needs to be reviewed in terms of relevant information for the very
specific task. This aspect represents a major potential for improvement when using
smart devices, as the provided content is limited to the relevant information. The
direct connection of smart device maintenance applications to superior software and
planning systems (e.g., for providing relevant maintenance instructions and check-
lists) allows to query the very specific and didactically prepared information, rather
than entire manuals or process documentation. However, this requires information
compression on the chosen device.
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Fig. 15 Scheme for information compression on different devices

Depending on the device technology, display sizes, resolution as well as general
features such as audio recording, playback, or vibration capability vary. A current
research focus is therefore related to the device- and user-dependent compression
of information for industrial applications such as maintenance support via digital
repair plans or ad hoc documentation via mobile devices. The general scheme of
this information compression is outlined in Fig. 15.

It is necessary to identify the trade-off between loss of information and mental
overload through unnecessary or redundant information. While detailed process
descriptions or system plans can be provided and interpreted via tablets through
intuitive operations such as scrolling or zooming, the use of smartglasses or
smartwatches for the same information could lead to confusion rather than support.
Consequently, maintenance procedure might even be delayed and more compli-
cated. Here, short and concise requests for subtasks as text instructions, videos, or
schematic sketches could be used instead of extensive documentation.

4.4 Legal Aspects

Further challenges for the implementation of smart devices for maintenance activ-
ities are also related to legal conditions. Some of those legislative requirements
originating from EU directions shall be presented at this stage. Those directions
particularly refer to safety and health requirements for the workplace and work
equipment as well as data protection.

For countries of the European Union, 89/654/EEC defines minimum safety and
health requirements for the workplace [36]. This document also defines specific
requirements for mobile virtual display units. Therefore, this regulation is also
applicable for maintenance activities supported by smartglasses or tablets. As an
example, this document requires a temporally limited use of those mobile display
units, except there are no other technical solutions available for the specific tasks.
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However, in case they are required and need to be used to execute specific main-
tenance operations as work equipment, they are covered by 2009/104/EC, which
defines minimum safety and health requirements for the use of work equipment [37].
According to this regulation, the employer is required to assess the functional safety
of those mobile devices on a regular basis to avoid any hazards for the workers.
Defect devices, e.g., indicated by hotter battery systems, shall not be used anymore
as they represent potential hazards. In general, employers are required to measure
and to achieve improvements in the safety and health of workers at work. For
the European Union, this aspect is regulated by 89/391/EEC [38]. The employer
has to assess the working conditions for maintenance activities and to introduce
countermeasures in case of any hazards. Therefore, personal protective equipment
(PPE) is mandatory—especially in the field of maintenance. However, in case smart
devices are used for maintenance purposes, the compatibility of smart devices and
PPE needs to be guaranteed. Due to this reason, there are different smartglasses on
the market that can be easily combined with PPE such as helmets.

In the age of Industry 4.0 and fully connected digitalized manufacturing systems,
data protection plays a crucial role. Especially, from employee and work council
perspective, the protection of individuals with regard to the processing of personal
data is of major interest. For the European Union, this aspect is regulated in
95/46/EC, respectively, 2016/679 regulation. Personal data can clearly be related
to a specific person, respectively, worker [39, 40]. Personally identifiable data
acquisition, data processing, and data use can only be considered as legal if the
affected person authorizes it or if it is legally required or allowed. The acquisition
of this kind of data—e.g., for assessing the employee’s performance or working
speed by use of mobile devices—is critical and should be punished according
to this regulation. Even the recording of other (uninvolved) persons when using
smartglasses during maintenance documentation requires the explicit permission of
the specific person. Therefore, measures need to be executed to guarantee anonymity
of data and a limitation of recorded data that is coherent with legislative boundary
requirements when introducing smart devices for maintenance purposes.

It can be concluded that several legislative requirements are formulated for work
equipment, working conditions, and data acquisition and processing to guarantee
safety standards as well as sufficient data protection. Some of those regulations are
applicable to the use of smart devices for maintenance applications. To be coherent
with those regulations, measures and data acquisition and processing strategies need
to be implemented to ensure a lawful implementation of smart devices.

5 Summary

This chapter described the role of smart devices in production system maintenance.
With their specific features such as mobility, interconnectivity, and processing
performance, they serve as technical assistance systems and promote the integration
of workers into the digital factory.
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In a definition of terms and a subsequent market view, different types and tech-
nologies of smartphones, tablets, smartglasses, and smartwatches were introduced.
Besides technical differences, leading providers of different operating systems and
hardware were named.

To underline the key role of smart devices in terms of modern maintenance,
three application examples were described. The first one described the interface
between smart devices and machines through direct socket communication. Specific
benefits of local data analysis and condition monitoring were pointed out. Occurring
machine downtimes can be decreased with the application of remote expert system
that connects maintenance engineers with machine experts through the internet by
using smart devices. Their advantages and functionalities were described in the
second example. The last example introduced data visualization systems for process
monitoring on smart devices as mobile solutions to provide maintenance engineers
with machine information without regarding their current location on the shop floor.

In the last part of this chapter, limitations and challenges that are connected
to the integration of smart devices into the shop floor were discussed. For each
specific application, a different technology can be seen as most suitable. Technical
differences and limitations of smart devices are defined by their specific operating
systems, technical interfaces, calculation of power, storage, and battery capacities,
and by their environmental working conditions. Moreover, the application of smart
devices and software can be restricted regarding user acceptance, information
compression, and legal aspects.

Considering all existing limitations and requirements, smart devices are forward-
looking technologies that promote location-independent and need-based informa-
tion exchanges on the shop floor. For maintenance, those advantages are crucial to
enable quick reactions to machine failures and to unacceptable changes of machine
conditions.
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On the Relevance of Preprocessing in
Predictive Maintenance for Dynamic
Systems

Carlos Cernuda

1 Introduction

Nowadays the volume of data is exploding, and the costs of collecting, storing, and
treating them are affordable for many, making big data solutions more science and
less fiction. In this world submerged by a data tsunami, predictive maintenance is
not an exception. In fact the advances in cheaper, smaller, and much more accurate
sensors development, together with highly sophisticated communication protocols,
have widely contributed to a continuous rise of data-driven approaches in predictive
maintenance.

In any data-driven application in general, thus for predictive maintenance in
particular, preprocessing [132] is of uppermost importance in order to make the
data meaningful and usable, driving the path from potential to real information.
Depending on the author, preprocessing can take different meanings. Some sep-
arate, for instance, data compression approaches, such as feature selection, from
preprocessing. We will consider any treatment performed to the data before training
a model as preprocessing. Then, data cleaning, noise filtering, normalizing, and
feature selection are part of it, among others.

Therefore, we can think of preprocessing as a step formed by several steps, each
of them with a particular purpose, whose order could be sometimes interchanged
but in which the commutative property is in general not fulfilled. Considering
the amount of possible steps, the variety of possible approaches per step, and
the non-commutativity between them, the amount of options explodes existing no
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guaranty that a combination of preprocessing actions would behave better than no
preprocessing the raw data at all [39].

Data involved in each problem related to predictive maintenance have specific
properties. For instance, data related to fault detection tend to be highly imbalanced
because the information regarding faulty situations is much less frequent than the
one regarding fault-free situations. In general, the properties of the data should
be taken into account when choosing a preprocessing strategy. Unfortunately the
task does not provide enough information, meaning that not all datasets used for
a task have the same properties. For example, not all datasets for remain useful
life (RUL) prediction problems are the same. The properties of each dataset have
to be determined. Moreover, sometimes, with the same properties, a preprocessing
scheme works for one problem and not for another. Some general hints are provided
in the definitions of the different strategies.

In predictive maintenance accurate models are necessary, but accurate today
could become inaccurate tomorrow, making robust long-lasting models also a
requirement, especially in highly dynamic systems. Proper preprocessing strategies
are the foundation of the construction of a robust accurate model.

The rest of the work is as follows. Section 2 establishes a taxonomy, provides
brief but beyond a mere citation descriptions of several techniques for each of the
preprocessing steps following the previously provided taxonomy, and presents sev-
eral modeling techniques meant for system monitoring in predictive maintenance.
Section 3 fully describes the datasets that define the different scenarios, the complete
experimental setup, as well as the evaluation schemata that would allow for a fair
comparison of the proposed pretreatment configurations, and comments about the
results achieved. Finally, Sect. 4 concludes the study.

2 Preprocessing

We define preprocessing as the set of actions performed to raw data prior to a subse-
quent modeling performance, with the aim of improving the modeling capabilities.
The improvement could be understood in several ways, such as increasing accuracy,
increasing robustness, shortening computational time, decreasing memory and/or
computational power requirements, or reducing monetary costs.

The perfect result would be a combination of several of those (usually con-
flicting) objectives, leading to multi- and many-objective solutions (in which an
algorithm is trained in order to find the best preprocessing strategy) that are
far beyond the scope of this work. Generally, the objectives are dependent on
the problem and the final user requirements. Therefore, we will focus separately
on accuracy and robustness, assuming that the methods are fast enough for our
requirements as well as affordable in time, technical resources, and money.
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2.1 Taxonomy

The taxonomy we are presenting here is an ordered taxonomy, meaning that the
steps, if included in our strategy, should be performed in the given order. Since some
of those procedures deal with some calculations using the data (e.g., averages), then
any transformation made would affect those calculations in the subsequent steps,
which could lead to different resulting actions. We first present the six preprocessing
steps, and then we develop in detail the most relevant approaches in each one
of them.

1. Data cleansing. Most data-driven techniques rely on the supposition of com-
plete, reliable noise-free data. But real-world data are not such ideal clean data,
being necessary to define strategies to deal with outliers and noise. Moreover,
due to the nature of the data or due to a lack of an adequate data acquisition
strategy, redundant or irrelevant features could be considered in the dataset,
which could be treated both in the data cleansing step or later in the feature
engineering step.1 Despite expert knowledge could be extremely helpful for data
cleansing, we assume a lack of it so that we focus on data-based strategies.
Besides, some of the parts of the taxonomy are interconnected. For instance,
noise treatment is usually attempted through filtering (data transformation) or
compression (data engineering), as well as redundancy and irrelevancy, which
are usually overcome through data engineering. Therefore, those cases will be
treated in their corresponding steps, being the link mentioned.

2. Data normalization. Data coming from diverse heterogeneous origins is col-
lected with ease, which makes actual datasets a compendium of datasets obtained
in different parts of the system in different manners. This datasets fusion,
known as data integration, is not considered by many authors (including us)
as part of preprocessing, but as part of data collection. Some algorithms are
highly sensitive to the variety of scales and ranges of the variables, which
could lead to a performance degradation if no homogenization is performed in
the data.

3. Data transformation. Despite the previous steps and some of the posterior ones
imply indeed transformations of the data, we reserve this name for transforma-
tions in the data by means of certain functions, motivated by knowledge about
the system. For instance, if we are performing predictive maintenance of certain
industrial machinery by using information about the chemical composition of
residual wastes by spectroscopic data (named chemometric multivariate cali-
bration), we can use Beer–Lambert law to realize that the relationship between
the chemical composition and the absorbance spectroscopic data (obtained by a

1It is not irrelevant when the treatment happens, because there are several steps between data
cleansing and feature engineering that could be very sensitive to redundancies or heavily affected
by features that in the end are irrelevant.
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logarithmic transformation) is linear. Therefore, the transformation is beneficial
for the posterior use of a linear monitoring technique.

4. Missing values treatment. Due to several possible causes some values of certain
variables could be missing. A naïve approach is to ignore any sample containing
a missing value, but sometimes the amount of samples is small or, in case of
imbalanced data, the minority class could become more minor even if we adopt
such a destructive approach. The obvious alternative is filling the holes, but how?
Depending on the size and intrinsic characteristics of the data, the filling strategy
could be tricky.

5. Feature engineering. There is not a standard definition of feature engineering.
By it, we mean the employment of one or more of: feature selection (determina-
tion of the most important features according to certain quality criteria), feature
extraction (creation of new features from some or all of the original ones), and
discretization (transforming continuous features into discrete ones by using bins).

6. Imbalanced data treatment. If our predictive maintenance problem is super-
vised so that certain type of samples are extremely rare compare to the others
(minority class), then we are facing an imbalanced learning problem. There are
two logical ways to proceed: (1) balancing somehow the data, and (2) compensate
giving somehow more importance to the samples from the minority class. The
former is related to sampling techniques, and the latter to weighting techniques.

2.2 Data Cleansing

Data cleansing is a complicated task in which we frequently have to make strong
assumptions. Some of those assumptions might hold theoretically but not in real-
world data. Therefore, sometime we walk on quicksand. An example we will show
right afterwards is the implicit assumption of Gaussian behavior when applying
outlier detection based on Mahalanobis distance. As aforementioned, data cleansing
deals with several data artifacts, such as outliers, noise, redundancy, or irrelevancy.

The detection of outliers understood as feature values that are too far from the
general acceptable trend, and the posterior action on those identified outliers is a
tricky task. First, how do we identify the general acceptable trend? Second, how do
we quantify what too far means? Most of the approaches are based on thresholds
from distances in certain representation of the feature space.

We will consider two important approaches, which relevance comes not only
because they are widely used but also because they can be updated incrementally
for data streams. They are based on Mahalanobis distance [77], and on chi-square
approximations of the orthogonal (Q) and score (T 2) distances from principal
components analysis (PCA) [61]. As it is indeed an orthogonal transformation, PCA
will be briefly described in Sect. 2.4.



On the Relevance of Preprocessing in Predictive Maintenance for Dynamic Systems 57

2.2.1 Outlier Detection Based on Mahalanobis Distance

Mahalanobis distance [77] is defined for two vectors xi and xj as

dM(xi , xj ) =
√
(xi − xj )T �−1(xi − xj ) (1)

It takes into account the covariance matrix �, where �ij is the covariance between
xi and xj and �ii is the variance of xi . Thus we are considering elliptic regions,
instead of circular ones, of equidistant points. Figure 1 shows a 2-D example where
the point marked with the red square would not be considered as an outlier according
to Euclidean distance, but it would be in terms of Mahalanobis distance, which
seems to be more reasonable.

The outlier identification procedure consists in calculating the Mahalanobis
distance from each sample to a central point and checks whether it exceeds
certain threshold. The mean is the classical central measure, but it is not robust
against outliers. Also the covariance matrix is not a robust dispersion measure. The
robustness can be assumed if the number of samples is quite big, that is usually the
case in predictive maintenance. Robust alternatives to the mean and the covariance
matrix are, respectively, the robust location estimator and the minimum covariance
determinant, which are the mean and covariance matrix of a subset of the original
dataset. For further information, see [116].

If we denote by xc the chosen center and by �c the chosen dispersion matrix,
then Mahalanobis distance from a sample xi to the center is given by

dM(xi ) =
√
(xi − xc)T �

−1
c (xi − xc) (2)

Fig. 1 Example of outlier
according to Mahalanobis
distance that would not be so
according to Euclidean.
Considering Euclidean
distance, the lines of points
with a constant distance to a
central point form a
circumference. But
considering Mahalanobis
distance, the shape of those
line is elliptical, and adapted
to the overall shape of the
cloud of points
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Assuming that the multivariate data follows a multivariate normal distribution, then
the squared Mahalanobis distance follows a χ2

N distribution, with N the number of
variables. Then a sample would be considered as an outlier if its distance to the
mean is higher than the threshold given by a α quantile, χ2

N,α .
For the incremental case, we just need to be able to incrementally update the

inverse of the covariance matrix, which is defined as

�N = 1

N

N∑
i=1

(xi −XN) · (xi −XN)
T (3)

Then, for the extended data stream considering an extension with one single sample,

�N+1 = 1

N + 1

N+1∑
i=1

(xi −XN+1) · (xi −XN+1)
T

If we split the sum in two parts, from 1 to N and N + 1, we get

�N+1 = 1

N +M
N∑
i=1

(xi−XN+1)·(xi−XN+1)
T+ 1

N + 1
(xi−XN+1)·(xi−XN+1)

T

We denote both addends as A1 and A2, respectively, and expand them separately.
Firstly,

A1 = 1

N + 1

N∑
i=1

(xi −XN+1) · (xi −XN+1)
T

Taking into account that the incremental update of the mean is given by

XN+1 = NXN + xN+1

N + 1
(4)

Then,

−XN+1 = −XN − 1

N + 1
(xN+1 −XN)

Denoting C := xN+1 −XN , and substituting,

A1 = 1

N + 1

N∑
i=1

(
xi −XN − 1

N + 1
C

)
·
(
xi −XN − 1

N + 1
C

)T
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As (A− B) · (A− B)T = A ·AT −A · BT − B ·AT + B · BT , and C is constant,
then

A1 = 1

N + 1

N∑
i=1

(
xi −XN

) · (xi −XN

)T

− 1

(N + 1)2

N∑
i=1

(
xi −XN

) · CT

− 1

(N + 1)2

N∑
i=1

C · (xi −XN

)T

+ 1

(N + 1)3

N∑
i=1

C · CT

= N

N + 1
�N + N

(N + 1)3
C · CT

Secondly,

A2 = 1

N + 1
(xN+1 −XN+1) · (xN+1 −XN+1)

T

From Eq. (4), we know that

−XN+1 = −xN+1 + N

N + 1
(xN+1 −XN)

Therefore,

A2 = N2

(N + 1)3
C · CT

Then, since C := xN+1 −XN ,

�N+1 = N

N + 1
�N + N

(N + 1)2
(xN+1 −XN) · (xN+1 −XN)

T (5)

In order to obtain the inverse of the covariance matrix, one option is to update
the covariance matrix and calculate its inverse. This requires a huge computational
effort unless the number of variables is very low, which is not usually the case.
Therefore, a direct update of the inverse covariance matrix is preferable.

The properties of the matrices involved in Eq. (5) allow us to compute the new
inverse as a perturbation of the old one by using the following Lemma [1].
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Lemma 1 (General Sherman–Morrison Formula) Suppose A ∈ Mn is an
invertible matrix, and v and w are vectors of length n so that 1 + wTA−1v �= 0.
Then,

(
A+ v · wT

)−1 = A−1 − A−1v · wTA−1

1+ wTA−1v
(6)

where v · wT is the outer product of v and w.

If we identify A := N
N+1�N , v := N

(N+1)2
(xN+1 −XN), and w := xN+1 −XN ,

then we have

1+ wTA−1v = 1+ 1

N + 1
(xN+1 −XN)

T �−1
N (xN+1 −XN)

that is never null because �N is positive semi-definite, then so its inverse.
In Eq. (5), inverting both sides

�−1
N+M =

(
N

N + 1
�N + N

(N + 1)2
(xN+1 −XN) · (xN+1 −XN)

T

)−1

(7)

that corresponds to the left part of (6) in the Lemma, with the previous identifications
of A, v, and w.

By Sherman–Morrison formula,

�−1
N+1 =

N + 1

N
�−1
N

−
N+1
N

�−1
N · N

(N+1)2
(xN+1 −XN) · (xN+1 −XN)

T · N+1
N

�−1
N

1+ (xN+1 −XN)T · N+1
N

�−1
N · N

(N+1)2
(xN+1 −XN)

(8)

Therefore, taking common factor N+1
N

, we get

�−1
N+1 =

N + 1

N
·
(
�−1
N −

�−1
N (xN+1 −XN) · (xN+1 −XN)

T �−1
N

(N + 1)+ (xN+1 −XN)T �
−1
N (xN+1 −XN)

)
(9)

Now, taking the square in Eq. (2), the square Mahalanobis distance from a sample
xi to the center xc is

d2
M(xi) = (xi − xc)T S−1

c (xi − xc)

Suppose we have prefixed a confidence level α, the threshold for the outlier
detection is χ2

m,α , where m is the number of variables. Thus it is independent of
the number of samples and, then, fixed during the whole online process.
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Let us suppose that we have the updated center and inverse dispersion matrix
at a time t . Once the next sample, xt+1, from the data stream arrives, its d2

M(xt+1)

value is calculated in order to decide whether it is an outlier or not, according to
the current center and inverse dispersion matrix. If it is not an outlier, the previous
center (obtained by averaging) and inverse dispersion matrix can be incrementally
updated as shown.

2.2.2 Outlier Detection Based on χ2 Approximations of Q and T 2

Statistics

Suppose that we have a centered data matrix X ∈ MM,N where the columns
correspond to the predictor variables. Therefore we can consider that we are working
in an N-dimensional space E. Once selected a number a of principal components,
principal components analysis algorithm projects the data onto an a-dimensional
subspace V , defined by the a first principal components. Then we can consider the
orthogonal supplementary subspace of V , U = V ⊥, that is a (N − a)-dimensional,
meaning that V ⊕U = E. Consequently, any element x in E has unique projections
in both V and U so that their sum equals x. The selection of a is crucial for the final
result. Nevertheless, the way to determine it is out of the scope of this section, and
has been widely treated in the literature.

We are interested in two distance measures: (1) the Mahalanobis distance from
the projection of x onto V to the center of the cloud of projections of all the
data onto V , called score distance, and (2) the Euclidean distance from x to V ,
called orthogonal distance, which is related with the Euclidean distance to U .
Figure 2 provides the geometric interpretation of both statistics for an original three-
dimensional data example projected onto a two-dimensional subspace.

The former distance indicates the variation of each sample within the model. It
is also known as Hotelling’s T 2 statistic, and can be calculated as [76]

T 2
i = xiPa�

−1PT
a x

T
i =

a∑
j=1

t2ij

λj
(10)

where � = {λj }aj=1 is a diagonal matrix containing the biggest a eigenvalues and
Pa is the loadings matrix.

For a fixed number a of principal components, on the basis of the fact that the
data are centered, we can model the score distance, since all random variables tia
have null expectation and variance λa/M , as [8]

DoF · T 2

T 2
∼ χ2(DoF) (11)

where DoF and T 2 are the degrees of freedom and the average Hotelling’s statistic,
respectively. DoF could be estimated by
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Original
3D point

Projected
2D point

OD

SD

V

U=V ⊥

Fig. 2 Geometric interpretation of the score distance SD and orthogonal distance OD for a three-
dimensional example projected onto a two-dimensional subspace V . For visual purposes, we have
shown an original 3D point with a huge OD. Due to the way the principal components (PCs) are
selected, this is not usually the case, and, unless the point is an outlier, the OD is commonly small

D̂oF = 2T 2
2

ST 2
(12)

where ST 2 is an estimation of the standard deviation of T 2. A robust option, based
on the interquartile range (IQR), is obtained by solving wrt D̂oF the equation

1

D̂oF

[
χ−2(D̂oF, 0.75)− χ−2(D̂oF, 0.25)

]
= 1

T 2
IQR(T 2

1 , . . . , T
2
M) (13)

The latter distance, also known as Q statistic, indicates how well each sample
conforms to the model, and it can be defined for a given sample xi as

Qi =
k∑

j=a+1

t2ij (14)

where (ti1, . . . , tiN ) is the ith row of T , and k is the rank of X.
A similar formula to Eq. (11) can be proposed

C · Q
Q
∼ χ2(C) (15)

It depends only in one parameter C that can be estimated in an analogous way as in
Eq. (12).

Now that we have totally determined the distributions of both distances in terms
of χ2 distributions, p-values can be calculated, for a certain chosen critical level α,
which are the probability of occurrence of each T 2 and Q. Considering ci as any of
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T 2
i or Qi , the corresponding p-value is

P(ci) = 1− [1− CDF(ci)]
M (16)

where CDF is the cumulative distribution function of the corresponding distribution.
If any of the p-values is below the fixed critical level, then the corresponding input
is considered as an outlier.

Assuming we keep the principal components fixed, at a time t we can suppose
that we have the updated estimated distributions for Q and T 2. Once the next
sample, xt+1, from the data stream arrives, its Qt+1 and T 2

t+1 values are calculated
in order to decide whether it is an outlier or not, according to the current estimations
of the distributions of Q and T 2. If it is not an outlier, the mean values for Q and
T 2 can be incrementally updated.

Besides, the new estimations of C and DoF can be done just by incrementally
estimate the updated IQR. The calculation of the real IQR requires to store all
data in memory. Nevertheless, the estimation could be done based on a window
[38, 82, 89] (requiring memory for the samples in the window only), or based on
quantile approximations [114]. All this allows us to incrementally extend the outlier
detection based on Q and T 2 to data streams.

2.3 Data Normalization

Assuming that preprocessing is a preliminary task prior to a subsequent modeling
phase using certain method, it is important to understand the characteristics of that
method in order to perform a proper data preprocessing.

The most used technique is mean centering, consisting on subtract the mean
value of every feature (thus column-wise). Some methods, like principal compo-
nents regression (PCR) or partial least squares (PLS) have connections to distances
to a central location of the distribution of the data. Therefore, if the data is not
centered, they suffer from certain bias due to the distance to the origin of the raw
data points.

Another fundamental normalization technique is standardization. Standardiza-
tion comes from the transformation of a general Gaussian distribution into a
standard Gaussian distribution (with null expectation and unitary variance), obtained
by mean centering plus dividing column-wise by the standard deviation of every
feature. By standardizing we make our data centered and unitary spread, thus
correcting differences in the scales and ranges of the features. When employing
any monitoring algorithm in which distance calculations are somehow involved,
standardization is recommended unless the nature of the features is similar. In such
cases, the differences in the ranges of the features are relevant for the process we
are monitoring. An example of an algorithm involving distances is support vector
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machines, in which the widths (distances) between the data groups determined by
the support vectors are maximized.

The third normalization approach we will consider is scaling. The motivation
behind is gaining robustness against tiny feature variances, as well as to avoid zero
entries in case of sparse data. In scaling we choose an interval and our data will
be scaled so that it fits into that interval. The usual intervals are [0, 1], obtained by
subtracting the minimum value and dividing by the range, and [−1, 1], obtained by
dividing mean centered data by the value with largest absolute value in each of the
features. The latter is the preferred one for sparse data. Both approaches are highly
sensitive in the presence of outliers, thus either a proper outlier detection strategy or
the use of robust alternatives to the range and standard deviation are recommended.

2.4 Data Transformation

The versatility of the data employed in predictive maintenance opens plenty of
possibilities when it comes to transformations. There are two main branches in
data transformation for predictive maintenance, which we identify as statistical
transformations and signal processing.

2.4.1 Statistical Transformations

The statistical transformations are inspired in those transformations historically
used in statistical inference [60]. The use of one or another type depends on the
application and the type of data.

In Statistics, data transformations are applied when some prior information
motivating them is available. Some of the most famous ones are logit transforma-
tion, from logistic regression, being related to neural networks and deep learning
methods; square root transformation, from quadratic regression; and reciprocal
transformation, obtaining similar scaling transformations as logit but also applicable
to negative values.

In general, all those transformations can be generalized by means of the power
transformation [49] that depends on a parameter λ, being all the aforementioned
particular cases for certain λs. As the identity is also a particular case, it is possible
to infer the most adequate transformation for some given data (by optimizing λ)
including not transforming at all (identity). This technique is known as Box-Cox
[5, 95]. Box-Cox has been successfully employed in fault detection [100].

Another family of transformations with statistical background are the projection
on latent subspaces, like PCA and partial least squares (PLS). PCA is easily
understandable if we approach it as an iterative procedure. Assuming we have
centered data, the first PC will be the single direction on which the variance of the
projection of the data is maximum. This direction is always obtainable as a linear
combination of all the original features. Once fixed the first principal component
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PC1, we consider the orthogonal supplementary subspace of the subspace defined
by PC1, that is a line. As an example, in 3D the orthogonal supplementary subspace
of a line is the plane that is orthogonal to it. In Fig. 2 the plane V is the orthogonal
supplementary subspace of the line U . In this supplementary subspace we can also
look for the single direction on which the variance of the projection of the data
is maximum, getting PC2. Notice that, as any direction in the subspace, PC2 is
orthogonal to PC1. As each supplementary subspace we obtain has one dimension
less than the previous one, we can continue with the same process until we end
up with one last single line, that is the last principal component (PCN if we had
originally N features). Also in Fig. 2, V would be the plane defined by PC1 and PC2
(where PC1 and PC2 have respectively the direction of the large and small axes of
the ellipse formed by the green points), and U would be the line defined by the last
component PC3 = PCN .

PLS could be seen as a supervised equivalent to PCA. It becomes clear when
we point out that the procedure for the calculation of the components in PLS
(called latent variables) is similar to the case of PCA, but the objective is to
maximize variance of the projection plus correlation with the target simultaneously.
There is also a relevant difference from the algebraic point of view. In PCA,
the supplementary space considered is the orthogonal one. Nevertheless, aiming
for some flexibility required by the double objective of maximizing not only the
variance of the projection but also the correlation with the target, PLS considers a
supplementary subspace not necessarily orthogonal. The need of the target makes
PLS unfeasible for online outlier detection. The application of a PCA variant is
usually referred as performing an orthogonal transformation [101].

Both PCA and PLS are linear transformations, unless we opt for one of their
multiple nonlinear extensions. There are several recent nonlinear transformations
that are meant for exploiting the relations among the features. By relevance and
usage, the most important ones are locally linear embedding (LLE) [91], isomap
[110], and derivatives. They rely on the transformation of the original set of features
into a smaller amount of projections taking into consideration the geometrical
properties of clusters formed by instances, or patches of the underlying manifolds.
Therefore, these methods could also fit into Sect. 2.6, because they could be
understood as dimensionality reduction approaches.

2.4.2 Signal Processing

The heterogeneity in the properties of the data samples, also called signals, leaves
margin for transformations coming from many sources. We have seen statistical
transformations, but they also could arise from Mathematics, Physics, or Computer
Science. It is a matter of semantics, but usually the word signal is reserved for certain
type of data that can be ordered in time. Concretely we will focus on waveform data,
because most of the predictive maintenance data are based upon this type. Waveform
data can be observed from two related domains: time domain and frequency domain,
being possible to move from one to the other and back. Depending on the domain
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we will distinguish three types of techniques in signal processing [109], which are
(1) time domain, (2) frequency domain, and (3) time–frequency domain techniques.

The analysis of the time domain is the analysis of the original waveform data,
which is, from a mathematical point of view, a chronological sequence of the value
of certain random variable, having certain expectation, variance, skewness, and
kurtosis which calculation could be part of the analysis, helping to characterize
the signals. An example of time domain analysis is time series analysis [23],
being autoregressive models one of the most employed ones. By autoregressive we
understand that the feature values depend linearly on the previous ones [94, 99],
so we would be assuming independence between features. If we think that it is
not the case, then fractal time series take into account dependencies between two
waveforms in different ways, such as local or global self-similarity, or short-range
or long-range dependency [69].

The consideration of the frequency domain has several motivations. One of
them is the fact that noise is usually affecting our signals, being recommended
to use denoiser filters. These filters, when applied in the time domain, have
huge computational costs, as they imply the application of convolution operations.
Meanwhile, in the frequency domain they are just multiplications, as they transform
differential equations into algebraic ones. Therefore, it is computationally cheaper
to transform the data into the frequency domain, apply a filter there, and transform
the filtered data back to the time domain in order to perform any posterior analysis
there. There are many possible filters to be applied, even designed, depending on
the components of the data we need to filter out [109]. Just as an example, a famous
digital filter for smoothing the data is Savitzky–Golay filter [81, 84, 96], which is
based on a local low-order polynomial interpolation using for each point a window
containing some of its neighbor points. Some filters are also suitable for incremental
online application on a streaming context [102].

The use of signals for modeling the state of real dynamic systems needs indeed
information available in both the time and the frequency domain. For this reason, it
is common to use both domains at the same time, moving from one to the other on
demand. This use is called time–frequency domain analysis.

There are several ways to transform the time domain signals into frequency
domain signals [6]. We highlight (1) the Fourier transform [120], (2) the Laplace
transform, and (3) the Z transform [109] (known as the discrete version of the
Laplace transform), since they are the most relevant ones. There are efficient
algorithms to calculate them as well as their inverses. For instance, the fast Fourier
transform (FFT) [29, 35, 122] is an efficient algorithm for calculating the Fourier
transform. It suffers from a problem because it considers the whole signal. If we are
facing, for instance, a fault detection problem trying to identify faults by changes in
the signal, we could miss true faults (camouflaged as noise) unless the changes are
significantly big wrt the whole signal. A way to overcome this effect is considering
the short-time Fourier transform (STFT) that considers a fixed-width time window
[25, 109].

Nevertheless there is another issue with STFT, coming from the fact that a
good resolution in one domain implies a bad resolution in the other. This forces



On the Relevance of Preprocessing in Predictive Maintenance for Dynamic Systems 67

us to choose the width of the window so that there is a fine trade-off between the
resolution in both domains. Another solution consists in employing a wavelet trans-
formation, which provides us with the same effect as having dynamic resolutions
in time and frequency. There are continuous and discrete wavelet transformations
[26, 78], being the latter more computationally efficient.

Some more sophisticated newer approaches were developed afterwards. The
Hilbert Huang transformation [56], a two-step method consisting on (1) empirical
mode decomposition, i.e., the decomposition of the signal into a finite number
of intrinsic mode functions, and (2) Hilbert transform of the intrinsic mode
functions. The fact that those functions are orthogonal [104] implies that they
can be understood as having physical meaning, thus being applicable in predictive
maintenance [125].

Finally, the Wigner Ville distribution [24] was adapted by Ville [118] from
Wigner’s work in the field of quantum mechanics. It is a quadratic integral
transformation in the form of a two-dimensional Fourier transform of a time–
frequency autocorrelation function related to both time and frequency. It is not a
window-based method, and it provides with the best resolution. Nevertheless, when
a signal is a composition of two signals, there appear cross terms that could interfere
(by distortion) the result of the analysis [63]. Otherwise, the study of the differences
in the cross terms could be used in predictive maintenance problems [119].

2.5 Missing Values Treatment

The appearance of missing values is common in real-world data collected remotely
and sent synchronously to a central database. In the same way as in the case of
outliers, an obvious approach is to ignore samples in which one or more features
presents a hole. As discussed in the case of outliers, sometimes we cannot afford
ignoring data. Then there is an obvious alternative, missing value imputation. The
what is obvious, but the how is really hard.

Naïve logical options, such as imputing the mean, or median as robust alternative,
in numerical features, or the mode, in categorical ones, could be very risky. For
instance, in imbalanced data situations the minority class gets great importance
in the modeling, thus erroneous imputation could significantly influence model
behavior.

In case we have a methodology to compare different samples and check whether
they are similar or not just by looking at a subset of the features that defines them,
then we could compare a sample with a hole with the samples without holes, and
choose for the imputation the value of the hole-free sample. There are alternatives in
which the sample to be used as imputer, such as systematically use one sample (cold
deck) or randomly select from a pool of candidates (hot deck). As an example, if the
methodology is based on distances using all features and the most similar one (i.e.,
the closest), then the approach is the same as K-nearest neighbors with K = 1. The
main drawback of this approach is the difficulty of finding a proper way to compare
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samples. For instance, if we employ distances and the amount of features is big, we
would suffer from the curse of dimensionality effect [85], being all distances huge
and comparable in terms of magnitude.

As an alternative, an option could be a double-model strategy, in which a model
is created using the fully available hole-free data in order to be used for imputation
only. The estimated value could be directly used (regression imputation), or it could
be slightly modified by adding a random residual (stochastic regression imputation).
Once the missing values have been imputed, the main model is trained. There
are several options depending on how to consider the imputed samples. Some
approaches consider them as regular legitimate data samples, and some others
underweight them, making them less influential in the main model. In case of
computational and/or time expensive models, the imputing model employed is
different from the main one, such that it is cheaper and/or faster. For instance,
common algorithms used for this purpose are K-nearest neighbors [113], fuzzy K-
means [70], Bayesian PCA [83], and multiple imputations by chained equations
(MICE) [92].

In special cases in which the features are related, we could use extrapolation
or interpolation methods for imputation. For instance, in data coming from a
spectrometer, the different features consist of measurements made at different but
close sequence of wavelengths, thus features in close wavelengths should present
similar values.

2.6 Data Engineering

In data engineering we include three approaches (feature selection, feature extrac-
tion, and discretization) that could be performed alone or combined. Nevertheless it
is not usual to combine them because they actually result in severely modified data
as they are deeply invasive procedures.

2.6.1 Feature Selection

By feature selection we mean feature subset selection. Some authors consider both
concepts as different because there are approaches in which the output is a ranking
of all features instead of a subset of them. Nevertheless, we will say just feature
selection since the common action is to use rankings to get a subset by truncation.

Feature selection can be understood as an optimization process in which the aim
is to find a collection of features that makes certain quality criteria optimum. The
simplest approaches, in which one single criterion is optimized, e.g., minimizing
the root mean squared error (RMSE) of prediction in a regression problem, can
be considered as single-objective optimization problems in which the objective
function to be optimized is the quality criterion.
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There are two types of feature selection (FS) approaches [44]:

• Filters [93]. They ignore the posterior task and focus only on the characteristics
of the data to perform the selection, i.e., the criteria to be optimized are intrinsic
to the data (e.g., mutual information between the features and the target). They
could be understood as some kind of preprocessing selection. They are fast, but
they usually ignore the possible redundancy in the data because most of the
approaches evaluate the features independently from each other.

• Wrappers [65]. The modeling task (e.g., classification or regression) is under-
stood as a black-box, whose performance using the subset of selected features
is the goodness of the selection (performance optimization). They can deal with
the redundancy, but they are usually computationally expensive, and they tend to
overfit if the amount of available data is not big enough.

Some taxonomies include a third type, embedded methods, that are those methods
in which the selection is internal to the model. As then the feature selection cannot
be decoupled from the training, we cannot consider them as preprocessing, thus we
keep the two-type taxonomy.

As filter methods rely on the characteristics of the data, the most renowned
methods are based on statistical measures suitable for establishing dependencies
and/or relationships between inputs and outputs, e.g., sensors information and
machinery condition. Perhaps the most important filter method is correlation-based
feature selection [46], in which the correlation between the features and the target
is used.

There are plenty of ways, some employing problem-specific information, for
defining what we understand by correlation, leading to different versions of the
algorithm. Any way, specific to the predictive maintenance task, to establish a
quantifiable relation between a feature (or a subset of them) and the output of the
task that is capable of comparing/ordering different features (resp. subsets) could be
used as a measure of correlation.

Recently, Brown [11] has found a generalization framework of some of the most
extended families of filter methods that facilitates their understanding, given by

JBrown = I (Xn;Y )− β
n−1∑
k=1

I (Xn;Xk)+ γ
n−1∑
k=1

I (Xn;Xk|Y ) (17)

where n is the number of features, Xi the ith feature, Y the output, and I (X;Y ) is
the mutual information shared by X and Y [103].

The approaches subsumed in the framework, just by playing with β and γ ,
are mutual information-based feature selection [3], maximum-relevance minimum-
redundancy criterion [86], joint mutual information [127], mutual information
uniformly distributed [67], conditional info-max [71], conditional mutual informa-
tion maximization [32], and informative fragments [117]. Moreover, it becomes
easier to compare the sensitivity of such families of methods with respect to
redundancy and noise.
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2.6.2 Feature Extraction

We define feature extraction [45] as the generation of new features by combining all
or some of the existing ones. A common way to extract features is based on expert
knowledge, but we will not consider it as it is subjective to the problem and is not
fully data-driven.

The most relevant feature extraction approaches are based on the already
mentioned projections on latent subspaces. The core methods are PCA and its many
variants [57, 61]. In the original PCA the number of extracted features is the same
as in the original data, since each principal component is just a linear combination
of all the original features and there are as many linear combinations as the original
number of features, thus PCA is a linear method. Assuming mean centered data,
from a linear algebra viewpoint it consists just on a rotation of the coordinate axes.

The gain when applying PCA is that the new features (principal components) are
ordered from higher to lower amount of captured variance in the set of features in
the original data (ignoring the target, i.e., unsupervised). The cumulative variance
captured by nested subsets of PCs can be easily computed, allowing to set a cut
threshold in the number of PCs, leading to a reduction in the number of features
(data compression) in such a way that the variance that is left out is small and
controlled, possible colinearities between features are overcome, and, theoretically,
noise is filtered.

Even when it contradicts intuition, compression is not always a goal in pre-
processing when applying PCA. A situation in which it is not worthy, even
counterproductive, to compress is noise-filtered data to be used afterwards by an
algorithm that internally includes an embedded feature selection, such as random
forests [10]. It is not a rare situation in predictive maintenance applications because
noise filtering through transformations is well-established.

Many variants are motivated by nonlinear nature of some data. For instance,
if there are certain known/intuited nonlinear relations between samples somehow
having similar consequences as colinearity, we could model them by means of a
specific kernel function and apply KernelPCA [97]. In this way, by using the kernel
trick, we transform our feature space into a space where those relations look linear,
applying there PCA.

As an alternative to the philosophy behind PCA-based approaches, we can con-
sider neighborhood embedding approaches that try to preserve local neighborhood
structures in the data on lower dimensionality spaces. A well-known algorithm
for neighborhood embedding is stochastic neighborhood embedding [53] (SNE)
in which a Gaussian probability distribution describes the potential neighborhood
of each original sample in the high-dimensional space. A variation of SNE, with
a simpler optimization process and comparable performance, is t-distributed SNE
[75] (t-SNE). Despite it was originally developed for visualization purposes, it is
perfectly applicable for data compression.
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Both SNE and tSNE are nonlinear algorithms. A linear method also meant for
neighborhood preservation is locality preserving projections [52] (LPP). In the
same paper, the authors propose a nonlinear extension, named Kernel LPP, just by
applying the kernel trick before LPP.

In highly dynamical systems, as is the case here, it is an adequate strategy to
perform several local linear models covering the zones of influence of the data as
a way to obtain the behavior of a nonlinear global model by aggregation/ensemble
[130] of the local linear ones. A use of this technique, in which the aggregation
of the local linear models is achieved by means of a fuzzy inference system [74],
can be found in [13]. The authors applied the strategy for regression purposes,
but it could be adapted for feature extraction using local information. In case of
favorable properties in the aggregation algorithm, this strategy is also suitable for
online monitoring [14, 16].

2.6.3 Feature Discretization

Some of the most famous algorithms employed in machine learning in general,
thus also in monitoring in predictive maintenance, are meant for categorical values
(e.g., decision trees). Moreover, sometimes they can only handle such type of
data. Besides, the type of data in predictive maintenance applications consists
of numerical continuous features with an order relationship, e.g., sensor data.
Therefore, it makes sense to think of ways to transform such features into categorical
ones, so that those algorithms could be used. This procedure is called discretization,
and it is performed feature by feature independently.

Assuming we have a feature Xi whose values are numerical values with an order
relationship. If we denote the minimum value by m, and the maximum value by M ,
then a discretization process consists in the definition of K intervals

I1 = [a0, a1), I2 = [a1, a2), . . . , IK−1 = [aK−2, aK−1), IK = [aK−1, aK ]

where a0 = m and aK = M . Notice that the cutpoints for the intervals define the
partition of the range unambiguously.

A naïve approach would be to prefix K and split the range [m,M] into K equal-
length intervals. There are several drawbacks with this method. First of all, which is
the right value for K? If the data is sparse or some extreme values (outliers or not)
are present, then the range is huge. In such situation it could happen that certain
intervals are empty and some crowded. Therefore, unless our data is uniformly
spread and we have a proper way to choose K , it is not a good option. Nevertheless,
there are plenty of estimators for the width (W ) of the bins, thus for K . One robust
option is the Freedman–Diaconis rule [33], given by

W = 2 · IQR(X)
3
√
N

(18)

where X is the feature under consideration and N the number of samples.
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Hence, it is preferable to have a clever way to proceed that, if possible, does not
force us to prefix K . The widest used method is a supervised top-down algorithm
called minimum description length principle (MDLP) [30]. By top-down we mean
that it begins with an empty partition and the cutpoints are added on the fly, thus
no need to prefix K . It decides whether a new cutpoint is needed and where to
locate it by means of information theory, concretely the mutual information with
the target [103].

There are many other ways to define discretizations. An exhaustive survey
including several taxonomies according to the properties of the methods and the
data is available in [36]. The authors present 87 methods, tested on many datasets
with different properties, so by comparison of types of data we could try to guess
which methods would fit better to our data.

2.7 Imbalanced Data Treatment

In such cases when the data show a lack of balance between the classes of the
samples, it is usually the case that the class we are more interested in is the minority
class, e.g., faulty and fault-free samples. Despite we have commented in Sect. 2.1
on two ways to deal with imbalanced data, named as sampling- and weighting-
based, the latter is more related to the modeling phase instead of the preprocessing
phase because the weights are actually introduced in the model creation or the
model validation steps, depending on the characteristics of the algorithm that is
being employed.

It is also of uppermost importance the metrics employed in the validation. For
instance, accuracy is not a valid choice because if the imbalance is 99%–1%, then
predicting always the majority class leads to a 99% accuracy. Thinking on the
example of faulty and fault-free samples, we would predict that faults never happen,
being almost always right. But it is obvious that not all errors in our prediction
have the same cost. In order to mitigate this without a need to assign a cost per
error it is common to use ROC curves [31]. Nevertheless, this is out of the scope
of this chapter, as it does not correspond to preprocessing. Therefore, we focus on
imbalance treatment approaches based on sampling techniques.

There are two obvious ways of compensating the imbalance, which are adding
samples from the minority class (oversampling), and removing samples from the
majority class (undersampling) [59, 87, 108, 121]. Because both have pros and cons
[18, 27, 79], it is also common to opt for a hybrid approach (mixed sampling) [2, 66]
combining them.

Recently, the importance of ensemble methods has been shown in many appli-
cations including imbalance treatment [19]. Both ensembles of repetitions of
stochastic techniques or ensembles of diverse deterministic techniques usually
overcome the application of single techniques, ensuring robustness by reducing the
variance while fixing the bias.
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2.7.1 Oversampling

If we think on how to perform oversampling, the first intuitive approach is random
oversampling (with or without replacement). In [58] the authors consider two ran-
dom oversampling possibilities: a pure random one and a focused one in which only
samples close to the boundary between classes are considered as selectable; both
used until parity in the classes is reached. As not all the samples from one class influ-
ence the monitoring algorithm in the same way, the samples we replicate could be so
influential that we suffer from an overfitting effect. More sophisticated approaches
opt for creating new samples by interpolation of some of the existing ones.

There are two main methods, existing several variants for each of them. Those
relevant methods are synthetic minority oversampling technique (SMOTE) [20] and
adaptive synthetic sampling method (ADASYN) [51]. In both methods the algorithm
to generate new samples is the same. A sample xi from the minority class is
considered. Then the K-nearest neighbors from the minority class are located.
One of them xj is randomly chosen, and the new synthetic sample is a convex
combination of them

xnew = λxi + (1− λ)xj
where λ ∈ [0, 1] is randomly selected. Graphically, the convex combination of
two points is a point located in the segment that joins them. Figure 3(a) shows
the generation of a new minority class sample xnew (marked as a green cross).
The difference between SMOTE and ADASYN is only in the way the neighbor
points are taken. The latter uses a prefixed K , and the former chooses it depending
on the density of the minority class inside a neighborhood obtained by K ′-nearest
neighbors.

Fig. 3 Examples of (a) the generation of a new minority class sample xnew from an existing sample
xi and one of its 3-NN xj (the 3-NN neighborhood of xi appears as a pale blue circle), and (b)
the determination of noisy (purple), borderline (orange), and safe (green) minority class samples
in borderline extensions of SMOTE (the 3-NN is inside colored rounded squares). Plus and minus
symbols represent majority and minority class samples, respectively
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The influence of extreme values (or outliers, if not detected) is really high in
both SMOTE and ADASYN, being higher in ADASYN. Then SMOTE is usually
employed in some of its variants. The most famous ones are borderline-1 SMOTE,
borderline-2 SMOTE, and SVM SMOTE. In borderline versions also an auxiliary
K ′ neighborhood is used, where the samples xi from the minority class are labeled
as noisy (all nearest neighbors are not from the minority class), in danger (at least
half of the neighbors are from minority class), or safe (all are from the same class
as xi). Then the only samples chosen as initial samples are in danger samples. See
Figure 3(b) for an example.

The difference between borderline-1 and borderline-2 happens when selecting
xj . Borderline-2 allows to select a sample from any class, not necessary majority
class (as borderline-1 does). In SVM SMOTE the support vectors are used to
generate the new sample xnew.

2.7.2 Undersampling

The major risk when ignoring majority class samples is to potentially ignore really
relevant informative samples, leading to a degradation of the general quality of
the model. As in oversampling, there are methods that select (sample selection)
prototypes in the majority class (most of the approaches) and methods that generate
(sample extraction) a smaller set of prototypes from the original bigger set of
samples. The only relevant approach in prototype generation methods is called
cluster centroids undersampling, which is based on clustering using representatives
(CURE) [42], a famous clustering algorithm in which relevant points of the identi-
fied clusters (e.g., the centers) substitute the points inside those clusters, reducing
the amount of points but keeping the underlying cluster structure. When it comes to
prototype selection methods, we can identify two subgroup of methods depending on
the possibility by the user of controlling the number of samples after undersampling
(controlled undersampling techniques) or not (cleaning undersampling techniques).

The simplest controlled undersampling technique is random undersampling,
which is the riskiest one as all samples are equiprobably deleted ignoring their
potential informativeness/relevance. The most representative approach is called
NearMiss [131], which includes some heuristic rules in order to select the samples.
The authors presented three NearMiss versions, differing in the way the heuristics
are defined. NearMiss-1 selects the majority class samples with minimum average
distance to the N closest minority class samples. NearMiss-2 selects the majority
class samples with minimum average distance to the N farthest minority class
samples. Finally, NearMiss-3 has two steps: first, the M nearest neighbors for each
minority class sample are kept, then the majority class samples with maximum
average distance to the N closest minority class samples are selected.

Also in [131], the authors define another approach, named MostDistant, in which
the selected majority class samples are those presenting largest average distances to
the N closest minority class samples. In the original paper the authors select N = 3.
Figure 4 shows examples of the three versions of NearMiss in a two-dimensional
space with N = 3 and M = 5.
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Fig. 4 Examples of the selections performed respectively by all three NearMiss versions. Plus and
minus symbols represent majority and minority class samples, respectively. Distances to the 3-NN
of some majority class samples are depicted using colored dashed lines. In green we can see the
distances corresponding to the selected majority class sample, as well as the sample itself in each
version. In (c), the samples out of the 5-NN neighborhood are represented

The family of cleaning undersampling techniques is bigger. The name comes
from the fact that the part of the dataset corresponding to the majority class is
cleaned by deleting certain samples considered as dispensable according to certain
heuristic algorithm. We describe them in no particular order.

A popular method is based on the so-called Tomek’s links [112]. We say that two
samples from different classes form a Tomek’s link if they are nearest neighbors to
each other. Mathematically,

d(x, z) ≥ d(x, y) and d(y, z) ≥ d(x, y),∀z (19)

The undersampling procedure associated with them has two variants. We can
remove (1) only the sample in the Tomek’s link corresponding to the majority
class, or (2) both samples. It is clear that such pairs of samples are some sort
of contradiction. The safest choice would be to remove both, but this could be
sometime not an option as it would decrease the size of the minority class. An
example of a Tomek’s link can be seen in Fig. 3(b), formed by the purple minority
class sample and its nearest neighbor.

Inspired by Wilson’s studies on the nearest neighbors rules [123], edited nearest
neighbors edits the dataset by removing those samples which do not agree enough
with their neighborhood. Different agreement criteria provide different versions.
Given one sample, the most restrictive version demands all the samples in the
neighborhood to be from the same class of the sample under study. A more relaxed
version demands only a majority of samples from the same class. There is also the
possibility to run the edition procedure several times iteratively (with the same or
different K), so that more samples are removed.

We can define instance hardness [106] as the level of difficulty to predict the
class of a sample due to the sample characteristics. The usual way to calculate it
is by means of an algorithm that assigns to each sample, using cross-validation, a
probability of being well classified, thus the lower the probability the harder the
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instance. The instance hardness undersampling technique consists in establishing a
threshold for the probability of the majority class samples, removing those that are
below the threshold.

Last but not least, we have the family of condensed nearest neighbors, based
on the homonymous rule [47]. The undersampling methods that are inspired on it
condense the space by removing samples that are far from the decision boundaries.
The original method is based on an iterative process with the following steps:

1. Construct a condensed set C containing the minority class samples.
2. Add one majority class sample to C, and create a potential set P with the rest.
3. Classify each sample in P using 1-NN. If misclassified, move it to C. Otherwise,

do nothing.
4. Reiterate until no samples can be added to C.

As this original approach is very sensitive to noisy samples, keeping them in C,
some variants were proposed. The variant named one-sided selection [66] removes
noise by applying Tomek’s links first, and then the steps 1–3 of the original
approach, thus no iteration over P .

In [68], the authors propose neighborhood cleaning rule that proceeds as
follows:

1. Get one sample xi and classify it using 3-NN.
2. If xi is misclassified, go to next step. If classified go to the first step.
3. If xi is a majority class sample, then remove xi . If xi is a minority class sample,

then remove the 3-NN corresponding to the majority class. Go to the first step.

This approach is computationally expensive, and could suffer in case of very large
heavily imbalanced datasets. Even when its philosophy is based on cleaning, the
result is usually a condensed subset of the original one.

All these condensed family techniques depend on some randomness, when taking
samples to begin. Moreover, the order of the samples is relevant for the final
undersampled set. Therefore, we cannot expect the same result when repeating them
over the same dataset. It is recommended to perform the methods several times and
ensemble the results by certain aggregation procedure.

2.7.3 Mixed Sampling

The naïve approach, consisting on combining both random oversampling and
random undersampling, was proposed in [72]. The authors used lift analysis instead
of accuracy as performance score measurement in their experiments, without
obtaining relevant improvements.

A deep study on the mixture of oversampling and undersampling techniques can
be found in [2]. The authors point out the good results of mixing SMOTE with both
Tomek’s links and edited nearest neighbors.
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2.8 Models

Our aim is not checking which modeling technique behaves better, but comparing
different preprocessing schemata by means of the posterior performance in a
regression or classification task. Therefore, we present only a few techniques just
to check whether using different algorithms is also relevant in the selection of the
right preprocessing scheme apart from the data.

Here we briefly describe some state-of-the-art algorithms suitable for confronting
predictive maintenance problems. We distinguish two types of algorithms for
two classical problems: classification algorithms for fault detection problems and
regression algorithms for remaining useful life prediction problems.

2.8.1 Classification

A regular fault detection problem is a binary classification problem in which the
aim is to predict whether a concrete system state (sample) corresponds to a faulty
or to a fault-free situation. The simplest but still widely used classification methods
are naïve Bayes and K-nearest neighbors. Naïve Bayes (NB) algorithm [34] is a
probabilistic method based on the application of Bayes theorem under strong feature
independence assumptions. K-nearest neighbors algorithm [105], as all methods
based on distance calculations, can suffer from huge distances of some of the
neighbors due to the sparseness enforced by a habitual high dimensionality. The
attempts to mitigate such problem are the motivation behind distance-weighted K-
nearest neighbor algorithm [28], that is the variation of K-NN we will consider,
consisting in regulating the importance of the votes of the neighbors by means of
weights that depend on the distance, so that the closer the more important. Since it
is the only variant we will consider, we denote it by K-NN.

Support vector machines (SVM) [98, 115] is a well-known nonlinear classifi-
cation method, based on separating the classes employing hyper-planes is such
way that the separation is maximized. This separation is not performed in the
original input space but in a kernel-transformed space, i.e., the kernel trick [55].
The samples that are closest to the decision boundary, thus defining the hyper-
planes, are called support vectors. In [62] the authors compare several classifiers
for fault detection, including distance-weighted K-nearest neighbors and support
vector machines, among others.

The random forests (RF) algorithm [10] is a stochastic ensemble method that
performs a bagging strategy (a combination of bootstrapping and aggregation [9]) of
weak learners, concretely decision trees. The procedure is simple. Given a prefixed
number of trees, for each tree a subset of the original features is randomly selected
(weakness). Then the tree is trained using those features and a set of samples
obtained by random selection with replacement (bootstrapping). The decision is
obtained by combining all individual tree decisions (aggregation). The magic
behind RF is that the bias of the full ensemble is equivalent to the bias of each single
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tree, whereas the variance is much smaller. This robustness, together with its low
computational cost and high parallelization and distribution capabilities, makes RF
an algorithm to be taken into consideration in predictive maintenance [12, 43, 128].

2.8.2 Regression

Despite the original purpose of RF and SVM is classification, there are versions
of both of them for regression purposes. In the case of random forests, it is quite
straightforward to substitute decision trees by regression trees, and the voting
aggregation by an average prediction [10]. The insights in the case of support vector
regression (SVR) are a bit more complex and too long to be commented here [107].
Some applications to RUL prediction can be seen in [4, 73, 90, 126].

Basic linear regression approaches, such as multiple linear regression, suffer
from the arising of singularities because of the effect of colinearities between
features when calculating the inverse ofXTX, required by the least squares solution,
beingX the input data matrix. In such situations, shrinkage (regularization) methods
avoid singularity by perturbing the matrix before it is inverted. The two main
approaches in the family of shrinkage methods are Lasso [111] and ridge regression
[49], obtained by introducing 	1 and 	2 penalties, respectively. The elastic net [133]
includes a penalty based on a combination of both 	1 and 	2 penalties, looking for
some elasticity in the regularization, being Lasso and ridge regression particular
cases of the elastic net.

Generalized linear models [49] is a generalization of ordinary linear regression
that provides flexibility in the sense that the distribution of the errors is not
necessarily supposed to be normal, as happens in ordinary linear regression. The
combination of the elastic net with generalized linear models (GLMnet) is a
regression algorithm based on generalized least squares that uses cyclical coordinate
descent [50] in a path-wise fashion [48] in order to select the optimum elasticity in
the regularization via the elastic net. The elasticity provided by the possibility of
controlling how close we are to Lasso or ridge regression by means of a single
parameter allows an efficient exploitation of the regularization benefits.

Up to our knowledge, this approach has not been used in predictive maintenance
yet. Nevertheless it has been considered here because of its outstanding results in
monitoring dynamic chemical systems in process analytic technology (PAT) [15,
17], that behave quite similarly to regression problems in predictive maintenance
with dynamic systems.

Deep learning (DL) is the way to call the use of a complex artificial neural
networks. A neuron is a single computation unit that receives an input value (from a
data source or another neuron), performs a simple operation consisting on applying
certain simple function (activation function) over the product of the input by a
numerical parameter (weight), and outputs the result (towards an output interface
or another neuron).
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Different types of neurons connected in different ways lead to different network
architectures. These neural networks are designed by means of layers of neurons
conceived for specific subtasks.

For stream-like data, such as the data usually involved in monitoring tasks in
predictive maintenance, the most used networks are recurrent networks (RNN), in
which the neurons are also connected to themselves. This provides the network with
some memory in the form of persistence of the information. In general, they suffer
when the ideal persistence time grows.

There is a family of RNNs meant for handling long-term information dependen-
cies called long short term memory networks (LSTM) [54] that contain an internal
mechanism (cell state) to filter/retain part of the information as long as necessary.
There are several ways of handling the remembering/forgetting part of the learning
process, leading to different variants of LSTMs. The most relevant ones are, among
others, vanilla LSTM [40], gated recurrent unit (GRU) [21], depth gated LSTM
(DG) [129], or grid LSTM [64]. In principle, LSTM networks are the most adequate
network architectures in predictive maintenance.

Even when the natural output of the network is a number, they could be adapted
for classification purposes by linking the classes to certain numerical output ranges.

3 Experimentation

The philosophy derived from non-free-lunch theorem [124], which states that the
average performance of all algorithms over all possible problems is asymptoti-
cally the same, is that there is not a single universal algorithm that is the best.
Therefore, there is always margin for improvement and every particular problem
(correspondingly dataset) is better suit for a different method. This applies also to
the preprocessing schemata, in the sense that there is not a universal preprocessing
schema that is always the best, being the goodness problem/data dependent.

Consequently, providing successful stories for concrete scenarios is perhaps
not the best option. It would be more relevant to provide the reader with direct
or literature referenced details of the available choices in the market, as well as
hints about possible decisions depending on the characteristics of the problems or
the data. For such reason we will just employ the already presented classification
and regression techniques on some of public available real-world datasets from
competitions in the Annual Conference of the Prognostics and Health Management
(PHM) Society. We will use them (both the original data and some modified
subsets, e.g., for missing values treatment or outlier detection) to compare several
preprocessing schemata on different algorithms. Furthermore, we will provide some
clues about which preprocessing methods might be more reasonable depending on
the particularities of data and problems based on successful applications.

It is obvious that the combination of all possible methods in all steps in different
orders would end up in thousands of preprocessing schemata. Moreover, if a schema
consisting on seven steps works very well, we would not be able to decide which
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of them contributed more to that behavior. Therefore, just some schemata involving
only a few steps will be tested, and compared also with, we should not forget that it
is always a possibility, not preprocessing at all.

3.1 Datasets

In order to have a classification and a regression problem, we have considered the
data corresponding to the PHM Data Challenge 2014 and the PHM Data Challenge
2016. The former is transformed into a fault detection problem (classification), and
the latter is a RUL estimation problem (regression) in which the average removal
rate of material in a polishing process. The lack of exact environmental information
about the origin of the datasets impedes us to infer cause–effect reasons for the
results. Hence, we focus on the goodness of the application of the preprocessing
schemata instead of the underlying reasons.

3.1.1 PHM Challenge 2014

The information about the domain and the data of the PHM challenge 2014 is not
provided due to proprietary concerns. We know that it consists of six datasets, half
for training and half for testing with information about (1) part consumption (i.e.,
the replacement of some parts), (2) usage (similar to the lines of an odometer), and
(3) failures (time of failure). The target information for the test files is unknown, so
we focus only on training data. By crossing the failure information with the rest we
could build by merging a dataset in which the target is binary: faulty or non-faulty,
thus it consists on a binary classification problem. For further information on the
data, check the call for participation in [37].

In this dataset there is almost no information about the nature of the features. The
original aim in the challenge was to predict the health level of the components in a
certain time by classifying them into low risk and high risk of failure, equivalent to
fault save and faulty in a short future. The variables are numerical and discrete.
Nevertheless, the amount of different values is so big that we can employ any
method suitable for continuous variables.

The data is heavily imbalanced, belonging to the high risk class (faulty) only
4% of the samples. The modeling algorithms do not take into account the level
of imbalance during training. Only some of them, based on iterative optimization
processes, are capable of weighting the errors according to the class densities so
that they favor avoiding mistakes in the minority class. The main problem of such
approaches is the price to pay in the prediction of the majority class. Therefore it is
recommended to treat imbalanced in advance as part of the preprocessing.
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3.1.2 PHM Challenge 2016

The system under investigation is a wafer chemical-mechanical planarization
(CMP) tool that removes material from the surface of the wafer through a polishing
process. Figure 5 depicts the CMP process components and operation. The CMP
tool is composed of the following components: (1) a rotating table used to hold a
polishing pad, (2) a replaceable polishing pad which is attached to the table, (3) a
translating and rotating wafer carrier used to hold the wafer, (4) a slurry dispenser,
and (5) a translating and rotating dresser used to condition a polishing pad.

During the polishing process, the polishing pad’s ability to remove material
is diminished. Over time, the polishing pad has to be replaced with a new pad.
Similarly, the dresser’s capability to roughen the polishing pads is also reduced after
successive conditioning operations and after a while the dresser must be replaced.
The objective is to predict polishing removal rate of material from a wafer, thus it is
a regression problem. For further details, check the call for participation in [88].

A deeper look at the data allows us to infer some characteristics of the data. All
variables are numeric (float), with different ranges and dynamics. Some fluctuate
up and down approximately in a cyclic way while some others show a continuous
increase or decrease that is apparently linear. These differences force us to be careful
when selecting the way to apply the preprocessing techniques.

For instance, if we apply a technique that involves mixing the features, such as
PCA, then standardization is recommended. On the contrary, in approaches acting
on the features individually, such as discretization, it could be counterproductive.
Due to the size of the data we are limited to visualization techniques based on
certain information summary/compression such as tSNE plots, and scores and
loadings plots in PCA. Nevertheless there is not an obvious relationship between
the visualizations and the adequate preprocessing techniques.

Fig. 5 Chemical-mechanical
planarization (polishing) of
wafer. This process removes
material from wafer surface.
This image is the property of
the Prognostics and Health
Management Society and was
taken from the online
information about the
challenge
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3.2 Experimental Schema

The algorithms we consider, whether take advantage of centered data or are
translation invariant, thus we have mean centered all the data in advance. All the
experiments were made using ten-fold cross-validation because it is known to be a
good approximation of the expected prediction error on separate future unseen test
samples. We evaluate the performance in classification by means of the area under
the ROC curve [7], and in regression with the root mean square error.

Since our intention is not to beat the winners of the competitions, but check
whether preprocessing is beneficial or not (and how much), then our comparisons
are against not preprocessing. The reason for including several modeling algorithms
is not to determine which one is better, but to try to check if that diversity of models
is relevant or not for the benefit of preprocessing.

In case we suspect that the best preprocessing strategy is independent of the
posterior modeling technique, then we could try the simplest ones in order to guess
the right preprocessing scheme. For statistical significance of the differences, we
have employed the Mann–Whitney–Wilcoxon test [80].

In this study both the outliers and missing values have been artificially intro-
duced, thus we have the chance to check the performance of the methods, as we
know the truth. This is not the case in real-world applications. With respect to the
rest of preprocessing steps, we have performed the test with the full dataset. The
realist approach in an application would be to extract a representative subset of the
data in order to perform some preliminary tests and determine a full preprocessing
strategy.

When it comes to the study of the approaches for missing values, we have
modified the PHM2016 dataset by randomly erasing 1% of the values in 10%
variables. Taking into account that there are 21 variables and 346,015 samples, we
have introduced in 2 variables 3460 holes per variable. The approaches employed
were imputation with the mean value, imputation by averaging using 5-NN, as well
as removing the samples (deletion strategy).

For outlier detection, also using PHM2016, we have modified 1% of the total
amount of single numerical values by distancing them from the mean of the feature
they correspond to. The amount of variation is proportional to their distance to
the mean, with factors corresponding to 20%, 50%, 100%, and 200%, meaning
865 variations per level. Each of them has been applied to the one fourth of the
modified values, i.e., 0.25% of the total amount of values. In this way we can
evaluate the sensitivity to the amount of variation. The approaches employed were
the Mahalanobis distance and theQ and T 2 approximations in their offline versions.

As some potential detected outliers could be out of the list of the artificial mod-
ifications (false positives), it makes sense also to check the posterior performance,
after cleaning, in modeling. For this comparison, we have also included the original
modified data, i.e., without looking for outliers.
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When it comes to feature engineering, we have designed experiments separately
for feature selection (on PHM2016), feature extraction (on both datasets), and
discretization (on PHM2016). The algorithms we have employed are:

• Feature selection. We have chosen two filter methods (correlation-based feature
selection and conditional info-max), and a wrapper approach (using K-NN).

• Feature extraction. We have selected PCA, PLS, Kernel-PCA, t-SNE, and
Kernel-LPP, so we have two linear and three nonlinear methods. Notice that most
of the features in PHM2014 are numerical discrete variables containing natural
numbers. Nevertheless, the amount of different values is so big that we can
consider them as continuous numerical variables, suitable for feature extraction
by PCA or PLS. The adequate number of PCs and LVs has been selected by grid
search.

• Discretization. We have opted for two approaches, in order to consider one that
prefix the number of bins (equal-width intervals using Freedman–Diaconis rule),
and another one that does not prefix it (MDLP).

For imbalanced data treatment we need a classification problem, thus we use our
PHM2014 version, which has a minority class (faulty) represented approximately
by a 4% of the data samples. We have not applied all the methods in Sect. 2.7, but
some of the most popular ones. Classified according to the provided taxonomy, they
are

• Oversampling. Random oversampling, SMOTE borderline-2, and ADASYN.
• Undersampling. Random undersampling, cluster centroids, NearMiss-2, and

Tomek’s links.
• Mixed sampling. Random oversampling and undersampling combination, and

SMOTE with Tomek’s links.

3.3 Results

The results are presented by means of tables, whose formats depend on the
experiments. As general facts,

• we consider not preprocessing as baseline, and we present the percentage of
improvement (positive number) or deterioration (negative number). An exception
occurs in the case of missing values, because the usual baseline does not exist. In
that case we consider the deletion strategy as the baseline approach. If the shown
variation from the baseline is significant, according to the Mann–Whitney–
Wilcoxon test, it will be indicated with a ‡ mark. The best results are highlighted
in bold font. There is also another exception when studying the detection of
outliers. In that situation there is not any baseline because there is not any
modeling step, but just checking the performance in the detection of the outliers
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for different perturbation levels. In this case we just show the detection rates per
method and per level, and the † mark means significantly better than the other
method;

• in all nearest neighbor related approaches in which we have the chance of
choosing K , our choice will be K = 5;

• the kernel function used in both SVM and Kernel-PCA is radial basis function
(RBF);

• the network architecture used for DL is GRU because it has a simple effective
joined input/forgetting mechanism by using the so-called update gates, proved
to behave similarly to much more complex architectures [41];

• unless explicitly indicated otherwise, the learning parameters of the algorithms
are set by default as in the literature. For GRU, the default arguments in Keras
[22] have been used.

Table 1 shows the results for missing values. Notice that in this situation all columns
are independent because we are comparing, for each modeling technique, the
performance of imputation versus deletion for that concrete technique. For instance,
the values+1.35 and+2.57 corresponding to RF algorithm mean that imputation is
preferred (both are positive values) and the performance when using K-NN method
is almost doubly beneficial than mean.

We can see that it is slightly beneficial to use imputation, being a bit better
the imputation by means of K-NN. Nevertheless, none of the imputations are
statistically significantly better than deletion, for any algorithm except for RF and
GRU. This, together with the fact that K-NN requires huge computational and
memory resources, shows doubts about its suitability.

The reason for using several models is to check whether the model to be applied
after preprocessing has an impact in the right preprocessing scheme. Luckily we
can see that the results are similar for all modeling algorithms, thus it seems that
the data is more relevant than the algorithm. Nevertheless, we should notice that
there are big differences in performance between deletion, mean, and K-NN for the
various modeling techniques even when the general trend remains stable.

Table 2 shows the results for the detection of outliers for different deviations. The
percentage of outliers is constantly 1%, but the amount of deviation from the original
values, artificially introduced, varies from low intensity (20%) to high intensity
(200%). The higher the intensity the simpler the detection because the values are
much more different from the real ones. In the case of the Q and T 2 approximations
method, the number of principal components has been determined by establishing a
threshold of the total amount of variance captured, set in 90%.

Table 1 Missing values Methoda RF SVR GLMnet GRU

Mean +1.35 +0.15 +1.20 +1.57 ‡

K-NN +2.57 ‡ +0.33 +1.28 +2.04 ‡
aDeletion strategy is considered as the baseline
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Table 2 Outlier detection
accuracy

Method 20% 50% 100% 200%

Mahalanobis 1.04 13.87 53.29 92.37
Q and T 2 a 1.62 26.82 † 69.71 91.91

aThe number of PCs is 4

Table 3 Outlier detection
effect on modeling

Method RF SVR GLMnet GRU

Mahalanobis +0.66 +2.09 +4.10 ‡ +3.96

Q and T 2a +0.92 +2.33 +5.01 ‡ +5.14 ‡
aThe number of PCs is 4

Table 4 Feature selection Method RF SVR GLMnet GRU

CFS −0.77 +0.03 +0.38 +0.20

Conditional info-max −0.07 +0.05 +0.25 +0.16

K-NNa +0.02 +0.03 +0.41 +0.22
aOnly wrapper method. The rest are filters

In general, the approximation approach behaves better than Mahalanobis, being
that difference higher in the intermediate levels. For the biggest distortions (easier
to detect) both methods perform very well.

Table 3 shows the results for outlier detection effect in modeling. Looking at
RF column we can see that the advantage is much lower than for the other two
algorithms. A possible reason is the fact that RF uses for each tree a reduced dataset,
both in the features and in the samples part. Theoretically the expected percentage of
the samples from the original set considered for training each tree is indeed 63.2%,
thus errors in the detection could be somehow partially neglected.

Besides, we could suspect the difference between SVM (nonlinear) and GLMnet
(linear) to be due to the fact that the transformation used for generating the outliers
is a linear mapping. Nevertheless, the suspicion is not right because GRU is also
nonlinear and behaves almost the same as GLMnet. In the end, GLMnet and GRU
have suffered less than SVM from the not detected outliers or the false positives.
The latter are very few, almost zero compared to the true outliers.

Table 4 shows the results for feature selection. The most plausible reason for
the total lack of advantage in this feature selection process is that the variables
are quite independent, containing a similar amount of complementary information.
Therefore, selecting features in any way enforces certain information loss. The
effect is magnified in RF, as it has an internal tree-wise feature selection step.

Tables 5 and 6 show the results for feature extraction in the classification
and regression tasks, respectively. We can say that (1) the data seem to be quite
nonlinear, as the nonlinear methods are the best in all algorithms except SVM
in classification (probably due to the fact that in that case we are applying
twice an equivalent kernel trick), (2) PLS (supervised) behaves better than PCA
(unsupervised) because of the possibility of using the target information, and (3) it
makes sense to use these feature extraction methods, even when the improvement
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Table 5 Feature extraction
in fault detection
(classification)

Method NB K-NN SVM RF

PCAa +1.03 −1.11 +1.48 +1.27

PLSb +1.24 −0.22 +2.17 ‡ +1.33

Kernel-PCAa +1.36 +1.04 +2.04 ‡ +2.16 ‡

t-SNE +1.25 +1.53 ‡ +2.11 ‡ +2.35 ‡

Kernel-LPP +1.21 +1.15 +2.16 ‡ +2.08 ‡
aThe number of PCs is 3
bThe number of LVs is 2

Table 6 Feature extraction
in RUL estimation
(regression)

Method RF SVR GLMnet GRU

PCAa +2.20 ‡ +1.26 +1.52 +2.15 ‡

PLSa +2.31 ‡ +1.53 +1.59 +3.02 ‡

Kernel-PCAa +3.33 ‡ +1.54 +2.60 ‡ +3.48 ‡

t-SNE +4.22 ‡ +1.78 ‡ +2.85 ‡ +4.39 ‡

Kernel-LPP +3.97 ‡ +1.60 +2.71 ‡ +4.81 ‡
aThe number of PCs and LVs is 4

Table 7 Discretization Method RF SVR GLMnet GRU

Equal-widtha −1.61 ‡ −0.32 −0.95 −2.33 ‡

MDLP +2.66 ‡ +0.98 +2.76 ‡ +4.19 ‡
aUsing Freedman–Diaconis rule

is not statistically significantly better (with one single exception), because they are
not much computationally expensive.

Table 7 shows the results for discretization. In this case the comparison between
equal-width and MDLP is not totally fair, as the former is unsupervised and the
latter supervised. Also, in general, methods that do not need to prefix the number of
bins achieve results at least as good as the restrictive ones. In this case, according to
the significance tests, it is clearly not an exception, especially in RF, GLMnet, and
GRU. Equal-width only makes sense if the density of the features is homogeneous
in their ranges, which is rare and not happening here.

In general, RF use to behave better when discretizing. Besides, some algorithms
involving complex/computationally expensive optimization processes (like SVR
and GRU) could suffer from numerical instabilities that are less likely with
discrete features. Nevertheless, discretization is not necessary beneficial always.
Also notice that the process affects the features independently, which makes possible
to discretize only a subset of the continuous features.

Table 8 shows the results for imbalance data treatment. First, we can compare
these results with the ones in Table 5, and point out that imbalanced data treatment
schema seems to be a better choice than feature extraction schema, hence, as we
have mentioned before that it was worthy to use feature extraction, it is even worthier
to use imbalanced data treatment.
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Table 8 Imbalanced data
treatment

Method NB K-NN SVM RF

RandOver −1.83 ‡ −2.01 ‡ −0.92 −1.24

SMOTEa +1.39 +1.06 +2.43 ‡ +1.40

ADASYN +0.23 −0.82 +1.49 +0.48

RandUnder −1.71 −1.69 −1.03 −1.43

ClustCentr −0.02 −0.85 +1.04 +0.62

NearMissb +1.22 +1.03 +1.15 +1.55

Tomek +1.42 +0.99 +1.24 +2.51 ‡

RandOverUnder −1.75 −2.25 ‡ −1.20 −1.37

SMOTE+Tomek +1.81 +1.13 +4.61 ‡ +3.49 ‡
aThe version is SMOTE borderline-2
bThe version is NearMiss-2

Looking only at these imbalanced methods, it is clear that all three random
approaches are a bad choice, independently of the algorithm employed. Maybe the
flexibility provided by its nonlinear nature makes SVM be the least bad. It seems
logical that SMOTE+Tomek is the best when SMOTE was the best among the
oversampling methods and Tomek’s links among the undersampling methods. In
this case it has occurred, but it is not always necessary the case.

4 Conclusions

We have presented in detail methods covering all steps involved in preprocessing
in predictive maintenance, both for offline and online learning scenarios when the
latter was feasible, as well as provided the reader with exhaustive bibliographic
references.

We have performed several experiments on public available real-world data from
the PHM Data Challenges 2014 and 2016, so that we could empirically test some of
the presented approaches.

We have seen that the data seem to have higher relevance than the posterior
modeling technique in order to determine the preprocessing schema, both for
regression and classification problems.

As possible extensions, some online tests could be performed, in order to
check the online versions of the methods. Besides, more preprocessing strategies,
modeling algorithms, and datasets could be considered in order to extend the study
and check with higher certainty whether the modeling algorithm is much less
relevant than the data for the adequate preprocessing scheme.
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Anomaly Detection and Localization



A Context-Sensitive Framework for
Mining Concept Drifting Data Streams

Chamari I. Kithulgoda and Russel Pears

1 Concept Drifting Data Streams

Data stream mining has been extensively researched over the last decade and a
half. Research in this area has challenged conventional thinking and forced the
research community to extend solutions that were developed for environments
where the statistical properties of data remain static over time. Various researchers
have catalogued the major challenges to mining open-ended streams of data. These
challenges include novel management schemes to ensure that available memory
does not overflow. In order to meet memory constraints, a new breed of incremental
learners that scan data samples at most once was developed.

Alongside developments in novel memory management strategies and incremen-
tal learning methods, several researchers realized the critical importance of detecting
changes in the underlying data distribution of samples arriving in the stream. This is
the issue that ultimately distinguishes data stream mining from classical machine
learning. If data is stationary in nature, there is no need to incrementally train
classifiers and other types of learners, one can simply take a sample of available
data and build a model on that sample using classical methods. Unfortunately, the
reality is that most data streams experience flux, and this dictates that models be
synchronized with changes that occur periodically in the stream. The realization
that concept change detection plays a central role in data stream mining sparked
off a flurry of research in this area. Many machine learning researchers turned to
the statistical literature to develop change detection algorithms that would both
accurately and efficiently detect changes in a data stream context. Given this central
role of change detection, this chapter will present a framework that will support
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online learning in a non-stationary environment. In recognition of the proliferation
of data streams resulting from the Internet of Things and other data sources, the
emphasis will be on supporting high-speed data streams efficiently, in terms of
processing and memory overheads. An implementation of this framework and the
insights gained by experimenting with both synthetic and real-world data will also
be presented.

Before the framework can be discussed, some important questions regarding
the nature of concept drift need to be addressed. These include: In what forms
do concept drift occur? How do we recognize drift? Finally, what actions do we
perform once drift is detected?

1.1 Concept Drift

In essence, the change in the relationship between an outcome variable and its
observed features is called a concept drift. In real-world scenarios, the reasons
behind these changes are unforeseen, and neither the frequency nor the exact
time of occurrence is certain. In general, three types of concept change could
occur. In the first, the change is triggered by an alteration to the mapping between
feature variables and the outcome. It could also be caused by a change in the joint
distribution of the feature variables. Furthermore, both of these cases can happen
simultaneously.

In formal terms, Gama et al. [7] define concept drift as the dissimilarity of the
joint probability distribution of input features and class label at two subsequent time
points t0 and t1. We adopt the definition given by that study:

∃X : pt0(X, y) �= pt1(X, y) (1)

This dissimilarity of the likelihood of events X and y occurring can be caused by
changes in components ([8, 13] as cited by [7]), namely the prior probabilities p(y)
of classes or the conditional probabilities of classes, that is p(X|y). These changes
result in a change in the posterior probability p(y|X). This change in p(y|X) over
time is the reason behind accuracy fluctuations.

Accordingly, any solution should have the capability of sensing the changes in
p(y|X) throughout the life span of the data stream in a time-efficient manner in
order to maintain classification accuracy. This is called the concept drift detection
problem which has been widely studied [1, 2, 19, 21]. Another classification of
concept drift is the speed with which it occurs. A sudden deviation in the p(y|X)
value is said to be an abrupt change whereas deviations that occur in an incremental
and cumulative manner over time are said to be gradual. Abrupt changes require a
fast response to the change in order to preserve accuracy. This in turn requires that an
alternative model that is better suited to the new concept be deployed as soon as the
drift is detected. In order to achieve this goal, a pool of learners needs to be available
at any given point in time. Deployment can be done through a switch from learner
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L1 to another learner L2 that is better suited to the new concept whenever a drift is
detected. If no alternative learner is available that matches to the new concept, then
accuracy will be severely compromised until one or more of the learners adjusts to
the new concept.

On the other hand, gradual changes allow time for the system to adjust to the
change, and individual learners may have adapted sufficiently well to cope with the
new concepts. Thus, in general, their effects may not be as severe as with abrupt
drift.

Yet another categorization of drift is whether the drift pattern reappears over a
period of time. Such recurrences may follow a periodic pattern to a greater or lesser
degree or be aperiodic and completely unpredictable in its recurrence pattern. In
either case, the action that needs to be performed at detection time is a switch to
a new learner, just as with the case of abrupt drift. However, unlike with the case
of abrupt drift, if the recurrence pattern is strong, i.e. repeated appearances have
statistical properties very similar to each other, then it could be profitable to store
such concepts separately in an online repository which is separate from the pool of
learners that adapt their models over time. The use of the repository will guarantee
that models associated with recurring concepts are preserved in their original form
in between successive recurrences. However, they may be subject to change at the
next appearance, and a new version of the recurring concept may then be stored in
its place in the repository. The key issue here is that its update cycle is quite different
from that of concepts that change and evolve over time without recurring.

2 A Novel Framework for Online Learning in Adaptive
Mode

2.1 Basic Components

In this section, we present a generic framework for online learning in non-stationary
environments. The framework is generic in the sense that it is able to cope with all of
the drift types that we identified in Sect. 1. Furthermore, the framework is modular
in design as each component can have different implementations corresponding to
different methods that have been proposed to solve a particular issue in learning
with concept drift.

We start by arguing the case for each component. An incremental learner that
restructures models by synchronizing changes in data patterns to models is indis-
pensable to cope with high data arrival rates in a data stream. The synchronization of
changes in data patterns is accomplished through the use of a concept drift detector.
Without a drift detector, a learner will experience severe drops in accuracy from time
to time, and hence it is also a mandatory component. We have seen in Sect. 1 that
a repository of past concepts is useful to maintain in cases where a recurring drift
pattern is present. Thus, the basic components required to support online learning in
non-stationary environments are:
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• an incremental classifier,
• a concept drift detector,
• an online repository of past concepts.

2.2 Optimizing for Stream Volatility and Speed

The above components are basic in the sense that they support core functionality,
but other supporting elements such as memory management and support for high-
speed streams are also essential. In streams that are highly volatile, many different
concepts can manifest, and it may not be feasible to store all concepts in the
repository even if compression were to be applied. This calls for a memory man-
agement scheme that goes beyond a simple first-in first-out strategy of populating
past concepts in the repository.

At the same time, the framework should be able to take advantage of periods
of low volatility to speed up processing by reusing already learnt models coupled
with a minimal amount of learning that is needed to reflect changes in the recurring
concepts. This would result in speeding up the learning process and would require
a mechanism to sense the level of volatility in the stream. The volatility detector
could then adjust the mode of learning from an intensive learning mode to a less
intensive one or vice versa, as the case may be. The level of volatility could be
estimated by monitoring whether the probability pr of usage of past concepts in the
repository is significantly higher than the probability pn of usage of concepts that
are evolving or new. If this is the case, then it indicates that the system is operating
in a less volatile state, and learning can then be adjusted accordingly. Learning in a
less volatile state can rely to a large extent on classifiers stored in the repository with
minor adjustments if needed, and hence should be more efficient than learning in a
high-volatile state where new concepts need to be learned. In Sect. 3, we will present
the staged learning approach that will implement this key notion of sensitivity to
stream volatility.

3 Implementation of a Context-Sensitive Staged Learning
Framework

We refer to the framework as being context sensitive as it recognizes system
behaviour and tailors the learning strategy accordingly. Thus, it is able to recognize
periods of stability, stages in which concepts are in a state of change, periods of
concept reoccurrence and finally, system states with different levels of volatility.
We discuss the design choices needed to achieve context sensitivity, starting with
choices available for each of the basic components. We then go on to discuss the
staged learning approach and volatility detection.
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Each of these components can be implemented in several different ways. A
large number of incremental classifiers have been proposed for data stream mining
including the decision tree group of classifiers, Bayesian classifiers and others.
A popular class of incremental learners use ensembles of decision trees with the
Hoeffding tree as the basic learning mechanism. Decision trees have proved to
be a popular choice in data stream mining on account of their being efficient to
learn and being able to cope with interdependence between features, unlike the
Naive Bayes classifier. Some examples of incremental classifiers using ensembles
of decision trees include CBDT [10], OzaBagADWIN [3], LeveragingBag [4] and
Adaptive Random Forest [9]. It is clear that any of the decision tree ensembles can
be used as the incremental classifier component, and we have chosen CBDT as our
implementation choice for the incremental classifier component.

In terms of concept drift detectors, a large choice of drift detectors exist including
EDDM [1], ADWIN [2] and SeqDrift2 [19], amongst others. All of these detectors
require the same input, which is a binary stream of the truth value of classifica-
tion decisions, while all of them produce an output which is a binary variable,
indicating whether or not drift took place. Hence, the drift detector component is
completely interchangeable amongst the drift detectors that are currently available.
Our implementation choice was SeqDrift2 on account of its low false positive rate
and optimized drift detection delay in relation to other drift detectors [19].

With respect to an online repository, there have been two different approaches so
far proposed in the literature. The first by Ramamurthy and Bhatnagar [20] stores
decision trees in their original form in the repository. The second approach used in
[14, 15, 22, 23] is to compress decision trees into Fourier spectra by applying the
discrete Fourier transform (as illustrated in Sect. 3.1), and then storing the resulting
spectra in the repository. Classification can be performed directly on the spectra
by applying the inverse Fourier transform without having to recover the original
tree, thus making such a solution attractive on account of the compression achieved.
The time to classify new data could also reduce due to the compact nature of the
spectrum. The trade-off with better memory utilization is the transformation cost
but this is a one-time cost. When concept drift is signalled by the drift detector, all
classifiers (including the spectra in the repository) are polled to determine which one
has the best classification accuracy on the new concept, and this particular classifier
is then used on the current concept. This process and its result is independent
of whether or not Fourier-based compression is used, and hence the repository
component is also interchangeable. Our implementation uses Fourier spectra as
classifiers in the repository. Before we elaborate further on the staged learning
framework, we present the fundamentals of the Fourier transform in Sect. 3.1 as
it plays a crucial role in the success of the framework.
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3.1 The Use of the Discrete Fourier Transform in
Classification and Concept Encoding

The use of the Discrete Fourier Transform (DFT) in data mining has been of recent
origin and has been focused on deriving a Fourier spectrum from decision trees.
We first present a basic overview of the derivation of the multivariate DFT from a
decision tree and then go on to describe the setting in which our Fourier encoding
and classification scheme is applied.

Before we present the mathematical foundations of the DFT, we map the
fundamental ideas underpinning the Fourier transform to their meanings in Table 1
in order to communicate their roles in an intuitive manner.

A Fourier spectrum is derived from a Fourier basis set which consists of a set
of orthogonal functions that are used to represent a discrete function. Consider the
set of all d-dimensional feature vectors where the lth feature can take λl different
discrete values, {0, 1, . . . , λl−1}. The Fourier basis set that spans this space consists

of
d∏
l=1

λl basis functions. Each Fourier basis function is defined as:

ψλ
j (x) =

1

d

√
d∏
l=1

λl

d∏
l=1

exp

(
2πlxljl
λl

)
(2)

where j and x are vectors of length d; and x(l), j (l) are the lth attribute values in x
and j, respectively. The vector j is called a partition and its order is the number of
non-zero feature values it contains.

A function f : Xd → R that maps a d-dimensional discrete domain to a real-
valued range can be represented using the Fourier basis functions:

Table 1 Mapping of Fourier concepts to their intuitive meanings

Symbol Meaning

x A schema consists of a vector of feature values drawn from features that comprise
the dataset. A schema is a compact way of defining a set of data instances, all of
which share the same set of feature values

X The schema set which contains the set of all possible schema for a given dataset

j This is a partition of the feature space. Essentially, it is also a vector of feature
values, just as with a schema. The only (conceptual) difference is that a schema
refers to the data, whereas a partition indexes a Fourier spectrum

J The partition set that defines the number of coefficients in the spectrum and its size

wj A coefficient in the Fourier spectrum

ψλ
j (x) This is the Fourier basis function that takes as input a feature vector and a partition

vector and produces an integer for a dataset with binary-valued features or a
complex number for a dataset with non-binary feature values
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f (x) =
∑
j∈X

ψj
λ
(x)wj, (3)

where wj is the Fourier Coefficient (FC) corresponding to the partition j and ψj
λ
(x)

is the complex conjugate of ψλ
j (x). Henceforth, we shall drop the superscript λ from

the ψj function formulation to simplify the presentation. The Fourier coefficient wj
can be viewed as the relative contribution of the partition j to the function value of
f (x) and is computed from:

wj =
l∏

i=1

1

λi

∑
x∈X

ψj(x)f (x) (4)

In a data mining context, f (x) represents the classification outcome of a given data
instance x ∈ X. Each data x must conform to a schema and many data instances in
the stream may map to the same schema. For example, in Fig. 1, many data instances
for schema (0, 0, 1) may occur at different points in the stream. Henceforth in the
paper, we shall refer to schema instances rather than data instances as our Fourier
classifier operates at the schema, rather than at the data instance level. Thus, we
shall adopt the notation x to denote a schema instance, rather than a data instance.
The set X is the set of all possible schema, and for the simple example in Fig. 1 it is
of size 8.

The absolute value of wj can be used as the “significance” of the corresponding
partition j. If the magnitude of somewj is very small compared to other coefficients,
we consider the j th partition to be insignificant and neglect its contribution. The
order of a Fourier coefficient is simply the order of its corresponding partition. We
will use terms like high-order or low-order coefficients to refer to a set of Fourier
coefficients whose orders are relatively large or small, respectively.

The Fourier spectrum of a decision tree can be computed using the class
outcomes predicted by its leaf nodes. As an example, consider the decision tree
in Fig. 1 defined on a binary-valued domain consisting of three features. Its truth
table derived from the predictions made by the tree and the corresponding Fourier

Fig. 1 A decision tree and its equivalent Fourier spectrum
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spectrum that results appears in Fig. 1. Below, we illustrate the computation of j th
Fourier coefficient wj for a data with d binary-valued features which is given by the
Boolean domain version [18] of Eq. (4):

wj = 1

2d
∑
X

ψj(x)f (x) (5)

where f (x) is the class outcome predicted by the leaf node with path vector x and
ψj(x) the Fourier basis function given by the simplified version of Eq. (2):

ψj (x) = (−1)(j.x) (6)

Considering three binary-valued features X1, X2 and X3 given in Fig. 1, only
X1 and X3 are appeared in tree and hence contributed to calculation. The study
of Park [18] guaranteed that coefficients for paths which are defined by attributes
need to be computed since other coefficients are zero in value. Thus, coefficients
w010, w011, w110 and w111 are zero. Computation for non-zero coefficients w000
and w001 are as follows:

w000 = 1

23

∑
X

ψj (000)f (x) = 1+ 0+ 1+ 0+ 1+ 1+ 1+ 1

8
= 3/4

w001 = 1

23

∑
X

ψj (001)f (x) = 1+ 0+ 1+ 0+ 1+ (−1)+ 1+ (−1)

8
= 1/4

The Fourier spectrum derived from a decision tree is compact due to the two
following properties:

1. The number of non-zero coefficients is polynomial in the number of features
represented in the tree [11].

2. The magnitude of the coefficients wj decreases exponentially with the order of
the partition j [11, 12].

These two properties collectively make a spectrum derived from a tree very
attractive. Firstly, the tree provides a natural filtering mechanism as typically only
a fraction of the features have sufficient information gain to be represented in the
tree. Once the tree is in place, only the set of low-order coefficients defined from
partitions appearing in the tree make a significant contribution to the classification
outcomes.

Kargupta and Park in [11, 12] made use of spectral energy to derive a cut-off point
for coefficient order. Given a spectrum s, its energy E is defined by: E = ∑

j∈s
|w2

j |.
For a given energy threshold T , the subset of s (in ascending spectral order) whereby
E ≥ T is retained; all other coefficients are deemed to be zero and removed from the
array. Thus for example in the spectrum defined in Fig. 1, the first-order coefficients
contain 9+0+1+1

9+0+1+1+0+0+1+0 = 91.7% of the total energy and so with a threshold of
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90%, only coefficients w000, w001, w100 should be retained, thus halving the size of
the spectrum that needs to be maintained.

Moreover, as discussed in [11] and implemented in [22], spectra can be aggre-
gated with each other. Aggregation of spectra was implemented via a pair-wise
algebraic summation [22] of the spectra involved as given in Eq. (7):

sc(x) =
∑
i

Ai
∑
i

si(x)

=
∑
i

Ai
∑
j∈Qi

ωj
(i)ψj (x) (7)

where sc(x) denotes the ensemble spectrum produced from the individual spectra
si(x) produced at different points i in the stream; Ai is the classification accuracy of
its corresponding spectrum and Qi is the set of partitions for non-zero coefficients
in spectrum si .

In our implementation, a pre-check is first done to determine whether or not
a new spectrum should be aggregated with an already existing spectrum in the
repository. If this check is passed, then aggregation proceeds with the spectrum that
is most similar to the newly generated spectrum by applying Eq.(7). If the similarity
is below a given threshold, the new spectrum is inserted into the repository as it is.

Aggregation of spectra brings with it two major benefits. Firstly, a reduction in
space as coefficients common to spectra being aggregated need to be stored only
once. Secondly, as demonstrated in our empirical study, aggregation performs a
similar role to an ensemble of models and leads to better generalizability to new
data arriving in the stream.

Once a Fourier spectrum is derived from a decision tree, it can fully replace the
latter as classification of a newly arriving instance x can be computed by applying
the inverse transform given in Eq. (3) over the set J that contains the reduced set of
coefficients that survive the energy thresholding process.

Computing of the classification outcome for a given schema 010 through the
Fourier spectrum is illustrated below:

f (x) =
∑
j

ψj (x)wj

f (010) =
∑
j

(−1)(j.010)wj

f (010) = (−1)(000.010)w000 + (−1)(001.010)w001 + (−1)(010.010)w010

+ (−1)(011.010)w011 + (−1)(100.010)w100

+ (−1)(101.010)w101 + (−1)(110.010)w110 + (−1)(111.010)w111

= 3

4
+ 1

4
− 1

4
+ 1

4
= 7

4
= 1
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3.2 Repository Management

As spectra in the repository may accumulate in number, it will be necessary to
implement a memory management strategy to ensure that memory does not overflow
in the repository. A simple strategy would be to delete the oldest spectrum when
memory is not available to store a newly created spectrum. We choose instead to
aggregate newly created spectra with existing spectra as a memory saving measure.
This aggregation scheme is implemented by Eq. (7) as noted earlier in Sect. 3.1.

If memory is not available to store a newly created spectrum Snew, then its
classifications on a test data segment of a certain size N are assessed against the
classifications produced by spectra that exist in the repository. Suppose that C is the
number of classes. Then, the winner spectrum Snew is aggregated with the spectrum
Sa determined by Eq. (11) if the distance similarity (E) is greater than the given
threshold for similarity.

c(Snew(i)) = �f (Snew(i))× C� (8)

c(Sp(i)) = �f (Sp(i)× C)� (9)

E = N −
P∑
p=1

N∑
i=1

I (c(Snew(i)) �= c(Sp(i))) (10)

where P is the number of spectra in the repository.

Sa = argmax(E)
p

(11)

In Eqs. (8) and (9), the class labels c(Snew(i)) and c(Sp(i)) of the ith data instance
are determined for spectra Snew and Sp, respectively, by applying the inverse Fourier
transform on the respective spectra to reconstruct a numeric approximation of the
class value which is converted to a class label by multiplying by the number of
classes C and then taking the ceiling of the resulting numeric value that is returned.
The same operation is performed on all spectra which are already in the repository.

For example, if the number of classes C=3 and if the inverse Fourier value
returned for data instance i with spectrum Snew is 0.61, then clearly instance i should
be labelled with class value 2 as the class boundaries are [0.0. . . 0.33], [0.34. . . 0.66],
[0.67. . . 1.0]. This label of 2 is recovered by multiplying 0.61 × 3 and then taking
the ceiling of 1.83, giving a class label of 2.

Equation (10) computes the distance similarity E between Snew and a spectrum
Sp in the repository by counting the number of instances that return the same class
labels over the test segment of size N and then subtracting the total count by N
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to get the similarity score. The identity function I where I (b) = 1 if b is true, 0
otherwise, is used to determine if Snew, Sp agree or not on class outcomes.

In Eq. (11), the spectrum Sa that has the maximum similarity with Snew is
returned. If this maximum distance similarity is smaller than the given threshold,
aggregation does not take place. In the case when the repository is full and
insufficient distance similarity exists to meet aggregation requirements, the least
accurate spectrum is removed to make way for the newly generated spectrum.

3.3 The Staged Learning Approach

So far in our presentation, the emphasis has been on maintaining classification
accuracy in the presence of concept drift and we have not yet attempted to improve
performance, apart from a possible improvement in classification time resulting
from more compact classifiers in the repository. As mentioned briefly in Sect. 2.2,
one optimization that could result in significant improvements to system throughput
would be to model a data stream as a state machine that models interactions between
two states. The first state can be thought of as a “learning state” (henceforth referred
to as a Stage 1) where new concepts appear, and these concepts are learned and
stored as classifiers in the form of decision trees, Fourier spectra or other types of
models.

The second state is a “deployment state” (henceforth referred to as Stage 2) in
which concept drifts still appear but the vast majority of drifts take place between
concepts already learned in the first state. If such concepts are stored online in the
repository, then classifiers representing these concepts could be deployed as they
were without the need for re-learning them when concepts recur. While this could
yield significant gains in throughput, concepts may undergo some change when they
reappear, and in practice some level of learning may also need to take place in Stage
2.

In keeping with the low-volatile nature of Stage 2, the decision tree forest is
suspended and Fourier spectra are used as classifiers. When a concept drift occurs
in Stage 2 processing, the spectrum S that reports the best accuracy is chosen as the
classifier for the current concept. However, it is possible that some concepts may
undergo change after reappearance, and at the end point of a concept’s progression,
as signalled by concept drift, it may happen that S may no longer be a precise
representation of the concept. In order to synchronize S with the changed state of the
concept, a single decision tree is used to learn any changes that might take place in
the current concept. This tree is induced from spectrum S at the start of the concept
and thereafter learns any changes that may take place after that point onwards. We
used the tree induction algorithm proposed in [18] for this purpose. At the end of
the concept, the tree is transformed into a new spectrum Snew which is placed into
the repository if space permits, otherwise it is aggregated with its closest matching
spectrum in the repository using the process described in Sect. 3.2.
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An alternative strategy would have been a simple replacement of S with Snew but
we believe that aggregation would enable historical properties of the concept to be
preserved, thus offering a better generalization capability. Overall, the processing
overhead in Stage 2 is much lesser than in Stage 1 as only a single tree needs to
be maintained in Stage 2 in contrast to a forest of trees in Stage 1. In addition,
as mentioned earlier, Fourier spectra are more compact than their decision tree
counterparts and hence classification can also be expected to be more efficient. Our
experimental results on throughput presented in Sect. 4 show clearly that this is the
case.

The staged approach is a generalization of the “learn then deploy” paradigm used
in classical machine learning on a stationary data environment. The difference here
is that many cycles of learning and deployment may occur within a data stream,
unlike with a stationary environment which involves just one (unless the data miner
retrains a classifier periodically).

This staged approach is consistent with Kleinberg’s [16] modelling of text
streams as bursty collections of data in which a volatile phase containing new, pre-
viously unseen data patterns is interleaved with stable segments of text containing
previously seen word patterns.

Figure 2 shows the interactions between the major components of the staged
learning framework (adapted from [14]). The incremental classifier component
consists of a forest of decision trees. Each tree in the decision tree forest operates
under the control of a drift detector.

The system starts off in Stage 1 with the repository in an empty state. Classifi-
cation is initially done in a grace period G with a randomly selected tree from the
forest. This tree is designated as the “winner” classifier, meaning that it is solely

Fig. 2 Staged learning framework for context-sensitive learning



A Context-Sensitive Framework for Mining Concept Drifting Data Streams 109

responsible for classifying data arriving in the stream until a concept drift occurs.
Within the span of the grace period, the drift detection buffer of each drift detector
associated with a tree is populated with its own classification decision, irrespective
of whether or not it is the designated winner classifier. At the expiration of the grace
period, the tree that returns the highest average accuracy is chosen as the new winner
tree, and this tree is chosen to classify new data arriving in the stream beyond the
grace period. This process continues until a drift signal is produced. At drift point,
the classification accuracy of each tree in the forest is assessed, and a new winner
is selected which will be responsible for classification until the next drift occurs.
At each drift point, the winner tree is compressed by applying the DFT, and the
resulting spectrum is stored in the repository. Once spectra appear in the repository,
they can be used for classification, just as with trees in the forest. As spectra are
classifiers in their own right, they too operate under the control of drift detectors.

In Stage 2, each Fourier spectrum is paired with its own evolving tree (ET). As
described before, the tree ET is used to synchronize the current state of a concept
with the spectrum that it is paired with.

The staged approach requires a mechanism for determining the stream state and
for transiting between states. Transition from Stage 1 to 2 is governed by the firing of
a trigger T1 when a shift from high-stream volatility to low volatility is identified by
the volatility detector. On the other hand, the reverse shift from low-stream volatility
to high volatility is triggered by T2. Details of how these triggers function appear in
the subsequent section.

3.3.1 Transition Between Stages

We capture volatility shift through the application of rigorous statistical methods.
We first present a formal definition of volatility and then proceed to illustrate how
shifts in volatility are detected by framing the volatility shift problem in terms of a
concept drift problem.

Definition 1 Volatility is defined as the rate of appearance of new concepts in the
stream with respect to time. In any given stream segment of length l if n new
concepts appear, then volatility is defined as the probability of appearance of a new
concept and is estimated by n

l
.

Note that the definition is based on the appearance of new concepts and not on
the probability of concept drift taking place. Concept drift can occur as a result
of concept changing over to a new, previously unseen concept or reverting to a
previously seen concept. If s switches in concept take place in a stream segment of
size l, then in general only n(< s) of them will be new and hence the volatility rate
as defined above as n

l
will be less than the rate of concept drift, s

l
.

Although Definition 1 characterizes volatility, its utility in practice is limited
unless a method can be found to measure the rate at which new concepts appear
in a given data stream. With this in mind, we consider the role that the repository
plays in classification.
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With the staged transition learning framework in place, as long as a concept exists
in the online repository that matches the newly emerging concept in the stream
that is signalled by the drift detector, then no re-learning is required. In such cases,
classification is performed with the concept stored in the repository. This suggests
that the rate of re-use of objects in the repository can be taken as a proxy for the rate
of appearance of new concepts. The higher the rate of re-use, the lower is the rate of
appearance of new concepts in the stream, and lower is the volatility. We are now in
a position to provide an operational definition for volatility.

Definition 2 At any given point in time during the operation of Stage 1 with the

occurrence of s concept drifts, volatility is estimated as: 1−
s∑
i=1

B(R)

s
where B(R) is

a Boolean-valued function that returns “1” if the newly emerging concept i is found
in the repository, otherwise it returns value “0”.

Definition 2 quantifies volatility in terms of the empirical hit (success) rate of the

repository in finding emerging concepts, which is given by: h =
s∑
i=1

B(R)

s
. The higher

the repository hit rate, the lower is the volatility. We note that with a drift detector
in place that has high sensitivity and low false positive rate, the hit rate, and hence
volatility can be determined. We are now in a position to determine the transition
point between Stages 1 and 2.

In order to determine the transition point, a window of size w is maintained that
contains samples drawn from values returned by function B(R) defined above. A
check for a transition detection point is made after the arrival of every s concept
drifts. The window is divided into a left sub-window of size w − s with the right
sub-window containing the last s samples.

Definition 3 A transition from Stage 1 to Stage 2 occurs if at a concept drift point
i the repository hit ratio satisfies:

• condition 1: hr > hl ,
• condition 2: hr > α.

where hl , hr are the hit ratios across the left and right sub-windows, respectively, and
α is a user-defined threshold on hit ratio. Definition 3 establishes that the transition
point i is reached only when an upward shift in the hit ratio takes place in the
window prior to the hit ratio exceeding α.

In practice, the hit ratio is a random variable, and ensuring conditions 1 and 2
requires statistical significance tests to be made. To check validity of condition 1, we
formulate a one-tailed statistical hypothesis test H0 : hl ≥ hr versus H1 : hl < hr ,
where hl , hr represent the population means of the data across the left and right
sub-windows, respectively.

Thus, it can be seen that volatility detection is essentially a second-order
determination of concept drift. Amongst the set of drifts recorded in the stream
if the rate of change of appearance of new concepts, as signalled by the repository
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hit ratio, is on a statistically significant decreasing trend, then sufficient evidence
exists that the system has transited to a low-volatile state (Stage 2). The implication
is that the volatility detection problem can then be framed in terms of a concept drift
problem and we make use of the SeqDrift2[19] drift detector for volatility detection
as well.

The SeqDrift2 detector makes use of the sample means ĥl , ĥr and a threshold ε1
to determine if condition 1 is satisfied. If ĥr − ĥl > ε1, then H0 is rejected with
probability (1 − δ), else H1 is rejected. The ε1 threshold is given by: 1

3(1−k)nr (p +√
p2 + 18σ 2

s nrp) where p = ln 4
δ
, k = nr

nr+nl , σs = sample variance, nr = size of the
right sub-window, nl = size of the left sub-window and δ = drift significance level.

If H1 is rejected, then we can conclude that no significant increase in hit ratio
has occurred in the current window, and hence we proceed to update the left sub-
window with samples from the right sub-window before proceeding to gather a new
set of s samples in a new right sub-window for re-testing H0 versus H1.

If there is evidence to reject H0 at the δ significance level, then the implication is
that the stream is moving towards Stage 2 since classification is relying increasingly
on the repository that contains previously captured concepts, in preference to the
forest. However, as yet there is no definitive evidence to transit to Stage 2 as the
recent activity may still not be high enough to justify suspending the operation of
the forest of trees. Thus, a further hypothesis test for condition 2 is carried out to
ascertain whether ĥr is greater than some acceptable threshold value α.

To check the validity of condition 2, hypothesis H2 tests whether hr ≤ α versus
H3 which corresponds to: hr > α. If H2 is rejected in favour of H3, then the stream
is considered to have transited to Stage 2. If not, the stream is still in Stage 1 and
at the arrival of the next s samples, condition 2 is re-evaluated. As with the test for
condition 1 above, we use the sample hit ratio ĥr and a threshold ε2 to execute the
test. If ĥr−α > ε2, then H2 is rejected in favour of H3 with probability (1−δ). The

threshold ε2 is computed using the Hoeffding bound and is given by: ε2 =
√

ln 1
δ

2nr
.

We now turn our attention to trigger T2. The rationale behind T2 is based on
tracking how good the spectra in the repository are in classifying concepts that
are evolving. To the extent that spectra return high classification accuracy, Stage 2
processing should continue. High classification accuracy can result when concepts
produced by the stream are similar to those produced in the past or there is a
collection of trees that is capable of reacting quickly to the arrival of several
new concepts that are dissimilar to those seen in the past. Thus, when the spectra
produced through growth of a regenerated tree starts to deviate sharply from those
already in the repository in terms of structural similarity, then we have an indication
that the concepts appearing in the stream are novel in the sense that they have not
been captured previously in the stream. We are now in a position to implement T2
once we have a definition for structural similarity in place.

Definition 4 Structural similarity simC between the evolving tree ET and the

repository R is given by: simC =
(

maxS∈R
∑

i (B[S(i)=ET(i)])
m

)
where C is the current



112 C. I. Kithulgoda and R. Pears

concept; B is a Boolean-valued function that returns binary “1” for data instance i if
the classification outcome from spectrum S matches with the classification outcome
for tree ET; if no match is produced, then binary “0” is returned in the window; m
is the length of the current concept drift point—the number of data instances in the
concept; and i is an index that ranges over the data instances in the current concept.

As illustrated in Definition 4, the similarity score simC returns the degree of
agreement between the tree ET and its best matching spectrum S in the repository.
It is measured at each concept drift point C. If simC < β, then binary “1” is written
to the change detection window, otherwise “0” is recorded.

As with trigger T1, we use SeqDrift2 as the change detector. SeqDrift2’s window
is split into left and right sub-windows and with the arrival of every s concept drift
points, the null hypothesis H4 : μl ≥ μr is tested against H5 : μl < μr . If H4
is rejected with probability (1 − δ), then we transit back to Stage 1 as the right
sub-window shows a significant increase in occurrence of structural dissimilarity;
otherwise, Stage 2 processing continues. The intuition behind triggering T2 is that a
state change back to Stage 1 needs to occur when the concepts stored in the form of
spectra in the repository becomes sufficiently dissimilar to the currently emerging
concepts in the stream.

3.4 Space and Time Complexity of Spectral Learning

The space and throughput advantages of SOL result from spectral learning. Here,
we illustrate the space and time complexity for the classification based on spectra in
the repository.

An upper bound for the space consumption of spectra is determined by the total
number of coefficients M taken over all spectra in the repository. Assuming that
there are P spectra and that Qp is the size of the coefficient array for the pth
spectrum, the space complexity can be given in the following equation:

M =
P∑
p=1

Qp (12)

The spectral size Qp is determined by the order Op for the given energy threshold,
as described in Sect. 3.1. Hence, we have

Qp =
OP∑
r=0

dCr (13)

where d is the number of data features and dCr is the number of combinations of
selecting r features from a total of d. The memory complexity M is then given by:
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M =
P∑
p=1

OP∑
r=0

dCr (14)

The Fourier classifier does not rely on a deep hierarchical tree structure but
instead uses a self-indexing hashing scheme to store its schema values. This is
compact due to the reasons mentioned in Sect. 3.1.

Now that an upper bound for the number of coefficients in a given spectrum has
been formulated, the time complexity of the IFT operation as defined by Eq. (3) can
be expressed as:

O(Md2) (15)

as d2 multiplications are needed for the computation of the vector product between
x and j for each of the coefficients in the array.

4 Empirical Study

Our empirical study consists of five basic components. Firstly, we test the effec-
tiveness of the Staged Online Learning (SOL) approach on two key performance
measures: per-stage classification accuracy and per-stage processing speed. The
study compares SOL against the Ensemble Pool (EP) [22] and Recurrent Classifier
(RC). The EP employs a set of stored Fourier spectra together with the CBDT[10]
forest of decision tree learners. Compared to SOL, the EP approach does not employ
either the staged learning approach or the reconstructed evolving tree, and hence it
is one of the ideal methods to compare against. The RC is a slightly different staged
learning approach that simply uses Fourier spectra generated in Stage 1 to classify
data arriving in Stage 2 without any form of adaptive learning. In other words, this
classifier, termed as Recurrent, assumes that concepts appearing in stage 2 are exact
recurrences of those that appeared in Stage 1. This version provides a useful contrast
with the SOL proposed in this study as it enables us to assess the benefits of learning
through a reconstructed evolving decision tree in Stage 2.

We then go on to examine overall accuracy and throughput of SOL and
compare it to several well-known classifiers. In this connection, we include two
more classifiers that have been proposed for concept drifting data streams. These
algorithms are state-of-the-art meta learning algorithms featured in MOA,1 namely
Adaptive Random Forest (ARF) [9] and LeveragingBag (LB) [4]. The performance
of classifiers under comparison is assessed on both accuracy rank and throughput

1From http://moa.cms.waikato.ac.nz/.

http://moa.cms.waikato.ac.nz/
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rank simultaneously in the next experiment. The memory consumption evaluation
follows last. In the next section, sensitivity analysis is carried out to assess the effect
of SOL’s parameters on its performance.

All experiments were conducted on a Windows 10 Enterprise 64-bit machine
featuring Intel Core i5 processor running at 3.2 GHz and having 16 GB of RAM.
The framework was implemented using C# 5.0 in .NET Framework 4.5 runtime
environment.

4.1 Datasets Used for the Empirical Study

All experiments were carried out with the use of two synthetic datasets generated
by MOA’s stream generators (See footnote 1) and four real-world datasets.

4.1.1 Synthetic Data

We generated concepts of length 10,000 instances. Drift signals were applied at two
levels on the concepts: firstly, abrupt drift was injected to produce a set of distinctive
concepts, and then at the second level, recurrences of concepts generated at the first
level were produced, as depicted in Fig. 3. Each concept recurred with a varying
degree of change from its first appearance, depending on its cycle of repetition.

Two different types of change were introduced at level 2. Firstly, in Sect. 4.1.2, a
given amount of noise was superimposed on the recurring concepts to differentiate
them from their previous appearance.

Fig. 3 Preparation of synthetic datasets with two levels of drift signals
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Secondly, in addition of noise, drift patterns were injected into the data, as
described in Sects. 4.1.3 and 4.1.4. In Sect. 4.1.3, a progressively increasing drift
pattern was used, whereas in Sect. 4.1.4 an oscillating pattern was superimposed on
the recurrence signal. To the best of our knowledge, this is the first experimental
study of its kind that embeds several different drift patterns simultaneously in its
data. More details can be found below.

4.1.2 Synthetic Data Recurring with Noise

For synthetic datasets, we generated several distinct concepts, each of length 10,000
instances.

In the following two synthetic datasets, we introduced a 5% noise level for each
concept recurrence by inverting the binary class label of randomly selected data
instances with the belief that “concepts do not repeat in exactly the same form” in
reality. In this case, the probability of class flips Pi in the ith repetition remains
constant at 5% throughout each of the m repetitions. This introduces random noise,
not resulting in any meaningful pattern.

1. Rotating Hyperplane dataset (Noisy RH): This dataset has a total of ten attributes,
and we adjusted the magnitude of change parameter in the range [0.03, 0.04,
0.05, 0.07, 0.08, 0.09] to generate six distinct concepts. The first three concepts
were repeated 20 times more, with each concept being distorted by a noise level
of 5% at each cycle over its base representation (i.e. its first generated state).
Three previously unseen concepts were injected at the end of datasets with the
intention of examining whether the staged learners would opt for adapting to the
new concepts in Stage 2 or for triggering T2 to transit back to Stage 1. The size
of the dataset was 660,000 data instances.

2. RBF dataset (Noisy RBF): This ten-dimensional dataset generated concepts by
changing the number of centroids. We produced 12 different concepts. The first
five concepts were repeated nine more cycles with noise as per the description
for RH. The remaining seven concepts were appended in order to simulate the
appearance of completely new concepts in the stream. The size of this dataset
was 570,000 data instances.

The objective of including several concept repetitions was to evaluate the
capability of triggering T1 which should cause our system to transit to Stage
2 when recurring concepts present themselves in the stream. Further to that,
sensitivity of trigger T2 was assessed by injecting new concepts to test whether
trigger T2 would reactivate Stage 1 operation.
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4.1.3 Synthetic Data Recurring with a Progressively Increasing Pattern of
Drift

With the objective of evaluating the robustness of our proposed framework to
any given scenario, we created two more RH datasets by injecting two different
monotonically increasing drift intensities on the first five concepts of the data
stream. Whenever an instance belonging to any one of these concepts recurred
with a certain attribute value, the class label for that instance was inverted to the
other class with a given probability. In both of these datasets, the drifts between
two consecutive concepts were abrupt while the recurrences gradually deviated
from their last occurrence. Experimentation with two different drift intensities is
described below:

1. RH progressive increase of 10% in flip probability over cycles (10% progressive
RH): the original five concepts reappeared in ten more cycles of repetitions, each
of which had 10% (where P2 = P1+ 10%, P3 = P2+ 10% . . . Pm = P(m−
1) + 10% as per Fig. 3) greater flip probability of its class label in comparison
to the previous cycle. We challenged the process of pattern recognition by
introducing 30% flips of class labels in the first repetition and thereafter 40%,
50% and so on up to 100%.

2. RH progressive increase of 20% in flip probability over cycles (20% progressive
RH): the original five concepts reappeared in five more cycles of repetition, each
of which had 20% (Where P2 = P1+ 20%, P3 = P2+ 20% . . . Pm = P(m−
1)+ 20% as per Fig. 3) greater flip probability of class label than in the previous
cycle. We challenged the process of pattern recognition by introducing 20% flips
of class labels in the first repetition and thereafter 40%, 60% and so on up to
100%.

4.1.4 Synthetic Data Recurring with an Oscillating Drift Pattern

Further to the above, we test the learning capability of the classifiers when the
pattern in between recurrences tended to oscillate, rather than being monotonic in
nature:

1. RH Oscillating flips (Oscillating RH): In this dataset, we appended repetition
cycles by interleaving flip probability: P1 = 30%, P2 = 70%, P3 =
40%, P4 = 80%, P5 = 50%, P6 = 90%, P7 = 60%andP8 = 100% as
per Fig. 3.
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4.1.5 Real-World Data

1. Electricity (ELEC) dataset: NSW Electricity dataset is used in its original form.2

There are two classes Up or Down that indicate the change of price with respect
to the moving average of electricity prices in the last 24 h.

2. Flight dataset: This dataset3 was generated by NASA’s FLTz flight simulator
which was designed to simulate flight conditions experienced in commercial
flights. Each flight has four different concepts, corresponding to four flight
scenarios: take off, climb, cruise and landing. The “Velocity” feature was
discretized into two binary outcomes Up or Down depending on the directional
change of the moving average in a window of size 10 data instances.

3. Covertype dataset: The original version of this dataset is available at [17]. The
data was collected from Roosevelt National Forest of Northern Colorado for
the task of predicting forest cover type from 54 attributes derived from 12
cartographic variables. We extracted the initial 10% of instances from the two
most frequent forest types, namely “Spruce-Fir” and “Lodgepole Pine”.

4. Occupancy Detection dataset: This dataset was also obtained from [17] and
used by [5]. The dataset consists of measurements of temperature, humidity,
light and CO2 levels in a given room and was collected with the purpose of
deciding suitability of the room for human occupancy. Ground-truth occupancy
label outcomes were determined on the basis of pictures taken at intervals of 1
min.

4.2 Parameter Values

The default parameter values used in the experimentation are as follows:
Maximum number of nodes in decision tree forest: 5000, SeqDrift drift sig-

nificance value (δ) = 0.01, maximum number of Fourier spectra in repository: 40,
repository hit ratio threshold α for T1 is 0.5 and the similarity threshold β for T2 is
0.7.

4.3 Effectiveness of Staged Learning Approach

In order to test whether a significant difference in performance exists between the
proposed SOL classifier, EP and RC, we examined both throughput and accuracy
profiles of these algorithms. Tables 2, 3, 4, 5, and 6 show average values for
throughput and accuracy for five datasets. The remaining four datasets follow the

2From http://moa.cms.waikato.ac.nz/datasets/.
3From https://c3.nasa.gov/dashlink/resources/.

http://moa.cms.waikato.ac.nz/datasets/
https://c3.nasa.gov/dashlink/resources/
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Table 2 Stage-wise throughput and accuracy profiles for the Noisy RH dataset

Stage 1 Stage 2
(start–160,000) (160,000–end) Overall

SOL Accuracy 72.2 73.8 73.4

Throughput 7973 18,304 13,930

Repository hit ratio 0.36 – –

Similarity score – 90.0 –

EP Accuracy 72.2 72.8 72.6

Throughput – – 6403

RC Accuracy 72.2 63.6 65.7

Throughput – – 16,824

Table 3 Stage-wise throughput and accuracy profiles for the Noisy RBF dataset

Stage 1 Stage 2 Stage 1
(start–80,000) (80,000–560,000) (560,000–end) Overall

SOL Accuracy 80.9 76.0 71.3 76.6

Throughput 4357 4514 2976 4451

Repository hit ratio 0.48 – – –

Similarity score – 88.8 – –

EP Accuracy 80.9 76.0 70.2 76.6

Throughput – – – 1435

RC Accuracy 80.9 60.4 45.0 63.0

Throughput – – – 4777

Table 4 Stage-wise throughput and accuracy profiles for the Flight dataset

Stage 1 Stage 2
(start–4000) (4000–end) Overall

SOL Accuracy 77.1 82.7 81.8

Throughput 1399 7201 4331

Repository hit ratio 0.14 – –

Similarity score – 97.6 –

EP Accuracy 77.1 80.7 80.1

Throughput – – 982

RC Accuracy 77.1 52.9 56.8

Throughput – – 4553

same trends and were omitted in the interest of saving space. The repository hit
ratio of Stage 1 which represents the usage of stored classifiers was also presented
for SOL. In addition, we tracked the average similarity score to gain insights into
the extent of change in the stream during Stage 2 processing for SOL.

The objective of experimenting with the Noisy RH and Noisy RBF recurring
datasets was to assess the sensitivity of trigger T1 in detecting recurring concepts
by transiting from Stage 1 to Stage 2. We also tracked the sensitivity of trigger T2
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Table 5 Stage-wise throughput and accuracy profiles for the ELEC dataset

Stage 1 Stage 2 Stage 1
(start–8000) (8000–44,000) (44,000–end) Overall

SOL Accuracy 67.0 66.7 83.5 67.1

Throughput 14,220 32,447 13,998 25,661

Repository hit ratio 0.38 – – –

Similarity score – 85.7 – –

EP Accuracy 67.0 65.8 83.5 66.4

Throughput – – – 11,559

RC Accuracy 67.0 64.9 83.0 65.7

Throughput – – – 34,589

Table 6 Stage-wise throughput and accuracy profiles for the Covertype dataset

Stage 1
(start–
12,000)

Stage 2
(12,000–
20,000)

Stage 1
(20,000–
36,000)

Stage 2
(36,000
–48,000)

Stage 1
(48,000–
end) Overall

SOL Accuracy 79.3 82.6 88.7 87.0 77.3 84.8

Throughput 492 7314 389 2510 461 663

Repository hit ratio 0.25 – 0.23 – 0.07 –

Similarity score – 93.7 – 95.2 – –

EP Accuracy 79.3 82.4 87.4 93.3 87.5 86.0

Throughput – – – 265

RC Accuracy 79.3 56.8 57.8 56.8 60.0 62.7

Throughput – – – – 1626

in transiting back to Stage 1 when newly injected concepts appeared in the stream.
The results presented in Tables 2 and 3 depict the role of triggers T1 and T2 through
necessary transitions through the stages. In case of the RH noisy dataset, we did
not observe T2 firing even though we injected three previously unseen concepts at
the end of the stream. This illustrates the ability of handling new concepts without
dropping accuracy while working in stage 2.

The results presented in Tables 4, 5 and 6 provide clear evidence of the presence
of recurrence patterns in the real-world datasets as well (not just for RH and RBF for
which they were injected) as SOL fired trigger T1 on all of them. The fact that SOL
triggered it on RH and RBF where there were known recurrences indicates that SOL
is sensitive to state changes in the system. Furthermore, the results demonstrate the
effectiveness of trigger T2 in real-world scenarios as well.

In summary, we note that SOL had significant improvements in throughput
over EP, ranging from 117.6% for noisy RH, 210.2% for noisy RBF, 341.0% for
Flight, 122.0% for Electricity and 150.2% for Covertype dataset. As expected, the
reduction in overheads caused by replacing a forest of learners with a mechanism of
refining already stored concepts yielded significant gains in throughput. Obviously,
the throughput gains for the RC classifier were even higher than that of SOL but
they came at a heavy price in accuracy.
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The competitive accuracy returned by SOL is supported by the high similarity
scores registered by SOL in Stage 2 processing for all datasets. A high level of
similarity between the concepts being formed and those already present in the
repository implies that spectra already generated during Stage 1 are effective in
classifying newly arriving data in Stage 2.

Finally, we note that the Flight dataset contains strong episodes of concept
recurrence as T2 did not fire until the end point was reached. This type of behaviour
is expected to be exhibited in a number of real-world datasets. Given that Covertype
does not have an explicit time dimension but rather a spatial one, yet another insight
that we can gain from the Covertype results is that the staged approach is effective
at capturing recurrences defined on a spatial dimension. Interestingly, we note from
the relatively poor performance of RC in Stage 2 that while recurrences are present,
they are not in exact form, once again underscoring the need for a limited learning
capability in Stage 2 to learn small-scale changes in concepts.

Thus, we note that relying totally on spectra stored during Stage 1 is not a viable
strategy. This is illustrated by the difference in classification accuracy between SOL
and RC. The SOL classifier significantly outperforms RC, thus demonstrating the
need for learning and refinement of the spectra in Stage 2.

4.4 Accuracy Evaluation

In this section, we compared overall accuracy of SOL against ARF, LB, EP and
RC. All classifiers were run with the Hoeffding tree as the base learner. The leaf
prediction method was set to majority class. The split confidence and tie confidence
parameters were both set at 0.01 for all classifier ensembles in order to maintain
fairness. Each meta learner was run with default settings for its internal parameters.
Accuracies for each classifier was obtained in intervals of size 1000 and an overall
accuracy was then computed by averaging over all intervals for a given dataset.
Accuracies were stable across multiple runs for all classifiers across all datasets
with a standard deviation less than 0.05 and hence were not included. The winner
accuracy (with accuracies rounded to one significant place) was bolded for easy
identification. The LB could not complete the classification task for algorithms
symbolized by “–” due to heap space error. Ranks for each classifier on each dataset
were included in parentheses. The classifier that reported the highest accuracy gets
a rank of 1, rank 2 for the runner up and so forth. The last row of the table contains
the average of ranks over datasets together with the overall rank of that algorithm
accordingly. The discussion is continued on analysis of throughput in Sect. 4.5, and
the trade-off between accuracy and throughput in Sect. 4.6.

As shown in Table 7, algorithms can be divided into two groups, comprising more
accurate classifiers and less accurate classifiers. The first group consists of SOL, LB,
ARF and EP, whereas the second group contains only RC. This is evident by overall
average ranks of algorithms. It recapitulates the fact that RC’s approach of relying
totally on spectra stored during Stage 1 is not a viable strategy.
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Table 7 llassification accuracy with ranking

Dataset ARF LB SOL EP RC

RH noisy 73.9(2) 76.5(1) 73.4(3) 72.(4) 65.7(5)

RBF noisy 78.8(2) 78.9(1) 76.6(3) 76.6(3) 63.0(4)

10% progressive RH 76.8(2) – 77.0(1) 76.0(3) 73.4(4)

20% progressive RH 76.2(1) – 76.2(1) 76.2(1) 75.3(2)

Oscillating RH 76.5(2) – 76.8(1) 74.4(3) 73.1(4)

Flight 78.7(4) 79.2(3) 81.8(1) 80.1(2) 56.8(5)

ELEC 65.7(3) 65.7(4) 67.1(1) 66.4(2) 65.7(3)

Covertype 82.8(4) 86.3(1) 84.8(3) 86.0(2) 62.7(5)

Occupancy 95.9(1) 85.2(3) 91.4(2) 91.4(2) 82.8(4)

Average rank 2.3(3) 2.2(2) 1.8(1) 2.4(4) 4.0(5)

The proposed algorithm SOL emerged as the winner in 5 out of 9 datasets, while
it became the joint winner with ARF and EP for the 20% progressive RH dataset.
The runner-up algorithm LB results in highest accuracies for RH noisy, RBF Noisy
and Covertype. The Occupancy dataset reports highest accuracy with ARF. Being
the winner for the majority of datasets while being the overall winner over all
nine datasets verifies the robustness of the proposed stage online learning approach.
More precisely, SOL is the best with three challenging synthetic datasets and two
real-world datasets. This observation validates the applicability of the framework in
various types of recurring and drifting scenarios including real-world datasets.

Even though we ranked algorithms based on accuracy, it is also apparent that
the difference between best and the second best is negligible (less than 1%) in the
majority of datasets except for RH Noisy, Flight and Occupancy. Interestingly, LB
wins RH noisy by 2.6% accuracy difference compared to ARF whereas SOL is
the winner for Flight by 1.7% compared to EP, while ARF outperforms SOL for
Occupancy by 4.5%.

The analysis which was done above was based on the average accuracy ranks on
datasets given in Table 7. The grouping that has been observed was confirmed by
the non-parametric Friedman test.

This test has been recognized by the Demšar [6] as one of the best tests to
use when it is necessary to compare multiple classifiers against multiple datasets.
The null hypothesis H0 used was that the average accuracy ranks across the five
classifiers was the same.

Since the Friedman test statistic is greater than the critical value, null hypothesis
H0 was rejected at the 95% confidence level, thus indicating that statistically
significant differences exist between the classifiers. We then subjected the classifiers
to the post hoc Nemenyi test to identify exactly where those differences lay. The
Nemenyi test yielded a critical difference (CD) value of 2.09 at the 95% confidence
level. Figure 4 graphically illustrates that the top group consisted of SOL, LB, ARF
and EP as none of the members in this group had significant differences with any
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Fig. 4 Statistical comparison of algorithms by accuracy. Subsets of classifiers that are not
significantly different at the 95% confidence level are connected with dashed lines

Fig. 5 Accuracy of a concept

of the other members within the group. One and only member of the other group is
RC. However, the distance of RC is not significant from the subset comprising EP,
ARF and LB.

4.4.1 ARF vs SOL Accuracy of a Concept

Further to the above analysis, the accuracy of one particular concept over three
consecutive repetitions that manifested in the 10% progressive RH dataset was
contrasted. This gives us an in-depth understanding of the rationale behind SOL’s
performance advantage when compared to ARF.

Figure 5 shows that SOL is significantly better at capturing recurrences of past
concepts in comparison to ARF that takes a long time to re-learn the concept during
which time its accuracy suffers. Once ARF learns the concept, it eventually manages
to capture the concept by adjusting its forest and is able to acquire a slightly
higher accuracy than SOL. However, with shorter concepts ARF would be at a
disadvantage.
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In addition, the accuracy of SOL is increasing with each repetition due to its
property of applying modifications on previously captured patterns rather than a
simplistic “use a previously stored pattern that is the best match” policy or a more
expensive “re-learning the currently appearing pattern from scratch strategy”.

4.5 Throughput Evaluation

In this section, we compared overall throughput of SOL against ARF, LB, EP and
RC.

Throughput was measured by recording the time duration spent on processing
batches of a certain size (which varied according to the dataset under consideration)
and then taking an average value across the entire set of batches. The same sampling
scheme was used to trace other measures such as accuracy, repository hit ratio and
similarity score. The best throughput was bolded for easy identification.

From the results, it is clear that SOL is the runner-up algorithm in terms of
throughput, whereas RC reported the highest throughput over all datasets. ARF and
EP were at the third and fourth place, respectively, while LB was the weakest in
terms of speed.

In order to gain a statistically sound indication of how these five algorithms differ
from each other, the ranks presented in Table 8 were subjected to the Friedman test.
As displayed in Fig. 6, there are two distinct groups. The first group consists of RC
and SOL as these two classifiers have significant difference with remaining three
classifiers. The other group comprises ARF, EP and LB. On the other hand, the
subset of SOL, ARF and EP are not significantly different from each other in terms
of speed as it formed another group (critical difference amongst these three is not
significant). These insights are in accordance with the observations presented in
Table 8.

Table 8 Throughput with ranking

ARF LB SOL EP RC

RH noisy 5537(4) 659(5) 13,930(2) 6403(3) 16,824(1)
RBF noisy 4309(3) 221(5) 4451(2) 1435(4) 4777(1)
10% progressive RH 1432(3) – 1991(2) 1046(4) 2839(1)
20% progressive RH 1386(3) – 1469(2) 1176(4) 1879(1)
Oscillating RH 1621(3) – 2917(2) 1150(4) 4255(1)
Flight 1903(3) 427(5) 4331(2) 982(4) 4553(1)
ELEC 5388(5) 7527(4) 25,661(2) 11,559(3) 34,589(1)
Covertype 1016(2) 327(4) 663(3) 265(5) 1626(1)
Occupancy 9057(5) 13,526(4) 19,934(2) 14,378(3) 22,844(1)
Average algorithm rank 3.4(3) 4.5(5) 2.1(2) 3.8(4) 1.0(1)
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Fig. 6 Statistical comparison of algorithms by throughput. Subsets of classifiers that are not
significantly different at the 95% confidence level are connected with dashed lines

Fig. 7 Accuracy vs. throughput trade-off

4.6 Accuracy Versus Throughput Trade-Off

We studied the trade-off between accuracy and speed of each algorithm. The
following Fig. 7 clearly shows that classifiers that tend to be more accurate (e.g.
LB and ARF) tend to be more time consuming and vice versa. The SOL is an
exception although it was not the fastest. For that reason, it is clear that SOL has
provided a good balance between the two opposing characteristics of accuracy and
speed. The nearest classifiers to SOL are ARF and EP as they achieved the next best
compromise between accuracy and speed.

4.7 Memory Consumption Evaluation

Memory consumption was sampled at the same intervals used in collecting other
performance measures that we presented in the previous section. The optimum
memory consumption was bolded for easy identification.
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Table 9 Average memory consumption (in kBs)

10% prog. RH ELEC Flight

SOL Stage 1 forest 1514.80 58.59 585.29

Stage 1repository 315.36 9.01 32.82

Stage 1 total 1831.55 67.60 618.10

Stage 2 total 571.79 27.16 126.55

Weighted average total 1243.66 37.27 342.46
Spectra count at the end of stream 10 9 10

EP Total 2037.66 92.64 803.38

Spectra count at the end of stream 10 10 10

Table 9 presents the average number of kilobytes for 10% progressive RH, ELEC
and Flight datasets. Table 9 shows the gains in memory usage when SOL and EP
operate with a repository that can accommodate a maximum of ten spectra. The
memory gains mirror those of throughput, with improvements ranging from 38.9%
for 10% progressive RH, 59.8% for Electricity and 57.4% for Flight. The memory
profiles for the other datasets follow the same trends and were omitted in the interest
of space.

Once again this is due to reduction of overheads in Stage 2 as SOL’s memory
overheads are exactly the same as that of EP in Stage 1 as they share the same
learning mechanism. As SOL suspends the operation of its forest in Stage 2, its
memory is released and its only memory overheads are that of the single tree that it
grows and its repository, with the latter taking a small fraction of the space taken up
by a forest of trees. While it is also true that EP’s repository is also very compact, it
suffers by maintaining its forest unnecessarily in Stage 2.

5 Sensitivity Analysis

The sensitivity analysis was done in two phases. Firstly, we investigate the effects
of the threshold firing parameters α and β on all datasets and then present results
for two representative datasets, namely noisy RBF and ELEC. The second phase is
focused on analysing the effect of the permitted maximum for the number of spectra.
The results are presented for noisy RH, 10% progressive RH, Flight and Covertype.

Table 10 shows that the noisy RBF dataset throughput is sensitive to the cut-off
value used for α. As α is increased from a low value of 0.5–0.7, there was a 49.0%
loss in throughput while not registering a significant difference in accuracy. This
throughput loss is to be expected as it delayed the firing of T1 by a further 40,000
instances. This exemplifies the negative effects of too high a cut-off value for α.
The same effects of the α parameter were also seen for the Electricity dataset—a
cut-off value of 0.7 inhibited the firing of trigger T1, resulting in lower throughput.
The effects of α on accuracy were very marginal, as illustrated by Table 10.
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Table 10 Effect of alpha and beta on the noisy RBF dataset and ELEC dataset

T1 T2 Throughput Accuracy

Noisy RBF dataset

α 0.6 Same as default

0.7 120,000 – 2268 76.1

β 0.5 80,000 – 4590 76.5

0.8 80,000 520,000 4015 76.5

Default setting α = 0.5, β = 0.7 80,000 560,000 4451 76.6

ELEC dataset

α 0.6 Same as default

0.7 24,000 32,000 12,887 67.6

β 0.5 Same as default

0.9 8000 36,000 22,654 67.2

Default setting α = 0.5, β = 0.7 8000 44,000 25,661 67.1

Table 10 shows that throughput was also sensitive to the value of β, albeit to
a lesser extent than with the α parameter. With RBF, a β setting of 0.5 caused
throughput to slightly increase by 3.1% from its default value with the 0.7 setting.
The lower setting for RBF allowed it to stay in Stage 2 for a little longer (as trigger
T2 was not activated), thus resulting in better throughput. On the other hand, a 0.5
setting of β for the Electricity dataset did not cause any difference in trigger timing
when compared to its default setting. This difference in behaviour is due to the
difference in dynamics of the two datasets—the lower setting for Electricity had no
effect on T2 as the concept recurrence level and concept similarity were on a lesser
scale than with RBF, thus enabling it to remain in Stage 2 for the same length of time
as with the higher setting for β. Table 10 shows that the effects of β on accuracy
were also marginal, just as with α.

As depicted in Table 11, 10% progressive and Flight datasets needed a certain
amount of spectra to stay in Stage 2; with size 10, the throughput increased by 68.7%
and 4.4%, respectively, over the throughput obtained with size 5. However with the
Covertype dataset having five spectra was better in terms of speed while not losing
significant accuracy. Having more spectra, especially in case of datasets with more
attributes also results in speed disadvantages, which should be avoided. As with the
other two parameters, the effects of repository size on accuracy were marginal.

6 Conclusion

This chapter has presented an in-depth examination of the staged learning paradigm
that uses a two-staged approach to learning in a data stream environment. The staged
learning paradigm represents a major shift in the way that data streams are mined
and was motivated by the need to scale classifiers to high-speed data environments.
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Table 11 Effect of repository size on the 10% progressive RH, Flight and Covertype datasets

Dataset Repository size T1 T2 Throughput Accuracy

10% progressive RH 5 160,000 320,000 2656 76.4

440,000

10 80,000 – 4480 74.0

40 (Default) 160,000 – 1991 77.0

Flight 5 4000 16,000 4016 82.5

18,000

10 4000 – 4195 81.8

40 (Default) 4000 – 4331 81.8

Covertype 5 12,000 20,000 1081 84.4

28,000

10 12,000 20,000 663 84.8

36,000

40 (Default) 12,000 20,000 663 84.8

36,000 48,000

Stage duration is determined by the application of triggers which are sensitive
to the rate of appearance of previously unseen concepts. Our experimental study
demonstrated the effectiveness of the staged learning approach in terms of process-
ing speed and memory without compromising on classification accuracy. The gain
is significant for data streams that exhibit periods of low volatility, and hence the
detection of such periods of low volatility is of critical importance to the staged
approach. Classification within those low-volatility periods can be effectively dealt
with through exploitation of concept recurrence.

The volatility detection strategy proved to be effective in identifying low-
volatility states that enabled the computationally expensive ensemble learning
component to be suspended, thus directly contributing to the performance gains
that we obtained. Likewise, precise recognition of the high-volatility stage avoided
potential accuracy drops by ensuring the timely reactivation of Stage 1 which is
indispensable to learning a new batch of concepts unseen in the past.

Moreover, our empirical results confirmed the robustness of the staged learning
platform under a variety of challenging recurrence scenarios such as patterns repeat-
ing with noise, patterns repeating with monotonically increasing drift intensity, and
oscillating patterns. We also demonstrated the capability of capturing recurrences
across a spatial dimension.

The sensitivity analysis conducted on three critical system parameters: α, β and
repository size demonstrated the influence of these parameters on throughput.

In summary, the empirical study has shown that the staged learning paradigm of
tailoring the learning strategy to the level of volatility in the stream has significant
performance benefits in terms of throughput and memory savings.
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7 Future Research

There are in general two different directions in which future research can proceed
with the staged learning paradigm.

The first direction would be to experiment with different choices of incremental
classifiers in Stage 1. The replacement of an ensemble of decision trees with other
types of classifiers such as an adaptive version of neural networks could result in
more accurate classification models being produced in Stage 1 and these in turn
could produce higher quality spectra in Stage 2 that exhibit higher accuracy than
those produced by decision trees.

The second line of research would be to dispense with the hybrid tree/spectrum
learning scheme in Stage 2 and rely entirely on spectrum learning. This would entail
building a Fourier classifier that would incrementally adjust its spectrum to changes
in concepts that occur with time. The advantage of having such an incremental
Fourier classifier is that the overhead involved in transforming spectra to trees and
vice versa could be avoided at concept drift points, thus improving performance
further. Some research in this direction has been reported in [15] but further research
is required to examine the effectiveness of such an incremental Fourier classifier
when decision models other than decision trees are used in Stage 1 as generators for
Fourier spectra in Stage 2.

Finally, it is worthwhile to extend this research work to cover the area of
predictive maintenance. Rather than being reactive to drifts, it is possible to start
training of classifiers for the next potential concept drift in a proactive fashion.
This can be done by introducing a warning period into the drift detector. The
best performing classifier within the warning period can be selected as the winner
classifier for the newly emerging concept in order to ensure a smooth transition, thus
helping to ensure that there are no abrupt accuracy drops that would otherwise have
resulted in an out-of-date classifier acting on a concept that it was not matched to.
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Online Time Series Changes Detection
Based on Neuro-Fuzzy Approach

Yevgeniy Bodyanskiy, Artem Dolotov, Dmytro Peleshko, Yuriy Rashkevych,
and Olena Vynokurova

1 Introduction

The problem of time series changes and fault detection has long been engaging
the attention of researchers in many areas, and its solutions have been applied for
monitoring of the manufacturing processes, control of moving objects, in medical
diagnosis, bioinformatics, video stream processing, etc. Many approaches to address
the problem have been proposed, among which most popular are methods based
on conventional stochastic time series analysis (correlation, spectral, regression
analysis, and others), mathematical models of objects generating such series (first
of all, Box–Jenkins models), exponential smoothing, pattern recognition and clas-
sification, clustering and segmentation, faults detection, artificial neural networks,
etc. The situation gets considerably complicated if information comes from the
controllable object in real time, while the problem should be solved in online mode.
And in this, two alternative types of situations may arise. First, the changes may
suddenly develop in leaps and bounds. In this case, it is important to distinguish two
possible options: the drastic change has happened in the controllable object (fault)
or an abnormal (noisy) observation has come for processing (outlier). Clearly, those
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controlling algorithms in this way must have robust properties. Another situation
occurs if changes in the controllable object develop smoothly and slowly. In this
case, it is impossible to define crisp boundary between segments of signals-time
series coming from the object. Certainly, in light of this, fuzzy clustering methods
use is appropriate. Given that the vast majority of fuzzy clustering algorithms, both
probabilistic and possibilistic, operate in batch mode, it is more feasible to use their
online adaptive modifications [1], which are essentially gradient procedures of fuzzy
goal function minimization, including robust ones [2].

The problem gets even more complicated when it is required to process not
scalar time series but multidimensional (vector and matrix) sequences. In these
situations, use of hybrid systems of computational intelligence appears to be the
most effective. First of all, they are learning neuro-fuzzy systems for control and
analysis of multidimensional signals, which allow linguistic interpretation of the
obtained results and can detect both drastic and smooth changes of characteristics
of stochastic and chaotic multidimensional time series in online mode.

2 Fuzzy Online Segmentation-Clustering

The task of clustering data arrays of multidimensional observations of different
nature, the purpose of which is to find in the samples of these data the homogeneous
(in accepting sense) groups (segments, clusters, and classes) of observations, is an
integral part of the research area, called Data Mining [3], and its results can be
used in many applications, including the task of segmentation of images of arbitrary
nature [4]. The most popular today is the K-means method and its subsequent
modifications thanks to the simplicity of numerical implementation, high-speed
response, and the results visibility.

At the same time, there are a large number of tasks related to the processing
of static images and video streams, where traditional methods of clustering-
segmentation, based on the self-learning paradigm [5], appear to be ineffective
because the amount of information submitted for real-time processing is too large,
the data themselves are “contaminated” with different types of disturbances and
interruptions, including abnormal perturbations such as “salt and pepper,” and
the image segments themselves, as a rule, are intersecting, forming fuzzy or
“smeared” boundaries. And, if the latter problem can be solved sufficiently by using
fuzzy clustering methods [6] and, above all, the classical Fuzzy C-means (FCM)
method and its modifications, the processing of real-time video streams is a rather
complicated problem, since known algorithms for fuzzy clustering are designed for
data processing in batch mode. In addition, these algorithms do not have robust
properties; that is, they are unprotected from the output data distortion.

Therefore, the development of adaptive fuzzy online algorithms of fuzzy clus-
tering, having both filtering and tracking properties and capable of sequentially
processing both static images and multidimensional time sequences generated by
video sequences, is undoubtedly an interesting and useful task.
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The problem of clustering multidimensional observations arriving at real-time
processing is quite common in many tasks related to data mining. The traditional
approach to segmentation-clustering of time series implies that each observation
may belong to only one cluster [7], although more natural is the situation where
the input vector of attributes with different levels of probabilities or possibilities
may belong directly to several clusters or classes [6]. This situation is the subject
of consideration of the fuzzy cluster analysis, which is developing intensively at
this time in two main directions: a probabilistic approach and an approach based on
possibilities (so-called, possibilistic approach) [6].

The problem of fuzzy cluster analysis has been widespread, and recently hybrid
neuro-fuzzy systems that combine artificial neural networks and clustering methods
are widely studied, and studied very actively. The results of such studies are
presented, for example, in works [8, 9]. Fuzzy clustering methods have been further
developed within the adaptive approach, which allows monitoring changes in the
data structure and adapting the system parameters to these changes. Adaptive online
methods are also capable of handling large volumes of data through sequential
processing of incoming observations.

The output information for both approaches is a sample of observations generated
by n-dimensional attribute vectors:

X = {x(1), x(2), . . . , x(N), . . . } , x(k) ∈ X, k = 1, 2, . . . , N, . . . (1)

and is limited by N observations in the case of a batch approach to clustering. The
result of the procedure is the output data array partitioning into m clusters with some
membership levels wj(k) of the k-th attribute vector to the j-th cluster.

The processed inputs are preliminarily centered and normalized to the standard
for all attributes so that all observations belong to the hypercube [−1,1]n. The
centering can be done either in reference to the single sample mean, calculated
according to the ratio:

mi(k) = mi (k − 1)+ 1

k
(xi(k)−mi (k − 1)) (2)

or, in order to add robust properties (that is, protection against abnormal observa-
tions), in reference to the median, calculated according to the recurrent expression:

mei(k) = mei (k − 1)+ ηm sign (xi(k)−mei (k − 1)) , i = 1, 2, . . . , n, (3)

where ηm is parameter of the learning rate, which is selected in the stationary case
in accordance with conditions of A. Dvoretzky, for instance in the simplest case
ηm = 1/k.

Clustering methods based on goal functions [6] and designed for solving
clustering problems by optimizing some preset clustering quality criterion are most
correct in terms of mathematics.
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2.1 Probabilistic Approach

The most popular goal function, which is used for fuzzy clustering based on
probabilistic approach, is

E
(
wj(k), cj

) =
N∑
k=1

m∑
j=1

w
β
j (k)D

2 (x(k), cj
)

(4)

with constraints:

m∑
j=1

wj(k) = 1, k = 1, . . . , N, (5)

0 <
N∑
k=1

wj(k) < N, j = 1, . . . , m, (6)

where wj(k) ∈ [0, 1] is the membership level of vector x(k) to the j-th cluster; cj is the
prototype (center) of the j-th cluster; β is an integral parameter called “fuzzyfier,”
usually β = 2; and D(x(k), cj) is the distance between x(k) and cj according to the
selected metrics.

The result of clustering is (N × m) fuzzy partitioning matrix:

W = {wj(k)
}
. (7)

It should be noted that since the elements of the matrix W can be considered as
the probability of the hypothesis of the data vectors membership to certain clusters,
the procedure (4) generated at constraints (5 and 6) is called probabilistic clustering
method.

As a function of the distance D(x(k), cj), the Minkowski distance in the Lp metric
is usually chosen:

Dp
(
x(k), cj

) = ∥∥xi(k)− cji
∥∥p
Lp
=
(

n∑
i=1

∣∣xi(k)− cji
∣∣p
) 1

p

, p ≥ 1, (8)

where xi(k) is the i-th component of (n× 1)-vector x(k), and cji is the i-th component
of (n × 1)-vector cj.

Let’s consider the Lagrangian function:
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L
(
wj(k), cj , λ(k)

) =
N∑
k=1

m∑
j=1

w
β
j (k)D

2
(
x(k), cj

)+
N∑
k=1

λ(k)

(
m∑
j=1

wj(k)− 1

)

=
N∑
k=1

(
m∑
j=1

w
β
j (k)D

2
(
x(k), cj

)
+ λ(k)

(
m∑
j=1

wj(k)− 1

))
,

(9)

where λ(k) is an indefinite Lagrange multiplier, which ensures conditions (5 and 6).
Solving the system of Kuhn–Tucker equations:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂L(wj (k),cj ,λ(k))
∂wj (k)

= 0;
∂L(wj (k),cj ,λ(k))

∂λ(k)
= 0;

∇cj L
(
wj(k), cj , λ(k)

) = −→0 ,

(10)

it is easy to get the desired solution in the form:

w
pr
j (k) =

(
D2
(
x(k), cj

)) 1
1−β

m∑
l=1

(
D2 (x(k), cl)

) 1
1−β

, (11)

λ(k) = −
(

m∑
l=1

(
βD2

(
x(k), cl ))

1
1−β

)1−β
, (12)

c
pr
j =

N∑
k=1

w
β
j (k)x(k)

N∑
k=1

w
β
j (k)

. (13)

Equations (11)–(13) generate a broad class of clustering procedures.
For β = p = 2, that is in the Euclidean space:

DE
(
x(k), cj

) = ∥∥x(k)− cj
∥∥ =

√(
x(k)− cj

)T (
x(k)− cj

)
, (14)

we obtain a relatively simple and effective procedure for clustering fuzzy C-means
of Bezdek [6]:

w
pr
j (k) =

∥∥x(k)− cj
∥∥−2

m∑
l=1
‖x(k)− cl‖−2

, (15)
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c
pr
j =

N∑
k=1

w2
j (k)x(k)

N∑
k=1

w2
j (k)

, (16)

λ(k) = −
m∑
l=1

(
‖x(k)− cl‖−2

2

)−1

. (17)

Process of clustering, in accordance with [6], begins with fairly arbitrary values
of centroids which are further adjusted in multiepoch mode where the input data
is repeatedly processed until the centroids are stabilized. Understandably, such
approach is inefficient in tasks of online data processing.

Probabilistic clustering methods also include procedures of Gustafson–Kessel
[10], Gath–Geva [11], and many others. In spite of the insignificant computational
complexity, the procedure (15)–(16) has a disadvantage expressed in the necessity of
fulfilling the condition (5), common to all probabilistic methods of fuzzy clustering.

In the simplest case of two clusters (m = 2), it is easy to see that the observation
x(k) equally belonging to both clusters, and the observations x(p) not belonging to
any of them can have the same membership levels wpr

1 (k) = w
pr
2 (k) = w

pr
1 (p) =

w
pr
2 (p) = 0.5. Obviously, this feature can significantly reduce the quality of the

classification. At the same time, the possibilistic approach to fuzzy clustering [12]
helps to avoid the abovementioned situation and thereby improve the quality of the
classification.

2.2 Possibilistic Approach

For possibilistic approach to clustering, the minimized criterion is written as:

E
(
wj(k), cj

) =
N∑
k=1

m∑
j=1

w
β
j (k)D

2 (x(k), cj
)+

m∑
j=1

μj

N∑
k=1

(
1− wj(k)

)β
,

(18)

where the scalar parameter μj > 0 defines the distance at which the membership
level takes the value 0.5; that is, if D2(x(k), cj) = μj, then wj(k) = 0.5.

Minimization of the criterion (18) with parameters wj(k), cj, and μj leads to the
system of equations:
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂E(wj (k),cj )
∂wj (k)

= 0;
∂E(wj (k),cj )

∂μ(k)
= 0;

∇cj E
(
wj(k), cj

) = −→0 .

(19)

The solution of the first two equations gives a well-known result:

w
pos
j (k) =

⎛
⎝1+

(
D2
(
x(k), cj

)

μj

) 1
β−1
⎞
⎠
−1

, (20)

μj =

N∑
k=1

w
β
j (k)D

2
(
x(k), cj

)

N∑
k=1

w
β
j (k)

. (21)

The solution of the third equation of the system (19) for the Euclidean norm (14)
is given by:

c
pos
j =

N∑
k=1

w
β
j (k)x(k)

N∑
k=1

w
β
j (k)

. (22)

We can see that possibilistic and probabilistic methods are quite similar and go
through one to another by replacing the expression (20) with formula (11), and vice
versa. A common disadvantage of the methods considered is the inability to work
in real time when the data is received, for example, in the form of video stream.

The work of the procedure (11) and (12) begins with the task of the initial
(usually random) partitioning matrix W0. Based on its values, an initial set of
prototypes c0

j is calculated, which are then used to specify the new matrix W1.
The next step in batch mode is the calculation of c1

j , W 2, . . . ,W t , ctj ,W
t+1, and

so on, until the difference ‖Wt+1 −Wt‖ becomes less than the predefined threshold
value ε. Thus, the entire sample of data is processed multiple epochs.

The solution that can be obtained using the probabilistic method is recommended
to be used as the initial conditions for the possibilistic method (20)–(22), in which
the initial values of the parameters of the distance μtj are selected in accordance
with (21) by the results of the probabilistic procedure activity.
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2.3 Online Combined Approach

For information processing in online mode, instead of the Lagrange function (9), its
local modification can be used:

Lk
(
wj(k), cj , λ(k)

) =
m∑
j=1

w
β
j (k)D

2 (x(k), cj
)+ λ(k)

⎛
⎝

m∑
j=1

wj(k)− 1

⎞
⎠ .

(23)

The optimization of the expression (23) using the Arrow–Hurwitz–Uzawa
procedure leads to the procedure:

w
pr
j (k) =

(
D2
(
x(k), cj (k)

)) 1
1−β

m∑
l=1

(
D2 (x(k), cl(k))

) 1
1−β

, (24)

c
pr
j (k + 1) = c

pr
j (k)− η(k)∇cj Lk

(
wj(k), c

pr
j (k), λ(k)

)

= c
pr
j − η(k)wβ

j (k)D
(
x (k + 1) , cpr

j (k)
)
∇cj D

(
x (k + 1) , cpr

j (k)
)
,

(25)

where η(k) is the learning rate parameter which either satisfies the conventional
conditions of A. Dvoretzky or is set to a rather small value (0.01 ≤ η(k) ≤ 0.1);
though in self-learning mode, it is impossible to obtain an optimal value for η(k)
evidently; cpr

j (k) is the prototypes of the j-th cluster, calculated on the sample of k
observations.

The procedure (24) and (25) is similar to the Chung–Lee algorithm [13], and for
β = p = 2 it coincides with the gradient clustering procedure of Park–Dagher [14]:

w
pr
j (k) =

∥∥x(k)− cj (k)
∥∥−2

m∑
l=1
‖x(k)− cl(k)‖−2

, (26)

c
pr
j (k + 1) = c

pr
j (k)+ η(k)w2

j (k)
(
x (k + 1)− cpr

j (k)
)
. (27)

We shall notice that relationship (27) is very similar to neural gas algorithm [15],
but physically, it has different sense which is based on fuzzy logic.

Within the scope of possibilistic approach, the local criterion acquires the form:

Ek
(
wj(k), cj

) =
m∑
j=1

w
β
j (k)D

2 (x(k), cj
)+

m∑
j=1

μj
(
1− wj(k)

)β
, (28)

and the result of its optimization is written as:
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Ek
(
wj(k), cj

) =
m∑
j=1

w
β
j (k)D

2 (x(k), cj
)+

m∑
j=1

μj
(
1− wj(k)

)β
, (29)

c
pos
j (k + 1) = c

pos
j (k)− η(k)wβ

j (k)

×D
(
x (k + 1) , cpos

j (k)
)
∇cj D

(
x (k + 1) , cpos

j (k)
)
,

(30)

μj (k + 1) =

k∑
p=1

w
β
j (p)D

2
(
x(p), cj (k + 1)

)

k∑
p=1

w
β
j (p)

. (31)

In the quadratic case (when β = 2), the procedure (29)–(31) turns into a fairly
simple structure:

w
pos
j (k) = μj (k)

μj (k)+
∥∥x(k)− cj (k)

∥∥2 , (32)

c
pos
j (k + 1) = c

pos
j (k)+ η(k)w2

j (k)
(
x (k + 1)− cpos

j (k)
)
, (33)

μj (k + 1) =

k∑
p=1

w2
j (p)

∥∥x(p)− cj (k + 1)
∥∥2

k∑
p=1

w2
j (p)

. (34)

The parallel application of adaptive probabilistic and possibilistic algorithms
leads to a combined procedure of fuzzy clustering:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
pr
j (k) = c

pos
j (k − 1)− η(k)wpos

j

β
(k − 1)D

(
x(k), c

pos
j (k − 1)

)

×∇cj D
(
x(k), c

pos
j (k − 1)

)
;

w
pr
j (k) =

(
D2
(
x(k), c

pr
j (k)

)) 1
1−β
(

m∑
l=1

(
D2
(
x(k), c

pr
j (k)

)) 1
1−β
)−1

;
c

pos
j (k) = c

pr
j (k − 1)− η(k)wpr

j

β
(k)D

(
x(k), c

pr
j (k)

)
∇cj D

(
x(k), c

pr
j (k)

)
;

μj (k) =
(

k∑
p=1

w
pr
j

β
(p)D2

(
x(k), c

pos
j (k)

))( k∑
p=1

w
pr
j

β

)−1

;

w
pos
j (k) =

(
1+

(
D2
(
x(k),c

pos
j (k)

)

μj (k)

))−1

, j = 1, 2, . . . , m.

(35)
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The evidence of the correct finding of prototypes (and, consequently, the correct
clustering), using the procedure (35), is the implementation of inequality:

m∑
l=1

D2 (cpr
l (k), c

pos
l (k)

) ≤ ε, (36)

where ε determines the acceptable accuracy of the clustering.
For the Euclidean metric, the value of parameter μj(k) can be calculated

according to the recurrence relationship, which is directly derived from (34):

⎧
⎨
⎩
βq(k) = βq (k − 1)+ wpr 2

j (k)sq (x(k)) , q = 0, 1, 2;

μj (k) =
β2(k−1)−2cpos T

j (k)β1(k−1)+
∥∥∥cpos
j (k)

∥∥∥2
β0(k−1)

β0(k−1) ,

(37)

where:

Sq (x(k)) =
⎧
⎨
⎩

1, if q = 0;
x(k), if q = 1;
‖x(k)‖2, if q = 2.

(38)

The initial values of the parameter βq(k) are selected as:

βq(N) =
N∑
p=1

(
w

pr
j (p)

)2
sq (x(p)) , q = 0, 1, 2. (39)

Thus, the adaptive procedure (35) can work both in the batch mode for iterative
processing of a given sample, and in a real-time mode, where the number of
observations is determined by the discrete time k = 1, 2, ..., N, + 1, .... In the
latter case, this procedure sequentially processes the observations that arrive for
processing. Consequently, in the case of nonstationary data, the membership levels
and cluster prototypes are rebuilt according to new data.

Most of the practical problems associated with video processing are charac-
terized by the presence of abnormal perturbations in the data, which significantly
affects the results of clustering by classical methods, which is manifested in the
detection of nonsignificant clusters, the displacement of prototypes, and clusters
radii.

Because of this, more and more attention is being paid to the problems of cluster
analysis of data generated by distributions with slowly falling (or heavy) “tails.”
Various robust modifications of classical clustering procedures for processing data
containing perturbations were proposed in [16].

At the same time, most of the proposed robust fuzzy clustering methods cannot
be used for consistent work or real-time operation. In order to overcome this
disadvantage, it is expedient to synthesize recurrent procedures for fuzzy robust
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clustering of time series that have adaptive properties and can be applied to
the sequential processing of incoming data, and under the conditions when the
properties of the system generating these data are changed with time.

2.4 Robust Approach

The estimates related to a quadratic goal function are optimal when the data belong
to a class of distributions with a limited variance. The most important representative
of this class is the Gaussian distribution. Changing the value of the parameter p can
improve the robustness of the clustering procedure. However, it should be borne
in mind that the quality assessment is determined by data distribution. For example,
estimates corresponding to p= 1 are optimal for the Laplace distribution, but a large
number of computations are required to obtain them.

The most important function for approximating the probability density close to
the normal distribution is the function:

p (xi, ci) = Se (ci, si) = 1

2si
sinh2

(
xi − ci
si

)
, (40)

where ci, si—parameters that determine the center and variance of the distribution,
respectively.

This function is close to a Gaussian function in vicinity of the center, but
essentially differs from it by the presence of heavy “tails.” The distribution (40)
is related to the goal function:

fi (xi, ci) = βi ln

[
cosh

(
xi − ci
βi

)]
. (41)

Here, β i is the parameter that determines the speed of the change of this function.
It should be noted that the function (41) is close to the quadratic in the vicinity of

the center ci, and approaches to the linear with increasing distance from the center.
The derivative of this function can be written as:

fi′ (xi) = φ (xi) = tanh

(
xi

βi

)
, (42)

and coincides with the standard activation function of the artificial neuron.
Let’s consider the function:

DR
(
x(k), cj

) =
n∑
i=1

fi
(
xi(k), cji

) =
n∑
i=1

βi ln

[
cosh

(
xi(k)− cji

βi

)]
(43)
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Fig. 1 Function (43) graph for n = 1, β i = 2, and cij = 0

the graph of which for n = 1, β i = 2, and cij = 0 is depicted in Fig. 1. As one can
see, the function, in contrast to conventional quadratic one, does not amplify outliers
which are far distant from its minimum.

Next, as a distance to the fuzzy clustering goal function, we will use the function:

D
(
x(k), cj

) =
(
DR

(
x(k), cj

)) 1
2
. (44)

Let’s consider the target function for robust probabilistic clustering:

ER
(
wj(k), cj

) =
N∑
k=1

m∑
j=1

w
β
j D

R
(
x(k), cj

)

=
N∑
k=1

m∑
j=1

w
β
j

n∑
i=1

βi ln
[
cosh

(
xi (k)−cji

βi

)]
.

(45)

Corresponding to it, the Lagrange function is given by expression:

LR
(
wj(k), cj , λ(k)

) =
N∑
k=1

m∑
j=1

w
β
j (k)

n∑
i=1

βi ln
[
cosh

(
xi (k)−cji

βi

)]

+
N∑
k=1

λ(k)

(
m∑
j=1

wj(k)− 1

)
.

(46)

The saddle point of the Lagrange function (46) can be found by solving the
Kuhn–Tucker equation system (10) in the same way as it was done for the derivation
of the procedures (11) and (12). In this case, the solution of the first and second
equations of the system (10), with due account for metric (43), will coincide with
(11) and (12), respectively. However, the third equation of the system:

∇cj LR
(
wj(k), cj , λ(k)

) =
N∑
k=1

w
β
j ∇cj DR

(
x(k), cj

) = −→0 , (47)

obviously does not have an analytical solution.
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The solution (47) can be found in the numerical form based on the local
modification of the Lagrange function by means of the recurrent fuzzy clustering
procedure. Finding at the same time the saddle point of the local Lagrange function
(23) for the metric (43) on the basis of the Arrow–Hurwitz–Uzawa procedure, we
obtain the following procedure for fuzzy robust clustering:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
pr
j (k) =

(
DR(x(k),cj )

) 1
1−β

m∑
l=1
(DR(x(k),cl ))

1
1−β
;

cji (k + 1) = cji(k)− η(k) ∂
∂cji

LRk

(
wj(k), cj , λ(k)

)

= cji(k)+ η(k)wβ
j (k) tanh

(
xi (k)−cji (k)

βi

)
.

(48)

Within the scope of the possibilistic approach, the clustering criterion, with due
account for the robust metric (43), is written as:

ER
(
wj(k), cj

) =
N∑
k=1

m∑
j=1

w
β
j (k)D

R
(
x(k), cj

)+
m∑
j=1

μj

N∑
k=1

(
1− wj(k)

)β
.

(49)

Solving the system of Kuhn–Tucker equations, which is similar to (19), with the
use of metric (43) for the first two equations, we obtain solution in the form (20)
and (21). However, the third equation of the system (19):

∇cj ER
(
wj(k), cj

) =
N∑
k=1

w
β
j ∇cj DR

(
x(k), cj

) = 0 (50)

completely coincides with (47), which leads to the impossibility of its solution in an
analytical form.

Let’s consider the local modification of the criterion (49):

ER
k

(
wj(k), cj

) =
m∑
j=1

w
β
j (k)D

R
(
x(k), cj (k)

)+
m∑
j=1

μj
(
1− wj(k)

)β

=
m∑
j=1

w
β
j (k)

n∑
i=1

βi ln
[
cosh

(
xi (k)−cji

βi

)]
+

m∑
j=1

μi
(
1− wj(k)

)β
.

(51)

Using the Arrow–Hurwitz–Uzawa procedure, we obtain the recurrent procedure
of the fuzzy possibilistic clustering of the form:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
pos
j (k) =

(
1+

(
DR(x(k),cj (k))

μj

) 1
β−1

)−1

;

cji (k + 1) = cji(k)− η(k) ∂Ek(wj (k),cj ,μj (k))∂cji

= cji(k)+ η(k)wβ
j (k) tanh

(
xi (k)−cji (k)

βi

)
.

(52)
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The distance parameter μj(k) is calculated here by formula (21) for k < N
observations:

μj (k + 1) =

k∑
p=1

w
β
j (p)D

R
(
x(p), cj (k + 1)

)

k∑
p=1

w
β
j (p)

. (53)

It should be noted that the equations for cji(k) at systems (48, 52) are completely
identical and are determined by the chosen metric, while other equations do not
depend on the metric; that is, the choice of an arbitrary metric for the clustering
procedure will only affect the setup procedures for cluster prototypes, while the
equations for calculating the values of weight coefficients wpr

j (k) and wpos
j (k) will

remain unchanged.
As a metric analog for a robust recurrent fuzzy clustering method, you can use

the function (Fig. 2):

DR
(
x(k), cj

) =
n∑
i=1

(
1− sinh2 (xi(k)− cji

)) (
xi(k)− cji

) 2
5 , (54)

which “suppresses” abnormal perturbations in observations because it stops growing
as the distance from its minimum increases and, thus, far distant observations do not
affect it.

This function satisfies the axioms of the metric in the vicinity of the center cj;
however, for |x(k)−cj| > 0.8762, it does not satisfy the inequality of the triangle.

Using (54), we write the target function for robust clustering in the form of:

Fig. 2 Function (54) graph for n = 1, cji = 0
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ER
(
wj(k), cj

) =
T∑
k=1

m∑
j=1

w
β
j D

R
(
x(k), cj

)

=
T∑
k=1

m∑
j=1

w
β
j

n∑
i=1

(
1− sinh2 (xi(k)− cji

)) (
xi(k)− cji

) 2
5 .

(55)

and the corresponding Lagrange function in the form of:

LR
(
wj(k), cj , λ(k)

)=
T∑
k=1

m∑
j=1

w
β
j (k)

n∑
i=1

(
1− sinh2 (xi(k)−cji

)) (
xi(k)−cji

) 2
5+

+
T∑
k=1

λ(k)

(
m∑
j=1

wj(k)− 1

)
.

(56)

Similarly to the derivation of the procedure (48), using the Arrow–Hurwitz–
Uzawa method to find the saddle point of the Lagrangian (56), we obtain the
following robust recurrent fuzzy clustering procedure:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wj(k) =
(
DR(x(k),cj )

) 1
1−β

m∑
l=1
(DR(x(k),cl ))

1
1−β
;

cji (k + 1) = cji(k)+ η(k)wβ
j (k)

(
2sinh2 (xi(k)− cji(k)

)

× tanh
(
xi(k)− cji(k)

) ∣∣xi(k)− cji(k)
∣∣ 2

5 + 0, 4
(
1− sinh2 (xi(k)− cji(k)

))

× ∣∣xi(k)− cji(k)
∣∣− 3

5 sign
(
xi(k)− cji(k)

) )
.

(57)

The proposed robust recurrent fuzzy clustering method can be used both in
batch mode and in one-pass version. The computational complexity of the proposed
method is the same as that for other known recursive clustering procedures [13], and
depends linearly on the number of observations in the data sample.

In recent years, there is an obvious increase in interest in the task of analyzing
nonstationary time sequences that change their properties in a priori unknown
moments of time. The problem of analyzing time sequences is inherent in tasks
of speech and text processing, of “Web-mining,” analysis of robot sensors, and
video streams. It is important to note that these tasks should be solved in real time,
provided that the new data is constantly received.

In the process of solving the above problems, the time sequence is partitioned
(segmented) into internally homogeneous parts, which are subsequently presented
by some more compact description for further diagnostics or processing.

In some cases, such tasks are solved using an approach based on methods
for detecting changes in the properties of signals and systems. However, known
methods are usually designed to detect abrupt changes and are not suitable for
detecting slow variations of sequence characteristics.
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In real problems, internal changes in the observed object are usually slow
enough and, moreover, there are transitional states, whose characteristics belong
simultaneously to several stable states.

In such cases, priority methods are fuzzy clustering-segmentation of time
sequences based on known methods of fuzzy cluster analysis [6]. These methods
proved to be effective in solving many problems in batch mode, but their use in
real-time problems is complicated by a number of problems, some of which can
be overcome using adaptive methods of recurrent cluster analysis [13]. However,
these methods are effective only if the intersecting clusters are compact; that is,
they do not contain sharp (abnormal) perturbations. While the real data samples
usually contain up to 20% perturbations, the assumption about compactedness of
clusters can be incorrect. It is precise in such situations that methods of online robust
fuzzy clustering and segmentation of time series can come to the fore, when shift
of controlled signal state from one segment-cluster to another is an evidence of its
properties change [17–19].

For the task of segmentation of the time sequences:

Y = {y(1), y(2), . . . , y(k), . . . , y(N)} , (58)

an approach based on indirect clustering of the sequence is often used. In accordance
with this approach, some features are allocated for further displaying them into the
transformed attribute space. Later in converted data space, the known clustering
methods can be used to form clusters. As characteristics of the initial time sequence,
there can be selected correlation, regression, spectral, and other characteristics,
which in the case of real-time processing must be calculated using adaptive
procedures [2].

To this end, estimates of the mean value, variance, and autocorrelation coef-
ficients can be used. To provide adaptive properties, these estimates must be
calculated using the exponential smoothing procedure [20]. The average value can
be estimated as:

s(k) = αy(k)+ (1− α) s (k − 1) , 0 < α < 1, (59)

where α = 2/(T + 1) is the coefficient that determines the quality of smoothing at
the window of width T.

The value of the variance of the time sequence can be estimated as:

σ 2(k) = α(y(k)− s(k))2 + (1− α) σ 2 (k − 1) , (60)

and coefficients of autocorrelation:

ρ (k, τ ) = α (y(k)− s(k)) (y (k − τ)− s(k))+ (1− α) ρ (k − 1, τ ) , (61)



Online Time Series Changes Detection Based on Neuro-Fuzzy Approach 147

where τ = 1, 2, ..., τmax—time delay. Use of exponential forgetting allows for
excluding from consideration the outdated observations that relate to operation of
the controlled object before a disorder appears in it.

So, the attribute vectors:

x(k) =
(
s(k), σ 2(k), ρ (k, 1) , ρ (k, 2) , . . . , ρ (k, τmax)

)T
(62)

contain n = 2 + τmax elements, and are calculated at each step of the discrete time
k and form a set consisting N n-dimensional attribute vectors:

X = {x(1), x(2), . . . , x(N)} , (63)

where x(k) ∈ Rn, k = 1, 2, . . . N.
The result of applying the fuzzy clustering procedure is to split-up the output

data into m clusters with some membership degree wj(k) of the k-th attribute vector
x(k) to the j-th cluster.

Time sequences of observations, which occur consistently in time and belong
to identical clusters, form the segments of the time sequence at the output. In this,
along with changes of controlled process properties, clusters-segments being formed
may also change because the outdated observations get forgotten in the process of
learning.

In this section, the results of simulation of the developed robust methods of fuzzy
real-time clustering are presented. The simulation of the presented procedures was
based on the examples of solving the standard test tasks of the classification, as well
as for solving the practical task of segmentation of the biological time sequences of
mammalian heartbeat R–R intervals. Also in this section, the results of simulation
of classical methods of clustering are presented in order to assess the quality of the
solution of the problems under consideration.

To evaluate the quality of work of the proposed robust recurrent clustering
procedures, a comparison of results with known methods was performed for the
task of data classification on an artificially constructed sample containing three
two-dimensional clusters whose observations are indicated in Fig. 3 by symbols
“=,” “×,” and “◦.” Each sample cluster is obtained randomly from the Laplace
distribution, which is characterized by rather heavy “tails” and is determined by
expression:

p (xi) = σ

1+ (xi − c)2
, (64)

where σ is the mean square deviation of the distribution and c is the mathematical
expectation.

The data sample contains 9000 observations (3000 in each cluster), divided into
a training sample of 7200 observations and a validation sample containing 1800
observations.
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Fig. 3 Fragment of artificial data sample

The results of clustering obtained using robust probabilistic (48) and possibilistic
(52) procedures were compared with the results obtained using the clustering FCM
procedure of Bezdek (15 and 16). For each comparable clustering procedure, the
following sequence of actions was performed:

– Observations of the training sample are fed to the input of the corresponding
clustering procedure, which results in calculation of the cluster prototypes
(centroids);

– Observations of the training and validation samples are classified according to the
results of clustering. The membership degree of each observation is calculated
according to Eqs. (15, 48), or (52) depending on the clustering procedure used;

– The cluster and the corresponding class, to which the current observation
belongs, are determined by the maximum value of the membership level.

Clustering and training were carried out in real time with parameter values:
β = 2, β1 = β2 = β3 = 1, and η(k) = 0.01.

The results of the classification are shown in Table 1.
The average mean class error of classification (MCE) for training (M{MCEtr})

and validation samples (M{MCEts}) are indicated here, and they were calculated as
the percentage ratio of mistakenly classified observations to the size of the sample.
Complete data sample was randomly divided into training and validation samples
in 100 different ways. The resulting data samples are used to calculate the average
values of classification errors.
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Table 1 Results of classification

Classification error
Clustering procedure M{MCEtr}/observation M{MCEts}/observation

Bezdek (15)–(17) 17.1%/1229 16.6%/229
Robust probabilistic (48) 15.6%/1127 15.6%/281
Robust possibilistic (52) 15.2%/1099 14.6%/263

Fig. 4 Location of cluster prototypes obtained as a result of the application of various clustering
procedures

The disadvantages of fuzzy clustering techniques based on quadratic target
function can be visually determined by the location of cluster prototypes. In Fig.
4, we can see the shift of cluster prototypes obtained using the clustering method
of Bezdek (15, 16) in comparison with the visual cluster centers, caused by density
distribution of observations with heavy “tails” and, consequently, the presence of a
large number of perturbations, while the proposed methods based on robust target
functions (48, 52) give more accurate prototypes, which is confirmed by a lower
value of classification error (Table 1).

Data sampling is a time sequence of heartbeat intervals (R–R intervals) of
a hamster in the process of gradual reversal and emergence of the artificial
hypometabolic state [2]. The time sequence and its segmentation are realized by
an expert biologist, and the projection of the data sample on the first two principle
components after the preliminary processing is shown in Fig. 5. Time sequence
contains 6579 observations.
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Fig. 5 Data sampling of heartbeat intervals of a hamster: (a) segmentation of the time sequence
of heartbeat intervals, performed by an expert biologist; and (b) projection of preprocessed data on
the first two principal components

To evaluate the quality of the result, the results of the segmentation of this time
sequence, obtained by means of the proposed robust clustering procedure (57),
were compared with other classical recurrent clustering methods based on various
goal functions: the well-known Bezdek [6] and Gustafson–Kessel [10] clustering
procedures for the fuzzy C-means.

All clustering procedures were started on the same data sample that was formed
at the preprocessing stage with the following characteristics: s(k), σ 2(k), ρ(k, 2), and
ρ(k, 3), where α = 0.095238 (i.e., on the window of 20 observations), calculated
according to (59)–(61). This subset of attributes was chosen experimentally.
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The number of prototypes was assumed to be equal to m = 5. This value
was also chosen experimentally, since smaller clusters (m < 5) lead to unstable
clustering results that essentially depend on initial initialization, while for m > 5
some of the clusters obtained become indistinguishable. Consequently, assuming
that there are 5 different clusters associated with changes in the conditions of
animal organism functioning, their parameters were determined with the use of the
developed technique.

Robust Procedure of Fuzzy Clustering Clustering with the use of procedure (57)
was performed in one pass through the data sample. The parameters of the procedure
(57) were taken as follows: β = 2, the training step η = 0.01. Projections of the data
sample and cluster prototypes on the first two main components of the space of
features are presented in Fig. 6, and the segmentation of the time sequence obtained
under this procedure is shown in Fig. 7.

Bezdek Clustering Procedure The parameters of the procedure (15) and (16) were
taken as follows: β = 2, the tolerance for completing the procedure ε = 10−3.
Projections of data sample and cluster prototypes on the first two principal compo-
nents of the attribute space are presented in Fig. 8, and the segmentation of the time
sequence carried out by this procedure is shown in Fig. 9.

Fig. 6 Projections of data sample and cluster centers on the principal components for the robust
clustering procedure
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Fig. 7 Segmentation of the time sequence of heartbeat intervals for a robust fuzzy clustering
procedure: (a) over the entire time interval, and (b) on a fragment of the time sequence
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Fig. 8 Projections of sample data and cluster centers on the principal components for the Bezdek
clustering procedure

Fig. 9 Segmentation of the time series of heartbeat intervals for the Bezdek clustering procedure
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Fig. 10 Projections of sample data and cluster centers on the principal components for the
Gustafson–Kessel clustering procedure

Gustafson–Kessel Clustering Procedure The parameters of the procedure were
taken as follows: β = 2, the tolerance for the completion of the procedure ε = 10−6,
the predetermined value of the cluster volume ρj = 1, j = 1, 2, ..., m, and the
maximum ratio of the maximal eigenvalue of covariance matrix to the smallest
one is ϑ = 1015. Projections of the data sample and cluster prototypes on the
first two main components of the attribute space are presented in Fig. 10, and the
segmentation of the time sequence obtained by this procedure is shown in Fig. 11.

Analysis of the Results Without any other direct criteria for the determination of
changes in the state of an animal’s organism, such an interpretation may be accepted.

The first part of the curve, characterized by the simultaneous presence of two
clusters, may reflect some degree of imbalance in the control system of the cardiac
rhythm due to the initiation of an artificial hypometabolic state.

The most probable cause of such perturbations may be due to the intense
slowdown in breathing frequency (up to 1 per min), which is manifested in the
disturbance of the effect of modulation of breathing on the heart rate. Achieving
a stable hypometabolic state with a decrease in the basic vital functions (body
temperature is close to 15 ◦´) is presented in the second part of the curve. An
appropriate cluster combines two different states, both a stable hypometabolic state,
and initial stage of warming the animal, which occurs against the backdrop of
gradual activation of the thermal control system. Fast activation of the latter with
the greatest activation of the thermogenesis of tremor causes a cluster change. The
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Fig. 11 Segmentation of the time series of heartbeat intervals for the Gustafson–Kessel clustering
procedure: (a) over the entire time interval, and (b) on a fragment of the time sequence
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normalization of the temperature homeostasis of the organism is typical for the last
section of the heartbeat rhythm distribution curve and is expressed in the presence
of the last cluster, whose presence may be reflected in the emergence of a stable
functional state that can be assumed to be related to the completion of the most
energy-intensive period of the restoration of temperature homeostasis.

Consequently, the results of solving the problem of clustering in the mode of
self-training do not contradict the fact of the current state of the laboratory animal.

The proposed robust fuzzy clustering procedure gives better results of segmen-
tation of the time sequence than other clustering methods, as can be seen from the
comparison with the segmentation of the time sequence performed by the expert
biologist.

Thus, the task of changes detection in data stream in self-learning mode can be
considered as a task of fuzzy segmentation of time series. In this, shift of controlled
signal from one segment to another is evidence of changes (smooth or sudden) in
the controlled signal.

3 Robust Forecasting and Faults Detection in Nonstationary
Time Series

Recently, methods of computational intelligence are increasingly used in problems
of analysis and processing of nonstationary signals of arbitrary nature under
uncertainty, among which hybrid neural networks can be distinguished. One of the
important tasks associated with signal processing is the prediction and segmentation
of nonstationary time series under uncertainty. Such tasks often arise when process-
ing video streams.

Solving such problems is connected with exploration of local characteristics of
sequences being analyzed over separate time segments. Wavelet analysis [21] can
be reliably used here, which allows detecting such characteristics with high degree
of accuracy.

At the intersection of wavelet analysis and artificial neural networks, the so-
called hybrid wavelet-neural networks [22] arose due to their high approximating
properties and their sensitivity to changes in characteristics of the analyzed pro-
cesses.

To solve problems of forecasting and segmentation, a very important point is
the choice of the optimization criterion for the synthesis of training algorithms for
hybrid neural network systems.

Let’s consider the optimization criterion in general terms:

E(k) = f (e(k)) , (65)

where e(k) = d(k)−y(k) is the training error, d(k) is the external reference signal,
y(k) is the real signal of the system, and f is the target function.
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In most cases, the least squares criterion (L2—norm) is used as optimization
criterion:

f (e(k)) = 1

2
e2(k), (66)

or criterion of the smallest absolute values (L1—norm):

f (e(k)) = |e(k)| . (67)

The experience has shown that identification methods based on the least squares
criterion are extremely sensitive to the deviations of the actual data distribution law
from the normal one. Under the conditions of various types of perturbations, gross
errors, and non-Gaussian perturbations with “heavy tails,” the methods associated
with the least squares criterion lose their effectiveness. In this situation, the methods
of robust estimation, which until now have been used for the study of artificial neural
networks, come to the fore.

In order to reduce the influence of disturbances with the unknown distribution
law in solving prediction and segmentation problems, it is proposed to use known
criteria for robust statistics [23]:

– Logistic function:

fL (e(k)) = β2 ln

[
cosh

(
e(k)

β

)]
; (68)

– Huber function:

fH (e (k)) =

⎧
⎪⎪⎨
⎪⎪⎩

e2 (k)

2
, DL� |e (k)| ≤ β;

β |e (k)| − β2

2
DL� |e (k)| > β;

(69)

– Huber function with saturation (Talvar function):

fT (e (k)) =

⎧
⎪⎪⎨
⎪⎪⎩

e2 (k)

2
, DL� |e (k)| ≤ β;

β2

2
, DL� |e (k)| > β;

(70)
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– Hampel function:

fHa (e (k)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

β2

π

[
1− cos

(
πe (k)

β

)]
, DL� |e (k)| ≤ β;

2
β2

π
, DL� |e (k)| > β.

(71)

The first derivative of such functions is also called the function of influence. We
note that all four criteria are twice continuously differentiated throughout the life
span.

In order to increase the convergence rate of learning algorithms and/or improve
the approximating properties, it is also possible to use combined optimization
criteria [24], which, in general terms, are expressed as formula:

E(k) = (1− λ) f1 (e(k))+ λf2 (e(k)) , (72)

where f1(e(k)) and f2(e(k)) are the corresponding estimation criteria that are convex
and differentiated functions; the parameter λ ∈ [0, 1] gradually decreases from 1 to
0 during the training procedure. In [24], it was suggested to use the parameter λ,
which is calculated according to the rule:

λ = λ(E) = e
− c

E2 , (73)

where c > 0 is a positive parameter and E is a generalized quality criterion.
Such a hybrid optimization criterion can combine both regular and robust local

optimization criteria.
The so-called wavelet-neuron is quite attractive from the point of view of

technical implementation, accuracy, and ease of training. In this case, wavelet-
functions are implemented either at the level of synaptic weights or at the neuron
output, and the gradient training algorithm with a constant learning rate is used
for training. In order to improve the approximating properties and accelerate the
training procedure, a structure called the double wavelet-neuron was introduced, as
well as algorithm for its training, which has both smoothing and tracking properties.

As activating functions of the double wavelet-neuron, we can use different types
of analytic wavelets. Two families—POLYWOG-wavelets and RASP-wavelets are
the most interesting as of their properties.

The family of RASP-wavelets—the wavelets based on rational functions (Ratio-
nal functions with Second-order Poles—RASP) that are associated with the theorem
on the excesses of complex variables.

In Fig. 12, you can see two typical representatives of mother RASP-wavelets,
which are described by expressions:



Online Time Series Changes Detection Based on Neuro-Fuzzy Approach 159

Fig. 12 Representatives of the RASP-wavelets family (a) shows that one achieved according to
Eq. (74), (b) that one achieved according to Eq. (75)

ϕ1
j i (xi(k)) =

β1 cos (xi(k))

x2
i (k)+ 1

, β1 = 2.7435, (74)

ϕ2
j i (xi(k)) =

β2 sin (πxi(k))

x2
i (k)− 1

, β2 = 0.6111. (75)

These wavelets are valid odd functions with a zero mean.
Another very broad wavelet family can be obtained from POLYnomials Win-

dowed with Gaussians type of function—POLYWOG. It is interesting to note that
the derivatives of these functions are also POLYWOG-wavelets and can be used as
mother wavelets.

In Fig. 13, you can see some typical wavelets from the POLYWOG family, which
are described by expressions:

ϕ1
j i (xi(k)) = μ1xi(k) exp

(
−x2

i (k)

2

)
, μ1 = exp

(−1
/

2

)
, (76)

ϕ2
j i (xi(k)) = μ2

(
x3
i (k)− 3xi(k)

)
exp

(
−x2

i (k)

2

)
, μ2 = 0.7246; (77)

ϕ3
j i (xi(k)) = μ3

(
x4
i (k)− 6x2

i (k)+ 3
)

exp

(
−x2

i (k)

2

)
, μ3 = 1

/
3 ; (78)

ϕ4
j i (xi(k)) =

(
1− x2

i (k)
)

exp

(
−x2

i (k)

2

)
. (79)
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Fig. 13 Representatives of the POLYWOG-wavelets family (a) shows that one achieved according
to Eq. (76), (b) that one achieved according to Eq. (77), (c) that one achieved according to Eq. (78),
and (d) that one achieved according to Eq. (79)

Some wavelets of the POLYWOG family can be obtained using simple genera-
tors. Thus, in particular, the wavelets of this family can be generated with account
of the properties of Hermitian nature of the derivative of the polynomial and the
Gaussian function.

Let’s consider the structure of the double wavelet-neuron, which is shown in
Fig. 14 [25]. Apparently, the double wavelet-neuron is quite close to the structure
of n—input wavelet-neuron, though it contains nonlinear wavelet-functions at the
level of synaptic weights, as well as at the output of the structure.

When applying to the input of the double wavelet-neuron the vector signal
x(k) = (x1(k), x2(k), . . . , xn(k))T , at its output appears a scalar signal in the form of:

y(k) = f0

(
n∑
i=1

fi (xi(k))

)
= f0 (u(k))

=
h2∑
l=0

ϕl0

(
n∑
i=1

h1∑
j=0

ϕji (xi(k))wji(k)

)
wj0 =

h2∑
l=0

ϕl0 (u(k))wl0(k),

(80)
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Fig. 14 Architecture of a double wavelet-neuron with nonlinear wavelet-synapses

which is determined both by configurable synaptic weights wji(k) and wl0(k), and
the values of the wavelet-functions ϕji(xi(k)) and ϕl0(u(k)), while it is specified that
ϕ00(•) = ϕ0i(•) ≡ 1.

The double wavelet-neuron consists of two layers: a hidden layer, in which there
are n wavelet-synapses with h1 wavelet-functions in each one, and an output layer,
consisting of a single wavelet-synapse with h2 wavelet-functions.

In each wavelet-synapse, the wavelets are implemented that differ in their
parameters of stretching (width) and shift (center).

Let’s consider the robust learning algorithm for such an architecture. To study
the output layer of a hybrid robust double wavelet-neuron, we introduce into
consideration the error of training:

e(k) = d(k)− y(k), (81)

on the basis of which we introduce the robust criterion in the form of:
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E(k) = β2 ln

[
cosh

(
e(k)

β

)]
, (82)

where β is a positive parameter that is chosen from empirical considerations and
determines the size of the zone of insensitivity to the perturbations.

The robust algorithm for training the output layer of a double wavelet-neuron
based on a gradient approach has the form of:

wj0 (k + 1) = wj0(k)+ η0(k)β tanh

(
e(k)

β

)
ϕj0 (u(k)) , (83)

or in a vector form:

w0 (k + 1) = w0(k)+ η0(k)β tanh

(
e(k)

β

)
ϕ0 (u(k)) , (84)

where w0(k) =
(
w10(k), w20(k), . . . , wh20(k)

)T —vector of synaptic weights,

ϕ0(k) =
(
ϕ10(k), ϕ20(k), . . . , ϕh20(k)

)T —vector of wavelet-activation functions,
and η0(k) is the learning rate to be determined.

To increase the convergence rate of the training procedure, it is necessary to
move from gradient procedures to quasi-Newton algorithms, the most widely used
of which is Levenberg–Marquardt algorithm.

After simple transformations, we obtain the training algorithm in the form of:

⎧
⎨
⎩
w0 (k + 1) = w0(k)+

β tanh
(
e(k)
β

)
ϕ0(u(k))

γ
w0
i (k)

;
γ
w0
i (k + 1) = αγ

w0
i (k)+ ‖ϕ0 (u (k + 1))‖2,

(85)

where α is parameter of forgetting obsolete information (0 < α <1), which is set
according to guidelines that are used in the tasks based on exponentially weighted
recurrent least squares method.

The training of a hidden layer is conducted in a similar way on the basis of the
error backpropagation using the same criterion, but written in the form of:

E(k) = β2 ln
[
cosh

(
d(k)−f0(u(k))

β

)]

= β2 ln

[
cosh

((
d(k)−f0

(∑n
i=1
∑h1

j=0ϕji (xi (k))wji (k)
))

β

)]
.

(86)

The robust learning algorithm for the hidden layer of double wavelet-neuron
based on gradient optimization is written as:

wji (k + 1) = wji(k)+ η(k)β tanh

(
e(k)

β

)
f ′0 (u(k)) ϕji (xi(k)) , (87)
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or in a vector form:

wi (k + 1) = wi(k)+ η(k)β tanh

(
e(k)

β

)
f ′0 (u(k)) ϕi (xi(k)) , (88)

where wi(k) =
(
w1i (k), w2i (k), . . . , wh1i (k)

)T —vector of synaptic weights, and

ϕi(k) =
(
ϕ1i (k), ϕ2i (k), . . . , ϕh1i (k)

)T —vector of wavelet-activation functions.
By analogy with (85), we can introduce a procedure:

⎧
⎨
⎩
wi (k + 1) = wi(k)+

β tanh
(
e(k)
β

)
f ′0(u(k)) ϕi (xi (k))

γ
w1
i (k)

;
γ
w1
i (k + 1) = αγ

w1
i (k)+ ‖ϕi (xi (k + 1))‖2.

(89)

The proposed approach allows signals processing under conditions of various
kinds of perturbations, gross errors, and non-Gaussian perturbations with “heavy
tails,” and most importantly, it allows detecting changes in characteristics of such
signals. It is worth noting that algorithm (89), being a procedure of gradient
optimization, can get to the local minima of goal function. In such cases, it makes
sense to use either set of similar procedures with different initial conditions (that
is cumbersome from computational point of view) or evolutionary optimization
procedures (that slows down the learning process).

An experimental study of the developed robust training algorithm for adaptive
wavelet-neuron was carried out on the basis of a signal contaminated by intense per-
turbations. The signal was obtained using the nonlinear dynamic object of Narendra
[26], whose output signal was artificially contaminated by random perturbations
with a Cauchy distribution having the form of:

F−1
X (x) = x0 + γ tg [π (x − 0.5)] , (90)

where x0 is the localization parameter, γ is the scale parameter (γ > 0), and x is the
carrier (x ∈ (−∝; +∝)).

A nonlinear dynamic object was generated by the equation:

y (k + 1) = 0.3y(k)+ 0.6y (k − 1)+ f (u(k)) , (91)

where f (u(k))= 0.6 sin (u(k))+0.3 sin (3u(k))+0.1 sin (5u(k)), u(k)= sin (2k/250).
The values of x(k−3), x(k−2), x(k−1), and x(k) were used to emulate x(k + 1).
Figure 15a shows the results of the emulation of a signal contaminated by

interruptions. Figure 15b shows a segment of the training procedure: one can see
that a high amplitude perturbation, which occurs at the beginning of the sampling,
did not affect the training algorithm.

A comparison of the results of prediction based on the robust training algorithm
was carried out with the results of prediction based on the gradient algorithm and
the algorithm based on the recurrent method of least squares, where the structure of
the network and the number of configured parameters were the same.
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Fig. 15 (a) Result of the emulation of a signal contaminated by interruptions, (b) a segment of the
training procedure
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In case of training the adaptive wavelet-neuron with the use of gradient algo-
rithm, the first perturbation at the start of sampling strongly influenced the training
procedure, and as a result we have a large error of emulation. In case of training
by the recurrent method of least squares, during the first perturbation a so-called
explosion of parameters of the covariance matrix occurred and, as a result, the
impossibility of emulating signals contaminated by abnormal perturbations.

In this way, it can be seen that the proposed robust algorithm of training the adap-
tive wavelet-neuron allows perform signal processing under conditions of significant
contamination by perturbations. Thus, the proposed adaptive double wavelet-neuron
restores the analyzed time series, eliminating abnormal observations.

After that, the signal being processed can be segmented through the use of online
procedures of fuzzy clustering described above.

Thus, significant increase of forecasting error over a certain interval indicates
changes in the controlled process, after which the forecasting system adjusts its
parameters adaptively for the new mode. Importantly, due to the robust properties of
the used learning algorithm, abnormal outliers in observations are “ignored” during
the controlling process.

4 Conclusions

Approach to online detection of changes in time series properties based on
hybrid systems of computational intelligence has been proposed and analyzed.
The approach is guided by fuzzy sequential clustering of time series with the use
of probabilistic and possibilistic procedures as well as a wavelet-neural network
that is learned by robust algorithm of synaptic weights adjustment, which enables
suppressing abnormal outliers present in real time series.

The proposed approach is characterized by simplicity of numerical implementa-
tion and high performance, and it can be applied in addressing practical tasks related
to changes detection and fault detection in data streams.
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Early Fault Detection in Reciprocating
Compressor Valves by Means of
Vibration and pV Diagram Analysis

Kurt Pichler

1 Introduction

Reciprocating compressors are heavily used in modern industry, for instance in
chemical industry, refinery, gas transportation, and gas storage. Economic demands
of the last decades have also affected the operation of reciprocating compressors. In
many cases, compressors run at full capacity without backup. Reliable performance
is thus a key issue and becoming more important than ever. Customers expect
reduction or even elimination of unscheduled shutdowns as well as extended
maintenance intervals. These challenges are addressed by the development of
advanced materials and designs. However, fatigue and wear cannot be avoided.

There is also an economic trend towards saving on labour costs by reducing the
frequency of on-site inspections. Such considerations mean that modern gas storage
facilities are run by remote control stations, and the compressors are monitored by
automated technical systems. In this case, the system must be able to retrieve and
evaluate relevant information automatically to detect faulty behaviour.

For these reasons, monitoring and diagnostics are almost an economical and tech-
nical necessity. Firstly, monitoring systems enable condition-based maintenance.
Secondly, improved understanding of compressor behaviour allows evaluation and
recommendations regarding efficient compressor operation.

Condition monitoring can be based on measurements of various physical states,
for instance, vibrations, flow rate, power, position, temperature, and pressure. The
data required for diagnostic evaluation depend mainly on the types of faults expected
and observed. Broken valves, with a percentage of about 36%, are the most common
reason for unscheduled shutdowns of reciprocating compressors [21], followed by
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faulty pressure packings (about 18%) and piston rings (about 7%). Hence, it is
obvious that especially the valves have to be monitored.

Several papers have been published about valve fault detection in reciprocating
compressors. Lin et al. [27] combined time–frequency analysis of vibration data
and an artificial neural network, which enabled them to differentiate between new
and worn valves. Applying their approach to extended test scenarios with 15 seeded
faults [28] did not lead to satisfactory validation results. However, by reducing the
number of fault cases to 7, they achieved good classification results. Cyclostationary
modeling of reciprocating compressors is introduced in [53] and [3]. Tiwari and
Yadav [45] analysed pressure pulsation with a back-propagation neural network.
The pressure pulsation (peak to peak) is modeled in relation to the leak percentage.
In [37], a method using support vector machines was presented. The first four zero-
lag sums of sub-band signals of the intrinsic mode functions are extracted from
vibration measurements and used as input features for a support vector machine
classifier. Drewes [10] described the effect of a valve fault on the pV diagram.
Additionally, the effects of some other faults such as piston ring wear and damages
to crank gears and pistons were discussed. Several different fault detection methods
were introduced in [52]. They are divided into four main categories: time domain
analysis, frequency domain analysis, orbit analysis, and trend analysis. Yang et
al. [51] focus particularly on small reciprocating compressors for refrigerators at
constant operation conditions. They use wavelet transform to extract features from
raw noise and vibration data and classify them using neural networks and support
vector machines. The changes in cylinder pressures and instantaneous angular speed
for various leakage percentages were analysed visually in [13]. Based on the results,
a decision table for valve faults is built. Wang et al. [48] introduce an automated
evaluation of the pV diagram. They determine seven invariant moments of the
pV diagram and classify them using support vector machines. In [49], the valve
motion is monitored using acoustic emission signals and simulated valve motion.
As the authors state in the paper, the method can distinguish between normal valve
operation, valve flutter, and delayed closing, but it is not sensitive to leaks.

In this chapter, two independent methods for detecting broken reciprocating
compressor valves are developed: one is based on vibration analysis, and the other
one is based on analysing pV diagrams. In vibration analysis, spectrograms of
accelerometer measurements are used to extract features that provide separability
of faultless and faulty class in the feature space. Similarly, certain features are
extracted from pV diagrams. These features provide class separability as well. Two
independent approaches are developed because compressors can be equipped with
different sensors, and not every compressor is equipped with the sensors required
for a certain method. It depends on the operators of the compressor, what kind of
sensors they want to mount on their equipment. Furthermore, upgrading the sensing
system with certain sensors can be too expensive or simply not desired.

In contrast to the method proposed in this book chapter, the previously published
approaches above do not mention varying load and pressure conditions. It can be
assumed that those methods cannot be easily adapted to this case. Moreover, they
use only one valve type each and do not extrapolate their method from one valve
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type to others. Another drawback of the previously published approaches is that, if
an automated method is presented, training with faultless cases only is not provided.

2 Problem Statement

This section gives a brief overview of the reciprocating compressors functionality
[6, 7]. Furthermore, it states the specific problems and needs of a fully automated
monitoring system for compressor valves.

2.1 Reciprocating Compressor Operation

The basic elements of a reciprocating compressor are the compression cylinder and
the piston. An engine, usually an electric motor, drives a crankshaft at a constant
revolution speed, and the crankshaft drives the piston inside the cylinder. The piston
rod is connected to the crankshaft by a connecting rod. As the piston in the cylinder
is moving forwards and backwards, the volume of the cylinder changes during time.
Hence, the pressure in the cylinder is increasing when the volume is decreasing and
vice versa. The compression unit is called single acting if it is compressing only on
one side of the piston. If it is compressing on both sides of the piston, it is called
double acting. In the case of a double-acting compression cylinder, the compression
chamber closer to the crank is called crank end (CE), the other compression chamber
is called head end (HE). A scheme of a double-acting cylinder is shown in Fig. 1.

A reciprocating compressor is an oscillating machine, it works in repeated
cycles. A typical compression cycle for the HE compression chamber is explained
now. Let’s start with the piston at its bottom dead centre (BDC), the discharge
valve closed, the suction valve opened, and the cylinder filled with gas at suction
pressure. As the piston moves towards HE, the suction valve closes immediately,
and the piston movement reduces the original volume of gas with an accompanying
rise in pressure, the valves remain closed. This is called the compression stroke.

Fig. 1 Scheme of a
double-acting cylinder of a
reciprocating compressor
with the suction valves (SV)
and discharge valves (DV) at
the crank end (CE) and head
end (HE) compression
chambers
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When the pressure just exceeded the discharge pressure, the discharge valve opens.
The compressed gas is flowing out through the discharge valve into the discharge
chamber. This is called the delivery stroke. Just before the piston reached its top
dead centre (TDC), the discharge valve is closed by its springs, leaving the clearance
space filled with gas at discharge pressure. The clearance space is the volume
that remains in the compression chamber when the piston is at TDC. During the
following expansion stroke, both the suction and discharge valves remain closed.
The gas trapped in the clearance space increases in volume, causing a reduction
in pressure. This continues as the piston moves towards the CE until the cylinder
pressure drops below the suction pressure. Now, the suction valve opens and gas
flows into the cylinder until the end of the reverse stroke. This is called the suction
stroke. When the piston passed BDC, the spring load closes the suction valve and
the cycle will repeat on the next revolution of the crank. The compression cycle for
the CE compression chamber is of course shifted by 180◦ of the crank.

The pV diagram (pressure–volume diagram) of a compression cycle plots the
change in pressure in the compression chamber with respect to its volume. The
pV diagram is observed for each compression cycle. As the suction and discharge
pressures will usually not change significantly from one compression cycle to the
next, the pV diagram has a cyclic shape, i.e. it returns to its starting pressure and
volume. A key feature of the pV diagram is that the amount of energy expended or
received by the system as work can be estimated. For cyclic diagrams, the net work
is that enclosed by the curve. A typical (simulated) pV diagram of a reciprocating
compressor together with the actual piston position is shown in Fig. 2. With the
piston at TDC, the pressure is on its maximum level (the discharge pressure), while

Fig. 2 The piston at TDC
and the corresponding pV
diagram (graphics by
Hoerbiger Compression
Technology)
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the compression chambers’ volume is at its minimum (the clearance space). The pV
diagram is traversed anticlockwise.

Reciprocating compressors use automatic spring-loaded valves. The valves reg-
ulate the cycle of operation in a compressor cylinder. Automatic compressor valves
are pressure activated, and their movement is controlled by the compression cycle.
The valves are opened by the difference in pressure across the valve. The suction
valve (SV) opens, when the pressure in the cylinder is slightly below the pressure
in the suction chamber (suction pressure). The discharge valve (DV) opens, when
the pressure in the cylinder is slightly above the pressure in the discharge chamber
(discharge pressure). As there are so many application scenarios for reciprocating
compressors, one valve type cannot cover every application. Depending on the
process requirements (gas type, expected pressure and temperature conditions,
crank revolution speed, lubrication, etc.), a specific valve type has to be chosen.
The valve types differ in their design and material.

During normal operation, a reciprocating compressor will take in a quantity of
gas from its suction line and compress the gas as required to move it through its
discharge line. The compressor cannot self-regulate its capacity against a given
discharge pressure; it will simply keep displacing gas until told not to. This would
not be a problem if there was unlimited supply of gas to draw from and an infinite
downstream to discharge into. However, in real-world refineries, chemical plants,
and gas transmission lines, there are specific parameters within which to work, and
the capacity is a unique quantity at any point in time. Thus, there is a real need to
control the capacity of the reciprocating compressor.

The capacity (or load) of a reciprocating compressor is controlled by the reverse
flow capacity control system. This system directly influences the closing time of
the suction valve. An actuator keeps the suction valve open for a specified and
controllable time at the beginning of the compression stroke. This allows a fraction
of the gas to flow back through the suction valve into the suction chamber (Fig. 3).
The discharge valve is a passive valve. It thus opens when the pressure inside the
cylinder is higher than the pressure outside. When the reverse flow capacity control
allows a smaller amount of gas to be compressed, the pressure for opening the
discharge valve is obtained later. For that reason, the control system influences the
timing of closing the suction valve as well as the timing of opening the discharge
valve. In Fig. 3, the pV diagram of a compression cycle at reduced load is shown. As
the suction valve is kept open, the cylinder pressure stays at suction pressure until the
control system allows the suction valve to close. Then, the gas is compressed until
the pressure exceeds discharge pressure and the discharge valve opens. The figure
shows that the reverse flow control system affects the shape of the pV diagram only
at the compression and the delivery stroke, but not at the expansion and the suction
stroke.

In this chapter, the pressure conditions are defined as the pressures in the suction
and discharge chamber of a compressor stage. The pressure conditions are not
constant. For instance, in a two-stage compressor the suction pressure in stage 1
depends on the pressure in the reservoir from which the gas is taken from, which
can of course be varying. The suction pressure in stage 2 equals the pressure built up
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Fig. 3 The piston moving
towards the head end during
the compression stroke and
the corresponding pV
diagram (graphics by
Hoerbiger Compression
Technology). Due to the load
control (reduced load), the
suction valve is still open and
the gas has not been
compressed yet

in stage 1. This pressure is called the interstage pressure (IP). The discharge pressure
in stage 2 depends on the pressure in the discharge vessel. By building up pressure
in the discharge vessel or dumping gas from it, this pressure may be varying as well.

2.2 Problem Statement

As already mentioned in Sect. 1, broken valves are one of the main problems in
the operation of reciprocating compressors. To specify, the sealing elements are
most likely to break thus causing a leak. Therefore, the goal is to detect broken
sealing elements of reciprocating compressor valves. In the following, the terms
broken valve or faulty valve are oftentimes used for a leaking sealing element. The
problem is tackled with a data-driven approach. In this context, data driven means to
acquire real-world measurement data from reciprocating compressors and analyse
these data. The aim of this data analysis is to quantify the differences between data
acquired from faultless valves and data acquired from faulty valves (i.e. valves with
a broken sealing element). This knowledge can then be used to define and quantify
normal compressor operation and subsequently to detect deviations from normal
compressor operation.
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Of course, not only broken sealing elements can affect the acquired data. Also
other components, such as pressure packings, piston rings, and many more [21],
can break and influence the measured data. As these faults are already monitored
with existing approaches [20], they are not considered in this chapter. When
acquiring test data, it was carefully observed to measure at a compressor with all
other components in faultless conditions. Hence, it is possible to concentrate on
quantifying the deviation in the data originating from broken valves.

A monitoring system for reciprocating compressor valves, in fact almost every
monitoring system, has to cope with changing operation conditions. For recipro-
cating compressors, there are several variables that might change. Among these
variables are the load levels and pressure conditions described in Sect. 2.1. All
these variables can affect the acquired measurement data. For obvious reasons, they
should not cause over-detections.

As specified in Sect. 2.1, reciprocating compressor valves have different designs
and are made of different materials. It is not desirable to have an own monitoring
procedure for each valve type. Different valve types must be monitored with only
one system. This should work automatically, without human operators adjusting any
parameters or threshold values. Valve-type independent classification is desirable
because it enables monitoring a new valve type that has not been part of the training
procedure. Assume that the proposed monitoring system has been trained with a
certain valve type, and it is necessary to equip the compressor with another valve
type (for instance, due to changing gas characteristics or different temperature
expectations). Then, it is an obvious advantage that no extensive amount of training
data with, ideally, pressure and load conditions ranging from the compressors
maximum to minimum is needed to train a new classifier. Furthermore, it helps
to avoid mistakes from operators by selecting a wrong classifier for a certain valve
type.

One final, yet very important requirement of a monitoring system concerns the
training phase of the method. A data-driven method has to be trained with annotated
measurement data (data with given class information) of the underlying system.
As the aim is to distinguish between faultless and faulty state, it is a classification
problem. Usually, classification problems are trained with data from all possible
classes. Because of economic and safety considerations, it is oftentimes not possible
to acquire data from broken valves. Even though test data from faultless and from
leaking valves are available in this study, this is not the general case. Training the
classifier with the faultless class only is thus desirable. Hence, a focus also lies
on applying one-class classification (also referred to as novelty detection or data
description) techniques to the feature space, which is able to operate in regular
faultless data solely by extracting a model of their main characteristics. For such
a one-class classification task, it is important that the training data covers a broad
range of normal operating condition, i.e. load levels, pressure conditions, and so on.
This will ensure that different operating conditions will not cause over-detections.
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3 Vibration Analysis

Vibration analysis is a common approach in rotating machinery diagnostics, for
instance for bearing [42] and gearbox monitoring [23]. It has also been applied
for oscillating machines such as reciprocating compressors [27, 28]. To perform
vibration analysis, data is acquired using accelerometers. When analysing vibration
measurement data, mainly two basic concepts are adopted. One concept is to
analyse the acquired data as a time series, some of the methods are described in
[14, 40]. Oftentimes, these methods use statistical analysis procedures to evaluate
the measurement data such as proposed in [15]. The other popular basic concept
of vibration analysis is analysing the (time–)frequency space of the acquired data
[17, 32]. Numerous concepts have been proposed, for instance observing absolute
spectral density for a certain frequency or comparing whole frequency spectra.

3.1 Motivation

In earlier studies, the capability of (time–)frequency-based condition monitoring
for reciprocating compressor valves has been shown. The energy content of
single frequency bands was observed in [33]. An approach of comparing whole
spectrograms in a metric vector space was introduced in [35] and extended to a
switching model in [34]. However, all of those methods have no (or limited) valve
condition monitoring capability for arbitrarily changing load conditions.

As shown in [36], valve faults or changing load conditions induce different
patterns in the spectrogram. A typical time series of the accelerometer data of
two compression cycles and the according spectrogram can be seen in Fig. 4. The
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Fig. 4 (a) Raw accelerometer data and (b) spectrogram of two successive compression cycles
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pointwise difference D ∈ R
nf×nt with entries di,j , i = 1, . . . , nf , j = 1, . . . , nt ,

of a reference spectrogram (from a faultless valve) R ∈ R
nf×nt with entries

ri,j , i = 1, . . . , nf , j = 1, . . . , nt (with nf and nt denoting the number of bins
in frequency and time domain), and a test spectrogram S ∈ R

nf×nt (unknown fault
state) with entries si,j , i = 1, . . . , nf , j = 1, . . . , nt , is defined as:

D = S − R (1)

and

di,j = si,j − ri,j , (2)

respectively.
In the case of a test spectrogram from faultless valves at the same load level as

the reference spectrogram, both spectrograms look more or less the same, and the
difference D shows no significant pattern (Fig. 5).

When the test spectrogram is from faultless valves, but at a different load level,
significant patterns in vertical direction reveal (Fig. 6). These patterns arise from the
timing of the valve event due to the load control. In [41], it is shown that the valve
events can be identified uniquely in the spectrogram. However, the experimental
setup in that study was a very simple compressor geometry with only one reed
valve. For the more advanced compressor and valves used in this chapter, it was
not possible to identify the valve events uniquely. Nevertheless, the different time
points of the valve events appear as a vertical pattern in the spectrogram difference.

Figure 7 illustrates the case when the test spectrogram is from a faulty valve at the
same load level. In [33], it was empirically shown that a faulty valve is accompanied
by changing amplitudes in certain frequency bands of the power spectrum. However,

Fig. 5 Pointwise
spectrogram difference of a
reference spectrogram and a
test spectrogram from a
faultless valve at the same
load level
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Fig. 6 Pointwise
spectrogram difference of a
reference spectrogram and a
test spectrogram from a
faultless valve at a different
load level

Fig. 7 Pointwise
spectrogram difference of a
reference spectrogram and a
test spectrogram from a faulty
valve at the same load level

it was not possible to determine the frequency bands of interest a priori, i.e. without
measurements from a faulty valve. The effect of changed amplitudes in a certain
frequency band as an indicator for a faulty valve can also be observed in the
spectrogram difference. Since the frequency is plotted on the ordinate, a faulty valve
corresponds to significant horizontal patterns.

It comes as no surprise that, in the case of a faulty valve at a different load level,
the spectrogram difference in Fig. 8 shows significant vertical patterns (due to the
load control) as well as significant horizontal patterns (due to the faulty valve).

Looking at the examples, it can be noticed that there seems to be a possibility to
discriminate between the faultless and faulty case. A faulty valve shows significant
horizontal (and maybe vertical) patterns in the spectrogram difference, while a
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Fig. 8 Pointwise
spectrogram difference of a
reference spectrogram and a
test spectrogram from a faulty
valve at a different load level

faultless valve either shows no significant patterns or vertical patterns. The problem
is that the position of these patterns within the spectrogram difference varies
with the valve type and the load levels of the two spectrograms. Furthermore,
the measurements are afflicted with noise. These issues make it challenging to
identify the patterns automatically. By applying two-dimensional autocorrelation to
the spectrogram difference, the patterns are centred and the signal-to-noise ratio is
increased. Autocorrelation thus solves both tasks within one simple transformation
step. This makes it easier for an automated method to recognize the patterns
correctly and is therefore an important step on the way to a load independent
method.

Given the pointwise spectrogram difference D ∈ R
nf×nt (Eq. (1)) with entries

di,j , i = 1, . . . , nf , j = 1, . . . , nt (Eq. (2)), the two-dimensional autocorrelation
A ∈ R(2nf−1)×(2nt−1) with entries ai,j , i = 1, . . . , 2nf − 1, j = 1, . . . , 2nt − 1,
of D ∈ R

nf×nt is defined as [26]:

akf+nf ,kt+nt =
nf∑
i=1

nt∑
j=1

di,j · di−kf ,j−kt (3)

for kf = −
(
nf − 1

)
, . . . , nf − 1 and kt = − (nt − 1) , . . . , nt − 1 and with

di,j := 0 for

⎧
⎪⎪⎨
⎪⎪⎩

i < 1
i > nf

j < 1
j > nt .
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Fig. 9 Autocorrelation of the pointwise spectrogram difference (Fig. 5) of a reference spectrogram
and a test spectrogram from a faultless valve at the same load level

Fig. 10 Autocorrelation of the pointwise spectrogram difference (Fig. 7) of a reference spectro-
gram and a test spectrogram from a faulty valve at the same load level (with highlighted curves of
interest)

The effect of computing autocorrelation is depicted in the following. In the case
of a test spectrogram from a faultless valve at the same load level, the autocorrelation
is simply a surface with a central peak and the rest approximately at level 0 (Fig. 9).

The autocorrelation surface for a test spectrogram from a faulty valve at the same
load level is shown in Fig. 10. A mountain crest through the centre aligned in time
dimension with a central peak can be observed.
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Fig. 11 Autocorrelation of the pointwise spectrogram difference (Fig. 6) of a reference spectro-
gram and a test spectrogram from a faultless valve at a different load level

Fig. 12 Autocorrelation of the pointwise spectrogram difference (Fig. 8) of a reference spectro-
gram and a test spectrogram from a faulty valve at a different load level

The other two cases show consequently a mountain crest aligned in frequency
dimension (faultless valve at different load level, Fig. 11) or in both dimensions
(faulty valve at different load level, Fig. 12).

A characteristic for the case of a test spectrogram from a faulty valve can thus be
given as a mountain crest in time dimension with a peak in its centre. Concentrating
on this characteristic of the autocorrelation, it is possible to define features that
enable classification of the fault state of the valve, regardless of the load levels of
the reference spectrogram and the test spectrogram.
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3.2 Feature Extraction

Features are extracted from the spectrogram difference D ∈ R
nf×nt (Eq. (1)) and

from its autocorrelation A ∈ R(2nf−1)×(2nt−1) (Eq. (3)) as well. The features are
motivated by visually comparing the shapes of the plots in Sect. 3.1 and quantifying
obvious differences. As in many pattern recognition scenarios, a big number of
features were defined. Some of those features were motivated by the shape of
the spectrograms and their autocorrelation surfaces or by expert knowledge. Some
other features were defined as standard statistical features or well-known damage
indicators (for instance [47]) of the data. Also, the load levels of reference and test
spectrogram and the difference of their load levels were included in the original
feature set. In the end, the best features were selected by feature selection and
ranking criteria using filter and wrapper approaches [11, 16, 22] such as forward
selection using Dy–Brodley measure or Mahalanobi distance as selection criteria.
Only the four finally selected features are presented here. Selecting more than four
features did not improve the classification accuracy significantly.

The first feature f1 is given by the distance of the reference and the test
spectrogram. It is computed by the matrix norm ‖.‖M : Rnf×nt → R in the vector
space R

nf×nt that is introduced in [35] as:

‖D‖M = 1

nf · nt ·
nf∑
i=1

nt∑
j=1

∣∣di,j
∣∣ (4)

for D ∈ R
nf×nt with matrix entries di,j ∈ R. Using this norm, f1 is defined as:

f1 = ‖D‖M (5)

with the spectrogram difference matrix D from Eq. (1).
As shown in [35], this measure is not sufficient to obtain a load independent

method. Hence, three additional features are extracted from the autocorrelation
matrixA ∈ R(2nf−1)×(2nt−1). The significant patterns in the spectrogram difference
are aligned in time and frequency dimension. They are centred by applying
autocorrelation and still aligned in time and frequency dimension. For that reason, it
is sufficient to observe the curves through the centre aligned in time and frequency
dimension of the autocorrelation. This reduces also the amount of data to be
processed and therefore saves computational time. The curves are symmetric; hence,
only one half has to be observed. The curves are highlighted in Fig. 10. By defining

Nf =
⌈

2nf−1
2

⌉
and Nt =

⌈
2nt−1

2

⌉
, these curves g ∈ R

Nt and h ∈ R
Nf are given

by the matrix entries:

g = aNf ,1...Nt (6)
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and

h = a1...Nf ,Nt (7)

of the autocorrelation matrix A (Eq. (3)).
Feature f2, the first feature of the autocorrelation, measures the ratio of the mean

values of g and h. The mean values ḡ and h̄ are given by:

ḡ = 1

Nt

·
Nt∑
i=1

gi (8)

and

h̄ = 1

Nf

·
Nf∑
i=1

hi. (9)

The feature f2 is thus defined as:

f2 = ḡ

h̄
. (10)

The main advantage of using the ratio of ḡ and h̄ over using the two features
individually is that it incorporates both dimensions (frequency and time) in only
one feature value, thus reducing the dimensionality of the feature space.

The next feature, f3, is somewhat similar to the previous one in the way that it
measures the ratio of the degree of curvature of the segments g and h. Between the
end points g1 and gNt , respectively, h1 and hNf of the curves g and h, connecting
lines are linearly interpolated, that is:

ĝi = g1 + gNt − g1

Nt − 1
· (i − 1) for i = 1, . . . , Nt (11)

and

ĥi = h1 +
hNf − h1

Nf − 1
· (i − 1) for i = 1, . . . , Nf , (12)

respectively.
Finally, feature f3 is defined as:

f3 =

Nf∑
i=1

(
hi − ĥi

)2

Nt∑
i=1

(
gi − ĝi

)2
. (13)
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Feature f4 measures the ratio of deviation of the curves g and h from their linear
regression lines g̃ and h̃. With ḡ (Eq. (8)) and h̄ (Eq. (9)) denoting the mean values
of g and h, the coefficients for linear regression [9] are given by:

βg =
Nt∑
i=1

(
i− 1+Nt

2

)
·(gi−ḡ)

Nt∑
i=1

(
i− 1+Nt

2

)

αg = ḡ − βg · 1+Nt
2

βh =
Nf∑
i=1

(
i− 1+Nf

2

)
·(hi−h̄)

Nf∑
i=1

(
i− 1+Nf

2

)

αh = h̄− βh · 1+Nf
2 .

(14)

Then, the feature:

f4 =

Nf∑
i=1

(hi − ah − i · βh)2

Nt∑
i=1

(
gi − ag − i · βg

)2
(15)

is finally defined as the ratio of the sum of squares of the residuals of the curves and
their linear lines of best fit.

The features f3 and f4 appear to be similar on first sight. However, if g or h have
a distinct peak on one end and the rest is more or less constant, those two features
are significantly different. The forward feature selection algorithm selected both of
them as highly discriminative.

As already mentioned before, these features were not the only ones defined
initially and used as an input for the feature selection algorithm. Among the other
features were similar values for g and h alone (not the ratios), similar values of the
twofold autocorrelation, a smoothness measure of the twofold autocorrelation, and
the width of confidence intervals of second- and third-order curves fitted to g and h.

3.3 Feature Space

Finally, a first visual impression of the feature space is given. More details as well
as classification results using the well-known methods logistic regression [2] and
support vector machines (SVMs) [46] are provided in Sect. 6.1. Figure 13 shows the
features f1 and f2 from some measurement runs with all valve types except for the
steel valve (Sect. 5). As it is not possible to depict a four-dimensional feature space,
only the projections onto a two-dimensional subspace is shown. To obtain a good
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Fig. 13 Features f1 and f2
in vibration analysis
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generalizability concerning load levels, reference spectrograms from different load
levels were used. Every reference spectrogram was used to compute features for
every test spectrogram of the measurement runs. The feature space thus represents
observations computed for varying load levels of reference and test spectrogram.
The main advantage of this approach is that once the decision boundary is trained,
the reference spectrogram and the test spectrogram can have any arbitrary load level.

4 Analysis of the pV Diagram

Using the pV diagram for the detection of leaking valves has been proposed several
times in the past, for instance [8, 10, 13, 31, 48]. However, none of those approaches
fulfils all desired properties of a monitoring system, i.e. to be fully automated and
applicable for arbitrarily varying operation conditions and different valve types.

4.1 Motivation

It is in the nature of things that a leak in a valve can only be detected when it is
supposed to seal the gas stream off. The evaluation of pV diagrams can thus be
restricted to the times when all valves of a compression chamber are closed, i.e.
the compression and the expansion stroke. Since the load control affects the start
and end time of the compression stroke, the most promising part of the pV diagram
for detecting leaking valves independently of load and pulsations is the expansion
stroke.



184 K. Pichler

Fig. 14 pV diagrams of
measurements from a
faultless and a faulty
discharge valve at the same
pressure conditions. The
horizontal lines indicate the
suction (lower line) and
discharge (upper line)
pressure. The pV diagram is
traversed anticlockwise
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Figure 14 shows two pV diagrams: one from faultless valves, and the other
from a leaking discharge valve. Both are measured at the same pressure conditions
before (suction pressure) and after (discharge pressure) the compression cylinder.
The lower horizontal lines in the figure represent the suction pressure, and the upper
horizontal lines represent the discharge pressure. When looking at the expansion
phase on the left-hand side of the plot (between closing the discharge valve and
opening the suction valve), it is obvious that the pressure decreases slower in the
faulty case. This can be explained by high-pressure gas flowing back through the
leaking valve from the discharge chamber into the compression cylinder. In all test
cases, the discharge valve is the leaking valve. In the case of a leaking suction valve,
gas from the cylinder would flow through the valve from the cylinder into the lower
pressured suction chamber. Hence, the cylinder pressure would decrease faster in
this case. Moreover, the effect of load control can be seen in Fig. 14. The load of
the faultless measurement is higher than the load of the faulty measurement. This is
reflected on the right-hand side of the figure, where the compression stroke of the
pV diagram from faultless valves starts and ends significantly later, i.e. at a lower
volume. To demonstrate the effect of the pressure conditions on the pV diagram,
Fig. 15 depicts two pV diagrams, both from faultless valves, at different pressure
conditions. Although both measurements are from faultless valves, the shape of their
expansion strokes is not equal.

According to these findings, a quantifier for the speed of pressure drop during
the expansion stroke has to be found. Deviations from the normal speed can then
be assumed to be caused by a leak. Of course, one has to be aware of the effect of
varying pressure conditions.
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Fig. 15 Two pV diagrams of
measurements from faultless
valves at different pressure
conditions. The horizontal
lines indicate the suction
(lower line) and discharge
(upper line) pressure
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4.2 Feature Extraction

As already illustrated in Sect. 4.1, the expansion stroke of the compression cycle
can be used as an indicator for a leaking valve. The main task is to find a quantifier
for the shape of the expansion stroke in the pV diagram. Focussing on the slope of
the expansion stroke (for instance by integrating over the slope) has two significant
drawbacks:

• The valve events cannot be determined precisely enough. The integration bounds
are thus imprecise, resulting in a defective integral value.

• Different pressure conditions affect the duration of the expansion stroke as shown
in Fig. 15 and therefore the integration bounds. Rescaling the axes with respect
to the pressure conditions did not solve this problem.

These problems can be avoided by using the logarithmic pV diagram [30]. The
compression cycle is a polytropic process. It thus follows the equation [44]:

p · V n = const. (16)

with p denoting the pressure, V denoting the volume, and n denoting the polytropic
exponent. Since the compression chamber is closed during compression and
expansion, the polytropic exponent is supposed to be constant during those phases
[24]. According to Eq. (16), the logarithmic pV diagram delivers the equation:

logp = log c − n · logV , (17)

which is in fact a straight linear relationship with intercept log c and slope −n.
Switching to logarithmic pressure and volume scales thus linearizes the compression
and the expansion stroke. Figure 16 shows the same pV diagrams as Fig. 14, but
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Fig. 16 The pV diagrams of
Fig. 14 with logarithmic
scales
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with logarithmic scales. The compression and the expansion strokes are linear.
Obviously, the expansion stroke in the faultless and in the faulty case have a different
gradient. The leaking valve has a lower absolute gradient than the faultless valve,
suggesting to use the gradient as an indicator for the leaking valve. As the pressure
conditions are the same, the gradients are supposed to be equal, whereas a small
difference usually already points to an (upcoming) fault. Notice that the data are
from a leaking discharge valve. The lower absolute gradient can be explained by gas
flowing back from the discharge chamber into the cylinder through the leaking valve
leading to a slower pressure decrease in the cylinder. In the case of a leaking suction
valve, gas would flow from the compression cylinder into the suction chamber. As
the cylinder pressure would decrease faster in that case, this would result in a higher
absolute gradient than in the faultless case.

However, the different pressure conditions still affect the gradient. This can be
seen in Fig. 17, where different pressure conditions between the faultless and the
faulty case appear. Even though the dashed line represents the measurement from
a leaking discharge valve, its gradient in the expansion stroke appears to be very
similar to the gradient of the faultless case. For that reason, both the gradient and
the pressure conditions have to be considered in the feature space. Of course, the
pressure conditions are not able to discriminate between the faultless and faulty case.
In both cases, any pressure conditions can occur. But as pressure conditions affect
the gradient of the expansion stroke, they help to discriminate whether a changed
gradient is induced by a fault or by the pressure conditions. However, not only the
gradient and the pressure conditions have been investigated. Just like in Sect. 3, a
number of other expert-based and statistical-based features as well as previously
proposed features (such as [48]) were extracted. The feature selection algorithms
selected the two features mentioned before as most discriminative.

Hence, the first feature expresses the pressure difference of the compression
cycle. For each compression cycle, the pressures pS and pD in the suction chamber
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Fig. 17 Logarithmic pV
diagrams of measurements
from faultless and faulty
valves of the same valve type
with different pressure
conditions. Obviously, the
gradient of the expansion
phase alone is not sufficient
to discriminate between
faultless and faulty case.
Also, the pressure conditions
have to be considered
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and in the discharge chamber are measured. The first feature f1 is then simply
defined as the difference between those pressures, that is:

f1 = pD − pS. (18)

The second feature f2 measures the gradient of the expansion stroke in the
logarithmic pV diagram. This is done by a simple least squares regression [9] to fit
a line to the expansion stroke. Since the method is working with measured data, the
data are discrete. Let the logarithmic, discrete pressure measurement data (restricted
to the expansion stroke) be denoted by pexp ∈ R

n (with n ∈ N denoting the
number of samples). The noisy raw pressure signal is smoothed using Whittaker’s
smoother [12, 50]. Similarly, let the logarithmic, discrete volume data (restricted to
the expansion stroke) be denoted by Vexp ∈ R

n. The volume data is obtained as
a virtual signal based on the crank angle. To compute the gradient k ∈ R of the
regression line of the expansion stroke, the system of equations:

A ·
(
d

k

)
= pexp (19)

has to be solved. A ∈ R
n×2 is a matrix consisting of ones in the first column and

Vexp in the second column. By multiplying both sides of the equation system in
Eq. (19) with AT and taking the inverse of the square matrix ATA, the solution is
obtained by:

β̂ =
(
d

k

)
= (AT A)−1AT · pexp. (20)



188 K. Pichler

Although for small 2 × 2 matrices (such as ATA) the likelihood is low that
the matrix has a low condition and thus its inversion is numerically instable, a
regularization scheme is applied following the idea of ridge regression (adding a
regularization term). Then, the solution in Eq. (20) becomes

β̂ =
(
d

k

)
= (AT A+ αI)−1AT · pexp (21)

with a regularization parameter α that is set dependent on the largest eigenvalue
λmax to:

α = 2 · λmax

thr
(22)

with thr = 1015. For more sophisticated parameter choice techniques, see [5]; this
option is used due to a good experience on data sets from various applications, see
e.g. [29], and due to its low computation complexity. After solving the system of
Eq. (19), the gradient k is chosen as the second feature, that is:

f2 = k. (23)

Hence, from every compression cycle (i.e. every pV diagram) one point in a two-
dimensional feature space is obtained.

4.3 Feature Space

This section gives a first visual impression of the feature space. More detailed
classification results are presented in Sect. 6.2.

In Fig. 18, the features of all valve types are illustrated in one feature space. On
the left-hand side, the faultless and the faulty class of all valve types are shown. The
figure suggests that a classification among different valve types is not possible as the
classes are overlapping. The figure on the right-hand side shows only the faultless
class of six valve types. Obviously, all valve types have the same parabolic shape
with a different offset in f2-direction. Especially, the steel valve v2 has an offset
to all other (plastic) valves. The reason for that is that even faultless valves are not
100% leak tight. Compared to the synthetic valves, which have more or less a similar
leak tightness, the steel valve is somewhat more leaky even though it is faultless.
Nevertheless, steel valves are used for some applications as they have some other
properties that plastic valves do not have, for instance, temperature resistance. One
has to be aware of the offset when classifying the features of pV diagram analysis.

Finally, it has to be mentioned that the faulty class is above the faultless class
in all cases shown here. This is characteristic for a leaking discharge valve. For a
leaking suction valve, the faulty class would be positioned below the faultless class
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Fig. 18 Scatterplots of the feature space for different test measurement of different valve types.
(a) Scatterplot of six valve types merged together. (b) Scatterplot of the faultless class of the six
different valve types on the left-hand side

in the feature space. This is because of the higher absolute gradient in that case as
explained in Sect. 4.2.

For obtaining a feature space that is independent of the valve type, the offset has
to be removed. To remove the offset between different valve types, only the faultless
class of each valve type is considered. Assume that the faultless observations in the
feature space are given in the form

(
xk,i , yk,i

)
with k = 1, . . . , n indicating the

valve type (n denotes the number of valve types) and i = 1, . . . , nk indicating the nk
observations for each valve type k. The offsets are determined by minimizing a least-
squares cost function on the data in the feature space. The scatterplots of the feature
space (Fig. 18) show that the data from faultless valves form a parabola. Offset
reduction is successful when one parabola provides the best fit for the faultless class
of all valve types. Thus, an offset dk ∈ R is added to the y-dimension yielding the
observations

(
xk,j , yk,j + dk

)
. The observations of all valve types are merged, and

a parabola:

p(x) = ax2 + bx + c (24)

is fit in a least-squares sense to the merged data. Of course, the offset of one valve
type can be fixed and only the other offsets are estimated. Without loss of generality,
the offset d1 is set to 0. By defining the cost function as:

J (d2, . . . , dn) =
n∑
k=1

nk∑
j=1

(
yk,j + dk − p

(
xk,j
))2
, (25)

it can be minimized using a gradient descent method [39] to obtain the optimal
offsets dk as:
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Fig. 19 Scatterplot of
Fig. 18a with removed offset
and the fitted parabola after
the last optimization step
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[d2, . . . , dn] = arg min
dk∈R, k=2,...,n

J (d2, . . . , dn) (26)

and d1 = 0. The parabola is fitted after each optimization step.
By adding the optimal offset to the original data points, comparable data for

all valve types are obtained. Figure 19 depicts the features of all valve types with
removed offsets and the fitted parabola. It can be seen that the classes are now
separable among all valve types. Please notice that the offset is only added to
feature f2.

4.4 Classification

Besides well-known classification concepts such as SVMs, a special one-class
classifier has been developed for this classification problem. The faultless class has
parabolic shape in the two-dimensional feature space. A leaking valve causes an
excessive value of the feature f2. Hence, the classification problem is to determine
whether feature f2 has excessive values or not (compared to the training data from
faultless class). This is somehow similar to the detection step in spike sorting
[25], where significant peaks of waveforms fluctuating around y = 0 are to be
detected. Transferring this to the present classification problem, the faultless class
is fluctuating around the parabola p (the regression parabola of the faultless class),
and the faulty data can be interpreted as the peaks to be detected. To obtain a similar
situation to spike sorting, a coordinate transformation has to be performed such that
the parabola is the x-axis of the new coordinate system. The classifier training thus
consists of two parts:

• Linearizing the feature space along the faultless class
• Selecting a threshold
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Of course, only observations from faultless valves are considered for classifier
training. Furthermore, since the offsets in the feature space are removed, there is no
need to differentiate between the valve types. The data from faultless valves in the
feature space can thus simply be denoted by (xi, yi) , i = 1, . . . , N , in this section.

To reduce the classification problem to a simple threshold search in one
dimension, the fitted parabola is linearized. A coordinate transformation has to
be found that maps the parabola onto the x-axis and the parabolas apex into the
origin of a two-dimensional space. As the parabola fits the faultless class in a least
squares sense, the faultless class will be represented as a scatterplot along the new x-
axis. This enables fault detection by simply identifying observations with extensive
distance to the new x-axis. One very natural and intuitive, but of course not the
only way to achieve this goal is to choose the new y-coordinate ŷ as the shortest
orthogonal distance of a data point (xi, yi) to the parabola:

p(x) = ax2 + bx + c (27)

with fixed a, b, c ∈ R as computed in the last step of offset removing.
The new x-coordinate x̂ is then the arc length from the apex of the parabola to

the root point
(
x
p
i , y

p
i

)
of the orthogonal distance on the parabola. To formalize this,

the parabola is parametrized as:

p(t) =
(

t

at2 + bt + c
)

(28)

with t ∈ R.
The root point

(
x
p
i , y

p
i

)
can be obtained by intersecting the normal straight line

through (xi, yi) with the parabola, i.e. solving the equation:

(
xi

yi

)
+ λ√

4a2t2 + 4abt + b2 + 1
·
(

2at + b
−1

)
=
(

t

at2 + bt + c
)

(29)

for t and λ. The solution is of course not unique, picking the real solution with the
shortest distance between (xi, yi) and

(
x
p
i , y

p
i

)
, i.e. with minimal absolute value of

λ, gives the final solution. Assume that this solution is denoted by t0 and λ0. The
new coordinate ŷi is given by λ, that is:

ŷi = λ0. (30)

The new coordinate x̂i is given by the arc length of the parabola from its apex to(
x
p
i , y

p
i

)
. Hence, it can be determined by [1]:

x̂i =
t0∫

0

√
1+ 4a2t2 + 4abt + b2 · dt. (31)
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Fig. 20 Feature space of
Fig. 19 linearized along the
regression parabola of the
faultless class according to
Eqs. (30) and (31)
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The new feature space is illustrated in Fig. 20. The classes are linearly separable
using a simple threshold in ŷ-dimension.

For selecting the threshold in ŷ-dimension, a very simple approach inspired by
spike sorting [25] is used. In the linearized feature space

(
x̂i , ŷi

)
, the threshold is

set as proposed in [38] to:

τ = 4 · median
i=1,...,N

( ∣∣ŷi
∣∣

0.6745

)
. (32)

The expression median
i=1,...,N

( |ŷi |
0.6745

)
in Eq. (32) is just an estimate for the standard

deviation. However, if there are outliers in the training data, this expression is more
robust than the standard deviation. Hence, the threshold τ detects 4σ outliers of the
normal data.

Once the classifier is trained, it can be applied to unseen data to obtain the class
information. However, there is one constraint to applying the classifier to data of
a new valve: the offset to the other valve types in the feature space is unknown.
Data from faultless state have thus to be provided to compute the offset d ∈ R.
According to reciprocating compressor operators, this is not a hindering constraint,
as monitoring will start at a faultless state after deploying new valves or after a
general inspection of the compressor. Data from the beginning of the compressor
operation can then be used for determining the offset. From these data, the features
are computed and represented by the data points (xi, yi) , i = 1, . . . , n. For
determining the offset, an optimization problem similar to (25) and (26) is solved.
The cost function is defined as:

J (d) =
n∑
i=1

(yi + d − p (xi))2 (33)
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with p representing the regression parabola with fixed parameters a, b, c ∈ R as
determined in the offset removal for classifier training. In this approach, the parabola
parameters are fixed after classifier training. A self-adapting approach updating the
parabola parameters on the fly might be a reasonable extension in future work. The
cost function is minimized as:

d = arg min
d∈R

J (d) (34)

to obtain the offset. Once the offset is known, it is added to the feature value f2 of
each newly monitored compression cycle. Assume that such a new feature vector is
denoted with (x, y). After adding the offset, the feature vector is (x, y + d). Then,
it is linearized along the parabola p as in Eqs. (30) and (31) resulting in the new
feature vector

(
x̂, ŷ

)
. Finally, the value ŷ is compared to the threshold τ .

5 Experimental Setup

The proposed methods in this chapter were developed and tested using real-
world measurement data. The data were acquired by the project partner Hoerbiger
Compression Technology at a reciprocating compressor test bench located at the
Hoerbiger Ventilwerke in Vienna.

5.1 Compressor Test Bench

The test compressor was a two-stage Ariel JG2 reciprocating compressor. Detailed
specifications of the compressor are listed in [4]. An electric motor with a constant
revolution speed of 750 rpm drives the compressor—that means one cycle lasts
0.08 s. The scheme of the compressor is sketched in Fig. 21. The compressor takes
in air at environmental pressure and temperature through a filter. After the first
double-acting compression cylinder, the air flows to a pulsation damper and an
intercooler. The next pulsation damper is followed by the second double-acting
compressor stage. After cooling and damping the air again, it is discharged into
a high-pressure discharge vessel. The compressed air in the discharge vessel can be
dumped manually. The compressor is equipped with a reverse flow control system.
The load of each stage can be controlled manually as well as automatically by a
control module [19].

The test compressor was equipped with several sensors. First of all, there was a
TDC sensor that measures when the piston of stage 1 is at its top dead centre. Since
stage 1 and stage 2 have 180◦ phase shift, the piston is at its BDC in stage 2 when
it is at its TDC in stage 1. The TDC information is required to split the measured
signals into cycles of the compressor. As the revolution speed is constant and the
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Fig. 21 A sketch of the reciprocating compressor test bench

cylinder dimensions (except for the exact clearance space) are known, it can also
be used to compute the volume at each time instance. This creates a virtual volume
signal that is used for plotting the pV diagrams. Furthermore, the pressure in the
four compression chambers (two at each cylinder) and the suction and discharge
pressure of the two stages were measured. For vibration analysis, an accelerometer
was mounted at the valve cover of the DV HE2 (discharge valve at the head end
of compressor stage 2). The accelerometer measures the vertical accelerations of
the valve cover. All data were recorded at a sampling rate of 100 kHz. The control
values can be acquired directly from the control module. This delivers one control
value per cycle for each stage.

Faults were simulated by manipulating the sealing element of the valve. The
manipulated (leaking) valve was positioned at DV HE2. The measurements were
performed in the following way: first, measurements with a faultless valve were
made. Then, this very same valve was dismounted. The sealing element was
manipulated by cracking it or breaking a part out of it. Finally, the valve was
mounted again, and a new measurement run with the now faulty valve was recorded.
Most of the measurements were made with varying load levels and pressure
conditions.

5.2 Test Runs

In multiple test runs spread over several years, test data of different valve types
were acquired. The tested valve types and the according fault states are listed below.
Baseline denotes a faultless valve, Crack denotes a small crack (a fissure) in the
valve, and Broken denotes that a part of the sealing element is broken off. As a
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fissure in the sealing element does not cause a significant leak, it does not affect
the pV diagram significantly. Hence, it cannot be expected to detect the fault state
Crack by analysing the pV diagram. With each of the listed valve types, at least
one measurement run for acquiring test data was performed. Each measurement run
lasted at least 3 min.

The first part of the valve name specifies the design of the valve: R and CP are
plate valves of different designs, Ring are concentric ring valves. The term in the
parenthesis specifies the material of the valve. Except for the R (Steel) valve, all
valves are made of synthetic material. Finally, the term in square brackets is just an
abbreviation that is used for the valve (or the measurement run) in this chapter. For
further details regarding the valve types, the reader is referred to [18].

• R (MT) [v1]

– Baseline [vbl1 ]
– Broken [vbr1 ]

• R (Steel) [v2]

– Baseline [vbl2 ]
– Crack [vcr2 ]

• Ring (HTCX) [v3]

– Baseline [vbl3 ]
– Crack [vcr3 ]
– Broken [vbr3 ]

• Ring (PC) [v4]

– Baseline [vbl4 ]
– Crack [vcr4 ]
– Broken [vbr4 ]

• R (Peek) [v5]

– Baseline [vbl5 ]
– Crack [vcr5 ]
– Broken [vbr5 ]

• CP (modHTCX) [v6]

– Baseline [vbl6 ]
– Crack [vcr6 ]
– Broken [vbr6 ]

• R (MT) [v7]

– Baseline [vbl7 ]
– Crack [vcr7 ]

• CP (Peek) [v8]

– Baseline [vbl8 ]
– Crack [vcr8 ]

• R (Steel) [v9]

– Baseline [vbl9 ]
– Crack [vcr9 ]
– Broken [vbr9 ]

For the test measurements v7–v9, there are no pressure measurements available.
Thus, no pV diagram analysis can be performed for these test data.

To give the reader an impression of the sealing elements and the fault types, two
examples are illustrated in Fig. 22. In the left figure, a part of the sealing element
of a plate valve is broken off (fault state = Broken). A sealing element of a plate
valve with a fissure can be seen on the right side (fault state = Crack). Watching
these figures, it is comprehensible that the fault state Crack does not affect the pV
diagram significantly as there is no significant leak.
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Fig. 22 Faulty sealing elements of a plate valve. (a) The sealing element of a plate valve with a
part broken off (fault state = Broken). (b) The sealing element of a plate valve with a fissure (fault
state = Crack)

6 Results

This section provides plots of the feature spaces and classification results obtained
by applying classifiers to the feature spaces of vibration analysis and pV diagram
analysis.

6.1 Vibration Analysis

For computing test observations of vibration analysis, a reference and a test spec-
trogram are compared. Test observations are generated as follows: for each valve
type vi , a reference spectrogram is computed and stored every 2.5% of the length
of the measurement. The reference spectrograms are only taken from measurements
from faultless valves (vbli ). Then, for all measurement runs (vbli , v

cr
i , v

br
i ) from this

valve type, a test spectrogram is computed every 2.5% of their length. These test
spectrograms are compared to every reference spectrogram of vi , and the features
are extracted. This procedure delivers a broad amount of test observations in the
feature space to perform validation. During test runs, considering computational
effort and detection rate, a spectrogram resolution of nt = 124 and nf = 257
turned out to be a good choice for a window of the length of 2 compression cycles.
The number of test observations for each valve type and each fault state is provided
in Table 1. As there is no desirability to discriminate between the fault states Crack
and Broken, those two states are merged to one Faulty class for validation. The
classification task is thus to discriminate between the states Baseline/Faultless and
Faulty. Of course, the classifiers have to outperform at least the default classifiers,
i.e. the classifiers that assign all observations the same (majority) class. With the
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Table 1 Number of
observations of each valve
type in vibration analysis

Valve type Baseline Crack Broken

v1 780 0 1600

v2 780 1600 0

v3 780 800 1600

v4 780 1600 1600

v5 780 1600 2400

v6 1770 2400 2400

v7 3350 5600 0

v8 1770 4800 0

v9 190 400 400
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Fig. 23 Subspace f1, f2 of the feature space from the valves v2 and v9. (a) Steel valve v2 with
fault states Baseline and Crack. (b) Steel valve v9 with fault states Baseline, Crack, and Broken

available test data (Table 1), the default classifier assigning every observations the
state Faulty has an accuracy of 72.51% for plastic valves and 71.22% for steel
valves.

The steel valves play a special role in vibration analysis. The difference in the
spectrogram between the faultless and faulty case is of a smaller degree than for the
plastic valves. This is reflected in the feature space as well. Figure 23 illustrates the
subspace (f1, f2) of the two steel valves. The left side shows steel valve v2 (with
the fault states Baseline and Crack), and the right side shows steel valve v9 (with the
fault states Baseline, Crack, and Broken). The classes Baseline and Crack overlap
clearly, and the feature values show less deviation in the faulty case of the steel valve
than in the faulty case of the plastic valves (Fig. 13).

The subspace of the features f1 and f2 of all valves merged in one plot is depicted
in Fig. 24. The left side shows all valves except the steel valves. Even though the
valves are of different design and made of different plastic materials, actually only
f1 and f2 provide already quite a good visual separability. On the right side, the
observations from the steel valves v2 and v9 are added. It can be seen that the classes
Crack and Broken from the steel valves are overlapping with the class Baseline from
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the plastic valves. Using other features than f1 and f2 shows a similar overlap.
This suggests again that the features from plastic valves and steel valves cannot
be classified using the same classification boundary. Furthermore, the left plot of
Fig. 24 suggests that vibration analysis does not give the opportunity to distinguish
between the states Crack and Broken. The two classes are overlapping in wide parts
of the scatterplot. There are parts where they do not overlap; however, this may
be due to the operation conditions of reference and test spectrograms and not due
to the fault state. The classification task is thus to discriminate between the states
Baseline/Faultless and Faulty.

Validation is performed in a leave-one-valve-out approach. This means that each
valve type vi serves for validation once. When validating the classification for this
valve, the classifier is trained with all other valves. For each validation valve, the
confusion matrix (CM) is computed and the CMs are summed up to obtain one final
CM and therefore one accuracy value. For classification, the logistic rule (in a two-
class setup) and SVMs (in two-class as well as one-class setup) are used. For one-
class SVM, only the measurement runs with fault state Baseline are used for training
the classifier. This whole validation procedure is done separately for plastic and steel
valves. The obtained accuracy values are listed in Table 2. For plastic valves, all
classifiers perform almost equal. Hence, even one-class classification is suited for
plastic valves, reducing the amount of training data sufficiently. For the steel valve,
only the two class SVM classification approach delivered satisfying accuracy.
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Fig. 24 Subspace f1, f2 of the feature space from all valves. (a) Valves v1, v3, v4, v5, v6, v7, and
v8 with fault states Baseline, Crack, and Broken. (b) Valves v1, v2, v3, v4, v5, v6, v7, v8, and v9
with fault states Baseline, Crack, and Broken

Table 2 Validation accuracies [%] using logistic regression and SVM in vibration analysis

Valve material Log. Reg. Two-class SVM One-class SVM

Plastic 99.49 99.97 99.37

Steel 84.96 94.66 71.60
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6.2 pV Diagram Analysis

As assumed before, a small crack in the sealing element does not affect the tightness
of the valve enough to have a significant effect on the pV diagram. This is illustrated
by scatterplots of the feature space from valve v3 and v6 in Fig. 25. They show that
there is actually no difference between the fault states Baseline and Crack. Similar
observations can be made for all other valve types. This can be interpreted as a
verification of the assumption that a very small crack does not cause a significant
leak. The fault state Crack is thus not included in the validation scenarios for pV
diagram analysis. Hence, validation is only performed for measurement runs with
the fault states Baseline and Broken, that are vbl1 , vbr1 , vbl2 , vbl3 , vbr3 , vbl4 , vbr4 , vbl5 ,
vbr5 , vbl6 , and vbr6 . As a general information, the number of observations in the
feature space, which accords to the number of compression cycles and pV diagrams,
respectively, is provided here. The feature space of the measurement runs stated
above consists of 48,482 observations, 27,977 from fault state Baseline and 20,505
from fault state Broken. This results in a 57.70% accuracy for the default classifier
that assigns every observation the state Baseline. The number of observations for
each single valve type is shown in Table 3.
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Fig. 25 Feature space of valve v3 and v6 containing the fault states Baseline, Crack, and Broken.
(a) Feature space of valve v3. (b) Feature space of valve v6

Table 3 Number of
observations of each valve
type in pV diagram analysis

Valve type Baseline Broken

v1 5598 3731

v2 3728 0

v3 3729 3731

v4 5595 3727

v5 3729 5589

v6 5598 3727
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First, validation in the two-class case using SVM is performed to demonstrate the
good discriminative power of the proposed features. Then, the one-class classifier
from Sect. 4.4 is compared with other well-known one-class classifiers.

For two-class SVM classification, two validation scenarios are considered:

1. Tenfold cross validation is applied to the feature space of each valve type
separately. For all valve types, the classifier delivers an accuracy of 100%.

2. The data of all valve types are merged to one data set. Then, tenfold cross
validation is applied to this feature space. The result of this validation method is
an accuracy of 96.37±0.19% (mean value± standard deviation of the tenfolds)
before removing the offset and 100% after removing the offset.

For evaluating the one-class classifier proposed in Sect. 4.4, it is compared
to several one-class classifiers found in the literature, namely (robust) Gaussian
data description (abbreviated g and rg in Table 4), mixture of Gaussians (mog)
data description, k-means (km) data description, k-nearest neighbour (knn) data
description, and SVM data description. Detailed information on the classifiers can
be found in [43].

Each of the well-known classifiers has some free parameters to adjust, at least the
rejection rate (the fraction of training observations to be rejected by the classifier).
Some of the classifiers, for instance SVMs, have even more free parameters, and
for km and knn proper k-values have to be fixed. For those classifiers, validation is
performed on a reasonable grid of parameters and k-values, respectively. Finally,
the values delivering the best validation accuracy are chosen. In contrast, the one-
class classifier proposed in Sect. 4.4 (abbreviated occ in Table 4) has no free
parameters. The well-known one-class classifiers in this study are not limited to
a linear classification boundary (such as the classifier proposed in Sect. 4.4). Thus,
they were used for classification before and after the feature space was linearized
along the regression parabola. Detailed results are provided in Table 4, which shows
only the accuracy for the best-case parameter values.

The validation in Table 4 is performed as follows: The classifier is trained with
faultless data of five valve types. The sixth valve type is used for validation. Every
valve type serves for validation once. The faultless data of the validation valve type
are split into four parts of equal length. Each of the four parts serves once for
computing the offset of the validation valve type. When the offset is determined,
validation is performed with the other three parts of the faultless data and all faulty
data of the validation valve type. Thus, each of the four parts of the faultless data

Table 4 Validation accuracies [%] for one-class classification

occ g rg mog km knn SVM

Accuracy before
– 97.91 89.50 94.98 98.07 98.80 99.40

linearizing [%]

Accuracy after
99.96 98.88 99.85 99.76 99.24 99.74 99.54

linearizing [%]
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delivers one confusion matrix. Those four matrices are added to obtain one single
confusion matrix for the validation valve type. Finally, the confusion matrices of
each validation valve type are added, delivering one single confusion matrix for a
classifier. From this confusion matrix, the classification accuracy is determined and
shown in Table 4.

As the classifier proposed in Sect. 4.4 is designed especially for the linearized
data, there is no value for it in the table before linearizing. It can be seen that, with
an accuracy of 99.96%, it performs best among all classifiers, even though it is not
optimized with respect to any parameter value. Furthermore, all classifiers improve
in classification accuracy after linearizing along the parabola. This suggests that
even the linearization step alone allows an improvement.

The results of another validation scenario are presented in Table 5. Here, only
one valve type was used to train the classifier. This classifier was then used to
classify every other valve type. Again, the faultless data of the validation valve
are split into four parts, and each part is used once to determine the offset of the
validation set. The rows in the table represent the training valve type, while the
columns represent the validation valve type. The two best classifiers from Table 4 are
compared: the upper value shows the accuracy of the classifier proposed in Sect. 4.4.
The lower value shows the accuracy of the robust Gaussian data description method.
The accuracy values are worse than before due to the limited training sets: the
training data do not contain the whole range of pressure conditions for all valve
types, and only a couple of minutes training data are probably not representative
enough to describe the feature space completely. Still, the classifier proposed in
Sect. 4.4 performs better than the best of the well-known methods. Even though its
accuracy is slightly below the robust Gaussian classifier in some cases, it has not as
low values as the robust Gaussian classifier. This can be seen especially when the
classifier is trained with v2 and v5.

Table 5 Validation accuracy
[%] for one-class
classification using only one
valve type for training

Train\Valid v1 v2 v3 v4 v5 v6

v1 –
99.67 99.99 99.62 99.14 98.28

99.64 100 100 100 100

v2
99.22

–
99.93 99.79 99.19 97.99

99.36 46.47 54.02 34.60 100

v3
96.72 95.82

–
99.30 99.93 98.62

87.05 97.38 99.96 100 99.04

v4
99.44 99.72 100

–
100 99.80

98.50 98.14 100 100 100

v5
94.52 96.44 92.91 97.00

–
93.73

82.92 74.43 89.83 94.40 90.71

v6
96.68 95.00 99.53 98.12 99.99

–
86.09 87.03 99.46 98.26 100

The upper value represents the classifier proposed in Sect. 4.4,
the lower value the robust Gaussian data description method
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In summary, this section shows that the proposed features have a good discrim-
inative power for the detection of leaking valves in the pV diagram. Furthermore,
the proposed one-class classifier performs well even though it has no free parameter
to be set.

7 Conclusions

In this chapter, two data-driven methods for detecting leaking reciprocating com-
pressor valves are proposed. The two approaches are independent from each
other, i.e. they use different measured signals to monitor the valves. One method
evaluates the accelerometer data at the valve covers, and the other one evaluates
pressure signals before, after, and in the compression chamber in combination
with a virtual volume signal. Each of the two methods is able to cope with the
challenges addressed in the problem statement (Sect. 2.2), such as varying load
levels and pressure conditions, and different valve types. Both methods yield in
a high validation accuracy on real-world data. However, they have some individual
advantages and disadvantages.

Using vibration analysis, impending faults can be detected at an earlier stage. The
experiments have shown that even a small fissure in the valve affects the vibration
pattern enough to be detected by the algorithm. In contrast, pV diagram analysis
detects a leak not until it is big enough that a sufficient amount of gas can flow
through the closed valve, thus affecting the expansion stroke of the pV diagram
significantly. Observing pV diagrams with states Baseline and Crack shows no
difference at all between those two cases. Hence, it will be not possible to detect
the fault Crack via the pV diagram only by extracting features from it.

Monitoring steel valves is a problem for the vibration analysis approach. While
all of the tested plastic valves show more or less similar vibration patterns, steel
valves differ significantly. Hence, separate classifiers for steel valves and plastic
valves have to be used. Another problem is that the validation accuracy in the
experiments for steel valves was too low for a monitoring system used in real-world
applications. The pV diagram analysis is better suited for monitoring steel valves.
Once the offset in the feature space is determined, steel valves are classified with
the same classifier as plastic valves and with high accuracy.

The classification accuracy in vibration analysis depends strongly on the param-
eter choice of the classifier, for both (one-class) SVMs and logistic classification.
For optimal parameter choice, a sufficient amount of annotated validation data is
needed. These data were provided for developing the two approaches. But, it is
doubtful whether, under real-world conditions, such a proper determination of the
parameter values is possible or not. For pV diagram analysis, a parameter-free one-
class classifier is proposed in Sect. 4.4. This classifier is tailor-made for the feature
space of pV diagram analysis and yields in a better accuracy than several well-
known (not parameter-free) one-class classifiers.
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Online applicability is of course an important topic for fault detection systems.
Since the feature extraction and classification steps are very quick, the basic
method enables online condition monitoring of the valves. However, at the actual
development state, the training phase (for instance the classifiers, the parabola, etc.)
has to be performed offline with pre-recorded data. Since it is desirable for many
applications to learn or update such parameters on the fly, some extensions have to
be made in the future.
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A New Hilbert–Huang Transform
Technique for Fault Detection in Rolling
Element Bearings

Shazali Osman and Wilson Wang

1 Introduction

Rotating machinery is commonly used in various industries, such as automotive,
aerospace, chemical engineering, and power generation. Such a machinery opera-
tion requires high reliability and safety but at lower costs. Therefore, accurate fault
diagnosis of machine failure is vital, to the operation and maintenance of machinery
to recognize an incipient machinery defect at its earliest stage so as to prevent
machinery performance degradation, malfunction, and even catastrophic failures.
Based on investigations, more than 50% of rotating machinery imperfections are
related to defects in rolling element bearings [1, 2], and correspondingly, this work
will focus on fault detection in rolling element bearings.

There are different types of rolling element bearings. According to the structure
of rolling elements, for example, bearings can be classified as roller, cylindrical,
taper bearings, and ball bearings. Different from gears and shafts, a rolling element
bearing is, in fact, a system that is comprised of an inner ring (or race), an outer ring
(or race), rolling elements, and a cage, as illustrated in Fig. 1. In general, the inner
race is fastened to the shaft and rotates with the shaft; the outer ring is mounted in
the bearing housing, which is usually fixed.

Bearing components are subjected to dynamic loading. Bearing defects can
be classified into distributed and localized faults. The dynamic Hertzian contact
loading leads to bearing fatigue damage in due course, resulting in micro-cracks and
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D

d

q

Fig. 1 The geometry of a rolling element bearing (a ball bearing in this case) and its parameters.
d = diameter of the rolling element, θ = angle of contact, D = pitch diameter

localized defects that include cracks, pits, and spalls on bearing component surfaces.
Distributed defects include wear, surface roughness, waviness, and misaligned
races. In applications, most distributed defects originate from localized defects.
Accordingly, this work focuses on the analysis of localized bearing faults.

Bearing fault detection can be undertaken based on the analysis of different
information carriers, such as temperature, debris, or vibration. However, vibration-
based monitoring could be the most commonly used approach due to its ease of
measurement and high signal-to-noise ratio, which will be used in this work [3, 4].

Bearings generate vibration even if its components are healthy. Vibration forces
can excite resonances of the surrounding structures. Although excitation is natural
for rolling bearings, these forces can be greatly amplified due to imperfections or
defects on the bearing components.

Many signal processing techniques have been proposed in the literature to
extract representative features in the time domain, frequency domain, and time–
frequency domain, for bearing fault detection. Commonly used time domain
diagnostic indicators are usually determined through the analysis of probability
density distribution properties, such as kurtosis, clearance factor, and impulse factor
[5, 6]. Unfortunately, as the bearing damage propagates, the impulse features would
take on a random pattern, and these statistical indicators may generate confusing
diagnostic results.

Currently, frequency analysis could be the most common approach for bearing
defect detection [4, 6]. In frequency analysis, bearing fault defection is based on the
analysis of spectral information. The Fourier transform (FT) of the time signal can
provide discrete information about each specific event involved. Each component
of a bearing has its own characteristic frequency, as does any fault associated with
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that component. These frequency spectral contents can be used to examine bearing
health conditions.

Consider a bearing with sound conditions and no slippage between the rolling
elements and the races, as shown in Fig. 1. Assume that this bearing has a fixed
outer race and a rotating inner race (the general case). For an outer race defect, the
outer race defect characteristic frequency in Hz is calculated using:

fOR = fr
z

2

(
1− d

D
cos θ

)
(1)

The inner race defect characteristic frequency is calculated as:

fIR = fr
z

2

(
1+ d

D
cos θ

)
(2)

If a rolling element is damaged, the defect characteristic frequency is com-
puted by:

fBD = fr
z

2

(
1+

(
d

D
cos θ

)2
)

(3)

where D is pitch diameter, d is diameter of a rolling element, θ is the angle of
contact, z is the number of rolling elements, and fr is the shaft speed in Hz.

When a bearing is healthy, the related characteristic frequency is the shaft
frequency fr. As a fault occurs in a bearing component, the corresponding defect
characteristic frequency and/or its harmonics will be, in theory, seen on the
spectrum.

When a bearing component is damaged and the localized defect hits other
bearing components, impulses are generated, which will excite support structural
resonances. Envelope analysis can extract the periodic excitation of the resonance
to detect the presence of a defect [4, 6]; however, this analysis requires experience
in locating carrier frequencies when implementing the band-pass filter. Cepstrum
analysis can be applied for detecting the periodicity of spectra corresponding to
bearing fault-associated periodic impulses [6, 7]; however, it is usually difficult
to detect incipient bearing damage with weak energy distribution modulation. In
addition, spectrum analysis is not suitable to detect bearing defect if feature property
varies in time with no baseline information.

Time–frequency domain techniques apply both time and frequency information
to investigate transient feature properties. The common time–frequency analysis
techniques include the short-time FT, the Wigner–Ville distribution, the wavelet
transform (WT), and the Hilbert–Huang transform (HHT). In using the short-
time FT, impacts that occur with different frequency spectra can be observed
from the resulting map [8, 9]; however, its analysis has limited time–frequency
resolutions. The Wigner–Ville distribution can be interpreted as a distribution of
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signal energy in the time–frequency domain with infinite resolutions [10, 11];
however, it may contain nonphysical interference (cross) terms that can deteriorate
resolution. The WT uses variable size windows that can provide better resolutions
and clear indication of the leading edge of impulses at higher frequencies [12,
13]; however, most WT-based analyses suffer from oscillation around singularities
and shift variance, which may make it difficult to detect the individual structural
resonances excited by the defect-induced impact.

The HHT-based techniques employ the empirical mode decomposition (EMD)
and Hilbert transform for nonstationary signal analysis [14]. For example, a
combination of the HHT, the support vector machine, and the support vector
regression was suggested in [15] for bearing fault detection; however, it was difficult
to track error contributions from each employed method in the proposed scheme.
A marginal spectrum analysis of HHT was proposed in [16] for bearing fault
detection; but, it required the fault spectrum beforehand to select intrinsic mode
functions (IMFs). In general, if more IMFs are selected for HHT computation, the
processing efficiency deteriorates significantly [15, 16]. To facilitate processing,
classical HHT analysis usually uses the first few IMFs for bearing defect detection
[17]; however, the selected IMFs may not always contain the most representative
information. To solve this problem, a method was proposed in [18] to overcome the
end effects and remove redundant IMFs; however, that method could not improve
the stability of the HHT. The authors have also proposed a normalized HHT [19]
and an enhanced HHT [20] techniques for bearing fault detection; although these
methods can produce promising results in extracting bearing fault-related features
under controlled operating conditions, they still require an approach to adaptively
select and integrate the most representative IMFs for bearing defect detection.

On the other hand, mathematical morphology-based analysis has recently
attracted more interests in signal processing and machinery fault detection [21].
For example, Huang et al. combined mathematical morphology, EMD, and power
spectral density for bearing fault detection [22]; however, this method could not
select appropriate structural element (SE) length for signal denoising. A flat SE
was used for bearing fault detection in [23], which determined the maximum scale
and length of the moving window empirically. A morphogram analysis method
was suggested in [24] for bearing fault diagnosis; it used a construction index to
optimize SE length, which, however, could become inaccurate when the signal is
second-order pseudo-cyclostationary due to transients. In [25], a triangular SE was
applied to defect bearing fault, but that method could not account for the effects of
different scales and shapes of SE.

To tackle the aforementioned problems, a new enhanced Hilbert–Huang trans-
form (eHT) technique is proposed in this work for nonstationary feature analysis
and incipient bearing defect detection. The eHT technique is new in the following
aspects: (1) A denoising filter is adopted to demodulate transmission impedance
of the vibration signal and improve signal-to-noise ratio. (2) A novel HHT-based
morphological filter technique is suggested to highlight defect-related impulse
signatures for bearing fault detection. The effectiveness of the proposed eHT
technique is verified experimentally using tests of different bearing conditions.
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The reminder of this chapter is arranged as follows: The minimum entropy
convolution denoising filter is discussed in Sect. 2. The proposed eHT technique
is addressed in Sect. 3. The effectiveness of the proposed techniques is tested in
Sect. 4, and some conclusion remarks are relegated to Sect. 5.

2 Minimum Entropy Deconvolution Filter

Figure 2 is the flowchart illustrating the fault detection process using the proposed
eHT technique. Firstly, the measured vibration signal is denoised by the use of
minimum entropy deconvolution (MED) filter. Then, the residual signal is processed
using the proposed eHT technique for bearing fault detection. The denoising filter
is discussed in this section.

If a bearing is damaged (e.g., a fatigue pit on the fixed ring race), impulses
are generated whenever a rolling element strikes the damaged region. Due to the
impedance effect of transmission path, the measured signal, using a vibration sensor,
is a modulated signature of the defect-related impulses. To highlight defect-related
impulses, a denoising process is taken first using the MED filter.

The MED was firstly proposed by Wiggins for deconvolving the impulsive
sources on a mixture of signals [26]. The MED has shown its effectiveness
to highlight the impulse excitations from a mixture of responses for machinery
system condition monitoring [26, 27]. For example, the MED was combined with
autoregressive models and wavelet analysis for fault detection in gear systems [28]
and bearings [29]. The proposed eHT technique in this work is different from those
in [26–29]; these two techniques performed fault detection using three processes:
MED, autoregressive modeling, and the WT, and consequently it would be more
difficult to track the processing errors contributed from each individual method
whose parameters must be optimized before processing.

The implemented MED filter aims to highlight impulses by minimizing the noise
(i.e., entropy) associated with signal transmission path. Entropy minimization is
achieved by maximizing signal kurtosis which is sensitive to impulse-induced dis-
tortion in the tails of the distribution function. Figure 3 illustrates the MED filtering
process in this signal denoising operation. The signal x represents the original form
of the defect impulses. The signal Ns represents the random noise interference. The
structure filter g represents the impedance effect of the transmission path from the
bearing to the sensor.

Data
acquisition

Signal
denoising

Rotary
machine eHT Bearing fault

detection

Fig. 2 Flowchart of proposed eHT technique for bearing condition monitoring
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Fig. 3 The MED filtering process

The objective of the inverse MED filter Q is to find an optimal set of filter
coefficients vector q to recover the original impulse signal by maximizing kurtosis
or minimizing entropy. The kurtosis is determined as the fourth-order statistic
measurement of a signal (an objective function) such as:

O4 (q(l)) =
N∑
i=1

y4(i)

/[
N∑
i=1

y2(i)

]2
(4)

where y is the output signal using the inverse MED filter Q and N is the length of
the signal.

The optimal filter coefficient vector q is achieved by optimizing the kurtosis of
the objective function in Eq. (4), which is achieved by letting

∂(O4 (q(l)) /∂q(l) = 0 (5)

The convolution of the inverse filter is generally given by:

y(j) =
Lm∑
j=1

q(l)z (j − l) (6)

where z= (x+Ns)⊗ g is the observed signal, and⊗ is the convolution operator; and
Lm is the length of the MED filter. Delay l is used to make the inverse filter causal
[26–29].

By using ∂y(j)/∂q(l) = z(j − l) in Eq. (5) and combining Eqs. (4)–(6) yields:

⎡
⎣

N∑
i=1

y2 (i)
/

N∑
i=1

y4 (i)

⎤
⎦

N∑
i=1

y3 (i) z (i − l) =
Lm∑
p=1

q (p)
N∑

i=1

z (i − l) z (i − p)

(7)
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Equation (7) can also be represented by B = Aq, where B is the left-hand side

of Eq. (7) and A =
N∑

i=1
z (i− l) z (i− p) is the Toeplitz autocorrelation matrix of

observed signal z.
The MED is conducted by the use of the following algorithm [29]:

1. Set the initial Toeplitz autocorrelation vector A as delayed impulse value, then
initialize the filter coefficient q(0) as the delayed impulse. The autocorrelation
matrix A is calculated once and is used repeatedly in the following iteration
operations.

2. Determine the output signal y(0) after applying the inversed MED filter, q(0) and
using the input signal z(0) (Eq. (6)) (see Fig. 3).

3. Calculate B(1) from Eq. (7) and determine the new optimal filter coefficients
q(1) by:

q(1) = A−1B(1) (8)

4. Compute the error from the changes in filter coefficient values:

e =
(
q(1) − μq(0)

)
/μq(0) (9)

where μ is the inner product determined by: μ =
(
E
(
q(0)
)2
/E
(
q(1)
)2)1/

2 and E(.)

is the expectation operator.
In operation, if E(e) > TE (TE = 0.01 in this case), update the filter coefficients

by repeating the aforementioned algorithm starting from step 2. Otherwise, if
E(e) ≤ TE, terminate the iteration. On the other hand, the iteration process is
terminated if the number of iterations exceeds a threshold (100 in this case, selected
by trial and error) or if the algorithm does not converge to the set value of E(e).

In the above algorithm, MED filter length, Lm, and iteration number are
determined by trial and error. As an example, consider a simulated signal consisting
of three impulses and some noise as illustrated in Fig. 4a. The signal length is set to
10,000 samples. Figure 4 illustrates the processing results of three MED filters with
filter lengths Lm = 100, 300, and 500, respectively. The respective convergence in
terms of kurtosis is shown in Fig. 4. It is seen that these three distinctive impulses
can be clearly highlighted if the filter length Lm = 300 (Fig. 4c). The filter with
length Lm = 500 has the highest kurtosis value (Fig. 4d) than filters with lengths
of 100 (Fig. 4b) and 300 (Fig. 4c); however, it cannot recognize all of the three
impulses due to phase distortion.

On the other hand, Fig. 5 compares the convergence of MED filters with different
lengths: 100, 300, and 500, respectively. It is seen that all three MED filters converge
quickly over eight iterations only; that is, the convergence of implemented MED
filter is not sensitive to filter length.
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Fig. 5 Convergence comparison of MED filters with different lengths: (a) filter length of 100, (b)
filter length of 300, and (c) filter length of 500

3 The Proposed eHT Technique for Bearing Fault Detection

The proposed eHT is applied to denoise the vibration signal from the adopted MED
filter. The eHT includes two processing procedures: firstly, a novel morphological
filter technique to process related signatures employing a new normality measure
to select the optimal structural element (SE) length of the related IMFs. Secondly,
a normalized HHT (denoted as NHHT) proposed by the authors in [19] is used to
process the resulting signature for incipient bearing fault detection. In this section,
the morphological filter technique is introduced first, followed by the normality
measure for SE selection; the proposed eHT technique will be discussed in Sect. 3.2.

Before introducing the proposed morphological filtering technique, some related
concepts of mathematical morphology will be briefly discussed first in this subsec-
tion, and more related details can be found from [30].
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3.1 Brief Discussion of Mathematical Morphology Analysis

3.1.1 Structural Element (SE)

In general mathematical morphology analysis, it is assumed that all sets are
closed sets, and signals are continuous. The basic morphological signal analysis
is perturbed by transforming the signal through intersection with the SE. The SE
is a probe that scans and modifies the input data by taking into account local
information. An SE set can be either flat or non-flat, depending on applications.
An important parameter in the construction of a flat SE is its length. If it is shorter,
it becomes easier to extract the impulses by suppressing noise; however, it will be
more difficult to demodulate the formulated signature, and vice versa [30, 31]. The
literature still lacks an appropriate method to select the optimal length that can
enhance both impulse extraction and demodulation. In general, the SE length is
selected as approximately 0.6–0.7 times the repetition period [32, 33]; however, this
may not be suitable for many dynamic system analyses such as the case of bearing
fault detection, as demonstrated in Sect. 4.

3.1.2 Dilation and Erosion

Suppose z(n) is the discrete-time signal over Z = {0, 1, . . . , N − 1}, where n is
the index variable and N is the length of the signal. If g(n) is the discrete-time SE
over the domain G = {0, 1, . . . , M − 1}, where M is the length of the SE (usually
M << N), the dilation operation, denoted by δ, is defined as:

[
δg (z, g )

]
(n) = ∨m∈G z (n+m) (10)

where ∨ represents the supremum operator and m is the length of the flat SE.
The erosion operation, ε, is defined as:

[
εg (z, g )

]
(n) = ∧m∈G z (n+m) (11)

where ∧ denotes the infimum operator. ∨ and ∧ can also be treated as the maximum
and minimum operators of function z in a neighborhood defined by the SE (i.e., g).
To simplify the mathematical morphology expression, the Minkowski algebra [30]
will be used in the above equations: δg ∼ z ⊕ g and εg ∼ z � g. Equations (10) and
(11) can be rewritten as:

[
δg (z, g)

]
(n) = (z⊕ g) (n) (12)

[
εg (z, g)

]
(n) = (z� g) (n) (13)
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Fig. 6 Signals produced by using different morphological operators: (a) original signal, (b) after
dilation (c), after erosion, (d) after closing, and (e) after opening. The solid blue line represents
original signal and dotted red line is the modified signal

Consider a simulated signal with two scalesof impulses, which is sampled as
shown in Fig. 6a. It is processed with a flat SE {0, 0, 0, 0, 0, 0, 0}, where the
underlined position is the original seed point. The dilation will expand the maximum
value of the signal but reduce the valleys of z as illustrated in Fig. 6b. In contrary,
the erosion will reduce the peaks but increase the minima value of z (Fig. 6c).
Furthermore, the dilation and erosion operators are correlated by:

δ (−z) = −ε (z) (14)

3.1.3 Closing and Opening

The closing operation, denoted by “•,” and the opening operation, denoted by “◦,”
are made by properly combining the basic dilation and the erosion, such that:

(z ◦ g) (n) = (z� g ⊕ g) (n) (15)

(z • g) (n) = (f ⊕ g � g) (n) (16)
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The outputs of the closing operation and the opening operation of the simulated
signal in Fig. 6a are illustrated in Fig. 6d, e, respectively.

The dilation can diminish the number of local minima, which cannot be restored
by subsequent erosion. Thus, the closing will produce a simplification filtering of
the signal. It can be seen from Eqs. (15) and (16) that the mirroring of the SE in the
second operation (i.e., g � g or g ⊕ g) can provide anti-extensivity in the closing
and opening [30]. The mirroring of the SE can also make the operation independent
of the SE origin. In this light, the opening (Fig. 6e) will preserve negative impulses
and reduce positive impulses, but closing operates vice versa (Fig. 6d).

In general, it is difficult to obtain the prior knowledge of impulsive features from
an input signal, especially when the signal contains both the positive and negative
impulses such as in the case of bearing impulse signals. Our proposed approach will
integrate the opening and closing operations of an appropriate SE length to filter out
the noise and reconstruct the remaining objects. Correspondingly, the morphological
difference filter function, f̂ , which was also used in [30–33], will be formulated as:

f̂ = f • g − f ◦ g (17)

The f̂ filter will be used to extract the impulses, and can be rewritten as:

f̂ = f • g − f ◦ g = (f • g − f )+ (f − f ◦ g) (18)

where (f • g − f ) is the Black Top-Hat transform used to extract negative impulses,
and (f − f ◦ g) is the White Top-Hat transform used to extract positive impulses
[31, 32].

3.2 The Proposed Morphological Filter

The morphological difference filter function, f̂ , as defined in Eq. (18) will be used
in this work to extract the positive and negative impulsive features for bearing signal
analysis. The proposed morphological filter will apply a new strategy to select
an appropriate length of the SE. The selection of SE length depends on the input
signal properties. Different from the methods of general autocorrelation functions
[3, 4], the proposed selection method will use the Renyi entropy to process the
nonlinear correlation in signals. The use of Renyi entropy is motivated by deriving
a possible closed-form expression of entropy so as to avoid resorting to nonlinear
measures [34]. Renyi entropy can quantify the diversity and uncertainty of random
observations [34, 35], which will be defined as:

Rα
(
f̂q
) = 1

1− α log2

(
N∑
n=1

pαn

)
(19)
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where f̂q is the morphological filter with probability pn; n = 1, 2, . . . , N, where
N is the signal length; and α > 0 is the Renyi entropy order. As Rα decreases, the
function randomness decreases. The proposed morphological filter f̂q corresponds
to each SE length q, and will be determined by:

f̂q =
(
f • �q − f

)+ (f − f ◦ �q
)

(20)

where ¦q is the q-th selected length of SE.
In the proposed morphological filter, the indicator ϑq is formulated by consider-

ing kurtosis and entropy (i.e., Rα) of each filtered signal corresponding to a certain
SE filter length:

ϑq =
K(f̂q)
Rα(f̂q)

Q∑
q=1

K
(
f̂q
)
/

Q∑
q=1

Rα
(
f̂q
) (21)

where K denotes kurtosis to account for signal peakness properties, and Q is the
total number of search filter lengths. ϑq is used to determine the optimal SE filter
length to highlight impulses in the signal. Our proposed morphological filter will
synthesize the outputs of Eq. (21) to select the optimal SE filter length so as to
enhance the impulses and increase signal-to-noise ratio.

The higher value of ϑq in Eq. (21) corresponds to the sharper impulse using the
filter with the chosen SE length. This is due to the fact that lower Rα and higher
kurtosis K will increase ϑq, which corresponds to lower signal randomness and
higher peakedness for the filtered signal.

As stated in Sect. 2, the most important parameter of the proposed morphological
filter is the SE length. In general, without prior knowledge about the bearing health
condition, the range of the filter length is selected over 10–90% of the cyclic
interval [31–33]. In bearing vibration signal analysis for incipient fault detection,
the generally applied filter length is 60–70% of the cyclic interval [31–33], which
may deteriorate processing accuracy when the signal is nonlinear or nonstationary.
If finer search spacing is used, it can result in longer filter length for optimization;
however, this may lead to slower convergence in calculation.

The following example illustrates how to recognize impulses in a signal by the
use of the proposed morphological filter technique. Consider a simulated signal
consisting of five impulses with unity amplitude with a signal length (N = 10,000),
and some random noise (with 140% of the impulse magnitude) as shown in Fig.
7a. Figure 7b–f illustrates the corresponding outputs of the proposed morphological
filtering using different SE lengths q= 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. When
the filter length q is too short (e.g., q = 0.1 in this case), the impulsive information
cannot be highlighted effectively as displayed in Fig. 7b. When the SE length is
too long (e.g., q = 0.9), filtering distortion becomes severe as shown in Fig. 7f. If
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Fig. 7 Comparison of the filtering effects: (a) the simulated signal with noise added, (b) filtered
signal with q = 0.1, (c) filtered signal with q = 0.3, (d) filtered signal with q = 0.5, (e) filtered
signal with q = 0.7, and (f) filtered signal with q = 0.9

q= 0.5, five impulses can be clearly recognized with highest resolution as illustrated
in Fig. 7d, which corresponds to the optimal SE length in this case.

Figure 8 compares the performance of different filter lengths and their corre-
sponding kurtosis (Fig. 8a), entropy (Fig. 8b), and the proposed ϑq indicator (Fig.
8c), respectively. Although the filtered signal corresponding to the SE length of
q = 0.3 has a slightly lower kurtosis values than those with SE length of 0.5, not
all of the five impulses can be recognized as illustrated in the figure. Meanwhile,
although filter length of 0.1 has higher entropy value than that of the filter length of
0.5, its output is distorted and not all of the five impulses are enhanced. Thus, the
proposed indicator, ϑq, can provide the best results to select the optimal SE length
to enhance impulses and improve signal-to-noise ratio.

3.3 The Proposed eHT Technique

In the proposed eHT technique, the bearing signal is firstly filtered using the optimal
SE length, and then the HHT will be applied for bearing fault detection. In HHT
analysis, the most distinctive IMF(s) will be selected by the use of the normality
method as suggested by the authors in [19], which has been proven to be effective
in processing nonstationary signals. Correspondingly, the proposed eHT technique
is realized by:
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indicator

eHTq = f̂q × IMFw (22)

where IMFw is the selected w-th IMF and f̂q is the morphological filter with the
highest indicator value ϑq of the q-th SE length. The proposed eHT technique will
be applied to process the signal in the frequency domain; its implementation and
effectiveness will be evaluated in the following section.

4 Application of the Proposed eHT Technique for Bearing
Fault Detection

4.1 Experimental Setup and Instrumentations

The experimental setup employed for this work is shown in Fig. 9. The system
is driven by a 2-Hp induction motor, with the speed ranging from 0.3 to 70 Hz,
controlled by a speed controller (VFD022B21A). A flexible coupling is utilized to
damp out the high-frequency vibration generated by the motor and to accommodate
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Fig. 9 Experimental setup: (1) speed control, (2) motor, (3) optical sensor, (4) flexible coupling,
(5) ICP accelerometer, (6) bearing housing, (7) test bearing, (8) load disc, (9) magnetic load system,
and (10) bevel gearbox

misalignment errors in assembly. Variable load is applied by a magnetic brake
system through a bevel gearbox and a belt drive; the specified load torque in the
following tests represents the torque value of the magnetic brake. An optical sensor
is used to provide a one-pulse-per-revolution signal for shaft speed measurement.
Two ball bearings (MB ER-10K) are press-fitted into the bearing housings, which
have the following parameters: number of rolling elements: 8, rolling element
diameter: 7.938 mm, pitch diameter: 33.503 mm, and contact angle: 0◦. The
bearing on the left-hand side housing is used for testing. Accelerometers (ICP-
IMI, SN98697) are mounted on the housings to measure vibration signals along the
vertical and horizontal directions. Considering the structure properties, the signal
measured vertically is utilized for analysis in this work, whereas the signal measured
from the horizontal direction is used for verification. These vibration and reference
signals are fed to a computer for further processing through a data acquisition board
(NI PCI-4472) which has built-in anti-aliasing filters with the cutoff frequency set
at half of the sampling rate.

The sampling frequency of the verification test depends on the range of the shaft
speed to collect 600–700 samples over each shaft rotation cycle. In this testing, four
bearing health conditions are considered: healthy bearings, bearings with outer race
defect, bearings with inner race defect, and bearings with rolling element defect.
Seven different shaft speeds (i.e., 15, 20, 25, 30, 32, 35, and 40 Hz) and three break
load levels (i.e., 1, 2.5, and 5 Nm) are used in this test. The outer race defect and the
inner race defect each has a size of (area × depth) about 0.2 mm2 × 0.5 mm, and
the rolling element defect dimension (area × depth) is about 0.3 mm2 × 0.5 mm.
Table 1 summarizes the characteristic frequencies in terms of shaft speed orders for
bearings with different health conditions (e.g., healthy bearings and bearings with
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Table 1 Characteristic frequencies of the bearing in terms of shaft speed order

Bearing condition Frequency in the order of the shaft speed

Healthy/normal 1.00
Inner race defect 3.05
Outer race defect 4.95
Rolling element defect 3.98

defects on the outer races, inner races, and rolling elements, respectively) [19, 20].
The selected techniques are implemented in MATLAB environment for processing.

In the following subsection, only some typical examples with torque load of
2.5 Nm and shaft speed of 1800 rpm (fr = 30 Hz) in each bearing condition will be
discussed to demonstrate the effectiveness of the proposed eHT technique.

4.2 Performance Evaluation

4.2.1 Validation of Morphological-Based Filtering Technique

Firstly, a few examples are used to demonstrate how to implement the proposed
morphology-based filtering technique for bearing fault detection. Equation (21) is
used to determine the values of ϑq of each selected length of SE over [0.1, 0.9]. With
the higher value of ϑq, the corresponding SE length is more appropriate to enhance
signal feature properties (i.e., peaks and valleys). ϑq values are normalized and
plotted in Fig. 10 corresponding to four bearing health conditions with shaft speed
of 1800 rpm (or 30 Hz) and load torque of 2.5 Nm. To illustrate the effectiveness of
the proposed method, only the SE length (i.e., Q = 9) is used for eHT analysis. The
proposed eHT utilizes all the SE lengths, but it manages the contribution of each
filter length according to its weights in Eq. (21) and from Eq. (22), respectively. For
a healthy bearing (Fig. 10a), the most SE length is the fifth (i.e., q = 0.5) instead of
the sixth or seventh SE length as in the classical mathematical morphology analysis
[31–33]. For the bearing with an outer race defect (Fig. 10b), the most SE length
is the eighth (i.e., q = 0.8). For the bearing with an inner race defect (Fig. 10c),
the fifth SE length becomes the most significant one in this case (i.e., q = 0.5). For
the bearing with a rolling element (ball) defect (Fig. 10d), the most significant SE
length is the eighth (i.e., q = 0.8). On the other hand, it is seen that other order SE
length, different from 0.6 or 0.7 as used in [25, 26], may also affect signal properties
in this case.

4.2.2 Validation of the Normality Measure

Firstly, a few examples are used to demonstrate how to implement the proposed
IMF selection technique in the eHT processing. Figure 11 shows some values of the
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Fig. 10 Demonstration of normalized eHT indicators versus filter length corresponding to differ-
ent bearing health conditions: (a) healthy bearing, (b) bearing with outer race defect, (c) bearing
with inner race defect, and (d) bearing with rolling element defect
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Fig. 11 Demonstration of normalized D’Agostino-Pearson normality indicators used in [19]
versus IMF scales corresponding to filtered signal of different bearing health conditions: (a) healthy
bearing, (b) bearing with outer race defect, (c) bearing with inner race defect, and (d) bearing with
rolling element defect

D’Agostino-Pearson normality measure used in [19] to process the filtered signals
corresponding to four bearing conditions with shaft speed of 30 Hz and load torque
of 2.5 Nm. The D’Agostino-Pearson normality measure was used in [19] to select
condition-related IMFs for bearing fault detection. The first ten IMFs will be used
for eHT analysis. For a healthy bearing (Fig. 11a), the most distinguishable IMFs
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are the first and the sixth IMFs (instead of the first and second IMFs in the classical
HHT analysis). Meanwhile, for a bearing with an outer race defect (Fig. 11b), and
a bearing with an inner race defect (Fig. 11c), the most distinguishable IMFs are
determined to be the first and the second IMFs, which is consistent with the classical
HHT analysis. On the other hand, for a bearing with a rolling element defect (Fig.
11d), the most distinguishable functions become the first and the third IMFs. From
Fig. 11, it can be noted that higher-order IMFs (higher than 2) may also contribute
significantly to signal properties in this case.

Figures 12a–c show part of the collected vibration signals corresponding to
different bearing conditions. Although some impulses could be recognized from
these vibration signatures such as in Fig. 12b–d, it is difficult to diagnose bearing
health conditions just based on these original vibration patterns. The corresponding
frequency spectrums for these four bearing conditions are plotted in Fig. 12e–h,
respectively. It can be seen that the bearing health condition(s) cannot be detected
reliably just based on spectral analysis, especially for complex bearing systems with
nonlinear and nonstationary signals.

0 100 200 300 400 500
0

0.6

1.2

S
pe

c.
 A

m
pl

itu
de

0 2500 5000 7500 10000

-0.1

0

0.1

A
m

pl
itu

de

0 2500 5000 7500 10000

-0.2

0

0.2

A
m

pl
itu

de

0 100 200 300 400 500
0

0.2

0.4

S
pe

c.
 A

m
pl

itu
de

0 2500 5000 7500 1000010000

-0.2

0

0.2

A
m

pl
itu

de

0 100 200 300 400 500
0

0.6

1.2

S
pe

c.
 A

m
pl

itu
de

0 2500 5000 7500 10000

-0.1
0

0.1

A
m

pl
itu

de

Sample Number 
0 100 200 300 400 500

0

0.6

1.2

S
pe

c.
 A

m
pl

itu
de

Frequency ( Hz )

(e) 

(f) 

(g) 

(h) 

(a) 

(b) 

(c) 

(d) 

Fig. 12 Spectral maps of the vibration signals presented in (a–d) for bearings with different
conditions using frequency analysis (e–h) for: a healthy bearing (a, e), a bearing with outer race
defect (b, f), a bearing with inner race defect (c, g), and a bearing with rolling element defect (d,
h). Arrows indicate the bearing characteristic frequency
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4.3 Evaluation of the Proposed eHT Technique

The effectiveness of the proposed eHT technique will be compared to some
related techniques available in the literature used for bearing fault diagnosis.
Specifically, the processing results from the classical HHT method using the first
two IMFs, designated as HHT, will be provided. To examine the effectiveness of
the proposed morphological filter, the processing results from the HHT utilizing the
morphological filtering, designated as MHT, will be compared to the HHT without
using the proposed filter but applying a constant flat SE length of 0.6 (designated as
CHT).

4.3.1 Condition Monitoring of a Healthy Bearing

Firstly, the bearings with healthy conditions are tested. Figure 13 shows the pro-
cessing results using the related techniques. In this case, the bearing characteristic
frequency is fr = 30 Hz. Examining these power spectral graphs, the bearing
characteristic frequency can be identified by each technique. Comparing Fig. 13a
(eHT), Fig. 13b (MHT), and Fig. 11c (CHT), it can be noticed that the proposed
morphological filter can denoise the signal properly and highlight characteristic
frequency component (fr ≈ 30 Hz) and its harmonics. On the other hand, although
the HHT in Fig. 13d can recognize the shaft speed fr, its spectral maps contain
more noise components due to leakage, which may reduce the reliability for bearing
health condition monitoring.
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Fig. 13 Comparison of processing results for a healthy bearing using the techniques of: (a) eHT,
(b) MHT, (c) CHT, and (d) HHT. Arrows indicate the characteristic frequency and its harmonics
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Fig. 14 Comparison of processing results for a bearing with an outer race defect using the
techniques of: (a) eHT, (b) MHT, (c) CHT, and (d) HHT. Arrows indicate the characteristic
frequency and its harmonics

4.3.2 Outer Race Fault Detection

When defect occurs on the fixed ring race of a bearing (the outer race in this
case), its defect-induced resonance modes do not change over time. In this case,
the characteristic frequency is fOR ≈ 91 Hz. Figure 14 shows the processing results
using the related techniques. It is seen that the proposed eHT (Fig. 14a) outperforms
not only the MHT (Fig. 14b) with higher magnitude of characteristic frequency
components but also the CHT (Fig. 14c) and HHT (Fig. 14d) with the defect
frequency and its harmonics dominating the spectral map. The main reason is due
to its effective information processing using the suggested linearity measure and the
proposed morphological filtering techniques.

4.3.3 Inner Race Fault Detection

The detection of fault on rotating elements is usually more challenging than the
detection of fault on the outer race, because the resonance modes associated with the
inner race impacts usually vary over time. In this case, the characteristic frequency
fIR ≈ 148 Hz. Processing results using the related techniques are shown in Fig. 15.
The proposed eHT (Fig. 15a) outperforms the MHT (Fig. 15b), the CHT (Fig. 10c),
and the HHT (Fig. 15d) due its more efficient denoising processing. It can be seen
that defect-related signatures on the maps of the CHT (Fig. 15c) and HHT (Fig. 15d)
do not dominate the spectra, which can give false diagnostic results. Whereas, in the
case of the MHT (Fig. 15b), the second harmonic of fIR becomes lower in magnitude
than that in Fig. 15a, which mitigates the redundant information for diagnosis.
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Fig. 15 Comparison of processing results for a bearing with an inner race defect using the
techniques of: (a) eHT, (b) MHT, (c) CHT, and (d) HHT. Arrows indicate the characteristic
frequency and its harmonics
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Fig. 16 Comparison of processing results for a bearing with a rolling element defect using the
techniques of: (a) EHT, (b) EHTT, (c) CHT, and (d) HHT. Arrows indicate the characteristic
frequency and its harmonics

4.3.4 Rolling Element Fault Detection

The detection of fault on a bearing rolling element (i.e., ball in this case) is generally
considered the most challenging task in bearing fault detection. This is because a
ball rolls along different directions (as well as it slides), and its resonance modes
change over time. In this case, the characteristic frequency is fBD ≈ 119 Hz.
Figure 16 shows the processing results using the related techniques. It is seen
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that the proposed eHT (Fig. 16a) outperforms other related methods for this fault
detection, due to its efficient filtering and IMF integration strategies. It can mitigate
disturbance and extract diagnostic information more effectively, which is important
for nonstationary signal analysis. The characteristic frequency components of MHT
(Fig. 16b), CHT (Fig. 16c), and HHT (Fig. 16d) do not dominate their respective
spectral maps, which may lead to false or missed alarms especially in automatic
online machinery health condition monitoring.

5 Conclusion

A new enhanced HHT technique, eHT in short, has been proposed in this work
for incipient bearing fault detection and nonstationary signal analysis. The col-
lected vibration signals are firstly denoised by the suggested minimum entropy
deconvolution (MED) filter. Then, the signal reminder is processed by the proposed
morphological filtering technique. Finally, the signal is processed by a normality
indicator to select the most distinctive IMF(s) for eHT processing. The proposed
MED filter is based on correlation measure and information entropy to attenuate
distortion effect of the signal transmission path. The suggested morphological
filtering technique is based on Renyi entropy and kurtosis analysis to reduce
impedance effect of the measured vibration signal and to actively enhance the
impulsive features. The effectiveness of the proposed eHT technique has been
verified by experimental tests corresponding to different bearing conditions. The
eHT method can effectively recognize related distinctive IMFs for nonstationary
signal analysis and bearing fault detection. Test results have also shown that
the proposed filter can effectively denoise the signal and highlight defect-related
features. Although, testing has been conducted under controlled load and speed
conditions for single incipient bearing fault detection, the proposed eHT is proven
to be an effective signal processing technique and has potential for real bearing
condition monitoring applications. Advanced research is undertaken for bearing
fault detection in gearboxes, in which the bearing health-related features would be
modulated by gear mesh operations.
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Comparison of Genetic and Incremental
Learning Methods for Neural
Network-Based Electrical Machine Fault
Detection

Daniel Leite

1 Introduction

There is an increasing demand on reliability and safety of industrial systems subject
to potential process abnormalities and component faults [1]. Electrical motors
are one of the most used machines in the industry. Generally, they are critical
components in automation processes. Therefore, questions related to their protection
against failures have received great attention [2–6]. Condition monitoring and
predictive maintenance of induction motors may lead to significant improvements
of availability, quality, and productivity of production lines. Detecting faults in
incipient stage is of utmost importance since functional failures may quickly occur
after the initial development of a fault.

A major part of induction motor faults occurs in the stator windings [2, 7]. The
inter-turns short-circuit is a primary fault that happens after insulation breakdown.
Among the main reasons for insulation fail are high stator core or winding
temperatures; slack core lamination, slot wedges, and joints; loose bracing for
end winding; contamination due to chemical reactions, moisture, or dirt; electrical
discharges due to aging of the insulating material; and leakage in cooling systems.
After primary faults, the motor degradation process increases, and more serious
failures, such as phase-to-phase and phase-to-ground short-circuits, appear. Usually,
these types of faults result in irreversible motor damage. However, if inter-
turns faults are detected at incipient stage, the faulty phase winding may, for
example, be replaced, which significantly reduces financial losses and increases
operational safety. Among the benefits detection systems can bring to industry are
motor life extension, idling periods reduction, unnecessary disconnections avoiding,
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manpower scheduling at the fault moment, repair cost minimization, human security
improvement, components storage reduction, and minimization of losses.

During the last three decades, computational intelligence methods have been a
promising direction for solutions of pattern recognition issues. Neural Networks
and Hybrid Systems have been successfully applied to detecting different kinds
of faults in electrical machines [8–12]. A difficulty of applying neural networks
to condition monitoring systems, as well as to the vast majority of real-world
engineering applications, concerns the selection of a suitable network structure and
connection parameters. A proper selection of these is essential to lead the network
to achieve a reasonable fault detection performance. Some of these parameters, viz.,
the number of hidden layers and the number of neurons per layer, are frequently
set from a trial-and-error approach performed by a human designer. This may be an
exhaustive task that can take a considerable amount of time [12]. Efforts for making
neural network design more sophisticated and less human dependent is underway,
especially considering information from particular application domains.

A drawback of using neural networks for fault detection, including feedforward,
recurrent, convolutional, and deep networks and deep models in general [13], is
the use of first- or second-order deterministic optimization algorithms for training.
Since the backpropagation (BP) algorithm was discussed by Rumelhart et al. [14],
researchers quite often resort to first-order learning methods and variations. Since
the nature of first-order methods is to converge locally, it can be demonstrated that
its solution is highly dependent on random initial weights and rarely is the global
solution. Several variations of first-order optimization methods were compared to
Quasi-Newton, Non-Derivative Quasi-Newton, Gauss–Newton, and Secant methods
by Chen and Sheu [15]; Evolutionary Strategies and Genetic Algorithm by [16, 17];
Bayesian Regularization, Modified Levenberg–Marquardt, and Simulated Anneal-
ing in [18]; Bee and Ant Colony by [19, 20]; Adaptive Differential Evolution in
[21]; and Particle Swarm by [22, 23]. All these training methods could lead a neural
model to achieve better performance in terms of learning efficiency, training time,
easiness-of-use, and accuracy in a class of problems.

The present study focuses on the development of architectures and weights of
feedforward neural networks using different learning algorithms, viz., a properly
designed genetic algorithm and an online incremental algorithm. The former
produces an evolutionary neural network (EANN), while the latter generates an
evolving fuzzy granular neural network (EGNN). The purpose of the neural net-
works is to detect and determine the number of shorted-turns in the stator windings
of induction machines. The problem is formulated as a multiclass classification
problem. Real dynamic environment subject to mechanical asymmetries, voltage
unbalance, and measurement noise is taken into consideration.

Evolving the EANN architecture includes finding a suitable number of hidden
layers and neurons per layer—being these the parameters that largely affect its
generalization ability. An overly complex neural model may overfit the data and thus
exhibit poor generalization, whereas a simple model may be insufficient to represent
nonlinear correlations among features. GA takes into account the development of
both, parameters and structure of the neural network. The main reasons for the



Neural Network-Based Electrical Machines Fault Detection 233

choice of GA as learning method are: (1) GA operates on codified parameters.
It results in a search for local minima independently of the continuity of error
functions or the existence of derivative; (2) the search toward the best solution
starts from a set of points deployed in the search space (global search–populational
strategy). Thus, the probability that the solution gets stuck on local minima is
minimized; (3) the search toward the best solution utilizes genetic operators, which
are stochastic in nature, instead of deterministic; and (4) GA automatizes the trial-
and-error approach to set up structural parameters.

EGNN encodes a set of fuzzy rules in its structure. Therefore, neural processing
conforms with that of a fuzzy inference system [24]. The network is equipped
with fuzzy neurons, which perform aggregation functions, and with an incremental
algorithm for learning from a data stream. Fuzzy granules and rules are created
gradually according to new information discovered from the data. Evolving systems
from data streams is an active and promising research topic [25–35]. In particular,
EGNN provides: (1) computational tractability and scalability with the number of
samples and attributes; (2) improved interpretability and transparency by means of
granular local models and linguistic rules; and (3) reduced cost of data processing
in relation to non-evolving methods. EGNN has shown to be extremely general and
able to outperform state-of-the-art evolving methods and models, including evolving
classifiers [24, 36, 37].

Section 2 outlines a general framework for electrical machine fault detection
assisted by the genetic neural classifier, EANN, and the incremental neurofuzzy
classifier, EGNN. Section 3 addresses GA learning and describes the genetic
operators for recombining, mutating, and selecting architectures and connection
weights of a feedforward network. Incremental learning from data streams and
development of a neurofuzzy granular network are given in Sect. 4. EANN and
EGNN performance on detecting incipient faults in induction machines and discus-
sions about genetic and incremental learning are reported in Sect. 5. True conditions
of actual industrial practice, namely, different load and speed conditions, voltage
unbalance, and noisy environment, are analyzed. Section 6 concludes the chapter
and presents some ideas for further investigation.

2 Electrical Machine Fault Detection

A general view of the electrical machine fault detection system is shown in Fig. 1.
Voltage, current, and rotor speed measurements are obtained from induction motors
and properly placed sensors. The data are preprocessed and attribute vectors whose
values are related to the healthy state of the machines are obtained. The Acquisition
and Data Treatment module also disposes the machines’ state variables to the
Parameters Estimation, Optimization, and Faults Simulator modules. The latter
includes faulty samples in the Database. Therefore, the database is composed of
healthy and faulty data vectors. Faulty samples are related to different incipient fault
severities, i.e., from 1 to 3 shorted-turns in the stator windings; different locations,
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Fig. 1 General view of the electrical machine fault detection and classification system

i.e., stator phases a, b, and c; and different operating points and levels of noise. For
EANN, a percentage of randomly selected samples are admitted for training, while
the rest is used for testing. The Genetic Algorithm module develops the EANN
architecture and its weights. It elects the best architecture and its respective best
vector of weights according to a fitness function. On the other hand, a neurofuzzy
EGNN structure is evolved from scratch by means of an incremental learning
algorithm. In this case, training and testing are not separated procedures. In other
words, EGNN provides an output—a classification for the input data sample—
and then, the input–output pair is used for training. Online learning proceeds in
a per-sample incremental basis. A diagnosis report is generated by both EANN and
EGNN.

A description of the system modules is given below:

• Acquisition and data treatment → This module measures voltage, current, and
rotor speed signals from induction machines. The number of motors connected
to the system is limited by the number of I/O channels. The acquired data are
preprocessed. Offsets are removed, and magnitude correction factors are applied.
Low pass filters minimize noise and slot effect. Other calculations such as active
and reactive power, power factor, rotor slip, and sequential components are
carried out. The data are displayed on the interface prior to being saved in a
file repository.
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• Parameters estimation module → No load and blocked rotor tests are required
to be performed to obtain fundamental machine parameters if the corresponding
datasheet is not available. Additionally, online parameter estimation algorithms,
namely, Recursive Least Squares and Extended Kalman Filter, operate in parallel
to adapt key parameters required by the inter-turns fault simulator model.
Updated parameters are important to reflect the actual condition of the motor and
avoid false positives. The most significant parameters considered for adaptation
over time are the mutual inductance, rotor resistance, and equivalent resistance
and inductance. Refer to [7, 38] for further descriptions.

• Optimization module→ This module provides further refinement of the parame-
ters used by the fault simulator model. The Conditional Gradient method, also
known as the Frank–Wolfe algorithm [39], is employed to optimize certain
parameters, viz., the magnetizing and leakage inductances of the stator windings
and the stator resistance. The objective is to allow the fault simulator to better
reproduce the actual state variables. The objective function (OF) is the sum
of the square error between the estimated and actual stator currents, voltage–
current displacement angles, and rotor speed. Taken the derivative of the OF
with respect to the states, we obtain a linearized OF for the application of
the method. At each iteration, steps on the motor model parameters are given
as an attempt to minimize the OF. If the OF value increases, the step on the
parameters is rejected. The smaller the OF value, the more accurate the estimated
states.

• Fault simulator module→ The state-space model of induction motors is changed
mainly to allow simulations of turn-to-turn short-circuit in the stator windings.
Moreover, changeable loads, voltage unbalance, noise, and winding asymmetries
can be simulated. For completeness of this study, the key formulas are succinctly
presented below. Refer to [7, 38, 40] for detailed information.

The dynamic equations of an induction motor in state variables are

[İabcsr ] = [L]−1 [[Vabcsr ] −
[[R] + [L̇]] [Iabcsr ]

]
(1)

where [L] and [R] are 6 × 6 inductance and resistance matrices; [Vabcsr ] and
[Iabcsr ] are 6×1 stator and rotor voltage and current matrices in the abc frame of
reference. [İabcsr ] can be calculated by the fourth-order Runge–Kutta algorithm.
The model is complemented by mechanical equations:

Te = P

2
(iabcs)

T ∂

∂θr
[L′sr ]i′abcr (2)

ωr = P

2

∫
Te − Tl
J

(3)

where Te is the electromagnetic torque; P the number of poles; θr the electrical
angular displacement; [L′sr ] and i′abcr the inductances and currents referred to the
stator; ωr is the rotor speed; Tl the load torque; and J the inertia.
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In a condition of stator shorted-turns, inductances are calculated from:

L(1−k) = (1− k)2L (4)

Lk = k2L (5)

Lk(1−k) = (1− k)L (6)

where k is the percentage of turns in short-circuit; L(1−k) refers to the inductance
of the winding fraction without fault; and Lk is the inductance of the faulty part
of the winding. The latter equation refers to the mutual inductance between the
part of the winding without fault and the other phases, including rotor phases.
Refer to [7, 38] to comprehend how exactly the elements of the matrix L are
changed due to shorted-turn faults.

A fault requires the inductance matrix to be rewritten in seven dimensions,
with three lines and columns representing the fraction of the stator phases without
fault, a line and column representing the fraction of the faulty stator phase, and
three lines and columns representing the rotor phases. Similarly, the resistance
matrix is rewritten as a seven-dimension matrix considering:

R(1−k) = (1− k)R (7)

Rk = kR (8)

where R(1−k) and Rk are the resistances of the winding fraction without and with
fault. Naturally, the resistance matrix is diagonal.

• Database → The database consists of input–output samples that are useful
to train and test neural network classification models. The abc stator currents,
voltage–current displacement angles per phase, and rotor speed are used in this
study as input attributes to the neural classifiers. Several other attributes are
available such as the dq0 and sequential components of voltages, currents, and
magnetic fluxes [40]. The output variable is a class, which is associated to the
number of stator shorted-turns per phase. Therefore, the neural classification
models consist of a map f : X → Y so that X ∈ R

7 and Y ∈ N. As new data
samples are available, the neural classification models can be updated if needed.

• EANN-GA→ A feedforward neural network for each induction machine being
monitored is considered. The network structure and connection weights are
evolved via a specially designed genetic algorithm. EANN may have one
or two hidden layers. While an inner loop deals with optimization over the
parameter space, an outer loop concerns with searching for a potentially optimal
solution over the structure space. After the learning process, the best network
architecture and its best vector of parameters are chosen. Section 3 addresses
phenotype representation; initialization of populations; recombination, mutation,
and selection operators; fitness evaluation; and the stopping criteria adopted.

• EGNN-IL→ A neurofuzzy network able to learn gradually from a data stream is
developed for each induction machine. EGNN self-adapts its granular structure
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and connection weights by means of a recursive procedure. Different fuzzy
neurons to perform aggregation of values through the network can be chosen.
Additionally, attribute weighting is an inherent characteristic of the network
due to its modular structure. In general, EGNN can handle fuzzy, interval,
and numerical data as well as prediction, control, and classification problems.
This study focuses on numerical data processing and fault classification only.
Section 4 describes how granules, rules, and weights are adapted on the fly.

• Diagnosis report→ A diagnosis report may be displayed at any time. The report
includes statistical summaries of electrical machines, graphics of specific state
variables and parameters, evolution of error indices and fault patterns, and neural
network classification performance.

The condition monitoring system can manage several induction machines in
field applications simultaneously. As the development of inter-turn faults takes
some time, constant (uninterrupted) supervision of machines is not mandatory and,
therefore, a single microcomputer and a switching scheme among machines and
corresponding neural classifiers is, in general, acceptable. Otherwise, distributed
computing may be taken into consideration. The monitoring response time is
usually short, and microcomputer availability is high since offline training of EANN
classification models can be performed apart from online data processing whereas
EGNN online adaptation is carried out in a matter of milliseconds, as discussed in
the next sections. As a numerical example, if 10 induction motors are monitored,
then switching the corresponding neural classifiers in 10-s intervals is enough.

3 Genetic Algorithm for Neural Network Learning

This section describes a genetic method for developing the architecture and
setting the parameters of a feedforward neural network. Fundamentally, the genetic
algorithm performs the following steps:

• Genetic representation or codification of potential solutions;
• Definition of initial parameters. These include population size, relative elitism,

penalty factors, mutation rate, and training stop criteria;
• Initialization of the population with a priori knowledge about the expected

behavior of the neural network;
• Application of genetic operators, i.e., mutation, recombination, and selection

operators, over individuals of the population;
• Evaluation of the fitness of the individuals of a population;
• Post-processing of the fittest individual.

The GA learning procedure is shown in the flowchart of Fig. 2. In the figure,
the inner loop evolves � generations of weights individuals, whereas the outer
loop evolves α generations of architectures individuals (global search). The fittest
architecture individual and its respective fittest weights are found. Post-processing
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Fig. 2 General view of the genetic algorithm for developing the architecture and adapting the
parameters of a feedforward neural network for fault detection

concerns searching for better solutions on the parameter space, close to the fittest
vector of weights for a specific architecture (local search). In the figure, W and A
are related to the weights and architectures populations, respectively. Learning is
guided by an error-and-model-compactness-based fitness function.

3.1 Initialization and Parameterization

A schematic representation of the basic processing units of the evolutionary neural
network is illustrated in Fig. 3. In the figure, xj and wj refer to the j -th input and
connection weight, respectively; b is the bias; net is the weighted sum of the inputs,
and ϕ(.) is a sigmoidal logistic function, which gives the output y.

From prior knowledge about the neural network learning problem, we want
the nonlinear functions ϕ(.) of all neurons to be initially triggered within their
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Fig. 3 Schematic
representation of a neuron of
the evolutionary neural
network x

xj

w1

net

1+

b

yϕ(×)Σ
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unsaturated regions, i.e., net ∼= 0 for sigmoid functions. Otherwise, the net-
work would barely differentiate input data at the very beginning of the learning
process, which could lead a rougher and slower adaptation. For example, if
the error backpropagation algorithm is considered, a mechanism to accelerate
learning convergence is to set small random initial weights. Similarly, in real
genetic programming, the allele (range of possible values) of genes (elements)
of chromosomes (candidate solutions) representing weight vectors can be initially
adjusted to small random values around 0, e.g., [−0.01, 0.01], yielding the same
result.

Some remarks about the EANN learning algorithm include: (1) initial archi-
tectures and weights populations consist of 20 individuals each. We consider the
Pittsburgh approach, i.e., all architecture and weight vectors compete with each
other to be the fittest solution; (2) the algorithm is elitist. The fittest solution in
previous generations is preserved for the next generations. The elitist approach
ensures that the overall best individual remains in the population independently of
the application of genetic operators; and (3) the number of individuals that compose
the populations of architectures and weights is constant over generations. Although
recombination operators make the populations double in size, a selection operator
reduces the populations to the half.

Notice that GA global heuristic search tends to find a “good” solution by
exploiting a highly dimensional parameter space whose error surface contains
several hills, valleys, and plateaus. However, such solution may not be locally
optimal. There are some hybrid techniques proposed in the literature for post-
processing the solution through local search methods, e.g., [41, 42]. In this study,
local search using a gene mutation operator is employed. Details are addressed in
the subsequent sections.

3.2 Phenotype Representation

Mapping phenotypes into genotypes is crucial in the development of GA-based
models, especially in constrained optimization problems. For instance, mutation and
recombination operators may produce infeasible solutions. Care must be taken in
both representation of individuals and definition of genetic operators. Undesirable
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effects such as requirement of extra manipulations of chromosomes, more complex
objective functions, and premature convergence of the population may be immediate
outcomes of an inadequate representation.

Encoding in GA is the form in which chromosomes and genes are expressed.
There are basically two types of encoding, binary and real. The former was widely
discussed, while the latter fits continuous optimization problems better and therefore
is adopted in the present study. Several successful applications of real codification
may be found in the literature, e.g., [17, 43].

Let P and G be phenotypic (behavioral) and genotypic (informational) spaces,
respectively [44]. Phenotypes representing feedforward neural network architec-
tures and weight vectors are encoded into genotypes by a direct mapping MP→G.
Genotypes are assumed to be haploid chromosomes as shown in Fig. 4. Chromo-
somes associated to architectures are composed of a pair of genes, A and B, which
refer to the number of neurons in the first and second hidden layers of EANN. In
case gene A or B is zero, then the underlying EANN has a single hidden layer. The
range of values, i.e., the allele, that each gene of the architecture chromosomes may
assume is [0, 99], while the allele of weight chromosomes is [−1, 1].

The length of a weight chromosome:

L = IA+ AB + BO, (9)

Fig. 4 Phenotype–genotype codification of architectures and weights
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is variable. It depends on the values of the genes of the corresponding architecture
chromosome, A and B, and on the number of inputs, I , and outputs, O, of the
underlying neural network.

3.3 Recombination Operator

Defining the most appropriate recombination operator for different sorts of appli-
cations is a hard problem and an open issue. We examine common recombination
operators in anomaly detection scenarios, viz., Arithmetic, Multipoint, and Local
Intermediate Crossover. These operators can be either sexual or global. In the sexual
form, only parents are involved on the generation of offspring. Conversely, in the
global form, the whole population may contribute to generate offspring. In this
study, we opt for the sexual form of recombination. In other words, 20 parents
generate 20 children in each iteration of the algorithm.

3.3.1 Arithmetic Crossover

This operator is particularly suited for constrained numerical optimization problems
with convex feasible region �C . Let cn, n = 1, . . . , N , represent the n-th individual
of a population. As a consequence of two individuals, cn1 and cn2, belong to �C ,
convex combinations of cn1 and cn2 also belong to �C . This ensures that Arithmetic
Crossover produces only valid offspring.

Formally, two parent chromosomes are linearly combined to produce two
offspring according to:

Son1 = a Parent1 + (1− a) Parent2 (10)

Son2 = (1− a) Parent1 + a Parent2 (11)

where a is a random value chosen before each crossover operation. As an example,
consider a random list of parents, see Fig. 5. Each operation produces two children
whose genes inherit a combination of the parent genes.

3.3.2 Multipoint Crossover

In multipoint crossover, children inherit sets of successive genes from two randomly
selected parents. p randomly selected points along the chromosomes of the parents
divide them into p + 1 parts. Then, genes of each father are exchanged to
generate offspring. An intuitive example of a p-point crossover operator is shown
in Fig. 6. Similar to other crossover operators, the population doubles in size after
multipoint recombination. The recombination potential, exploratory power, and
learning progress of a GA using p-point crossover are discussed in [45].



242 D. Leite

Fig. 5 Arithmetic crossover operator

Fig. 6 Multipoint crossover operator

3.3.3 Local Intermediate Crossover

Local intermediate crossover is particularly useful when convergence to a unique
solution is expected. In this operator, the average values of the genes of randomly
selected parents are inherited by the single offspring, that is:

c′n1 =
cn1 + cn2

2
. (12)

Local intermediate crossover implies that sons receive inheritance of both
parents equally. Clearly, if intermediate recombination is applied often, then the
chromosomes become similar. This may lead to premature convergence of the
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population, especially when no other operator, such as mutation, is used to keep
population diversity. Two crossover lists with 10 matches each are considered in
this study to generate 20 children for the next generation.

3.4 Mutation Operator

Mutation operations involve single individuals, in contrast to recombination. This
type of operator assures that there is always a probability of reaching any point
within the search space. Usually, when the current solution of the problem is far
from being the best according to a fitness function, a higher mutation rate can be
employed as an attempt to find better solutions farther from the current ones. On the
other hand, when the current solution is close from being the best, a low mutation
rate can be adopted. This approach leads to search for solutions in promising
regions.

Mutation commonly does not produce offspring. The mutated individuals remain
in the population for later breeding. An individual cn has its corresponding mutated
value c′n from c′n = m(cn), where m(.) is a mutation function. Gaussian and random
mutation operators are considered for analysis.

3.4.1 Gaussian Mutation

Gaussian mutation is frequently applied in real-coded GA. This is mainly because
it supports fine-tuning of solutions. Chromosomes cn of an individual have their
corresponding mutated values c′n from:

c′n = cn ±M , (13)

where M is a normal density function N (mean, �) with mean = 0 and standard
deviation, �.

Gaussian mutation is applied gene-to-gene, with a gene mutation probability rate
between 1% and 10%, directly proportional to the fitness of the chromosome.

3.4.2 Random Mutation

Random mutation is a member of the class of random search optimization methods.
Features that make this operator useful are the enhancement of processing speed
and nonsusceptibility to local minima. Randomness is generally controlled to ensure
convergence while allowing enough freedom for a complete coverage of the search
space.

Random mutation creates a random solution c′n at the vicinity of the current
solution cn using a uniform probability distribution such that all genes of the
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newest individual c′n are within [−1, 1] and [0, 99] for weight and architecture
chromosomes, respectively. The mutated genes should remain feasible with respect
to these bounds. The free change of mutated genes may give rise to better solutions.
Better solutions are maintained, while worse ones are rejected. Similar to the
Gaussian mutation, random mutation is applied gene-to-gene with a changing
probability rate from 1% to 10%. Mutated values are given as:

c′n = cn + r , (14)

where r is a random value in [−0.1, 0.1] for weight individuals; and a random value
in [−5, 5] rounded to an integer for the case of architecture individuals.

3.4.3 Post-Processing Based on Local Random Mutation

Post-processing neural network parameters can be done from different local search
methods. Local mutation is a simple and fast approach to try to improve the solution
found so far. With the EANN architecture defined, the basic idea is to change some
genes of the current weight solution using random mutation in a specific way.

Mutation probability rate is restricted to 10% per gene, and r ∈ [−0.1, 0.1], as
in (14). Whenever a gene is changed, the fitness of the new solution is immediately
calculated, and the new value of the gene is either accepted or ignored. New weight
solutions are evaluated twice, considering cn+r and cn−r . This approach promotes
a local search for a better solution around the current best solution and parallel to
the axes of the search space.

3.5 Fitness Function

GA mimics the principle of natural selection. A fitness measure is used to choose
relatively fitter individuals in a population to evolve. The higher the fitness of an
individual, the higher its survival probability [44].

To determine the fitness of weight chromosomes, we use

F(cn) = γ (τ
ξ
train + τ ζtest ) , (15)

where F(cn) is the fitness of the chromosome cn; ξ and ζ are parameters defined
according to the emphasis on training and testing performance; τtrain and τtest refer
to the neural network learning and generalization ability:

τtrain = Ctrain

Ctrain +Wtrain

, (16)

τtest = Ctest

Ctest +Wtest

, (17)
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where C and W are the amount of correct and wrong classifications. In addition:

γ = e−kL (18)

is a penalty factor for large network architectures; L, calculated as in Eq. (9), is the
length of a weight chromosome; and 0 < k < 1 is a constant.

The fitness of an architecture chromosome is the greatest fitness of weight
chromosomes of the current generation. Naturally, F should be maximized.

3.6 Selection Operator

Selection is the operation in which individuals are chosen for later breeding.
First, individuals are chosen to enter a mating pool. Operators should ensure that
individuals with higher fitness have greater probability of being selected for mating,
but those individuals with lower fitness still have a probability of being chosen.
Having some probability of choosing worse individuals is important to assure that
the search process is global and it does not simply converge to the nearest local
minimum.

The original GA uses selection proportional to the fitness usually implemented
with Roulette Wheel [44]. To better control the selective pressure of individuals and
to avoid premature convergence, Tournament selection is considered [46].

3.6.1 Tournament Selection

Tournament selection is an alternative to fitness-proportional selection. Empirical
results suggest that the tournament method can perform better and be faster than
roulette selection [44, 46]. Moreover, it attenuates the selection pressure.

The operator considers the number of wins of an individual in H matches against
H random opponents of the population—a one-against-one approach. The winner
of a match is the individual with the best fitness compared to the direct opponent.

We use H = 5 in such a way that individuals winning at least three matches
remain for the next generation. The procedure continues until the mating pool
is full, i.e., 20 out of 40 individuals are selected. The selective pressure pro-
vided by the tournament operator is weak since a good diversity of individu-
als may remain in the population. Parents and children may compose the next
generation.

3.6.2 Elitism

Elitism consists in maintaining the fittest individual of the population. This strategy
ensures that the best solution found so far is retained. While this strategy could be
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applied more broadly, e.g., selecting the 2 or 3 best solutions, overuse can lead to
premature convergence to a suboptimal solution. Tournament selection, as described
in the previous section, is inherently an elitist approach.

3.7 Stopping Criteria

Training stopping criteria is an important issue in evolutionary modeling. Early
termination may generate poor solutions, whereas late termination might cause
overfitting. The proposed GA is terminated if one of the following is reached:

• Maximum number of architecture generations, α;
• Maximum number of weight generations, �;
• Acceptable fitness reached, F(c∗n) > �;
• Maximum number of weight generations without replacing the fittest cn, δ.

In the latter case, the solution has attained a plateau such that iterations have no
longer produced better results.

4 Incremental Algorithm for Neurofuzzy Network Learning

EGNN is a neurofuzzy granular network constructed incrementally from an online
data stream [24, 36]. Although its learning algorithm can process mixtures of
fuzzy, interval, and numerical data, this study focuses on numerical data only.
Additionally, the network can play the role of a regressor, predictor, controller,
or classifier [47, 48]. We emphasize EGNN for fault detection and classification.
Particularly, evolving classification is a research topic under broad discussion.
A number of methods have been developed with focus on typicality and eccen-
tricity data analytics [49], robustness of Takagi–Sugeno fuzzy models [50], local
strategies to smooth parameter changes [51], self-organization of fuzzy models
[52], ensembles of models [53], scaffolding fuzzy type-2 models [54], semi-
supervision [55], interval granular computing models [56], and on applications such
as fault detection in wind turbines [57] and monitoring of waste-water treatment
processes [58].

The basic processing elements of EGNN are fuzzy neurons. Its architecture
encodes a set of fuzzy rules, and neural processing conforms with a fuzzy inference
system. The network architecture results from a gradual construction according
to new information. The consequent part of an EGNN rule may be composed of
a linguistic and a functional term. Independently of the choice of fuzzy neuron,
network parameters, and properties of input–output data, the linguistic term of
the rule consequent produces a granular output, while the functional term gives a
pointwise output. In the present study, we are interested in the pointwise output only,
which is a class. Learning in EGNN means to fit new data into local granular models



Neural Network-Based Electrical Machines Fault Detection 247

recursively. Granules, neurons, and connections can be added, adapted, removed,
and combined. Therefore, the network captures new information from data streams
and adapts itself to a new scenario.

4.1 Numerical and Fuzzy Data

Fuzzy data arise from expert knowledge, inaccurate measurements, variables that
are hard to be precisely quantified, perceptions, and when preprocessing steps
introduce uncertainty in numerical data. A fuzzy datum xj has the following
form:

xj (z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

φj , z ∈ [x
j
, xj [

1, z ∈ [xj , xj ]
ιj , z ∈ ]xj , xj ]
0, otherwise

(19)

where z is a real number in Xj . If the fuzzy datum xj is normal (xj (z) = 1 for at
least one z ∈ �) and convex (xj (κz1+(1−κ)z2) ≥ min(xj (z1), xj (z

2)), z1, z2 ∈ �,
κ ∈ [0, 1]), then it is a fuzzy interval [59]. In particular, if:

φj =
z− x

j

xj − xj
and (20)

ιj = xj − z
xj − xj

, (21)

then the fuzzy datum (19) has trapezoidal membership function and can be
represented by the quadruple (x

j
, xj , xj , xj ). If xj = xj , the fuzzy datum is a

fuzzy number. Numerical data arise if x
j
= xj = xj = xj .

4.2 Network Architecture

Let x = (x1, . . . , xn) be an input vector and y the output. Consider that the
data stream (x, y)[h], h = 1, . . ., is measured from an unknown function f .
Inputs xj and output y can be fuzzy data in general and numerical data in
particular.

Figure 7 shows a four-layer EGNN model. The input layer receives x[h]. The
granular layer consists of a set of granules Gi

j , j = 1, . . . , n; i = 1, . . . , c, stratified

from the input data. Fuzzy sets Gi
j , i = 1, . . . , c, form a fuzzy partition of the
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Fig. 7 Evolving neurofuzzy network architecture

j -th input domain, Xj . A granule Gi = Gi
1 × · · · × Gi

n is a fuzzy relation, i.e., a
multidimensional fuzzy set in X1 × · · · × Xn. Thus, Gi has membership function
Gi(x) = min{Gi

1(x1), · · · ,Gi
n(xn)} in X1 × · · · × Xn. Granule Gi may have a

companion local function pi . For classification, we use a 0-th-order function:

pi(x̂1, . . . , x̂n) = Ĉi , (22)

where Ĉi is the estimated class.
Define x̂j as the midpoint of xj = (x

j
, xj , xj , xj ). Thus:

mp(xj ) = x̂j =
xj + xj

2
. (23)

Naturally, if the input data are numerical, then x̂j = xj .
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Similarity degrees x̃i = (̃xi1, . . . , x̃
i
n) are the result of matching between input

x = (x1, . . . , xn) and fuzzy sets Gi = (Gi
1, . . . ,G

i
n). In general, data and granules

are trapezoidal objects. A convenient similarity measure to quantify the match
between a sample and the current knowledge is

x̃ij = 1−
|gi
j
−x

j
|+|gi

j
−xj |+|gij −xj |+|g

i

j −xj |
4(max(g

i

j , xj )−min(gi
j
, x

j
))

. (24)

This measure returns x̃ij = 1 for identical trapezoids and reduces linearly as any
numerator term increases. Naturally, measure (24) can be applied to numerical data.
In this case, x

j
= xj = xj = xj [24, 48].

The aggregation layer is composed of fuzzy neurons Ai , i = 1, . . . , c. A fuzzy
neuron Ai combines weighted similarity degrees (̃xi1w

i
1, . . . , x̃

i
nw

i
n) into a single

value oi , which refers to the level of activation of ruleRi . The output layer processes
(o1, . . . , oc) using a fuzzy neuron Af . Af performs the maximum S-norm in this
study. The class Ci∗ associated to the most active rule Ri∗ is the network output.

Under assumption on specific weights and types of neurons, fuzzy rules extracted
from the EGNN classifier, as described in this study, are of the type:

Ri : IF(x1isGi
1)AND . . .AND(xnisGi

n)THEN(ŷisĈi).

As: (1) fuzzy setsGi
j ∀i, j, are time varying; (2) a diversity of aggregation functions

can be used in the neural body Ai ; and (3) fuzzy granules overlap in the input space,
thus the class separation surface provided by an EGNN model is nonstationary and
can be highly nonlinear.

4.3 Fuzzy Neuron

Fuzzy neurons are neuron models based on aggregation operators. EGNN may use
different types of aggregation neurons to perform information fusion. Generally,
there is no guideline to choose a particular aggregation operator to construct a fuzzy
neuron [60].

Aggregation operators A : [0, 1]n → [0, 1], n > 1, combine input values in the
unit hypercube [0, 1]n into a single value in [0, 1]. They must satisfy the following
properties: (1) monotonicity in all arguments, i.e., given x1 = (x1

1 , . . . , x
1
n) and

x2 = (x2
1 , . . . , x

2
n), if x1

j ≤ x2
j ∀j then A(x1) ≤ A(x2); and (2) boundary

conditions: A(0, 0, . . . , 0) = 0 and A(1, 1, . . . , 1) = 1. The classes of aggregation
operators considered in this study are summarized below. See [59, 60] for a detailed
coverage.
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4.3.1 Triangular Norm and Conorm

T-norms (T ) are commutative, associative, and monotone operators on the
unit hypercube whose boundary conditions are T (α, α, . . . , 0) = 0 and
T (α, 1, . . . , 1) = α, α ∈ [0, 1]. An example of T-norm is the minimum operator:

Tmin(x) = min
j=1,...,n

xj , (25)

which is the strongest T-norm because:

T (x) ≤ Tmin(x) forany x ∈ [0, 1]n. (26)

The minimum is idempotent, symmetric, and Lipschitz-continuous. Further exam-
ples of T-norms include the product:

Tprod(x) =
n∏

j=1

xj , (27)

and the Lukasiewicz T-norm:

TL(x) = max(0,
n∑

j=1

xj − (n− 1)), (28)

which are non-idempotent, but Lipschitz-continuous aggregation operators.
S-norms (S) are operators on the unit hypercube which are commutative,

associative, and monotone. S(α, α, . . . , 1) = 1 and S(α, 0, . . . , 0) = α are the
boundary conditions of S-norms.

S-norms are stronger than T-norms. The maximum operator:

Smax(x) = max
j=1,...,n

xj , (29)

is the weakest S-norm, that is:

S(x) ≥ Smax(x) ≥ T (x), forany x ∈ [0, 1]n. (30)

The maximum is idempotent, symmetric, and Lipschitz-continuous.

4.3.2 Neuron Model

Let x̃ = (̃x1, . . . , x̃n) be a vector of membership degrees of a sample x =
(x1, . . . , xn) in the fuzzy sets G = (G1, . . . ,Gn). Let w = (w1, . . . , wn) be a
weight vector such that:

wj ∈ [0, 1], j = 1, . . . , n. (31)
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Fig. 8 Fuzzy neuron model

Product T-norm is used to perform synaptic processing, while an aggregation
operator A is used to fuse the individual results of synaptic processing. The output
of a fuzzy aggregation neuron is

o = A(̃x1w1, . . . , x̃nwn). (32)

A fuzzy neuron produces a diversity of nonlinear mappings between neuron
inputs and output depending on the choice of weights w and aggregation operator
A. The fuzzy neuron model is shown in Fig. 8.

4.4 Granular Region

The support and the core of trapezoidal membership function Gi
j are

supp(Gi
j ) = [gi

j
, g

i

j ], (33)

core(Gi
j ) = [gij , gij ]. (34)

The midpoint and width of Gi
j are given by:

mp(Gi
j ) =

gi
j
+ gij
2

, (35)

wdt(Gi
j ) = g

i

j − gi
j
. (36)

The maximal allowed expandable width of fuzzy sets Gi
j is denoted by ρ, i.e.,

wdt(Gi
j ) ≤ ρ, j = 1, . . . , n; i = 1, . . . , c. Let the expansion region of a fuzzy set

Gi
j be

Ei
j =

[
mp(Gi

j )−
ρ

2
,mp(Gi

j )+
ρ

2

]
. (37)

It follows that wdt(Gi
j ) ≤wdt(Ei

j ) ∀j, i. Values of ρ allow different representations
of the same problem at different levels of detail.
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4.5 Granularity Adaptation

A balance between parametric and structural adaptation is a key to capture changes
of time-varying systems. The procedure described below reconciles parametric and
structural changes in EGNN.

The value of ρ affects the granularity and accuracy of models. In practice, ρ ∈
[0, 1] settles the size of expansion regions (37) and the need to either create or adapt
rules to fit a new sample. EGNN starts learning with an empty rule base and with
no a priori knowledge of data properties. In this case, it is worth to initialize ρ at an
intermediate value, e.g., ρ[0] = 0.5.

Let r be the number of rules created in hr steps. If the number of rules grows
faster than a rate η, i.e., r > η, then ρ is increased:

ρ(new) =
(

1+ r

hr

)
ρ(old). (38)

Equation (38) acts against outbursts of growth since large rule bases increase
model complexity and worsen generalization. If the number of rules grows at a rate
smaller than η, i.e., r ≤ η, then ρ is decreased:

ρ(new) =
(

1− (η − r)
hr

)
ρ(old). (39)

If ρ = 1, then EGNN is structurally stable, but unable to capture abrupt changes.
Conversely, if ρ = 0, then EGNN overfits the data causing excessive model
complexity. Adaptability is reached from intermediate values.

Reducing ρ may require a reduction of larger granules to fit them to the new
requirement. In this case, the support of Gi

j is narrowed as follows:

If mp(Gi
j )− ρ(new)

2 >gi
j

then gi
j
(new)=mp(Gi

j )− ρ(new)
2

If mp(Gi
j )+ ρ(new)

2 <g
i

j then g
i

j (new)=mp(Gi
j )+ ρ(new)

2

Cores [gi
j
, gij ] are handled similarly. Time-varying granularity is useful to avoid

guesses on how fast and how often the data stream properties change.

4.6 Developing Granules

Granules are created if the support of at least one entry of (x1, . . . , xn) is not
enclosed by expansion regions (Ei

1, . . . , E
i
n), i = 1, . . . , c. This is the case that

granules Gi cannot expand beyond the limit ρ to fit the sample. Otherwise, if x[h]
is placed inside an Ei , but the class C[h] �= Ĉi , then a new granule Gc+1 should be
created.
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A new granule Gc+1 is formed by fuzzy sets Gc+1
j whose parameters match the

sample:

Gc+1
j = (gc+1

j
, gc+1

j
, gc+1

j , g
c+1
j ) = (x

j
, xj , xj , xj ). (40)

The consequent pc+1 is associated to a class, Ĉc+1 = C[h].
Adaptation of granules consists in expanding or contracting the support and

the core of fuzzy sets Gi
j . Granule Gi is adapted if a sample falls within its

expansion region, i.e., if supp(xj ) ⊂ Ei
j , j = 1, . . . , n, and C[h] is the same as

Ĉi . In situations in which more than one granule encloses the sample, adapting
only one of them is enough to guarantee data inclusion. In particular, we may
choose Gi such that i = arg max(o1, . . . , oc), i.e., Gi has the highest activation
level.

Adaptation proceeds depending on where the input datum xj is placed in relation
to the fuzzy set Gi

j :

If x
j
∈ [mp(Gi

j )− ρ
2 , g

i

j
] then gi

j
(new) = x

j

If xj ∈ [mp(Gi
j )− ρ

2 , g
i
j
] then gi

j
(new) = xj

If xj ∈ [gij ,mp(Gi
j )] then gi

j
(new) = xj

If xj ∈ [mp(Gi
j ),mp(Gi

j )+ ρ
2 ] then gi

j
(new) = mp(Gi

j )

If xj ∈ [mp(Gi
j )− ρ

2 ,mp(Gi
j )] then gij (new) = mp(Gi

j )

If xj ∈ [mp(Gi
j ), g

i
j ] then gij (new) = xj

If xj ∈ [gij ,mp(Gi
j )+ ρ

2 ] then gij (new) = xj

If xj ∈ [gij ,mp(Gi
j )+ ρ

2 ] then g
i

j (new) = xj

The first and last rules perform support expansion, and the second and seventh rules
execute core expansion. The remaining cases concern core contraction.

Operations on core parameters, gi
j

and gij , require adjustment of the midpoint of

the respective fuzzy sets:

mp(Gi
j )(new) =

gi
j
(new)+ gij (new)

2
. (41)

As a result, support contraction may happen in two occasions:

If mp(Gi
j )(new)− ρ

2 >gi
j

then gi
j
(new)=mp(Gi

j )(new)− ρ
2

If mp(Gi
j )(new)+ ρ

2 <g
i

j then g
i

j (new)=mp(Gi
j )(new)+ ρ

2 .
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4.7 Adapting Connection Weights

Weights wi
j ∈ [0, 1] represent the importance of the j -th attribute of Gi

j to the

neural network output. If wi
j = 1, then the output is not affected. A relatively lower

value ofwi
j discounts the impact of the respective attribute. The procedure described

below assigns lower weight values to less helpful attributes.
If a granule Gc+1 is created, weights are set as wc+1

j = 1, ∀j . If it is known a

priori that different attributes have different importance, then values for wc+1
j can

be chosen in a way to reflect that.
Weights wi

j , j = 1, . . . , n, corresponding to the most active granule Gi , i =
arg max(o1, . . . , oc), are updated from:

wi
j (new) = wi

j (old)− βix̃ij |ε|. (42)

where x̃ij is the similarity between xij and Gi
j ; βi depends on the number of right

(Ri) and wrong (Wi) classifications so far provided by Gi according to:

βi = Wi

Ri +Wi
; (43)

and

ε[h] = C[h] − Ĉ[h] (44)

is the current estimation error. Equation (42) penalizes the j -th attribute of Gi in the
next iterations if the estimated class is wrong.

4.8 Learning Algorithm

The learning algorithm to evolve EGNN is given below:

————————————————————————————

BEGIN
Select a type of neuron for the aggregation layer;
Set parameters ρ[0], hr , η, c = 0;
Read input sample x[h], h = 1;
Create granule Gc+1, neurons Ac+1, Af , and respective connections;
For h = 2, . . . do

Read and feedforward x[h] through the network;
Compute rule activation levels (o1, . . . , oc);
Aggregate activation values using Af to get an estimation Ĉ[h];
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// The class C[h] becomes available;
Compute output error ε[h] = C[h] − Ĉ[h];
If x[h] is not within expansion regions Ei∀i or ε[h] �= 0

Create granule Gc+1, neuron Ac+1, and connections;
Else

Adapt the most active granule Gi∗, i∗ = arg max(o1, . . . , oc);
Adapt weights wi∗

j ∀j ;
If h = αhr , α = 1, 2, . . .

Adapt model granularity ρ;
END

————————————————————————————

5 Results and Discussion

Experimental results on electrical machine fault detection and classification
using neural networks trained via genetic (EANN) and incremental (EGNN)
algorithms are shown in this section. First, individual results for each neural
classifier and discussions considering different initial parameters and operators
are presented. Then, general comparisons and statistical analyses are performed.
We look forward to concise models and high accuracy and processing
speed.

5.1 Preliminaries

The dataset was generated from the validated mathematical model described in
Sect. 2. An induction motor properly designed for insertion of stator shorted-turns
and the experimental setup for model validation are shown in Fig. 9. Stator phase
windings were fractionated such that short-circuits on a number of turns could be
imposed externally (see white wires on the top of the motor).

The characteristics of the underlying induction motor are: power, 5 Hp; voltage
(Y), 127 V; poles, 4; stator turns per phase, 84; inertia, 0.00995 J m2; rated torque,
2.1 kgf m; rated speed, 1715 RPM; stator resistance, 0.730�; rotor resistance,
0.360 �; stator and rotor leakage inductance, 0.006 H; and mutual inductance
0.027 H. Table 1 shows the conditions of shorted-turns in the stator windings and
a summary of the 10-class balanced classification problem. The dataset contains
350 7-attribute samples. The attributes are the abc stator currents, voltage–current
displacement angles, and the rotor speed. Voltage unbalance in the 3-phase system
(127 ± 10 V), current measurement noise (±0.1 A), and variable load ([0, 6]
Nm) were considered to generate 35 samples that represent each of the 10
classes.
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Fig. 9 Instrumental setup and motor external connections

Table 1 Classes of the
10-class balanced
classification problem

Class ka (turns) kb (turns) kc (turns) No. of samples

1 0 0 0 35

2 1 0 0 35

3 0 1 0 35

4 0 0 1 35

5 2 0 0 35

6 0 2 0 35

7 0 0 2 35

8 3 0 0 35

9 0 3 0 35

10 0 0 3 35

Offline learning methods, such as EANN, use 200 random samples for training
and 150 samples for testing. Data stream learning methods, such as EGNN, employ
a sample-per-sample testing-before-training approach.

5.2 Genetic EANN for Fault Detection

Genetic mutation and recombination operators are compared in this section within
the framework of electrical machine fault detection. Additionally, the overall
performance of the detection system using the GA-based neural network is given.
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First, the effect of applying arithmetic, multipoint, and local intermediate recom-
bination operators is evaluated assuming the other GA operators fixed. Figure 10
illustrates the evolution of the average and best fitness of the population over the
generations using the different recombination operators. For 500 generations of
weight individuals, arithmetic crossover provided the overall fittest individual and
the highest average fitness.

A second experiment concerns the evaluation of Gaussian and random mutation
operators with all other GA operators fixed. Figure 11a shows the detection system
performance under different Gaussian mutation rates. The fittest individual was
reached under an 8% mutation rate, while the best average fitness was obtained
under a 5% rate. Figure 11b shows the result for random mutation under distinct
mutation rates. Random mutation under a 5% rate generated the fittest individual
and the highest average fitness.

Genetic operators that generated the fittest individual, i.e., arithmetic crossover
and random mutation under a 5% rate, were chosen for subsequent experiments.
In addition, k = 0.9 in Eq. (18). We evaluated neural network architectures
considering recombination, mutation, tournament selection with elitism, and post-
processing based on local random mutation. Figure 12a presents the development of
various EANN architectures over the generations. In a small amount of architecture
generations—30 generations, an 88.77% accuracy on fault detections was reached
by the architecture [7; 21; 5; 1]. This notation indicates the number of neurons in
the input, first and second hidden, and output layers, respectively.

In a further experiment, the fault detection system using the trained EANN with
21 and 5 neurons in the hidden layers was subject to different sets of test data.



258 D. Leite

18

16

14

12

10

8

6

4

2

0
0 50

25

20

15

10

5

0
0 50 100 150 200 250 300 350 400 450

100 150 200

Gaussian mutation - mu = 0.02
Gaussian mutation - mu = 0.05
Gaussian mutation - mu = 0.08

Random mutation - mu = 0.02
Random mutation - mu = 0.05
Random mutation - mu = 0.08

Generations

Generations

(a)

(b)

F
it

ne
ss

F
it

ne
ss

250 300 350 400 450
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Datasets were built considering different maximum levels of voltage unbalance and
measurement noise (zero-mean white noise) on current waveforms. Each dataset
contains 150 samples, which are used to test the EANN—being 15 samples of
each class. Figure 12b shows the performance of EANN and that of a Multilayer
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Fig. 12 General results for inter-turns fault detection using EANN. (a) Evolution of the
fitness/accuracy of EANN architectures over time. (b) Performance comparison between a
deterministic error-backpropagation-based MLP neural network and EANN, which carries out a
global search for parameters prior to local search using genetic operators
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Perceptron MLP neural network for detecting stator inter-turns short-circuit. The
MLP neural network has similar architecture as that of EANN, but was trained
via backward propagation of errors—a gradient descent optimization method.
Conversely, GA carried out a global search for parameters prior to the typical
local search, which supports deterministic methods such as the backpropagation
algorithm.

Notice from Fig. 12b that EANN outperformed MLP in all situations. For
example, in a less noisy environment with balanced voltages, close to the right
upper corner of the graph, the detection system using EANN achieved 94.67% of
correct classifications against 91.33% of the MLP neural network. The total training
time for ten thousand epochs of the MLP backpropagation algorithm was about
19 min, while the time to evolve 30 architecture generations with 20 individuals
each, 50 weight generations with 20 individuals each, and post-processing the fittest
solution was about 55 min. In general, EANN provided greater robustness to voltage
unbalance, variable loads, and measurement noise as shown by the 16% gap between
the accuracy surfaces in the left lower corner of Fig. 12b.

5.3 Incremental EGNN for Fault Detection

A neurofuzzy EGNN classifier was evolved based on a data stream from the
induction machine. The network uses seven input attributes, viz., abc stator currents,
voltage–current displacement angles, and rotor speed. 350 samples, one at a time,
became available for testing and training. No data is available before EGNN learning
starts, and no data is stored during the learning process.

The initial parameters for the learning algorithm are ρ[0] = 0.7, hr = 30, and
η = 1. First, different types of aggregation neurons Ai ∀i, viz., minimum, product,
and Lukasiewicz were evaluated. The output neuronAf performs Smax aggregation.
A summary of the results from 10 runs obtained using the different aggregation
neurons Ai is shown in Table 2. The average number of rules during the iterations
and the total processing time are also shown.

Notice that the EGNN construction that uses product Tprod and maximum Smax
fuzzy neurons in the aggregation and output layers, respectively, performed better
than the other configurations using approximately from 12 to 13 granules. EGNN
learning algorithm alone, disregarding any other acquisition and data processing
procedure, can handle 2906 samples per second in the worst case.

Table 2 Evaluation of different types of EGNN fuzzy aggregation neurons

Aggregation Avg no. of rules Avg Acc(%) Best Acc(%) Avg time (ms)

Tmin 12.8± 2.4 91.51± 1.76 94.57 109.2

Tprod 12.3± 2.4 93.62± 1.36 96.28 97.1

TL 12.2± 2.1 91.22± 0.92 92.57 104.4
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The need to calculate effective values of the voltage and current, and phase angle
based on a 60-Hz power system imposes a limit on the provision of input samples
to the network. If the effective values are calculated using half-wave cycle, then a
maximum of 120 input data samples per second are available for EGNN processing.
Therefore, the bottleneck of the fault detection system in terms of processing
capacity is certainly not imposed by the classifier so that parallel programming
environments are needless.

For gradual and small changes of attribute values, the learning algorithm adapts
the parameters of granules and connections. EGNN is able to handle new classes
and abrupt changes on the data stream, e.g., due to the development of a fault,
load change, or voltage unbalance. In these cases, the algorithm creates additional
granules, connections, and neurons to maintain its accuracy.

Figure 13 depicts a typical behavior of the Tprod − Smax EGNN model using
ρ[0] = 0.7, hr = 30, and η = 3. The figure shows that the accuracy of the classifier
increases quickly along with an increase in the number of rules during the first
iterations. EGNN makes use of approximately 12.7 rules with a maximum of 16
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Fig. 14 EGNN classification boundaries during the development of a fault in stator phase A: (a)
healthy induction machine. Boundaries after (b) 1, (c) 2, and (d) 3 shorted-turns

rules to support a 94.5% classification accuracy on this simulation. After about 70
time steps, the performance of the EGNN classifier achieved a quasi-steady state in
spite of recurrent structural and parametric updates.

Nonstationary decision boundaries drawn by EGNN granules during the progress
of inter-turns short-circuit in the stator phases A, B, and C are illustrated in
Figs. 14, 15, and 16, respectively. Granular regions representing a healthy and faulty
induction machine are visible in the first quadrant of the figures since in previous
iterations the neural network was exposed to samples of all classes provided by the
Fault Simulator model. After the occurrence of a shorted-turn in one of the stator
windings, the neural network changed structurally and parametrically to fit the new
samples, which reflect the fault occurrence. Therefore, as the number of shorted-
turns evolves from 1 to 3 turns, the granular regions related to the underlying faulty
winding expand toward the other regions. Samples bringing information about the
faulty class predominate in the data stream.
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Fig. 15 EGNN classification boundaries during the development of a fault in stator phase B: (a)
healthy induction machine. Boundaries after (b) 1, (c) 2, and (d) 3 shorted-turns

5.4 Comparative Analyses and Discussion

The evolutionary EANN and evolving fuzzy granular EGNN neural networks were
able to detect shorted-turns in the stator windings of an induction machine with a
reasonable degree of success. While EGNN achieved a 96.28% best accuracy using
product Tprod and maximum Smax fuzzy neurons in the aggregation and output
layers, EANN reached a 94.67% best correct classification rate in a similar scenario
using arithmetic crossover, random mutation, tournament selection, and subsequent
local search based on local random mutation.

Both learning methods, genetic and incremental, addressed issues such as
convergence to a local optimum, dependence on initial parameters and trial-and-
error approach on choosing an architecture for the neural classifier. To shed light
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Fig. 16 EGNN classification boundaries during the development of a fault in stator phase C: (a)
healthy induction machine. Boundaries after (b) 1, (c) 2, and (d) 3 shorted-turns

on these issues, a Multilayer Perceptron MLP neural network with the same
structure as that of the fittest EANN, but trained with a gradient algorithm, was
used for comparison. The MLP classifier achieved a 91.33% success rate on fault
classification.

While from one side the accuracy of the evolutionary EANN, evolving EGNN,
and non-evolving MLP classifiers are relatively close to each other (within a
5% range) for the underlying problem, from the other side the time spent by
the learning algorithms to provide such performance was about 55 min, 19 min,
and 0.1 s, respectively, for the offline genetic, error backpropagation, and online
incremental algorithm. Notice that MLP and EANN would certainly benefit from
parallel processing, whereas EGNN supports the volume of data in question.

The main point on time and space complexity is that the parameter space of
neural networks is usually very large and in principle of undefined dimension.
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Online incremental learning is based on a bottom-up approach that starts from
scratch and considers new neurons and connections (dimensions in the parameter
space) only if necessary. The size of the neural network model is controlled by
the granularity adaptation mechanism. Moreover, recursive formulas do not require
accumulation of samples and multiple passes over the same data, but a data
stream and a single scan of the samples. This explains the enormous difference
on computational complexity of the algorithms and supports incremental learning
from sequential data as a mainstream of research to deal with complex and big data
applications.

The effectiveness of the mathematical model to simulate shorted-turns in the
stator windings of electrical machines, real genetic programming, and of the
evolving fuzzy granular approach for condition monitoring and pattern classifi-
cation was verified in this study. The fault simulation model, together with the
identification and optimization algorithms, is an important alternative tool for
destructive tests. Moreover, fault simulation allowed a variety of practical situations
to be incorporated and considered as entries of the dataset. Therefore, the neural
classifiers could be trained to be immune to voltage unbalance and load change
situations.

6 Conclusion

Early detection of incipient fault conditions in induction machines, such as the turn-
to-turn short-circuit fault, is of utmost importance because functional failures may
occur minutes or hours after the initial development. The faulty winding should
be restored or replaced to prevent complete loss of the motor. Operational hazards
as well as significant financial losses can be avoided if the machine is stopped for
maintenance.

In this study, learning methods are proposed to evolve architectures and weights
of a feedforward neural network aiming at fault detection and classification. In
particular, genetic and incremental learning methods are addressed producing,
respectively, evolutionary EANN and evolving EGNN models. Both neural models
were able to detect shorted-turns successfully. EGNN achieved a 96.28% accuracy
using product Tprod and maximum Smax fuzzy neurons, whereas EANN reached
a 94.67% accuracy on correct classification using arithmetic crossover, global and
local random mutation, and tournament selection. Issues such as convergence to
local optima, dependence on initial parameters, and choice of a neural architecture
by trial and error were overcome. Moreover, a Multilayer Perceptron MLP model
trained with a gradient algorithm was considered to highlight the advantages of
performing global search for parameters prior to local search. The MLP classifier
achieved a 91.33% accuracy. The striking difference concerns the time spent to
produce such results, which was about 55 min, 19 min, and 0.1 s, respectively, for
the genetic, gradient, and online incremental algorithms. Bottom-up incremental
learning from scratch takes into account new neurons and connections (dimensions
in the parameter space) only if necessary for a better classification accuracy.
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The effectiveness of a mathematical model to simulate shorted-turns in the
stator windings was verified (validated) in this and related studies. The fault
simulation model, together with the identification and optimization algorithms
briefly presented, is an important alternative tool for destructive tests. Moreover,
fault simulation granted a diversity of practical situations to be incorporated into
datasets. Therefore, the neural classifiers could be trained to be immune to voltage
unbalance and load change situations.

Further work will address methods to control the specificity of information
granules in evolving granular neurofuzzy networks; linguistic data approximation,
and missing data imputation due to sensor malfunction or saturation. In addition to
sensor faults, airgap eccentricity and multi-fault models based on dq0 and sequential
components will be approached.
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Evolving Fuzzy Model for Fault Detection
and Fault Identification of Dynamic
Processes

Goran Andonovski, Sašo Blažič, and Igor Škrjanc

1 Introduction

A process fault is defined as an unpermitted deviation of at least one characteristic
property or variable of the system from acceptable/usual/standard behavior [28].
Further, the fault identification defines the kind, location, and time of detection of a
fault and usually follows the step of fault detection.

In general, many engineering systems are typical dynamic processes with com-
plex structure and frequently operating under changing environmental conditions.
To ensure a high production quality and to match the economic requirements, indus-
trial processes are becoming increasingly complicated in both their structure and the
degree of automation. Numerous sensors and actuators are part of such processes,
and all the data should be processed in real time. On the other hand, there is an
increasing demand on safety, reliability, and protection of the industrial systems
subjected to potential process faults, failures, and abnormalities. For successful and
optimal operation of any process, it is important to detect and to predict undesired
events as early as possible. Real-time and data-driven monitoring techniques could
play a crucial rule in solving such tasks. Answer No. 3. Therefore, the evolving
systems [2, 5, 20] because of their data-driven and adaptive nature appear to be
an appropriate approach when dealing with complex and nonlinear processes.
Moreover, the evolving models are evolved on-the-fly based on streaming data, and
the model structure is extended (evolved) on demand (based on the characteristics
of the new data). The evolving principles are often used in combination with fuzzy
rule-based (FRB), neuro-fuzzy (NF), or neural-network (NN) models.
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As we said above, a fault is defined as an unpermitted deviation of one component
or parameter of the system. The faults can be caused by different elements that are
part of the system, e.g., loss of a sensor value, physical blocking of an actuator,
or disconnection of a system component. As explained in [12], the faults can be
classified as sensor faults, actuator faults, and plant faults. All these types of faults
can change the dynamic properties of the system, influence the input/output relation
through changed control actions, and in the worst case the fault can damage or
collapse the whole system.

We can find different fault detection methods in the literature that can be
categorized into four groups: model-based, signal-based, knowledge-based, and
hybrid-based (combination of last two) methods [12, 13]. Model-based fault detec-
tion methods are developed to monitor the consistency between the measured and
the model outputs. The used models are obtained by system identification techniques
or by physical principles of the process. Signal-based methods utilize the measured
signals and the extracted features for diagnostic decision. These methods assume
that the faults and its symptoms are reflected in the measured signals. Knowledge-
based methods apply a variety of artificial intelligent techniques to extract the
process variables’ dependencies (could be either statistical or nonstatistical meth-
ods).

Data-based statistical methods for system monitoring mainly concentrate on the
input/output relations of the data collected from the processes. Some of them are
principle component analysis (PCA) [9, 14, 19] and partial least squares (PLS)
[9, 18, 30] which are one of the basic techniques. More recently, independent
component analysis (ICA) [27, 29] has received a lot of attention and has seen great
success in practice.

The applicability of statistical data-based methods can be improved by consider-
ing the system dynamics. For example, in [16] improved version of PCA (DPCA)
is presented to deal with the problem of system dynamics. Also, the subspace aided
approach (SAP) presented in [11] shows sufficient results when dealing with such
systems. An overview on signal-based fault detection methods, that combine the
data-driven techniques with statistical approaches, has been presented in [22]. As
dynamic processes are tackled, the evolving-based methods play an important role.
In this case, the process model is not known a priori but is developed recursively
from the data stream. Furthermore, the acquired knowledge is used for the prediction
of the future system behavior.

Answer No. 4. The goal of this chapter is to propose an evolving cloud-based
fuzzy method for fault detection of complex dynamic processes. The method com-
bines the statistical knowledge in a recursive manner with the evolving mechanisms
to cope with dynamic and nonstationary conditions. Furthermore, this method does
not make any assumption about the data distribution.

At this point, it is necessary to mention some existing work about evolving-
based data-driven methods for fault detection purposes. In [24], a residual-based
approach is presented, where the original signals are transformed into a model
space by identifying the multidimensional relationships. The model architecture
consists of pure linear models, generic Box–Cox models for weak and Takagi–
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Sugeno fuzzy model for more complex nonlinearities. Adaptive fault detection and
diagnosis method based on participatory evolving clustering was proposed in [17].
The method uses an incremental unsupervised clustering algorithm, and the new
detected operation modes are labeled manually by the operator of the process. In [6],
autonomous fault detection procedure is presented. The method is based on TEDA
(Typicality and Eccentricity Data Analytics) [3] and uses the Chebyshev inequality
as a measure for anomaly detection.

The proposed fault detection algorithm is based on the simplified fuzzy rule-
based (FRB) system AnYa [4]. AnYa system does not require any assumptions of the
data distribution and it is based on the concept of data clouds [4]. The membership
functions are calculated using recursive density estimation (RDE). The previous
work proposed in [10] calculates the mean RDE using the time thresholds for
detecting faults and normal conditions. This can be very dependent on the process’s
time constant. The concept presented in this paper differs from the previous ones in
the way how the data density is calculated.

To evaluate the proposed method, a model of HVAC (Heating Ventilation Air
Conditioning) system was used. The parameters of the model are tuned/adjusted
using real data acquired from the local facility. The model copes with the statistical
and the dynamic properties of the real process [25].

The chapter is organized as follows. Section 2 describes the evolving fuzzy model
and how the problem space is partitioned to normal process operation and faults.
Next, in Sect. 3 the fault detection procedure is described, where the stages of
learning, detection, and identification are explained. In Sect. 4, the HVAC model
is described and further, the main focus of this section is on the possible faults that
can occur on the process. Finally, the experimental results in Sect. 5 are presented,
and the conclusions are justified in Sect. 6.

2 Evolving Fuzzy Model

Fuzzy systems are general approximation tools for the modeling of nonlinear
dynamic processes. In this paper, we use a fuzzy rule-based (FRB) system with
a nonparametric antecedent part presented by Angelov and Yager [4]. The main
difference comparing to the classical Takagi–Sugeno [26] and Mamdani [21] fuzzy
systems is the simplified antecedent part that relies on the relative data density.

2.1 Fuzzy Cloud-Based Model Structure

The rule-based form in this chapter is used for classification purposes. The
antecedent part of the fuzzy model contains the evolving mechanism, while the
consequent part is used as classifier. The fuzzy rule-base of the ith rule is defined as
follows:
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Ri : IF (xk ∼ Xi) THEN xk ∈ Classi (1)

where xk = [xk(1), xk(2), . . . xk(m)] is m-dimensional input vector. The operator
∼ is linguistically expressed as “is associated with,” which means that the current
data xk is related to one of the existing clouds Xi according to the membership
degree (the normalized relative density of the data):

λik =
γ ik
c∑

j=1
γ
j
k

i = 1, . . . , c (2)

where γ ik is the local density of the current data xk with the ith cloud. The local
density is defined using the Cauchy kernel as follows [4]:

γ ik =
1

1+
∑Mi

j=1(xk−xij )
T Ai (xk−xij )

Mi

, i = 1, . . . , c (3)

where Mi is the number of data points xij that belong to the i-th cloud. Equation (3)
could be rewritten in the recursive form for easier implementation, as follows:

γ ik =
1+ T i

1+ (xk − μi
Mi )

TAi (xk − μi
Mi )+ T i

, i = 1, . . . , c (4)

where μi
Mi is vector of mean value (center) of the data that are part of the ith cloud.

The recursive form of μi
Mi is calculated as follows:

μi
Mi = Mi − 1

Mi
μi
Mi−1 +

1

Mi
xk, μi

0 = xk (5)

In (4), the matrix Ai ∈ R
m×m is an identity matrix or an inverse of the covariance

matrix in case of Euclidean or Mahalanobis distance, respectively. In (4), the scalar
T i is calculated as follows:

T i = Mi − 1

Mi
trace(Ai�i

Mi ) (6)

where �i
Mi ∈ R

m×m is the covariance matrix of the i-th cloud and it is calculated
as follows:

�i
Mi = 1

Mi − 1

Mi∑
k=1

(xik − μi
Mi )(x

i
k − μi

Mi )
T (7)
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The recursive way of calculating the covariance matrix (7) is explained in the
following. Firstly, the un-normalized covariance matrix is computed as:

Si
Mi = Si

Mi−1 + (xk − μi
Mi−1)(xk − μi

Mi )
T (8)

and the covariance matrix is then obtained as:

�i
Mi = 1

Mi − 1
Si
Mi (9)

The final algorithm for recursive calculating of the covariance matrix (9) can be
summarized using the following instructions [7]:

Mi ← Mi + 1 (10)

μi
Mi ← Mi − 1

Mi
μi
Mi−1 +

1

Mi
xk (11)

Si
Mi ← Si

Mi−1 + (xk − μi
Mi−1)(xk − μi

Mi )
T (12)

�i
Mi ← 1

Mi − 1
Si
Mi (13)

where the states are initialized with Mi = 0, μi
0 = x1, and Si0 = 0.

2.2 Evolving Mechanism

The evolving nature of the proposed method means that new clouds in the rule-base
system (1) could be added if some criteria are satisfied. We should note that at the
beginning of the experiment there are no predefined clouds. The first cloud with the
properties X1

1 ∈ {μ1
1 = x1, S

1
1 = 0} is defined with the first data point x1 received.

At each time stamp k, all the partial densities γ iδk between the current data xk

and the existing clouds Xi are calculated (i = 1, . . . , c). The current active cloud
is the one with the maximal partial density maxi γ iδk (“winner takes all”). If this
value is lower than a predefined threshold γmax (maxi γ iδk < γmax), then a new
cloud is added. The value of density threshold was chosen γmax = 0.85. Further, to
protect adding new clouds based on outliers, the evolving mechanism is frozen for
nadd = m+1 samples after a new cloud is added [1], where m is the dimensionality
of the input vector.

We have to note here that only the properties μi
k , and Sik of the currently active

cloud (with maximal partial density) are updated, and the properties of all the other
clouds are kept constant.
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3 Fault Detection and Identification

In this section, the fault detection procedure will be described. For this purpose,
three different data sets are necessary. The first data set describes the normal process
operation (without faulty states, F = 0), while second data set contains faults (F =
1). The third data set is used for testing purposes and this data set contains areas
of normal process operation as well as areas where there are faults. Therefore, the
proposed method is trained on the first two data sets and its effectiveness is tested
on the third data set. In the following subsection, this is explained in detail.

3.1 Learning/Training Phase

As we said above, in the learning/training phase we use two types of data. The first
one does not contain any faults and the second one contains faulty states. Using the
first data set, we obtain a quantitative model that describes normal process operation.
This model contains c0 data clouds which are labeled as Xi ∈ {μi

k, A
i
k, F = 0}

(shortened notation Xi
F=0), where i = 1, . . . , c0. Next, for each type of fault, that

we want to detect, we use a separate data set to discover the diagnostic model for
that particular fault. Again, each of the obtained models contains different number
of data clouds labeled as Xi ∈ {μi

k, A
i
k, F = 1} (shortly notation Xi

F=1). The
total number of data clouds for each model are noted as c1, , c2, . . . , for each type
of fault F1, F2, . . . , respectively.

To summarize, at the end of the learning phase we have obtained one model for
normal process operation and other models for each type of fault, respectively. A
synthetic example is presented in Fig. 1 where three models are shown. First model,
for normal process operation, contains three clouds (X1

F=0, X
2
F=0, X

3
F=0), second

model for fault has two clouds (X4
F=1, X5

F=1), and the third one three clouds
(X6

F=1, X
7
F=1, X

8
F=1).

3.2 Fault Detection Phase

In the fault detection phase, we use the models acquired in the learning phase to
detect the faulty states. Therefore, for each data point received we have to check
to which model it is more associated with. For that purpose, we have to calculate
all the local densities (4) of the current data xk to all the detected clouds from the
previous phase (see Fig. 1). Next, for each model we calculate the global density for
that model as follows:
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Fig. 1 Example of classifying the current sample xk as fault or normal state

Γ i
k =

ci∑
j=1

γ
j
k

ci
, i = 1, 2, . . . (14)

where ci is the number of data clouds of the i-th model.
A fault is detected if the following criterion is satisfied:

max
i
Γ i
k (X

i
F=0) < max

i
Γ i
k (X

i
F=1) (15)

where we compare the maximal local density of the model for normal process
operation maxi Γ i

k (X
i
F=0) with maximal local density over all the data clouds for

faults maxi Γ i
k (X

i
F=1).

3.3 Fault Identification Phase

If the criteria (15) is not satisfied, then the data point xk is classified as normal
process operation. If the faulty state is detected using (15), then for the fault
identification purposes the global densities (14) are compared. The kind of the fault
is determined (isolated) according to the maximal global density maxi Γ i

k (X
i
F=1) of

the faulty models. The detected fault is associated with the model with the maximum
global density.
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4 Description of the HVAC Process Model

In this section, the model of Heating, Ventilation, and Air Condition (HVAC)
process will be described. The general purpose of the HVAC system is to provide
thermal comfort in the rooms and to achieve the required indoor air quality
parameters. The HVAC system controls the temperature, the humidity, and the
pressure (or the air flow through air channel) for each sector (room) that the system
is responsible for. Such systems present an important segment of each modern
and energy-efficient building. They have been widely used in the residential and
commercial buildings. According to [8], the contribution of buildings to overall
energy consumption in developed countries is between 20% and 40% of which 40%
belongs to HVAC systems. Therefore, an efficient management and monitoring of
these systems can significantly reduce the energy consumption.

The HVAC system used in this chapter is presented in Fig. 2 and consists of the
following components. First, the blinds for input and output air, which are open to
100% when the system is turned on. There are also different types of air filters (G3,
F5, and F7) that remove the solid particulates such as dust and pollen. The air flow
is divided into four separate zones: outdoor, supply, return, and exhaust air which
are shown (see Fig. 2) in green, blue, yellow, and orange color, respectively. The
direction of the air flow is shown by the arrows in Fig. 2. We can see that the return
air is not mixed with the fresh outdoor air due to the required indoor air quality
standards. The main (electrically controlled) parts of the system are: recuperator,
heater, humidifier, cooler, and supply and return fan (see Fig. 2).

Answer No. 6. The main control algorithm makes decisions according to the
outdoor air condition and the indoor air quality requirements. Due to the fact that
the control algorithm is a product and property of an automation company, we will
explain at this point only the basic principles and not all the details. In general,
we can divide the control algorithm into three parts: temperature, humidity, and
air flow control. These three parts are intertwined between them considering the
Mollier diagram principles and some internal logic. Two PI (Proportional–Integral)
controllers take care of sufficient (required) flow of the supply and the return air. The
temperature and humidity control parts are connected through a sequencer, which
decides which control mode is active: heating, cooling, or dehumidifying. This part
consists of four PI controllers and directly influences on the heater, the cooler, and
the recuperator. The humidification control part consists of two PI controllers which
control the humidifier’s valve.

In [25], a model of the presented HVAC system was built for testing and
developing new fault detection methods and for optimizing the control algorithm.
The parameters of the model were tuned using the real data acquired from the real
HVAC system. Therefore, as shown in [25] the model sufficiently represents the
static and dynamic properties of the real process.
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4.1 Possible Faults on HVAC System

The list of signals that are available on the described HVAC system is presented
in Table 1. The signals are separated into two groups: actuators and sensors. The
possible faults that can appear on the HVAC system can be influenced by the
actuators and sensors as well. Some of the possible types of faults (also see Fig. 3)
are:

1. Communication error—The real value of the signal is not the same as the value
that the control algorithm sees (first subplot in Fig. 3).

2. Signal offset—The real value of the sensor/actuator is higher/lower for some
offset value (second subplot in Fig. 3).

3. Signal drift—The real signal starts drifting (third subplot in Fig. 3).
4. Step error—The real signal is on its maximum or minimum value (fourth subplot

in Fig. 3).

Table 1 List of signals on
HVAC system

Description Symbol Range

Actuators

Valve: recuperator Vr 0–100%

Valve: heater Vh 0–100%

Valve: humidifier Vhm 0–100%

Valve: cooler Vc 0–100%

Fan: supply air Fsa 0–100%

Fan: return air Fra 0–100%

Blinds: outdoor air Boa 0–100%

Blinds: exhaust air Bea 0–100%

Sensors

Temperature: outdoor air Toa −40–80 ◦C
Temperature: supply air Tsa 0–50 ◦C
Temperature: return air Tra 0–50 ◦C
Temperature: recuperation water Trw −40–80 ◦C
Temperature: hot water for heater Thw 0–100 ◦C
Temperature: cold water for cooler Tcw 0–50 ◦C
Humidity: outdoor air RHoa 0–100%

Humidity: supply air RHsa 0–100%

Humidity: return air RHra 0–100%

Pressure: supply air Psa 0–300 Pa

Pressure: return air Pra 0–300 Pa
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Fig. 3 Examples of possible types of faults that can appear on the actuators or sensors. The dotted
black lines denote the start and the end of the faults

5 Experimental Results

In this section, we will present the experimental results of the proposed cloud-based
method. As we already mentioned in the previous sections, the proposed cloud-
based data-driven fault detection method was tested on model of HVAC system. The
results were compared to established fault detection method DPCA [15, 23, 25]. For
the statistical comparing of the methods, we used the True Positive Rate (TPR), the
False Positive Rate (FPR), and the overall Accuracy (ACC) measure:

T PR = T P

samples (F = 1)
× 100 [%] (16)

FPR = TN

samples (F = 0)
× 100 [%] (17)

ACC = T P + TN
total samples

× 100 [%] (18)
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Table 2 List of the tested
faults of HVAC system

Fault no. Signal description Symbol Fault type

F1 Temperature: cold water Tcw Offset (−40 ◦C)

F2 Temperature: cold water Tcw Offset (+40 ◦C)

F3 Valve: heater Vh Step (100%)

F4 Valve: recuperator Vr Step (100%)

Table 3 Settings of the proposed method for each fault

Fault no. Signal description Regressors Parameters

F1 Temperature: cold water Tsa − Toa γmax = 0.85 cmax = 100 nadd = m+ 1

Vc

Tcw

F2 Temperature: cold water Tsa − Toa
SPTsa

Vc

Tcw

RHsa − RHoa

F3 Valve: heater Tsa − Toa
Vh

Vr

F4 Valve: recuperator Tsa − Toa
Vh

Vr

where T P (true positives) and TN (true negatives) are the number of correctly
detected faults and normal states, respectively.

In this experiment, four different faults were considered as presented in Table 2.
For each of these faults, three data sets (two training and one testing) were acquired
from the HVAC model presented in [25] (Table 3).

In Figs. 4, 5, 6, and 7, the fault detection results of the proposed method for
the faults F1, F2, F3, and F4 are presented, respectively. The upper plots show
the maximal density maxi Γ i

δk(X
i
F=0) for normal process operation (blue line) and

fault maxi Γ i
δk(X

i
F=1) (red line). The light blue shaded areas indicate the actual

period where the particular fault appears. Analogously to the upper plot, the bottom
plot shows the performance analysis. The green line shows the detected fault by
the proposed evolving algorithm. From all figures, we can notice that majority of
wrongly detected samples are in the area where fault is not present, and therefore in
this case we have just false alarms. On the other hand, there are just few wrongly
detected (actually undetected) faults. One of the reasons for wrong detections we
see is the poorly designed control strategy which causes parameter oscillations. The
TPR, the FPR, and the overall accuracy for each fault are shown in Tables 4, 5,
and 6, respectively. Moreover, the results of the proposed method are compared to
DPCA method presented in [25]. From the results in the tables, we can notice that
using the proposed evolving method we improve the overall accuracy comparing to
the DPCA technique.
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Fig. 4 Fault detection results for the fault F1

Fig. 5 Fault detection results for the fault F2
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Fig. 6 Fault detection results for the fault F3

Fig. 7 Fault detection results for the fault F4
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Table 4 True positive rate
(T PR[%]) comparison
between DPCA and proposed
method

F1 F2 F3 F4

DPCA [25] 81.30 81.30 65.20 71.60

CBoptimized 90.59 99.23 77.73 72.42

The highest TPR among both methods for each
fault type is highlighted in bold font

Table 5 False positive rate
(FPR[%]) comparison
between DPCA and proposed
method

F1 F2 F3 F4

DPCA [25] 92.10 92.10 79.00 66.20

CBoptimized 89.78 78.26 74.40 67.53

The highest FPR among both methods for each
fault type is highlighted in bold font

Table 6 Accuracy
(ACC[%]) comparison
between DPCA and proposed
method

F1 F2 F3 F4

DPCA [25] 86.59 86.59 73.35 67.90

CBoptimized 90.20 89.03 75.76 69.04

The highest accuracy among both methods for
each fault type is highlighted in bold font

6 Conclusion

In this paper, we introduced an evolving cloud-based method for fault detection
purposes on dynamic processes. The proposed approach is based on simplified fuzzy
model AnYa and uses an evolving mechanism for partitioning the problem space
according to the local data density measure. The method obtains separate models
(data clouds), one for normal process operation and other for faults. According to the
affiliation of the current data to these models, we classify the data as fault or normal
state. The proposed procedure was tested on data acquired from HVAC model, and
the results were compared to the well-established fault detection method DPCA
(Dynamic Principle Component Analysis). Four different faults were investigated,
and the obtained results show that the cloud-based method could be competitive to
the DPCA method.
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An Online RFID Localization in the
Manufacturing Shopfloor

Andri Ashfahani, Mahardhika Pratama, Edwin Lughofer, Qing Cai,
and Huang Sheng

1 Introduction

Radio Frequency Identification (RFID) technology has been used to manage object’s
location in the manufacturing shopfloor. It is more popular than similar technologies
for object localization, such as Wireless Sensor Networks (WSN) and WiFi, due to
the affordable price and the easy deployment [12, 25].

In the Maintenance, Repair, and Overhaul (MRO) industry, for example, locating
the equipments and trolleys manually over the large manufacturing shopfloor area
results in time-consuming activities and increases operator workload. Embracing
RFID technology for localization will help companies improve productivity and
efficiency in the industry 4.0. Instead of manually locating the tool-trolleys, RFID
localization is utilized to monitor the location real time. Despite much work and
progress in RFID localization technology, it still has challenging problems. The key
disadvantage of RFID is that it has low-quality signal, which is primarily altered by
the complexity and severe noises in the manufacturing shopfloors [3].

Generally, an RFID localization system comprises of three components, i.e.,
RFID tag, RFID reader, and the data processing subsystem. The reader aims to
identify the tag ID and obtain the received signal strength (RSS) information from
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tags. An object’s location can be estimated by observing the RSS. However, the
RSS quality in the real world is very poor; moreover, it keeps changing over time.
As an illustration, although RFID tag is used in the static environment, the RSS
keeps changing over time. Moreover, a minor change in the surrounding area can
greatly fluctuate the RSS. The major factors causing the phenomena are multipath
effect and interference. Therefore, obtaining the accurate location relying on RSS
information is a hard task. In several research programs, these problems are tackled
by employing computational techniques, and thus the object’s location can be
estimated accurately [12].

There are several techniques which can be utilized to estimate the object’s
location. First of all, the distance from an RFID tag to an RFID reader can be
calculated via the two-way radar equation for a monostatic transmitter. It can
be obtained easily by solving the equation. Another approach, LANDMARC, is
proposed for the indoor RFID localization [11]. It makes use of K reference tags,
and then it evaluates the RSS similarity between reference tags and object tags. A
higher weight will be assigned to the reference tags which possess the similar RSS
information to the object tags. In the realm of machine learning, support vector
regression (SVR) is implemented for the indoor RFID localization [3]. It is a one-
dimensional method and is designed for stationary objects in the small area. Another
way to obtain better accuracy is by employing Kalman filter (KF), and it has been
demonstrated to deal with wavelength ambiguity of the phase measurements [23].

The strategy to estimate the object location via the so-called radar equation is
easy to execute. However, the chance to obtain acceptable accuracy is practically
impossible due to the severe noises. LANDMARC manages to improve the local-
ization accuracy. Nonetheless, it is difficult to select the reference tag properly in the
industrial environments, where interference and multipath effect occurred. Improper
selection of reference tags can alter the localization accuracy. Similarly, SVR is
also designed to address object localization problem in the small area, and it even
encounters an over-fitting problem. Meanwhile, integrating KF in some works can
improve localization accuracy and it also has low computational cost. KF has better
robustness and good statistical properties. However, the requirement to calculate
the correlation matrix burdens the computation. In addition, the use of KF is also
limited by the nonlinearity and nonstationary condition of the real world [3, 13].
The data generated from a nonstationary environment can be regarded as the data
stream [14].

Evolving intelligent system (EIS) is an innovation in the field of computational
intelligence to deal with data stream [1, 9]. EIS has an open structure, and it
implies that it can start the learning processes from scratch or zero rule base.
Its rules are automatically formed according to the data stream information. EIS
adapts online learning scenario, and it conducts the training process in a single-
pass mode [20]. EIS can either adjust the network parameters or generate fuzzy
rule without retraining process. Hence, it is capable to deal with the severe noises
and the systems dynamics [10, 16, 20]. In several works, the gradient descent (GD)
is utilized to adjust the EIS parameters. However, it is vulnerable to noises due to
its sensitivity [13]. In the premise part, the Gaussian membership function (GMF)
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is usually employed to capture the input features of EIS. The drawback of GMF is
its inadequacy to detect the overlaps between classes. Several works have employed
quantum membership function (QMF) to tackle the problem [4, 8, 21]. Nevertheless,
it is type-1 QMF which lacks robustness to deal with uncertainties in real-world data
streams [20].

This research proposes an EIS, namely evolving Type-2 Quantum Fuzzy Neural
Network (eT2QFNN). The eT2QFNN adopts online learning mechanism, and it
processes the incoming data one-by-one and the data is discarded after being
learned. Thus, eT2QFNN has high efficiency in terms of computational and memory
cost. The eT2QFNN is encompassed by two learning policies, i.e., the rule growing
mechanism and parameters adjustment. The first mechanism enables eT2QFNN to
start the learning process from zero rule base. It can automatically add the rule on
demand. Before a new rule is added to the network, it is evaluated by a proposed
formulation, namely modified Generalized Type-2 Datum Significance (mGT2DS).
The second mechanism performs parameters adjustment whenever a new rule is
not formed. It aims to keep the network adapted to the current data stream. This
mechanism is accomplished by decoupled extended Kalman filter (DEKF). It is
worth noting that the DEKF algorithm performs localized parameter adjustment,
i.e., each rule can be adjusted independently [13]. In this research, the adjustment
is only undertaken on a winning rule, i.e., a rule with the highest contribution.
Therefore, DEKF is more efficient than extended Kalman filter (EKF), and yet
it still preserves the EKF performance. On the premise part, the interval type-2
QMF (IT2QMF) is proposed to approximate the desired output. It worth noting
that it is a universal function approximator which has been demonstrated by several
researchers[4, 8, 21]. Moreover, it is proficient to form a graded class partition, such
that the overlaps between classes can be identified [4].

The major contributions of this research are summarized as follows: (1) This
research proposes the IT2QMF with uncertain jump position. It is the extended
version of QMF. That is, IT2QMF has the interval type-2 capability in terms of
incorporating data stream uncertainties. (2) The eT2QFNN is equipped with rule
growing mechanism. It can generate its rule automatically in the single-pass learning
mode, if a condition is satisfied. The proposed mGT2DS method is employed as
the evaluation criterion. (3) The network parameter adjustment relies on DEKF.
The mathematical formulation is derived specifically for eT2QFNN architecture. (4)
The effectiveness of eT2QFNN has been experimentally validated using real-world
RFID localization data.

The remainder of this book chapter is organized as follows. Section 2 presents
the RFID localization system. The proposed type-2 quantum fuzzy membership
function and the eT2QFNN network architecture are presented in Sect. 3. Section 4
presents the learning policies of eT2QFNN, and the DEKF for parameter adjustment
is discussed. Section 5 provides empirical studies and comparisons to state-of-the-
art algorithms to evaluate the efficacy of eT2QFNN. Finally, Sect. 6 concludes this
book chapter.
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2 RFID Localization System

RFID localization technology has three major components, i.e., RFID tags, RFID
readers, and data processing subsystem. There are two types of RFID tags, i.e.,
the active and passive tag. The active RFID tag is battery powered and has its
own transmitter. It is capable of sending out beacon message, i.e., tag ID and RSS
information, actively at specified time window. The transmitted signal can be read
up to 300-m radius. In contrast, passive tag does not have independent power source.
It exploits the reader power signal, and thus it cannot actively send the beacon
message in a fixed period of time. The signal can only be read around 1-m radius
from the reader, which is very small compared to the manufacturing shopfloor. After
that, the transmitted signal is read by the RFID reader. And then, it is propagated
to the data processing subsystem, where the localization algorithm is executed [12].
The configuration of RFID localization is illustrated in Fig. 1.

The RSS information can be utilized to estimate the object location. It can be
achieved by solving the two-way radar equation for a monostatic transmitter as

Fig. 1 Architecture of the eT2QFNN
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per (1). The variables are explained as follows. PT , GT , λ, σ , and R are the reader
signal power, the antenna gain, carrier wavelength, tag radar cross-section, and
the distance between reader and tag, respectively. However, due to the occurrence
of multipath effect and interference, the RSS information becomes unreliable and
keeps changing over time. Consequently, the satisfying result cannot be obtained
[3, 12]. Instead of employing (1) to locate the RFID, this research utilizes eT2QFNN
to process the RSS information to obtain the precise object location:

PR = G2
T λ

2σ

(4π)2R4
(watts) (1)

One of many objectives of this research is to demonstrate the eT2QFNN to deal
with the RFID localization problem. The RSS information of reference tags are
utilized to train the network. The reference tags are tags placed at several known
and static positions. The eT2QFNN can estimate the new observed tags location
according to its RSS. It worth noting that eT2QFNN learning processes are achieved
in the evolving mode, and it keeps the network parameters and structure adapted to
the current data stream. This benefits the network to deal with multipath effect and
interference occurred in the manufacturing shopfloor.

Now, suppose that there are I reference tags which are deployed in M locations,
then the RSS measurement vector at nth time-step can be expressed as Xn =
[ x1 . . . xi . . . xI ]T . Afterward, the network outputs for RFID localization problem
can be formulated into a multiclass classification problem. As an illustration, if there
existM = 4 reference tags deployed in the shopfloor, it will indicate that the number
of classes is equal to 4.

3 eT2QFNN Architecture

This section presents the network architecture of eT2QFNN. The network archi-
tecture, as illustrated in the Fig. 2, consists of a five-layer, multi-input-single-output
(MISO) network structure. It is systematized into I input features,M outputs nodes,
and K-term nodes for each input feature. The rule premise is compiled of IT2QMF
and is expressed as follows:

Rj : IF x1 is close to Q̃1j and . . . and xI is close to Q̃IK, THEN yoj = XeΩ̃j

(2)
where xi and yoj are the ith input feature and the regression output of the oth class

in the j th rule, respectively. Q̃ij = [Qij ,Qij
] denotes the set of upper and lower

linguistic term of IT2QMF, Xe is the extended input, and Ω̃j = [Ωj,Ωj ] is the
set of upper and lower consequent weight parameters which are defined as Ω̃j ∈
�M×2(I+1).
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Fig. 2 The RFID localization system

The membership function applied in this study is different from the typical QMF
and GMF. The QMF concept is extended into interval type-2 membership function
with uncertain jump position. Thus, the network can identify overlaps between
classes and capable to deal with the data stream uncertainties. The IT2QMF output
of the j th rule for the ith input feature is given in (3):

Q̃ij (xij , β,mij , θ̃ij ) = 1

ns

ns∑
r=1

[(
1

1+ exp(−βxi −mij + |θ̃ rij |)

)
U(xi;−∞,mij )

+
(

exp(−β(xi −mij − |θ̃ rij |))
1+ exp(−β(xi −mij − |θ̃ rij |))

)
U(xi;mij ,∞)

]
(3)

wheremij , β, and ns are mean of ith input feature in j th rule, slope factor, and num-
ber of grades, respectively. θ̃ij = [θij , θ ij ] is the set of uncertain jump position, and

it is defined as θ̃ij ∈ �2×I×ns×K . The upper and lower jump position is expressed as

θij = [ θ1
1j . . . θ

ns
1j ; . . . ; θ1

Ij . . . θ
ns
Ij
] and θrij = [ θ1

1j . . . θ
ns
1j ; . . . ; θ1

Ij . . . θ
ns
Ij ]. It

is defined that θ
r

ij > θrij , thus the execution of (3) leads to interval type-2 inference
scheme which produces a footprint of uncertainties [20], and it can be clearly seen in
Fig. 3. The eT2QFNN operation in each layer is presented in the following passages.
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Fig. 3 Interval type-2
quantum membership
function with ns = 3
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3.1 Input Layer

This layer performs no computation. The data stream is directly propagated to the
next layer. The input at nth observation is defined by Xn ∈ �1×I . And, the output
of the ith node is given as follows:

ui = xi (4)

3.2 Quantum Layer

This layer performs fuzzification step. IT2QMF is utilized to calculate the member-
ship degrees of Xn in each rule. The number of rules is denoted as K . The quantum
layer outputs mathematically can be obtained via (5) and (6):

Qij = Q̃ij (xi, β,mij , θ
r

ij ) (5)

Q
ij
= Q̃ij (xi, β,mij , θ

r
ij ) (6)

3.3 Rule Layer

This layer functions to combine the membership degree of j th rule denoted as
R̃j = [Rj ,Rj ], which is known as spatial firing strength. This can be achieved
by employing product T-norm of IT2QMF, as per (7) and (8). The set of upper and
lower firing strengths are expressed as R = [R1 . . . RK ] and R = [R1 . . . RK ],
respectively.
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Rj =∏I
i=1 Qij (7)

Rj =
∏I
i=1 Qij

(8)

3.4 Output Processing Layer

The calculation of the two endpoints output, i.e., yl,o and yr,o, is conducted
here. These variables represent the lower and upper crisp output of the oth class,
respectively. The design factor [ql, qr ] are employed to convert the interval type-2
variable to type-1 variable, and this is known as the type reduction procedure. This
requires less iterative steps compared to the Karnik–Mendel (KM)-type reduction
procedure [19]. The design factor will govern the proportion of upper and lower
IT2QMF, and it is defined such that ql < qr . The design factor is adjusted using
DEKF, and thus the proportion of upper and lower outputs [yl, yr ] keeps adapting
to the data stream’s uncertainties. The lower and upper outputs are given as:

yl,o =
(1− ql,o)∑K

j=1 Rj Ωjox
T
e + ql,o

∑K
j=1 Rj Ωjox

T
e∑K

j=1(Rj + Rj)
(9)

yr,o =
(1− qr,o)∑K

j=1 Rj Ωjox
T
e + qr,o

∑K
j=1 Rj Ωjox

T
e∑K

j=1(Rj + Rj)
(10)

where ql = [ql,1, . . . , ql,M ] and qr = [qr,1, . . . , qr,M ] are the design factors of all
classes, while Ωjo = [wo

ij , . . . , w
o
(I+1)j ] and Ωjo = [wo

ij , . . . , w
o
(I+1)j ] express

the upper and lower consequent weight parameters of the j th rule for the oth class.
In addition, xe ∈ �(I+1)×1 is the extended input vector. For example,Xn has I input
features [x1, . . . , xI ], then the extended input vector is Xe = [1, x1, . . . , xI ]. The
entry 1 is included to incorporate the intercept of the rule consequent and to prevent
the untypical gradient [20].

3.5 Output Layer

The crisp network output of the oth class is the sum of yl,o and yr,o as per (11).
Furthermore, if the network structure of eT2QFNN is utilized to deal with multiclass
classification, the multi-model (MM) classifier can be employed to obtain the
final classification decision. The MM classifier splits the multiclass classification
problem into K binary subproblems, then K MISO eT2QFNN is built accordingly.
The final class decision is the index number o of the highest output, as per (12):
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yo = yl,o + yr,o (11)

y = arg max
o=1,...,M

yo (12)

4 eT2QFNN Learning Policy

The online learning mechanism of eT2QFNN consists of two scenarios, i.e., the
rule growing and the parameter adjustment which is executed in every iteration. The
eT2QFNN starts its learning process with an empty rule base and keeps updating its
parameters and network structure as the observation data comes in. The proposed
learning scenario is presented in Algorithm 1, while Sects. 4.1 and 4.2 further
explain the learning scenarios.

Algorithm 1 Learning policy of eT2QFNN

Define: input–output pair Xn = [x1, . . . , xI ]T , Tn = [t1, . . . , tM ]T , ns , and η
\\Phase 1: Rule Growing Mechanism\\
If K = 0 then
Initiate the first rule via (26), (29), and (30)
else
Approximate the existing IT2QMF via (18)
Initiate a hypothetical rule RK+1 via (26), (27), and (31)
for j = 1 to K + 1
Calculate the statistical contribution Ej via (20)
end for
If EK+1 ≥ ρ∑K

j=1 Ej then
K = K + 1
end if
end if
\\Phase 2: Parameter Adjustment using DEKF\\
If K(n) = K(n− 1) then
Calculate the spatial firing strength via (7) and (8)
Determine the winning rule jw via (34)
Do DEKF adjustment mechanism on rule Rjw via (37) and (39)
Update covariance matrix of the winning rule via (38)
else
Initialize the new rule consequents weight Ω̃K+1 and covariance matrix and as (31) and (32)
for j = 1 to K − 1 do

Pj (n) = Pj (n− 1)
(
K2+1
K2

)

end for
end if
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4.1 Rule Growing Mechanism

The eT2QFNN is capable of automatically evolving its fuzzy rule on demand using
the proposed mGT2DQ method. First of all, it is achieved by forming a hypothetical
rule from a newly seen sample. The initialization of hypothetical rule parameters
is presented in the Sect. 4.2.1. Before it is added to the network, it is required to
evaluate its significance. The significance of the j th rule is defined as an L2-norm
of Esig(j) weighted by the input density function p(x) as follows [7]:

Esig(j) = ||ωj ||
(∫

RI
exp(−2||X −mj ||2/σ 2

j )p(X)dX

)1/2

(13)

From the (13), it is obvious that the input density p(X) greatly contributes to
Esig(j). In practical, it is hard to be calculated a priori, because the data distribution
is unknown. Huang et al. [5] and [6] calculated (13) analytically with the assumption
of p(X) being uniformly distributed. However, Zhang et al. [26] demonstrated
that it leads to performance degradation for complex p(X). To overcome this
problem, Bortman and Aladjem [2] proposed Gaussian mixture model (GMM) to
approximate the complicated data stream density. The mathematical formulation of
GMM is given as:

p̂(X) =
H∑
h=1

αhN (X; vh,Σh) (14)

N (X; vh,Σh) = exp(−(X − vh)T Σ−1
h (X − vh)) (15)

where N (X; vh,ΣH ) is the Gaussian function of variable X as per (15), with the
mean vector vh ∈ �I , variance matrix Σh ∈I×I , H denotes the number of mixture
model, and αh represents the mixing coefficients (

∑H
h=1 αh = 1;αh > 0∀ h).

In the next step, the estimated significance of j th rule Êsig(j) is calculated.
Vuković and Miljković [24] derived the mathematical formulation to obtain Êsig(j)
by substituting (14) to (13) and then solving the closed-form analytical solution, it
yields to the following result:

Êsig(j) = ||ωj ||(πI/2 det(Σj )
1/2NjA

T )1/2 (16)

where A = [α1, . . . , αH ] is the vector of GMM mixing coefficients, Σj denotes the
positive definite weighting matrix which is expressed as Σj = diag(σ 2

1,j , . . . , σ
2
I,j ),

and Nj is given as:

Nj = [N (mj − v1; 0,Σj/2+Σ1), N (mj − v2; 0,Σj/2+Σ2), . . .

. . . ,N (mj − vH ; 0,Σj/2+ΣH)] (17)
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where mj is the mean vector of j th rule defined as mj = [m1,j , . . . , mI,j ]. And,
the GMM parameters vh, Σh, and A can be calculated by exploiting Nhistory

prerecorded data. This technique is feasible and easy to implement, because the
prerecorded input data is most likely to be stored especially in the era of data stream.
The number of prerecorded data is somewhat smaller than the training data, and it
is denoted as Nhistory ! N . It is not problem-specific, and it can be set to a fixed
value [14]. In this research, it is set as 50 for simplicity.

The method (16) could not, however, be applied directly to estimate the
eT2QFNN rule significance, because eT2QFNN utilizes IT2QMF instead of Gaus-
sian membership function (GMF). The key idea to overcome this problem is
by approximating IT2QMF using interval type-2 Gaussian Membership Function
(IT2GMF). The mathematical formulation of this approach can be written as
follows:

Q̃i,j (xi, β,mi,j , θ̃ij ) ≈ μ̃i,j = exp

(
− (xi −mi,j )

2

σ̃i,j

)
(18)

σ̃i,j = [σ i,j , σ i,j ]
σ i,j = min θi,j ; σ i,j = min θi,j (19)

The mean of IT2GMF is defined to equal the mean of IT2QMF, i.e., mij . And,
the width of upper and lower IT2GMF are obtained by taking the minimum value
of θ̃ij as per (19). By selecting these criteria, the whole area of IT2GMF will be
located inside the area of IT2QMF. As illustrated in Fig. 4, both upper and lower
area of IT2GMF covers the appropriate area of IT2QMF. Therefore, this approach
can provide a good approximation of IT2QMF.
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Fig. 4 The comparison result of IT2QMF and IT2GMF
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Afterward, the proposed method to estimate eT2QFNN rule significance can
be derived by executing (16) with the design factor as per (20). In (21) and (22),
Ωj = [Ωj,1, . . . ,Ωj,M ]T and Ωj = [Ωj,1, . . . ,Ωj,M ]T are denoted as the upper
and lower consequent weight parameters of all classes, respectively. The variance
matrices Σj and Σj are formed of σ i,j and σ i,j as per (24), while Nj and Nj

are given in (25). The hypothetical rule will be added to the network as a new rule
RK+1 if it possesses statistical contribution over existing rules. The mathematical
formulation of rule growing criterion is given in (23), where the constant ρ ∈ (0, 1]
is defined as the vigilance parameter and in this research it is fixed at 0.65 for
simplicity.

Êj = |Êj,l | + |Êj,r | (20)

Êj,l = ||ql || · ||Ωj || · (πI/2 det(Σj )
1/2NjA

T )1/2

+(1− ||ql ||) · ||Ωj || · (πI/2 det(Σj )
1/2NjA

T )1/2 (21)

Êj,r = ||qr || · ||Ωj || · (πI/2 det(Σj )
1/2NjA

T )1/2

+(1− ||qr ||) · ||Ωj || · (πI/2 det(Σj )
1/2NjA

T )1/2 (22)

EK+1 ≥ ρ

K∑
j=1

Ej (23)

Σj = diag(σ 2
1,j , . . . , σ

2
I,j ), Σj = diag(σ 2

1,j , . . . , σ
2
I,j ) (24)

Nj = [N (mj − v1; 0,Σj/2+Σ1), N (mj − v2; 0,Σj/2+Σ2), . . .

. . . ,N (mj − vH ; 0,Σj/2+ΣH)],
Nj = [N (mj − v1; 0,Σj/2+Σ1), N (mj − v2; 0,Σj/2+Σ2), . . .

. . . ,N (mj − vH ; 0,Σj/2+ΣH)] (25)

4.2 Parameter Adjustment

This phase comprises of two alternative strategies. The first strategy is carried out to
form a hypothetical rule. It will be added into the network structure if the condition
in (23) is satisfied. This strategy is called the fuzzy rule initialization. And, the
second mechanism is executed whenever (23) is not satisfied. It is aimed to adjust the
network parameters according to the current data stream. This is called the winning
rule update. These strategies are elaborated in the following sub-subsections.
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4.2.1 Fuzzy Rule Initialization

The rule growing mechanism first of all is conducted by forming a hypothetical rule
according to the current data stream. The data at nth time-step Xn is assigned as
the new mean of IT2QMF, as per (26). And then, the new jump position is achieved
via distance-based formulation inspired by Lin and Chen [8], as per (27). In this
research, however, it is modified such that the new distance σ̃i,K+1 is obtained
utilizing the mixed mean of GMM v̂, as per (28). Thanks to the GMM features
which is able to approximate the mean and variance of very complex input. For this
reason, instead of using σ̃i,K+1 to calculate the jump position of the first rule in (29),
the eT2QFNN utilizes the diagonal entries of the mixed variance matrix, as per (30).
The constant δ1 is introduced to create the footprint of uncertainty. In this study, it
is set δ1 = 0.7 for simplicity.

In the next stage, the consequent weight parameters of hypothetical rule are
determined. It is equal to the consequent weight of the winning rule as per (31).
The key idea behind this strategy is to acquire the knowledge of winning rule in
terms of representing the current data stream [13]. The way to select the winning
rule is presented in Sect. 4.2.2. Finally, if the hypothetical rule passes the evaluation
criterion in (23), it is added as the new rule (RK+1), and its covariance matrix is
initialized via (32).

In contrast, a consideration is required to adjust the covariance matrices of other
rules, because the new rule formation corrupts those matrices. This phenomenon has
been investigated in SPLAFIS [13]; the research revealed that those matrices need
to be readjusted. The proper readjustment technique is achieved by multiplication of

those matrices and
(
K2+1
K2

)
as per (33). This strategy is signified to take into account

the contribution that a new rule would have if it existed from the first iteration. It,
therefore, will decrease the corruption effect [13].

mK+1 = Xn (26)

θ
r

i,K+1 =
1

((ns + 1)/2)
· r · σ i,K+1,

θri,K+1 =
1

((ns + 1)/2)
· r · σ i,K+1 (27)

σ i,K+1 = |Xn − v̂|, σ i,K+1 = δ1 · σ i,K+1 (28)

v̂ =
H∑
h=1

αh · vh

θ
r

i,1 =
1

((ns + 1)/2)
· r · σ i,1,
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θri,1 =
1

((ns + 1)/2)
· r · σ i,1 (29)

σ i,1 = σ̂i , σ i,1 = δ1 · σ i,1 (30)

Σ̂ =
H∑
h=1

Σh · vh, Σ̂ = diag(σ̂ 2
1 , . . . , σ̂

2
I )

Ω̃K+1 = Ω̃jw (31)

PK+1(n) = IZ×Z (32)

Pj (n) =
(
K2 + 1

K2

)
Pj (n− 1) (33)

4.2.2 Winning Rule Update

The hypothetical rule would not be added to the network structure if it failed the
evaluation in (23). To maintain the eT2QFNN performance, the network parameters
are required to be adjusted according to the information provided by the current
data stream. In this research, the adjustment is only undertaken on the winning rule
which is defined as a rule having the highest average of the spatial firing strength.
The mathematical formulation is given in (34). It worth noting that spatial firing
strength represents the degree to which the rule antecedent part is satisfied. The rule
having higher firing strength possesses higher correlation to the current data stream
[16], and therefore it deserves to be adjusted.

jw = arg max
j

R̃j (34)

R̃j =
Rj + Rj

2
(35)

Previously, DEKF is employed to adjust the winning rule parameters of type-1
fuzzy neural network. It is capable of maintaining local learning property of EIS,
because it can adjust parameters locally [13]. In this research, DEKF is utilized
to update the winning rule parameters of eT2QFNN. The local parameters are
classified by rule, i.e., the parameters in the same rule are grouped together. This
leads to the formation of block-diagonal covariance matrix P̃ (n) as per (36). There
is only one block covariance matrix updated in each time-step, i.e., Pjw(n). The
localized adjustment property of DEKF enhances the algorithm efficiency in terms
of computational complexity and memory requirements; moreover, it still maintains
the same robustness as the EKF [22].
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P̃ (n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1(n) . . . 0 . . . 0
...

. . .
...

0 Pj (n) 0
...

. . .
...

0 . . . 0 . . . PK(n)

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

The mathematical formulations of DEKF algorithm are given in (37)–(39). The
designation of each parameter in the equation is as follows. Gjw(n) and Pjw(n)

are the Kalman gain matrix and covariance matrix, respectively. The covariance
matrix represents the interaction between each pair of the parameters in the network.−→
θ jw (n) is the parameter vector of Rjw at nth iteration, and it consists of all the

network parameters which are about to be adjusted. It is expressed as
−→
θ jw(n) =

[ΩT
jw
, Ω

T

jw
, qTl , q

T
r , m

T
jw
, θTjw , θ

T

jw
]T , which is respectively given in (40)–(46).

The length of
−→
θ jw(n) is equal to Z = 2 ×M × (2 + I ) + I × (2 × ns + 1). The

Jacobian matrix Hkw(n), presented in (47), contains the output gradient with respect
to the network parameters, and it is arranged into Z-by-M matrix. The gradient
vectors are specified in (48) and is calculated using (49)–(52). The output and target
vectors are defined as y(n) = [ y1(n) . . . yM(n) ] and t (n) = [ t1(n) . . . tM(n) ]. It is
utilized to calculate the error vector in (39). The last parameter, η, is a learning rate
parameter [22]. This completes the second strategy to maintain the network adapted
to the current data stream.

Gjw(n) = Pjw(n− 1)Hjw(n)[ηIM×M +HT
kw
(n)Pjw(n− 1)Hjw(n)]−1 (37)

Pjw(n) = [IZ×Z −Gjw(n)H
T
jw
(n)]Pjw(n− 1) (38)

−→
θ jw (n) = −→θ jw(n− 1)+Gjw(n)[t (n)− y(n)] (39)

Ωjw
= [Ω1

1,jw , . . . ,Ω
1
I+1,jw , . . . ,Ω

1
1,jw , . . . ,Ω

M
I+1,jw ]T (40)

Ωjw = [Ω1
1,jw , . . . ,Ω

1
I+1,jw , . . . ,Ω

M

1,jw , . . . ,Ω
M

I+1,jw ]T (41)

ql = [ql,1, . . . , ql,M ]T (42)

qr = [qr,1, . . . , qr,M ]T (43)

mjw = [m1,jw , . . . , mI,jw ]T (44)

θjw = [θ1
1,jw , . . . , θ

1
I,jw

, . . . , θ
ns
1,jw

, . . . , θ
ns
I,jw
]T (45)

θjw = [θ1
1,jw , . . . , θ

1
I,jw

, . . . , θ
ns
1,jw , . . . , θ

ns
I,jw
]T (46)
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Hjw(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1
∂Ωjw,1

. . . 0 . . . 0

0 . . .
∂yo

∂Ωjw,o
. . . 0

0 . . . 0 . . .
∂yM

∂Ωjw,M
∂y1

∂Ωjw,1
. . . 0 . . . 0

0 . . .
∂yo

∂Ωjw,o
. . . 0

0 . . . 0 . . .
∂yM

∂Ωjw,M
∂y1
∂ql,1

. . . 0 . . . 0

0 . . .
∂yo
∂ql,o

. . . 0

0 . . . 0 . . .
∂yM
∂ql,M

∂y1
∂qr,1

. . . 0 . . . 0

0 . . .
∂yo
∂qr,o

. . . 0

0 . . . 0 . . .
∂yM
∂qr,M

∂y1
∂mjw,1

. . .
∂yo

∂mjw,o
. . .

∂yM
∂mjw,M

∂y1
∂θjw,1

. . .
∂yo

∂θjw,o
. . .

∂yM
∂θjw,M

∂y1

∂θjw,1
. . .

∂yo

∂θjw,o
. . .

∂yM
∂θjw,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

∂yo

∂Ωjw,o

=
[

∂yo

∂wo
1,jw

, . . . ,
∂yo

∂wo
I+1,jw

]T
,

∂yo

∂Ωjw,o

=
[

∂yo

∂wo
1,jw

, . . . ,
∂yo

∂wo
I+1,jw

]T
,

∂yo

∂mjw,o

=
[

∂ym

∂mo
1,jw

, . . . ,
∂yo

∂mo
I,jw

]T
,

∂yo

∂θjw,o
=
[

∂yo

∂θ1
1,jw,o

, . . . ,
∂yo

∂θ1
I,jw,o

, . . . ,
∂yo

∂θ
ns
1,jw,o

, . . . ,
∂yo

∂θ
ns
I,jw,o

]T
,

∂yo

∂θjw,o
=
⎡
⎣ ∂yo

∂θ
1
1,jw,o

, . . . ,
∂yo

∂θ
1
I,jw,o

, . . . ,
∂yo

∂θ
ns
1,jw,o

, . . . ,
∂yo

∂θ
ns
I,jw,o

⎤
⎦
T

(48)

∂yo

∂wo
1,jw

=
[
(1− ql,o)Rjw + ql,oRjw∑K

j=1(Rjw + Rjw)

]
xe,i(n),

yo

∂wo
1,jw

=
[
(1− qr,o)Rjw + qr,oRjw∑K

j=1(Rjw + Rjw)

]
xe,i(n) (49)
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∂yo

∂ql,o
=
[−∑K

j=1 RjΩo +
∑K

j=1 RjΩo∑K
j=1(Rjw + Rjw)

]
Xe(n),

∂yo

∂qr,o
=
[−∑K

j=1 RΩo +∑K
j=1 RΩo∑K

j=1(Rjw + Rjw)

]
Xe(n) (50)

∂yo

∂mi,jw

= ∂yo

∂yl,o

[
∂yl,o

∂Rjw

∂Rjw

∂mi,jw

+ ∂yl,o

∂Rjw

∂Rjw

∂mi,jw

]

+ ∂yo

∂yr,o

[
∂yr,o

∂Rjw

∂Rjw

∂mi,jw

+ ∂yr,o

∂Rjw

∂Rjw

∂mi,jw

]
(51)

∂yo

∂θri,jw

= ∂yo

∂yl,o

∂yl,o

∂Rjw

∂Rjw

∂θri,jw

+ ∂yo

∂yr,o

∂yr,o

∂Rjw

∂Rjw

∂θri,jw

,

∂yo

∂θ
r

i,jw

= ∂yo

∂yl,o

∂yl,o

∂Rjw

∂Rjw

∂θ
r

i,jw

+ ∂yo

∂yr,o

∂yr,o

∂Rjw

∂Rjw

∂θ
r

i,jw

(52)

∂yo

∂yl,o
= ∂yo

∂yl,o
= 1

∂yl,o

∂Rjw
= (1− ql,o)Ωjw,o

Xe(n)∑K
j=1(Rj + Rj )

− (1− ql,o)RΩmXe(n)+ ql,oRΩmXe(n)

(
∑K

j=1(Rj + Rj))2

∂yl,o

∂Rjw
= ql,oΩjw,o

Xe(n)∑K
j=1(Rj + Rj)

− (1− ql,o)RΩmXe(n)+ ql,oRΩmXe(n)

(
∑K

j=1(Rj + Rj ))2

∂yr,o

∂Rjw
= (1− qr,o)Ωjw,o

Xe(n)∑K
j=1(Rj + Rj )

− (1− qr,o)RΩmXe(n)+ qr,oRΩmXe(n)

(
∑K

j=1(Rj + Rj ))2

∂yr,o

∂Rjw
= qr,oΩjw,oXe(n)∑K

j=1(Rj + Rj)
− (1− qr,o)RΩmXe(n)+ qr,oRΩmXe(n)

(
∑K

j=1(Rj + Rj ))2

Rjw

∂mi,jw

=
I∏

i′=1,i′ �=i
Q
i′,jw (mi′,jw ) ·

1

ns

ns∑
r=1

#̃r (θ
r
i′jw )

Rjw

∂mi,jw

=
I∏

i′=1,i′ �=i
Qi′,jw (mi′,jw ) ·

1

ns

ns∑
r=1

#̃r (θ
r

i′jw )
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∂Rjw

θri,jw

=
I∏

i′=1,i′ �=i
Q
i′,jw (θ

r
i,jw

) · 1

ns
$̃r (θ

r
i,jw

)

∂Rjw

θ
r

i,jw

=
I∏

i′=1,i′ �=i
Qi′,jw (θ

r

i,jw
) · 1

ns
$̃r (θ

r

i,jw
)

#̃r (θ) =
⎧
⎨
⎩
− β exp(−β(xi′−mi′,jw+|θ |))
(1+exp(−β(xi′−mi′jw+|θ |)))2

, −∞ < xi′ < mi′jw
β exp(−β(xi′−mi′,jw+|θ |))

(1+exp(−β(xi′−mi′jw+|θ |)))2
, mi′j ≤ xi′ <∞

$̃r (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β exp(−β(xi′−mi′,jw+θ))
(1+exp(−β(xi′−mi′,jw+θ)))2

, −∞ < xi′ < mi′jw , θ ≥ 0

− β exp(−β(xi′−mi′,jw+θ))
(1+exp(−β(xi′−mi′,jw+θ)))2

, mi′j ≤ xi′ <∞, θ ≥ 0

− β exp(−β(xi′−mi′,jw−θ))
(1+exp(−β(xi′−mi′,jw−θ)))2

, −∞ < xi′ < mi′jw , θ < 0
β exp(−β(xi′−mi′,jw−θ))

(1+exp(−β(xi′−mi′,jw−θ)))2
, mi′j ≤ xi′ <∞, θ < 0

5 Experiments and Data Analysis

In this section, the application of eT2QFNN for RFID localization is discussed.
Several experiments are conducted in the real-world environment to evaluate the
efficacy of eT2QFNN embracing the MM classifier. The results are compared
against four state-of-the-art algorithms: gClass [15], pClass [17], eT2Class [19],
and eT2ELM [18]. Five performance metrics are used, and those are classification
rate, the number of fuzzy rules, and the time for execution, training, and testing
processes (execution time). The experiments are conducted under cross-validation
and periodic hold-out scenario. The technical details of this experiments are
elaborated in Sect. 5.1, while Sect. 5.2 presents the consolidated results.

5.1 Experiment Setup

The experiments were conducted at the SIMTech Laboratory, Singapore. The
environment is arranged to resemble the RFID smart rack system. The system
utilizes RFID technology to improve the workflow efficiency by providing the static
location of tools and materials for production purposes. As illustrated in Fig. 5, this
system consists of one RFID reader, four passive RFID tags as references which
are fixed in four locations, and a data processing subsystem. The dimension of rack
is 1510 mm × 600 mm × 2020 mm. The rack has five shelves, and each shelf can
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Fig. 5 The illustration of RFID smart rack

load up to six test objects. The number of reference tags indicates that there are four
class label considered in this experiments. The RFID reader is placed at 1000-mm
distance in front of the rack. The antenna is at 2200-mm height above the ground.
The reader is then connected to an RFID receiver which functions to transmit the
signal into a data processing subsystem. Ethernet links are utilized to accommodate
the signal transmission. Notably, one may install more reference tags and RFID
reader for larger smart rack system to increase the localization accuracy [3].

The data processing subsystem has two main components, i.e., data acquisition
and the algorithm execution component. The Microsoft Visual C++-based PC
application is developed to acquire the RSS information data from all tags, while
the localization algorithm is executed on the MATLAB 2018a online environment.
The Reader is configured to report the RSS information every 1 s. The experiment
had been conducted for 20 h. There are 283,100 observations obtained via the
experiment, each reference tag sent up to 70,775 observations. It is obvious that
these data obtained from the same real-time experiment, and therefore all of them
pose the same distribution. Finally, the observation data can be processed to identify
the object location by executing the localization algorithm.

5.2 Comparison with Existing Results

To further investigate the performance of eT2QFNN, it is compared to the existing
classification method, i.e., gClass, pClass, eT2Class, and eT2ELM. The comparison
is conducted in the same computational environments, i.e., MATLAB Online
R2018a. The gClass and pClass utilize generalized type-1 fuzzy rule, while the
eT2Class and eT2ELM are built upon generalized type-2 fuzzy rule. These methods
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are able to grow and prune its network structure according to the information
provided by the current data stream. All of them except pClass are also capable to
merge similar rules. Further, the eT2ELM is encompassed with active learning and
feature selection scenario which helps to discard the unnecessary training data. The
eT2QFNN utilizes MM classifier, while others make use of MIMO classifier. This
classifier is very dependent on rule consequents, because it establishes a first-order
polynomial for each class. Another characteristic of this classifier is a transformation
of true class label to either 0 or 1. As an illustration, if there are four class labels and
the target class is two, then it will be converted into [0, 1, 0, 0] [17].

There are two experiments conducted to test the algorithm, i.e., 10-fold cross-
validation and direct partition experiments. The first experiment is aimed to test
the algorithms consistency while delivering the result. The experiment is started
by dividing the data into 10 folds, and nine-fold data is for training, while one-
fold data is for validation. The performance metrics are achieved by averaging the
results of 10-fold cross-validation. In the second experiment, the periodic hold-out
evaluation scenario is conducted. The algorithms take 50,000 data for training and
233,100 for validation. The classification rate for the experiments is measured only
in the validation phase. In contrast, the execution time is taken into account since
the beginning of training phase. In this experiment, we vary ns = [0, 10] and set
η = 0.001. The results are presented in Tables 1 and 2.

It can be seen from Table 1 that the eT2QFNN delivers most reliable classifica-
tion rates. Although it employs four sub-models to obtain this result which burden
the computation, eT2QFNN has the fastest execution time second to pClass. In
terms of network complexity, eT2QFNN generates a comparable number of fuzzy
rules. It worth noting that eT2QFNN is not encompassed with the rule merging
and pruning scenario. Further, the number of eT2QFNN rules is less than eT2ELM

Table 1 Results of the
cross-validation experiment
compared to the benchmarked
algorithms

Algorithms Results

MM-eT2QFNN Classification rate 0.99 ± 0.05
Rule 6.23 ± 0.68

Execution time 618.63 ± 31.64
gClass Classification rate 0.97 ± 0.006

Rule 2.4 ± 1.2

Execution time 1004.36 ± 97.78

pClass Classification rate 0.97

Rule 2

Execution time 369.28 ± 9.99
eT2Class Classification rate 0.97 ± 0.008

Rule 2

Execution time 447.36 ± 11.60

eT2ELM Classification rate 0.95 ± 0.018

Rule 37.2 ± 5.95

Execution time 1324.1 ± 109.47
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Table 2 Results of the direct
partition experiment
compared to the benchmarked
algorithms

Algorithms Results

MM-eT2QFNN Classification rate 0.97

Rule 4.75
Execution time 131.5

gClass Classification rate 0.99

Rule 4

Execution time 290.83

pClass Classification rate 0.98

Rule 2

Execution time 225.8

eT2Class Classification rate 0.98

Rule 2

Execution time 330.71

eT2ELM Classification rate 0.98

Rule 5
Execution time 41.73

which has rule pruning and merging scenario. Table 2 confirms the consistency of
eT2QFNN while delivering good result. It worth noting that the second experiment
utilizes less data for training; however, eT2QFNN maintains the classification rate
around 97% which is still comparable to other methods. The execution time is lower
than other methods except eT2ELM. It is obvious because eT2ELM has the online
active scenario which can reduce the training sample.

6 Conclusions

This paper presents an evolving model based on the EIS, namely eT2QFNN. The
fuzzification layer relies on IT2QMF, which has a graded membership degree and
footprints of uncertainties. The IT2QMF is the extended version of QMF which
are able to both capture the input uncertainties and to identify overlaps between
input classes. The eT2QFNN works fully in the evolving mode; that is, the network
parameters and the number of rules are adjusted and generated on the fly. The
parameter adjustment scenario is achieved via DEKF. Meanwhile, the rule growing
mechanism is conducted by measuring the statistical contribution of the hypothetical
rule. The new rule is formed when its statistical contribution is higher than the
sum of others multiplied by vigilance parameter. The proposed method is utilized
to predict the class label of an object according to the RSS information provided
by the reference tags. The conducted experiments simulate the RFID smart rack
system which is constructed by four reference tags, one RFID reader, and a data
processing subsystem to execute the algorithm. The experimental results show that
eT2QFNN is capable of delivering comparable accuracy benchmarked to state-of-
the-art algorithms while maintaining low execution time and compact network.
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Part II
Prognostics and Forecasting



Physical Model-Based Prognostics and
Health Monitoring to Enable Predictive
Maintenance

Tiedo Tinga and Richard Loendersloot

1 Introduction

Nowadays, only a limited number of systems are operated in completely stable
conditions. Most of the systems, like ships, wind turbines, military vehicles and
infrastructures are facing largely variable operating conditions and environments.
At the same time, failures in any of the associated subsystems or components
may have large consequences, e.g. high costs (loss of revenues, high logistics costs
due to remote locations) or large safety and environmental impacts. To control the
number of failures, typically preventive maintenance at predetermined intervals is
performed. By replacing the components in time, failures can be prevented, but this
is a rather expensive policy when the operational profile is largely varying. The
preventive maintenance intervals must be set to very conservative values to assure
that also severely loaded subsystems do not fail. This is a costly process, but it also
limits the availability of the system, as it must be available for maintenance tasks
quite often.

To improve this process, reduce the costs and at the same time increase the system
availability, a better prediction of failures for systems operated under specific (and
mostly dynamic) conditions is required. Only when such a prediction is available,
maintenance can be performed in a just-in-time manner. This is the promise that
predictive maintenance as the ultimate maintenance policy is giving. However,
although a lot of research has already been done on this topic in the past decade,
still a generically applicable concept is not yet available. This chapter will discuss
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the challenges encountered in developing predictive maintenance concepts, and will
provide insights and decision support tools that can assist in further improving the
existing methods.

The chapter is organized as follows. In the next section, the main challenges in
this field will be introduced. Then Sect. 3 covers the topic of structural health and
condition monitoring. Section 4 will address prognostics, comparing the approaches
of data analytics and physical model-based prognostics. Then Sect. 5 will discuss
a number of decision support tools that can assist an asset owner in applying
the appropriate predictive maintenance concept. In Sect. 6, a number of cases are
presented, showing how the concepts and tools introduced in the previous sections
can be applied in practice. Finally, Sect. 7 will forward some conclusions.

2 Challenges in the Field of Predictive Maintenance

The main premise of predictive maintenance is that decisions are taken based
on an accurate assessment of the present condition of the system, and on a
detailed prognosis of the remaining useful life. The aspects treated in the following
subsections make clear that this is not a trivial task. In the subsequent sections of
this chapter solutions will be proposed for these challenges.

2.1 Combining Diagnosis and Prognosis

In predictive maintenance, the challenge is to detect or foresee an upcoming failure
in time, such that repair or replacement can be done before the system actually
fails. This is often called condition-based maintenance (CbM), since maintenance
is only performed when the system condition actually requires it. The basic way to
achieve this is to monitor the system (either by continuous monitoring or by periodic
inspections) to obtain a timely diagnosis of a degrading system.

As this is in most cases achieved by comparing a measured condition (e.g. vibra-
tion level) to a predetermined threshold, reaching the threshold means that action is
required almost immediately. Although a failure can be prevented effectively and the
actual condition of the system is always known, this so-called diagnostic approach
is not optimal from a planning perspective. The vast majority of the diagnostic
methods only provides a warning or alarm, and does not provide any information on
the remaining lifetime of the system.

At the same time, a lot of effort has been put in the development of prognostic
methods, which could accurately predict when a system is expected to fail. As will
be discussed later, several approaches are possible, primarily divided into data-
driven and model-based approaches—the former focus on finding patterns and
anomalies in large sets of collected data, whereas the latter include knowledge on
the physics of failure to assess the remaining useful life.
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One of the big challenges here is to validate the prognostic methods, which
requires comparison of predicted failure times with actually observed failures.
The performance of a model can only be tested at one point in time, i.e. at the
failure point. Before that moment, no information from the system is available
to compare with the model prediction. However, for many critical applications
preventive maintenance policies are in place, which largely reduce the number
of actually observed failures. This significantly complicates the validation of
prognostic methods.

By comparing the diagnostic and prognostic methods, it can be concluded that
the drawback of a diagnostic method (no future prediction) is the strong point of
prognostics. The other way around, by using a diagnostic method (e.g. condition
monitoring (CM) technique) a lot of additional information on the level of degrada-
tion already becomes available before the actual failure, which largely increases the
possibilities for validation of the prognostic method. But again, presently applied
prognostic methods, either data-driven or model-based, do typically not use any
diagnostic information, but purely focus on the prognosis.

The observation that diagnosis and prognosis actually are complementary is the
prime motivation to discuss both health and condition monitoring concepts (i.e.
diagnostic methods, see Sect. 3) and prognostic approaches (Sect. 4) in this chapter,
as the authors are convinced that only a combination of these two approaches will
lead to accurate and successful predictive maintenance concepts.

2.2 System Versus Component Level

The second big challenge in the field of predictive maintenance is the gap between
system and component level. Typical assets like ships, trains, aircraft and infras-
tructures are complex systems containing large numbers of subsystems and com-
ponents [1]. A system diagram of a typical (naval) ship is shown in Fig. 1. The
ship is subdivided into five main functions (e.g. platform functionality), which are
each again subdivided into one up to four subfunctions (e.g. mobility/propulsion).
Finally, each of the subfunctions is realized with 1 up to 11 installations, like a diesel
engine, sewage system or navigation radar. However, it should be realized that this
is not the lowest level, as each of the installations consists of numerous components.
For the diesel engine, these are, e.g. bearings, liners, pistons, etc.

The problem now is that prognostic methods, especially physics of failure-based
methods, are typically developed at this lowest (component) level. But asset owners
and operators are interested in the functioning and maintenance optimization on the
highest (system/ship) level.

The challenge is thus to connect the system level maintenance optimization to the
component level prognostic methods. For an effective preventive maintenance con-
cept, ideally prognostic models for all individual components would be available.
This would enable the prediction of any failure occurring in the ship, giving the
operator the opportunity to take appropriate action before the actual failure occurs.
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Fig. 1 Naval ship system diagram, showing the complexity and indicating some typical compo-
nents

However, due to the large numbers of components and the effort required to
develop prognostic methods, this full coverage of all components is not feasible in
the practice of complex maritime assets. The consequence is that a suitable selection
method is required to select those components for which developing prognostic
methods is useful, i.e. that are dominant in the system failure behaviour. This
issue, denoted as the critical part selection, will be discussed in Sect. 5.2, as one
of the decision support tools for predictive maintenance. And at the same time,
solutions must be found to cover all the other components and subsystems with
simple and quickly available methods, as in certain situations also these non-critical
components could lead to failures and associated costs and downtime.

2.3 Monitoring of Usage, Loads, Condition or Health

To be able to diagnose a system, structural health monitoring (SHM) or condition
monitoring (CM) systems can be deployed. Although the purpose of both SHM and
CM is to assess the condition of a system, their origin and approach are slightly
different, as is discussed in [2]. SHM methods are typically focusing on measuring
and interpreting the dynamic response of a system, aiming to detect, localize and
quantify damage, as will be explained in detail in Sect. 3.2. Condition monitoring
covers a wide range of techniques, measuring various quantities that can indicate
an upcoming failure in the monitored system. For rotating equipment, vibration
monitoring is a well-known CM technique, but also lubrication oil analysis and
corrosion monitoring (see, e.g. [3–5]) can be considered as CM.
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One of the challenges associated with monitoring is to decide for each specific
application what the most suitable monitoring strategy is (usage, load, condition),
what quantity should be measured at which location and what sensor type is pre-
ferred. These issues will be addressed in Sects. 3 (SHM), 4 (load/usage monitoring)
and 5.1 (selection of most suitable CM technique).

2.4 Interpretation of Monitoring Data

In the present era sensors are everywhere, all systems are connected (internet of
things, IoT) and data storage is not an issue anymore. In practice many original
equipment manufacturers (OEMs) apply a lot of sensors to the assets and systems
they produce, enabling the owners and operators to collect a lot of data on their
systems, with the promise that the system can be maintained condition-based.

However, just applying a number of sensors to a system does not mean that
the condition of the system is assessed. Translating the collected raw data into
useful information on asset condition is in many cases challenging. Sometimes just
observing a trend in a monitored parameter, or comparing the measured value with
a predefined threshold provides the required insights. But in most cases this is not
sufficient, and a thorough understanding of the normal (dynamic) system behaviour,
as well as the system failure behaviour is required.

Vibration monitoring of bearings is, for example, a field that is so well-
developed (after being in use for many decades), that understanding the details of
bearing (failure) behaviour is not needed to properly diagnose a faulty bearing. But
interpreting the vibration behaviour of a more complex system like a bridge or wind
turbine rotor blade, aiming to detect damage, is much more challenging. Section 3
will discuss this challenge, and demonstrate how knowledge on the (dynamic)
behaviour assists in diagnosing such a system.

2.5 Data-Driven or Model-Based Prognostics

Prognostics can be based on either data-driven or model-based approaches. The
data-driven approaches use large amounts of data, preferably from various sources,
and apply data analytics techniques like machine learning and artificial neural
networks to discover patterns and relations in the data sets. This means that
in principle no knowledge on the system characteristics or failure behaviour is
required, which makes the approach popular and widely accessible. However, the
lack of system knowledge can also lead to the discovery of trivial or accidental (non-
casual) relations. For example, a high correlation between fuel flow and temperature
in an engine could be discovered from a data set, but that relation is trivial from an
engineering point of view. Further, the artificial intelligence (AI) methods used in
this approach must be trained with data to enable to learn the patterns. This means
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that in principle only patterns (i.e. failures) can be predicted that have been observed
before (and were included in the training set).

The alternative approach for prognostics is the use of physical failure models.
In this approach the failure mechanism, like fatigue, wear or corrosion, is captured
in a mathematical model, relating the usage or loading of a system or component
to a degradation rate or lifetime prediction. Monitoring of the usage or loads on an
individual system then enables to predict the (remaining) time to failure. Although
the development of these types of models is rather time-consuming, they solve some
of the limitations of the data-driven approaches: the models do not need a large set
of failure data (which is typically not available for critical systems), and they also
work for situations not previously encountered. The main challenge on this topic
is to decide which approach is most suitable in a specific situation. The pros and
cons of the approaches will be further discussed in Sect. 4, while the selection of
the most suitable approach will be treated in Sect. 5.1. Some cases on mainly the
model-based approach will be shown in Sect. 6.

2.6 Selection of Most Suitable Approach and Technique

Knowing that many different approaches for diagnosing the system and predicting
the remaining useful life (RUL) exist, a typical asset owner has quite some difficulty
in selecting the most suitable approach for the specific situation. The choice between
data-driven and model-based prognostics has already been addressed in the previous
subsection, but also on the diagnostic side there are many options.

Health and condition monitoring techniques can be adopted for diagnosing
a system. The interpretation of monitoring data has already been discussed in
Sect. 2.4, and will be treated in more detail in Sect. 3. But before a measurement
can be done, a user has to decide which condition monitoring technique is most
suitable for the ambition level and (technical and financial) possibilities in a specific
situation. As many condition monitoring techniques have been developed, and are
commercially available, selecting the most suitable technique is not trivial. This
challenge will be treated in Sect. 5.1.

But for the diagnostic part, also other approaches than health and condition
monitoring are available. In the absence of (monitoring) data, experience-based
methods, using the knowledge and experience of experts, can be adopted to improve
the maintenance process for a certain asset. Typically qualitative tools like failure
mode, effect and criticality analysis (FMECA), fault tree analysis (FTA) or root
cause analysis (RCA) are applied then.

Yet another approach would be the more mathematical approach of reliability
engineering, where historic (failure) data are used to assess the typical behaviour
of a fleet of assets, for example by determining the mean time between failures
(MTBF). Although less specific than condition monitoring, this approach can
be valuable for systems that are operated in a relatively constant manner (e.g.
production machines in a factory).
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The main challenges here are to get an overview of all approaches available, get
insight in their strong and weak points, and select the most suitable approach for a
specific situation. These challenges will be addressed in Sect. 5.1.

2.7 Data Quality

The final challenge in the field of predictive maintenance is the availability,
accessibility and quality of data. Except for the most simple experience-based
approaches, all approaches discussed so far require the input of data. In most cases,
the accuracy of the diagnosis and prognosis largely depends on the quality of the
data. But for many practical applications, there are quite some challenges in getting
the required data.

The first problem encountered with many companies is that the required data
is not available. This might be due to the fact that the required parameter is not
monitored or (manually) registered, or that the data are not accessible due to
security, formatting or other reasons.

The second problem is the size of the data set. This can be caused by the sample
rate of the data, which is especially for manual registrations often too low. For
example, for a fleet of vehicles, the status (up or down) of each vehicle might be
reported only once a month. Changes in the fleet average availability will then only
be visible after a couple of months, resulting in a very low response rate. If the
registration would be done daily, reactions to changes in availability can be arranged
much faster. Further, the size of the data set can also be limited by the history of
measurements that is stored. In some applications data storage is mainly intended for
troubleshooting in case of failures. Typically data are overwritten after a relatively
short period, e.g. some weeks or months. This means that a long history of data will
never be available, thus limiting the possibilities for reliability engineering or data
analytics.

The third problem related to data is the quality of the data. In practice it occurs
quite often that gaps appear in a time history of certain parameters, especially
for sensor data. This can be due to a failing sensor, or due to problems in data
transmission or storage. For manually registered quantities, e.g. failure reporting
in the computerized maintenance management system (CMMS), the human factor
plays an important role. When the system has been designed properly, engineers
are forced to select from a short list of predefined options, which reduces the
amount of ambiguity in the data. However, if there is a possibility to use a free
text field, analysis of the data is already much more difficult, as every person has
his own way of formulating a certain failure. Moreover, inexperienced engineers
or operators, who are typically responsible for registering the failures, often do
not have the knowledge to determine the cause of the failure, and thus register the
failure incorrectly. The latter problem will be addressed in Sect. 5.2, demonstrating
an expert system (ES) assisting in this process.
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3 Structural Health and Condition Monitoring

Following the reasoning introduced in the previous section, key to the success-
ful implementation of predictive maintenance methods are data collection and
processing. Terminologies such as ‘smart systems’, ‘smart industries’ and other
combinations with the word ‘smart’ all refer to the usage of sensors in a product,
system or installation. These sensors provide the necessary data to assess the current
loading and/or performance of the structure being monitored. However, this data
collection does not yet make the system to a smart system, as was discussed in
Sect. 2.4. The smartness is embedded in the processing of the data—converting it to
information—and the subsequent decision process.

It is clear though, that decisions cannot be made in the absence of data: data are
a prerequisite. The question is whether it is possible to define upfront what data
is needed, which sensors are best suited for this task and which signal processing
techniques are to be applied, a topic addressed in Sect. 5.1. This is not a sequential
design process, but more a parallel and iterative process: on the one hand, the
selection of signal processing techniques influences the choice of sensors and
hence determines which data can be made available. On the other hand, the system
being monitored and the conditions in which the monitoring should take place set
constraints on the sensors and thus dictate the choice of sensors. These inherently
delimit the choice of processing techniques from a different angle. This calls for
an integrated design approach, such as proposed by Sanchez Ramirez et al. [6]. An
important observation in this work is that a distinction must be made between the
monitored and the monitoring system.

This section discusses the most common used sensors for monitoring systems
relying on the dynamic response of the system. Other forms of monitoring, for
example monitoring of lubricants, are not addressed.

3.1 Sensors

The first step after having established the importance of the acquisition of data
is creating a categorization of suitable sensor technologies and data acquisition
systems. The discussion in this section is focused on sensors and systems suitable
for dynamic or vibration measurements.

One of the most frequently selected sensors is the strain gauge. Its ease of
application and broad experience of application are the most common motivations
for selecting this type of sensors. A strain gauge is a passive sensor in the sense
it can only sense. Strain gauges can measure both static and dynamic strains and
thus provide data on the local strain field, hence the use of strain gauges aligns well
with the concept of load monitoring. Typical applications are fatigue dominated
structures, in which a link between dynamic loads and the consumed fatigue life
is established based on, e.g. the rain flow counting method [7], or the dynamic
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amplification factor (DAF) [8]. The use of load monitoring in prognostics will be
further discussed in Sect. 2.3.

Accelerometers are widely used to capture the dynamic response of structures.
Typically, a relatively low number of accelerometers is used, as their price is signifi-
cantly higher than that of strain gauges. Accelerometers are also passive sensors and
in most cases need an external power supply to function. Accelerometers operate in
a specific frequency range. Frequencies outside this range, bound by a higher as
well as a lower limit, are not captured accurately. The lower the lower bound of
the frequency range, the more bulky the accelerometers gets: the most common
principle used in accelerometers is based on a references mass and a position
measurement of this mass.

MEMS-based accelerometers, such as those found in mobile phones, have
pushed the use of accelerometers, bearing in mind that their size limits the
lowest frequency that can be measured. However, the level of integration that
can be reached with these devices and their significantly more favourable energy
consumption are strong advantages. The lack of signal quality can (partly) be
compensated by following a crowd sensing big data approach [9–12].

Optical fibres have received a lot of attention over the past years. Several reasons
drive this interest: firstly, optical fibres can relatively easily be integrated in the
structure; secondly, a single fibre can have multiple sensors (multiplexing) and
thirdly, a very high accuracy can be reached, be it primarily in static mode. The
downside of optical fibres is the still expensive and hard to integrate interrogator.
Optical fibres can be embedded in composites, but distortion of the fibres of the
composite has a negative effect on the mechanical properties, including fatigue.
Moreover, the optical fibre, more precisely the cladding around it, will be deformed
during production, leading to distortions in the signal. The reader is referred to
Ref. [13] for further details on optical fibres.

Piezo-electric transducers (PZT) have excellent options for integration into the
structure [14–16] at a relatively low cost. Moreover, PZTs can be used both in sensor
and actuator mode, which makes them very flexible in use. The frequency range in
which PZTs can be used is also very broad, be it that excitation at lower frequencies
typically requires more power than the (average) PZT can produce. PZTs are
applied to measure the structural dynamic response [17] (O(kHz)) or the nonlinear
response [18, 19] (O(10 kHz)) of, e.g. composite structures, as well as to generate
and measure propagating waves, such as guided waves in composite materials [20–
23] (O(100kHz)) or ultrasonic waves in, for example plastics and cementitious
materials as typically used for drinking water mains [24, 25] (O(MHz)).

In sensing mode, piezo-electric transducers are passive sensors: no power needs
to be supplied. The mechanical motion of the structure causes a current to flow as a
direct result of the piezo-electric effect. This opens the door for another application
of PZTs: energy harvesting [26, 27]. Energy harvesting is a key element for smart
and autonomous sensor nodes, as they either rely on batteries—having a finite,
relatively short endurance—or local energy generation.
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Fig. 2 Schematic overview of the vibration-based monitoring concept

3.2 Vibration and Vibration-Based Monitoring

Vibrations are omnipresent: structures in operation are in a lot of cases subjected to
vibrations. The vibrations can be introduced by a driving system, such as an engine,
a drive train (e.g. wind turbine) or traffic, or by environmental conditions, such as
wind and waves. Generally, a distinction is made between vibration monitoring and
vibration-based monitoring. The general concept of vibration (based) monitoring,
shown in Fig. 2, is that the condition or state of the structure affects the dynamic
response. This implies that feature extraction is a main step in the vibration (based)
monitoring process. A feature is defined as a characteristic or set of characteristics
in the dynamic response that can be used as an indicator for the condition or
health assessment. Depending on the complexity of the case and the required level
of monitoring, the signal processing involved can be relative simple to highly
advanced.

So far, vibration monitoring and vibration-based monitoring are described using
the same terms. The distinction between both is that the first focuses on the system
response as acquired by individual sensors, e.g. observing vibration levels, natural
frequencies of the system or more generic statistical parameters such as root mean
square (RMS), skewness and kurtosis of the vibration signal [28–30]. The latter, on
the other hand, typically combines sensor readings to construct, e.g. mode shapes
and their derivatives [31–34] which are then used to identify a specific damage.
Vibration-based (health) monitoring thus requires more advanced analysis methods
to be applied to the raw vibration data.

The following items can be recognized in the schematic overview of vibration-
based monitoring in Fig. 2:

Actuation and response Actively applied or operational (dynamic) loading on
the structure and the resulting signal received from the sensors;

Representation pattern Transformation of the measured signal (raw data) to a
pattern representing the response;
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Feature pattern Transformation of the representation pattern to a pattern of
damage or condition sensitive parameters;

Current state Quantitative measure representing the condition in which the
structure currently is;

Damage evolution Model describing the evolution of the damage or condition
(degradation process) in time;

Decision Risk-based decision regarding action to be taken.

An important observation is that the feature pattern is compared to the pattern
of some other state. In many cases a reference measurement is used, which can
either be a measurement in ‘new state’, executed at the start of the operational life
of the structure, or a previous measurement. Some will argue that monitoring is also
done in a so-called baseline-free manner, not relying on any reference state at all.
However, as Worden et al. [35] argue, there is always an underlying assumption
used in those cases that serves as a reference. The state analysis leads to a diagnosis
of the current state. A prognosis of the future state is based on an extrapolation of
the evolution of the states measured over time. Most vibration-based monitoring
applications are limited to the diagnostic phase, as the presence of damage and its
location are in those cases sufficient to determine the necessity of a maintenance
action, for example delamination detection in composite structures [31].

Most vibration-based monitoring applications focus on the current state esti-
mation, e.g. the presence, location and size of a delamination in a composite
structure [17–22] or the level of degradation of a plastic or cementitious mate-
rial [24, 25]. In some cases, this is sufficient, as the user is interested in a limit
value, such as set by the barely visible impact damage (BVID) criterion [36] for
composite materials. Reaching or passing this limit implies immediate action is
required and further use of the system is not safe. This approach is often followed in
case the damage is induced by a single, isolated event, such as an impact. It cannot
be predicted when an impact will occur, but if it occurs, it must be detected if the
damage inflicted has a certain, predefined critical size. The drawback of a diagnosis
requiring immediate action, and the wish to combine it with a prognostic method,
was already discussed as one of the challenges in the field (Sect. 2.1).

A PF-curve can be used to explain the position of diagnostic and prognostic
monitoring systems, see Fig. 3. In time, several points can be recognized: Firstly,
the point of onset of the deterioration (damage formation or material degradation). It
should be noted that this point can in fact be at the very beginning of the operational
life of a system, hence can also be interpreted as the moment the failure starts
to grow. Secondly, the point at which the failure becomes observable (P). This
can be interpreted in absolute sense, e.g. in terms of a minimum crack size, or in
a relative sense, e.g. relative to the capabilities of monitoring technique. Finally,
the point of functional failure (F), i.e. the moment the system cannot perform its
intended function with preset limits. The point when the damage or deterioration
becomes observable is of interest. Using the relative interpretation of this point
implies that the location of this point is determined by the sensitivity and accuracy
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Fig. 3 PF-curve, indicating the point when a failure is initiated, when it becomes observable and
when a function failure occurs

of the monitoring technique selected. In other words, the development of monitoring
techniques encompasses in general terms moving point P to an earlier time in the
operational life of the system i.e. to the left in Fig. 3.

The second phase, prognostics, includes the future and is looking beyond point P
in the PF-curve. It encompasses the prediction of the curve beyond the point P. The
uncertainty in these estimations is reduced by using as much information as possible
from the present and past—hence from the diagnostics, possibly complemented
with physical models. These damage evolution models enhance the reliability as
more limited historic data are needed and deterioration of the system in an unknown
fashion can still be predicted based on the physics-based damage evolution models,
as was argued in Sect. 2.5 and will be elaborated more in Sect. 4.

It is evident that prognostics involves estimations. Less clear may be that the
current state is also an estimated state. In reality it is impossible to deterministically
exclude all disturbances affecting the signal. Either environmental disturbances
or noise from the sensors, the connecting wires or the electronics inside data
acquisition system itself will distort the signal and making an exact determination
of the condition impossible.

Finally, the difference between inspection and monitoring is relevant: the first
is an isolated action, resulting in an immediate advice (green or red flag), while the
second is a more continuous process, as measured states are compared to each other,
allowing to following the evolution of the degradation. This evolution can then be
used to estimate the remaining useful life. Typical examples are systems suffering
from fatigue dominated damage (due to cyclic loading) or from time dependent
degradation (e.g. physical ageing of plastics).

As will be further elaborated in Sect. 4, load monitoring concepts combined
with rain flow counting, Palmgren-Miner rule [7] or dynamic amplification factor
methods [8] do provide a means to estimate the remaining useful life in these fatigue
dominated cases, yet with a high uncertainty. More precisely, Derriso et al. [37]
point out the uncertainty in the onset of damage growth is the main cause of the
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uncertainty of the life prediction. Predicting this point is very hard, but once it is
known, models seem to predict the remaining lifetime fairly accurately. This stresses
the need for reliable diagnostic methods.

4 Physical Model-Based Prognostics

While the previous section focused on health and condition monitoring concepts
that aim to diagnose a system, i.e. assess the present condition, the present section
will discuss prognostics, which aim to predict the (remaining) lifetime of a system
or component.

The motivation to develop prognostic methods can be found in the conservatism
that is present in many traditional maintenance policies. This means that in these
preventive policies—applied to many critical systems, like aircraft, nuclear plants,
oil and gas installations and infrastructure—components are typically replaced far
before they actually reach the end of their lifetime.

It can be demonstrated [38] that this conservatism is largely due to uncertainty,
as was mentioned at the end of Sect. 3, in the initiation, but also in the damage
evolution in the components. In other words, since it is unknown how much damage
is present in an individual component, its replacement interval will be chosen on the
(very) safe side, for example based on the most extreme load case that can possibly
be encountered by the system. In other cases, the uncertainty in the future usage is
covered by safety factors. These types of maintenance policies are far from just-in-
time, and thus lead to high maintenance costs and a waste of component lifetime.

However, if the relation between actual usage of individual components and their
degradation can be quantified, the uncertainty can be reduced. In other words, if
an accurate prognostic method is available, the optimal moment of replacement
can be obtained for any component, based on the (monitored) usage or loading
of that part [39]. In that case, just-in-time maintenance becomes feasible, and a
considerable cost saving can be achieved.

As was discussed already in Sect. 2.5, basically two approaches are available
for prognostics: data-driven and physical model-based. Although a lot of papers
recently appeared on the data-driven approach [40, 41], the authors strongly believe
that for systems operating in a variable environment (e.g. military systems, off-
shore wind turbines, maritime systems), the model-based approach is more suitable.
Also others [42–44] have indicated the potential of this latter approach. This section
will therefore focus on the model-based approach, showing the various steps in the
approach and demonstrating its benefits. In the final subsection, this approach will
be compared to the data-driven approach.
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4.1 Relation Between Usage, Loads and Degradation Rate

One of the key ingredients of physical model-based prognostic methods is the ability
to quantitatively relate the usage or loading of a system to its degradation rate. This
relation is schematically shown in Fig. 4, and will be discussed next.

Normally the usage of a system, in terms of operating hours, power settings,
number of starts, etc. is known to the operator or can be monitored rather easily.
However, the remaining life of the system determines when maintenance actions
must be performed, whereas the relation between the usage and the remaining life
is in many cases unclear. Insight in this relation can be obtained by zooming in to
the level of the material point, since that is the level at which the physical failure
mechanisms are active. This requires translation of the usage (on the global level)
to the local loads (e.g. stress, strain, temperature, electrical current, etc.) on the
material level (Fig. 4).

The loads are then related to the capacity of the material by some failure model
(e.g. fracture, fatigue, creep, arc flash), which yields the damage accumulation,
degradation rate or life consumption rate at the present load. Finally, assuming that
the usage and/or loads can be estimated, a prognosis can be given for the remaining
life of the system.

Two important relations in Fig. 4 are the usage-to-load relation and the load-to-
life relation, denoted by the numbers 1 and 2, respectively. These relations can be
assessed in a quantitative sense only when the physical background of the loading
and the failure mechanism is understood. If accurate models are available for these
relations, any usage history of the system can be translated into the associated
damage accumulation or life consumption.

Fig. 4 Schematic representation of the relation between usage, loads, condition and life consump-
tion. The most important relations are (1) the usage-to-load and (2) the load-to-life relations
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Note that the failure mechanism is modelled on the material point level in a
component, whereas a system may contain numerous components with several
failure mechanisms each. This was mentioned as one of the challenges in the field
in Sect. 2.2. Therefore, before the method illustrated in Fig. 4 can be applied, a
critical part selection must be performed to determine which mechanism(s) in which
component is/are critical to the service life of the complete system. This selection
process will be discussed in Sect. 5.2.

Monitoring of the usage or loading of the system is essential in a model-based
approach. Figure 4 shows that monitoring can be performed at different levels.
The lowest level of monitoring is usage monitoring, which implies registration of
quantities like operating hours, rotational speeds or number of starts. Although
usage monitoring is in most cases rather easy to perform, relating the data to
degradation rates is generally not straightforward and requires quite some models
and calculations. Load monitoring is one level higher, since it directly assesses
the internal loading of components. This can be realized by applying sensors like
thermocouples (to measure the temperature) or strain gauges (deformation). Moni-
toring at this level is generally somewhat more complex than usage monitoring, but
the obtained information is related more directly to the component condition. The
highest level of monitoring is condition monitoring, where the actual condition (i.e.
the amount of degradation) is assessed directly and no calculations are required as
was discussed in Sect. 3. However, this level of monitoring generally requires rather
sophisticated sensors and is not always feasible, either technically (accessibility of
the component) or economically.

4.2 Developing a Prognostic Method

To develop and apply a prognostic method for a specific application, the following
steps will have to be taken:

1. Select the most critical part in a system;
2. Determine the physical mechanism responsible for the failure of the critical part

and define a (physical) model for this mechanism;
3. Assess the loads that govern this failure mechanism, and determine how these

are related to the operational use of the system;
4. Collect data on the variation of the usage or load;
5. Predict the time to failure, given a certain (measured or assumed) usage profile;
6. Validate the model by comparing the prediction to actual failure data.

Each of these steps will now be discussed in some more detail, using a case study
of a helicopter part [45] as example.

Step 1: Critical Part Selection As was discussed in Sect. 2.2, selecting the critical
parts in a system is a crucial first step in many analysis. Large systems typically
contain hundreds or thousands of parts, so analysing each of them is not feasible.
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Fig. 5 Landing gear shock
absorber on helicopter (left)
and its schematic
representation (right) showing
the seals (in red circle)

Especially the development of a model-based prognostics method will typically be
too time-consuming to repeat for many parts. A structured approach for selecting
critical parts will be discussed in Sect. 5.2.

By assessing the historic data of the helicopter, the cost drivers (failures that lead
to high costs) and availability killers (failures leading to long downtimes) could be
determined. From this analysis, the landing gear shock absorber (see Fig. 5) was
selected as a critical part, for which a prognostic method will be developed. This
shock absorber contains an oil chamber, which contains two sets of polymer seals.
After a certain period of time, these seals start to leak oil, triggering a replacement
(and off-line repair) of the complete shock absorber.

Step 2: Determine the Failure Mechanism and Associated Physical Model The
next step is to determine the physical mechanism that leads to this failure, i.e. the
failure mechanism and a suitable physical model. The former requires to execute
a root cause analysis (RCA), since it is not sufficient to just determine the failure
mode (as is often done in practice). A failure mode describes the functional failure
of system, and can be defined at many different hierarchical levels. For example,
a failure mode for the shock absorber is ‘leakage of the seal’, but also ‘non-
functioning shock absorber’. However, both of these failure modes do not specify
the actual failure mechanism at the material level, which is strictly required for
prognostics (and can be found with the RCA). Once the mechanism has been
determined, a suitable physical model has to be selected. Many models for a range
of failure mechanisms are available in literature [46], so only in exceptional cases
new models need to be developed.

In the case of the shock absorber, the failure mechanism is wear, as two parts
(cylinder and seal) are sliding along each other, leading to loss of material (in the
seal). This ultimately leads to the observed oil leakage. A physical model typically
used for wear is the Archard’s wear law [47], relating the lost volume V to the
normal force in the contact (F ) and the sliding distance (s) through a proportionality
constant (the specific wear constant k):
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V = k F s (1)

Knowing the value of k, the volume loss due to wear can thus be calculated for any
combination of normal force and sliding distance.

Step 3: Assess Governing Loads and Relation to Operational Use The objective
of a prognostic methods is to predict the failure based on the monitored usage or
loads. Therefore, the next important step is to determine which loads are governing
the failure and how these loads are related to the operational usage of the system.
Loads can in a general sense be classified in various types, like mechanical, thermal,
electric, but in the end need to be specified as either an external load applied by the
operator (e.g. force, moment, voltage) or an internal load acting on the material
level (e.g. stress, strain, temperature, electric field) [46]. Moreover, it is important to
understand how these loads are affected by the operational usage of the system. In
many cases this is quite trivial. For example, if the weight on a bridge is increased,
the bending loads (and stresses) will increase proportionally. But in other cases the
relation between usage and loads is more complex.

In the case of the shock absorber, the loads that govern the wear mechanism
are the normal force in the contact between the cylinder and seal and the sliding
distance between the two parts. For this specific application, the sliding distance is
directly related to the operational usage of the helicopter. It is obvious that the shock
absorber will only be compressed when the helicopter is landing, and in that case the
weight of the helicopter determines how far the cylinder is compressed. The sliding
distance can thus be obtained by just accumulating the stroke of the cylinder during
each landing.

Step 4: Collect Data on the Variation of the Usage or Load Once the physical
model is in place, and it is clear which loads or usage parameters govern the
identified failure, data collection can be started. In some cases the data can be
directly obtained from a monitoring system or a control system. For example,
in many production machines, but also in wind turbines, a SCADA (supervisory
control and data acquisition) system is present collecting a lot of details on the
operational use of the system. When these monitoring systems are not present,
manual registrations of operating hours, number of start/stops, etc. can also be used
as input for the predictive model.

In the case of the helicopter shock absorber, the data could be obtained from the
health and usage monitoring system (HUMS). This system collects a lot of data on
the operational use of the helicopter (altitude, speed, temperature), and specifically
for this case the registration of number of landings and the weight of the helicopter
during each landing proved to be very useful. This means that for each individual
helicopter in the fleet, the HUMS enabled to reconstruct the operational usage in
terms of landings.

Step 5: Predict the Time to Failure, Given a Usage Profile By combining the
monitored data (step 4) with the physical model (step 2), a prediction of the time
to failure can now be made. For the shock absorber, the load sequence (sliding
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distance) for an individual seal could be retrieved from the HUMS, enabling to
predict the expected moment of failure (in terms of flight hours). The results will be
shown in the next step.

Step 6: Validate Model by Comparing the Prediction and Actual Failure Data
The final step in the procedure of developing a prognostic method is the validation of
the method. This a crucial step, as it will demonstrate the correctness and accuracy
of the developed method. However, in practice it is also a very difficult step, as
this can only be done when (1) a certain number of failures is present and (2) for
each failure a detailed registration of the load/usage history is available. The first
criterion, as was already discussed in Sect. 2.1, is compromised by the preventive
maintenance policies of critical parts that limit the number of observed failures. But
even when a number of failures have occurred, the lack of a detailed registration of
the loads makes it still very hard to validate a prognostic method. For example, in [1]
a prognostic method for printed circuit boards (PCB) in radar systems is discussed.
Although quite some failures in these components have been registered, a usage
profile (operating hours, amount of switching on/off) for individual PCBs could not
be retrieved, making the detailed method validation unfeasible.

For the shock absorber case the validation was possible, since a number of
failures occurred, and the HUMS provided a detailed load history of each individual
shock absorber in the fleet. To demonstrate the need for a prognostic method, first
the 11 failures were plotted versus the number of flight hours at failure (which is
the traditional way of maintaining aircraft systems), see the left-hand side plot in
Fig. 6. This clearly shows that flight hours (FH) is a bad predictor for this type of
failure, as some oil leakages already occurred after 40 FH, while other seals only
failed after 200 FH. Then the developed prognostic method was applied, and the
predicted amount of wear for the same 11 failures is shown in the right-hand side
plot in Fig. 6. Although the first two failures deviate somewhat, six other failures
show a very similar amount of wear at failure (as indicated by the solid red line).
Apparently 30 mm3 wear marks the failure threshold for this part (then oil starts
leaking). Three other failures (see dashed red line) clearly show a higher amount of

Fig. 6 Number of flight hours at failure for 11 events (left) and predicted amount of wear for the
same events (right)
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wear at failure. These three seals appeared to be modified seals, as the OEM reacted
to the failing seals problem. As a single value for the specific wear parameter was
used, the increased amount of wear at failure in fact means that this modified seal
can accumulate more landings before leakage occurs. The rather accurate prediction
of the amount of wear at failure for different helicopters validates the developed
method.

The six steps in the development of a physical model-based prognostic method
have been discussed, and should give guidance in developing such methods for other
applications. Some other examples will be shown in Sect. 6.

4.3 Comparison to Data-Driven Approaches

In this section the model-based approach in prognostics has been discussed exten-
sively. The alternative approach is the data-driven approach, where large data sets
are analysed to achieve anomaly detection or predictions of remaining useful life. In
recent years a large number of machine learning and deep learning algorithms have
been proposed and applied in predictive maintenance cases. The interested reader is
referred to Lee et al. [40], who have reviewed a large number of these techniques.
Continuing the initial discussion in Sect. 2.5, the main differences between the two
approaches, and thus their advantages and disadvantages will be discussed here.

The first difference between the two approaches is the data requirement. Data-
driven methods fully rely on a sufficiently large set of data, but as was mentioned
before, the availability of especially failure data is often limited due to the criticality
of the systems. In such cases, a certain amount of system and domain knowledge
may make up for the lack of data, as physical laws and first principles can be used.

Secondly, many data-driven approaches use artificial intelligence to recognize
patterns and do predictions. These methods must be trained first, where various
learning strategies can be followed. The two basic strategies are supervised and
unsupervised learning. In a supervised learning scenario, the algorithm is trained
with known failures. In that way that algorithm can learn which features in the data
must be associated with specific (upcoming) failures. In an unsupervised learning
scenario, only unlabeled raw data is available. In that case, the algorithm can
only search for deviations from normal behaviour (anomaly detection) not be told
which failure. This learning process associated with data-driven prognostics implies
that typically only situations/failures that are present in the training sets will be
recognized by the methods. This is not a problem for assets that are operated in a
rather constant manner. However, it may not work properly for systems operated in a
very variable manner or in changing environments, like military systems or off-shore
wind turbines. Failures not previously encountered, or usage profiles/environments
that are very different from previous experience will typically not be recognized.
One solution for this problem could be the application of recently developed self-
adaptive data-driven approaches [48]. But also physical models, on the other hand,
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do include the full system (failure) behaviour. When different usage profiles or
scenarios are entered into these models, they will still provide a realistic prediction.

Finally a drawback of the physical model-based approach should be mentioned.
The development of the methods is generally quite time-consuming. This is on the
one hand due to the high level of detailed knowledge (on both system and failure
behaviour) that is required, and on the other hand since these models are applied
on the component level (see system vs component level challenge described in
Sect. 2.2).

This discussion shows that both approaches have their pros and cons. However, it
is expected that combining both approaches in a hybrid approach leads to very well-
performing algorithms. As was mentioned above, physical models could be used to
fill the gaps in data sets, and data analytics techniques could be applied to speed up
the physical model development.

5 Decision Support Tools

As was discussed in the previous sections, many methods, approaches and tech-
niques are available for predictive maintenance. For a potential user of these
techniques, it is very difficult to determine which approach and what technique
are the most suitable for the specific situation and application. Therefore, various
decision support tools have been developed recently to assist in this process. In
Sect. 5.1 some tools to select the best preventive maintenance approach and the most
appropriate condition monitoring technique are described. The tools discussed in
Sect. 5.2 provide support in selecting the most critical parts in a system and assess
the right failure mechanism for a specific failure. A final decision that always has to
be taken in developing a predictive maintenance approach is whether the business
case is positive: do the benefits of the new approach out-weigh the investments that
are needed in the development, implementation and operation of the method? A
method for this challenge is discussed in [46] and will not be detailed any further.

5.1 Guidelines for Selecting Suitable Approach

This subsection will focus on guiding users in selecting the most suitable option for
(1) the predictive maintenance approach and (2) a condition monitoring technique.
The former selection is quite generic, as it aims to distinguish between a wide range
of approaches, ranging from the rather simple experience-based approaches to the
more sophisticated condition-based maintenance approaches. The latter selection
is much specific: in case a user already has decided to apply condition-based
maintenance, how can the most suitable condition monitoring technique be selected?
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For the selection of the most suitable predictive maintenance approach, a
selection framework has recently be developed [49, 50]. All approaches have first
been classified in the following categories:

I. Experience-based predictions of failure times, based on knowledge and previ-
ous experience outside (e.g. OEM) or within the company.

II. Reliability statistics prediction techniques are based on historical (failure)
records of comparable equipment without considering component specific
(usage) differences.

III. Stressor-based predictions are based on historical records supplemented with
stressor data, e.g. temperature, humidity or speed, to include environmental and
operational variances.

IV. Degradation-based predictions are based on the extrapolation of a general path
of a degradation measure to a failure threshold. By measuring symptoms of
incipient failure the system can be diagnosed.

V. Model-based predictions give the expected remaining lifetime of a specific
system under specified conditions. Two types of model-based approaches can
be followed:

a. Physical model-based
b. Data model-based

It was discovered that a selected approach is suitable for a specific company when
there is a good match between the ambition level of the company and the availability
of data. The ambition level has been defined in five classes, as is shown in Fig. 7.
It firstly specifies whether individual systems are to be addressed, or that a fleet-
wide average is also sufficient. And the ambition level secondly depends on whether
changing operational conditions are to be incorporated in the maintenance policy.

Once the ambition level has been determined, the type and level of detail of the
data and information available at the company determines whether that ambition
level is achievable. This is indicated in Fig. 8, showing the relation between potential

Fig. 7 Guideline for the selection of the ambition level
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Fig. 8 Mapping the preventive maintenance approaches to ambition level and data types

approaches versus (1) ambition level and (2) data availability. The ambition level
now specifies the required predictive maintenance approach, and Fig. 8 then clearly
shows the data requirements. If these do not match, there are two options: either
organize the collection of the proper type of data or reduce the ambition level. As
companies in practice do not use this kind of reasoning, they often fall into a lengthy
trial-and-error process that only in some cases results in a satisfactory solution.

Another selection challenge is in the field of condition monitoring. Many
companies decide to adopt a condition-based maintenance policy for their assets,
but then have to select the most suitable technique to monitor their asset. Also for
this process a decision support tool has been developed recently [51].

Figure 9 shows the different steps in this process. Similar to the process of
developing a prognostics method, as was discussed in Sect. 4, it is also essential in
this case to first understand the failure behaviour of the asset or component (steps 2
and 3 in Fig. 9). Once the failure mechanism has been established (e.g. corrosion or
wear), steps 4, 5 and 6 will guide the user in selecting a suitable CM technique. This
is done by filtering a long list of potential CM techniques on a number of attributes.
These attributes have been defined in three classes:

1. Attributes of the monitored system (accessibility, material type, motion);
2. Attributes of the (ambitioned) CM technique (diagnose/prognose, response time,

severe environment);
3. Attributes related to the failure mechanism (local/uniform, cyclic loads).
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Fig. 9 Procedure for selecting the most suitable condition monitoring technique

This process has been implemented in an expert system (ES). By answering a certain
amount of questions, the attributes in the three categories are set, and the ES is able
to eliminate all CM techniques that do meet the requirements. In the end, the ES
advises a limited number of CM techniques.

5.2 Critical Part Selection

Another selection challenge in the field of predictive maintenance is the selection
of critical parts. As predictive maintenance cannot be applied to any component in
a complex system, see also the discussion in Sect. 2.2, the most critical components
have to be selected. An extension to this problem is the determination of the failure
mechanism that is responsible for a failure. This is in fact a root cause analysis
challenge, which is a rather crucial step in developing a prognostic method or a
condition monitoring technique, as well as in the proper registration of failures in
the computerized maintenance management system (CMMS). The latter is essential
when the data has to be used later on for reliability engineering analyses. Incorrect
or incomplete registrations will then lead to inaccurate results.

The traditional way of selecting critical parts in a system is to assess cost
drivers or performance killers, e.g. using Pareto analysis, fault tree analysis (FTA)
or failure mode, effect and criticality analysis (FMECA). Upon applying these
traditional methods in several cases, the authors discovered that these do not always
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Fig. 10 Procedure for
selecting the critical parts

lead to satisfactory results. Therefore, a more extensive method has recently been
proposed [52], as is schematically shown in Fig. 10.

The methodology consists of three stages, each acting as a filter. The first filter
is the criticality classification using the traditional methods (Pareto, FMECA). The
added value of the present method are the two additional filters: the identification of
show-stoppers and a focused feasibility study.

In these steps, firstly a differentiation is made between three ambitioned results
of prognosis: Detection, diagnosis or prognosis. Determining the ambitioned out-
come by differentiating between these three levels helps to firstly describe the
requirements of the prognostic system and secondly explore the possibilities
and impossibilities by recognizing the potential show-stoppers. The potential
show-stoppers for predictive maintenance (PdM) to be applied on the considered
component are then categorized in four groups:

Clustering: Can PdM extend the interval of this component to the next planed
cluster of tasks, is the component driving the cluster of tasks?

Technical feasibility: Can a failure of this component be detected/diagnosed/
predicted with current or future technology?

Economic feasibility: Is PdM for this component affordable? Sufficient failures
to earn back the investment?

Organizational feasibility: Is sufficient domain knowledge for this component
present? Is there sufficient trust in monitoring technique?

After identifying the show-stoppers, only a limited set of potentially critical parts
will be present. For these parts, a focused feasibility study can be executed as the
third step in the procedure. Such a study will typically address the show-stoppers
that could not be fully checked in the previous step, e.g. a detailed business case
analysis or a more thorough technical feasibility study.

Another set of decision support tools focuses on the assessment of the failure
mechanism (step 2 in the prognostic method development in Sect. 4.2). The first
method is the mechanism-based failure analysis (MBFA) as depicted in Fig. 11 [53].
The MBFA starts with selecting the most important failure modes using FTA and
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Fig. 11 Procedure for a mechanism-based failure analysis (MBFA)

Pareto analysis. Failure frequencies used as input for the Pareto are either obtained
from a CMMS database or from the risk priority numbers (RPN) in a FMECA.
For the most important failure modes, a root cause analysis (RCA) is performed to
assess the failure mechanisms and governing loads. Preventing the failure to reoccur
is then simply achieved by either increasing the capacity of the part or reducing the
loads.

Finally, determining the failure mechanism for a specific failure can be quite
difficult, especially for the non-experts that are typically expected to register the
failures in the CMMS. Also for this process a decision support tool, implemented
in an expert system (ES), has been developed: FAME-X [54]. Similar to the
ES advising in the condition monitoring technique selection, this ES also asks
questions to the user. These questions are clustered in two phases: the first phase
does a rough estimate of the basic failure mechanism (e.g. fatigue, creep, wear,
corrosion), whereas the second phase provides a more specific identification (e.g.
crevice corrosion, low cycle fatigue, etc.). In each cluster, the questions are related
to different sets of attributes: service life conditions (loads, environment), age,
post-mortem characteristics (striations, corrosion products) and material (metal,
polymer, ceramic). By checking a sufficient number of attributes, the ES is able
to discriminate between potential failure mechanisms quite efficiently.
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6 Case Studies

In this final section, a number of case studies in different sectors of industry are
described, demonstrating how the concepts, methods and tools introduced in the
previous sections can be applied in practice. The first case study on marine diesel
engines and the second case study on rail infrastructure demonstrate the model-
based prognostic approach. The third case study on wind turbines also touches this
approach, but after that mainly focuses on vibration-based health monitoring.

6.1 Maritime Systems

Maritime systems, like ships and all their subsystems, are typically operated in a
harsh and largely variable environment. At the same time, failures in any of the
subsystems or components may have large consequences, e.g. high costs (loss of
revenues, high logistics costs due to remote locations) or environmental impacts.
To improve the (preventive) maintenance process, a better prediction of failures
for systems operated under specific conditions is required. In this subsection, a
prognostic method for a (mechanical) diesel engine component will be shown.
Details on this analysis can be found in [1], where also a similar method for
electronic parts in a radar is presented.

In a diesel engine, the liner covers the inside of the cylinder, in which the piston
is reciprocating, see Fig. 12. The piston contains a number of rings, which are in
lubricated contact with the liner. The reciprocating motion maintains the lubricant
oil film, but at the top and bottom reversal points, the film thickness is less, and
mechanical wear can occur due to the relative motion of the two metal parts.

Diesel engine

Cylinder
Liner

Fig. 12 Position of cylinder liner and piston rings in a diesel engine
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A model has been developed [55] that describes the physical degradation
processes of sliding wear occurring at the interface between liner and ring. The
model applied is the Archard’s wear model [47], Eq. (1) introduced in Sect. 4.2.

This model requires a number of inputs that can be related to either the properties
or the operating conditions of the specific engine:

• The normal force F is directly related to the pressure in the cylinder and therefore
depends on the engine operating condition (e.g. power).

• The sliding distance s per cycle that the liner experiences is equal to two times
the accumulated width of the cylinder rings that pass a certain location on the
liner two times each cycle (up and down). Further, the speed of the engine (rpm)
determines the number of passings per time unit.

• The wear parameter k is the proportionality constant, which can be estimated
for the specific combination of materials (liner and rings) and wear mechanism.
If, for example, the lubricant is contaminated with particles, the mechanism will
switch from adhesive to abrasive wear, which will change the value of the wear
parameter.

• Finally, in a lubricated contact the amount of wear will be negligible, since there
is no metal-to-metal contact. This means that only wear occurs when the lubricant
film thickness of the cylinder is lower than the critical film thickness.

The first step in the analysis is then to calculate the oil film thickness along the liner
surface. This is shown in Fig. 13 for a certain engine and operating condition, in
this case as a function of crack angle (a four stroke diesel engine rotates over 720◦
each cycle, so crank angles of 90, 270, 450 and 630◦ represent the same location
on the liner). Also the critical film thicknesses for adhesive and abrasive wear are
indicated. Note that the absolute values of the film thickness depend on several
model parameters, which have to be determined from experiments. In this stage of

Fig. 13 Film thickness variation with crank angle, including wear limits for adhesive and abrasive
wear
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Table 1 Calculated wear
depth and remaining life after
15,000 h for three different
operating scenarios

Max wear Remaining

Scenario depth [mm] life [hrs]

A (high speed/high load) 0.271 1.603

B (high speed/var load) 0.247 3.224

C (var speed/var load) 0.236 4.103

Fig. 14 Distribution of operating hours over three engines and four operating profiles (a) and
calculated wear depth evolution over time for the three engines (b)

the modelling process, typical values are used. This graph clearly shows that without
oil contamination, wear will only occur in some small regions around the reversal
points of the piston (180, 360, etc.).

Using this variation of oil film thickness, and together with the calculated
normal force (as obtained from the cylinder pressure), the wear rate distribution
along the liner can be calculated for three different artificial operating scenarios.
These scenarios all represent 15,000 h of operation, but differ in their division
over high/medium/low speed, respectively, high/medium/low load, see Table 1. The
table also shows the calculated remaining service life of the liners, assuming a
replacement at 0.3 mm wear depth.

The final step in the predictive method is to relate the wear of the liner to
variations in operating conditions of real engines. This has been done for a ship
with three diesel engines (SB: starboard, CE: centre and PS: portside) operating in
four different profiles. The distribution of operating hours over these four profiles
is shown in Fig. 14a, which is based on the monitoring data obtained from the asset
owner. During the simulated period the SB engine has been replaced by a new one,
explaining the double bar for SB in the diagram. Figure 14b shows the calculated
evolution of the wear depth for the three engines over time. The plot clearly shows
variations in wear rate, which can be associated with changes in operating profile.
Further, it can be concluded that the three engines are operated differently, and thus
also show a considerable difference in wear behaviour.
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6.2 Railway Infrastructure

Maintenance of railway infrastructures is a critical factor in the performance of a
network. Insufficient maintenance may lead to catastrophic failures of the network,
with which high costs for repair and network unavailability are associated—apart
from potential human casualties, which are to be avoided at any cost. Too much
maintenance makes transport by train uncompetitive and results in a waste of
materials and resources. Infra managers therefore have a high interest in optimizing
their maintenance policies, by basing it on predictive maintenance. Predictive
maintenance relies on monitoring and, as argued in this chapter, on physical models,
supporting the interpretation of the data and guiding which parameters to monitor.

Monitoring of railway infrastructure has many elements in which large amounts
of data are involved. Data are collected either in rapid pace or over large stretches
of track. Moreover, various stake-holders are involved, requiring different (types of)
information, resulting in a variety of monitoring systems. This case study focuses
on the wear of the track.

Railway tracks inevitably wear, implying that the ability to predict wear is
crucial for an optimized maintenance planning and cost reduction. Rail wear is
inseparably connected to rail-wheel interaction. Moreover, wear prediction tool
is heavily relying on numerical simulation tools, primarily multi-body dynamics
(MBD) based. These models are used to determine the contact points, the amount
of spin and slip in the contact area [56]. Combining Kalker’s contact model [57]
with Archard’s wear model [47] (see also Eq. (1)) results in an amount of material
wear of the cross-section of the track or the wheel.

As indicated by Meghoe et al. [58], most of the research focused on wear of
wheels rather than on wear of the track. Moreover, the process of estimating the
wear is cumbersome, as it requires a nearly continuous update of the wheel or
track profile, as the combination of profiles affects the train dynamics and hence the
contact points, pressure and finally the wear rate. For this reason, it is difficult for
the contractors maintaining the track to plan their maintenance activities efficiently.
The current process of rail wear prediction [59] is shown in Fig. 15.

The approach followed by Meghoe et al. [58] is based on the use of measured
profiles of both new and worn track and wheels, rather than on new wheels that are
updated, together with the track, during the simulation. Subsequently, a sensitivity
analysis is ran with a multi-body dynamics simulation, accounting for variables
such as speed and weight of the train, material hardness, track curvature and
geometry irregularities (step 3 in Sect. 4.2). The resulting meta-function can then
be used to estimate the wear, given a set of input parameters, available for the
infra managers and maintenance contractors (step 5). The method is validated (step
6) using measured track profiles on a Dutch line (Weesp–Almere). The profiles
were measured six times in the period of 2014–2016. Preliminary results show
that this type of modelling can predict the wear of tracks and even indicate which
parameters most strongly influence the wear. The predicted wear is shown in Fig. 16,
in which the measured wear is also plot. The measured wear is a lower bound, due
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Fig. 15 Process of rail wear
prediction [59]

Track data Vehicle data
Initial rail profile Initial wheel profile
Curve radius
Gauge
Rail inclination
Rail cant
Track length

Vehicle type
Vehicle speed

Multi-Body Dynamics
simulation

Local contact model

Local wear model

Rail profile update

Fig. 16 Outer rail wear area
versus time for a track curve
of R = 1800 m as predicted
by simulations with new and
worn wheels compared to
measured values
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to the method of measuring the rail profiles [58]. Clearly, this method contributes
significantly to the maintenance policies and strategies that can be exploited.

6.3 Wind Turbines

Over the past years, the wind energy sector has grown significantly. The need
for green energy to meet climate targets has pushed the development of off-shore
wind farms in particular. The industry has focused on the development of larger
wind turbines. According to Wilkinson et al. [60], the operational and maintenance
costs of off-shore wind turbines are five times as high as those of their onshore
counterparts. An important factor in these costs are the higher failure rates that are
reported [61, 62]. Following the physics-based methodology, Breteler et al. [63]
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implemented a basic qualitative model for the prediction of the remaining useful
lifetime of a wind turbine gearbox using SCADA data and shaft misalignment
information to feed a physics-based model. The base of this model is formed by the
design models as specified in ISO standards, complemented with numerical models.
Adding the real loading to these models and assessing the affect of misalignments
provides an indication of the actual remaining useful life.

The method discussed above is suitable for the drive train of the wind turbine,
yet is less applicable for monitoring the blades. Blades, mostly made of glass
fibre reinforced plastic, are predominantly fatigue loaded. Composites under fatigue
loading develop micro-cracks, which are transverse cracks. These cracks initiate
stochastically in time and space and grow as the loading continues. Micro-
cracks join or increase their grow rate until they formed a delamination. This
results in a significant drop in structural integrity and a functional failure of the
component, possibly without any visual indication. Clearly, damage accumulation
is an important parameter to monitor to allow the prediction of the remaining useful
life.

Monitoring of damage accumulation in a specific part of a wind turbine blade is
studied [64]. In this project, the vibration-based health monitoring approach, as was
introduced in Sect. 3.2, is followed.

An initial investigation into the failure mechanisms of wind turbine blades [65]
revealed that, among a few others, fatigue in the spar cap is a common failure mech-
anism with a significant effect on the structural integrity, hence the functionality of
the blade (step 1 and step 2 in Sect. 4.2). Current practice in diagnosing a structural
sample is to execute, for example a three-point bending fatigue test. The force is
measured for a given displacement amplitude during the measurement. Typically,
the force–displacement relation is not affected by the damage accumulation up to
close to the moment the structure fails: the global bending stiffness is not affected
by the small cracks growing in the interior of the material.

The method adopted by the authors is based on the use of piezo sensors (PZT) on
plate-like (thin) composite structures [66–68] to identify a delamination (separation
of internal layers of the composite material). Here, however, the objective is to
identify an accumulation of small cracks in the material, effectively achieved by
frequently monitoring the dynamic response of the structure (see also Sect. 3.2).

The PZTs, in this area of research often referred to as piezo-electric wafer active
sensor (PWAS), are bonded on the structure and are activated with short burst
signals in the low ultrasonic frequency range (O(10) kHz–O(100) kHz). A network
of PWAS is formed (Fig. 17), where each transducer is sequentially appointed as
actuator, while the others act as sensor. A set of signals from PWAS i to PWAS
j is thus acquired. Using the reconstruction algorithm for probabilistic inspection
of damage (RAPID) [69], the region in which the damage is accumulating can be
estimated.

The RAPID algorithm is based on the comparison of the signals of each of the
actuator–sensor paths in pristine and post-damage state. A difference between these
two signal does not indicate a location yet, as the difference is condensed to a single
number—the damage index ρ. Typically, the correlation coefficient between the two
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Fig. 17 Network of
piezo-electric wafer active
sensors (PWAS). Each PWAS
is sequentially assigned as
actuator, while the others act
as receivers

1 2 3 4

5 6 7 8

signals S is used as damage index [70, 71], but a range of alternative methods is
available that can be used to calculate the damage index [21, 72]. The choice of
the method depends on the application. Venterink et al. [23] concluded the signal
amplitude peak squared (SAPS) percentage difference algorithm provided the best
results for this particular case. The algorithm is given by:

ρSAPS,k = 1−
⎛
⎝max

(
SH,k

)−max
(
SτD,k

)

max
(
SH,k

)
⎞
⎠

2

(2)

where the subscript H refers to the (healthy) reference state, D to the current state
and k to the actuator–sensor path number and with the small time span (here two
oscillation cycles of the actuation frequency) defined as:

SτD,k = SD

(
tHmax −%t : tHmax +%t

)
(3)

A probability function is subsequently used, indicating the probability that an
anomaly at location (x, y) causes a change in the signal sent by transducer i and
received by transducer j . It uses a geometrical function R(x, y), specifying the
distance from point (x, y) to the direct line between the two transducers i and j ,
ceiled by the threshold value β:

R(x, y) =
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
k=i,j

√
(%xk + α%xkn)2 + (%yk + α%ykn)2

(1− 2α)
√
%x2

ij +%y2
ij

forR(x, y) < β

β forR(x, y) ≥ β

(4)

%xk = (x − xk) , %yk = (y − yk) withk = i, j ; %xij = xi − xj
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n =
{
i if k = j

j if k = i

where (xi, yi) and (xj , yj ) indicate the locations of transducer i and j , respectively.
The values of α and β can be optimized based on minimization of blind zones,
deviation in probability distribution values and the kurtosis [73].

Subsequently overlaying all path results will give a probability intensity map of
the possible damage. The damage intensity probability I at an arbitrary position
(x, y) is given by:

I (x, y) =
Np∑
k=1

(
(1− ρk)

(
β − R(x, y)

β − 1

))
(5)

with ρk being the damage indicator of the kth actuator–sensor path, Np the number
of paths.

The experiment executed by the knowledge centre for wind turbine materials
and constructions (WMC) is a three-point bending fatigue test of a thick composite
beam. The uni-directional, 96 layer non-crimp glass fibre fabric reinforced plastic
(Hexion RIM 135) beam was manufactured by WMC, yet instrumented by the
University of Twente. The dimension of the beam is l×b×h = 900×60×56 mm3.
Eight transducers, four on top and four on the bottom, were bonded on the structure,
centred around the mid-point of the beam, as shown in Fig. 18.

The LabVIEW program controlling the acousto-ultrasonic measurements was
configured to communicate with the WMC system controlling the fatigue test. The
fatigue test is paused at predefined intervals, shortening with increasing number
of total cycles, to allow the acousto-ultrasonic measurements to be executed. Once
these are finished, the fatigue test continues. The fatigue test was paused every 2000

Fig. 18 Schematic representation of the three-point bending test on the PZT instrumented glass
fibre reinforced beam. The transducer locations are marked along with their number. The marked
red areas indicate the expected locations of the fatigue damage. The three black circles in the side
view are the plunger (top one) and the two supports of the three-point bending setup
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Fig. 19 The DI values of using SAPS2 and an actuation frequency of 200 kHz. The colours refer
to the measurement number. The first dark blue one is the reference measurement and the last
yellow one is the last measurement prior to failure (approximately after 2.65 million cycles). (a)
Actuator PWAS 1. (b) Actuator PWAS 2. (c) Actuator PWAS 3. (d) Actuator PWAS 4. (e) Actuator
PWAS 5. (f) Actuator PWAS 6. (g) Actuator PWAS 7. (h) Actuator PWAS 8

cycles until a total of 950,000 cycles was reached, after which the fatigue test was
paused every 1000 cycles. The beam finally failed after nearly 2.7 million cycles.

The exact nature of the waves generated by the actuation signal will not be
studied here. It is well known that lamb waves propagate in thin plate like structures,
but the ultrasonic waves in a thick (steel) structure are more complex [66, 67].
The usage of composite materials in the present work will further increase the
complexity. It will however be shown that a detailed understanding of the wave
forms is not necessary.

The time signals are expected to change once damage starts to accumulate.
Hence, the signals of all subsequent measurements are compared to the reference
state, using Eq. (2). The damage index values, based on a 200 kHz actuation signal,
are depicted in Fig. 19. The colour refers to the measurement number, where the
darkest blue corresponds to the first, reference, measurement and most yellow to the
last measurement before failure (approximately after 2.65 million cycles).

The damage index evaluation as a function of the number of fatigue cycles
shows clear drops for some of the actuator–sensor pairs, implying the waveform is
gradually changing. The damage index increases for higher cycle numbers in some
cases, e.g. on the path from PWAS 1 to PWAS 4 (Fig. 19a), which is attributed to
the complexity of the waveforms and the interaction with damage. Physically, an
increase is impossible as it would indicate healing.
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Fig. 20 The damage probability (RAPID) maps, based on the SAPS algorithm and an actuation
frequency of 2000 kHz, after (a) 87,000 cycles; and (b) 2,652,000 cycles. The red lines indicate
the location of the transducers

The damage probability (RAPID) maps are constructed to estimate the region of
damage accumulation, using Eq. (5). The result, again for an actuation frequency of
200 kHz, is shown in Fig. 20. The figure shows the damage probability map after
87,000 cycles and after 2,652,000 cycles—just before failure. The red lines indicate
the location of the transducers.

Clearly, the intensity of the damage is growing with increasing number of fatigue
cycles. Note that the colour scale is different for the two images in Fig. 20. As
expected, the damage starts to accumulate directly underneath the centre punch.
To follow the damage accumulation over time, the probability maps need to be
converted to a single number, representing the intensity of the damage accumulation.
Initially, the maximum damage probability value is taken, leading to the graph
shown in Fig. 21.

The maximum of the damage probability value shows a sharp increase during the
first 100,000 cycles. This is attributed to damage directly inflicted by the punch. A
region with a relative constant slope then follows. This indicates a steady growth of
damage inside the beam. Based on Fig. 20, this damage is formed in the centre of the
beam, just underneath the punch. The variation in slope of the maximum damage
probability value between 100,000 and 2,300,000 cycles is attributed to both the
stochastic nature of crack formation and the data processing method. Analysis of the
data revealed that variations in the signal strengths can cause small variations. These
variations also explain the negative slope of the maximum damage probability value
between 2,300,000 and 2,500,000 cycles. A correction for this is proposed in [23].
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Fig. 21 Maximum damage probability value against the cycle number of the fatigue test for an
actuation frequency of 200 kHz

Although the slope of the curve is fairly constant, it appears to show some small
jumps around 500,000 and 1,000,000 cycles, followed by a larger jump around
2,300,000 cycles. This last jump seems to be preceded by a small increase in the
slope. Sound evidence is missing, by the lack of ultrasonic inspection of the beam
after each acousto-ultrasonic measurement. However, a plausible explanation is that
the jump represents the formation of a delamination. Photos of the beam, taken at
different moments in time, reveal a delamination is formed, just underneath the top
surface and roughly running from PWAS 3 to PWAS 2, as shown in Fig. 22a. Finally
the beam failed due to a larger delamination in this area (Fig. 22b).

It is demonstrated with this experiment that acousto-ultrasonics can be used for
diagnosis of the damage accumulation in a thick glass fibre reinforce beam. The
gradual increase of the diagnostic value (here the maximum of the RAPID plot)
indicates the potential for prognostics, hence combining diagnosis and prognosis.
Further research is necessary to explore the predictive capabilities. This will, for
example, allow the use of the gradient of the line rather than a threshold value; differ-
ences in the loading and failure pattern may require a re-calibration of the threshold,
which obviously is not practical and compromises the robustness of the method.

7 Conclusions

This chapter started with introducing a number of challenges in the field of
predictive maintenance. It was argued that these challenges are the main reasons
that predictive maintenance is promising, but is yet lacking the maturity for broad
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Fig. 22 Photo of the state of the beam after (a) approximately 300,000 cycles; (b) failure,
approximately 2,700,000. A first delamination starts to form in the area indicated by the red ellipse
(between PWAS 2 and PWAS 3), which is the location where the final delamination failure occurs

application in industrial practice. Then a number of methods and tools have been
presented, which addressed most of these challenges, and provided possible ways
to increase the maturity of predictive maintenance:

• Vibration-based structural health monitoring techniques can assist in detecting
damage, diagnosing a system and (ultimately) predicting the remaining lifetime.
It has been shown that a thorough understanding of the system dynamics is
required to develop well-performing algorithms;

• An approach to develop physical model-based prognostic methods has been
presented, stressing the need to understand the physics of failure when predicting
the lifetime of systems operated in highly variable operational conditions;

• Decision support tools have been presented, assisting users in

– the selection of the most suitable predictive maintenance approach;
– the selection of an appropriate condition monitoring technique;
– the selection of the critical parts in a larger system;
– the determination of the failure mechanism responsible for a certain failure;

Finally, a number of cases were presented, demonstrating how the developed
methods ad tools are implemented in a range of different industries.
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On Prognostic Algorithm Design and
Fundamental Precision Limits in
Long-Term Prediction

Marcos E. Orchard and David E. Acuña

1 Introduction

Failure prognostic algorithms typically generate long-term predictions to character-
ize the evolution in time of a condition indicator. These long-term predictions are
then used to estimate the Time-of-Failure (ToF) of a faulty system. This procedure
can only be effective if the algorithm is able to adequately incorporate information
about the underlying degradation processes and future operating profiles, as well as
an effective characterization of all associated uncertainty sources.

Probability-based methods, and particularly Bayesian approaches [1], stand
out as a class of algorithms that allow to easily characterize uncertainty sources
in failure prognostic problems [2]. The mathematical and theoretical framework
associated with probability-based algorithms allows to implement filtering, smooth-
ing, and prediction approaches in a straightforward manner, even in the case of
nonlinear, non-Gaussian, dynamic processes [3]. For this reason, many Bayesian
state estimation methods have been applied in the past to determine initial conditions
for the generation of system long-term predictions [4], while others have been used
to characterize future loading (or stress) profiles [5].

In failure prognostics, an effective characterization of future uncertainty sources
is important because it allows to avoid catastrophic events and take preventive
measures [4, 6]. Although this problem can be solved if we assume that both
the actual system condition and degradation model are known, by performing
Monte Carlo (MC) simulation [7], the computational cost associated with this
method is significant and nearly impossible to handle for real-time decision-making
processes. The Prognostic and Health Management (PHM) community has chosen
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particle-filtering-based algorithms [4] as the de facto alternative to MC [8], since
particle-filters (PFs) offer an interesting balance between efficiency and efficacy in
state estimation problems. However, it is still not clear how to measure the efficacy
of particle-filtering-based prognostic methods in terms of the generated results,
because the PHM community has not yet established adequate performance metrics.
This lack of standards that affects implementation of prognostic algorithms is in part
due to varied end-user requirements: forecasting is a topic of interest for a number of
different domains, including aerospace, automotive, electronics, finance, medicine,
nuclear power, and weather.

The general agreement is that better algorithms will exhibit better accuracy
(related to estimates biases) and precision (related to variance of an estimate). This
idea sounds natural and intuitive. However, it is easy to artificially “improve” the
precision exhibited by an algorithm by modifying hyper-parameters of the model
that defines the evolution of the state over time (state transition model). It is
only natural to wonder which is the fundamental limit for these “improvements.”
This book chapter aims at describing an interesting approach to define prognostic
performance metrics based on the concept of Bayesian Cramér–Rao Lower Bounds
(BCRLBs) for the predicted state mean square error (MSE), conditional to measure-
ment data and model dynamics [9]. Furthermore, a step-by-step design methodology
to tune prognostic algorithm hyper-parameters is discussed, allowing to guarantee
that obtained results do not violate fundamental precision bounds. As an illustrative
example, this design methodology is applied to the problem of End-of-Discharge
(EoD) time prognostics in lithium-ion batteries.

The structure of the book chapter is as follows. BCRLBs are first introduced in
Sect. 2. Section 3 focuses on the definition of a prognostic performance metric based
on BCRLBs, as well as on a step-by-step methodology for prognostic algorithm
design based on that metric. Section 4 shows the application of the proposed
metrics and design methodology to the EoD problem in lithium-ion batteries in
two different case scenarios: (1) when the future operating profile is assumed to
be known (Sect. 4.4), or (2) when the future operating profile is unknown and
statistically characterized as a new uncertainty source (Sect. 4.5). Section 5 presents
main conclusions.

2 Cramér–Rao Lower Bounds

The Cramér–Rao Lower Bound (CRLB) [10, 11] is a fundamental limit that
establishes a lower bound for the mean square error (MSE) of any estimator.
The most conventional version of this bound was developed for the assessment
of the performance of unbiased estimators for unknown deterministic parameters.
Later, Van Trees developed an analogous bound applicable to the case of random
parameters, where the assumption of unbiasedness is no longer required: the
Bayesian Cramér–Rao Lower Bound (BCRLB) [12].
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2.1 Bayesian Cramér–Rao Lower Bounds

Let x ∈ R
nx be a vector of random parameters to be estimated and y ∈ R

ny a
random vector of observations. Let x̂(y) be an estimator of x obtained as a function
of the observations y. The Bayesian Cramér–Rao inequality [12] establishes that

Ep(x,y){[x̂(y)− x][x̂(y)− x]T } ≥ J−1 (1)

where p(x, y) is a joint probability density function and J is the Bayesian
Information Matrix (BIM) (called Fisher Information Matrix in the conventional
setting of deterministic parameter estimation), defined as

J = Ep(x,y){−Δx
x logp(x, y)} (2)

The operator Δ denotes the second-order derivative

Δ
y
x = ∇x∇yT , (3)

and ∇ denotes the gradient operator.

2.2 BCRLBs for Discrete-Time Dynamical Systems

Bayesian processors [1] (a.k.a. Bayesian filters) use a state-space representation of
the system and are particularly useful to characterize uncertainty sources online.
For this purpose, let us consider {Xk, k ∈ N} a first-order Markov process
denoting an nx-dimensional system state vector with initial distribution p(x0) and
transition probability p(xk|xk−1). Also, let {Yk, k ∈ N \ {0}} denote ny-dimensional
conditionally independent noisy observations. Then,

xk = f (xk−1, ωk−1) (4)

yk = g(xk, vk), (5)

where ωk and vk denote independent, not necessarily Gaussian, random vectors.
Four different versions of the BCRLB can be used as a lower bound for the MSE

in discrete-time dynamical systems [13]. These four versions are now defined. Let

x0:k =
[
x0
T x1

T . . . xk
T
]T

and y1:k =
[
y1
T y2

T . . . yk
T
]T

denote a collection of
augmented states and measurement vectors up to time k. The estimator of xk is
denoted as x̂k(y1:k), which is a function of the measurement sequence y1:k . Let also
denote x̂0:k(y1:k) the estimator of the whole state trajectory x0:k . The inequalities
regarding these versions of BCRLBs are summarized below.
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A. Joint unconditional BCRLB

Ep(x0:k,y1:k){[x̂0:k(y1:k)− x0:k][x̂0:k(y1:k)− x0:k]T } ≥ J−1
0:k (6)

J−1
0:k = Ep(x0:k,y1:k){−Δx0:k

x0:k logp(x0:k, y1:k)} (7)

B. Marginal unconditional BCRLB

Ep(xk,y1:k){[x̂k(y1:k)− xk][x̂k(y1:k)− xk]T } ≥ J−1
k (8)

J−1
k = Ep(xk,y1:k){−Δxk

xk
logp(xk, y1:k)} (9)

C. Joint conditional BCRLB

Ep(x0:k,yk |y1:k−1){[x̂0:k(y1:k)− x0:k][x̂0:k(y1:k)− x0:k]T } ≥ J0:k(y1:k−1)
−1 (10)

J0:k(y1:k−1)
−1 = Ep(x0:k,yk |y1:k−1){−Δx0:k

x0:k logp(x0:k, yk|y1:k−1)} (11)

D. Marginal conditional BCRLB

Ep(xk,yk |y1:k−1){[x̂k(y1:k)− xk][x̂k(y1:k)− xk]T } ≥ Jk(y1:k−1)
−1 (12)

Jk(y1:k−1)
−1 = Ep(xk,yk |y1:k−1){−Δxk

xk
logp(xk, yk|y1:k−1)} (13)

These bounds can be classified according to two main criteria. On the one hand,
the bound is said to be joint if it restricts the MSE of the whole state trajectory
x0:k , whereas if it solely limits the MSE of the state vector xk , the bound is said to
be marginal. On the other hand, if the bound considers measurements y1:k−1 as a
random vector, it is said to be unconditional, whereas if y1:k−1 is a vector of known
measurements, it is said to be conditional.

In [14] an elegant way for computing the marginal unconditional BCRLB J−1
k

(see Eq. (9)) was proposed without manipulating large matrices at each time instant
k in the following manner:

Jk+1 = D22
k −D21

k (Jk +D11
k )
−1D12

k (14)

where

D11
k = E{−Δxk

xk
logp(xk+1|xk)} (15)

D12
k = E{−Δxk+1

xk logp(xk+1|xk)} = (D21
k )

T (16)

D22
k = E{−Δxk+1

xk+1[logp(xk+1|xk)+ logp(yk+1|xk+1)]} (17)

= D
22,a
k +D22,b

k . (18)
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with expectations taken with respect to p(x0:k+1, y1:k+1). It is important to remark
that the marginal unconditional BCRLB considers random measurement vectors. In
[15], the marginal conditional BCRLB Jk(y1:k−1)

−1 (see Eq. (13)) was introduced
and also developed in an elegant recursive way for its computation, in the following
manner:

Jk+1(y1:k) = B22
k − B21

k (J
A
k (Yk)+ B11

k )
−1B12

k , (19)

where

B11
k = E{−Δxk

xk
logp(xk+1|xk)} (20)

B12
k = E{−Δxk+1

xk logp(xk+1|xk)} = (B21
k )

T (21)

B22
k = E{−Δxk+1

xk+1[logp(xk+1|xk)+ logp(yk+1|xk+1)]} (22)

= B
22,a
k + B22,b

k , (23)

with expectations taken with respect to p(x0:k+1, yk+1|y1:k). On the other hand,
JAk (y1:k) is defined as the auxiliary BIM matrix for xk , being its inverse equal to
the nx × nx lower-right block of the inverse of the auxiliary BIM matrix IAk (y1:k),
where

IAk (y1:k) = Ep(x0:k |y1:k){−Δx0:k
x0:k logp(x0:k|y1:k)}. (24)

Now that BCRLBs have been properly defined, let us focus on how to use this
concept in the context of the failure prognostic problem and, more specifically,
as a criterion to measure the correctness of a given failure prognostic algorithm
implementation.

3 Methodology for Prognostic Algorithm Design

Let us assume that it is required to implement a probability-based prognostic
algorithm to measure the risk of future usage for failing equipment in real-time.
Let θ ∈ ' ⊆ R

nθ be a vector of hyper-parameters that allows to configure
any implementation of this probability-based prognostic algorithm. A step-by-step
methodology to tune these hyper-parameters will be defined, trying to maximize the
efficacy of the prognostic algorithm while considering specific efficiency constrains
(typically imposed by maximum processing time and/or computational cost). Now,
it is important to note that some hyper-parameters will have a positive impact
on the efficacy of the algorithm, while in other cases most of the impact can
be measured in terms of an improvement on the efficiency. For this reason, the
components of the vector θ are grouped in two sets of hyper-parameters: those that
primarily affect the efficiency of the algorithm (conveniently arranged in the vector
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θA ∈ 'A ⊆ R
nθA , nθA < nθ ), and those that primarily have impact on the quality of

obtained results (arranged in the vector θB ∈ 'B ⊆ R
nθB , where θT = [θTA θTB ]

and nθA + nθb = nθ ). Parameter vector θA is typically tuned to meet efficiency
constraints (for example, maximum processing time); however, the actual question
is how to choose adequate values for the components of θB .

The Bayesian Cramér–Rao Lower Bound concept will help to measure the
performance of the failure prognostic algorithm conditional to a realization of θ . In
that regard, a design methodology that uses predictive BCRLBs can be implemented
to determine fundamental limits for the predicted state MSE (at any future time
instant) and a feasible region 'B ⊂ 'B for the hyper-parameter vector θB ,
assuming that θA is chosen to meet efficiency constraints. This feasible region is
thereby characterized by all values of θB for which the predictive state MSE does
not violate the corresponding predictive BCRLB (at any future time instant). This
design methodology can be summarized as follows:

1) Choose θA such that efficiency specifications are met. Compute (recursively)
Bayesian Cramér–Rao bounds for the predicted state MSE (also referred to as
predictive BCRLBs), starting from time kp and up to a time prediction horizon
defined by kh > kp.

2) Choose realizations of the hyper-parameter vector θB ∈ 'B . You may use
sampling schemes to obtain these realizations from a prior distribution.

3) Execute the prognostic algorithm, conditional to each one of the obtained
realizations for θ . Discard realizations that generate predicted state MSEs
smaller than the predictive BCRLB at any time kp < k < kh.

4) For all realizations of θ that were not discarded in Step 3) compute a weighted
average of the 	1 distances between MSE curves (per component of the state
vector) and the corresponding BCRLB curves over time. Choose [θTA θ̂TB ] as
the realization that minimizes the aforementioned weighted average. Compute
the predicted ToF PMF conditional to [θTA θ̂TB ].

5) Explore the impact associated with a relaxation in soft efficiency constraints:
Modify θA to allow less efficient algorithm implementations. Go through Steps
1)–4), and assess the impact on the resulting ToF PMF using a metric of choice.
Iterate until the impact on the resulting ToF PMF is negligible.

This step-by-step design methodology requires a formal definition for Bayesian
Cramér–Rao Lower Bounds for the predicted state MSE, as well as a feasible
procedure to compute this bound recursively. A formal definition of BCRLB for
the predicted state MSE can be obtained following the ideas presented in [15, 16],
although a formal definition for the concept of the Time-of-Failure Probability Mass
Function is required.

Fortunately, a formal definition for ToF PMF has been already presented in [3,
17] (Acuña’s ToF PMF, see Eq. (26)). Indeed, let τF denote the ToF random variable:
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Definition 1 (System Failure Function) A system failure is characterized by the
function

F :Rnx ×�→ {0, 1}
(x, ω) #→ F(x, ω) = 1SystemFailureinx(ω),

where F(Xk)(·) := F(Xk, ·) corresponds to a binary random variable indicating
whether the system is in a failure condition or not, at the k-th time instant.

Theorem 1 (Acuña’s Failure Probability Mass Function) Considering the prob-
ability space (N, σ (N),P) and given that P(∪k−1

i=0 {τF = i}|y1:kp ) as a function of
time k ∈ N is always absolutely continuous with respect to the counting measure in
N, if the following conditions hold:

• τF < +∞, P(τF = ·|y1:kp )-a.s.
• τF > kp.

Then the mapping P(τF = ·|y1:kp ) : N → [0, 1] defines the Acuña’s Time-of-
Failure Probability Mass Function as

PA(k|y1:kp ) :=P(τF = k|y1:kp ) (25)

=P(F (Xk) = 1|y1:kp )
k−1∏

j=kp+1

(
1−P(F (Xj ) = 1|y1:kp )

)
, (26)

with

P(F (Xk) = 1|y1:kp ) =
∫

Rnx

P(F (xk) = 1)p(xk|y1:kp )dxk. (27)

This probability measure is well-defined (satisfies the conditions of Probability
Mass Function) and corresponds to the unique Bayesian probability function that
can characterize the risk of future failures in discrete-time systems. Therefore, it
holds that

1) PA(k|y1:kp ) = 0, ∀k ∈ N, k ≤ kp.
2) 0 ≤PA(k|y1:kp ) ≤ 1, ∀k ∈ N.

3)
∑+∞

i=0 PA(k|y1:kp ) = 1.

3.1 Conditional Predictive Bayesian Cramér–Rao Lower
Bounds

In actual prognostic algorithm implementations, measurements are always assumed
to be available, because it is inadequate to prognosticate a failure even before
the fault could be diagnosed. In this regard, a proper performance metric based
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on Bayesian Cramér–Rao lower bounds for the predicted state mean square error
(MSE) needs to be conditional to measurement data.

Let xkp :k =
[
xkp

T xkp+1
T . . . xk

T
]T

and also xi , i = 1, 2, . . . , (k − kp + 1)nx ,
be the i-th component of the vector xkp :k . The initial focus is on finding a lower
bound for the MSE associated with any estimator of xkp :k (bound for the predictive
state MSE). Afterwards, it is shown that a recursion could be used to compute the
bound with ease.

Let x̂kp :k(y1:kp ) be an estimator of xkp :k conditional to the set of measurements

acquired until the prognostic time kp, k > kp. Besides, let x̃kp :k � x̂kp :k(y1:kp ) −
xkp :k be the estimation error and pcpk � p(xkp :k|y1:kp ). The second-order derivative
is denoted

Δ
y
x = ∇x∇yT , (28)

where ∇x =
[
∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xnx

]
is a gradient operator of dimensions 1× nx .

Definition 2 The Conditional Predictive Bayesian Information Matrix (CPBIM) is
defined as

Icp(xkp :k|y1:kp ) � Ep
cp
k

{[
∇xkp :k T logpcpk

][
∇xkp :k logpcpk

]}
(29)

Two theorems help to introduce both joint and marginal versions of the CP-
BCRLB. The joint version represents a bound for the predictive state MSE
associated with the whole state trajectory xkp :k , and requires to incur in a series
of expensive matrix computations. In contrast, the marginal version allows to obtain
a bound for the predicted state MSE related to xk , k > kp, which can be easily
computed using a recursive expression.

Theorem 2 (Joint Conditional Predictive BCRLB) Let us assume the following
conditions about the density pcpk :

1. pcpk is absolutely continuous and
∂p

cp
k

∂xi
is absolutely integrable with respect to

xkp :k , this is

∫ ∣∣∣∂p
cp
k

∂xi

∣∣∣dxkp :k < +∞ (30)

2. For each xi , with i = 1, 2, . . . , (k − kp + 1)nx ,

lim
xi→+∞

xip(xkp :k) = lim
xi→−∞

xip(xkp :k) = 0 (31)
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The MSE associated with any estimator x̂kp :k(y1:kp ) of the state trajectory xkp :k is
lower bounded

Ep
cp
k
{x̃kp :kx̃Tkp :k|y1:kp } ≥ I−1

cp (xkp :k|y1:kp ), (32)

where I−1
cp (xkp :k|y1:kp ) is referred to as the Joint Conditional Predictive BCRLB

(JCP-BCRLB).

Finally, Theorem 3 presents a recursive formula that allows to compute the
marginal version of the bound CP-BCRLB.

Theorem 3 (Marginal Conditional Predictive BCRLB) Let us define

Sii+1 = E{−Δxi
xi

logp(xi+1|xi)} (33)

S
i,i+1
i+1 = E{−Δxi+1

xi logp(xi+1|xi)} (34)

Si+1
i+1 = E{−Δxi+1

xi+1 logp(xi+1|xi)} (35)

with Si+1,i
i+1 = S

i,i+i
i+1

T
, i = kp, kp + 1, . . . , k. The MSE associated with xk is lower

bounded as

Ep
cp
k
{x̃kx̃Tk |y1:kp } ≥ C22

k (36)

where C22
k is named as Marginal Conditional Predictive BCRLB (MCP-BCRLB),

and can be recursively computed as

[C22
k ]−1 = Skk − Sk,k−1

k [[C22
k−1]−1 + Sk−1

k ]−1S
k−1,k
k (37)

considering the initial condition [C22
kp
]−1 = S

kp
kp
= E{−Δxkp

xkp
logp(xkp |y1:kp )}.

In the context of fault diagnosis (or system monitoring), Bayesian approaches
assume that the system exogenous inputs as known (or even accurately measured).
As a result, exogenous inputs (in this case, system operating profiles) are omitted
in the notation that is used to describe either state vector prior or posterior
PDFs. The failure prognostic problem, though, incorporates an additional source
of uncertainty: it is not exactly known how the system is going to be operated in
the future, i.e., future operating profiles can be characterized as a random process.
The incorporation of future operating profiles in the analysis is, indeed, important
because the bounds for maximum precision in long-term predictions depend on
the quality of the characterization of system inputs. The procedure to perform the
analysis requires to define an augmented state vector, including future exogenous
inputs as additional states in the fault prognostic problem. An example to illustrate
this procedure is presented in Sect. 4.5.



364 M. E. Orchard and D. E. Acuña

However, before continuing to the next section, it is important to note that from
the standpoint of designers of prognostic algorithms, the methodology presented in
Sect. 3 can be always applied assuming that the future operating profile of the system
is known: The resulting algorithm will serve its purpose well, conditional to a good
characterization of system inputs. The task of providing such good characterization
of future operating profiles can be considered as a separate action that can be
executed by an independent module.

3.2 Analytic Computation of MCP-BCRLBs

The computation of MCP-BCRLBs requires the computation of expectations over
the predictive state probability density. This fact implies that, in the case of nonlinear
systems, the designer may need to perform Monte Carlo simulations to tune the
hyper-parameters of a given prognostic algorithm. If possible, it would be preferable
to avoid that situation, because of the associated computational efforts. Fortunately,
MCP-BCRLBs can be analytically calculated in systems where the state transition
equation has additive noise and is linear with respect to the state vector, i.e.,

xk+1 = f (xk, uk)+ ωk (38)

= Ak(uk) · xk + Bk(uk)+ ωk, (39)

where uk is the system input, Ak(uk) is an nx-dimensional square matrix, Bk(uk) is
an nx × 1 matrix, and ωk is an nx-dimensional zero mean Gaussian random vector.
Indeed, consider the case where ωk has covariance matrix �k:

− logp(xi+1|xi) = c + 1

2
[xi+1 − f (xi, ui)]T �−1

i [xi+1 − f (xi, ui)] (40)

− ∇xi∇xi T logp(xi+1|xi) = Ai(ui)
T �−1

i

T∇xi f (xi, ui) (41)

= Ai(ui)
T �−1

i Ai(ui) (42)

−∇xi+1∇xi T logp(xi+1|xi) = −Ai(ui)T �−1
i

T∇xi+1xi+1 (43)

= −Ai(ui)T �−1
i (44)

−∇xi+1∇xi+1
T logp(xi+1|xi) = �−1

i

T∇xi+1xi+1 (45)

= �−1
i (46)
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Note that �−1
i

T = �−1
i since the covariance matrix is assumed to be symmetric

and ∇y∇xT = Δ
y
x . Besides, it is worth noting that as a general practice in systems

engineering, the notation for p(xi+1|xi) omits its dependency on the input uk , as it is
assumed that the latter is accurately and precisely measured. Although this may not
be the case in prognostics, this dependency would remain implicit in the notation of
this chapter. Therefore, from Eqs. (33)–(35), the recursion for MCP-BCRLBs has
analytic expressions:

Sii+1 = E{−Δxi
xi

logp(xi+1|xi)} = Ai(ui)
T �−1

i Ai(ui) (47)

S
i,i+1
i+1 = E{−Δxi+1

xi logp(xi+1|xi)} = −Ai(ui)T �−1
i (48)

Si+1
i+1 = E{−Δxi+1

xi+1 logp(xi+1|xi)} = �−1
i (49)

4 Case Study: End-of-Discharge Time Prognosis of
Lithium-Ion Batteries

We now proceed to apply the proposed methodology for prognostic algorithm
design and hyper-parameter tuning on an illustrative case study, which corresponds
to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion (Li-Ion)
batteries. This case study assumes that a filtering stage is carried out by a particle-
filtering algorithm, following the recommendations suggested in [5] (in terms of the
number of particles utilized, among other implementation issues). In that regard, it is
assumed that posterior estimates for both the battery State-of-Charge (SoC, defined
as the ratio between the actual available energy and the maximum battery storage
capacity Ecrit) and internal polarization resistance are always available at the time
where the prognostic algorithm is executed. The failure condition in this case is
characterized by SoC levels below 10%.

On the one hand, Sect. 4.4 presents the implementation of the design methodol-
ogy presented in Sect. 3, assuming that the exogenous input (future discharge current
profile) is known along the whole prediction window. In this case, uncertainty
sources are confined to the initial condition (state posterior PDF at the beginning
of prognostic window) and the process noise embedded within the dynamics of the
hidden system states. On the other hand, Sect. 4.5 explores the impact of system
input uncertainty on the computed bounds for the predictive MSE.

4.1 State-Space Model

Filtering and prognostic stages use a state-space model to represent the evolution
in time of the Li-Ion battery voltage as a function of (1) the SoC, (2) the battery
internal impedance, and (3) the discharge current (exogenous system input). The
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objective in this case study is to prognosticate the moment in which the battery
energy has depleted below 10%. As it has been already mentioned in Sect. 1, and as
in any other prognostic problem, the “ground truth” failure PMF (in this case, the
EoD time PMF) can be computed offline using Monte Carlo simulations for future
trajectories of the state vector.

In actual implementations of failure prognostic algorithms, it is also necessary
to characterize the future evolution of exogenous inputs to the state-space model
(future operating profiles). Particularly, for EoD time prognostic purposes, Pola
et al. [5] proposes to use a probabilistic characterization of the battery discharge
current, via Markov Chains. However, it is important to note that, without loss of
generality, both the performance assessment of a given prognostic algorithm and of
the exogenous input characterization can be conducted separately [18]. Indeed, it is
always possible to evaluate the performance of the prognostic algorithm conditional
to a specific realization of the future usage profile, and then use the Law of Total
Probability to incorporate the uncertainty associated with exogenous inputs. For this
reason, this study will now assume that the future battery usage profile is known,
solely focusing on computing the EoD time PMF conditional to that given profile.

For most of the battery operating range, the relationship between SoC and
the Open Circuit Voltage (OCV) curve can be well characterized by an affine
function, see “zone 2” in Fig. 1. However, the state-space model proposed in [5]
is used instead, allowing to characterize the nonlinear behavior present in “zone
1” and “zone 3.” Also, a structure proposed in [19] has been adopted to model the
dependency between the polarization resistance and the battery discharge current.

State Transition Model

xk+1 = xk − voc(xk) · uk · Ts

Ecrit
+ ωk (50)

Measurement Model

yk = voc(xk)− u(k) · Rint(xk, uk)+ ηk, (51)

Fig. 1 OCV curve of a Li-Ion cell (black line) and the projection of its linear operational range
(dashed gray line) as a function of SoC [5]



On Prognostic Algorithm Design and Fundamental Precision Limits in Long-. . . 367

with

voc(xk) =vL + (v0 − vL) · eγ ·(x2(k)−1) + α · vL · (x2(k)− 1) . . .

. . .+ (1− α) · vL · (e−β − e−β·
√
x2(k))

(52)

and

Rint(xk, uk) = r0(uk)+ r1(uk) · xk + r2(uk) · xk2. (53)

In this representation, the input to the system uk = ik[A] is defined as the
discharge current, while yk = vk[V ] is the voltage at the battery terminals. The
state xk is the battery SoC measured with respect to Ecrit, the expected total energy
delivered by the battery, whereas the absolute value of the internal impedance is
represented by the function Rint(xk, uk). The process noise ωk and the measurement
noise ηk assume a zero mean Gaussian distribution. Finally, Ts[s] is the sample time,
and v0, vL, α, β, and γ are model parameters to be estimated offline (see [5] for
more details).

Since a faulty condition is defined in this case by SoC values below a 10%, then
Eq. (27) (required for computing the ToF PMF) becomes:

P(F (xk) = 1) = 1{x∈R:x<0.1}(xk). (54)

4.2 Prognostic Algorithm

A particle-filtering-based prognostic algorithm [4] is selected to illustrate the design
methodology. This algorithm uses, as initial condition, an empirical state posterior
distribution that results from a PF implementation. It also considers that prognostic
stage begins at time kp, and that the state posterior distribution at that time instant
is denoted by

p(xkp |y1:kp ) =
Np∑
i=1

w
(i)
kp
δ
x
(i)
kp

(xkp ), (55)

where Np is the amount of samples used by the PF implementation.

0) Resample p(xkp |y1:kp ) and get a set of Nθ equally weighted particles.

Then, for each future time instant k, k > kp, perform the following steps:

1) Compute the expected state transitions x∗k
(i) = E{f (xk−1

(i), uk−1, ωk−1)}, ∀i ∈
{1, . . . , Nθ }, and calculate the empirical covariance matrix
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Ŝk = 1

Nθ − 1

Nθ∑
i=1

[x∗k (i) − x∗k][x∗k (i) − x∗k]T , (56)

with x∗k = 1
Nθ

∑Nθ
i=1 x

∗
k
(i).

2) Compute D̂k such that D̂k · D̂T
k = Ŝk .

3) Update the samples as

x
(i)
k = x∗k

(i) + hθ · D̂k · ε(i)k , ε
(i)
k ∼ E , (57)

where E is the Epanechnikov kernel and hθ corresponds to its bandwidth.

Thus, in this case, the hyper-parameters vector for the prognostic algorithm is
defined as θT = [Nθ hθ

]
.

4.3 Avoiding Monte Carlo Simulations in EoD Prognostic
Algorithms

The battery discharge model can be easily approximated by a structure that holds
the necessary requirements to obtain an analytic expression of MCP-BCRLBs (see
Sect. 3.2). The state transition equation for the SoC is

xk+1 = xk − voc(xk) · uk · Ts

Ecrit
+ ωk, (58)

which is nonlinear with respect to xk because of the term voc(xk). However, from
Fig. 1 it is possible to recognize a wide operating zone in which voc(xk) is linear with
respect to xk . Indeed, if voc(xk) is linearized around xo = 0.5, then it is possible to
write:

voc(xk) ≈ voc(xo)+ ∂voc(xk)

∂xk

∣∣∣
xk=xo

· (xk − xo) (59)

And thus, the state transition equation can be approximated by:

xk+1 =
(

1− ∂voc(xk)

∂xk

∣∣∣
xk=xo

· uk · Ts

Ecrit

)

︸ ︷︷ ︸
Ak(uk)

·xk . . .

. . .+
(∂voc(xk)

∂xk

∣∣∣
xk=xo

· xo − voc(xo)
)
· uk · Ts

Ecrit︸ ︷︷ ︸
Bk(uk)

+ωk,
(60)

expression that has the required form xk+1 = Ak(uk) · xk + Bk(uk)+ ωk .
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4.4 Prognostic Algorithm Design: Known Future Operating
Profiles

The methodology presented in Sect. 3 is now utilized to tune hyper-parameters Nθ

and hθ of the prognostic algorithm proposed by Orchard and Vachtsevanos [4] (see
Sect. 4.2), when this algorithm is used to solve the problem of EoD time prognosis
(see Sect. 4.1). Please note that the parameter Nθ directly affects the computational
effort of the method (i.e., θA = Nθ ), while θB = hθ is more related to the capability
of the algorithm to appropriately represent probability densities.

The performance of the prognostic algorithm is tested when predicting the EoD
time at different moments during the battery discharge process. In this regard,
and given that a full discharge takes approximately 11,628 [s], the prognostic
routine is executed at 4000 [s] of operation. As it was previously mentioned
in Sect. 4.1, the future discharge current is assumed to be known without loss
of generality, since the aim is to assess the performance of the algorithms and
characterize the evolution in time of the uncertainty associated with the state vector.
Additionally, no simplifications in the model are considered in this case (as those
described in Sect. 4.3), and thus the system is simulated embracing its nonlinear
behavior illustrated in Fig. 1. The discharge current profile is generated from random
realizations of a random walk model with an initial condition of 12.5 [A] (see Fig. 2).

We now proceed to apply the proposed methodology to this case study, step-by-
step.

Step 1: Generate MCP-BCRLBs The first step of the methodology is to
compute the sequence of MCP-BCRLBs, which in turn requires computation of
an initial condition for the recursion. The procedure to achieve this goal has been

Fig. 2 Illustration of battery discharge current profile
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Fig. 3 Example results for kp = 4000 [s]. (a) Shows the results for battery SoC filtering and
prediction stages. The estimation stage assumes an incorrect initial condition of 70% for the SoC,
and is executed using a PF with 100 particles [5]. Long-term predictions are built simulating 105

random state trajectories. These predictions are used to compute MSE and MCP-BCRLB curves
in (b)

reported in [13]. The hyper-parameter Nθ is set to 100 particles, following the
recommendations stated in [5]. As the recursion requires to compute expectations
over predicted state probability density functions, the MCP-BCRLB cannot be
computed analytically. To overcome this difficulty, we simulate 105 random
trajectories for the evolution of the battery SoC using Eq. (50). Figure 3 shows
the results obtained when state predictions are computed at kp = 4000 [s].
Step 2: Choose candidates for algorithm hyper-parameters The bandwidth
hθ of each Epanechnikov kernel has a theoretical optimal value hopt when
particles are sampled from Gaussian distribution with unity covariance matrix
(see Eq. (61)) [4]. Although this is seldom the case, given that the underlying
hypothesis behind this property is rarely valid in nonlinear systems (i.e., samples
are not independent and identically distributed in the algorithm presented in
Sect. 4.2), particle-filtering-based prognostic algorithm implementations use this
value as an educated guess. Since in this case study nx = 1, we should use
hopt = 0.8529.

hopt = A ·N−
1

nx+4
θ , A = (8 · c−1

nx
· (nx + 4) · (2 · √π)nx ) 1

nx+4 (61)

However, if we set hθ = hopt, the implementation of the particle-filtering-
based prognostic algorithm performs poorly in terms of predicted state MSE
(far greater than corresponding MCP-BCRLB). This fact motivates to search for
other hyper-parameter candidates. For illustrative purposes, we will analyze the
following options for the bandwidth for the Epanechnikov kernel: hθ,1 = 0.0093,
hθ,2 = 0.0090, hθ,3 = 0.0087, hθ,4 = 0.0084, and hθ,5 = 0.0081.



On Prognostic Algorithm Design and Fundamental Precision Limits in Long-. . . 371

Fig. 4 Predictive state MSE and MCP-BCRLB curves computed at kp = 4000 [s]

Step 3: Discard hyper-parameter candidates related to implementations
that violate MCP-BCRLBs Figure 4 shows the resulting predictive state MSE
curves for realizations of the particle-filtering-based prognostic algorithm (Nθ =
100) that used the proposed candidates for the hyper-parameter hθ ; all of
them executed at time kp = 4000 [s]. It can be noticed that predictive MSE
curves associated with candidates hθ,4 and hθ,5 violate the MCP-BCRLB curve.
Although the candidate hθ,2 also generates a MSE curve that violates the bound,
it must be noted that this situation occurs solely for a small set of time instants.
We will not discard this candidate yet, since an increment in the number of
particles may help alleviate the situation described above.
Step 4: Use the 	1-norm to select the most appropriate hyper-parameter
candidate After executing Step 3), two candidates remain: hθ,1 and hθ,3. It is
proposed to use the 	1-norm to measure the distance between predicted state
MSEs and MCP-BCRLB curves, hoping that this information could be useful to
discriminate between these two candidates:

∥∥MSEhθ,1 −MCP− BCRLB
∥∥

1 = 33.1985 (62)
∥∥MSEhθ,3 −MCP− BCRLB

∥∥
1 = 26.3207. (63)

It is important to note that candidate hθ,3 = 0.0087 represents an appropriate
choice. Intuition indicates that it is worthwhile to explore which could be the best
choice for hθ if efficiency constraints are relaxed and a larger number of particles
is allowed in the implementation.
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Table 1 Dissimilarity between predicted state MSE and MCP-BCRLB curves (	1 distance)

hθ,1 hθ,2 hθ,3 hθ,4 hθ,5

Nθ = 100 33.1985 25.5914✗ 26.3207✓ 19.5358✗ 18.2365✗

Nθ = 500 25.4781 23.9873✓ 20.7479✗ 19.5817✗ 19.6815✗

Nθ = 1000 24.3008 24.8117✓ 21.4785✗ 21.2526✗ 19.0523✗

Nθ = 5000 26.0585 23.1602 21.9363✓ 20.2669✗ 19.2155✗

Nθ = 10,000 26.0338 23.8571 21.2822✓ 20.5395✗ 19.7839✗

Candidates that were discarded in Step 3) are marked with a ✗ symbol. Candidates associated with
minimum distances are marked with a ✓ symbol

Step 5: Relax efficiency soft-constraints We now proceed to relax soft-
constraints associated with efficiency criteria (in this case, the number of particles
Nθ ). This procedure helps to understand the cost (in terms of algorithm efficacy)
that is associated with computational effort constraints. For this purpose, let us
increase the hyper-parameter value toNθ = 500. After going through Steps 1)–4)
once more, it is interesting to note that in this new scenario, the most appropriate
choice for the hyper-parameter vector would have been (see Table 1):

θT = [Nθ hθ,2
] = [500 0.0090

]
. (64)

The aforementioned steps allow to choose hyper-parameter candidates in
terms of the quality of predicted state MSE curves. However, to be fair, the
quality of the true outcome of probability-based prognostic algorithms (the ToF
PMF) should also be included in the analysis. To do this, it is necessary to use
a metric that aims at discriminating between two ToF PMFs. In this case, an 	1

distance is suggested as a measure of changes between two ToF PMFs.
Let us consider, then, the case illustrated in Fig. 5, which shows the ToF PMFs

obtained when implementing a PF-based algorithm for the EoD time prognostics
with two choices for the hyper-parameters vector: θT1 = [100 0.0087] and
θT2 = [500 0.0090]. The latter choice, θ2, assumes a relaxation of efficiency
constraints (i.e., Nθ = 500 instead of 100 particles). The 	1 distance between
these two PMFs indicates that the impact associated with the increment in the
size of the particle population is not negligible. Furthermore, a direct comparison
with the “ground truth” EoD PMF, approximated by a million simulations of
the state transition model, indicates that this increment in Nθ allows a better
characterization of the left tail of the ToF PMF.

Considering all of the above, we may now proceed to explore the impact (in
terms of algorithm efficacy) of a larger increase in the number of particles Nθ .
For that purpose, we propose to use the following sequence of hyper-parameters
candidates, indexed according to an efficiency criterion:

{θn}5n=1 =
{[
Nθn

hθn

]}5

n=1

(65)
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Fig. 5 Time-of-Failure PMFs for two choices of algorithm hyper-parameters θT1 = [100 0.0087]
and θT2 = [500 0.0090]. Prognosis is executed at time kp = 4000 [s]. Gray-dashed line shows the
“ground truth” EoD PMF, which is approximated by a million simulations of the state transition
model

=
{[

100
0.0087

]
,

[
500

0.0090

]
,

[
1000

0.0090

]
,

[
5000

0.0087

]
,

[
10000
0.0087

]}
.

(66)

It is evident from a direct comparison between Figs. 5 and 6 that the quality
of the prognostic result (ToF PMF) increases as you also increase the number
of particles. The above, particularly in regard to the characterization of the left
tail of the PMF (the most useful source of information to quantify operational
risk in prognostics). Indeed, when comparing with respect to the “ground truth”
EoD PMF, evidence indicates that efficacy does not increase significantly when
Nθ = 10,000. Thus, in terms of the final design for this specific case study,
it would be recommendable to use θT4 = [5000 0.0087]. This final hyper-
parameter choice aims at a combination that provides reasonable results in terms
of a truthful characterization for the risk of failure, using the least computational
resources.

The choice of θT4 = [5000 0.0087] as the definitive value for the hyper-
parameter vector of the prognostic algorithm represents the whole purpose of the
methodology that was described in Sect. 3: To provide the tools that are required
to assess the quality of the results provided by a specific prognostic algorithm
implementation, so that the final design balances the efficacy of the method with
the efficiency of the code. In this case, it is unnecessary to increase the number
of particles to 10,000, because the quality that is obtained with 5000 particles is
already adequate.
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Fig. 6 Time-of-Failure PMFs for two choices of algorithm hyper-parameters θT4 = [5000 0.0087]
and θT5 = [10,000 0.0087]. Prognosis is executed at time kp = 4000 [s]. Gray-dashed line shows
the “ground truth” EoD PMF, which is approximated by a million simulations of the state transition
model

Fig. 7 Summary of 	1 distances between EoD PMFs. The n-th iteration of the design procedure
is related to hyper-parameters vector θn. Prognostics executed at time kp = 4000 [s]

To complement the previous analysis, Fig. 7 includes a graph that shows the
evolution of 	1 distances between obtained ToF PMFs as we compare the perfor-
mance associated with candidates θ1, . . . , θ5 (where θn is the candidate selected
in the n-th iteration of the design procedure). It is interesting to note that the
relaxation of efficiency constrains (Nθ , in this case) entails decreasing differences
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regarding EoD PMFs results in terms of the proposed metric (	1 distance between
ToF PMFs). Eventually, as the prognostic algorithm approximates classic Monte
Carlo simulations (by increasing the number of particles), it can be noted that the
efficacy increases (although, obviously, efficiency decreases).

4.5 Prognostic Algorithm Design: Statistical Characterizations
of Future Operating Profiles

Unfortunately, in actual implementations of failure prognostic algorithms, the
future operating profile of the system is unknown and, therefore, we are forced
to incorporate the uncertainty related to exogenous inputs into the computation of
Bayesian lower bounds for the predictive MSE. We now proceed to explain how
to proceed in these cases, computing MCP-BCRLBs in the light of the illustrative
application previously shown in Sect. 4.4, where future operating profiles are now
assumed to be uncertain.

To include future exogenous input uncertainty into the analysis, it is first required
to augment the state vector that defines the system during the prognostic stage. Thus,

x̆k =
[
xk

uk

]
. (67)

The augmentation of the state vector explicitly recognizes the random nature
behind future inputs to the system, as well as the impact that this uncertainty
may have on its future condition. Although the state transition equation has been
previously defined, now it is required to model the evolution in time of uk as an
stochastic process. In our case study (battery End-of-Discharge time), it is known
that the system input uk corresponds to the discharge current of the Li-Ion battery
and that its future evolution in time can be characterized as a random walk for most
practical situations (electric bicycles, unmanned aerial vehicles). As a consequence,
the augmented system results:

[
xk+1

uk+1

]

︸ ︷︷ ︸
x̆k+1

=
[
xk − voc(xk) · uk · Ts

Ecrit

uk

]

︸ ︷︷ ︸
f̆ (x̆k)

+
[
ωk

νk

]

︸ ︷︷ ︸
ω̆k

(68)

where the process noise νk assumes a zero mean Gaussian distribution. A complete
description of the new system would require, in addition, to define measurement
equations. However, as these equations have no impact on prior distributions of the
state in long-term predictions, we have not included those expressions explicitly in
this book chapter.
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According to Theorem 3, and considering all of the above, the recursion elements
of the augmented system become:

S̆ii+1 = E

⎧
⎨
⎩−Δ

x̆i
x̆i

logp(x̆i+1|x̆i ) =
⎡
⎣−

∂2 logp(x̆k+1|x̆k)
∂xk

2 − ∂2 logp(x̆k+1|x̆k)
∂xk∂uk

− ∂2 logp(x̆k+1|x̆k)
∂uk∂xk

− ∂2 logp(x̆k+1|x̆k)
∂uk

2

⎤
⎦
⎫
⎬
⎭ (69)

S̆
i,i+1
i+1 = E

⎧
⎨
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⎬
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Now, the only remaining step towards the computation of MPC-BCRLBs is the
definition of proper initial conditions to start the recursion. This initial condition
requires knowledge about the precision with which you can characterize the error
related to either posterior estimates of the state or inputs to the system. On the
one hand, from Sect. 4.4 a MCP-BCRLB for the MSE associated with the posterior
estimate of xkp is already available. On the other hand, the discharge current applied
at time kp (i.e., Ikp ) (exogenous input in this case study) can be measured before
executing the prognostic routine. Moreover, it is known that Ikp is not correlated
to xkp because the system is causal. If it is assumed that Ikp is measured with a
perfect sensor, theoretically the lower bound for the associated MSE would be null.
However, as sensors in practice are not perfect, it is correct to assume measurement
uncertainty for Ikp . Thus, the initial condition for the MCP-BCRLBs recursion can
be defined as,

[C̆22
kp
]−1 =

[
[C22

kp
]−1 0

0 ε−1
I

]
, (72)

with εI > 0. Note the matrix [C̆22
kp
]−1 is defined as an inverse and, in consequence,

must be non-singular. This property must be enforced by a proper choice for the
constant εI . This constant (arbitrary small and positive value) represents a lower
bound for the precision of the sensor you are using to measure the system input at
time kp, i.e., Ikp .

Figure 8 shows the results obtained once all these concepts are applied to the
problem of End-of-Discharge time prognosis, and a comparison between the MCP-
BCRLBs that determine the maximum achievable precision when future operating
profiles are assumed known or random. As expected, both the predictive MSE and
the associated MCP-BCRLBs curves show an increment when incorporating uncer-
tainty on future inputs of the system. Not only represents this result an empirical
validation of the concepts described in this book chapter, but also demonstrates
that it is actually possible to theoretically quantify the impact related to different
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Fig. 8 Impact on MSE and MCP-BCRLB curves associated with SoC prognostics after assuming
unknown future operating profiles characterized by a stochastic model. Prognostics executed at
time kp = 4000 [s]

probabilistic characterizations of future input profiles. Moreover, whereas it seems
as a trivial fact that errors should increase as uncertainty is added, throughout this
procedure it is shown that this uncertainty can be formally included in this rigorous
methodology for prognostic algorithm design. It is expected that these concepts will
prove useful to the readers, providing guidelines about how to proceed in the design
and implementation of modules that aim to generate a probabilistic representation
of the operational risk in which a faulty system incurs when operated in uncertain
environments.

An important aspect that we want to emphasize before we finish is that, from
a design standpoint, it is absolutely valid to study and adjust the prognostic
algorithm performance in a case where the future system operating profile is known.
Obviously, in this case the procedure needs to be executed offline, so that the
designer could incorporate this knowledge in the analysis and, as it was mentioned
before, the quality of the characterization of future system inputs is then managed as
a separate and independent problem. However, the computation of MCP-BCRLBs
when modeling these future exogenous inputs with specific stochastic models
provides a measure of the impact that these profiles may have on the operational risk
of the system. Indeed, testing different stochastic characterizations of exogenous
inputs (either changing structures or (hyper-)parameters) may provide a measure of
robustness of MCP-BCRLBs as a standpoint for prognostic algorithm design.
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5 Conclusions

This book chapter presents a prognostic performance metric based on the concept
of Bayesian Cramér–Rao Lower Bounds (BCRLBs) for the predicted state mean
square error (MSE), which is conditional to measurement data and model dynamics.
This metric allows to implement a formal step-by-step design methodology to tune
prognostic algorithm hyper-parameters, which allows to guarantee that obtained
results do not violate fundamental precision bounds. Both the metric and the
proposed design methodology are verified and validated using the problem of End-
of-Discharge time prognosis as a case study.

The design methodology distinguishes between hyper-parameters that affect the
efficiency of the implementation and those that have impact on the efficacy of
obtained results, providing a structured procedure to explore different combinations
that could improve the characterization of the ToF PMF.

From the standpoint of designers of prognostic algorithms, this methodology
can be always applied assuming that the future operating profile of the system is
known: The resulting algorithm will serve its purpose well, conditional to a good
characterization of system inputs. The task of providing such good characterization
of future operating profiles can be considered as a separate action that can be
executed by an independent module. Nevertheless, we also provide an illustrative
example to demonstrate the impact that exogenous input uncertainty may have on
the bounds for the predictive MSE.

We expect that these results will motivate researchers to use formal and rigorous
design procedures when tuning hyper-parameters of prognostic algorithms. In the
humble opinion of the authors of this book chapter, the whole PHM community
could benefit from this change of paradigm.

Acronyms

BCRLB Bayesian Cramér–Rao Lower Bound
BIM Bayesian Information Matrix
CPBIM Conditional Predictive Bayesian Information Matrix
CRLB Cramér–Rao Lower Bound
EoD End-of-Discharge
JCP-BCRLB Joint Conditional Predictive Bayesian Cramér–Rao Lower Bound
Li-Ion Lithium-ion
MC Monte Carlo
MCP-BCRLB Marginal Conditional Predictive Bayesian Cramér–Rao Lower

Bound
MSE Mean squared error
OCV Open Circuit Voltage
PDF Probability density function
PF Particle filter
PHM Prognostics and Health Management
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PMF Probability Mass Function
SoC State-of-Charge
ToF Time-of-Failure
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Performance Degradation Monitoring
and Quantification: A Wastewater
Treatment Plant Case Study

Iñigo Lecuona, Rosa Basagoiti, Gorka Urchegui, Luka Eciolaza,
Urko Zurutuza, and Peter Craamer

1 Introduction

Wastewater treatment plants (WWTPs) are responsible for treating the wastewater
produced by cities and industries, removing the biological and chemical contami-
nants from the discharge water in order to protect both the public health and the
environment. To get the best quality on the effluent water, the wastewater passes
through a complex process, which includes physical and biological processes,
divided into different phases [19].

The first step of the process consists on removing the largest solid waste. This
waste is separated using an automatic sieve. After that, the wastewater is stored in
tanks to remove the soaps and oils it contains by creating air bubbles that make
these pollutants come up to the surface. In this phase it is also reduced the water
circulation speed, so the sand particles are settled at the bottom of the tank.

To remove the waste that is dissolved in the water, a biological treatment
is carried out. With this treatment the nitrogen, phosphorus and organic matters
are removed. The tanks where this process is carried out had a huge bacteria
concentration. These bacteria are fed with the waste that is dissolved in the water,
removing the contaminants from the water. As a result of this process a biological
sludge is produced from the waste. In the last step of the process, this sludge is
separated from the water using a settling system. The sludge is collected to produce
biogas and the clean water is poured back to the river.
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During the last years different technologies had been implemented with the aim
of improving the wastewater treatment process [2] and complying with the limit
values fixed by the law, which have become more and more restrictive. The main
concern for the WWTP managers has always been to satisfy the water quality
standards.

However, the growing awareness on environmental issues, sustainable living
and limited energy supply has prompted an increase in energy saving research in
the WWTP domain [37]. The equipment of the WWTPs (blowers, pumps, etc.) is
operating 24 h per day. For the plant managers, suppose a challenge to check that
the equipment is working under healthy conditions, due to the non-linear changes
in the performance generated by effects such as, wear, tear and clogging situations.
For the correct operations of the plant, it is very important to detect these changes in
the performance, in order to prevent a failure and also not increase the operational
costs.

1.1 Energy Consumption on WWTPs

The process of treating the wastewater is energy intensive, making the WWTPs one
of the main energy consumers inside a community. According to a study carried
out by Gude [17], in developed countries, the electrical consumption of these plants
is in the order of 1% of the overall national consumption. According to Eurostat
data [12], in the year 2016, the overall European consumption by the WWTPs was
approximately of 27 TWh/year, equivalent to the global energy consumption of a
country like Serbia [31].

With the aim of discovering the percentage of efficient WWTPs, Hernández-
Sancho et al. [20] analysed the data of 177 WWTPs from the Valencian Community,
Spain. The results of this work show that only 10% of the plants could be considered
energy efficient [32].

To quantify the potential energy and cost savings of inefficient WWTPs, Castellet
and Molinos-Senante analysed the data of 49 WWTPs in [5], also in the Valencian
Community. The results of this study show that 29 of the 49 WWTPs were
inefficient, and if these plants were to become efficient, they could collectively save
more than 22 million Euro annually, where 25% will be saved on energy costs.

It is also important to remark that energy demand in this industry will grow over
time due to a number of factors, such as population growth and the corresponding
growth in the contaminant load to be treated, as well as increasingly stringent
regulatory and environmental protection standards for effluent quality and residual
water reuse. These changes are expected to result in more energy intensive processes
[20]. The estimations for the European market of wastewater treatment predict a
growing compounding rate of 4.1% per year [10], which adds more value to the
energy savings on this industry.

In order to quantify the potential energy savings of the different processes that
take place during wastewater treatment, multiple studies have been carried out.
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Goldstein and Smith stated in [16] that 80% of the electricity use goes towards
moving and treating the wastewater, whose main consumers are the pumping and
blower systems [35].

The Water Environment Federation published a manual [34] where they quantify
the energy consumption for the different processes. They found that the main
energy consumer of a WWTP is the aeration process, which accounts for 54.1%
of the energy consumption, followed by the pumping systems, with 14.3% of
the consumption. Therefore, by applying energy savings on these systems, bigger
savings can be achieved.

1.2 Energy Savings Through Maintenance

From the energy efficiency point of view, the performance of the equipment is
a key feature. The WWTP is a very challenging scenario, working 24 h per day
and with very changing characteristics of the wastewater. Its components suffer
effects such as wear, tear and clogging situations, which reduce the performance
of the equipment and increase the energy consumption. Therefore, by checking
that the equipment of the WWTP is working on its best performance range, energy
consumption can be reduced and also improved the maintenance task scheduling.

As Torregrossa et al. highlighted in [32], energy savings can be achieved by
improving the maintenance strategies of the different WWTP equipment; despite
the maintenance does not directly provide measures for energy performance, the
detection of anomalies at an early stage can indirectly produce energy savings.

In 1999, the Department of Energy of the USA published a sourcebook [11] for
industry with the most common maintenance strategies for efficiency in wastewater
pumping systems. The simplest approach is a fixed interval scheduled maintenance
program; whereas to apply a more advanced approach, a predictive or conditional
maintenance, the use of information provided by vibration sensors, temperature and
energy consumption, is necessary.

A method for early failure detection for wastewater pumping systems was
developed by Berge et al. [4] based on condition monitoring. They used an array
of sensors including: pump vibration, motor winding temperature, motor current,
motor bearing temperature and pump inflow.

In the case of the pumps, the performance is affected by the wear and tear of its
internal mechanic components, such as the impeller, shaft, bearings and the sealing.

According to a study [13] carried out by the European Commission, due to these
effects, the performance of the pump is reduced between 10 and 15%. Hence,
preventive maintenance tasks are periodically performed by replacing worn key
internal components. Figure 1 shows schematically how proper maintenance insures
a high performance of the pump over time.

In some pumping systems, the concentration of suspended solids within the
wastewater can be especially high, which together with unfavourable operational
conditions, can create partial or complete clogging situations. When clogging
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Fig. 1 Typical pump performance over time. Derived from [13]

situations arise, the flow-rate generated by a pump is reduced and its energy
consumption increased, reducing its hydraulic and energetic performances. Small
clogging situations often disappear without any action needs to be taken, in
the case the pump is able to pump any of the accumulated solids over time.
However, in harder clogging situations, a maintenance task may be needed, such
as disassembling the pump and manually cleaning the clogged parts.

In summary, there are two main causes that influence the performance of a pump:
the wear/tear of its components and the clogging situations. Typically, clogging
situations affects the performance of a pump in the short term—from few minutes
to several days—as depends on the characteristics of the wastewater, while the
wear/tear of components change the performance of a pump in the medium or long
term—from weeks to several months.

In the case of the blowers of the aeration system, its performance is also affected
by the wear and tear of its internal mechanic components, mainly by the filter. The
filter guarantees the air quality for the process. However, they are very likely to be
clogged, reducing the performance and the energetic efficiency of the process and
increasing the wear of other components (e.g. of the motor and oil).

Despite the importance of the wear/tear effects and the clogging situations and its
consequences over the performance of the WWTP equipment, most of researches on
the field did not take it into account in their works [9, 35, 37, 38]. The main reason
of removing this effect from the analysis is to reduce the complexity. The clogging
situations that arise in the pumping systems had a random nature, as they depend
on the wastewater characteristics. The assumptions made in this analysis limit the
application of the obtained results on a real case.

The literature shows a research that addresses this issue. Torregrossa et al. [33]
proposed a daily data-driven approach for a detailed pump efficiency analysis using
KPIs (key performance indicators). This approach is based on signal decomposition
to identify short- and long-term performance fluctuations. The information provided
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by this approach is useful for the plant managers, as it allows them to take decisions
based on real performance information. However, this approach has also some
limitations, as it only works for single-speed pumping systems.

Therefore, a need for a new approach that can be useful for a wider industrial
application has been identified. The aim of this research is to present a methodology
to quantify and monitor the degradation of different industrial equipment, and show
its applicability on two WWTP processes: the pumping systems and the blowers of
the aeration process.

2 Methodology

As previously described, the process of treating the wastewater is complex and has
different phases [19]. The research carried out with the aim of optimizing the global
process of a WWTP, like the one performed by Moles et al. [23], obtained poor
results as they were not able to take into account all the complexities of the process.
Moreover, the assumptions that made on it usually limit the applicability of the
results in industrial environments.

Due to these limitations, this methodology is going to be based on a divide and
conquer approach. The idea of this approach is to break a complex problem into
smaller and easier to solve problems. Therefore, when applying this methodology
to analyse a process, like the pumping or the aeration processes, they are going to be
divided into individual components of the system, pumps in the case of the pumping
system and blowers in the aeration system, as these systems are made of multiple
components.

It is necessary to analyse individually the components of a system, as the
degradation does not affect in the same way to all the equipment of a system.
Applying this approach to the problem will allow to analyse and compare with each
other the individual components of the system.

Once identified the elements to be analysed, the individual components of
the system, the next step is to define a modelling approach. The first modelling
approaches investigated for WWTP equipment [1, 3] have been based predomi-
nantly on physics and mathematical programming [22].

The problem of these modelling approaches is that numerous assumptions are
made during the process of building the model, making them rather abstract and
limiting the applicability of these models in industrial environments [36]. Comas
et al. had a similar conclusion in [8], where they suggested that it was necessary
to apply other modelling techniques rather than the classic ones for the WWTP
processes by their heuristic reasoning ability and work in conditions of uncertainty
or qualitative information.

To model complex, dynamic and non-linear scenarios, the literature shows
successful applications of data mining approaches in scenarios such as business
administration [24], medical informatics [25] and also WWTP processes [30, 36].
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For this reason, a data mining modelling approach has been selected to build the
models for the individual components of the WWTP systems.

When Hand et al. wrote the book Principles of Data Mining [18], they defined
data mining as the analysis of observational datasets to find unknown relationships
and to summarize the data in novel ways that are both understandable and useful
to the data owner. The relationships and summaries derived through a data mining
exercise are referred to as models or patterns.

To build models using data mining approaches, data is needed. Nowadays, the
availability of SCADA (supervisory control and data acquisition) systems in the
WWTP domain opens the door to the use of the science of data mining to develop
models in this scenario. The SCADA systems, besides controlling the process,
provide synchronized and reliable data of the process, an essential feature to analyse
and build the models.

However, as it has been highlighted in Sect. 1.2 of this chapter, the performance
of these systems changes over time. Due to the effects such as wear, tear and
clogging situations, the performance of the components is reduced. Therefore, the
data used to build the models must be from a representative period of its operation,
in this case, the period with the best performance. This period will be identified
using data mining techniques.

Once selected the data from period with the best performance, the next step is
to build the model using these data. The model will be built using a regression
algorithm, as the aim is to predict how it is going to work the component under
healthy status conditions, when the equipment is being efficient.

The output of this model will be the observed best performance of the component
for the actual operational conditions. The predicted output value can be different
from the observed one if the performance of the equipment has been reduced due
to the wear/tear effects, the clogging situations or any other factor that could reduce
its performance. Hence, comparing the predicted value and the observed one, it is
possible to estimate the degradation or loss in performance that had suffered the
component.

To analyse the performance of the component over time, observations are
grouped by day. For each day a metric that will be used as a key performance
indicator (KPI) is calculated. Here, the used metric is the relative mean error (RME).
The relative mean error measures the average, daily, relative offset between the
observations and the prediction based on a healthy state of the component and has
the following formula:

RME = 100%

n

n∑
j=1

(
yj − ŷj
ŷj

)
(1)

where n is the number of observations made for 1 day, yj is the observed value of
the dependent variable and ŷj is the predicted value.
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By looking at the values of this metric is possible to quantify the loss in
performance or degradation that had suffered the component being analysed, as the
metric provides the percentage value of this degradation.

3 Results

To show how this approach is applied in a real environment, in this section three
WWTP processes are going to be analysed, two pumping systems and one aeration
system. Figure 2 shows the locations of these equipment inside the WWTP.

The data used to test is real operational data of two WWTPs located in the Basque
Country, a highly industrialized region from northern Spain.

To work with these data the R programming environment [26] and the IDE
RStudio [27] are going to be used.

3.1 External Recirculation Pumping System

This pumping system is located after the clarifier of the biological treatment and its
work is to move the sludge collected by the clarifier to the sludge treatment line and
back to the secondary treatment, as it is shown in Fig. 2. This pumping system is
likely to suffer of clogging situations, as it moves big amounts of sludge. Actually,
a periodic preventive maintenance strategy, which includes cleaning, damaged part
replacement and adjustment tasks, is scheduled in order to prevent its breakdown.
Therefore, it is an interesting testing scenario for this approach.

The pumping system uses two identical pumps to move the wastewater and has
a flow metre at the end of the system that measures the flow generated by the two
pumps. Usually this pumping system operates with one pump; always the same one,
as it does not use a rotational scheduling. But when the flow it needs to generate
cannot be reached with only one pump, both pumps work at the same time and
synchronized, at the same speed.

Fig. 2 Diagram of a WWTP process with the locations of the equipment analysed
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This work is going to be focused on one pump of the system, the one that is
programmed to operate standalone. In this pump is possible to isolate the relation
between the variables. The configuration of the systems, where there is a common
flow metre for both pumps, forces to find situations where only one pump is
working, in order to have data to measure the performance of a pump.

3.1.1 Experimental Setup

The dataset of this pumping system consists on values of the frequency (Hz) of the
two pumps and the flow-rate (m3/h) at the exit of the pumping system. The dataset
contains the mean value calculated every 15 min of these three signals for almost 2
years, from 2016-01-01 to 2017-12-15.

The data must be splitted for the individual pumps of the system, in order to find
the relation between variables for each pump. This is done by isolating the pumps,
finding the cases where the system has been working only with one pump being
analysed.

3.1.2 Application of the Methodology

As described in the Methodology (Sect. 2) this approach relies on defining the best
performance of the component. The performance of the pump will be checked over
time by monitoring how the relation between the frequency of the pump and the
generated flow-rate evolves over time. In Fig. 3 the observed flow-rate versus the
applied pump frequency is shown for the whole 2-year period. From the figure it
can be seen, for instance, that at 30 Hz the pump has generated flow-rates between
roughly 50 and 100 m3/h.

Therefore, a time interval needs to be found for which the pump performs
optimally. For this pump, the period with the highest performance is found between
May and June 2016. In Fig. 3 the dots in blue show the observation made within the
time interval that has been defined as the pumps optimal performance.

The data from this period is used to fit a regression model, which defines for each
frequency the mean flow-rate to expect under healthy conditions of the pump. After
having built different models using multiple regression algorithms with a cross-
validation approach [21, 28], a linear regression has been chosen as the best model
for this pump. This modelling also allows an easy comparison between different
pumps by comparing the intercept and slope coefficients of the model. Figure 4
shows the results of the analysis of the residuals.

The predictions of this model will show the theoretical output of the pump under
healthy conditions. By calculating the daily value of the RME metric using the
models predictions and the observed values, the mean percentage degradation of
the pump for the day is estimated.
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Fig. 3 Scatterplot that shows the relation between the pumps frequency (X axis) and the
wastewater flow (Y axis) generated by the external recirculation pump. The dots in red show the
whole 2-year period data and in blue the data which represents the optimal performance of the
pump

3.1.3 Results and Discussion

Figure 5 shows the daily RME value with time for the results of all the frequencies,
as the degradation affects in the same way to the entire operational frequency range.
It also shows a smoothed value of this indicator, calculated using a locally weighted
regression method.

A locally weighted regression, or loess, is a way of estimating a regression
surface through a smoothing procedure, fitting a function of the independent
variables locally and in a moving fashion analogous to how a moving average is
computed [7]. It is used to enhance the visual information on a scatterplot [6].

In Fig. 5, when the RME value is close to zero, this implies that the pump is
working close to its optimal performance. When the value increases negatively,
means that the performance of the pump is decreasing.

From Fig. 5, it can be seen that for Period 1 (May–June 2016) the value of RME
is close to zero, as this is the period used to fit the linear model (optimal performance
of the pump). Immediately after this period, the performance of the pump decreases
almost instantly by more than 30% (Period 2). After Period 2, the performance
increases over 1 month and the pump performs optimally again at the beginning of
July 2016, after which another drop in performance occurs over a 3 month period
(final 2 months referred to as Period 3).

After a long period of various variability from May 2017, with severe perfor-
mance losses like the one from Period 4, the performance ofthe pump is optimal
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Fig. 4 Analysis of the residual values of the external recirculation pump model. Residuals vs
Fitted plot shows that the residuals do not have non-linear patterns, as they are equally spread
around a horizontal line. Normal Q-Q plot shows that the residuals are normally distributed,
since they are lined on the straight dashed line. Scale-Location plot shows a horizontal line with
randomly spread points, which is an indicator of equal data variance (homoscedasticity). Residuals
vs Leverage plot shows that no outlying data have been used to build the model

again (Period 5). Actually, at the beginning of year 2017 the minimum work
frequency of the pump is increased from 30 to 35 Hz, which helps to prevent
clogging situations in the pump.

Between August 2017 and the end of the year 2017 two large clogging situations
occur. The first takes place at the beginning of September (Period 6) for which
the performance of the pump decreases by more than 50% instantly. After manual
cleaning the clogging, the pump performance was immediately recovered. The
second clogging (Period 7), taking place in December, is a steadily degradation
resulting in a loss of more than 30% of its performance.
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Fig. 5 Line chart that shows in red the daily values of the RME metric and in blue the smoothed
trend of this metric for the external recirculation pump. Each value represents the percentage
degradation of the pump compared with a healthy condition status

Checking the results with the plant manager, it has been seen that the large
performance variations shown by the RME indicator are mainly related to clogging
situations in the pump. However, despite all the clogging occurrences the pump
suffered during these 2 years, it is observed, for instance, that the performances
within the Periods 1 and 5 are the same. So, during this one year and a half period,
the periodical maintenance works carried out to the internal components of the
pump have insured that the performance of the pump has not been reduced due
to mechanical degradation of its components. In case of permanent mechanical
degradation of the pump, the RME indicator would not reach again values close
to zero.

3.2 Plant Input Pumping System

This pumping system is located at the entrance of the WWTP. It collects the
wastewaters from a nearby town and it pumps them to the plant, which is 5 km
away, as it is shown in Fig. 2.

The pumping system uses two pumps of different size, a big one and a small one,
and has a flow metre at the end of the system that measures the flow generated by the
pumps. The elevation level of this pumping well is adjustable. The pumping system
is configured to maintain this level at a constant value by adjusting the output flow-
rate. Actually, a periodic preventive maintenance strategy, which includes cleaning,
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damaged part replacement and adjustment tasks, is scheduled in order to prevent its
breakdown.

This work is going to be focused on the small pump of the system, as it is the one
with the highest work load, operating for 90% of the time from the analysed dataset.
A big working load will speed up the wear/tear effects of its internal mechanic
components. Therefore, the small pump of the system is more likely of suffering
these effects.

3.2.1 Experimental Setup

The dataset of this pumping system consists on values of the frequency (Hz) of the
two pumps, the elevation level (%) of the pumping well and the flow-rate (m3/h)
at the exit of the pumping system. The dataset contains the mean value calculated
every 15 min of these signals for more than a year and a half, from 2016-04-12 to
2017-12-15.

The data must be splitted for the individual pumps of the system, in order to find
the relation between variables for each pump. This is done by isolating the pumps,
finding the cases where the system has been working only with one pump being
analysed.

3.2.2 Application of the Methodology

The first step of this approach is to define how it is measured the performance for this
scenario. The performance of this pump will be checked over time by monitoring
how the relation between the frequency of the pump and the elevation level of the
pumping well changes the generated flow-rate over time. In Fig. 6 the observed
flow-rate versus the applied pump frequency is shown for the whole year and a
half period. The reason for looking at this relation is the higher relation between
these variables (correlation value is 0.97), compared to the relation between the wet
elevation level and the flow-rate (correlation value is 0.52).

From Fig. 6 it can be seen, for instance, that at 40 Hz the pump has generated
flow-rates between roughly 20 and 65 m3/h. Despite the elevation level causes
variations in the flow-rate generated by the pump, it is not the fact that explains
all this variability of the flow-rate.

Therefore, a time interval needs to be found for which the pump performs
optimally. For this pump, the period with the highest performance is in June 2016,
weeks 24 and 25. In Fig. 6 the dots in blue show the observation made within the
time interval that has been defined as in which the pump performs optimally.

The data from this period is used to fit a regression model, which defines for each
frequency the mean flow-rate to expect under healthy condition of the pump. After
having built different models using multiple regression algorithms with a cross-
validation approach, a multivariate adaptive regression splines (MARS) algorithm
has been chosen as the best model for this pump. MARS is a non-parametric
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Fig. 6 Scatterplot that shows the relation between the pumps frequency (X axis) and the
wastewater flow (Y axis) generated by the plant input pump. The dots in red show the whole
year and a half period data and in blue the data which represents the optimal performance of the
pump

regression approach that makes no assumption about the underlying functional
relationship between the dependent and independent variables [14, 15]. Figure 7
shows the results of the analysis of the residuals.

The predictions of this model will show the theoretical output of the pump under
healthy conditions. By calculating the daily value of the RME metric using the
models predictions and the observed values, the mean percentage degradation of
the pump for the day is estimated.

3.2.3 Results and Discussion

Figure 8 shows the daily RME value with time and a smoothed value of this
indicator, calculated using a local regression method. When the RME value is close
to zero, this implies that the pump is working close to its optimal performance.
When the value increases negatively, means that the performance of the pump is
decreasing.

From Fig. 8, it can be seen that for Period 1 (2 weeks from June 2016) the value of
RME is close to zero and positive, as this is the period used to fit the model (optimal
performance of the pump). After this period, around September 2016 (Period 2) the
performance of the pump continues being positive, thus the actual performance is
better than the modelled optimal performance. However, the data from this period
has been discarded to build the model since it has been working at a constant
frequency (40 Hz). To build a representative model data from the whole operational
range is needed.
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Fig. 7 Analysis of the residual values of the plant input pump model. Model Selection plot shows
that the best results of the model are obtained using six terms and the two predictors, and that
RSq and GRSq (normalized values of the residual sum of squares (RSS) and the generalized cross-
validation (GCV), respectively) lines run together. Cumulative Distribution plot shows that the
median absolute residual is 1.63 and that 95% of the absolute values of residuals are less than
3.13. Residuals vs Fitted plot shows that the residuals do not have non-linear patterns, as they
are equally spread around a horizontal line. Residual QQ plot shows that the residuals are almost
normally distributed, since most of them are lined on the straight dashed line

From Period 2 onwards a continuous degradation of the pump is observed until
Period 3, more than 9 months, and the pump is degraded by more than 15%. This
degradation is not constant, as it has a variability where it changes from positive to
negative degradation.

After Period 3, the pump starts to get closer to its optimal performance point.
However, after 2 months, its performance starts to decrease, losing more than 25%
of its optimal performance (Period 4). Once again the pump recovers performance,
but without reaching the optimal performance point. And after a short period, the
pump starts to deteriorate, losing more than 35% of its performance (Period 5).

During this year and a half of operation, the performance of the pump has been
constantly changing. The periods where the pumps recover performance represent
periods where maintenance task has been done, mainly cleaning the clogging
situations. However, the pump never reaches again to the optimal performance point.
This fact could be produced by the wear/tear of its internal mechanic components.
To reach again this optimal performance point, it will be necessary to fix or replace
the internal mechanic components of pump.
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Fig. 8 Line chart that shows in red the daily values of the RME metric and in blue the smoothed
trend of this metric for the plant input pump. Each value represents the percentage degradation of
the pump compared with a healthy condition status

3.3 Aeration System Blowers

The aeration system is located in the biological treatment phase of the process, as
it is shown in Fig. 2. It provides the oxygen needed in the biological process, where
micro-organisms consume the waste dissolved in the water.

This aeration system uses four identical air blowers to provide the air to the
system. Each blower has a diffuser at the entrance to regulate the amount of air
flow that enters to the blower, and therefore, control the air flow at the output of the
system. The amount of air flow it needs to generate is controlled by the pressure
of the system, which needs to be at a constant value. This system uses the four
blowers, with a rotational schedule. Actually, a periodic preventive maintenance
strategy, which includes cleaning, damaged part replacement and adjustment tasks,
is scheduled in order to prevent its breakdown.

This work is going to analyse the four blowers of the system. The application of
a divide and conquer approach allows to model the different blowers of the system
and compare the degradation that had suffered each one.

3.3.1 Experimental Setup

The dataset of the aeration system consists on values of the diffuser position (%)
of the four air blowers, where 0% represents the minimum open position, but not
closed. It also has the values of energy consumption of each blower, measured by
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the current (A) consumption, and the value of the pressure of the system. The dataset
contains the mean value calculated every 15 min of these signals for almost 2 years,
from 2016-03-01 to 2017-12-31.

The data must be splitted for the individual blowers of the system, in order to
build the relation between its variables. This is done by isolating the blowers by
their operational conditions.

3.3.2 Application of the Methodology

The first step of this approach is to define how it is measured the performance for
this scenario. In this case, the performance of the blowers will be checked over time
by monitoring how the relation between the diffusers position and the pressure of
the system changes the current consumption of the blower over time. In Fig. 9 the
observed current consumption and the diffusers position is shown for one of the
four blowers. Blowers are named from A to D, the figures show the values of the B
blower. The reason for looking at this relation is the higher relation between these
variables (correlation value is 0.98), compared to the relation between the systems
pressure and the current consumption (correlation value is −0.33).

From Fig. 9 it can be seen, for instance, that when the diffusers position is at 0%,
the current consumption of the blower ranges between 100 and 125 A. This fact also
affects the rest of blowers of the system.

Fig. 9 Scatterplot that shows the relation between blowers diffuser position (X axis) and the
current consumption (Y axis) for the B blower of the aeration system. The dots in red show the
whole 2-year period data and in blue the data which represents the optimal performance of the
blower
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Therefore, a time interval needs to be found where the blower has been operating
optimally. In this case, the optimal performance of the blower is understood as the
cases where the current consumption has been minimal for the operating diffuser
positions. For this blower, the period with the highest performance, where the
blower has been more efficient, is in June 2017. In Fig. 9 the dots in blue show
the observations made within the time interval that has been defined as optimal
performance for the blower.

The data from this period is used to fit a regression model, which defines for
each diffuser position and pressure value the current consumption to expect under
healthy conditions of the blower. After having built different models using multiple
regression algorithms with a cross-validation approach, a MARS algorithm has been
chosen as the best model for this blower. Figure 10 shows the results of the analysis
of the residuals.

The same process has been done with the rest of the blowers of the system
(A, C and D), getting very similar models for each one. The predictions of these
models will show the theoretical output of each blower under healthy conditions.
By calculating the daily value of the RME metric using the models predictions and
the observed values, the mean percentage degradation of the blower for the day is
estimated.

Fig. 10 Analysis of the residual values of the aeration system B blower model. Model Selection
plot shows that the best results of the model are obtained using five terms and the two predictors,
and that RSq and GRSq (normalized values of the residual sum of squares (RSS) and the
generalized cross-validation (GCV), respectively) lines run together. Cumulative Distribution plot
shows that the median absolute residual is 1.83 and that 95% of the absolute values of residuals
are less than 7. Residuals vs Fitted plot shows that the residuals do not have non-linear patterns,
as they are equally spread around a horizontal line. Residual QQ plot shows that the residuals are
almost normally distributed, since most of them are lined on the straight dashed line
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Fig. 11 Line chart that shows in red the daily values of the RME metric and in blue the smoothed
trend of this metric for the B blower of the aeration system. Each value represents the percentage
degradation of the blower compared with a healthy condition status

3.3.3 Results and Discussion

Figure 11 shows the daily RME value with time and a smoothed value of this
indicator, calculated using a local regression method. When the RME value is close
to zero, this implies that the blower is working close to its optimal performance.
When the value increases negatively, means that the performance of the blower is
changing, in this case by increasing its current consumption.

From Fig. 11 it can be seen that the value of this indicator has a big variability
over time. However, looking at the smoothed value of the indicator, a seasonal
performance variation effect can be identified. The effects of the seasonal perfor-
mance variations are present in winter months, where the current consumption of
the blower is increased compared with the summer month ones. Looking at the
values of the RME indicator, this difference can reach values of 10%.

The same effect has been detected for the rest of the blowers of the system.
Figure 12 shows the smoothed value of the RME indicator for the four blowers
of the system, identified with names from A to D. For all the blowers, the current
consumption is increased in winter months, whereas in summer months the blowers
reduce their current consumption.

Figure 12 also shows the smoothed daily mean value of the air temperature at
the WWTP. This signal has been added to the analysis to check if the seasonal
performance variation is related to the air temperature. After calculating the corre-
lation value between the blowers performance variation and the air temperature, the
obtained results (correlation value is between 0.7 and 0.83 for the different blowers)
indicate that the air temperature has direct influence over the performance of this
equipment.
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Fig. 12 Line chart that shows the smoothed air temperature at the WWTP in the upper side of the
plot and the smoothed trend of the RME indicator for the flour blowers of the aeration system. It
is visible how the temperature and RME indicators are correlated, therefore the temperature has
direct impact on the blowers’ performance

4 Conclusions and Future Works

The presented methodology has been applied over different WWTP equipment, the
blowers of an aeration systems and the pumps from two pumping systems, and the
obtained results have been validated by the WWTP managers.

In the blowers, a seasonal performance variation effect has been identified
applying this methodology, related with the air temperature, which has direct impact
on the current consumption of the blowers, as it is shown in the work of Stasyshan
[29]. In this work, the author shows how with higher air temperature the power
consumption of a blower is reduced. The next step is to add the air temperature
variable to the blowers model, in order to predict correctly the current consumption
variations caused by the air temperature and detect and analyse other variations in
the current consumption.

In the pumping systems, this methodology has allowed to detect and quantify
the effects of clogging situations, which can reduce the performance of a pump in
more than 20% in less than a year of operations. This fact has not been taken into
account in most of the works on the field, as it is a complex effect to model, due to
the randomness of its nature. The next step will be to build models for the different
pumping systems of the plant using the individual pump models.
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Fuzzy Rule-Based Modeling for
Interval-Valued Data: An Application to
High and Low Stock Prices Forecasting

Leandro Maciel and Rosangela Ballini

1 Introduction

Prediction of asset prices movements in financial markets plays a key role in asset
allocation, portfolio management, risk assessment, technical analysis strategies
implementation, and derivatives pricing [35, 43]. The temporal evolution of assets
prices, stock indices, and exchange rates is observed as single-valued time series
[3]. If only the opening (or closing) price is observed daily, the intraday variability
and important information is neglected [12].

Besides the forecasting of intraday time series appears as a solution to this
problem, high-frequency data characteristics such as irregular temporal spacing,
strong diurnal patterns, and complex dependence result in obstacles to traditional
time series models. Additionally, in real-world situations, the precise prediction
of the sequence of intraday prices for 1 day ahead, for example, is almost
impracticable. On the other hand, these limitations can be alleviated if the highest
and the lowest values of prices are measured daily, what originates interval time
series (ITS) [16]. One must notice that variables of similar nature include electricity
prices, power load and generation, meteorology, production rates, and traffic
flows [45].
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The modeling and forecasting of financial ITS have received considerable
attention in the literature recently.1 Analysis of large data sets, or namely big-data,
such as high-frequency data, based on the ITS framework is a new domain to study
statistically detectable patterns, attracting researchers from economics and finance
[36]. The daily high and low financial prices can be seen as references values for
investors in order to place buy or sell orders. Furthermore, these prices are related
with the concept of volatility. Authors in [1] show that the difference between the
highest and lowest log prices over a fixed sample interval, also known as the log
range, is a highly efficient volatility measure.2 In this context, works of [6] and
[40] indicate that the volatility range appears robust to microstructure noise such as
bid-ask bounce, due to the limitations of traditional single-valued volatility models
that fall to use the information contents inside the reference period of the prices,
resulting in inaccurate forecasts [11].

The literature addresses ITS modeling through extensions of traditional data
analytics and prediction techniques [17]. For instance, authors in [17] use a vector
error correction model (VECM) to forecast low, high, and closing values of three
foreign exchange rates: Dollar-Yen, Pound-Dollar, and Mark-Dollar. They indicate
that the data dynamics are different for high and low, and their prediction improves
forecasting models based on closing prices. Also using a VECM framework, the
work of [10] indicates that the use of high and low values of the Dow Jones
Industrial, S&P 500, and NASDAQ increases forecasting accuracy.

Authors in [24] proposed an interval-valued linear model for stock market
forecasting. Interval-valued data are represented by higher and lower equity prices
as interval bounds. Using interval midpoints, the method is estimated by ordinary
least squares. Using the same approach, research provided in [21] estimated the
lower and upper interval bounds of the series separately. Both approaches are
compared in [22], which the authors indicate that the former provide more accurate
forecasts.

For stock index and exchange rate ITS forecasting, Arroyo et al. [3] considered
methods such as exponential smoothing, autoregressive integrated moving average
(ARIMA), artificial neural networks, and k-nearest neighbors. Univariate and
multivariate predictions are evaluated using the interval bounds as the interval’s
midpoints (center) and half-lengths (radius). The results suggested that less accurate
results are observed when the lower and upper bounds time series are predicted
independently. Similar analysis is also provided in [36], revealing the potential of
univariate threshold models for S&P 500 index ITS forecasting.

Considering intraday data, Yang et al. [50] evaluated the forecasting performance
of an interval-valued linear regression model for Dow Jones, Nasdaq, and S&P
500 interval time series, which accurate forecasts are observed in comparison with

1The literature has introduced several interval time series forecasting methods. Examples include
[18, 28, 44, 47].
2The literature that considers the high–low range prices as a proxy for volatility dates back to the
1980s with the work of [34].
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single-valued prediction time series methods. More recently, using computational
intelligence techniques, Xiong et al. [46] applied a support vector machine model to
predict simultaneously the highest and lowest prices of S&P 500, Nikkei 225, and
FTSE 100 indices.

Summarizing, the literature has provided evidence on the high potential of using
ITS framework in economics and finance data forecasting, as it is able to deal with
large data sets, e.g., high-frequency data, and also accounts the information related
to prices variability, neglected in traditional time series methods that are based only
on closing prices. Further, most of the techniques assumed a linear structure of the
data dynamics even the strong evidence of nonlinearities in financial market data,
e.g., [15, 20, 23, 36].

The current literature advocates the use of ITS framework in economics and
finance, since it provides appropriate mechanisms to analyze large data sets such
as high-frequency data, and also supplements the information extracted by the time
series of the closing values considering high and low prices in terms of a proxy
measure for volatility. However, most of the current approaches, even the ones
based on interval-valued data, assume a linear structure in representing time series
process dynamics. Several studies indicate that nonlinear models do provide a richer
understanding of the dynamics of variables of interest [36]. Dueker et al. [15],
Guidolin et al. [20], and Henry et al. [23] are examples that suggest evidences of
threshold nonlinearities in exchange rates, bond and stock markets, respectively.
In addition, the relevance of considering data nonlinearities in ITS analysis is also
stressed out by Maia et al. [31], Rodrigues and Salish [36], and Roque et al. [37].

ITS prediction approaches have been proposed in the literature to model financial
data: traditional statistical techniques such as interval exponential smoothing meth-
ods [3], VAR model [19], and VECM [10].3 The authors showed that when ITS
under study are linear and stationary, better forecasts are achieved [48]. Due to the
intrinsic complexity and volatility of ITS (e.g., interval-valued stock prices), they
appear nonlinear and nonstationary. To overcome this limitation, machine learning
techniques such as interval multilayer perceptrons (iMLP) [37] and multi-output
support vector regression [46] have shown a relevant nonlinear modeling capability
for ITS in real world.

Using both linear and nonlinear concepts, Xiong et al. [48] suggest a “linear and
nonlinear” modeling framework based on VECM and multi-output support vector
regression to forecast agricultural commodity future interval prices. Using Chinese
future market data, the research indicates that the method is a promising tool for
forecasting interval-valued agricultural commodity futures prices, as the model able
to capture both linear and nonlinear patterns exhibited in future prices.

Although the potential of machine learning approaches to model ITS, they do not
consider the uncertainty inherited in financial data. It is well known that financial
markets are often affected by news, expectations, and investors psychological
states [32]. Thus, the uncertainty among agents plays a key role when modeling

3Arroyo et al. [3] provide a survey on ITS forecasting methodologies in finance and economics.
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and forecasting financial time series. Further, machine learning approaches such
as artificial neural networks models, due to their black-box nature, also lack
on interpretability, in linguistic terms. This issue is very important for traders
when performing their strategies based on forecasts, for example. Therefore, an
interpretable model is demanding.

To overcome these limitations, this chapter proposes a fuzzy rule-based model
for interval-valued data (iFRB). Fuzzy rule-based (FRB) models have achieved
success in business and engineering applications, mostly in the field of fuzzy
control, in response to the need of flexible and robust decisions in the face of
rapid change, imperfect information, uncertainty, and ambiguous objectives [9, 52].
Fuzzy set theory enables the processing of imprecise information by means of
membership functions, in contrast to Boolean characteristic mappings [51]. The
capability of fuzzy systems to approach nonlinear functions is often stressed
in the literature. Additionally, the advantage of fuzzy systems is its linguistic
interpretability [5, 39]. The relationship between the input variable(s) and the output
variable(s) is represented by means of fuzzy if–then rules of the following general
form: if “antecedent proposition,” then “consequent proposition.” iFRB assumes
Takagi-Sugeno (TK) type models, where the consequent part is expressed as a
(non)linear relationship between the input variable and the output variable [42].

Most of the FRB models consider the data described by real-valued variables.
When handling real-world complex data, these models are very restrictive, since
they do not take into account variability and/or uncertainty inherent to the data.4 In
iFRB, instead of real numbers, variables are represented by intervals. The identifi-
cation of iFRB concerns the identification of the antecedents and consequents of the
fuzzy rules. Rules antecedents are identified using the fuzzy clustering approach for
symbolic interval-valued data based on the participatory learning (PL) paradigm,
iPL, suggested by Maciel et al. [30]. Participatory learning provides a paradigm for
learning that emphasizes the pervasive role of what is already known or believed
in the learning process. However, this work extends iPL with adaptive Hausdorff
distances, as a mechanism to compute the (dis)similarity between intervals. The
advantage of these adaptive distances is that the clustering algorithm is able to
recognize clusters of different shapes and sizes. Rules consequent parameters are
estimated using traditional least squares techniques taking advantage of the intervals
midpoints.

Hence, this chapter suggests iFRB modeling for financial ITS forecasting. ITS
are constructed by minimum and maximum stock prices. Experiments are conducted
using the main stock index of the Brazilian financial market, the IBOVESPA, for the
period from January 2000 to December 2015, focusing on one step ahead forecasts.
iFRB is compared against univariate time series methods such as random walk,

4For instance, the work of Leite et al. [26] proposes an interval-based evolving modeling (IBeM)
approach that recursively adapts both parameters and structure of rule-based models. In IBeM the
clusters are represented by intervals, i.e., granular local models, such that the consequents of the
rules are also represented by intervals. Therefore, the model is able to produce interval outputs but
is not designed to process interval-valued data.
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exponential smoothing, ARIMA, and threshold autoregressive (TAR), and with
multivariate approaches such as VECM and the interval neural network (iMLP).
In addition to the use of accuracy measures and statistical tests to compute models
performance, this work also discusses the results using quality measures designed
for the interval time series framework, as well as in terms of additional forecast
descriptive statistics such as efficiency and coverage rates.

iFRB is able to simultaneously handle nonlinear patterns and the uncertainty
exhibited in financial time series on an interval-valued data framework, which is
essential to capture all the relevant information in intraday market price variation.
Additionally, the interpretability of the system in linguistic terms improves planning
and making decisions for traders’ strategies. Further, the model is able to handle
huge data sets when the data is summarized by means of symbolic data, i.e., through
the use of interval-valued variables. Each interval is then a summarization of data
variability in a period, in our case, in a day of trading. The contributions of this
work are outlined as follows. First, most of the methods are based on single-valued
price series. In comparison with interval-valued time series-based models, the
suggested method also incorporates the nonlinearities and uncertainty of financial
markets and provides an interpretable modeling framework. Second, the possibility
of forecasting the lower and upper bounds of interval-valued stock index series
simultaneously by an interval fuzzy model is examined. The third contribution is
that not only statistical accuracy but also quality measures designed for interval time
series are used to assess the practicability of the suggested model for interval-valued
stock index forecasting as empirical application. Finally, the literature still demands
works related to ITS forecasting in finance, mostly for emergent economies like
Brazil, due to growing availability of high-frequency data as well as its applications
(high-frequency trading), in which informative forecasts play an essential role.

This chapter is organized as follows. After this introduction, Sect. 2 gives a brief
reminder of the interval arithmetic adopted in this work. Section 3 describes the
interval fuzzy rule-based model. The empirical application on the IBOVESPA index
is discussed in Sect. 4. Finally, Sect. 5 concludes the work and suggests issues for
further investigation.

2 Interval Arithmetic

Let an interval x be a closed bounded set of real numbers:

x = [xL, xU ] ∈ &, (1)

where & = {[xL, xU ] : xL, xU ∈ �, xL ≤ xU }, xL and xU are the lower and
upper bounds of the interval, respectively. An m-dimensional interval vector x is
an ordered m-tuple of intervals x = [x1, x2, . . . , xm]T , where xj = [xLj , xUj ] ∈ &,
j = 1, . . . , m.
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The midpoint of an interval x, x̄, is calculated as:

x̄ = xL + xU
2

. (2)

Therefore, a sequence of intervals at time steps t = 1, 2, . . . , T is an interval
time series (ITS).

The arithmetic operations used in this chapter are [33]:

x + y = [xL + yL, xU + yU ],
x − y = [xL − yU , xU − yL],

xy = [min{xLyL, xLyU , xUyL, xUyU },max{xLyL, xLyU , xUyL, xUyU }],
x/y = x(1/y), with 1/y = [1/yU , 1/yL]. (3)

The interval fuzzy rule-based model (iFRB) suggested in this work also requires
a metric table to measure the (dis)similarities between intervals. In this work we
adopt the Hausdorff distance, as suggested by Carvalho et al. [8]. The Hausdorff
distance between two vectors of intervals, x and y, denoted by dH(x, y), is then
calculated as5:

dH(x, y) =
m∑
j=1

(
max

{∣∣xLj − yLj
∣∣, ∣∣xUj − yUj

∣∣}). (4)

The next section addresses iFRB, the fuzzy rule-based method for interval-valued
data.

3 Interval Fuzzy Rule-Based Model

The interval fuzzy rule-based model suggested in this work is composed by a set of
fuzzy rules with affine interval consequents:

Ri : IF x is μi THEN yi = θi0 + θi1x1 + · · · + θimxm, (5)

where Ri is the i-th fuzzy rule, i = 1, 2, . . . , c, c is the number of fuzzy rules, x =
[x1, x2, . . . , xm]T , xj ∈ &, j = 1, . . . , m, comprises the input, μi is the fuzzy set of

5One must notice that the subtraction of intervals can produce intervals with negative extremes.
However, in all operations related to the current approach, the subtraction operation between
intervals is not needed, which is also one of the advantages by using a distance metric such as
the Hausdorff distance.
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the antecedent of the i-th fuzzy rule with membership function μi(x) : & → [0, 1],
yi ∈ & is the i-th rule output, and θi0 and θij ∈ �, j = 1, . . . , m, are the parameters
of the consequent of the i-th rule, which are represented by single-valued variables.

Fuzzy inference in iFRB is similar to the traditional Takagi–Sugeno model, but
the operations correspond to interval operations, as described in Sect. 2. Therefore,
the output is calculated as:

y =
c∑
i=1

(
μi(x)yi∑c
j=1 μj (x)

)
. (6)

In terms of normalized degrees of activation, the output in (6) is

y =
c∑
i=1

λiyi =
c∑
i=1

λixTe θi, (7)

where

λi = μi(x)∑c
j=1 μj (x)

, (8)

is the normalized firing level correspondent to the i-th rule, θi = [θi0, θi1, . . . , θim]T
the vector of parameters, and xe = [1 xT ]T the expanded input vector.

The TS model uses parametrized fuzzy regions and associates each region with
a local affine (linear) model. The nonlinear nature of the model originates from the
fuzzy weighted combination of multiple linear models. The contribution of a local
model to the model output is proportional to its degree of activation.

iFRB modeling requires: (1) learning the antecedent part of the model via an
interval fuzzy clustering algorithm, and (2) estimation of the parameters of the
interval affine consequents. The i-th fuzzy cluster defines μi , the antecedent of the
i-th fuzzy rule.

3.1 Interval Participatory Learning Fuzzy Clustering
with Adaptive Distances

To identify the antecedents of the fuzzy rules, this chapter adopts the interval
participatory learning fuzzy clustering algorithm (iPL), suggested by Maciel et al.
[29, 30]. Further, this work extends iPL using adaptive Hausdorff distances and
also incorporates in a fuzzy inference system to evaluate its capability in interval-
valued time series forecasting. Distances are adaptive in the sense that is calculated
differently for each cluster due to its intra-class structure at each iteration. Therefore,
it is able to model data structures represented by clusters with distinct shapes, sizes,
and orientation as highlighted by Carvalho et al. [8].
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The clustering objective is to divide a data set X = {x1, . . . , xT }, t = 1, 2, . . . , T ,
in c, 2 ≤ c ≤ T , fuzzy subsets, standing c for the number of classes or clusters and
T the number of patters. The main difference here is that the data xt are interval-
valued variables.

iPL is based on the participatory learning (PL) paradigm [49] in which the model
learning is based on the current knowledge of the model, i.e., the current model
is part of the learning process and contributes to its self-organization due to new
information. The principle of PL is that the new observation represented by the
data influences self-organization or model revision. This influence is based on the
compatibility of the data to the current model structure (cluster structure) [30, 41].

In clustering, clusters are defined by its centers or prototypes. In this chapter,
V = {v1, . . . , vc}, vi ∈ [0, 1]m, i = 1, . . . , c represents the cluster centers in a
cluster structure. The learning process corresponds to the learning of this variable.
In this case, observations xt ∈ [0, 1]m correspond to the knowledge related to
the learning process of the variable V, i.e., each data xt , t = 1, 2, . . . , T , is used
to learn about vi . Using the PL paradigm, the learning process consists on how
observations xt are compatible or not with the current estimates of the cluster
centers vi .

In a current estimate of vit after t − 1 observations, a data xt contributes to
the current knowledge about the system if it is compatible (close) to vit , i.e., the
compatibility of a new data is measured with all the current c clusters. If that is the
case, vit is updated according to [30, 41]:

vit = vit−1 +Gi
t (xt − vit−1), (9)

where

Gi
t = αρit (10)

with α ∈ [0, 1] standing for the learning rate and ρit for the compatibility degree
between xt and vit−1.

The compatibility ρit is calculated as:

ρit = 1− dit , (11)

where dit is a (dis)similarity measure. For interval-valued data, the interval partici-
patory learning algorithm (iPL) proposed by Maciel et al. [30] used the Hausdorff
distance for intervals as in Eq. (4). This work extends iPL with adaptive Hausdorff
distances which associates a distance di to each cluster i (and its prototype vi) such
that the sum of the distances di(x, vi ) between objects i ∈ c and the prototype vi is
as small as possible. The compatibility measure in iFRB is computed as:

ρit = 1− γ idH i
t = 1−

m∑
j=1

γ ij
(
max

{∣∣xLj,t − vi,Lj,t−1

∣∣, ∣∣xUj,t − vi,Uj,t−1

∣∣}), (12)
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where γ i = (γ i1 , γ
i
2 , . . . , γ

i
m) is the vector of weights measuring the adaptivity of

the distances, with γ ij > 0 and
∏m
j=1 γ

i
j = 1, and m is the dimension of the data.

An arousal mechanism is also considered in order to monitor the compatibility
of the current cluster structure with the new observations. Higher values of the
arousal indicate less confidence of the current system with the new observation,
i.e., indicates the incompatibility of the observation with the current system. In
clustering, this idea retains as a case in which a data is far enough for the current
cluster centers, indicating the need of creating a new cluster. Thus, the arousal index
ait ∈ [0, 1] of cluster i at t is computed as:

ait = ait−1 + β
(
1− ρit − ait−1

)
, (13)

where β ∈ [0, 1] controls the rate of change of arousal. When β is closer to one, the
faster the system is to sense compatibility variations.

The rule for creating a new cluster is: if ait ≥ τ ∈ [0, 1], a new cluster is created
with center initiated as vi+1

t = xt . Otherwise, the most compatible cluster with xt is
updated using (9).

By incorporating the arousal mechanism (13) into (10) we have:

Gi
t = α(ρit )

1−ait . (14)

When ait = 0, Gi
t = αρit , which is the procedure with no arousal. If the arousal

index increases, the similarity measure has a reduced effect. The arousal index can
be interpreted as the complement of the confidence we have in the truth of the
current belief, the rule base structure [29, 30]. Thus, if a new data is incompatible
with the current cluster structure the arousal will indicate the need of creating a new
cluster.

Finally, iFRB clustering also verifies the creation of redundant clusters. A cluster
is declared redundant if its similarity to another cluster is greater than or equal to a
threshold value λ ∈ [0, 1]. Thus, the compatibility index among cluster centers, i
and j , can be computed as:

ρ
i,j
t = 1− γ idH i,j

t . (15)

If ρi,jt ≥ λ, the cluster i is declared redundant and replaced by the average
between the new data and the current cluster center.

3.2 Rules Consequent Parameters Identification

After antecedents learning, the next step of iFRB identification is the estimation of
the parameters of the consequent linear models. To take advantage of the standard
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form of the least squares algorithm, the procedure in this work uses the midpoint of
the intervals, x̄, as in (2), also suggested by Maciel et al. [29]. The expression (7)
can be rewritten as:

ȳ = �T', (16)

where � = [λ1x̄Te , λ2x̄Te , . . . , λcx̄
T
e ]T is the fuzzily weighted extended input, x̄e =

[1 x̄1 x̄2 . . . x̄m]T is the expanded data vector, and ' = [θT1 , θT2 , . . . , θTc ]T is the
parameter matrix, θi = [θi0, θi1, . . . , θim]T .

The weighted recursive least squares (wRLS) algorithm is considered to update
the consequent parameters using the locally optimal error criterion wRLS6:

minEi
L = min

T∑
t=1

λi

(
ȳt − x̄Tet θit

)2
. (17)

Parameters are then updated as [27]:

θi,t+1 = θit +�it x̄etλit
(
ȳt − x̄Tet θit

)
, θi0 = 0, (18)

�i,t+1 = �it − λit�it x̄et x̄Tet�it

1+ λit x̄Tet�it x̄et
, �i0 = �I, (19)

where � is a large number (usually � = 1000), and � is the dispersion matrix.

3.3 iFRB Identification Procedure

The interval fuzzy rule-based (iFRB) identification steps are summarized in this
section. Initialization of clusters centers initial values V0 are based on the selection
of two random points of X: V0 = {v1 v2}. Thus the fuzzy partition matrix U ∈
�(T×c) of V0 is computed, whose element uit ∈ [0, 1], i = 1, 2, . . . , c, is the
membership degree of the t-th data point xt to the i-th cluster, the one with center
vi . Membership degrees are calculated as:

uit =
⎛
⎝

c∑
j=1

(
dHi

t

dH
j
t

) 2
η−1
⎞
⎠
−1

, (20)

where η is the fuzzification parameter, using η = 2 as default value.

6Brandt and Diebold [2] show that global optimization does not guarantee locally adequate
behavior of the sub-models that form the TS model.
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Parameters α, β, τ , and λ are defined by the user. Using a data set with T

observations, for k = 1, where k stands for the number of iterations, the antecedents
are determined by the fuzzy clustering algorithm based on a Picard iterative process.
The convergence criterion is based on an error metric (E) defined as:

E = max
i
|dHi(vik, vik−1)|, i = 1, . . . , c, (21)

which measures the variations on the prototypes (cluster centers) representatives.
Thus, if a maximum number of iterations, kmax, is reached or if the error is

smaller than a threshold ε, E ≤ ε, the algorithm stops. At each iteration the vector
of weights, γ i , which defines the adaptability of the distances, is updated as follows
[7, 8]:

γ ij =
{∏m

j=1

[∑T
t=1 (uit )

η
(
max

{∣∣xLtj − vLtj
∣∣, ∣∣xUtj − vUtj

∣∣})]}1/m

∑T
t=1 (uit )

η
(
max

{∣∣xLtj − vLtj
∣∣, ∣∣xUtj − vUtj

∣∣}) , (22)

j = 1, 2, . . . , m.
Carvalho [7] showed that (22) locally minimizes the fitting between the clusters

and their representatives (prototypes) based on adaptive Hausdorff distances for
interval-valued data clustering.7

With fixed antecedents, rules consequent parameters are obtained using wRLS
algorithm. Figure 1 describes the iFRB identification steps.

4 Computational Experiments

The iFRB approach introduced in this chapter gives a flexible modeling procedure
and can be applied to a range of problems such as process modeling, time series
forecasting, classification, system control, and novelty detection. The performance
of iFRB for financial interval time series forecasting is compared against univariate
models such as random walk (RW), exponential smoothing (ES), ARIMA, and
threshold autoregressive (TAR). Note that univariate models do not process the
data as intervals. In this work, ITS are constructed by minimum and maximum
stock prices. Thus, univariate techniques predict intervals attributes, minimum and
maximum stock prices values, independently. Further, multivariate approaches such
as the vector error correction model (VECM) and the interval multilayer perceptron
neural network (iMLP) [37] are also considered as alternatives. Multivariate models
account for the interdependence on the data without the need of specifying the
relationship between the series. As follows the accuracy measures and statistical
tests used to access models performance are described, followed by the empirical
results considering the interval IBOVESPA stock index forecasting.

7The proof of (22) can be found in [7].
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Fig. 1 Interval fuzzy rule-based model identification

4.1 Performance Assignment

In order to access models performance, traditional time series error measures such
as root mean squared error (RMSE) and symmetric mean absolute percentage error
(SMAPE) are considered:

RMSE =
√√√√ 1

T

T∑
t=1

(yt − ŷt )2, (23)
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SMAPE = 1

T

T∑
t=1

|yt − ŷt |
(|yt | + |ŷt |)/2

, (24)

where ŷt is the t-th forecasted value, yt the t-th actual value, and T is the sample
size.

To translate the performance metrics to intervals, let an ITS, {Yt }Tt=1, be a
sequence of intervals observed in successive instants in time t = 1, . . . , T . Each
interval is represented by:

Yt = [yLt , yUt ] ∈ &. (25)

In the context of financial ITS, yLt and yUt correspond to the minimum and
maximum stock price values at t , respectively.

To measure the forecasting error considering the ITS attributes (lower and upper
bounds) the error for each series attributes is computed separately. This work also
employs the Diebold–Mariano [14] statistic test to evaluate the null hypothesis of
equal predictive accuracy.

Since the data has an interval structure, it implies that both characteristics (lower
and upper bounds) that describe intervals have to be taken into consideration jointly.
Therefore, the overall accuracy of the fitted and forecasted ITS is also measured by
the mean distance error (MDE) of intervals:

MDE =
∑T

t=1 D(Yt , Ŷt )

T
, (26)

where Yt and Ŷt are the observed and forecasted ITS andD(·) is an interval distance.
As suggested in [3] and [36], the Euclidian distance for intervals is selected for lower
and upper bounds representation:

DE(Yt , Ŷt ) =
√(
yLt − ŷLt

)2 + (yUt − ŷUt
)2
. (27)

The normalized symmetric difference (NSD) of intervals is also considered [36]:

DNSD(Yt , Ŷt ) = w(Yt ∪ Ŷt )− w(Yt ∩ Ŷt )
w(Yt ∪ Ŷt )

, (28)

where w(·) indicates the width of the interval.
Thus the mean distance error of intervals using both Euclidian (MDEE) and NSD

(MDENSD) as distance function is computed. The advantage of NSD distance is
that it is a normalized distance measure not influenced by data magnitude as the
Euclidian distance.
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The computation of descriptive statistics for ITS is also conducted as suggested
by Rodrigues and Salish [36]. This chapter calculates the coverage rate

RC = 1

T

T∑
t=1

w(Yt ∩ Ŷt )
w(Yt )

, (29)

and the efficiency rate

RE = 1

T

T∑
t=1

w(Yt ∩ Ŷt )
w(Ŷt )

. (30)

Both rated give additional information on what part of the observed ITS is
covered by its forecasts (coverage) and what part of the forecast covers the observed
ITS (efficiency), which have to be considered jointly. Better forecasts are identified
when coverage and efficiency rates are reasonably high and the difference between
them is small [36].

4.2 Empirical Results

In terms of financial time series, an interval forecast representing the minimum and
maximum prices for the next period of a given stock can be used to estimate its
volatility in that period. Moreover, this forecast provides valuable information to
the investor and can play an important role in establishing investment strategy [3].
This work evaluates the suggested iFRB modeling framework using as empirical
application the Brazilian stock market. Data comprise daily minimum and maxi-
mum values of IBOVESPA for the period from January 2000 to December 2015.8

Minimum and maximum values of IBOVESPA are used as intervals lower and upper
bounds representatives.

Forecasting methods are adjusted by dividing all series in two periods: training
and validation. The training period, using data from January 2000 to December
2011, is used for the initialization and adjustment of the methods, while the
validation period, or out-of-sample set, concerning all remaining data, is used to
assess the performance of the adjusted method using new data. Minimizing the
training error has been the criterion followed to estimate the parameters for all the
methods, apart from the ARIMA and VECM models where the Schwarz information
criterion [38] and the residual autocorrelation function have also been considered.

It is worth mentioning that, in the case of models such as ARIMA and VECM,
it is tested whether the time series are stationary or not by means of the augmented
Dickey–Fuller test (ADF) [13]. As for the bivariate approach, the Johansen test [25]

8Data were collected in Economatica.
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Table 1 Descriptive
statistics of lower and upper
bounds of IBOVESPA ITS
for the period from January
2000 to December 2015

Statistic Lower bound Upper bound

Mean 40,098.48 40,984.33

Maximum 45,401.00 73,920.00

Minimum 8224.00 8513.00

Std. dev. 19,493.96 19,836.37

Skewness −0.1877 −0.1998

Kurtosis 1.5688 1.5649

Jarque-Bera 361.31 366.60

p-Value 1.16E−16 1.22E−16

ADF test −0.1066 −0.1720

p-Value 0.5889 0.6129

is used to determine whether the lower and upper bound time series are cointegrated
or not. If that is the case, it makes sense to forecast them using a VECM model [3].

Table 1 shows the descriptive statistics for IBOVESPA ITS lower and upper
bounds. As expected, time series of IBOVESPA intervals lower and upper bounds
are very similar, mainly in terms of mean and standard deviations. These series
have heavy left-side tails as indicated by the negative skewness coefficients, and
also lower values of kurtosis. The Jarque-Bera [4] statistics indicate that the series
are non-normal with a 99% confidence level. Concerning the augmented Dickey–
Fuller (ADF) [13] unit root test statistics, the lower and upper bounds time series
are integrated.9

Models specifications were based on simulations using training data. According
to the Schwarz information criterion and the residual autocorrelation function,
ARIMA(2,1,3) and TAR(2) were selected for both lower and upper bounds of
IBOVESPA ITS, whereas a VECM(2) was set for IBOVESPA ITS. The iMLP and
the interval fuzzy rule-based model (iFRB) take the following formulation:

ŷt = f (yt−1, yt−2, . . . , yt−p). (31)

The number of lags, p, was also selected based on simulations in order to reach
the best performance in terms of RMSE and SMAPE. An iMLP was chosen with 5
neurons in the hidden layer and 2 lagged values of the series as input. Further, for
iFRB experiments indicate p = 1, with control parameters: α = 0.07, β = 0.22,
τ = 0.15, and λ = 0.16. The estimated iFRB model achieved three fuzzy rules.10

Table 2 shows the accuracy measures, RMSE and SMAPE, from all forecasting
approaches for IBOVESPA ITS. Results in this chapter concern the out-of-sample
data set, i.e., the period from January 2012 to December 2015. Forecasts are one step

9According to the Johansen test, the lower and upper bounds time series are cointegrated.
10iFRB control parameters depend on the data and could be selected based on simulations.
An alternative to automatic parameters selection is, for instance, the use of smart grid search
techniques.
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Table 2 RMSE and SMAPE values based on one step ahead forecasts of lower and upper bounds
IBOVESPA ITS using data in the period from January 2012 to December 2015

RMSE SMAPE

Models Lower bounds Upper bounds Lower bounds Upper bounds

RW 655.78 669.84 0.00935 0.00931

ES 655.88 669.94 0.00935 0.00931

ARIMA 649.59 662.15 0.00922 0.00917

TAR 645.22 656.32 0.00916 0.00912

VECM 419.33 476.20 0.00781 0.00729

iMLP 342.91 367.12 0.00487 0.00548

iFRB 335.87 349.61 0.00465 0.00533

Table 3 Diebold–Mariano test statistics for lower and upper bounds IBOVESPA ITS forecasting
using data in the period from January 2012 to December 2015

Method ES ARIMA TAR VECM iMLP iFRB

Lower bound

RW 0.237 0.536 1.254 2.762∗ 3.414∗ 3.987∗

ES – −0.761 0.672 2.554∗ 3.220∗ 3.888∗

ARIMA – – 0.556 2.653∗ −3.664∗ 4.140∗

TAR – – – −2.543∗ 4.561∗ 3.987∗

VECM – – – – 2.131∗ 2.456∗

iMLP – – – – – 0.116

Upper bound

RW 0.265 −0.453 −1.377 3.315∗ 3.615∗ 4.315∗

ES – 0.543 0.515 −2.873∗ −2.981∗ −4.110∗

ARIMA – – −0.891 2.699∗ 3.220∗ 3.976∗

TAR – – – 2.981∗ 3.562∗ 3.561∗

VECM – – – – −3.009∗ −3.253∗

iMLP – – – – – −0.315
∗Significant at 5% level

ahead. Lower RMSE and SMAPE values indicate better accuracy. Considering both
RMSE and SMAPE metrics, the multivariate and interval approaches, i.e., VECM,
iMLP, and iFRB models, performed better for all lower and upper bounds time
series in comparison with the univariate econometric benchmarks. The suggested
approach, iFRB, showed the lowest RMSE and SMAPE values in all cases
(Table 2). Among the univariate methods, the threshold autoregressive achieved
better accuracy, since it is able to model time series nonlinearities. It is interesting
to remark that iMLP and iFRB improved the results in comparison with the VECM
method, since they account for the interdependence of interval bounds as VECM
does but they are also designed to process interval-valued data naturally.

In addition to goodness of fit, as mirrored by forecast error, the models were
evaluated statistically. The Diebold–Mariano [14] test statistics for upper and lower
bounds IBOVESPA ITS are summarized in Table 3. The test is performed for each
pair of models. The null hypothesis of equal predictive accuracy is rejected with 5%
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confidence level, that is if |DM| > 1.96. From this point of view, for both lower
and upper bounds of IBOVESPA ITS, concerning the univariate methods (RW,
ES, ARIMA, and TAR), they can be considered equally accurate (|DM| < 1.96),
but they provide statistically inferior forecasts when compared against VECM,
iMLP, and iFRB. Further, the interval approaches, iMPL and iFRB, are equally
accurate in statistical terms but achieved statistically superior performance than the
VECM model for both lower and upper bounds time series. Nonetheless, in order
to evaluate the better interval representation it is necessary to consider the interval
representatives forecasts jointly.

In order to access the interval structure of the time series, IBOVESPA ITS
forecasts were compared in terms of the mean distance error (MDE) of intervals
using both the Euclidian distance (MDEE) and the normalized symmetric difference
(NSD) distance of intervals (MDENSD). Table 4 reports the results from MDEE and
MDENSD accuracy metrics of the actual and forecasted IBOVESPA ITS. Again, the
lowest the MDE values, the highest the models accuracy. The better results are from
the VECM, iMLP, and iFRB, since they are able to capture the interdependence
between IBOVESPA ITS bounds. Among the benchmark techniques, TAR method
showed slightly lower interval error values. iFRB modeling approach reports the
lowest MDE values, using both Euclidian and normalized symmetric difference
distance metrics (Table 4). It worth to note that the interval techniques, iMLP and
iFRB, again provided the better results.

Additionally, intervals descriptive statistics, coverage (RC) and efficiency (RE)
rates, are reported in Table 5. They provide additional information about the
adequacy of the forecasts. In this case, these statistics reveal the percentage of the
actual ITS is covered by its forecast (coverage), and what part of the forecast covers

Table 4 Mean distance error
(MDE) values using
Euclidian distance, MDEE,
and the normalized
symmetric difference (NSD),
MDENSD, based on one step
ahead forecasts of
IBOVESPA ITS using data in
the period from January 2012
to December 2015

Models MDEE MDENSD

RW 765.81 0.5901

ES 765.91 0.5902

ARIMA 761.30 0.5899

TAR 757.83 0.5482

VECM 354.12 0.3887

iMLP 307.60 0.3211

iFRB 298.51 0.3004

Table 5 Coverage (RC) and
efficiency (RE) rates values
based on one step ahead
forecasts of IBOVESPA ITS
using data in the period from
January 2012 to December
2015

Models RC RE

RW 0.5747 0.5565

ES 0.5746 0.5564

ARIMA 0.5809 0.5654

TAR 0.6173 0.5783

VECM 0.7001 0.6879

iMLP 0.7895 0.7763

iFRB 0.8356 0.8211
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Fig. 2 IBOVESPA minimum and maximum actual and predicted values by iFRB for the period
from January 2012 to December 2015

the realized ITS (efficiency). To evaluate the models, these rates must be considered
jointly and the higher their values the better is the forecast. Further, the closeness of
the results of these two statistics can be taken as an indicator of the quality of the
forecasts.

For both coverage and efficiency rates, iFRB model showed the highest values,
indicating more accurate predictions (Table 5). VECM and iMLP also provided sim-
ilar results. Notice that these two statistics values are very close, which corroborate
the adequacy of the models. Again, the econometric forecasting methods performed
worst.

Summing up, the empirical results in this chapter indicate the adequacy of iFRB
for IBOVESPA interval time series forecasting. According to traditional and interval
quality measures, in general, the interval approaches iMLP and iFRB showed better
performance, even when compared against the multivariate VECM method. Further,
iFRB also improves the results from iMLP, since besides the neural network method
being a nonlinear and interval technique, iFRB also considers the uncertainty
inherited in data due to its fuzzy nature. Figure 2 illustrates the actual and forecasted
values by the iFRB model of IBOVESPA lower (minimum) and upper (maximum)
bounds for the testing data, covering the period from January 2012 to December
2015. Note that the high capability of the model to deal with nonlinear and time-
varying dynamics. In line with [36], the results indicate that the contribution of
nonlinear models to a good forecast performance is significant, also for the Brazilian
equity market, and moreover, an accuracy improvement is obtained when interval-
valued based methods are considered.

It is worth to remark that the iFRB model is an interpretable modeling framework
in linguistic terms, which may be employed to improve decision-making process by
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labeling fuzzy rules in order to give some insight about the system or even about
trading rules, for example. Using the IBOVESPA ITS training data the model found
a rule base with three rules. The rule base is described as follows:

R1 : IF yt is v1 = [0.2314, 0.3452] THEN y1
t+1 = 0.0232− 0.2534yt

R2 : IF yt is v2 = [0.4652, 0.5517] THEN y2
t+1 = 0.0242+ 0.0175yt

R3 : IF yt is v3 = [0.4982, 0.6620] THEN y3
t+1 = 0.0315− 0.2519yt

Therefore, for example, antecedents membership functions, vi = [vL, vU ], i =
1, 2, 3, may be interpreted as “low,” “medium,” and “high” prices, for example,
improving the model interpretability.

5 Conclusion

Interval time series (ITS) are time series where each period in time is described
by an interval. In finance, ITS can be described as the evolution of the maximum
and minimum prices of an asset throughout time. These price ranges are related
to the concept of volatility. Hence, their accurate forecasts play a key role in risk
management, derivatives pricing, and asset allocation, as well as supplement the
information extracted by the time series of the closing price values for investors to
place their sell and buy orders.

This work suggests a fuzzy rule-based model for interval-valued data (iFRB).
The identification of iPFM concerns the identification of the antecedents and
consequents of the fuzzy rules. Rules antecedents are identified using an interval
fuzzy clustering approach with adaptive Hausdorff distances. Rules consequent
parameters are estimated using traditional least squares techniques taking advantage
of the intervals midpoints. As empirical application, iFRB is applied for financial
ITS forecasting, in which the intervals are constructed by minimum and maximum
stock prices, using the main stock index of the Brazilian financial market, the
IBOVESPA, for the period from January 2000 to December 2015. iFRB is compared
against univariate time series methods such as random walk, exponential smoothing,
ARIMA, and threshold autoregressive (TAR), and with multivariate approaches
such as VECM and the interval neural network (iMLP). In addition to the use of
accuracy measures and statistical tests to compute models performance, this work
evaluated the results using quality measures designed for the interval time series
framework, as well as in terms of additional forecast descriptive statistics such as
efficiency and coverage rates.

The results evidence the predictability of IBOVESPA ITS by the iFRB method
in comparison with the alternative methods. A significant forecast contribution of
interval approaches, iMLP and iFRB, is achieved. The interval quality measures
also suggested that methodologies considering the interdependence of interval
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limits provide significant improvements in forecasting accuracy. iFRB appears as
a potential tool for interval time series forecasting since the method is able to
process interval-valued data naturally, capture data nonlinearities, take into account
the uncertainty inherited to the data by its fuzzy nature, and also do provide an
interpretable model in linguistic terms. Future works shall include the use of other
clusters features to perform the construction of the cluster structure, the use of
an interval technique to compute iFRB consequents, the evaluation of iFRB for
different markets and economies as well as its application in trading strategies and
in risk management by using range-based volatility estimators.

Acknowledgements The authors thank the Brazilian Ministry of Education (CAPES) and the São
Paulo Research Foundation (FAPESP) for their support.

References

1. Alizadeh, S., Brandt, M.W., Diebold, F.X.: Range-based estimation of stochastic volatility. J.
Financ. 57(3), 1047–1091 (2002)

2. Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models.
IEEE Tran. Syst. Man Cybern. B 34(1), 484–498 (2004)

3. Arroyo, J., Espínola, R., Maté, C.: Different approaches to forecast interval time series: a
comparison in finance. Comput. Econ. 27(2), 169–191 (2011)

4. Bera, A., Jarque, C.: Efficient tests for normality, homoscedasticity and serial independence of
regression residuals: Monte Carlo evidence. Econ. Lett. 7, 313–318 (1981)

5. Bisdorff, R.: Logical foundation of fuzzy preferential systems with application to the electre
decision aid methods. Comput. Oper. Res. 27(7–8), 673–687 (2000)

6. Brandt, M.W., Diebold, F.X.: A no-arbitrage approach to range-based estimation of return
covariances and correlations. J. Bus. 79(1), 61–74 (2006)

7. Carvalho, F.A.T.: Fuzzy c-means clustering methods for symbolic interval data. Pattern
Recogn. Lett. 28(4), 423–437 (2007)

8. Carvalho, F.A.T., Souza, R.M.C.R., Chavent, M., Lechevallier, Y.: Adaptive Hausdorff dis-
tances and dynamic clustering of symbolic interval data. Patter Recogn. Lett. 27(3), 167–179
(2006)

9. Chang, P., Wu, J., Lin, J.: A Takagi–Sugeno fuzzy model combined with a support vector
regression for stock trading forecasting. Appl. Soft Comput. 38, 831–842 (2016)

10. Cheung, Y.W.: An empirical model of daily highs and lows. Int. J. Financ. Econ. 12(1), 1–20
(2007)

11. Chou, R.Y.: Forecasting financial volatilities with extreme values: the conditional autoregres-
sive range (CARR) model. J. Money Credit Bank. 37(3), 561–582 (2005)

12. Degiannakis, S., Floros, C.: Modeling CAC40 volatility using ultra-high frequency data. Res.
Int. Bus. Financ. 28, 68–81 (2013)

13. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a
unit root. J. Am. Stat. Assoc. 74(266), 427–431 (1979)

14. Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. Stat. 13(3), 253–
265 (1995)

15. Dueker, M.J., Sola, M., Spangnolo, F.: Contemporaneous threshold autoregressive models:
estimation, testing and forecasting. J. Econ. 141(2), 517–547 (2007)

16. Engle, R.F., Russel, J.: Analysis of high frequency data. In: Aït-Sahalia, Y., Hansen, L.P. (eds.)
Handbook of Financial Econometrics, vol. 1: Tools and Techniques, pp. 383–346. Elsevier,
Amsterdam (2009)



Fuzzy Rule-Based Modeling for Interval-Valued Data: An Application to High. . . 423

17. Fiess, N.M., MacDonald, R.: Towards the fundamentals of technical analysis: analysing the
information content of high, low and close prices. Econ. Model. 19(3), 353–374 (2002)

18. Froelich, W., Salmeron, J.L.: Evolutionary learning of fuzzy grey cognitive maps for the
forecasting of multivariate, interval-valued time series. Int. J. Approx. Reason. 55(6), 1319–
1335 (2014)

19. García-Ascanio, C., Maté, C.: Electric power demand forecasting using interval time series: a
comparison between VAR and iMLP. Energy Policy 38(2), 715–725 (2010)

20. Guidolin, M., Hyde, S., McMillan, D., Ono, S.: Non-linear predictability in stock and bond
returns: when and where is it exploitable? Int. J. Forecast. 25(2), 373–399 (2009)

21. He, L.T., Hu, C.: Impacts of interval measurement on studies of economic variability: evidence
from stock market variability forecasting. J. Risk Financ. 8(5), 489–507 (2008)

22. He, L.T., Hu, C.: Impacts of interval computing on stock market variability forecasting.
Comput. Econ. 33(3), 263–276 (2009)

23. Henry, Ó., Olekaln, N., Summers, P.M.: Exchange rate instability: a threshold autoregressive
approach. Econ. Rec. 77(237), 160–166 (2001)

24. Hu, C., He, L.T.: An application of interval methods to stock marketing forecasting. Reliab.
Comput. 13(5), 423–434 (2007)

25. Johansen, S.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector
autoregressive models. Econometrica 59(6), 1551–1580 (1991)

26. Leite, D., Costa, P., Gomide, F.: Interval approach for evolving granular system modeling, pp.
271–300. Springer, New York (2012)

27. Ljung, L.: System identification: theory for the user. Prentice-Hall, Upper Saddle River
(1988)

28. Lu, W., Chen, X., Pedrycz, W., Liu, X., Yang, J.: Using interval information granules to
improve forecasting in fuzzy time series. Int. J. Approx. Reason. 57, 1–18 (2015)

29. Maciel, L., Ballini, R., Gomide, F.: Evolving granular analytics for interval time series
forecasting. Granul. Comput. 1(4), 213–224 (2016)

30. Maciel, L., Ballini, R., Gomide, F., Yager, R.R.: Participatory learning fuzzy clustering for
interval-valued data. In: Proceedings of the 16th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016),
Eindhoven, pp. 1–8 (2016)

31. Maia, A.L.S., de Carvalho, F.A.T.: Holt’s exponential smoothing and neural network models
for forecasting interval-valued time series. Int. J. Forecast. 27(3), 740–759 (2011)

32. Miwa, K.: Investor sentiment, stock mispricing, and long-term growth expectations. Res. Int.
Bus. Financ. 36, 414–423 (2016)

33. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM Press,
Philadelphia (2009)

34. Parkinson, M.: The extreme value method for estimating the variance of the rate of return. J.
Bus. 53(1), 61–65 (1980)

35. Pettenuzzo, D., Timmermann, A., Valkanov, R.: Forecasting stock returns under economic
constraints. J. Financ. Econ. 144(3), 517–553 (2014)

36. Rodrigues, P.M.M., Salish, N.: Modeling and forecasting interval time series with threshold
models. Adv. Data Anal. Classif. 9(1), 41–57 (2015)

37. Roque, A.M., Maté, C., Arroyo, J., Sarabia, A.: iMLP: applying multi-layer perceptrons to
interval-valued data. Neural Process. Lett. 25(2), 157–169 (2007)

38. Schwarz, G.: Estimating the dimension of model. Ann. Stat. 6(2), 461–464 (1978)
39. Setnes, M., Babuska, R., Verbruggen, H.B.: Rule-based modelling: precision and transparency.

IEEE Trans. Syst. Man Cybern. C 1, 165–169 (1998)
40. Shu, J.H., Zhang, J.E.: Testing range estimators of historical volatility. J. Futur. Mark. 26(3),

297–313 (2006)
41. Silva, L., Gomide, F., Yager, R.: Participatory learning in fuzzy clustering. In: IEEE Interna-

tional Conference on Fuzzy Systems, Reno, NV, pp. 857–861 (2005)
42. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and

control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)



424 L. Maciel and R. Ballini

43. Ustun, O., Kasimbeyli, R.: Combined forecasts in portfolio optimization: a generalized
approach. Comput. Oper. Res. 39(4), 805–819 (2012)

44. Wang, L., Liu, X., Pedrycz, W.: Effective intervals determined by information granules to
improve forecasting in fuzzy time series. Expert Syst. Appl. 40(14), 5673–5679 (2013)

45. Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the
future. Int. J. Forecast. 30(4), 1030–1081 (2014)

46. Xiong, T., Bao, Y., Hu, Z.: Multiple-output support vector regression with a firefly algorithm
for interval-valued stock price index forecasting. Knowl. Based Syst. 55, 87–100 (2014)

47. Xiong, T., Bao, Y., Hu, Z., Chiong, R.: Forecasting interval time series using a fully complex-
valued RBF neural network with DPSO and PSO algorithms. Inform. Sci. 305, 77–92 (2015)

48. Xiong, T., Li, C., Bao, Y., Hu, Z., Zhang, L.: A combination method for interval forecasting of
agricultural commodity futures prices. Knowl. Based Syst. 77, 92–102 (2015)

49. Yager, R.: A model of participatory learning. IEEE Trans. Syst. Man Cybern. 20(5), 1229–1234
(1990)

50. Yang, W., Han, A., Wang, S.: Forecasting financial volatility with interval-valued time series
data. In: Vulnerability, Uncertainty, and Risk, pp. 1124–1233 (2014)

51. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
52. Zhao, J., Wang, L.: Pricing and retail service decisions in fuzzy uncertainty environments.

Appl. Math. Comput. 250, 580–592 (2015)



Part III
Diagnosis, Optimization and Control



Reasoning from First Principles for
Self-adaptive and Autonomous Systems

Franz Wotawa

1 Introduction

Systems that are able to automatically adapt their behavior in cases of faults
have always been very much appealing for research and practice. Because of
the increasing importance of applications like autonomous vehicles, the internet
of things (IoT), or industry 4.0 dealing with increased autonomy, self-adaptation
increases importance as well. For example, consider a truly autonomous vehicle
transporting passengers from one location to another. If there is a system fault
occurring during operation, there is no human driver working as fallback mechanism
for assuring that the vehicle goes to a safe state, e.g., driving to an emergency lane
of a highway and stopping there. In case of autonomous driving the system itself is
responsible for any action after detecting a failure. This is one of the most significant
differences to ordinary cars even if they have implemented automated functions like
lane assist.

It is also worth noting that in many situations coming to a safe state is not that
simple even for today’s cars. For example, an emergency break as consequence of
a fault in the control system of the car’s engine might cause an accident if this is
done on a high way with another car behind. Or another example is stopping a
car in a tunnel without an emergency lane. Therefore, a car that is not moving is
not necessarily in a safe state. As a consequence faults during operation should be
handled in a smart way either via compensating or repairing faults during operation
requiring self-adaptive systems. Of course it is worth mentioning that such a self-
adaptive behavior does not allow to compromise safety. According to the IEEE

F. Wotawa (�)
Technische Universität Graz, Institute for Software Technology, Graz, Austria
e-mail: wotawa@ist.tugraz.at

© Springer Nature Switzerland AG 2019
E. Lughofer, M. Sayed-Mouchaweh (eds.), Predictive Maintenance
in Dynamic Systems, https://doi.org/10.1007/978-3-030-05645-2_15

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05645-2_15&domain=pdf
mailto:wotawa@ist.tugraz.at
https://doi.org/10.1007/978-3-030-05645-2_15


428 F. Wotawa

Systems and Software Engineering Vocabulary [29] fail-safe refers to a system or
component that automatically places itself in a safe operating mode in the event of
a failure.

Self-adaptive systems that assure fail-safe behavior in the context of autonomous
vehicles are also often referred to fail-operational system, i.e., system that still
remain operational even in case of faults. In order to implement fail-operational
behavior we have to use methods that assure also the behavior to be fail-safe. We
need methods that can be proven to work as expected never compromising safety.
We therefore discuss methods relying on model-based reasoning in this chapter,
because such methods guarantee to deliver all results that fulfill all properties
specified in models. What remains is to prove that the models capture the important
parts of the system and also its properties like safety.

The idea of using models for various purposes like diagnosis is not new and
dates back to the early 1980s of the last century (see, for example, [11]). Model-
based reasoning is characterized of using models directly to implement certain
tasks without requiring to reformulate available knowledge. In case of diagnosis,
the model is used to derive the expected behavior that can be compared with
observations. If we see a deviation between the expected behavior and the observed
one, model-based reasoning utilizes the model to identify the root cause of the
detected misbehavior. The basic principles behind model-based reasoning are still
very suitable for today’s challenges like autonomous systems and driving. If a
model is appropriately capturing its corresponding system, then all conclusions
drawn from the model are reasonable and also appropriate. Therefore, valida-
tion and verification can focus on the model once the reasoning algorithms are
tested.

In this chapter we discuss the basic principles of model-based reasoning includ-
ing algorithms. We do not only focus on one available technique that makes use
of models formalizing the correct behavior of components, but also abductive
diagnosis where we use fault models for obtaining root causes in a similar way than
medical doctors do when reasoning from observed symptoms back to hypotheses. In
addition, we outline an approach for online repair of systems interacting with their
environment using sensors and actuators. We discuss how to integrate diagnosis
with repair and also the different types of repair. For the latter, we make use of
a running example from the autonomous robotics domain. It is worth noting that
the purpose of the chapter is mainly to give an overview of model-based reasoning
for self-adaptive systems. Therefore, we also discuss related research and previous
work that has been published.

This chapter is organized as follows: We first introduce the application domain
of autonomous mobile robots in Sect. 2. Afterwards, in Sect. 3 we introduce
the basic concepts of model-based reasoning including model-based diagnosis
and abductive diagnosis. In Sect. 4 we discuss issues of modeling for model-
based reasoning, followed by Sect. 5 where we introduce the basic architectures
behind a self-adaptive system. There we make use of three examples outlining
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the different repair actions necessary to bring the system back into an operational
state. Finally, we discuss related literature in Sect. 6 and conclude the chapter
in Sect. 7.

2 Example

In this section, we introduce the example of a mobile robot having a differential
drive for moving from one point in a plain to another. We will use this example in
our chapter for introducing the basic concepts behind model-based reasoning and
in an extended form for showing how self-adaptive behavior can be implemented
using models of the system directly.

A differential drive comprises two wheels with varying speed. Depending on the
speed of the wheels the robot either rotates, moves on a straight line, or on a curve.
In the following, we discuss a kinematics model of a mobile robot with a differential
drive. For more details we refer the interested reader to [17]. In Fig. 1 we show the
underlying ingredients. We assume that the robot is at its current position (xR, yR)
heading in a direction specified by the angle θ from the x-axis. We further assume
that the distance between the wheels is d. Depending on the speed of the right or
left wheel vR , vL, respectively, the robot rotates about its instantaneous center of
curvature (ICC) with a rotational speed ω. The ICC lies on a straight line between
the axis of the wheels and its distance from the center of the robot (lying on the
same line) is R.

Obviously, there must be a relationship between ω and the speed of the wheels
because both wheels are on the same line connected with ICC and thus have to have
the same rotational speed. We are able to formalize this relationship as follows:

ω(R + d/2) = vR

ω(R − d/2) = vL
(1)

Fig. 1 Mobile robot with
differential drive
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From Eq. (1) we are able to obtain R and ω if knowing vR and vL.

R = d

2

vR + vL
vR − vL ; ω = vR − vL

d
(2)

From Eq. (2) we can distinguish 3 corner cases of movement for a differential
drive robot, which are usually used as available actions when planning a route for
the robot from its current position to its finally expected position:

1. If vR = vL > 0, then ω becomes zero, and R infinite. Hence, the robot is moving
on a straight line.

2. If vR = −vL, then R becomes zero, and we obtain a rotation around the center
of the robot. The direction of the rotation in this case is clockwise (assuming
vL > 0) and counter clockwise, otherwise.

3. If vL = 0 and vR > 0 ( vL > 0 and vR = 0), then R = d
2 (R = − d

2 ) and the
robot rotates counter clockwise on its left wheel (clockwise on its right wheel).

Based on the above equations, we are also able to come up with a forward
kinematics of the differential drive robot. In this case we assume that the robot is at
a specific position (xR, yR) and direction with angle θ . The speed vR and vL are the
control parameters to bring the robot to a new position. Using Eq. (2) we first obtain
the ICC location:

ICC = (x − R sin (θ), y + R cos (θ)) (3)

Assuming the robot is at its location at time t we are now able to state its new
position at time t +%t where ICCx and ICCy references are the ICC location of the
x- and y-axis, respectively:

⎛
⎝
x′R
y′R
θ ′

⎞
⎠ =

⎛
⎝

cos (ω%t) − sin (ω%t) 0
sin (ω%t) cos (ω%t) 0

0 0 1

⎞
⎠
⎛
⎝
xR − ICCx

yR − ICCy

θ

⎞
⎠+

⎛
⎝

ICCx

ICCy

ω%t

⎞
⎠ (4)

Using Eq. (4) we are able to predict the movements of a robot with a differential
drive over time providing that we know the speed of the wheels vR and vL. In
control engineering someone would also be interested to compute values for vR and
vL in order to reach a certain goal location. Searching for such values is also known
as inverse kinematics problem. In case of a differential drive we are not able to
compute such velocities. Instead what we can do is to separate this problem. We are
able to move on a straight line and we are also able to rotate the robot on its current
place. Hence, the problem of reaching an arbitrary location can be solved rotating
the robot such that there is only a straight movement necessary to reach the goal,
and afterwards move forward.

Without any doubt the given equations provide a model that explains the kinemat-
ics of a differential drive robot providing that the relevant information like the wheel
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speeds, the robot’s dimensions, and the current location of a robot together with
its direction is known. However, in the following, we will not use those equations
directly. Instead we will focus on an abstraction of the behavior for diagnosis and
also for implementing self-healing behavior. The abstraction we are going to use can
be easily obtained from the cases we distinguished for the robot’s movement pro-
viding the wheel speeds. For example, we might consider a finite number of values
for speed, i.e., either the speed is 0 or the positive or negative nominal value. In this
case the domain would be {v−n , 0, v+n }. Using this domain we are able to formalize
the ordinary behavior of a differential drive robot using first order logic (FOL) as
follows:

val(vL, v
+
n ) ∧ val(vR, v+n )→ motion(straight line)

val(vL, v
+
n ) ∧ val(vR, v−n )→ motion(rotateclockwise)

val(vL, v
−
n ) ∧ val(vR, v+n )→ motion(rotatecounter clockwise)

val(vL, 0) ∧ val(vR, 0)→ motion(stop)

In the rules we use the predicate val/2 stating that a particular speed given as
first argument has the value given in the second argument. The predicate motion/1
is for establishing that a certain motion pattern is valid, i.e., either following the
straight line or rotating clockwise or counter clockwise. The first rule formalizes the
case where a robot moves on a straight line. The second is for indicating the case of
clockwise rotation. The third one is for rotating counter clockwise, and the last one
specifies the case where the robot stops moving. Note that this formalization does
not comprise the case where the speed of one wheel is set to a value unequal 0, and
the one of the other wheel is set to 0. Such a setting would also lead to a rotation
and can be easily added to the abstract model if required.

The control problem of reaching a certain location can be represented using
abstract values for the speed of the wheels. The following sequence assures that
the robot first rotates and afterwards moves straightforward.

(vL = v+n , vR = v−n )0, (vL = v+n , vR = v+n )1

In this representation, we use (. . .)i to indicate given values to be used at time i.
Note that we do not consider a specific time. Instead each element indicates a state
occurring at a particular point in time and lasting for a certain period. Hence, the
presentation abstracts not only the values but also time. In the following section we
show how such abstract models can be used for identifying the cause of a detected
misbehavior. For example, we will consider the case of a differential drive robot
that follows a wrong trajectory. In Fig. 2 we depict such a case, where a robot is
expected to rotate clockwise followed by moving on a straight line but follows a
curve. Obviously in this case either the speed of the left wheel is too low or the one
of the right wheel too high.
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Fig. 2 A small mobile robot
driving the wrong trajectory

3 Model-Based Reasoning

The underlying idea behind model-based reasoning is to use a model of a system
directly to reason about the system. In one instance, i.e., model-based diagnosis, the
system’s model is used for identifying root causes in case of an observed behavior
that contradicts the expected one. A model in model-based diagnosis (MBD) com-
prises the system’s structure including its components and interconnections, as well
as the component models. The health state of components, i.e., a predicate indicating
whether a component is working as expected or not, is used to indicate a root cause.
In this terminology an incorrectly working component maybe an explanation for
the detected unexpected deviation in the observed behavior. Davis [11] was one of
the first outlying basic principles behind MBD that Reiter [46] and De Kleer and
Williams [13] further formalized and extended.

It is worth noting that in classical MBD the component models only describe
the correct behavior. This makes the theory general applicable even in cases where
there is no knowledge about faults and their consequences available. De Kleer et
al. [14] later presented an extension incorporating models of faulty behavior into
the theory including some theoretical consequences. For example, in MBD without
fault models every superset of a diagnosis itself is a diagnosis, which is not the
case when using fault models. Note that there is a close relationship between MBD
and other diagnosis theories like abductive diagnosis [21]. In abductive diagnosis,
symptoms are explained based on hypotheses, which—more or less—represent
known faulty behavior. Console and Torasso [7] showed how to integrate also
correct behavior into abductive reasoning, and later Console et al. [8] showed that
abductive diagnosis is MBD using models of faulty behavior.
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In this section, we recall the basic foundations behind MBD and also abductive
diagnosis. For this purpose, we make use of the differential drive robot as a running
example. In contrast to the mathematical model of the kinematics outlined in
Sect. 2, we will use an abstract representation, which we initially discussed in
the same section. Because of the fact that diagnosis relies on systems comprising
interconnected components, we first start with such a component-oriented model
for a differential drive robot. In Fig. 3 we depict such a robot where each wheel has
a wheel encoder attached and is connected to an electric motor that drives the wheel.
The wheel encoder is for giving feedback to a controller that supplies the motors of
the left and the right wheel with their expected voltage level.

In Fig. 4 we summarize the component-oriented representation of the differential
drive robot. The control component C is connected to motor ML and MR . The
motors are connected to their corresponding wheels WL and WR , respectively. With
attached wheel encoders EL and ER the rotational speed of the wheels is given back
to the controllerC. Hence, the motors work as actuators whereas the wheel encoders
as sensors.

The behavior of each component can be specified again in an abstract way using
the value domain {v−n , 0, v+n } where distinguish a negative nominal value, zero, and

Fig. 3 A small mobile robot
comprising a differential
drive with two motors and
two wheel encoders for
obtaining the wheels’ rotation

Fig. 4 The
component-oriented model of
the differential drive robot
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a positive nominal value, respectively. For example, if the input to the motor is a
positive nominal value, then its output, i.e., its rotational speed, is also a positive
nominal value. We can similarly define the behavior of a wheel and the wheel
encoders. We will further formalize the components’ behavior when introducing
MBD and afterwards abductive diagnosis in the following subsections.

3.1 Model-Based Diagnosis

In this subsection we outline the basic definitions of MBD from Reiter [46] in
slightly adapted form. According to Reiter, MBD allows to reason directly from
models and is therefore also called reasoning from first principles. A system model
itself comprises components, their interconnections, and the components’ behavior.
All components of the system that might cause a misbehavior are assumed to be
element of a set COMP . The structure and behavior has to be specified in a formal
form in SD. Formally, a system (model) according to Reiter is defined as follows:

Definition 1 (Diagnosis System) A pair (SD,COMP) is a diagnosis system
providing that SD is a system description comprising a model of the system, and
COMP a set of system components.

Using Definition 1 we are able to represent the differential drive robot as
diagnosis system as follows: We start with the components. In the representation
we only take care of components, which we want to classify as faulty or correct.
Hence, in this example, we only consider the motors and the wheel encoders to be
faulty, ignoring the health state of the control component and the wheels, so that:

COMPR = {ML,MR,EL,ER}
Despite this design decision, we have to formulate a model of the wheels as well.

Basically, we have to state that if there is a rotation applied at the axis, it is also
provided to the wheel encoder. Using FOL, we are able to express this behavior as
follows:

∀X : wheel(X)→ (∀Y : domA(Y )→ (val(in(X), Y )↔ val(out (X), Y )))

In the above rule we make use of a predicate value/2 to assign a value to a port
of a component, where we assume that a wheel has only one input and one output.
We further restrict the values using the predicate domA/1 to three values as follows
representing the abstract value domain introduced in Sect. 2.

domA(v
−
n ) ∧ domA(0) ∧ domA(v

+
n )

Note that in this domain we only consider nominal speed and speed 0. If needed
in an application scenario, we might either use more abstract values or to use even
models based on the continuous domain. In the former case, it is important to
consider all abstract values that allow us to distinguish the different behavior of
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a system we want to diagnose. In the latter case, we might have to use a different
underlying reasoning system for diagnosis.

In addition to the domain description, we add the information that we have two
wheels to the model stating:

wheel(WL) ∧ wheel(WR).

The models for the motors and the encoders can be similarly formalized. In both
cases there is only one input and one output. If the input is zero, then the output
has also to be zero. If it is a nominal value, the value is propagated to the output.
However, in contrast to the wheel, we now have the situation that a component might
fail. In this case we do not know its behavior. In order to distinguish the health state
of a component, we use a new predicate Ab/1 for each element of COMPR that
if true, states that the component is faulty. For MBD we only specify the correct
behavior requiring to formalize a rule in case ¬Ab is true. For the motor and the
encoder, we use the following rules for this purpose:

∀X : motor(X)→ (∀Y : domA(Y )→ (¬Ab(X)
→ (val(in(X), Y )↔ val(out (X), Y ))))

∀X : enc(X)→ (∀Y : domA(Y )→ (¬Ab(X)
→ (val(in(X), Y )↔ val(out (X), Y ))))

Again, we also represent the structure of the system formally:

motor(ML) ∧motor(MR) ∧ enc(EL) ∧ enc(ER)

What is missing to finalize the FOL model, is a representation of the structure.
This can be easily done, connecting the ports of the components:

val(out (ML),X)↔ val(in(WL),X) ∧ val(out (WL),X)↔ val(in(EL),X)

val(out (MR),X)↔ val(in(WR),X) ∧ val(out (WR),X)↔ val(in(ER),X)

Although we do not model the control component directly, we add some rules
stating what should be the case for given motion patterns like stop, going straight, or
rotating. The following rules formalize the motion patterns. There we only state the
expected values of the different ports for the motors so that they would provide the
expected motion pattern, which should also be visible at the outputs of the encoders.

stop→ (val(in(ML), 0) ∧ val(in(MR, 0)))

straight → (val(in(ML), v
+
n ) ∧ val(in(MR, v

+
n )))

rot clk→ (val(in(ML), v
+
n ) ∧ val(in(MR, v

−
n )))

rot invclk→ (val(in(ML), v
−
n ) ∧ val(in(MR, v

+
n )))
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The set of all the discussed FOL rules constitute the system description for the
robot example SDR .

After formalizing a diagnosis system, we have to state a diagnosis problem.
Diagnosis is necessary if an observed behavior is in contradiction with the expected
behavior, which we derive from the system description, i.e., the model. Hence, a
diagnosis problem has two ingredients: (1) the diagnosis system and (2) a set of
observations stating values for connections between components or equally good
the ports of components. Formally, a diagnosis problem is defined as follows:

Definition 2 (Diagnosis Problem) A tuple (SD,COMP,OBS), where
(SD,COMP) is a diagnosis system and OBS a set of observations, is a diagnosis
problem.

For our robot example, we can easily state a diagnosis problem. For example, let
us assume the faulty behavior we depict in Fig. 2. In case of the expected straight-
line movement, we see a curve going to the left. Let us further assume that the
encoder of the left wheel does not give us back the nominal value but the one of the
right wheel does. Note that this assumption explains the actual behavior assuming
that the left motor has less number of revolutions than expected. For this diagnosis
problem, we can easily state the observations OBSR:

OBSR = {straight,¬val(out (EL), v+n ), val(out (ER), v+n )}

Note that predicates or rules given in a set are assumed to be true. Thus
all elements of such sets can be considered as being connected using logic
conjunctions, i.e., ∧. Given a diagnosis problem, we are now interested in finding
diagnoses. We first define a diagnosis formally.

Definition 3 (Diagnosis) Given a diagnosis problem (SD,COMP,OBS). A set
% ⊆ COMP is a diagnosis if and only if SD ∪ OBS ∪ {Ab(C)|C ∈ %} ∪
{¬Ab(C)|C ∈ COMP \%} is satisfiable.

In this definition of diagnosis, we are searching for an assignment of health
states to all components, which eliminates all contradictions with the given obser-
vations. For example, (SDR,COMPR,OBSR) would lead to a contradicting
logical sentence when assuming all components to be correct, i.e., setting their
corresponding negated predicate ¬Ab to true, because in this case we would expect
val(out (EL), v

+
n ) to be true, which contradicts OBSR . When setting Ab(ML) to

true and all other components to be working as expected, we are able to eliminate the
contradiction. Hence, {ML} is a diagnosis. Unfortunately, assuming all components
to be faulty would also be a diagnosis according to Definition 3. Therefore, we need
a stronger definition of diagnosis, which focuses on parsimonious explanations.

Definition 4 (Minimal Diagnosis ) Given a diagnosis problem (SD,COMP,OBS).
A diagnosis % for (SD,COMP,OBS) is a minimal diagnosis if and only if there
exists no diagnosis %′ that is a subset of %.
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The definition of minimal diagnosis assures that only the smallest diagnoses in
terms of the subset relation are considered. In case of our robot example, we obtain
two minimal diagnoses {ML} and {EL} indicating that either the left motor or the
left encoder is not working as expected. From here on, we assume if not otherwise
stated that we are interested in minimal diagnoses only.

Computing minimal diagnoses is computationally expensive. In particular, the
problem of searching for a minimal diagnosis is NP-complete providing that a
theorem prover or any other reasoning algorithm can check satisfiability in linear
time, which is not even the case for propositional logic where we know that the
satisfiability problem (SAT) is itself NP-complete. However, in practice this is not
so much a big deal, because we are mostly not interested in finding all minimal
diagnoses but also the smallest ones with respect to cardinality. Moreover, in most
cases there are enough single fault or double fault diagnoses, and the challenge is
more to reduce the number of diagnosis candidates.

In literature there are many diagnosis algorithms discussed in detail. Greiner
et al. [25] discussed a corrected version of Reiter’s diagnosis algorithm outlined
in [46], which makes use of conflicts for computing diagnoses. For more details
about conflicts and further issues regarding MBD we refer to [46]. More recently,
Felfernig et al. [18] presented the FastDiag algorithm, which allows computing
diagnoses directly from the model. Nica et al. [41] presented an empirical evaluation
of different diagnosis algorithm focusing on runtime. To be self-contained we
briefly outline a simple algorithm for diagnosis, which makes use of a theorem
prover like Prover9 [35] for checking satisfiability of the system description, the
observations together with the health assumptions. The theorem prover is called
using the function TP and takes a set of rules and facts as input. It returns consistent
if the given argument is satisfiable and inconsistent, otherwise.

The CompMBD algorithm (Algorithm 1) computes minimal diagnoses up to
a cardinality n. Minimality is assured because in Line 4 we remove all supersets
of components that are already diagnoses. The algorithm obviously computes all

Algorithm 1 CompMBD ((SD,COMP,OBS), n)
Input: Given a diagnosis system (SD,COMP), a set of observations OBS, and a number n ∈
{1, . . . , |HYP |}.

Output: A set of minimal abductive diagnoses up to cardinality n
1: Let %S = ∅
2: for i = 1 to n do
3: Let C be the set of all combinations of elements of HYP of size i.
4: Remove from C all elements where there exists a subset in %S .
5: for % in C do
6: if TP(SD ∪ OBS ∪ {Ab(x)|x ∈ %} ∪ {¬Ab(x)|x ∈ COMP \ %}) is consistent

then
7: Add % to %S .
8: end if
9: end for

10: end for
11: return %S
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diagnoses because we consider all combinations of components of a particular
cardinality in each iteration. The elements in %S have to be diagnoses according to
Definition 3 because of the theorem prover call in Line 6. The runtime complexity
is in the worst case O(2|COMP |) ignoring the complexity of the theorem prover
call because we search for diagnosis considering all combinations of components.
CompMBD should therefore only be used in a small value of n preferable smaller or
equivalent to 3, which seems to be sufficient for practical applications, where we are
mainly interested in a small number of diagnoses as already discussed previously.

But how to obtain a small number of diagnoses? How can we select the most
likely diagnoses and do not need to consider all computed diagnosis candidates? In
literature we find two practicable reasonable answers to these questions. De Kleer
and Williams [13] introduced a probabilistic framework for MBD. There the authors
discuss how to assign probabilities to diagnoses. For this purpose, we need the
probability that a given component C ∈ COMP fails, i.e., pF (C). If we know
this probability for each component, we are able to assign a probability to each
diagnosis % ⊆ COMP as follows:

p(%) =
∏
C∈%

pF (C)
∏

C∈COMP \%
(1− pF (C)) (5)

Hence, when using the probability of a diagnosis we can come up with a ranking
of diagnoses presenting the most likely diagnosis first. Note that either the fault
probabilities of components can be obtained due to the availability of reliable
empirical data, e.g., from experiments, or we assign probabilities correspondingly
to expectations. In the latter case, we might consider one component to be more
likely to fail than another.

Alternatively to using probabilities, De Kleer and Williams suggested to make
use of probing. For example, if we know that the encoder of our differential drive
robot delivers the correct result given the motor’s speed, we can conclude that only
the motor has to be responsible for the wrong behavior. Hence, measuring values
at certain connections between components can restrict the number of diagnoses.
In their paper, De Kleer and Williams presented an optimal probing strategy that
reduces the number of diagnoses with the least number of additional measurements.
When using such a strategy, we are able to finally come up with a single fault
diagnosis.

An alternative strategy for reducing the number of computed diagnoses is based
on the introduction of fault models. There we make use of the faulty behavior of
components to restrict the number of valid diagnoses given the observations. Struss
and Dressler [57] discussed the integration of fault models into a general diagnostic
framework, and—as already mentioned—De Kleer et al. [14] introduced a theory of
diagnosis with fault models. Because of the increase in the search space, i.e., we do
not only need to check all subsets of the set of components but also each possible
mode, using fault models is not feasible forlarger systems. Friedrich et al. [22]
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presented an alternative way of reducing the number of diagnoses without the need
for fault models. The authors suggested to specify logical rules representing physical
necessities. If such a rule is violated during diagnosis, there is contradiction and
the corresponding behavior is physically impossible. Using physical impossibilities
does not change the overall computational complexity and effectively reduces the
number of computed diagnoses.

3.2 Abductive Diagnosis

In contrast to MBD where we model only the correct behavior of components,
abductive reasoning deals with models of the faulty behavior. From a logical per-
spective abductive reasoning makes use of hypotheses to explain certain symptoms.
We have rules of the form hypothesis → symptom. Abduction is reasoning in
the opposite direction of the implication →. In case of abductive diagnosis the
hypotheses represent different health states of components, which cause a certain
behavior.

The following formalization is extension of the definition of Friedrich et al. [21]
where the authors focused on propositional horn clause abduction problems, i.e.,
abductive diagnosis based on propositional logic dealing with implication rules and
facts only. We first define abductive diagnosis systems similar to diagnosis systems
in MBD.

Definition 5 (Abductive Diagnosis System) A pair (SD,HYP ) is an abductive
diagnosis system where SD is a logical model, and HYP a finite set of hypotheses.

The definition of abductive diagnosis system is similar to Definition 1. The
difference is that in case of MBD we have a set of components whereas in the case
of abduction we use hypotheses. This change is due to the fact that in case of MBD
we only consider the Ab and ¬Ab health state for each component but we may have
more health states when dealing with abduction.

To illustrate the definitions, we make again use of our differential drive robot
example but simplify the model. Instead of using all components of the robot (see
Fig. 4), we focus on the motors only. We first specify what is going to happen in
case the motor is running as expected, too slow, or too fast. Such a behavior can be
formalized in a general way as follows:

∀x : (motor(x) ∧ expected(x))→ nominalspeed(x)

∀x : (motor(x) ∧ tooslow(x))→ reducedspeed(x)

∀x : (motor(x) ∧ toof ast (x))→ increasedspeed(x)
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In these rules the predicates expected/1, tooslow/1, and toof ast/1 represent
the health states of the motors. We state that our system has two motors:

motor(mL) ∧motor(mR)

Furthermore, we introduce three rules stating that we can only have one speed
for a motor at each time.

∀x : ¬(nominalspeed(x) ∧ reducedspeed(x))
∀x : ¬(nominalspeed(x) ∧ increasedspeed(x))
∀x : ¬(increasedspeed(x) ∧ reducedspeed(x))

These three rules are for assuring that only one of the predicates representing
speed can be true at a time. To finalize the model for abductive diagnosis, we
introduce rules deriving a motion pattern for a mobile robot. The goal is to classify
the observed behavior like given in Fig. 2 using a single predicate. Depending on
the speed of the left and right motor, we obtain the following motion patterns:

(reducedspeed(mL) ∧ nominalspeed(mR))→ lef t curve

(reducedspeed(mL) ∧ increasedspeed(mR))→ lef t curve

(nominalspeed(mL) ∧ increasedspeed(mR))→ lef t curve

(nominalspeed(mL) ∧ reducedspeed(mR))→ right curve

(increasedspeed(mL) ∧ reducedspeed(mR))→ right curve

(increasedspeed(mL) ∧ nominalspeed(mR))→ right curve

(nominalspeed(mL) ∧ nominalspeed(mR))→ straight

In this example, we distinguish three motion patterns, which we want to explain
using abductive diagnosis. The introduced rules are element of SDA and HYPA =
{expected(mL), tooslow(mL), toof ast (mL), expected(mR), tooslow(mR),

toof ast (mR)}. (SDA,HYPA) states an abductive diagnosis system for our
differential drive robot example.

Before defining abductive diagnosis formally, we introduce the definition of an
abductive diagnosis problem.

Definition 6 (Abductive Diagnosis Problem) A tuple (SD,HYP,OBS) is an
abductive diagnosis problem where (SD,HYP ) is a abductive diagnosis system
and OBS is a set of observations.

This definition of a diagnosis problem is similar to the model-based diagnosis
definition. For our running example the tuple (SDA,HYPA, {lef t curve}) repre-
sents an abductive diagnosis problem. A solution to this problem is an explanation
for the observations, where an explanation is a conjunction of hypotheses that allow
to derive the given observations.
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Definition 7 (Abductive Diagnosis) Given an abductive diagnosis problem
(SD,HYP,OBS). A set % ⊆ HYP is a diagnosis if and only if

1. SD ∪% |* OBS, and
2. SD ∪% is satisfiable, i.e., SD ∪% �|* ⊥

In this definition, we make use of logic reasoning to define abductive diagnosis.
In the first part, we require that the given observations, i.e., the observed symptoms,
can be logically derived (|*) from the model SD together with the hypotheses in %.
The second part assures that we cannot trivially obtain OBS, which would be the
case if SD together with % is inconsistent, because we can derive anything from
inconsistent theories.

We furthermore define minimal abductive diagnoses as follows:

Definition 8 (Minimal Abductive Diagnosis) Given an abductive diagnosis prob-
lem (SD,HYP,OBS). An abductive diagnosis % ⊆ HYP for the given diagnosis
problem is a minimal diagnosis if and only if there is no other diagnosis %′ that is a
subset of %.

For the differential drive robot example and the abductive diagnosis problem
(SDA,HYPA, {lef t curve}) we are able to compute three different minimal abduc-
tive explanations:

{tooslow(mL), expected(mR)}
{tooslow(mL), toof ast (mR)}
{expected(mL), toof ast (mR)}

Either the left motor mL is too slow, providing that mR is running as expected
or faster, or the right motor is running faster providing mL being slower or running
at nominal speed. This result might be further reduced measuring the speed of the
motors and comparing it with the expected values. It is worth noting that we are
also able to make use of a slightly changed definition of diagnosis probability from
Eq. (5). In case of abductive diagnosis we assume that we know the probabilities
for each health state, i.e., each element in HYP . Hence, the definition of diagnosis
probability can be simplified.

pA(%) =
∏
x∈%

p(x)

In case of our robot example, we might state that the expected behavior is much
more likely. In this case we would prefer the first and the last of the three diagnoses.

Similar to MBD abductive diagnosis is at least NP-complete. In the following,
we outline a basic algorithm for computing all abductive diagnosis up to a specific
size. The algorithm is not optimized. For other algorithms we refer the interested
reader to [39] and [31].
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Algorithm 2 CompAD ((SD,HYP,OBS), n)
Input: Given an abductive diagnosis system (SD,HYP ), a set of observations OBS, and a

number n ∈ {1, . . . , |COMP |}.
Output: A set of minimal diagnoses up to cardinality n
1: Let %S = ∅
2: for i = 1 to n do
3: Let C be the set of all combinations of elements of COMP of size i.
4: Remove from C all elements where there exists a subset in %S .
5: for % in C do
6: if TP(SD ∪HYP) is consistent then
7: if TP(SD ∪HYP ∪ ¬OBS) is inconsistent then
8: Add % to %S .
9: end if

10: end if
11: end for
12: end for
13: return %S

Algorithm 2 implements the abductive diagnosis algorithm CompAD where we
go through all subsets of the hypothesis set and check for diagnosis. In Line 6 we
first check whether the hypotheses are consistent with the system description. If this
is true, we check whether we are able to derive OBS using SD together with HYP .
This has to be the case if assuming that the observations are not valid (¬OBS)
together with SD and HYP leads to an inconsistency. The algorithm obviously
terminates and computes all minimal abductive diagnoses up to a size n. Minimality
is assured because we remove all supersets of already detected diagnoses in
Line 4.

3.3 Summary on Model-Based Reasoning for Diagnosis

The presented diagnosis approaches, i.e., MBD and abductive diagnosis, have been
successfully used in practice. Whereas MBD makes use of a model capturing the
correct behavior of components for computing diagnoses, abductive diagnosis relies
on fault models. Both approaches rely on models that can be formally represented
and where a reasoning mechanism is available for checking satisfiability. It is worth
noting that we do not necessarily rely on FOL, propositional logic or any other logic
formalism. We may also make use of constraints to represent models and constraint
solving for checking satisfiability. For an introduction into constraints and constraint
solving we refer to Rina Dechter’s seminal book [16].

Although both diagnosis approaches are computationally demanding, current
work, e.g., [41] and [31], has shown that MBD and abductive diagnosis can be
used for practical applications and that their worst case computational complexity
is not a limiting factor in practice. The only more severe restrictions of course are
the necessity to have models that can be used for diagnosis. Obtaining such models
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in practice is not always that simple, but due to the increasing importance of models
for system development, this challenge seems to be solvable. There has been more
recent work dealing with obtaining models from available development artifacts,
see, e.g., [64].

4 Modeling for Diagnosis and Repair

Model-based reasoning requires that we have a model of the system we want to
diagnose. In particular, we need a model that can be feed into a reasoning engine
in order to determine consistency. In the previous sections we made use of FOL
or other logics as underlying modeling language. However, model-based reasoning
is not restricted to logic as a formalism for modeling. Beside the use of a certain
modeling language a model to be used for model-based reasoning has also to provide
means for setting or characterizing the health state of components or any other
assumption we want to reason about.

In order to come up with models for diagnosis and repair, we first focus on
some modeling principles that may be used. Wherever necessary, we distinguish
modeling for MBD from abductive diagnosis. When starting modeling of systems
the first part comprises coming up with the system’s architecture, i.e., its parts
and their interconnections together with the system’s environment and interface.
The interface of the system and its context is important in order to allow systems
communicating with their environments. For modeling, we have to know this infor-
mation as well. The architecture of a system can be seen as component-connection
model where connections are interfaces between the ports of components. A
connection is for exchanging information and data. From an abstract point of view
each connection has a name and a type, e.g., a natural number or an array of
reals.

After identifying the components, their interfaces, i.e., ports, and the connections,
we have to represent the behavior of each component. In case of digital circuits
such a behavior can be expressed using Boolean logic whereas in case of physical
components differential equations would be a more appropriate form if we want
to closely describe the real behavior of components over time. It is worth noting
that the data types of the connections of course are also the same for connected
components and should be used to come up with a component model. This
component model has to capture the correct behavior in case of MDB and the
fault behavior in case of abductive diagnosis. Before discussing the differences
in modeling for MBD and abductive diagnosis, we first have a closer look at the
underlying data types.

As already said, in principle formalisms used to describe models range from
logic sentences to differential equations or even programs formulating a certain
behavior. In case of diagnosis in general such fine-grained representations of
reality are not needed and some form of abstraction is usually sufficient. Instead
of using real valued connections we might be able to distinguish some finite
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number of values that allow representing the behavior sufficiently. For example,
let us consider again the robot example. Instead of dealing with the exact values
of voltage and current used to control the number of rotations of a motor, it is
sufficient to consider the case where there is voltage applied and thus the motor
starts rotating, and the case where there is no voltage and the motor stops rotating.
We may also want to distinguish a case where the voltage is too low or too high
causing a decreased or increased speed. However, this depends on the current
application.

For modeling the behavior we therefore require to search for the right degree
of abstraction. Right in this context is informally speaking a set of values that
can be distinguished leading to different behaviors. Using abstraction has the
advantage of not requiring sophisticated simulation and requiring less computa-
tional resources. The use of abstraction for modeling is not new and has been
proposed in the context of artificial intelligence almost 30 years ago. In qualitative
reasoning (QR)1 [62] researchers have been working on coming up with different
kind of abstractions and also different underlying modeling principles. For the
latter Kuiper’s qualitative simulation [33], Forbus’s qualitative process theory
[20], and De Kleer et al.’s work on confluences [12] are worth mentioning. In
qualitative simulation, ordinary differential equations are mapped to their abstract
corresponding qualitative differential equations, which can be used to obtain all
possible behaviors of a system without knowing the exact values. In addition,
qualitative simulation also allows specifying new qualitative values in certain cases.
Qualitative process theories make use of processes for specifying the abstract
behavior of systems. There not components are of importance but processes
determining the value of variables. There are still modeling environments, e.g.,
[4], available that are mainly used for formulating from biology and sustainable
engineering.

In qualitative reasoning, we distinguish two possible cases of abstraction.
Either there is a mapping of quantities directly to their corresponding qualitative
values [10] or we represent deviations [56]. For example, in the case of an electrical
motor we might be only interested in the case where the motor is stopping, rotating
clockwise or anticlockwise. When knowing the electrical characteristics we may
come up with the following mapping:

[−12 V, −0.5 V] #→ −ω
]−0.5 V, 0.5 V[ #→ 0

[0.5 V, 12 V] #→ +ω

1In qualitative reasoning variable values are abstract representations of their original domain.
Instead of quantities like real numbers, qualitative representations are used for various purposes
like simulation or diagnosis. Because of using qualitative values the name qualitative reasoning
was established.
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In this mapping, the assumption is that the motor can take voltages from −12 V
to +12 V and that the rotational speed can be either anticlockwise (−ω), zero (0),
or clockwise (+ω). The abstract domain {−ω, 0,+ω} is totally ordered and we are
also able to introduce abstract operations for such domains to be used further on for
modeling the behavior. Of course because of abstraction we are losing information
and sometimes the operators cannot distinguish potential outcomes. In this case, the
question comes up to increase the abstract domain and to introduce new abstract
values. This process can also be automated. Sachenbacher and Struss [48] presented
a solution for automated domain abstraction.

In contrast to the direct representation of quantities as elements of an abstract
domain, deviation models only consider as the name suggested deviations from
nominal or expected behavior. Instead of stating that a value is 0.9 and therefore
lower than the expected value of 1.0, the deviation, e.g., the value is small, is used.
Hence, in case of deviation models we do not have a mapping of values to their
qualitative representation but a mapping of deviations to their representation, e.g.,
“<” for stating a value to be smaller as expected. Deviation models have been used
successfully in diagnosis, e.g., [56]. For more information about qualitative models
have a look at [58, 59].

In the following, we discuss providing models for MBD and abductive diagnosis
separately. Let us start with modeling for MBD. As already outlined we have a
component-connection model and (possible abstract) data types for the connections,
ports, and interfaces to the system environment and context. What we need now is
the behavior of components. What we do first is to come up with certain types of
components like a logical and with two inputs and one output. For each component
type we need to specify a relationship between the different ports in case the
component is working as expected. Hence, for each component C of type type we
have to come up with rules of the form ∀C : (type(C) → (¬Ab(C) → Behav))

where Behav specifies the correct behavior of component C.
In case of our mobile robot example explained in Sect. 2 and later in Sect. 3, we

defined the behavior of a motor as (val(in(X), Y ) ↔ val(out (X), Y )) stating that
every value Y on the input port in(X) has to be transferred to its output out (X) and
vice versa. Hence, we do not only specify one direction of data flow but formalize
the model in a relational way ignoring the information whether a certain port works
as input or output.

The behavior might also be given as equation like v = R · i representing a
model for an electrical resistor. In such an equation we also do not have a data
flow direction. We are only specifying relations that constraint given quantities or
qualities. Of course it is necessary that the underlying reasoning mechanism is able
to handle the given models. When relying on FOL we would not be able to specify
the resistor model as given. In this case we may use a different kind of logic or a
different (abstract) representation.

In addition, to the component models, we might also want to add rules stating
physical impossibilities [22]. For example, let us consider an analog circuit com-
prising two bulbs in parallel coupled with a battery. A simple model would state that
bulbs are lighting if there is voltage provided, and that a battery provides voltage.
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In case one bulb is lighting but the other is not, there would be two diagnoses, i.e.,
the bulb that is not lighting and also the battery. The latter diagnosis is of course
physically impossible, because an empty or broken battery cannot provide voltage.
We can solve this issue via stating the impossibility: If a bulb is lighting, then
there has to be a voltage. When adding such a rule, the battery cannot longer be a
diagnosis.

Modeling for abductive diagnosis starts with the same input, i.e., the structure of
the system. However, instead of defining the correct behavior, we are interested
in the faulty cases and their consequences. Hence, we adopt a form of cause–
effect reasoning, where causes are (faulty) health states of components and there
effect are the symptoms we observe and want to explain. In this setting symptoms
are deviations from the expected behavior. This type of modeling goes beyond
MBD where we only have the health states correct or faulty, which we repre-
sent using ¬Ab and Ab, respectively. In case of abductive diagnosis we have
one or more health states for each component, which can also be represented
using predicates. For each of these health states we present their consequences
formally in the model. For this purpose, we would usually use rules of the
form ∀C : type(C)→ (causei(C)→ eff ectsi(C)) where type(C) is the type of
the component, e.g., a Boolean and gate, causei represents the health state, and
eff ectsi the consequences following from the given cause.

Such knowledge can be easily obtained from a failure mode and effect analysis
(FMEA) [6, 26], which is regularly used in the context of safety critical systems in
order to analyze the consequences of a fault and its corresponding risks. From the
FMEA we obtain a table of the form:

Failure mode Effects Risk
.
.
.

.

.

.
.
.
.

This table can be almost directly mapped to cause–effect rules. For more details
we refer to Wotawa [64] explaining the transformation in detail.

For practical applications it would be a significant advantage to have general
modeling languages available that allows for writing models for model-based
reasoning, like for simulation where we have beside Matlab/Simulink2 other
languages like Modelica [24]. Note that in contrast to simulation where all boundary
conditions have to be known, in diagnosis we need models that allow to specify
also the unknown behavior. Modeling languages for diagnosis have to deal with
this specific requirement. Fleischanderl et al. [19] were one of the first introducing
a modeling language for MBD considering the component-connection modeling
principles and also different data types. The only limitation was the lack of
considering time information in the models. Bonus et al. [5] presented an extension

2See https://de.mathworks.com/products/simulink.html.

https://de.mathworks.com/products/simulink.html
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of Modelica that can be used of modeling for MBD. Most recently, Nica and
Wotawa [40] presented a language that also allows to come up with models
considering time.

It is also worth mentioning modeling approaches that make use of physical
models written in Modelica for fault localization using MBD and abductive
diagnosis. De Kleer et al. [15, 36] discussed an approach for extracting diagnosis
system models from Modelica models using explicit fault modes. Sterling et al.
[55] presented an approach for mapping Modelica programs to diagnosis systems
directly considering abstractions, and Peischl et al. [43] outlined the use of Modelica
programs for obtaining cause–effect models for abductive diagnosis.

In summary, (1) modeling starts with identifying the boundaries of systems and
their internal structure comprising components and their interconnections. In the
second step (2) we have a look at the underlying data types of the connections
and component ports as well as the interfaces of the system to its environment.
For the data types, we have to elaborate on abstractions that are strong enough
to distinguish the important behavioral aspects of components. If this is done, we
formalize the component behavior in step (3) where we distinguish the case of MBD
from abductive diagnosis. If we only know the correct behavior, we have to rely on
MBD and define the component behavior as relations over the component ports. In
case of abductive reasoning, we define rules of the form causes imply effects where
a cause is a certain fault of a component. For abductive reasoning, it is also possible
to determine the model from FMEAs, which are often used in engineering practice
to determine the system’s risk.

Until now, we have discussed the modeling steps for diagnosis. But are there any
specific parts when dealing with repair or self-repair? Friedrich et al. [23] were one
of the first considering repair as part of diagnosis. They formalized the repair process
including diagnosis as one part. Basically, the general diagnostic process continues
the diagnosis and probing loop until one candidate can be obtained, which should
be replaced. Hence, in the simplest form repair is only a replacement of a faulty
component. In case of fail-operational behavior or self-adaptive systems this would
be close to the spare components that can be invoked whenever the component itself
becomes faulty. However, as motivated in the introduction, we do not always have
a spare component. Here we would require to change the system in a way such that
the important functionality can still be guaranteed.

In the first case, i.e., using spare components for replacing broken components
during runtime, we do not need an additional model. For this purpose, it is sufficient
to know which component is faulty and should be replaced. Hence, both diagnosis
approaches can be used directly. This is not possible, when wanting a system to
behave as expected but maybe in a degraded mode. In such a case we need to model
the degradation. We can do this via modeling which parameters have to be changed
and how in case of a fault. Hence, we would need to specify also what can be done
in case of a specific fault. In the next section, we discuss repair in much more detail
and also provide examples for each of the different repair cases.
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5 Self-adaptation Using Models

In this section, we discuss the use of model-based reasoning for self-adaptation.
According to Weyns et al. [63] self-adaptation is the ability of a system to adapt to
dynamic and changing operating conditions autonomously, i.e., without requiring
human intervention. Self-adaptation can be seen as form of self-healing behavior,
which is also known as autonomic computing where a system can detect, diagnose,
and repair localized faults originating from software or hardware (see [30]). In
the previous sections of this chapter, we already discussed the use of models for
diagnosis purposes. Hence, we have to extend our framework to the capabilities of
repair and in particular self-repair [9].

Repair itself can be classified according to [60] in (1) attributive repair and
(2) functional repair. In attributive repair the idea is to restore the system to
its original state, whereas in functional repair the focus is only on restoring the
(important) functionality but not necessarily bringing the system back to its fault-
free state. Hence, in functional repair we are also satisfied with a degraded behavior.
Nevertheless in both types of repair we require a certain redundancy in order to
bring back the system in a desired state. For example, in software-based self-repair
[49], the reconfiguration is done on side of the user program to allow execution on
the available processors.

It is worth noting that in order to achieve self-adaptation or self-healing the
system itself has to monitor its health-state and react appropriately over time in case
the actual behavior of the system is in contradiction with its expected behavior. After
detecting such a relevant behavioral deviation, the system has to perform diagnosis
using its underlying knowledge and later on self-repair. Hence, a self-healing system
has to follow a certain system architecture. For example, IBM suggested such a
reference model for autonomic control loops [28], which is also called the MAPE-
K (Monitor, Analyze, Plan, Execute, Knowledge) loop. In this section, we introduce
a simplified architecture, which requires monitoring, diagnosis (which is a kind of
analysis), and repair (which comprises planning and execution). For all these three
steps we rely on a model, i.e., knowledge of the system.

In Fig. 5 we see on the left the classic architecture of a system that interacts
with its environment. For this purpose, we have a sensor and an actuator level for
obtaining information from the environment and interacting with the environment.
The system and their in particular the control component makes use of the
measurements coming from the sensor level and its internal state to compute values
for the actuators. For example, our differential drive robot may localize an object at
a certain position via a laser range sensor or a computer vision system and computes
the commands for the motors for moving to detected object. In case of a fault in any
parts of the system, the robot will not work as expected anymore because it cannot
detect the misbehavior and also not react accordingly.

This situation is different in case of the system architecture on the right side of
Fig. 5. There we have an additional smart diagnostics component, which takes the
information provided by the sensors together with the current state of the control



Reasoning from First Principles for Self-adaptive and Autonomous Systems 449

Fig. 5 Control system without (left) and with (right) a smart diagnostic component

component to derive a diagnosis and afterwards repair actions, which might change
the control component itself (1), the sensor information (2), or the actuators (3). For
all three cases, we are going to outline examples later in this part of the chapter.
Before, we discuss the structure of the smart diagnostics and how model-based
reasoning can be integrated.

A smart diagnostics has to monitor the current system and based on this
information to draw conclusions about the health state of the system over time.
Hence, in every step at a certain point in time t , we have to evaluate the system’s
behavior with respect to deviations from the expected behavior. For this purpose, we
can use the health state of the system obtained at the immediately previous time step
t − 1 to predict a behavior. If this behavior is equivalent to the observed value, we
know that the system is still in the same health state at time t and no further action
is required. Otherwise, we have to run diagnosis to explain the deviation and in case
of identifying the root cause to repair the system.

It is worth noting that there might be the case that a fault occurring at a time
step is only visible after more than one time step. In this case, diagnosis might give
us back a wrong result. In order to overcome this issue, the time span between two
time steps used for monitoring has to be defined as being large enough for all faults
to be visible in the observations. If this is not possible, e.g., because of underlying
physical processes requiring substantially different time spans for being observed,
we have to introduce separated monitoring/diagnosis/repair cycles for all of these
processes.

In Fig. 6 we illustrate time step t using information from the previous step t − 1.
Note that the observations are extracted from the sensor data and the internal state
of the control block. When implementing the smart diagnostics there has to be
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Fig. 6 A monitoring/diagnosis/repair cycle at time step t

a program mapping the monitored variables to their corresponding observations
OBSt . This mapping does not necessarily need to set all potential observations.
There may be observations that cannot be obtained at all points in time. But this
is not a problem for model-based reasoning because there computation is done on
available information only. It is also worth noting that in case of FOL as underlying
modeling language, the mapping has to set the truth values of predicates. All
observations that can be obtained must be true at the certain point in time t .

In Fig. 6 we also see that in case of a contradiction we call a method REPAIR and
not diagnosis. This method calls a diagnosis algorithm for identifying candidates,
selects the best candidate, and computes necessary repair steps either to bring the
system into a correct state again or in a degraded mode where the system still can
deliver its required functionality. Depending on the repair step the health state of a
system%may or may not change. In case of using spare parts the system after repair
should incorporate only healthy components. In a degraded mode, the system has
some components still not working as expected but which have been compensated.
Formally, we can define a system health state as mapping of components to their
health states.

Definition 9 (System Health State) A system health state %S for a system with a
set of components COMP is a sequence of pairs 〈(c1, h1), . . . , (c|COMP |, h|COMP |)〉
where for all components c ∈ COMP we have a corresponding (component) health
state h.
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Algorithm 3 REPAIR (SD,OBS)
Input: Given the model of a SD and a set of observations OBS at the current time t
Output: A system health state %S

1: Compute the set of diagnosis %S using either CompMBD or CompAd depending on the
diagnosis method used.

2: Select the one diagnosis % from %S .
3: Apply repair mechanisms using %.
4: Let %S be the old system health state at time t − 1.
5: if Spare part repair then
6: Change the health states in %S for all components in % to their correct state, i.e., ¬Ab.
7: end if
8: if Compensating action repair then
9: Change the health states in %S for all components in % with their corresponding health

state provided in %.
10: end if
11: return %S

In a smart diagnostics the system health state is continuously adapted over time
using the current observations and the past system health state. In the following,
we first summarize the REPAIR algorithm and afterwards introduce three possible
cases how such a smart diagnostics maybe react and why.

Algorithm 3 implements the necessary steps for repairing a system. The way a
system is repaired is not explicitly stated in the algorithm and depends on the kind
of possible action. However, we distinguish two cases either repairing via using new
components or compensating actions. A compensating action in the context of this
work is any change of parameters or health states of the system that still allow the
system to behave as close as possible to its expectations. Compensating actions are
very much application specific. Furthermore, in REPAIR we also do not specifically
describe how to select a diagnosis. In practice, we either make use of probabilities
for obtaining the most likely diagnosis, or we may make a random selection. Ideally,
the diagnosis itself should only provide us with one diagnosis. However, that cannot
be assured always. Moreover, if we select a wrong diagnosis, this will be visible
later in time when there is again a deviation with the expected values. In such a
situation we may consider changing the probabilities of faults and finally improve
reasoning and selection over time. De Kleer and Williams [13] suggested such a
process. The only issue that has to be assured is that the selection of the diagnosis
does not violate certain properties like safety. If this can be the case we further are
able to use such properties during diagnosis selection.

We now discuss the three cases of faults with corresponding repair that may occur
during operation of a system. In Fig. 5, we see three different locations of a fault:
❶ indicates a fault in the control block, ❷ states a fault in the sensor block, and ❸

represents the case of a fault on side of the actuators. For all three cases, we discuss
examples.

Control (❶): Let us consider the differential drive robot from Fig. 3 and its
architecture depicted in Fig. 4. Instead of modeling the behavior using qualitative
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domains, we now make use of equations and variables to specify the behavior.
In particular for motors we say that the voltage applied is proportional to their
number of rotations. The following rule states this behavior where sX represents
the speed of the motor and vX the applied voltage. In this rule we set the constant
stating the proportion between speed and voltage to 1.0.

∀X : motor(X)→ (¬Ab(X)→ (sX = 1.0 · vX))

Encoders can be similarly modeled. Instead of speed a rotational encoder (or
wheel encoder) returns pulses. In the following rule we assume that there are
36 pulses delivered for one full rotation. Hence, the number of pulses tX is a
function 36 · · · sX where sX is the speed that should be measured.

∀X : enc(X)→ (¬Ab(X)→ (tX = 36 · sX))

In addition, we have to model the structure, i.e., the components and connections,
of the system:

motor(mL) ∧motor(mR)

enc(eL) ∧ enc(eR)
smL
= seL ∧ smR

= seR

For this example, the above rules and equations represent the model SD and
COMP = {mL,mR, eL, eR}. Let us further assume that we have the following
observations, where the voltage comes from the control block and the number of
pulses from the encoders.

vmL
vmR

teL teR

2.0 V 2.0 V 72 72

In this case, obviously everything is fine and there is no contradiction with
the expectations. Let us now consider the case of a robot following the wrong
trajectory depicted in Fig. 2. For this case, we would receive observations like
the following, where the number of pulses on the left side is small than expected:

vmL
vmR

teL teR

2.0 V 2.0 V 54 72

Using MBD, we are able to compute the two minimal diagnoses: {mL} and
{eL}. This result can be further improved when using physical impossibilities or
other known properties, e.g., stating that a broken encoder would not deliver any
pulses, i.e., ∀X : enc(X)→ (¬Ab(X) ∨ tX = 0). In addition, we might extend
the model also to compensate the fault. In this example, the left motor is not
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running the right speed. If extending the voltage, we may speed up the motor.
Hence, we may come up with a component representing the proportionality
factor between the voltage and the speed. The new model would look like:

∀X : motor(X)→ (¬Ab(X)→ (sX = cX · vX))
∀X : const (X)→ (¬Ab(X)→ (cX = 1.0))

const (cL) ∧ const (cR)
cmL
= ccL ∧ cmR

= ccR

The set of components would be COMP = {mL,mR, eL, eR, cL, cR}. Using
this model together with the rule stating the property that broken encoders do
not deliver pulses, we obtain again two minimal diagnoses but this time: {mL}
and {cL}. The encoder is not a diagnosis anymore because we observe pulses.
Let us now take a closer look at diagnosis {cL}. When the constant is wrong, any
value for variable ccL can be inserted. Using an equation solver a value of 0.75
for ccL explains the lower value of teL . Assuming that this reduction of speed
when providing the same voltage is—more or less—equally distributed over the
working range of the input voltage, we would multiply the voltage with 1

0.75
which equals to 1.33 before using it as input for the left motor.3

In this example, the compensation would be valid until new observations
contradict again the behavior, maybe leading to further adaptations of the input
voltage. Moreover, the diagnosis {cL}with its corresponding compensating value
would be part of the system health state of the differential drive robot. The repair
rule for this diagnosis would state how to compute the compensating value and
how to apply it. The application may be either part of the component block, or
before or in the actuator block of the smart diagnostics architecture (see Fig. 5
right picture).

Sensor (❷): In the second example, we illustrate how smart diagnostics can be
used for sensor fusion and there in particular on identifying contradictions in sen-
sor information and to react in an appropriate manner. For illustration purposes
let us consider a mobile robot comprising the three sensors, inertial measurement
unit (IMU), computer vision system (CVS), and the wheel encoders. All of
this sensor can be used to identify the direction a robot is moving. From the
IMU we would get an acceleration vector in the direction of movement when
starting. The CVS can provide among other things an optical flow indicating
the direction, and from the encoders we receive pulses where the difference
indicates the direction. In the following we formalize the behavior of the different
sensors:

3In practice, someone might make use of a more sophisticated process after detecting such a fault.
A search procedure might be used to find the right voltage levels for the left motor in order to
guarantee moving on a straight line.
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∀X : imu(X)→ (¬Ab(X)→ (∀Y : accdir(X, Y )↔ dirI (X, Y )))

∀X : cvs(X)→ (¬Ab(X)→ (∀Y : optf lowdir(X, Y )↔ dirV (X, Y )))

∀X : encs(X)→
⎛
⎝¬Ab(X)→

⎛
⎝
(equiv(X)↔ dirE(X, straight))∧
(right greater(X)↔ dirE(X, lef t))∧
(lef t greater(X)↔ dirE(X, right))∧

⎞
⎠
⎞
⎠

Note that dirI /2, dirV /2, and dirE/2 are predicates for representing the current
direction of the IMU, the CVS, and the encoders, respectively. In this example,
we do not distinguish the encoders for the different wheels. We only assume that
we know their number of pulses and are able to compare them leading to the
respective truth values for the corresponding predicates.
In order to check consistency we further have to come up with consistency
properties stating that all the different direction values should be the same.

∀X : ∀Y : ∀Z : ∀V : (dirI (X, V ) ∧ dirV (Y, V ) ∧ dirE(Z, V )).

Moreover, we have to state that each sensor is only allowed to deliver one value
at a particular time.

∀X : ∀V : ∀W : dirI (X, V ) ∧ dirI (X,W)→ V = W

∀X : ∀V : ∀W : dirV (X, V ) ∧ dirV (X,W)→ V = W

∀X : ∀V : ∀W : dirE(X, V ) ∧ dirE(X,W)→ V = W

After specifying the structure of the system comprising three components
COMP = {imu1, cvs1, encs1} using the following rules, we obtain a complete
model for sensor fusion:

imu(imu1) ∧ cvs(cvs1) ∧ encs(encs1)

Let us assume now that we obtain the following observations:

OBS = {accdir(imu1, straight), optf lowdir(cvs1, right),

equiv(encs1)}.

From SD and OBS and assuming all components to work correctly we get a
contradiction because the CVS is returning a different value. From the model,
we are able to compute two minimal diagnoses, i.e., {cvs1} and {imu1, encs1}.
When focusing on the smallest diagnosis first, we would disable the CVS, which
is the repair action for this example. Note that in this example we do not have
a compensating action. Instead we simply turn off a component, which would
not influence the rest of the system because the other two sensors determine the
value used for further controlling the robot.
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Actuator (❸): In the last example, we show the case of spare parts. Assume that
we have the differential drive robot but this time we add power circuits for
providing enough voltage and current for the motors. When using a similar
model than in Sect. 3, we can determine which motor is faulty and therefore,
which power circuit should be replaced. If we have a hardware architecture with
integrated spare parts that can be enabled, the repair action would simply enable
the new power circuit and disable the old one.

The presented approach for repairing detected and localized faults based on
models has the advantage of relying on system models and therefore always
delivering the best possible diagnoses for the given observations and the system
model. We do not rely on data for learning diagnosis, therefore the approach can be
used even in situations where such data is not available, e.g., after the development
of systems where no feedback from its use is available. The approach allows for
implementing fail-operational systems. We can assure that the proposed diagnosis
fulfills given properties before applying it. Furthermore, the underlying algorithms
deliver all minimal diagnoses as explained in this chapter. In order to prove that
the approach is working as expected, we have to validate the model and there in
particular their capabilities of specifying the behavior of the system. In this section,
we further discussed how to use diagnosis for coming up with repair suggestions
and how to integrate them in a smart diagnostics.

6 Related Research

The use of model-based reasoning for self-adaptation is not new. Rajan et al. [45]
discussed the use of model-based reasoning in a combination with planning to form
a new control system for an automated space probe, which was successfully tested
in space. Later Hofbauer et al. [27] and Brandstötter et al. [3] introduced a model-
based adaptive system that allows a robot adapting its drive in case of a fault in a
motor. There the authors suggested to use hybrid automata for modeling where each
state of the automata represents a certain health state of the robot. Besides diagnosis
the approach also allowed to adapt the kinematics autonomously.

Besides reacting on hardware faults, there is also work on dealing with software
faults occurring during operation. Steinbauer et al. [54] discussed a model-based
approach for a mobile robot control system that is able to reduce the number
of software processes that have to be restarted in case of a crash. The presented
approach relies on an abstract model of the software considering the dependencies
between software components. For an overview of the use of model-based reasoning
to self-adaptive behavior, we refer the interested reader to [53].

Krenn and Wotawa [32] introduced another interesting approach to implement
self-healing behavior based on models. There the model captures the ordinary
behavior using rules that have to fulfill a certain goal, e.g., obtaining sensor
measurements and sending them to a particular server. By specifying alternative
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rules to achieve a certain sub-goal, it is possible to easily add redundancy. The
execution system searches for those rules that can be executed at a particular point
in time considering such alternative rules.

In the context of self-healing system research there is a lot of research dealing
with self-adaptation and self-repair. Some like [9] discuss changes in traditional
design practice in order to implement self-repair for producing systems comprising
hardware and software components. For reconfiguration of electronic devices we
refer, for example, to [2, 37, 47, 61]. For self-adapting software have a look at [38,
51] and more recently [44, 49, 52, 63]. Such software systems have to have the
ability to modify itself in response to a change in its operating environment.

In the domain of automotive systems Seebach et al. [50] presented an approach
for implementing self-healing behavior. There the authors made use of the adaptive
cruise control (ACC) system as example application. In their approach the ACC
system is deactivated and restarted after reconfiguration. Especially, in case of auto-
motive systems fail-safe properties have to be fulfilled even after reconfiguration.
Barbosa et al. [1] introduced the use of the formal modeling language Lotos to
check monitored quantities over time. In particular, the presented tool monitors the
execution traces generated by a self-adaptive system and annotates the probabilities
of occurrence of each system action on their respective transition on the system
model, created at design time as labelled transition system (LTS) that is used for
checking properties.

In the context of cyber-physical systems there has also been research published.
Niggemann and Lohweg [42] discussed the state of the art of diagnosis of cyber-
physical systems and the research questions but focusing more on production
systems. Mahadevan et al. [34] introduced the application of causal diagrams for
fault localization. The approach presented in this work relies in contrast to these
papers on model-based reasoning based on formal models.

7 Conclusions

In this chapter, we discussed the basic principles and foundations behind model-
based reasoning in detail. We motivated why reasoning based on models is of
particular interest for self-adaptive systems using a running example from the
autonomous mobile robot domain. We illustrated different challenges that occur in
this domain and discussed possible solutions. Regarding diagnosis we introduced
two different methods, i.e., (1) model-based diagnosis and (2) abductive diagnosis.
The first relies on models of system components only considering the correct behav-
ior. The latter requires knowledge about faults and their corresponding behavior. For
both approaches we outlined a simple algorithm allowing for computing minimal
diagnoses from models and observations.

Because modeling is the important part, when introducing model-based reason-
ing, we also explained how to model for diagnosis. We outlined a process that
starts with a system architecture comprising components and connections. From
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this discussed how to come up with abstract models that map potentially infinite
domains into a small set. For this purpose, we referred to qualitative reasoning and
the abstractions discussed there. Furthermore, we introduced concepts for extracting
models from other development artifacts like FMEAs or simulation models.

After presenting the basic concepts, we focused on the integration of diagnosis
for self-adaptive systems. There we introduced a system combining a smart
diagnostics with an ordinary control system interacting via sensors and actuators
with its environment. We discussed the basic repair cycle and an algorithm for
combining diagnosis with repair. In contrast to previous work we did not only rely
on simple repair actions, e.g., replacing one component with its spare part, but also
discussed how compensating actions can be integrated and used in the proposed
setting. For the latter it is worth noting that the system model itself can be used to
obtain sufficient information about the compensation.

The presented approach can be integrated into cyber-physical systems like
autonomous vehicles in order to implement fail-operational behavior where com-
pensating repair as well as automated repair using redundant hardware that can be
enabled during operation is required.
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Decentralized Modular Approach
for Fault Diagnosis of a Class of Hybrid
Dynamic Systems: Application
to a Multicellular Converter

Moamar Sayed-Mouchaweh

1 Learning from Data Streams

1.1 Basic Definitions and Motivation

A fault can be defined as a nonpermitted deviation of at least one characteristic
property of a system or one of its components from its normal or intended behavior.
Fault diagnosis is the operation of detecting faults and determining possible
candidates that explain their occurrence. Most of real systems are hybrid dynamic
systems (HDS) [1] in which the discrete and continuous dynamics cohabit. The
discrete dynamics are described by discrete state variables, while the continuous
dynamics are described by continuous state variables.

The general principle of model-based diagnosis approaches [2] is based on
the use of a model of the system normal and/or fault behaviors. Discrete-event
model-based diagnosis approaches [3, 4] describe the system as discrete mode
changes in response to the occurrence of discrete events. Therefore, they ignore the
continuous dynamics of the system. Continuous model-based diagnosis approaches
[5] represent the system dynamics as a continuous time evolution using differential
equations. However, they do not take into account the discrete changes of the system
discrete modes or configurations.

Consequently, both approaches cannot be used to perform the fault diagnosis of
HDS since in the latter both continuous and discrete dynamics and the interactions
between them must be taken into account. Hence, fault diagnosis of HDS must
deal with the evolution of continuous dynamics in each discrete mode in order to
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construct a diagnosis module (called diagnoser). The latter may be modeled in HDS
by introducing parameters into the system model or using explicit fault events or/and
fault modes.

Discretely controlled continuous systems (DCCS) [3] are a special class of
HDS widely used in the literature. They are composed by a plant with continuous
dynamics and supervisory discrete control. The latter generates discrete control
events in order to change regulator set points or the plant configuration. Their
behavior is described through a set of discrete operation modes and a set of algebraic
differential equations within each discrete mode. Transitions from one discrete
mode to another one are achieved upon discrete control events, e.g., open or close
a switch, based on continuous state conditions. This paper focuses on the fault
diagnosis of DCCS.

1.2 State of the Art

Several approaches have been proposed in the literature for fault diagnosis of
HDS. They can be divided into two main categories according to how they model
the system’s hybrid dynamics. In the first category [6–8], the hybrid model is
an extension of the continuous model by adding the system discrete modes. The
fault-free continuous behavior is defined in each discrete mode by relations over
observable variables. These relations are used in order to generate residuals sensitive
to a certain subset of faults. A fault is diagnosed when the value of the sensitive
residuals to this fault is different from zero.

In the second category, the discrete model is extended or enriched by adding
events generated by the abstraction of system’s continuous dynamics. In [9–12], a
set of residuals or guards are defined to represent the fault-free continuous dynamics
in each discrete mode. The occurrence of unobservable discrete fault generates
unpredicted transition from one discrete mode to another one. In this case, the
residuals or guards, defined for the discrete mode before the fault occurrence, are
different from zero in the discrete mode after the fault occurrence. This is due to
the fact that these residuals or guards describe the continuous dynamics’ conditions
in the normal operation conditions. This change of residuals or guards’ values in
a discrete mode indicates the occurrence of a discrete fault leading the system to
reach unpredicted discrete mode. The continuous dynamics can also be integrated
in the discrete model by using the occurrence time of events [13, 14]. In this case,
the occurrence of faults does not change events ordering but only alters their timing
characteristics. Therefore, a fault is diagnosed when predicted events occur too late
or too early or they do not occur at all during their predefined time intervals.

Finally, the events referring to the continuous dynamics can be generated by the
use of a bond graph. The authors in [15] construct temporal causal graphs (TCG)
for each normal and fault discrete mode based on the use of a global hybrid bond
graph. When measurement deviations, caused by fault occurrence, are observed
through residuals, TCG are used to determine the effects that faults have on the
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measurements as well as the temporal order in which they deviate. Then, fault
signature is defined for each fault as the qualitative values of the magnitude and the
first nonzero derivative change which can be observed in the residuals. The online
diagnosis is performed by building the current signature of the system based on the
measurements’ deviations and comparing it to each of the different fault signatures.

The common drawback of these approaches is the fact that they do not scale
to large systems with multiple discrete modes. Indeed, the fault diagnosis in these
approaches is performed based on the use of a global model representing both
the discrete and continuous dynamics. The global model can be too large to be
physically constructed for systems with a large number of discrete modes. As an
example, for telecommunication networks, as the one studied in [16], the number of
states of the global model is of the order of 210× 4300. Therefore, constructing the
global model is physically unfeasible.

1.3 Contribution of the Proposed Approach

In this chapter, an approach to perform the fault diagnosis of HDS, in particular
DCCS, without the use of a global model is proposed. This approach exploits the
modularity of the system by dividing it into several discrete components. Then, the
local model for each of the latter is built. This local model includes the normal
discrete modes as well as the ones reached in response to the occurrence of faults
impacting the discrete behavior of this component.

The continuous dynamic behavior in each discrete mode is defined by a set of
analytical redundancy relations (ARRs). An ARR is a constraint defined over the
observable continuous variables in a discrete mode [17]. They are used to generate
residuals. The latter allow evaluating the consistency between the system model
(fault-free behavior) and the real observation. A fault occurs when ARRs’ value is
different from zero. The abstraction of these residuals generates events that are used
to enrich the local discrete models. These events can turn unobservable transitions,
due to unobservable fault events, into observable transitions leading to infer the
discrete fault occurrence.

A local diagnoser is built for each discrete component based on the use of
the corresponding enriched local model. The residuals are defined in such a way
that they are sensitive only to the faults impacting the dynamic behavior of one
local component. Therefore, the events defined by the abstraction of these residuals
are generated when a fault in this local component occurs. The local diagnoser
of a component diagnoses only the faults occurring in its associated component
(see Fig. 1). This can be useful for the diagnosis of multiple faults. When faults
occurred in several components, the associated local diagnosers announce mutually
the occurrence of these faults. Apart that the diagnosis is performed without the use
of a global model, another advantage is related to the improvement of the diagnosis
robustness in the sense that when one local diagnoser is failed, the other local
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diagnosers remain operational and they continue to perform the fault diagnosis in
their respective discrete components.

The paper is structured as follows. Section 2 details the proposed approach by
explaining each of its steps presented in Fig. 1. In Sect. 2, the complexity for
constructing the local diagnosers is demonstrated to be polynomial in the size of
local models. In addition, the diagnosis obtained by the proposed decentralized
structure is demonstrated to be equivalent to a centralized diagnosis structure. The
evaluation of this approach using several simulation scenarios and the obtained
results are discussed in Sect. 3. Section 4 ends the paper by some concluding
remarks. A three-cellular converter is used throughout the paper as an example
in order to illustrate and validate the proposed approach. Power converters are
electrical systems used in order to turns the DC (direct current) power into AC
(alternating current) power, AC power into AC power, DC power into DC power,
and AC power into DC power. The three-cell converter is adapted for DC/DC and
DC/AC power conversion. It is based on the combination of three switches (cells
of commutation) allowing the current flowing from the voltage source toward the
output load.

2 Proposed Approach

The proposed approach performs the fault diagnosis based on the steps illustrated in
Fig. 1. These steps are detailed in the following subsections.

2.1 System Decomposition

DCCS consist of continuous components (Ccs) whose operation modes are switched
according to the configuration or discrete mode of its discrete components (Dcs).
In order to illustrate the proposed approach, the three-cellular converters [18],
depicted in Fig. 2, are used. The continuous dynamics of the system are described
by state vector X = [Vc1 Vc2 I]T , where Vc1 and Vc2 represent, respectively,
the floating voltage of capacitors C1 and C2 and I represents the load current
flowing from source E toward the load (R, L) through three elementary switching
cells Sj,j ∈ {1, 2, 3}. The latter represent the system discrete dynamics. Each discrete

switch Sj has two discrete states: Sj opened (hjq = 0) or Sj closed (hjq = 1), where

h
j
q is the discrete output of Sj. The control of this system has two main tasks: (1)

balancing the voltages between the switches and (2) regulating the load current to a
desired value. To accomplish that, the controller changes the switches’ states from
opened to closed or from closed to opened by applying discrete commands “CSj” or
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Fig. 1 Steps of the proposed decentralized modular approach



466 M. Sayed-Mouchaweh

Fig. 2 Three-cell converter description and decomposition

“OSj” to each discrete switch Sj,j ∈ {1, 2, 3} (see Fig. 2) where CSj refers to “close
switch Sj” and OSj to “open switch Sj.” Thus, the considered example is a DCCS.
The latter is decomposed into three discrete components S1, S2, and S3 representing
the three switches of the three-cellular converter (see Fig. 2).

Let G be the system global model and � be a finite set of events produced
by G. It includes observable �o and unobservable �u events. �c ⊆ �o where
�c is the set of controllable events, e.g., OS1, CS1. �+ is the set of all event
sequences over �. Let �∗ be equal to �+ ∪ {ε} where ε denotes the empty event
sequence. A subset L ⊆ �∗ is called a language over �. G observes the system
by one global observation mask M : �∗ → �∗o . Thus, M erases the unobservable
events in an event sequence. The inverse global observation mask is defined as:
M−1(u) = {s ∈ L : M(s) = u}. Let �f be the set of fault events which can occur
in the system. �f is partitioned into different fault types. Each fault type requires
the identification not of the fault event itself but of the type of fault when such an
event occurs in the system. Let �f = �F1 ∪ · · · ∪�Fr , where �Fj , j ∈ {1, . . . , r},
denotes disjoint sets of fault events corresponding to different fault types. It consists
of the set of faults which have the same effect according to either the configuration
or maintaining procedure.

For the three-cellular converters, eight faults can be considered for the diagnosis
[19, 20] as depicted in Table 1. This paper focuses on the fault diagnosis of discrete
faults because they are more frequent and their consequences are more destructive.
For instance, in open-circuit (stuck-off) failure, the system operates in degraded
performance. However, unstable load may lead to further damage on the system.
Therefore, the diagnosis of these faults is necessary to ensure the system safety and
quality.
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Table 1 Faults for the diagnosis of three-cell converters

Fault types Fault labels Fault event—fault description

Discrete faults F1 fs1so—S1 stuck opened
fs1sc—S1 stuck closed

F2 fs2so—S2 stuck opened
fs2sc—S2 stuck closed

F3 fs3so—S3 stuck opened
fs3sc—S3 stuck closed

Parametric faults F4 fC1—Abnormal change in the nominal values of C1 due to
C1 aging

F5 fC2—Abnormal change in the nominal values of C2 due to
C2 aging

2.2 Discrete Component Modeling

The nominal and faulty behaviors of each discrete component Dcj, j ∈ {1, . . . , n}, is
modeled using a finite state automaton Gj defined by:

Gj =
(
Qj,�j , q

j

0 , δ
j
)

where Qj =
{
q
j
k

}
is a finite set of discrete states (modes) of Dcj. It includes normal

and discrete failure states.
Gj describes the component dynamical behavior by sequences of states (repre-

senting the component discrete modes) and discrete events entailing the transition
from one state to another. Gj represents the normal behavior that this component
can execute in response to a control command event as well as faulty behaviors in
response to the occurrence of a set of predefined fault events in the system.

The output of qjk is characterized by real discrete output vector hjq ∈ {0, 1} and

nominal discrete output vector
∼
h
j

q ∈ {0, 1}. At normal discrete mode (state)
∼
h
j

q =
h
j
q , while in faulty modes

∼
h
j

q �= h
j
q. �

j = �
j
o∪�j

u is the event set of Dcj. It includes

observable events �j
o corresponding to control command events and unobservable

events �j
u . �j

u includes discrete fault events �f as well as normal but unobservable

events. qj0 ∈ Qj is the initial state. δj : Qj ×�j→ Qj is the state transition function.
A transition δj(qj, e) = qj+ corresponds to a change from state qj to state qj+ after
the occurrence of event e ∈ �j. K is the set of control command event sequences
generated by the controller and sent to the different Dcs.
Lj ⊆ �∗j is the local language of Dcj representing its local behavior. Therefore,

�, �o, and �u are equal, respectively, to �1 ∪ · · · ∪ �n, �1o ∪ · · · ∪ �no, and
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�1u ∪ · · · ∪ �nu. Similarly, a local observation mask can be defined for each local
model Gj as: Mj : �∗j → �∗jo. The natural projection from �∗ to �∗j is defined by:
Pj : �∗ → �∗j .

G can be obtained by achieving the synchronous composition [21] between
its local models: G = G1 G2 . . . Gn, where the symbol is the parallel
or synchronous composition operator. It builds the system global model from
its individual interconnected component models. In this parallel or synchronous
composition, a common event between two components can only be executed
if both components execute it simultaneously. However and contrary to product
composition, the private events which can be executed by only one component
can be executed whenever possible. Therefore, in this type of interconnection, a
component can execute its private events without the participation of the other
components. The synchronous composition between local languages produces the
global behavior of the system: L = L1 L2 . . . Ln.

The set of control command event sequences executed by Dcj is represented by

Kj. It is worth to mention that K = ‖j=nj=1

(
Kj

)
if and only if {�j} is separable [22].

This is due to the fact that because of components’ partial observation, the parallel
or synchronous composition operator between Kj may generate event sequences that
do not belong to K. Therefore, a coordinator is required in order to delete these event
sequences thanks to its limited global observation. For more details, reader can refer
to [23] and the references therein.

Figure 3 shows G1 of Dc1 of the three-cellular converter of Fig. 2. It is worth
to mention that the states with N label cannot be distinguished from states with
fault labels (F1, F2) since the real output hjq, j ∈ {1, . . . , n} is not observable or
measurable.

Fig. 3 Local model G1 for
switch S1 of the three-cell
converter
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2.3 Residual Generation Based on System Continuous
Dynamics

The continuous dynamics of the DCCS can be described in each discrete state q as
follows:

Ẋ = A(q) X + B(q) u

where X is the state vector and u is the input vector. In the case of linear systems, A(q)
and B(q) are constant matrices of appropriate dimensions.

For each discrete mode q, an analytical redundancy relation (ARR) can be
defined as a constraint based on the continuous dynamics in q. ARR contains
observable, or measurable, continuous variables and can be determined off-line.
Then, it can be evaluated online to test the consistency between the observed
behavior and the predicted one. Therefore, an ARR can be expressed as a residual r.
When ARR is satisfied, this means that the observed behavior matches the predicted
(the model) one and in this case r = 0. While in the opposite case, r is different of
zero which indicates the occurrence of a fault.

For instance, the multicellular converter with p cells or switches and a main
voltage source E has 2p discrete modes and p − 1 reference voltage (Vcjref ) of
the floating capacitors as follows:

V cjref = j
E

p
, j = 1, . . . , p − 1

The discrete controller ensures the simultaneous regulation of the load current
I and Vcj in order to be at their reference values. The dynamics of multicellular
converter with p = 3 and a load consisting of a resistor R and inductance L can be
described by [24]:

⎧
⎪⎨
⎪⎩

V̇ c1 = −h1
q

1
C1
I + h2

q
1
C1
I

V̇ c2 = −h2
q

1
C2
I + h3

q
1
C2
I

İ = −R
L
I + h1

q
1
L
V c1 + h2

q
1
L
(V c2 − V c1)+ h3

q
1
L
(E − V c2)

where u(t) = E.
The continuous dynamics of the three-cellular converter are thus described by

state vector X = [V c1 V c2 I
]T

and V c1ref = E
3 , V c2ref = 2E

3 .

The output voltage Vs for a multicellular converter of p cells can take p+ 1 levels
as follows:

Vs = Ehp +
p−1∑
j=1

V cj
(
hj − hj+1

)
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In this paper, it is assumed that only Vs can be measured.
rq can take the following expression in each q:

rq = (xm)q − x̃q
where xm is the measured continuous variable and x̃q its nominal or reference value.
x̃q can be defined as a function of the nominal discrete states or modes of the DCCS
as follows:

x̃q = f
(
q̃1, q̃2, . . . , q̃j , . . . , q̃n

)

Since each discrete component state q is represented by its output hjq , the
previous equation can be rewritten as follows:

x̃q = f
(
h̃1
q, h̃

2
q, . . . , h̃

j
q , . . . , h̃

n
q

)

For the example of the three-cellular converter, the residual rq can be defined as
follows:

rq = (Vsm)q −
(
Ṽs

)
q

(
Ṽs

)
q
= Eh̃3

q +
E

3

(
h̃1
q − h̃2

q

)
+ 2E

3

(
h̃2
q − h̃3

q

)

Let the occurrence of faults impacting a discrete component Dcj,j ∈ {1, . . . , n}
be indicated by the fault label Fj, while their absence is indicated by the label N.
The occurrence of a fault in Dcj entails an unanticipated transition to a discrete state

or mode qj different from the predicted or normal one q̃j . Therefore, h̃jq is different

from h
j
q .

In order to define a residual sensitive to the faults that can impact only one
discrete component Dcj, the residual is decomposed as follows:

rj = (xm)q −
(
x̃q
)j
, j ∈ {1, . . . , n} ,(

x̃q
)j = f

(
h1
q, . . . , h̃

j
q , . . . , h

n
q

)

rj = (xm)q − f
(
h1
q, h

2
q, . . . , h̃

j
q , . . . , h

n
q

)
, j ∈ {1, . . . , n}

Indeed, when a fault impacts a discrete component Dcj, h̃
j
q is different from h

j
q .

Therefore, rj is a residual sensitive to the faults that can occur only in the discrete
component Dcj.
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For the three-cellular converter, three residuals can be defined where each
residual rj,j ∈ {1, 2, 3} is sensitive to faults impacting one discrete component
Dcj,j ∈ {1, . . . , n}:

r1 = (Vsm)q −
(
Eh3 + E

3

(
h̃1 − h2

)
+ 2E

3

(
h2 − h3

))

r2 = (Vsm)q −
(
Eh3 + E

3

(
h1 − h̃2

)
+ 2E

3

(
h̃2 − h3

))

r3 = (Vsm)q −
(
Eh̃3 + E

3

(
h1 − h2

)
+ 2E

3

(
h2 − h̃3

))

2.4 Enriched Local Models Building

As it is explained before, the occurrence of a discrete fault entails an unanticipated
change of the continuous dynamics in a discrete state or mode. This unanticipated
change is inferred by the mean of residuals measuring the difference between the
nominal (predicted) continuous behavior and the real one observed through sensors.
These residuals can be zero, above zero, or below zero. Therefore, their abstraction
can generate three events as follows:

∀j ∈ {1, . . . , n} , {eARRj

} =
⎡
⎢⎣
rj = 0⇒ e0

j

rj > 0⇒ e+j
rj < 0⇒ e−j

These events may turn unobservable transitions into observable ones leading
to distinguish normal states (behavior) from fault ones. Therefore, these events
are integrated into the local models Gj,j ∈ {1, . . . , n} in order to obtain the
corresponding enriched ones Ghj,j ∈ {1, . . . , n}.

Ghj is defined as Mealy machine (MM) model where the control command event
(input event) is associated to an event generated by the abstraction of the residuals
(output event related to the sensor reading). Formally, Ghj can be expressed as
follows:

Ghj =
(
Qj,�

j
h, q

j

0 , δ
j
h

)

where �j
h = �j × {eARRj

}
and δjh : Qj ×�j

h → Qj .
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Fig. 4 Enriched local model
Gh1 for switch S1 (Dc1) of the
three-cell converter

Fig. 5 Local diagnoser
structure

Local diagnoser Dj

Fj,(N,Fj)

OSj, CSj

,j jh h�
0 , ,j j je e e+ −

For the three-cell converter, �1
h, �2

h, and �3
h for, respectively, Dc1, Dc2, and Dc3

are defined as follows:

�1
h =

(
�1 = {OS1, CS1}

)
×
({
eARR1

} =
{
e0

1, e
+
1 , e

−
1

})

�2
h =

(
�2 = {OS2, CS2}

)
×
({
eARR2

} =
{
e0

2, e
+
2 , e

−
2

})

�3
h =

(
�3 = {OS3, CS3}

)
×
({
eARR3

} =
{
e0

3, e
+
3 , e

−
3

})

Figure 4 shows the enriched local model Gh1 of the discrete component Dc1 of
the three-cell converter of Fig. 2.

2.5 Local Hybrid Diagnoser Construction

For each discrete component Dcj, a local diagnoser Dj,j ∈ {1, . . . , n} (see Fig. 5), is
built based on the use of the corresponding enriched local model Ghj.
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Fig. 6 Local diagnoser D1
for the discrete component
(switch) Dc1 (S1) of the
three-cell converter

For the example of the three-cell converter, three local diagnosers, D1, D2, and
D3, are built for the three switches S1 (Dc1), S2 (Dc2), and S3 (Dc3).

Each local diagnoser integrates the pure discrete events (command control
events) generated by the controller and the events generated by the abstraction of the
residuals defined based on the continuous dynamics of the system. Dj,j ∈ {1, . . . , n},
contains only the observable events. Therefore, the states linked by unobservable
transitions are fused since they are not distinguishable. In this case, states with
normal label (N) may be fused with states with a fault label. Hence, this fusion
creates confusion between the normal and faulty states. This is due to the fact that
the real output hjq, j ∈ {1, . . . , n}, is not observable or measurable. The events
generated by the abstraction of the continuous dynamics may lead a local diagnoser
to reach a state where this confusion is removed in order to confirm the occurrence
of a fault. Hence, these events allow the fault diagnosis by reaching certain states
with one fault label within bounded time. This is due to the fact that they turn
unobservable transitions into observable ones. In this case, the state real output
h
j
q, j ∈ {1, . . . , n}, can be inferred at these states with certain fault labels.

For the three-cell converter, Fig. 6 shows the local diagnoser D1 built based on
the enriched local model Gh1 (see Fig. 4) of the discrete component Dc1 (see Fig. 3).
Likewise, the other local diagnosers, D2 and D3, can be built.

Figure 7 shows the scheme of the proposed decentralized fault diagnosis of HDS.

2.6 Equivalence Between Centralized and Decentralized
Diagnosis Structures

Diagnosability property [25] ensures that a predefined set of faults can be diagnosed
by a centralized diagnoser built using a global model of the system, while co-
diagnosability [26] guarantees that these faults are diagnosed in decentralized
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Fig. 7 Proposed decentralized fault diagnosis for HDS

manner using a set of local diagnosers. A fault must be diagnosed by at least
one local diagnoser by using its proper local observation of the system. However,
co-diagnosability property is stronger than diagnosability property. If a system is co-
diagnosable, then it is diagnosable; while a diagnosable system does not ensure that
it is co-diagnosable. Therefore, it is necessary to ensure the equivalence between
centralized and decentralized diagnosis structures in the sense that if the system is
diagnosable then it is co-diagnosable.
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In the case that the controller command K is separable [22], then this equivalence
is verified without the need of a coordinator. In this case, a fault diagnosed
by a centralized diagnoser can be co-diagnosed by at least one local diagnoser.
However, when the controller language (desired behavior) K is not separable, then
a coordinator is required to ensure this equivalence. There exist several approaches
that can build the coordinator without the need of a global model. Examples of these
approaches can be found in [23] and the references therein.

For the three-cell converter, it is easy to verify that the controller command K is
separable since K = ‖j=nj=1

(
Kj

)
. Therefore, the global diagnoser D is equal to D =

‖j=nj=1

(
Dj

)
. This can be demonstrated easily as follows. Let D be the centralized

diagnoser that can infer the occurrence of any event sequence belonging to L − K.
Indeed, any fault event sequence belongs to L − K since the latter includes all the
fault sequences that the system can generate but they do not belong to the desired
behavior (represented by K). Since the controller command K is separable, then we
can write:

L−K = n‖
j=1

Lj−
n‖

j=1
Kj

L−K = n‖
j=1

(
Lj −Kj

)

D = n‖
j=1

Dj

2.7 Computation Complexity Analysis

Centralized diagnosis approaches are not suitable for large-scale systems as the
telecommunication networks. Indeed, in the latter, the global model can contain
a huge number of states. Therefore, constructing the global model is physically
unfeasible.

Let |G| be the number of states of G and |�| be the number of events in G.
The number of transitions for G is equal to |G| × |�|. Let us assume that there
are n local sites, i.e., n local diagnosers, in the system. The construction of the
global diagnoser D requires computing G. Therefore, the computation complexity
for constructing D is of the order O(|G| × |�|) = O(|Gj|n × n|�j|). Therefore, the
complexity computation of D using centralized diagnosis approach is exponential
with the number of components n.

Let |Gj|,|�j|,j ∈ {1, . . . , n}, be the number of states in local model Gj and
the number of events in �j, respectively. The construction of local diagnoser Dj

requires computing Gj. Therefore, the computation complexity of Dj is of the order
O(|Gj| × |�j|). The computation complexity of the n local diagnosers required to
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build the global diagnosis decision is of the order O(n(|Gj| × |�j|)). Consequently,
the computation complexity of the proposed decentralized diagnosis approach is
polynomial in the number of system components and the size of local models. This
computation complexity does not depend on the number of states and transitions of
the global model but it depends on the size of local models.

It is worth to mention that the proposed approach has the advantage to be scalable
in the sense that adding or removing components does not require modifying any
of the existing diagnosers but only adding new diagnosers for the new components
or removing the diagnosers for the removed components. This is not the case for a
centralized diagnosis structure where adding or removing components requires to
rebuild the centralized diagnoser from scratch.

In the proposed approach, the set of local diagnosers are built using the local
models of the system discrete components. Then, the global diagnoser can be
constructed as a synchronous composition of these local diagnosers. Since the
local diagnosers are computed using the local models, then the global diagnoser
can be computed without the need for a global model but only local models. The
global diagnoser can then be used to verify whether the predefined set of faults is
diagnosable or not. Consequently, the diagnosability property can be verified using
the proposed approach without the need for a global model.

3 Experimental Results

In order to evaluate the proposed approach, simulations were carried out for
the three-cell converter using Matlab-Simulink™ environment and Stateflow™
toolbox. The parameters used in these simulations are: E = 60 V, C1 = C2 = 40 μF,
R = 200 �, and L = 0.1 H. Figure 8 shows the proposed decentralized fault
diagnosis structure for the three-cell converter.

Discrete controller commands are assured by a pulse width modulation (PWM)
signal [24]. Figure 9 depicts the control of the three switches S1, S2, and S3. When
the triangular signal is below the reference signal (ref in Fig. 9), the associated
switch is controlled to be opened. When the triangular signal is above the reference
signal, the associated switch is controlled to be closed. This sequence of control is
periodic with a period of 0.02 s.

Test scenarios are generated for single and multiple faults as follows (see Fig. 10).
Each fault f, impacting each one of the switches (see Table 1), is generated starting
at time tsf and ending at time tef. Then, the system returns to normal operating
conditions before generating a new fault for a certain time.

The output measured voltage Vsm in response to the generated fault scenarios of
Fig. 10 is shown in Fig. 11. We can see that a stuck-on, respectively stuck-off, of
a switch adds, respectively removes, a tension level of E/3 (20 V) to, respectively
from, Vsm. In the case of multiple faults where one switch is stuck-on, respectively
stuck-off, and another switch is stuck-off, respectively stuck-on, the impact of these
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Fig. 8 Decentralized fault diagnosis structure for the three-cell converter

two faults on Vsm is masked. This is due to the fact that the consequence of one fault
(adding or removing a tension level equal to E/3) compensates the consequence
of the other fault. However, since it is impossible to have both faults at the same
time and since the diagnosis delay is less than the time between two consecutive
faults, then this multiple fault scenario can be diagnosed by the proposed approach
where the first fault is diagnosed by one local diagnoser and then the second fault is
diagnosed by a second local diagnoser.

The real state outputs, h1, h2, and h3 of switches S1, S2, and S3 according to the
generated fault scenarios of Fig. 10 are shown in Fig. 12. We can see that when a
fault occurs, the real state output does not change, react, anymore in response to the
control command events.
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Fig. 9 PWM for control of three switches S1, S2, and S3

Fig. 10 Generated single and multiple fault scenarios

Figure 13 shows the residuals r1, r2, and r3 generated in response to the fault
scenarios of Fig. 10. We can see that each residual is sensitive to a fault impacting
its corresponding discrete component (switch). Multiple faults can be diagnosed
when two or more of the local diagnosers declare a fault.
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Fig. 11 Output measured voltage Vsm in response to the generated fault scenarios of Fig. 10

Figure 14 shows the local diagnosers’ decisions in response to the fault scenarios
of Fig. 10. We can see that each local diagnoser is able to diagnose with certainty and
within bounded time the occurrence of a fault impacting its corresponding discrete
component (switch).

The diagnosis delay corresponds to the time when the residuals are silent because
the system is in a silent discrete state. In the latter, the continuous dynamics
cannot allow the discrimination between normal and fault operation conditions. For
instance, if the switch S3 is in S3O (S3 opened) and the stuck-open fault occurs in S3.
In this discrete mode, it is impossible to distinguish between S3O and S3SO since
the continuous dynamics, represented by Vsm, are the same. When the controller
issues the control command event CS3, S3 is expected to change its discrete mode
to S3C. In this case, it is possible to distinguish between S3C and S3SO thanks
to the continuous dynamics, represented by Vsm (see Fig. 6). The time between
the occurrence of S3 stuck-open fault event when S3 is in S3O and the occurrence
of the control command event CS3 represents the diagnosis delay to diagnose the
S3 stuck-open fault. However, it is worth mentioning that the control command
signal changes quickly leading to change permanently the discrete state of switches.
Therefore, the diagnosis delay is supposed to be very small.
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Fig. 12 Real state output for each discrete component (switch) in response to the generated fault
scenarios of Fig. 10

4 Conclusion

In this paper, a decentralized modular approach to perform single and multiple
discrete fault diagnosis of hybrid dynamic systems, in particular discretely con-
trolled continuous systems, is proposed. This approach performs the fault diagnosis
based on the use of a set of local diagnosers. The latter are built using the system
components’ local models. The system continuous dynamics is abstracted in order
to generate events that are used to enrich the local models. These events allow
improving the co-diagnosability of the local diagnosers by turning unobservable
transitions into observable ones. There are two advantages for the proposed
approach. Firstly, adding or removing components does not require modifying any
of the existing diagnosers but only to add new diagnosers for the new components
or to remove the diagnosers for the removed components. Secondly, the set of local
diagnosers are built using the local models of the system discrete components.
Therefore, the diagnosis is performed without the need for a global model.
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Fig. 13 Local residuals, r1,
r2, and r3, generated in
response to the fault scenarios
of Fig. 10
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Fig. 14 Local diagnosers’ decisions in response to the generated fault scenarios of Fig. 10

A future work is to develop the local diagnosers to be adaptive according to the
changes in their environments. These changes are represented by the occurrence of
new faults which are not known in advance. Therefore, the local diagnosers can
adapt their inference engine to these changes by integrating online the new fault
behaviors over time.
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Automated Process Optimization in
Manufacturing Systems Based on Static
and Dynamic Prediction Models

Edwin Lughofer, Alexandru-Ciprian Zavoianu, Mahardhika Pratama,
and Thomas Radauer

1 Introduction

Optimized production processes and accurate predictive maintenance systems [29]
have been identified as two of the most important drivers of innovation in modern
industrial facilities. As such, these topics represent a key issue in several Horizon
2020 call objectives. An overall (and somewhat ambitious) goal would be to
construct close-to-ideal production processes that simultaneously (1) maximize
multiple product quality criteria, reduce waste and negative environmental impact
while (2) having the option to undergo on-line manual [65] or, ideally, automatic
[52] preemptive adjustments (with a high success ratio) when items or parts of these
processes show (in advance) behaviors that are likely to result (at a later stage) in a
downtrend in product quality, a degraded performance, or even in complete system
failure (i.e., increased downtime) [45].

Considering the complexities inherent in modern manufacturing processes and
the likely time-wise restrictions, one key part of both the optimization stage and the
predictive maintenance stage is the ability to obtain high-quality static and dynamic
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prediction models for the various relevant targets (i.e., objectives and constraints) of
the production process. For example, in the case of a micro-fluidic chip production
process (which is the main focus of our case study), typical targets are several quality
control (QC) indicators that measure the shape, flatness, and internal composition
of the resulting chips. The inputs of the prediction models can be classified in two
broad classes:

1. process parameters—controllable (machine) settings that are kept fixed over
a longer period during the production process. These parameters are expected
to have a direct influence on all OC indicators and their optimization usually
requires the construction of static prediction models (being used as surrogates
during process optimization), as physically testing numerous parameter com-
binations is usually a very expensive endeavor. For example, in the case of
micro-fluidic chip production, one would be typically interested in optimizing
the parameters controlling the bonding liner and the injection molding machines.

2. process values—denote dynamic (i.e., high-volume and high-frequency) read-
only/diagnostics information usually obtained via (numerous) sensors that mon-
itor key parts of the production process. While this type of data can be
inexpensively (and inherently) measured, its usage for creating meaningful
dynamic prediction models for QC indicators is not straightforward as it requires
appropriate combinations of advanced techniques like (incremental) dimension
reduction and on-line model adaptation.

The above described characteristics of the two main input classes also influence
the suitability of different (predictive) modeling and optimization paradigms. For
example, when wishing to account for shifting major external factors (new product
variants, raw material quality, supply chain disruptions, etc.), production parameters
are usually set and adjusted manually by operators/domain experts using experience
and rules of thumb (i.e., formal and informal expert knowledge) that do not
necessarily deliver optimal results. While more advanced parametrization solutions
based on design of experiments (DoE) approaches (e.g., [7, 18]) or data-driven
models (e.g., [3]) have been proposed, comprehensive approaches that aim to
integrate (1) DoE strategies with (2) valuable expert knowledge and (3) effective
optimization methods remain scarce—a first attempt has been proposed by the
authors of this chapter in [74]. There the concentration laid on the static case by only
respecting process parameters (optimizing them towards to achieve ideal product
quality), but not taking into account any process values, which are measured during
production and thus are typically able to reflect changing system dynamics and
environmental influences.

When considering dynamic process values, most state-of-the-art predictive
maintenance systems use well-established techniques from the field of forecasting
and prognostics centered on analytical [5, 31], knowledge-based [13], hybrid models
[50], or purely data-driven models [30, 59]. Some others use model-based predictive
control strategies to optimize the trajectories of the targets, see, e.g., [63]. The
main disadvantage of analytical and knowledge-based models lies in the fact that
they require longer derivation and development phases and are often restricted



Automated Process Optimization in Manufacturing Systems Based on Static. . . 487

to very particular application settings [26]. Data-driven models based on robust
paradigms (e.g., active learning [33]) can be generated much faster, more or less
automatically and mostly independently of the application scenario. They can
incorporate advanced strategies like on-the-fly evolution of structural components
and incremental learning of parameters [38] in order to cope with the potentially
changing dynamics of the production process. More importantly, this can be
achieved without the need for classical (human) supervised model re-calibration
and model maintenance cycles (like the one proposed in [69]).

1.1 Our Approach

In this chapter, we demonstrate a holistic approach for automated process opti-
mization (HAPO) in manufacturing systems during off-line (static case) and on-line
mode (dynamic case), comprising the following concepts:

• Gathering initial expert knowledge about which process parameters and process
values might have an intrinsic influence on the final product quality and thus
should be supervised and optimized; additional knowledge about possible ranges
of the parameters and even some (causal) relations, dependencies could be
helpful for improving the performance of the models (see Sect. 2).

• Design of experiments (DoE) for the purpose to define some (initial) settings
which are most likely important for the process: these settings are necessary for
some machine testing and initial data collection cycles in order to gather training
data for the predictive model construction phase. We propose a new DoE which
comes with a hybrid data-driven and expert knowledge-based form, typically in
alternating manner in order to increase expected model certainty, robustness, and
finally predictive performance (Sect. 3.1.2).

• Predictive mapping construction based on the recordings obtained from the
design of experiments phase: linear and nonlinear regression model techniques in
combination with statistical evaluation procedure (for checking significant out-
performance) play a central role (Sect. 3.1).

• Dynamic time-series-based forecast models construction based on the process
values permanently recorded during the actual production over a longer time
frame (typically several months); these are expected to capture also the system
dynamics which is not necessarily steered by the process parameters in advance,
such as varying charge compositions or specific environmental influences. The
inputs are time-series of process values trends and the targets are various quality
criteria (typically continuously measured), leading to a very high-dimensional
learning problem in a batch process modeling setting (Sect. 3.2).

• Self-adaptive forecast models which are able to evolve their structure and
to update the input space transformation (used for dimension reduction) are
necessary to cope with changes in the mapping relations between trends and
quality criteria; our approach includes rule evolution, rule splitting, recursive
parameter adaptation with dynamic forgetting, and incremental update of the
transformed loading space to achieve sufficient model flexibility (Sect. 3.2.2).
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• Off-line process optimization methods based on predictive mappings in order
to guide the machinery and the production process in the correct direction
in advance; the mappings are used as surrogate models in a multi-objective
optimization problem, which has been reduced from a (typically resulting) many-
objective problem by cross-correlation analysis and clustering.

• On-line process optimization based on dynamic, self-adaptive forecast models in
order to balance out nonoptimal parameter solutions and/or to react on undesired
system dynamics properly and early; the forecast models are used as surrogate
models in a multi-objective optimization problem, where an appropriate reduc-
tion of the very high input dimensionality (whole time-series trends for different
process values) is necessary.

The optimization problems mentioned in the last two itemization points will be more
clearly formalized in the subsequent section (Sect. 2). The combination of these con-
cepts will be highlighted and extensively evaluated for a real-world manufacturing
process based on micro-fluidic chip production, whereby we concentrated mainly on
the bonding lining stage (last stage of production influencing chip quality most), but
also included some recent findings for the multi-stage case by performing process
optimization for bonding lining stage based on (process parameters of) injection
molding stage. Some challenging results obtained during a 3-year running project
will be presented in Sect. 5.3 in order to underline the applicability of the proposed
concepts.

2 Problem Statement

2.1 Process Optimization Based on Parameters

As process parameters are the adjustable settings that control the machining
procedure of a production process [23], they are the main means through which
operators can influence product quality (such as to meet customer expectations). A
typical demand is that process parameters are to be adjusted properly for different
product variants, charges, machine components, etc., in order to meet customer
expectations on product quality. This requires intrinsic knowledge about the process
and is often done manually in current industrial installations—an issue which we
aim to automatize with the methodologies described in this chapter for yielding
(multi-criteria) optimized production processes that are supported on-line (during
their run) by a highly accurate and automated predictive maintenance approach, see
the motivation in Sect. 1.

Often, the operators themselves do not know the ideal settings, and simply adjust
the parameters based on their own past experience using rules of thumb, which
are often affected by vague and uncertain knowledge. Different process parameter
settings typically affect the product quality (in positive and negative way), mostly
within the range of set points, which, however, may be also exceeded. The exceed
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is a no-go for a product as it indicates a bad part/item which should not be delivered
to customers. Moreover, conventionally used settings are widely accepted by the
operators/experts and thus may have a supremacy over other settings.

There are thus two goals for an automatized process parameter optimization in
order to achieve high qualitative products and to avoid time-intensive manual tuning
efforts:

1. Changing the process parameters in a way to achieve expected QC (quality
criteria) production values that are as close as possible to their ideal values (which
are a priori known, defined by experts).

2. Changing the process parameters in a way to achieve expected QC (quality
criteria) production values that are as close as possible to their ideal values,
but simultaneously ensure that the new process parameters are also as close as
possible to their standard, default values—which the operators/experts are most
aware of usually prefer in light of their past experience.

In both of the aforementioned cases, constraints are normally set on the minimal
and maximal allowed values of all the process parameters that can be varied during
the optimization cycles. A typical example for chip production is shown in Fig. 1.

As there are often many quality target values Q in parallel to be optimized, the
first case can be formalized as a many-objective optimization problem:

fi(x) = opti !, 1 ≤ i ≤ q (1)

subject to xj ∈ [lj , uj ], 1 ≤ j ≤ p

Fig. 1 Example of influencing process parameters which are important for steering the production
process, their standard values, and allowed ranges
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where the optimal opti values of the quality criteria and the variation intervals of
each process parameter (i.e., [lj , uj ]) are defined by the operators/domain experts.
Thereby, x = {x1, . . . , xp} ∈ [l1, u1] × · · · × [lp, up] denotes the parameter com-
bination (which is in essence a multi-dimensional point), and {f1(x), . . . , fq(x)}
the quality indicators for q different criteria, typically measured as continuous
numerical values. This induces that f1, . . . , fq are models in a supervised regression
context, which are able to predict quality criteria (QCs) based on the current
parameter setting. The establishment of such (surrogate) models, ideally with
sufficient high-quality and different input sources (knowledge and data), is thus a
central issue that must be tackled before the automated optimization of parameters
can be start. This modeling stage is comprehensively handled in Sect. 3.

In the second case, an additional objective is inserted into the previously
formalized many-objective optimization problem:

p∑
i=1

d(xi, Xi) = min
x1,...,xp

! (2)

with X1, . . . , Xp denoting the currently used process parameter values and d

marking a certain distance function (e.g., quadratic). This objective may receive
a different weight during optimization compared to each single f1, . . . , fq -based
objective, or it may be handled in a specific (e.g., elitist) form within the optimiza-
tion process.

In many practical cases there are usually intrinsic conflicts between the various
QC indicators (not all of their ideal values can be achieved synchronously)
meaning that Eq. (1) defines a nontrivial many/multi-objective optimization problem
(MOOP) for which there is no single solution (i.e., �x∗). Thus, the reduction of
the dimensionality p of the variable space and/or of the dimensionality q of the
objective space can become an important issue when wishing (1) to increase the
likelihood of coming closer to high-quality compromise solutions and (2) also to
speed up the whole optimization process.

2.2 Process Optimization Based on Process Values Trends

Process values are important system variables permanently recorded on-line during
the production process that reflect the actual state of the system during its runtime.
This also means that they may indicate (unexpected) differences in the machining
and system states when considering expectations based on the (pre-optimized)
process parameter settings. Such differences can be induced, for instance, by some
unknown system dynamics or environmental influences unexpectedly arising during
production. In addition, in some cases, the differences indicated by the process
values stem from the fact that the process parameters have not been optimized for
a new product type or the optimization attempt has not been successful. In light of
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these undesirable production scenarios, it is also important to track the behavior of
on-line recorded process values and especially to supervise their influence on the
(final) quality of the production parts. The latter can be achieved in form of time-
series-based forecast models f1, . . . , fq , which are able to predict QC values in the
future based on current time-series trends of process values (used as inputs), see
Sect. 3.2. Formally, these forecast models can be defined as:

QCq(t) = fq(x(t − n1), x(t − n1 − 1), . . . , x(t − n2)) ∀q = 1, . . . ,Q, (3)

where QCq(t) marks the qth quality criterion measured at time instance t , x =
[x1, x2, . . . , xJ ] (containing J process values), and fq is the input/output forecast
mapping (the prediction model). Further, n1 < n2, and n1 denotes the prediction
horizon, whereas n2 = n1 + k, with k denoting the size of the window of past
samples to be considered for forecasting.

Whenever the process values forecast problematic QC values, an on-line adjust-
ment of respective process values and/or parameters in the “right direction” is
demanded in order to prevent significant quality damage or even system failures that
eventually translate to monetary loss for the company. The two main problematic
scenarios one should expect concern QC predictions that either suddenly drop out
of bounds as shown in Fig. 2 or slowly drift towards potentially problematic levels
as shown in Fig. 3.

On the one hand, the on-line adjustment of process values may again lead
to a many-objective optimization problem, depending on the number of QC
values that are out of bounds or drifting. Nevertheless, typically, the number of

Fig. 2 Predicted QC values of a special transmission characteristics of a chip into the future; in
around 2 h, there is a problem expected in terms of an abrupt change falling out of the allowed
bounds of transmission values (shown as dashed lines)
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Fig. 3 Predicted QC values of a special transmission characteristics of a chip into the future; there
is a drift phase expected in around 1 h (indicated by an arrow marker)

objectives requiring adjustment is expected to be much smaller than in the case of
process parameter optimization (where all important QC values the experts want
to supervise are always used as targets during the optimization procedure). On
the other hand, the input dimensionality is typically much higher as one needs
to consider entire trends of length k for a rather larger number of process values
J (as is the case in our case study presented in Sect. 5) in order to construct
meaningful prediction models. All these aspects should be carefully considered
when designing the optimization procedure as they indicate a need for (1) pre and
post-processing, (2) dimensionality reduction for both inputs and outputs, and (3)
work-arounds based on a dynamic process parameter optimizations (as described in
Sect. 4.2).

The on-line adjustment of the production process should be able to deliver
fully automatic and/or expert-assisted corrective actions that aim to maintain QC
values within their bounds when considering two types of application scenarios:
(1) those concerning un-optimized production processes and (2) those concerning
pre-optimized production processes.

Un-optimized production processes occur when, before starting production, the
process parameters (1) were not or could not be optimized at all or (2) were
not correctly optimized for the current product (e.g., due to the lack of good QC
surrogate models). These cases lend themselves to a standard many/multi-objective
optimization of the process values in which:

• the goal is to restore each problematic QC forecast back to its ideal (e.g., the
midpoint between its allowed lower and upper bound);

• the forecast model of each problematic QC—defined in Eq. (3)—can be consid-
ered as the basis of a single-target surrogate fitness estimator;
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• a dimensionally reduced collection of dynamic process values will form the
solution encoding (notation xagg).

As dynamic production process values (DPVs) are in effect (sensor-based)
data trends, dimensionality reduction should focus on using simple time-wise
aggregators (i.e., average, slope, skew, variance, etc.) that are able to describe
the behavior of an individual sensor (i.e., process value) during the given k-sized
window of past samples that we use for prediction. Therefore, when considering:

1. a total number of q ′ < q problematic QC indicators,
2. a dimensionally reduced number of p′ sensor measurements (i.e., DPVs) that are

deemed as most influencing for the predicted QC indicators,
3. a general DPV trend size of k,
4. the wish to describe trends using a compact summary description by statistical

measurers, e.g., average value, slope, and variance,

the on-line process optimization tasks can be formalized as:

fi(xagg) = opti !, 1 ≤ i ≤ q ′ (4)

subject to xaggj ∈ [lj , uj ], 1 ≤ j ≤ 3 · p′,
where xagg = [μ1,%1, γ1, . . . , μp′ ,%p′ , σp′ ],

and, for 1 ≤ l ≤ p′ ∧ k ≥ 2, μl = trendAverage(DPVl, k),

%l = trendSlope(DPVl, k),

σl = trendV ariance(DPVl, k).

where fi are the forecasting models as defined in (3) and obtained in advance;
they are used as surrogate models for fitness evaluation during optimization: their
predictions can be directly compared with the pre-defined, known optimal values of
the QC indicators, i.e., a fitness function can be easily defined, which measures the
distance between a predicted f(xagg) and the optimal QC indicator vector opt.

It is worthy to mention that for an un-optimized production process, Eq. (4) can
be interpreted as a “free optimization” as there are no secondary constraints on
the ranges of the ideal trend average, slope, and variance the many/multi-objective
solver can propose. More importantly, a reverse mapping “optimized process values
→ optimized process parameters” should be generally available as the process
parameters are the only means through which the overall process behavior can be
influenced. This reverse mapping can be based on expert knowledge and/or purely
data-driven methods (e.g., multiple linear regression between process value trends
and process parameters).

In the case of pre-optimized production processes, problematic QC predictions
are likely generated by (1) unknown system dynamics and (2) unexpected envi-
ronmental influences. We have also identified two complementary strategies for
restoring QC values within their desired bounds. The first one is based on (iterated)
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local optimizations in which we wish to restrict solver solutions to a close vicinity
of the current DPV/(pre-optimized) process parameters settings by:

• reducing the lower and upper bound search intervals for each relevant xaggj from
Eq. (4)

• introducing an extra optimization objective:

3·p∑
i=j

d(x
aggold
j , x

aggnew
j ) = min! (5)

Thus, the closeness of optimized DPVs to the current trend of DPVs is respected
as additional objective in order to regularize the free optimization problem by
restricting it to smaller changes in the process values and associated parameters.

3 Establishment of Predictive Models

The subsequent sections describe the methodologies for a data-driven construction
of static and dynamic surrogate mappings (being used in subsequent process opti-
mization phases, Sect. 4), which we successfully applied for a particular production
system, as described in Sect. 5.1.

3.1 Iterative Construction of Static Predictive Mappings
(Parameters ⇒ Quality)

The goal is to establish data-driven predictive mappings that can predict QC values
based on process parameter combinations. Therefore, various combinations need to
be defined in advance and the resulting QC values after some production cycles
observed when applying these settings to the machinery of the production (or
to its “control wheel”) → the observations can be collected as supervised data.
It is thereby of utmost importance to carefully select process parameter value
combinations 1.) which are known to have an essential effect on the quality of the
chips at all and 2.) which are expected to induce a high generalization capacity of the
predictive mappings (e.g., by a good coverage of the multi-dimensional parameter
space).

Thus, we propose a knowledge-based construction strategy for QC predictive
mappings that aims to combine:

1. operator/domain expert knowledge, especially for initial selection of parameters
and valuable settings;

2. data-driven insights based on a design of experiments (DoE) methodology: we
propose a new hybrid version combining model (parameter) uncertainty with
parameter space coverage for sample (=parameter setting) selection.
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3. linear and nonlinear modeling techniques for finally constructing the mappings
based on the selected parameter settings; a reliable application of the latter
certainly depends on the proportion between the dimensionality of the parameter
space to the number of available samples for model training [21].

3.1.1 Expert Knowledge Initialization

Expert knowledge is mainly integrated in the mapping construction process during
the initial data collection/generation stage. First, based on several discussions with
experts, usually a so-called cause-effect (CE) diagram can be established in order
to elicit the most effective parameters onto QC values, see, e.g., [74] for details.
Such an analysis results in a parameter matrix as exemplarily shown in Fig. 1 and
which is also required for setting up the concrete optimization problem as discussed
throughout Sect. 2.1. Then, the first few process parameter combinations over the
most effective parameters shown in the CE diagram and the associated parameter
matrix that are to be tested are the ones recommended by production process
operators. Apart from this, expert input is also used to restrict the individual domain
of each parameter, i.e., limit the search space by defining appropriate maximal
ranges of the parameter and to filter—either as a pre or post-processing step—
invalid parameter combinations. Computer-aided design selection strategies such
as the Taguchi L12 method or Full Factorial [46] may support the experts for
choosing appropriate combinations based on these limitations. These initial settings
are needed to be able to start with a reliable design of experiments (second step).

3.1.2 Hybrid Design of Experiments (HDoE)

The second step of the data collection stage is based on a domain-independent
hybrid DoE-based strategy and aims to obtain further samples (=parameter set-
tings)

1. that are well distributed in parameter space in order to assure a good coverage of
the parameter space and thus to prevent extrapolation on new settings, and

2. that reduce the uncertainty of predictive mappings (and internal parameters)
constructed from the initial samples selected by operators.

Regarding the latter, typical widely used choices in case of (predictive) regression
problems are A-optimality, D-optimality, or E-optimality [14, 61], which can be
calculated through the usage of the Fisher information matrix [15]. Often, it can be
assumed that the initial number of samples defined by the experts is pretty low, a
couple of samples (due to high effort for an appropriate selection and associated
experiments on the machine for this selection). This means that a linear model is the
most reliable option for representing the predictive mapping regression problem at
the beginning. To approach well-distributed samples, a combination of space filling
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designs based on Latin hyper-cube sampling with minimax optimization [43] and
corner points in the parameter space are promising choices.

Therefore, the skeleton of our suggested hybrid design of experiments (HDoE)
is as follows:

1. M+2p samples can be drawn from the parameter space, with p the dimensional-
ity of the space. The M samples are obtained by Latin hyper-cube sampling. The
remaining 2p are the corner points of the parameter space in order to reduce the
likelihood of extrapolation as much as possible. If p is small, typically M >> p;
if p is large, an explicit selection of subsets of corner points should take place
(as 2p grows exponentially).

2. Then, in each odd iteration of sample selection, each of the remaining M + 2p −
|S| constructed samples, with S and |S| the set and number of samples selected
so far, respectively, is checked how much it improves one of the following
criteria:

• A-optimality (variant 1): it seeks to minimize the trace of the inverse of the
Fisher information matrix.

• D-optimality (variant 2): it seeks to maximize the determinant of the Fisher
information matrix.

• E-optimality (variant 3): it seeks to maximize the minimum eigenvalue of the
Fisher information matrix.

Due to the linear model assumption, the Fisher information matrix is equivalent
to the Hessian matrix XT

extXext , with Xext always containing the initially
collected samples from experts plus all the samples selected so far over the DoE
iterations plus the new sample to be checked for improvement of the optimality
criterion. Thus, in the first case that sample is selected which achieves minimal
A-optimality over all samples when being joined with Xext (so, A-optimality is
calculated for all samples si , [Xext ; si], i /∈ Xext ).

3. In each even iteration of sample selection, each of the remaining M + 2p −
|S| constructed samples is checked how much minimal distance it has to the
already selected samples plus the initial ones. That one whose minimal distance
is maximal is selected as it extends most/best the coverage of the current input
space.

Due to the mixed selection strategy, we call our algorithm hybrid design of
experiment, whose pseudo-code is provided in Algorithm 1.

Algorithm 1 Hybrid design of experiments for sample selection

Input: initial data matrix X containing initial process parameter combinations
(no targets required at all); min-max values of all process parameters defining the
corner points; number of Latin hyper-cube samples M (default 10,000).
Output: matrix S containing a pre-defined maximal number of selected samples N
ordered by their importance for model quality improvement (most important first)
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1. S = {}.
2. Generate M samples {x1, . . . , xM } according to Latin hyper-cube sampling

with minimax operation.
3. Generate 2p additional samples {xM+1, . . . , xM+2p } as the corner points of the

p-dimensional parameter space.
4. For j = 1 to N
5. For i = 1 to M + 2p

a. If xi ∈ S (sample was selected before), continue;
b. Erase vectors Crit and Dist ; Xext = [X; S; xi].
c. If mod(j, 2) = 0 (odd number)
d. Case Variant 1: Crit (i) = trace([XT

extXext ])
e. Case Variant 2: Crit (i) = det ([XT

extXext ])
f. Case Variant 3: Crit (i) = min(eig([XT

extXext ]))
g. Else:
h. Compute Euclidean distance disti(k) between xi and all k samples in [X; S];
i. Dist (i) = mink=1,...,|X∪S| disti(k)
j. End If

6. End for (inner loop)
7. If mod(j, 2) = 0 (odd number)
8. SortCrit in ascending order and store its associated samples {xs(1), . . . , xs(M+

2p − |S|)};
9. Case Variant 1: Select first entry, thus S = S ∪ xs(1).

10. Case Variant 2+3: Select last entry, thus S = S ∪ xs(M + 2p − |S|).
11. Else
12. SortDist in ascending order and store its associated samples {xs(1), . . . , xs(M+

2p − |S|)};
13. Select last entry, thus S = S ∪ xs(M + 2p − |S|).
14. End if
15. End for (outer loop)

3.1.3 Predictive Mapping Models Construction

Like in most data-driven modeling tasks, a basic pre-processing step should be
performed in order to at least detect and remove those process parameters that
are expected to have a minor influence on the QC indicators. This helps to reduce
the input dimensionality and thus to increase the generalization capabilities of the
models. Process parameters can be seen as factors, which, due to expert knowledge
input, can be divided into low, medium, and high levels. Thus, a multi-way ANOVA
analysis [20] on the data collected can be applied to observe significant influences
of factors and various groups of factors onto the QC values. Those factors having
not any influence can be deleted→ dimension reduction.

Given the limited number of data samples one is likely to have gathered after the
two-stage data collection phase, linear regression models between process parame-
ter settings (inputs) and QC (quality criteria) indicators (modeling targets) are likely
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to deliver the best (generalization) performance. Thus, training linear models is an
intuitive first step. Nonlinear regression modeling paradigms like artificial neural
networks (ANNs), support vector machines, or genetic programming should also
be tested—especially for those QC indicators where linear models seem to fail in
accuracy.

In light of a low sample count, over-fitting (especially for the nonlinear models)
is highly likely. Therefore, we suggest to always apply an n-fold cross-validation
strategy for assessing model performance (i.e., R2) during training. Further-
more, since the number of cross-validation folds is limited for a low number
of samples (i.e., 3 ≤ n ≤ 5), a stability assessment of the most promising
nonlinear regression models should be performed. The idea is to compare if, for
a given QC indicator, the nonlinear model is able to generally deliver a superior
modeling performance, when being compared to their linear counterparts, over
several different cross-validation partitions. Only, when this is really significant,
nonlinear models should be chosen (to avoid over-fitting as much as possible)
[21, 57].

3.2 Time-Series-Based Forecast Models (Process Values ⇒
Quality) Learning and Adaptation

In manufacturing processes, we are often dealing with a specific type of continuous
production process in which the quality measures/indicators are provided once for a
whole process cycle (i.e., “batch”); in literature, this is termed batch-processing
[3]. One batch can be associated with the period between the measurements
of two consecutive QC info vectors (quality criteria vectors after N process
cycles). This means that, for a particular period of time, one QC info vector
(containing several important QC values to be supervised) is delivered that indi-
cates the production quality for the whole period. This leads to the signal flow
(of process values) and measurement frequency of QC info vectors shown in
Fig. 4.

The production quality forecast problem can then be tackled by establishing a
prediction model, the inputs to which are trends of the various (synchronously and
permanently measured) process values within a particular time frame, and the targets
are the quality criteria embedded in the QC-info vector. Ideally, the prediction
horizon of such a model is as large as possible in order to be able to recognize
downtrends in the quality as early as possible. This increases the likelihood of a
successful predictive maintenance cycle, especially it increases the likelihood that
process parameters can be optimized automatically in time whenever problems in
the process values are recognized, see Sect. 4.2.

After an appropriate arrangement of the time-series data (for J process values)
into a three-dimensional matrix and flattening this matrix accordingly, see [42] for
details, we are ending up with the data-driven predictive model definition as in (3).
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Fig. 4 Typical forecasting scheme in a batch-processing setting: the process signal (permanently
sampled and measured) is shown as bold solid line, the QC info vector is indicated by vertical (red)
lines and is recorded in B batches over time (here B = 5), not necessarily in equidistant manner—
here only the case of J = 1, i.e., one process value time-series trends is shown, this can be
generalized easily to J multiple process values by recording and processing them in parallel; short-,
medium-, and long-term predictions of QC info in a batch process based on time-series trends of a
process value measured in the past are indicated by different possible prediction horizons (double
arrows), indexed with n1(1), n1(2), and n1(3)

In the following two subsections, we perform a summary of the basic aspects of our
learning and (on-line) adaptation procedure for such types of models.

3.2.1 Learning by a Nonlinear (Fuzzy) Version of PLS (PLS-Fuzzy)

We are dealing with very high-dimensional data, as we have J ∗k columns in sample
matrix X = [x1(t − n1), . . . , x1(t − n2), x2(t − n1), . . . , x2(t − n2), . . . , xJ (t −
n1), . . . , xJ (t −n2)], where typically J reflects the variety of sensor recordings and
k = n2 − n1 the size of the window containing the past trends; x is a column vector
containing the various sample values. Consecutive values in a time-series can be
expected to have similar information content when the dynamics between two or
more measurements is not really high.

We thus develop a nonlinear variant of partial least squares regression (PLSR)
[19], which (1) handles correlated “neighboring” inputs in an appropriate fashion
(PLS thereby enjoyed a wide usage onto data learning problems in the past where
such cases occurred, see, e.g., the field of chemometrics [64]), and (2) is able
to resolve nonlinearities in the covariance structure between input matrix X and
target y = QCq . The latter provides us more flexibility than conventional PLSR
(linear models) to model possible nonlinearities implicitly contained in the system,
see Fig. 5 for a two-dimensional example, where one global component based on
conventional PLSR would end up with an inaccurate representation of the data
distribution and the (co)variance contained in it. Obviously, partitioning the data
into two local regions and modeling the relationship between x and y for each region
separately (dotted lines) is more appropriate.



500 E. Lughofer et al.

Fig. 5 A two-dimensional example of local data clouds showing two components/trends (as
dashed lines), which cannot be sufficiently resolved by a global, linear model (solid line)

Our idea is thus to combine PLS with Takagi-Sugeno (TS) fuzzy systems,
the latter having been applied in a wide range of applications fields in the past
for supervised regression and prediction problems with numerical target values
[1, 32, 51]. Furthermore, the architecture offers a partial partitioning of the input
space into several regions in a natural way (sub-models represented by rules), for
which partial direction vectors (latent variables) can be extracted in order to resolve
locally varying covariance structures betweenX and y. We employ a specific variant
of TS fuzzy systems, the generalized version of TS fuzzy systems, firstly introduced
in [28], and which showed better predictive performance in several past studies
[12, 36, 53, 54] by inducing more compact rule bases with similar or even less model
errors than conventional TS fuzzy systems.

The connection between PLS and TS fuzzy systems is conducted on a global
model level in the score space, because it reduces the input dimensionality to the
most important variables in advance and then rule learning can start from scratch
with an empty rule base, see below (the number of rules does not need to be defined
in advance). Therefore, PLS is performed first on the data matrix X, which is then
transformed to the score space by the resulting loading vectors (latent variables) P
through multiplication, i.e., XS = X ∗ P . The learning of and prediction with TS
fuzzy systems then operate fully on the score matrix XS including score samples xs ,
which are typically of reduced space p << J ∗k. The reduced space can be elicited
by using the p most important latent variables (with highest eigenvalues) explaining
most of the covariance/variance structure in the data. Thus, in the equations above
xs is the projection of a single new sample onto the latent variable space, i.e., xs =
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x ∗ P with x containing the time-series trends of past k samples over all J process
values: x = [x1(t − n1), . . . , x1(t − n2), x2(t − n1), . . . , x2(t − n2), . . . , xJ (t −
n1), . . . , xJ (t − n2)].

As the nonlinearity degree of the learning problem is not a priori known, it is
wise to estimate the appropriate number of fuzzy rules during the initial stage of
fuzzy model construction. Therefore, we exploit the Gen-Smart-EFS algorithm [36]
by passing all the available samples through its core learning engine in a single-pass
manner (thus as pseudo-stream), after projecting all of these to the score space. By
using Gen-Smart-EFS algorithm (see [36] for details) in combination with PLS, the
PLS-fuzzy training approach results, as listed in Algorithm 2.

Algorithm 2 PLS-fuzzy employing robust Gen-Smart-EFS in batch mode
(PLS-fuzzy static)
Input: Training matrix X, target vector y = QCq , parameter f ac responsible for
rule learning in the rule evolution criterion.
Output: p most important PLS projection directions stored in P , corresponding
un-normalized projections stored in Q; PLS-fuzzy model stored in F .

1. Perform PLS with X and y to obtain the complete projection matrix Pall with
components ranked along the columns.

2. Select the p most significant components from Pall , P = p1, . . . , pp and the
corresponding un-normalized ones Q = q1, . . . , qp. This can be done in a
parameter grid search (iteratively increasing p) and performing the successive
steps for each p or by using an accumulated trend of the explained variance in
the data by the p components.

3. Perform Gen-Smart-EFS algorithm [36] using P , X, and y, thus obtaining C

rules in the latent variable space.
4. Fine-tune the C rule centers ci and shapes �−1

i , i = 1, . . . , C; this is done in
several iterations over the whole data set X until convergence is met; thereby,
centers are moved according to generalized vector quantization and the inverse
covariance matrix is updated recursively by (c = cwin with win denoting the
index of the winning rule having highest membership degree in the current
sample):

�−1(k + 1) = �−1(k)

1− α −
α

1− α
(�−1(k)(xs − c))(�−1(k)(xs − c))T

1+ α((xs − c)T �−1(k)(xs − c))
(6)

with α = 1
k+1 and k the number of samples seen so far for which c has been the

winning rule (cluster).
5. Estimate consequent parameters w by employing the elastic net formulation of

weighted least squares objective (WLS) and employing LARS-EN algorithm
[78] to solve it. Parameter α is set to 0.5 per default (equal influence of terms
based on L1 and L2 norms), the regularization parameter λ is set according to
the considerations in [35] (based on the condition of the Hessian matrix). The
weighted version of LS is used because the parameters are estimated for each rule
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separately, emphasizing the local learning spirit which has several robustness and
interpretability advantages over global learning, as analyzed in [2].

6. Store extracted rules and consequent hyper-planes in F .

3.2.2 On-Line Model Adaptation with Increased Flexibility

Once the forecast models have been established (and fully evaluated) in batch mode,
it is a challenge to keep the models up-to-date during further on-line production
due to system dynamics, which is often a typical occurrence in today’s production
systems, e.g., because of varying charges, process setting, environmental conditions,
etc. Only then, it can be guaranteed that the models stay reliable with a sufficient
accuracy in such cases.

There are two possibilities for an update of fuzzy systems: (1) fully unsupervised
not requiring any target values (QC criteria) to guide the model update and (2)
supervised by using the (from time to time) measured (thus real) target information.
The first variant typically leads to models with lower accuracy than the second
option, as only the antecedent parts of the fuzzy systems (rule centers and shapes
represented by inverse covariance matrices) and neither the consequents nor the
latent variable space (input space of the fuzzy models) can be updated—as, e.g.,
analyzed and evaluated in [49] for a real-world production process (melamine resin).
On the other hand, the first variant can be conducted permanently based on the
permanent process values recordings, whereas the second one acts in a kind of
post-adaptive manner, as only in case when new QC measurements are available
a feasible update can be carried out; so the update is always delayed up to new
QC measurements. So we propose to apply a mixture of both, whereas the update
of the antecedents is achieved in the same way as in Step 4 of Algorithm 2 (for
each new sample conducted in single-pass, non-iterating manner), and the update of
the consequents (whenever a new QC measurement is available) through recursive
fuzzily weighted least squares approach (RFWLS), which leads to an immediate
convergence to the real optimal solution in each update step—see [36, 42] for
formulas and the whole update algorithm.

To increase the flexibility of the update process in order to account for significant
system dynamics, three basic functionalities in the model update are added, which
are (compactly) described below:

• Dynamic forgetting of consequent and antecedent parameters over time in order
to increase flexibility—this is especially required in case of upcoming system
drifts [16, 25] or shifts [34].

• Rule splitting to a posteriori compensate potentially arising (gradual) drifts over
time, which are not compensated by dynamic forgetting.

• Incremental update of the latent variable space to compensate changes in
the covariance structure between input X and target y (leading to changes
in associated importance of variables or (in our case) time-series points in
X on y).
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Dynamic Forgetting
Leaned on the approach demonstrated in [60], our aim is to dynamically adjust the
forgetting factor as integrated (1) in the recursive fuzzily weighted least squares
formulas and (2) in the resetting of the dynamic learning gain for updating the rule
centers. The basic idea is that no forgetting is used as long as there is no explicit
(local) drift occurring (and detected) in the system→ thus the forgetting factor is
set to 1. No forgetting leads to a more stable behavior when the process does not
show any drift, so is in regular mode, as deeply analyzed in [60].

Here, we have to apply the local variant for drift detection, as the global one
requires the model error trend line over time, which may be significantly delayed (as
requiring the real measured value, see explanation above). The local variant relies
on the weighted Kullback–Leibler divergence, as the forgetting factor is adjusted
according to the trend line of Kullback–Leibler divergence values per rule over time:
if there is a statistically significant up-trend (as can be checked through the Page-
Hinkley (PH) test statistics applied on consecutive values [48]), the forgetting factor
is decreased (thus the degree of forgetting increased) by a fraction of the intensity
of the gradient of the PH statistics:

λt = min(max(λt−1 − direction(drif t_ind)Ct , 0.9), 0.999) (7)

Ct = drif t_accumt−1 − drif t_accumt

rmsetρ
(8)

where λt is the forgetting factor at time block t , and Ct the amount of change in
accumulated drift intensity, drif t_accumt−1−drif t_accumt denotes the gradient
in the PH statistics over two consecutive time points, direction the direction of
the drift and ρ a scaling factor typically set to a high value (around 1000); rmse is
an estimator of the root mean squared model error based on past samples (elicited
during initial batch training of PLS-fuzzy).

Increasing the degree of forgetting in case of (local) drifts makes sense in order to
enforce a rule movement towards the new data distribution while leaving the old one
completely, and not to end up with a rule including a mixture of old and new local
data distributions, which typically increases the model error (“blown-up rules”).

Rule Splitting
The stronger rule movement can be only enforced when the drift becomes visible
and thus “detectable” in the PH statistics. Sometimes a gradual drift arises over
time which is not clearly seen in an abrupt fashion, but becomes more and more
impacting on the model quality when being blindly integrated into the model update.
Typically, it leads to an artificial sneaky blow-up of one or several rules—as shown
in the left image in Fig. 6.

An a posteriori compensation of such a drift is beneficial to reduce the rule size
and to decrease the model error. We therefore employed the concepts demonstrated
in [39], which rely on two criteria for inducing a rule split: the local error of a rule
and the rule size in terms of its volume [55, 56]. Both are compared with the other
rules in the system based on the usage of statistical process control for automatic
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Fig. 6 A two-dimensional example for gradually drifting data distributions, leading to an artificial
enlargement of the original rule (solid line) to a “blown-up” rule (dotted line); the right image
shows how such larger rules are split: along the first principal component (with largest eigenvalue)
= main axis of the ellipsoid and by halving it into two rules

thresholding. If they are estimated as extraordinary high, such a rule is split into two
rules (1) by splitting its center according to:

ci (split1) = ci + ai
√
λi

2
ci (split2) = ci − ai

√
λi

2
(9)

where λi corresponds to the largest eigenvalue of the covariance matrix of rule i, i.e.,
λi = max(Λ) and ai to the corresponding eigenvector, which can both be obtained
through classical eigen-decomposition of the covariance matrix; and (2) by splitting
the covariance matrix according to:

�i(split1) = �i(split2) = AΛ∗AT , Λ∗jj =
{
Λjj j �= 1
Λjj

4 j = 1
(10)

where Λ11 is assumed to be the entry for the largest eigenvalue, and A the matrix
of eigenvectors obtained through eigen-decomposition. The second line in (10) is
because it shrinks the two split rules into the direction of the largest eigenvector
(main components) of the original rule (and most responsible for the large rule
size). This is achieved by taking the square-root of the largest eigenvalue as this
then triggers the length of the corresponding ellipsoidal axis reduced to its half. An
example of a rule split into two halves along its most significant eigenvector (first
principal component shown as solid straight line) is visualized in Fig. 6.
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Incremental Update of the Latent Variables (PLS Loading Space)
In particular cases, not only the characteristics of the (partial local) data distributions
may change, but also the covariance relationship between process values (inputs)
and QC indicators (targets); or, in other words, the main influencing directions (parts
of the process values time-series) to best explain the variance in the target change
over time. This can be, for instance, caused by a drift/shift in the composition of
the material used during production [6]. It requires a rotation of the transformation
space represented by the principal component directions obtained through partial
least squares (see above).

Updating these directions builds upon on the concepts proposed in [75] and is
based on the following:

• Recursive (exact) update of the first projection direction by exploiting the fact
that, according to the NIPALS algorithm (also termed PLS1) [70], the first un-
normalized direction can be represented as q1 = Xty, which is due to the
maximization objective based on the covariance between Xp and y, with p

denoting normalized directions, i.e., J = arg max
pT p=1

(Cov(Xp, y)). Then, it is easy

to see that

q1(N + 1) =q1(N)−Nμy(N)%(N + 1)+ y(N + 1)xN+1(N + 1), (11)

where %(N + 1) = μ(N + 1) − μ(N), and μ(N + 1) is the mean of the input
features estimated from the first N + 1 samples, μy is the mean of the target, and
xN+1(i) is the ith mean-centered sample using the mean μ(N + 1) of all inputs.

• Obtaining the remaining projection directions p2, p3, . . . , pp via the Krylov
sequence, whose Gram–Schmidt orthogonalized form is given by P =
[q1, Cq1/q1, . . . , C

k−1q1/{q1, Cq1, . . . , C
k−2q1}], where C is the covariance

matrix, which can be recursively updated. This leads to the second PLS
projection direction:

q2(N + 1) = Cq1(N + 1)

q2(N + 1) = q2(N + 1)−
(
q2(N + 1)T

q1(N + 1)

‖q1(N + 1)‖
)

q1(N + 1)

‖q1(N + 1)‖ .
(12)

These two equations can easily be processed iteratively to obtain q3(N +
1), q4(N+1), . . . , qp(N+1). By normalizing these directions subject to the own
L2-norm, the updated projection directions p3(N+1), p4(N+1), . . . , pp(N+1)
are obtained.

Alternatively, instead of updating the global covariance matrix (which may be large
and thus time-consuming whenever input dimensionality J ∗ k is huge), also the
corresponding principal components can be updated by, e.g., using the well-known
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CCIPCA approach as proposed in [67], and approximating the covariance matrix by
the principal components directions. For further details and the full algorithm, see
also [42].

4 Process Optimization with Predictive Models

The optimization problems as defined in Sect. 2.1 for the static and in Sect. 2.2 for
the dynamic case can be solved by using the established predictive mappings and
forecast models as surrogates within multi-objective optimization procedures. In the
subsequent section, we provide a compact summary how we have achieved this.

4.1 Static Case (Mappings as Surrogates)

Having (static) mappings (surrogate models) for QC criteria enables the (virtually
instant) cost-free evaluation of any process parameter combination and this, in turn,
enables the search for that (those) process parameter combinations that are able to
simultaneously optimize all the targeted QC criteria. In a general (real-world, larger-
scale) production setting, there can be many QC criteria measured in parallel which
characterize (measurements of the) final product items (e.g., the size, the shape, the
appearance of various colors, etc.) [29], i.e., q in (1) is often higher than 3, 4, or 5
(denoting classical multi-objective problems); this then results in a many-objective
optimization problem.

Nearly all classical techniques of solving such a problem are based on the central
idea of reducing/restating the original many-objective optimization problem as one
or more single-objective optimization problems. Obviously, the main advantage
of this strategy is that the restated problem can be solved using single-objective
optimization methods or smaller multi-objective problems each one operating on a
subset of target values. The best known techniques that rely on transformations from
many-objective to single-objective include the Tschebyscheff min-max criterion,
the global criterion, the weighted sum method, goal programming, and the normal
boundary intersection [44]. The disadvantage of reducing the many-objective
problem to a single-objective one is that some articulation of preference (among
the objectives) might be required before the start of the optimization and that the
obtained single-objective optimization problem(s) can itself be very hard to solve
(multi-modal, false global optima, small global solution attraction basins, etc.) by
classical mathematical methods and require computationally intensive numerical
methods that can produce very good results but are more “unorthodox” (i.e.,
heuristic-based and possibly less mathematically grounded) [24].
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4.1.1 Evolutionary Algorithms for Solving Many-Objective Optimization
Problems

Evolutionary algorithms (EAs) have proven extremely successful in tackling very
complicated (real-life) nonlinear optimization problems by generally being able
to discover acceptable solutions in reasonable time [8, 9]. The words “generally,”
“acceptable,” and “reasonable” must be emphasized because, like natural evolution
itself, an EA is a stochastic process that cannot provide any guarantees with regard
to global solution optimality, success ratio, and time required for convergence.
Nevertheless, in most cases, even after basic parameter tuning, the stochastic
behavior of an EA can be controlled to a certain extent. The general structure
of an EA is visualized in Fig. 7. Despite the drawback of not being guaranteed
to find the optimal solutions, in many complex applications domains EAs have
proven one of the most successful meta-heuristic global search methods. When
considering multi-objective optimization problems (MOOPs), where one usually
aims to find sets of Pareto non-dominated solutions that encompass the best
trade-offs between several (i.e., 2–4) conflicting objectives, specialized EAs (like
NSGA-II [11] and SPEA2 [77]) have become virtually canonical in the last 20 years.
The main advantage of multi-objective evolutionary algorithms (MOEAs) is that,
unlike classical optimization methods, by slightly adjusting the evolutionary model,
these EAs are able to discover full Pareto non-dominated sets in a single run. For
example, in the case of NSGA-II [11] and SPEA2 [77] (two of the most well-known
MOEAs) the aforementioned adjustments to the evolutionary model are centered

Fig. 7 General structure of an evolutionary algorithm (EA)
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around the same selection for survival paradigm that focuses on an elitist approach
to evolution based on a primary non-dominated ranking strategy and secondary (tie-
breaker) objective space crowding strategy.

When considering MOOP that has more than 4 objectives, one is said to deal
with a many-objective optimization problem. Specialized algorithms that deal with
such scenarios have been recently proposed (e.g., NSGA-III adaptations [10]) but,
given the very significant inherent difficulty of most many-objective optimization
problems, a first step when solving them is to try and reduce the number of
objectives one wishes to simultaneously optimize. There are basically two variants
to accomplish such a reduction:

1. Explicit objective reduction strategies are based on discussing the relative
importance of each objective with the decision maker (DM)—i.e., the process
operator in our case. Apart from the obvious approach of simply removing the
very low priority objectives from the problem formulation, one can also opt for
the replacement of these objectives with a newly defined synthetic objective that
aggregates them. The synthetic objective can be obtained using any of classical
objective reduction techniques [44] that require no articulation of preference on
behalf of the DM (e.g., Tschebyscheff min-max and global-criterion) or an a
priori articulation of preference (e.g., weighted sum, lexicographic ordering, and
goal programming).

2. Implicit objective reduction is data-driven and can be achieved by clustering
objectives that are cross-correlated. Depending on the strength of intra-cluster
cross-correlation, one could choose to reduce the entire cluster of objectives to:

• one of its members that shall act as a “cluster representative” (very strong
intra-cluster cross-correlation);

• a new synthetic objective that aggregates all the members of the cluster (mild
intra-cluster cross-correlation).

In our case study (Sect. 5.3), we have accomplished the former variant based on
correlation checks within groups of QC indicators.

4.1.2 A New Efficient Method for Multi-Objective EA (DECMO2)

During the last 15 years since its proposal, the non-dominated sorting genetic
algorithm II (NSGA-II) [11] has become one of the default (meta-heuristic) multi-
objective solvers as its non-dominated sorting operator makes it highly robust and
enables NSGA-II to discover high-quality PNs in many application domains [72].
Over the years, different paradigms have been introduced (such as differential
evolution [27], cooperative co-evolution [71], and decomposition-based objective
spacing [76]) which may help to further improve the convergence behavior of
MOEAs.

Therefore, DECMO2 was designed by the authors of this chapter [73] as a co-
evolutionary method to deliver fast average convergence and well-spaced PNs on a
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wide class of problems. The key feature of DECMO2 is that it tries to combine
(and dynamically pivot between) three multi-objective search space exploration
paradigms:

• P—one of the two equally sized sub-populations evolved in DECMO2 uses a
SPEA2 [77] evolutionary model centered around the environmental selection
operator which implements a two-tier selection for survival strategy that is very
similar to the one of NSGA-II. Population P is also evolved using the SBX and
PM operators.

• Sub-population Q adopts the GDE3 [27] search behavior that aims to bene-
fit from the very good performance of differential evolution operators (e.g.,
DE/rand/1/bin) [62] on continuous optimization problems.

• The third multi-objective optimization paradigm is incorporated in DECMO2
via an archive A of well-spaced elite solutions that are maintained according
to a (weighted Tschebyscheff) decomposition-based strategy similar to the
one popularized by MOEA/D-DE [76]. Although A largely acts as a passive
sub-population, from time to time (especially if the other search paradigms
under-perform), a few individuals are evolved directly from A using differential
evolution.

DECMO2 actively rewards the currently best-performing strategy by allowing
the sub-population that implements it to generate a total of m = 2

9 |P | more
individuals than usual. A schematic overview of the search strategy proposed by
the co-evolutionary solver is presented in Fig. 8.

4.2 Dynamic Case (Time-Series-Based Forecast Models as
Surrogates)

4.2.1 Optimization Strategies

The particularities of the time-series-based forecasting and on-line optimization
scenarios impose some extra restrictions on the used many/multi-objective solvers.
Thus, for both pre-optimized and un-optimized production processes, one obvious
option would be to filter state-of-the-art static solvers (i.e., those mentioned in
Sect. 4.1.2) in order to discover those methods that can be parameterized to display
both robustness and rapid convergence characteristics during very time limited
optimization runs (e.g., 1 min/run) scheduled during two consecutive forecast model
updates. In order to compensate for the short runtimes, especially in the case of un-
optimized processes, parallel independent optimizations of static process parameters
on the one side and on-line DPV trends (+ reverse mappings) on the other side can
be carried out in order to maximize the chance of discovering and validating good
solutions (e.g., through consensus).

Alternatively, one could also attempt to couple specialized dynamic many/multi-
objective solvers (e.g., [17]) with the dynamic time-series-based forecast models
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Fig. 8 The DECMO2 evolutionary model [73], where two populations are co-evolved with two
different strategies and can exchange individuals through an archive A whenever requested

for the entire duration of the production process. Although still considerably less
popular than their static counterparts, dynamic multi-objective solvers are very
promising as they are designed to efficiently compensate for unexpected shifts in
their fitness function and maintain competitive solutions throughout the entire run
[22].

When considering the on-line optimization of pre-optimized production pro-
cesses that are predicted to fall out of bounds, after including Eq. (5) in the
optimization problem and applying the required reverse mappings (DPV trends→
process parameters), the mild changes that could be suggested by the many/multi-
objective solver in DPV trends should translate to minor changes in process
parameters. This is a desired effect as the restricted approach is motivated in part by
the fact that process operators might be reluctant to make large changes to process
parameters that have been accepted (and so-far validated) as optimal but they might
easily accept and test gradual shifts. Several repeats of restricted optimizations
might be necessary to reverse a worrying QC trend. Depending on the complexity
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of the forecast models (i.e., fitness functions), fast-to-evaluate one-factor-at-a-time
(OFAT) strategies might yield good results for restricted problems.

A complementary strategy we propose for pre-optimized production processes
speculates the fact that preliminary static optimization results indicate that sev-
eral (different) parameter configurations can deliver competitive QC results (see
Table 1). Since some optimal parameter configurations might be far more robust
than others with regard to unknown system dynamics and unexpected environmental
influences, it would make sense to simply switch to a completely different (pre-
viously identified) best parameter configuration. In this case, Eq. (5) can also be
used to filter alternative configurations based on their overall proximity to current
settings.

4.2.2 Reducing Dimensionality of the Optimization Space

A final, but important issue concerns the dimensionality reduction of the input space
of the optimization problem as defined in (4) (no matter whether in combination
with (5) = restricted or not = unrestricted). When assuming a significant number of
original process values x1, . . . , xJ recorded during production (and often not pre-
selected by experts), for which indeed several indicators are extracted to provide a
compact information about their main time-series trends, it, however, soon may end
up with a few hundreds of inputs (=genes in the individuals) for the heuristics-based
solver. Thus, it is expected that the convergence and thus the speed of the multi-
objective evolutionary algorithm is slowed down drastically. Hence, we suggest to
perform an influence analysis between process values (trends) and (a subset of)
quality criteria to be optimized: only those process values with a significantly higher
influence compared to others are used in the optimization process—this also meets
the expectations when performing the restricted optimization procedure employing
(5), as more influencing process values can be modified more slightly than less
influencing ones to achieve optimized QC values (as a slight change already has a
significant impact on the QCs).

In our case, the influence of a process value can be calculated through its
loadings obtained in all the latent variables finally used in the PLS-fuzzy models
(see Sect. 3.2.1). Additionally, its impact in the consequent hyper-planes of the
generalized TS fuzzy systems is important, as these indicate the regression trends
in the rules (which are sub-models of local regions). As we perform dimension
reduction in advance as a kind of filter stage before the optimization process starts,
we have to calculate the influence globally (and not locally per actual sample);
assuming that the fuzzy models contains C rules (evolving automatically during
model training), we achieve this by:

inf lui;r = 1

k

k∑
l=1

p∑
j=1

(
|qil,j |

(
1

C

C∑
h=1

|whj | ∗ range(j)
))

(13)
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where inf lui denotes the influence of the ith process value onto the rth target
(quality criterion) to be optimized, p denotes the number of latent variables in
the PLS-fuzzy model, and qil;j denotes the loading of the L2-normalized j th
principal component direction in the lth time-series sample of the ith process value
(k samples in sum due to the sliding window size k); thus, the influences of all
time-series samples of one process value are averaged. The L2-normalization is
important in order to assure the same range and thus the same impact in all loadings
used as inputs to the PLS-fuzzy model (as also this has been trained by seeing all
scores produced by all loadings as equally important). whj denotes the consequent
parameter (=regression coefficient) of the j th component in the hth rule.

Then, the influence of a single process value can be checked versus the others,
i.e., if

inf lui;r > μ(influr )+ σ(influr ), (14)

with μ the mean and σ the standard deviation over the influences of all process
values, the ith value has a significant influence onto quality criterion r and thus
should be taken into account for optimization. The joined set of influencing variables
over all q ′ quality criteria to be optimized is then taken as input parameter space.
Further reduction could be achieved by using the average influences of each process
value i = 1, . . . , p′ over all QC indicators and applying (14) on the averaged inf lui
values. Furthermore, rule weights ρh, h = 1, . . . , C could be integrated into the last
term in (13) in order to achieve a weighted average where more important rules (with
higher weights) have a higher influence. A natural calculation of such a rule weight
would be along the support of the rule in the training data based on which it was
extracted: this can be measured in terms of the number training samples “falling”
into the rule (for which the rule had highest membership degree among all rules).

The target space (number of f ’s in (4)) can be usually reduced in advance accord-
ing to clustering and cross-correlation (see Sect. 5.2) or by some weighted objectives
combining groups of quality indicators into one objective, or by selection—as
discussed in Sect. 4.1.1.

5 Some Results from a Chip Production Process

5.1 Application Scenario

Our case study deals with the inspection of micro-fluidic chips used for sample
preparation in DNA (deoxyribonucleic acid) sequencing. On the chip, the DNA
and primers are packed into aqueous droplets in oil phase. Currently, they are
checked by image inspection in a closed loop in the diagnostic instrument. Thus, an
optical inspection determines whether particular events on the chips (peculiarities in
image analysis) are erroneous or may even indicate severe errors in the production
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process. This is done in a posteriori manner, removing bad chips after production
(in order not to deliver faulty components to customers), based on machine learning
classifiers developed in a preliminary project, see [37, 66]. However, typically this
does not prevent unnecessary waste and can even introduce greater complications
and risks to the production system.

Predicting downtrends in the quality of the chips at an early stage, in order
to decrease or even completely avoid waste and risks, is therefore an important
challenge to be addressed. The idea is to supervise the continuously measured
process values in order to see whether there are changes in the process that impact
future quality. Two main process phases are essential for the final quality of the
chips: injection molding (first stage in the production line) and bonding (third and
last stage in the production line). Here, we concentrate on the last stage of the whole
production line, because there the final chip quality is measured before the chips are
delivered to the customers. We also checked the impact of injection molding process
to the chip quality after bonding in a multi-stage context, where we conducted
process optimization cycles to achieve ideal quality of chips shipped to customers.

5.2 Experimental Setup and Data Collection

Two different types of experiments were conducted over a longer time frame of
several months:

• Supervision of the regular production process with little or no variations in
the process parameters over a longer time frame: this was performed for the
purpose to record time-series data permanently and to “track” any possible
system dynamics (not caused by parameter settings, but maybe affecting QC
values) over time.

• Explicit runs of specific production cycles based on several process parameter
combinations of the most influential production parameters as shown in Fig. 1:
this was performed for the purpose to see how parameter settings can affect final
chip quality.

For the first type of experiments, the data of 17 process values, expected to be
most important ones and most influencing final chip quality from experts’ point
of view, were permanently recorded and stored into a database server. The data
necessary for modeling was provided via a set of custom database views, and it
was made accessible via remote access to the database server. From there it could
be extracted via a custom-made SQL (structured query language) client software
package. 32 different QC criteria comprising the flatness values in six nest positions
(the most important ones to supervised), RMSE values pointing to chip size and
several types of transmissions were measured from time to time (only 2–3 times
per day!). This sparsely taken QC measurements in combination with continuously
measured process values lead to the batch forecast modeling problem as explained
in Sect. 2. Over the whole period of July to December 2016, indeed a total of 79,716
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time-series steps (of the process values) were recorded and distributed across the
production of two different chip types. However, the QC information was recorded
and stored only 524 times (approximately three times a day), and finally had to be
reduced to 424 samples due to missing values and outliers. So, due to the unfolding
process of a three-dimensional matrix as explained in Sect. 2, the final data matrix
ended up with an input dimensionality of 17 ∗ k = 850, with k = 50 the default
time-series length per process value. According to the low number of samples (i.e.,
even N < p), this in fact requires a significant reduction of the dimensionality
(otherwise, the regression problem would be even under-determined), as can be
well established with (linear or nonlinear) PLS (see Sect. 3.2.1). The first 166
samples (comprising the period from July–September 2016) were used as initial
training (and evaluation) data and the remaining 258 samples as independent test
set. The latter was used to determine the expected (future) errors of the batch off-
line forecast models and as the basis for permanently updating the dynamic models
(see Sect. 5.3).

For the second type of experiments the most essential process parameter
combinations were obtained in the following way: (1) the experts proposed 12
(initial) parameter combinations that are expected to have a positive impact on
the quality of the chips; (2) these 12 settings were used as input to our hybrid
design of experiments (HDoE) strategy (as explained in Sect. 3.1.2), which then
selected another N settings, which from the data-driven modeling viewpoint are
expected to improve the robustness (and thus generalization capability) of the
predictive mappings most when being trained on the joint (expert-based + data-
driven selected) parameter settings. Therefore, we exploited the condition of the
parameter covariance matrix as criterion to track the decrease in uncertainty when
selecting more and more samples from a joint set (1) generated through edges of
the parameter hyper-cube (211 = 2048 samples) and (2) obtained by extended Latin
hyper-cube sampling with min-max optimization (10,000 samples). The condition
is defined by

cond(X) = max(eig(XT X))

min(eig(XT X))
, (15)

a well-known and widely applied measure for parameter and model uncertainty in
case of regression/mapping problems [20]. Figure 9 shows the trend lines of the
condition of the parameter covariance matrix for different DoE criteria (y-axis)
when selecting more and more samples (x-axis) up to N = 100. A-optimality
can significantly outperform the other variants, either when being used stand-alone
(which is state of the art [14]) or even more in the hybrid combination with a space
filling approach (shown as dark bold dashed line). The latter also can significantly
outperform the classical SoA A-optimality criterion, as the hybrid combination
reduces model uncertainty faster, especially during the first 10–12 samples . The
grey dashed line shows the case when only Latin hyper-cube samples are considered
for space filling. Even though this strategy delivers slightly better performance after
generating the first 7–8 samples when comparing with hybrid DoE (that also uses
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Fig. 9 Trace of parameter stability for various DoE-based sample selection criteria when incre-
mentally (step-wise) adding up to 100 samples

corner points), the former is not able to ensure the stability of the expected model
certainty further on. Hence, the A-optimality in combination with hybrid sampling
was finally chosen to select another 11 samples (in addition to the 12 selected by the
experts) to test at the bonding liner machine.

The joint 23 selected settings (12 expert-based + 11 from the data-driven hybrid
DoE) were used at the production machine and the resulting real QC values were
collected and stored, which could be used as basis for the predictive mapping
construction phase. Thereby, 26 QC indicators were identified that characterize
best the quality of a given process parameter setting. They belong to three main
groups, namely RMSE (also used in the dynamic forecast modeling procedures),
skew=flatness in the six nest positions (as also used in the dynamic forecast
modeling procedures), and void defects (additional information to be optimized).
These comprise the following indicators:

• for the two indicators (i.e., f1 and f2) in the RMSE group only a single value was
computed for the whole production plate by averaging the individual QC values
of every micro-chip in the plate;

• for the indicators regarding skew=flatness, the compliance of each of the 6 micro-
chips in a production box was measured at two different time intervals (Cycles
#1 and #4), resulting in a total of 12 QC indicators (f3 to f14);

• the 12 QC indicators (f15 to f26) regarding void defects were obtained in the
same manner as in case of skew.
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5.3 Results

Here, we summarize and show the most promising and attractive results we obtained
during a project phase of about 3 years working with the data. These are based
on optimal learning parameter configurations for the model training procedures,
which have been automatically obtained through best parameter grid searches in
combination with cross-validation and boot-strapping procedures [21], as well as
default constructive parameters for optimization cycles using DECMO2 (which
were basically tuned on other types of applications before). In all aspects, we show
a fair comparison with related state-of-the-art methods, i.e., results from these when
also being optimized over parameter grids.

5.3.1 Static Phase (Based on Process Parameter Settings)

In a few first trial-and-error test runs, we conducted a comparative performance
between linear and best-performing MLP (nonlinear) predictive mappings on all 26
QC values when considering a given fivefold cross-validation partition. Thereby, we
found that MLP can marginally improve the results for 19 out of 26 QC indicators;
however, in most cases, the marginal MLP improvements were not stable across
different random splits of the cross-validation folds.

As we had only a couple of (training) samples available (23 in sum), but 26
QC indicators in parallel to optimize (resulting in many-objective optimization
problem), we could expect a significant bias when performing mapping construction
and process optimization due to curse of dimensionality effects [4]. Therefore, we
concentrated on the reduction of the input and output spaces:

• Performing a multi-way factor analysis, where the factors are the process
parameters, in order to realize which factor has a statistically significant influence
onto which QC indicator. This could be accomplished with the so-called M-
way analysis of variance (N-way) ANOVA [47], where M should be as large as
possible in order to take into account possible interactions between the factors,
while still guaranteeing stable results for the respective data reference base at
hand. p-values obtained from the results showed that only the first 8 of the 11
listed parameters in Fig. 1 are relevant for explaining any of the 26 QC indicators;
the most important was parameter X2 (chamber temperature), which had an
influence on most of the QC indicators, followed by parameters X4, X5, and
X6 and finally by X1, X3, X7, and X8. We thus reduced the input parameter
space to the first 8 input dimensions.

• Performing a cross-correlation analysis among all 26 QC indicators, which
resulted in the cross-correlation matrix shown in Fig. 10. It clearly indicates that
the original measurement-based classification of the QC indicators into three
main groups is relevant as:



Automated Process Optimization in Manufacturing Systems Based on Static. . . 517

Fig. 10 Cross-correlation matrix between the 26 QC indicators, note the block-type structure with
three clusters c1 = (f1, f2), c2 = (f3, . . . , f14), c3 = (f15, . . . , f26)

– QC indicators f1 and f2 are strongly intercorrelated and, from an optimization
perspective, can be reunited in a RMSE cluster;

– QC indicators f3 to f14 can form the skew (flatness) cluster;
– QC indicators f15 to f26 can form the void defects cluster.

Based on the strong inter-correlation inside the identified objective clusters, we
could define a surrogate-based MOOP that contains one representative from each
cluster with the reasoning that, by simultaneously aiming to minimize one of
each group, we are in fact searching for process parameter settings that deliver
Pareto optimal solutions (i.e., QC values) related to all 26 indicators. The three
indicators from each group were selected by experts: f1, f12, and f18.

Next, we analyzed the quality of the predictive mappings constructed on the
reduced space of parameter settings for the indicators f1, f12, and f18. In Fig. 11,
we show the average R2 values obtained by the linear and best-performing MLP
regression models over 25 different cross-validation partitions. These partitions have
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Fig. 11 Comparative performance of linear and best-performing MLP models for three QC
indicators over 25 different cross-validation partitions

been carried out to omit randomness effects and to guarantee robust performance
statements and conclusions. The plotted results clearly indicate that:

• some QC indicators (e.g., f1) are generally difficult to model asR2 values depend
more on the cross-validation partition than on the used modeling method;

• some QC indicators (e.g., f12 and f18) appear far easier to model but using
advanced nonlinear methods does not seem to bring a consistent/stable advantage
and can even deliver slightly worse results (e.g., f12).

Based on the results in Fig. 11, we finally used the linear mappings as surrogates
for the process parameter optimization phase, where, after normalization of the
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Fig. 12 Comparative f12 vs. f18 2D Pareto fronts obtained using NSGA-II and DECMO2; the
different colors mark different groups of f1; each point denotes a multi-dimensional parameter
vector (solution)

target values, the objective was to minimize all three (predicted) QC criteria towards
0. Given the fact that objective f1 has proven harder to model (more unstable
and lower R2 values), considering the precise numerical values of this indicator in
further analyses is not recommended. Therefore, in Fig. 12, which contains the final
comparative optimization results obtained by NSGA-II and DECMO2, we show the
obtained Pareto fronts over f12 and f18 when considering four broad quality groups
with respect to f1. It can be clearly seen that:

• the integration of the decomposition-based space exploration paradigm enables
DECMO2 to maintain a better spread than NSGA-II across the entire Pareto
front.

• NSGA-II also performs robustly as it is able to deliver a large number of (albeit
more poorly spread) solutions in a key section of the Pareto front where the harder
to model f1 objective is also minimized.

• A good solution being closest to the original point in the Pareto front can be only
achieved with a pretty high value of f1 (lying in the fourth group); generally
speaking, better values for f1 also induce worse values for either f12 or f18, and
vice versa. Thus, a conflicting situation between the three QC groups could be
found out when trying to optimize the essential process parameters, which means
that the expert should ideally define her/his preferences (two out of these three
groups).

Despite this observation of conflicting QC groups, two best parameter settings
were selected from the Pareto fronts (based on expert preferences) and were tested
on the real production machine to determine the real QC values (measured manually
by experts) delivered by these settings. This on-site examination (validation) is
necessary, as the predictive mappings are not perfect and thus may estimate
wrong target values (for individuals = settings) during the optimization procedure.
Surprisingly, while one of the new settings leads to improved QC results when
comparing to the default parametrization (third row in Table 1) the bonding liner
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operators have been using for years for this specific product type (Gent-Brugge
chips), the other tested setting also delivers competitive results. These two best
parameter settings that were tested are presented in the last two lines of Table 1. It
is noteworthy that, when comparing with the default parametrization, for the second
setting (i.e., the last line in the table), the void defects could be reduced to 0 and
the skewness (=flatness) of the chips is much closer to 0 in all nest positions in both
cycles, while RMSE values (f1) are equally good.

5.3.2 Dynamic Case (Based on Time-Series of Process Values)

Initial Batch Model Construction
First, an initial batch off-line modeling phase was conducted in order to optimize the
learning parameters, especially f ac in the rule evolution criterion [42], the number
of latent variables to use after having been obtained by PLS as well as the ideal
prediction horizon n1 in (3), leading to a good trade-off between forecast accuracy
and early problem recognition (ideally as early as possible, thus the horizon should
be as long as possible). Various prediction horizons have been tested through in a
trial-and-error modeling process: 1, 50, 100, 200, 300, 400, and 450 samples ahead.
As the gap between two sample recordings is around 50 s, this belongs to timely
horizons of around 50 s, 40 min, 80 min, 2 1/2 h, 4 h and 5 1/2 h, and 6 1/4 h into the
future.

Finally, it turned out that a prediction horizon up to 300 samples (= around
4 h) did not decrease the accuracy of the forecast models significantly compared
to the case when using a horizon of one single sample. However, when increasing
the horizon to 400 and 450 samples, there were some significant downtrends
for some QC targets. As a 4-h-ahead prediction was sufficient for the company,
we concentrated on 300 samples horizon when doing further test with model
adaptation and influence analysis, see below. More detailed results from the off-
line modeling process are shown in Fig. 13, where the performance of PLS-fuzzy
approach is compared to conventional (linear) PLS models: values in bold font
indicate significantly better results (underlined by the Wilcoxon signed rank test
[68]), which is achieved in four out of six nest positions for the flatness criterion,
and this with errors up to maximal 15%, overshooting the 10% error bound wished
by the company. This motivates the usage of dynamic adaptation of the forecast
models based on newly recorded samples, see below.

Additionally, in Table 2 we show the optimal number of latent variables
(=number of inputs) and the optimal number of rules to achieve a minimal cross-
validation error, in order to identify a potential over-fitting over time for new
samples drawn from the process. Thus, the number of inputs and the number
of rules of the three right-most columns (for prediction horizons 200, 300, and
400) correspond to the PLS-fuzzy models achieving the errors as listed in Fig. 13.
Obviously, both, the number of inputs and the number of rules are moderate for
the more distant horizons, and even higher for shorter horizons. In these cases, the
cross-validation procedure clearly produced overly optimistic estimates due to over-
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Fig. 13 Mean absolute errors for the six flatness criteria achieved by PLS-fuzzy based on Gen-
Robust-EFS (before the slashes) and conventional PLSR (after the slashes); bold values indicate
significantly better results subject to a significance level of α = 0.05 using Wilcoxon signed-rank
test [68] applied on the residual vectors, red font values belong to the prediction horizons achieving
best trade-offs with model accuracies

Table 2 Upper part: input
dimensionality in terms of the
number of latent variables in
the forecast models for the
various prediction horizons
and the six flatness criteria;
lower part: number of fuzzy
rules in the forecast models
for the various prediction
horizons and the six flatness
criteria

Prediction horizon 1 50 100 150 200 300 400

Number of inputs (latent vars)

Nest_01_Flatness 4 1 4 3 2 2 2

Nest_02_Flatness 5 2 2 2 2 2 2

Nest_03_Flatness 2 2 2 2 2 2 2

Nest_04_Flatness 3 2 2 1 2 1 1

Nest_05_Flatness 2 2 2 2 2 2 2

Nest_06_Flatness 2 2 2 2 2 2 2

Number of fuzzy rules

Nest_01_Flatness 10 4 20 5 3 1 1

Nest_02_Flatness 18 7 3 3 1 1 3

Nest_03_Flatness 3 1 3 2 3 2 3

Nest_04_Flatness 8 4 3 3 3 3 3

Nest_05_Flatness 1 1 1 3 1 1 3

Nest_06_Flatness 8 1 1 3 3 1 3

fitting. These errors may be decreased by using less complex models—however,
such short-time horizons are less interesting from a practical perspective. Thus, for
the more distant horizons, models that are relatively stable on new, unseen data
can be expected; especially, for a prediction horizon of 300 samples (the preferred
choice), only 2 latent variables were needed and a maximum of 3 rules for one
flatness criterion, which is remarkably low.

Dynamic Model Adaptation
In order to increase model performance over time, especially to reach the desired
model error bounds and to compensate (unforeseen, suddenly arising) system
dynamics (e.g., due to environmental influences, new product charges, etc.), we tried
to adapt the models with new incoming on-line samples on the fly. Therefore, we
used the separate validation set (applied above for error elicitation and representing
the period between September and December 2016) as pseudo-stream, as this has
been drawn from the on-line process whenever new QC values were measured:
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thus, always the latest 500 samples for each process values were stored in a ring-
buffer, where, depending on the ideal prediction horizon of the initially generated
model (300 in our case), the first part of it was used as input to model adaptation,
and the measured QC values as targets to model adaptation. Thus, we achieved a
fully supervised adaptation of the (fuzzy) models, which typically outperforms pure
unsupervised adaptation [49, 58]. We tracked the model error development over
time by using the interleaved test-and-then-train scenario, where upon a new QC
measurement first the model error was updated (using the predictions of the QC as
obtained 300 process cycles ago) and then the model was adapted.

Figure 14 shows the results in terms of the trend lines of the (over time) accumu-
lated error for all six flatness nest position when using (1) no updating at all (static
case), (2) model updating with all samples weighted equally, i.e., PLS-fuzzy, (3)
model updating with forgetting embedded as discussed in Sect. 3.2.2, i.e.,PLS-fuzzy
adaptive + forgetting, and (4) the full IPLS-GEFS method including incremental
PLS loading space update. Obviously, error trends increased significantly after some
time in the case of static models for nest positions 02–05, which can be compensated
for using dynamically adaptive models. Furthermore, the forgetting strategy for
increased model flexibility further helped to decrease the error trend lines, especially
in the cases of nest positions 01, 02, and 06. For nest positions 03–06, a significant
reduction of the MAE to below 10% was achieved, which was the goal defined by
our industry partners, while for the first two nest positions (the two most difficult
forecasting cases) the error converged from around 15% to close to 10%. The
dynamically adaptive models, however, showed slightly poorer performance at the
beginning of the stream for nest positions 01 and 02, which can be explained by
adaptive forgetting causing too excessive model flexibility (due to an inappropriate
forgetting factor setting).

The case in which the PLS space was updated in addition to the fuzzy model (=
PLS-fuzzy adaptive + dynamic PLS space = IPLS-GEFS, by using the incremental
PLS space concept in Sect. 3.2.2 (paragraph “Incremental Update of the Latent
Variables (PLS space)”) led to results resembling those without updating but using
a forgetting factor: for nest positions 1, 2, and 6 the trend curves almost overlap, for
nest positions 2 and 4 they are slightly better, and in the case of nest position 5 they
become slightly worse. When taking into account that—unlike PLS-fuzzy models
with forgetting, which require a forgetting factor Λ to be tuned—incremental
updating of the PLS component space requires no additional parameter, IPLS-GEFS
seems to be the better choice.

In all cases, incremental (linear) PLSR achieved similar performance as the
adaptive PLS-fuzzy modeling variants until approximately sample number 300, but
then deteriorated the performance significantly, in some cases even falling behind
the static PLS-fuzzy model, which was not updated at all. This is another clear
indicator of the process containing intrinsic nonlinearity: this was further underlined
by the rule evolution trends, which showed an evolution of 1–2 rules at most over
all six nest positions. Splitting was never activated, such that we can conclude that
no (gradual) drift occurred in the on-line production phase during the period of 4
months, i.e., September to December 2016.
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Fig. 14 Error trend lines over a time line of about 4 months for the flatness in six nest positions
in case of no update (static PLS-fuzzy model), classical update of PLS-fuzzy model (rule evolution
+ parameter adaptation) in a life-long learning mode (PLS-fuzzy adaptive), update of PLS-
fuzzy models with forgetting (using λ = 0.95 as forgetting factor setting), update by including
incremental PLS (IPLS-GEFS), incremental PLSR (purely linear), and incremental PLSR by only
updating the linear regression coefficients

Model Usage
Finally, we inspected the influence of the single process values onto the flatness
criteria in order to see which process values have a higher influence and which
ones have a negligible influence and thus can be eliminated before conducting any
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Fig. 15 Influence analysis plot for flatness NEST01 at bonding liner including 17 process values,
each process value in a different color containing 50 time-series samples n1 steps (=prediction
horizon) before the QC value was measured; the dashed horizontal line indicates the threshold for
a process value above which it becomes significant—as calculated by (14): the significant ones are
highlighted by an ellipsis

optimization cycles—this then may lead to a reduction of the dimensionality of the
solution space in the optimization problem, which in turn increases the likelihood to
become solvable in a meaningful (or even real) time during the on-line process. The
influence scores have been calculated as described in Sect. 4.2 (with the usage of
the loadings of the variables in the most important latent variables used as inputs).
Figure 15 depicts one example how the various process values influence the flatness
criterion in nest position 01.

The three groups of process values with low, medium, and high influences are
highlighted as such in the figure. Certainly, those with a low influence (close to 0)
can be discarded for optimization as a change in them would not lead to any changes
in the QC predictions, thus in the fitness calculations, anyway. Also the ones with
a medium influence and still lying under the threshold (marked by the horizontal
dashed line) may be discarded, especially when a co-optimization strategy with
process parameters in parallel is carried out (then, most of the required variance
can be steered by the process parameters). The ones inducing a high influence
also have a high variance over the 50 time-series samples which are used as input
to PLS. This should be respected during optimization, by, e.g., coding the mean
values plus standard deviations for these process values in the individuals (solution
vectors). In this example case, we ended up with a 21-dimensional solution space
(mean, standard deviation, and slope for seven process values surrounded by the
ellipsis). Similar drawings with similar influences have been obtained for other nest
positions, such that the 21-dimensional solution space was not further expanded for
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optimization. Based on this reduced solution space, the on-line optimization (based
on multi-objective solvers) as formulated and described in Sects. 2.2 and 4.2 can
be started directly and efficiently whenever (some) flatness values fall out of their
allowed bounds.

Process Optimization During Multi-Stage Production
Recent developments and experiments have been conducted for the multi-stage
production process, where parameters and process values occurring during injection
molding were optimized for achieving a better quality of chips after the end of
bonding process. There, the same quality criteria were used in terms of three
essential groups (RMSE, flatness, and void events) for optimization purposes. Long-
term forecast models were established based on process values trends at injection
molding to predict final chip quality at the end of bonding, where a cross-link
for identifying the (time of) occurrence of the same chips across the production
stages needed to be established for data collection—see [41] for details. The forecast
models from injection process to bonding quality turned out to be of higher quality
due to lower prediction errors (e.g., in the range of 5–8% for flatness) than the
single stage forecast models from bonding process to bonding quality. According to
the feedback of company experts, this is consistent to their expectations, especially
for flatness and void events, which should be in large parts already ascertained after
injection while bonding should have lower (but additional) influence on them.

Thus, process optimization was carried out for the multi-stage case as formulated
and described in Sects. 2.2 and 4.2, where Pareto fronts with high quality (close
to the origin of the three essential criteria) could be obtained. The fitness of the
best individual after more than 1400 optimization cycles (populations), measured in
terms of the distance to the origin, turned out to be 0.2; dimensionality reduction to
13 important process variables using the influence analysis described in Sect. 4.2.2
was essential, otherwise the fitness turned out to be much worse, i.e., 70, in the
full dimensional space comprising 63 process variables at injection molding. Final
Pareto fronts obtained when using optimization in the full space (left) and in the
reduced space (right) are visualized in Fig. 16, where the fitness of the initial
individuals are shown in dark dots and the optimized ones in lighter blue stars.
For further details about the experiments and results including suggested process
parameter settings for injection molding to optimize chip quality at the end of
bonding, refer to [40].

6 Conclusion and Outlook

We discussed and demonstrated a novel holistic approach for off-line and on-
line process optimization in manufacturing systems. The off-line phase relies on
process parameters which can be steered as “control wheels” in order to obtain
ideal machine settings leading to better production quality. Therefore, predictive
mappings are constructed based on samples which are economically and efficiently
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Fig. 16 Pareto fronts of individuals at the end of each process optimization run: left for the full
space (63 process values, 189 dimensions), right for the reduced space (13 process values, 39
dimensions); dark dots mark fitness of individuals from initial population, blue stars the final
individuals achieved through multi-objective optimization with NSGA-II

gathered from a new hybrid design of experiments approach, which are then used
as surrogate models in an evolutionary-based multi-objective optimization solver
(using various QC indicators as target criteria) to obtain ideal process parameter
settings. The latter is based on a particular co-evolution strategy as embedded in the
DECMO2 approach, with which the authors already enjoyed good experience on
past multi-objective optimization applications. The on-line phase relies on process
values permanently recorded during production, based on which undesired changes
leading to worse product quality can be supervised. Time-series-based forecast
models are constructed from on-line recorded data-based employing time-series
transformation to reduce curse of dimensionality becoming apparent in a batch
process modeling setting. They are able to self-adapt and evolve over time with
sufficient flexibility (including rule splitting, dynamic forgetting, and updating the
transformation space) and are used for permanent prediction of product quality,
measured in terms of several QC indicators (with a prediction horizon of up to a
few hours into the future). Based on early observed bad quality or (significantly)
down-trending quality, on-line process optimization can start on a subset of QC
indicators, again using an evolutionary-based multi-objective optimization solver,
but with a reduced functionality, an incremental dynamic capability, and/or based
on partial low-dimensional views on the objective space. Furthermore, reduction
of the optimization space is required to ensure fast optimization cycles; this is
achieved by a new influence analysis between process values trends and QC
indicators within the context of PLS-fuzzy forecast models. The holistic approach
has been implemented for a micro-chip production process in a larger manufacturing
environment, comprising three stages of production stages (injection molding, oven
and bonding liner), whereas the latter stage was extensively evaluated, for which
some promising, successful results are shown. Additionally, process optimization
in a multi-stage context from injection to bonding was achieved with nearly ideal
fitness values of solutions in form of desired process values settings + trends.
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Distributed Chance-Constrained Model
Predictive Control for Condition-Based
Maintenance Planning for Railway
Infrastructures

Zhou Su, Ali Jamshidi, Alfredo Núñez, Simone Baldi, and Bart De Schutter

1 Introduction

Maintenance is essential for the reliability, availability, and safety of a railway
network, which is composed of various infrastructures like tracks, tunnels, stations,
switches, overhead wiring, signaling systems, and safety control systems. In this
paper we focus on track maintenance, which in general takes up a large portion of
the annual maintenance budget of a railway infrastructure network, e.g., 40% for the
Dutch railway network [1]. As shown in Fig. 1, a railway track contains different
assets, e.g., rails, ballasts, sleepers, fastenings, welds, etc., that are interconnected
and work together. These assets suffer from quality degradation over time due to
regular usage. For example, the contact between wheel and rail leads to squats, a
typical rolling contact fatigue that first appears on the rail surface and might cause
rail breakage if not treated properly [2]. Early-stage squats can be effectively treated
by grinding, while late-stage squats can only be addressed by rail replacement [3].

Due to the high cost of railway track maintenance interventions (e.g., over EUR
10,000 for one grinding operation), and the limited resource for track maintenance
(e.g., limited track possession time for maintenance), how to plan maintenance
interventions in a cost-efficient way without sacrificing the safety and reliability
of the whole network has become a primary concern for railway infrastructure
managers. This explains why most European countries have started a shift from
reactive maintenance to proactive maintenance in recent years [4, 5]. Condition-
based maintenance [6, 7], where maintenance interventions are planned based on
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Fig. 1 Components of
railway track

the “condition” of the asset, has been considered the most promising predictive
maintenance strategy in various fields [8, 9], as most system failures are preceded
by one or more indicative signals [10].

We consider condition-based maintenance optimization [11, 12], where the
optimal planning of maintenance interventions is based on an explicit mathematical
model describing the deterioration dynamics of the asset. This deterioration model
can be either deterministic or stochastic. Examples of deterministic models include
the linear model used in [13] to describe track quality degradation over tonnage,
and the exponential model proposed in [14] for track geometry deterioration over
time. The main advantage of deterministic model is that the resulting optimization
problem is easier to solve than in case a more complex stochastic model is
used. However, as a deterministic model only captures the nominal deterioration
behavior of an asset, the resulting maintenance plan might not be robust enough
in the presence of various sources of randomness like model uncertainties and
measurement errors. In this case stochastic models are preferred. A bi-variant
Gamma process is used in [15] to describe the evolution of longitudinal and
transverse levels for a French high-speed line. A grey-box model is proposed in
[16] to identify the stochastic aging process of track geometry using Monte Carlo
simulation. Dagum probabilities are used in [17] to characterize the reduction of
the standard deviation of the longitudinal level over time. In [18], a fuzzy Takagi-
Sugeno internal model is applied to capture the most representative dynamics of
squat evolution.

To make the proposed approach applicable to a wide range of defects in general
railway infrastructures, we use a piecewise-affine model with bounded uncertain
parameters as the deterioration model. The main contribution of this chapter is
the development of a model-based, optimization-based approach for condition-
based maintenance planning of railway infrastructures. The developed approach is
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robust but nonconservative, and the proposed distributed solution methods guarantee
tractability even for large-scale infrastructure systems.

The paper is organized as follows: the theoretical background of the proposed
approach is presented in Sect. 2, and the problem formulation is given in Sect. 3.
Two distributed solution approaches are explained in Sect. 4. A numerical case
study with computational experiments and comparison to other approaches is
presented in Sect. 5. Finally, we conclude this work and provide future working
directions in Sect. 6.

2 Preliminaries

We use Model Predictive Control (MPC) [19, 20] as the basic methodology for
optimal condition-based maintenance planning for railway infrastructures. MPC
follows a receding horizon principle. An optimization problem is solved at each
sampling time step to predict the optimal sequence of maintenance actions for
a given prediction horizon, based on the information (e.g., measurement data)
available at the current time step. Only the first step of the maintenance action
sequence is applied to the system, and a new optimization problem is solved at
the next time step with new information. The prediction horizon is in general much
shorter than the planning horizon, so the MPC optimization problem at each time
step is much easier to solve than the correspondent optimization problem for the
entire planning horizon. Although the MPC controller does not guarantee closed-
loop optimality, in practice it usually gives a good control performance [21].

2.1 Hybrid and Distributed MPC

MPC has been applied to several real-world optimization problems like risk man-
agement [22] and supply chain management [23, 24]. If the system involved in these
problems contains both continuous and discrete dynamics, we call it hybrid system.
One way to address such a hybrid system is to transform it into a Mixed Logical
Dynamical (MLD) system [25] and to solve a Mixed Integer Programming (MIP)
problem at each time step. Another way is to adopt the concept of Time Instant
Optimization (TIO) [26] and transform the MPC optimization containing both
continuous and discrete decision variables into a non-smooth optimization problem
with only continuous decision variables. Since both MIP problems and non-smooth
optimization problems are NP-hard, hybrid MPC usually becomes computationally
intractable for large-scale systems. In this case a distributed optimization scheme
is usually adopted to improve the scalability of the MPC approach. In the control
literature, most of the distributed optimization approaches are Lagrangian-based,
e.g., Alternating Direction Method of Multipliers (ADMM) [27], and there is no
guarantee of convergence to a global optimum for MIP problems. A continuous
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relaxation of binary variables is used in [28, 29], yielding a bound on the objective
function value to warm-start the MIP problem. A practical approach is proposed in
[30] for a class of networked hybrid MPC. This heuristic first determines the binary
decision variables in the local problems, and then transforms the Mixed Integer
Quadratic Programming (MIQP) problem into a set of Quadratic Programming
(QP) problems via distributed coordination. One non-Lagrangian-based distributed
method for MIP problems is the Distributed Robust Safe But Knowledgeable
(DRSBK) algorithm [31], which adopts a constraint tightening technique.

In the operations research literature, Benders decomposition [32] and Dantzig-
Wolfe decomposition [33] are the most well-known decomposition methods for
large-scale Linear Programming (LP) and Mixed Integer Linear Programming
(MILP) problems. Benders decomposition is designed for problems coupled
through common variables, while Dantzig-Wolfe decomposition is for problems
coupled through common constraints. Benders decomposition can provide global
optimal solution for MILP problems in which the integer decision variables are
only in the coupling variables. An up-to-date review on Benders decomposition
is provided in [34]. Dantzig-Wolfe decomposition only solves an LP relaxation
for MILP problems. One example of applying Dantzig-Wolfe decomposition to
hybrid MPC is [35], which provides a suboptimal solution of the MILP problem via
column generation.

2.2 Chance-Constrained MPC

Real-world problems like maintenance planning are influenced by various sources
of randomness like model uncertainties, measurement error, and missing data.
Robust control [36, 37], where control performance and constraint satisfaction are
guaranteed when the uncertainties are within a specific range, might lead to a
very conservative control strategy. In this case, the concept of chance-constrained
optimization [38] can be adopted to achieve a balance between robustness and opti-
mality. Chance-constrained MPC, where the probabilistic constraints are formulated
as chance-constrained constraints and the objective is to optimize the expected value
of the objective function, has been applied to various cases in industries like drinking
water network management [39], hospital pharmacy stock management [40], and
condition-based planning of railway infrastructures [41].

For chance-constrained optimization problems with known probability dis-
tributions of uncertainties, analytical approximation methods [42] are the most
suitable solution approaches. When the probability distributions of uncertainties
are unknown, scenario-based approaches [43] and sample average approximation
methods [44] should be considered. Both approaches are based on randomization of
uncertainties. The major difference is that scenario-based approaches have more
restrictive assumptions on the convexity of the chance-constrained optimization
problem, but require less randomized scenarios to obtain the same probabilistic
guarantee as sample average approximation methods. On the other hand, sampling
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average approximation methods, which are based on Monte Carlo simulation, do
not require convexity of the chance-constrained problem, but need a large number
of scenarios to achieve an acceptable probabilistic guarantee.

Since most scenario-based approaches require the chance constraints to be
convex with respect to the uncertain parameters, their applications to MILP chance-
constrained problems are scarce. One notable example is [45]. However, the
proposed bound in [45] on the number of scenarios is very conservative, and thus not
suitable for large-scale chance-constrained problems. In this case, we choose a two-
level approach [46] that lies between robust approach and scenario-based approach.

3 Problem Formulation

In this section, we first described the deterioration model in Sect. 3.1. The
local chance-constrained MPC problem is formulated in Sect. 3.2, and the two-
stage robust scenario-based approach to approximate the chance-constrained MPC
problem is explained in Sect. 3.3. Finally, the centralized MLD-MPC problem that
have to be solved at each time step is formulated in Sect. 3.4. Some important
symbols used in this section are presented in Table 1.

3.1 Deterioration Model

For the planning of track maintenance activities, we divide a piece of railway track
into N nonoverlapping sections, as shown in Fig. 2. The following discrete-time
state-space model is used to describe the independent deterioration dynamics of
each section j ∈ {1, . . . , n}:

Table 1 Important symbols used in Sect. 3

Symbol Meaning

xj,k State of section j at time step k

uj,k Maintenance option applied to section j at time step k

θj,k Realizations of all the uncertain parameters for section j at
time step k

vj,k New binary and continuous decision variables in the trans-
formed MLD model

NP Prediction horizon

x̂j,k+l|k Estimated state of section j at time step k+ l, based on the
information available at time step k

x̃j,k Estimated state of section j from time step k + 1 to time
step k +NP

ũj,k Maintenance option applied to section j from time step k
to time step k+NP − 1; same notation applies to θ̃j,k , ṽj,k .

x̃
(s)
j,k Scenario s of x̃j,k ; similar notation applies to θ̃ (s)j,k , ṽ(s)j,k
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Fig. 2 Illustration of track sections for a single railway line

xj,k+1 = fj (xj,k, uj,k, θj,k)

=

⎧
⎪⎪⎨
⎪⎪⎩

f 1
j (xj,k, θj,k) if uj,k = 1 (no maintenance)

f
q
j (xj,k, θj,k) if uj,k = q ∀q ∈ {2, . . . , N − 1}
f Nj (θj,k) if uj,k = N (full renewal),

(1)

where the vector xj,k =
[
xcon
j,k x

aux
j,k

]T ∈ Xj denotes the state of section j at

time step k. In particular, xcon
j,k indicates the “condition” of the track section, while

xaux
j,k is an auxiliary state that can be viewed as the “memory” of the track section,

e.g., the number of grindings that have been applied to this section since the last
rail replacement. This auxiliary state is useful to capture the inefficiency of track
maintenance activities. The discrete scalar uj,k ∈ Uj = {1, . . . , N} denotes the
maintenance options, including maintenance activities and the “no maintenance”
option, that is applied to section j . Finally, the vector θj,k ∈ 'j contains the
realizations of all the uncertain parameters for system j at time step k. Our only
assumption on the uncertain parameters is that 'j is a bounded hyperbox.

We assume that for any q ∈ {1, . . . , N}, the function f
q
j is either piecewise-

affine or linear with respect to xj,k . This is not a very restrictive assumption, as
piecewise-affine functions can approximate any nonlinear function with arbitrary
accuracy.

3.2 Local Chance-Constrained MPC Problem

Let NP denote the prediction horizon. Define:

x̃j,k =
[
x̂T
j,k+1|k . . . x̂T

j,k+NP |k
]T

ũj,k =
[
uj,k . . . uj,k+NP−1

]T
(2)

θ̃j,k =
[
θT
j,k . . . θ

T
j,k+NP−1

]T
,
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where x̂T
j,k+l|k denotes the estimated state of section j at time step k + l, based on

the information available at time step k. Define

J
Deg
j (x̃j,k) = ‖x̃con

j,k ‖1, (3)

where ‖·‖1 denotes the 1-norm, and P is a nonnegative weighting matrix. This term
calculates the accumulated condition deterioration within the prediction window.
Define the indicator function IX, which takes value 1 if the statement X is true, and
0 otherwise. We then define

JMaint
j (ũj,k) =

NP−1∑
l=0

N∑
q=1

cMaint
q,j Iuj,k+l=q, (4)

which computes the total maintenance costs for section j within the entire prediction
window. The objective function for each local MPC controller can then be expressed
as:

Jj (x̃j,k, ũj,k) = J
Deg
j (x̃j,k)+ φjJMaint

j (ũj,k), (5)

where the weighting parameter φj captures the trade-off between condition dete-
rioration and maintenance costs. Finally, the chance-constrained MPC problem for
section j can then be formulated as:

min
ũj,k

Eθ̃j,k
[Jj (x̃j,k, ũj,k)] (6)

subject to: x̃j,k = f̃j (ũj,k, θ̃j,k; xj,k) (7)

Pθ̃j,k

[
max

l=1,...,NP

x̂con
j,k+l|k(ũj,k, θ̃j,k; xj,k) ≤ xcon

max

]
≥ 1− εj , (8)

where the objective (6) is to minimize the expected condition deterioration and
maintenance costs. The NP-step prediction model (7) can be computed by recursive
substitution of (1). Constraint (8) is the chance constraint, stating that the probability
that the maximal degradation level within the prediction horizon is no more than the
maintenance threshold xcon

max is at least 1− εj , where the violation level εj is a small
positive value, e.g., 0.05.

3.3 Two-Stage Robust Scenario-Based Approach

We apply the two-stage approach developed in [46] to approximate the chance-
constrained problem (6)–(8) with a confidence level βj indicating that the optimal
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solution of the resulting deterministic problem is also an ε-level solution of the
originate chance-constrained problem with a probability at least 1 − βj , where βj
is a small positive value.

First, we generate the scenario set Hj satisfying the following condition [47]:

|Hj | ≥
⌈

1

εj
· e

e − 1

(
2 dim ('̃j )− 1+ ln

1

βj

)⌉
(9)

and solve the following convex scenario-based optimization problem

min
{(τ i , τ i )}

dim ('̃j )

i=1

dim ('̃j )∑
i=1

τ i − τ i (10)

subject to: (θ̃j,k)
(h)
i ∈ [τ i, τ i] ∀h ∈H , ∀i ∈ {1, . . . , dim ('̃j )} (11)

to obtain the smallest hyperbox B∗j covering all scenarios in Hj . The notation

(θ̃j,k)
(h) denotes the realization of θ̃j,k for scenario h, and the symbol (v)i denotes

the i-th entry of vector v.
Then we solve the robust optimization problem

min
ũj,k

1

|Hj |
∑
h∈Hj

Jj

(
x̃
(h)
j,k , ũj,k

)
(12)

subject to: x̃(h)j,k = f̃j

(
ũj,k, θ̃

(h)
j,k ; xj,k

)
∀h ∈Hj (13)

max
θ̃j,k∈B∗j∩'̃j

max
l=1,...,NP

x̂con
j,k+l|k(ũj,k, θ̃j,k; xj,k) ≤ xcon

max. (14)

Furthermore, define the worst-case scenario w as

θ̃
(w)
j,k ∈ argmax

θ̃j,k∈B∗j∩'̃j

max
l=1,...,NP

x̂con
j,k+l|k(ũj,k, θ̃j,k; xj,k), (15)

and replace the robust constraint (14) by the following linear constraint:

Pj x̃
(w)
j,k

(
ũj,k, θ̃

(w)
j,k ; xj,k

)
≤ xcon

max, (16)

where the matrix Pj satisfies Pj x̃j,k = x̃con
j,k . The local chance-constrained

MPC problem (6)–(8) can then be approximated by the deterministic optimization
problem (12), (13), (16) with the local scenario set Sj = |Hj | ∪ {w}.
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3.4 MLD-MPC Problem

For each scenario s ∈ Sj , we can transform the local deterioration model (1) into
the following standard MLD model [25]:

x
(s)
j,k+1 = A

(s)
j x

(s)
j,k + B(s)

j v
(s)
j,k (17)

E
(s)
j,1v

(s)
j,k ≤ E(s)

j,2x
(s)
j,k + E(s)

j,3, (18)

where the new decision variable v(s)j,k contains all the binary and continuous decision
variables in the transformed MLD model. An example of how to transform the
deterioration dynamics of a generic railway asset can be found in [48].

Define ṽj,k similar to ũj,k as in (2). Furthermore, define ṽk = [(ṽ(1)j,k)T . . . ,

(ṽ
(|Sj |)
j,k )T]T ∈ Ṽj . Let ṽk = [ṽT

1,k . . . ṽ
T
n,k]T. The MPC optimization problem for the

whole systems can then be expressed in the following compact MILP formulation:

min
ṽk

n∑
j=1

cj ṽj,k (19)

subject to:
n∑

j=1

Rj ṽj,k ≤ r (20)

Fj ṽj,k ≤ lj ∀j ∈ {1, . . . , n}. (21)

The objective function (19) is obtained by substituting (17) into the local objective
function (12) for every section j . The linear constraint (20) is the global coupling
constraint on resources, e.g., available track possession time for maintenance.
Constraints (21) are the local constraints for each track section, including the
deterministic approximation of the local chance constraint, and all the linear
constraints from the transformation of the hybrid dynamics into an MLD model.

4 Distributed Optimization

The centralized MPC problem (19)–(21) is an NP-hard MILP problem, where
the number of binary decision variables is proportional to the number of sections
and the dimension of uncertain parameters. It becomes intractable for a railway
infrastructure divided into a large number of sections, or for high-dimensional
uncertainties. To improve the scalability of the proposed approach, we investigate
two distributed optimization schemes. We call the first one the DWD algorithm,
as it is based on Dantzig-Wolfe decomposition [49]. The second one is a modified
version of the DRSBK algorithm [31] that uses a constraint tightening technique
[50].
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4.1 Dantzig-Wolfe Decomposition

Define the polyhedron Pj,k = {ṽj,k ∈ Ṽj : Fj ṽj,k ≤ lj }, which is the feasible
region of the j -th local MPC problem. The set Gj,k that contains all the extreme
points, i.e., columns, of the convex hull of Pj,k , is called the generating set of
the j -th subproblem. According to Minkowski’s theorem [51], every point in a
compact polyhedron can be represented by a convex combination of the extreme
points. For each column g ∈ Gj,k , let ṽ[g]j,k denote the value of ṽj,k at column
g, and let μj,g denote the weight assigned to column g. Furthermore, define
μj = [μj,1 . . . μj,|Gj,k |]T and μ = [μT

1 . . . μ
T
n ]T. The master problem can then

be defined as:

min
μ

n∑
j=1

∑
g∈Gj,k

cj ṽ
[g]
j,kμj,g (22)

subject to:
n∑

j=1

∑
g∈Gj

(
Rj ṽ

[g]
j,k

)
μj,g ≤ r (23)

∑
g∈Gj

μj,g = 1 ∀j ∈ {1, . . . , n} (24)

μj,g ≥ 0 ∀g ∈ Gj,k, ∀j ∈ {1, . . . , n}. (25)

This master problem is a reformulation of the LP-relaxation of the centralized MPC
problem (19)–(21).

As the size of the generating set Gj,k is usually large, column generation [52],
which starts with an initial partial generating set G s

j,k ⊂ Gj,k , is usually used
to improve computational efficiency. Instead of solving the master problem, a
restricted master problem that can be obtained by simply replacing Gj,k by G s

j,k

in (22)–(25) is solved. The dual of this restricted master problem can be written as:

max
λ,π
−rλ+

n∑
j=1

πj (26)

subject to: λ
(
−Rj ṽ[g]j,k

)
+ πj ≤ cj ṽ[g]j,k ∀g ∈ G s

j,k, ∀j ∈ {1, . . . , n} (27)

λ ≥ 0 (28)

π ∈ R
n. (29)

Let μ∗ and (λ∗, π∗) denote the optimal solutions of the restricted master problem
and its dual, respectively. The reduced cost of section j can then be obtained by
solving the following pricing subproblem:
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ρj = min
g∈Gj,k

cj ṽ
[g]
j,k + λ∗

(
Rj ṽ

[g]
j,k

)
− π∗j

= min
ṽj,k∈Pj,k

cj ṽj,k + λ∗(Rj ṽj,k)− π∗j , (30)

which is an MILP. We only add the new column, i.e., the optimal solution of
(30), into the partial generating set G s

j,k , when the reduced cost ρj is negative.
Furthermore, an upper bound on the objective function value of the centralized MPC
problem is obtained whenever μ∗ is binary, and a lower bound is given by:

q(λ∗) = inf
ṽk∈×nj=1 Pj,k

n∑
j=1

cj ṽj,k + λ∗
(

n∑
i=1

Rj ṽj,k − r
)

= −λ∗r +
n∑

j=1

(ρj + π∗j ), (31)

which is the Lagrangian dual of the centralized MPC problem.
The column generation procedure terminates when all the reduced costs are 0,

or when the upper bound meets the lower bound. In particular, if the procedure
ends with a binary μ∗, then we have also found the global optimal solution for the
centralized MPC problem. If not, then a suboptimal solution of the centralized MPC
problem can be found by solving the restricted master problem using the partial
generating sets obtained at the end of the column generation procedure [35].

4.2 Constraint Tightening

We modify the DRSBK algorithm [31], which is based on a constraint tightening
technique. First, we generate a random sequence s that is a permutation of the set
{1, . . . , n}. This sequence specifies the order of solving the subproblems. Then for
each section j , we define the following subproblem:

min
ṽj,k∈Pj,k

cj ṽj,k (32)

subject to: Rj ṽj,k ≤ r −
n∑

i=1, i �=j
Ri ṽ

†
i,k, (33)

where the local feasible region Pj,k is defined the same way as in Sect. 4.1. The
left-hand side of constraint (33) is the resource allocated to section j , while the right-
hand side represents the global resource reduced by the resource allocated to all the
other sections. If the i-th subproblem is already solved before the j -th problem, then
ṽ

†
i,k denotes its optimum at time step k, otherwise ṽ†

i,k denotes the optimal solution
of the i-th problem at time step k − 1.
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If the subproblem (32)–(33) is infeasible for any section j , a new sequence s is
generated, and the subproblems are solved in a new order. The iteration terminates
when all the subproblems are feasible, and the difference of global objective
function values between the current iteration and the previous iteration is less than
the optimality tolerance. Unlike column generation, where the solution improves
over each iteration, this random algorithm might need a large number of iterations
for convergence. However, in practice this random algorithm works surprisingly
well for MILP problems with a relatively small number of coupling constraints.

5 Case Studies

5.1 Settings

A numerical case study is performed on the optimal treatment of squats, a type of
rolling contact fatigue. The evolution of a squat depends on the dynamic wheel-rail
contact. A severe squat is shown in Fig. 3. The severity of a squat is determined by
its visual length, which can be measured by techniques like axle box acceleration
[53, 54], eddy current testing [55], or ultrasonic surface waves [56]. The degradation
level, i.e., condition, of each section can be computed by aggregating the individual
squat measurements within the section, as in [41]. For convenience we normalize
the degradation level to [0, 1].

We consider three maintenance options, no maintenance, grinding, and replacing,
to be applied to each track section. The deterioration model of section j can then be
expressed as:

Fig. 3 A severe squat on the rail surface
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xcon
j,k+1 = f con

j (xcon
j,k , uj,k, θj,k)

=

⎧
⎪⎪⎨
⎪⎪⎩

f
Deg
j (xcon

j,k , θj,k) if uj,k = 1 (no maintenance)

f Gr
j (xcon

j,k , θj,k) if uj,k = 2 (grinding)

0 if uj,k = 3 (replacing)

(34)

xaux
j,k+1 = f aux

j (xaux
j,k , uj,k)

=

⎧
⎪⎪⎨
⎪⎪⎩

xaux
j,k if uj,k = 1 (no maintenance)

xaux
j,k + 1 if uj,k = 2 (grinding)

0 if uj,k = 3 (replacing).

(35)

The auxiliary state xaux
j,k counts the number of grindings on section j since the last

renewal. The functions f Deg
j and f Gr

j in (34) are both piecewise-affine in the current
condition xcon

j,k , i.e.

f
Deg
j (xcon

j,k ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yint
j,1 +

yint
j,2 − yint

j,1

xswi
j,1

xcon
j,k if xcon

j,k ∈ [0, xswi
j,1 )

yint
j,2 +

yint
j,3 − yint

j,2

xswi
j,2 − xswi

j,1

(
xcon
j,k − xswi

j,1

)
if xcon

j,k ∈ [xswi
j,1 , x

swi
j,2 )

yint
j,3 +

yint
j,4 − yint

j,3

1− xswi
j,2

(
xcon
j,k − xswi

j,2

)
if xcon

j,k ∈ [xswi
j,2 , 1],

(36)

f Gr
j (xcon

j,k ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if xcon
j,k ≤ xeff

j

ysev
j

xsev
j − xeff

j

(
xcon
j,k − xeff

j

)
if xeff

j < xcon
j,k ≤ xsev

j

ysev
j +

ymax
j − ysev

j

1− xsev
j

(
xcon
j,k − xsev

j

)
if xcon

j,k > xsev
j .

(37)

Five different deterioration models are used, and the model parameters are given in
Table 3. The maintenance threshold xcon

max is 0.95, and the following deterministic
constraints are imposed on the auxiliary state:

xaux
j,k+l ≤ xaux

max ∀j ∈ {1, . . . , n}, ∀l ∈ {1, . . . , NP}, (38)

to bound the maximal number of consecutive grindings on one track section. We set
xaux

max = 10 in the case study.
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Finally, we have the following global constraint:

n∑
j=1

Iuj,k=1 ≤ nGr
max ∀l ∈ {1, . . . , NP} (39)

to bound the maximal number of sections that can be ground at each time step.
The proposed approach is implemented in Matlab R2016b, on a desktop com-

puter with an Intel Xeon E5-1620 eight-core CPU and 64 GB of RAM, running
a 64-bit version of SUSE Linux Enterprise Desktop 12. All the MILP and LP
problems are solved by CPLEX V12.7.0.

5.2 Representative Run

A representative run with 53 track sections is performed to illustrate the proposed
MPC approach. The length of each track section can range from 200 m to 5 km.
Note that the size of the MPC optimization problem depends on the number of
track sections in the network, rather than the length of each track section. For the
same physical network, a finer partition captures the condition of a section more
accurately, at the cost of heavier computational demand. The sampling time is 3
months, and the planning horizon is 20 steps, i.e., 5 years. The prediction horizon
NP = 3, and the maximal number of sections that can be ground is 15. The
maximum number of section that can be ground at each time step is determined by
multiple practical factors like the sampling time step (the larger the sampling time
step, the more available track possession time for maintenance) and section length
(longer section indicates more maintenance time to treat each section, thus less
sections that can be ground). The realizations of the uncertain parameters within the
planning window are randomly generated by Gaussian distribution. The simulation
results of one of the 53 sections are shown in Fig. 4. From Fig. 4a we can see that
the degradation level of this track section is kept below the maintenance threshold
for the entire planning horizon. Due to the high maintenance cost, maintenance
interventions, including grinding and replacing, are suggested when the degradation
level is relatively high (above 0.8). Replacing is suggested when the degradation
level almost hits the threshold, and there is a long interval (7 time steps) of no
maintenance after rail replacement.

An overview of the simulation results of the whole network at one time step
is shown in Fig. 5. In total 11 grindings and 2 replacements are suggested at the
current time step, keeping the degradation levels of the whole network under the
maintenance threshold at the next time step.
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Fig. 4 Simulation results for section 24 by the chance-constrained MPC based on column
generation. The number above each grinding action is the number of previous grindings on section
24 since the last replacement. (a) Simulated degradation levels within the planning horizon. (b)
Interventions suggested by the MPC controller
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Fig. 5 Simulation results for the whole railway network at representative time step (k = 6). (a)
Degradation levels of the whole railway network at time step 6 (current time step) and time step
7 (next time step). (b) Interventions suggested by the high-level MPC controller at time step 6 for
the whole railway network

5.3 Computational Comparisons

We test the performance of the two distributed optimization algorithms on 12
randomly generated chance-constrained MPC optimization problems with the
number of sections ranging from 10 to 120. The centralized approach becomes
intractable (out of memory) when the number of sections reaches 130. The
comparison of the 12 test problems is shown in Fig. 6. The DWD algorithm is
the fastest one in all the 12 test problems. Moreover, the CPU time increases almost
linearly as the size of the problem grows. The DRSBK algorithm does not show
much advantage over the centralized method for small problems with no more than
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Fig. 6 CPU time of the
centralized approach and two
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30 sections. However, as the computation time of the DRSBK algorithm also grows
linearly, the reduction in CPU time becomes more obvious for larger problems,
especially those with more than 100 sections. The centralized approach is the
slowest one in most of the test problems.

Neither of the two distributed algorithms provides theoretical guarantee on
convergence to global optimum. However, the DWD algorithm is able to obtain
global optimum in all the test problems. DRSBK algorithm converges to the global
optimum in all the test problems except the one with 80 sections. It converges to a
local optimum 70% away from the global optimum.

In summary, the DWD algorithm performs the best among the three solution
methods. The centralized approach always provides global optimal solution, but
its scalability is poor. The DRSBK algorithm is faster and more scalable than
centralized approach. However, it might converge to a local optimum very far
away from the global optimum. The DWD algorithm is the fastest among the three
algorithms, and it converges to the global optimum in all the test cases. Moreover,
due to its distributed nature, it is suitable for large-scale railway networks divided
into many sections, as tractability of the DWD algorithm mainly depends on the
tractability of the local pricing problem (30), which is an MILP of the same size as
the centralized MPC problem for one single section.

5.4 Comparison with Alternative Approaches

We compare the results of the proposed chance-constrained MPC (solved by the
DWD algorithm) with two alternative maintenance planning approaches. The first
one is the nominal MPC approach, which uses a deterministic deterioration model
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that considers only the mean values of the uncertain parameters. The other one is
the cyclic approach following a time-based maintenance strategy, and performing
grinding and replacing at a predetermined optimal interval. The formulation of the
cyclic approach is given in Appendix.

We compare robustness, optimality, and computational efficiency of the three
maintenance planning approaches. Robustness is measured by maximal constraint
violation v defined as:

v = max

(
xcon

worst − xcon
max

xcon
max

, 0

)
, (40)

where xcon
worst is the highest degradation level of all sections within the entire planning

horizon. Optimality is measured by the closed-loop objective function value, which
is obtained by evaluating all the local objective function values (5) for the entire
planning horizon and summing them up. Computational efficiency is measured by
the CPU time needed for solving all the MPC optimization problems for all the
20 time steps. Since the cyclic approach is an offline optimization approach, i.e.,
it solves only one optimization problem for the entire planning horizon, we only
compare the computational efficiency of the two MPC approaches.

We create 10 test runs where the realizations of the uncertain parameters within
the planning horizon are randomly generated by a Gaussian distribution. The
comparison of the three approaches for the 10 test runs is shown in Table 2. Both the
chance-constrained MPC approach and the cyclic maintenance approach are robust,
as neither of them has constraint violations for the 10 test runs. However, the cyclic
approach shows much worse closed-loop performance. It is very conservative and
tends to plan more maintenance than necessary. The nominal MPC approach has
a slightly lower closed-loop objective function value than the chance-constrained

Table 2 Comparison between the proposed chance-constrained MPC approach (with subscript
“CC”) solved by the DWD algorithm, the nominal approach (with subscript “Nom”), and the cyclic
approach (with subscript “Cyc”)

Constraint violation Closed-loop performance CPU time (h)

Run vCC (%) vNom(%) vCyc (%)
JCC

JCyc
(%)

JNom

JCyc
(%)

JCyc TCC TNom

1 0 0.063 0 39.335 34.148 670,502 5.671 0.003

2 0 0.006 0 38.127 36.577 670,504 5.075 0.003

3 0 0.353 0 37.635 35.043 670,503 5.062 0.003

4 0 0.129 0 37.606 33.344 670,502 5.703 0.003

5 0 0 0 36.354 34.536 670,502 5.141 0.003

6 0 0.082 0 36.413 35.803 670,502 5.802 0.003

7 0 0.021 0 39.425 36.250 670,503 5.134 0.003

8 0 0.053 0 38.440 35.028 670,500 5.126 0.003

9 0 0.0344 0 40.244 33.359 670,503 5.088 0.003

10 0 0.172 0 38.902 34.656 670,503 5.082 0.003
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MPC approach, and a much shorter CPU time. However, it is not robust, as it has
constraint violations in 9 out of the 10 test runs. So in comparison, the proposed
chance-constrained MPC provides an excellent balance between robustness and
optimality, despite its high computational demand.

6 Conclusions and Future Work

In this paper we have developed a chance-constrained MPC approach for optimal
condition-based maintenance planning for railway infrastructures. Two distributed
optimization algorithms, the DWD algorithm based on Dantzig-Wolfe decompo-
sition, and the modified Distributed Robust Safe But Knowledgeable (DRSBK)
algorithm [31], have been investigated to improve the scalability of the proposed
MPC approach. Computational experiments have shown that column generation
is able to obtain the global optimum with a much shorter CPU time. Comparison
with two alternative maintenance planning approaches has shown that the proposed
chance-constrained MPC approach is robust and cost-effective.

In the future, it is interesting to consider heterogeneous components, e.g., rail
and switches, in maintenance planning. Another interesting extension would be
joint condition-based maintenance planning and train scheduling. Furthermore, a
business case study with historical measurement data and actual maintenance costs
can be performed to demonstrate the applicability of the proposed MPC approach
for real-world railway track maintenance planning problems. For this purpose, a
suitable key performance indicator should be chosen to evaluate the condition of
each track section, and sufficient data should be used to identify the deterioration
model.

Acknowledgements Research sponsored by the NWO/ProRail project “Multi-party risk manage-
ment and key performance indicator design at the whole system level (PYRAMIDS),” project
438-12-300, which is partly financed by the Netherlands Organisation for Scientific Research
(NWO).

Appendix

Parameters for Case Study

See Table 3.
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Table 3 Parameters of the functions f Deg
j and f Gr

j for five different models. Both the nominal
values and the 95% nonsimultaneous confidence bounds (given in the square brackets) are provided
for all uncertain parameters

Model

Parameter 1 2 3 4 5

xswi
j,1 0.512 0.526 0.543 0.363 0.563

xswi
j,2 0.683 0.784 0.781 0.621 0.798

yint
j,1 0.107 [0.086,

0.128]
0 [0,0] 0.051 [0.040,

0.063]
0.076 [0.036,
0.115]

0.058
[0.049,0.068]

yint
j,2 0.783 [0.776,

0.790]
0.849 [0.845,
0.853]

0.815 [0.809.
0.821]

0.624 [0.615,
0.633]

0.805 [0.900,
0.809]

yint
j,3 0.929 [0.924,

0.934]
0.975 [0.967,
0.983]

0.972 [0.966,
0.977]

0.859 [0.853,
0.865]

0.963 [0.958,
0.968]

yint
j,4 1 [0.997,

1.003]
1 [0.997,
1.004]

1 [0.998,
1.002]

1 [0.994,
1.006]

1 [0.998,
1.002]

xeff
j 0.156 0.177 0.172 0.141 0.106

xsev
j 0.899 0.810 0.880 0.938 0.882

ysev
j 0.506 [0.494,

0.518]
0.516 [0.505,
0.527]

0.502 [0.490,
0.514]

0.506 [0.490,
0.521]

0.443 [0.432,
0.455]

ymax
j 0.957 [0.944,

0.970]
0.991 [0.981,
1]

0.977 [0.965,
0.990]

0.922 [0.905,
0.939]

0.944 [0.931,
0.956]

Cyclic Approach

Let t0,j denote the time instant of the first replacement on section j . Grinding is
performed every TGr,j after the first replacement for section j . Furthermore, we
assume that replacement is performed after r consecutive grindings since the last
replacement on section j . Let kend denote the planning horizon. Then the offline
optimization problem of the cyclic maintenance approach can be formulated as:

min
t0, TGr, r

kend∑
k=1

n∑
j=1

xcon
j,k + λ

3∑
q=2

cMaint
q,j Iuj,k=q (41)

subject to

xj,k+1 = fj (xj,k, uj,k; E(θj,k)) ∀j ∈ {1, . . . , n}, ∀k ∈ {0, . . . , kend − 1}

(42)

xcon
j,k ≤ xcon

max, xaux
j,k ≤ xaux

max ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , kend} (43)
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uj,k =

⎧
⎪⎪⎨
⎪⎪⎩

2, if (k − t0,j )mod round(TGr,j ) = 0

3, if k = t0,j or (k − t0,j )mod round(rTGr,j ) = 0

1, otherwise

(44)

∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , kend}
1 ≤ t0,j ≤ Tmax ∀j ∈ {1, . . . , n} (45)

1 ≤ Tj,Gr ≤ Tmax ∀j ∈ {1, . . . , n} (46)

1 ≤ μj ≤ μmax ∀j ∈ {1, . . . , n}. (47)

References

1. Zoeteman, A., Li, Z., Dollevoet, R.: Dutch research results in wheel rail interface management:
2001–2013 and beyond. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 228(6), 642–651 (2014)

2. Sandström, J., Ekberg, A.: Predicting crack growth and risks of rail breaks due to wheel flat
impacts in heavy haul operations. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 223(2), 153–
161 (2009)

3. Jamshidi, A., Núñez, A., Li, Z., Dollevoet, R.: Maintenance decision indicators for treating
squats in railway infrastructures. In: 94th Annual Meeting Transportation Research Board,
Washington, 11–15 January 2015. TRB (2015)

4. Zoeteman, A.: Life cycle cost analysis for managing rail infrastructure. Eur. J. Transp.
Infrastruct. Res. 1(4) (2001)

5. Al-Douri, Y., Tretten, P., Karim, R.: Improvement of railway performance: a study of Swedish
railway infrastructure. Int. J. Mod. Transport. 24(1), 22–37 (2016)

6. Kobbacy, K., Murthy, D.: Complex System Maintenance Handbook. Springer Science &
Business Media, London (2008)

7. Ben-Daya, M., Kumar, U., Murthy, D.: Condition-based maintenance. In: Introduction to
Maintenance Engineering: Modeling, Optimization, and Management, pp. 355–387. Wiley,
Chichester (2016)

8. Jardine, A., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics
implementing condition-based maintenance. Mech. Syst. Sig. Process. 20(7), 1483–1510
(2006)

9. Fararooy, S., Allan, J.: Condition-based maintenance of railway signalling equipment. In:
International Conference on Electric Railways in a United Europe, pp. 33–37. IET, Amsterdam
(1995)

10. Ahmad, R., Kamaruddin, S.: An overview of time-based and condition-based maintenance in
industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012)

11. Dekker, R.: Applications of maintenance optimization models: a review and analysis. Reliab.
Eng. Syst. Saf. 51(3), 229–240 (1996)

12. Scarf, P.: On the application of mathematical models in maintenance. Eur. J. Oper. Res. 99(3),
493–506 (1997)

13. Wen, M., Li, R., Salling, K.: Optimization of preventive condition-based tamping for railway
tracks. Eur. J. Oper. Res. 252(2), 455–465 (2016)

14. Famurewa, S., Xin, T., Rantatalo, M., Kumar, U.: Optimisation of maintenance track posses-
sion time: a tamping case study. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 229(1), 12–22
(2015)

15. Mercier, S., Meier-Hirmer, C., Roussignol, M.: Bivariate Gamma wear processes for track
geometry modelling, with application to intervention scheduling. Struct. Infrastruct. Eng. 8(4),
357–366 (2012)



MPC for Condition-Based Railway Track Maintenance Planning 553

16. Quiroga, L., Schnieder, E.: Monte Carlo simulation of railway track geometry deterioration
and restoration. Proc. Inst. Mech. Eng. O J. Risk Reliab. 226,(3), 274–282 (2012)

17. Vale, C., Ribeiro, I.: Railway condition-based maintenance model with stochastic deterioration.
J. Civ. Eng. Manag. 20(5), 686–692 (2014)

18. Jamshidi, A., Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Dollevoet, R., Li, Z., De Schutter,
B.: A big data analysis approach for rail failure risk assessment. Risk Anal. 37(8), 1495–1507
(2017)

19. Camacho, E., Alba, C.: Model Predictive Control. Springer Science & Business Media, London
(2013)

20. Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill Publishing,
Madison (2009)

21. Nikolaou, M.: Model predictive controllers: a critical synthesis of theory and industrial needs.
Adv. Chem. Eng. 26, 131–204 (2001)

22. Zafra-Cabeza, A., Maestre, J., Ridao, M., Camacho, E., Sánchez, L.: Hierarchical distributed
model predictive control for risk mitigation: an irrigation canal case study. J. Process Control
21(5), 787–799 (2011)

23. Schildbach, G., Morari, M.: Scenario-based model predictive control for multi-echelon supply
chain management. Eur. J. Oper. Res. 252(2), 540–549 (2016)

24. Nandola, N., Rivera, D.: An improved formulation of hybrid model predictive control with
application to production-inventory systems. IEEE Trans. Control Syst. Technol. 21(1), 121–
135 (2013)

25. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints.
Automatica 35(3), 407–427 (1999)

26. De Schutter, B., De Moor, B.: Optimal traffic light control for a single intersection. Eur. J.
Control. 4(3), 260–276 (1998)

27. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1),
1–122 (2011)

28. Feizollahi, M., Costley, M., Ahmed, S., Grijalva, S.: Large-scale decentralized unit commit-
ment. Int. J. Electr. Power Energy Syst. 73, 97–106 (2015)

29. Sebastio, S., Gnecco, G., Bemporad, A.: Optimal distributed task scheduling in volunteer
clouds. Comput. Oper. Res. 81, 231–246 (2017)

30. Mendes, P., Maestre, J., Bordons, C., Normey-Rico, J.: A practical approach for hybrid
distributed mpc. J. Process Control 55, 30–41 (2017)

31. Kuwata, Y., Richards, A., Schouwenaars, T., How, J.: Distributed robust receding horizon
control for multivehicle guidance. IEEE Trans. Control Syst. Technol. 15(4), 627–641 (2007)

32. Benders, J.: Partitioning procedures for solving mixed-variables programming problems.
Numer. Math. 4(1), 238–252 (1962)

33. Dantzig, G., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111
(1960)

34. Rahmaniani, R., Crainic, T., Gendreau, M., Rei, W.: The Benders decomposition algorithm: a
literature review. Eur. J. Oper. Res. 259(3), 801–817 (2016)

35. Gunnerud, V., Foss, B.: Oil production optimization-a piecewise linear model, solved with two
decomposition strategies. Comput. Chem. Eng. 34(11), 1803–1812 (2010)

36. Morari, M., Zafiriou, E.: Robust Process Control, vol. 488. Prentice Hall, Englewood Cliffs
(1989)

37. Gruber, J., Ramirez, D., Limon, D., Alamo, T.: Computationally efficient nonlinear min-max
model predictive control based on Volterra series models – application to a pilot plant. J.
Process Control 23(4), 543–560 (2013)

38. Prekopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Sym-
posium on Mathematical Programming, pp. 113–138. Princeton University Press, Princeton
(1970)

39. Grosso, J., Ocampo-Martínez, C., Puig, V., Joseph, B.: Chance-constrained model predictive
control for drinking water networks. J. Process Control 24(5), 504–516 (2014)



554 Z. Su et al.

40. Jurado, I., Maestre, J., Velarde, P., Ocampo-Martinez, C., Fernández, I., Tejera, B.I., del Prado,
J.: Stock management in hospital pharmacy using chance-constrained model predictive control.
Comput. Biol. Med. 72, 248–255 (2016)

41. Su, Z., Jamshidi, A., Núñez, A., Baldi, S., De Schutter, B.: Multi-level condition-based main-
tenance planning for railway infrastructures – a scenario-based chance-constrained approach.
Transp. Res. C Emerg. Tech. 84, 92–123 (2017)

42. Pintér, J.: Deterministic approximations of probability inequalities. Z. Oper. Res. 33(4),
219–239 (1989)

43. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Autom.
Control 51(5), 742–753 (2006)

44. Shapiro, A.: Sample average approximation. In: Encyclopedia of Operations Research and
Management Science, pp. 1350–1355. Springer, Boston (2013)

45. Esfahani, P., Sutter, T., Lygeros, J.: Performance bounds for the scenario approach and an
extension to a class of non-convex programs. IEEE Trans. Autom. Control 60(1), 46–58 (2015)

46. Margellos, K., Goulart, P., Lygeros, J.: On the road between robust optimization and the
scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control
59(8), 2258–2263 (2014)

47. Alamo, T., Tempo, R., Luque, A.: On the sample complexity of randomized approaches to
the analysis and design under uncertainty. In: American Control Conference (ACC), 2010,
pp. 4671–4676. IEEE, Baltimore (2010)

48. Su, Z., Núñez, A., Jamshidi, A., Baldi, S., Li, Z., Dollevoet, R., De Schutter, B.: Model
predictive control for maintenance operations planning of railway infrastructures: In: Compu-
tational Logistics (Proceedings of the 6th International Conference on Computational Logistics
(ICCL’15), Delft, Sept. 2015), pp. 673–688 (2015)

49. Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)
50. Chisci, L., Rossiter, J., Zappa, G.: Systems with persistent disturbances: predictive control with

restricted constraints. Automatica 37(7), 1019–1028 (2001)
51. Cassels, J.: An Introduction to the Geometry of Numbers. Springer Science & Business Media,

Berlin (2012)
52. Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs. In: Jünger,

M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey,
L. (eds.) 50 Years of Integer Programming 1958–2008, pp. 431–502. Springer, Berlin (2010)

53. Li, Z., Molodova, M., Núñez, A., Dollevoet, R.: Improvements in axle box acceleration
measurements for the detection of light squats in railway infrastructure. IEEE Trans. Ind.
Electron. 62(7), 4385–4397 (2015)

54. Molodova, M., Li, Z., Núñez, A., Dollevoet, R.: Automatic detection of squats in railway
infrastructure. IEEE Trans. Intell. Transp. Syst. 15(5), 1980–1990 (2014)

55. Song, Z., Yamada, T., Shitara, H., Takemura, Y.: Detection of damage and crack in railhead by
using eddy current testing. J. Electromagn. Anal. Appl. 3(12), 546 (2011)

56. Fan, Y., Dixon, S., Edwards, R., Jian, X.: Ultrasonic surface wave propagation and interaction
with surface defects on rail track head. NDT & E Int. 40(6), 471–477 (2007)



Index

A
Abductive diagnosis system

causes imply effects, 447
definition, 439–441
FMEA, 446
health states, 446
minimal abductive diagnoses, 441–442
Modelica, 446, 447
problem, 440

Adaptive cruise control (ACC) system, 456
Adaptive Random Forest (ARF), 113,

122–123
Adaptive synthetic sampling method

(ADASYN), 73–74
Aeration system blowers

blowers diffuser position and current
consumption, 396–397

description, 395
experimental setup, 395–396
residual values analysis, 397
RME metric, 397, 398
smoothed air temperature, 398, 399

Analytical redundancy relations (ARRs), 18,
463, 469

Anomaly/fault localization, 9
AnYa system, 271
Arousal index, 411
Arrow–Hurwitz–Uzawa procedure, 138
Automated model-based reasoning, 17–18
Automated process optimization, 18–19

characteristics, 486
chip production process, 485–486

application, 512–513
data collection, 513–515
experimental setup, 513–515

data-driven models, 486–487
DoE, 487
off-line, 488
on-line, 488
predictive mapping construction, 487
process parameters, 486, 488–490
process values, 486

MOOP, 492–493
pre-optimized production process,

493–494
quality criteria, 491, 492
time-series trends, 490–491
un-optimized production process, 492,

493
self-adaptive forecast models, 487
static predictive mappings

construction, 497–498
cross-correlation analysis, 516–517
default parametrization, 519–521
expert knowledge, 487, 494, 495
HDoE, 495–497
linear and best-performing MLP

models, 517, 518
MOOP, 507–508
multi-objective EA, 508–509
multi-way factor analysis, 516
NSGA-II and DECMO2, 519
QC criteria, 506

time-series-based forecast models (see
Time-series-based forecast models)

Automatization in predictive maintenance
(APM), 2

Autoregressive integrated moving average
(ARIMA), 416–417

Auto regressive moving average (ARMA), 10
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B
Backpropagation (BP) algorithm, 232
Barely visible impact damage (BVID)

criterion, 323
Battery discharge model, 368
Bayesian Cramér–Rao Lower Bounds

(BCRLBs)
CPBIM, 362
discrete-time dynamical systems, 357–359
JCP-BCRLB, 362–363
MCP-BCRLB, 363–364

Bayesian Information Matrix (BIM), 357
BCRLBs, see Bayesian Cramér–Rao Lower

Bounds
Benders decomposition, 536
Box–Cox models, 270

C
Cause–effect (CE) diagram, 446, 447, 495
Centralized diagnosis, 473–475
Chance-constrained optimization problems,

536–539
Chemical-mechanical planarization (CMP)

tool, 81
CHT, 225–228
CompAD algorithm, 442
CompMBD algorithm, 437–438
Computation complexity analysis, 475–476
Computerized maintenance management

system (CMMS), 335
Computer vision system (CVS), 453, 454
Concept drift

abrupt changes, 98
adaptive mode

components, 99–100
stream volatility and speed, 100

classical methods, 97
context-sensitive staged learning (see

Context-sensitive staged learning)
definition, 98
deployment, 98–99
detection problem, 98
EP approach, 113
feature variables and outcome, 98
individual learners, 99
neural networks, 128
parameter values, 117
recurrence pattern, 99
Recurrent Classifier, 113
sensitivity analysis, 125–127
spectrum learning, 128
synthetic data

drift intensities, 116

oscillating drift pattern, 116
preparation of, 114
RBF dataset, 115
real-world data, 117
Rotating Hyperplane dataset, 115
types, 114

Conditional gradient method, 235
Conditional predictive Bayesian information

matrix (CPBIM), 362
Condition-based maintenance (CbM), 314
Condition monitoring (CM) system, 315, 316
Constraint tightening technique, 543–544
Context-sensitive framework, 12–13
Context-sensitive staged learning, 100

decision trees, 101
DFT

aggregation of spectra, 105
binary-valued features, 104
classification outcomes, 104
coefficient order, 104–105
decision tree, 103
Fourier basis functions, 102–103
Fourier spectrum, 101–104
mapping, 102

drift detectors, 101
Fourier spectra, 101
incremental classifiers, 101
repository management, 106–107
SOL (see Staged online learning approach)
spectral learning, 112–113
trade-off, 101

Continuous components (Ccs), 464
Controlled undersampling technique, 74
Corrective actions, 10
Correlation-based feature selection, 69
Cramér–Rao Lower Bound (CRLB), see

Bayesian Cramér–Rao Lower
Bounds (BCRLBs)

Cyclic maintenance approach, 549, 551–552

D
Dantzig-Wolfe decomposition (DWD), 536,

542–543, 547–548
Data acquisition, 7
Data-driven models, 6, 15–16
Data preprocessing, 7, 12

accuracy and robustness, 54
characteristics, 79
classification algorithms, 77–78
data cleansing

example, 56
feature engineering step, 55
Mahalanobis distance, 57–61
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outlier detection accuracy, 84–85
Q and T 2 statistics, 61–63

data engineering, 56
feature extraction, 70–71
feature selection, 68–69
results, 85–86

data normalization
mean centering, 63
performance degradation, 55
scaling, 64
standardization, 63–64

datasets
artificial modifications, 82
imbalanced data treatment, 83
Mann–Whitney–Wilcoxon test, 82
PHM challenge 2014, 80
PHM challenge 2016, 81–83

data transformation
chemical composition, 55–56
statistical transformations, 61, 64–65

feature discretization, 71–72, 86
imbalanced data treatment, 56

faulty and fault-free samples, 72
mixed sampling, 76
oversampling, 73–74
results, 86–87
undersampling, 74–76

missing values treatment, 56, 84–85
multi-and many-objective solutions, 54
regression algorithms, 78–79
signal processing, 65–67

Decentralized diagnosis, 473–475, 477
Decision maker (DM), 508
DECMO2, 508–510
Decoupled extended Kalman filter (DEKF)

algorithm, 289
Deep learning (DL), 78
Degradation-based predictions, 333
Degrees of freedom, 61
Design of experiments (DoE) approaches, 486,

487
Deterioration model, 534, 537–538
Diebold–Mariano test, 415, 418
Discrete components (Dcs), 464, 467–468, 470
Discrete Fourier transform (DFT)

aggregation of spectra, 105
binary-valued features, 104
classification outcomes, 104
coefficient order, 104–105
decision tree, 103
Fourier basis functions, 102–103
Fourier spectrum, 101–104
mapping, 102

Discretely controlled continuous systems
(DCCS), 462, 464, 470

Discrete-time dynamical systems, 357–359
Distance-weighted K-nearest neighbor

algorithm, 77
Distributed Robust Safe But Knowledgeable

(DRSBK) algorithm, 536, 543
Double-model strategy, 68
Dutch railway network, 533
DWD, see Dantzig-Wolfe decomposition
Dynamic production process values (DPVs),

493, 494
Dynamic time-series-based forecast models,

487

E
EANN, see Evolutionary neural network
EGNN, see Evolving fuzzy granular neural

network
eHT technique, see Enhanced Hilbert–Huang

transform technique
Electrical machine fault detection

acquisition and data treatment module, 233
advantages, 231–232
backpropagation algorithm, 232
10-class balanced classification problem,

255, 256
condition monitoring, 231, 237
EANN, 232

acquisition and data treatment, 234
classification rate, 263
database, 236
diagnosis report, 234, 237
fault simulator module, 235
GA (see Genetic algorithm)
inter-turns fault detection, 257–259
MLP neural network, 260, 264
optimization module, 235–236
parameters estimation module, 235

EGNN, 232
acquisition and data treatment, 234
basic processing elements, 246
connection weights, 254
database, 236
diagnosis report, 234, 237
fault simulator module, 235
fuzzy neuron model, 249–251
fuzzy rules, 233
granularity adaptation, 252, 265
granules, 251–253
learning algorithm, 254–255
network architecture, 246–249
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Electrical machine fault detection (cont.)
neurofuzzy EGNN classifier, 260
neurofuzzy structure, 234, 236
nonstationary decision boundaries,

262–264
numerical and fuzzy data, 247
optimization module, 235–236
parameters estimation module, 235
Tprod–Smax EGNN model, 261, 263

instrumental setup, 255, 256
internal faults, 231
predictive maintenance, 231
schematic diagram, 233, 234
trial-and-error approach, 232

Electricity (ELEC) dataset, 117, 119
Embedded methods, 69
Empirical mode decomposition, 67
End-of-Discharge (EoD) time prognosis

discharge current profile, 369
efficiency criterion, 372
hyper-parameter candidates, 370, 371
	1 distances, 374–375
MCP-BCRLBs, 369–371
Monte Carlo simulations, 368
particle-filtering, 367–368
SoC, 365
state-space model, 365–367
statistical characterizations, 375–377
ToF PMFs, 372–374

Enhanced Hilbert–Huang transform (eHT)
technique

closing and opening operation, 216–217
D’Agostino-Pearson normality measure,

222–224
dilation operation, 215–216
erosion operation, 215–216
experimental setup, 220–222
health condition monitoring, 225–226
IMF, 219–220
morphology-based filtering technique,

222–223
processing procedures, 214
processing results, 226–227
structural element (see Structural element

(SE))
Enriched local model, 471–472
Ensemble Pool (EP), 113
EoD time prognosis, see End-of-Discharge

time prognosis
Epanechnikov kernel, 370
eT2QFNN, see Evolving type-2 quantum fuzzy

neural network
Evolutionary algorithms (EAs), 507

Evolutionary neural network (EANN), 232
acquisition and data treatment, 234
classification rate, 263
database, 236
diagnosis report, 234, 237
fault simulator module, 235
GA (see Genetic algorithm)
inter-turns fault detection, 257–259
MLP neural network, 260, 264
optimization module, 235–236
parameters estimation module, 235

Evolving fuzzy granular neural network
(EGNN), 232

acquisition and data treatment, 234
basic processing elements, 246
connection weights, 254
database, 236
diagnosis report, 234, 237
fault simulator module, 235
fuzzy neuron model, 249–251
fuzzy rules, 233
granularity adaptation, 252, 265
granules, 251–253
learning algorithm, 254–255
network architecture, 246–249
neurofuzzy EGNN classifier, 260
neurofuzzy structure, 234, 236
nonstationary decision boundaries,

262–264
numerical and fuzzy data, 247
optimization module, 235–236
parameters estimation module, 235
Tprod–Smax EGNN model, 261, 263

Evolving intelligent system (EIS), 288
Evolving tree (ET), 109
Evolving type-2 quantum fuzzy neural network

(eT2QFNN)
architecture of, 290
cross-validation experiment, 306
DEKF algorithm, 289
direct partition experiment, 307
experiment setup, 304–305
fuzzy rule initialization, 299–300
input layer, 293
interval type-2 quantum membership

function, 292, 293
learning policies, 289, 295
learning processes, 291
mathematical formulation, 289
membership function, 292
multi-model classifier, 294–295
network architecture, 291, 292
online learning mechanism, 289, 295
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output processing layer, 294
quantum layer, 293
RSS information, 290–291
rule growing mechanism, 289, 296–298
rule layer, 293–294
winning rule update, 300–304

Experience-based predictions, 333
Expert knowledge, 487, 494, 495
External recirculation pumping system

description, 387
experimental setup, 388
linear regression, 388
observed flow-rate vs. applied pump

frequency, 388, 389
relative mean error value, 389, 391
residual values analysis, 388, 390

Extrapolation methods, 68

F
Failure mode and effect analysis (FMEA), 446
False positive rate (FPR), 279, 283
Fast Fourier transform (FFT), 66
Fault detection

AnYa system, 271
Box–Cox models, 270
Chebyshev inequality, 271
data-based statistical methods, 270
data-driven monitoring, 269
evolving-based methods, 270
evolving mechanism, 273
incremental unsupervised clustering

algorithm, 271
knowledge-based methods, 270
learning/training phase, 274
local densities, 274, 275
model-based methods, 270
RDE, 271
real-time monitoring, 269
residual-based approach, 270
rule-based form, 271–273
signal-based methods, 270
subspace aided approach, 270
Takagi–Sugeno fuzzy model, 270–271
TEDA, 271

Fault identification phase, 275
Fault-tolerant control system (FTC), 10
Feature selection (FS), 68–69
First order logic (FOL), 431
Fisher information matrix, 357, 496
Forbus’s qualitative process theory, 444
Forecast models/methods, 5
Fourier coefficient (FC), 103

Frank–Wolfe algorithm, 235
FRB models, see Fuzzy rule-based models
Freedman–Diaconis rule, 71
Frequency domain, 66
Fuzzy clustering

adaptive fuzzy online algorithms, 132–133
analysis, 154, 156
artificial data sample, 147–148
artificial neuron, 141
attribute vectors, 147
batch mode, 132
Bezdek clustering procedure, 151, 153
cluster centers, 151–152
data sampling, 149–152
distance parameter, 144
goal function, 142
Gustafson–Kessel clustering procedure,

154–155
Kuhn–Tucker equations, 143
Lagrange function, 142–143
local modification, 143
location of cluster prototypes, 149
multidimensional observations, 132–133
n-dimensional attribute vectors, 133
normal distribution, 141
online combined approach, 138–141
possibilistic approach, 136–137, 148
preprocessing stage, 151
probabilistic approach, 134–136, 148
processed inputs, 133
quality assessment, 141
recurrent cluster analysis, 143–146
results of classification, 148–149
robust recurrent clustering procedures, 147
target function, 142, 144–145
time sequences, 146–147
web-mining, 145

Fuzzy C-means, 135–136
Fuzzyfier, 134
Fuzzy modeling approach, 14–15
Fuzzy neuron model, 250–251

aggregation neurons, 249, 260
triangular norm and conorm, 250

Fuzzy rule-based (FRB) models
ARIMA and VECM models, 416–417
coverage and efficiency rates, 419, 420
Diebold–Mariano test, 418
IBOVESPA, 417, 420–421
iMLP, 417
interval arithmetic, 407–408
interval-valued data, 404, 406, 407
ITS, 403–405
MDE, 419
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Fuzzy rule-based (FRB) models (cont.)
participatory learning, 406
performance assignment, 414–416
RMSE and SMAPE, 417, 418
univariate models, 413

G
GA, see Genetic algorithm
Gamma process, 7
Gated recurrent unit (GRU), 79
Gaussian distribution, 63
Gaussian membership function (GMF),

288–289
Gaussian mutation, 243
Generalized linear models (GLMnet), 78
Genetic algorithm (GA), 14

codified parameters, 233
fitness function, 244–245
flowchart, 237–238
initialization and parameterization,

238–239
mutation operator

Gaussian mutation, 243, 257, 258
local random mutation, 244
random mutation, 243–244, 257, 258

phenotype representation, 239–241
recombination operator, 257

arithmetic crossover, 241
local intermediate crossover, 242–243
multipoint crossover, 241–242

selection operator, 245–246
stopping criteria, 246
trial-and-error approach, 233

Gen-Smart-EFS algorithm, 501–502

H
HDS, see Hybrid dynamic systems
Health and usage monitoring system (HUMS),

329
Health indicators, 8
Heating, ventilation, and air condition (HVAC)

process model
ACC, 279, 283
control algorithm, 276
description, 276
fault detection results, 280–282
fault types, 278, 279
FPR, 279, 283
Mollier diagram principles, 276
PI controllers, 276
schematic diagram, 276, 277

tested faults, 280
TPR, 279, 283

Hilbert–Huang transform (HHT), 14, 67. See
also Rolling element bearings

Holistic approach for automated process
optimization (HAPO), 487

Hotelling’s T 2 statistic, 61
HVAC process model, see Heating, ventilation,

and air condition process model
Hybrid Design of Experiments (HDoE),

495–497
Hybrid dynamic systems (HDS), 18

ARR, 463
centralized and decentralized diagnosis

structures, 473–475, 477
component, 464, 465
computation complexity analysis, 475–476
continuous dynamics, residual generation,

469–471
DCCS, 462
definitions and motivation, 461–462
discrete component, 467–468
discrete mode, 462
enriched local model, 471–472
local diagnoser construction, 472–473
local diagnosers’ decisions, 479, 482
Matlab-Simulink™, 476
output measured voltage, 476, 477, 479
power converters, 464
PWM, 476, 478
real state outputs, 477, 480
residuals, 478, 481
single and multiple faults, 476, 478
Stateflow™ toolbox, 476
stuck-open fault, 479
system decomposition, 464, 466–467
TCG, 462–463

I
iFRB, see Interval fuzzy rule-based model
Imbalanced data treatment, 83
Incremental feed-forward neural networks

(NNs), 14
Inertial measurement unit (IMU), 453, 454
Instance hardness, 75–76
Instantaneous center of curvature (ICC), 429
Interpolation methods, 68
Interval-based evolving modeling (IBeM), 406
Interval fuzzy rule-based model (iFRB), 17.

See also Fuzzy rule-based (FRB)
models

consequent parameters, 411–412
identification procedure, 412–414
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iPL, 409–411
Takagi–Sugeno model, 409

Interval multilayer perceptron neural network
(iMLP), 413, 417

Interval participatory learning (iPL), 409–411
Interval time series (ITS), 403–405, 407, 415,

416
Interval type-2 Gaussian membership function

(IT2GMF), 297
Interval type-2 QMF (IT2QMF), 289, 291–294,

297
Intrinsic mode functions (IMFs), 219–220

J
Joint conditional predictive BCRLB

(JCP-BCRLB), 362–363
Joint probability distribution, 98

K
Key performance indicator (KPI), 386
K-nearest neighbors algorithm, 77
Knowledge-based models, 6
Kullback–Leibler divergence, 503

L
Labelled transition system (LTS), 456
Latent variables, 65
LeveragingBag (LB), 113
Linear programming (LP), 536
Lithium-ion (Li-Ion) batteries, see End-of-

Discharge (EoD) time prognosis
Local diagnoser, 472–473
Locality preserving projections (LPP), 71
Locally linear embedding (LLE), 65
Logit transformation, 64
Long short term memory networks (LSTM),

79
Long-term prediction, 16

M
Mann–Whitney–Wilcoxon test, 82
Manufacturing shopfloor, object location,

see Radio frequency identification
(RFID) localization technology

Many/multi-objective optimization problem
(MOOP), 490, 492–493, 507–508

Marginal conditional predictive BCRLB
(MCP-BCRLB), 363–365

MBD, see Model-based diagnosis
Mealy machine (MM) model, 471

Mean distance error (MDE), 415, 419
Mean square error (MSE), 356–358, 376
Mean time between failures (MTBF), 318
Measurement model, 366–367
Mechanism-based failure analysis (MBFA),

336–337
MED filter, see Minimum entropy

deconvolution filter
MEMS-based accelerometers, 321
Minimal abductive diagnosis, 441–442
Minimal diagnosis, 436–439
Minimum covariance determinant, 57
Minimum description length principle

(MDLP), 72
Minimum entropy deconvolution (MED) filter

vs. convergence, 213–214
defect-related impulses, 211
entropy minimization, 211
filter coefficients, 213
flowchart, 211
inverse filter, 212
machinery system condition monitoring,

211
optimal filter coefficient vector, 212
signal denoising operation, 211–212
vs. test signal response, 213–214
Toeplitz autocorrelation matrix, 213

Minkowski’s theorem, 542
Missing value imputation, 67
Mixed integer linear programming (MILP)

problems, 536
Mixed integer programming (MIP), 535
Mixed integer quadratic programming (MIQP)

problem, 536
Mixed logical dynamical (MLD) system, 535,

541
Model-based diagnosis (MBD), 442–443

component type, 445–446
definitions, 434–436
minimal diagnosis, 436–439
problem, 436

Model-based predictions, 333
Modelica programs, 446, 447
Model predictive control (MPC), 10, 19

centralized approach, 547, 548
chance-constrained MPC, 536–539, 549
computational efficiency, 549
cyclic approach, 549, 551–552
Dantzig-Wolfe decomposition, 542–543,

547–548
hybrid and distributed MPC, 535–536
MLD model, 541
violation, 549



562 Index

Modified generalized type-2 Datum
significance (mGT2DS), 289

Monitor, Analyze, Plan, Execute, Knowledge
(MAPE-K), 448

Monte Carlo (MC) simulation, 355
Motivation, requirements, and challenges

APM, 2
classical quality control, 2
condition monitoring, 2
development of, 2–3
fuzzy transition, 4
system checks, 1
system models, 2–4
zero-defect manufacturing, 1

MPC, see Model predictive control
Multi-degradation process, 5
Multi-objective evolutionary algorithms

(MOEAs), 507
Multistage processes, 5
Multivariate adaptive regression splines

(MARS) algorithm, 392–393

N
Naïve Bayes (NB) algorithm, 77
Naval ship system, 315–316
Neuro-fuzzy approach, 13

fuzzy clustering (see Fuzzy clustering)
fuzzy segmentation, 132
nonstationary time series, fault detection

combined optimization criteria, 158
computational intelligence, 156
double wavelet-neuron, 160–163
emulation results, 163–164
explosion of parameters, 165
forecasting error, 165
function of influence, 158
Hampel function, 158
Huber function, 157
least squares criterion, 157
logistic function, 157
nonlinear dynamic object, 163
optimization criterion, 156
POLYWOG-wavelets, 158–160
RASP-wavelets, 158–159
robust training algorithm, 161–163
wavelet analysis, 156

Non-dominated sorting genetic algorithm II
(NSGA-II), 508

Nonlinear regression modeling, 498
Non-smooth optimization problems, 535
Normalized symmetric difference (NSD), 415
NP-step prediction model, 539

O
Off-line process optimization, 488
On-line model

forgetting factor, 503
functionalities, 502
QC measurements, 502
rule splitting, 503–504
updating process, 505–506

On-line process optimization, 488
Open circuit voltage (OCV) curve, 366
Orthogonal distance, 62
Overall equipment effectiveness (OEE), 42

P
Page-Hinkley (PH) test, 503
Palmgren-Miner rule, 324
Partial least squares (PLS), 63–65
Partial least squares regression (PLSR),

499–502, 523
Participatory learning (PL), 406
Particle-filtering-based prognostic algorithm,

367
Performance assignment, 414–416
Personal protective equipment (PPE), 48
Physical-based models, 5–7, 15–16
Piecewise-affine model, 534
Piezo-electric transducers (PZT), 321
Piezo-electric wafer active sensor (PWAS),

343, 344, 348, 349
Plant input pumping system

description, 391–392
experimental setup, 392
MARS algorithm, 392–393
observed flow-rate vs. applied pump

frequency, 392, 393
residual values analysis, 393, 394
RME value, 393, 395
time interval, 392

Predictive maintenance
CbM, 314
CM system, 315, 316
component level prognostic methods, 315
data-driven approach, 317–318, 331–332
data quality, 319
decision support tools

critical part selection, 335–337
selection guidelines, 332–335

diagnostic approach, 314
health and condition monitoring techniques,

318
maritime systems, 338–340
model-based prognostics, 317–318
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MTBF, 318
physical model-based prognostics

associated physical model, 328–329
critical part selection, 327–328
failure mechanism, 328–329
governing loads determination, 329
HUMS, 329
load-to-life relation, 326–327
operational usage, 329
time to failure prediction, 329–330
usage-to-load relation, 326–327
validate model, 330–331

qualitative tools, 318
railway infrastructures, 341–342
structural health and condition monitoring,

316
sensors, 320–321
vibration-based monitoring, 322–325

system and component level, 315–316
vibration monitoring of bearings, 317
wind turbines

damage accumulation monitoring, 343
damage index values, 346
damage intensity probability, 345
failure mechanisms, 343
LabVIEW program, 345
maximum damage probability value,

347, 348
operational and maintenance costs, 342
physics-based methodology, 342–343
probability function, 344
PWAS, 343, 344, 348, 349
RAPID algorithm, 343
RAPID maps, 347
SAPS, 344
vibration-based health monitoring

approach, 343
WMC, 345

Predictive mapping construction, 487
Pre-optimized production process, 493–494
Preventive maintenance, 4
Principal components regression (PCR), 63
Principle component analysis (PCA), 64–65
Probabilistic clustering method, 134–136
Process analytic technology (PAT), 78
Prognostic algorithm design

Acuña’s failure probability mass function,
361

CRLB, 357–359
EoD (see End-of-Discharge time prognosis)
hyper-parameters, 359–360
JCP-BCRLB, 362–363
MCP-BCRLB, 363–365

PHM community, 355–356
step-by-step design, 360
system failure, 361
ToF PMF, 360–361

Prognostic and Health Management (PHM)
community, 355–356

Prognostics and forecasting, 9–10
Prototype generation methods, 74
Prototype selection methods, 74
Pulse width modulation (PWM), 476, 478
PWAS, see Piezo-electric wafer active sensor

Q
Quality control (QC), 485–486
Quadratic programming (QP) problems, 536
Qualitative reasoning (QR), 444
Quality criteria (QCs), 490
Quantum membership function (QMF), 289

R
Radio frequency identification (RFID)

localization technology, 15
data processing subsystem, 287
description, 287
EIS, 288
eT2ELM, 305–307
eT2QFNN

architecture of, 290
cross-validation experiment, 306
DEKF algorithm, 289
direct partition experiment, 307
experiment setup, 304–305
fuzzy rule initialization, 299–300
input layer, 293
interval type-2 quantum membership

function, 292, 293
learning policies, 289, 295
learning processes, 291
mathematical formulation, 289
membership function, 292
multi-model classifier, 294–295
network architecture, 291, 292
online learning mechanism, 289, 295
output processing layer, 294
quantum layer, 293
RSS information, 290–291
rule growing mechanism, 289, 296–298
rule layer, 293–294
winning rule update, 300–304

Gaussian membership function, 288–289
IT2GMF, 297
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Radio frequency identification (RFID)
localization technology (cont.)

IT2QMF, 289, 291–294, 297
LANDMARC, 288
mGT2DS, 289
quantum membership function, 289
radar equation, 288
RFID reader, 288, 290
RFID tags, 288, 290
SVR, 288

Railway infrastructures
components, 533, 534
constraint tightening, 543–544
deterioration model, 534, 537–538
grey-box model, 534
parameters, 550–551
piecewise-affine model, 534
representative run, 546–547
settings, 544–546
two-stage robust scenario-based approach,

539–540
Random forests (RF) algorithm, 77–78
Reciprocal transformation, 64
Reciprocating compressors, 13

automatic compressor valves, 171
automatic spring-loaded valves, 171
broken valves, 167
capacity/load control, 171
components, 169
compressor test bench, 193–194
condition-based maintenance, 167
cyclostationary modeling, 168
double-acting cylinder, 169
fault detection, 168
monitoring system, 173
operation, 169–170
pressure pulsation, 168
pV diagram, 168

classification accuracy, 201
classification problem, 191
classifier training, 190–191
cost function, 192, 193
of faultless valves, 184, 185
of faulty discharge valve, 184
feature extraction, 185–188
feature space, 188–190, 192, 199
observations of valve type, 199
piston at top dead centre, 170
piston towards head end, 171, 172
self-adapting approach, 193
spike sorting, 192
two-class SVM classification, 200
validation accuracies, 200, 201

reliable performance, 167

sealing element
baseline, 194
broken, 194
broken sealing element detection,

172–173
crack, 194, 195
of plate valve, 195, 196

time–frequency analysis, 168
vibration analysis, 168

compression cycles, spectrogram, 174,
175

confusion matrix, 198
feature extraction, 180–182
feature space, 182–183
leave-one-valve-out approach, 198
plastic valves, 198
pointwise spectrogram, faultless valve,

175–177
raw accelerometer data, 174
statistical analysis, 174
steel valves, 197, 198
test observations, 196, 197
(time–)frequency space analysis, 174
two-dimensional autocorrelation,

177–179
validation accuracies, 198

Reconstruction algorithm for probabilistic
inspection of damage (RAPID)
algorithm, 343

Recurrent Classifier (RC), 113
Recurrent networks (RNN), 79
Recursive density estimation (RDE), 271
Regression imputation, 68
Reliability statistics prediction, 333
Remaining useful life (RUL), 9–10, 78–79
REPAIR algorithm, 451
Restricted master problem, 542
RFID localization technology, see Radio

frequency identification localization
technology

Robust location estimator, 57
Rolling element bearings

detection of fault, 227–228
eHT technique

closing and opening operation, 216–217
D’Agostino-Pearson normality

measure, 222–224
dilation operation, 215–216
erosion operation, 215–216
experimental setup, 220–222
health condition monitoring, 225–226
IMF, 219–220
morphology-based filtering technique,

222–223
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processing procedures, 214
processing results, 226–227
structural element (see Structural

element)
envelope analysis, 209
frequency analysis, 208–209
geometry of, 207–208
incipient bearing defect detection, 210
inner race defect, 209, 226–227
mathematical morphology-based analysis,

210
MED filter

vs. convergence, 213–214
defect-related impulses, 211
entropy minimization, 211
filter coefficients, 213
flowchart, 211
inverse filter, 212
machinery system condition monitoring,

211
optimal filter coefficient vector, 212
signal denoising operation, 211–212
vs. test signal response, 213–214
Toeplitz autocorrelation matrix, 213

outer race defect, 209, 226
shaft frequency, 209
signal processing techniques, 208
time–frequency domain techniques,

209–210
vibration-based monitoring, 208

Root mean squared error (RMSE), 68, 414
Rule growing mechanism, 296–298

S
Score distance, 61
SE, see Structural element
Self-adaptive and autonomous systems

ACC, 456
control system, 448–449
FOL, 431
ICC, 429, 430
internet of things, 427
MAPE-K, 448
mobile robot driving, 431, 432
model-based reasoning, 428

abductive diagnosis, 439–443
abstraction, 444, 445
components, 432, 443, 445
deviation models, 445
differential drive robot, 433
electrical characteristics, 444
MBD (see Model-based diagnosis)
motors and wheel encoder, 433

qualitative reasoning, 444
system’s architecture, 443

repair, 447, 448
system health state

actuator, 455
control block, 451–453
REPAIR algorithm, 451
sensor block, 453–454

time step t, 449, 450
Self-adaptive forecast models, 487
Self-healing strategies, 4–5
SeqDrift2 detector, 111–112
Sherman–Morrison formula, 60–61
Short-time Fourier transform (STFT), 66–67
Signal amplitude peak squared (SAPS), 344
Smart devices, 11

application-related limitations, 43–44
approach of, 26
assembly instructions, 27
assisted reality, 29
augmented reality, 29–30
condition monitoring

control-specific raw data, 39
data exchange, 38
direct socket communication, 38
information system, 38
irregularities/errors, 36
machine-related operator support,

38–39
predefined error libraries and codes, 38
real-time worker information system,

37
device selection and potentials

climate-controlled assembly shop,
35–36

construction environment, 35–36
environment conditions, 34
evaluation tool, 34–35
hands-free operation, 34
implementation approach, 33
knowledge-and experience-based

matching algorithm, 34
productivity gains, 33
use case’s boundary conditions, 33

environment-related limitations, 44
equipment as built, 27–28
equipment as planned, 27–28
equipment as serviced, 27–28
human-related limitations, 43
information compression, 46–47
Internet of production, 26–27
legal aspects, 47–48
logistics, 26–27
mixed reality, 29
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Smart devices (cont.)
PricewaterhouseCoopers, 25
process monitoring

glass molding process, 42
integrated menu structure, 41–42
long-term application, 43
production’s software environment, 41
short-term perspective, 43

quality control, 27
remote expert solutions

cloud-based functions, 39
device-integrated wireless module, 40
downtimes and resulting costs, 40
functions and options, 39–40
machine experts, 39
maintenance process, 36–37
mobile devices, 39

smartglasses, 30–32
smartphones, 30, 32
smartwatches, 31–33
stand-alone solution, 36
tablets, 30, 32
user acceptance, 44–46
virtual reality, 29
visual tracking, 29

Square root transformation, 64
Staged online learning (SOL) approach,

113–114
accuracy vs. throughput trade-off, 124
accurate classifiers, 120–121
vs. ARF, 122–123
components, 108
Covertype dataset, 117, 119
data stream, 108
deployment state, 107
ELEC dataset, 117, 119
evolving tree, 109
Flight dataset, 117–121
Friedman test statistic, 121–122
historical properties, 108
Hoeffding tree, 120
internal parameters, 120
Kleinberg’s modelling, 108
learning state, 107
memory consumption, 124–125
noisy RBF dataset, 118–119
noisy RH dataset, 117–119, 121
Occupancy dataset, 121
performance measurement, 113–114
throughput evaluation, 123–124
transition, 109–112
tree induction algorithm, 107
winner classifier, 108–109

State-of-Charge (SoC), 365, 368

State-space model, 365–367
State transition model, 366, 368
Stochastic neighborhood embedding (SNE),

70–71
Stochastic regression imputation, 68
Stressor-based predictions, 333
Structural element (SE)

impulse extraction and demodulation, 215
morphological signal analysis, 215
proposed morphological filter

bearing vibration signal analysis, 218
example, 218–219
finer search spacing, 218
kurtosis, 218–220
proposed indicator, 219–220
Renyi entropy, 217–220

Structural health and condition monitoring,
316

sensors, 320–321
vibration-based monitoring, 322–325

Subspace aided approach (SAP), 270
Supervisory control and data acquisition

(SCADA) systems, 386
Support vector machines (SVM), 77
Support vector regression (SVR), 288
Symmetric mean absolute percentage error

(SMAPE), 414, 415
Synthetic minority oversampling technique

(SMOTE), 73–74
System decomposition, 464, 466–467
System health state

actuator, 455
control block, 451–453
REPAIR algorithm, 451
sensor block, 453–454

System models, 2–4

T
Taguchi L12 method, 495
Takagi–Sugeno (TS) fuzzy systems, 270–271,

409, 499–502, 521, 522
t-distributed SNE (t-SNE), 70–71
Temporal causal graphs (TCG), 462–463
Three-cellular converter, 466, 467, 469
Threshold autoregressive (TAR), 406, 407,

418
Time domain, 66
Time–frequency domain analysis, 66
Time instant optimization (TIO), 535
Time-of-failure PMFs, 372–374
Time-series-based forecast models, 487

batch-processing, 498, 499
dimensionality reduction, 511–512
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influence analysis, flatness criteria,
524–526

initial batch model construction, 521–522
model adaptation, 522–524
multi-stage production, 526, 527
on-line model adaptation

forgetting factor, 503
functionalities, 502
QC measurements, 502
rule splitting, 503–504
updating process, 505–506

PLS and TS fuzzy systems, 499–502, 521,
522

prediction horizon, 498
pre-optimized production process, 510–511
strategies, 509–511
three-dimensional matrix and flattening,

498
Tomek’s links, 75
True positive rate (TPR), 279, 283
Typicality and eccentricity data analytics

(TEDA), 271

U
Un-optimized production process, 492, 493
Update gates, 84

V
Vector error correction model (VECM), 404,

413, 416–417
Vibration-based monitoring, 322–325

W
Wastewater treatment plants (WWTPs), 16–17

aeration system blowers
blowers diffuser position and current

consumption, 396–397
description, 395
experimental setup, 395–396
residual values analysis, 397
RME metric, 397, 398
smoothed air temperature, 398, 399

data mining modelling, 386
dynamic and non-linear scenarios, 385
energy consumption, 382–383
energy savings, 383–385
equipment, 382
external recirculation pumping system

description, 387
experimental setup, 388
linear regression, 388

observed flow-rate vs. applied pump
frequency, 388, 389

relative mean error value, 389, 391
residual values analysis, 388, 390

KPI, 386
modelling approach, 385
overview, 381–382
plant input pumping system

description, 391–392
experimental setup, 392
MARS algorithm, 392–393
observed flow-rate vs. applied pump

frequency, 392, 393
residual values analysis, 393, 394
RME value, 393, 395
time interval, 392

pumping/aeration processes, 385
regression algorithm, 386
relative mean error, 386
SCADA systems, 386
schematic diagram, 387

Wavelet transform (WT), 209–210
Weighted recursive least squares (wRLS)

algorithm, 412
Whittaker’s smoother, 187
Wiener Process, 7
Wigner–Ville distribution, 67, 209–210
Windows Mixed Reality, 32
Wind turbine materials and constructions

(WMC), 345
Wind turbines

damage accumulation monitoring, 343
damage index values, 346
damage intensity probability, 345
failure mechanisms, 343
LabVIEW program, 345
maximum damage probability value, 347,

348
operational and maintenance costs, 342
physics-based methodology, 342–343
probability function, 344
PWAS, 343, 344, 348, 349
RAPID algorithm, 343
RAPID maps, 347
SAPS, 344
vibration-based health monitoring

approach, 343
WMC, 345

WWTPs, see Wastewater treatment plants

Z
Zero-defect manufacturing, 1
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