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Foreword

The Indian Statistical Institute (ISI) was established on 17th December,

1931 by a great visionary Professor Prasanta Chandra Mahalanobis to pro-

mote research in the theory and applications of statistics as a new scientific

discipline in India. In 1959, Pandit Jawaharlal Nehru, the then Prime Min-

ister of India introduced the ISI Act in the parliament and designated it

as an Institution of National Importance because of its remarkable achieve-

ments in statistical work as well as its contribution to economic planning.

Today, the Indian Statistical Institute occupies a prestigious position in

the academic firmament. It has been a haven for bright and talented aca-

demics working in a number of disciplines. Its research faculty has made

India proud in the arenas of Statistics, Mathematics, Economics, Computer

Science, among others. Over seventy five years, it has grown into a massive

banyan tree, like the institute emblem. The Institute now serves the na-

tion as a unified and monolithic organization from different places, namely

Kolkata, the Head Quarter, Delhi and Bangalore, two centers, a network of

six SQC-OR Units located at Mumbai, Pune, Baroda, Hyderabad, Chennai

and Coimbatore, and a branch (field station) at Giridih.

The platinum jubilee celebrations of ISI have been launched by Hon-

orable Prime Minister Dr. Manmohan Singh on December 24, 2006, and

the Government of India has declared 29th June as the “Statistics Day” to

commemorate the birthday of Professor Mahalanobis nationally.

Professor Mahalanobis was a great believer in interdisciplinary research,

because he thought that this will promote the development of not only

statistics, but also the other natural and social sciences. To promote in-

terdisciplinary research, major strides were made in the areas of computer

science, statistical quality control, economics, biological and social sciences,

physical and earth sciences.

v
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The Institute’s motto of ‘unity in diversity’ has been the guiding prin-

ciple of all its activities since its inception. It highlights the unifying role

of statistics in relation to various scientific activities.

In tune with this hallowed tradition, a comprehensive academic pro-

gramme, involving Nobel Laureates, Fellows of the Royal Society, and other

dignitaries has been implemented throughout the Platinum Jubilee year,

highlighting the emerging areas of ongoing frontline research in its various

scientific divisions, centres, and outlying units. It includes international

and national-level seminars, symposia, conferences and workshops, as well

as series of special lectures. As an outcome of these events, the Institute

is bringing out a series of comprehensive volumes in different subjects un-

der the title Statistical Science and Interdisciplinary Research, published

by World Scientific.

The present volume titled Mathematical Programming and Game The-

ory for Decision Making is the first one in the series. It has twenty five

chapters, written by eminent scientists including a Nobel Laureate, from

different parts of the world, dealing with the application of the theory and

methods of mathematical programming to problems in statistics, finance,

electrical networks and game theory. I believe, the state of the art studies

presented in this book will be very useful to readers.

Thanks to the contributors for their excellent research contributions and

to volume editors Dr. S. K. Neogy, Prof. R. B. Bapat, Dr. A. K. Das and

Prof. T. Parthasarathy for their sincere effort in bringing out the volume

nicely in time. The active role of the Platinum Jubilee Core Committee is

appreciated. Thanks are also due to World Scientific for their initiative in

publishing the series and being a part of the Platinum Jubilee endeavor of

the Institute.

December 2007 S. K. Pal

Kolkata Series Editor and Director, ISI
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Preface

This volume is dedicated to the presentation and discussion of state of the

art studies in Mathematical Programming and Game Theory for decision

making problem in the form of twenty five papers. It is a peer reviewed

volume under the Platinum Jubilee Volume Series of Indian Statistical In-

stitute. The topics of this volume include the application of the theory

and methods of mathematical programming to problems in statistics, fi-

nance, electrical networks and game theory. Mathematical programming

comprises a variety of paradigms (theoretical frameworks) tailored to dif-

ferent kinds of problems and it is extremely useful to problems in strategic

decision making. Support vector machines, bilevel programming, neural

network models, cooperative games, non-cooperative games and stochastic

games appear in this volume. It is hoped that the research articles of this

volume will significantly aid in the dissemination of research efforts in these

areas. In this volume some pioneers of the field, as well as some prominent

younger researchers have contributed articles which are briefly mentioned

below.

Mathematical programming has long been recognized as a vital mod-

elling approach to solve optimization problems. In Chapter 1, Lyn C

Thomas presents a review on some of the applications of mathematical

programming in finance which includes prominent and well documented

applications in long-term financial planning and portfolio problems. This

includes asset-liability management for pension plans and insurance com-

panies, integrated risk management for intermediaries, and long-term plan-

ning for individuals. In this chapter, it is discussed how one can use linear

programming to estimate the term structure of interest rates for the prices

of bonds.

Even though several anti-cycling pivot selection rules exist for the sim-

vii
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plex method for a general linear program (LP), none is known to avoid

stalling (an exponential sequence of degenerate pivots). Santosh N. Kabadi

and Abraham P. Punnen discuss an anti-stalling pivot rule for linear pro-

grams with totally unimodular coefficient matrix in Chapter 2. For an

LP with m constraints and totally unimodular coefficient matrix, pivot se-

lection rule presented in this chapter guarantees that the simplex method

performs at most m consecutive degenerate pivots or declares that the cur-

rent solution is optimal.

Katta G. Murty developed a new interior point method for linear pro-

gramming, based on a new centering strategy that moves any interior fea-

sible solution x0 to the center of the intersection of the feasible region with

the objective hyperplane through x0, before beginning the descent moves.

Using this centering strategy, that method obtains an optimum solution

for an LP by a very efficient descent method that uses no matrix inver-

sions. In Chapter 3, he extended this method into a descent method for

solving quadratic programs (QP). Compared to other existing methods for

QP, the new method is able to handle it with minimal matrix inversion

computations.

Chapter 4 by Richard Caron and Tim Traynor is about the analysis of

sets of constraints, with no explicit assumptions. The relationship between

the minimal representation problem and a certain set covering problem of

Boneh is explored. This provides a framework that shows the connection

between minimal representations, irreducible infeasible systems, minimal

infeasibility sets, as well as other attributes of the preprocessing of mathe-

matical programs.

Most research on algorithms for combinatorial optimization uses the

costs of the elements in the ground set for making decisions about the

solutions that the algorithms would output. For traveling salesman prob-

lems, this implies that algorithms generally use arc lengths to decide on

whether an arc is included in a partial solution or not. In Chapter 5,

Diptesh Ghosh, Boris Goldengorin, Gregory Gutin and Gerold Jäger study

the effect of using element tolerances for making these decisions and sev-

eral greedy algorithms for it based on tolerances are proposed for traveling

salesman problem.

In Chapter 6, T. S. Arthanari studies the membership problem for the

pedigree polytope. In this chapter, it is shown that a necessary condition for

membership in the pedigree polytope is the existence of a multicommodity

flow with value equal to unity in a layered network.

Many real life scheduling problems involve the use of a graph coloring
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problem where the vertices of a graph G(V, E) are colored such that the

coloured graph satisfies certain desired properties. Nirmala Achuthan, N.

R. Achuthan and R. Collinson discuss one such graph coloring problem in

Chapter 7. The k−defective chromatic number χk(G) of a graph G is the

least positive integer m for which G is (m, k) − colorable. In this chapter,

exact algorithms based on partial enumeration methods to determine the

one defective chromatic number χ1(G), of a graph G are developed.

The vertical block matrix arises naturally in the literature of stochastic

games where the states are represented by the columns and actions in each

state are represented by rows in a particular block. S. K. Neogy, A. K.

Das and P. Das present some results related to complementarty problem

involving vertical block matrices in Chapter 8. A neural network algorithm

for solving a vertical linear complementarity problem is also discussed.

In Chapter 9, Reshma Khemchandani, Jayadeva and Suresh Chandra

present a fuzzy extension to twin support vector machines for binary data

classification. The approach can be used to obtain an improved classifica-

tion when one has an estimate of the fuzziness of samples in either class.

Except for constrained least squares, seldom is linear regression by least

squares presented as an optimization problem whereas regression by mini-

mum sum of absolute errors (MSAE) regression is always framed as a linear

optimization problem. However, most students of statistics are unfamiliar

with methods of mathematical programming. Given the dearth of treat-

ment to regression by MSAE in textbooks, literature reviews and updates

to MSAE regression such as Chapter 10 by Subhash C. Narula and John

F. Wellington becomes an important learning resources to the student, re-

searcher, and practitioner.

Consider a stochastic securities market model with a finite state space

and a finite number of trading dates. In Chapter 11, Stephen A. Clark and

Cidambi Srinivasan discuss how arbitrage price theory is modified by a no

short-selling constraint. The principle of No Arbitrage is characterized by

the existence of an equivalent supermartingale measure. In this chapter, it

is shown that the Law of One Price holds for marketed claims if and only if

there exists an equivalent martingale measure. Given that the Law of One

Price prevails, then a contingent claim has a unique fundamental value if

and only if it is the difference of two marketed claims. The main tool for

arbitrage analysis in this essay is finite-dimensional LP duality theory.

In Chapter 12, H. Narayanan discusses about solving min cost flow

problems approximately by transforming them to network analysis prob-
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lems. This Chapter provides a relook at commonly used algorithms in

computational linear algebra by associating an electrical network with the

linear equations.

In Chapter 13, A. K. Bardhan and Udayan Chanda present optimal con-

trol policies of quality level and price for the introduction of a new product

with two competing technology generations in a dynamic environment and

also proposes a new model in this regard. The proposed model in this

chapter is a combination of diffusion models and the cost function, which

is capable of estimating the future profit trends.

Katta G. Murty presents a simple and easy method to implement non-

parametric technique to forecast the demand distribution based on statis-

tical learning, and ordering policies in Chapter 14. An application of this

nonparametric forecasting method to portfolio management is also pre-

sented.

Chapter 15 by S. Dempe, J. Dutta and B. S. Mordukhovich is devoted to

an application of advanced tools of modern variational analysis and gener-

alized differentiation to problems of optimistic bilevel programming. Some

new necessary optimality conditions are derived for two major classes of

bilevel programs: those with partially convex and with fully convex lower-

level problems.

Chapter 16 contains a summary of the talk by R. J. Aumann, Nobel

Laureate, which contains a discussion on Game Engineering.

In Chapter 17, Pradeep Dubey and Rahul Garg consider a communica-

tions network in which users transmit beneficial information to each other

at a cost. Conditions under which the induced cooperative game is su-

permodular (convex) is presented. This analysis is in a lattice-theoretic

framework, which is at once simple and able to encompass a wide variety

of seemingly disparate models.

Magnus Hennlock define a robust feedback Nash equilibrium in Chap-

ter 18 and solve analytically in a differential climate model with N regions

based on an approach of IPCC 2001 scientific report for calculating ra-

diative forcing due to anthropogenic CO2 emissions. In addition, uncer-

tainty is introduced by perturbing the climate change dynamics such that

future radiative forcing and global mean temperature will have unknown

outcomes and probability distributions. There are n asymmetric investors,

each investing in a portfolio containing N regional capital stocks used in

production that generates CO2 emissions. In each region there is one policy

maker, acting as a regional social planner, that chooses regionally optimal

abatement policies. Dynamic maximin decision criteria are applied for the
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policy makers in a robust feedback Nash equilibrium for N policy makers’

abatement strategies and n investors’ investment strategies.

In Chapter 19, Haruo Imai and Katsuhiko Yonezaki consider a multi-

person bargaining problem where players interests are correlated. This

chapter investigates the limit outcomes of the stationary subgame perfect

equilibrium outcomes of the sequential bargaining game with a coalition

under two different bargaining protocols and correlation of interests are

found within each coalition. Here limit means the case where the interval

between the two consecutive offers vanishes. The result shows that an

endogenous delegation occurs in each coalition to its toughest member. The

outcome exhibits a sharp distinction that under the fixed order rule, the

size of coalition does not matter, while under the predetermined proposer

rule, it matters.

Chapter 20 by Dawidson Razafimahatolotra investigates stability prop-

erties of effectivity functions. The Bargaining Set in effectivity function

generalizes the concept of cycles and connects it with the well known sta-

bility notion of bargaining sets. The first part devotes to the study of

relations between cycles and implement a class of effectivity functions for

which theses cycles are equivalent. Part two of this Chapter is devoted to

analyze the stability of the bargaining sets and give relations between them.

Bargaining sets considered are by Zhou, the Mass-Colell and the Aumann

Davis Maschler’s bargaining sets.

In Chapter 21, Agnieszka Wiszniewska-Matyszkiel considers a game

modelling a market consisting of two firms with market power and a con-

tinuum of consumers. A specific feature of a market for toys is considered

with each firm producing two kinds of distinguishable goods. The prob-

lem of finding a Nash equilibrium implies firms’ optimal advertising and

production plans over time, where the aggregate of demands of consumers

may depend on firms’ past decisions. Equilibria at this market may have

strange properties, like oscillatory production and advertising strategies.

R. B. Bapat introduces two classes of games in Chapter 22 and shows

that they are balanced. In regression games, the observations in a regression

model are controlled by players, and the worth of a coalition is inversely

proportional to the variance of the estimate of the regression parameter. In

connectivity games the players control the edges of a graph and the worth

of a coalition is directly proportional to the degree of connectivity of the

subgraph formed by the corresponding edges.

Chapter 23 by Somdeb Lahiri presents the concept of the induced com-

binatorial auction of a nonnegative TU game and shows that the existence
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of market equilibrium of the induced combinatorial auction implies the ex-

istence of a possibly different market equilibrium as well, which corresponds

very naturally to an outcome in the matching core of the TU game. In this

Chapter, it is shown that the matching core of the nonnegative TU game

is non-empty if and only if the induced combinatorial auction has a market

equilibrium.

Arrow formulated an important conceptual framework enabling one to

discuss various collective decision making problems in an axiomatic fash-

ion. There is, nevertheless, no topological structure given in Arrow’s social

choice framework to make it possible to discuss continuity of social welfare

functions. In the turn of 1980s Chichilnisky had a systematic framework

to discuss continuity of certain type of social welfare functions. In Chapter

24 by Kari Saukkonen, it is explained what continuity of a social welfare

function is for Chichilnisky. It is then pointed out that there are difficulties,

if this viewpoint is extended to cover continuity of Arrovian social welfare

function, because of too specific assumption about the topological structure

and dimension of the state sets. The discussion suggests that Chichilnisky’s

framework is not of much help in formulating appropriate topological foun-

dations for the Arrovian social choice theory conceptualizing, for example,

the workings of capitalistic democracy.

Finally in Chapter 25, S. K. Neogy, A. K. Das, S. Sinha and A. Gupta

consider a mixture class of zero-sum stochastic game in which the set of

states are partitioned into sets S1, S2 and S3 so that the law of motion is

controlled by Player I alone when the game is played in S1, Player II alone

when the game is played in S2 and in S3 the reward and transition prob-

abilities are additive. It is proved that the game with SC/AR-AT mixture

has the ordered field property by showing that the problem of solving the

value vector vβ
s and optimal stationary strategies fβ(s) for Player I and

gβ(s) for Player II for such a mixture type of game can be formulated as

a complementarity problem. This gives an alternative proof of the ordered

field property that holds for such a mixture type of game.

The 25 refereed articles contained in this volume are selected from 43 pa-

pers presented in International Symposium on Mathematical Programming

for Decision Making: Theory and Applications which was organized as a

part of the Platinum Jubilee Celebrations of the Indian Statistical Institute

during January 10-11, 2007 at Indian Statistical Institute, Delhi Centre.

The symposium was inaugurated by Professor Robert J. Aumann who de-

livered the inaugural talk on Game Engineering. The welcome address was

delivered by Professor S. K. Pal, Director, Indian Statistical Institute. This
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symposium provided a forum for national and international academicians,

researchers and practitioners to exchange ideas and approaches, to present

research findings and state-of-the-art solutions, to discuss new develop-

ments in the theory and applications of mathematical programming to the

problems in business and industries. A session titled S. R. Mohan Memo-

rial Session was arranged to recall the memory of our colleague Professor

S. R. Mohan (who passed away in October 2005) and his contribution in

the area of Mathematical Programming and Game Theory. In fact, some of

the papers are dedicated to the memory of Professor S. R. Mohan. It is the

hope of the editors that the majority of the papers will simulate questions

and possible solutions that are of interest to researchers of these areas.

S. K. Neogy, R. B. Bapat, A. K. Das and T. Parthasarathy

(Editors)
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• L. Lambertini, Università di Bologna, Italy.
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• Maite Mármol, Universitat de Barcelona, Spain.

• Martin Jacobsen, University of Copenhegan, Denmark.

• Gordon E. Willmot, University of Waterloo, Canada.

• Amitava Bhattacharya, Univ. of Illinois at Chicago, USA.

• Le Dung Muu, Institute of Mathematics, Vietnam.

• Janez Brest, University of Maribor, Slovenia.

• Z. Wan, Wuhan University, China.

xv



March 3, 2008 11:55 World Scientific Book - 9in x 6in pjubedvol

xvi Mathematical Programming and Game Theory for Decision Making

• T. S. Arthanari, University of Auckland, New Zealand.

• E. Somanathan, Indian Statistical Institute, Delhi Centre.

• A. Sen, Indian Statistical Institute, Delhi Centre.

• P. Roy Chaudhury, Indian Statistical Institute, Delhi Centre.

• G. S. R. Murthy, Indian Statistical Institute, Hyderabad.

• D. Mishra, Indian Statistical Institute, Delhi Centre.

• Joaquim J. Judice, Universidade de Coimbra, Departamento de
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Chapter 1

Mathematical Programming and its
Applications in Finance

Lyn C Thomas
Quantitative Financial Risk management Centre
School of Mathematics
University of Southampton
Southampton, UK
e-mail: L.Thomas@soton.ac.uk

Abstract

This article reviews some of the applications of mathematical programming in
finance. Of course mathematical programming has long been recognised as a vital
modelling approach to solve optimization problems in finance. Markowitz’s Nobel
Prize winning work on portfolio optimization showed how important a technique
it is. Other prominent and well documented applications in long-term financial
planning and portfolio problems include asset-liability management for pension
plans and insurance companies, integrated risk management for intermediaries,
and long-term planning for individuals. Nowadays there is an emphasis on the
interaction between optimization and simulation techniques in these problems

There are though many uses of mathematical programming in finance which
are not purely about optimizing the return on a portfolio and we will also discuss
these applications. For example we discuss how one can use linear programming
to estimate the term structure of interest rates for the prices of bonds. In the
personal sector finance, where the lending is far greater than the higher profile
corporate sector, the use of linear programming as a way of developing credit
scorecards is proving extremely valuable.

Key Words: Mathematical programming, optimization problems in finance,
portfolio optimization, credit scorecards, linear programming, asset-liability Mod-
els

1
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1.1 Introduction

Mathematical programming was one of the key tools used in the earli-
est modelling in finance, namely Markowitz Nobel prize winning work
[Markowitz (1952), (1959)] on optimising portfolios of shares or other fi-
nancial instruments. This lead to a quadratic programming formulation,
which has subsequently been extended in many ways. A related problem
but from a different area of finance is the asset- liability problem faced by
many insurance companies. Despite a long tradition of statistical and actu-
arial models of the liabilities involved in insurance and variants of portfolio
optimisation problems to determine how to hold the assets, it is only in
the last decade that these two complementary sides to an insurance com-
pany have been put together in one model. This leads to very large scale
stochastic programming problems. These are the high profile applications
of mathematical programming in finance and continue to be heavily re-
searched not least because of the size of the programmes needed to solve
real applications.

There continue though to be new applications of linear programming
which are perhaps less well known but equally important to those specific
areas of finance. One of these is the way of calculating the yield curve -
the markets forecast of what the future of interest rates will be, which are
implicit in the prices of bonds.

Another example occurs in consumer credit risk. This area of finance
does not receive any of the research attention that corporate lending, equity
models and the pricing of equity derivatives has received in the last twenty
years. Yet the lending to consumers in most developed countries is much
higher than the lending to companies (30% more in the US than the total of
business lending). The tool used to assess the risk of lending to customers
is to develop a credit scorecard and linear programming has some real
advantages in developing such scorecards.

So in this review we briefly outline these four applications and the types
of mathematical programming models that can solve them

1.2 Portfolio Optimization

The literature on financial optimization models dates back to the ground
breaking application of Markowitz on optimizing a portfolio of financial
products by concentrating on the mean return and taking the variance of
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the return as a measure of the risk. In this basic model one is interested in
investing in a single period, there is an initial portfolio available and one of
the assets is risk free, i.e. cash.

Assume there are N traded assets labelled i, i = 1, 2, ..N and Ri is
the random variable of the return in that one period on asset i, where
Exp(Ri) = ri and the covariance of the returns on the assets is given by
the matrix Σ. Assume that w0

i is the initial holding of asset i where w0
i ≥ 0.

Let xi be the amount of asset i traded, where positive values means more
of the asset is purchased and negative values means some of the asset is
sold. The returns and risk ( variance) of the resulting portfolio is

E[RT (w0 + x)] = rT (w0 + x); V [RT (w0 + x)] = (w0 + x)T Σ(w0 + x)

Hence if one wants a portfolio with at least an expected return of t
but with minimum variance one needs to solve the quadratic programming
problem

Minimise (w0 + x)T Σ(w0 + x)

subject to rT (w0 + x) ≥ t

(1, 1, 1, . . .)T x = 0

where the first constraint ensures the return is at least t (in reality it
will always be exactly t) and the second constraint means the trading is
self financing. The problem is then solved for different values of t to get a
risk return trade-off and the investor chooses the outcome where his utility
as a function of risk and return is maximised.

Although this model was fundamental in understanding the portfolio
investment problem, it is of limited use in practice because it does not model
all the aspects of the real situation. Some of these - limits on short selling,
and the need for diversification - can be dealt with by adding appropriate
constraints. Short selling is when one sells an asset at the start of the
period, which one does not own. At the end of the period the asset has
to be bought and passed on to the original buyer. As it stands there is no
limit on how much of this can de done but one could put a limit on how
much of this can be done by introducing the constraint

w0
i + xi ≥ −si.

One can also limit the amounts invested in an asset in three different ways
as follows
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Limit the amount invested in each asset

w0
i + xi ≤ bi

Limit the relative amount invested in each asset

w0
i + xi ≤ γi

∑
j

(w0
j + xj)

Limit the relative amount invested in a group of assets J∑
j∈J

(w0
j + xj) ≤ α

∑
j

(w0
j + xj)

The original model also ignored the transaction costs involved in trad-
ing. If these can be considered to be piece wise linear in the level of the
transaction then they can be added to the return constraint without losing
linearity. Alternatively as [Mulvey (1993)] suggests one can mimic transac-
tion costs by putting upper limits on the transaction for classes which have
high such costs.

There are two real drawbacks to this formulation. The first is that
variance is not always the way investors want to measure the risk. In par-
ticular it penalises returns which are well above the mean in the same way
as those that are below the mean. So other risk measures have been sug-
gested. [Mansini, Ogryczak and Speranza (2003)] reviewed the different
measures that could still lead to linear programming formulations. Follow-
ing [Sharpe (1973)] there have been a number of attempts to linearize the
portfolio optimization problem. However if a portfolio is to take advantage
of diversification then no risk measure can just be a linear function of the
x. The way around it has been to assume there are a number of different
scenarios Sk − k = 1, . . . , K with specific values of the return for each asset
in each scenario and a probability pk of that scenario occurring. In this way
one can model other risk measures such as the mean semideviation, which
looks at the expected shortfall below the mean value, i.e. for any trading
policy x., if r(x) is the mean return and R(k,x) is the actual return under
scenario k, the mean semideviation is sd(x) = Ek[max{r(x) − R(k,x), 0}].

One can translate that into a convex piecewise linear function of the
variables x by defining the following optimisation problem

sd(x) = min
k∑

k=1

dkpk

subject to dk ≥ r(x) − R(k,x), dk ≥ 0
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In a similar way one can use other shortfall and stochastic dominance
measures of risk such as mean below target deviation, minimise the max-
imum semideviation and the Gini mean difference which corresponds to
the mean worst return. However for other risk measures this may not be
possible.

The second issue that brings the standard models into question is that it
is a one period model which may be inappropriate for investment problems
with long time horizons. This would lead one to using stochastic linear pro-
gramming models and their application in finance is surveyed in the paper
by [Yu, Ji and Wang (2003)]. Thus we would need to extend the models
to stochastic programming ones. Instead of doing this, we will consider in
the next section the finance problem which has been most modelled as a
stochastic programme in the last decade, namely the asset liability problem.

1.3 Asset-liability Models

Asset-Liability management looks at the problem of how to construct a
portfolio of securities that will cover the cost of a set of liabilities, which are
themselves varying as they depend on external economic conditions. This
is exactly the problem that insurance companies have to face. For over a
century they have had models which allow them to assess the costs of their
liabilities. Fifty years ago the advent of the models in the previous section
allowed them to optimise their portfolio of assets. Thus it is surprising that
it is only in the last decade or so that they have sought to combine the two
sides of their business into one model.

The time scales (many years) involved in such asset-liability problems
and the need to allow for the possibility of rebalancing the portfolio at
future times in response to new information means one is driven to model
these problems as stochastic programming ones. We outline a formulation
related to that suggested in [Bradley and Crane (1972)], [Klaassen (1998)]
and in the review of [Sodhi (2005)], though other models have been used
with considerable success by a number of U.S. and European insurance
companies.

One of the problems in these models is what to do about the require-
ments at the end of the time horizon. It is reasonable to assume that the
company will wish to continue trading thereafter but if one wants to min-
imise the initial cost of the asset portfolio one needs to cover the liabilities
one is drawn to trying to make this residue as close to zero as possible. Al-
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ternatively one assumes the initial position is given and tries to maximise
the surplus at the end of the time horizon provided all the liabilities have
been met. That is the approach we will take here

Consider a T time horizon. Let s(t) be a scenario which ends at time
t and gives rise to two new scenarios s(t+1) with equal probability, which
share the same history as s(t) until time t. Thus the probabilities of all
scenarios at time t are 2−(t−1).

The variables and constraints in the resultant stochastic programme are
as follows
Decision variables:

xi,s(t) - amount of asset i bought in period t in scenario s(t)
yi,s(t) - amount of asset i sold in period in scenario s(t)
ls(t) - amount lent at current short rate in period t in scenario s(t)
bs(t) - amount borrowed at current short rate in period t in scenario
s(t)
xi,s(t) - amount of asset i bought in period t in scenario s(t)

Costs and Profits:

ci,s(t) - cash flow (dividents etc) from asset i in period t in scenario
s(t)
pi,s(t) - price (ex-divident) from asset i in period t in scenario s(t)
νs(t) - present value of a cash flow of 1 in period t in scenario s(t)
ηs(t) - one period interest rate in period t in scenario s(t)
Ls(t) - liability due in period t in scenario s(t)
αi - transaction cost as proportion of value of trade in asset i.

hi,0, l0, b0 are initial asset holdings, lendings and borrowings

Model:

Maximise 2−(T−1)
∑
s(T )

νs(T )

(∑
i

pi,s(T )hi,s(T ) + lsT ) − bs(T )

)

∑
i

ci,s(t)hi,s(t−1) + ls(t−1)(1 + ηs(t−1)) + bs(t) +
∑

i

(1 − αi)pi,s(t)yi,s(t)

−
∑

i

(1+αi)pi,s(t)xi,s(t)−ls(t)−bs(t−1)(1+γs(t−1)) = Ls(t) ∀s(t), t = 1, 2, . . . , T

hi,s(t) = hi,s(t−1) + xi,s(t) − yi,s(t) ∀i, s(t), t = 1, 2, . . . , T
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hi,s(t), xi,s(t), yi,s(t), ls(t), bs(t)∀i, s(t), t = 1, 2, . . . , T

One can see from this formulation how critical is the choice of scenarios
to represent the uncertainties throughout the whole period of the problem.
The scenarios describe the asset prices and also the term structures for the
interest rates. Thus scenario generation becomes crucial to building useful
models. There are three approaches that are commonly used to do this
-i) bootstrapping using historical data ii) modelling the economy and asset
returns with vector autoregressive models and iii) using simulations based
on multivariate normal distributions of the values at risk from different
classes, where the parameters in the normal distribution are obtained using
time series analysis.

The other real difficulty is that the size of the scenario tree can make
computation almost impossible. This has stimulated even further the work
in stochastic programming on how to solve approximately such large prob-
lems. Obviously one way is not to have too many stages and so amalga-
mate together many of the periods towards the end of the time horizon into
much larger time periods. However the real advantages come from using
aggregation to combine nodes of the tree where appropriate and/or using
decomposition approaches such as Benders decomposition, and the more re-
cent interior point methods which can exploit the problem structure. These
together with parallel processing of the computation and using object ori-
ented parallel solvers mean that one can solve problems with 1,000,000,000
decision variables [Gondzio and Grothey (2006)].

1.4 Yield Curves

In financial markets the price of bonds can be used to estimate what interest
rates will do in the future. This is because bond pricing models really
model the current term structure of interest spot rates using both risk free
( Treasury) and risky ( corporate) securities. The spot rate can be extracted
from the prices of zero coupon bonds which would repay only on maturity.
However there are very few zero coupon bonds in the market and it is thus
necessary to extract the spot interest rates from bonds, both Treasury and
corporate, which pay coupon payments throughout their duration as well
as making a final repayments.

The standard methods of stripping coupons from bonds are bootstrap-
ping [Fabozzi (1998)] or linear regression [Carleton and Cooper (1976)]. If
for each period there is one and only one coupon bond that matures, these
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techniques generate a unique set of spot interest rates over the period.
However if there are periods where no bonds mature or other periods when
several bonds mature at the same tine, then there is not a unique solution
to the spot rates and in some cases these approaches giver rise to rates with
unacceptable features. For example the rates might suggest that receiving
one unit later in time is worth more than receiving it earlier in time, which
would imply there were negative interest rates between the two times. One
could also get results where the price for a high risk zero-coupon bond is
higher than for a lower risk zero coupon bond maturing at the same time,
which defies logical explanation.

To remedy the mispricing caused by bootstrapping, [Allen, Thomas
and Zheng (2000)] suggested using linear programming to strip out the
coupons of risk-free and risky bonds in such a way that there are no such
difficulties. This approach will produce the same spot interest rates as the
bootstrapping technique if there is one and only one coupon bond maturing
in each time period.

Suppose there are only risk free bonds, labelled i, i = 1, . . . , N0 in the
market, and bond i has a current price of Pi and ci(t) is its cash flow at
time t. Then one can estimate the pure discounted bond prices v0(t) of risk
free zero-coupon bonds paying 1 at a set of agreed times t = 0, 1, . . . , T by
solving the following linear programming problem

Minimize
N0∑
i=1

(ai + bi)

subject to Pi + ai =
T∑

i=1

ci(t)v0(t) + bi

v0(t) ≥ (1 + m(t))v0(t + 1)

ai, bi ≥ 0

for i = 1, . . .N0; and t = 0, 1, . . . , T − 1

where m(t) is the minimum expected forward interest from t to t + 1.
The first constraint seeks to match the present value Pi to the discounted

cash flows ci(t) and ai and bi are the mispricing errors. ai is positive and
bi = 0 if the price is ”too low” and the other way around if the price is ”too
high”. The second constraint ensures there is no mispricing with respect to
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maturity ( if m(t) = 0, one has the constraint that bonds of longer maturity
should be priced at or below those with shorter maturity).

If one has calculated the values v0(t) for t = 0, 1, 2, . . . T one can trans-
form these values into the spot interest rates i(0, t) over the same period
by taking

v0(t) =
1

(1 + i(0, t))t

One can also use the price of risky bonds not only to determine the
term structures of interest rates when applied to bonds of that risk class
but also to help determine the term structure of interest rates of all classes
including the risk free ones. Suppose bonds are rated according to their
riskiness with 1 being the highest quality and M the lowest quality, with
0 remaining the grade ascribed to risk free bonds. Suppose there are N

bonds observable in the market . Bond i has current price Pi, maturity
date Ti, cashflow ci(t) for t = 1, 2, . . . , Ti and credit rating d(i). Suppose
for the class of bonds with credit rating j, j = 0, 1, 2, . . . , M the price of a
bond stripped of its coupon paying 1 at t is vj(t) for t = 1, 2, . . . , T then
we can calculate the best fit for these values from the bond prices given by
solving the following Linear Programme

Minimize
N∑

i=1

(ai + bi)

subject to Pi + ai =
T∑

t=1

ci(t)vd(i)(t) + bi

v0(t) ≥ (1 + m(t))v0(t + 1)

vj(t + 1) − vj+1(t + 1) ≥ vj(t + 1) − vj+1(t + 1)

ai, bi ≥ 0

for i = 1, . . .N ; j = 0, 1, . . . , M − 1, and t = 0, 1, . . . , T − 1

m(t) is again the minimum expected risk free forward interest rate from
t to t+1 at time t = 0. The third constraint guarantees both that the price
of a longer maturity bond is cheaper than that of a shorter maturity bond
and that the price of a less risky zero coupon bond is higher than that of a
riskier rated one of the same maturity.

Finally note that one could introduce the liquidity of the market into the
optimization of the bond price and hence the term structure by recognizing
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that the issue amounts of different bonds will be quite different. Bonds
which have a large amount issued are likely to be more liquid and hence
their prices more accurately reflect the market’s view than those where
far less in value was issued. What is important is the issue value of the
bond and if this is wi for bond i, one can reflect the relative likelihood of
the bonds being accurately prices by changing the objective function is the
Linear programme above to

Minimize
N∑

i=1

wi(ai + bi)

Whether we use liquidity or not, these linear programmes allow one to
calculate the spot price interest rates i(j, t) j = 0, 1, ..M, t =, 1, T for risk
free and risky bonds using

vj(t) =
1

(1 + i(j, t))t
.

1.5 Credit Scorecards

Most financial mathematics courses and text books concentrate exclusively
on interest rate models, equities, bonds, their derivatives and corporate
lending. However in most first world countries lending to consumers far
exceeds lending to companies and yet that area of finance is hardly ever
mentioned. Yet at the start of the twenty first century consumer credit is
the driving force behind the economies of most of the leading industrial
countries. Without it, the phenomenal growth in home ownership and
consumer spending of the last fifty tears would not have occurred.

In 2004 the total debt owed by consumers in the US was $10.3 trillion
($10,300,000,000,000) of which $7.5 was on mortgages and $2.2 trillion on
consumer credit ( personal bank loans, credit cards, overdrafts, motor and
retail loans). This is now 30% more than the $7.8 trillion owed by all US
industry and almost double the $5.5 trillion of corporate borrowing ( the
rest being borrowing by small and medium sized companies and agricultural
organisations). Figure 1 shows the growth in this borrowing since the 1960s
and emphasises how consumer credit has been growing faster than corporate
borrowing for most of that period.
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This growth would not have been possible without credit scoring, the de-
velopment of automatic risk assessment systems which assess the proba-
bility that new and existing customers will default on their loans within
a fixed future time period (usually 12 months). The approach to build-
ing such credit scorecards is essentially one of classification. A sample of
previous customers is taken and each classified as a defaulter or a non-
defaulter according to their subsequent performance. The idea then is to
identify which combination of application and/or performance attributes of
consumers best separate the two groups. This idea of such statistical clas-
sification began with [Fisher (1936)] work on discriminant analysis which
can be reinterpreted by saying that it is essentially a regression which tries
to estimate p, the probability of non-default, as a linear function of the
attributes of the consumer x1, x2, . . . , xm by

p = w0 + w1x1 + w2x2 + . . . + wmxm

One of the succesful modifications used in credit scoring is that the xi

are not the orginal characteristics like age, but coarse classified variants of
them. So one will split age into a number of age bands and the xi are then
either binary indicator variables of whether consumers are in that band,
or weights of evidence transformations so each band is ranked according to
the ratio of defaulters to non-defaulters in that band. This is one way of
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dealing with the non linearity of the relationship between default risk and
age.

Of course the probability of non-defaulting in the above equation for
those in the sample will be either 0 or 1. When one has used this sample
to determine the regression equation one has an equation where the right
hand side could take any value from −∞ to +∞ but the left hand side is a
probability and so for any new applicants should only take values between
0 and 1. It would be better if the left hand side was a function of p which
also could take a wider range of values. One such function is the log of
the probability odds. This leads to the logistic regression approach where
one matches the log of the probability odds by a linear combination of the
consumer attributes, i.e.,

log(p/(1 − p)) = s = w0 + w1x1 + w2x2 + + wmxm

The right hand side of the equation is considered the credit score of the
individual and ranks the consumers according to their chance of defaulting.
One then chooses some cut-off score c, and give loans or credit cards to those
applicants with scores above c and refuses it to those with scores below c.
For existing customers, the scores are used to determine what changes in
credit limit should be allowed and whether one should offer other products
to that consumer.

Linear programming can also be used as a classification approach and
also ends up with a linear scorecard. [Mangasarian (1965)] was the first to
recognise that linear programming could be used for discrimination, but it
was the papers by [Freed and Glover (1981a,b)] that sparked off the interest.

Suppose one has a sample of nG goods and nB bads and a set of m

predictive variables from the application form answers so borrower i has
predictive variable values (xi1, xi2, . . . , xim). One seeks to develop a linear
scorecard where all the goods will have a value above the cut-off score c and
all the bads have a score below the cut-off score. This cannot happen in all
cases so we introduce variables ai which allow for the possible errors - all of
which are positive or zero. If we seek to find the weights (w1, w2, . . . , wm)
that minimise the sum of the absolute values of these errors we end up with
the following linear programme
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Minimise a1 + a2 + . . . + anG+nB

subject to

w1xi1 + w2xi2 + . . . + wmxim ≥ c − ai, 1 ≥ i ≥ nG

w1xi1 + w2xi2 + . . . + wmxim ≤ c + ai, nG + 1 ≤ i ≤ nG + nB

ai ≥ 0 1 ≤ i ≤ nG + nB

In essence this approach is minimising the errors using the l1 norm,
while linear regression minimises the errors using the l2 norm. One could
also use linear programming to minimise the l∞ norm, i.e., minimise the
maximum error, by changing ai to a in each constraint.

Linear programming is used by several organisations in building their
scorecards because it allows one to build the best scorecard with any par-
ticular bias. For example, a lender might want to target consumers who
are under 25 more than those who are over 25. In the linear programming
formulation this can be easily done. For example if x25− is the binary indi-
cator variable that someone is under 25 and x25+ is the indicator variable
for being over 25, then one requires that the corresponding weights satisfy.
w25− > w25+. In this way one can construct the scorecard which best clas-
sifies the two groups but also has the required bias in it, something which
is much harder to do in the standard regression approaches.
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Abstract

Although several anti-cycling pivot selection rules exist for the simplex method
for a general linear program (LP), none is known to avoid stalling (an exponential
sequence of degenerate pivots). In this paper we develop a pivot selection rule
that prevents stalling when the coefficient matrix of the LP is totally unimodular.
For an LP with m constraints and totally unimodular coefficient matrix, our pivot
selection rule guarantees that the simplex method performs at most m consecutive
degenerate pivots or declares that the current solution is optimal. This extends
a corresponding result available for minimum cost flows.

Key Words: Linear programming, totally unimodular coefficient matrix, anti-
cycling pivot selection rule, simplex method

2.1 Introduction

Simplex method for linear programming [Dantzig (1963); Murty (1983)] is
perhaps the most popular algorithm for solving linear programming prob-
lems. For the simplex method for a general linear program, no pivot selec-

15
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tion rule is known for which the algorithm has a polynomial time worst case
complexity and it is one of the outstanding open problems related to lin-
ear programs. However, rules generating polynomial sequence of pivots are
known for specially structured problems [Akgul (1993); Goldfarb and Hag
(1991); Goldfarb, Hao and Kai (1990); Hung M.S (1983); Sokkalingam,
Sharma and Ahuja (1997)]. When the entering and leaving variables are
not selected carefully, the simplex algorithm could even get into cycling in
presence of degeneracy [Dantzig (1963); Kotiah and Steinberg (1978); Lee
(1997); Marshall and Suurballe (1969)]. Several pivot selection rules are
available in literature to avoid cycling [Avis and Chavtal (1978); Bland
(1977); Clausen (1987); Magnanti and Orlin (1988); Pan (1988); Wolfe
(1963); Zhang S. (1991)] that guarantees finite convergence of the algo-
rithm.

Another phenomenon closely related to cycling is called stalling - an
exponential sequence of consecutive degenerate pivots. No pivot selection
rules discussed in literature is known to avoid stalling in simplex method
for a general linear program. However, for specially structured linear pro-
grams, pivot selection rules are available that prevent stalling [Ahuja, Orlin,
Sharma and Sokkalingam (2002); Akgul (1993); Goldfarb and Hag (1991);
Goldfarb, Hao and Kai (1990); Hung M.S (1983); Sokkalingam, Sharma
and Ahuja (1997)]. Recently, Ahuja, Orlin, Sharma and Sokalingam [Ahuja,
Orlin, Sharma and Sokkalingam (2002)] proposed a pivot selection rule that
guarantees the number consecutive degenerate pivots for the network sim-
plex method to be O(n) where n is the number of nodes in the network.
We consider a generalization of this case where the coefficient matrix is
totally unimodular and present a pivot selection rule that performs at the
most m consecutive degenerate pivots or declares that the current solution
is optimal. Here m is the number of constraints.

It may be noted that the result in Ahuja et al [Ahuja, Orlin, Sharma
and Sokkalingam (2002)] is designed specifically for network matrices and
does not apply for any other totally unimodular matrix that is not a net-
work matrix. For example, when the coefficient matrix is transpose of a
node-arc incidence matrix or if it is a mixture of network and transpose of
network matrices. Unlike the method in Ahuja et al [Ahuja, Orlin, Sharma
and Sokkalingam (2002)], we do not require use of strongly feasible bases.
This is crucial since this concept, as used in [Ahuja, Orlin, Sharma and
Sokkalingam (2002)], is available only for the case when coefficient matrix
is a node-arc matrix.
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2.2 Pivot Selection Rule

Consider the linear programming problem (LPP)

LPP: Minimize cx

Subject to
Ax = b

x ≥ 0.

where A is an m× n matrix with full row-rank, b = (b1, b2, . . . , bm)T is an
m-vector, c = (c1, c2, . . . , cn) is an n-vector and x = (x1, x2, . . . , xn)T is an
n-vector.

We assume that the matrix A is totally unimodular (i.e. any square sub-
matrix of A has determinant ±1 or 0). The jth column of A is denoted by
A.j . Let B be any feasible basis matrix. Let the ith column of B be the Bth

i

column of A, (i.e. B.i = A.Bi). Then {xB1 , . . . , xBm} is the corresponding
set of basic variables and the corresponding basic feasible solution (BFS) is
represented by (xB , 0), where xB = B−1b = (xB

B1
, xB

B2
, . . . , xB

Bm
) gives the

values of basic variables and the value of each non-basic variable is zero. If
xB

Bi
> 0 for all i, then (xB , 0) is called a non-degenerate BFS. If xB

Bi
= 0 for

some i then (xB , 0) is called a degenerate BFS. Let cB = (cB1 , cB2 , . . . , cBm)
be the cost vector associated with the basic variables. For each variable xj ,
its reduced cost, denoted by c̄j is defined as c̄j = cj − cBB−1A.j . Note that
for each basic variable xj , c̄j = 0. The following theorem summarizes the
optimality criterion in simplex method.

Theorem 2.1. [Dantzig (1963); Murty (1983)] If the reduced cost c̄j ≥ 0
for all j, then the BFS (xB , 0) is optimal.

The converse of the above theorem is true for non-degenerate BFS. A de-
generate BFS could be represented by a large number of basis matrices. If
a degenerate BFS is optimal, there exists an associated basis B such that
the corresponding reduced cost c̄j ≥ 0 for all j.

Let B0 be a basis at any iteration of the simplex method. Without
loss of generality we assume that B0 = [A.1, A.2, . . . , A.m] and we denote
(xB0

, 0) by x0 = (x0
1, x

0
2, . . . , x

0
n). Let N0 = {m + 1,m + 2, . . . , n}, the set

of non-basic variables. Let Ā = (B0)−1
A.
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Assume that B0 is a degenerate basis. Without loss of generality assume
that x0

i = 0 for i = 1, 2, . . . , k and x0
i > 0 for i = k + 1, k + 2, . . . ,m for

some 1 ≤ k < m. Of course, x0
i = 0 for i = m + 1,m + 2, . . . n. For

any basis B let S(B) = {j : c̄j < 0}. In the pivot selection rule, the
minimum ratio [Dantzig (1963); Murty (1983)] is strictly positive for some
j ∈ S(B0), then we perform a non-degenerate pivot using such a j as the
entering column. So, we assume that the minimum ratio is zero for each
j ∈ S(B0) as the choice of entering column. This implies that for each
j ∈ S(B0), Āij > 0 for some i ∈ {1, 2, . . . , k}.

The following theorem is well-known [Dantzig (1963); Murty (1983)].

Theorem 2.2. The BFS x0 is not optimal if and only if there exists y =
(y1, y2, . . . , yn) such that Ay = 0, cy < 0 and yi ≥ 0 for all i ∈ {1, 2, . . . , k}∪
{m + 1,m + 2, . . . , n}.

The proof of the above theorem follows from the fact that y is an im-
proving feasible direction from x0 if and only if it satisfies the conditions
of the theorem.

Suppose there exists an n-vector y satisfying the conditions of Theo-
rem 2.2. Choose such a vector y0 with a minimal set of non-zero coeffi-
cients. This can be achieved using standard reduction techniques. Since A

is totally unimodular we assume that y0
i ∈ {0, 1,−1} ∀ i. Let Q1 = {i : i ∈

{1, 2, . . . , k}; y0
i 6= 0} and Q2 = {i : i ∈ {m + 1,m + 2, . . . , n}; y0

i 6= 0}. For
convenience, let us assume without loss of generality that Q1 = {1, 2, . . . , r}
and Q2 = {m+1,m+2, . . . ,m+t} for some 1 ≤ r ≤ k and 1 ≤ t ≤ n−m. It
follows from Theorem 2.2 that y0

j = 1 for all j ∈ Q1 ∪Q2 and y0
j = 0 for all

j ∈ {r +1, r +2, . . . , k, m+ t+1,m+ t+2, . . . , n}. Since cy0 < 0, it follows
that c̄y0 < 0, and hence, S(B0) ∩ Q2 6= ∅. Choose any f ∈ S(B0) ∩ Q2.
Recall that Ā = (B0)−1A.
Case 1:Āif > 0 for some i ∈ {r + 1, r + 2, . . . , k} : In this case perform
a degenerate pivot on Āif . Let B′ be the new basis obtained. The same
vector y0 satisfies the conditions of Theorem 2.2 with respect to the new
basis B′. Note that y0

j > 0 for t indices not in the basis B0. We pivot
in the column f and y0

f > 0 by choice of f . The leaving column belongs
to {r + 1, r + 2, . . . , k} and y0

j = 0 ∀ j ∈ {r + 1, r + 2, . . . , k}. Thus
|{j : y0

j > 0 and j non-basic in B′}| = t− 1. Now repeat the process with
B′ and y0.
Case 2: Āif ≤ 0 for all i ∈ {r + 1, r + 2, . . . , k} but Āif > 0 for some
i ∈ {1, 2, . . . , r}: Without loss of generality assume Ā1f > 0. Consider the



November 14, 2007 10:25 World Scientific Book - 9in x 6in ch2TUAPR10-07final

Anti-stalling Pivot Rule for Totally Unimodular LP 19

following n-vector z:

zj =


−Ājf , for j = 1, 2, . . . ,m;
1, for j = f ;
0, otherwise.

(2.1)

Note that zf = 1, z1 = −1, zi ≥ 0 for i ∈ {r + 1, r + 2, . . . , k} and cz =
c̄f < 0. Now consider the vector z + y0. Clearly A(z + y0) = 0. Further,
z1 + y0

1 = 0, zf + y0
f = 2, zi + y0

i ≥ 0 for all i ∈ {1, 2, . . . , k}, zi + y0
i = 1 for

all i ∈ {m+1,m+2, . . . ,m+t}\{f}, zi+y0
i = 0 for all i ∈ {m+t+1, . . . , n}

and c(z + y0) < 0. Since the matrix A is totally unimodular, we can write
z + y0 as z + y0 = h1 + h2 + · · · + hd, where for each i ∈ {1, 2, . . . , n}
and j = 1, 2, . . . , d, (i) hj

i ∈ {0,±1}; (ii) hj
i = 1 implies zi + y0

i > 0; and
(iii)hj

i = −1 implies zi+y0
i < 0. In addition, obviously, h1

f +h2
f +· · ·+hd

f = 2
and chj ≤ c(z + y0) for at least one j = {1, 2, . . . , d}. Without loss of
generality assume that ch1 ≤ c(z + y0). Then the vector h1 satisfies the
conditions of Theorem 2.2 with respect to basis B0 and |{i : h1

i > 0 and i

is non-basic in B0}| < t. Repeat the process with basis B0 and with vector
y1 = h1.

Thus, in each iteration, the value of t, (the number of non-zero indices
of the current vector yi that are non-basic in the current feasible basis
Bj) goes down by at least 1. Hence, using our pivot rule, the number of
consecutive degenerate pivots can be at most m. We thus have our main
theorem.

Theorem 2.3. When the coefficient matrix A of the LP is totally unimodu-
lar, there exists a pivot rule that limits the number of consecutive degenerate
pivots to at most m.
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Chapter 3
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Abstract

Murty developed a new interior point method for linear programming (LP), based
on a new centering strategy that moves any interior feasible solution x0 to the
center of the intersection of the feasible region with the objective hyperplane
through x0, before beginning the descent moves. Using this centering strategy,
that method obtains an optimum solution for an LP by a very efficient descent
method that uses no matrix inversions. Here we extend that method into a descent
method for solving quadratic programs (QP). The advantages of this method are:
(i) all the constraints in the problem never appear together in any matrix inver-
sion operations performed in the algorithm, (ii) each iteration in the algorithm
consists of essentially three steps, one step requires no matrix inversions, a sec-
ond step requires solving a system of linear equations involving a small subset of
constraints, a third step involves matrix operations involving only the coefficient
matrix of the objective function. So, compared to other existing methods for QP,
the new method is able to handle it with minimal matrix inversion computations.

Key Words: Convex quadratic programming, interior point method, centering
strategy, descent method
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3.1 Introduction

We consider the quadratic program (QP)

Minimize Q(x) = cx + (1/2)xT Dx

subject to Ax ≥ b
(1)

where the objective coefficient matrix D is a symmetric matrix of order n,
the constraint coefficient matrix A is of order m × n, and b, c are column
and row vectors of appropriate orders [Cottle, Pang, and Stone (1992)],
[Murty (1988)], [Ye (1997)]. Let K denote the set of feasible solutions. For
simplicity we assume that K is bounded. We also assume that an interior
point x0 of K (i.e., a point satisfying Ax0 > b) is available.

In this paper we assume that D is positive definite, i.e., that Q(x) is
strictly convex. Strategies for relaxing this assumption are discussed briefly
in Section 3.7.

Let K0 = {x : Ax > b}, it is the interior of K. We assume that the row
vectors of A, denoted by Ai. for i = 1 to m, are normalized so that their
Euclidean norm ||Ai.|| = 1 for all i. For each x ∈ K0, we define δ(x) =
min{Ai.x− bi : i = 1 to m}, δ(x) is the radius of the largest ball that can
be inscribed within K with its center at x.

In [Murty (2006)], in the iteration when x0 is the current interior fea-
sible solution, the centering step has the aim of finding an x ∈ K0 on the
objective plane through x0, that maximizes δ(x) so as to get the largest
ball inscribed in K with center at an interior feasible solution that has the
same objective value as x0. In our problem here, the set of all points with
the same objective value as x0 is a nonlinear surface and not a hyperplane;
so we will not constrain the center to have the same objective value as x0 in
the centering step here, but will allow only moves that keep the objective
value the same or decrease it while increasing δ(x).

3.2 The Centering Strategy

When x0 is the current interior feasible solution for (1), the problem of
finding the largest inscribed sphere inside K with center at a point where
the objective value Q(x) is ≤ Q(x0), is the following constrained max-min
problem:

Maximize δ

subject to δ −Ai.x ≤ −bi, i = 1, . . . ,m

Q(x) ≤ Q(x0)
(2)
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If (x̄, δ̄) is an optimum solution of this problem, then δ̄ = δ(x̄), and the
ball B(x̄, δ̄) with x̄ as center, and δ̄ as radius, is a largest inscribed sphere
required. This problem (2) is itself a quadratic program. This type of
model may have to be solved several times before we get a solution for our
original QP (1), and for implementing our algorithm an exact solution of
(2) is not essential, so solving (2) exactly will be counterproductive. Using
the special max-min structure of (2), we now develop an efficient procedure
for getting an approximate solution to (2), similar to the one developed in
[Murty (2006)] for the corresponding centering problem in the algorithm
discussed there for LP.

Procedure for Getting an Approximate Solution for (2)

Since our goal is to increase the minimum distance of x from the facetal
hyperplanes of K, an approximate solution of (2) can be obtained through
line searches in directions perpendicular to the facetal hyperplanes of K. So,
in this procedure, for finding the new center x ∈ K0 ∩ {x : Q(x) ≤ Q(x0)},
we only consider moves in directions among Γ = {AT

i. ,−AT
i. : i = 1, ...,m}

which are descent directions for Q(x) at the current point.
So, this procedure consists of a series of moves beginning with x0, gen-

erating a sequence of points xr ∈ K0 ∩ {x : Q(x) ≤ Q(x0)}, r = 1, 2,....
When at xr look for a profitable direction to move at xr, which is a
direction p ∈ Γ = {AT

i. ,−AT
i. : i = 1, ...,m} satisfying:

(i): ∇Q(xr)p < 0, and

(ii): δ(xr +αp) increases as α changes from 0 to positive values.

For any x ∈ K0 define T (x) = {i : 1 ≤ i ≤ m, and i ties for the
minimum in δ(x) = minimum{Ai.x − bi : i = 1, ...,m}}. T (x) is known as
the index set of touching constraints at x, because it is the index set of
facetal hyperplanes of K which are tangents to the ball B(x, δ(x)) if each
constraint in (1) defines a facetal hyperplane for K. In [Murty (2006)],
it has been shown that a direction p satisfies condition (ii) above at xr

iff all the entries in {At.p : t ∈ T (xr)} are of the same sign. So, for any
given direction p, both (i), (ii) can be checked easily to determine if p is a
profitable direction to move at xr.

If a profitable direction p ∈ Γ to move at xr has been found, the step
length α to move at xr in the direction p to get the next point in the
sequence xr+1 = xr + αp is defined to be: α = minimum{β1, β2} where
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β1 = the value of β that minimizes Q(xr + βp) over β ≥ 0.
Finding β1 therefore requires minimizing a quadratic function
in the single variable β, which can be solved easily.

β2 = the value of β that maximizes δ(xr + βp) over β ≥ 0.
In [Murty (2006)] it has been shown that this can be found
by solving the following 2-variable linear program in which the
variables are θ, β.

Maximize θ
subject to θ − βAi.p ≤ Ai.x

r − bi, i = 1, . . . , m
θ, β ≥ 0

which can be found with at most O(m) effort. [Murty (2006)]
discusses how to solve this efficiently.

Once β1, β2 are determined, let α = minimum{β1, β2}, take the next
point in the sequence to be xr+1 = xr + αp, and continue the procedure in
the same way with xr+1.

The procedure continues as long as profitable directions p ∈ Γ to move
at the current point can be found.

When there are several profitable directions to move at the current point
in this procedure, efficient selection criteria to choose the best among them
can be developed. In fact, additional directions can be included in Γ to
improve the quality of the approximation obtained. When there are no
profitable directions to move at the current point, or when improvement
in the value of the radius of the inscribed ball becomes smaller than some
selected tolerance, take the current point in the sequence as the center
selected by this procedure.

As can be seen, the procedure used in this centering strategy does not
need any matrix inversion, and only solves a series of 2-variable LPs, and
single variable quadratic function minimization problems, which can be
solved very efficiently. Hence this centering strategy can be expected to be
efficient.

What is the Purpose of Maximizing the Radius of the
Inscribed Ball in this Centering Step?

Our goal is to find an optimum solution to the original quadratic pro-
gram (1). Then, why are we focussing on the seemingly unrelated problem
of maximizing the radius of the inscribed ball in this centering step? The
reason is the following.

Let B(x̄, δ̄), the ball with center x̄ and radius δ̄ be the ball constructed in
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this centering step. Then in this iteration the algorithm uses the direction
x̂ − x̄ as a descent direction for a line search step to minimize Q(x) over
{x̄+λ(x̂−x̄) : λ ≥ 0, and λ such that x̄+λ(x̂−x̄) ∈ K}}, where x̂ is a point
that minimizes Q(x) over the ball B(x̄, δ̄). There are efficient polynomial
time algorithms for computing x̂, but its computation is perhaps the most
expensive computational operation in this algorithm. Maximizing δ̄, the
radius of the ball found in this centering step, helps to reduce the number
of times this expensive step has to be used in this algorithm.

3.3 Descent Step Using a Descent Direction

Let B(x̄, δ̄) = {x : (x − x̄)T (x − x̄) ≤ δ̄2} be the ball with center x̄, and
radius δ̄, obtained in the centering step. In this step we solve the problem

Minimize Q(x) = cx + (1/2)xT Dx

subject to (x− x̄)T (x− x̄) ≤ δ̄2 (3)

This is the problem of minimizing a quadratic function inside a ball for
which efficient polynomial time algorithms exist. Associating the Lagrange
multiplier λ ∈ R1 with the constraint, the KKT optimality conditions for
this problem are

cT + Dx + 2λ(x− x̄)= 0
λ ≥ 0, δ̄2 − (x− x̄)T (x− x̄)≥ 0
λ(δ̄2 − (x− x̄)T (x− x̄))= 0

Since λ ∈ R1, this problem can be solved efficiently (in polynomial
time) using the KKT conditions, see [Conn, Gould and Toint (2000)],
[Ye (1997)] for complete details of this algorithm. The algorithm becomes
simpler when D is positive definite or semidefinite, but even if D is not
positive semidefinite, it can be solved efficiently using the KKT conditions.

Let x̂ be the optimum solution computed for (3). If x̂ is an interior
point of B(x̄, δ̄), or if it is a boundary point of both B(x̄, δ̄) and K, or if
∇Q(x̂) = 0; then x̂ is an optimum solution of (1), terminate.

Otherwise, using x̂− x̄ as the descent direction for Q(x) at x̄, do a line
search to minimize Q(x) on the line segment {x̄ + λ(x̂− x̄) : λ ≥ 0, and λ

such that x̄ + λ(x̂ − x̄) ∈ K}. Let λ1 be the optimum step length for this
line search. If x̄ + λ1(x̂ − x̄) is an interior point of K; then terminate if
∇Q(x) = 0 at this point, otherwise define this point as the output of this
step.
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If however, x̄ + λ1(x̂ − x̄) is a boundary point of K, let I = {i : i-th
constraint in (1) is satisfied as an equation by x̄+λ1(x̂−x̄)}. If the following
system in Lagrange multipliers πI = (πi : i ∈ I)

c + (x̄ + λ1(x̂− x̄))T D −
∑

i∈I πiAi. = 0
πi ≥ 0, for all i ∈ I

(4)

has a feasible solution, then x̄ + λ1(x̂ − x̄) is an optimum solution of (1),
terminate. However, it may not be productive to check if system (4) is
feasible every time this step ends up at this stage. If this operation of
checking the feasibility of (4) is not carried out, or if (4) turns out to be
infeasible, then take the output of this step as x̄+(λ1− ε)(x̂− x̄) where ε is
some preselected positive tolerance for the current point to be an interior
point of K.

3.4 Descent Step Using the Touching Constraints

We will first provide the motivation for this step. Assume that the centering
step is carried out exactly, and suppose B(x̄, δ̄) = {x : (x−x̄)T (x−x̄) ≤ δ̄2}
is the ball with center x̄ and radius δ̄ obtained in the centering step in
this iteration. T (x̄) = {i : Ai.x̄ = bi + δ̄} is the index set of touching
constraints in this iteration, this is the index set of facetal hyperplanes of
K that are touching the ball B(x̄, δ̄) and hence are tangent hyperplanes for
it. Actually T (x̄) is the index set of linear constraints in (2) that are active
at its optimum solution, all other linear constraints in (2) are inactive at its
optimum solution; and the same thing is also true for the problem obtained
by replacing x0 in (2) by x̄. So, (x̄, δ̄) is an optimum solution for (2) when
x0 there is replaced by x̄, i.e., for

Maximize δ

subject to δ −Ai.x ≤ −bi, i = 1, ...,m

Q(x) ≤ Q(x̄)
(5)

It often happens the the index set of touching constraints for the ball ob-
tained from an optimum solution of (5) with Q(x̄) replaced by Q(x̄) − γ

remains the same as T (x̄), for a range of values of γ, say 0 ≤ γ ≤ γ1. In this
range 0 ≤ γ ≤ γ1, let δ(γ) denote the optimum radius of the ball, and x(γ)
the center. Beginning with δ(0) = δ̄, clearly, δ(γ) decreases as γ increases
to γ1. From these facts we see that in the range δ(0) ≥ δ(γ) ≥ δ(γ1), x(γ)
is the optimum solution of

Minimize Q(x)
subject to Ai.x = bi + δ(γ), i ∈ T (x̄)

(6)
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Replacing the parameter δ(γ) by the symbol s, an optimum solution for
(6) can be obtained by solving

cT + Dx−
∑

i∈T (x̄) πiAi. = 0
Ai.x = bi + s, i ∈ T (x̄)

(7)

where πT (x̄) = (πi : i ∈ T (x̄)) is the vector of lagrange multipliers for (6).
If (x(s), πT (x̄(s)) is a solution of (7) as a function of the parameter s, then
x(s) defines a straight line in Rn in terms of the parameter s. The above
argument shows that by carrying out a line search step on this straight
line, we can decrease the value of Q(x) to reach Q(x(γ1)); and any further
decrease in the value of Q(x) below this will lead to an optimal touching
constraint index set for the ball different from T (x̄).

Even when (2) is solved approximately, we may improve the objective
value by carrying out this work with the ball obtained. That is what this
step does.

Denoting the ball obtained in the centering step by the same symbol
B(x̄, δ̄) = {x : (x− x̄)T (x− x̄) ≤ δ̄2}, denote the touching constraint index
set by the same symbol as above T (x̄) = {i : Ai.x̄ = bi + δ̄}. With this
T (x̄), get the solution (x(s), πT (x̄)) for system (7). Then do a line search
to minimize Q(x) over the line segment {x(s) : s such that x(s) ∈ K}.
Suppose s = s1 gives the optimum x(s) in this line search step.

If x(s1) is an interior point of K; then terminate if ∇Q(x) = 0 at this
point, otherwise define this point as the output of this step.

If however, x(s1) is a boundary point of K, let I = {i : i-th constraint in
(1) is satisfied as an equation by x(s1)}. If the following system in Lagrange
multipliers πI = (πi : i ∈ I)

c + x(s1)T D −
∑

i∈I πiAi. = 0
πi ≥ 0 for all i ∈ I

(8)

has a feasible solution, then x(s1) is an optimum solution of (1), terminate.
However, it may not be productive to check if system (8) is feasible every
time this step ends up at this stage. If this operation of checking the
feasibility of (8) is not carried out, or if (8) turns out to be infeasible, then
take the output of this step as a point on the line segment {x(s) : s ∈ R1}
close to x(s1) but in the interior of K.

3.5 The Algorithm

The algorithm consists of repititions of the following iteration beginning
with an initial interior point of K. We will now describe the general itera-
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tion. In each iteration, Steps 2.1 and 2.2 are parallel steps, both of which
begin with the ball obtained in the centering step in the iteration.

A General Iteration

Let x0 be the current interior feasible solution.

1. Centering Strategy: Apply the centering strategy described in
Section 3.2 beginning with the current interior feasble solution. Let B(x̄, δ̄)
denote the ball obtained with center x̄ and radius δ̄. Let T (x̄) = {i : Ai.x̄ =
bi + δ̄} is the index set of touching constraints for this ball.

2.1. Descent Step Using a Descent Direction: Apply this strategy
described in Section 3.3 beginning with the ball B(x̄, δ̄). If termination did
not occur in this step, let x1 denote the interior feasible solution of (1)
which is the output point in this step.

2.2. Descent Step Using the Touching Constraints: Apply this
strategy described in Section 3.4 beginning with the ball B(x̄, δ̄). If termi-
nation did not occur in this step, let x2 denote the interior feasible solution
of (1) which is the output point in this step.

3. Move to Next Iteration: Define the new current interior feasible
solution as the point among x1, x2 obtained in Steps 2.1, 2.2, which gives
the smallest value for Q(x). With it, go to the next iteration.

3.6 Convergence Results

In this section we discuss convergence results on the algorithm under the
assumption that the centering problem is solved to optimality in every
iteration.

Theorem 1: Cosider the following version of (2) with Q(x0) replaced by
a parameter t.

δ[t] = Maximum value of δ

subject to δ −Ai.x ≤ −bi, i = 1, . . . ,m
Q(x) ≤ t

(9)

δ[t] is a concave function of t in the interval of values of t for which the
above problem has a feasible solution.
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Proof. Let tmin, tmax be the minimum and maximum values of Q(x) over
x ∈ K. Let t1, t2 be any pair of values in the interval [tmin, tmax]; and
suppose (x1, δ1), (x2, δ2) are optimum solutions of (9) when t = t1, t2 re-
spectively. Let 0 < α < 1.

Since Q(x) is convex, we have Q(αx1 + (1 − α)x2) ≤ αQ(x1) + (1 −
α)Q(x2) ≤ αt1 +(1−α)t2. From this we verify that (αx1 +(1−α)x2, αδ1 +
(1−α)δ2) is feasible to (9) when t = αt1 + (1−α)t2, but it may not be an
optimum solution of (9).

Therefore the optimum objective value in (9) when t = αt1 + (1−α)t2,
δ[αt1 + (1 − α)t2] ≥ αδ1 + (1 − α)δ2 = αδ[t1] + (1 − α)δ[t2]. This shows
that δ[t] satisfies Jensen’s inequality required for being concave. �

Let P (t) denote the set of feasible solutions of (9). Clearly, for t1 < t2,
we have P (t1) ⊂ P (t2). So, δ[t] decreases monotonically as t decreases; and
since it is concave its slope decreases as t increases.

Theorem 2: The index set of touching constraints for the ball obtained
in the centering step changes after each iteration in the algorithm.

Proof. This follows since the output point in each iteration in the algo-
rithm, is selected as the best among the outputs in Steps 2.1, 2.2 in that
iteration. �

Theorem 3: The algorithm terminates after at most 2m iterations.

Proof. Select an index between 1 to m, say i1. As t is decreasing to tmin,
suppose the index i1 is in the touching constraint index set for the ball
obtained from (9) when t = t1, and drops out of this set when t decreases
from t1. This implies that the system of constraints

δ −Ai1.x = −bi1 ,

δ −Ai.x ≤ −bi, i 6= i1
Q(x) ≤ t

(10)

is feasible when t = t1, and infeasible when t is slightly smaller than t1.
From convexity of Q(x) we know that the set of values of t for which (10)
is feasible is an interval. These facts imply that (10) is infeasible for all
t < t1, i.e., as t decreases below t1, the index i1 can never be in the touching
constraint index set. So, once an index drops out of the touchnig constraint
index set in the algorithm, it can never enter it in a subsequent iteration.
Since the touching constraint index set changes in every iteration, these
facts prove the theorem. �
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Even if the centering step is carried out approximately, these results in-
dicate that if it is carried to good accuracy, the algorithm will have superior
performance.

3.7 The Case When the Matrix D is Not Positive Definite

Relaxing the positive definiteness assumption on the matrix D leads to a
vast number of applications for the model (1). For example, an important
model with many applications is the following 0−1 mixed integer program-
ming (MIP) model:

Minimize cx

subject to Ax ≥ b

x ≥ 0
xj = 0 or 1 for each , j ∈ J

(11)

where J is the subscript set for variables which are required to be binary.
Solving this problem is equivalent to finding the global minimum in the
quadratic program

Minimize cx + M
∑

j∈J xj(1− xj)
subject to Ax ≥ b

xj ≥ 0, for j 6∈ J

0 ≤ xj ≤ 1 for each j ∈ J

(12)

where M is a large positive penalty coefficient; which is in the form (1) with
D negative semidefinite. Unlike the model (1) when D is positive definite,
(12) may have many local minima, and we need to find the global minimum
for (12).

Some of the steps in this algorithm can still be carried out. The ap-
proximate centering procedure can be carried out. Also, Steps 2.1 can be
carried out exactly. For Step 2.2, the system of equations (6) may typically
have a unique solution. Even when (6) has many feasible solutions, a solu-
tion to (7) may not even be a local minimum for (6), in fact it may be a
local maximum for (6). So, the value of including Step 2.2 in the algorithm
is not clear in this case. Also, many of the proofs in Section 3.6 based on
convexity will not be valid in this nonconvex case.

However, since the ball minimization problems in Step 2.1 can be solved
exactly, there is reason to hope that by adjusting the value of the penalty
cost coefficient M during the algorithm, the algorithm can be made to lead
to a good local minimum, and thereby offer a good heuristic approach. For
this general case, these and other issues need to be pursued.
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Abstract

This paper is about the analysis of sets of constraints, with no further assump-
tions. We explore the relationship between the minimal representation problem
and a certain set covering problem of Boneh. This provides a framework that
shows the connection between minimal representations, irreducible infeasible sys-
tems, minimal infeasibility sets, as well as other attributes of the preprocessing
of mathematical programs. The framework facilitates the development of pre-
processing algorithms for a variety of mathematical programs. As some such
algorithms require random sampling, we present results to identify those sets of
constraints for which all information can be sampled with nonzero probability.
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4.1 Introduction

We consider an indexed family {Ai, Bi} of partitions of an abstract space

X . We think of Ai as the set of points satisfied by the ith constraint of an

optimization problem, and Bi = Ac
i , the set of those that violate it. For

example we could be given a family of constraint functions gi on X and

Ai = {x ∈ X : gi(x) ≤ 0} and Bi = {x ∈ X : gi(x) > 0}. In general, the

function gi = δi, defined by

δi(x) =

{

0, x ∈ Ai

1, x ∈ Bi;
(4.1)

namely, the indicator (or characteristic) function of Bi, could serve as such

a constraint function. Often, in applications, the Ai will be closed sets.

The feasible set for the family {Ai, Bi}i∈I is given by Z(I) =
⋂

i∈I Ai.

This may, or may not, be empty. If it is empty, we will say that the family is

infeasible; otherwise, feasible. In either case, we are interested in subsets

J of I such that Z(J) = Z(I). In this situation, we call J a reduction

of I and the family {Ai, Bi}i∈J , a reduction of {Ai, Bi}i∈I . The family

{Ai, Bi}i∈J is irreducible if J ⊆ I and there is no proper reduction J ′ of

J .

In the feasible case (Z(I) 6= ∅), the search for such subsets J is equiva-

lent to the detection of redundancy, one aspect of preprocessing. For linear

programs, the importance of preprocessing has been established, for ex-

ample, by [Karwan et al. (1983)], [Andersen and Andersen (1995)], [Bixby

(1994)], and [Lustig et al. (1994)]. Descriptions of deterministic methods

to detect redundancy can be found in [Brearly et al. (1975)], [Tomlin and

Welch (1986)], [Karwan et al. (1983)], [Greenberg (1996)], and [Caron et al.

(1989)]. Probabilistic methods are described in [Boneh (1983)], [Berbee

et al. (1987)] and [Caron et al. (1990)].

In the case of infeasible (Z(I) = ∅) linear programs, the search for

reductions J is equivalent to the search for irreducible infeasible systems

(IIS’s). The paper by [Chinneck and Dravnieks (1991)] describes the pow-

erful IIS algorithms that are available in many professional linear program-

ming codes. Related to the problem of finding an IIS is that of finding

a minimal infeasibility set (MIS), that is, a set J of minimum cardinality

such that Z(I \ J) 6= ∅. [Chakravarti (1994)] showed that finding an MIS

is NP-hard.

According to [Caron (2001)], very little attention has been paid to non-

linear constraint sets. Some exceptions are in [Obuchowska and Caron
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(1995)], [Jibrin (2002)], and [Obuchowska (2000)], for quadratic, positive

semidefinite, and convex programming problems, respectively. The growing

importance of more general mathematical programs to very large scale en-

gineering design problems, among others, together with strong evidence of

the importance of presolve and infeasibility analysis for linear programmes,

indicates the need for this deficiency to be corrected. This paper is such a

contribution.

In 1984, [Boneh (1984)] introduced and exploited an equivalence be-

tween the minimal representation problem and a set covering problem to

develop a tool for detecting and removing redundant constraints. His im-

plementation involved a random sampling of points x in X each of which

created a row δ(x) in a set covering matrix. With the introduction of an

objective function this becomes a set covering problem. Boneh showed that

while any feasible solution gives a reduction, an optimal solution produces

an irreducible reduction. As the set covering problem is NP-hard, polyno-

mial time heuristics were suggested to find near-optimal reductions.

This paper develops Boneh’s equivalence further. Our initial contri-

bution, in Section 4.2, is a new presentation of the concepts, making, we

believe, the correspondence between sets of constraints and set covering

problems, and the proof of key results, more transparent and shorter. It

also becomes clear that the equivalence holds regardless of feasibility, yield-

ing the first theoretical framework to address minimal representations, IIS’s

and MIS’s without a priori knowledge of feasibility.

4.2 The Set Covering Formulation

Consider the feasible set Z(I). Since, for each i, Ai = Bc
i , the complement

of Z(I), the set of infeasible points, is

Z(I)c =
⋃

i∈I

Bi.

Thus, {Bi : i ∈ I} is a cover of Z(I)c and a reduction J of I defining Z(I)

amounts to a reduction of the cover, in that {Bi : i ∈ J} also covers Z(I)c:
⋃

i∈J

Bi ⊃ Z(I)c. (4.2)

This inclusion characterizing reduction tells us that each infeasible point is

in some Bi, i ∈ J and thus violates some constraint in the reduction J .

Applied to irreducible reductions, this is the content of “The Main Theo-

rem” of [Boneh (1984)]. In informal speech, when an irreducible reduction
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J is found, the constraints indexed by J are called necessary or non-

redundant, and the others redundant. An irreducible reduction is not

unique, but:

Theorem 1. [Boneh (1984)] For each infeasible point x, some constraint

violated by x must be necessary in each irreducible set of constraints.

We emphasize that, as noted, this is actually true for every reduction,

even if it is not irreducible, since in practice it is usually not possible to

obtain a truly irreducible one.

Corollary 2. If x violates only one constraint, that constraint is necessary

in each reduction.

Let’s gather the indicator functions δi defined above, into one “binary

word valued” indicator function δ = δI = (δi)i∈I , mapping X to {0, 1}I .

Its sets of constancy, in other words, the equivalence classes

[x] = δ−1(δ(x)) = {y : δ(y) = δ(x)},

partition X . The resulting partition P = PI is the coarsest partition finer

than each of the {Ai, Bi} and

[x] =





⋂

i:δi(x)=0

Ai





⋂





⋂

i:δi(x)=1

Bi



 .

Since each class in P is determined by an element δ(x) ∈ {0, 1}I , an

upper bound on the cardinality of P is 2|I|. At times we will refer to

δ(x) as the word or observation associated with the point x. Since Z(I) =
⋂

i∈I Ai = δ−1(0), the zero set of δ, it is also one of the classes in P .

We extend these notions to subfamilies {Ai, Bi}i∈J of the original family

{Ai, Bi}i∈I . Thus, δJ is the function on X with values in {0, 1}J whose ith

component is δi, for each i ∈ J ; in other words, δJ is the composition of δ

with the projection of {0, 1}I onto {0, 1}J . We see that the partition PJ

induced by δJ is coarser than that of δI .

Theorem 3. Let y = 1J ∈ {0, 1}I. Then, J is a reduction of I if and only

if δ(x) · y ≥ 1 for all x with δ(x) 6= 0.

Proof. We have done all the work in setting up the notation. In terms

of the indicator functions, the inclusion (4.2) says J is a reduction of I if

and only if δI(x) 6= 0 implies δJ(x) 6= 0 and this latter holds if and only if

δ(x)· 1J ≥ 1. �
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Thus, one can find an irreducible reduction of I by solving the set covering

problem

minimize |y| =
∑

i∈I yi

subject to δ(x) · y ≥ 1, for all x with δ(x) 6= 0.

It is convenient to let E be the set of all possible words δ(x) other than

0, and think of it as a matrix whose rows are indexed by the infeasible

equivalence classes (elements of the partition P). Then this becomes a

standard set-covering (SC) problem

minimize |y| = 1>y

subject to Ey ≥ 1, y binary,
(4.3)

where 1 is a vector of ones of appropriate dimension.

In the case of linear programs, the corresponding SC problem can be

solved in linear time. (This can be achieved by carefully applying Corollary

2.) This is not the case for more general problems. Fortunately, since any

feasible y in the SC problem (4.3) corresponds to a reduction, one needn’t

actually find an optimal solution to obtain a benefit, and heuristics, such

as the greedy algorithm in [Chvatal (1979)], can produce excellent results.

The partition P , represented by the complete matrix E, provides a

common framework for the concepts of minimal representation, irreducible

infeasible system, and minimal infeasibility set. Suppose that we have a

optimal solution to the set covering problem with corresponding irreducible

reduction J . If the family is feasible, J provides a minimal representation.

If the family is infeasible, J provides an irreducible infeasible system and

the word with smallest row sum indicates a minimal infeasibility set. Thus,

the concepts need no longer be treated separately.

Concerning the matrix E, we notice that:

(1) If columns k and ` in E are identical, then constraints k and ` are

duplicate.

(2) If columns k and ` in E are complementary, then constraints k and `

are opposite, i.e., Ak = B`.

(3) If column k is a column of zeros, then constraint k is everywhere satis-

fied.

(4) If column k is a column of ones, then constraint k is everywhere vio-

lated.

This next observation was suggested by A. Boneh in private conver-

sation with the first author, and appeared in the master’s major paper

[Krishnamurthy (2001)] supervised by the authors.
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Lemma 4. If E contains
(

|I|
m

)

rows with row sum m, then any reduction J

of I has at least (|I | − m + 1) elements.

Proof. Note that
(

|I|
m

)

is the number of possible rows of row sum m. If

J is a subset of I with fewer than |I | − m + 1 elements, its complement in

I contains a set K of m elements, which provides a row e = 1>
K of E with

e · 1J = 0, so that E1J ≥ 1 is not satisfied. �

The same argument can be applied to subsets I0 of I . Thus, if I0 has k

elements and there are
(

k
m

)

rows with exactly m non-zero entries in I0,

then k +m− 1 of the constraints in I0 are necessary. In practice, it may be

difficult to use this version, because it would require searching through too

many submatrices. If m = 1, it would be easy for we could simply take I0

to be the set of all i corresponding to row sum 1, but this is already covered

by Corollary 2. If m is 2, then this version would say that all but 1 of the

members of I0 are necessary.

Reducing the Set Covering Matrix. By a reduction of the set covering

matrix E, we mean a subset F of E such that, for “column” binary words

y, Fy ≥ 1 implies Ey ≥ 1. Clearly, the set covering problem obtained from

the original by replacing E by F has the same feasible solutions, hence the

same optimal solutions. The bitwise partial ordering on {0, 1}I , e ≤ f ,

is given by e ≤ f if ei ≤ fi, for all i ∈ I .

Lemma 5. For F ⊆ E ⊆ {0, 1}I, F is a reduction of E (as a set covering

matrix) iff for every e ∈ E, there exists f ∈ F , with f ≤ e.

Proof. If the condition holds, then for each e ∈ E, we can choose f with

e ≥ f , and then for each y, ey ≥ fy ≥ 1.

Conversely, suppose F is a reduction of E, but the condition is not

satisfied; say, e ∈ E, but there is no f ∈ F with e ≥ f . Then, for each

f ∈ F , we may choose j = jf with 1 = fj > ej = 0. Let J = {jf : f ∈ F}

and y = 1J . Then Fy ≥ 1, but ey = 0, a contradiction. �

Thus, E is irreducible (that is, has no proper reduction) if and only if

no two elements are comparable. This is not to say that, if E corresponds

to the family of constraints {Ai : i ∈ I}, the latter is irreducible.
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4.3 Random Sampling

One way of collecting the elements of E is by sampling points x ∈ X and

calculating the corresponding δ(x).

Boneh’s example. In [Boneh (1984)] the author presented a seemingly

straightforward example to demonstrate his SC method. In a 1985 pri-

vate communication, McDonald and Caron pointed out that a failure to

sample on classes (members of the partion P) of measure zero caused rows

of E to be overlooked and led to incorrect conclusions. The 1999 Master’s

thesis by Feng [Feng (1999)], co-supervised by the authors, presented the

first theoretical results aimed at the identification of a class of problems for

which all classes can be sampled with nonzero probability. In the present

paper, we provide a refined theorem and proof.

The support of a Borel measure is the complement of largest open

set of zero measure. (See for example [Rao (2004)].) For a probability

distribution on the Borel sets of a metric subspace of Rn, this amounts to

the smallest closed set of probability 1 (equivalently the set of points, each

of whose neighbourhoods have positive probability — see [Chung (1974)],

page 31.) We say the distribution P is supported on X if the support of

P is X . Thus, if the distribution P is supported on X and a ∈ X , then

every neighbourhood of a will intersect X in a set of positive probability.

For example, X could be an interval (box) of Rn with non-empty interior

and the distribution could be uniform on X or (the restriction to X of) a

multivariate normal distribution. More generally, if X is a metric subspace

of Rn and P has a continuous density f , with (f > 0) dense in X , then P

is supported on X .

Theorem 6. Suppose that each Ai is given by (gi ≤ 0) = {x ∈ X : gi(x) ≤

0} where the gi are continuous functions. For each J ⊆ I, put gJ(x) =

maxj∈J gj(x). If 0 is not a local minimum of any gJ , then each non-zero

value of δ will be sampled with non-zero probability under any distribution

supported on X.

Proof. For a given x ∈ X , let J be the set of indices j with gj(x) = 0.

Then the equivalence class [x] is Z(J) ∩ U(J c), where Z(J) =
⋂

j∈J Aj =

(gJ ≤ 0) and U(Jc) =
⋂

j∈Jc Bj , is an open set. If 0 is not a local minimizer,

then the open set (gJ < 0) contains a point a of [x]. Thus, the open set

(gJ < 0) ∩ U(Jc) is a neighbourhood of a, hence intersects X in a set of

positive probability. �
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In Boneh’s example, mentioned above, the hypotheses of Theorem 6

are not satisfied, since there is a local minimum of 0 for some gJ . The

next result gives conditions under which the hypotheses of the theorem are

satisfied.

A constraint (gi ≤ 0) is said to be an implicit equality if there is a

subset J of I with Z(J) 6= ∅ such that gi = 0 on Z(J). (The definition

here is modified from that in [Obuchowska and Caron (1995)] to take into

account the possibility of an infeasible family of constraints. The original

concept was introduced by [Telgen (1983)].)

Corollary 7. If the constraint functions are convex and there are no im-

plicit equalities, all non-zero values of δ are chosen with positive probability

under any distribution supported on X.

Proof. In case all the functions gj are convex, so are the gJ . The ex-

istence of a local minimum 0 would give a global minimum 0 and hence,

gJ = 0 on Z(J), which means the constraints gj , j ∈ J induce implicit

equalities: on Z(J), all gi are 0. Thus, if there are no implicit equalities,

0 is not a local minimum for any gJ , and the theorem applies. �

We illustrate these ideas with families of (non-linear) convex quadratic

constraints in 2 variables. Here X is an interval [0, 10] × [0, 10], the Ai

are the intersections with X of elliptical regions with non-empty interior.

Points are selected uniformly in X and the corresponding observations δ(x)

are calculated. The distinct values of δ(x) are put into a set E and treated

as the set covering matrix, although some rows may be missing. (Since

the constraint functions are strictly convex, there can be no implicit equal-

ities; hence, according to Corollary 7, each region will be sampled with

positive probability.) Figure 1 shows an infeasible family of constraints,

a plot of 1000 random points, the corresponding matrix E, and beside it

an irreducible reduction, from which we see that irreducible reductions of

the original problem are given by {2, 7} and {3, 7}. Since the family is

infeasible, these are Irreducible Infeasiblity Sets. The figure itself indicates

that these results are probably correct. Chvatal’s algorithm applied to this

E yielded the reduction {2, 7}. Figure 2 shows a feasible family, its cor-

responding E and its (unique) corresponding irreducible reduction, which

consists of only words with a single bit 1. This determines the minimal rep-

resentation {1, 2, 3, 5, 6}. Note, by the way, that constraint 7 here turned

out to be the entire interval X , so was always satisfied. This is reflected in

the column of 0’s in the matrix E.
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Figure 1: Infeasible family: IIS given by {2, 7} or {3, 7}.

Hit-and-Run variations. In [Boneh and Golan (1979)] a “hit-and-run” al-

gorithm was introduced for the identification of redundancy and feasible

region boundedness. This led to the development of a family of variations

of the method ([Boneh (1983); Smith (1984); Telgen (1979); Berbee et al.

(1987); Bélisle et al. (1998, 1993)]). Consider an absolutely continuous dis-

tribution π on an open set G of Rn, with an almost-everywhere continuous

Lebesgue density f , positive on G. Let ν be a distribution on the unit

sphere of Rn. Define a discrete time Markov chain by taking as transition

kernel P (x, B) the result of first choosing a direction s according to the

distribution ν and then choosing a point according to the distribution π

conditioned1 on the line L(x, s) through x in the direction s. In [Bélisle

et al. (1993)] it is shown that if the support of ν spans Rn and if connected

components ν-communicate (in particular if G is connected), then the chain

1Since L = L(x, s) has measure 0, this requires interpretation. One takes f1L (normal-
ized) as density with respect to 1 dimensional measure on L.
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Figure 2: Feasible family: constraints 1, 2, 3, 5, 6 are necessary.

converges in total variation to π. In particular, if the support of ν spans

Rn and P (x, B) comes from choosing a direction s according to ν, then

a point from the uniform distibution on the intersection of L(x, s) with a

bounded open connected set G, specifically,

P (x, B) =

∫

λ
1(B ∩ L(x, G))

λ
1(G ∩ L(x, s))

ν(ds),

then the Markov chain converges in total variation to uniform distribu-

tion on G. Here λ
1 denotes 1 dimensional Lebesgue (actually Hausdorff)

measure in Rn.

In application, if the space X is a subset of Rn whose interior is con-

nected and whose boundary has measure 0, the analogous results would
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hold for X . Note that one only needs the support of ν to span Rn, so

one can simply use the uniform distribution on the n positive coordinate

directions. This is the CD version of the Hit-and-run methods.

Once one decides to generate points along straight lines, L(x, s), one

can introduce modifications that have further advantages. For example,

instead of just looking at the observation δ(x), one can collect many - in

special cases all possible - observations along that line and easily retain

an equivalent irreducible set of them. To illustrate, suppose X is convex

and the Aj are of the form (gj ≤ 0) with the gj strictly convex, so that

the Aj ∩ L(x, s) are completely determined by the solutions of the form

x + σs to gj = 0. Say these solutions are ai = x + σis, with σi ≤ σi+1, for

1 ≤ i < N , gji
(ai) = 0. Each index ji will appear at most twice because of

the convexity and as the parameter σ crosses σi, the jth
i bit of δ(x+σ) will

change from 1 to 0 or from 0 to 1. Thus, we can determine all the possible

observations along that line.

This sets us up to use the following result, which enables one to select

an equivalent irreducible set from the set of all observations collected along

the line.

Theorem 8. Let E be a set {e1, . . . , eN} of binary words in {0, 1}J . Sup-

pose

(1) for each i < N , either ei < ei+1 or ei > ei+1 and

(2) for each j there do not exist i < k < ` with eij = 0, ekj = 1, and

e`j = 0.

Let E′ = {ei : i ∈ I ′} be the set of local minima of E in the partial ordering

≤. Thus, if 1 < i < N , i ∈ I ′ if and only if ei−1 > ei < ei+1, with the

obvious modification for the cases i = 1 and i = N . Then, E ′ is a reduction

of E for the set covering problem, and E ′ consists of incomparable words.

Condition (1) here is satisfied if there exists a unique j with ei+1,j 6= eij .

Proof. To prove no two elements of E ′ are comparable, let i, k ∈ I ′, with

i < k. By the local minimality, ei < ei+1 and ek−1 > ek. Choose j so that

eij < ei+1,j and j′ so that ek−1,j′ > ek,j′ . By condition (2) eij < ekj and

eij′ > ekj′ . Thus, neither ei ≥ ek, nor ei ≤ ek.

To show E′ is a reduction of E, suppose e` ∈ E \ E′. Then, either

e` > e`+1 or e` > e`−1. In the first case, let i be the largest index ≥ ` + 1

with ei−1 > ei. Then, e` > ei and ei ∈ E′. The case e` > e`−1 is similar.�
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In conclusion, we would like to remind the reader, that although our

illustrations here emphasized convex constraints, the framework is com-

pletely general: the sets Ai, Bi need not have any special geometric or

topological properties.
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Abstract

Most research on algorithms for combinatorial optimization use the costs of the
elements in the ground set for making decisions about the solutions that the
algorithms would output. For traveling salesman problems, this implies that al-
gorithms generally use arc lengths to decide on whether an arc is included in
a partial solution or not. In this paper we study the effect of using element
tolerances for making these decisions. We choose the traveling salesman prob-
lem as a model combinatorial optimization problem and propose several greedy
algorithms for it based on tolerances. We report extensive computational experi-
ments on benchmark instances that clearly demonstrate that our tolerance-based
algorithms outperform their weight-based counterpart. This indicates that the
potential for using tolerance-based algorithms for various optimization problems
is high and motivates further investigation of the approach.

Key Words: Traveling salesman problems, greedy algorithms, arc tolerances
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5.1 Introduction

In this paper we propose several algorithms for the traveling salesman prob-
lem (TSP). In a TSP instance of size n, we are given a weighted complete
digraph D = (V,A, C) where V is the set of n vertices, A the set of arcs
between vertices in V , and C = [c(i, j)] is the n×n-matrix of non-negative
arc weights, and we are required to find a Hamilton cycle (called a tour)
such that the sum of the weights of the arcs in the tour is as small as possi-
ble. A TSP instance is called a symmetric TSP (STSP) instance if for each
pair of vertices i and j, c(i, j) = c(j, i); and an asymmetric TSP (ATSP)
instance otherwise. Also, a TSP instance is defined by the weight matrix
C.

Most algorithms for solving the TSP make use of the arc weights to
decide whether or not to include an arc in the solution that they finally
output. For example, the weight-based greedy algorithm and its variations
are popular heuristics to produce initial tours for local search and other
improvement heuristics (see, e.g., [Gamboa et al. (2006)]). However, as
pointed out in [Goldengorin et al. (2004)] and [Turkensteen (2005)], arc
tolerances are better indicators than arc weights for generating good tours.

An arc tolerance (see e.g., [Goldengorin et al. (2006)], [Goldengorin
and Sierksma (2003)], [Libura (1991)]) is the maximum amount by which
the weight of the arc that is in (not in) an optimal tour can be increased
(respectively, decreased) while keeping other arc weights unchanged for
the tour to remain optimal. Among currently known algorithms for the
TSP, only Helsgaun’s version of the Lin-Kernighan heuristic for the STSP
(see [Helsgaun (2000)]) explicitly applies tolerances in algorithm design.
Implicit applications of tolerances in algorithm design are found in the
Vogel’s method for the Transportation Problem and in the MAX-REGRET
heuristic for solving the Three-Index Assignment Problem (see [Balas and
Saltzman (1991)]).

To the best of our knowledge the concept of tolerances has not been ap-
plied to the design of greedy algorithms for the TSP prior to this paper. Our
aim is to motivate research on the use of tolerances for decision making in
fast TSP heuristics. The algorithms that we propose may therefore not be
the best of breed, but they demonstrate the superiority of tolerance-based
algorithms over their arc-weights counterparts. Our results thus indicate a
high potential of tolerance-based algorithms for various optimization prob-
lems and motivate further investigation of the approach.

In the next section, we develop concepts that will help us to describe
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the algorithms that we introduce for the TSP in Section 5.3. Our tolerance-
based greedy algorithms are described in Section 5.3. We report computa-
tional experience with our greedy algorithms in Section 5.4. We conclude
the paper in Section 5.5 with a summary of our main contributions and
suggestions for future research.

5.2 Some Relevant Concepts

5.2.1 The Relaxed Assignment Problem

The Assignment Problem (AP) is a well-known relaxation of the TSP, which
is used more often for the ATSP than for the STSP. Let D = (V,A, C) be
a bipartite digraph with bipartition V = V1 ∪ V2, |V1| = |V2| = n, and
such that A = V1 × V2. The AP is defined as the problem to find n arcs
(si, ti), 1 ≤ i ≤ n of minimum total weight such that si 6= sj and ti 6= tj for
every 1 ≤ i 6= j ≤ n, i.e., the AP is the problem to find a minimum weight
perfect matching. Notice that if V1 and V2 are two copies of the vertex set
of an TSP instance, where the arc weights of the bipartite directed graph
correspond to the arc weights of the TSP and the arc weight of a vertex and
its copy is set to∞, then the AP solution can be interpreted as a collection
of cycles (called subtours) for the instance.

An integer programming formulation of the AP on an ATSP instance
defined on a complete digraph G = (V,A, C) (where |V | = n, and C =
[c(i, j)]) using variables xij , i, j ∈ V such that xij = 1 when (i, j) is included
in the solution and 0 otherwise, is given below.

Minimize
n∑

i=1

n∑
j=1

c(i, j)xij

Subject to
n∑

j=1

xij = 1 i ∈ {1, . . . , n} (5.1)

n∑
i=1

xij = 1 j ∈ {1, . . . , n} (5.2)

xij ∈ {0, 1} i, j ∈ {1, . . . , n}

The Relaxed Assignment Problem (RAP) is a relaxation of the AP in
which constraint set (5.2) is removed from the earlier formulation. Thus,
instead of an one-to-one matching in case of the AP, in the RAP the first
copy of V maps into the second copy of V . Note that a solution to the
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RAP may not consist exclusively of cycles.

5.2.2 Determining Tolerances for AP and RAP

Extending the informal definition of tolerances in the introductory section,
the upper (lower) tolerance of an arc that is included in (respectively, ex-
cluded from) an optimal solution to the AP is the maximum amount by
which the weight of the arc can be increased (respectively, reduced) while
keeping other arc weights unchanged, such that the current optimal solu-
tion to the AP remains optimal. Tolerances for arcs of the RAP can be
defined analogously.

Computing arc tolerances for the AP involves revising the arc weight
to a suitably high value if the arc is a part of the optimal solution, and a
suitably low value if it is not (see [Goldengorin et al. (2006)]), and re-solving
the AP. The AP can be solved in O(n3) time, and using a shortest path
based approach, all arc tolerances can also be computed in O(n3) time (see
[Volgenant (2006)]).

Computing arc tolerances for the RAP, on the other hand, is a more
tractable problem. An optimal solution to the RAP can be characterized
as a collection of arcs, one from each vertex in the graph, such that the
weight of the arc is the smallest among those of all arcs from that vertex.
Therefore, for each arc that belongs to an optimal solution to the RAP, its
upper tolerance is the excess of the weight of the second smallest weight
out-arc from the same vertex over the weight of that arc. If the arc is
not in an optimal solution, then its lower tolerance would be the excess
of the weight of the arc over that of the smallest weight out-arc from the
same vertex. Obtaining all tolerances therefore requires finding the weights
of the two least weight entries in each row of the cost matrix, and then
performing a simple subtraction operation once for each arc. Both jobs can
be achieved in O(n2) time so that the overall complexity of determining all
arc tolerances for the RAP is O(n2) time.

5.2.3 The Contraction Procedure and a Greedy Algorithm

The (path) contraction procedure (see, e.g., [Glover et al. (2001)]) is a
method of updating a digraph once a directed path is removed from it
and replaced by a single vertex. Consider a digraph D = (V,A, C) with
C = [c(i, j)] and a directed path P = v1v2 · · · vk in it. The contraction
procedure for marking the path (and replacing it by a vertex p) replaces D
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by a digraph Dp. The vertex set of Dp is Vp = V ∪ {p}− {v1, . . . , vk}. The
arc set of Dp includes all arcs (i, j) from D where i, j /∈ P . In addition for all
vertices i in Vp except p, it introduces and includes arcs (i, p) with weight
c(i, v1) and (p, i) with weight c(vk, i) (where c, i, v1, and vk are defined
for digraph D). In this paper we only need a special case of the path
contraction procedure, namely contracting only a single arc (say a) from a
digraph D. We use a shorthand notation CP (a,D) for this procedure.

Given the contraction procedure, a generic greedy algorithm can be
defined as follows:

A generic greedy algorithm
Input: A weighted complete digraph D = (V,A, C).
Output: A tour T .
Step 1: G← D, T ← ∅.
Step 2: While G consists of at least three vertices, using a suitable myopic

procedure, choose an arc (say a = (u, v)), that does not create a
cycle, to include in the tour.
(For example, if arcs (1,2) and (2,3) are already contracted, the
contraction of (3,1) would create a cycle.)
Set T ← T ∪ {a}, G← CP (a,G).

Step 3: Set T ← T ∪ {(v1, v2), (v2, v1)} and output T .

This algorithm is generic since the myopic arc selection procedure used
in Step 2 has not been defined. Typically greedy algorithms employ myopic
procedures based on arc weights, choosing the least weight arc as the one
to contract. Therefore, as a benchmark for tolerance-based algorithms that
we present in the next section, we define the following variant.

W-GREEDY algorithm: At each iteration of the generic greedy algo-
rithm, in Step 2, the myopic procedure chooses the least weight
arc. This arc is chosen for contraction (i.e., inclusion in the tour).

5.3 Tolerance-based Greedy Algorithms

Since exploratory computations (see, e.g., [Turkensteen (2005)]) show that,
given an optimal AP solution to an TSP instance, the ‘probability’ of the
arc with the largest upper tolerance for the AP solution being in an optimal
TSP solution is much higher than the ‘probability’ of the smallest weight
arc being in an optimal TSP solution, it is interesting to create myopic pro-
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cedures for the generic greedy algorithm developed in Section 5.2.3 which
use tolerances instead of arc weights to choose arcs. In this section, we
introduce the following three variants of such myopic procedures, leading
to three greedy algorithms.

R-R-GREEDY algorithm: At Step 2 of each iteration of the generic
greedy algorithm, the myopic procedure generates an optimal RAP
solution on the digraph. Then the upper tolerances of each arc
included in the solution are generated. The arc in the optimal RAP
solution with the largest upper tolerance is chosen for contraction
(i.e., inclusion in the tour).

A-R-GREEDY algorithm: At each iteration, the myopic procedure
generates an optimal AP solution and an optimal RAP solution
on the digraph. For each arc in the AP solution and in the RAP
solution, the upper tolerance (w.r.t. the RAP) is computed, and for
each arc in the AP solution but not in the RAP solution, the lower
tolerance (w.r.t. the RAP) is computed, and multiplied with −1.
The values thus obtained are sorted, and the arc with the largest
value is chosen for contraction.

The relaxation of constraint set (5.2) in the formulation of AP to generate
RAP was arbitrary. One could easily come up with another relaxation of
the AP (let us call it RAP1) in which constraint set (5.1) is relaxed instead
of the set (5.2). The third algorithm implements a myopic procedure that
uses both the RAP and RAP1 relaxations.

A-RC-GREEDY algorithm: Optimal solutions are generated for AP as
well as for RAP and RAP1. The myopic procedure described in
the A-R-GREEDY algorithm is carried out twice, once with the
optimal solutions to AP and RAP, and the second time with the
optimal solutions to AP and RAP1. In the second case, the tol-
erances are computed with respect to the RAP1 relaxation. Of
the two candidates that emerge from the two procedures, the one
which has a larger value is chosen for contraction.

Note that for A-R-GREEDY and A-RC-GREEDY we only approximate
the upper tolerances for the AP. The reason is, that in practice, solving
an AP in O(n3) time by the Hungarian algorithm and then computing
approximate tolerances in O(n2) time is much faster than using the Hun-
garian algorithm and then Volgenant’s method (see [Volgenant (2006)]) for



November 14, 2007 10:43 World Scientific Book - 9in x 6in ch5Tol˙Algosrevfin

Tolerance-based Algorithms for the Traveling Salesman Problem 53

exactly computing the tolerances in O(n3), even though both methods have
an overall O(n3) time complexity.

The greedy algorithms described above can be speeded up considerably
using book-keeping techniques. For example, in R-R-GREEDY, if in an it-
eration, the end vertex of the contracted arc does not contain a smallest or
a second smallest weight arc from any of the vertices, then in the next iter-
ation, both the RAP solution and the upper tolerances remain unchanged.
Even otherwise, the changes in the RAP solution and upper tolerance at
the next iteration involve only those vertices from which the smallest or
second smallest weight arcs were directed to the end vertex of the con-
tracted arc in the previous iteration. Furthermore, in the A-R-GREEDY
and A-RC-GREEDY algorithms, if the arc contracted does not belong to
a subtour with two arcs only, the optimal AP solution before and after the
contraction operation differ only by the arc contracted.

Our extensive computational experiments with the W-GREEDY and
R-R-GREEDY applied to a wide set of the AP instances with n ≥ 100 (see
[Dell’Amico and Toth (2000)] for a description of the instances) show that
the quality of R-R-GREEDY solutions is at least 10 times better than the
quality of W-GREEDY solutions and these results are further supported
by domination analysis. The domination number of a heuristic H for a
combinatorial optimization problem P is the maximum number of solu-
tions that are not better than the solution found by H for any instance
of size n. The domination number of W-GREEDY for the AP equals 1
[Gutin and Yeo (2005)], i.e., for every n there are instances of AP for which
W-GREEDY finds the unique worst solution. It can be shown that the
domination number of R-R-GREEDY for the AP is exponential.

In the next section, we compare the three tolerance-based greedy al-
gorithms introduced in this section with each other on benchmark TSP
instances using the W-GREEDY algorithm to calibrate the algorithms.
Since the performance of the W-GREEDY algorithm has been compared
with other well-known algorithms for the TSP (see, e.g., [Glover et al.
(2001)]), the next section also provides an indirect comparison of the three
algorithms proposed here with those algorithms.

5.4 Computational Experience

The four greedy algorithms mentioned in the paper were implemented in
order to observe their performance on benchmark instances of the TSP.
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The implementations were done in C under Linux on a GenuineIntel Intel R©
XeonTM 3.2GHz machine with 4 GB RAM. In our implementations we use
the Jonker and Volgenant’s (see [Jonker and Volgenant (1987)]) code for
solving the AP.

Out of the four algorithms, only the W-GREEDY algorithm is known in
the literature (see the GR algorithm in [Glover et al. (2001)] and [Gutin et
al. (2002b)]). Therefore, we report our computational results using W-
GREEDY as a base. Assume that for a particular TSP instance, W-
GREEDY finds a tour of length LW and in TW time, while another al-
gorithm A takes execution time TA, and finds a tour of length LA. Then
for that instance we define the solution quality parameter qA and time
parameter τA for A as

qA =
LA − L?

LW − L?
× 100 τA =

TA × 100
TW

Clearly, the smaller the values of qA and τA the better the algorithm. We
tested the algorithms on nine classes of instances. Classes 1 through 7 were
taken from [Glover et al. (2001)], Class 8 is the class of GYZ instances
introduced in [Gutin et al. (2002b)] for which the domination number of
the W-GREEDY algorithm for the ATSP is 1 (see Theorem 2.1 in [Gutin et
al. (2002b)]) and Class 9 is the amalgamation of several classes of instances
from [Johnson et al. (2002)]. The nine classes are described below.

Class 1: All asymmetric instances from TSPLIB [Reinelt (1991)] (26 in-
stances).

Class 2: All symmetric instances from TSPLIB [Reinelt (1991)] with less
than 3000 vertices (99 instances).

Class 3: Asymmetric instances with c(i, j) randomly and uniformly chosen
from {0, 1, · · · , 100000} for i 6= j. 10 instances are generated for
dimensions 100, 200, · · · , 1000 and three instances for dimensions
1100, 1200, · · · , 3000 (160 instances).

Class 4: Asymmetric instances with c(i, j) randomly and uniformly chosen
from {0, 1, · · · , i · j} for i 6= j. 10 instances are generated for
dimensions 100, 200, · · · , 1000 and three instances for dimensions
1100, 1200, · · · , 3000 (160 instances).

Class 5: Symmetric instances with c(i, j) randomly and uniformly chosen
from {0, 1, · · · , 100000} for i < j. 10 instances are generated for
dimensions 100, 200, · · · , 1000 and three instances for dimensions
1100, 1200, · · · , 3000 (160 instances).
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Class 6: Symmetric instances with c(i, j) randomly and uniformly chosen
from {0, 1, · · · , i · j} for i < j. 10 instances are generated for
dimensions 100, 200, · · · , 1000 and three instances for dimensions
1100, 1200, · · · , 3000 (160 instances).

Class 7: Sloped plane instances with given xi, xj , yi, yj randomly and
uniformly chosen from {0, 1, · · · , i · j} for i 6= j and c(i, j) =√

(xi − xj)2 + (yi − yj)2 −max{0, yi− yj}+2 ·max{0, yj − yi} for
i 6= j. 10 instances are generated for dimensions 100, 200, · · · , 1000
and three instances for dimensions 1100, 1200, · · · , 3000 (160 in-
stances).

Class 8: GYZ instances (see Theorem 2.1 in [Gutin et al. (2002b)]) in
which the arc weights c(i, j) are defined as

c(i, j) =


n3 for i = n, j = 1;
in for j = i + 1, i = 1, 2, . . . , n− 1;
n2 − 1 for i = 3, 4, . . . , n− 1; j = 1;
n min{i, j}+ 1 otherwise.

One instance is generated for each n = 5, 10, · · · , 1000 (200 in-
stances).

Class 9: There are 12 problem generators from Johnson et al. [Johnson
et al. (2002)], called tmat, amat, shop, disc, super, crane, coin,
stilt, rtilt, rect, smat, and tsmat. Each of these generators yields
24 instances, 10 of dimensions 100, 10 of dimension 316, three of
dimension 1000, and one of dimension 3162 (288 instances).

Note that for Classes 1 and 2 we use as L? the known optima (see
[Reinelt (1991)]), for the symmetric and almost-symmetric Classes 3, 4, 7,
and 8 the AP lower bound and for the asymmetric Classes 5, 6, and 9 the
HK (Held-Karp) lower bound ([Held and Karp (1970)]).

It is clear from Table 5.1 that the usual weight-based greedy algorithm
is comprehensively outperformed by tolerance-based greedy algorithms in
terms of solution quality, although it takes much less execution time than
two of the tolerance-based algorithms. It is also clear that A-RC-GREEDY,
and to a lesser extent, A-R-GREEDY are greedy algorithms of choice if
one desires good-quality solutions. Even the extremely simplistic R-R-
GREEDY algorithm generates better quality solutions for all except two
classes (Classes 1 and 2) in nearly the same time. This fact is seen most
starkly in Classes 4 and 7.
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Table 5.1 Performance of tolerance-based algorithms

Algorithm Problem q values τ values

Class mean std. dev. mean std. dev.

R-R-GREEDY 1 92.02 7.70 101.24 32.19

2 103.80 14.99 63.76 48.59
3 48.33 4.92 32.51 22.70

4 9.30 2.28 34.07 20.85

5 53.65 4.39 35.28 23.56
6 12.08 2.74 36.66 21.21

7 9.25 3.32 43.25 24.45

8 33.23 0.01 153.68 41.46
9 80.61 24.58 76.09 27.06

A-R-GREEDY 1 87.56 7.07 100.24 26.61

2 91.16 12.15 275.99 152.25
3 31.02 5.11 37.68 23.06

4 7.75 1.85 41.13 20.98

5 37.17 4.86 609.72 234.95
6 10.52 2.43 1189.16 502.16

7 6.31 3.30 3150.58 1259.05

8 16.75 0.01 149.70 39.96
9 69.17 26.07 373.18 543.07

A-RC-GREEDY 1 84.48 9.21 120.21 32.02

2 89.67 12.91 292.76 159.29
3 27.55 4.45 52.16 22.25

4 7.92 1.88 56.90 19.88
5 33.44 4.53 497.98 178.01

6 11.38 2.62 746.48 295.36

7 6.19 3.19 3396.10 1289.19
8 16.75 0.01 174.78 69.03

9 67.39 26.84 391.89 565.70

An interesting observation is that AP relaxation based algorithms re-
quire very long execution times on average for instances in Classes 7 and 9.
For instances in these classes, experiments show that the optimal solutions
to the AP relaxation for the digraphs in several iterations have many cycles
of length 2, and the arc to be contracted usually comes from one of these
cycles. Consequently, in the next step of the algorithm, the AP relaxation
needs to be solved again, and the tolerances recalculated, thus leading to
long execution times (refer to the discussion on book-keeping techniques in
Section 5.3).
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5.5 Summary and Future Research Directions

In this paper, we examine in detail the idea of using arc tolerances instead
of arc weights as a basis for making algorithmic decisions on whether or
not to include an arc in an optimal solution. Such methods have only
been studied in passing in the literature (see [Helsgaun (2000)]) and de-
serve more attention. In order to evaluate the usefulness of the concept,
three tolerance-based greedy algorithms are proposed (see Section 5.3) for
the traveling salesman problem. Two of these (A-R-GREEDY and A-RC-
GREEDY) are based on an AP relaxation of the original problem, while the
third one (R-R-GREEDY) is based on a new relaxation of the AP relax-
ation itself. With the purpose of investigating the usefulness of the relaxed
AP (RAP), we made extensive computational experiments with our R-R-
GREEDY heuristic applied to the AP (not reported here in detail due to
the space limitation). The computational results for the TSP show that the
R-R-GREEDY outperforms a weight-based greedy (W-GREEDY) in qual-
ity at least 10 times on average, while for AP the corresponding domination
numbers for R-R-GREEDY and W-GREEDY are 2n−1 and 1, respectively.

Our experiments show that the quality of solutions produced by
tolerance-based greedy algorithms are overall significantly better than those
found by the arc weight-based greedy algorithm. We measure quality us-
ing the ratio LA−L?

L? where LA is the length of the tour returned by the
heuristic, and L? is the length of the optimal tour or of a good lower bound
where the optimal tour is not known. This measure is called the “excess
over the length of an optimal tour or lower bound”. Unfortunately, A-R-
GREEDY and A-RC-GREEDY are often slower than W-GREEDY, but R-
R-GREEDY, being superior to W-GREEDY in quality, is nearly as fast as
W-GREEDY. Overall, the simplest tolerance-based greedy, R-R-GREEDY,
is the best algorithm for solving the STSP, while the A-RC-GREEDY al-
gorithm could be suggested for the ATSP.

It is worth mentioning that the construction heuristics in [Glover et al.
(2001)] (see from Table 1 in [Glover et al. (2001)]) have the following average
excesses (taken over seven families of instances) over the length of an op-
timal tour or lower bound: GR= 580.35%, RI= 710.95%, KSP= 135.08%,
GKS= 98.09%, RPC= 102.02%, COP= 23.01%. Computational experi-
ments reported in [Goldengorin and Jäger (2005)] for our algorithms give
R-R-GREEDY= 67.14%, A-R-GREEDY=34.75%, and A-RC-GREEDY=
29.19%. We know that the domination number of ATSP-R-R-GREEDY is
2(n− 3)! and it would be interesting to find a non-trivial lower bound.
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Another question is whether a 1-tree-based relaxation of the traveling
salesman problem would generate tolerance-based greedy algorithms that
are better for the STSP. Also it would be interesting to replicate the success
of tolerance-based algorithms on the TSP to other combinatorial optimiza-
tion problems.
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Abstract

Given a polytope P and a in the interior of P and x /∈ P , to identify a violated
facet of P , whose supporting hyperplane separates x from P constitutes the sep-
aration problem for P . In [Grötscel, Lovász and Schrijver (1988)] a construction
found in [Yudin and Nemirovskii (1976)] is used to establish conditions for the
existence of a polynomial separation algorithm for a bounded convex body. This
proof uses Ellipsoid algorithm twice. Recently [Maurras (2002)] has given under
certain conditions, a simple construction for the separation problem for P . This
uses a polynomial number of calls to an oracle checking membership in P . In this
paper we consider an alternative polytope conv(An) different from the standard
polytope, Qn associated with the symmetric traveling salesman problem and ver-
ify whether Maurras’s construction is possible for this polytope. conv(An) is ob-
tained by a projection of the pedigree polytope defined and studied in [Arthanari
(2006)]. This leads us to the study of the membership problem for the pedigree
polytope. A necessary and sufficient condition for membership in the pedigree
polytope is given in [Arthanari (2006)]. In this paper we show that a necessary
condition for membership in the pedigree polytope is the existence of a multi-
commodity flow with value equal to unity, in a layered network. This network is
recursively constructed adding one layer at a time, and checking it is well-defined.
An ill-defined network at any stage automatically precludes membership of the
solution in the polytope. Future research will focus on the consequences of this
result and the complexity of checking the condition.

Key Words: Hamiltonian cycles, symmetric traveling salesman problem, pedi-
gree polytope, multistage insertion formulation, membership problem
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6.1 Introduction

Polyhedral Combinatorics, bridges two very important research topics,

namely, computational complexity(efficiency?) and representation of com-

binatorial optimisation problems using linear programs. Given a polyhedral

convex set C and a point x, deciding whether the point is a member of the

convex set is called the membership problem and if x is not in the convex

set, identifying a violated defining inequality is called the separation prob-

lem. A linear optimisation problem over a polyhedral convex set, gives raise

to a linear programming problem. However to use [Khachiyan (1979)]’s fi-

nite precision polynomial algorithm to solve that linear programming prob-

lem, we require to solve the separation problem efficiently. Khachiyan’s

work generated considerable enthusiasm to study polytopes correspond-

ing to combinatorial optimisation problems. A major work in this area

is [Grötscel, Lovász and Schrijver (1988)]. This brings out the connections

between the efficiencies of solving linear optimisation, separation and mem-

bership problems. In this paper we study the membership problem of the

pedigree polytope defined and studied in [Arthanari (2006)].

6.1.1 Computational Complexity, Polytopes and Efficiency

Theoretical computer science, among other things, deals with the design

and analysis of algorithms. When one wants to solve a problem efficiently

using an algorithm, the amount of storage space and computational time

required are considered and compared. The class of problems solvable in

polynomial time by a Turing machine is designated as the class P (see

e.g. [Garey and Johnson (1979)], [Korte and Vygen (2002)].) Another class

of problems is the class NP , which consists of problem that can be solved

by a nondeterministic Turing machine in polynomial time. Polynomial time

algorithms received their prominence against slow exponential time, often

brute force, algorithms. [Edmonds (1965)] called them good algorithms, and

presented one for the matching problem, which has a linear programming

formulation involving exponentially many constraints.

After the seminal work [Cook (1971)] and the immediate recognition by

[Karp (1972)] of its importance to combinatorial optimisation and integer

programming, the so-called NP − complete problems as opposed to poly-

nomially solvable problems received renewed attention. The problem of

whether P = NP is one of the most outstanding problems in mathematics.

Since the NP−complete subclass of NP is known to consist of difficult
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combinatorial problems, the popular belief in the fields of mathematics,

theoretical computer science and operations research is the conjuncture

P 6= NP . Optimisation problems are of our interest. Their complexity

can be related to that of decision problems studied. If a problem is not in

NP , like in the case of an optimisation problem, but it is as hard as some

NP − complete problem, then it is called NP − hard. A typical problem

of this kind is the Symmetric Traveling Salesman Problem (STSP ) and is

about finding a minimum cost Tour of n cities that starts from the home

city and visits every city once and returns back to the home city, and the

cost of traveling from city i to city j is the same as that of traveling from

city j to city i.

In [Grötscel, Lovász and Schrijver (1988)] the construction of [Yudin

and Nemirovskii (1976)] is used to establish conditions for the existence of a

polynomial separation algorithm for a bounded convex body. The approach

in [Grötscel, Lovász and Schrijver (1988)], uses Ellipsoid algorithm twice.

Given a polytope P and a in the interior of P and x /∈ P , recently [Maurras

(2002)] has given under certain conditions, a simple construction to identify

a violated facet of the polytope, P , whose supporting hyperplane separates

x from P . This uses a polynomial number of calls to an oracle checking

membership in P . This paper we consider an alternative polytope associ-

ated with STSP and verify whether Maurras’s construction is possible for

this polytope. This leads us to the study of the membership problem for

the pedigree polytope.

Section 6.2 introduces the preliminaries and notation used, and intro-

duces the concepts required to study an alternative polytope conv(An)

associated with STSP . The pedigree is a combinatorial object defined and

studied in [Arthanari (2006)] and [Arthanari (2005)]. Pedigrees are in

1−1 correspondence with n-tours or Hamiltonian cycles. An is defined and

used in [Arthanari (2007)] proving the dimension of the pedigree polytope.

Section 6.3 checks the conditions for the existence of a polynomial separa-

tion algorithm for the alternative polytope conv(An) and the implications

for studying the membership problem of the pedigree polytope. Section 6.4

develops a layered network used to prove a necessary condition for member-

ship in the pedigree polytope in Section 6.5. In Section 6.6 conditions for

having pedigree paths in the layered network to bring a specified flow along

an arc in the last layer is studied. This deals with the concept of pedigree

packability. Section 6.7 defines a multicommodity flow problem which is

used to check a necessary condition for membership in the pedigree poly-

tope. Section 6.8 discusses the computational complexity of verifying the
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necessary condition for membership in the pedigree polytope, and shows

this can be done efficiently. Section 6.9 concludes the paper indicating

future research.

6.2 Preliminaries & Notations

We repeat some notations and preliminaries from [Arthanari (2006)] for

convenience. Let R denote the set of reals. Similarly Q, Z, N denote the

rationals, integers and natural numbers respectively, and B stands for the

binary set of {0, 1}. Let R+ denote the set of non negative reals. Similarly

the subscript + is understood with rationals. Let Rd denote the set of d

-tuples of reals. Similarly the superscript d is understood with rationals,

etc. Let Rm×n denote the set of m × n real matrices.

Let n be an integer, n ≥ 3. Let Vn be a set of vertices. Assuming,

without loss of generality, that the vertices are numbered in some fixed

order, we write Vn = {1, . . . , n}. Let En = {(i, j)|i, j ∈ Vn, i < j} be the

set of edges. The cardinality of En is denoted by pn = n(n − 1)/2. Let

Kn = (Vn, En) denote the complete graph of n vertices.

We denote the elements of En by e where e = (i, j). We also use the

notation ij for (i, j). Notice that, unlike the usual practice, an edge is

assumed to be written with i < j.

Definition 6.1. [Edge Label] Let the elements of En be labelled as follows:

(i, j) ∈ En, has the label, lij = pj−1 + i.

This means, edges (1, 2), (1, 3), (2, 3) ∈ E3 are labelled, 1, 2, and 3 re-

spectively. Once the elements in En−1 are labelled then the elements of

En \En−1 are labelled in increasing order of the first coordinate, namely i.

For a subset F ⊂ En we write the characteristic vector of F by xF ∈ Rpn

where

xF (e) =

{
1 if e ∈ F ,

0 otherwise.

We assume that the edges in En are ordered in increasing order of the edge

labels.

For a subset S ⊂ Vn we write

E(S) = {ij|ij ∈ E, i, j ∈ S}.

Given u ∈ Rpn , F ⊂ En ,we define,

u(F ) =
∑

e∈F

u(e).
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For any subset S of vertices of Vn, let δ(S) denote the set of edges in En

with one end in S and the other in Sc = Vn \ S. For S = {i} , we write

δ({i}) = δ(i).

A subset H of En is called a Hamiltonian cycle in Kn if it is the edge

set of a simple cycle in Kn, of length n. We also call such a Hamiltonian

cycle a n− tour in Kn. At times we represent H by the vector (1i2 . . . in1)

where (i2 . . . in) is a permutation of (2 . . . n), corresponding to H .

In addition to the notations and preliminaries introduced in [Arthanari

(2006)], we required a few definitions and concepts with respect to bipartite

flow problems. For details on graph related terms see any standard text on

graph theory such as [Bondy and Murthy (1985)].

Definition 6.2. [Diconnected Components] Given a digraph G = (V, A),

we say u, v ∈ V are diconnected if there is a directed path from u to v

and also there is a directed path from v to u in G. We write u ↔ v. ↔ is

an equivalence relation and it partitions V into equivalence classes, called

diconnected components of G.

Diconnected components are also called strongly connected components.

Definition 6.3. [Interface] Given a digraph G = (V, A), consider the di-

connected components of G. An arc e = (u, v) of G is called an interface if

there exist two different diconnected components C1, C2 such that u ∈ C1

and v ∈ C2.

The set of all interfaces of G is denoted by I(G).

Definition 6.4. [Bridge] Given a graph G = (V, E), an edge of G is called

a bridge if G − e has more components than G, where by component of a

graph we mean a maximal connected subgraph of the graph.

Definition 6.5. [Mixed Graph] A mixed graph G = (V, E ∪A) is such that

it has both directed and undirected edges. A gives the set of directed edges

(arcs). E gives the set of undirected edges(edges). If A is empty G is a

graph and if E empty G is a digraph.

In general, we call the elements of E ∪ A, edges. Finding the diconnected

components of a digraph can be achieved using a depth first search method

in O(|G|) where |G| is the size of G given by |V |+ |A|. Similarly bridges in

a graph can be found in O(|G|).



March 28, 2008 12:5 World Scientific Book - 9in x 6in ch6Paper˙Platinum˙TSA˙final˙sent

66 Mathematical Programming and Game Theory for Decision Making

6.2.1 Rigid, Dummy arcs in a Capacited Transportation

Problem

Consider a balanced transportation problem, in which, some arcs called

the forbidden arcs are not available for transportation. We call the

problem of finding whether a feasible flow exists in such an incom-

plete bipartite network, a Forbidden Arcs Transportation (FAT ) prob-

lem [Murty (1992)]. This could be viewed as a capacited transporta-

tion problem, as well. In general a FAT problem is given by O =

{Oα, α = 1, . . . , n1}, the set of origins, with availability aα at Oα, D =

{Dβ, β = 1, . . . , n2}, the set of destinations with requirement bβ at Dβ and

A = {(Oα, Dβ)| arc (Oα, Dβ) is not forbidden }, the set of arcs. We may

also use (α, β) to denote an arc.

We state Lemma 6.1 from [Arthanari (2006)] on such a flow feasibility

problem arising with respect to non empty partitions of a finite set.

Lemma 6.1. Suppose D 6= ∅ is a finite set and g : D → Q+, is a

nonnegative rational function such that, g(∅) = 0, and g(D) = 1. Let

D1 = {D1
α, α = 1, . . . , n1},D2 = {D2

β, β = 1, . . . , n2} be two non empty

partitions of D. ( That is,
⋃n1

α=1 D
1
α = D and D1

s

⋂
D1

r = ∅, r 6= s. Similarly

D2 is understood.) Consider the FAT problem defined as follows:

Let the origins correspond to D1
α, with availability aα = g(D1

α), α =

1, . . . , n1 and the destinations correspond to D2
β, with requirement bβ =

g(D2
β), β = 1, . . . , n2. Let the set of arcs be given by

A = {(α, β)|D1
α ∩ D2

β 6= ∅}.

Then fαβ = g(D1
α ∩ D2

β) ≥ 0 is a feasible solution for the FAT problem

considered.

Several other FAT problems are defined and studied in the later sections

of this paper. FAT problems can be solved using any efficient bipartite

maximal flow algorithm (see [Korte and Vygen (2002)]). If the maximal

flow is equal to the maximum possible flow, namely a(O), we have a feasible

solution to the problem.

Definition 6.6. [Rigid Arcs] Given a FAT problem with a feasible solution

f we say (α, β) ∈ A is a rigid arc in case fα,β is same in all feasible solutions

to the problem. Rigid arcs have frozen flow.

Definition 6.7. [Dummy Arc] A rigid arc with zero frozen flow is called a

dummy arc.
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The set of rigid arcs in a FAT problem is denoted by R. Identifying R is

the frozen flow finding problem (FFF problem). Interest in this arises in

various contexts.(see [Ahuja, Magnanti and Orlin (1996)]) Application in

statistical data security is discussed by [Gusfield (1988)]. The problem of

protecting sensitive data in a two way table, when some not sensitive data

and the marginal sums are made public is studied there. A sensitive cell

is unprotected if its exact value can be identified by an adversary. This

corresponds to finding rigid arcs and their frozen flows.

Even though this problem can be posed as a linear programming prob-

lem we describe the graph algorithm developed in [Gusfield (1988)].

Definition 6.8. [Gf ] With respect to a feasible flow f for a FAT problem,

we define a mixed graph Gf = (V , A ∪ E) where V is as given in the FAT

problem, and

A = {(Oα, Dβ)|fα,β = 0, (α, β) ∈ A} ∪ {(Dβ, Oα)|fα,β = cα,β , (α, β) ∈ A},

E = {(Oα, Dβ)|0 < fα,β < cα,β, (α, β) ∈ A}.

Definition 6.9. [Flow change Cycle] A simple cycle in Gf is called a flow

change cycle (fc-cycle), if it is possible to trace it without violating the

direction of any of the arcs in the cycle. Undirected edges of Gf can be

oriented in one direction in one fc-cycle and in the other direction in another

fc-cycle.

Theorem 6.1. [Characterisation of Rigid Arcs] Given a feasible flow, f ,

to a FAT problem, an arc is rigid if and only if it’s corresponding edge is

not contained in any fc-cycle in Gf .

The proof of this is straight forward from the definitions (see [Gusfield

(1988)] ). It is also proved there that the set R is given by the algorithm,

that we call, Frozen Flow Finding (FFF )algorithm , stated below:

Algorithm 6.1 (Frozen Flow Finding).

Given: A Forbidden arcs transportation problem with a feasible flow f .

Find: The set of rigid arcs R, in the bipartite graph of the problem.

Construct The mixed graph Gf as per Definition 6.8.

Find The diconnected components of Gf (say C1, . . . , Cq).

Find The set of interfaces, I(Gf ).

Find The set of all bridges B(Gf ) in the underlying graphs,

treating each Cr as an undirected graph.

Output R = I(Gf ) ∪ B(Gf ). Stop.
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In fact we have a linear time algorithm, as each of steps 1 - 3 can be

done in O(|Gf |).

Definition 6.10. [Layered Network] A network N = (V ,A) is called a lay-

ered network if the node set of N can be partitioned into l sets V[1], . . . , V[l]

such that if (u, v) ∈ A then u ∈ V[r], v ∈ V[r+1] for some r = 1, . . . , l − 1.

We say N has l layers. Nodes in V[1], V[l] are called sources and sinks

respectively.

In the cases we are interested we have capacities both on arcs and nodes.

Any flow in the layered network should satisfy apart from nonnegativity

and flow conservation, the capacity restrictions on the nodes. Of course

any such problem can be recast as a flow problem with capacities only on

arcs.(see [Ford and Fulkerson (1962)])

6.2.2 Definition of the Pedigree Polytope

In this sub section we present an alternative polyhedral representation of

the STSP , using the definition of pedigrees.

Let Qn denote the standard STSP polytope, given by

Qn = conv({XH : XH is the characteristic vector of H ∈ Hn})

where Hn denotes the set of all Hamiltonian cycles ( or n− tours ) in Kn.

In polyhedral combinatoric approaches, generally, Qn is studied while

solving STSP (see [Lawler et. al. (1985)]). However, in this paper we

consider an alternative polytope conv(An) for this purpose. The required

notations and concepts follow.

Given H ∈ Hk−1, the operation insertion is defined as follows: Let

e = (i, j) ∈ H . Inserting k in e is equivalent to replacing e in H by

{(i, k), (j, k)} obtaining a k− tour. When we denote H as a subset of Ek−1,

then inserting k in e gives us a H ′ ∈ Hk such that,

H ′ = (H ∪ {(i, k), (j, k)}) \ {e}.

We write H
−−−−→
e, k H ′.

Similarly the inverse operation shrinking can be defined.

Definition 6.11. [Pedigree] The vector W = (e4, . . . , en) ∈ E3×. . .×En−1

is called a pedigree if and only if there exists a H ∈ Hn such that H is

obtained from the 3 − tour by the sequence of insertions, viz.,

3 − tour
−−−−→

e4, 4 H4 . . . Hn−1−−−−−→en, n H.
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The pedigree W is referred to as the pedigree of H . Pedigree is a

compact way of writing H . The pedigree of H can be obtained by shrinking

H sequentially to the 3 − tour and noting the edge created at each stage.

We then write the edges obtained in the reverse order of their occurrence.

Motivation for the definition of the pedigree and its connection to MI-

formulation [Arthanari and Usha (2000)] are given in [Arthanari (2006)].

Let the set of all pedigrees, corresponding to H ∈ Hn be denoted by

Pn. For any 4 ≤ k ≤ n, given an edge e ∈ Ek−1, with edge label l, we can

associate a 0 − 1 vector, x(e) ∈ Bpk−1 , such that, x(e) has a 1 in the lth

coordinate, and zeros else where. That is, x(e) is the indicator of e.

Similarly, we can associate a X = (x4, . . . ,xn) ∈ Bτn , the characteristic

vector of the pedigree W , where (W )k = ek, the (k − 3)rd component of

W , 4 ≤ k ≤ n and xk is the indicator of ek. The number of coordinates in

X , is
∑n

k=4 pk−1, and is denoted by τn

Let Pn = {X ∈ Bτn : X is the characteristic vector of the pedigree

W ∈ Pn}.

Thus there is a one to one correspondence between H ∈ Hn and X ∈ Pn.

Consider the convex hull of Pn. We call this the pedigree polytope, denoted

by conv(Pn). An interesting property of X = (x4, . . . ,xn) ∈ Pn is that, for

any 4 ≤ k ≤ n, X restricted to the first k − 3 stage(s), written as

X/k = (x4, . . . ,xk)

is in Pk. Similarly, X/k − 1 and X/k + 1 are interpreted as restrictions of

X . We use this notation for any X ∈ Rτn as well.

Definition 6.12. [Generators of an edge] Given eβ = (i, j) ∈ Ek, we say

G(eβ) is the set of generators of eβ in case

G(eβ) =

{
E3 \ {eβ} if eβ ∈ E3

δi ∩ Ej−1 otherwise.

Since an edge e = (i, j), j > 3 is generated by inserting j in any e′ in the

set G(e), the name generator is used to denote any such edge.

Lemma 6.2 proved in [Arthanari (2006)]gives an equivalent definition of

a pedigree.

Lemma 6.2. Given n, consider W = (e4, . . . , en), where ek = (ik, jk) for

1 ≤ ik < jk ≤ k − 1, 4 ≤ k ≤ n. W corresponds to a pedigree in Pn if and

only if

(1) ek, 4 ≤ k ≤ n, are all distinct,
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(2) ek ∈ Ek−1, 4 ≤ k ≤ n, and

(3) for every k, 5 ≤ k ≤ n, there exists a e′ ∈ G(ek) such that, eq = e′,

where q = max{4, jk}.

This lemma allows us to define a pedigree without explicitly considering

the corresponding Hamiltonian cycle.

Definition 6.13. [Extension of a Pedigree] Let y(e) be the indicator of

e ∈ Ek. Given a pedigree, W = (e4, . . . , ek) (with the characteristic vector,

X ∈ Pk) and an edge e ∈ Ek, we call (W, e) = (e4, . . . , ek, e) an extension

of W in case (X, y(e)) ∈ Pk+1.

Using Lemma 6.2, observe that given W a pedigree in Pk and an edge

e = (i, j) ∈ Ek, (W, e) is a pedigree in Pk+1 if and only if, 1] el 6= e, 4 ≤ l ≤ k

and 2] there exists a q = max(4, j) such that eq is a generator of e = (i, j).

6.2.3 Multistage Insertion and Related Results

Here we present excerpts from papers on MI-formulation and related issues.

Here xijk denotes xk(e) where e = (i, j).

Problem 6.1 (MI- Relaxation).
∑

1≤i<j≤k−1

xijk = 1, 4 ≤ k ≤ n (6.1)

n∑

k=4

xijk ≤ 1, 1 ≤ i < j ≤ 3 (6.2)

−
i−1∑

r=1

xrij −

j−1
∑

s=i+1

xisj +
n∑

k=j+1

xijk ≤ 0, 4 ≤ j ≤ n − 1; 1 ≤ i < j (6.3)

xijk = 0 or 1, 1 ≤ i < j ≤ k − 1; 4 ≤ k ≤ n (6.4)

Relaxing the integer constraints 6.4 with just non-negativity constraints (as

constraints xijk ≤ 1 are implied by equation 6.1) and adding the following

constraints

−
i−1∑

r=1

xrin −
n−1∑

s=i+1

xisn ≤ 0 i = 1, . . . , n − 1. (6.5)

we obtain the MI - relaxation of the STSP .

Notice that constraints 6.5 are redundant and are added only because of

their slack variables have special meaning.
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Definition 6.14. [PMI (n) Polytope] The polytope corresponding to MI-

relaxation is called the PMI (n) polytope, where n refers to the number of

cities.

All X in Pn are extreme points of PMI (n) polytope. But PMI (n) has

fractional extreme points as well. Thus the pedigree polytope conv(Pn) is

contained in PMI(n) polytope. We introduce the following notation (from

[Arthanari and Usha (2001)]).

Definition 6.15. In general, let E[n] denote the matrix corresponding to

equation (6.1); let A[n] denote the matrix corresponding to the inequali-

ties (6.2, 6.3 & 6.5). Let 1r denote the row vector of r 1′s. Let Ir denote

the identity matrix of size r × r. Then we can write recursively,

E[n] =








1p3
. . . 0 0

...
...

...
...

0 . . . 1pn−2
0

0 0 . . . 1pn−1








=

(
E[n−1] 0

0 1pn−1

)

.

To derive a similar expression for A[n] we first define

A(n) =

(
Ipn−1

−Mn−1

)

where Mi is the i × pi node-edge incidence matrix.

Then

A[n] =






A(4) | A(5) | | A(n)

| |
. . . |

0 | 0 | |




 =

(
A[n−1] | A(n)

0 |

)

.

Observe that A(n) is the submatrix of A[n] corresponding to xn. The number

of rows of 0′s is decreasing from left to right.

Lemma from [Arthanari and Usha (2001)] is useful in checking the mem-

bership of an X ∈ PMI (n).

Lemma 6.3. Let U (k−3) denote the slack variable vector obtained from the

MI - relaxation for n = k by substituting (X/k) in the inequalities (6.2,

6.3 & 6.5). Let U (0) = 13. Also assume U
(k−3)
ij = 0 for 1 ≤ i < j, j > k.

Given X and U (l) as defined above, we have

U (k−4) − A(k)xk = U (k−3), for all k, 4 ≤ k ≤ n. (6.6)
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Observe that we can reformulate MI- relaxation, using both X =

(x4, . . . ,xn) and U = (U (0), . . . , U (n−3)) in matrix notation as follows:

E[n]X = 1n−3

U (0) = 13

U (k−3) − A(k+1)xk+1 = U (k−2), for all k, 3 ≤ k ≤ n − 1. (6.7)

X ≥ 0.

In [Arthanari and Usha (2001)] the connection between MI- relaxation

and cycle shrink relaxation, CS-relaxation, given by [Carr (1997)] are

brought out using this reformulation. So if X ∈ PMI (n) then X satisfies

Equation 6.7.

Definition 6.16. [Weight Vector] Given X ∈ PMI (n) and X/k ∈

conv(Pk), consider λ ∈ R
|Pk|
+ that can be used as a weight to express X/k as

a convex combination of Xr ∈ Pk. Let I(λ) denote the index set of positive

coordinates of λ. Let Λk(X) denote the set of all possible weight vectors,

for a given X and k.

Definition 6.17. [Active Pedigree] Given X ∈ conv(Pk), we call a

X∗ ∈ Pk active for X/k, in case there exists a λ ∈ Λk(X) and an r ∈ I(λ)

such that X∗ = Xr. In other words X∗ receives positive weight in at least

one convex combination expressing X .

Definition 6.18. [Link] Let l ∈ Vn−2 \ V3 and (e, e′) ∈ El × El+1. Given

X ∈ PMI (l + 1), we say (e, e′) is a link in case

• xl(e) > 0 and xl+1(e
′) > 0

• either e′ ∈ El+1 \ El and e ∈ G(e′), or e, e′ ∈ El and e 6= e′.

A link can be used to extend a pedigree from Pl to a pedigree in Pl+1.

We make use of links in Section 6.4 to construct recursively a layered net-

work.

6.3 Polytopes and Efficiency

P ⊂ Rd is called a ν-polytope, if P is the convex hull of finitely many points

X1, . . . , Xr in Rd. P ⊂ Rd is called a H-polyhedron, if P is the intersection

of finitely many half-spaces, aiX ≤ a0 , for (ai, a0) ∈ Rd+1, for i = 1, . . . , s.

It is well known that a bounded H-polyhedron is indeed a ν -polytope.

The affine rank of a polytope P (denoted by arank(P )) is defined as the
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maximum number of affinely independent vectors in P. The dimension of

a polytope P is (denoted dim(P )) and defined to be arank(P ) minus 1.

Let P ⊂ Rd be a polytope. The barycentre of P is defined as

X̄ = 1/p
∑

Xi∈vert(P )

X i,

where p is the cardinality of vert(P ), the vertex set of P . [See [Zeigler

(1995)] for introduction to polytopes.]

Given n ∈ Z the input size of n is the number of digits in the binary

expansion of the number n plus 1 for the sign if n is non zero. We write,

〈n〉 = 1 + dlog2(n + 1)e.

Input size of n, 〈n〉, is also known as the digital size of n.

Given r = p/q a rational number, where p and q are mutually prime,

that is gcd(p, q) = 1, we have input size of r given by

〈r〉 = 〈p〉 + 〈q〉.

For every rational r we have |r| ≤ 2〈r〉−1 − 1.

Definition 6.19. [Rationality Guarantee] Let P ⊂ Rd be a polytope and

φ and ν positive integers. We say that P has facet complexity at most φ

if P can be described as the solution set of a system of linear inequalities

each of which has input size ≤ φ. We say, P has vertex complexity at most

ν if P can be written as P = conv(V ), where V ⊂ Qd is finite and each

vector in V has input size ≤ ν.

We have Lemma 6.4 from [Grötscel, Lovász and Schrijver (1988)] con-

necting facet and vertex complexities.

Lemma 6.4. Let P ⊂ Rd be a non empty, full dimensional polytope. If P

has vertex complexity at most ν, then P has facet complexity at most 3d2ν.

6.3.0.1 Problems Related to Polytopes

Given a polytope P ⊂ Qd, and a Y ∈ Qd, the problem to decide whether

Y ∈ P or not, is called the membership problem for P. Let P ⊂ Qd, be a

polytope with facet complexity at most φ. Let MemAl(P, Y, Answer) be an

algorithm1 to solve the membership problem, where P is known to MemAl

not necessarily explicitly, and on input of Y ∈ Qd having input size 〈Y 〉,
1The term oracle or subroutine is generally used to mean that this algorithm is called

by another algorithm as a procedure.
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MemAl halts with Answer = yes if Y ∈ P and Answer = no otherwise. If

the membership checking time of MemAl is polynomially bounded above

by a function of (d, φ, 〈Y 〉) we say MemAl is an efficient oracle.

Given a polytope P ⊂ Qd, and a Y ∈ Qd, the problem to decide whether

Y ∈ P , and if Y /∈ P then identifying a hyperplane that separates P and Y ,

is called the separation problem for P. Identifying a hyperplane is achieved

through finding a vector a ∈ Qd such that aX < aY for allX ∈ P

Given a non empty polytope P ⊂ Qd, and a C ∈ Qd, the problem

of finding a X∗ ∈ P 3 CX∗ ≤ CX for all X ∈ P is called the linear

optimisation problem for P .

Recently [Maurras (2002)] shows that an intuitively appealing construc-

tion is possible for the separation problem of a polytope, by finding a hy-

perplane separating the polytope and a point not in the polytope, after

a polynomial number of calls of to a membership oracle. The conditions

under which this is possible are same as that of [Yudin and Nemirovskii

(1976)], namely,

Assumption 6.1 (Maurras’s Conditions).

1 The polytope P is well defined in the d-dimensional space of Qd of rational

vectors. (There is a bound on the encoding length of any vertex of P . The

polytope is rationality guaranteed.)

2 P has non-empty interior.

3 a ∈ int(P ) is given.

[Grötscel, Lovász and Schrijver (1988)] use a construction due to [Yudin

and Nemirovskii (1976)] to devise a polynomial algorithm for finding a

separating plane using a membership oracle, when a convex set K instead

of the polytope P is considered. But this algorithm requires in addition the

radii of the inscribed and circumscribed balls, also uses Ellipsoid algorithm

twice. Next we check that the Assumption 6.1 is met for a polytope closely

related to the STSP polytope.

6.3.1 Properties of the Polytope, conv(An)

Here we consider a compact representation of a pedigree by removing some

redundancy present. Let ek = (k − 2, k − 1), and E ′
k−1 = Ek−1 \ {ek}, for

k ∈ Vn \ V3. Let τ ′
n = τn − (n − 3).

Definition 6.20. [Projection M ] Given X ∈ Pn, consider the transforma-

tion Y = MX , where M deletes the pth
k−1 component of xk in X , giving a
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vector Y ∈ Bτ ′

n .

The projection M is given by the matrix

M =









Ip3−1 0 0 0 · · · 0

0 0 Ip4−1

...
...

...
... · · · 0 0

0 0 · · · Ipn−1−1 0









.

Notice that Y is the compact string that has the information contained

in X , but there is some redundancy in X , namely, for any k, the last

component of xk does not say anything more than what is already said in

the pk−1 − 1 preceding components. This is so because, for each k we have

a unique edge e ∈ Ek−1 that is in the pedigree X or xk(e) = xk(Ek−1) = 1.

(We have in fact, xk(ek) = 1 − xk(E′
k−1).

Definition 6.21 (An). Let An = {Y ∈ Bτ ′

n |Y = MX, X ∈ Pn}.

Lemma 6.5. There is a 1 − 1 correspondence between An and Hn.

Proof. Given any T ∈ Hn, the corresponding characteristic vector X of

the pedigree is unique. Thus Y ∈ An, given by the transformation M of

X is unique as well. On the other hand, given a Y ∈ An, we can uniquely

define,

xk(e) =

{
yk(e) if e ∈ E′

k−1

1 − yk(E′
k−1) for e = ek.

Hence the lemma. �

Theorem 6.2. [dim(conv(An))] Given n ≥ 4, and An as defined above,

we have,

(1) The polytope conv(An) is full dimensional, that is dim(conv(An)) = τ ′
n

(2) The barycentre of conv(An) is given by,

Ȳ = (1/p3, 1/p3
︸ ︷︷ ︸

2−times

, . . . , 1/pn−1, . . . , 1/pn−1
︸ ︷︷ ︸

pn−1−1 times

).

(3) Ȳ ∈ int(conv(An)).

Proof. Part 1 of the theorem is proved recently in [Arthanari (2007)].

Part 2 can be verified by noticing that the cardinality of vert(conv(An)),

is (n−1)!/2, and in any X in Pn, the (k−3)rd component has pk−1 coordi-

nates, and exactly one of the coordinates is a 1. In Pn for any component
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the 1 appears equally likely among the coordinates. And for any Y ∈ An

we have deleted the last coordinate in each component of the corresponding

X .

Proof of part 3 of the theorem follows from the fact that Ȳ does not lie on

any facet defining hyperplane CY = c0, for (C, c0) ∈ Qτ ′

n+1. Suppose, it lies

on some facet defining hyperplane CY = c0 ( that is CY ≤ c0 for all Y ∈

conv(An)). Then

CȲ − c0 = [2/(n− 1)!]
∑

X∈Pn

(CY X − c0) = 0,

where Y X is the element of An corresponding to a X ∈ Pn. Thus for all

X ∈ Pn, we have CY X = c0,

=⇒ dim(conv(An)) ≤ τ ′
n − 1.

This contradicts the fact dim(conv(An)) is τ ′
n.

Therefore Ȳ ∈ int(conv(An)). Hence the theorem. �

Theorem 6.3. [Facet - Complexity of conv(An)] conv(An) has facet com-

plexity at most φ = 3τ ′3
n + 3τ ′2

n (n − 3). That is conv(An) is rationality

guaranteed.

Proof. Each vertex Y of conv(An) is a 0 − 1 vector of length τ ′
n. So Y

can be encoded with input size

〈Y 〉 ≤ τ ′
n + (n − 3) = ν.

(This follows from the fact that there are at most n − 3 1′s in any Y and

〈0〉 = 1 & 〈1〉 = 1 + dlog2 2e = 2.)

Therefore, conv(An) has vertex complexity ≤ ν.

Using lemma(6.4), we have, facet complexity of conv(An),

≤ 3τ ′2
n ν

= 3τ ′2
n (τ ′

n + (n − 3))

= 3τ ′3
n + 3τ ′2

n (n − 3).

Hence, conv(An) is rationality guaranteed. �

Thus we find conv(An) satisfies all the requirements of Maurras’s conditions

(Assumption 6.1). Therefore if we have a membership oracle for conv(An)

we can call that a polynomial number of times to separate a Y ∈ Qτ ′

n from

conv(An). With this in view we direct our attention to the membership

problem of the pedigree polytope, since Y is in conv(An) if and only if the

corresponding pedigree X is in conv(Pn).
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6.4 Construction of the Layered Network Nk

In this section we define the layered network Nk(X) with respect to a given

X ∈ PMI (n) and for k ∈ Vn−1 \ V3. Given X/k ∈ conv(Pk), this network

is used in showing whether X/k + 1 ∈ conv(Pk+1) or not. Since X is fixed

throughout this discussion we drop the X from the notation for the network

and write simply Nk.

With respect to a given X we define for each k, a layered network, Nk,

with (k − 2) layers.

We denote the node set of Nk by V(Nk) and the arc set by A(Nk). Let

v = [k : e] denote a node in the (k − 3)rd layer corresponding to an edge

e ∈ Ek−1. Let x(v) = xk(e) for v = [k : e].

Let

V[r] = {v|v = [r + 3 : e], e ∈ Er+2, x(v) > 0}.

Notice that the node name [r + 3 : e] alludes to insertion decision corre-

sponding to the stage r; that is, the edge e used for insertion of r +3. First

we define the nodes in the network Nk, for k = 4.

V(N4) = V[1]

⋃

V[2].

And

A(N4) = {(u, v)|u ∈ V[1], v ∈ V[2], eα ∈ G(eβ)}

where u = [4 : eα] and v = [5 : eβ].

Let x(v) be the capacity on a node v ∈ V[r], r = 1, 2. Capacity on an arc

(u, v) ∈ A(N4) is x(u). Given this network we consider a flow feasibility

problem of finding a nonnegative flow defined on the arcs that saturates all

the node capacities and violates no arc capacity. We refer to this problem

F4.

Notice that the problem F4 is one and the same as the problem

FAT4(x4) defined in [Arthanari (2006)]. Therefore, F4 feasibility is equiv-

alent to FAT4(x4) feasibility. So X/5 ∈ conv(P5). If F4 is infeasible we do

not proceed further.(We conclude that X /∈ conv(Pn) as shown in [Artha-

nari (2006)].) Otherwise if k < n−1 we continue to define the next network

for k + 1.

If F4 is feasible we use the FFF algorithm (or any such) and identify R.

If there are any dummy arcs in R we delete them from A(N4) and update

A(N4). For rigid arc with positive frozen flow we update the capacity of

the arc as the frozen flow and colour the arc ‘green’. Therefore in every

feasible solution to the updated F4 the green arcs are saturated.
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Now we say N4 is well-defined.

Given Nk−1 is well-defined, we proceed to define Nk recursively. Firstly

we define,

V(Nk) = V(Nk−1)
⋃

V[k−2]. (6.8)

Now consider the links between layers k−3 and k−2. Any of the links,

L = (e, e′) can give raise to an arc in the network Nk depending on the

solution to a max flow problem defined on a sub network derived from Nk−1

and the link L. If the maximal flow in the sub network is zero we can not

use the link (e, e′).

Next we define the restricted network which is induced by deletion of a

subset of nodes from V(Nk−1).

Definition 6.22. [Restricted Network Nk−1(L)] Given k ∈ Vn−1 \ V4, a

link L = (eα, eβ) ∈ Ek−1 × Ek , with eα = (r, s) and eβ = (i, j). Nk−1(L)

is the sub network induced by the subset of nodes V(Nk−1) \ D(L), where

D(L), the set of deleted nodes is constructed as follows: Let D(L) = ∅.

(a) Include [l : eβ] in D(L), for max(4, j) < l < k.

(b) Include [l : eα] in D(L), for max(4, s) < l < k.

(c) Include [j : e], e /∈ G(eβ) in D(L), if eβ ∈ Ek\E3; otherwise

include [4 : eβ ] in D(L).

(d) Include [s : e], e /∈ G(eα) in D(L), if eα ∈ Ek−1 \ E3;

otherwise include [4 : eα] in D(L).

(e) Include all nodes V[k−3] \ {[k : eα]} in D(L).

Set V(Nk−1(L)) = V(Nk−1) \ D(L). The sub network induced by

V(Nk−1(L)) is called the Restricted Network Nk−1(L).

Remark 6.1.

1 Deletion rule [a] ([b]) ensures that the edge eβ (eα) does not appear

earlier in a path from source(s) in layer 1 to (k − 3)rd layer. Deletion

rule [c] ([d]) ensures that the edge(s) not in the generator of the edge eβ

(eα) are deleted from (j − 3)rd((s − 3)rd) layer. Finally [e] ensures that

the only sink in (k − 3)rd layer is [k : eα].

2 Deletion of a node can be equivalently interpreted as imposing an upper

bound of zero on the flow through a node with respect to a given link

(treated as a commodity). This interpretation is useful in considering a

multicommodity flow through the network Nk.

3 A multi commodity flow problem is solved to answer the question: Given

X/k ∈ conv(Pk), does X/k + 1 belong to conv(Pk+1) in Section 6.7.
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We consider the problem of finding the maximal flow in Nk−1(L) satis-

fying all the restrictions on nonnegativity, flow conservation and capacity

on the available nodes and arcs.

The only sink in the network is [k : eα] and the sources are the undeleted

nodes in V[1]. Let C(L) be the value of the maximal flow in the restricted

network Nk−1(L). We find C(L) for each link L.

Now we are in a position to define the FAT problem, called Fk .

Definition 6.23 (Fk). Consider a forbidden arc transportation problem

with

O −− Origins] : u = [k : eα] ∈ V[k−3]

D −− Sinks] : v = [k + 1 : eβ] ∈ V[k−2]

A−− Arcs] : {(u, v)such that L = (eα, eβ) is a link and C(L) > 0}

C −− Capacity] : Cu,v = C(L).

If Fk is feasible and k < n − 1 we apply the Frozen F low F inding

algorithm and identify R and the dummy subset of arcs in that. Update

the capacity of the rigid arcs with positive flow equal to the frozen flow.

Update A by deleting the dummy arcs. Rigid arcs are marked green. We

finally have

A(Nk) = A(Nk)
⋃

A. (6.9)

If k = n − 1 we stop.

This completes the construction of Nk given by Equations 6.8 and 6.9.

Next task is to check that Nk is well-defined.

We need the following definitions, which are used in the sections that

follow.

Definition 6.24. [Pedigree path] Consider the network, Nl. Let path(Xr)

denote the path corresponding to a Xr ∈ Pl+1, given by

[4 : er
4] → [5 : er

5] . . . → [l + 1 : er
l+1]

where Xr is the characteristic vector of (er
4, . . . e

r
l+1).

Definition 6.25. Consider any feasible flow, f in Nl−1(L) for a link L =

(eα, eβ) ∈ El × El+1. Let vf be the value of the flow f , that is, vf reaches

the sink in Nl−1(L). We say vf is pedigree packable in case there exists a

subset P (L) ⊂ Pl such that

(1) λr(≥ 0) is the flow along path(Xr) for Xr ∈ P (L),

(2) er
l = eα, Xr ∈ P (L),
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(3)
∑

r3xr(v)=1 λr ≤ x(v), v ∈ V(Nl−1(L)), and

(4)
∑

Xr∈P (L) λr = vf .

We refer to P (L) as a pedigree pack of vf .

Definition 6.26. [Extension Operation] Given a pedigree pack correspond-

ing to a flow f in Nl−1(L) for a link L = (eα, eβ) with vf > 0, we call
−−→
XrL = (Xr,xr

l+1) the extension of Xr ∈ P (L) in case

xr
l+1(e) =

{
1 if e = eβ

0 otherwise.
(6.10)

That is, Xr = (er
4, . . . , e

r
l = eα) and this pedigree can be extended

to (er
4, . . . , e

r
l = eα, eβ). And the corresponding characteristic vector,

(Xr,xr
l+1) ∈ Pl+1 (see Figure 6.1).We denote the subset of Pl+1 thus ob-

tained by
−−−→
P (L), and call it the extension of P (L). Notice that vf > 0

implies eβ ∈ T r, the l − tour corresponding to Xr ∈ P (L).

Characteristic Vector of Pedigree:

Xr = (x4, . . . ,xl)

⇓

Pedigree :

(er
4, . . . , e

r
l = eα)

+

Link : L = (eα, eβ) such that eβ ∈ T r ∈ Hl.

⇓

Extended Pedigree :

(er
4, . . . , e

r
l = eα, er

l+1 = eβ)

[4 : er
4] → [5 : er

5] . . . → [l : er
l = eα] [l + 1 : er

β]

Fig. 6.1 Extendable Pedigree path
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6.5 Necessity of Fk Feasibility for Membership

We define yet another FAT problem for which an obvious feasible flow is

available, and this flow can be very useful in proving the feasibility of Fk.

Definition 6.27. Given X/k + 1 ∈ conv(Pk+1), λ ∈ Λk+1(X) we define a

FAT problem obtained from I(λ) for a given l ∈ {4, . . . , k} as follows:

Partition I(λ) in two different ways according to xr
l ,x

r
l+1, resulting in

two partitions SO and SD. We have

Sq
O = {r ∈ I(λ)|xr

l (eq) = 1}, eq ∈ El−1 and xl(eq) > 0

and

Ss
D = {r ∈ I(λ)|xr

l+1(es) = 1}, es ∈ El and xl+1(es) > 0.

Let |y|+ denote the number of positive coordinates of any vector y. Let

nO = |xl|+ and nD = |xl+1|+. Let aq =
∑

r∈S
q

O
λr = xl(eq), q = 1, . . . , nO.

Let bs =
∑

r∈Ss
D

λr = xl+1(e), s = 1, . . . , nD. Let the set of forbidden arcs,

F , be given by

F = {(q, s)|Sq
O ∩ Ss

D = ∅}.

The problem with an origin for each q with availability aq, a sink for

each s with demand bs and the forbidden arcs given by F is called the FAT

problem induced by (λ, l).

Remark 6.2.

1 From Lemma 6.1 we know that such a problem is feasible and a feasible

flow is given by

f(q, s) =
∑

r∈S
q

O
∩Ss

D

λr.

We call such an f the instant flow for the FAT problem induced by (λ, l).

2 The availabilities and demands in the above problem are same as that of

Fl.

3 Any arc in Fl and its capacity were given by solving the max flow problem

in Nl−1(L) for each link L. But there are no capacity restrictions on the

arcs of the FAT problem induced by (λ, l).

We shall show that the instant flow for the FAT problem induced by

any (λ, l) is indeed feasible for the problem Fl. Let Lr
l denote (e, e′) such

that xr
l (e) = xr

l+1(e
′) = 1. That is Lr

l is the (l−3)rd and (l−2)nd elements

of the pedigree given by Xr.
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Lemma 6.6. Given λ ∈ Λk+1 and l if path(Xr/l) is available in

Nl−1(L
r
l ), ∀ r ∈ I(λ), then the instant flow f in the FAT problem induced

by (λ, l) is feasible for Fl.

Proof. Let path(Xr/l) be available in Nl−1(L
r
l ), for every r ∈ I(λ). Now

consider r ∈ Sq
O ∩ Ss

D 6= ∅ for some q, s. Let L = (eq , es). For all these r,

Lr
l = L, and is available in the FAT problem induced by (λ, l).

Along the path(Xr/l) we can have a flow of λr into [l : eq] in the

restricted network Nl−1(L). So we are ensured that the maximum flow, (say

C(L)) in Nl−1(L) is positive. According to the construction of problem Fl

we have an arc ([l : eq], [l + 1 : es]) with capacity C(L). Now the definition

of the instant flow f and the maximality of C(L) imply that f satisfies all

the capacity restrictions. (Since a flow of at least
∑

r∈S
q

O
∩Ss

D
λr along the

paths, path(Xr/l) can reach [l : eq] for r ∈ Sq
O ∩ Ss

D 6= ∅. So the maximum

flow C(L) in Nl−1(L) should be at least this, which is precisely f(q, s).)

Thus we have shown that the instant flow of the FAT problem induced by

(λ, l) is feasible for Fl. Hence the lemma. �

Next we address the question: Is the condition stated by Lemma 6.6

always met? Towards this we first show that the path(X∗/5) is available

in N4(L
∗
5), for any X∗ active for X/k + 1 ∈ conv(Pk+1).

Lemma 6.7. Every X∗ = (e∗4, . . . , e
∗
k+1) active for X/k + 1, is such that

path(X∗/5) is available in N4(L
∗
5), where L∗

5 = (e∗5, e
∗
6).

Proof. Path(X∗/5) is given by [4 : e∗4] → [5 : e∗5]. We have [5 : e∗5] in

N4(L
∗
5) as the lone sink.

Case 1. [4 : e∗4] is not a node in N4(L)

This implies there exists a deletion rule among the rules (a) through (e)

(see Definition 6.22 that deleted [4 : e∗4] from V(N4). Notice that rules (a),

(b) and (e) are not applicable as they delete a node [l : e] with l > 4.

Claim 6.1. Rule (c) does not delete [4 : e∗4].

Proof. [Proof of Claim] Suppose e∗6 = (i, j) ∈ E5 \ E3 and j = 5. Then

rule (c) deletes a node [5 : e]. Suppose e∗6 = (i, 4) for some 1 ≤ i < 4, then

rule (c) deletes [4 : e], e /∈ G(e∗6). So if [4 : e∗4] is one such node then e∗4 is

not a generator of e∗6. And so X∗/6 can not be in P6. Contradiction. This

leaves the possibility e∗6 ∈ E3. Then [4 : e∗6] is deleted. Hence the claim. �
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Similarly we can check that rule (d) is not deleting [4 : e∗4]. Thus we

have seen the impossibility of Case 1.

Case 2. [4 : e∗4] exists but ([4 : e∗4], [5 : e∗5]) is not an arc in N4(L
∗
5).

Suppose ([4 : e∗4], [5 : e∗5]) is not an arc in N4(L
∗
5). X∗ being the charac-

teristic vector of a pedigree, implies that e∗4 ∈ G(e∗5). So this arc exists in

F4 with capacity x4(e
∗
4) > 0. We shall show that F4 is feasible. Since X∗ is

active for X/6 we have a r ∈ I(λ) such that X∗ = Xr, for some λ ∈ Λ6(X).

Consider the FAT problem induced by (λ, 4). So we have the instant flow

f that is feasible for this FAT problem. From feasibility of f , we have
∑

s

fqs = x4(eq), [4 : eq ] ∈ V[1] (6.11)

∑

q

fqs = x5(es), [5 : es] ∈ V[2] (6.12)

Recall that in F4 the capacity of any arc, ([4 : e], [5 : e′]) is defined to be

x4(e). We see from equation 6.11 that f meets these capacity restrictions.

Thus, from equations 6.11 and 6.12 and the observation made above, we

have shown that f , the instant flow, is feasible for F4.

So we are eligible to apply FFF algorithm to find the dummy arcs in

F4, towards constructing N4.

Notice that the flow along ([4 : e∗4], [5 : e∗5]) is positive as the correspond-

ing set Sq
O ∩Ss

D 6= ∅, has at least r corresponding to X∗ in it. This ensures

that the arc ([4 : e∗4], [5 : e∗5]) is not a dummy. And so it exists in N4(L
∗
5).

Hence Case 2 is also not possible.

This completes the proof of the lemma. �

Lemma 6.7 forms the basis to prove Lemma 6.8 that is crucial in showing

that infeasibility of Fk implies that X/k + 1 /∈ conv(Pk+1).

Lemma 6.8. [Existence of Pedigree Paths] Every X∗ active for X/k + 1,

is such that path(X∗/l) is available in Nl−1(L
∗
l ), for 5 ≤ l ≤ k, where L∗

l

denotes (e, e′) such that x∗
l (e) = x∗

l+1(e
′) = 1.

Proof. [Proof by induction on l] From Lemma 6.7 we have the result for

l = 5. Assume that the result is true for l ≤ k − 1. We shall show that the

result is true for l = k.

By hypothesis we have path(X∗/k− 1) available in Nk−2(L
∗
k−1) ending

in [k − 1 : e∗k−1]. Now consider Nk−1(L
∗
k). Suppose path(X∗/k),that is,

[4 : e∗4] → . . . [k − 1 : e∗k−1] → [k : e∗k]
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is not available in Nk−1(L
∗
k). But [4 : e∗4] → . . . [k − 1 : e∗k−1] is available

in Nk−2(L
∗
k−1). This implies that it is also available in Nk−1. (Recall the

construction of Nk−1 via Nk−2(L
′), for L′ a link.) Also [k : e∗k] is available

in Nk−1(L
∗
k) as it is the lone sink. So our assumption really means that the

arc W = ([k − 1 : e∗k−1], [k : e∗k]) does not exist in Nk−1(L
∗
k).

Case 1. W does not exist in Nk−1.

We shall show that this case is not possible. The existence of

path(X∗/k − 1) in Nk−2(L
∗
k−1) implies that the maximum flow into the

sink, [k − 1 : e∗k−1] is positive. So W is an arc in Fk−1. Since X∗ is

active for X/k + 1 we have a r0 ∈ I(λ∗) such that X∗ = Xr0 , for some

λ∗ ∈ Λk+1(X). Consider the FAT problem induced by (λ∗, k − 1) for such

a λ∗. Notice that every r ∈ I(λ∗) is active for X/k + 1. So from the hy-

pothesis path(Xr/k − 1) is available in Nk−2(L
r
k−1) for every r ∈ I(λ∗).

We have the condition of Lemma 6.6 met here. Consider the instant flow

f that is feasible for the FAT problem induced by (λ∗, k − 1). Lemma 6.6

asserts that f is indeed feasible for Fk−1.

But if W does not exist in Nk−1 it implies that W has been subsequently

declared dummy by the FFF algorithm. Since the flow along W as per

f is at least equal to λ∗
r0

corresponding to X∗, which agrees with L∗
k−1 =

(e∗k−1, e
∗
k). But λr0

> 0 as X∗ is active for X/k+1. Therefore, W = ([k−1 :

e∗k−1], [k : e∗k]) can not be declared as dummy by FFF algorithm. Thus,

Case 1 is impossible.

Case 2. W does not exist in Nk−1(L
∗
k).

This implies that as a consequence of the deletion rules (a) through (e)

W has been deleted. Notice that no arc with both of its ends available

in Nk−1(L
∗
k) is deleted from the network. Since nodes [k − 1 : e∗k−1] and

[k : e∗k] have been shown to be in Nk−1(L
∗
k), Case 2 is impossible.

This completes the proof of the lemma. �

Theorem 6.4. [Theorem on non-Membership] Given X ∈ PMI (n), and

for a k ∈ Vn−1 \ V3, if X/k ∈ conv(Pk), then

Fk infeasible implies X/k + 1 /∈ conv(Pk+1).

Proof. Suppose X/k + 1 ∈ conv(Pk+1). Consider any λ ∈ Λk+1(X).

Then from Lemma 6.8 we have the path corresponding to Xr/l available

in Nl−1(L
r
l ) for each r ∈ I(λ). Now conditions of Lemma 6.6 are met and
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so the instant flow in the FAT problem induced by (λ, l) is feasible for Fl,

for 5 ≤ l ≤ k. We have a contradiction. Hence the theorem. �

Remark 6.3.

1 With this theorem we have a procedure to check X/k + 1 /∈ conv(Pk+1)

by solving Fk.

2 However if Fk is feasible we can not, in general, conclude that X/k +1 ∈

conv(Pk+1). See Example 6.1.

3 As a corollary to this theorem we have, given X/k ∈ conv(Pk) implies

for any λ ∈ Λk(X) we have all the paths corresponding to {Xr|r ∈ I(λ)}

in Nk−1.

Example 6.1. Consider X given by

x4 = (0, 3/4, 1/4);

x5 = (1/2, 0, 0, 1/2, 0, 0);

x6 = (0, 1/4, 1/2, 0, 1/4, 0, 0, 0, 0, 0).

It can be verified that X ∈ PMI (6). And F4 is feasible and f given by

f([4:1,3],[5:1,2]) = 1/4, f([4:2,3],[5:1,2]) = 1/4, f([4:1,3],[5:1,4]) = 1/2

does it. Also

X/5 = 1/4(0, 1, 0; 1, 0, 0, 0, 0, 0)+ 1/4(0, 0, 1; 1, 0, 0, 0, 0, 0)

+1/2(0, 1, 0; 0, 0, 0, 1, 0, 0).

Next via the restricted networks N4(L) for the links in {(1, 2), (1, 4)} ×

{(1, 3), (2, 3)), (2, 4)} we obtain the bipartite network given in Figure 6.2.

Notice that F5 is feasible, with f given by

f([5:1,2],[6:1,3]) = 1/4, f([5:1,2],[6:2,4]) = 1/4, f([5:1,4],[6:2,3]) = 1/2.

Suppose X/6 is in P6, consider any λ ∈ Λ6(X). Then there are pedigrees

Xr, r ∈ I(λ) such that xr
6(2, 3) = 1. The total weight for these pedigrees

is x6(2, 3) = 1/2. But these pedigrees can not have xr
4(2, 3) = 1 as they all

have xr
6(2, 3) = 1. So this forces the alternative xr

4(1, 3) = 1 for all these

pedigrees. However no pedigree Xr with xr
6(e) = 1 for e = (1, 3) or (2, 4)

can also have xr
4(1, 3) = 1, as (1, 3) /∈ G(e) for both the e’s. Hence

∑

r∈I(λ),xr
4
(1,3)=1

λr =
∑

r∈I(λ),xr
6
(2,3)=1

λr = 1/2 < 3/4 = x4(1, 3).

Thus λ can not belong to Λ6(X). Contradiction. Therefore X /∈ conv(P6).
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Fig. 6.2 Layered Network for Example 6.1

6.6 Pedigree Packability

Explicit use of the fact X ∈ PMI (n) is made in this section to establish

the pedigree packability of any node capacity at layer k − 2 given that

X/k ∈ conv(Pk).

Theorem 6.5. Given X ∈ PMI (n) and X/k ∈ conv(Pk), consider the

network Nk−1. For any [k +1 : e] ∈ V[k−2], we have a flow fα in Nk−1(Lα)
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for a link Lα = (eα, e), and such that,

(1) The value of the flow fα, given by vα, is pedigree packable for each link

Lα,

(2)
∑

α vα = xk+1(e), and

(3)
∑

α

∑

Xr∈P(Lα), xr(u)=1 µr ≤ x(u), u ∈ V(Nk−1),

where µr is the flow along the path(Xr).

In other words, Theorem 6.5 assures the existence of pedigree paths in Nk−1

bringing in a flow of vα into the sink, [k : eα], for some eα and all these

paths can be extended to pedigree paths in Nk bringing in a total flow of

xk+1(e) into [k + 1 : e] ∈ V[k−2].

Proof. Notice that X/k + 1 ∈ PMI (k + 1). Recall the definition of Uk−3

we have Equation 6.7, that is,

Uk−3 − A(k+1)xk+1 = Uk−2 ≥ 0.

In fact, Uk−3 is the slack variable vector corresponding to X/k. So,

xk+1(e) ≤ Uk−3(e). Now [k + 1 : e] ∈ V[k−2] means xk+1(e) > 0, and

so Uk−3(e) > 0.

Since X/k ∈ conv(Pk), consider any weight vector λ ∈ Λk(X). We have
∑

Xr∈I(λ), xr(u)=1

λr = x(u), u ∈ V(Nk−1). (6.13)

From Lemma 4.1 from [Arthanari and Usha (2000)] we have if (X, U) is an

integer solution to MI- relaxation then U is the edge-tour incident vector

of the n-tour corresponding to X . Applying this with n = k and noticing

X/k ∈ conv(Pk), we find the same λ can be used to write Uk−3 as a convex

combination of Ṫ r, r ∈ I(λ), where T r is the k − tour corresponding to Xr

and Ṫ denotes the edge-tour incident vector of T .

Let

J = {r|Xr ∈ Pk and e ∈ T r}.

Thus,

Uk−3(e) =
∑

r∈I(λ)∩J

λrṪ
r. (6.14)

Now partition I(λ) with respect to xr
k as follows: Let Iα denote the

subset of I(λ) with xr
k(eα) = 1.
∑

r∈Iα

λr = xk(eα), for eα ∈ Ek.
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We have,

I(λ) ∩ J = ∪α|Iα6=∅Iα ∩ J. (6.15)

As Iα’s are disjoint, we a have a partition of I(λ) ∩ J. Notice that the

path(Xr) corresponding to r ∈ Iα ∩ J , is available in Nk−1(Lα), since any

Xr ∈ Pk active for X/k is such that the path(Xr) is available in Nk−1 (see

remark 6.3.3 following the proof of Theorem 6.4).

Now let

P(Lα) = {Xr|r ∈ Iα ∩ J}.

Any path(Xr) for an Xr ∈ P(Lα) can be extended to a path in Nk, ending

in [k + 1 : e], using the arc ([k : eα], [k + 1 : e]). Thus we have a subset

of pedigrees in Pk+1, corresponding to these extended paths. We see from

equations 6.14 and 6.15 that we can do this for each eα, and a maximum

of Uk−3(e) can flow into [k + 1 : e].

Since xk+1(e) ≤ Uk−3(e), we can choose nonnegative µr ≤ λr, so that

we have exactly a flow of xk+1(e) into [k + 1 : e] along the paths corre-

sponding to Xr ∈ ∪αP(Lα). Now we have part 3 of the theorem, from

(1) ∪αP(Lα) is a subset of {Xr|r ∈ I(λ)},

(2) µr ≤ λr and

(3) the expression for x(u), given by equation 6.13.

Letting vα =
∑

Xr∈P(Lα) µr we have the parts 1 and 2 of the result. Hence

the theorem. �

Remark 6.4. Even though we can apply this theorem for any xk+1(e) > 0,

the simultaneous application of this theorem for more than one e, in general,

may not be correct. This is so because, for some paths the total flow with

respect to the different eβ may violate the node capacity, xl(e), at some

layer l for some e. Example 6.2 illustrates this point.

Corollary 6.1. Given X ∈ PMI (n) and X/k ∈ conv(Pk), if xk+1(e) = 1

for some e, then X/k + 1 ∈ conv(Pk+1).

Proof. X/k + 1 as given, means that e is available for insertion of k + 1

with certainty. In other words, every pedigree active for X/k is such that

the corresponding k − tour contains e. Essentially, the proof lies in seeing

the fact that given a λ ∈ Λk(X), we can extend every Xr, r ∈ I(λ) to

(Xr, y(e)) with the same weight λr, where y(e) is the indicator of e.

Now refer to the proof of Theorem 6.5. Since xk+1(e) = 1, we have

xk+1(e) = Uk−3(e). So µr = λr, r ∈ I(λ)∩ J. It follows from an application
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of Theorem 6.5 and the above observation that the part 3 of the theorem

yields strict equalities for each node in each layer of Nk−1. This with part

2 of the theorem implies the required result. �

Example 6.2. Consider X as given below:

x4 = (0, 3/4, 1/4);

x5 = (1/2, 0, 0, 1/2, 0, 0);

x6 = (0, 1/4, 1/2, 0, 1/4, 0, 0, 0, 0, 0).

It can be verified that X ∈ PMI (6) and X/5 ∈ conv(P5). In fact,

X/5 = 1/4(0, 1, 0; 1, 0, 0, 0, 0, 0)+ 1/4(0, 0, 1; 1, 0, 0, 0, 0, 0)

+1/2(0, 1, 0; 0, 0, 0, 1, 0, 0).

Now x6(1, 3) = 1/4 and the path [4 : 2, 3] → [5 : 1, 2] → [6 : 1, 3] brings

that flow to [6 : 1, 3]. The path [4 : 1, 3] → [5 : 1, 4] → [6 : 2, 3] brings

the flow 1/2 to [6 : 2, 3], as required. Also for the node [6 : 2, 4], we have

the corresponding path [4 : 2, 3] → [5 : 1, 2] → [6 : 2, 4] with the flow 1/4.

Notice that these paths correspond to the extensions of the pedigrees active

for X/5. However, we can not satisfy the requirements at nodes [6 : 2, 4]

and [6 : 1, 3] simultaneously, using the respective paths, as at [4 : 2, 3] the

node capacity is violated.

Instead, consider X ′ as given below:

x′
4 = x4;

x′
5 = x5;

x′
6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0).

We can check that the paths

[4 : 2, 3] → [5 : 1, 2] → [6 : 3, 4],

[4 : 1, 3] → [5 : 1, 2] → [6 : 3, 4],

and

[4 : 1, 3] → [5 : 1, 4] → [6 : 3, 4]

bring the flows of 1/4, 1/4 and 1/2, respectively to [6 : 3, 4], totalling up

to 1 = x6(3, 4). However, these paths correspond to the extensions of all

the pedigrees active for X/5. And we can verify that X ′ ∈ conv(P6), as

assured by Theorem 6.5.
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6.7 A Multicommodity Flow Problem to Check Member-

ship

Recall the construction of the network Nk. We solve several restricted net-

work flow problems (in Nk−1(L) , for each link L) to obtain the capacities

of the arcs in Fk . After ensuring the feasibility of Fk, rigid arcs are iden-

tified. Then we declare the network Nk to be well defined, if we can have

evidence that X/k ∈ conv(Pk). This was easy for k = 4. As seen in the

Example 6.1, even though there are pedigree paths bringing the flow along

each arc in Fk, there could be conflicts arising out of the simultaneous ca-

pacity restrictions on these flows in the network Nk−1. We need to ensure

that these restrictions are not violated. The multicommodity flow problem

defined in this section does precisely this.

Definition 6.28 (Commodities). Consider the network Nk and focus on

the last two layers, consider the arcs in A obtained by solving Fk to feasibil-

ity and then deleting the dummy arcs. These arcs are in Nk by construction.

For every arc a ∈ A designate a unique commodity s. Let Ls be the link

corresponding to commodity s. Let S denote the set of commodities. We

write a ↔ s and read a designates s.

Definition 6.29. Given a pedigree Xr ∈ Pk+1, we say that it agrees with

an arc a = (u, v) ∈ Fl, 4 ≤ l ≤ k in case u = [l : er
l ], v = [l + 1 : er

l+1]. We

denote this by, Xr ‖ a and read Xr agrees with a. For any λ ∈ Λk+1(X) and

r ∈ I(λ), let Is(λ) denote the subset of I(λ) such that the corresponding

pedigrees agree with a ∈ Fk such that a ↔ s.

Next we describe an enlarged network using which we define the multi-

commodity problem. To the layered network Nk, we add a single source

o in layer 0, with one unit availability of each commodity, and we add

a layer (k − 1), of sinks, one for each commodity s ∈ S. We have arcs

connecting the source o to the nodes in V[1]. And we have an arc be-

tween a node [k + 1 : eβ ] ∈ V[k−2] and a sink s, if Ls = (e, eβ) corre-

sponds to an arc a ∈ A. We denote the set of newly added arcs by Anew .

They all have unit capacity. The demand at sink s corresponding to a

green arc is denoted by bs and is equal to the frozen flow of arc Ls. We

do not have any specified demands at other sinks. We call the network

thus obtained as the enlarged network N . V(N) = V(Nk) ∪ {o} ∪ S and

A(N) = A(Nk) ∪ {(o, v)|v ∈ V[1]} ∪ {(v, s)|v ∈ V[k−2], s corresponds to an

arc, a = (u, v) ∈ A, for some u ∈ V[k−3]}. The enlarged network has k
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layers in all, numbered from 0 to k − 1. Figure 6.3 gives the schematic

diagram of the enlarged network.

Let a denote an arc in the enlarged network. Let ca denote the capacity

of any arc a. Let f s
a ≥ 0 be the flow through arc a for commodity s. Let

vs be the total flow into sink s.

We have the following restrictions on the commodity flow through any

arc a ∈ A(Nk−1). For any s, we allow this flow to be positive only for the

arcs in the restricted network Nk−1(Ls). Let us
a be the upper bound on f s

a ,

that is

0 ≤ fs
a ≤ us

a, s ∈ S, a an arc in A(N). (6.16)

where,

us
a =







1 if a ∈ Anew

ca if a ∈ Nk−1(Ls) or

a defines s

0 otherwise.

(6.17)

For each commodity, at each node v ∈ V(Nk) we conserve the flow.

That is,
∑

u 3 a=(u,v)

fs
a =

∑

w 3 a=(v,w)

fs
a , v ∈ V(Nk), s ∈ S. (6.18)

We have the so called bundle capacity restriction for each arc that is,
∑

s∈S

fs
a ≤ ca, a an arc in A(N). (6.19)

In addition, at each node v ∈ V(Nk) we have the node capacity restriction

on the total flow through the node as well. Recall that the node capacity

x(v) denotes xl(e) > 0 for the node v = [l : e], in layer l for some e ∈ El−1.
∑

s∈S

∑

u 3 a=(u,v)

fs
a ≤ x(v), v ∈ V(Nk). (6.20)

The flow into any sink s, denoted by, vs is defined by,

vs =
∑

s∈S

∑

u 3 a=(u,s)∈Anew

fs
a , s ∈ S. (6.21)

At the sinks corresponding to green arcs with frozen flow in Fk, we require

that the demand restrictions be met.

vs = bs, s 3 the arc has frozen flow in Fk. (6.22)
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The problem now can be stated as:

Problem 6.2. [Multi-flow Problem]

maximise (6.23)
∑

s∈S

vs

subject to (6.24)

constraints (6.16) (6.22).

Next we observe some easy to prove facts about the enlarged network

and Problem 6.2.

Let z∗ denote the objective function value for an optimal solution to

Problem 6.2. Let f = (f1, . . . , f |S|) denote any feasible multicommodity

flow for Problem 6.2., where f s gives the flow vector for commodity s, for

a fixed ordering of the arcs of N .

Remark 6.5.

1 In the enlarged network each node v ∈ V[k−2] has an even degree. For

each s ∈ S, we have a pair of arcs , one emanating from and one entering

v. The arc a = (u, v) for some u ∈ V[k−3] enters v and a ↔ s. Arc

a′ = (v, s) leaves v.

2 The node capacities at each layer in Nk add to 1, and so z∗ is at most 1.

3 If z∗ = 1, then for any optimal solution to Problem 6.2, the bundle

capacity x(v) at each node v ∈ V[l−3], 4 ≤ l ≤ k + 1 is saturated.

4 Every feasible path bringing a positive flow to a sink s passes through

a node in each layer of the enlarged network, satisfying the commodity

flow restrictions for s. N is a layered network without any cycles, and

recall that every arc a in Nk is such that a = (u, v), u ∈ V[l] and v ∈ V[l+1]

for some l, 4 ≤ l ≤ k.

5 If z∗ = 1 then any optimal solution f to Problem 6.2, is such that the

solution restricted to the portion of the network corresponding to arcs in

Fk, constitutes a feasible solution to Fk. This follows from Remark 6.5.3.

Now f saturates the node capacities at layers k−3 and k−2 and f s
a , a ∈ Fk

can be positive only for the arc a designating s. So letting f s
a = ga, we

can check that g is feasible for Fk as all the restrictions of problem Fk

are also present in Problem 6.2.

6 If z∗ = 1 then the demand restriction of any sink s is non binding at the

optimum. This is so because, the fusibility of g for Fk obtained as per

the previous remark, implies that the flow along the rigid arcs are equal



March 28, 2008 12:5 World Scientific Book - 9in x 6in ch6Paper˙Platinum˙TSA˙final˙sent

94 Mathematical Programming and Game Theory for Decision Making

to the respective frozen flows. Suppose the rigid arc is a = (u, v). Now

consider the corresponding arc a′ mentioned in Remark 6.5.1, a′ leaves v

and ends up in s designated by a. Since the commodity flow is conserved

at v and this is the unique arc entering s, and no other commodity can

flow through this arc, (from the commodity flow upper bound restrictions

6.16) we have the flow along this arc equal to that of a. Hence the flow

into s is exactly equal to the frozen flow for arc a, given by bs. Thus we

see that the demand restrictions are automatically met for any optimal

solution with z∗ = 1. So these restrictions 6.22 can be dropped.

Interestingly, the results proved earlier (Theorem 6.4 and Lemma 6.8) on

the necessity of feasibility of Fk for X/k + 1 to be in the pedigree polytope

and the fact that for any λ ∈ Λk+1(X), the pedigree paths, path(Xr/l), r ∈

I(λ), for 4 ≤ l ≤ k are all available in Nl−1(L
r
l ) can be used to prove

Theorem 6.6.

Theorem 6.6. Given X/k + 1 ∈ conv(Pk+1) then there exists a f , feasible

for the multicommodity flow problem (Problem 6.2), with z∗ =
∑

s∈S vs =

1.

Proof. Since X/k + 1 is in conv(Pk+1) we have from the proof of The-

orem 6.4 for any λ ∈ Λk+1(X), a feasible solution to Fk is given by the

instant flow for the FAT problem induced by (λ, k).

Define f as follows for a /∈ Anew:

fs
a =







∑

r∈Is(λ)|Xr ‖ a λr if a ∈ Nk−1(Ls)
∑

r∈Is(λ) λr if a ↔ s

0 otherwise.

(6.25)

For a ∈ Anew, f is defined in the obvious manner to conserve the flow

at the nodes in layer 1 and layer k − 2. The net flow into s ∈ S is same as

the flow along the arc a designating s. That is,

vs =
∑

r∈Is(λ)

λr .

We shall show that this f is feasible for the problem.

Nonnegativity and capacity on nodes are all met as λr are positive and

add up to x(v) for each node v, as
∑

r∈I(λ),xr
l
(e)=1

λr = x(v), v = [l : e],
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as X/k+1 can be written as a convex combination of the pedigrees in I(λ).

Since the instant flow of the FAT problem induced by (λ, l) is feasible

for Fl, bundle capacity restrictions on arcs are all met as well. This is so

because the arcs in the network other than the new ones correspond to the

arcs in Fl, 4 ≤ l ≤ k−2. And Lemma 6.8 ensures that we have not violated

any of the upper bound restrictions on f s
a .

For each commodity s, for r ∈ Is(λ), notice that Xr represents a path

in Nk. Thus we have paths with respect to o − Xr − s in N . For any

of these paths, commodity flow is conserved at each node along the path.

And a node not in any of these paths, does not have a positive flow of this

commodity through that node.

We have,
∑

u 3 a=(u,v)

fs
a =

∑

u 3 a=(u,v)

∑

r∈Is(λ)|Xr ‖ a

λr (6.26)

=
∑

r∈Is(λ)|xr
l
(e)=1

λr, (6.27)

for v = [l : e] ∈ V(Nk), s ∈ S.

Similarly
∑

w 3 a=(v,w)

fs
a =

∑

w 3 a=(v,w)

∑

r∈Is(λ)|Xr ‖ a

λr (6.28)

=
∑

r∈Is(λ)|xr
l
(e)=1

λr, (6.29)

for v = [l : e] ∈ V(Nk), s ∈ S.

Hence commodity flow conservation restrictions are all met. As noticed

in Remark 6.5.6, the flow into any sink s given by vs is equal to the flow

along the defining arc a ∈ Fk. Hence the total flow in the network is
∑

s∈S vs =
∑

s∈S fs
a =

∑

s∈S

∑

r∈Is(λ) λr = 1. Thus we have verified that

f is feasible and the objective function value is 1. Hence the theorem. �

6.8 Computational Complexity of Checking the Necessary

Condition

In this section we show that the necessary condition, given in the previous

section, for X/k + 1 to be in conv(Pk+1) can be checked efficiently. Given

X ∈ PMI (n), if X/k ∈ conv(Pk) we have the network Nk−1 well-defined.
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Constructing Nk involves solving at most pk−1 × pk (< k4) maximal flow

problems in Nk−1(L) for each link L to find the capacity C(L). Each of

this can be solved in time polynomial in k. Next solving the FAT problem

Fk can also be done in time polynomial in k. If Fk is infeasible we stop.

Otherwise we use Frozen Flow Finding (FFF ) algorithm to identify rigid

and dummy arcs. This as stated in Subsection 6.2.1 can be done in linear

time in the size of the graph Gf corresponding to the problem Fk. The size

of Gf is at most pk−1 × pk + pk−1 + pk. Thus Nk can be constructed in

time polynomial in k. The next task is to construct the enlarged network

N corresponding to Nk and find whether a feasible multicommodity flow

exists with value unity. Sine we only need to solve a linear programming

problem for answering this, this can be done in polynomial time in the

input size of the corresponding linear programming problem. Thus the

necessary condition can be verified in time polynomial in the input size of

the multicommodity flow problem 6.2. Here we have not gone for tight

bounds for the computational requirements, as the purpose is to provide a

remark that the necessary condition can be checked efficiently.

If solving the Problem 6.2 results in a maximal flow less than unity, we

can conclude X/k + 1 /∈ conv(Pk+1). Current research is directed towards

the important issue, of studying the complexity of declaring Nk to be well-

defined once we have shown the existence of a multicommodity flow with

unit value in the recursively constructed layered network.

6.9 Concluding Remarks

In this paper an alternative polytope conv(An) that is closely related to

the pedigree polytope is studied. We verify that the conditions ([Yudin

and Nemirovskii (1976)]) for the existence of a separation algorithm that

calls a polynomial number of times a membership oracle for the polytope,

are satisfied for conv(An). Hence the recent polynomial construction of

[Maurras (2002)] could be applied for solving the separation problem of the

polytope conv(An). Thus the membership problem of the pedigree polytope

(defined and studied in [Arthanari (2006)] and [Arthanari (2005)]) becomes

relevant. A necessary condition for membership in the pedigree polytope

is shown as the existence of a multicommodity flow with unit value in a

recursively constructed layered network. The complexity of checking this

necessary condition is polynomial in input size of the linear multicommodity

flow problem. Thus this condition may not be sufficient, unless P = NP .
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Hence an interesting future research area is to discover evidence that the

condition is not sufficient.
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Chapter 7

Exact Algorithms for a One-defective

Vertex Colouring Problem
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Abstract

Many real life scheduling problems involve the use of a graph colouring problem
where the vertices of a graph G(V, E) are coloured such that the coloured graph
satisfies certain desired properties. This paper discusses one such graph colouring
problem. A graph is (m, k) − colourable if its vertices can be coloured with m
colours such that the maximum degree of the subgraph induced on vertices re-
ceiving the same colour is at most k. The k−defective chromatic number χk(G)
of a graph G is the least positive integer m for which G is (m, k)− colourable. In
this chapter, we develop exact algorithms based on partial enumeration methods
to determine the one defective chromatic number χ1(G), of a graph G. Further-
more, we assess the computational performance of the algorithms by determining
the one defective chromatic number of several simulated graphs.

Key Words: Chromatic number of a graph, 1-defective chromatic number, par-

tial enumeration methods, optimization, scheduling.

7.1 Introduction

All graphs considered in this paper are undirected, finite, loopless and have

no multiple edges. For the most part we follow the notation of Chartrand

and Lesniak (1986). For a graph G, we denote the vertex set and the

edge set by V (G) and E(G) respectively. The degree of a vertex v ∈ G

is the number of adjacent vertices of v and it is denoted by d(v). The

maximum degree of a graph is denoted by ∆(G). For a subset U of V (G),

99
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the subgraph of G induced on the set U is denoted by G[U ].

Several real life optimization problems with resource constraints involve

scheduling activities and/or resources over certain time intervals. Some

examples of such problems are: course scheduling [Dowsland (1990)] ;

school timetabling [de Werra (1985); Mehta (1981)]; operational timetable

[Costa (1994); Jagota (1996); Hertz (1991)]. The following vertex colouring

problem (VCP) appears in disguise as part of several of the optimization

problems listed above.

Given a graph G(V, E), find an assignment of colours to the vertices in

V of the graph G using the least number of colours so that two vertices

that are adjacent are assigned different colours.

The minimum number of colours used in the VCP is called the

chromatic number χ(G) of the graph G. The decision version of VCP

is known to be NP-complete [Garey and Johnson (1978)]. For a good

survey on heuristic and exact algorithms for VCP see [de Werra (1990)].

The notion of colouring of a graph has been generalised in many

ways, see [Frick (1993)], for a survey. One interesting extension is the

k−defective colouring of a graph and we consider the k−defective vertex

colouring problem (k − DV CP ), in this paper.

Let k be a non-negative integer. A subset U of V (G) is said to be

k − independent if the maximum degree of G[U ] is at most k. A graph is

(m, k)− colourable if its vertices can be coloured with m colours such that

the set of vertices receiving the same colour is k− independent. Sometimes

we refer to an (m, k) − colouring of G as a k − defective colouring of G.

Note that any (m, k) − colouring of a graph G partitions the vertex set of

G into m subsets V1, V2, ..., Vm, such that every Vi is k− independent. The

k−defective chromatic number χk(G) of G is the least positive integer m

for which G is (m, k)− colourable. Note that χ0(G) is the usual chromatic

number of G. Clearly χk(G) ≤ d n
k+1

e, where n is the order of G. If χk(G)

= m then G is said to be an (m, k)− chromatic graph. The k − defective

vertex colouring problem (k − DV CP ) is to assign colours to the vertices

of G using the minimum number of colours such that the set of vertices

receiving the same colour is k − independent.

The concepts of k − independent sets and k − defective chromatic

numbers have been studied by several authors under different names, see

[Frick and Henning (1994); Achuthan, Achuthan and Simanihuruk (1996);

Simanihuruk, Achuthan and Achuthan (1997)]

In the next section we present a sequential colouring heuristic for the

k-DVCP and it is a generalisation of a heuristic proposed for the 0-DVCP.
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In this paper we develop exact algorithms for 1-DVCP based on partial

enumeration methods.

7.2 Sequential Colouring Heuristics for k-DVCP

The literature has several sequential colouring heuristics proposed for the

vertex colouring of a graph, see [de Werra (1990); Brown (1972)]. Most

of them can be easily generalised to a corresponding heurestic for the k −

defective colouring of a graph. In the following we discuss the DSATUR

graph colouring heuristic to provide a k−defective colouring of the graph.

DSATUR graph colouring: This graph colouring heuristic was first pro-

posed by Brėlaz (1979) for the 0−defective colouring problem. This heuris-

tic, at every stage, partitions the set of vertices into the set of coloured

vertices and the set of uncoloured vertices. For each uncoloured vertex v,

define the saturation degree as follows:

Satdeg(v) =
∑j

c=1
xcv

where j is the total number of colours used up to the current stage, Cc

is the set of vertices that are coloured by the colour c, 1 ≤ c ≤ j and if

∆(G[Cc∪v]) ≤ k then xcv = 0. Otherwise, xcv = 1. In other words xcv = 1

if and only if the uncoloured vertex v cannot be assigned the colour c. Thus

the saturation degree of v is the current number of colours that cannot be

assigned to v among the available j colours.

(a) Order the vertices v1, ..., vn such that d(v1) ≥ d(v2) ≥ ... ≥ d(vn).

(b) Assign colour 1 to v1, define C1 = {v1}, r = 2 = the index of the next

vertex to be coloured, j = 1 = the number of colours used up to

now, U = the set of current uncoloured vertices = V − {v1}.

(c) Determine Satdeg(v) for v ∈ U . Define

PV = {v′ : Satdeg(v′) = max{satdeg(v) : v ∈ U}}

Choose the next vertex v′ to be coloured if d(v′) =

max{d(v) : v ∈ PV }

(d) Let

i′ =

{

∞, if Satdeg(v′) = j

min{i : xiv′ = 0, 1 ≤ i ≤ j}, if otherwise

and i∗ = min{i′, j + 1}. Colour the vertex v′ with colour i∗, add

v′ to Ci∗ and update r, j and U .



November 14, 2007 11:13 World Scientific Book - 9in x 6in ch7one˙def˙algs˙v2

102 Mathematical Programming and Game Theory for Decision Making

(e) Repeat steps (c) and (d) until all the vertices are coloured.

7.3 Implicit Enumeration Algorithms for 1 − DV CP

Brown (1972) developed an exact implicit enumeration algorithm for the

0−DV CP . Subsequently some variations of this algorithm were developed

and certain errors were corrected, see [Brown (1972); Brėlaz (1979); Kubale

and Jackowski (1985); Korman (1979)]. In this section we extend these

concepts to develop exact implicit enumeration algorithms for 1−DV CP .

The first algorithm is a simple implicit enumeration algorithm and it

is referred to as Algorithm 1. The salient features of this algorithm are

detailed in the following.

Let the vertices of the graph G be ordered say, v1, v2, ..., vn. Let q denote

an upper limit of the 1-defective chromatic number of G at any stage of the

algorithm. Initially q is fixed as dn
2
e since χ1(G) ≤ χ1(Kn) = dn

2
e, where

Kn is a complete graph on n vertices. The value of q is updated whenever

a better solution is encountered by the implicit enumeration procedure.

When the algorithm terminates, the 1−defective chromatic number of the

graph G is q.

Note that, χ1(H) ≤ χ1(G) for any subgraph H of G. In particular, if

Kω is a subgraph of G then dω
2
e = χ1(Kω) ≤ χ1(G). Let lb denote a lower

bound on the 1 − defective chromatic number of G at any stage of the

algorithm. Initially the lb is fixed as dω
2
e where the subgraph of G induced

by the vertices v1, v2, ..., vω forms a Kω.

At any intermediate stage of the algorithm let v1, v2, ..., vω , vω+1, ..., vr−1

be the vertices of G that are coloured using the colours 1, 2, ..., ur such that

it is a valid 1− defective colouring for the subgraph of G induced by these

r−1 vertices. Let Cc denote the set of vertices that are assigned the colour

c. Then the algorithm uses a Forward-scheme to colour the next vertex vr

by the least indexed colour from the set of feasible colours, FC(vr), for the

vertex vr where

FC(vr) = {c : 1 ≤ c ≤ min{ur + 1, q − 1}; ∆(G[Cc ∪ {vr}]) ≤ 1}.

From the definition of FC(vr), it is clear that any new 1 − defective

colouring of G would use at most (q − 1) colours. This Forward-scheme of

colouring is repeated to colour the remaining (n − r + 1) vertices namely

vr, vr+1, ..., vn and it stops in one of the following two cases:
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(a) The vertices vr, ..., vi−1 are coloured such that G[{v1, v2, ..., vi−1}] has

a valid 1 − defective colouring and FC(vi) is empty.

(b) All the remaining (n − r + 1) vertices are coloured such that G has a

valid 1−defective colouring using q′ colours where q′ ≤ (q−1). In

this case the best known solution and the value of q are updated.

Further determine the vertex vr such that

r = min{j : vj has colour q}.

The vertices vr, ..., vn are converted as uncoloured vertices. Note

that with the updated q, the set FC(vr) is empty.

If the Forward-scheme of colouring fails to colour the vertex vr then

by a Backtrack-scheme a vertex vi that can be recoloured (with another

feasible colour) is chosen from the set of coloured vertices v1, v2, ..., vr−1.

The vertex vi is chosen such that i = max{j : j ∈ Nb(r)} where Nb(r)

includes the index j if 1 ≤ j ≤ (r − 1), (vj , vr) ∈ E and j is the least rank

among vertices with same colour.

Then the Forward-scheme of colouring is continued starting with a new

feasible colouring of vi.

The algorithm terminates either during the Forward-scheme when the

upper bound q equals the lower bound lb or during the Backtrack-scheme

when it fails to locate any vertex that can be recoloured. When the algo-

rithm terminates the 1 − defective chromatic number of of G is q and the

best known solution provides a valid 1 − defective chromatic colouring of

G.

In the following we provide a justification for the fact that Algorithm 1

terminates in finite number of steps with an optimal k−defective colouring

of the graph G.

For a specified number of colours q, a complete enumeration of all pos-

sible colourings of the vertices v1, v2, ..., vn may be visualised through a cor-

responding complete enumeration tree that has n + 1 levels. Level 0 of the

tree represents the root node and level i represents the vertex vi, 1 ≤ i ≤ n.

Thus, level i has qi nodes of the tree corresponding to the qi possible colour-

ings of the vertices v1, v2, ..., vi using q colours, 1 ≤ i ≤ n. Such a complete

enumeration tree with q colours is denoted by q − complete − Etree. The

following observations are easy to verify:

1. Note that every valid 1 − defective colouring using less than or equal

to q colours will correspond to a unique path from the root node
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to an appropriate node in level n of the q − complete− Etree.

2. For every positive integer q, the q− complete−Etree is a subtree of the

(q + 1) − complete− Etree.

3. Let q be the number of colours used in the best known 1 − defective

colouring. The Forward scheme of the Algorithm 1 generates a

subtree of (q− 1)− complete−Etree, that is using (q− 1) colours.

Hence lb ≤ χ1(G) ≤ q. The subtree thus generated is denoted by

(q − 1)− S − tree. Note that every path of length n from the root

node of the (q−1)−complete−Etree has a nonempty intersection

with the (q − 1) − S − tree.

4. In fact if the Forward scheme stops in case(a) it leads to pruning cer-

tain paths of the subtree that will not yield a valid 1 − defective

colouring of the vertices. On the other hand, if the Forward scheme

stops in case(b) it locates a better known solution using q′ colours

such that q′ ≤ q and again prunes the subtree further to generate

a subtree of (q′ − 1) − complete − Etree. At this stage note that

lb ≤ χ1(G) ≤ q′ ≤ q ≤ dn
2
e.

5. Algorithm 1 starts with q = dn
2
e, that is, with an dn

2
e − complete −

Etree. For each run of the Forward scheme of the algorithm, the

corresponding q − complete − Etree is pruned further or reduced

to a q′ − complete− Etree where q′ ≤ q.

6. If Algorithm 1 stops with lb = q then χ1(G) = lb, since lb ≤ χ1(G) ≤

q. In this case the best known solution provides an optimal 1 −

defective colouring of G.

7. If Algorithm 1 terminates during the Backtrack-scheme for not finding

a vertex that can be recoloured, then for every uncoloured vertex

v we have FC(v) = [IMAGE] and the best known 1 − defective

colouring of G uses q colours. At this stage, the incomplete colour-

ing using (q − 1) colours generates, (q − 1)− S − tree, a subtree of

the (q − 1) − complete − Etree. We claim that χ1(G) = q. Sup-

pose that the claim is not true. Then χ1(G) ≤ (q − 1). Hence

there exists a valid 1 − defective colouring of G that corresponds

to a unique path P from root node to a node in level n of the

(q − 1)− complete−Etree. This path P has a nonempty intersec-

tion with the (q − 1) − S − tree and contradicts the fact that for

every uncoloured vertex v the set FC(v) is empty. Hence the claim

is proved.

Using the observations 6 and 7 it is easy to see that Algorithm 1 termi-
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nates in finite number of steps providing an optimal 1−defective colouring

of G.

The flow diagram in Fig. 7.1 presents the main steps of Algorithm 1 in

terms of certain key words that represent suitable procedures.

Fig. 7.1 Flow chart of Algorithm 1

In the following we briefly explain the key words used in Fig. 7.1.

• Initialize

This procedure initializes all the variables used in the algorithm.

Fix an ordering among the vertices say, v1, ..., vn. Let ω be such

that the first ω vertices, v1, v2...vω form a clique. Provide a 1 −

defective colouring for the first ω vertices, that is, for the vertices

of the clique. Let colv[0][i] denote the colour assigned to the vertex

vi, 1 ≤ i ≤ ω. Fix colv[1][i] = j and colv[1][j] = i if vertices vi and

vj received the same colour. Fix colv[0][i] = −1 and colv[1][i] = −1
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to indicate that the vertices vi for ω+1 ≤ i ≤ n are not yet coloured.

Fix q = dn
2
e. Set bkcolv[i] = the colour assigned to vertex vi by the

best known solution. Fix numb−colours = dω
2
e and r = ω+1. Fix

BACK = False; Numb− back = 0 and lab[i] = 0 for 1 ≤ i ≤ n.

• Set colour list (vr)

This procedure defines the set of feasible colours, FC(vr) for the

vertex vr.

• Colour(vr)

This procedure assigns the least indexed colour available in the set

FC(vr) to the vertex vr. Furthermore, it appropriately fixes the

colv[0][r] and colv[1][r] as required.

• Delete colour list (vr)

This procedure deletes the current colour of the vertex vr and ap-

propriately updates FC(vr); sets Colv[0][r] = −1 and Colv[1][r] =

−1 to indicate that the vertex vr is currently not coloured. If a ver-

tex vt is adjacent to vr and they both were given the same colour

then reset Colv[1][t] = −1 .

• Label(vr)

This procedure gives a label r to every vertex that is adjacent to

vr, has smaller rank than r, and has minimal rank among all the

vertices of the same colour which are adjacent to vr.

• max rank

This procedure finds the vertex that has the maximum rank among

all the labelled vertices.

The second algorithm is a simple variation of Algorithm 1. The initialize

step of Algorithm 2, includes determining the best known solution and

the upper bound q for the 1 − defective chromatic number through the

DSATUR graph colouring heuristic for the 1−defective colouring of graph

G.

The third algorithm is a variation of Algorithm 2 that incorporates a

look ahead feature while selecting a colour for the vertex vr. In other words

the feasible colours in FC(vr) are ordered according to certain criteria that

may help in reducing the number of backtracks. This modified algorithm

is referred to as Algorithm 3.

More precisely, for every colour c ∈ FC(vr) define the number of

preventions of c as |{i : r + 1 ≤ i ≤ n; c ∈ FC(vi)}|.

Similarly, for every colour c ∈ FC(vr) define the number of blockings

of c as |{i : r + 1 ≤ i ≤ n; FC(vi) = c}|.
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The colours of FC(vr) are ordered first by the ascending order of the

number of blockings and then by the ascending order of the number of

preventions. Then the procedure colour(vr) is modified to colour the vertex

vr with the first colour in the ordered list FC(vr). This scheme of looking

at the blockings enables Algorithm 3 to seek a reduction in the number of

colours used before successfully completing a 1− defective colouring of all

the vertices.

7.4 Computational Performance of the Algorithms

Computational performance of the three algorithms were studied by solving

several simulated problems. For this purpose the number of vertices, n,

ranged from 20 to 70 with an increment of 5. The computational effort

required in solving a problem is likely to depend on the density of the

graph. Hence the simulated problems were generated using three distinct

graph density intervals, namely 0.26 - 0.34; 0.44 - 0.54 and 0.61- 0.72.

For each choice of n and every graph density interval, thirty graphs were

generated. All the three algorithms were coded in c++ and implemented in

the environment of SGI Altix 1.6Ghz Itanium2 processor available with the

Australian participation for advanced computing (APAC) national facility.

Each of the three algorithms was used to solve every simulated problem.

Every algorithm’s attempt on each problem was limited to a maximum CPU

time of 2 hours.

Table 7.1 presents a comparison of the three algorithms applied to the

simulated problems with graph density in the range 0.26 - 0.34. The table

provides the number of vertices (n), average number of edges (m), the

number of solved problems, average number of backtracks generated, and

average CPU time (seconds) over the solved problems.

From Table 7.1 note that Algorithm 2 solves problems with 60 vertices

more easily as compared to Algorithm 3. Algorithm 3 is computationally

slow as compared to Algorithm 2. Furthermore, both these algorithms

perform better than the simple Algorithm 1.

Similarly Table 7.2 and Table 7.3 provide the comparison of the algo-

rithms for problems with graph density in the ranges 0.44 - 0.54 and 0.61

- 0.72 respectively.
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Table 7.1 Performance of the algorithms on graphs with
density 0.26-0.34.

Algorithm 1
Number of Avg

n m solved backtracks CPU
problems (average) time

20 57.23 30 944.17 0.0
25 90.43 30 27420.37 0.05
30 127.97 30 51959.1 0.11
35 181.17 30 1817766.37 5.33
40 234.6 30 71121437.3 244.05
45 299.07 27 428011526.33 910.07
50 367.7 16 1162151215.07 2705.60

Algorithm 2
Number of Avg

n m solved backtracks CPU
problems (average) time

20 57.23 30 64.60 0.01
25 90.43 30 290.03 0.01
30 127.97 30 382.17 0.02
35 181.17 30 3713.23 0.17

40 234.6 30 89704.5 0.66
45 299.07 30 285236.97 1.51
50 367.7 30 4261015.43 23.49
55 465.1 29 116405123.20 399.83
60 535.87 28 187018279.43 736.04
65 645.07 24 351818115.23 1143.19
70 741.5 11 666355940.77 2302.51

Algorithm 3
Number of Avg

n m solved backtracks CPU
problems (average) time

20 57.23 30 19.63 0.00
25 90.43 30 141.23 0.03
30 127.97 30 188.93 0.05
35 181.17 30 1580.53 0.39
40 234.6 30 20473.43 1.04
45 299.07 30 80128.83 3.65
50 367.7 30 621615.83 37.59
55 465.1 29 13386717.97 782.47
60 535.87 29 16696369.63 1260.89
65 645.07 22 3402351953 2281.55
70 741.5 7 43160233.37 1764.04
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Table 7.2 Performance of the algorithms on graphs with den-
sity 0.44 - 0.54.

Algorithm 1
Number of Avg

n m solved backtracks CPU
problems (average) time

hline 20 93.83 30 4660.33 0.01
25 149.7 30 110160.93 0.26
30 214.07 30 2459035.60 7.92
35 289.4 30 25928052.07 90.91
40 385.77 25 554591635.57 1740.29
45 482.9 8 1095988002.03 2346.68

Algorithm 2
Number of Avg

n m solved backtracks CPU
problems (average) time

20 93.83 30 322.70 0.01
25 149.7 30 1655.10 0.05
30 214.07 30 12484.13 0.35
35 289.4 30 123260.37 0.92
40 385.77 30 3139283.67 17.21
45 482.9 30 15852250.27 89.16
50 621.13 26 366755445.80 1931.82
55 733.87 12 700459753.43 2634.73

Algorithm 3
Number of Avg

n m solved backtracks CPU
problems (average) time

20 93.83 30 162.67 0.03
25 149.7 30 812.63 0.18
30 214.07 30 6090.13 0.62
35 289.4 30 42497.43 2.01
40 385.77 30 729137.93 40.58
45 482.9 30 3412853.47 230.61
50 621.13 21 39359356.40 1967.65
55 733.87 9 50511037.87 2538.46

From these tables we observe that all the three algorithms perform well

on smaller dimension problems (that is problems with less than or equal

to 35 vertices). For instance, problems with 35 vertices and graph density

in the range 0.61-0.72, needed CPU times on an average around 20mt,

16sec and 50sec respectively by Algorithms 1, 2 and 3. The number of

backtracks used by Algorithm 3, on average is just about a tenth of that

used by Algorithm 2. But the look-ahead scheme of Algorithm 3 seems to

increase the CPU time considerably as compared to Algorithm 2. When

the graph density is small (that is the graph is sparse) Algorithms 2 and 3
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Table 7.3 Performance of the algorithms on graphs with
density 0.61- 0.72.

Algorithm 1
Number of Avg

n m solved backtracks CPU
problems (average) time

20 127.67 30 23964.87 0.05
25 201.4 30 341645.40 0.98
30 291.03 30 16608999.00 63.3
35 398.13 27 378197102.67 1165.81
40 523.4 7 1127533972.73 2849.79

Algorithm 2
Number of Avg

n m solved backtracks CPU
problems (average) time

20 127.67 30 1883.73 0.05
25 201.4 30 18024.10 0.42
30 291.03 30 257514.57 1.36
35 398.13 30 3346560.87 15.20
40 523.4 30 103806685.57 589.57
45 656.9 21 485207911.00 1592.46

Algorithm 3
Number of Avg

n m solved backtracks CPU

problems (average) time

20 127.67 30 1057.23 0.21
25 201.4 30 11246.73 0.77
30 291.03 30 77317.90 2.82
35 398.13 30 980539.70 41.92
40 523.4 30 22679796.27 1013.34
45 656.9 30 60643828.03 1504.85

are able to solve, within a reasonable time, problems of larger size, that is

up to 65 vertices. In fact Algorithm 2 performs better than the other two

algorithms for problems of size less than or equal to 70 vertices.
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Abstract

In this paper, we consider several classes of vertical block matrices and char-
acterize these matrix classes in the context of vertical linear complementarity
problem (VLCP). We develop a neural network dynamics for solving VLCP. We
have shown that the performance of our proposed dynamics is quite encouraging
and it performs well for various classes of vertical block matrices. This seems to
be a good alternative of Cottle-Dantzig algorithm for solving VLCP.

Key Words: Vertical block matrix, equivalent LCP, VLCP, Cottle-Dantzig al-

gorithm, neural network dynamics

8.1 Introduction

The linear complementarity problem(LCP) is an important problem in

mathematical programming and it has several applications in other fields.

113
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The problem is stated as follows:

Given a square matrix M of order n with real entries and an n dimen-

sional vector q, find n dimensional vectors w and z satisfying

w − Mz = q, w ≥ 0, z ≥ 0, (8.1)

wt z = 0 (8.2)

or show that no solution exists.

This problem is denoted as LCP(q, M). If a pair of vectors (w, z) satisfies

(8.1), then the problem LCP(q.M) is said to have a feasible solution. A

pair (w, z) of vectors satisfying (8.1) and (8.2) is called a solution to the

LCP(q, M). In LCP(q, M), F (q, M) denotes the feasible region and S(q, M)

denotes the solution set of LCP(q, M). For a detailed discussion on this

problem and applications see [Cottle, Pang, and Stone (1992)] and [Murty

(1988)].

The concept of a vertical block matrix was introduced by [Cottle and

Dantzig (1970)] in connection with the generalization of the linear comple-

mentarity problem and it is defined as follows.

Consider a rectangular matrix A of order m × k with m ≥ k. Suppose

A is partitioned row-wise into k blocks in the form

A =











A1

A2

...

Ak











where each Aj = ((aj
rs)) ∈ Rmj×k with

k
∑

j=1

mj = m. The block matrix

considered above is called a vertical block matrix of type (m1, . . . , mk).

The generalization of the linear complementarity problem by [Cottle and

Dantzig (1970)] involving a vertical block matrix is known as vertical linear

complementarity problem and it is stated as follows:

Given a vertical block matrix A of type ( m1, . . . , mk) and a vector

q ∈ Rm, the vertical linear complementarity problem (VLCP(q, A)) is to

find w ∈ Rm and z ∈ Rk such that

w − Az = q, w ≥ 0, z ≥ 0 (8.3)

zj

mj
∏

i=1

w
j
i = 0, for j = 1, 2, . . . , k. (8.4)
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For details on vertical linear complementarity problem see [Mohan, Ne-

ogy and Sridhar (1996a)], [Mohan and Neogy (1996a,b)] and the references

therein.

The vertical block matrix arises naturally in the literature of stochastic

games where the states are represented by the columns and actions in each

state are represented by rows in a particular block. See [Mohan, Neogy

and Parthasarathy (1997a,b, 2001)] and [Mohan, Neogy, Parthasarathy and

Sinha (1999)]. Neural network approach for computing VLCP solution will

be extremely useful for computation in Stochastic game problem. The rest

of the paper is organized as follows.

In Section 8.2, we present the notations, definitions and the results

which are used for obtaining subsequent results. In Section 8.3, we present

the main results which extend several results in LCP setting to VLCP

setting. In Section 8.4, we propose a neural network model for solving

VLCP described by the nonlinear dynamic system. Finally, in Section

8.5, we present a number of numerical experiments for finding solutions of

VLCP(q, A) to demonstrate the effectiveness and efficiency of the proposed

neural network dynamics.

8.2 Preliminaries

For a matrix A ∈ Rm×k, A·j denotes the jth column of A and Ai·, the ith

row of A. For any positive integer n, if α ⊆ {1, 2, . . . , n}, ᾱ denotes the

complement of α in {1, 2, . . . , n}. If M is a square matrix of order n and α, β

are two nonempty subsets of {1, 2, . . . , n} then Mαβ denotes the submatrix

of M consisting of only the rows and columns of M whose indices are in α

and β respectively. M·β denotes the submatrix of those columns of M whose

indices are in β. Similarly Mα· denotes the submatrix of the rows of M

whose indices are in α. Let J1 = {1, 2, . . . , m1} be the set of row indices in

A corresponding to A1 and let Jr = {
r−1
∑

j=1

mj + 1,

r−1
∑

j=1

mj + 2, . . . ,

r
∑

j=1

mj}

be the set of row indices in A corresponding to Ar, r = 2, 3, . . . , k.

We say that M ∈ Rn×n is

• P (P0)-matrix if all its principal minors are positive (nonnegative).

• N (N0)-matrix if all the principal minors of M are negative (non-

positive).

• N̄ -matrix if there exists a sequence {N (k)} where N (k) = [m
(k)
ij ]
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are N -matrices such that m
(k)
ij → mij for all i, j ∈ {1, 2, . . . , n}.

• copositive (C0) (strictly copositive (C)) if xtMx ≥ 0 ∀ x ≥ 0

(xtMx > 0 ∀ 0 6= x ≥ 0).

• copositive-plus (C+
0 ) if M ∈ C0 and the implication

[xtMx = 0, x ≥ 0] ⇒ (M + M t)x = 0 holds.

• a star matrix if x ∈ S(0, M) ⇒ M tx ≤ 0.

• copositive-star (C∗
0 ) if M is copositive and star matrix.

• a Q matrix if LCP(q, M) has a solution ∀ q ∈ Rn

• a Q0-matrix if for all q ∈ Rn, F (q, M) 6= ∅ ⇒ S(q, M) 6= ∅.

• a S-matrix if there exists a vector z ∈ Rn such that Mz > 0, z > 0.

• L1-matrix if for every 0 6= y ≥ 0, y ∈ Rn ∃ an i such that yi > 0

and (My)i ≥ 0.

• L2-matrix if for each 0 6= ξ ≥ 0, ξ ∈ Rn satisfying η = M ξ ≥ 0

and ηt ξ = 0 ∃ a 0 6= ξ̂ ≥ 0 satisfying η̂ = −M tξ̂, η ≥ η̂ ≥ 0,

ξ ≥ ξ̂ ≥ 0.

• L-matrix if it is in both L1 and L2.

• a matrix with T -property if for every nonempty set α ⊆

{1, 2, . . . , n}, the existence of a solution zα to the system

zα > 0, Mααzα ≤ 0, Mᾱαzα ≥ 0,

implies that there exists a nonzero vector yα0
≥ 0 such that

yt
α0

Mα0α = 0 and yt
α0

Mα0ᾱ ≤ 0

[Flores-Bazan and Lopez (2005)] considers a matrix class F1 which ex-

tends the class L2. We say that M ∈ Rn×n is a F1 matrix if for any

nonempty set α ⊆ {1, 2, . . . , n}, the following implication holds (ᾱ =

{1, 2, . . . , n} \ α) :

zα > 0, Mααzα = 0, Mᾱαzα ≥ 0,

implies that there exists a nonzero vector xα ≥ 0 such that

xt
αMαα = 0 and xt

αMαᾱ ≤ 0.

A vertical block matrix A of type (m1, . . . , mk) is called a vertical block

P (P0, C0, C, C+
0 , L1, N , N0)-matrix if all its representative submatrices

are P (P0, C0, C, C+
0 , L1, N , N0)-matrices.

A vertical block matrix A of type (m1, . . . , mk) is called a

• Q0-matrix if for any q ∈ Rm, (8.3) has a solution implies that the

VLCP(q, A) has a solution.

• Q-matrix if for any q ∈ Rm, VLCP(q, A) has a solution.
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• vertical block N -matrix of the first category if A is a vertical block

N -matrix and A has at least one positive entry.

• vertical block N -matrix of the second category if A is a vertical

block N -matrix with all entries negative.

• vertical block matrix with T property if every representative sub-

matrix has T property.

• vertical block R0-matrix if VLCP(0, A) has the unique solution

w = 0, z = 0.

• vertical block matrix with F1 (copositive-star, L1, L2, R0) prop-

erty if every representative submatrix is F1 (copositive-star,

L1, L2, R0).

The concept of equivalent matrix introduced in [Mohan, Neogy and

Sridhar (1996a)] is defined as follows.

Consider a vertical block matrix A of type (m1, . . . , mk) where mj is

the size of the jth block. We construct a matrix M by copying A·j , mj

times for j = 1, 2, . . . , k. Thus M·p = A·s ∀ p ∈ Js. This construction

leads to a square matrix M of order m. We call the matrix M obtained

in this manner the equivalent square matrix of A and we call the problem

LCP(q, M) as equivalent LCP of the VLCP(q, A). The following lemma

due to [Mohan, Neogy and Sridhar (1996a)] which establishes a connection

between the solution of the equivalent LCP(q, M) and VLCP(q, A).

Lemma 8.1. Given the VLCP(q, A), let M be the equivalent square matrix

of A. VLCP(q, A) has a solution if and only if LCP(q, M) has a solution.

We make use of the following results to prove our main results.

Theorem 8.1. ([Ebiefung and Kostreva (1993)][p. 167]) VLCP(q, A) has

a complementary feasible solution if and only if there exists a representative

submatrix AG and a corresponding subvector qG of q so that LCP(qG, AG)

is solvable with a solution z and Az + q ≥ 0.

Theorem 8.2. ([Valiaho (1986)]) If M = M t ∈ Rn×n is copositive of

exact order (n − 1), then

(i) M is positive definite of order (n − 2);

(ii) all the principal minors of order ≥ 2 of M−1 are negative;

(iii) M−1 ≤ 0 with negative off-diagonal elements.

Lemma 8.2. ([Mohan, Neogy and Sridhar (1996a)]) A is a vertical block

Q(Q0) matrix iff the equivalent square matrix M ∈ Q(Q0).
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8.3 Main Results

Given a vertical block matrix A of type (m1, . . . , mk), let u1, . . . , uk be a

collection of row vectors such that 0 6= uj ≥ 0 has mj coordinates and
k

∑

j=1

mj = m. Then

U =







u1 . . . 0
... . . .

...

0 . . . uk






(8.5)

is of order k ×m. The jth row of the matrix UA is the uj-weighted sum of

the rows in Aj .

Theorem 8.3.

If A is a vertical block N -matrix of type (m1, . . . , mk) and U is given

by (8.5), then UA is an N -matrix.

Proof. It is easy to check that

UA =















∑

i∈J1

u1
i A

1
i·

...
∑

i∈Jk

uk
i Ak

i·















.

The determinant of a matrix is a multilinear function of its rows. Therefore

det UA =
∑

i∈J1

. . .
∑

i∈Jk

k
∏

j=1

u
j
i det







A1
i·
...

Ak
i·






. (8.6)

All the terms in (8.6) are nonpositive and atleast one is negative since for

every j = 1, . . . , k there exists an index i0 such that u
j
i0

> 0. �

[Parthasarathy and Ravindran (1990)] proved that an N -matrix has

exactly one real negative eigenvalue. We generalize this result.

Theorem 8.4. Let A ∈ Rm×k be a vertical block N -matrix of type

(m1, . . . , mk). Then the equivalent matrix M of A has exactly one real nega-

tive eigenvalue and have atleast (m−k) zero eigenvalues. Also all nontrivial

principal submatrices have exactly one real negative eigenvalue.
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Proof. Let A ∈ Rm×k be a vertical block matrix of type (m1, . . . , mk)

and U ∈ Rk×m with k ≤ m. Let M be the equivalent matrix of A. Then,

by Theorem 1.3.20 in [Horn and Johnson (1985)] [p. 53], the equivalent

matrix M = AU has the same eigenvalues as UA, counting multiplicity

with an additional (m − k) eigenvalues equal to zero. Since by Theorem

8.3, UA is an N -matrix, so UA has exactly one negative eigenvalue. Hence,

for the equivalent matrix M = AU among k eigenvalues, exactly one real

eigenvalue is negative and the additional (m − k) eigenvalues are equal

to 0. Also, all nontrivial submatrices of M have exactly one real negative

eigenvalue. �

The following theorem was observed by [Mohan, Neogy and Sridhar

(1996b)]. We provide the proof by [Mohan, Neogy and Sridhar (1996b)] for

the sake of completeness.

Theorem 8.5. Let A be an m×k vertical block matrix of type (m1, . . . , mk)

and let M be the equivalent matrix of A of order m. The following state-

ments are equivalent:

(i) Every representative submatrix of A is copositive;

(ii) M is copositive.

Proof. (ii)⇒ (i). This follows from the inheritance property of a

copositive matrix. See [Cottle, Habetler and Lemke (1970)][p. 296].

(i)⇒ (ii). We shall prove this by showing that every principal submatrix

of M including M itself is copositive using induction on the order of the

principal submatrices of M.

First we show that any 2 × 2 principal submatrix of M is copositive.

Suppose i1, i2 are the row and column indices of the 2 × 2 principal sub-

matrix G of M. Suppose i1 ∈ Jr and i2 ∈ Js with r 6= s. Then G is a

2 × 2 principal submatrix of a representative submatrix of A and hence

is copositive. Suppose i1, i2 ∈ Jr. Then G is of the form

[

a a

b b

]

. Now the

copositivity of the representative submatrices of A implies that all the diag-

onal entries of M are nonnegative and hence both a and b are nonnegative.

It follows that G is copositive.

Now we show that any 3 × 3 principal submatrix of M is copositive.

Let i1, i2, i3 be the row and column indices of a 3×3 principal submatrix

G of M. If i1, i2, i3 are from 3 distinct sets Jr, Js, Jt, then G is a principal

submatrix of a representative submatrix of A and therefore is copositive.

If on the other hand, i1, i2, i3 are from the same set Jr, then G is of type
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a a a

b b b

c c c



 with a, b and c as nonnegative. Thus G is a nonnegative matrix

and hence it is copositive.

The only other type of cases to be considered is i1, i2 ∈ Jr and i3 ∈ Js

with r 6= s. In this case G is of the form

G =





a a e

b b f

c c g



 . Let B = G + Gt =





2a a + b c + e

a + b 2b c + f

c + e c + f 2g



 . Note that all the

2 × 2 submatrices of G are copositive. Hence G and therefore G + Gt are

copositive of order 2.

Consider the submatrix

Bαα =

[

2a a + b

a + b 2b

]

where α = {1, 2}.

Note that det Bαα = 4ab− (a + b)2 = −(a − b)2 ≤ 0.

Suppose B is not copositive. Note that all 2× 2 submatrices are copos-

itive. Hence B is copositive matrix of exact order 2. From Theorem 8.2

part (ii), it follows that det(B) < 0 and B−1 ≤ 0 with off-diagonal entries

strictly negative by Theorem 8.2 part (iii).

However (3, 3)th element of B−1 = det Bαα

det(B) ≥ 0 which contradicts The-

orem 8.2 part(iii). Therefore B = G + Gt is copositive. So, any principal

submatrix of order 1, 2 and 3 of M is copositive.

Let us make the induction hypothesis that every principal submatrix of

M of order p or less is copositive. Now suppose G is a principal submatrix

of order (p+1). If G is a submatrix of a representative submatrix of A then

by hypothesis G is copositive. Otherwise, there are at least two columns of

G which are identical. Suppose the rows i1, . . . , ip+1 of M are the rows and

columns of G. Then there are at least two indices ir, it such that ir, it ∈ Js

for some s.

Suppose G is not a copositive matrix. Then (G+Gt) is also not coposi-

tive. By our induction hypothesis G is a copositive matrix of exact order p.

By Theorem 8.2 part(i), (G + Gt) is positive definite of order (p− 1). Note

that the 2 × 2 submatrix containing the row and column indices ir, it of

(G+Gt) is of the form

[

2a a + b

a + b 2b

]

and its determinant is −(a− b)2 ≤ 0.

This is a contradiction to Theorem 8.2 part(i). This completes the proof of

the theorem. �



November 14, 2007 11:15 World Scientific Book - 9in x 6in ch8SKN˙AKD3

Complementarity Problem involving Vertical Block Matrices 121

Lemma 8.3. Suppose A is an m × k vertical block matrix of type

(m1, . . . , mk) and M is its equivalent matrix. If M is copositive-plus, then

every representative submatrix of A is copositive-plus.

Proof. This follows from the inheritance property of copositive-plus ma-

trices. See [Cottle, Habetler and Lemke (1970)]. �

The converse of the above lemma is not true. This is illustrated in the

following example given in [Mohan, Neogy and Sridhar (1996b)].

Example 8.1. Let A =





1 −1

0 −1

1 0



 be a vertical block matrix of type (2, 1).

Both the representative submatrices of A are clearly copositive-plus. How-

ever the equivalent matrix M is not copositive-plus.

However, if all the representative submatrices of a vertical block matrix A

are copositive-plus, then A is a vertical block Q0 matrix, even though its

equivalent matrix M need not be a copositive-plus matrix. A constructive

proof of this is given by [Cottle and Dantzig (1970)].

Lemma 8.4. [Mohan, Neogy and Sridhar (1996a)][Lemma 6.1, p.213]

Let A be a given vertical block matrix of type (m1, m2, . . . , mk). Let M be

the equivalent square matrix of order m. VLCP(0, A) has a unique solution

if and only if the equivalent LCP(0, M) has a unique solution.

Thus essentially A is a vertical block R0-matrix if and only if M is an

R0-matrix. Note that a vertical block R0-matrix need not guarantee its

representative submatrices as R0.

Recall that a vertical block matrix A of order m × k and type

(m1, . . . , mk) has F1(L2, R0, copositive-star)-property if every represen-

tative submatrix of A is F1(L2, R0, copositive-star).

[Mohan and Neogy (1996a)] observes that if a vertical block matrix A

of type (m1, . . . , mk) has L1 property then the equivalent matrix M ∈ L1.

Further, [Mohan, Neogy and Sridhar (1996b)] proved that if a vertical block

matrix A of type (m1, . . . , mk) has L2 property then the equivalent matrix

M ∈ L2.

The following theorem generalizes this result.

Theorem 8.6. Suppose a vertical block matrix A of order m × k and type

(m1, . . . , mk) has F1-property. Then the equivalent matrix M ∈ F1.
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Proof. Suppose (w∗, z∗) solves LCP(0, M). We first construct a slightly

different solution (w̄, z̄) to LCP(0, M) as follows:

We take w̄ = w∗. Suppose for some r1, r2 ∈ Jr, we have z∗
r1

> 0, z∗r2
> 0.

It follows that w∗
r1

= w∗
r2

= 0. Hence also w̄r1
= w̄r2

= 0. Now choose

rt ∈ Jr as any index, 1 ≤ t ≤ mr such that w̄rt
= min

1≤s≤mr

w̄rs
. Note that

w̄rt
= 0. We define z̄rt

=

mr
∑

i=1

z∗ri
and z̄ri

= 0 for ri 6= rt. Consider the set

L = {1t, 2t, . . . , kt}. Note that L ∩ Ji is a singleton set for each 1 ≤ i ≤ k

and MLL is a representative submatrix of A. Note also that (w̄L, z̄L) solves

LCP(0, MLL) where MLL is a square matrix of order k.

Let α = {i : z̄i
L > 0}. Since by hypothesis MLL ∈ F1, therefore for

any nonempty set α ⊆ {1, 2, . . . , k} with z̄α
L ∈ R|α|, z̄α

L > 0, Mαα
LL z̄α

L = 0,

M ᾱα
LL z̄α

L ≥ 0 ⇒ ∃ 0 6= xα
L ∈ R|α|, xα

L ≥ 0 such that xα
LMαα

LL = 0, xα
LM ᾱα

LL ≤ 0,

Now define x̄ ∈ Rm by taking x̄L = xL and x̄L̄ = 0. It follows that

M ∈ F1. �

Corollary 8.1. If a vertical block matrix A of order m × k and type

(m1, . . . , mk) has copositive-star (T )-property. Then the equivalent matrix

M is a copositive-star matrix(a matrix with T -property).

Corollary 8.2. If a vertical block matrix A of order m × k and type

(m1, . . . , mk) has L2 (R0)-property, then the equivalent matrix M ∈ L2

(R0).

The following example shows that the converse of the above theorem is

not true.

Example 8.2. Let A =









0 0 1

0 0 1

1 −1 1

−2 1 1









be a vertical block matrix of type

(1, 1, 2). The equivalent matrix is given by M =









0 0 1 1

0 0 1 1

1 −1 1 1

−2 1 1 1









. It is easy to

verify that M ∈ R0 and M ∈ F1 whereas none of the representative matrix

is an F1-matrix.

Lemma 8.5. A is a vertical block N -matrix of the first category if and only

if every representative submatrix is an N -matrix of the first category.
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Definition 8.1. A matrix A ∈ Rn×n is said to be an N̄ -matrix if there

exists a sequence {A(k)} where A(k) = [a
(k)
ij ] are N -matrices such that a

(k)
ij

→ aij for all i, j ∈ {1, 2, . . . , n}.

Definition 8.2. We say that A is a vertical block N̄ -matrix of type

(m1, . . . , mk) if every representative submatrix is an N̄-matrix.

Example 8.3. Let A =









0 −1 0

0 0 1

0 1 0

1 0 0









be a vertical block matrix of type

(1, 1, 2). It is easy to see that A ∈ vertical block N̄ of type (1, 1, 2) since

we can get A as a limit point of the sequence A(k) =









− 1
k

−1 2
k

− 1
k
− 1

k
1

4
k

1 − 1
k

1 2
k
− 1

k









of

vertical block N -matrices of type (1, 1, 2) which converges to A as k → ∞.

Lemma 8.6. Suppose A is a vertical block N̄ -matrix of type (m1, . . . , mk).

Let M be the equivalent matrix. Then there exists a nonempty subset ν

of {1, 2, . . . , n} such that M can be written in the partitioned form as (if

necessary, after a principal rearrangement of its rows and columns)

M =

[

Mνν Mνν̄

Mν̄ν Mν̄ν̄

]

where Mνν ≤ 0, Mν̄ν̄ ≤ 0, Mνν̄ ≥ 0, Mν̄ν ≥ 0.

Proof. This follows from Remark 3.1 in [Mohan, Sridhar and

Parthasarathy (1994)][p. 623] and from the definition of vertical block

N̄ -matrices. �

We make use of the following result due to [Murty (1972)] and [Saigal

(1972)].

Theorem 8.7. If M ∈ R0 and |S(q, M)|=odd, then A ∈ Q.

Theorem 8.8. Let A be a vertical block N̄ -matrix of type (m1, . . . , mk) with

R0-property and M be the equivalent matrix. Assume v(M) > 0. Then A

is a vertical block Q-matrix.

Proof. Since A is a vertical block matrix with R0-property then by Corol-

lary 8.2 M is a R0-matrix.
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Note that M can be written in the partitioned form as (if necessary,

after a principal rearrangement of its rows and columns)

M =

[

Mνν Mνν̄

Mν̄ν Mν̄ν̄

]

where Mνν ≤ 0, Mν̄ν̄ ≤ 0, Mνν̄ ≥ 0, Mν̄ν ≥ 0.

Note that M is an N0-matrix. Let q > 0, q ∈ Rm be nondegenerate with

respect to M (i.e., (w, z) is a solution to LCP(q, M) implies that (w+z) > 0.

Then clearly LCP(q, M) has exactly 3 solutions; w1 = q, z1 = 0,

w2 =

[

0

w2
ν̄

]

; z2 =

[

z2
ν

0

]

where z2
ν > 0 and w2

ν̄ = qν̄ + Mν̄νz2
ν > 0 and

w3 =

[

w3
ν

0

]

; z3 =

[

0

z3
ν̄

]

where z3
ν̄ > 0 and w3

ν = qν + Mνν̄z3
ν̄ > 0.

Since M ∈ R0 and LCP(q, M) has an odd number of solutions, by

Theorem 8.7, it follows that A ∈ Q. �

The following approach is proposed by [Mohan, Neogy and Sridhar

(1996a)] which makes it easier to calculate the VLCP degree of a verti-

cal block matrix A. Given the vertical block matrix A of type (m1, . . . , mk)

consider the mapping FA : Rm → Rm defined as follows:

Given x ∈ Rm, let x+ and x− be the positive and negative parts of x.

Let

FA(x) = x+ −
k

∑

i=1

A·i (
∑

j∈Ji

x−
j ).

It is easy to see that given a q ∈ Rm, if there is a x such that FA(x) = q,

then defining w = x+ and z ∈ Rk by taking zi =
∑

r∈Ji

x−
r , we see that (w, z)

solves VLCP(q, A). Actually, it is easy to see that the VLCP map FA(x)

defined above is the same as LCP map FM (x) where M is the equivalent

matrix of A.

If we define the VLCP degree of A to be the degree of the piecewise

linear map FA(x), then it turns out that this is also the LCP degree of the

equivalent square matrix of order m.

Theorem 8.9. Suppose, A is a vertical block N̄ -matrix of type

(m1, . . . , mk) with v(M) > 0. Then |deg(A)| = odd.

Proof. This follows from the fact that LCP(q, M) has odd number of

solutions for any non-degenerate q > 0 with respect to M. Therefore, LCP

degree of the equivalent matrix M is odd. Since, VLCP degree of A is
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also same as LCP degree of the equivalent square matrix M of order m,

therefore |deg(A)| = odd. �

8.4 Computing VLCP Solution Using the Neural Network

Dynamics

Neural networks approaches in optimization were introduced in early 80’s

(see [Tank and Hopfield (1986)],[Kennedy and Chua (1988)]). It is basically

to establish a nonnegative energy function and a dynamic system that rep-

resents an artificial neural network. Normally, the dynamic system is in

the form of first order differential equation. The concept behind the neural

network based optimization techniques is that the objective function and

constraints are mapped into a closed-loop network so that when a constraint

violation occurs, the magnitude and direction of the violation are fed back

to adjust the states of the neurons in the network. The energy function of

the network decreases until it attains a minimum and the states of the neu-

rons of the network are taken to be the minimizer of the original problem.

Mainly pivoting algorithms are used for solving complementarity problem

with a vertical block matrix apart from complete enumeration procedure.

But pivoting algorithms are heavily dependent on matrix classes. The neu-

ral network approach seems to be promising for solving complementarity

problems.

8.4.1 Proposed Neural Network Dynamics

We propose the following recurrent neural network model which is described

by the following nonlinear dynamic system.

dxj

dt
= max

i=1,...,mj

(−q − A(x + k
dx

dt
)), xj > 0 (8.7)

Theorem 8.10. If the neural network whose dynamics is described by the

differential equations (8.7) converges to a stable state then the convergence

state is a solution for VLCP.

Proof. Consider a vertical block matrix A of type (m1, . . . , mk). Equation

(8.7) can be written as

dxj

dt
= max

i=1,...,mj

(−q − A ∗ (x + dx))j
i , if xj > 0 (8.8)
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dxj

dt
= max{(−q − A ∗ (x + dx))j

1, . . . , (−q − A ∗ (x + dx))j
mj

, 0}, if xj = 0

(8.9)

Note that (8.9) ensures that x will be bounded from below by 0. Let

lim
t→∞

x(t) = x∗. By stability of convergence dx∗

dt
= 0. So, (8.8) and (8.9)

become

(−q − Ax∗)j
i ≤ 0 (8.10)

x∗
j

mj
∏

i=1

(−q − Ax∗)j
i = 0 (8.11)

Therefore,

[−q − Ax∗] ≤ 0, x∗ ≥ 0 (8.12)

x∗
j

mj
∏

i=1

(−q − Ax∗)j
i = 0 (8.13)

Therefore, we get the inequalities (8.3)-(8.4). By definition, x∗ is a solution

of VLCP(q, A). �

Remark 8.1. In order to solve the differential equations (8.7), the Euler’s

method may be used. The following Matlab code describes the discrete

implementation of our neural network. Coefficient k is set to equal to the

time step dt to simplify the calculations.

while ‖dx‖ > ε

for j = 1 : k;

for i = (mj + 1) : (mj + mj+1);

dxj = dt ∗ maxi(−q − A ∗ (x + dx))j
i ;

end;

end;

dx = max(x + dx, 0) − x; %(to make x ≥ 0)

x = x + dx;

end.

8.5 Simulation Results

We conduct a number of numerical experiments for finding solutions of

VLCP(q, A) to demonstrate the effectiveness and efficiency of the proposed

neural network dynamics. The simulation is carried out on Matlab to solve
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the differential equations using Euler’s method. To start with, we initialize

x and dx at t = 0. We take small positive values for step length dt and

ε. The dynamics stops if ‖dx‖ < ε. The simulation runs on a Compaq PC

with intel pentium 4 processor 1.99 GHz 248 MB RAM. We mention two

examples below.

Example 8.4. Consider the VLCP(q, A) where A is a vertical block P -

matrix of type (1,1,1,1,2):

A =



















1 −8 −10 −1 −1

0 1 1 1 1

0 −1 1 1 1

0 −1 1 1 1

0 1 1 1 1

0 1 1 1 1



















q =



















−1

−1

−1

−1

−1

−1



















The dynamics converges to the point (6.4907, 0.0001, 0.5000, 0.5000, 0.0001)

after 62 iterations with a step of 0.1 and ε equal to 0.001. The solution for

this problem is (6.5, 0, 0.5, 0.5, 0).

Example 8.5. [Mohan, Neogy, Parthasarathy and Sinha (1999)] consider

an example to formulate a discounted zero-sum stochastic game with ARAT

structure as VLCP(q, A), where A is vertical block matrix of type (2,2,2,2).

Though, the matrix A is not an R0-matrix, Cottle-Dantzig algorithm pro-

cesses this VLCP(q, A) and provides a solution. In this paper, we consider

the same VLCP(q, A) and show that the proposed dynamics is able to con-

verge to the same solution.

A =



























− 1
4 0 3

4 0

− 1
4 0 3

4 0

0 − 1
4 0 3

4

0 − 1
4 0 3

4

− 3
4 0 1

4 0

−1 1
4 0 1

4

0 − 3
4 0 1

4
1
4 −1 1

4 0



























q =



























−4

−5

−3

−4

3

6

6

2



























The complementary solution as obtained by using Cottle-Dantzig algo-

rithm is (7, 6, 9, 7.33). The dynamics converges to (7, 6.0076, 9, 7.3538) just

after 669 iterations with a step of 0.5 and ε as 0.01.
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Computational experience on the performance of the proposed model is

reported in the following table and figures.

Example dt Norm Iteration Solution Optimal
No. Solution

8.4 0.1 0.001 62 (6.4907, 0.0001, (6.5, 0, 0.5, 0.5, 0)

0.5000, 0.5000, 0.0001)
8.5 0.5 0.01 669 (7, 6.0076, 9, 7.3538) (7, 6, 9, 7.33)

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

iteration

va
lu

es

0 100 200 300 400 500 600 700
0

5

10

15

iteration

va
lu

es

Figure 1 Example No. 8.4 Figure 2 Example No. 8.5

From the above tables and figures (see Figure 1-2), we observe that the

proposed model computes solution for VLCP involving different classes of

vertical block matrices. In fact, the proposed neural network model was

tried for a large number of test problems and it shows that the proposed

model has the faster convergence to compute a solution of a vertical LCP

which is very encouraging.
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Abstract

We propose a fuzzy extension to twin support vector machines for binary data
classification. Here, a fuzzy membership value is assigned to each pattern, and
points are classified by assigning them to the nearest of two non parallel planes
that are close to their respective classes. Fuzzy Twin Support Vector Machines
determine two non-parallel planes by solving two related support vector machines-
type problems, each of which is smaller than conventional fuzzy support vector
machines. The approach can be used to obtain an improved classification when
one has an estimate of the fuzziness of samples in either class.

Key Words: Support vector machines, pattern classification, machine learning,
fuzzy, generalized eigenvalues, eigenvalues and eigenvectors.
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9.1 Introduction

The last decade has witnessed the evolution of Support Vector Machines
(SVMs) as a powerful paradigm for pattern classification and regression
[Burges (1998)]-[Cherkassky and Mulier (1998)]. SVMs emerged from re-
search in statistical learning theory on how to regulate the tradeoff between
structural complexity and empirical risk. One of the most popular SVM
classifiers is the “maximum margin” one, that attempts to reduce gener-
alization error by maximizing the margin between two disjoint half planes
[Burges (1998)]-[Cherkassky and Mulier (1998)]. The resultant optimiza-
tion task involves the minimization of a convex quadratic function subject
to linear inequality constraints.

Taking motivation from [Mangasarian and Wild (2006)], recently, the
present authors [Jayadeva, Khemchandani and Chandra (2007)] have pro-
posed a non-parallel plane classifier for binary data, termed as the Twin
Support Vector Machine(TWSVM). In this approach, data points of each
class are proximal to one of two non-parallel planes. The non-parallel planes
are obtained by solving a pair of small sized quadratic programming prob-
lems (QPPs) compared to SVM where we solve a single large size QPP.
In SVM, the QPP has all data points in the constraints, but in TWSVM
they are distributed in the sense that the patterns of one class give the
constraints of the other QPP, and vice-versa. This strategy of solving two
smaller sized QPPs rather than one large QPP, makes TWSVMs work faster
than standard SVMs.

In practice, there are often situations where patterns belonging to one
class play a more significant role in classification. Traditionally such prob-
lems have been solved by fuzzy SVMs, e.g. [Lin and Wang (2002)], and
fuzzy proximal SVMs [Jayadeva, Khemchandani and Chandra (2004)],
where patterns of the more important class are assigned higher membership
values.

In this paper, we propose a fuzzy extension to twin support vector
machines, termed as the Fuzzy Twin Support Vector Machine (FTWSVM)
for binary data classification. Similar to TWSVMs, FTWSVMs also aim
at generating two non-parallel planes such that each plane is closer to one
of the two classes and is as far as possible from the other. The introduction
of fuzzy memberships allow us to improve the overall error rate since each
of the two problems being solved can be associated with a different set
of fuzzy memberships, thereby improving the accuracy for each problem
independent of the other.
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The paper is organized as follows: Section 9.2 briefly dwells on SVMs,
and also introduces the notations used in the rest of the paper. Section 9.3
discusses linear Twin Support Vector Machines for binary data classifica-
tion. Section 9.4 introduces linear Fuzzy Twin Support Vector Machines.
Section 9.5 deals with experimental results and Section 9.6 contains con-
cluding remarks.

9.2 Support Vector Machines

Let the patterns to be classified be denoted by a set of m row vectors
Ai, (i = 1, 2, . . . ,m) in the n-dimensional real space Rn, where Ai =
(Ai1, Ai2, . . . , Ain)T . Also, let yi ∈ {1,−1} denote the class to which the ith

pattern belongs. We first consider the case when the patterns belonging to
the two classes are linearly separable. Then, we need to determine w ∈ Rn

and b ∈ R such that

Aiw ≥ 1− b for yi = 1, and

Aiw ≤ −1− b for yi = −1. (9.1)

The plane described by

wT x + b = 0 (9.2)

lies midway between the bounding planes given by

wT x + b = 1 and wT x + b = −1, (9.3)

and separates the two classes from each other with a margin of
1

||w||2
on

each side. In other words, the margin of separation between the two classes

is given by
2

||w||2
. Here, ||w||2 denotes the L2 norm of a vector w. Data

samples which lie on the planes given by (9.3) are termed as support vectors.
The maximum margin classifier, which is the standard SVM, is obtained
by maximizing this margin, and is equivalent to the following problem

(SV M1) Min
w,b

1
2
wT w

subject to

Aiw ≥ 1− b for yi = 1,

Aiw ≤ −1− b for yi = −1. (9.4)
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When the two classes are not linearly separable, there will be an error in
satisfying the inequalities (9.1) for some patterns, and we can modify (9.1)
to

Aiw + qi ≥ 1− b for yi = 1,

Aiw − qi ≤ −1− b for yi = −1,

qi ≥ 0, i = 1, 2 . . . , m, (9.5)

where qi denotes the error variable associated with the ith data sample. In
this case, the classifier is termed as a “soft margin” one, and it approxi-
mately classifies points into two classes with some error. The classification
of a given test sample x is obtained by determining the sign of wT x + b.
The soft margin depends on the value of the non-negative error variables
qi. In this case, one needs to choose a trade-off between the margin and
the error, and the standard SVM formulation for classification of the data
points with a linear kernel is given by

(SV M2) Min
w, b, q

c eT q +
1
2
wT w

subject to

Aiw + qi ≥ 1− b for yi = 1,

Aiw − qi ≤ −1− b for yi = −1,

qi ≥ 0, i = 1, 2 . . . , m. (9.6)

Here, c denotes a scalar whose value determines the trade-off; a larger
value of c emphasizes the classification error, while a smaller one places
more importance on the classification margin.

In practice, rather than solving (SVM1) and (SVM2), we solve their
dual problems to get the appropriate hard or soft margin classifier. The
case of nonlinear kernels is handled on lines similar to linear kernels [Gunn
(1998)].

9.3 Twin Support Vector Machines

In this section, we give a brief outline of Twin Support Vector Machines
(TWSVMs)[Jayadeva, Khemchandani and Chandra (2007)]. As mentioned
earlier, TWSVM classifier is obtained by solving the two QPPs, which have
the formulation of a typical SVM, except that not all patterns appear in
the constraints of either problem at the same time.
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Let the number of patterns in classes 1 and −1 be given by m1 and
m2 and are represented by matrices A and B, respectively. Therefore, the
sizes of matrices A and B are (m1 × n) and (m2 × n), respectively. The
TWSVM classifier is obtained by solving the following pair of quadratic
programming problems

(TWSV M1) Min
w(1), b(1), q

1
2 (Aw(1) + e1b

(1))T (Aw(1) + e1b
(1)) + c1e

T
2 q

subject to

−(Bw(1) + e2b
(1)) + q ≥ e2,

q ≥ 0, (9.7)

and,

(TWSV M2) Min
w(2), b(2), q

1
2 (Bw(2) + e2b

(2))T (Bw(2) + e2b
(2)) + c2e

T
1 q

subject to

(Aw(2) + e1b
(2)) + q ≥ e1,

q ≥ 0, (9.8)

where c1, c2 > 0 are parameters, and e1 and e2 are vectors of ones of
appropriate dimensions.

In a nutshell, TWSVMs comprise of a pair of quadratic program-
ming problems, such that in each QPP the objective function corre-
sponds to a particular class, and the constraints are determined by pat-
terns of the other class. Thus, TWSVMs give rise to two smaller sized
QPPs. In TWSVM1, patterns of class 1 are clustered around the plane
xT w(1) + b(1) = 0. Similarly in TWSVM2, patterns of class −1 cluster
around the plane xT w(2) + b(2) = 0.

The Wolfe dual [Mangasarian (1994)] of (TWSVMs) is obtained by con-
sidering Karush-Kuhn-Tucker conditions and is given by

(DTWSV M1) Max
α

eT
2 α− 1

2αT G(HT H)−1GT α

subject to

0 ≤ α ≤ c1. (9.9)

Similarly, the Wolfe Dual of (TWSVM2) is given by

(DTWSV M2) Max
γ

eT
1 γ − 1

2γT P (QT Q)−1PT γ

subject to

0 ≤ γ ≤ c2, (9.10)
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where, H = [A e1], G = [B e2], P = [A e1], Q = [B e2], and the

augmented vectors u =
[

w(1)

b(1)

]
, and v =

[
w(2)

b(2)

]
, are given by

u = (HT H)−1GT α, (9.11)
and

v = (QT Q)−1PT γ, (9.12)
respectively. In the above discussion, matrices HT H and QT Q are of size
(n + 1)× (n + 1), where in general, n is much smaller than the number of
patterns of classes 1 and −1.

Once vectors u and v are known from (9.11) and (9.12), the separating
planes

xT w(1) + b(1) = 0 and xT w(2) + b(2) = 0 (9.13)
are obtained. A new data sample x ∈ Rn is assigned to class r (r = 1, 2),
depending on which of the two planes given by (9.13) it lies closest to, i.e

xT w(r) + b(r) = min
l=1,2

|xT w(l) + b(l)|, (9.14)

where | · | is the perpendicular distance of point x from the plane xT w(l) +
b(l) = 0, l = 1, 2.

9.4 Fuzzy Twin Support Vector Machines

In this section, we introduce fuzzy extension of twin support vector ma-
chines (FTWSVMs), which incorporates the information of fuzziness in the
data. FTWSVMs obtain non-parallel planes around which the data points
of the corresponding class get clustered.

The FTWSVM classifier is obtained by solving the following pair of
quadratic programming problems
(FTWSV M1) Min

w(1), b(1), q

1
2 (S1Aw(1) + e1b

(1))T (S1Aw(1) + e1b
(1)) + c1e

T
2 q

subject to

−(S2Bw(1) + e2b
(1)) + q ≥ e2,

q ≥ 0, (9.15)
and,
(FTWSV M2) Min

w(2), b(2), q

1
2 (S2Bw(2) + e2b

(2))T (S2Bw(2) + e2b
(2)) + c2e

T
1 q

subject to

(S1Aw(2) + e1b
(2)) + q ≥ e1,

q ≥ 0, (9.16)



November 14, 2007 11:18 World Scientific Book - 9in x 6in ch9fuzzytwin˙april27

Fuzzy Twin Support Vector Machines for Pattern Classification 137

where c1, c2 > 0 are parameters, e1 and e2 are vectors of ones of appropriate
dimensions, and S1, S2 are the matrices of membership values of two classes,
respectively.

The algorithm finds two hyperplanes, one for each class, and classifies
points according to which hyperplane a given point is closest to. The first
term in the objective function of (9.15) or (9.16) is the weighted sum of
squared distances from the hyperplane to points of one class. Therefore,
minimizing it tends to keep the hyperplane close to points of one class
(say class 1). The constraints require the hyperplane to be at a weighted
distance of at least 1 from points of the other class (say class -1); a set
of error variables is used to measure the error wherever the hyperplane is
closer than this minimum distance of 1. The second term of the objective
function minimizes the sum of error variables, thus attempting to minimize
mis-classification due to points belonging to class -1.

Further, FTWSVM is approximately four times faster than the usual
fuzzy SVM. This is because the complexity of the usual FSVM is no more
than m3, and FTWSVM solves two problems viz. (9.15) and (9.16), each
of roughly half of the size.

The Lagrangian corresponding to the problem FTWSVM1 (9.15), is
given by

L(w(1), b(1), q, α, β) =
1
2
(S1Aw(1) + e1b

(1))T (S1Aw(1) + e1b
(1))

+c1e
T
2 q − αT (−(S2Bw(1) + e2b

(1)) + q − e2))− βT q (9.17)

where α = (α1, α2 . . . αm2)
T , and β = (β1, β2 . . . βm2)

T are the vectors of
Lagrange multipliers. The Karush-Kuhn-Tucker (K. K. T.) necessary and
sufficient optimality conditions [Mangasarian (1994)] for (FTWSVM1) are
given by

S1A
T (S1Aw(1) + e1b

(1)) + S2B
T α = 0 (9.18)

eT
1 (S1Aw(1) + e1b

(1)) + eT
2 α = 0 (9.19)

c1e2 − α− β = 0 (9.20)

−(S2Bw(1) + e2b
(1)) + q ≥ e2, q ≥ 0 (9.21)

αT (−(S2Bw(1) + e2b
(1)) + q − e2) = 0, βT q = 0 (9.22)

α ≥ 0, β ≥ 0. (9.23)

Since β ≥ 0, from (9.20) we have

0 ≤ α ≤ c1. (9.24)
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Next, combining (9.18) and (9.19) leads to

[(S1A)T eT
1 ][S1A e1]

[
w(1)

b(1)

]
+ [(S2B)T eT

2 ]α = 0. (9.25)

We define
H = [S1A e1], G = [S2B e2], (9.26)

and the augmented vector u =
[

w(1)

b(1)

]
. With these notations, (9.25) may

be rewritten as
HT Hu + GT α = 0 i.e. u = −(HT H)−1GT α. (9.27)

Although HT H is always positive semidefinite, it is possible that it may not
be well conditioned in some situations. On the lines of the regularization
term introduced in Ridge Regression approaches such as [Saunders, Gam-
merman and Vovk (1998)], we introduce a regularization term εI, ε > 0,
to take care of problems due to possible ill-conditioning of HT H. Here,
I is an identity matrix of appropriate dimensions. Therefore, (9.27) gets
modified to

u = −(HT H + εI)−1GT α. (9.28)
However in the following, we shall continue to use (9.27) with the under-
standing that, if the need be, (9.28) is to be used for the determination of
u.

Using (9.17) and the above K.K.T. conditions, we obtain the Wolfe dual
[Mangasarian (1994)] of FTWSVM1 as follows

(FDTWSV M1) Max
α

eT
2 α− 1

2αT G(HT H)−1GT α

subject to

0 ≤ α ≤ c1. (9.29)
Similarly, we consider FTWSVM2 and obtain its dual as

(FDTWSV M2) Max
γ

eT
1 γ − 1

2γT P (QT Q)−1PT γ

subject to

0 ≤ γ ≤ c2. (9.30)
Here, P = [S1A e1], Q = [S2B e2], and the augmented vector v =[

w(2)

b(2)

]
, which is given by

v = (QT Q)−1PT γ. (9.31)
Once (FDTWSVM1) and (FDTWSVM2) are solved to obtain the planes
(9.13), a new pattern x ∈ Rn is assigned to class 1 or class −1 in a manner
similar to the linear TWSVM case (9.14).
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9.5 Experimental Results

Fuzzy Twin Support Vector Machine (FTWSVM), TWSVM, Fuzzy SVM
(FSVM), and SVM data classification methods were implemented by using
MATLAB 7 [Matlab] running on a PC with an Intel P4 processor (3 GHz)
with 1 GB RAM. The methods were evaluated on datasets from the UCI
Machine Learning Repository [Blake and Merz]. Generalization error was
determined by following the standard ten fold cross-validation methodology
[Duda, Hart and Strok (2001)].

Let us consider a situation where the patterns belonging to a particular
class are much more important, or their membership is less ambiguous, in
comparison to patterns of the other class. In such situations, we would
like to classify patterns of this particular class preferentially. For example,
when screening patients who are clearly healthy from those who require
further examination, it is desirable to err on the side of caution. In such
situations, we may assign a membership value of 1 to patterns of the class
for which a higher generalizability is desired, and assign relatively smaller
membership values to patterns belonging to the remaining class.

As an illustration, we now consider the case where the membership of
patterns of class 1 is less ambiguous and patterns of class −1 are associated
with a higher degree of ambiguity. Therefore, data samples belonging to
class 1 are assigned a membership value s1, while samples belonging to class
-1 are assigned a membership value s2, i.e. in this case s1 < s2. Hence,
while implementing (FTWSVM1), we assign a membership value of 1 to
patterns of class 1 and s2 to patterns of class −1, and while implementing
(FTWSVM2), we assign a membership value of 1 to patterns of class −1,
and s1 to patterns of class 1.

Tables 1, 2, 3 and 4 summarize FTWSVM performance on some bench-
mark datasets available at the UCI machine learning repository [Blake and
Merz]. The table compares the performance of the FTWSVM classifier
with that of SVM [Gunn (1998)], FSVM and TWSVM and illustrate that
an appropriate assignment of the fuzzy membership values can be used
to improve the classification accuracy. Optimal values of c1 and c2 were
obtained by using a tuning set comprising of 10% of the dataset.

Table 5 compares the training time of FSVM with that of FTWSVM
for ten folds. The table indicates that FTWSVM is not just effective, but is
almost four times faster than a conventional FSVM, because it solves two
quadratic programming problems of a smaller size instead of a single QPP
of a very large size.
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Table I: Percentage Test Set Accuracy of Heart-statlog with a Linear Kernel

Data Set FTWSVM TWSVM FSVM SVM

Class 1 83.15±8.91 74.07±13.61 82.27±9.42 80.01±9.25
Class -1 84.64±8.07 90.82±9.77 84.48±8.64 85.64±9.21
Overall 83.70±7.07 83.33±7.81 83.70±6.87 83.33±7.08

here(s1 = 0.9, s2 = 0.7))

Table II: Percentage Test Set Accuracy of Sonar with a Linear Kernel

Data Set FTWSVM TWSVM FSVM SVM

Class 1 78.70±14.83 72.62±14.24 77.54±11.81 75.91±12.95
Class -1 76.42±10.36 80.90±11.15 79.07±5.95 80.51±6.91
Overall 76.86±8.41 75.40±7.82 76.86±5.51 76.38±5.75

here(s1 = 0.8, s2 = 1)

Table III: Percentage Test Set Accuracy of Ionosphere with a Linear Kernel

Data Set FTWSVM TWSVM FSVM SVM

Class 1 72.41±11.75 61.40±11.33 67.40±9.31 62.92±12.24
Class -1 94.72±3.30 99.47±1.58 94.14±3.93 96.33±3.95
Overall 87.17±3.45 86.33±4.39 85.19 ±3.30 85.18 ±2.50

here(s1 = 1, s2 = 0.7)

Table IV: Percentage Test Set Accuracy of Cleveland Heart with a Linear Kernel

Data Set FTWSVM TWSVM FSVM SVM

Class 1 84.74±9.29 87.85±4.53 84.67±5.96 87.07±7.93
Class -1 81.84±7.52 78.14±10.6 80.27±9.85 77.38±10.65
Overall 83.48±5.20 83.49±4.91 82.83±5.87 82.83±5.11

here(s1 = 0.1, s2 = 1)

Table V: Training Times (in seconds)

Data Set FTWSVM FSVM
Sonar (208×60) 6.64 24.9
Heart-statlog (270×14) 11.3 50.9
Heart-c (303×14) 14.92 68.2
Ionosphere (351×34) 25.9 102.2
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9.6 Concluding Remarks

In this paper, we have proposed a fuzzy extension to TWSVM approach
for data classification, termed as FTWSVM. In FTWSVM, we solve two
quadratic programming problems of a smaller size instead of a large sized
one as we do in traditional Fuzzy SVMs. This makes FTWSVM almost four
times faster than a standard Fuzzy SVM classifier. Furthermore, in contrast
to a single hyperplane as given by traditional Fuzzy SVMs, FTWSVMs
yield two non-parallel planes such that each plane is close to one of the
two datasets, and is distant from the other dataset. The incorporation of
fuzzy memberships into each of the twin problems allows us to improve
the error on both subsets. In terms of generalization, FTWSVM compares
favourably with Fuzzy SVM and TWSVM.

Another line of work in FTWSVMs which immediately suggests itself
is to use a nonlinear kernel to perform the classification task in a feature
space, with obvious applications in the case of non-linearly separable data
sets and its extension to multicategory classification.
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Abstract

Our objective is to provide an overview of the minimum sum of absolute errors
(MSAE) regression. Although proposed fifty years before the concept of least
squares regression, the MSAE regression did not receive much attention until the
second half of the last century. During this period, several very effective and
efficient algorithms to compute the MSAE estimates of the unknown parameters
of the multiple linear regression model were proposed and studied. Today a
number of very good computer programs are available in the open literature
and in publicly available computer packages. Efficient algorithms and computer
programs for the selection of models with fewer variables are also available.

The asymptotic and small sample properties of the MSAE estimators have
been studied. Based on these results, formulae for confidence intervals and pro-
cedures for testing hypotheses have been developed.

Some of these results have appeared in survey articles in the literature. How-
ever, since their publication, a number of new results have appeared in he litera-
ture that makes the MSAE regression procedure more attractive. For example, an
R2 like measure for the MSAE regression is now available. We now understand
how special characteristics unique to the MSAE regression explain its robust-
ness to certain type of outliers. And unlike least squares regression, variations

143
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in the values of the response and predictor variables within definable limits do
not change the fitted MSAE regression. We highlighted those features of MSAE
regression in this paper.

Key Words: Algorithms, coefficient of determination, computer programs,

goodness-of-fit, robustness, r square, statistical inference, statistical properties,

variable selection

10.1 Introduction

It is interesting to note that minimization of absolute error regression

(MSAE) was introduced about mid-eighteenth century when Boscovich

(1757) proposed that a straight line should be fitted to three or more non-

collinear points in a plane so as to satisfy two conditions, namely that: (i)

the sum of the positive errors and the sum of absolute negative errors of the

given points from the fitted line be equal in magnitude and (ii) the sum of

the absolute errors be minimum. Boscovich (1760) developed accordingly a

geometric algorithm for the simple linear regression model. The algebraic

formulation of the algorithm was given by Laplace (1792).

Although proposed a half century before the publication of Legendre’s

“Principle of Least Squares,” the development of the MSAE regression has

been slow. Eisenhart (1961) suggested that this might have been due to

the following factors: the uniqueness of the least squares solution; the rela-

tive computational simplicity of least squares regression; and the thorough

reformulation and development of the method of least squares by Gauss

(1809, 1823, and 1828) and Laplace (1818).

The MSAE regression reappeared in the 1880’s largely due to the work

of Edgeworth. His contributions included that condition (i) of Boscovich

should be dropped so that the minimum in condition (ii) can obtain its

smallest value (Edgeworth, 1887); a discussion of the non-uniqueness of

the MSAE regression; and a demonstration that the MSAE estimator is

maximum likelihood estimator when the random error follows a Laplace

distribution (Edgeworth, 1888). He also developed an algorithm for the

simple linear MSAE regression model. The interested reader may refer to

Farebrother (1987) for further historical details.

Until fifty years ago, the computational problems associated with MSAE

regression in any but the simple regression model effectively prevented its

use. Charnes, Cooper and Ferguson (1955) formulated the MSAE regression

problem as a linear goal programming problem and solved it using the
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simplex method. This development has been of the utmost importance

for its role in making the MSAE regression computationally available to

a broad audience of researchers and practitioners. Since then a number

of very efficient algorithms have been developed for the MSAE regression.

Now it is possible to solve the problem in slightly more computational time

than that required for the least squares regression.

Besides computational difficulties, a serious limitation to wider applica-

tion of the MSAE regression in the past has been the limited development

and knowledge of procedures for statistical inference. However, results from

Monte Carlo studies of small sample properties of the MSAE estimator have

been reported and inference procedures are now available, Dielman (2005).

The MSAE regression is considered a robust alternative to least squares

regression by a number of authors. For example, Huber (1974, p. 927)

stated that with regard to Lp estimators in regression, “p = 1 (minimum

sum of absolute errors regression) gives robustness in a technical sense

(Hampel, 1971), i.e., resistance against arbitrary outliers.” Unlike other ro-

bust regression procedures, the MSAE regression does not require a ‘tuning

constant.’ Because the MSAE regression is resistant to outliers, it provides

a good starting solution for one step and iteratively weighted multi-step

least squares procedures.

The MSAE regression is less sensitive to outliers than the least squares

regression. To some extent, this happens because the inconsistent observa-

tions are treated quite differently by the two procedures. The least squares

regression is drawn to unusual observation(s). The MSAE regression is not

generally so affected. Unusual data points often stand out in MSAE re-

gression. It is useful to observe that the MSAE regression is to the least

squares regression what the sample median is to the sample mean. Both

the sample mean and the least squares regression estimator are determined

and influenced by all the observations whereas the sample median and the

MSAE regression estimator are also influenced by all the observations but

are determined by only a subset of observations. It is well known that the

value of a sample median is unaffected if the magnitude of an observation

is changed such that it remains on the same side of the sample median. A

similar result is true for the MSAE regression.

Since the successful application of the MSAE regression by Charnes,

Cooper, and Ferguson (1955) to determine executive compensation, the

MSAE regression has been used in many situations. Successful applica-

tions of the MSAE regression include estimating investment functions; set-

ting time standards for work elements; detecting data errors in search for



January 24, 2008 17:59 World Scientific Book - 9in x 6in ch10narularev˙paper

146 Mathematical Programming and Game Theory for Decision Making

subsurface formations where mineral resources may exist; modeling data

related to orbiting space objects; in astronomy; modeling a variety of geo-

physical data; estimating cost functions; analyzing seismic data; estimat-

ing pharmokinetic parameters; obtaining estimates of the state of power

systems; and assessing the market value of unsold residential real estate

properties. The use of the MSAE regression has been recommended in eco-

nomic studies where errors with non-finite variance are more representative

of random disturbance than errors with finite variance. Giloni and Padberg

(2002) cited use of the MSAE regression model in predicting stock market

prices. In comparative studies, the MSAE regression has performed as well

as, if not better than, the least squares regression.

It is worth pointing out that the MSAE regression has been studied

in several contexts under a variety of names including the least sum of

absolute errors (LSAE); minimum (or least) absolute deviations, errors or

values (MAD, MAE, LAD, LAV); L1-norm, and others.

Giloni and Padberg (2002) have noted that textbooks in statistics nearly

ignore the discussion of regression by MSAE. We attribute the phenomenon

to the positioning of the subject. It is at the interface of statistics (re-

gression analysis) and optimization methods (mathematical programming)

and as such draws upon an extensive body of knowledge from both ar-

eas. Except for constrained least squares, seldom is linear regression by

least squares presented as an optimization problem whereas regression by

MSAE is always framed as a linear optimization problem. However, most

students of statistics are unfamiliar with methods of mathematical pro-

gramming. Consequently, textbook writers may be unwilling to allocate

competing page space to the requisite background material; feel the sub-

ject is not statistically developed to warrant discussion beyond a superficial

treatment as an alternative to the least squares methodology; or is an ad-

vanced topic more suitable to a monograph. Given the dearth of treatment

to regression by MSAE in textbooks, literature reviews and updates to

MSAE regression such as this paper become important learning resources

to the student, researcher, and practitioner.

The rest of the material is organized as follows. In the next section, we

discuss some of the computational algorithms and computer programs that

are currently available to solve the simple and multiple MSAE regression

models. In Section 10.3, we provide some results relating to MSAE statisti-

cal properties and inference procedures. In Section 10.4, we discuss variable

selection procedures for MSAE regression. In Section 10.5, we describe the

goodness-of-fit measure that has been developed for the MSAE regression
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model followed by other results in Section 10.6. In Section 10.7, we discuss

the likelihood displacement function for the MSAE regression and in Sec-

tion 10.8 we discuss the robustness of the MSAE fit. A recent proposal for

regression under multiple criteria including MSAE is discussed in Section

10.9. We conclude the paper with a few remarks in Section 10.10.

10.2 Computational Algorithms

Let y be an n× 1 vector of value of the response variable corresponding X ,

the n × k matrix of regressor (predictor) variable values that may include

a columns of ones for the intercept term. Consider the multiple linear

regression model

y = Xβ + ε (10.1)

where β is the k × 1 vector of the unknown parameters and ε is the n × 1

vector representing the unobservable random errors (disturbances). The

components of ε are independent and identically distributed random vari-

ables with density function f(·).

Simple Linear Regression: Let yi denote the value of the response vari-

able corresponding to xi, the value of a regressor (or predictor) variable for

the i-th observation, i = 1, 2, . . . , n, where n is the number of observations.

The simple linear regression model is

yi = β0 + βixi + εi, i = 1, . . . , n (10.2)

where βo and β1 are the unknown intercept and slope parameters of the

model and εi represents the unobservable random error.

The objective is to determine the estimators β̂0 and β̂1 of β0 and β1 such

that
∑n

i=1 |yi − ŷi| is minimum, where ŷi = β̂0 + β̂1xi. Edgeworth (1888)

proposed an algorithm to compute the MSAE estimates for the simple lin-

ear regression model; however, his method was not widely used. Seventy

years later, Karst (1958) developed an intuitively appealing iterative al-

gorithm for the problem. Since then, a number of algorithms have been

proposed. They include Abdelmalek (1980), Armstrong and Kung (1978),

Barrodale and Roberts (1973), Josavanger and Sposito (1983), Klingman

and Mote (1982), and Wesolowsky (1981). Narula, Sposito, and Gentle

(1991) reported results of a computational study of computer programs for

simple linear MSAE regression.
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Multiple Linear Regression: In an effort to determine compensation for

executives (i.e., salary plus fringe benefits), Charnes, Cooper, and Ferguson

(1955) pointed out that the MSAE regression problem is essentially a linear

goal programming problem. Wagner (1959) formulated it as the following

linear programming problem:

Minimize 1′(e+ + e−) (LP)

Subject to Xβ̂ + e+ − e− = y,

e+, e− ≥ 0,

β̂ unrestricted in sign

where 1 is the n × 1 vector of ones, and e+ and e− are n × 1 vectors

of residuals corresponding to under- and over-prediction of y, respectively.

Wagner (1959) stated that a simplex algorithm for bounded variables might

solve more efficiently the dual formulation of (LP). Barrodale and Roberts

(1973) proposed a special purpose algorithm for solving (LP). At present,

several very efficient and effective algorithms, namely, Armstrong, Frome,

and Kung (1979), Bartels, Conn, and Sinclair (1976,1978), Bloomfield and

Steiger (1983), Coleman and Li (1992), Madsen and Nielsen (1993), Ruzin-

sky and Olsen (1989), Wesolowsky (1981), and Zhang (1993) may be used

to solve the simple and multiple linear MSAE regression models.

Computer Programs: A number of computer programs, Bartels, Conn,

and Sinclair (1976), Armstrong and Kung (1978), Armstrong, Frome, and

Kung (1979), and Josavanger and Sposito (1983) may be used to compute

the MSAE estimates of the parameters of the simple as well as the multiple

linear regression models. For the simple linear regression problem, the com-

puter program by Josavanger and Sposito (1983) based on the modification

of the algorithm of Wesolowsky (1981) performed well in a comparative

study conducted by Gentle, Sposito, and Narula (1988). In a study of the

relative performance of computer programs for the multiple linear regres-

sion model, Gentle, Sposito, and Narula (1987, 1988) reported that within

the limitations of the study, the program of Armstrong, Frome, and Kung

(1979) performed best.

One may also fit the MSAE model using the robust regression pack-

age ROBSYS. Furthermore, one can write a short FORTRAN program to

calculate the MSAE estimates of β in (10.1) using the IMSL (1980) subrou-

tine RLLAV. At present, computer programs are also available in popular

statistical packages such as S-Plus (L1-fit function) and SAS (1983) (proc
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IML). Therefore, it is reasonable to claim that the computational difficulties

associated with the use of the MSAE regression no longer exist.

10.3 Statistical Properties and Inference

In the past, besides computational difficulties, a serious limitation to a

greater application of the MSAE regression has been the lack of a well

known and widely distributed statistical inference apparatus comparable

to what exists for regression by least squares. However, a number of Monte

Carlo studies of the small sample properties of the MSAE estimator have

been conducted and reported in the literature. Asymptotic distributional

results and inference procedures have also been developed.

Statistical Properties: The MSAE estimator of β in (10.1) is maximum

likelihood and hence asymptotically unbiased and efficient when errors fol-

low the Laplace distribution. Small sample properties of the MSAE esti-

mator have been investigated extensively via Monte Carlo methods. These

studies supported the thesis that the estimators are unbiased (or nearly so).

However, for symmetric error distributions, Sielken and Hartley (1973) give

two linear programming formulations for unbiased estimators of β under

MSAE.

Based on the Monte Carlo studies, use of the MSAE regression is rec-

ommended whenever errors follow the Laplace or the Cauchy distributions,

a mixture of normal and uniform distributions, or contaminated normal

distribution. The efficiency of the MSAE estimator is about 80 percent

even when the assumptions for the least squares procedure are satisfied.

In an extensive Monte Carlo study, Rosenberg and Carlson (1977) stud-

ied the small sample properties for the MSAE estimators in a multiple

linear regression model for symmetric error distributions. They concluded

that: (i) when errors followed a symmetric distribution with high kurtosis,

the MSAE estimator followed an almost normal distribution and had a sig-

nificantly smaller standard error than the least squares estimator and (ii)

for symmetric error distributions, the MSAE estimator followed approxi-

mately multi-normal distribution with mean β and variance-covariance ma-

trix τ2(X ′X)−1, where X is the design matrix and τ 2/n is the variance of

the median of a sample of size n from the error distribution.

Bassett and Koenker (1978) have proven analytically that for the gen-

eral linear model with independently and identically distributed errors, the
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MSAE estimator is unbiased, consistent, and asymptotically follows a multi-

normal distribution with variance-covariance matrix τ 2(X ′X)−1. An im-

portant implication of this result is that the MSAE estimator has a strictly

smaller confidence ellipsoid than the least squares estimator of β for any

error distribution for which the sample median is a more efficient estimator

of location than the sample mean. The median is a more efficient estimator

of location than mean for the distributions in Table 1.

Table 1: Distributions for which the sample median is more

efficient estimator of location than the sample mean

Distribution pdf1 Var(median) Range

Cauchy f(x) = 1/[πc{1 + ( x

c
)2}], c > 0 π2c2

(4n)
−∞ < x < ∞

Laplace f(x) = ( c

2
) exp [(−|x − b|)/c], c > 0 1

(4nc2)
−∞ < x < ∞

Logistic f(x) = sech2(x

c
)/(2c), c > 0 πc2

n
−∞ < x < ∞

Symmetric f(x) does not exist except for the finite2 −∞ < x < ∞
stable Cauchy and Normal distributions

1. Although the results apply to more general cases, the pdf’s reported here are
such that the distributions are centered at zero.

2. This result applies to symmetric stable distributions with the characteristic ex-
ponent less than 2. Thus, the normal distribution is excluded, but the Cauchy
distribution is included. The var (·) is finite whenever n >

4
α

+ n where α is
the characteristic exponent.

Statistical Inference: Based on the asymptotic distributional results,

formulae for constructing confidence intervals and procedures for testing

hypotheses related to β of (10.1) have been developed by Dielman and

Pfaffenberger (1982) and Narula (1987). We give a few formulae for con-

fidence intervals and tests of hypotheses for element βi of β and for the

linear combination r′β of the regression parameters of (10.1) where r is a

k × 1 vector of known constants.

• For a single component of β, say βi, the (1− α)100% confidence interval

is

β̂i ± zα/2τ̂

√

(X ′X)−1
ii ,

where (X ′X)−1
ii is the i-th diagonal element of (X ′X)−1, β̂i is the i-th

component of β̂, zp denotes the (1−p)-th percentile of the standard normal

distribution, and τ̂ is a consistent estimator of τ, i = 1, 2, . . . , k. A number of

estimators of τ have been proposed. Birkes and Dodge (1993) and McKean

and Schrade (1987), estimator is
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τ̂ =
√

n∗(e(n∗−m+1) − e(m))/4,

where m = (n∗ + 1)/2 −
√

n∗, n∗ is the number of nonzero MSAE resid-

uals and e(1), e(2), . . . , e(n∗) are the nonzero MSAE residuals arranged in

ascending order.

• For r′β, the (1 − α)100% confidence interval is

r′β̂ ± zα/2τ̂{r′(X ′X)−1r} 1
2 .

• To test the null hypothesis H0 : βi = 0 versus βi 6= 0 for the single

component βi of β at the α level of significance, the decision rule is to

reject H0 whenever

z∗ =

∣

∣

∣

∣

∣

∣

β̂i

τ̂
√

(X ′X)−1
ii

∣

∣

∣

∣

∣

∣

> zα/2.

• To test the null hypothesis, H0 : r′β = ρ versus the alternative hypothesis

H1 : r′β 6= ρ at the α level of significance, the decision rule is to

reject H0 whenever

z∗ =

∣

∣

∣

∣

∣

r′β̂ − ρ

τ̂
√

r′(X ′X)−1r

∣

∣

∣

∣

∣

> zα/2.

In a Monte-Carlo study, Stangenhaus and Narula (1991) found that the

sampling distribution of the estimator followed a normal distribution for a

sample of size as small as 10 (the smallest sample size used in the study)

if the errors followed a normal distribution; for sample size 20 when the

errors followed a contaminated normal distribution; and for sample sizes 100

and 200 when the errors follow the Cauchy and the Laplace distributions,

respectively. They also reported results for studies of interval estimates.

The results of the study are clearly encouraging. Although the sam-

pling distribution of the estimator may converge to normality very slowly

(for certain error distributions), we can use the asymptotic properties of

the estimator to construct confidence intervals and tests of hypotheses for

sample sizes as small as 10.

Statistical inference procedures for small sample size have also been

investigated by Dielman and Pfaffenberger (1990a, 1990b) and Dielman and

Rose (1995) using Monte Carlo studies. Their results also show that one can

use the statistical inference procedures based on the normal distribution for

small sample sizes. Stangenhaus, Narula, and Ferreira (1993) have proposed

bootstrap procedures for statistical inference purposes. Dielman (2005)

provided a good discussion of bootstrap methodology as an alternative to

the likelihood ratio and other tests.
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10.4 Variable Selection

It is generally tacitly assumed that the k regressor of the linear model (10.1)

include all relevant variables and their functions and, at times, may include

a few extraneous variables and their functions. Often it is possible to select

a model with m(< k) variables without essentially losing any information

about the response variable contained in the k predictor variables. A sim-

plified model may also lead to a better understanding of the phenomenon

under investigation. If prediction is the analyst’s objective, it is well known

that a model with fewer variables is more desirable. Moreover, models with

fewer variables are easier to understand, to explain, and are less expensive

to maintain. In fact, for economic, computational, and statistical reasons,

it may be desirable to include fewer than k variables in the model.

Narula and Wellington (1979) proposed an efficient implicit enumera-

tion algorithm to find the best model with m(= 1, 2, . . . , k − 1) regressor

variables. The best model with m variables is the model with the smallest

value of the sum of absolute errors among all models with m variables.

Their procedure guarantees the best model of m(= 1, 2, . . . , k−1) regressor

variables without examining all the models. A computer program based

on their algorithm appears in Wellington and Narula (1981). Suggestions

for accelerating the search so that all 2k − 2 possible regressions of size

m = 1, . . . , k − 1 are implicitly but not explicitly examined in the search

for best model of size m(< k) predictor variables appeared in Narula and

Wellington (1983). Sklar (1988) also provided a procedure to find the best

regressions of size m(< k).

Andre, Narula, Elian, and Tavares (2003) proposed stepwise procedures

for selection of variables. Their proposed automatic selection procedures

included forward selection, backward elimination, and stepwise. The for-

ward selection procedure begins with one predictor variable in the model

and proceeds by adding one variable at a time until no further additions

are indicated. A backward elimination procedure starts with all the vari-

ables in the model and eliminates one variable at a time until no further

eliminations are indicated. The stepwise procedure adds and eliminates a

variable at each step until no further additions or deletions to the model

are indicated.

In most practical situations, as a rule, there does not exist a single

‘best’ model but rather many ‘equally good’ models. One possible method

to select a model among a few good models is to compute the sum of

predictive absolute errors (SPAE) for each model in the following way.
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Omit observation i from the data set to be used for fitting the model. Fit

the model using the remaining n−1 observations. Use this model to predict

the value of the response variable for the omitted observation and calculate

its residual. Return the omitted observation to the data set to be used for

fitting, remove the next observation, and repeat the operation until each

observation i(= 1, . . . , n) has been so treated. Sum successively the residual

generated at each iteration, that is, compute

SPAE =

n
∑

i=1

|yi − ŷ(i)|

where yi is the observed value of the response variable for omitted ob-

servation i and ŷ(i) is its predicted counterpart derived from the MSAE

model fitted without observation i. Choose the model associated with the

minimum SPAE. We hasten to add that this process of computing SPAE

is computationally very intensive. The reader may note the similarity in

producing the SPAE to jackknifing and bootstrap methods.

10.5 Coefficient of Determination

To measure the goodness of the MSAE fit, McKean and Sievers (1987) pro-

posed the coefficient of determination R1. Let RSAE denote the reduction

in the sum of absolute errors due to the fitting of a p-variable model and

observe that

RSAE =
n
∑

i=1

|yi − median (y)| − SAE (10.3)

where
∑n

i=1 |yi - median (y)| denotes the sum of absolute errors for the

fitted model ŷi = median (y) and SAE is the sum of absolute errors for the

p-variable model. Then the coefficient of determination R1 is:

R1 = RSAE|(RSAE + (n − p − 1)τ̂ /2) (10.4)

where τ̂ is a consistent estimator of τ . It is well known that when the errors

follow Laplace distribution, then

τ̂ = SAE/n (10.5)

the mean of the sum of absolute MSAE residuals, is the maximum likelihood

and consistent estimator of τ , Engelhardt and Bain (1973). Andre, Elian,

Narula, and Tavares (2000) proposed the use of τ̂ = SAE/n in (10.4).

Because the sum of absolute residuals is a non-increasing function of p,
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the use of τ̂ in (10.4) assures that the value of R1 increases in moving

from a reduced to a full model. Thus, R1 has all the desirable properties

of a coefficient of determination, Kvalseth (1985). Large values of R1 are

desirable.

Eline, Narula, and Tavares (2000) proposed the following adjusted coeffi-

cient of determination R1a for the MSAE regression model with p-variables:

R1a = 1 − (1 − R1)

(

n

n − p − 1

)

(10.6)

where R1 is defined in (10.4). See Elian, Narula, and Tavares (2000) for

other results related to use of the adjusted coefficient of determination R1a.

10.6 Other Results

It is well known that the MSAE regression hyperplane passes through at

least k observations, Appa and Smith (1973). These observations with

zero residual value are known as the defining (or basic) observations. Ob-

servations with nonzero residual values are the nondefining (or nonbasic)

observations.

The MSAE estimate of β is completely determined by the defining ob-

servations. In particular, the system of equations corresponding to MSAE

regression may be written as

[

y(1)

y(2)

]

=

[

X(1) 0

X(2) I∗

] [

β̂

e(2)

]

,

where subscripts (1) and (2) denote respectively sets of indices for the defin-

ing and nondefining observations. With this ordering, the k observations

with subscripts in (1) lie on the MSAE regression hyperplane. Further, let

X(1) denote the k×k matrix containing the values of the predictor variables

for the defining observations; X(2) indicate the (n− k)× k matrix contain-

ing the values of the predictor variables for the nondefining observations;

y(1) be the k × 1 vector of values of the response variable for the defining

observations; y(2) be the (n − k) × 1 vector of values of the response vari-

able for the nondefining observations; vector e(2) be the (n − k) × 1 vector

with component i (= |yi − ŷi| if yi − ŷi 6= 0, i = 1, . . . , n) and I∗ is the

(n − k) × (n − k) diagonal matrix with diagonal elements that are either

+1 (if yi − ŷi > 0 ) or −1 (if yi − ŷi < 0); and yi is the i-th value of the

response variable and ŷi is its MSAE predicted counterpart, i = 1, . . . , n.
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It then follows that

β̂ = X−1
(1)y(1)

and

e(2) = I∗y(2) − I∗X(2)X
−1
(1)y(1).

The hat matrix for the MSAE regression is:
[

ŷ(1)

ŷ(2)

]

=

[

I

X(2)X
(−1)
(1)

]

y(1) ≡ Hy(1)

where I is a k × k identity matrix, Narula and Wellington (1985). For the

defining observations, the hii = 1, i = 1, . . . , k of the hat matrix H and

may be considered influential. However, they are not influential in the same

way as the observations associated with the large diagonal elements of the

hat matrix in the least squares analysis, Hoaglin and Welsch (1978).

Although diagnostic statistics are available for the least squares model,

few techniques have been developed for the MSAE model.

Using the Box-Cox transformation, Parker (1988) proposed a method

to assess the need for transformation in MSAE regression. It has been

shown that the MSAE regression is more sensitive to leverage points, i.e.,

outliers in the direction of the predictor (or regressor) variable, than the

least squares regression, Rousseeuw and Leroy (1987).

It is also known that the fitted MSAE regression model is invariant to

changes in the value of a response variable for a nondefining observation

as long as it remains on the same side of the fitted MSAE regression hy-

perplane, Narula and Wellington (1985). The fitted model is also invariant

to certain changes in the value of a predictor variable for a nondefining

observation. Because the fitted MSAE regression model is determined by a

subset of k < n defining observations, certain variations in the values of the

nondefining observations leave the parameter estimates unchanged. This

feature is discussed and illustrated in Section 10.8.

Non-linear regression by MSAE is reviewed in Dielman (2005) and

treated in Gonin and Money (1989). The latter treated the subject within

the context of Lp-norm estimation with MSAE as the special case (p = 1)

and much of the discussion is given to algorithm development.

10.7 Likelihood Displacement

Ellis and Morgenthaler (1992) point out that, at present, leverage does not

have a precise meaning. Vaguely stated, a design point far from the bulk of
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the others is called a leverage point. It is important to distinguish leverage

points from influential points. An observation taken at a leverage point has

the potential to influence the fit, but it does not necessarily do so.

Cook, Pea, and Weisberg (1988) proposed the likelihood displacement

function as a unifying principle for influence measure. They pointed out

that if desirable, this displacement can be transformed to a more famil-

iar scale and compared to percentiles of a chi-squared distribution with k

degrees of freedom.

To determine the influence of the i-th observation, i = 1, . . . , n, Cook,

Pea, and Weisberg (1988) suggested the following likelihood displacement

function

LDi(θ) = 2[L(θ̂, y) − L(θ̂(i), y)],

where θ̂ is the maximum likelihood estimator of based on all the observa-

tions and θ̂(i) is the maximum likelihood estimator of θ based on all the

observations except observation i. According to Cook, Pea, and Weisberg

(1988), if this function is large, observation i is influential and deleting it

may cause a substantial change in important results.

It is well known that MSAE estimators are maximum likelihood esti-

mators of the parameter β, when the errors εi′s in (10.1) follow Laplace

distribution with mean equal to zero and variance equal to 2τ 2, i.e., the

probability density function of yi is given by

f(yi) = 1/(2τ) exp (−|yi − xiβ|/τ), −∞ < yi < ∞, i = i, . . . , n.

The log likelihood function L is

L(β, τ) = −n ln(2τ) −
n
∑

i=1

|yi − xiβ|/τ,

and the maximum likelihood estimator τ̂ of τ is

τ̂ =
n
∑

i=1

|yi − xiβ̂|/n = MSAE/n

For our problem θ = (β, τ) and the likelihood displacement function is

LDi(β, τ) = 2[L(β̂, τ̂ ) − L(β̂(i), τ̂(i))],

where β̂(i) is the MSAE estimator of β and τ̂i of τ based on all the obser-

vations except observation i.

The likelihood displacement function for the i-th observation can be

written as:

LDi(β, τ) = 2(n ln(τ̂(i)/τ̂) + |yi − xiβ̂(i)|/τ̂(i) − 1). (10.7)



January 24, 2008 17:59 World Scientific Book - 9in x 6in ch10narularev˙paper

An Overview of the Minimum Sum of Absolute Errors Regression 157

The measure in (10.7) will be large if |yi − xiβ̂(i)|/τ̂(i) is large, or (τ̂(i)/τ̂)

is large or both.

When the i-th observation is not influential, then the estimate τ̂(i) with-

out the i-th observation should be very similar to τ̂ , i.e., τ̂(i)/τ̂ ∼= 1, and

|yi − xiβ̂(i)| should be close to the mean of the absolute errors, τ̂(i), i.e.,

|yi − xiβ̂(i)| ∼= τ̂(i), and so LDi
∼= 0. That is, when the i-th observation is

not influential, the likelihood displacement function will be close to zero.

However, large values of the function suggest that the observation might

be influential. Clearly, LDi(β, τ) takes both β and τ into consideration.

To determine if the i-th observation is influential only for the estimation

of β, a measure based on the method proposed by Cook et al (1988) is

LDi(β||τ = 2n ln

(

∑n
j=1 |yj − xj β̂(i)|
∑n

j=1 |yj − xj β̂|

)

. (10.8)

That is, we compare the sum of absolute value of the residuals when

they are calculated using the MSAE estimator of β computed with and

without the i-th observation. If the deletion of the i-th observation changes

the estimates such that the sum of the absolute residuals does not change

much then LDi(β|τ)will be close to zero.

It is interesting to note that

LDi(β|τ) = 2n ln(1 + λ(i)),

where λ(i) =
∑

n
j=1 |yj−xj β̂(i(|−

∑

n
j=1 |yj−xj β̂

∑

n
j=1 |yj−xj β̂|

, which may be interpreted as

relative increase in the MSAE when β̂ is substituted for β̂(i) .

Cook, Pena, and Weisberg (1988) pointed that the values of LDi(β, τ),

and LDi(β|τ) may be compared with the percentiles of the chi-squared

distribution with degrees of freedom k and k − 1, respectively, to decide

whether an observation is influential or not. Although the necessary regu-

larity conditions are not satisfied for Laplace distribution, Cox and Hinkley

(1974) and Basset and Koenker (1978) have shown that the likelihood ratio

behaves in the usual way.

Elian, Andre, and Narula (2000) used the Laplace distribution to de-

velop the preceding influence measures since it has been assumed for the er-

ror distribution in many applications, Engelhardt and Bain (1973). Further

the use of MSAE regression has been recommended whenever one suspects

outliers in the response variable, that is, if the error distribution has thick

tails. Therefore, even if the error distribution is not exactly Laplace, it may

be close enough so that the proposed influence measures would be useful.
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10.8 Robustness

It is useful to observe that the MSAE regression is to the least squares

regression what the sample median is to the sample mean. Both the sample

mean and the least squares estimates of β are determined and influenced by

all the observations whereas the sample median and the MSAE estimates

are also influenced by all observations but determined by only a subset of

observations. Just as the value of the sample median is unaffected if the

magnitude of an observation changes such that it remains on the same side

(either above or below) of the sample median, a similar result holds true

for the MSAE regression, Narula and Wellington (1985). The fitted MSAE

regression model remains unchanged if the value of the response variable

for a nondefining observation changes such that the observation remains

on the same side of the fitted MSAE regression hyperplane and no other

change occurs in the original data. This is unlike least squares regression

where any change in the value of the response variable for any observation

changes the values of the parameter estimates.

The MSAE regression estimate of β also remains unchanged if the value

of a predictor variable for a nondefining observation varies within certain

interval(s) and no other change occurs in any of the original data, the ceteris

paribus assumption. Procedures to compute such intervals for the simple

linear MSAE regression model are given in Narula, Sposito, and Welling-

ton (1993). These intervals give the analyst useful information about the

variation in the value of each predictor variable within each nondefining

observation that could be accommodated without changing the MSAE re-

gression estimate of β, ceteris paribus. Recently, Narula and Wellington

(2002) have extended the investigation, called interval analysis, to the mul-

tiple linear regression model under MSAE. We illustrate interval analysis

with data from Draper and Stoneman (1966) that is further analyzed in

Hoaglin and Welsch (1978) and Narula and Wellington (1985). The fitted

MSAE regression model for the data is

ŷi = 9.084 + 9.189xi1 − 0.171xi2, i = 1, . . . , 10 (10.9)

The MSAE parameter estimates 9.084, 9.189, and −0.171 are deter-

mined by the x-data and y-data of the defining observations {3, 8, 9}. Table

2 is a display of the variation in each x-datum of each nondefining observa-

tion {1, 2, 4, 5, 6, 7, 10} that maintains the values of the MSAE parameter

estimates, assuming no other changes in the original data. For x12, the

value of predictor variable 2 in observation 1, if an alternate value of inter-

est under any condition were in the interval [10.956, 11.832],
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Table 2: Alternate Values of the Predictor Variables for the Nondefining

Observations That Maintain the MSAE Fit for the Wood Beam Data

Obs. Lower X1 Upper Lower X2 Upper MSAE Y
i Bound Datum Bound Bound Datum Bound Residual Datum

1 0.488 0.499 0.584 10.956 11.1 11.832 -0.632 11.14

2 0.473 0.558 0.563 8.609 8.8 9.044 0.050 12.74

31 - 0.604 - - 8.8 - 0. 13.13

4 0.431 0.441 0.526 8.756 8.9 9.515 -0.105 11.51

4 11.285 8.9 12.032 -0.105 11.51

5 0.539 0.550 0.635 8.656 8.8 9.532 -0.254 12.38

6 0.443 0.528 0.539 9.168 9.9 10.044 0.356 12.60

7 0.333 0.418 0.422 10.502 10.7 10.844 0.034 11.13

81 - 0.480 - - 10.5 - 0. 11.70

91 - 0.406 - - 10.5 - 0. 11.02

10 0.326 0.467 0.361 10.556 10.7 11.432 -0.136 11.41

10 0.456 0.467 0.552 -0.136 11.41

1 Defining observation. Hence, variation in any datum would change the MSAE

parameter estimates.

the MSAE parameter estimates given in (10.9) would be unchanged, ceteris

paribus. For alternate values of predictor variable 2 in observation 4, there

are two disjointed intervals. Ceteris paribus, an alternate value for x42

could be in the interval [8.756, 9.515] or [11.285, 12.032] and produce the

MSAE model given in (10.9). Alternate values for predictor variable 1 in

observation 10 also occur in two disjointed intervals.

The robust features of the fitted MSAE regression model discovered in

interval analysis are useful when the analyst is interested in assessing the

stability of the MSAE regression model, that is, identifying where small

variations in the data used for fitting could or could not produce large

changes in the model. Narrow intervals should move the analyst to check

that the associated data were accurately collected, recorded, and transmit-

ted. Small variations in any such datum could alter the MSAE regression.

Wide intervals give some assurance that small variations in the associated

x-datum would not affect the model. Interval analysis assists in this exam-

ination by providing the analyst with the specificity of allowable variation.

For example, the value x12(= 11.1) was used to produce the model given

in (10.9). If the alternate value x12 = 10.6 were of interest to the analyst,

the model of (10.9) would change to

ŷi = 8.243 + 9.864xi1 − 0.122xi2, i = 1, . . . , 10 (10.10)
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and the analyst would have to determine the significance of the changes in

the MSAE parameter estimates. However, note that the change of −0.5

in the original value of x12(= 11.1) changed the model whereas the change

of +0.5(x12 = 11.6) would leave the result given in (10.9) unchanged. If

the analyst discovered that the collection, recording, or transmitting of

the datum x12 allowed variation from whatever source as great as 0.5, he

would know through the results of interval analysis in which case the error

would be problemsome. In general, the intervals are not symmetric with

respect to the original value of the datum. Observe also that the value

(= 9.9) of predictor variable 2 in observation 6 is close to the upper bound

(= 10.044) of variation in x62 that maintains the result given in (10.9). The

analyst may want to confirm its accuracy; otherwise the MSAE parameter

estimates could be different.

Table 3: Alternate Values of the Response Variable for the Nondefining

Observations That Maintain the MSAE Fit of the Wood Beam Data

Index i Lower Bound yi Upper Bound MSAE Residual

1 −∞ 11.14 11.772 -0.632

2 12.690 12.74 ∞ 0.050

4 −∞ 11.51 11.615 -0.105

5 −∞ 12.38 12.634 -0.254

6 12.244 12.60 ∞ 0.356

7 11.096 11.13 ∞ 0.034

10 −∞ 11.41 11.546 -0.136

Table 3 is taken from Narula and Wellington (2002) and displays the results

of interval analysis for the values of the response variable in the Wood

beam data. Note the relationship between the finite value of the lower or

upper bounds and the value as well as sign of the MSAE residual for each

yi, i = 1, 2, 4, 5, 6, 7, 10, of the nondefining observations. In each case, the

finite bound is the predicted value of the response variable obtained from

the fitted MSAE model in (10.9), that is yi − ei = ŷi, i = 1, 2, 4, 5, 6, 7, 10.

The other bound has the same sign as the MSAE residual. This feature

holds in general for MSAE regression and accounts for the property that

the value of the response variable for each nondefining observation can

change indefinitely as long as its residual value does not change sign, ceteris

paribus. This means geometrically that the observation under the variation

of interest does not cross to the opposite side of the fitted MSAE regression

plane. Although the variation in the value of the response variable for each

nondefining observation can change indefinitely in one direction, the change

in the value of a predictor variable for any nondefining observation always
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has real bounds. The illustration helps in understanding the variation in

the original data that can be accommodated without changing the MSAE

parameter estimates of β in (10.1). Interval analysis provides some insight

to the robust feature of MSAE regression.

Ha and Narula (1989) developed tolerance limits that indicate the max-

imum amount by which the values of the response variable for all non-

defining observations may be simultaneously changed without affecting the

MSAE parameter estimates.

The MSAE regression result also provides a good starting solution for

a number of robust regression procedures. We refer the interested reader

to Arthanari and Dodge (1981), Bloomfield and Steiger (1983), Dielman

(2005), Dodge (1987a, 1987b, 1992, 1997), Gentle (1977), Narula and

Wellington (1982), and Sposito, Smith, and McCormick (1978).

Narula, Saldiva, Andre, Elian, Ferreira, and Capelozzi (1999) discussed

MSAE regression as a robust alternative to least squares regression.

10.9 Multiple Criteria Linear Regression Using MSAE

Recently, Narula and Wellington (2007) proposed a very different approach

to linear regression, that is, the use of multiple criteria including MSAE.

When loss due to nonzero error of prediction is related to absolute as well as

relative errors, joint criteria such as MSAE and minimization of the sum of

absolute relative errors (MSRE) may produce useful alternative models for

the analyst’s and decision maker’s consideration. Narula and Wellington

(2007) illustrated the approach with a model for predicting the market value

of unsold residential property based on recently sold property. The model

is estimated with simultaneous consideration of MSAE and MSRE. The

rationalization of the approach is based on the loss/gain of tax revenues

and the expected increase/decrease in homeowner complaints that arise

from the under-assessments (positive residual errors) and over-assessments

(negative residual errors) of property values produced by the model. Narula

and Wellington (2007) related loss/gain in tax revenues to absolute errors

and expected increase/decrease in homeowner complaints to relative errors.

The taxing authority, the decision maker in this scenario, is interested in

minimizing the loss in tax revenue due to under-assessments and in the

number of complaints to be adjudicated due to over-assessments.
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10.10 Concluding Remarks

Development of computational procedures, computer programs, inference,

diagnostics, and understanding of the special properties of MSAE regression

continues. And so does the dissemination of those results. More students,

teachers, researchers, and practitioners than ever know how to compute,

analyze, and infer under MSAE. Some understand the experimental cir-

cumstances in which MSAE regression model is to be preferred to least

squares. However, more need to know and much remains to be done. There

is an urgent and important need to develop residual and diagnostic analyses

comparable to what is available for least squares regression and to assess

the consequences of multicollinearity in MSAE regression. Although work

is currently underway to expand interval analysis to multiple and simulta-

neous variations in the data used for fitting, more needs to be understood

about the sensitivity/insensitivity of the MSAE fit to a wide variety of data

perturbations. In time, the invariance feature of the MSAE fit may become

one of the strongest attractions of researchers and practitioners to linear

regression analysis under MSAE. To happen, the inference procedures and

diagnostics must be simplified, more widely known and understood, and

applied with good outcome.
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Abstract

Consider a stochastic securities market model with a finite state space and a finite
number of trading dates. We study how arbitrage price theory is modified by a
no short-selling constraint. The principle of No Arbitrage is characterized by
the existence of an equivalent supermartingale measure. If we measure present
value as conditional expectations after an equivalent change of measure, then
the fundamental value of a security might fall below its market value, leading to
the possibility of a price bubble. We show that the Law of One Price holds for
marketed claims if and only if there exists an equivalent martingale measure. The
latter condition indicates that price bubbles are fragile. Given that the Law of
One Price prevails, then a contingent claim has a unique fundamental value if and
only if it is the difference of two marketed claims. The main tool for arbitrage
analysis in this essay is finite-dimensional LP duality theory.

Key Words: Arbitrage, bubble, fundamental value, hedging prices, martingale,
short-selling, supermartingale
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11.1 Introduction

This essay examines the valuation problem for a contingent claim delivered

in the future from the viewpoint of arbitrage price theory. In brief, an

arbitrage opportunity is a simple free lunch, i.e. a trading strategy which

provides a sure profit without risk of loss. This theory is built on the premise

that prices are adjusted by the actions of arbitrageurs until all arbitrage

opportunities are eliminated from the market. The consequences of No

Arbitrage (NA) have been thoroughly analyzed in perfect markets, leading

to a linear valuation theory for contingent claims [e.g. Kreps, 1981; Clark,

1993]. In the context of dynamic securities markets, a linear valuation

operator typically possesses an elegant representation as an expectations

operator with respect to an equivalent martingale measure [e.g. Harrison

and Kreps, 1979; Harrison and Pliska, 1981]. Nevertheless, this theory is

less understood in the presence of market frictions. The purpose here is to

analyze the effect of just one trading constraint, no short-selling, upon a

securities market.

The securities market model described in the next section has a rela-

tively simple mathematical structure. There are only a finite number of

securities available for trading at a finite number of dates. All prices and

dividends are measured relative to the price of a ‘riskless’ treasury bill that

serves as money. Furthermore, the information filtration is created by finite

partitions of the state space and is the same for all market investors. The

price and dividend processes are adapted. A feasible portfolio consists of

a non-negative number of shares of each security and an arbitrary number

of treasury bills. Thus, an investor cannot short-sell securities, but he is

allowed to borrow or lend money. Future portfolios must be designed just

before future prices and dividends are announced. Thus, they depend only

on the information available in the preceding time period. In this context,

the principle of NA asserts that it is impossible to design a feasible portfo-

lio so that its earnings are non-negative in all states and positive in some

states. The main result of this section is that NA holds if and only if there

exists an equivalent supermartingale measure, i.e. an equivalent probability

measure under which the price plus cumulative dividend process is a su-

permartingale. This result includes the Harrison-Pliska [1981] Theorem as

a special case. In fact, it is easy to show that an equivalent supermartin-

gale measure reduces to an equivalent martingale measure whenever the

short-selling constraint is not binding.

The third section measures the fundamental value of a contingent claim
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as its expectation with respect to an equivalent supermartingale measure.

Suppose the return from one share of a security is given by its terminal

share price plus cumulative dividend. Then the supermartingale property

implies that the fundamental value of the security’s return does not exceed

initial share price. The residual between market value and fundamental

value is a price bubble on the security. Notice that the price bubble is zero

if and only if the supermartingale property reduces to a martingale prop-

erty. This conclusion is somewhat surprising in view of the literature on

price bubbles. Sequential equilibrium theory typically associates the emer-

gence of price bubbles with an infinite number of trading dates [e.g. Santos

and Woodford, 1997; Loewenstein and Willard, 2000; or Montrucchio and

Privileggi, 2001]. On the other hand, price bubbles are known to emerge

in equilibrium across a finite number of trading dates whenever investors

have asymmetric information [e.g. Allen, Morris, and Postlewaite, 1993;

Morris, Postlewaite, and Shin, 1995; or Conlon, 2004]. Our model has both

a finite number of trading dates and symmetric information. Thus, the

source of a price bubble is found solely within the trading constraint of no

short-selling.

The fourth section sets up the standard framework for the arbitrage

analysis of trading strategies. By definition, a trading strategy is a pre-

dictable, feasible portfolio process. A trading strategy is self-financing pro-

vided that all earnings are rolled over into investments before the terminal

date. A contingent claim is marketed whenever it is replicated by the

terminal value of a self-financing trading strategy. The presence of a no

short-selling constraint disrupts conventional thinking about self-financing

trading strategies. For example, it is possible that two self-financing trad-

ing strategies have different initial costs, but the same terminal values.

Thus, the Law of One Price does not necessarily apply to marketed claims.

Nevertheless, the share holdings and initial cost of a self-financing trading

strategy completely determine its cash holdings and, hence, its terminal

value.

The fifth section fully exploits the LP structure of our model. The

key is the fact that conditional expectations is a linear operator. Thus,

an equivalent supermartingale measure is characterized as a strictly posi-

tive solution to an appropriate linear system of equalities and inequalities.

The slack variables are readily identified as incremental price bubbles, and

they vanish if and only if the feasible solution is an equivalent martingale

measure. Consider an arbitrary, but fixed, contingent claim. The primal

LP problem consists of selecting an equivalent supermartingale measure
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to maximize (or minimize) the fundamental value of the contingent claim.

The dual LP problem consisting of selecting a marketed claim equal to or

less than (resp., equal to or greater than) the contingent claim to mini-

mize (resp., maximize) the initial cost. The optimal values of these dual

programs are called hedging prices. Thus, the LP Duality Theorem shows

that these hedging prices are the endpoints of the interval of possible fun-

damental values for the contingent claim. Finally, LP methods lead to the

following interesting result. The Law of One Price for marketed claims pre-

vails if and only if there exists an equivalent martingale measure. In turn,

the latter condition indicates that price bubbles are fragile [e.g. Santos

and Woodford, 1997; or Montrucchio and Privileggi, 2001]. Given that the

Law of One Price holds, we conclude that a contingent claim has a unique

fundamental value if and only if it is the difference between two marketed

claims.

11.2 Securities Market Model

We study a stochastic model of the securities market with a finite number of

trading dates. Time t is measured discretely by the non-negative integers

up to a finite horizon T > 0. Information is described by a state space

Ω and a sequence of finite partitions {Ωt}
T
t=0 of Ω, where Ωt represents

the information at date t. We assume that Ω0 = {Ω} and that Ωt+1 is

a refinement of Ωt for every date 0 ≤ t < T , i.e. Ωt+1 is a collection of

partitions of the events in Ωt. Uncertainty is measured by a probability

measure P on the σ-algebra σ{ΩT }. We presume that Ωt consists of non-

null events for every date 0 ≤ t ≤ T without loss of generality. We say that

a random variable x is Ωt-measurable provided that x is constant on the

events in Ωt. Let Xt denote the vector space of all Ωt-measurable random

variables for every date t ≥ 0. A sequence of random variables {xt}
T
t=0

is adapted provided that xt ∈ Xt for every date 0 ≤ t ≤ T , and {xt}
T
t=0

is predictable provided that x0 is constant and xt ∈ Xt−1 for every date

0 < t ≤ T . All equalities and inequalities are presumed to hold almost

surely in the following development.

The market itself consists of a finite number n of securities paying divi-

dends and a short-term treasury bill which serves as numeraire. The ith se-

curity is characterized by an adapted price process {zi
t}

T
t=0 and an adapted

dividend process {di
t}

T
t=0 such that di

0 = 0 for every 1 ≤ i ≤ n. Let

zt := [z1
t , z2

t , ..., zn
t ] and dt := [d1

t , d
2
t , ..., d

n
t ] for brevity. It is customary to
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assume these vector processes are positive, but this extra assumption is not

necessary in the following analysis. On the other hand, the government bill

has a current price of 1 at every date, simply because it serves as the unit of

account, and it pays no coupons. Thus, all future prices and dividends are

implicitly discounted to the date 0 by measuring values relative to treasury

bill prices.

A portfolio at date t > 0 consists of a random number θi
t of shares of

the ith security for every 1 ≤ i ≤ n and a number ξt of treasury bills. We

presume that each θi
t and ξt are Ωt−1-measurable for every date t > 0. The

time lag indicates that an agent must select a portfolio just before date t

without knowledge of the prevailing prices and dividends at date t. Let

θt := [θ1

t , θ
2

t , ...θ
n
t ]. A feasible portfolio (θt, ξt) at date t > 0 must satisfy

the additional condition that θt ≥ 0, indicating there is no short-selling

of the long-lived securities. Since there are no sign restrictions on ξt in a

feasible portfolio, this model allows unlimited borrowing of treasury bills.

Notice that the market value of the portfolio (θt, ξt) at date t − 1 is given

by

θt · zt−1 + ξt :=

n∑

i=1

θi
tz

i
t−1 + ξt (1)

for any t > 0.

The only axiom of market consistency that we will evoke in this essay

is a sequential version of the principle of NA. For any date t > 0, let

∆zi
t := zi

t − zi
t−1 denote the capital gains from holding one share of the ith

security from date t − 1 to date t. We may also write ∆zt := zt − zt−1

in vector notation. By definition, the condition NA holds at date t > 0

provided that

θt · (∆zt + dt) ≥ 0 =⇒ θt · (∆zt + dt) = 0 (2)

for any feasible portfolio (θt, ξt) at date t. Finally, we say that (sequen-

tial) NA holds provided that NA holds at every date 0 < t ≤ T . The

random variable θt · (∆zt + dt) measures the earnings, i.e. capital gains

plus dividends, from holding the portfolio (θt, ξt) from date t− 1 to date t.

So NA eliminates the possibility of riskless profit. The condition of NA is

presumed to hold throughout this essay.

The development of martingale methods, beginning with Harrison and

Kreps [1979], signifies one of the great achievements of financial economics.

By definition, a state-price deflator consists of a strictly positive, real-

valued martingale {λt}
T
t=0 such that λ0 = 1 and that

EP [λt(zt + dt) |Ωt−1] ≤ λt−1zt−1 (3)
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for every date 0 < t ≤ T . It is easy to verify that equation (3) is equiva-

lent to the condition that the deflated price plus cumulative deflated divi-

dend process {λtzt +
∑t

s=0
λsds}

T
t=0 is a supermartingale. Clearly, a finite-

horizon state-price deflator {λt}
T
t=0 is uniquely determined by its terminal

variable λT . In turn, λT is the Radon-Nikodym derivative of an equivalent

supermartingale measure Q, which is a probability measure with the same

null events as P and which satisfies the supermartingale property

EQ(zt + dt |Ωt−1) ≤ zt−1 (4)

for every date 0 < t ≤ T . Since equivalent supermartingale measures are

in one-to-one correspondence with state-price deflators, the computational

device selected is just a matter of convenience. On the other hand, state-

price deflators are more general than equivalent supermartingale measures

when working with an infinite number of trading dates [e.g. Santos and

Woodford, 1997; or Montrucchio and Privileggi, 2001].

The fact that there is no sign restriction upon prices and dividends in

the above model is important to the formal development of the theory.

Suppose the ith and jth securities satisfy the conditions that (i) z
j
t = −zi

t

and (ii) d
j
t = −di

t at every date 0 ≤ t < ∞. Then the above model with

no short-selling logically reduces to a model that allows short-selling of

the ith security. In brief, the short-selling constraint is not binding on the

ith security. Furthermore, the supermartingale property (3) immediately

simplifies to the martingale property

EP [λt(z
i
t + di

t) |Ωt−1] = λt−1z
i
t−1 (5)

at every date 0 < t ≤ T . Therefore, our model includes the possibility

of unlimited short-selling on some of the securities as a special case. A

rationale for studying state-price deflators as we have defined them is found

in the following result.

Proposition 11.1. There exists a state-price deflator if and only if NA

holds.

Proof. Suppose there exists a state-price deflator, say {λt}
T
t=0. Then

θt · (∆zt + dt) ≥ 0 implies EP [λtθt · (∆zt + dt)] ≥ 0.On the other hand,

the supermartingale property (3) implies EP [λtθt · (∆zt + dt)] ≤ 0. Thus,

EP [λtθt·(∆zt+dt)] = 0. Since θt·(∆zt+dt) ≥ 0, we obtain θt·(∆zt+dt) = 0.

Thus, NA holds at every date 0 < t ≤ T . Conversely, suppose that NA

holds. Let

Kt = {x ∈ Xt : ∃θt ≥ 0 s.t. x = θt · (∆zt + dt)}
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Notice that Kt is a polyhedral cone in Xt. Let X+
t := {x ∈ Xt : x ≥ 0}

and X++
t := {x ∈ X+

t : x 6= 0}. Then NA holds at date t if and only if

X++
t ∩Kt = φ. It follows from previous work [Clark, 1993] that there exists

a non-zero linear functional pt : Xt → R strictly separating X++
t from Kt,

i.e. pt(x) > 0 for every x ∈ X++
t and pt(x) ≤ 0 for every x ∈ Kt. We

may assume pt(1) = 1 without loss of generality. The Riesz representation

of pt is denoted by δt, so that pt(x) = EP (δtx). We obtain EP (δt) = 1

from pt(1) = 1, and we obtain δt > 0 from the strict positivity of pt.

Furthermore, pt(x) ≤ 0 for every x ∈ Kt implies EP [δt(∆zt+dt) |Ωt−1] ≤ 0.

An adapted process {λt}
T
t=0 is recursively defined by λ0 = 1 and λt = δtλt−1

for every 0 < t ≤ T . It is straightforward to verify that {λt}
T
t=0 is a state-

price deflator. �

Consider the special case when there is unlimited short-selling on all

securities. Then there are no sign restrictions on a feasible portfolio and

the supermartingale property (3) of a state-price deflator reduces to the

martingale property (5) for every 1 ≤ i ≤ n. Alternatively, the asso-

ciated equivalent supermartingale measure reduces to an equivalent mar-

tingale measure. Harrison and Pliska [1981] originally demonstrated that

there exists an equivalent martingale measure if and only if NA holds in

the finite-dimensional setting. King [2002] has also devised a proof of the

Harrison-Pliska Theorem using LP methods. Equilibrium and optimal port-

folio models with a no short-selling constraint in an infinite-dimensional

context have also been studied by Lucas [1978], He and Pearson [1991], and

Montrucchio and Privileggi [2001].

11.3 Fundamental Value

We now regard X := XT as a contingent claims space, i.e. the vector space

of all possible payoffs contingent upon the state of nature. A state-price

deflator {λt}
T
t=0 provides a natural measurement of the present value of a

contingent claim. Indeed, we propose to measure the fundamental value (at

date 0) of the contingent claim x ∈ X as EP (λT x). Suppose the contingent

claim x has the representation x =
∑T

t=0
xt, where xt ∈ Xt for every date

0 ≤ t ≤ T . Since {λt}
T
t=0 is a martingale, we obtain the familiar formula

EP (λT x) =

T∑

t=0

EP (λtxt) (6)
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from the Law of Iterated Expectations. If xt is delivered at date t, then

this formula expresses the fundamental value of a contingent claim directly

in terms of the present value of the cash flows it actually produces. More

generally, the fundamental value at date t of the contingent claim x ∈ X is

measured as EP (λT x |Ωt).

Consider the fundamental value from the return of a marketed security.

Let µt−1 := −EP [λt((∆zt + dt) |Ωt−1]. Then the supermartingale property

(3) can be rewritten as

EP [λt(zt + dt) |Ωt−1] + µt−1 = λt−1zt−1 (7)

The ith component of this vector equation has the following interpretation.

The contingent claim x = zi
t + di

t is the one-period return of buying one

share of the ith security at date t − 1 and holding it until date t. Its

fundamental value at date t − 1 is given by EP [λt(z
i
t + di

t) |Ωt−1]. Since

λt−1zt−1 measures the (deflated) market value at date t− 1 of one share of

the security, the residual term µi
t−1 is readily identified as an incremental

price bubble on the ith security. Notice that this type of price bubble is

always non-negative, and it is zero if and only if the martingale property

(5) prevails. We next extend this concept to the time horizon T . We now

measure the return from buying one share of the ith security at date t < T

and holding it until date T as x = zi
T +

∑T

s=t+1
di

s. The fundamental value

at date t of this contingent claim is given by

EP [λT (zi
T +

T∑

s=t+1

di
s) |Ωt] = EP (λT zi

T |Ωt) +

T∑

s=t+1

EP (λsd
i
s |Ωt) (8)

Let

bi
t := EP (

T−1∑

s=t

µs |Ωt) (9)

for every date 0 ≤ t < T . Then the algebraic identity

EP (bt |Ωt−1) = bt−1 − µt−1 (10)

for every date 0 < t < T implies that the process {bt}
T−1

t=0 is a supermartin-

gale. The next result identifies bi
t as a price bubble on the ith security at

date t.

Proposition 11.2. The formula

EP [λT (zT +

T∑

s=t+1

ds) |Ωt] + bt = λtzt (11)

holds for every date 0 ≤ t < T .
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Proof. We proceed by backwards induction on the date t. First notice

that

EP [λT (zT + dT ) |ΩT−1] + µT−1 = λT−1zT−1

by virtue of equation (7) with t = T − 1 and bT−1 = µT−1 from definition

(9). We immediately obtain

EP [λT (zT + dT ) |ΩT−1] + bT−1 = λT−1zT−1

For the inductive step, assume that formula (11) holds with 0 < t ≤ T − 1.

Computing conditional expectations with respect to Ωt−1, we obtain

EP [λT (zT +
T∑

s=t

ds) |Ωt−1] + EP (bt |Ωt−1) = EP [λt(zt + dt) |Ωt−1]

Substituting from equation (10) and applying equation (7), the above equa-

tion reduces to

EP [λT (zT +
T∑

s=t

ds) |Ωt−1] + bt−1 = λt−1zt−1

Thus, formula (11) is verified at date t− 1, which completes the backwards

induction. �

Equation (11) decomposes market value, represented component-wise

by the right-hand side, into fundamental value, represented component-

wise by the first term on the left-hand side, and a bubble, represented

component-wise by the second term on the left-hand side. Hence, it is a

generalization of the Fundamental Equation of Asset Pricing. Indeed, the

above equation can be rewritten as

EP (λT zi
T ) +

T∑

s=t+1

EP (λsd
i
s) + bi

0 = zi
0 (12)

for the ith security at date 0. Notice that the fundamental value of one

share of a security is equal to its market value if and only if it has no

price bubble. Furthermore, the price bubble bi
t is zero if and only if the

martingale property (5) holds for all dates past time t.

11.4 Trading Strategies

By definition, a trading strategy is the selection of a feasible portfolio (θt, ξt)

at every date t > 0. The trading strategy {(θt, ξt)}
T
t=1 is self-financing

provided that

θt+1 · zt + ξt+1 = θt · (zt + dt) + ξt (13)
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for every date 0 < t < T . This condition asserts that there is no outflow

or inflow of funds at intermediate dates. So the contingent claim θT ·

(zT +dT )+ ξT is replicated at date T by the self-financing trading strategy

{(θt, ξt)}
T
t=1 at an initial cost of θ1 · z0 + ξ0. More briefly, we say that

a contingent claim x ∈ X is marketed provided that there exists a self-

financing trading strategy with terminal value x. The next result is a

useful accounting identity.

Proposition 11.3. If {(θt, ξt)}
T
t=1 is a self-financing trading strategy, then

the condition

θT · (zT + dT ) + ξT = (θ1 · z0 + ξ0) +

T∑

t=1

θt · (∆zt + dt) (14)

holds.

Proof. Consider the algebraic identity
T∑

t=1

θt · (∆zt + dt) =

T∑

t=1

[θt · (zt + dt) + ξt] +

T∑

t=1

(θt · zt−1 + ξt)

The self-financing condition (13) implies that this sum telescopes into
T∑

t=1

θt · (∆zt + dt) = [θT · (zT + dT ) + ξT ] − (θ1 · z0 + ξ0)

Hence, equation (14) immediately follows. �

This result plainly asserts that the terminal value of a self-financing

trading strategy is equal to its initial value plus its cumulative earnings.

It also indicates that the cash holdings {ξt}
T
t=1 of a self-financing trading

strategy are implicitly determined by the security holdings {θt}
T
t=1 and the

initial cost γ = θ1 · z0 + ξ0. Since there is no short-selling, the supermartin-

gale property (3) yields the following additional conclusion.

Corollary 11.1. If {(θt, ξt)}
T
t=1 is a self-financing trading strategy, then

the condition

EP [λT θT · (zT + dT ) + λT ξT ] ≤ θ1 · z0 + ξ0 (15)

holds for any state-price deflator {λt}
T
t=0.

Proof. The supermartingale property (3) implies

EP [λT θt · (∆zt + dt)] ≤ 0

for every date 0 < t ≤ T . Thus, inequality (15) immediately follows from

formula (14). �
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This corollary implies that NA operates across time in the following way.

If a marketed claim is positive, then it must incur a non-negative cost; if

it is both positive and incurs zero cost, then it must be zero. Nevertheless,

we cannot always assert that the Law of One Price holds in this context.

Such a Law would require the initial cost of a marketed claim to be unique.

Example: Let Ω = {α, ω} be the state space with a uniform probability

distribution P , and let T = 1 be the time horizon. The information parti-

tions are given by Ω0 = {Ω} and Ω1 = {{α}, {ω}}. The number of securities

is n = 2. The first security pays no dividends and has a (discounted) price

process {z1
t }

1
t=0 given by z1

0 = 1, z1
1(α) = 1.5, and z1

1(ω) = 0.5. The sec-

ond security also pays no dividends and has a (discounted) price process

{z2
t }

1
t=0 given by z1

0 = 2.25, z1
1(α) = 2.5, and z1

1(ω) = 1.5. It is easy to

verify that the process {λt}
1
t=0 given by λ0 = 1 and λ1 = 1 is a state-price

deflator such that

EP (λ1z
1
1 |Ω) = EP (z1

1) = 1 = z1
0

EP (λ1z
2
1 |Ω) = EP (z2

1) = 2 < z2
0

Proposition 11.1 implies that NA holds. Notice that a trading strategy re-

duces to a single portfolio (θ1

1, θ
2

1, ξ1) in this case. Consider the contingent

claim x defined by x = z2
1 . This claim is obviously marketed by the port-

folios (0, 1, 0) and (1, 0, 1). Since the initial cost of these portfolios are 2.25

and 1.5, respectively, the Law of One Price is violated. This state of af-

fairs would never happen if short-selling were allowed, because the portfolio

(1,−1, 1.25) would become a simple free lunch.

11.5 Hedging Prices

We next study the LP formulation of this model. Define a (continuous)

linear operator At : XT → Xn
t−1 by the condition that

Atλ = EP [λ(∆zt + dt) |Ωt−1] (16)

for every date t > 0. The adjoint operator A∗
t : Xn

t−1 → Xt is given by the

formula

A∗
t θt = θt · (∆zt + dt) (17)

as confirmed by verifying the adjoint identity

〈A∗
t θt, λ〉 = EP [λθt · (∆zt + dt)] = 〈θt, Atλ〉 (18)
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Trading strategies also emerge from LP duality. Indeed, the linear operator

A : XT →
T−1∏
t=0

Xn
t is well-defined in matrix form by the formula

Aλ :=




A1λ

A2λ

...

AT λ


 (19)

The adjoint operator A∗ :
T−1∏
t=0

Xn
t → XT is given by the formula

A∗[θ1, θ2, ..., θT ] =
T∑

t=1

θt · (∆zt + dt) (20)

Clearly, this expression is the cumulative earnings from the trading strategy

{(θt, ξt)}
T
t=1.

Suppose λT ∈ XT is a strictly positive random variable normalized so

that EP (λT ) = 1. Let λt = EP (λT |Ωt) for every date 0 ≤ t < T . Then

{λt}
T
t=0 is a strictly positive martingale such that λ0 = 1. Notice that

λT solves the linear inequality Aλ ≤ 0 if and only if λt solves the linear

inequality Atλ ≤ 0 for every 0 < t ≤ T . Therefore, λT is the terminal

variable of a state-price deflator if and only if it solves the linear system

Aλ ≤ 0

EP (λ) = 1

λ > 0

(21)

The corresponding linear operator B : XT → R×
T−1∏
t=0

Xn
t is defined by the

formula

Bλ :=

[
EP (λ)

Aλ

]
(22)

with adjoint operator B∗ : R ×
T−1∏
t=0

Xn
t → XT given by

B∗[γ; θ1, θ2, ..., θT ] = γ + A∗[θ1, θ2, ..., θT ] (23)

We immediately identify γ as the initial cost of a trading strategy

with security holdings {θt}
T
t=1. Adjusting cash balances {ξt}

T
t=1 so that

the self-financing condition (13) holds, it follows from Lemma (3) that

B∗[γ; θ1, θ2, ..., θT ] is the terminal value of the corresponding self-financing

trading strategy.
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It is well-known from the study of a securities market with no trading

constraints that an equivalent martingale measure and, hence, a state-price

deflator is not unique unless the market is complete, i.e. all contingent

claims are marketed [e.g. Taqqu and Willinger, 1981]. In fact, a contingent

claim has a unique fundamental value if and only if it is marketed. Similar

considerations apply to a market that does not allow short-selling. Yet

market completeness is an especially stringent condition when there are

trading constraints upon the linear structure of the marketed claims space

as we have here. On the contrary, we must admit to the possibility that

the state-price deflator is not unique.

There are two interrelated linear programs relevant to this problem.

Consider the evaluation of a fixed contingent claim x ∈ X . The maximal

fundamental value of x is given by sup EP (λx), where the variable λ is

constrained by the linear system (21); and the minimal fundamental of x is

given by inf EP (λx), where the variable λ is again constrained by the linear

system (21). It is easy to verify that the optimal values of these programs

do not change if we weaken the constraint λ > 0 to λ ≥ 0. Thus, the

maximal fundamental value is the optimal value of the LP

sup EP (λx)

Aλ ≤ 0

EP (λ) = 1

λ ≥ 0

(24)

and the minimal fundamental value is the optimal value of the LP

inf EP (λx)

Aλ ≤ 0

EP (λ) = 1

λ ≥ 0

(25)

These programs can be written in canonical form by introducing a slack

variable µ := [µ0, µ1, ..., µT−1], where µt ∈ Xt for every date 0 ≤ t < T .

The inequality constraint Aλ ≤ 0 is now replaced with the condition that

Aλ + µ = 0 and µ ≥ 0. Since the conditions Atλ + µt = 0 and µt ≥ 0 hold

for every date 0 ≤ t < T , it immediately follows that the slack variable

µt is identical to the incremental price bubble defined by equation (7). In

summary, the canonical maximization problem is given by

sup EP (λx)

Aλ + µ = 0

EP (λ) = 1

[λ, µ] ≥ 0

(26)
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and the canonical minimization problem is given by

inf EP (λx)

Aλ + µ = 0

EP (λ) = 1

[λ, µ] ≥ 0

(27)

The fundamental value of the contingent claim x ∈ X is any real number

between these two optimal values.

Let γ ∈ R. The dual LP for the canonical maximization problem is

given by

inf γ

B∗[γ; θ1, θ2, ..., θT ] ≥ x

[θ1, θ2, ..., θT ] ≥ 0

(28)

and the dual LP for the canonical minimization problem is given by

sup γ

B∗[γ; θ1, θ2, ..., θT ] ≤ x

[θ1, θ2, ..., θT ] ≥ 0

(29)

These formulas yield hedging prices for the contingent claim x ∈ X . Indeed,

we immediately identify B∗[γ; θ1, θ2, ..., θT ] as the terminal value of a self-

financing trading strategy with initial cost γ and share holdings {θt}
T
t=1.

Thus, the optimal value to program (28) is the upper hedging price of x and

the optimal value to program (29) is the lower hedging price of x. In view

of the LP Duality Theorem, any real number between these hedging prices

corresponds to a measurement of the fundamental value of x. These results

also apply to a model with unlimited short-selling as a special case. LP

duality theory indicates that an equality constraint in the primal LP corre-

sponds to no sign restriction on the dual variable in the dual LP [e.g. Gale,

1960]. Therefore, replacing the inequality constraint Aλ ≤ 0 with Aλ = 0 in

the primal LP leads to the deletion of the sign restriction [θ1, θ2, ..., θT ] ≥ 0

in the dual LP. This complementation between the primal and dual LP

irrefutably identifies the trading constraint as the source of a bubble.

Consider a version of the well-known Law of One Price, which asserts

that two self-financing trading strategies with the same terminal value must

also have the same initial cost. In LP terms, this Law asserts that the

conditions

B∗[γ; θ1, θ2, ..., θT ] = B∗[γ̂; θ̂1, θ̂2, ..., θ̂T ]

[θ1, θ2, ..., θT ] ≥ 0

[θ̂1, θ̂2, ..., θ̂T ] ≥ 0

(30)
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imply that γ = γ̂.

Proposition 11.4. The Law of One Price prevails if and only if there exists

an equivalent martingale measure.

Proof. Suppose that The Law of One Price prevails. For any random

variable x, let x+ := x1{x≥0} and x− := −x1{x≤0}. Notice that x = x+ −

x−. For any random vector θ, define θ+ by the condition that (θ+)i := (θi)+

for every 1 ≤ i ≤ n, and define θ− by the condition that (θ−)i := (θi)− for

every 1 ≤ i ≤ n. It is clear that θ = θ+ − θ−. Indeed, we have just set up

the canonical lattice operations.

Assume that B∗[γ; θ1, θ2, ..., θT ] = B∗[γ̂; θ̂1, θ̂2, ..., θ̂T ], where there are

no sign restrictions upon [θ1, θ2, ..., θT ] and [θ̂1, θ̂2, ..., θ̂T ]. Since B∗ is a

linear operator, we obtain

B∗[γ+ + γ̂
−; θ+

1 + θ̂
−

1 , θ+

2 + θ̂
−

2 , ..., θ+

T + θ̂
−

T ]

= B∗[γ− + γ̂
+; θ−1 + θ̂

+

1 , θ−2 + θ̂
+

2 , ..., θ−T + θ̂
+

T ]

Since

[θ+

1 + θ̂
−

1 , θ+

2 + θ̂
−

2 , ..., θ+

T + θ̂
−

T ] ≥ 0

[θ−1 + θ̂
+

1 , θ−2 + θ̂
+

2 , ..., θ−T + θ̂
+

T ] ≥ 0

the Law of One Price yields γ+ + γ̂
− = γ− + γ̂

+. Thus, we obtain γ = γ̂

upon rearranging terms. Let

M := {x ∈ XT : ∃ [γ; θ1, θ2, ..., θT ] s.t. x = B∗[γ; θ1, θ2, ..., θT ]}

denote the range of the adjoint operator B∗. A linear functional π : M → R

is well-defined by the condition that x = B∗[γ; θ1, θ2, ..., θT ] implies π(x) =

γ. Since NA holds, proposition 11.1 yields the existence of an equiva-

lent supermartingale measure with Radon-Nikodym derivative λT . So the

corollary to proposition 11.3 immediately implies that π is strictly positive.

Since XT is a finite-dimensional vector space, there exists a strictly posi-

tive linear functional p : XT → R extending π [e.g. Kreps, 1981; or Clark,

1993]. Let λ denote the Riesz representation of p. Then λ > 0, because p

is strictly positive. In brief, we say that λ is a strictly positive extension of

π. We know from previous work that λ ∈ XT solves the linear system

Bλ =

[
1

0

]
, λ ≥ 0 (31)

if and only if λ is a positive linear extension of π [Clark, 2003]. Therefore,

λ is the Radon-Nikodym derivative of an equivalent martingale measure.



January 24, 2008 18:15 World Scientific Book - 9in x 6in ch11newHedgingFinalVersion1

184 Mathematical Programming and Game Theory for Decision Making

Conversely, suppose there exists an equivalent martingale measure with

Radon-Nikodym derivative λT > 0. Let {(θt, ξt)}
T
t=1 denote a self-financing

trading strategy. It follows from the corollary to proposition 11.3 that

EP [λT θT · (zT + dT ) + λT ξT ] = θ1 · z0 + ξ0

after strengthening the supermartingale property to the martingale prop-

erty. Since γ = θ1 · z0 + ξ0 and

B∗[γ; θ1, θ2, ..., θT ] = θT · (zT + dT ) + ξT

we deduce that the value of B∗[γ; θ1, θ2, ..., θT ] uniquely determines γ.

Thus, the Law of One Price prevails. �

This result has several interesting ramifications. First, the Law of One

Price is a cornerstone of computational finance. Consider the hedging price

problems (28) and (29) when the contingent claim x is marketed. Notice

that x = B∗[γ; θ1, θ2, ..., θT ] implies [γ; θ1, θ2, ..., θT ] is a feasible solution

to either problem, so that γ is a measurement of the fundamental value

of x. So if x does not have a unique initial cost, then it does not have a

unique fundamental value. Second, the existence of an equivalent martin-

gale measure is characterized by a version of NA for which there are no sign

restrictions upon a feasible portfolio [e.g. Harrison and Pliska, 1981]. Yet

this type of NA is implausible as a behavioral axiom when short-selling is

not feasible. Third, an equivalent supermartingale measure reduces to an

equivalent martingale measure if and only if it does not produce a bubble.

We say that a bubble is persistent whenever every equivalent supermartin-

gale measure produces a nonzero bubble. If the bubble is not persistent,

then we say it is fragile. Therefore, a bubble is fragile if and only if the Law

of One Price prevails. The problem of fragile bubbles in infinite-horizon

markets has also been studied in sequential equilibrium theory [e.g. Santos

and Woodford, 1997; or Montrucchio and Privileggi, 2001]. Fourth, the

above result immediately leads to conditions characterizing unique valua-

tion.

Corollary 11.2. Suppose the Law of One Price prevails. Then a contin-

gent claim x ∈ XT has a unique fundamental value if and only if it is the

difference between two marketed claims.

Proof. Since the Law of One Price holds, the proof to proposition 11.4

shows that every contingent claim x ∈ M has a unique cost π(x). Further-

more, π : M → R is a strictly positive linear functional. Since XT is a
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finite-dimensional vector space, it follows from previous work [Clark, 2000]

that the contingent claim x ∈ XT has a unique fundamental value if and

only if x ∈ M . Finally, the proof to proposition 11.4 reveals that x ∈ M if

and only if x is the difference between two marketed claims. �

Taqqu and Willinger [1981] originally obtained this type of result in the

case when short-selling is fully permitted. In essence, they demonstrated

that a contingent claim x ∈ X has a unique fundamental value if and only

if it is marketed. It is easy to verify that their result is a special case of

the above corollary, corresponding to a situation where the no short-selling

constraint is not binding.
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Abstract

In this paper we report our experience in solving min cost flow problems approx-
imately by transforming them to network analysis problems. In the process we
solve large (of the order of a million nodes) resistive networks. The preconditioned
conjugate gradient (PCG) method appears the most suitable for this problem but
runs into convergence difficulties if the conductance values have the high range
of 1 − 108. We solve this problem by developing a variation of the PCG (which
is described in the paper) and using it to solve hybrid analysis equations of the
network. This suggests a relook at commonly used algorithms in computational
linear algebra by associating an electrical network with the linear equations in
question. In order to make the paper self contained we give a formal description
of commonly used network analysis procedures such as nodal, loop and hybrid
analysis.

Key Words: Mathematical Programming, hybrid analysis, electrical network,
loop analysis

12.1 Introduction

It is well known that optimization problems of the ‘primal-dual’ variety can

be cast as electrical network solution problems [Dennis (1959)], [Iri (1969)].

187
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Until recently there had been no serious attempt to explore whether this

electrical approach had any computational advantage. A beginning was re-

ported in [Narayanan (2004)]. Subsequently the min-cost flow problem has

been tackled through network analysis methods with some success [Trivedi,

Desai and Narayanan (2006)], [Trivedi, Punglia and Narayanan (2007)]. A

natural consequence of this attempt is a re-examination of some basic al-

gorithms of computational linear algebra. The present paper reports on

difficulties encountered, their resolution and a proposed program of devel-

opment of this electrical approach to computational linear algebra.

Informally, the min cost flow problem may be described as follows :

We are given a directed ‘flow’ graph. There is a source node ‘s’, at which

the net flow leaving the node is nonnegative and a sink node ‘t’ at which the

net flow entering is nonnegative. At all other nodes the flow is conserved.

This implies that the flow leaving the source node and that entering the

sink node are equal. Each edge ‘e’ has a ‘capacity’ cap(e) and a ‘cost per

unit flow’ cost(e). The flow through e must be nonnegative and must not

exceed cap(e). We are given a specified flow J, which has to be sent from s

to t. The problem is to determine (a) if this is feasible and, if feasible, (b)

to distribute the flow among the edges so that the total cost is minimum.

This is a special kind of linear programming problem which has been well

studied [Ahuja, Magnanti and Orlin (1993)]. Electrically, the problem is

equivalent to the solution of a network in which there is a current source

from t to s of value J and with every branch a composite device as shown

in Figure 12.1.

+

+

−

(e)i
dio2

dio1

cap(e)

cost(e)

−

Fig. 12.1 Composite Edge
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The devices dio1, dio2 are ideal diodes i.e.

vdio ≤ 0, idio ≥ 0 (12.1)

and

vdio.idio = 0 (12.2)

(For a proof of the equivalence one could refer to [Dennis (1959)], [Iri (1969)]

or [Narayanan (2004)].) We can adopt one of two approaches to solve the

network

(1) we could adapt the interior point method [Renegar (2001)] and solve

the network exactly or

(2) we could approximate the ideal diode by a smooth approximation

(say i = I0(e
v

vT − 1)) and solve this network approximately through

the Newton-Raphson procedure.

The former is worth exploring but is slow in comparison with standard com-

puter science algorithms reported in [Ahuja, Magnanti and Orlin (1993)].

The latter is approximate, can sometimes fail to converge but in many cases

does provide approximate solutions at competitive speeds. When the flow

network was sufficiently large (> 100,000 nodes, 300,000 edges) and the

cost and capacity ranges were larger than 1− 106, we found that available

implementations of standard computer science algorithms [Leda (2005)]

become unreliable or too slow while with electrical network analysis, we

could reach within 0.1% of the optimal cost in reasonable time (see Table

12.1 in Section 12.3).

The N-R procedure, at each iteration, converts every non-linear device

with a smooth non-linear v-i characteristic into one with a straight line v-i

characteristic (ij = Gjvj +Jj) which is a tangent at some point to the origi-

nal non-linear characteristic. Each iteration of the N-R procedure amounts

to the solution of an appropriate resistive network, which has only conduc-

tances, voltage sources and current sources, where the conductance values

correspond to the slope of the straight line v-i characteristic with which

the non-linear characteristic is replaced, as mentioned above. In the cases,

where we have “practical diodes” (i = I0(e
v

vT − 1)) at each N-R iteration

(except perhaps the first or second), we will have to solve a resistive network

in which more than 30% of the resistors have high conductance and more

than 30% have low conductance. By using certain scaling techniques, we
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can keep this ratio of conductance values within about 1 − 108. This does

not present any difficulty if we use sparse LU techniques for solving the lin-

ear equations. But when the networks are non-planar, sparse LU methods

are too slow beyond say 10,000 nodes and 30,000 edges. When the conduc-

tance range is 1 − 104 , preconditioned conjugate gradient(PCG) method

performs acceptably for all topologies, whether planar or non-planar. How-

ever PCG breaks down when the conductance range is 1 − 108. (This is

because large conductance range corresponds to large ratio of eigen values

and PCG performs poorly when the ‘condition number’ is large). We at-

tempted an unconventional solution for this problem. We first scaled the

conductances so that they lay in the range of 10−4 − 104. We treated the

conductances in the range 10−4 − 1 as resistance(1/conductance) of value

1−104. We then divided the network into two parts corresponding to these

two types of devices and wrote hybrid equations for the network. The

resulting coefficient matrix has the form

[

G̃ H

−HT R̃

]

, where G̃ and R̃ are

positive definite. A variation of PCG works well for this kind of matrices

and there is convergence within a few hundred iterations even when the

matrix size is 106 × 106. The above experience suggests that it may be

worthwhile to treat systems of linear equations with positive definite co-

efficient matrices as though they arise from a resistive network and solve

the network through the most appropriate hybrid equations. The present

paper details this suggestion and gives some experimental backing to the

utility of the suggestion.

12.2 Electrical Network Analysis Procedures

An electrical network is a pair(G,D), where G is a directed graph with edge

set E(G) and vertex set V (G) and D is a ‘device characteristic’ on the edge

set E(G), defined to be a collection of pairs of real valued functions (v,i)

on E(G). For the purposes of this paper, however, (v,i) ∈ D can be treated

as vectors or constant functions. Associated with G are two vector spaces

(1) the current space Vi(G), made up of vectors i : E(G) −→ < which

satisfy, for every node x, the condition that the net current leaving x

equals zero. To illustrate, in the Figure 12.2, at node x we have

i(e2) + i(e3) + i(e4) − i(e1) = 0 (12.3)
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ie1

ie2

ie3

xnode

ie4

Fig. 12.2

(2) the voltage space Vv(G), made up of vectors v : E(G) −→ <, which

can be derived from potential vectors p : V (G) −→ < in the following

sense : v(e) = p(a) − p(b) whenever edge e is directed from a to b.

The fundamental theorem of network theory, viz. Tellegen‘s theorem, states

that Vi(G) and Vv(G) are complementary orthogonal. To solve a network

(G,D) means to find all (v,i) such that v ∈ Vv(G), i ∈ Vi(G) and (v, i) ∈

D. One such pair (v,i) is called a solution of the network. The device

characteristics of particular interest to us are those where the network has

voltage sources, current sources and resistors. Let E(G) ≡ V ] I ] T

Let

E : V −→ <,

J : I −→ <,

r : T −→ <+.

Then (v,i) ∈ D if and only if

v(e) = E(e), where e ∈ V,

i(e) = J (e), where e ∈ I,

v(e) − r(e).i(e) = 0 or equivalently

i(e) − g(e).v(e) = 0 (g(e) = 1
r(e) ), where e ∈ T.

We will call V, I,T respectively, the sets of voltage sources, current sources

and resistors. The symbols for these devices are given in Figure 12.3.

Every network with voltage sources, current sources and resistors can be

transformed through a linear (in the size of the network) time algorithm

into another network in which each device is ‘composite’ as in Figure 12.3.

Here we have

v(e) − E(e) = r(e)(i(e) −J (e)), (12.4)
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r(e)

J(e)

(e)

Fig. 12.3 Composite device

where r(e) is non-zero. From the solution to the transformed network one

can obtain that of the original, once again by a linear time process.

For network analysis, one needs convenient bases for Vv(G) and Vi(G).

We next describe these. For convenience of explanation we will henceforth

take G to be connected. This is of course not necessary for carrying out

network analysis.

The incidence matrix A of a directed graph has a row corresponding to

each node of the graph and a column corresponding to each edge of the

graph. We have

A(a, e) ≡ +1(−1) if e is incident on a and is directed away from(into) a

≡ 0 otherwise

The rows of A are linearly dependent since the entries of every column add

up to zero. However dropping any row, in the case of a connected graph,

results in a linearly independent set of vectors.

Let p be a potential vector with a real entry corresponding to every node

in G. Clearly pT A gives the voltage vector v derived from p. Therefore by

its definition, Vv(G) is the row space of A. A convenient basis of this row

space is a matrix Ar, (a ‘reduced incidence matrix of G’), obtained by

dropping one row of A. For Vi(G), a convenient basis is obtained through

the ‘fundamental circuit matrix’. This is constructed as follows. Pick a

spanning tree t of the graph. Let e′ ∈ E(G) − t. Then it is easy to see that

e’ ∪ t contains a unique loop Le′ . We give this loop an orientation that
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agrees with that of e′.

e’

Fig. 12.4 The loop Le′

We now construct a vector le′ , where

le′(e) = 0 if e is not in the loop le′

le′(e) = +1(−1) if e is in the loop le′ and its orientation agrees with

that of (opposes that of) the loop.

The fundamental circuit matrix B with respect to t has one row le′

corresponding to each e′ ∈ E(G)−t. The rows of B are linearly independent

since, if e′, e′′ ∈ E(G) − t and e′ 6= e” then we have le′(e′′) = le′′(e′) = 0,

whereas we have le′(e′) = le′′(e′′) = 1.

It is easy to see that if a current vector i (i.e., a vector in Vi(G)) has

zero value on all edges outside t, then it must have zero value on edges of

t. From this it follows that the rows of B form a basis of Vi(G).

12.2.1 Nodal Analysis

This method is intended for networks which have only current sources and

resistors. Let Ar be the reduced incidence matrix of the graph G of the

network. Partition the columns of Ar into those corresponding to conduc-

tances and current sources as
[

ArG ArJ

]

. Let (v,i) be a solution of the

network, we then have

ArG.iG = −ArJ iJ (12.5)

where i is partitioned in

[

iG
iJ

]

corresponding to conductances and current

sources. Now

iG = GvG (12.6)
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where G is a diagonal matrix.

[

vG

vJ

]

=

[

AT
rG

AT
rJ

]

x (12.7)

since the rows of Ar form a basis of Vv(G).

It thus follows that

(ArGGAT
rG)x = −ArJ iJ (12.8)

Observe that the matrix Ar is obtained from an incidence matrix of G

by omitting the row corresponding to some node d.

Since G is a positive diagonal and therefore positive definite matrix,

ArGGAT
rG is positive definite if rows of ArG are linearly independent. The

matrix AGAT has rows and columns corresponding to nodes of G and

ArGGAT
rG is obtained from AGAT by omitting the row and the column

corresponding to d. The entry (i, j) of AGAT is the negative of the con-

ductance of the branch between i and j and the diagonal entry (i, i) is the

sum of the conductances of the edges incident at i.

Any linear equation of the form Cx = b where C is symmetric, can be

interpreted as arising from nodal analysis of a suitable resistive network.

This resistive network may be constructed as follows:

First put down one node per row/column of C and then also for an addi-

tional datum node which we will call d.

Whenever Cij is non-zero join ith node to jth node with a conductance

of value −Cij . Connect ith node to ’d ’ with a conductance of value

(Cii + Σi6=jCij).

Next from d to each node j connect a current source of value bj directed

into j. Let
[

AG AJ

]

be the incidence matrix of the graph of the network,

columns partitioned corresponding to conductances and current sources.

Let
[

ArG ArJ

]

be the reduced incidence matrix obtained from this matrix

by omitting the row corresponding to d. Let the columns of AG be accord-

ing to increasing edge numbers. Let G be the diagonal matrix such that

Gkk = conductance of kth edge. It is then clear that

ArGGArG
T = C (12.9)

and if we write nodal analysis equations for the network we will obtain the

equation Cx = b. Let us call the resistive network corresponding to Cx = b

obtained by the above procedure, NCb.
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Example: Let Cx = b be as given in Equation 12.10.

[

5 −3

−3 4

]

x1

x2
=

[

b1

b2

]

(12.10)

3mho
2mho

1mho

1

2
d

b1

b2

Fig. 12.5 NCb

Then NCb is as in Figure 12.5 (mho is to indicate that we are dealing

with conductance value; 2mho ≡ 1
2Ω, where Ω indicates resistance value).

We remark that, if all conductances in a network are positive then the ma-

trix ArGGArG
T will be diagonally dominant with positive diagonal entries

and non positive off-diagonal entries, i.e.,
∑

j Cij ≥ 0 with the summation

being positive for at least one node. Such a matrix is necessarily positive

definite. However, even if C is positive definite, we may still have negative

conductances in NCb. For instance, if in the coefficient matrix of Equation

12.10 we replace 4 by 2, then in Figure 12.5, the 1mho conductance would

be replaced by −1mho.
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12.2.2 Loop Analysis

This is intended for networks which have only resistances and voltage

sources. Let B be a fundamental circuit matrix of the graph G of the net-

work, partitioned into
[

BR|BE

]

corresponding to resistances and voltage

sources. Note that rows of B form a basis of Vi(G).

We then have, if (v, i) is a solution of the network

[

BRBE

] vR

vE

= 0 (12.11)

where v is partitioned as

(

vR

vE

)

corresponding to resistors and voltage

sources. We have

vR = RiR (12.12)

[

iR

iE

]

=

[

BT
R

BT
E

]

y (12.13)

where i is partitioned into

(

iR

iE

)

, since i ∈ Vi(G).

Hence, BRRBT
Ry = −BEvE .

These are the loop analysis equations of the network. It can be shown

that rows of BR would be linearly independent provided voltage sources

do not form loops. Thus, if R is positive diagonal, the matrix BRRBT
R is

positive definite when the rows of BR are linearly independent, i.e., when

voltage sources do not form loops. Unlike the matrix ArGGArG
T , the ma-

trix BRRBT
R can become very dense even when the graph has few edges. For

instance, if there is a common tree branch to all the fundamental circuits,

the matrix would be fully dense. However, given a vector y, computation of
[

BRRBT
R

]

y requires only the knowledge of the spanning tree (no explicit

storage of the matrix) and can be done graph theoretically in linear time

(on size of the network).

It is easily verified that if every device is composite of the form v(e) −

E(e) = r(e)(i(e) − J (e)), where r(e) is finite and nonzero, then the nodal

analysis and loop analysis equations can both be written. The former would

appear as

ArGGArG
T x = −ArJJ +ArGGE and the latter as BRBT y = −BE+BRJ .
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12.2.3 Hybrid Analysis

Hybrid Analysis methods are originally due to G.Kron ([Kron (1939)],[Kron

(1963)]) as simplified by Branin [Branin Jr. (1962)]). The development

presented here is however based on a topological version reported in

[Narayanan (1979a)].

We will assume that every device is composite of the form v(e)−E(e) =

r(e)(i(e) −J (e)).

Let the edges of the graph G of the network be partitioned into sets P

and Q, where devices in the two sets are independent of each other. (This

partition is given beforehand according to some user defined criterion.) Let

t be a spanning tree that contains as many edges as possible from the set

P (and therefore as few edges as possible from Q). Denote t∩P by M . Let

(E(G) − t) ∩ Q be denoted by L.

We now build two networks NPL and NQM as follows:- NPL has graph

GPL with edge set P ∪ L built from G by short circuiting (fusing the end

points of) edges in t∩Q and removing them. The devices in P have the same

characteristics as in N and L has no device characteristic constraints. NQM

has graph GQM with edge set Q∪M built from G by open circuiting edges

(removing the edges but leaving the end points in place) in
(

E(G) − t
)

∩P .

The devices in Q have the same characteristics as in N and M has no device

characteristic constraints. (Note that the L, M edges are present in both

networks.) The main theorem of [Narayanan (1979a)] says that solving N

is equivalent to solving NPL and NQM simultaneously keeping iL, vM the

same in both networks.

Hybrid analysis equations can be written as follows:-

(1) Write nodal analysis equations for NPL treating branches in L as cur-

rent sources of value iL.

(2) Write loop analysis equations for NQM treating branches in M as volt-

age sources of value vM .

(3) Force the constraints that iL is the same in both networks and vM is

the same in both networks.

We go through the formal development below:- Let [ArP ArL] =

[ArMAr(P−M)ArL] be a reduced incidence matrix of GPL. Let the device

characteristic of the edges in P be expressible as

(iP −JP ) = GP (vP − EP ). (12.14)

We then have (since i ∈ Vi(G)),

ArP iP + ArLiL = 0 (12.15)
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i.e., ArP (iP −JP ) + ArLiL = −ArPJP (12.16)

i.e., ArP GP (vP − EP ) + ArLiL = −ArPJP (12.17)

i.e., ArP GP vP + ArLiL = −ArPJP + ArP GP EP (12.18)

Now,
[

vP

vL

]

=

[

AT
rP

AT
rL

]

vnP , (12.19)

for some vnP (since

[

vP

vL

]

∈ Vv(GPL)). We thus have,

(ArP GP AT
rP )vnP + ArLiL = −ArPJP + ArP GP EP . (12.20)

These are the nodal analysis equations of NPL. Next for NQM , we choose

the spanning tree t for building the fundamental circuit matrix of GQM .

Let
[

BMBQ

]

≡
[

BMBt∩QBL

]

≡
[

BMBt∩QIL

]

be the fundamental circuit matrix of GQMwith respect to tree t.

Let the device characteristic in Q be expressible as vQ−EQ = RQ(iQ−JQ).

We then have,

BMvM + BQvQ = 0 (12.21)

i.e., BMvM + BQ(vQ − EQ) = −BQEQ (12.22)

i.e., BMvM + BQRQ(iQ −JQ) = −BQEQ (12.23)

i.e., BMvM + BQRQiQ = −BQEQ + BQRQJQ (12.24)

We have,
[

iQ

iM

]

=

[

BT
Q

BT
M

]

y (12.25)

for some y, since

[

iQ
iM

]

∈ Vi(GQM ). Hence,

BMvM + BQRQBT
Qy = −BQEQ + BQRQJQ. (12.26)
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Now we impose the condition that vM is the same in both networks and so

is iL.

But this means,

AT
rMvnP = vM (12.27)

and,

IT
L y = iL (12.28)

So we get the hybrid equations,

ArP GP AT
rP vnP + ArLiL = −ArPJP + ArP GPEP (12.29)

BMAT
rMvnP + BQRQBT

QiL = −BQEQ + BQRQJQ (12.30)

The matrix

[

ArP GP AT
rP ArL

BMAT
rM BQRQBT

Q

]

is positive definite if GP , RQ are pos-

itive definite.

It can be shown that BMAT
rM = −AT

rL [Narayanan (1979b)].

For linear equations of the form
[

G̃ H

−HT R̃

][

x1

y2

]

=

[

d1

d2

]

(12.31)

where G̃, R̃ are symmetric positive definite, a variation of the precondi-

tioned conjugate gradient (‘modified PCG’) method works. This is de-

scribed in the Appendix.

Suppose nodal analysis equations of N are

Cx = b.

It is then possible to keep the currents and voltages in the resistors

unchanged but make every current source appear in parallel with some

resistor by using the procedure of i-shift (where we replace a current source

which is across a ‘path’ of resistors by a sequence of current sources of

the same value across each of the resistors in the path). In the resulting

network, every current source only appears in parallel with some resistor.

We can therefore use hybrid analysis on this network. On the face of it,

hybrid analysis is more cumbersome than nodal analysis since the coefficient

matrix is usually dense in the case of the former even where it is sparse in

case of latter. However its behavior in the case of iterative methods such as

conjugate gradient can be much better. For instance, suppose the original

network has conductances of value ranging from 10−4 to 104. We can divide
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these into two parts - those which are in the range 1 to 104 can go into P

and those in the range 10−4 to 1 can go into Q. In the hybrid analysis

equations 12.29,12.30, the matrices
[

ArP GP AT
rP

]

and
[

BQRQBT
Q

]

would

have condition number of the order square root of the condition number of

C. However, the over all coefficient matrix has some asymmetry since the

submatrices ArL, BMAT
rM are negative transposes of each other. Numerical

experiments reported in Section 12.3 seem to support the use of hybrid

analysis and the solution of the resuting equations through the modified

PCG method. In the modified PCG method, the key computational step is

to find Ky when given y, where K is the coefficient matrix. Suppose K is

the matrix

[

ArP GP AT
rP ArL

BMAT
rM BQRQBT

Q

]

. Then it is not necessary to store K

explicitly for effecting this computation. It is only necessary to store the

graph G, the spanning tree t and the conductance values. Further, all the

matrix vector products can be computed either graph theoretically or, in

the case of multiplication by GP or RQ, by scaling.

12.3 Experimental Results

In this section we first present results on the comparative performance of

the circuit simulation based min-cost flow solver with respect to standard

computer science based algorithms reported in [Ahuja, Magnanti and Orlin

(1993)]. Next we present results on the performance of the modified PCG

algorithm on randomly chosen circuits.

The graphs fGraph of Table 12.1 are planar flow graphs of the large

‘dense grid’ variety, i.e., graphs with a rectangular grid structure with an

internal node in each window connected to all the peripheral nodes of the

window. The cost and capacity were randomly chosen to be in the range

1−106. Our present version of flow solver is based on LU factorization and

cannot yet handle non planar flow graphs of size larger than about 10, 000

nodes because of loss of sparsity during the factorization process. In Table

12.1, tcost, tcap and tpd are the times taken in seconds by Cost Scaling,

Capacity Scaling and Primal-Dual LEDA [Leda (2005)] routines for Min

Cost Flow for finding the minimum cost cLR and the corresponding flow

distribution of flow graph fGraph. (Note that cLR is far from the exact

minimum cost cMs. This situation appears to arise because of the large

range of values for capacity and cost). tfsDC is the time taken in seconds

by the DC analyzer based min cost flow simulator (DCFS) in finding the
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Table 12.1 Performance of DCFS and standard computer science algorithms for large dense
grid planar flow graphs with cost and capacity in the range 1-106

fGraph tcost tcap tpd cLR tMS cMS tdcAna cFS itr

×1012 ×1012 ×1012

fg10k - 3.84 777.65 4.99 1.475 93.36 10.2 93.35 28
fg20k - 9.86 - 8.38 16.123 96.93 22.28 96.91 28
fg30k - 23.81 - 10.43 43.299 113.40 35.18 113.37 26
fg40k - 39.09 - 11.73 26.347 106.15 53.30 106.11 29
fg50k - 1468.19 - 13.50 32.968 114.44 78.08 114.41 32
fg100k - - - - 178.831 112.38 194.19 112.33 31
fg200k - - - - 985.602 117.61 644.73 117.53 29

approximate minimum cost cFS and the corresponding flow distribution of

fGraph in itr N-R iterations when we use cost and capacity scaling. tMS

is the time taken in seconds by the public domain min cost flow simulator

MCF-1.3 [Opt. software (2004)] in finding min cost flow solution cMs

of the same flow graph. Here “-” in the column tcost indicates that the

experiment could not be performed due to the overflow error and in the

column tpd “-” indicates that the experiment was not performed because

it took too long. Experiments were performed on a 3 GHz PIV processor

with 1 GB RAM. It can be seen that circuit simulation based flow solver

solution cFS comes within 0.1% of the exact solution cMs.

Tables 12.2, 12.3 [Trivedi (2006)] show experimental results for hybrid

analysis of networks using the modified PCG method (see the Appendix).

In these cases, direct nodal analysis using preconditioned conjugate gradient

method failed to converge. Approximately 30% of the conductances were

chosen to be 104, and equal number to be 10−4 and the remaining to be in

between at random. The resistors were divided as discussed earlier. The

set P contained conductances in the range 1 to 104, Q those in range 10−4

to 1 and hybrid analysis was performed with nodal analysis for NPL and

loop analysis for NQM , the devices in Q being treated as resistors, or more

generally of the form vQ = RQ(iQ − JQ).

iterations is the iteration count taken by modified CG routine and

tSolution is the time in seconds in solving matrix of form given in Equation

12.31. Experiment has been performed on a 3.2 GHz machine having 1

GB RAM. Both the planar and nonplanar graphs were generated randomly

with average degree between 3 and 4. (Usually PCG performs better for

random nonplanar networks than for random planar networks.)
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Table 12.2 Planar circuit analysis using
modified CG for conductance range 1 mho
to 10000 mho and resistance range 1 ohm
to 10000 ohm

Size of matrix iterations tSolution

(in secs)

100k 1896 57.02
200k 2589 165.66
300k 3244 309.89
400k 3661 466.24
500k 4303 688.37
600k 4486 853.00
700k 5130 1141.80
800k 5260 1332.18
900k 5594 1612.74

1Million 6236 2001.06

Table 12.3 Nonplanar circuit analysis us-
ing modified CG for conductance range 1
mho to 10000 mho and resistance range 1
ohm to 10000 ohm

Size of matrix iterations tSolution

(in secs)

100K 134 6.56
200K 141 14.98
300K 162 29.66
400K 146 39.56
500K 179 63.13
600K 164 73.56
700K 189 101.56
800K 179 112.14
900K 178 126.13

1 Million 180 144.71

12.4 A Proposal

The experimental results of the previous section appear to us to be favorable

towards adopting hybrid analysis as the main method for linear network

analysis if we are to use iterative methods for solution of linear equations. In

our case all the resistors are positive so that variants of conjugate gradient

method could be used for solution. Suppose the equation Cx = b has

the coefficient matrix, symmetric but not positive definite. It would be
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interesting to explore whether the ideas of this paper are useful even in this

more general case. The steps are clear:-

(1) Use the ideas in Subsection 12.2.1 to decompose C in the product form

ArGAT
r . The diagonal matrix G may have both positive and negative

entries.

(2) Store the graph for which Ar is the reduced incidence matrix, the di-

agonal entries of G and the column vector b.

(3) Divide the resistors into two groups corresponding to any criterion rel-

evant to the problem. Call these sets P and Q.

(4) Store the spanning tree t (containing as many edges of P as possible)

described in Subsection 12.2.3. Let the resulting hybrid equations be

[

ArGP
GP AT

rGP
H

−HT BQRQBT
Q

] [

x1

y2

]

=

[

d1

d2

]

(12.32)

Compute and store the vector

[

d1

d2

]

. By storing the graph, the

spanning tree and the conductances, in effect we have then stored
[

ArP GP AT
rP ArL

BMAT
rM BQRQBT

Q

]

. (Since C may not be positive definite, this

matrix also may not be).

(5) Modify a standard iterative scheme valid for equations with general

symmetric coefficient matrices along the lines of the development in

the Appendix.

12.5 Conclusion

In this paper we have described our computational experience with solv-

ing networks with resistors, voltage sources and current sources. We have

given a formal self contained treatment of methods of analysis such as

nodal, loop and hybrid analysis. We have presented numerical evidence

that hybrid analysis has some advantages while using iterative methods,

since it permits us to work with matrices with better condition numbers

than nodal or loop analysis. We have presented in the appendix a variation

of the preconditioned conjugate gradient method which is suited for the

equations that result when we use hybrid analysis. We indicate that this

approach may be used with equations more general than the ones that arise

in network analysis.
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Appendix: A variation of PCG

In this appendix we describe a variation of the preconditioned conjugate

gradient method which is particularly suited for the solution of hybrid anal-

ysis equations of electrical networks.

Let A ≡

[

G̃ H

−H> R̃

]

be a positive definite matrix, where G̃ ∈ Rm×m,

H ∈ Rm×(n−m) and R̃ ∈ R(n−m)×(n−m), with the sub matrices G̃, R̃ being

symmetric positive definite. Such matrices arise as coefficient matrices of

hybrid analysis equations, which have as unknowns some voltage and some

current variables, for resistive networks. It would be convenient if we could

use an algorithm similar to the Conjugate Gradient (CG) algorithm (see

for instance [Greenbaum (1997)]) for solving such equations. But the CG

algorithm is intended for symmetric positive definite matrices and the more

general bi-CG algorithm is twice as costly in terms of computation. The

elementary strategy described in this paper allows us to modify the CG

algorithm to make it valid for the solution of such equations without any

additional cost.

We define a pseudo-inner product <, >̃ on the space of all real n-tuples

as follows.

Let an n-tuple (z1, . . . , zm, zm+1, . . . , zn) be partitioned as (z
¯1, z¯2),

where

z
¯1 = (z1, . . . , zm) and

z
¯2 = (zm+1, . . . , zn).

Here the partition is intended to be consistent with that of the matrix
[

G̃ H

−H> R̃

]

.

Then

< x
¯
, y
¯
>̃ ≡ < (x

¯1, x¯2), (y
¯1

, y
¯2

)>̃

≡
∑

x1j ∗ y1j −
∑

x2j ∗ y2j .

We note that the pseudo inner product has been defined as above specifi-

cally to deal with the matrix A. Since A is partitioned according to m, n−m,

the number m enters the definition of the pseudo-inner product <, >̃.

It is clear that < x, y>̃ =< y, x>̃,< αx, y>̃ = α < x, y>̃, < x, y +

y′>̃ =< x, y>̃+ < x, y′>̃.
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For convenience we define another pseudo inner product

< x
¯
, y
¯
>̃A ≡ < x

¯
, Ay

¯
>̃

We say x
¯
, y
¯

are A- orthogonal if

< x
¯
, y
¯
>̃A = 0.

The following lemma states the main motivation for the definition of

the pseudo inner product. This is needed for certain canonical properties,

important for algorithms to go through, to hold.

Lemma 12.1. < Ax
¯
, y
¯
>̃ =< x

¯
, Ay

¯
>̃.

Proof. Both LHS and RHS are equal to the expansion

x1
>G̃y1 − x2

>R̃y2 + x1
>H̃y2 + x2

>H̃>y1 �

Lemma 12.2. Let x be linearly dependent on y0 , y1 , . . . yk and let

y0 , y1 , . . . yk be A-orthogonal to each other.

Then x = <x,y0>̃A

<y0,y0>̃A
y0 + . . . + <x,yk>̃A

<yk,yk>̃ A
yk (assuming the denominators

are non zero).

Proof. Let x = α0y0 + . . . + αkyk. Then

< x, yj>̃A

< yj , yj>̃A

=
< α0y0 + . . . + αkyk, yj>̃A

< yj , yj>̃A

= αj

< yj , yj>̃A

< yj , yj>̃A

= αj
�

Equivalently, when x is linearly dependent on y0 , y1 , . . . yk, and these latter

are A-orthogonal to each other, if we successively remove from x its ‘A-

projections’ on y0, . . . , yk we will be left with the zero vector.

Further, let xr ≡ xr−1 −
<xr−1,yr−1>̃A

<yr−1,yr−1>̃A

yr−1, r = 1, · · · , k, where x0 = x.

Then it can be seen that
<x,yj>̃

A

<yj ,yj>̃
A

=
<xj ,yj>̃

A

<yj ,yj>̃A
, j = 1, 2, . . . , k. The modified

conjugate gradient(CG) algorithm is obtained from the usual CG algorithm

by replacing the usual inner product < , > by the pseudo inner product

< , >̃ wherever the former occurs. For the sake of completeness we describe

the modified CG algorithm below.
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A.1 Modified CG

This algorithm is intended for positive definite matrices of the form A =
(

G̃ H

−H> R̃

)

where G̃, R̃ are symmetric positive definite.

Given an initial guess x0, compute r0 = b − Ax0 and set p0 = r0.

For k = 1, 2, . . . , compute Apk−1.

Set xk = xk−1 + ak−1pk−1, where ak−1 = <rk−1, pk−1>̃

<pk−1, Apk−1>̃
.

Compute rk = rk−1 − ak−1Apk−1.

Set pk = rk + bk−1pk−1, where bk−1 = − <rk, Apk−1>̃

<pk−1, Apk−1>̃
.

Theorem 12.1. Let A =

[

G̃ H

−H> R̃

]

be a positive definite matrix with

G̃, R̃ symmetric positive definite. Let ei ≡ A−1ri, ∀i.If the modified CG

algorithm doesn’t encounter a ’A-degenerate vector’ (i.e., a vector that is

A- orthogonal to itself) while generating pj , rj , j = 0, 1, . . . , n − 1 then

we have

(a) < ek+1, Apj>̃ =< pk+1, Apj>̃ =< rk+1, rj>̃ = 0 ∀j ≤ k

(b)The modified CG algorithm generates the exact solution to the linear

system Ax = b in at most n steps.

Proof. (a) The standard CG proof goes through. For completeness we

repeat it replacing < , >̃ by < , > .

Since we assume that no A-degenerate vector is encountered, it is clear

that the coefficients in the CG algorithm are well defined unless a resid-

ual vector is zero in which case the exact solution has been found. Let

r0, r1, · · · , rk be nonzero. By the choice of a0, it is clear that

< r1, r0>̃ = < Ae1, p0>̃ = < e1, Ap0>̃ = 0. (A.1)

and from the choice of b0, it follows that < p1, Ap0>̃ = 0. Next assume

that

< rk, pj>̃ =< ek, Apj>̃ = < pk, Apj>̃ = < rk, rj>̃ = 0, ∀j ≤ k−1. (A.2)

We then have

< pk, Apk>̃ = < rk, Apk>̃, (A.3)

< rk, pk>̃ = < rk, rk>̃. (A.4)
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Since ak = <rk,pk>̃

<pk,Apk>̃
, it follows that

< rk+1, rk>̃ = < rk, rk>̃ − ak < rk, Apk>̃.

= < rk, rk>̃− < rk , pk>̃ = 0 (A.5)

and

< ek+1, Apk>̃ = < rk+1, pk>̃ = < rk, pk>̃ − ak < Apk, pk>̃

= < rk , pk>̃− < rk, pk>̃ = 0. (A.6)

Since bk = − <rk+1,Apk>̃

<pk ,Apk>̃
, we have

< pk+1, Apk>̃ = < rk+1, Apk>̃ + bk < pk, Apk>̃

=< rk+1, Apk>̃− < rk+1, Apk>̃ = 0. (A.7)

Next we have for j ≤ (k − 1),

< rk+1, rj>̃ = < rk − akApk, rj>̃ = − ak < pk, A(pj − bj−1pj−1)>̃ = 0,

(A.8)

< pk+1, Apj>̃ = < rk+1 + bkpk, Apj>̃ =< rk+1, Apj>̃

= < rk+1, a
−1
j (rj − rj+1)>̃ = 0. (A.9)

Thus by induction the desired equalities follows.

(b) The vectors p0, . . . , pk−1, k < n are A-orthogonal to each other. Sup-

pose we have 0 = ek = ek−1 − ak−1pk−1. The solution in this case is

obtained in k < n steps.

Next, let k = n. Let p0, . . . , pk−1 be non A-degenerate vectors (ie.,

< pj , Apj>̃ 6= 0).

Claim 12.1. p0, . . . pk−1 are linearly independent.

By induction suppose p0, . . . pj are independent.

If pj+1 = α0p0 + . . .+αjpj , then < pj+1, Apj+1>̃ = α0
2 < p0, Ap0>̃+ . . .+

αj
2 < pj , Apj>̃, using the fact that p0, . . . , pk−1 are A-orthogonal to each

other. Now pj+1 is non A-degenerate. So LHS6= 0.

Next

0 = < pj+1 − α0p0 − . . . − αjpj , A(pj+1 − α0p0 − . . . − αjpj)>̃

= < pj+1, Apj+1>̃ + α0
2 < p0, Ap0>̃ + . . . + αj

2 < pj , Apj>̃
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But this gives < pj+1, Apj+1>̃ = − < pj+1, Apj+1>̃ i.e., pj+1 is A-

degenerate. This is a contradiction. We conclude that pj+1 is linearly

independent of p0, . . . , pj . So by induction it follows that p0, . . . , pk−1 are

linearly independent. This proves the claim.

Since k = n, e0 is linearly dependent on p0, . . . , pk−1. Now p0, . . . , pk−1

are A-orthogonal to each other. Hence, e0 = <e0, Ap0>̃

<p0, Ap0>̃
p0 + . . . +

<e0, Apk−1>̃

<pk−1, Apk−1>̃
pk−1.

We have from the algorithm, ek = e0 − <e0, Ap0>̃

<p0, Ap0>̃
p0 − . . . −

<ek−1, Apk−1>̃

<pk−1, Apk−1>̃
pk−1 = e0 −

<e0, Ap0>̃

<p0, Ap0>̃
p0 − . . .− <e0, Apk−1>̃

<pk−1, Apk−1>̃
pk−1 = 0. Thus

the algorithm must terminate in at most n steps. �

A.2 Modified Preconditioned CG

Lemma 12.3. (a)There exist L1, K1 such that L1L1
> = G̃ and K1K1

> =

R̃ + H>(G̃)−1H.

Hence the matrix

(b)

[

G̃ H

−H> R̃

]

can be factored in the form

[

G̃ H

−H> R̃

]

=

[

L1 0

−H>L1
−> K1

] [

L1
> L1

−1H

0 K1
>

]

Proof. (a) We note that G̃, R̃, (G̃)−1 are positive definite and

H>(G̃)−1H is positive semidefinite. Hence G̃ can be factored as L1L1
>

and R̃ + H>(G̃)−1H , being positive definite, can be factored as K1K1
>.

(b)Routine. �

Let A =

(

G̃ H

−H> R̃

)

. where G̃ ∈ R
r×r, H ∈ R

r×(n−r) and R̃ ∈

R
(n−r)×(n−r). We define the modified transpose M >̃ for an n × n matrix

M , partitioned as

[

M11 M12

M21 M22

]

, where M11, M22 are r × r, (n − r) × (n − r)

respectively, as M >̃ ≡

[

(M11)
> −M>

21

−M>
12 M>

22

]

. Clearly (M >̃)>̃ = M . It is also

easy to see that < x, My>̃ =< M >̃x, y>̃.

We have the following desirable property for the modified transpose

operation.

Lemma 12.4. Let B be an n × n matrix. Then, (B>̃)−1 = (B−1)>̃
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Proof. We have,




(

B11 B12

B21 B22

)>̃




−1

=

(

B>
11 −B>

21

−B>
12 B>

22

)−1

.

Suppose

(

B11 B12

B21 B22

)−1

=

(

C11 C12

C21 C22

)

.

Then, it can be directly verified by multiplication of the relevant matrices

that





(

B11 B12

B21 B22

)>̃




−1

=

(

C>
11 −C>

21

−C>
12 C>

22

)

,

which proves the lemma. �

Let M be an n × n preconditioning matrix of the form

[

M11 M12

−M12
> M22

]

,

where M11, M22 are positive definite and are r × r, (n − r) × (n − r) re-

spectively. The modified preconditioned CG, for solving Ax = b (where A

is as in Theorem 12.1), is described below.

Given an initial guess x0.

Compute r0 = b − Ax0 and solve Mz0 = r0.

Set p0 = z0 For k = 0, 1, . . . .

Compute Apk−1.

Set xk = xk−1 + ak−1pk−1, where ak−1 = <rk−1,zk−1>̃

<pk−1,Apk−1>̃
.

Compute rk = rk−1 − ak−1Apk−1.

Solve Mzk = rk.

Set pk = zk + bk−1pk−1, where bk−1 = <rk,zk>̃

<rk−1,zk−1>̃
.

A.3 Justification for Modified Preconditioned CG

We need to solve Ax = b where A>̃ = A.

The preconditioning matrix M also satisfies M >̃ = M. Therefore by Lemma

12.3, M can be factorized as LL>̃. The equation (M−1A)x = M−1b can

also be written as

(L−1A(L>̃)−1)y = L−1b (A.10)
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where y = L>̃x. By Lemma 12.4,

(L>̃)−1 = (L−1)>̃.

We then have (L−1A(L>̃)−1)>̃ = (L−1A(L−1)>̃)>̃

= L−1A>̃(L−1)>̃

= L−1A(L>̃)−1.

So modified CG can be applied to Equation A.10.

We have the following modified CG algorithm.

Compute r̂0 = L−1b − By0, denoting L−1A(L>̃)−1 by B.

Set p̂0 = r̂0.

Compute Bp̂k−1.

Set yk = yk−1 + ak−1p̂k−1, where ak−1 =
<r̂k−1,p̂k−1>̃

<p̂k−1,Bp̂k−1>̃
=

<r̂k−1,r̂k−1>̃

<p̂k−1,Bp̂k−1>̃

Compute r̂k = r̂k−1 − ak−1Bp̂k−1. Set p̂k = r̂k + bk−1p̂k−1, where bk−1 =

− <r̂k,Bp̂k−1>̃

<p̂k−1,Bp̂k−1>̃
= <r̂k,r̂k>̃

<r̂k−1,r̂k−1>̃

Now rk ≡ b − Axk = L(L−1b − L−1A(L>̃)−1yk) = Lr̂k.

Set pk = (L>̃)−1p̂k.

We then have

pk = (L>̃)−1(r̂k + bk−1p̂k−1) = (L>̃)−1r̂k + bk−1pk−1

= (L>̃)−1L−1rk + bk−1pk−1

= M−1rk + bk−1pk−1

= zk + bk−1pk−1.

Next

ak−1 =
< L−1rk−1, L−1rk−1>̃

< L>̃pk−1, BL>̃pk−1>̃

=
< (L>̃)−1L−1rk−1, rk−1>̃

< pk−1, L−1BL>̃pk−1>̃

=
< M−1rk−1, rk−1>̃

< pk−1, Apk−1>̃

=
< zk−1, rk−1>̃

< pk−1, Apk−1>̃
.

Finally, using the simplification adopted for the numerator of the above

expression we have,

bk−1 = <rk,zk>̃

<rk−1,zk−1>̃
.

This completes the justification of the modified CG algorithm.
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Abstract

This paper studies optimal control policies of quality level and price for the in-
troduction of a new product with two competing technology generations in a
dynamic environment and also proposes a new model in this regard. Lots of work
has been done to study the optimal policies pertaining to explanatory variables
like price, promotional effort, quality, time etc. In comparison high technology
products have received less attention. The proposed model is a combination of
diffusion models and the cost function, which is capable of estimating the future
profit trends. The new model uses the relationship between the repeat purchasers
and the new purchasers in the overall diffusion of a new technology over multiple
generations, by separately identifying the two types of adopters.

Key Words: New product diffusion, optimal control, technology substitution,
marketing mix variables.
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13.1 Introduction

As the global competition becomes more prevalent across product lines,
a firm can succeed only through continuous innovation in its products on
compressed development schedules. More new products have been launched
in last two decades as compared to any time in the past. Majority of these
developments have taken place in high technology sectors like information
communication products. In this highly competitive environment, quality
of a product plays a major role in its success. Among the various attributes
of quality, information regarding reliability and utility reach the potential
customers very fast. The audiences of high technology products tend to
take informed decision and search for relevant data. Past buyers, trade
journals and discussion forums on internet provide information comparison
and cost benefit analysis on new products, enhancements etc. Therefore
any quality improvement initiative taken by the developers can influence
further success of the product. But at the same time effect of other mar-
keting mix variables like price cannot be ignored in the overall diffusion
of a product. As the time gap between successive generations of product
reduces, the replacement of earlier technologies with the latest one occurs
quite frequently, this calls for modeling of profit of the firm that includes
the marketing-mix variables such as price, quality, production cost and ad-
vertisement expenditure which ultimately influences the sales figure heavily.
Robinson and Lakhani (1975), modeled the consumer demand as a func-
tion of diffusion effect and price. Their dynamic price model suggests that
optimal prices will decline over time. Horsky and Simon (1983) analyzed a
model in which the market share response to advertisement is formulated
by incorporating the diminishing return to advertising and carryover effects
of advertising. Thompson and Teng (1984), proposed a general dynamic
price-advertising model. In their model they have incorporated learning
curve production cost. At the time of model development they have as-
sumed that the marginal cost of production is a non increasing function of
cumulative production volume, which contains as special case, the learning
curve phenomenon. Badiru (1992), in his review paper discussed various
univariate and multivariate learning curve models that have evolved over
the past several years. Dockner and Jorgensen (1988), discussed the op-
timal advertising policies for diffusion model under monopolistic market
situation. Thompson and Teng (1996), again derived the optimal price
and quality policies and tried to establish a relationship between these two
marketing strategies and the diffusion process. According to them under
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certain conditions higher prices imply higher quality and under the some
other conditions the optimal price declines over time while the product
quality improves. Lin C. et al (2001), proposed a general class of dynamic
model by combining Dockner and Jorgensen and Thompson and Teng mod-
els. In their empirical analysis they have incorporated price, quality and
advertisement in the model and have discussed the optimal control policies
by using the genetic algorithm technique. Many models have been devel-
oped to study the optimal policies of different marketing variables. But
most of them based on single generation framework only. In this paper we
have proposed a general dynamic price-quality model for two competing
product generations, in which price and quality are two control variables
whose optimal values are to be determined under a finite planning-horizon.

13.2 Dynamic Diffusion of Demand

The basic mixed innovation diffusion model was proposed by Bass in 1969,
since then it has become the standard for further development and modifi-
cation. The model can be mathematically represented as:

g =
dN(t)
dt

= p(N̄ −N(t)) + q(N̄ −N(t))N(t) (13.1)

where, N̄ is the potential market size, ‘p’ is innovation coefficient and ‘q’ is
the imitation coefficient.

Norton and Bass (1987), model is a classic example of multiple gen-
eration model, which is built upon the Bass model. During the model
development they assumed that the coefficients of innovation and imita-
tion remain unchanged from generation to generation. Islam and Meade
(1997) have tested the hypothesis of coefficient constancy across generation
of Norton-Bass model. Their empirical work relaxed the assumption of con-
stant coefficient of Norton-Bass model. They proposed that the coefficients
of later generation technology are constant increment/decrement over the
coefficients of the first generation. Mahajan and Muller (1996), proposed a
model which is an extension of Bass model to capture simultaneously both
the substitution and diffusion patterns for each successive generation of
technological products. Speece and MacLachlan (1995); Hardie, Danaher
and Putsis Jr. (2001), developed models in a different way by incorporating
price as an explanatory variable.

In this article, a more general of model under dynamic environment is
proposed, which captures both diffusion and substitution processes. In our
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model we have assumed for second generation product that there are two
groups of buyers: (a) new purchasers, who are first-time adopters of the
product generation (b) repeat buyers, who had also adopted the first gener-
ation product. In almost all the marketing situations price p(t) and quality
level q(t) play a major role in determining the total market share achieved
by the firm. In addition sales figure of the product is also influenced by
the word-of-mouth effect. Thus we can assume that demand of a product
(x(t)) as a dynamic function of price, quality and cumulative sales volume
(N(t)), and can be expressed as x = x(p, q,N). For, single generation prod-
uct, we can assume that the demand growth function is twice continuously
differentiable and increases with quality and decreases with price and can
be written as

δx

δp
< 0 ;

δx

δq
> 0 and

δ2x

δpδq
=

δ2x

δqδp
.

13.3 Model Development

The model is based on the following assumptions:

• Once an adopter adopts a new technology, he/she doesn’t revert to
earlier generation later.

• New adopters (first time buyers) will purchase only that particular
generation product for which he/she will get the maximum utility.
Utility can be expressed as a function of price and the goodwill of
the product, which in turn depends on the word-of-mouth influence
of the adopters.

• Sales of a second-generation durable come from two sources:

(1) New Purchasers (First time Buyers): Those who have for the
first time adopted the product.

(2) Repeat Purchasers: Those adopters who have bought the ear-
lier generation and now upgrade to latest technology.

• Each adopter can purchase exactly one product unit and she/he
makes no further purchases of the product generations that they
have adopted. And also each adopter after having made the first
purchase may make a repeat purchase of exactly one unit in each
successive generation or they can skip a generation product and
can wait for more advanced one.
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The process of incorporating a new technology is a process, which involves
the diffusion of knowledge about the characteristic of the technology. Sec-
ond generation is introduced into the market before its predecessor is with-
drawn. Two components of the model are adoptions due to the new pur-
chase and repeat sales. The basic framework behind the proposed model
is:

CumulativeAdoptersj(t) = NewPurchasersj(t) + Re peatPurchasersj(t)

where ‘j’ is the index representing the generation of a particular technology
and Nj is the cumulative number of adopters in the jth generation. Thus,

Nj(t) = N ′
j(t) +Rj(t) (13.2)

where, N ′
j(t) is the cumulative number of first time purchasers and Rj(t) is

the cumulative number of repeat purchasers of a jth generation technology
product . A monopoly market situation is assumed and each adopter can
adopt exactly one unit of product from each generation. The model for
different market situations can be build as follows:
Case 1. When a single generation product is in the market place:
When only first generation product is in the market, the cumulative sales
can be described by the following model, which is an extension of basic
mixed innovation diffusion model proposed by Bass (1969):

x1(t) =
dN1(t)
dt

= (N̄1 −N1(t))Z1(N1(t))g1(p1(t), q1(t)) (13.3)

where,

Zi(Ni(t)) = Diffusion effect on ith generation demand at

time t (i = 1, 2).

gi(pi(t), qi(t)) = price and quality function of ith generation product

at time t (i = 1, 2).

pi and qi be the quoted price and quality level of the ith generation product
respectively, where pi ≥ 0 and qi ≥ 0.
Case 2. When two generation products are in the market
When there are two generations of the technology in the market, the po-
tential purchasers of first generation technology (who are yet to purchase)
come under the influence of both innovation and imitation forces and price
and quality factors effective for the second generation. As a result a frac-
tion of the adopters (say, γ(t)) who would have otherwise adopted the first
generation product instead adopt the latest technology and the remaining
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[1−γ(t)] will adopt the first generation product. Let us define the parame-
ter γ(t)as the leapfrogging parameter. Demand function for two generations
are:

x1(t) =
dN1(t)
dt

= (N̄1 −N1(t))Z1(N1(t))g1(p1(t), q1(t))(1− γ(t)) (13.4)

x2(t) =
dN2(t)
dt

= (N̄2 −N2(t))Z2(N2(t))g2(p2(t), q2(t))

+(R̄2(t)−R2(t))Z ′
2(N2(t))g′2(p2(t), q2(t))

+ γ(t)(N̄1 −N1(t))Z1(N1(t))g1(p1(t), q1(t)) (13.5)
where, the leapfrogging parameter (γ(t)) can be defined as

γ(t) = ω(t)
Z2(t2)g2(t2)

Z1(t)g1(t) + Z2(t2)g2(t2)
(13.6)

where,

(1) ω(t) is a dummy variable =

{
0 when 0 < t ≤ t2

1 when t > t2
(2) xi(t) = Rate of adoption of ith generation product (i = 1, 2).
(3) Z ′

2(N2(t)) = Diffusion effect on repeat purchasers of 2nd generation prod-
uct at time t.

(4) R2(t) is the cumulative number of repeat purchasers of second generation
technology, who have earlier purchased the earlier one.

(5) t2 = t− τ : τ is the introduction time of second generation product.

where, ∂xi

∂pi
= xipi

< 0, xipj
> 0 and xiqi

> 0, xiqj
< 0; (i, j = 1, 2;i 6= j).

As we have discussed earlier the buyers of first generation product can
become the potential purchasers of the second generation technology and if
none of the adopters of new technology drops out of the market in the later
generation, the total number of potential repeat purchasers in the second
generation is equal to the summation of all prior purchasers of the first
generations i.e., we can conclude that the potential repeat purchasers of
the second generation product is the function of the adopters of the first
generation product. Thus the possible repeat purchasers for 2nd generation
technology can be expressed as a function of adoption of first generation
product and can be written as follows:

Potential repeat purchasers = R̄2(t) =

[
t∑

i=1

n1(i)

]
i.e. R̄2(t) = f(N1(t))

(13.7)
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n1(i): Sales of first generation product due to first time purchasers at time
t. The notation used in equation (4) and (5) can be defined as:

Z1(N1(t)) =
[
a1 + b1

N1(t)
N̄1

]
,

Z2(N2(t)) =
[
a2 + b2

N2(t)
N̄2 + R̄2(t)

]
and

Z ′
2(N2(t)) =

[
a′2 + b′2

N2(t)
N̄2 + R̄2(t)

]
, gi(pi(t), qi(t)) = e−dipi(t)+hiqi(t)

and

g′2(p2(t), q2(t)) = e−d′
2p2(t)+h′

2q2(t)

where,

(1) ai and a′i are innovation coefficients due to first time and repeat purchasers
respectively.

(2) bi and b′i are imitation coefficient due to first time and repeat purchasers
respectively.

(3) di and d′i are pricing parameter due to first time and repeat purchasers
respectively.

(4) hi and h′i are quality parameter due to first time and repeat purchasers
respectively.

13.4 Dynamic Optimization

In this section the general price and quality decision model is formulated
by incorporating the learning curve phenomenon as proposed by Thompson
and Teng (1996). According to Thomson and Teng the marginal cost of
production is a non increasing function of cumulative production volume.
Following notations are used below:
r: Discount rate; τ : timing of introduction of second generation product
and T be the end of the planning period.
C(N(t), q(t)): Total cost per unit at time t for cumulative sales volume
N(t) and quality level q(t).

x(t) =
dN(t)
dt

= x(p, q,N) = sales rate at time t.
Now, suppose the firm wants to maximize its total present value of profit

over the finite planning horizon. Then the objective function for the firm
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can be given by:

max
p(t),q(t)

J =
∫ T

0

e−rt[{p1(t)− C1(N1(t), q1(t))}x1(t)]dt

+
∫ T

t=τ

e−rt[{p2(t)− C2(N2(t), q2(t))}x2(t)]dt

subject to (13.8)

x1(t) = x1(p1(t), q1(t), N1(t), p2(t), q2(t), N2(t))

x2(t) = x2(p1(t), q1(t), N1(t), p2(t), q2(t), N2(t))

where, pi(t) ≥ 0 and qi(t) ≥ 0.

Optimal Solution

To solve the problem, Pontryagin Maximum principle can be applied. The
current value Hamiltonian is as follows:

H = (p1 − C1(N1, q1))x1 + (p2 − C2(N2, q2))x2 + λx1 + µx2

= (p1 − C1(N1, q1) + λ)x1 + (p2 − C2(N2, q2) + µ)x2 (13.9)

where, λ(t) and µ(t) are the current value adjoint variables (shadow prices
of x1(t) and x2(t), respectively) which satisfy the following differential equa-
tions

dλ

dt
= λ̇

= rλ−HN1

= rλ+ CN1x1 − (p1 − C1 + λ)x1N1 − (p2 − C2 + µ)x2N1 (13.10)

with the transversality condition at t = T , λ(t) = 0.
dµ

dt
= µ̇

= rµ−HN2

= rµ+ CN2x2 − (p1 − C1 + λ)x1N2 − (p2 − C2 + µ)x2N2 (13.11)

with the transversality condition at t = T , µ(t) = 0.
The physical interpretation of the current value Hamiltonian H can be

given as follows: λ(t) and µ(t) stand for the future benefits from first and
second generation (at time ‘t’) of having one more unit produced. Thus
the current value Hamiltonian is the sum of current profit [(p1 + C1)x1 +
(p2−C2)x2] and the future benefit [λx1 + µx2]. In short, H represents the
instantaneous total profit of the firm at time t.
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The following necessary conditions hold for an optimal solution:
dH

dp1
= 0 = Hp1 ⇒ (p1 −C1 + λ)x1p1 + x1 + (p2 −C2 + µ)x2p1 = 0 (13.12)

dH

dp2
= 0 = Hp2 ⇒ (p1 −C1 + λ)x1p2 + (p2 −C2 + µ)x2p2 + x2 = 0 (13.13)

Necessary conditions also include
dH

dq1
= 0 = Hq1 ⇒ (p1−C1+λ)x1q1−x1C1q1+(p2−C2+µ)x2q1 = 0 (13.14)

dH

dq2
= 0 = Hq2 ⇒ (p1−C1+λ)x1q2+(p2−C2+µ)x2q2−x2C2q2 = 0 (13.15)

Other optimality conditions are:∣∣∣∣Hp1p1 Hp1p2

Hp2p1 Hp2p2

∣∣∣∣ > 0;

∣∣∣∣∣∣
Hp1p1 Hp1p2 Hp1q1

Hp2p1 Hp2p2 Hp2q1

Hq1p1 Hq1p2 Hq1q1

∣∣∣∣∣∣ < 0 and

∣∣∣∣∣∣∣∣
Hp1p1 Hp1p2 Hp1q1 Hp1q2

Hp2p1 Hp2p2 Hp2q1 Hp2q2

Hq1p1 Hq1p2 Hq1q1 Hq1q2

Hq2p1 Hq2p2 Hq2q1 Hq2q2

∣∣∣∣∣∣∣∣ > 0 (13.16)

From the above optimality conditions, we can get the following results:
From (13.12) and (13.13) we have

p∗1 = C1 − λ− x1x2p2 − x2x2p1

x1p1x2p2 − x2p1x1p2

and

p∗2 = C2 − µ− x2

x2p2

+
x1p2

x2p2

[
x1x2p2 − x2x2p1

x1p1x2p2 − x2p1x1p2

]
(13.17)

Again, from (13.12) and (13.14)

C∗
1q1

= −x1q1

x1p1

+ (p2 − C2 + µ)
[
x2q1x1p1 − x2p1x1q1

x1x1p1

]
(13.18)

from (13.13) and (13.15)

C∗
2q2

= −x2q2

x2p2

+ (p1 − C1 + λ)
[
x1q2x2p2 − x1p2x2q2

x2x2p2

]
(13.19)

Integrating equation (13.10) and (13.11) with the transversality conditions,
we have the future benefit of having one more unit produced of the respec-
tive generation as

λ(t) =
∫ T

t

[(p1 − C1 + λ)x1N1 + (p2 − C2 + µ)x2N1 − CN1x1]e−rsds

(13.20)

µ(t) =
∫ T

t

[(p1 − C1 + λ)x1N2 + (p2 − C2 + µ)x2N2 − CN2x2]e−rsds

(13.21)



November 14, 2007 11:44 World Scientific Book - 9in x 6in ch13akbardhan

222 Mathematical Programming and Game Theory for Decision Making

13.5 Theoretical Results

The general formulation and characteristics of the proposed model will help
in gaining some insight into the important factors influencing the optimal
policies. Let,
ηi: price elasticity of demand of ith generation product with respect to price
pi, i.e., ηi = −pi

xip

xi
; and the cross-elasticities ηij = pj

xipj

xi
; (i, j = 1, 2;

i 6= j).
Equations (13.12) and (13.13) we have the following pricing policies.

p∗1 =

C1 +
C1η2+

(
p2η21

[
x2
x1

]
λ(η1η2−η12η21)

)
η2(η1−1)−η12η21

when (η12; η21) 6= 0

C1 + C1−λη1
η1−1 when η12 = η21 = 0

(13.22)

p∗2 =

C2 +
C2η1+

(
p1η12

[
x1
x2

]
µ(η1η2−η12η21)

)
η1(η2−1)−η12η21

when (η12; η21) 6= 0

C2 + C2−µη2
η2−1 when η12 = η21 = 0

(13.23)

For detail calculation see Appendix A.
For the case of zero leapfrogging or when η12 = η21 = 0, there will

be no significant effect of price of second-generation product on the po-
tential purchasers of the first generation. The optimal pricing policy for
this situation has been discussed in detail by Bayus (1992). Now suppose
η1η2 − η12η21 > 0 and also η2(n1 − 1) = η1(n2 − 1) = η1η2:
Case 1. When η12 > η21
The price path of first generation product is monotonically increasing and
the price path of second-generation product is monotonically decreasing.
Case 2. When η12 < η21
The price path of first generation product is monotonically decreasing and
that of the second-generation product is monotonically increasing.
Case 3. When η12 = η21
In this situation price-path of both the generation will follow the same
direction.

13.6 Pricing and Quality Impact on Leapfrogging

The general characteristics discussed in the above section are useful to gain
insight into the factors affecting the optimal price and quality. We shall
now investigate the case how the price, and quality motivate a potential
first time purchaser to leapfrog from an old technology to the latest one
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under the condition of equal diffusion effect of both the generations. The
leapfrogging parameter (γ(t)) plays a major role in increasing or decreasing
the sales figure of a particular generational. In majority of studies relating
to the multiple generation product situation the leapfrogging behavior of
consumers are either ignored or taken to be constant (e.g. Mahajan and
Muller (1996)). In their empirical work Mahajan and Muller have consid-
ered the parameter ‘γ’ as constant over time and also not influenced by
the diffusion rates of the technologies which are there in the market. This
seems to be an unrealistic assumption. We suggest that γ(t) is a time-
varying component and can easily be influenced by the diffusion rate of the
existing generations. In this section the cases as to how the price and qual-
ity changes influence the leapfrogging will be discussed. As defined earlier,
leapfrogging parameter is

γ(t) = ω(t)
Z2(N2(t))g2(p2(t), q2(t))

Z1(N1(t))g1(p1(t), q1(t)) + Z2(N2(t))g2(p2(t), q2(t))
(13.24)

Differentiating (13.24) with respect to price p1, we have

δγ

δp1
=

[
1

Z2g2 + Z1g1

]2 [
(Z2g2 + Z1g1)

δ(Z2g2)
δp1

− Z2g2
δ(Z2g2 + Z1g1)

δp1

]
= −

Z2g2Z1
δg1
δp1

(Z1g1 + Z2g2)

= d1

(
Z2g2

Z1g1 + Z2g2

) (
Z1g1

Z1g1 + Z2g2

)
= d1γ

(
Z1g1

Z1g1 + Z2g2

)
(13.25)

Similarly,

δγ

δp2
= −d2γ

(
Z1g1

Z1g1 + Z2g2

)
, (13.26)

δγ

δq1
= −h1γ

(
Z1g1

Z1g1 + Z2g2

)
, (13.27)

δγ

δq2
= −h2γ

(
Z1g1

Z1g1 + Z2g2

)
. (13.28)

To examine the influence of price and quality on leapfrogging, the following
can be proposed:

Proposition 1. If Z1 = Z2, A = X and B = Y , where A =
[

g1
(g1+g1)

2

]
δg2
δp2

,

B =
[

g1
(g1+g1)

2

]
δg2
δq2

, X =
[

g2
(g1+g1)

2

]
δg1
δp1

and Y =
[

g2
(g1+g1)

2

]
δg1
δq1

then:
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Condition Result
Case 1. p•2 (↑), q•2 (↓) and p•1 (↓), q•1 (↑) γ• (↓)
Case 2. p•2 (↓), q•2 (↑) and p•1 (↑), q•1 (↓) γ• (↑)

Proof. See Appendix B. �

In case 1, as the firm increases the price of second generation product
without increasing the standard of the product, it end up with reducing the
number leapfroggers because in this situation the potential purchasers will
find the first generation product more lucrative than the other one. This
situation may arise when a company wants to sell out whole of the stock of
first generation product. In case 2, as the price of the second generation is
monotonically decreasing and the price of the first generation is increasing,
hence in this situation leapfrogging parameter is also monotonically increas-
ing. The results in Proposition 1 can be interpreted to mean that price has
a higher impact than the quality in determining the rate of leapfrogging.

Now, from equation (13.25)-(13.28), following theorem results:

Theorem A. 1.


δγ

δp1

δγ

δp2

 = Constant; 2.


δγ

δq1
δγ

δq2

 = Constant;

3.


δγ

δq1
δγ

δq2

 ∝


δγ

δp1

δγ

δp2

.

Proof. See Appendix B. �

13.7 Optimal Introduction Timing Strategy for Second
Generation Product

The success of a high technology product is largely dependent on its time of
introduction in the market. In multiple generation product situations the
timing of introduction of a new generation technology plays a major role
in the overall diffusion of new and the existing technologies. As this paper
deals with two generations only, in this section the problem of optimal in-
troduction timing of second generation product will be discussed. Suppose
that a firm has introduced its first generational product at time t1 and is
still continue with it and has no intention to withdraw it from the market
in near future. And by the time t2 it has already developed the second gen-



November 14, 2007 11:44 World Scientific Book - 9in x 6in ch13akbardhan

Dynamic Optimal Control Policy in Price and Quality 225

eration product (t1 ≤ ts). Now the firm has to decide the optimal time (τ)
of introduction of the latest generation, in such a way that the optimal time
τ , has very limited effect on the diffusion of the earlier generation product.
The ideal introduction time (τ) of the second generation product should be
that when the scope of leapfrogging from the first generation to the second
generation will be very limited or in other words, the ideal time should be
that point when a firm find a way-out to reimburse the cannibalization of
sales from the first generation product due to the introduction of second
generation. Differentiating equation (13.7) with respect to τ and equating
to zero, we have the following proposition.

Proposition 2. The optimal time of introduction of second generations
is when the profit gained from the second generation product can compen-
sate the loss incurred on the first generation product due to leapfrogging.
Otherwise the firm should wait for an ideal time to introduce the next
version.

Integrating ‘J ’ with respect to ‘τ ’ and equating to zero, results the
following equation for the optimal introduction time of second generation
product:

(p1(τ
∗)− C1(N1(τ∗), q1(τ∗)))(N̄1 −N1(τ∗))

× Z1(N1(τ∗))g1(p1(τ∗), q1(τ∗))γ(τ∗)

= [p2(τ∗)− C2(N2(τ∗), q2(τ∗))][(N̄2 −N2(τ∗))Z2(N2(τ∗))

× g2(p2(τ∗), q2(τ∗)) + (R̄2 −R2(τ∗))Z ′
2(N2(τ∗))

× g′2(p2(τ∗), q2(τ∗)) + (N̄1 −N1(τ∗))Z1(N1(τ∗))

× g1(p1(τ∗), q1(τ∗))γ(τ∗)]

(13.29)

(For details proof see Appendix C).
The second component of left hand side of the product in (13.29) repre-

sents the number of leapfroggers from first generation product, which has
been multiplied with the marginal profit. Therefore the optimal time for
introduction of the new product is when the return from the second genera-
tion (RHS of (13.29)) at least compensates the loss for the first generation.
Basically the left-hand side of the equation (13.29) represents the loss figure
of first generation product, which is incurred due to the leapfrogging. The
right-hand side gives the profit figure on introduction of second generation
product, which also consists of profit gained due to the up-graders. As long
as left-hand side is greater than right-hand side, firm should wait for the
ideal time to introduce the next version. The firm can launch the next
version when the left-hand side becomes equal or less than right-hand side.
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13.8 Conclusions

In this paper we have extended the Thompson and Teng model by consid-
ering price and quality as decision variables. In most of the earlier works
properties of optimal solutions were discussed in the light of single gener-
ation only, in contrast here we tried to discuss the optimality conditions
of different marketing mix variables for two product generations resulting
from technological innovations. The theoretical results obtained here con-
firm that the optimality conditions as described in literatures for a single
generation state can also hold for multiple generation situations. Finally
the model can be extended in several ways, e.g. by extending the monop-
olistic model to a duopolistic or oligopolistic market. The model can also
be extended for n-generational product situation in the dynamic market
situation.
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Appendix

A. Optimal Pricing

From (13.17), we have

p1 = C1 − λ+
1
x1

[
p1η2x1 + p2η21x2

η1η2 − η12η21

]
⇒ p1

(
1− η2

η1η2 − η12η21

)
= C1 − λ+

η21x2p2

x1 (η1η2 − η12η21)

⇒ p1 = C1 +
C1η2 +

(
p2η21

[
x2
x1

]
λ (η1η2 − η12η21)

)
η2 (η1 − 1)− η12η21

(A.1)

Similarly the optimal path for p2 can be given as

p2 = C2 +
C2η1 +

(
p1η12

[
x1
x2

]
µ (η1η2 − η12η21)

)
η1 (η2 − 1)− η12η21

(A.2)
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B. Significance of Pricing and Quality in Leapfrogging

Since, Z1 = Z2; thus (13.6) ⇒ γ =
g2

g1 + g2
.

Now taking the time derivative of the above equation, we have

γ• =
[

g1
(g1 + g2)2

]
δg2
δp2

p•2 +
[

g1
(g1 + g2)2

]
δg2
δq2

q•2 −
[

g2
(g1 + g2)2

]
δg1
δp1

p•1

−
[

g2
(g1 + g2)2

]
δg1
δq1

q•1 (B.1)

where,

δg1
δp1

,
δg2
δp2

< 0;
δg1
δq1

,
δg2
δq2

> 0 and g1, g2 ≥ 0 . (B.2)

Hence, the sign of A is positive and X is negative.
(B.I.) Corollary. There will be no leapfrogging if:

Ap•2 +Bq•2 = Xp•1 + Y q•1 .

Proof of Theorem A. Now,

(13.25)÷(13.26)⇒ δγ

δp1
÷ δγ

δp2
= Constant

Similarly, from (13.27) and (13.28) we can prove that

δγ

δq1
÷ δγ

δq2
= −h1

h2
= Constant.

Again,[
δγ

δp1
δγδp2

]
[

δγ
δq1

δγδq2

] =
d1h2

d2h1
= ψ = Constant ⇒

δγ
δp1

δγ
δp2

= ψ

δγ
δq1

δγ
δq2

⇒

[
δγ
δp1

δγ
δp2

]
∝

δγ
δq1

δγ
δq2

]

(B.II) Corollary
Case 1. If ψ = 1 ⇒ δγ

δp1

δγ
δq2

= δγ
δq1

δγ
δq2

Case 2. If ψ < 1 ⇒ δγ
δp1

δγ
δq2

< δγ
δq1

δγ
δq2

.
Case 3. If ψ > 1 ⇒ δγ

δp1

δγ
δq2

> δγ
δq1

δγ
δq2
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C. Optimal Introduction Timing Strategy

Proof of Proposition 2.

(13.8) ⇒ max
p(t),q(t)

J =
∫ T

0

e−rt[(p1(t)− C1(N1(t), q1(t)))x1t)]dt

+
∫ T

t=τ

e−rt[(p2(t)− C2(N2(t), q2(t))x2(t)]dt

=
∫ T

t=0

e−rt[p1(t)− C1(N1(t), q1(t)][(N̄1 −N1(t))

×Z1(N1(t))g1(p1(t), q1(t))(1− γ(t))]dt

+
∫ T

t=τ

e−rt[p2(t)− C2(N2(t), q2(t)]

× [(N̄2 −N ′
2(t))Z2(N2(t))g2(p2(t), q2(t))

+ (R̄2 −R2(t))Z2(N2(t))g′2(p2(t), q2(t))

+ γ(t)(N̄1 −N1(t))Z1(N1(t))g1(p1(t), q1(t))]dt

=
∫ T

0

e−rt(p1(t)− C1(N1(t), q1(t))[N̄1 −N1(t)]

×Z1(N1(t))g1(p1(t), q1(t))(1− γ(t))dt

+
∫ T

t=τ

e−rt{[(p2(t)− C2(N2(t), q2(t)]

× [(N̄2 −N ′
2(t))Z2(N2(t))g2(p2(t), q2(t))

+ (R̄2 −R′
2(t))Z

′
2(N2(t))g′2(p2(t), q2(t))]

+ γ(t)(N̄1 −N1(t))Z1(N1(t))g1(p1(t), q1(t))}dt

=
∫ T

0

e−rt(p1(t)− C1(N1(t), q1(t))[N̄1 −N1(t)]

×Z1(N1(t))g1(p1(t), q1(t))dt

+
∫ T

t=τ

e−rt[(p2(t)− C2(N2(t), q2(t)]

× [(N̄2 −N ′
2(t))Z2(N2(t))g2(p2(t), q2(t))

+ (R̄2 −R′
2(t))Z

′
2(N2(t))g′2(p2(t), q2(t))]dt

+
∫ T

t=τ

e−rt((p2(t)− p1(t))− (C2(N2(t), q2(t))− C1(N1(t), q1(t)))

× γ(t)(N̄1 −N1(t))Z1(N1(t))g1(p1(t), q1(t))dt
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Integrating ‘J ’ with respect to ‘τ ’ and equating to zero, results for the
optimal introduction time of second generation can be obtained as follows:

(p1(τ∗)− C1(N1(τ∗), q1(τ∗)))(N̄1 −N1(τ∗))Z1(N1(τ∗))g1(p1(τ∗), q1(τ∗))γ(τ∗)

= [p2(τ∗)− C2(N2(τ∗), q2(τ∗))][(N̄2 −N2(τ∗))Z2(N2(τ∗))g2(p2(τ∗), q2(τ∗))

+ (R̄2 −R2(τ∗))Z ′
2(N2(τ∗))g′2(p2(τ∗), q2(τ∗)) + (N̄1 −N1(τ∗))

× Z1(N1(τ∗))g1(p1(τ∗), q1(τ∗))γ(τ∗)]
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Abstract

Material imbalances at some companies have been traced to the procedures they
use for forecasting demand based on the usual normality assumption. In this
paper we discuss a simple and easy to implement nonparametric technique to
forecast the demand distribution based on statistical learning, and ordering poli-
cies based on it, that are giving satisfactory results at these companies. We
also discuss an application of this nonparametric forecasting method to portfolio
management.

Key Words: Forecasting demand, updating demand distribution, nonparamet-

ric method, overage and underage costs, order quantity determination, news-

vendor approach; returns from investment, risk, portfolio management and opti-

mization, statistical learning.

14.1 Introduction

In production planning projects at computer companies (Dell, Sun), filter

making companies (Pall), automobile component suppliers (Borg Warner,

Federal Mogul), and others, we found that high inventories for some items,

and expedited shipments to cover shortages for some others, are common

occurrences at some of them. Examination of the materials requirement

planning (MRP) systems used for making production and order quantity

231
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decisions at these companies has shown that a common cause for these

occurrences are the procedures they use for forecasting demand based on

the usual normality assumption. This paper discusses the features of a new,

simpler nonparametric forecasting method based on statistical learning,

and ordering and lot sizing policies based on it, implemented and working

satisfactorily at these companies.

We also discuss an application of this nonparametric forecasting method

to portfolio management. We then develop a model based on the principles

of statistical learning to determine an optimum portfolio WRT (with respect

to) a measure of risk that is closer to the common investors perception of

risk.

14.2 Costs of High Inventories and Shortages

Models for controlling and replenishing of inventories have the aim of deter-

mining order quantities to minimize the sum of total overage costs (costs of

excess inventory remaining at the end of the planning period), and under-

age costs (shortage costs, or costs of having less than the desired amount

of stock at the end of the planning period).

In inventory control literature, the total overage (underage) cost is usu-

ally assumed to be proportional to the overage (shortage) amount or quan-

tity, to make the analysis easier. But in some of the companies we were told

that a piecewise linear (PL) function provides a much closer representation

of the true overage and underage costs. In these companies there is a buffer

with limited space in which excess inventory at the end of the planning

period can be stored and retrieved later at a low cost (i.e., with minimum

requirements of manhours needed) per unit. Once this buffer is filled up,

any remaining excess quantity has to be held at a location farther away that

requires greater number of manhours for storing or retrieval/unit. Similar

situation exists for underage cost as a function of the shortage amount.

This clearly implies that the overage and underage costs are PL functions

of the excess, shortage quantities. Determining optimum order quantities

to minimize such unusual overage, underage cost functions is much harder

with existing inventory control models using forecasting techniques in cur-

rent literature.

An advantage of the new forecasting system discussed in this paper is

that such unusual overage, underage cost functions can easily be accommo-

dated under it.
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14.3 Commonly used Techniques for Forecasting Demand

In almost all inventory management problems in practice the demand dur-

ing a future planning period is a random variable with an unknown prob-

ability distribution, and the models for these problems have the objective

of minimizing the sum of expected overage and underage costs. Successful

inventory management systems depend heavily on good demand forecasts

to provide data for inventory replenishment decisions.

The output of forecasting is usually presented in the literature as the

forecasted demand quantity, in reality it is an estimate of the expected

demand during the planning period. Because of this, the purpose of fore-

casting is often misunderstood to be that of generating this single number,

even though sometimes the standard deviation of demand is also estimated.

All commonly used forecasting methods are parametric methods, they usu-

ally assume that demand is normally distributed, and update its distri-

bution by updating the parameters of the distribution, the mean µ, and

the standard deviation σ. The most commonly used methods for updating

the values of the parameters are the method of moving averages, and the

exponential smoothing method.

The method of moving averages uses the average of n most recent ob-

servations on demand as the forecast for the expected demand for the next

period. n is a parameter known as the order of the moving average method

being used, typically it is between 3 to 6 or larger.

The exponential smoothing method introduced and popularized by

[Brown (1959)], is perhaps the most popular method in practice. It takes

D̂t+1, the forecast of expected demand during next period t + 1, to be

αxt + (1−α)D̂t, where xt is the observed demand during current period t,

D̂t is the forecasted expected demand for current period t, and 0 < α ≤ 1

is a smoothing constant which is the relative weight placed on the current

observed demand. Typically values of α between 0.1 and 0.4 are used, and

the value of α is increased whenever the absolute value of the deviation

between the forecast and observed demand exceeds a tolerance times the

standard deviation. Smaller values of α (like 0.1) yield predicted values

of expected demand that have a relatively smooth pattern, whereas higher

values of α (like 0.4) lead to predicted values exhibiting significantly greater

variation, but doing a better job of tracking the demand series. Thus using

larger α makes forecasts more responsive to changes in the demand process,

but will result in forecast errors with higher variance.

One disadvantage of both the method of moving averages and the ex-
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ponential smoothing method is that when there is a definite trend in the

demand process (either growing, or falling), the forecasts obtained by them

lag behind the trend. Variations of the exponential smoothing method to

track trend linear in time in the demand process have been proposed (see

[Holt (1957)]), but these have not proved very popular.

There are many more sophisticated methods for forecasting the expected

values of random variables, for example the Box-Jenkins ARIMA models

(see [Box and Jenkins (1970)] and [Montgomery and Johnson (1976)]), but

these methods are not popular for production applications, in which fore-

casts for many items are required.

14.4 Parametric Methods for Forecasting Demand Distri-

bution

14.4.1 Using Normal Distribution with updating of Ex-

pected Value and Standard Deviation in each Period

As discussed in the previous section, all forecasting methods in the litera-

ture only provide an estimate of the expected demand during the planning

period. The optimum order quantity to be computed depends of course on

the entire probability distribution of demand, not just its expected value.

So, almost everyone assumes that the distribution of demand is the normal

distribution because of its convenience. One of the advantages that the

normality assumption confers is that the distribution is fully characterized

by only two parameters, the mean and the standard deviation, both of

whom can be very conveniently updated by the exponential smoothing or

the moving average methods.

Let t be the current period; xr the observed demand, and D̂r, σ̂r the for-

casts (i.e., estimates by whichever method is being used for forecasting) of

the expected demand, standard deviation of demand respectively in period

r; for r ≤ t. Then these forecasts for the next period t + 1 are:

D̂t+1 (by method of moving aver-

ages of order n)

= 1

n

∑t

r=t−n+1
xr

D̂t+1 (by exponential smoothing

method with smoothing constant

α)

= αxt + (1 − α)D̂t

σ̂t+1 (by method of moving aver-

ages of order n)

= +
√

(
∑t

r=t−n+1
(xr − D̂t+1)2)/n
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To get σ̂t+1 by the exponential smoothing method, it is convenient to

use the mean absolute deviation (MAD), and use the formula: standard

deviation σ ≈ (1.25)MAD when the distribution is the normal distribution.

Let MADt denote the estimate of MAD for current perior t. Then the

forecasts obtained by the exponential smoothing method with smoothing

parameter α for the next period t + 1 are:

MADt+1 = α|xt − D̂t| + (1 − α)MADt

σ̂t+1 = (1.25)MADt+1

Usually α = 0.1 is used to ensure stability of the estimates. And the

normal distribution with mean D̂t+1, and standard deviation σ̂t+1 is taken

as the forecast for the distribution of demand during the next period t + 1

for making any planning decisions under this procedure.

14.4.2 Using Normal Distribution with Updating of Ex-

pected Value and Standard Deviation only when

there is Evidence of Change

In some applications, the distribution of demand is assumed to be the nor-

mal distribution, but estimates of its expected value and standard deviation

are left unchanged until there is evidence that their values have changed.

Foote [3] discusses several statistical control tests on demand data being

generated over time to decide when to reestimate these parameters. Under

this scheme, the method of moving averages is commonly used to estimate

the expected value and the standard deviation from recent data whenever

the control tests indicate that a change may have occurred.

14.4.3 Using Distributions other than Normal

In a few special applications in which the expected demand is low (i.e.,

the item is a slow-moving item) other distributions like the poisson distri-

bution are sometimes used, but by far the most popular distribution for

making inventory management decisions is the normal distribution because

of its convenience, and because using it has become a common practice

historically.

For the normal distribution, the mean is the mode (i.e., the value as-

sociated with the highest probability), and the distribution is symmetric

around this value. If histograms of observed demand data of an item do

not share these properties, it may indicate that the normal distribution is a

poor approximation for the actual distribution of demand, in this case or-
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der quantities determined using the normality assumption may be far from

being optimal.

These days industrial environment is very competitive with new prod-

ucts replacing the old periodically due to rapid advancements in technology.

In this dynamic environment, the life cycles of components and end prod-

ucts are becoming shorter. Beginning with the introduction of the product,

its life cycle starts with a growth period due to gradual market penetration

of the product. This is followed by a stable period of steady demand. It is

then followed by a final decline period of steadily declining demand, at the

end of which the item disappears from the market. Also, the middle stable

period seems to be getting shorter for many major components. Because of

this constant rapid change, it is necessary to periodically update demand

distributions based on recent data.

The distributions of demand for some components are far from being

symmetric around the mean, and the skewness and shapes of their distribu-

tions also seem to be changing over time. Using a probability distribution

like the normal defined by a mathematical formula involving only a few

parameters, it is not possible to capture changes taking place in the shapes

of distributions of demand for such components. This is the disadvantage

of existing forecasting methods based on an assumed probability distribu-

tion. Our conclusions can be erroneous if the true probability distribution

of demand is very different from the assumed distribution.

Nonparametric methods use statistical learning, and base their conclu-

sions on knowledge derived directly from data without any unwarranted

assumptions. In the next section we discuss a nonparametric method for

forecasting the entire demand distribution that uses the classical empiri-

cal probability distribution derived from the relative frequency histogram

of time series data on demand. It has the advantage of being capable of

updating all changes occurring in the probability distribution of demand,

including those in the shape of this distribution.

Then in the following section we illustrate how optimal order quantities

that optimize piecewise linear and other unusual cost functions discussed

in Section 14.2 can be easily computed using these empirical distribution.
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14.5 A Nonparametric Method for Updating and Forecast-

ing the Entire Demand Distribution

In supply chain management, the important random variables are daily

or weekly (or whatever planning period is being used) demands of various

items (raw materials, components, sub-assemblies, finished goods, spare

parts, etc.) that companies either buy from suppliers, or sell to their cus-

tomers. Observed values of these random variables in each period are gen-

erated automatically as a time series in the production process, and are

usually available in the production data bases of companies. In this sec-

tion we discuss a simple nonparametric method for updating changes in the

probability distributions of these random variables using this data directly.

Empirical Distributions and Probability Density Functions

The concept of the probability distribution of a random variable evolved

from the ancient practice of drawing histograms for the observed values

of the random variable. The observed range of variation of the random

variable is usually divided into a convenient number of value intervals (in

practice about 10 to 25) of equal length, and the relative frequency of each

interval is defined to be the proportion of observed values of the random

variable that lie in that interval. The chart obtained by marking the value

intervals on the horizontal axis, and erecting a rectangle on each interval

with its height along the vertical axis equal to the relative frequency is

known as the relative frequency histogram of the random variable, or its

discretized probability distribution. The relative frequency in each value

interval Ii is the estimate of the probability pi that the random variable

lies in that interval, see Figure 1 for an example.

Let I1, . . . , In be the value intervals with u1, . . . , un as their midpoints,

and p = (p1, . . . , pn), the probability vector in the discretized probabil-

ity distribution of the random variable. Let µ̄ =
∑n

i=1
uipi, σ̄ =

√

∑n

i=1
pi(ui − µ̄)2.

Then µ̄, σ̄ are estimates of the expected value µ, standard deviation σ

of the random variable respectively.

We will use the phrase empirical distribution to denote such a

discretized probability distribution of a random variable, obtained either

through drawing the histogram, or by updating a previously known dis-

cretized probability distribution based on recent data.
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Figure 1: Relative frequency histogram for daily demand for a major

component at a PC assembling plant in California.

When mathematicians began studying random variables from the 16th

century onwards, they found it convenient to represent the probability dis-

tribution of the random variable by the probability density function

which is the mathematical formula for the curve defined by the upper

boundary of the relative frequency histogram in the limit as the length

of the value interval is made to approach 0, and the number of observed

values of the random variable goes to infinity. So the probability density

function provides a mathematical formula for the height along the vertical

axis of this curve as a function of the variable represented on the horizontal

axis. Because it is a mathematically stated function, the probability den-

sity function lends itself much more nicely into mathematical derivations

than the somewhat crude relative frequency histogram.

It is rare to see empirical distributions used in decision making models

these days. Almost everyone uses mathematically defined density functions

characterized by a small number of parameters (typically two or less) to

represent probability distributions. In these decision making models, the

only freedom we have in incorporating changes, is to change the values of

those parameters. This may be inadequate to capture all dynamic changes

occurring in the shapes of probability distributions from time to time.
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Extending the Exponential Smoothing Method to update the Em-

pirical Probability Distribution of a Random Variable

We will now see that representing the probability distributions of ran-

dom variables by their empirical distributions gives us unlimited freedom

in capturing any type of change including changes in shape, [Murty (2002)].

Let I1, . . . , In be the value intervals, and p1, . . . , pn the probabilities

associated with them in the present empirical distribution of a random

variable. In updating this distribution, we have the freedom to change the

values of all the pi, this makes it possible to capture any change in the

shape of the distribution.

Changes, if any, will reflect in recent observations on the random vari-

able. Following table gives the present empirical distribution, histogram

based on most recent observations on the random variable (for example

most recent k observations where k could be about 30), and xi to denote

the probabilities in the updated empirical distribution to be determined.

Value Probability vector in the

interval Present empirical Recent Updated empirical

distribution histogram distribution (to be

estimated)

I1 p1 f1 x1

...
...

...
...

In pn fn xn

f = (f1, . . . , fn) represents the estimate of the probability vector in the

recent histogram, but it is based on too few observations. p = (p1, . . . , pn)

is the probability vector in the empirical distribution at the previous updat-

ing. x = (x1, . . . , xn), the updated probability vector, should be obtained

by incorporating the changing trend reflected in f into p. In the theory

of statistics the most commonly used method for this incorporation is the

weighted least squares method [Murty (2002)], which provides the following

model (1) to compute x from p and f . In it, β is a weight between 0 and 1,

similar to the smoothing constant α in the exponential smoothing method

for updating the expected value (like that α there, here β is the relative

weight placed on the probability vector from the histogram composed from
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recent observations).

Minimize (1 − β)
∑n

i=1
(pi − xi)

2 + β
∑n

i=1
(fi − xi)

2

subject to
∑n

i=1
xi = 1

xi ≥ 0, i = 1, . . . , n

(1)

x is taken as the optimum solution of this convex quadratic program. β =

0.1 to 0.4 works well, the reason for choosing this weight for the second term

in the objective function to be small is because the vector f is based on only

a small number of observations. Since the quadratic model minimizes the

weighted sum of squared forecast errors over all value intervals, when used

periodically, it has the effect of tracking gradual changes in the probability

distribution of the random variable.

The above quadratic program has a unique optimum solution given by

the following explicit formula.

x = (1 − β)p + βf (2)

So we take the updated empirical distribution to be the one with the prob-

ability vector given by (2).

The formula (2) for updating the probability vector in the above for-

mula is exactly analogous to the formula for forecasting the expected value

of a random variable using the latest observation in exponential smoothing.

Hence the above formula can be thought of as the extension of the expo-

nential smoothing method to update the probability vector in the empirical

distribution of the random variable.

When there is a significant increase or decrease in the mean value of the

random variable, new value intervals may have to be opened up at the left

or right end. In this case the probabilities associated with value intervals

at the other end may become very close to 0, and these intervals may have

to be dropped from further consideration at that time.

This procedure can be used to update the discretized demand distri-

bution either at every ordering point, or periodically at every rth ordering

point for some convenient r, using the most recent observations on demand.

14.6 An Application of the Forecasting Method of Section

14.5 for computing Optimal Order Quantities

Given the empirical distribution of demand for the next period, the well

known newsvendor model (see [Karlin (1958)], [Nahmias (1993)] and [Silver

and Peterson (1979)]) can be used to determine the optimal order quantity
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Ii = interval Probability ui = mid-point

for demand pi of interval

100 − 120 0.03 110

120 − 140 0.10 130

140 − 160 0.15 150

160 − 180 0.20 170

180 − 200 0.11 190

200 − 220 0.07 210

220 − 240 0.20 230

240 − 260 0.06 250

260 − 280 0.02 270

280 − 300 0.04 290

300 − 320 0.02 310

for that period that minimizes the sum of expected overage and underage

costs very efficiently, numerically. We will illustrate with a numerical exam-

ple. Let the empirical distribution of demand (in units) for next period be

the one given above. The expected value of this distribution µ̄ =
∑

i uipi =

192.6 units, and its standard deviation σ̄ =
√

∑

i(ui − µ̄)2pi = 47.4 units.

Let us denote the ordering quantity for that period, to be determined,

by Q, and let d denote the random variable that is the demand during that

period. Then

y = overage quantity in this period = amount remain-
ing after the demand is completely fulfilled = (Q − d)+ =
maximum{0, Q − d}

z = underage quantity during this period = unfulfilled demand
during this period = (Q − d)− = maximum{0, d − Q}.

Suppose the overage cost f(y), is the following piecewise linear function

of y

Overage amount = y Overage cost f(y) in $ Slope

0 ≤ y ≤ 30 3y 3

30 ≤ y 90 + 10(y − 30) 10.

Suppose the underage cost g(z) in $, is the fixed cost depending on the

amount given below
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Underage amount = y Underage cost g(z) in $

0 ≤ z ≤ 10 50

10 < z 150.

To compute E(Q) = the expected sum of overage and underage costs

when the order quantity is Q, we assume that the demand value d is equally

likely to be anywhere in the interval Ii with probability pi. This implies

for example that the probability that the demand d is in the interval 120

− 125 is = (probability that d lies in the interval 120 − 140)/4 = (0.10)/4

= 0.025.

Let Q = 185. When the demand d lies in the interval 120 − 140, the

overage amount varies from 65 to 45 and the overage cost varies from $440

to 240 linearly. So the contribution to the expected overage cost from this

interval is 0.10(440 + 240)/2.

Demand lies in the interval 140 − 160 with probability 0.15. In this

interval the overage cost is not linear, but it can be partitioned into two

intervals 140 − 155 (with probability 0.1125), and 155 − 160 (with prob-

ability 0.0375) in each of which the overage cost is linear. In the interval

140 ≤ d ≤ 155 the overage cost varies linearly from $240 to $90; and in

155 ≤ d ≤ 160 the overage cost varies linearly from $90 to $75. So, the

contribution to the expected overage cost from this interval is $(0.115 (240

+ 90)/2) + (0.0375(90 + 75)/2).

Proceeding this way we see that E(Q) for Q = 185 is: $(0.03

(640+440)/2)+ (0.10(440 + 240)/2) + [(0.115 (240 + 90)/2) + (0.0375(90

+ 75)/2)] + (0.20(75 + 15)/2) + [0.0275(15 +0)/2) + 0.055(50) + 0.0275

(150)] + (0.07 + 0.20 + 0.06 + 0.02 + 0.04 + 0.02)150 = $ 140.87.

In the same way we computed the values of E(Q) for different values of

Q spaced 5 units apart, given below.
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Q E(Q)

195 178.00

190 162.27

185 143.82

180 139.15

175 130.11

170 124.20

165 120.40

160 121.95

155 122.60

150 124.40

145 139.70

145 150 155 160 165 170 175 180 185 190 195
120

130

140

150

160

170

180

Q

E(
Q

)

Figure 2: Plot of E(Q) for various values of Q

Figure 2 is a plot of these values of E(Q). Here we computed E(Q)

at values of Q which are multiples of 5 units, and it can be seen that

Q = 165 is the optimum order quantity correct to the nearest multiple of 5.

If the optimum is required to greater precision, the above calculation can

be carried out for values of Q at integer (or closer) values between 150 to

170 and the best value of Q there chosen as the optimum order quantity.

The optimum value of Q can then be translated into the actual order

quantity for the next period by subtracting the expected on-hand inventory

at the end of the present period from it.
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For each i assuming that demand d is equally likely to be anywhere in

the interval Ii with probability pi, makes the value of E(Q) computed ac-

curate for each Q, However, in many applications people make the simpler

assumption that pi is the probability of demand being equal to ui, the mid-

point of the interval Ii. The values of E(Q) obtained with this assumption

will be approximate, particularly when the overage and underage costs are

not linear (i.e., when they are piecewise linear etc.); but this assumption

makes the computation of E(Q) much simpler, that’s why people use this

simpler assumption.

14.7 How to incorporate Seasonality in Demand into the

Model

The discussion so far dealt with the case when the values of demand in

the various periods form a stationary time series. In some applications this

series may be seasonal, i.e., it has a pattern that repeats every N periods

for some known value of N . The number of periods N , before the pattern

begins to repeat is known as the length of the season. In order to use

seasonal models, the length of the season must be known.

For example, in the computer industry majority of sales are arranged by

sales agents who operate on quarterly sales goals. That’s why demand for

components in the computer industry, and demand for their own products

tends to be seasonal with the quarter of the year as the season. The sales

agents usually work much harder in the last month of the quarter to meet

their quarterly goals, so demand for products in the computer industry

tends to be higher in the third month of each quarter than in the beginning

two months. As most of the companies are building to order now-a-days,

weekly production levels and demands for components inherit the same

kind of seasonality.

At one company in this industry each quarter is divided into three ho-

mogeneous intervals. Weeks 1 to 4 of the quarter are slack periods, each of

these weeks accounts a fraction of about 0.045 of the total demand in the

quarter. Weeks 5 to 8 are medium periods, each of these weeks accounts

for a fraction of about 0.074 of the total demand in the quarter. Weeks 9

to 13 are peak periods, each of these weeks accounts for a fraction of about

0.105 of the total demand in the quarter. This fraction of demand in each

week of the season is called the seasonal factor of that week.

In the same way in the paper industry demand for products exhibits
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seasonality with each month of the year as the season. Demand for their

products in the 2nd fortnight in each month tends to be much higher than

in the 1st fortnight.

There are several ways of handling seasonality. One way is for each

i = 1 to N (= length of the season), consider demand data for the ith

period in each season as a time series by itself, and make the decisions for

this period in each season using this series based on methods discussed in

earlier sections.

Another method that is more popular is based on the assumption that

there exists a set of indices ci, i = 1 to N called seasonal factors or seasonal

indices (see [Nahmias (1993)], [Silver and Peterson (1979)]), where ci repre-

sents the demand in the ith period of the season as a fraction of the demand

during the whole season (as an example see the seasonal factors given for

the computer company described above). Once these seasonal factors are

estimated, we divide each observation of demand in the original demand

time series by the appropriate seasonal factor to obtain the deseasonal-

ized demand series. The time series of deseasonalized demand amounts

still contains all components of information of the original series except for

seasonality. Forecasting is carried out using the methods discussed in the

earlier sections, on the deseasonalized demand series. Then estimates of

the expected demand, standard deviation, and the optimal order quanti-

ties obtained for each period must be reseasonalized by multiplying by the

appropriate seasonal factor before being used.

14.8 Portfolio Management

One of the most important and very widely studied problems in finance is

that of optimizing the return from investments. Everyone in this world from

little individual investors to Presidents and CEOs of very large corporations

with annual incomes ranging to hundreds of millions of dollars; all the

banks, mutual funds, and other financial institutions have great interest in

this problem.

There are many different investment opportunities, but the return (also

called yield, which may be positive, 0, or negative) from each varies from

period to period as a random variable. The area is “data rich” in the sense

that the return per unit investment in each investment opportunity in each

period in the past is freely available as a time series and can be accessed

by anyone.
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One important problem in the area is: given a budget B (amount of

money available to invest) and a list of investment opportunities 1, . . .,

n to invest it in; how to optimally divide the budget among the various

investment opportunities. Once invested, that investment may be kept for

several periods, and the returns from it keep accumulating period to period

as long as the investment is kept. So, the important feature is that the

return from investment is not in a single installment, but paid out in each

period over the life of the investment. In applications, n, the number of

investment opportunities under consideration, tends to be large.

Denoting by the decision variable xi the amount of the budget allocated

to investment opportunity i, for i = 1, to n; the vector x = (x1, . . . , xn)T ,

called a portfolio, is a solution for the problem. The goal of portfolio

optimization, is to characterize and find an optimum portfolio.

Let the random variable P (x) denote the total return from portfolio x

in a period. For each period in the past we can compute P (x) using x and

the available data on returns from individual investment opportunities. So,

for any x, P (x) can be generated as a time series. Let µ(x) = the expected

value of the return P (x) in a period from portfolio x.

P (x) varies randomly, this variation is perceived as the risk (or volatil-

ity of returns) associated with portfolio x. Everyone agrees with treating

variation in returns from period to period as a risk, but there is not a uni-

versal agreement on how to measure this risk. We will use the symbol r(x)

to denote this risk as a function of x. The two most important parameters

for characterizing an optimum portfolio are:

µ(x) = E(P (x)), the expected value of the return P (x) in a
period, it is a measure of the long term average return per
period from portfolio x,

r(x) = a measure of risk associated with portfolio x, a suitable
measure is to be selected.

There is universal agreement that an optimum portfolio should maxi-

mize µ(x). In fact some investors select a portfolio x and keep it for a long

time. For such investors the period to period variation in the return P (x)

may not be that critical, they mainly want to see µ(x) maximized.

But the majority of investors (particularly large investors like banks,

mutual funds etc.) change their portfolio periodically by selling some invest-

ments made in earlier periods at current prices, or by investing additional

amounts. For these investors the period to period variation in the return

is also an important factor to take into consideration. These investors not
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only want to maximize the long term average return, but would also like

to keep the return in every period as high as possible. So, from their per-

spective, an optimum portfolio should maximize the expected return µ(x),

and minimize the risk r(x); i.e., it should achieve both these objectives si-

multaneously. So finding an optimum portfolio here is a multi-objective

optimization problem.

But in multi-objective optimization, there is no concept of “optimality”

that has universal acceptance. Also, the two objectives typically conflict

with each other; i.e., portfolios that maximize expected return µ(x) are

usually associated with high values for what ever measure r(x) is chosen to

represent risk.

Usually the various investment opportunities are partitioned into vari-

ous sectors by their type (for example utility opportunities, banking oppor-

tunities, etc.). Then the decision makers usually impose lower and upper

bounds on the amount of the budget that can be invested among investment

opportunities in each sector, and may be some other linear constraints also.

Suppose the system of all these constraints including the budget constraint

is (here e is the column vector of all 1s in Rn)

Ax ≤ b

eT x ≤ B

x ≥ 0

(3)

A portfolio x is said to be a feasible portfolio if it satisfies all the constraints

in (3). Once a measure r(x) for risk is selected, if x, x̄ are two feasible

portfolios satisfying: either µ(x) > µ(x̄) and r(x) ≤ r(x̄), or µ(x) ≥ µ(x̄)

and r(x) < r(x̄); then x is said to dominate x̄, because it is better or

the same as x̄ WRT (with respect to) both the objective functions in the

problem, and strictly better on at least one of the two objectives.

A feasible portfolio x̄ is said to be a nondominated portfolio or efficient

portfolio or pareto optimum portfolio if there is no other feasible portfo-

lio that dominates it. In multi-objective optimization problems like this

one, there is no concept of “optimality” that has universal acceptance, but

clearly no investor would like a portfolio that is dominated by another one.

So, we should look among efficient Portfolios for a solution to the problem.

But usually there are many efficient portfolios, the set of all of them is

called the efficient frontier.

Mathematicians would consider a multi-objective problem well solved if

an algorithm is developed to enumerate the efficient frontier in a computa-

tionally efficient way. Here I can mention the entertaining Hollywood movie
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A Beautiful Mind based on the life of John Nash who received the Nobel

Prize in economics in 1994 for proving that a certain type of two-objective

optimization problems always have at least one efficient solution.

In a pair of efficient portfolios, if the 1st is better than the 2nd WRT the

average return µ(x), then the 2nd will be better than the 1st WRT the risk

function r(x), so the best portfolio among these two is not defined. Given

a feasible portfolio that is not efficient, an efficient portfolio better than it

can be found; but there is no universally acceptable criterion for selecting

the best among efficient portfolios. The challenge in portfolio optimization

is to select a good measure for “risk”, and obtain a good portfolio that has

satisfactory values for both the objective functions.

Besides portfolio optimization, portfolio management deals with the

issues of determining how long an optimum portfolio determined should be

kept, and the appropriate tools for tracking its performance while it is kept.

Changing the current portfolio and adopting a new one in every period is

a very labor-intensive and expensive process, that’s why once an optimum

portfolio is determined in some period, most investors do not like to change

it as long as it is performing upto expectations.

14.9 Variance as a Measure of Risk, and the Markovitz

Model for Portfolio Optimization

Most of the work in finance is based on the assumption that the yields in a

period from unit investments in the various investment opportunities follow

a multivariate normal distribution. Let the vector of expected values in this

distribution be µ = (µ1, . . . , µn)T , and let the variance-covariance matrix

in it be the symmetric positive definite matrix Σ = (σij) of order n.

Then µ(x) = the expected return from portfolio x in a period is µT x,

and the variance of this return is xT Σx.

In statistical theory, the variance of a random variable is a well accepted

measure of variation of this random variable. Since the “risk” of a portfolio

stems from the variation in the returns from it from period to period,

Harry Markovitz proposed in 1952 using the variance xT Σx of returns from

the portfolio x as the measure r(x) of risk associated with it under the

normality assumption. He suggested the approach of minimizing this risk

function subject to the constraint that the expected fractional return per

period must be ≥ some specified lower bound δ, to define an “optimum

portfolio”. This leads to the following classical Markovitz portfolio model
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for which he won the 1989 Von Neumann theory prize for contributions to

OR of INFORMS, and the 1990 Nobel Prize in economics.

Minimize xT Σx

subject to the feasibility conditions in (3), and µT x ≥ δB
(4)

where e is a column vector of all 1’s in Rn, and eT is its transpose. This

is a quadratic programming problem, its optimum solution is known as a

minimum variance portfolio

The minimum variance portfolio does not have universal acceptance as

the best portfolio to adopt, since it may not have good practical features.

For example, suppose δ = 0.07, and the minimum variance portfolio is a

portfolio G with expected return fraction per period of 0.07 and variance

of 0.0016. There may be another feasible portfolio H with expected return

fraction per period of 0.25 and variance of 0.0018. Portfolio H which is

not optimum for this model, yields a higher return than portfolio G with

very high probability in every period and is definitely more desirable. Also,

as pointed out in [Papahristodoulou and Dotzauer (2004)], many investors

and traders as well question whether the variance of the return xT Σx is

an appropriate measure of risk; and many researchers question whether

the assumption that the returns from individual investment opportunities

follow a multivariate normal distribution is reasonable.

Another problem with this model deals with the computational diffi-

culties in solving it. The distribution of returns may be changing with

time, and updating the distribution requires re-computation of the variance-

covariance matrix using recent data at frequent intervals, an expensive op-

eration when n is large. Also, the variance-covariance matrix will be fully

dense, this makes the model (4) computationally difficult to handle if n is

large.

14.10 Other Measures of Risk for Portfolio Optimization

While everyone perceives variation in the returns as an element of risk, no

one complains if the variation is taking the returns higher; but they will

definitely complain when they begin to decrease. That is, investor’s reaction

to the two types of variation are highly asymmetric. For this reason the

variance of the return used as the measure of risk in the classical Markovitz

model is not a fully appropriate measure of risk.

Several other measures of risk of a portfolio have been proposed in the

literature. We will use as a measure of risk of a portfolio x, the
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probability d(x, δ) that the return P (x) from it in a period is
≤ δeT x, where δ is a minimum return per unit investment per
period demanded by the investor.

A good portfolio should either have as one of its objectives minimizing

this risk measure d(x, δ), or keeping it ≤ some specified upper limit γ for

it. This measure is closely related to the Value-at-Risk (VaR)measure, and

other downside risk measures and the safety-first conditions studied in the

literature.

The expected return per period µ(x) of a portfolio x is a measure of the

long term benefit of adopting it; because it measures the average return per

period one can expect to get from it if the present distribution of returns

continues unchanged. One model that we will consider later in Section

14.12 for defining an optimum portfolio is to maximize µ(x) subject to the

constraint that d(x, δ) ≤ γ.

14.11 Portfolio Management: Tracking the Distribution of

Return from a Portfolio that is kept for a Long Time

The literature in finance has many research publications dealing with mod-

els for portfolio optimization, and we will discuss one such model based

on statistical learning in the next section. But very few research publica-

tions deal with portfolio management, which also deals with tracking the

performance of the optimum portfolio determined to check whether it is

performing to expectation, and deciding when to change the portfolio. In

this section we discuss an application of the simple forecasting method dis-

cussed in Section 14.5 to track the performance of the portfolio in current

use.

For this, the most important random variables are the per unit return in

a period from various investment opportunities. The distributions of these

random variables may be changing over time, and unless these changes are

incorporated into the decision making process, the selected portfolio may

not be a satisfactory one for the next or for any future period.

The distribution of return from a single investment opportunity can

be estimated from past data by its discretized probability distribution dis-

cussed in Section 14.5. This discretized probability distribution can be

updated over time based on recent data by the technique discussed in Sec-

tion 14.5, we will use the phrase “empirical distribution” to denote the

updated distribution.
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The updating technique discussed in Section 14.5 is quite convenient

for updating the empirical distribution of return from a single investment

opportunity, because in this case the probabilities associated with a small

number of intervals need to be updated at each updating. But for studying

the returns from two or more investment opportunities (2 or more random

variables in a dependence relationship), its direct extension becomes un-

wieldy due to the curse of dimensionality. In the multivariate context, the

discretized distribution breaks up the space of the vector of variables into

a number of rectangles each with its associated probability. Even when the

number of variables in 2, the number of these rectangles is too large, and

updating their probabilities becomes impractical.

However we will see that this one-variable technique is itself a useful

tool in keeping track of portfolios that are kept for long periods of time.

Suppose an investor likes to keep her/his portfolio x̄ unchanged as long

as it is performing to his/her expectations. The value of P (x̄) in each period

can be computed directly from x̄ and the available data on the returns

from the various investment opportunities, and generated as a time series.

Using it, the distribution of P (x̄) can be updated over time as explained

in Section 14.5. If the distribution of P (x̄) is estimated and maintained in

the form of an empirical distribution, the expected value of return from the

current empirical distribution, is an estimate of the current expected return

from portfolio x̄. Also, since the empirical distribution is a discretized

distribution, an estimate of the risk measure d(x̄, δ) = probability that the

return is ≤ δeT x̄ in it can be computed very easily. From estimates of

expected return, and d(x̄, δ), the two measures for evaluating a portfolio,

the investor can judge whether to continue to keep the portfolio x̄, or look

for a better portfolio to change to.

14.12 A Model based on Statistical Learning to find an Op-

timum Portfolio

Let x̄ denote the current portfolio in use.

Under the assumption that the returns from various investment op-

portunities follow a multivariate normal distribution, the measure of risk

d(x, δ) for any portfolio x is a nonlinear function, and the problem of max-

imizing the expected return µx subject to the constraint that d(x, δ) ≤ γ is

a complex problem. Even if the optimum solution of this problem can be

determined, since the actual distribution of the returns vector is unknown,
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it is not clear how good the performance of the resulting portfolio derived

from the normality assumption will be in reality.

In statistical learning, instead of making assumptions about the distri-

bution of the returns vector, we base our decisions on knowledge derived

from actual data. We now develop an MIP (mixed integer programming)

model for finding an optimum portfolio based on estimates of relevant quan-

tities obtained from actual data over the most recent m periods, for some

selected m. The first model ignores the transaction costs of moving from

the current portfolio x̄ to the optimum portfolio. Let

eij = actual return from unit investment in the i-th period from
the j-th investment opportunity, i = 1 to m, j = 1 to n

E = (eij), an m × n matrix of data on actual returns

Ei. = (ei1, . . . , ein), the i-th row vector of E.

The risk condition d(x, δ) ≤ γ translates to the requirement that the

constraint Ei.x ≥ δeT x must hold for at least t periods i, where t = ceiling of

((1 − γ)m), the smallest integer ≥ ((1 − γ)m). Define the binary variables

z1, . . . , zm, where zi = 0 if Ei.x ≥ δeT x, 1 otherwise. In terms of these

binary variables, the model for finding an optimum portfolio is (5) to (10),

here L > 0 is a positive number such that −L is a lower bound for each

Ei.x − δeT x.

Maximize
1

m

m
∑

i=1

n
∑

j=1

eijxj (5)

subject to

n
∑

j=1

xj ≤ B (6)

Ax ≤ b (7)

Ei.x − δeT x + Lzi ≥ 0, i = 1, . . . , m (8)

m
∑

I=1

zi ≤ m − t (9)

xj ≥ 0, zi ∈ {0, 1}, for all i, (10)

Transaction costs for selling existing investments, or acquiring addi-

tional investments can also be taken into account in the model. Assuming
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that the transaction costs are linear, suppose c+

j , c−j are the costs of ac-

quiring additional unit investment, selling unit investment respectively in

investment opportunity j, for j = 1 to n. Then the transaction cost for

moving from current portfolio x̄ to portfolio x is
∑n

j=1
[c+

j (xj − x̄j)
+ +

c−j (xj − x̄j)
−], where (xj − x̄j)

+ = Maximum{xj − x̄j , 0} = additional in-

vestment in opportunity j acquired, and (xj−x̄j)
− = Maximum{x̄j−xj , 0}

= investment in opportunity j sold.

Assuming that the transaction cost coefficients c+

j , c−j are all positive,

the model for maximizing average return per period − transaction costs

is to: Maximize 1

m

∑m

i=1

∑n

j=1
eijxj −

∑n

j=1
(u+

j c+

j + u−j c−j ) subject to

constraints (6) to (10) and xj − x̄j = u+

j − u−j and u+

j , u−j ≥ 0 for j = 1 to

n.

The number of binary variables in either model is m, the number of

recent periods considered in the model. Since the distribution of returns

may be changing over time, we will not make m too large anyway; so these

models can be solved within reasonable time with existing software systems

for MIP. For example, if the period is a week, and weekly return data over

the most recent 6-month (26 week) period is used to construct the model,

it will have only 26 binary variables, and so is quite easy to solve with

software tools available in the market.

Solving the same model with different values of δ, γ generates different

portfolios which can be compared with each other and the best among them

selected for implementation.

The matrix E of returns is expected to be fully dense. So, when n, the

number of investment opportunities considered, is large, the LP relaxations

of these models will be dense and may turn out to be hard to solve with

existing methods based on matrix inversion operations. New descent meth-

ods for LP not based on matrix inversion operations discussed in [Murty

(2006)] have the potential to solve such models efficiently when n is large.
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Abstract

The paper is devoted to applications of advanced tools of modern variational
analysis and generalized differentiation to problems of optimistic bilevel program-
ming. In this way, new necessary optimality conditions are derived for two major
classes of bilevel programs: those with partially convex and with fully convex
lower-level problems. We provide detailed discussions of the results obtained and
their relationships with known results in this area.

Key Words: Bilevel programming, variational analysis, fully convex lower-level

problems, partially convex lower-level problems

15.1 Introduction

In this paper we intend to discuss the interplay of variational analysis and

bilevel programming. The term Variational Analysis is of quite recent ori-

gin, and most probably the monograph by [Rockafellar and Wets (1998)]
1Research of this author was partly supported by the US National Science Foundation

under grants DMS-0304989 and DMS-0603846 and by the Australian Research Council

under grant DP-0451168
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had led the popularization of the term. In modern optimization, set-valued

maps play a major role. Their role shot into prominence with the ad-

vent of nonsmooth analysis and nonsmooth optimization, since the role of

the derivative in modern optimization is taken over by set-valued maps

known as subdifferentials. The solution set map of a parametric optimiza-

tion problem is another important example of a set-valued map appearing

in optimization theory. This map plays a very fundamental role in bilevel

programming; see, e.g., [Dempe S. (2002)]. Further, an important role in

optimization is now played by derivatives and coderivatives of set-valued

maps. For more details see [Rockafellar and Wets (1998)] and the very

recent two-volume monograph by [Mordukhovich (2006a,b)].

On the other hand, bilevel programming grew out of the now classical Stack-

elberg games (see [von Stackelberg (1934)]) where a leader and a follower

interact so that both can achieve their targeted objectives. In the language

of optimization this can be framed as a two-level optimization problem as

follows:

min
x

F (x, y) subject to x ∈ X, y ∈ S(x),

where F : R
n × R

m → R, X ⊆ R
n, and where S : R

n ⇒ R
m is the solution

set mapping to the lower-level problem:

min
y

f(x, y) subject to y ∈ K(x),

where f : R
n × R

m → R and K(x) is a closed set for each x. We denote

the above optimization problem by (BP). So the idea is that the upper-

level decision maker, or the leader, chooses a decision vector x and passes

it onto the lower-level decision maker, or the follower, who then—based on

the leader’s choice x—minimizes his/her objective function and returns the

solution y to the leader who then uses it to minimizes his/her objective

function.

If for each x the lower-level problem has a unique solution, then the prob-

lem (BP) is well defined. However, if there are multiple solutions to the

lower-level problem for a given x, then the upper-level objective becomes a

set-valued map. In order to overcome this difficulty, two different solution

concepts have been defined in the literature. These are namely the opti-

mistic solution and the pessimistic solution.

For the optimistic case one first defines the function

φ0(x) := inf
y
{F (x, y) : y ∈ S(x)}.

Then the optimistic problem is:

min φ0(x) subject to x ∈ X. (15.1)
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Thus a pair of points (x̄, ȳ) is said to be an optimistic solution to the

bilevel problem (BP) if φ0(x̄) = F (x̄, ȳ) and x̄ is the optimal solution (local

or global) to (15.1). On the other hand, in the pessimistic case we define

the function

φp(x) := sup
y

{F (x, y) : y ∈ S(x)}

and formulate the pessimistic problem as follows:

min φp(x) subject to x ∈ X.

In this paper we concentrate on the optimistic bilevel programming prob-

lem. An important situation where an optimistic bilevel formulation can be

used is, e.g., that between a supplier and a store owner of some commodi-

ties. Since both want to do well in their businesses, the supplier will always

give his/her best output to the store owner who in turn would like to do

his/her best in the business. In some sense, both would like to minimize

their loss or rather maximize their profit and thus act in the optimistic

pattern. It is clear that in this example the store owner is the upper-level

decision maker and the supplier is the lower-level decision maker. Thus in

the study of supply chain management the optimistic bilevel problem can

indeed play a fundamental role.

As it has been seen in [Dutta and Dempe (2006)] and [Dempe, Dutta and

Mordukhovich (to appear)], in studying the optimistic formulation of the

bilevel programming problem it is useful to concentrate on the following

problem (BPO):

min
x,y

F (x, y) subject to x ∈ X, (x, y) ∈ gph S

If we consider global optimal solutions, then (BPO) is equivalent to the

optimistic formulation of the bilevel problem (BP). This relationship is

slightly more subtle when we consider local optimistic solutions. If the so-

lution set map is uniformly bounded around the optimistic solution of the

problem (BP), then the optimistic solution is a local minimum for problem

(BPO). The converse however need not be true. Hence we will concentrate

our efforts to analyze the local optimal points of problem (BPO).

A major bottleneck in developing necessary optimality conditions for bilevel

programs is that most of the standard constraint qualifications (like, e.g.,

the Mangasarian-Fromovitz constraint qualification or the Abadie con-

straint qualification) are never satisfied for bilevel programs; see, e. g.,

[Scheel H. and Scholtes S. (2000)]. This problem comes to light when the

lower-level problem is replaced by its corresponding Karush-Kuhn-Tucker
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(KKT) conditions. This approach of replacing the lower-level problem by

KKT conditions seems to be rather adequate if the lower-level problem is

convex in the variable y and satisfies some regularity conditions; see [Dutta

and Dempe (2006)] for more detailed discussions. The presence of the com-

plementarity slackness condition actually brings forth this violation of con-

straint qualifications; see, e.g., [Dempe S. (2002)]. Thus various approaches

have been used to develop necessary optimality conditions in bilevel pro-

gramming. The reader may consult the book by [Dempe S. (2002)] and the

references therein for various necessary optimality conditions in bilevel pro-

gramming. Let us mention that the approach in [Dempe S. (2002)] requires

an explicit representation of the feasible set of the lower-level problems via

equality and inequality constraints. [Dutta and Dempe (2006)] consider

the case when the lower-level feasible sets are not explicitly expressed via

functional constraints but are convex sets depending on the parameter x,

and the lower-level objective function is convex in y for each x. In this set-

ting, for smooth functions F and no constraint situation X = R
n, necessary

optimality conditions are expressed as

0 ∈ ∇F (x̄, ȳ) + NgphS
(x̄, ȳ),

where (x̄, ȳ) is a locally optimal solution of (BPO) and NgphS
(x̄, ȳ) is the

basic/Mordukhovich normal cone to the graph of the solution set map S at

the point (x̄, ȳ); see Section 15.2. We can now shift our attention to vari-

ational analysis, since in order to develop necessary optimality conditions,

we need to focus on calculating the basic normal cone in the above expres-

sion when the lower-level feasible set is explicitly defined, and also to see

under what qualification conditions such a computation is possible. Thus

the approach in [Dutta and Dempe (2006)] brings forth the fundamental

role that variational analysis plays in bilevel programming. Our aim here is

to present the state-of-the-art on the role of variational analysis in bilevel

programming.

This paper is planned as follows. In Section 15.2 we present some basic

tools and facts from variational analysis, which are widely used in the se-

quel. In Section 15.3, which is one of the main sections of this paper, we

aim to study bilevel programming problems with partially convex lower-

level problems. The computation of the coderivative of the solution set

map plays a major role in the analysis of the optimality conditions. This

has been shown in [Dutta and Dempe (2006)], where results of coderivative

computations from [Levy and Mordukhovich (2004)] have been used. We

begin Section 15.3 with the explicit computation of the normal cone to the
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graph of a set-valued map defined as a solution set to a certain generalized

variational inequality. Using this, we derive necessary optimality conditions

for bilevel programs when the lower-level problem is partially convex, the

feasible set does not depend on x, and X = R
n. Then we move on to the

case where X still equals R
n while the feasible set of the lower-level problem

depends on x. At the end of this section we consider the general optimistic

bilevel programming problem (BPO), where X is a proper subset of R
n

and the lower-level feasible set depends on x. We provide examples where

the qualification condition used hold and where they do not hold. It hap-

pens that the qualification conditions of Section 15.3 do not hold when the

lower-level problem is linear. That leads us to consider the notion of par-

tial calmness due to [Ye and Zhu (1995)]. Then we move to Section 15.4,

where we study the case in bilevel programming when the lower-level prob-

lem is fully convex, which covers the case where the lower-level problem is

linear. We derive necessary optimality conditions, which improve those in

Section 15.3, at least for the fully convex lower-level problem.

15.2 Tools from Variational Analysis

In this section we briefly describe the basic tools of variational analysis

needed in the sequel. We start with the variational geometry of constraint

sets and describe various conic approximations associated with them.

Let us begin with the notion of the regular normal cone or the Fréchet

normal cone at a point x̄ ∈ C, where C is a subset of R
n. A vector v ∈ R

n

is called a regular normal to C at x̄ if

〈v, x − x̄〉 ≤ o(‖x − x̄‖),

where limx→x̄

o(‖x − x̄‖)

‖x − x̄‖
= 0. The collection of all regular normals to C

at x̄ is a cone denoted by N̂C(x̄).

It is easy to show that if C is a convex set, the regular normal cone reduces to

the standard normal cone of convex analysis (see, e.g., [Rockafellar (1970)]).

Though this definition of the regular normal cone might look as a natural

generalization of the normal cone from the convex case to the nonconvex

case, there are some serious pitfalls. One of the major drawbacks is that

at points on the boundary of the set C the regular normal cone may just

reduce to the trivial cone containing only the zero vector. To overcome

this, a limiting procedure is employed, which leads us to the more robust

notion of the basic normal cone.
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A vector v ∈ R
n is an element of the basic normal cone NC(x̄) to the

set C at x̄ ∈ C if there exist sequences {xk} with xk ∈ C and xk → x̄ as

well as {vk} with vk → v̄ and vk ∈ N̂C(xk). In a more compact form this

is written as

NC(x̄) := lim sup
x→x̄

N̂C(x̄), (x ∈ C),

in terms of the so-called Painlevé-Kuratowski upper/outer limit. It is im-

portant to note that the basic normal cone is closed but need not be a

convex set. Further, when the set C is convex, it reduces to the classi-

cal normal cone of convex analysis. Further it is important to note that

if x̄ is an interior point of C then NC(x̄) = {0}. Further it is clear that

N̂C(x̄) ⊆ NC(x̄).

Another concept, which is important for our study, is the notion of normal

regularity of a set at a given point. The set C is said to be normally regular

at x̄ ∈ C if N̂C(x̄) = NC(x̄).

Associated with the notion of the regular normal cone is the notion of

the regular/Fréchet subdifferential of a function. Since in this study our

functions are locally Lipschitz, we describe the regular subdifferential only

for locally Lipschitz functions.

Let f : R
n → R be a locally Lipschitz function, and let x̄ ∈ R

n be given.

The regular subdifferential ∂̂f(x̄) of the function f at x̄ is given by

∂̂f(x̄) := {v ∈ R
n : (v,−1) ∈ N̂epif (x̄, f(x̄))},

where epi f denotes the epigraph of f . The regular subdifferential also

has a major drawback in the sense that there are points crucial, e.g., for

optimization, where this subdifferential becomes empty. These are precisely

the points where the regular normal cone to the epigraph of the function f

reduces to the trivial cone containing only the zero element.

This trouble with the regular subdifferential is overcome by passing to the

limit in order to obtain a more robust object called the basic subdifferential,

which is given by

∂f(x̄) := lim sup
x→x̄

∂̂f(x)

The above expression means that v ∈ ∂f(x̄) if there exist sequences {vk}

and {xk} with xk ∈ C such that vk → v and xk → x̄ with vk ∈ ∂̂f(xk).

Knowing the fact that every basic normal can be realized as the limit of

regular normals, we have the equivalent representation of the basic subdif-

ferential:

∂f(x̄) = {v ∈ R
n : (v,−1) ∈ Nepif (x̄, f(x̄))}.
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The basic normal cone and the basic subdifferential were first introduced

by [Mordukhovich (1976)] in 1976. For more details see [Rockafellar and

Wets (1998)] or the recent monographs of [Mordukhovich (2006a)], [Mor-

dukhovich (2006b)].

Set-valued maps arise naturally in optimization, and it is very important to

look at their differential properties. A significant concept in this direction is

the notion of coderivative by (see, e.g., his book [Mordukhovich (2006a)]).

Given a set-valued map F : R
n ⇒ R

m and a point (x̄, ȳ) ∈ gph F , the

coderivative of F at (x̄, ȳ) is a set-valued map D∗F (x̄, ȳ) : R
m ⇒ R

n de-

fined by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ R
n : (x∗,−y∗) ∈ NgphF

(x̄, ȳ)}.

We now consider the following optimization problem (P):

min f0(x) subject to F (x) ∈ U, x ∈ X, (15.2)

where f0 : R
n → R and F : R

n → R
m are smooth functions, U ⊆ R

m, and

X ⊆ R
n. The necessary optimality condition for (P) formulated in the next

theorem can be found in [Rockafellar and Wets (1998)] and [Mordukhovich

(2006a)].

Theorem 15.1. Consider problem (P) from (15.2), and let x̄ be a local

minimum to (P). Assume that the following qualification condition (Q)

holds at x̄ :

y ∈ NU (F (x̄)) with 0 ∈ ∇F (x̄)T y + NX(x̄) implies that y = 0.

Then there exists ȳ ∈ NU (F (x̄)) such that

0 ∈ ∇f0(x̄) + ∇F (x̄)T y + NX(x̄).

Using this result, we can compute the normal cone to the feasible set C,

which is explicitly given in the above theorem by

C = {x ∈ X : F (x) ∈ U}. (15.3)

However, the explicit computation of the normal cone can be done under

certain qualification conditions, and we present the full result in the next

theorem.

Theorem 15.2. Consider the set C given by (15.3), where F : R
n → R

m

is a smooth function and X is a closed set. Assume that the qualification

condition (Q) of Theorem 15.1 holds at x̄. Then one has

NC(x̄) ⊂
⋃ {

∇F (x̄)T y + NX(x̄) : y ∈ NU (F (x̄))
}

.

Furthermore, if the set X is normally regular at x̄ and the set U is normally

regular at F (x̄), then equality holds in the above expression.
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The two theorems presented in this section play a fundamental role in the

next section. We show there how to use these theorems to derive necessary

optimality conditions for bilevel programs with partially convex lower-level

problems.

15.3 Partially Convex Lower-level Problems

In this section we consider partially convex lower-level problems in the

bilevel programs (BPO) of our study. By a partially convex lower-level

problem we mean that y 7→ f(x, y) is convex in y for each x ∈ X and the

set K(x) is convex for each x. For simplicity of the presentation we assume

the upper-level objective function to be smooth, i.e., with its data to be

continuously differentiable. Furthermore, we assume that the lower-level

objective function is twice continuously differentiable.

Our first step is to provide an explicit computation of the basic normal cone

to the graph of a set-valued map defined as a solution set of a generalized

variational inequality. This will play a fundamental role in the subsequent

study, since—as we have discussed in Section 15.1—deriving necessary opti-

mality condition for optimistic bilevel programming is based on computing

the normal cone to the solution set of the lower-level problem. Let us begin

with considering a set-valued map S : R
n ⇒ R

m given by

S(x) = {y ∈ R
m : 0 ∈ G(x, y) + M(x, y)},

where G : R
n×R

m → R
d is a smooth single-valued map and M : R

n×R
m ⇒

R
d is a set-valued map of closed graph. We first concern a more simpler

version, where the set-valued map does not depend on x, i.e., M(x, y) =

M(y). Thus we concentrate on calculating the coderivative of the set-valued

map S : R
n ⇒ R

m defined above. This is done through the following result.

Theorem 15.3. Consider S : R
n ⇒ R

m given by

S(x) = {y ∈ R
m : 0 ∈ G(x, y) + M(y)},

where G : R
n×R

m → R
d is smooth map and M : R

m ⇒ R
d is closed-graph.

Taking (x̄, ȳ) ∈ gph S, impose the qualification condition:

−∇xG(x̄, ȳ)T z = 0 and w −∇yG(x̄, ȳ)T z = 0

with (w, z) ∈ Ngph M (ȳ,−G(x̄, ȳ)) implies that w = 0 and z = 0. Then one

has

Ngph S(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R
n × R

m : x∗ = −∇xG(x̄, ȳ)T z̄,

y∗ = w̄ −∇yG(x̄, ȳ)T z̄, (w̄, z̄) ∈ Ngph M (ȳ,−G(x̄, ȳ))}.
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Equality holds in the above expression if any of the following two additional

conditions are satisfied:

i) The graphical set gph M is normally regular at (ȳ,−G(x̄, ȳ)).

ii) The matrix ∇xG(x̄, ȳ) is of full row rank.

Proof. To begin with, let us observe that the inclusion y ∈ S(x) implies

that −G(x, y) ∈ M(y). Then set

H(x, y) := (y,−G(x, y))T .

Thus we can equivalently rewrite S(x) as

S(x) = {y ∈ R
m : H(x, y) ∈ gphM},

which means that

gphS = {(x, y) : H(x, y) ∈ gphM}.

Observe that the qualification condition imposed in the theorem can be

equivalently written as
[
∇H(x̄, ȳ)T (w, z) = 0, (w, z) ∈ Ngph M (F (x̄, ȳ))

]
=⇒

[
w = 0, z = 0

]
,

where ∇H(x̄, ȳ) stands for the Jacobian of H at (x̄, ȳ). It is easy to see

that

∇H(x̄, ȳ) =

(
0 I

−∇xG(x̄, ȳ) −∇yG(x̄, ȳ)

)
.

Thus we have

∇H(x̄, ȳ)T =

(
0 −∇xG(x̄, ȳ)T

I −∇yG(x̄, ȳ)T

)
.

The above observation allows us to apply Theorem 15.2 and conclude that

Ngph S
(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R

m × R
n : (x∗, y∗) = ∇H(x̄, ȳ)T (w̄, z̄),

(w̄, z̄) ∈ NgphM
(H(x̄, ȳ))}.

This immediately gives

Ngph S(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R
n × R

m : x∗ = −∇xG(x̄, ȳ)T z̄,

y∗ = w̄ −∇yG(x̄, ȳ)T z̄, (w̄, z̄) ∈ Ngph M (ȳ,−G(x̄, ȳ))}.

If gph M is normally regular at (ȳ,−G(x̄, ȳ), we conclude from Theorem

15.2 that the equality holds. If furthermore ∇xG(x̄, ȳ) has full row rank,

then the qualification condition is automatically satisfied, and the equality

follows by application of Exercise 6.7 (page 202) from [Rockafellar and Wets

(1998)]. �
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Remark 15.1. The above theorem estimates the normal cone to the graph

of the set-valued map S defined as the set of solutions to a generalized

variational inequality. This estimate naturally allows one to provide an

estimation for the coderivative of S. It is not hard to see that

D∗S(x̄, ȳ) ⊆ {x∗ ∈ R
n : ∃v∗ ∈ R

d, x∗ = ∇xG(x̄, ȳ)T v∗,

−y∗ = ∇yG(x̄, ȳ)T v∗ + D∗M(ȳ,−G(x̄, ȳ)(v∗)}.

Of course, this estimate holds under the assumptions of Theorem 15.3, with

equality holding under the same conditions as in Theorem 15.3.

Let us note that the conclusions of Theorem 15.3 can be easily extended

to the case when the set-valued mapping M depends on both x and y. To

proceed, we need to modify the qualification conditions in order to derive

the corresponding estimate, which is slightly different from the previous

one due to the change in the dependence pattern of M .

Theorem 15.4. Consider the set-valued map S : R
n ⇒ R

m defined by

S(x) = {y ∈ R
m : 0 ∈ G(x, y) + M(x, y)},

where G : R
n × R

m → R
d is smooth and M : R

n → R
m ⇒ R

d is closed-

graph. Given (x̄, ȳ) ∈ gph S, assume the qualification condition:

u −∇xG(x̄, ȳ)T z = 0, and w −∇yG(x̄, ȳ)T z = 0

with (u, w, z) ∈ Ngph M (x̄, ȳ,−G(x̄, ȳ)) implies that u = 0, w = 0 and

z = 0. Then one has the inclusion

Ngph S(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R
n × R

m : x∗ = ū −∇xG(x̄, ȳ)T z̄,

y∗ = w̄ −∇yG(x̄, ȳ)T z̄, (ū, w̄, z̄) ∈ Ngph M (x̄, ȳ,−G(x̄, ȳ))}.

Equality holds in the above expression if gphM is normally regular at

(x̄, ȳ,−G(x̄, ȳ)).

Proof. Let us begin by defining the function H : R
n × R

m → R
n+m+d

given as

H(x, y) = (x, y,−G(x, y))T .

Hence we can write

S(x) = {y ∈ R
m : H(x, y) ∈ gphM}.

Therefore we have

gphS = {(x, y) ∈ R
n × R

m : H(x, y) ∈ gphM}.
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Observe that the qualification condition mentioned in hypothesis of the

theorem can be equivalently stated as
[
∇H(x̄, ȳ)T (u, w, z) = 0, (u, w, z) ∈ Ngph M (H(x̄, ȳ))

]

=⇒
[
u = 0, w = 0, z = 0

]
,

where the Jacobian ∇H(x̄, ȳ) of H at (x̄, ȳ) is given as

∇H(x̄, ȳ) =




I 0

0 I

−∇xG(x̄, ȳ) −∇yG(x̄, ȳ)


 ,

and hence

∇H(x̄, ȳ)T =

(
I 0 −∇xG(x̄, ȳ)T

0 I −∇yG(x̄, ȳ)T

)
.

Now we can apply Theorem 15.2 to conclude that

NgphS
(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R

n × R
m : (x∗, y∗) = ∇H(x̄, ȳ)T (ū, w̄, z̄)

(ū, w̄, z̄) ∈ NgphM
(F (x̄, ȳ))}

Thus we can conclude that

NgphS
(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R

n × R
m : x∗ = ū −∇xG(x̄, ȳ)T z̄,

y∗ = w̄ −∇yG(x̄, ȳ)T z̄, (ū, w̄, z̄) ∈ NgphM
(ȳ,−G(x̄, ȳ))}.

Further if gphM is regular at (x̄, x̄,−G(x̄, ȳ)) then equality follows from

Theorem 15.2. This proves the result. �

Theorem 15.3 allows us to derive necessary optimality conditions for bilevel

programs (BPO) with partially convex lower-level problems. It is important

to observe that, since the lower-level problem is partially convex, we can

equivalently represent S as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) + NK(y)}.

It is convenient in what follows to define NK(y) for all y ∈ R
m extending

it to y /∈ K by NK(y) = ∅.

Theorem 15.5. Consider problem (BPO) with X = R
n and K(x) = K

for all x. Let (x̄, ȳ) ∈ gphS be a local optimal solution to (BPO), and let

the following qualification condition hold:

−(∇2
xyf(x̄, ȳ))T z = 0, w − (∇2

yyf(x̄, ȳ))T z = 0

with (w, z) ∈ NgphNK

(ȳ,−∇yf(x̄, ȳ)) implies that w = 0 and z = 0.

Then there exists (w̄, z̄) ∈ NgphNK

(ȳ,−∇yf(x̄, ȳ)) such that
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i) ∇xF (x̄, ȳ) = (∇2
xyf(x̄, ȳ))T z̄,

ii) −∇yF (x̄, ȳ) = w̄ − (∇2
yyf(x̄, ȳ))T z̄.

Proof. Since (x̄, ȳ) is local optimal to (BP) with XR
n, we have

0 ∈ ∇F (x̄, ȳ) + NgphS
(x̄, ȳ),

which implies that

−(∇xF (x̄, ȳ),∇yF (x̄, ȳ)) ∈ NgphS
(x̄, ȳ). (15.4)

Now setting G(x, y) = ∇yf(x, y) and NK = M , we see that the qualification

condition in the theorem is the same as in Theorem 15.3. Thus applying

Theorem 15.3, we get the inclusion

Ngph S(x̄, ȳ) ⊆ {(x∗, y∗) ∈ R
n × R

m : x∗ = −∇2
xyf(x̄, ȳ)T z̄,

y∗ = w̄ −∇2
yyf(x̄, ȳ)T z̄, (w̄, z̄) ∈ Ngph NK

(ȳ,−∇yf(x̄, ȳ))}.

Now combining the above estimate with (15.4), we arrive at the desired

result. �

Remark 15.2. Note that the above theorem is also derived in [Dutta and

Dempe (2006)] by using Theorem 3.1 from [Outrata (2000)]. Here we give

a direct proof of this result, focusing more on structural and computational

issues. Observe further that the qualification condition in the above theo-

rem holds true if we assume that ∇2
xyf(x̄, ȳ) is of full row rank. To illustrate

this, consider the function f(x, y) := 〈y, Ax〉, where (x, y) ∈ R
n × R

m and

A is a m × n matrix of full row rank m. We have ∇2
xyf(x, y) = A, and

hence the qualification condition of the above theorem is clearly satisfied.

Next we turn to the case where the feasible set of the lower-level problem

need not to remain constant for each x, assuming nevertheless that X = R
n.

In this case, the solution set to (BPO) is given by

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x̄, ȳ) + NK(x)(y)}.

Setting NK(x, y) := NK(x)(y) if y ∈ K(x) and NK(x, y) := ∅ otherwise, we

rewrite S(x) as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x̄, ȳ) + NK(x, y)}.

Theorem 15.6. Consider problem (BPO), where X = R
n and the feasible

set to the lower-level problem varies with each x. Let (x̄, ȳ) ∈ gphS be a

local optimal solution to (BPO), and let the following qualification condition

hold:

u −∇2
xyf(x̄, ȳ)T z = 0, w −∇2

yyf(x̄, ȳ)T z = 0

with (u, w, z) ∈ NgphNK

(x̄, ȳ,−∇yf(x̄, ȳ)) implies that u = 0, w = 0, z0.

Then there exists (ū, w̄, z̄) ∈ NgphNK

(x̄, ȳ,−∇yf(x̄, ȳ)) such that
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i) −∇xF (x̄, ȳ) = ū −∇2
xyf(x̄, ȳ)T z̄,

ii) −∇yF (x̄, ȳ) = w̄ −∇2
yyf(x̄, ȳ)T z̄.

Proof. Since (x̄, ȳ) is a local optimal solution to (BPO), we have

−(∇xF (x̄, ȳ),∇yF (x̄, ȳ)) ∈ NgphS
(x̄, ȳ).

Now the result follows from Theorem 15.4 by setting G(x, y) := ∇yf(x, y)

and NK := M . �

Remark 15.3. Note that the problem of Theorem 15.6 was studied in

[Dutta and Dempe (2006)][Theorem 4.1], while our approach here is dif-

ferent.

The next most relevant question is about necessary optimality condi-

tions for the constrained case x ∈ X in (BPO). Here is the result in this

case.

Theorem 15.7. Let (x̄, ȳ) ∈ gphS be a local optimal solution to (BPO),

and let the following qualification condition be satisfied:

u −∇2
xyf(x̄, ȳ)T z + γ = 0, w −∇2

yyf(x̄, ȳ)T z = 0

with (u, w, z) ∈ NgphNK

(x̄, ȳ,−∇yf(x̄, ȳ)) and γ ∈ NX(x̄) implies the

equalities u = 0, w = 0, z = 0.

Then there are (ū, w̄, z̄) ∈ NgphNK

(x̄, ȳ,−∇yf(x̄, ȳ) and γ̄ ∈ NX(x̄) such

that

i) −∇xF (x̄, ȳ) = ū −∇2
xyf(x̄, ȳ)T z̄ + γ̄,

ii) −∇yF (x̄, ȳ) = w̄ −∇2
yyf(x̄, ȳ)T z̄.

Proof. Observe that problem (BPO) can be equivalently rewritten as

min
x,y

F (x, y), subject to (x, y) ∈ C,

where the set C is given by

C = {(x, y) ∈ X × R
m : H(x, y) ∈ gphNK}

with H(x, y) = (x, y,−∇yf(x, y))T .

It is well known that NX×Rm(x̄, ȳ) = NX(x̄) × NRm(ȳ), and thus

NX×Rm(x̄, ȳ) = {(γ, 0) : γ ∈ NX(x̄)}.

Therefore, the qualification condition of the theorem is equivalent to[
0 ∈ ∇H(x̄, ȳ)T q + NX×Rm(x̄, ȳ),

q = (u, w, z) ∈ NgphNK

(x̄, ȳ,−∇yf(x̄, ȳ))
]

=⇒
[
u = 0, w = 0, z = 0

]
.
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Observe further that

∇H(x̄, ȳ)T =

(
I 0 −∇2

xyf(x̄, ȳ)T

0 I −∇2
yyf(x̄, ȳ)T

)
.

Thus the qualification condition of this theorem reduces to the qualification

condition of Theorem 15.1, and the result follows. �

Remark 15.4. We would like to note that in [Dutta and Dempe (2006)]

the optimistic bilevel programming problem with partially convex lower-

level problems was not considered in its full generality as it is done in the

above Theorem 15.7.

It is time to present an illustrative example for the reader’s convenience.

Example 15.1. Consider the optimistic bilevel programming problem in

a two-dimensional setting:

min
x,y

(x − 1)2 + y2 subject to x > 0, y ∈ S(x),

where S denotes the solution set mapping to the following lower-level prob-

lem:

min
y

x2y subject to y ≥ 0.

Observe that S(x) = {0} for all x > 0, and that the only solution to the

above optimistic bilevel programming problem is (1, 0). It is clear that

∇2
xyf(1, 0) = 2. Let us check that the qualification condition of Theo-

rem 15.7 is satisfied. To proceed, observe that the lower-level feasible set is

[0, +∞), which is thus a convex set independent of x. Note that the vector

u actually does not appear in the qualification condition of Theorem 15.7.

Hence we may just set u = 0 throughout in this particular case. Since

X = R+, we get NX(1) = {0}, which easily yields z = 0 and w = 0. It is

easy to check furthermore that the necessary condition of the theorem holds

with w̄ = 0 and z̄ = 0. Observe finally that ȳ = 0, since NX(1) = {0}.

One of our primary goals of this section is to highlight the fact that nec-

essary optimality conditions for optimistic bilevel programs with partially

convex lower-level problems can be basically deduced from Theorem 15.1

and Theorem 15.2, which are indeed fundamental results in optimization

theory. An interesting fact that emerges here is that the second-order par-

tial derivatives of the lower-level objective function naturally appear in the

first-order optimality conditions for this class of bilevel programs. Another

observation that emerges here is that the qualification conditions in the
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above results do not work if the lower-level problem is a linear optimization

problem. This issue is addressed in the next section, where we discuss the

property of partial calmness that automatically holds when the lower-level

problem is linear. Further, in the next section we approach necessary op-

timality conditions in bilevel programs by using the idea of optimal value

functions.

15.4 Fully Convex Lower-level Problems

Now we investigate problem (BPO) under the assumption that both the

lower-level and the upper-level objective functions are convex with respect

to both x and y, and that gph K is also a convex set. Denote the optimal

value function of the lower-level problem by

ϕ(x) := min
y

{f(x, y) : y ∈ K(x)}.

Then problem (BPO) is equivalent to the following problem (VPO):

min
x,y

F (x, y) subject to f(x, y) ≤ ϕ(x), y ∈ K(x), x ∈ X.

Usual constraint qualifications as, e.g., the Mangasarian-Fromowitz one

(in its nondifferentiable version) are not satisfied at each feasible point

of (VPO); see [Ye and Zhu (1995)].

Following [Ye and Zhu (1995)], we say that problem (VPO) is partially calm

at a given point (x, y) if there is a constant M > 0 and an open neighbor-

hood D of the triple (x, y, 0) such that for each feasible point (x, y, u) ∈ D

of the problem

min
x,y

F (x, y) subject to f(x, y) − ϕ(x) + u = 0, y ∈ K(x), x ∈ X

we have the relation

F (x, y) − F (x, y) + M |u| ≥ 0.

By [Ye and Zhu (1995)], partial calmness is satisfied for problem (VPO)

if, in particular, all optimal solutions to the lower-level problem are weak

sharp minima in the sense of [Burke and Ferris (1993)]: for fixed x there

exists α > 0 such that

f(x, y) ≥ f(x, y) + α dist(y, S(x)),

whenever y ∈ K(x), where dist(y, S(x)) denotes the Euclidean distance of

a point y to the set S(x) and where y ∈ S(x). It has been shown in [Burke
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and Ferris (1993)] that optimal solutions to linear programming problems

are weak sharp minima (cf. also [Mangasarian and Meyer (1979)]) whenever

the problem has an optimal solution. Also, optimal solutions to quadratic

programming problems are weak sharp minima provided that a certain

relatively weak assumption is satisfied; see [Burke and Ferris (1993)], [Ye

and Zhu (1995)]. Note that the assumption of partial calmness can be

replaced by other assumptions; see [Ye (2006)] for more discussions.

The main feature of partial calmness is the validity of an exact penalty

function approach to problem (VPO):

Theorem 15.8. ([Ye and Zhu (1995)][Proposition 3.2]) Let (x, y) be a

local optimal solution to (VPO). Then, problem (VPO) is partially calm at

(x, y) if and only if there exists λ > 0 such that (x, y) is a local optimal

solution to the problem

min
x,y

F (x, y) + λ(f(x, y) − ϕ(x)) subject to y ∈ K(x), x ∈ X. (15.5)

This is a significant tool in the proof of the next theorem, where the symbols

∂, ∂x, ∂y denote, respectively, the subdifferential, the partial subdifferential

with respect to x and to y of convex functions in the sense of convex analysis.

Theorem 15.9. Consider problem (VPO) under the assumptions that:

i) K(x) = {y : g(x, y) ≤ 0}, X = R
n, g : R

n × R
m → R

p;

ii) all functions F, f, gi are convex on R
n × R

m, i = 1, . . . , p;

iii) the point (x, y) is a local optimal solution, problem (VPO) is partially

calm at (x, y), there exists a compact set C such that {(x, y) : g(x, y) ≤ 0} ⊆

C, and there is a point (x̂, ŷ) with gi(x̂, ŷ) < 0, i = 1, . . . , p.

Then there exist λ > 0, λi, µi, and a point ỹ ∈ S(x) such that the following

conditions are satisfied:

0 ∈ ∂xF (x, y) + λ(∂xf(x, y) − ∂xf(x, ỹ)) +

p∑

i=1

(µi∂xgi(x, y) − λλi∂xgi(x, ỹ)),

0 ∈ ∂yF (x, y) + λ∂yf(x, y) +

p∑

i=1

µi∂ygi(x, y),

0 ∈ ∂yf(x, ỹ) +

p∑

i=1

λi∂ygi(x, ỹ),

λi ≥ 0, λigi(x, ỹ) = 0, i = 1, . . . , p,

µi ≥ 0, µigi(x, y) = 0, i = 1, . . . , p.
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Proof. By our assumptions on the lower-level problem, the optimal value

function ϕ(·) is convex, and hence it is locally Lipschitzian; see [Rockafel-

lar (1970)]. Thus (VPO) is a problem of Lipschitzian programming. By

partial calmness, the local optimal solution (x, y) is also a local optimal

solution to the Lipschitz optimization problem (15.5) for some λ > 0. Ap-

plying to this problem the generalized multiplier rule from [Mordukhovich

(2006b)][Theorem 3.21 (iii)] together with the calculus rules for the basic

subdifferential from [Mordukhovich (2006a)][Theorem 2.23 (c)], we obtain

the existence of multipliers (λ0, µ1, . . . , µp) such that λ0 ≥ 0 and

µi ≥ 0, µigi(x, y) = 0, i = 1, . . . , p, (15.6)

0 ∈ λ0∂F (x, y) + λ0λ(∂f(x, y) − ∂xϕ(x) × {0}) +

p∑

i=1

µi∂gi(x, y).

Observe that we have in fact λ0 > 0, i.e., we can set λ0 = 1 by the Slater-

type qualification conditions assumed in the theorem. Using the important

relationship between partial and full subdifferentials in convex analysis

∂θ(x, y) ⊆ ∂xθ(x, y) × ∂yθ(x, y),

we obtain the inclusions

0 ∈ ∂Fx(x, y) + λ(∂xf(x, y) − ∂xϕ(x)) +

p∑

i=1

µi∂xgi(x, y), (15.7)

0 ∈ ∂yF (x, y) + λ∂yf(x, y) +

p∑

i=1

µi∂ygi(x, y). (15.8)

By the symmetry property

∂(−ϕ)(x) ⊆ −∂ϕ(x)

and the estimate

∂ϕ(x) ⊆
⋃

y∈S(x)

⋃

λ∈Λ(x,y)

{∂xf(x, y) +

p∑

i=1

λi∂xgi(x, y)}

given, e.g., in [Mordukhovich, Nam and Yen (to appear)] with

Λ(x, y) = {λi ≥ 0 : λigi(x, y) = 0, i = 1, . . . , p,

0 ∈ ∂yf(x, y) +
p∑

i=1

∂ygi(x, y)},
(15.9)

we transform (15.7) to

0 ∈ ∂Fx(x, y) + λ(∂xf(x, y) − (∂xf(x, ỹ)

+
p∑

i=1

λi∂xgi(x, ỹ))) +
p∑

i=1

µi∂xgi(x, y)
(15.10)

for some ỹ ∈ S(x) and (λ1, . . . , λp) ∈ Λ(x, ỹ). Conditions (15.10), (15.8),

(15.9), (15.6) together with (λ1, . . . , λp) ∈ Λ(x, ỹ) are the desired necessary

conditions, which thus completes the proof the theorem. �
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Corollary 15.1. If the compactness assumption of the theorem is replaced

by the inner semicontinuity assumption that for each point (x̂, ŷ) ∈ gph S

and any sequence {xk} with S(xk) 6= ∅ converging to x̂ there is a sequence

{yk} with yk ∈ S(xk) converging to ŷ, then we obtain by [Mordukhovich,

Nam and Yen (to appear)][Corollary 4] the inclusion

∂ϕ(x) ⊆
⋃

λ∈Λ(x,y)

{∂xf(x, y) +

p∑

i=1

λi∂xgi(x, y)}. (15.11)

Replacing the formula for the subdifferential of ϕ at x̄ in the above proof, we

can take ỹ = y in the assertion of the theorem. If, moreover, the functions

f, gi, i = 1, . . . , p, are continuously differentiable, the following necessary

optimality conditions result from Theorem 15.9:

There exists λ > 0, λi, µi, i = 1, . . . , p, satisfying

0 ∈ ∂xF (x, y) +

p∑

i=1

(µi − λλi)∇xgi(x, y),

0 ∈ ∂yF (x, y) + λ∇yf(x, y) +

p∑

i=1

µi∇ygi(x, y),

0 ∈ ∇yf(x, y) +

p∑

i=1

λi∇ygi(x, y),

λi ≥ 0, λigi(x, y) = 0, i = 1, . . . , p,

µi ≥ 0, µigi(x, y) = 0, i = 1, . . . , p.

For a related result, obtained using different assumptions and a different

method, we refer to [Ye (2006)][Theorem 4.1].

Optimal solutions to linear programming problems are weak sharp as shown

by [Burke and Ferris (1993)]. Moreover, the solution set map to linear

programming problems of the type

min c>y, subject to Ay ≤ x

with right-hand side perturbations x is lower semicontinuous by [Bank,

Guddat, Klatte, Kummer and Tammer (1982)][Theorem 4.3.5] and hence

also inner semicontinuous. This allows us to deduce the following simple

necessary optimality conditions.

Corollary 15.2. Consider the bilevel linear programming problem (VOP)

with

ϕ(x) = min
y

{c>y : Ay ≤ x}
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and X = R
n. Assume for simplicity that F is continuously differentiable. If

(x, y) is a local optimal solution of this problem, then there exist multipliers

λ > 0, µ ≥ 0, β ≥ 0 such that

∇xF (x, y) − (µ − λβ) = 0,

∇yF (x, y) + λc + µ>A = 0,

c + β>A = 0,

β ≥ 0, β>(Ay − x) = 0,

µ ≥ 0, µ>(Ay − x) = 0.

Remark 15.5. We would like to conclude the paper by making some brief

comments on the usefulness of the optimality conditions studied in this

paper from the computational viewpoint. One of the special features of

the optimality conditions studied in Section 15.3 is the presence of second-

order partial derivatives in the representation of the first-order optimality

conditions. This makes the conditions obtained computationally expensive.

Further, in Section 15.3 one would observe that the Lagrange multipliers

associated with the optimality conditions themselves belong to a set, which

is the normal cone to the graph of the normal cone map associated with the

feasible set of the lower-level problem. This set is rather difficult to com-

pute; see, e.g., the detailed discussion on this issue in [Dutta and Dempe

(2006)]. However, the optimality conditions in Section 15.3 clearly outline

the geometric structure associated with bilevel programming involving par-

tially convex lower-level problems.

On the other hand, the optimality conditions studied in Section 15.4 seem

to be more easily tractable from the computational viewpoint. Observe

that in Section 15.4 the lower-level problem is fully convex and thus more

amenable to computation. Further, the optimality conditions derived in

this section do not have any second-order partial derivatives and thus much

for simple to tackle. Moreover, in the case of smooth lower-level problems

these optimality conditions do not even depend on the partial derivatives of

the lower-level objective function with respect to the upper-level variable x

as shown in Corollary 15.1. However, an important requirement that needs

to be satisfied for the optimality conditions in Section 15.4 to work is that

of partial calmness. To this end, it has been shown in [Dempe, Dutta and

Mordukhovich (to appear)] that there can be a large class of optimistic

bilevel programs, specially those with quadratic convex lower-level prob-

lems, where the partial calmness requirement holds. While on the other
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hand, there could be a large class of problems, where the partial calmness

may fail. The power of the results of Section 15.4 is fully manifested in the

case where the lower-level problem is linear. Since partial calmness is auto-

matically satisfied in the case of linear lower-level problems, the optimality

conditions laid out in Corollary 15.2 can be used to design algorithms to

solve bilevel programs with linear lower-level problems. This can be con-

sidered as an area of future research. It is important to keep in mind that

even if the lower-level problem is linear or fully convex, the overall problem

is a highly nonconvex and nonsmooth. Thus in this paper we attempt to

develop optimality conditions, which bring out the nonsmooth geometric

structures associated with bilevel problems as well those, which are more

suited for computation.
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Chapter 16

Game Engineering
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Abstract

This talk was delivered at the International Symposium on Mathematical Pro-

gramming for Decision Making: Theory and Applications organized during Jan-

uary 10-11, 2007 at Indian Statistical Institute, Delhi Centre as part of the plat-

inum jubilee celebrations of the Indian Statistical Institute.

Key Words: Two-person zero-sum game, auctions, arbitration, traffic

Ladies and Gentlemen, I am very glad to be here at this Jubilee cele-

bration of this very very distinguished Institute. This is something which

has been from my early childhood in my consciousness and I am very glad

to be here to help celebrate this very significant event.

In its beginning, one might say in the formative years when Game The-

ory was starting out with von Neumann and Morgenstern, there was a

very close relationship between Game Theory and Mathematical Program-

ming and indeed Linear Programming. As you know the Duality Theo-

rem of Linear Programming is equivalent, one might say, closely related,

to the Minimax Theorem for two-person zero-sum games. In the ensuing

decades, two-person zero-sum games lost some of their centrality in appli-

cations. It became apparent that most games that one encountered were

1The editors thank Professor Arunava Sen, Indian Statistical Institute, Delhi Centre

and Professor T. E. S. Raghavan, University of Illinois at Chicago, USA for their help to

prepare this text version from the video recorded talk by Professor Robert J. Aumann.
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not two-person, zero-sum. However although they are not pre-eminent by

themselves in applications, two-person zero-sum games are very important

in the mathematical foundation of Game Theory to this day. They sort

of form a corner stone of Game Theory, literally in the sense of a corner

stone. In other words, two-person zero-sum games are not in the center

of Game Theory but are in the corner. But just as a corner stone is very

important for a building, so the theory of two-person zero-sum games is

very important for Game Theory as a whole.

This morning I would like to speak about a subject which I call Game

Engineering. One might say that there are two kinds of applications of

Game Theory. One is the kind of application where you get insights into

an interactive situation. What I mean by insight is that you understand

sort of what is going on. An example is my Nobel Lecture that I gave in

Stockholm over a year ago. It is called “War and Peace”. The meat of this

topic is the theory of repeated games and how one can apply this theory

to understand why people go to war and what can be done to bring about

peace. This is a matter of insight or understanding. People ask “Why

there are strikes”? Eventually after a lot of pain and suffering on the part

of the employer, on the part of the employees and on the part of the public

when some settlement is reached people ask why is it that the settlement

could not have been reached in the first place. There are good reasons

for this which I will not discuss this morning because it belongs to that

part of the applications of Game Theory which are matters of insight and

understanding but are not mechanical matters. This morning I would like

to discuss Game Engineering. In Game Engineering, Game Theory tells

you precisely what to do. I will put some of the topics on the screen:

(1) Auctions

(2) Arbitration

(3) Traffic

(4) Elections

(5) Job Machine

(6) Cut and Choose

Auctions:
You know that there was a Nobel Prize for auctions. William Vickrey

got it for a brilliant idea, a very simple idea by the way. To do something

important does not mean that you have to do a very complicated thing, a

very deep thing. In fact very often the important ideas are simple ones.
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One of the most important ideas in modern Mathematics (you must remem-

ber that from my vantage point, modern Mathematics means Mathematics

which is 150 years old!) that really covers all of modern Mathematics is

Cantor’s diagonal method. Now Cantor’s diagonal method is a very simple

idea. Many mathematicians now call it trivial but it covers all of mathe-

matics and has led to things like Gödel’s Impossibility Theorem and so on

and its basic idea is really very simple. William Vickrey got the Nobel prize

in 1996 for a very simple idea called second-price auctions. I will explain

it very briefly. In a closed bid auction everybody writes down on a piece

of paper what he is willing to pay for the object being auctioned of. Then

the one who wrote the highest price pays the highest price and gets the

object. William Vickrey said that that was the wrong way to do it. The

right way is that everybody writes down the price on a piece of paper and

then the person who writes the highest price gets the object just like before

but he doesn’t pay what he wrote, he pays the second highest price. This

seems crazy because the auctioneer appears to be throwing away money by

charging the second-highest price. But it isn’t crazy. The reason is that if

you must pay the highest price you will be careful about what you write

down and you will not write down what you are willing to pay. You will

write what you think the second highest price is going to be but everybody

will do that. So the price will be depressed whereas if you only have to

pay the second highest price, what you write down doesn’t matter. So you

will write exactly what you are willing to pay. You won’t write more than

what you are willing to pay because you may be stuck with the object and

the second highest price could be more than what you are willing to pay.

Therefore the maximum that you are willing to pay that is what you are

more motivated to write down in the second- price auction and the receipts

are much higher. It is a very simple idea and Vickrey got the Nobel Prize

for it. As many of you know he did not live long enough to receive the

Prize. The Prize was announced in early October. Three days after the

announcement was made, he died of a heart attack. The Nobel Prize is not

given to dead people but once the announcement has been made, they give

it. Paul Milgrom who is one of the big people in auction theory received it

in his name. By the way, I think that the Nobel Prize is a very nice thing

and I do recommend it, but I don’t think one should take it too seriously.

I think Vickery took it very seriously.

Let me just point out two things in this example. First of all, what it

builds on is incentives. Game Theory is all about incentives - incentives in

interactive situations. In Game Engineering you take these incentives and
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you build them into very precisely defined systems like that of second-price

auctions. You say “do this, this, this etc”. It is not fuzzy, it is very precise.

I will give another example.

Arbitration:
Here is another thing that sounds crazy but it really works. Suppose

there is a labor dispute between employees and an employer. They take an

arbitrator and each side presents their case to him. They come up even-

tually with their final demands. The arbitrator listens to these arguments

and usually will do some kind of compromise between their demands. He’ll

listen, he’ll be impressed by the arguments, he’ll say these people have a

point, those people have a point and arrive at a compromise. And that is

good, correct? No, wrong! Why is that bad? Because the employer and

the employee are motivated to overstate their demands. They know that

the arbitrator will listen to both sides and will compromise. Let’s say the

employer is willing to give 80 and the union is willing to take 90. The

employer says that I will not give more than 50 and the arbitrator will

have to take the compromise down. The union says we are not going to

take less than 120 and that will take the compromise up. Both sides are

bloating their demands, giving wrong figures, throwing light on the wrong

part of the problem and so on. The arbitrator gets mixed up and instead

of compromising between 80 and 90, he compromises between 50 and 120

and who knows where will it end up. The arbitrator is getting much less

information because the system encourages both sides to give false or mis-

leading information. There is another method and it sounds crazy. This

method is called final offer arbitration and works in the following way. Each

side presents its final offer and the arbitrator must choose one of the two

final offers. He is not allowed to compromise. Compromise sounds great

and it brings about World Peace. Right? In this case it is wrong. Final

offer arbitration works much better because both sides are motivated to

do the exact opposite of what they did before. They want now to appear

reasonable. They want to convince the arbitrator that they are reasonable

and not crazy to make him choose their side. Both sides may reason as

follows. “This is a reasonable demand. I am going out of my way towards

the other side. So choose me”. So the sides will be close together. The

employer will say “I will give 80”, the union will say “We want to take 90”.

The arbitrator has to choose one of these offers. It could be 80 or 90 (it

can’t be 85 because compromise is not allowed) but the difference between

80 and 90 is not that big and this will not matter much.
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We have another example where the basic intuition at first sight is the

exact opposite of the Game Engineering way to do it. The intuition in

auctions is of course, you take the highest price and not the second price.

And in arbitration, the intuition is to compromise. But in both cases, Game

Engineering tells us that these may be the wrong way to do things.

Traffic:
My final example is going to be about traffic. Let me tell you a little

story about traffic. This relates to a wonderful institution which was men-

tioned here before and that is the State University of New York at Stony

Brook. Everybody knows about 9-11 but there was an attempt to blow up

the World Trade Center several years before 9-11. I was in Stony Brook at

that time - I had a part time job there. In Stony Brook, the Jewish com-

munity is fairly small and I prefer to spend the Sabbath in New York City.

So I was going to New York City (which is 50 miles away from the Univer-

sity) on Friday afternoon. The attempt to blow up the World Trade Center

happened on Friday morning. Now I don’t read newspapers or watch tele-

vision. So I went on Friday afternoon to pick up my valise before driving to

the City. My landlord said “Bob, are you going to the City? I said “Yeah,

sure” and he said “You can’t do that”. I said, “Why, not”? He said, “You

didn’t hear about the World Trade Center? The City is in chaos. You

can’t get in. Traffic is snarled. Bridges are closed. People are advised very

strongly to stay away from Manhattan.” I didn’t know how to spend the

Sabbath in Stony Brook - I hadn’t prepared any food, didn’t know where I

would say my prayers and so on. And then I said, “Let’s try and get in and

see what happens. Maybe I’ll have to turn back but lets see”. Ladies and

Gentlemen, I have never been in the City faster. Everybody was warned

by the TV and the radio to stay in. So Bob Aumann goes in. That’s Game

Theory, that’s Game Engineering. You know there is GPS (Global Posi-

tioning System) in certain places. The GPS tells you the shortest way to

go from one place to another. What they don’t take into account is traffic

conditions. This can be done with modern technology. There is no problem

in principle. The interesting part is the game theoretic part of it because

you want to tell people not only where the traffic is now but where it is

going to be as a result of where you tell them to go. If you say that there

is a traffic jam at a particular place nobody will go there and by the time

you get there will be no traffic jam there. So telling people where to go is a

non-trivial and important problem. This isn’t something fuzzy about how

to bring about World Peace and why people strike. This is something very
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definite and it is an Engineering problem.

Let me close with another example of Game Engineering. Let me tell

you a tale of two cities.

There are two cities A and B with a mountain range between them.

Both the cities are in valleys. One valley is south of the mountain range

and the other, north of the mountain range (Figure-1). You can go from

one city to the other by either driving either along a super highway AX

and then going by a winding, slow road over the mountain range XB or

you can first take another slow winding road over the mountain range, AY

and then take another super highway YB. The super highway drive takes

3 hours and the slow way over the mountain range takes 5 hours. There is

just one equilibrium here. That equilibrium says that half the traffic will

go one way i.e. AX and XB and half the traffic will go the other way, i.e.

AY and YB.

Why is this the only equilibrium? As soon as more than half the traffic

takes one of the routes, the extra traffic increase the time taken on that

route for everyone especially on the slow mountain road. There will be less

traffic on the other route and so the people will take other route. So there

is just one equilibrium ( 1

2
, 1

2
). The number of hours taken in equilibrium is

3 + 5 = 8.

This took place in a country with an extremely dynamic forward think-

ing Department of Highways. Since people were wasting lot of time on

these slow winding roads, they decided to build a very expensive tunnel

XY which takes 1

2
hour to cross(Figure 2).

They estimated that people would now take 6 1

2
hours to get from A to

B (3 hours on the two super highways AX and YB and 1

2
hour on the tunnel

XY ) and thus save 1 1

2
hours. Did that happen? No! Once the tunnel was

built everyone started taking the route AX, XY and YB. Earlier each of the

super highways was bearing half of the traffic and now they were bearing

all of it. So now it took 4 hours instead of 3 to take them. Therefore

the total time taken now was 8 1

2
hours whereas it took 8 hours before. So

one person decided to go the old way but that now took 4 hours on super

highway and 5 hours over the slow mountain road, i.e. 9 hours altogether!

So he went back to the 8 1

2
route and the person who built the tunnel was

given an early pension. Again this is Game Engineering.

Don’t be too hasty to build new highways! This is a theoretical example

called the Brass’s Paradox. However there is nothing pathological about

it. In fact something like this was observed in Amsterdam a few years ago.

Because of some construction they had to close some of the roads and as a
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result traffic in the whole city got better. Thank you very much.
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Abstract

We consider a communications network in which users transmit beneficial infor-
mation to each other at a cost. We pinpoint conditions under which the induced
cooperative game is supermodular (convex). Our analysis is in a lattice-theoretic
framework, which is at once simple and able to encompass a wide variety of seem-
ingly disparate models.

Key Words: Information lattice, multicast/unicast transmission, cooperative
games, Shapley value, convex/supermodular games.

17.1 Introduction

The Shapley value [Shapley (1953)] constitutes a scheme for the fair divi-

sion of the benefits in a cooperative game. Unfortunately it is not always

“stable” in that some coalitions may have incentive to break away because

they can obtain more on their own than what the Shapley value awards

them. In other words, the Shapley value can fail to be in the core of the

game.

In a seminal paper [Shapley (1971)], Shapley identified the class of

“convex” games in which the Shapley value is not only in the core, but is

287
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the “center of gravity” of the core. These are games that exhibit increasing

returns to cooperation: the marginal contribution of a player to a coalition

goes up as the coalition is enhanced. (An equivalent condition – see [Shapley

(1971)] – is that the game be a supermodular function on the lattice of

coalitions.)

In this paper we pinpoint conditions under which certain games of con-

nectivity are convex. Players in our model are located at the vertices of a

communications network and can stand to gain a lot by sharing disparate

bits of information that they initially hold. Indeed information is more

amenable to sharing than standard commodities. Commodities are typi-

cally lost to the person who gives them away. Information in contrast has

“the quality of mercy”, blessing him that gives and him that takes, since

the giver retains all his information even as he sends it out1. Nevertheless

it is not automatic that all information will be shared. This is because,

though costlessly duplicable, information may be costly to transmit (e.g.,

on account of setup costs of links in the communications network). Any

coalition must do a careful cost-benefit analysis, choosing that pattern of

information transmission which maximizes the total net benefit to its mem-

bers.

It should be pointed out that our model takes its cue from, and includes

as a special case, the multicast transmission games presented in [Feigen-

baum, Papadimitriou and Shenker (2004)] (and recalled in section 17.2.1

below). There, too, the Shapley value was examined though the focus was

on its computation and incentive-compatibility (more precisely, on deriv-

1This “blessedness” of information hinges critically on the fact that we are in a coop-

erative game. In a noncooperative and strategic setting, it can happen that enhancing
player i’s information can hurt him (as well as others), even though i gets endowed
with new additional strategies by virtue of his information. The reason is essentially as
follows. The change in i’s information is common knowledge, i.e., the others don’t get
more information but know that i has got it, i knows that they know, etc. This creates
a new game in the minds of all the players. Now it may well be that this new game
has a wholly different Nash Equilibrium (NE) than before, in which i’s opponents have
altered their strategies. If it turns out that, in the face these altered strategies, i’s old
and new strategies all yield lower payoffs to i than what he was getting at the old NE,
he will be hurt.

In contrast, such a phenomenon is impossible in the context of a cooperative game. For
if some members of a coalition get more strategies (on account of enhanced information),
the coalition can choose to ignore these new strategies – precisely because its members
are acting collectively – and always get its old payoff. New strategies will only be
brought into play if they increase the coalition’s payoff (i.e., the sum of the payoffs of its
members).

We thank an anonymous referee for spurring us to make this clarification.
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ing a group strategy-proof mechanism from it). Our analysis shows, as was

said, that the Shapley value is not only fair, but also stable, in all the games

of [Feigenbaum, Papadimitriou and Shenker (2004)], further bolstering its

plausability as a solution concept there.

An important feature of our approach is that we formulate information

in terms of a lattice. This leads to a framework that is at once univer-

sal and simple. We can encompass a wide variety of seemingly different

models, involving unicast and multicast modes of transmission, setup and

variable costs in the communications network, and information that comes

in various guises (from finite dimensional vectors, to partitions of a set, to

layered encoding). The lattice framework makes for a remarkably trans-

parent analysis in all cases.

The paper is organized as follows. In Section 17.2 we present some mo-

tivating examples, starting with the model in [Feigenbaum, Papadimitriou

and Shenker (2004)]. The abstract lattice-theoretic framework is presented

in in Section 17.3. In Section 17.4 we establish our main result which states

that games of connectivity are convex. Section 17.5 points out a monotonic-

ity property of optimal transmissions. Finally, in Section 17.6, we show how

to fit the examples into our lattice-theoretic framework; and we also exam-

ine the tightness of our assumptions and indicate some generalizations of

the model.

17.2 Examples

We present a series of examples of information transmission in a network,

all of which yield supermodular games, as we shall see in Sections 17.4 and

17.6.

17.2.1 Multicast Transmission

First let us recall the game presented in [Feigenbaum, Papadimitriou and

Shenker (2004)]. There is a finite tree Γ with a sender δ located at its root

and and a distinct receiver at each leaf (terminal vertex). Any receiver α

can get information from δ if α is connected to δ using the edges of Γ. The

tree Γ is viewed as a digital network which carries a public broadcast by

δ, and it is assumed that information flowing into any vertex of the tree

can be costlessly duplicated and sent out (multicast) on any subset of the

outgoing edges. But the edges of Γ do have setup costs associated to them.
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Offsetting these costs are benefits B(α) to α when he receives information

from δ.

A cooperative game is induced on the player-set N of receivers in a

natural manner. Any coalition S ⊂ N can use an arbitrary subtree Γ′ of

Γ at the cost C(Γ′) of all the edges of Γ′. The benefit S derives from Γ′

is B(S, Γ′) =
∑

α B(α), where the summation runs over all α in S which

are connected to δ via Γ′. Thus the “worth” w(S) of coalition S (i.e., the

most S can guarantee to itself) is obtained by maximizing the net benefit

B(S, Γ′) − C(Γ′) over all possible subtrees Γ′.

There can be several senders located at different vertices of the tree,

each with its own distinctive information to transmit. Moreover not all

senders need be “dummies” as in [Feigenbaum, Papadimitriou and Shenker

(2004)]. Some of them could be bona fide players in the game with the

power to withhold their information. One could also imagine them to have

different transmission trees, possibly with significant overlap.

In spite of these complications, the game remains supermodular and so

the Shapley value continues to be centrally located in the core (but its com-

putation may no longer be as felicitous as in [Feigenbaum, Papadimitriou

and Shenker (2004)]).

17.2.2 Unicast Transmission

Imagine a set of users connected to each other through a hierarchical net-

work (as in telephony). Again suppose they are located on the leaves of a

tree Γ with other vertices acting as relays. But the communication is pri-

vate rather than public, and the users transmit information to each other

on a one-to-one basis.

The user at leaf α can choose the amount of information ταβ ∈

[0, m], m > 0, to be sent to β. The total benefit derived at β is
∑

α Bαβ(ταβ), where Bαβ is an arbitrary non-decreasing function. As be-

fore, it costs to use the tree. Each edge now has not only a setup cost, but

also an arbitrary non-decreasing variable cost for every α−to-β flow on it.

(The variable costs here add across flows, but the setup cost is invariant of

them.)

This unicast scenario also gives rise to a cooperative game in an obvious

way. Any coalition S chooses τ = {ταβ : α ∈ S, β ∈ S}, and a subforest of

Γ to carry τ , so as to maximize the net benefit.

It turns out that this game is also supermodular.
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17.2.3 Transmission of Layered Information

We turn to a situation where information is encoded or organized in layers

(e.g., as in a video transport system, see [Wang and Zhu (1998)]). To

be precise, suppose layer Li consists of “ information bricks” numbered

by integers mi−1 + 1, mi−1 + 2, . . . , mi. The bricks in L = ∪k
i=1Li are,

however, distributed arbitrarily among the n players located at the vertices

of a communication tree Γ, with no duplication. So, denoting by Σα the

set of bricks held at vertex α, we have Σα ∩ Σβ = φ if α 6= β. Players

wish to receive bricks in order to build a “knowledge pyramid”, but they

cannot construct layer Li unless all previous layers L1, L2, . . . , Li−1 are

in place. Of course, since these bricks are not standard commodities but

signify information, no player loses any of his own bricks by sending them

to others. The player at vertex α may transmit any subset Qe ⊂ Σα on

any edge e emanating from α. Then for any edge e′ that follows from e,

he can send Qe′ ⊂ Qe, and so on. In short he can contemplate multicast

transmission on Γ with α as the root.

There is a set-up cost for every edge e as earlier, and additional flow

costs Ce,α(x) for x ∈ Σα.

Benefits accrue as follows. Denoting by Qβα ⊂ Σβ the subset of bricks

that α receives from β, the benefit to α is fα(n), where

n = max{j : Li ⊂ Σα ∪ (∪βQβα)∀i ≤ j}

and f(n) is an arbitrary non-decreasing function.

The idea here, as was said, is that information is organized in pyramidi-

cal form. Information of layer Li is not usable unless all layers L1, L2, . . . , Li

are complete.

The cooperative game, arising in this setup, is once again supermodular.

17.2.4 Transmission of Information Partitions

As before, Γ is a tree with players located at its vertices. Let Q =

{1, 2, . . . , k} be the set of states of nature, and let {Qα : α ∈ V } be a

partition of Q. (Here V denotes the set of vertices of Γ and Qα is under-

stood to be the empty set if no player is located at α.) Further let Pα be

a partition of Qα. The interpretation is that {Pα, Q\Qα} is the private

information initially held by the player at vertex α. Notice that private

information is disjoint across players, i.e., each player is in the dark about

states that other players can distinguish.
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For simplicity every player α has a state-contingent endowment

(a1(α), . . . , ak(α)) of a single non-tradeable resource (such as his skill), to

be used as input in his individual production. He must, of course, use the

same input in states that he cannot distinguish. But since expected profit

of any player depends on his state-contingent vector of inputs, there are

inherent gains from sharing information. The precise model is as follows.

Each player can transmit its information partition (or any coarsening

thereof) to other vertices prior to the production stage. If the player at

vertex α winds up with the partition P of Q, his profit (via production) is

max fα(x1, x2, . . . , xk)

Subject to: xi ≤ ai(α)

xi ≥ 0

and i ∼P j ⇒ xi = xj

where i ∼P j means that i and j are in the same cell of the partition P .

We assume that the production function fα is supermodular on Rk
+, i.e.,

(assuming differentiability):

∂

∂xi

∂fα

∂xj

≥ 0

for all i, j and α. In other words the inputs x1, x2, . . . , xk are weakly com-

plementary: if α increases his input in some state, this does not diminish

his marginal productivity in any state.

When a coalition S forms, its members can transmit information to each

other through any subforest of Γ after paying the setup costs, and then they

can pool their profits.

This, too, induces a game that is supermodular.

17.2.5 General Network with Controlled Edges

Let G be an arbitrary undirected graph with edge set E and vertex set V .

For each vertex α ∈ V , let Γ(α) ⊂ G be a tree rooted at α on which α is

constrained to transmit its information. Further suppose that edges of G

are subject to the control of coalitions.

Thus when a coalition S forms, each α ∈ S has access to only those

edges in Γ(α) whose controllers are contained in S.

In this setup, players who are neither senders nor receivers of informa-

tion, may nevertheless have a vital role to play in the game on account
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of their control of edges (such as cable operators or monopoly network

providers).

All of our preceding examples can be embedded in this larger framework.

The games induced will still be supermodular.

17.3 The Abstract Model

We build an abstract lattice-theoretic model of information and its trans-

mission, which unifies the above (and more) examples and makes for a

particularly transparent analysis.

17.3.1 The Communications Network

Let G = (V, E) be a graph where V is a finite set of vertices and E is a set

of undirected edges.

For every α ∈ V there is a tree Γ(α) ≡ (V (α), E(α)) ⊂ G, rooted at α,

that can be used by α to transmit its information to other vertices.

17.3.2 Information

Information is modeled as a lattice L with ≥ denoting the partial order and

∨,∧ the join and the meet operators2. We assume that 0 ≡ ∧{x : x ∈ L}

exists in L and that that ∧ distributes over ∨, i.e.,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z ∈ L. This property holds in a variety of contexts and is

well-known (see [Birkhoff (1977)]).

The canonical examples we have in mind is that L is the power set of a

finite set with ≥ corresponding to the set-theoretic notion of ⊃; or that L is

the set of all partitions of a finite set with ≥ corresponding to refinement;

or that L is a closed interval of the real line with ≥ corresponding to the

standard order; or that L is the product lattice of finitely many such lattices.

In all of these cases 0 exists in L and the distributive property holds.

Any vertex α ∈ V can transmit information from a sub-lattice L(α)

of L. A key assumption we make is that the information held at different

2Recall (see e.g. [Birkhoff (1977)]) that for and x and y in L, there exists a greatest
lower bound w.r.t. ≥ (denoted x ∧ y) and a least upper bound (denoted x ∨ y).
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vertices is disjoint, i.e.,

x ∈ L(α), y ∈ L(β), α 6= β ⇒ x ∧ y = 0

We also assume that each vertex can opt to send no information, i.e., 0 ∈

L(α) for all α ∈ V .

17.3.3 Location of Players and Public Facilities

Let N = {1, 2, . . . , n} be the set of players. There is an additional dummy

player, labeled n + 1, used to model public facilities available to all players

in N . Denote Ñ = N ∪ {n + 1}.

Each vertex is occupied by a player3 as specified by a location map

η : V → Ñ

where η(α) denotes the player (possibly, dummy) at vertex α. Let V (S)

represent the set of all the vertices occupied by players in S ∪ {n + 1} i.e.,

V (S) = {α ∈ V : η(α) ∈ S ∪ {n + 1}}

17.3.4 Control of Edges

Edges are controlled by coalitions of players in accordance with a control

map

κ : E → 2N

where κ(e) denotes the coalition that controls4 the use of edge e. (If κ(e) =

φ, then e is accessible to everyone.)

17.3.5 The Transmission of Information

Each vertex α can transmit information x ∈ L(α) to other vertices on

its tree Γ(α) ≡ (V (α), E(α)). Concatenating across vertices, the total

transmission may be viewed as a map τ : E×V → L with the interpretation

that τ(e, α) is the information transmitted by the vertex α on the edge e.

Some natural conditions must be imposed on this map τ . Any vertex α can

send information only out of L(α) i.e.,

τ(e, α) ∈ L(α) (17.1)
3The case where several players occupy a vertex is included in our set-up (see remark

3 in Section 17.6).
4A natural case: if e = (α, β), then κ(e) = (η(α) ∪ η(β)) ∩ N .
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for all α ∈ V and e ∈ E(α). Moreover, no vertex α can send any (except

null) information on edges outside its tree i.e.,

τ(e, α) = 0 if e 6∈ E(α) (17.2)

for all α ∈ V and e ∈ E. Finally, the join of all the information of α that

flows out of a vertex must be no more than the information of α that arrives

at it, i.e.,

τ(e, α) ≥ ∨{τ(e′, α) : e′ ∈ F (e, α)} (17.3)

for all α ∈ V and e ∈ E(α), where F (e, α) denotes the set of immediate

offspring edges of e in the tree Γ(α).

Let T denote the set of all possible transmissions, i.e.,

T = {τ : E × V → L : τ satisfies (17.1), (17.2) and (17.3)}

The set T itself forms a lattice under the natural definitions: τ ≥ τ ′ if

τ(e, α) ≥ τ ′(e, α) for all e, α; (τ ∨ τ ′)(e, α) = τ(e, α) ∨ τ ′(e, α) for all e, α;

(τ ∧ τ ′)(e, α) = τ(e, α) ∧ τ ′(e, α) for all e, α.

For any coalition S ⊂ N , define the subset T (S) ⊂ T of transmissions

feasible for S as follows:

T (S) = {τ ∈ T : for any e and α, τ(e, α) > 0 ⇒ κ(e) ⊂ S and α ∈ S∪{n+1}}

In other words, only members of S or public vertices can transmit informa-

tion in T (S); and only the edges under the control of S may be used.

17.3.6 The Reception of Information

A transmission τ ∈ T induces a reception σ(τ, α) ∈ L at every vertex α ∈ V

as follows:

σ(τ, α) = (x∗(α)) ∨ (∨{τ(e(β, α), β) : β ∈ V \{α} and α ∈ Γ(β)})

where e(β, α) is the edge coming into α from β in Γ(β) and x∗(α) ≡ ∨{x :

x ∈ L(α)}.

Here x∗(α) represents the maximum information in L(α). Since α can

costlessly receive its own information, and since information is valuable, we

suppose that α always “sends” x∗(α) to itself. The total reception at α is

obtained by joining x∗(α) with the bits of information τ(e(β, α), β) sent to

α by other vertices β.
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17.3.7 The Cost of a Transmission

The cost of transmitting information (originating at different vertices) on

any edge is given by5 ce : LV → R+, where ce((x(α))α∈V ) ≡ the cost of

the flow (x(α))α∈V on e. We postulate that ce is submodular on LV , i.e.,

ce(x ∨ y) + ce(x ∧ y) ≤ ce(x) + ce(y)

for all e ∈ E and x, y ∈ LV . Such costs can arise in several ways. For

instance, suppose there is a set-up cost f(e) for e, and a further set-up cost

f(e, α) for every vertex α that uses e, i.e.,

ce((x(α))α∈V ) =

{

0, if x(α) = 0 for all α

f(e) +
∑

x:x(α)>0 f(e, α), otherwise

It is evident that this cost function is submodular, and that it remains

so if we add variable costs
∑

α∈V gα(x(α)) provided each gα : L → R+ is

itself submodular (i.e., evinces economy of scale).

The cost of transmission τ ∈ T is the sum of the costs incurred on all

the edges, i.e.,

C(τ) =
∑

e∈E

ce((τ(e, α))α∈V )

It is easy to verify that C is submodular on T , i.e.,

C(τ) + C(τ ′) ≥ C(τ ∨ τ ′) + C(τ ∧ τ ′) (17.4)

17.3.8 The Benefit from a Transmission

For every vertex β ∈ V , there is a benefit function Bβ : L → R+, where

Bβ(x) represents the benefit to β from receiving information x ∈ L. We

assume that Bβ is supermodular and non-decreasing for all β ∈ V i.e.,

Bβ(x ∨ y) + Bβ(x ∧ y) ≥ Bβ(x) + Bβ(y)

and

x ≥ y ⇒ Bβ(x) ≥ Bβ(y)

The benefit to a coalition S ⊂ N from transmission τ ∈ T is given by

B(S, τ) =
∑

β∈V (S)

Bβ(σ(τ, β))

It is again easy to verify that B is supermodular on T (with S fixed).

But the supermodularity of B and the submodularity of C do not immedi-

ately lead to the supermodularity of the game w defined in the next section.
5Note that LV is a finite product of L with itself (V times) and is a product lattice.
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17.4 The Connectivity Game

We consider the cooperative game that arises from the communications

network. A non-empty coalition S ⊂ N can choose any τ ∈ T (S) to

transmit information between its members or to receive information from

public vertices. The coalition obtains total benefit B(S, τ) but at a cost

C(τ). The maximum net benefit that S can guarantee is therefore given by

w(S) = max
τ∈T (S)

B(S, τ) − C(τ)

(with w(φ) understood to be 0). We call w the connectivity game.

Recall that a game w : 2N → R is called supermodular (or, as in [Shapley

(1971)], convex) if w is supermodular on the lattice 2N , i.e.,

w(S ∪ T ) + w(S ∩ T ) ≥ w(S) + w(T )

for all S ⊂ N and T ⊂ N . Our main result is:

Theorem 17.1. The connectivity game w is supermodular.

For the proof, see the Appendix.

17.5 The Growing Transmissions Property

It is worth noting that optimal transmissions grow with the coalitions in

the sense made precise by Theorem 17.2 below.

Theorem 17.2. Let S ⊂ T ⊂ N and let τ1 ∈ T (S) be an optimal trans-

mission for S. Then there exists an optimal transmission τ ∈ T (T ) for T

such that τ ≥ τ1.

For the proof, see the Appendix.

17.6 Remarks

Remark 1 (Embedding the examples) We briefly indicate how to fit

our examples (from Section 17.2) into the abstract model.

For Section 17.2.1, take Γ(α) = Γ rooted at α, κ(e) = φ for all e,

L(δ) = {0, 1}, L(α) = {0} for all α 6= δ, L = the cross product of all these

lattices, Bδ = 0, Bα(0) = 0 and Bα(1) = B(α) for all α 6= δ. Finally the

cost of an edge is its setup cost if there is a non-zero transmission on it and

zero otherwise.
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For Section 17.2.2, let L(α) = [0, m]V , each of whose elements specifies

the information sent by α to all the other vertices. The lattice operations

∨ and ∧ are obtained by taking component-wise maximum and minimum.

L as usual is the cross product of all the L(α). The cost functions are

obvious. The rest of the construction is as before. (Notice that despite the

fact that the components of the benefit and cost functions have no super-

modularity or concavity assumptions on them, the benefit/cost functions

are supermodular/submodular in our lattice framework. This follows from

the fact that they are additive over their components and that super or

sub-modularity is no constraint on a function of one variable.)

For the example in Section 17.2.3, take L(α) to be the totally ordered

set {0} ∪ Σα, and L to be the cross product. We leave it to the reader to

verify that the benefit function is supermodular.

Finally, for the example in Section 17.2.4, take L(α) to be the lattice

of all partitions of Q which are coarser than {Pα, Q\Qα}. The supermod-

ularity of the benefit functions follows from that of fα, α ∈ V .

Remark 2 (Acyclicity) Cycles in the transmissions network Γ(α) can

cause our result to break down. Consider the network in Figure 17.1 in

which players 1, 2, 3, 4, each have access to the whole graph, with costs as

shown and with ε < 1.

1+ε 1+ε

1+ε 1+ε

2

1

2 4

3

Fig. 17.1 Cycles in the communications network

Further suppose that 1, 2, 3 each derive benefit B > 2(1+ε) from being

connected to 4. Then it is clear that

w(2, 4) = B − 2

w(2, 3, 4) = 2B − 2(1 + ε)

w(1, 2, 4) = 2B − 2(1 + ε)

w(1, 2, 3, 4) = 3B − 3(1 + ε)
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j

α

0 00

η(α) = {i, j, k}

i k

Fig. 17.2 Modeling multiple players at a vertex

But then

w(1, 2, 3, 4) + w(2, 4) = 4B − 5 − 3ε < 4B − 4 − 2ε = w(1, 2, 4) + w(2, 3, 4)

showing that w is not supermodular.

Remark 3 (Multiple players at a vertex) Our model allows for many

players to be located at the same vertex α. Indeed, by creating a new vertex

for each player present at α, and joining these with zero-cost edges to α,

we create an expanded graph which fits our model (see Figure 17.2).

Remark 4 (Control of vertices) Our model also permits coalitions to

control vertices by the graph expansion shown in Figure 17.3. Every edge

incident at α is intercepted with a zero-cost edge controlled by the coalition

controlling α.

κ(  ) = κ(  ) = κ(   ) = κ(α) = {i, j, k} e         f          g        {i, j, k}

αα f
e

g

Fig. 17.3 Modeling control of vertices

Remark 5 (Veto players) A more general control of edges by veto players

renders our results invalid. Consider a player set {1, 2, 3} and suppose that
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there is common tree available to everyone, which consists of just one zero-

cost edge connecting player 1 to a public vertex. The edge can be sanctioned

by player 1 (the veto player), in conjunction with any player in {2, 3}. The

only benefit B is obtained by player 1 when he gets connected to the public

vertex. In this game w(1) = 0 and w(1, 2) = w(1, 3) = w(1, 2, 3) = B.

Hence w(1, 2, 3) + w(1) = B < 2B = w(1, 2) + w(1, 3), showing that w is

not supermodular.

Remark 6 (Dropping distributivity) In the special case where L is

the cross product of the lattices L(α) over α ∈ V , our results hold without

postulating that ∧ distributes over ∨. In this case, the analogue of (17.7) for

∧ holds trivially (and this was the only step that required distributivity).

But in general distributivity is indispensable.

Remark 7 (Enhancement of information) So far we have taken infor-

mation to be fixed a priori. But it could well happen that the information

of an agent gets enhanced by virtue of the information he receives from oth-

ers. He can turn around and send his enhanced information back to them,

enhancing theirs’, and so on. Even in this setting, under suitable hypothe-

ses, the induced cooperative game is well-defined (i.e., the enhancement

sequence converges) and is supermodular, as we shall show in a sequel pa-

per.

17.7 Appendix

17.7.1 Proof of Theorem 17.1

We first establish some lemmas.

Lemma 17.1. Let S ⊂ N , T ⊂ N , τ ∈ T (S) and τ ′ ∈ T (T ). Then

τ ∨ τ ′ ∈ T (S ∪ T ) and τ ∧ τ ′ ∈ T (S ∩ T ).

Proof. Since τ and τ ′ are in T , τ(e, α) and τ ′(e, α) are in L(α). Since

L(α) is a lattice, (τ∨τ ′)(e, α) ≡ τ(e, α)∨τ ′(e, α) ∈ L(α) and (τ∧τ ′)(e, α) ≡

τ(e, α) ∧ τ ′(e, α) ∈ L(α).

Next, if e 6∈ E(α), then τ(e, α) = τ ′(e, α) = 0 and therefore

(τ ∨ τ ′)(e, α) = 0 and (τ ∧ τ ′)(e, α) = 0 as well.
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Finally, since

τ(e, α) ≥ ∨{τ(e′, α) : e′ ∈ F (e, α)} (17.5)

τ ′(e, α) ≥ ∨{τ ′(e′, α) : e′ ∈ F (e, α)} (17.6)

we have

(τ ∨ τ ′)(e, α) = τ(e, α) ∨ τ ′(e, α)

≥ ∨{(τ ∨ τ ′)(e′, α) : e′ ∈ F (e, α)}

from the associativity of ∨ and the fact that x ≥ x′ and y ≥ y′ implies

x ∨ y ≥ x′ ∨ y′. This shows that τ ∨ τ ′ ∈ T . Also from (17.5) and (17.6)

τ(e, α) ∧ τ ′(e, α) ≥ (∨{τ(e′, α) : e′ ∈ F (e, α)}) ∧ (∨{τ ′(e′, α) : e′ ∈ F (e, α)})

≥ ∨{(τ(e′, α) ∧ τ ′(e′, α)) : e′ ∈ F (e, α)}

The first inequality follows from the fact that x ≥ x′ and y ≥ y′ implies

x ∧ y ≥ x′ ∧ y′; the second from the fact (x ∨ y) ∧ z ≥ (x ∧ z) ∨ (y ∧ z) and

the commutativity and associativity of ∨,∧. This proves that τ ∧ τ ′ ∈ T .

To check that τ ∨ τ ′ ∈ T (S ∪ T ), observe that, for any e and α

τ(e, α) ∨ τ ′(e, α) > 0

⇒ τ(e, α) > 0 or τ ′(e, α) > 0

⇒ κ(e) ⊂ S or κ(e) ⊂ T

⇒ κ(e) ⊂ S ∪ T

To check that τ ∧ τ ′ ∈ T (S ∩ T ), observe that

τ(e, α) ∧ τ ′(e, α) > 0

⇒ τ(e, α) > 0 and τ ′(e, α) > 0

⇒ κ(e) ⊂ S and κ(e) ⊂ T

⇒ κ(e) ⊂ S ∩ T
�

Lemma 17.2. For S ⊂ N , T ⊂ N , τ ∈ T and τ ′ ∈ T ,

B(S, τ1) + B(T, τ2) ≤ B(S ∪ T, τ1 ∨ τ2) + B(S ∩ T, τ1 ∧ τ2)

Proof. From the definition of σ and the associativity of ∨ it is immediate

that

σ(τ ∨ τ ′, α) = σ(τ, α) ∨ σ(τ ′, α) (17.7)

The analogous result holds for ∧ only when the lattice L is distributive and

the sub-lattices L(α) are disjoint across α ∈ V , as we now check.
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Let α and β be two distinct vertices. Denote by ρ(τ, α, β) the informa-

tion that α receives from β in the transmission τ , i.e.,

ρ(τ, α, β) =

{

τ(e(β, α), β), if α ∈ Γ(β)

0, otherwise

where, recall e(β, α) is the edge coming into α from β in the tree Γ(β).

Then,

σ(τ, α) = x∗(α) ∨ (∨{ρ(τ, α, β) : β ∈ V \{α}})

So,

σ(τ, α) ∧ σ(τ ′, α) = (x∗(α) ∨ (∨{ρ(τ, α, β) : β ∈ V \{α}}))

∧(x∗(α) ∨ (∨{ρ(τ ′, α, β) : β ∈ V \{α}}))

By the distributivity of ∧ over ∨, and the commutativity and associativity

of ∧ and ∨, the right hand side of the above equation simplifies to

x∗(α) ∨ (∨{ρ(τ, α, β) ∧ ρ(τ ′, α, β′) : β ∈ V \{α}, β′ ∈ V \{α}})

Since the sub-lattices L(β) and L(β′) are disjoint when β 6= β′ all the

cross-terms in the above expression disappear, reducing it to

x∗(α) ∨ (∨{ρ(τ, α, β) ∧ ρ(τ ′, α, β) : β ∈ V \{α}})

which obviously equals

x∗(α) ∨ (∨{ρ(τ ∧ τ ′, α, β) : β ∈ V \{α}})

proving that

σ(τ ∧ τ ′, α) = σ(τ, α) ∧ σ(τ ′, α) (17.8)

From the definition of the benefit function B,

B(S, τ) + B(T, τ ′) =
∑

β∈V (S)

Bβ(σ(τ, β)) +
∑

β∈V (T )

Bβ(σ(τ ′, β))

By rearranging terms we get

B(S, τ) + B(T, τ ′) =
∑

β∈V (S)\V (T )

Bβ(σ(τ, β)) +
∑

β∈V (T )\V (S)

Bβ(σ(τ ′, β))

+
∑

β∈V (S)∩V (T )

(Bβ(σ(τ, β)) + Bβ(σ(τ ′, β))) (17.9)

From (17.7), (17.8) and the supermodularity of Bβ we have

Bβ(σ(τ, β)) + Bβ(σ(τ ′, β)) ≤ Bβ(σ(τ, β) ∨ σ(τ ′, β)) + Bβ(σ(τ, β) ∧ σ(τ ′, β))

= Bβ(σ(τ ∨ τ ′)) + Bβ(σ(τ ∧ τ ′))
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Therefore (17.9) becomes

B(S, τ) + B(T, τ ′)

≤
∑

β∈V (S)\V (T )

Bβ(σ(τ, β)) +
∑

β∈V (T )\V (S)

Bβ(σ(τ ′, β))

+
∑

β∈V (S)∩V (T )

(Bβ(σ(τ ∨ τ ′, β)) + Bβ(σ(τ ∧ τ ′, β)))

≤
∑

β∈V (S)\V (T )

Bβ(σ(τ ∨ τ ′), β) +
∑

β∈V (T )\V (S)

Bβ(σ(τ ∨ τ ′, β))

+
∑

β∈V (S)∩V (T )

Bβ(σ(τ ∨ τ ′, β)) +
∑

β∈V (S)∩V (T )

Bβ(σ(τ ∧ τ ′, β))

= B(S ∪ T, τ ∨ τ ′) + B(S ∩ T, τ ∧ τ ′)

(The last inequality follows from the fact that Bβ is a non-decreasing func-

tion on L for all β ∈ V ). �

Completion of the Proof Let S and T be arbitrary coalitions of N . Let

τ∗
1 , τ∗

2 be optimal transmissions for coalitions S, T respectively, i.e.,

w(S) = B(S, τ∗
1 ) − C(τ∗

1 )

w(T ) = B(T, τ∗
2 ) − C(τ∗

2 ).

From Lemma 17.2 and the fact that C is submodular (see (17.4)), we have

w(S) + w(T ) ≤ B(S ∪ T, τ∗
1 ∨ τ∗

2 ) − C(τ∗
1 ∨ τ∗

2 )

+B(S ∩ T, τ∗
1 ∧ τ∗

2 ) − C(τ∗
1 ∧ τ∗

2 ) (17.10)

Since τ∗
1 is an optimal transmission for coalition S, τ ∗

1 ∈ T (S). Similarly

τ∗
2 ∈ T (T ). By Lemma 17.1, τ∗

1 ∨ τ∗
2 ∈ T (S ∪ T ) and τ∗

1 ∧ τ∗
2 ∈ T (S ∩ T ).

But then,

w(S ∪ T ) ≥ B(S ∪ T, τ∗
1 ∨ τ∗

2 ) − C(τ∗
1 ∨ τ∗

2 ) (17.11)

w(S ∩ T ) ≥ B(S ∩ T, τ∗
1 ∧ τ∗

2 ) − C(τ∗
1 ∧ τ∗

2 ) (17.12)

Inequalities (17.10), (17.11) and (17.12) give

w(S) + w(T ) ≤ w(S ∪ T ) + w(S ∩ T )

showing that the game w is convex.
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17.7.2 Proof of Theorem 17.2

Proof. Let τ2 be an optimal transmission of T . Denote τ ′ ≡ τ1 ∧ τ2 and

τ ≡ τ1 ∨ τ2. By Lemma 17.1 and the fact that S ⊂ T , we have τ ′ ∈ T (S)

and τ ∈ T (T ).

The optimality of τ1 for S implies

B(S, τ1) − B(S, τ ′) ≥ C(τ1) − C(τ ′)

By the submodularity of C we have

C(τ1) − C(τ ′) ≥ C(τ) − C(τ2)

From Lemma 17.2 we also have

B(T, τ) − B(T, τ2) ≥ B(S, τ1) − B(S, τ ′)

The above three inequalities imply

B(T, τ) − B(T, τ2) ≥ C(τ) − C(τ2)

⇒ B(T, τ) − C(τ) ≥ B(T, τ2) − C(τ2)

Since τ2 is an optimal transmission for T , the above inequality shows that

τ is also optimal for T . But τ ≡ τ1 ∨ τ2 ≥ τ1, proving the theorem. �
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Abstract

A robust feedback Nash equilibrium is defined and solved analytically in a differ-
ential climate model with N regions based on an approach of IPCC 2001 scientific
report for calculating radiative forcing due to anthropogenic CO2 emissions. In
addition, uncertainty is introduced by perturbing the climate change dynamics
such that future radiative forcing and global mean temperature will have unknown
outcomes and probability distributions. There are n asymmetric investors, each
investing in a portfolio containing N regional capital stocks used in production
that generates CO2 emissions. In each region there is one policy maker, acting
as a regional social planner, that chooses regionally optimal abatement policies.
Dynamic maximin decision criteria are applied for the policy makers in a ro-
bust feedback Nash equilibrium for N policy makers’ abatement strategies and n

investors’ investment strategies.

Key Words: Closed-loop equilibrium, subgame perfect, robust control, feedback

Nash equilibrium, uncertainty aversion, minimax decision criteria, climate change

18.1 Introduction

Climate change policy is an example of a decision-making process that is

subject to fundamental uncertainties concerning the underlying scientific

1Research supported by Adlerbertska Forskningsstiftelsen.
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information available. Policy makers’ decision to take or not take measures

today are based on scientists’ projections, usually generated by climate

models, such as Global Circulation Models (GCM) evaluated for different

emissions scenarios. Previously, there has been a dispute among scientists

whether the increase in mean global temperature during the last century

is caused by the increase in anthropogenic GHG gases or not. In the 1995

report, the IPCC stated that ‘the evidence suggests a discernible human

influence on global climate’. The IPCC 2001 report concluded that ‘most

of the observed warming over the last fifty years is likely to have been due

to the increase in greenhouse gas concentrations’. The projections of future

climate impacts and sea level raise are subject to great uncertainty and the

projections, which may span over several hundreds years, differ between

models as they are highly dependent upon uncertain model parameters such

as subgrid-scale diffusion coefficients, precipitation and evaporation fluxes

[Harvey (2000)]. Moreover, there may be thresholds leading to abrupt

sudden changes which cannot be simulated and anticipated by the models

such as reorganizations of the oceanic circulation, abrupt disappearance

of the Arctic sea ice and abrupt increase in climate sensitivity. Due to

different model assumptions, there also exists a variety of climate models

generating different results, predicting an increase in global surface mean

temperature within the range 1.5 - 7.5 K. The IPCC Climate Change

2001, The Scientific Basis Report (p. 745) mentions mainly four sources of

uncertainties

(1) Uncertainties in converting emissions to atmospheric concentrations.

(2) Uncertainties in converting concentrations to radiative forcing.

(3) Uncertainties in modeling the climate response to a given forcing.

(4) Uncertainties in converting model response into inputs for impact stud-

ies.

The fundamental uncertainty concerns not only future outcomes but also

future probability distributions. True or inferred probability distributions

are not available from samples, and hence, expected utility theory may

not be a proper tool to analyze optimal climate change policies. In GCM

simulations, where current data and knowledge are used to build models

that predict events 100-200 years into the future, the probability distribu-

tions are usually results from scientists’ ad hoc assumptions and guesswork,

which differ among scientists and models.
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In the literature on the theory of decision-making it is common to distin-

guish between risk and uncertainty. The former refers to a process where

the actual outcome is unknown but probability distribution is known or

can be estimated from samples. However, already Knight (1921) suggested

that for many choices, the assumption of known probability distributions

is too strong. Keynes (1921), in his treatise on probability, put forward the

question whether we should be indifferent between two scenarios that have

equal probabilities, but one of them is based on greater knowledge. Savage

(1954) argued that we should, while Ellsberg (1961) showed in an exper-

iment that we tend not to do so. A person that is facing two uncertain

lotteries with the same (subjective) probability to success, but with less

information provided in the second lottery, tends to prefer the first lottery

where more information is available. Having Ellsberg’s paradox in mind,

[Gilboa and Schmeidler (1989)] formulated a maximin decision criterion,

by weakening Savage’s Sure-Thing Principle, to explain the result from the

Ellsberg experiment. In plain words, the decision-maker is suggested to

maximize expected utility under the belief that the worst case scenario will

happen in the future (a maximin decision criterion). The maximin deci-

sion criterion has been applied before in static models by e.g. Chichilnisky

(2000) and Bretteville (2002) with the general result that it leads to an

increase in abatement effort.

This paper takes the maximin decision criterion further into dynamic

modeling and performs an analysis of the criterion in a dynamic climate

model with stock effects. The first problem to encounter is that [Gilboa

and Schmeidler (1989)] is based on static decision making and their axioms

are not sufficient for dynamic models. For example, they do not state

how the decision-maker’s beliefs are affected by new information (which

could increase or decrease scientific uncertainty) during the play of the

game. In this paper we suggest that a rational decision-maker updates her

beliefs to new information due to scientific progresses by a rule derived from

backward induction in addition to the maximin decision criterion.2 This is

in accordance with the IPCC 1995 report stating ‘the challenge is not to

find the best policy for the next 100 years, but to select a prudent strategy

and to adjust it over time in the light of new information’. We develop the

single-player model in [Hennlock (2006)], presenting a robust abatement

2[Gilboa and Schmeidler (1989)] view uncertainty aversion as a minimization of the set
of probability measures while [Hansen, Sargent, Turmuhambetova and Williams (2001)]
set a robust control problem and let its perturbations be interpreted as multiple priors
of the max-min expected utility theory.
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policy in a dynamic climate change model, to a game with N uncertainty

averse policy makers and n investors and solves for a robust feedback Nash

equilibrium in regional abatement policies and investments. The paper

is formal and presents the analytical solution and the coefficients of the

players’ value functions and provides an introductory analysis. Further

analyzes and simulations are left to future studies.

The following sections are organized in the following way. In the section

18.2, the climate models and climate change impacts are presented. Sec-

tion 18.3 presents players and payoff functions and the optimal strategies

which is followed by an concluding comments and summary in 18.4 and

18.5 respectively.

18.2 The Climate Models

There are j = 1, 2, . . . , N regions, each endowed with i = 1, 2, . . . , n physi-

cal capital stocks kij and a regional natural capital stock xj (e.g agriculture,

water resources or ecosystem etc.). The production process using kij gen-

erates anthropogenic CO2 net emission flow Eijt −ηijqijt in period t where

ηijqijt is abatement with qijt being abatement effort undertaken in pro-

duction process i in region j and ηij > 0 an industry-specific efficiency

parameter. In equation (18.1), the sum of net emissions flows Eijt − ηijqijt

at time t ∈ [0,∞) from production processes i = 1, 2, . . . , n in regions

j = 1, 2, . . . , N accumulates to the global atmospheric concentration CO2

stock Mt measured in ppm. ξj > 0 is the regional marginal atmospheric

retention ratio and Ω the rate of assimilation.

dM =

[

n
∑

m=1

N
∑

k=1

ξj(Emkt − ηmkqmkt) − ΩMt

]

dt (18.1)

dF = α(ν + γMt/M0)dt+ βσ
√

Mt[htdt+ dB̂] − β
√

M0dt (18.2)

dT = λdF (18.3)

α = 4.841 (18.4)

β = 0.0906 (18.5)

λ = 0.5 K/Wm−2 (18.6)

The equation system (18.2) - (18.6) shows the atmospheric concentration

rate Mt influence on radiative forcing dF (measured in Wm−2) and global
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mean temperature Tt according to IPCC Climate Change 2001, The scien-

tific basis, referring to [Shi (1992)] for calculating radiative forcing due to

CO2 where M0 is the 1990 CO2 concentration rate.3 A change in radiative

forcing affects the energy budget of the climate system and hence the global

mean surface temperature through the relationship (18.3).

[Visser et al. (2000)] suggest that uncertainty in radiative forcing mod-

els is the greatest contributor to uncertainty in climate change predictions.

Hence, we introduce scientific uncertainty about the climate model that

goes beyond a stochastic process of radiative forcing by perturbing the

model. The second term in (18.2) is multiplied by htdt + dB̂ where dB is

determined by the process

Bt = B̂t +

∫ t

0

hsds (18.7)

and dB̂ is the increment of the Wiener process B̂t on the probability space

(Ξ,Φ, G) with variance σ2 ≥ 0. {B̂t : t ≥ 0} and {ht : t ≥ 0} is a progres-

sively measurable drift distortion, implying that the probability distribution

itself is distorted such that the probability measureG is replaced be another

unknown probability measure Q on the space (Ξ,Φ, Q). The drift term ht

represents different projections of future radiative forcing, and hence, global

mean surface temperature Tt by (18.3). The projection of ht is unknown

as well as its probability distribution. Hence, (18.2) is interpreted as a set

of radiative forcing models, one model for each ht, with the restriction that

the set of models is bounded by the constraint h2
t ≤ Θ2.

18.2.1 Climate Change Impacts

The damages of the changes in global mean surface temperature are dis-

cussed in the IPCC Climate Change 2001, The scientific basis report. An

overview of benefits and costs and further references are suggested by e.g.

[Tol (2002a)] and [Tol (2002b)]. The considered impacts are often on nat-

ural capitals such as agriculture, forestry, water resources, sea level (loss

of dry- and wetland), increased consumption of energy resources (heating

and cooling), but also health (diseases and human heat and cold stress).

Most research has been conducted on the effects of sea level rise e.g. [Titus

and Narayan (1991)]. In this model we also focus on damages on natural

capital losses that derive from a global mean temperature deviation Tt−T0.
3For analytical tractability ln(Mt/M0) in [Shi (1992)] is replaced by the linear approx-

imation ν + γMt with parameters set to ν = −0.89179 and γ = 0.8974.
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All regions face the same global radiative forcing and climate sensitivity,

resulting in a change in global mean surface temperature as for example

in [Nordhaus and Yang (1996)], while benefits and costs may differ across

regions j = 1, 2, . . . , N .

Regional physical capital accumulation in (18.8) follows the structure

of [Merton (1975)] and [Yeung (1995)] with a Cobb-Douglas investment

function and depreciation rate δij > 0 where Iijt is the investment by

investor i in region j in period t

dkij =
[

I
1/2
ijt k

1/2
ijt − δijkijt

]

dt (18.8)

dxj =

[

rj

(

1 −
√
xjt

Kj

)

√
xjt −

Ψj(Tt − T0)√
xjt

xjt

]

dt (18.9)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.10)

The equations of motion of xjt in (18.9) are adopted from [Hennlock (2005)]

and consist of a modified natural growth function with intrinsic growth

rj > 0 and regional carrying capacity x̄jt = K2
j . The loss of xjt due to

a deviation in global mean temperature rise Tt − T0, where T0 is the 1990

mean temperature level, is determined by a non-linear endogenous decay

rate, given by the ratio (Tt − T0)
√
xjt, suggesting that the damage from

a given mean temperature deviation accelerates as the stock xjt decreases.

(18.1) - (18.10) define the dynamic system with 2+M(1+n) state variables.

The introduction of the unknown variable ht in (18.2) implies that the

dynamics of the system corresponds the set Θ2 of radiative forcing models.

18.3 Players and Payoffs

There are two types of players in the model, investors i = 1, 2, . . . , n who

are investing money in regional physical capital stocks kij located in regions

j = 1, 2, . . . , N . The investors are not physically tied to any specific region

but allocate investments internationally between their capital stocks kij in

regions j = 1, 2, . . . , N . In each region j, there is a policy-maker, acting as

a regional social planner and taking into account socio-economic interests

in region j when enforcing regionally optimal emission reductions in period

t for each regional industry i located in region j. The game is solved

for the feedback Nash equilibrium, in which policy-makers and investors

act independently of each other, possibly using asymmetric discount rates,

benefit and cost structures subject to the dynamic models defined by the

system (18.1)-(18.10).
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18.3.1 Investor i ∈ [1, n]

Each investor i ∈ [1, n] solves a stochastic optimization problem and al-

locates his total investment
∑N

k=1 Iikt in period t between his production

processes located in all regions j ∈ [1, N ] for the production of a good y

that is sold on the world market at unit price. Thus total industry pro-

duction in region j is yjt =
∑n

m=1 φmjk
1/2
mjt, where φij > 0 is a industry-

specific technology parameter. Production generates regional emissions flow

Ejt =
∑n

m=1 ϕmjymjt where ϕmj > 0 is an industry-specific pollution pa-

rameter. Profit-maximization by each investor i is achieved by allocat-

ing his investment (and thereby production activity) between the regions

j ∈ [1, N ]. The expected payoff of investor i, where ε is the expectation

operator, is

max
uikt

ε

∫

∞

0

N
∑

k=1

{

p(1 − uikt)yikt −
cik(qikt)

2

Eikt

}

e−ρitdt (18.11)

Investor i seeks the optimal cash dividend from each regional business

j ∈ [1, N ] in each period by controlling the share uijt ∈ [0, 1] of rev-

enue that is reinvested in his regional capital stocks kij . By investing Iijt

investor i contributes to total industry output yjt in region j, which is

yjt =
∑n

m=1 φmjk
1/2
mjt. The amount reinvested Iijt in period t by investor i

is the remainder Iijt = uijtyijt. Investor i’s discount rate is ρi > 0.

The last term in (18.11) is firm i’s abatement cost, which is quadratic in

regional abatement activity qijt due to capacity constraints as more local

abatement effort qijt is employed. Abatement cost is decreasing in Eijt, sug-

gesting that it requires more expensive techniques as Eijt becomes smaller.

cij > 0 is an abatement cost parameter in production i in region j. The

total emissions flow from region j is Ejt =
∑n

m=1Emjt =
∑n

m=1 ϕmjymjt.

The industry-specific level of qo
ijt is set by policy maker j and is taken

as given when investor i seeks optimal investment uikt. We consider the

following game rule:

Definition 1. Regional Policy Enforcement Policy maker j can enforce

ηijq
o
ijt in region j such that every investor i ∈ [1, n] investing in regional

capital kij in region j has to take regional abatement command qo
ijt ≥ 0 as

given when choosing u∗ijt in a robust feedback Nash equilibrium.

Investor i maximizes the payoff function (18.11) subject to the dynamic

system (18.1) to (18.10) and qo
ijt ≥ ∀i ∈ [1, n] and ∀j ∈ [1, N ] in definition

1. Investor i’s stochastic optimal problem is written as:
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max
uikt

ε

∫

∞

0

N
∑

k=1

{

(1 − uikt)yikt −
cik(qo

ikt)
2

Eikt

}

e−ρitdt (18.12)

subject to

dkij =
[

I
1/2
ijt k

1/2
ijt − δijkijt

]

dt (18.13)

dxj =

[

rj

(

1 −
√
xjt

Kj

)

√
xjt −

Ψj(Tt − T0)√
xjt

xjt

]

dt (18.14)

dM =

[

n
∑

m=1

N
∑

k=1

ξj(Emkt − ηmkqmkt) − ΩMt

]

dt (18.15)

dF = α(ν + γMt/M0)dt+ βσ
√

Mt[hjtdt+ dB̂] − β
√

M0dt (18.16)

dT = λdF (18.17)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.18)

Definition 2. If there exist n value functions Vi(k,x,M, T, t) where

k = (k11, k12, . . . , k1N , k21, k22, . . . , k2N , kn1, kn2, . . . , knN ) (18.19)

and x = (x1, x2, . . . , xN ) that satisfy

Vi(k ,x ,M, T, t) = (18.20)

ε

∫

∞

0

N
∑

k=1

{

(1 − u∗ikt)yikt −
cik(qo

ikt)
2

Eikt

}

e−ρitdt

≥ ε

∫

∞

0

N
∑

k=1

{

(1 − uikt)yikt −
cik(qo

ikt)
2

Eikt

}

e−ρitdt

for strategies u∗ijt(kj , t) ⊆ R1 ∀i ∈ [1, n] and ∀j ∈ [1, N ] which satisfy the

state equations,

dkij =
[

I
1/2
ijt k

1/2
ijt − δijkijt

]

dt (18.21)

dxj =

[

rj

(

1 −
√
xjt

Kj

)

√
xjt −

Ψj(Tt − T0)√
xjt

xjt

]

dt (18.22)

dM =

[

n
∑

m=1

N
∑

k=1

ξj(Emk − ηmkq
o
mkt) − ΩMt

]

dt (18.23)
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dF = α(ν + γMt/M0)dt+ βσ
√

Mt[hjtdt+ dB̂] − β
√

M0dt (18.24)

dT = λdF (18.25)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.26)

The feedback Nash controls strategies

Γ∗

ijt = {u∗ijt(kijt)} ∀i ∈ [1, n] ∀j ∈ [1, N ] (18.27)

provide a feedback Nash equilibrium solution of the game defined in (18.12)

to (18.18) given (18.37) to (18.43) [Basar and Olsder (1999)] .

The value functions in definition 2 satisfy the partial differential equation

system (18.28) - (18.29). Using (18.12) - (18.18) and definition 1 and 2

yield the dynamic programming problem [Fleming and Richel (1975)] of

investor i

−∂Vi

∂t
= max

uikt

N
∑

k=1

{

(1 − uikt)yikt −
cik(qo

ikt)
2

Eikt

}

e−ρit(18.28)

+

n
∑

m=1

N
∑

k=1

∂Vi

∂kmk

[

I
1/2
mktk

1/2
mkt − δmkkmkt

]

+

N
∑

k=1

∂Vi

∂xk

[

rk

(

1 −
√
xkt

Kk

)√
xkt −

Ψk(Tt − T0)√
xkt

xkt

]

+
∂Vi

∂M

[

n
∑

m=1

N
∑

k=1

ξj(Emkt − ηmkq
o
mkt) − ΩMt

]

+
∂Vi

∂T
λ[α(ν + γMt/M0) + βσ

√

Mtht − β
√

M0] +
1

2

∂2Vi

∂T 2
σ2Mt

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.29)

The feedback Nash controls strategies

Γ∗

ijt = {u∗ij(kijt)} ∀i ∈ [1, n] and ∀j ∈ [1, N ] (18.30)

are given by maximizing the partial differential equations (18.28) with re-

spect to (18.30) for n players and solving for the feedback Nash control

variables.

u∗ijt =

(

1

2

∂Vi

∂kij

)2 k
1/2
ijt

φije−2ρit
∀i ∈ [1, n] and ∀j ∈ [1, N ] (18.31)
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The partials derivatives in (18.31) are investor i’s expected feedback Nash

shadow price of kij . In order to identify shadow price paths, n value func-

tions Vi(k ,x ,M, T, t) that satisfy definition 2 and the partial differential

equation system formed by (18.28) - (18.29) must be identified.

Proposition 1.

Vi(k,x,M, T, t) = (18.32)
( n
∑

m=1

N
∑

k=1

aimkk
1

2

mk +

N
∑

k=1

bikx
1

2

k + diM + giT +mi

)

e−ρit

The value functions ∀i ∈ [1, n] satisfy definition 2 and the partial differential

equation system formed by system (18.28) - (18.29).

Proof : Appendix A.1.

Substituting the feedback Nash shadow prices and costs into (18.31)

yields the feedback strategies in terms of parameter values, where the values

of the undetermined coefficients (a iij , b ij , di, gi,mi) for all investors i ∈
[1, n] and regions j ∈ [1, N ] are determined in Appendix A.1.

u∗ijt =
(aij

4

) 1

φijk
1/2
ijt

∈ [0, 1] ∀i ∈ [1, n] and ∀j ∈ [1, N ] (18.33)

Investor i’s feedback Nash investment rate u∗ijt is decreasing in kijt, imply-

ing that the share of revenue used for investment is large when kijt is low

during business start up. As kijt grows, investor i will increase cash divi-

dend and reduce the share of revenue reinvested in his capital kij located

in region j. From Appendix A.1 follows that a greater investor’s discount

rate ρi and capital deprecation rate δij of kijt in region j, the greater is

the share of revenue that the investor withdraw as cash dividend in each

period and the lower is the share used for reinvestment in kijt.

18.3.2 Policy Maker j ∈ [1, N ]

The policy makers j = 1, 2, . . . , N faces a region-specific loss of natural

capital xjt due to climate change Tt−T0 and seek to find optimal abatement

commands ηijq
o
ijt, for the industries within region j while the investors

i = 1, 2, . . . , n choose regional investments u∗ijt.
4 In the Nash equilibrium,

4In the case of auctioned permits it is straightforward to show that the investor’s shadow
price of kjt would fall for given levels of kjt leading to a reduction in investment.
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each policy maker j ∈ [1, N ] seeks optimal abatement commands ηijq
o
ijt to

each industry i in region j given that the remaining N − 1 policy makers

individually seek the optimal ηikq
o
ikt ∀k 6= j and that every investor i ∈

[1, n] individually seek optimal u∗ijt. The expected payoff of policy maker

j ∈ [1, N ] is

ε

∫

∞

0

n
∑

m=1

{

ωjymjt + ψjx
1/2
jt −

cmjq
2
mjt

Emjt

}

e−ρjtdt+ θjR(Q) (18.34)

The first term is social benefit of employment that is assumed to be propor-

tional to total regional production ymjt = φmjk
1/2
mjt where the parameter

ωj > 0. The second term is the benefit from the regional natural capital

xjt in region j ∈ [1, N ] with the parameter ψj > 0. The last term within

the brackets is the industry-specific abatement cost function. Policy maker

j’s discount rate is ρj > 0.

Following [Hansen, Sargent, Turmuhambetova and Williams (2001)],

policy maker j’s payoff function can be written as (18.34) in a multiplier

robust problem where 1/θj ≥ 0 denotes the policy maker’s preference for

robustness when {hs} in (18.7) is unknown. The actual evolution of hs will

change the future probability distribution of Bt having probability measure

Q relative to the distribution of B̂t having measureG. The Kullback-Leibler

distance between Q and G is

R(Q) =

∫

∞

0

εQ

( |hs|2
2

)

e−ρjtds (18.35)

As long as R(Q) < Θj in (18.34) is finite

Q

{
∫ t

0

|hs|2ds <∞
}

= 1 (18.36)

which has the property that Q is locally continuous with respect to G,

implying that G and Q cannot be distinguished with finite data, and hence,

modeling a situation with a decision maker that cannot know the future

probability distribution when using current data.

Every policy maker j ∈ [1, N ] seeks for a robust industry-specific cost-

efficient amount of abatement ηijq
o
ijt for each industry i given the Nash

investment decisions I∗ijt ≡ u∗ijtφijk
1/2
ijt by investor i = 1, 2, . . . , n:

max
qjt

min
hjt

ε

∫

∞

0

n
∑

m=1

{

ωjymjt + ψjx
1/2
jt −

cmjq
2
mjt

Emjt
+
θjh

2
t

2

}

e−ρjtdt

(18.37)
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subject to

dkij =
[

(I∗ijt)
1/2k

1/2
ijt − δijkijt

]

dt (18.38)

dxj =

[

rj

(

1 −
√
xjt

Kj

)

√
xjt −

Ψj(Tt − T0)√
xjt

xjt

]

dt (18.39)

dM =

[

n
∑

m=1

N
∑

k=1

ξj(Emkt − ηmkqmkt) − ΩMt

]

dt (18.40)

dF = λα(ν + γMt/M0)dt+ βσ
√

Mt[hjtdt+ dB̂] − β
√

M0dt (18.41)

dT = λdF (18.42)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.43)

Definition 3. Robust Feedback Nash Equilibrium If there exist N

value functions Wj(k,x,M, T, t) where

k = (k11, k12, . . . , k1N , k21, k22, . . . , k2N , kn1, kn2, . . . , knN ) (18.44)

and x = (x1, x2, . . . , xN ) that satisfy

Wj(k ,x ,M, T, t) =(18.45)

ε

∫

∞

0

n
∑

m=1

{

ωjymjt + ψjx
1/2
jt −

cmj(q
o
mjt)

2

Emjt
+
θj(h

o
jt)

2

2

}

e−ρjtdt

≥ ε

∫

∞

0

n
∑

m=1

{

ωjymjt + ψjx
1/2
jt −

cmjq
2
mjt

Emjt
+
θjh

2
jt

2

}

e−ρjtdt

for strategies qo
jt(kj , t) ⊆ R1 and ho

jt(M, t) ⊆ R1 given that ho
jt(M, t) ≡

arg minWj(k,x,L,M, T, t) ∀j ∈ N and which satisfy the state equations,

dkij =
[

(I∗ijt)
1/2k

1/2
ijt − δijkijt

]

dt (18.46)

dxj =

[

rj

(

1 −
√
xjt

Kj

)

√
xjt −

Ψj(Tt − T0)√
xjt

xjt

]

dt (18.47)

dM =

[

n
∑

m=1

N
∑

k=1

ξj(Emkt − ηmkq
o
mkt) − ΩMt

]

dt (18.48)

dF = α(ν + γMt/M0)dt+ βσ
√

Mt[htdt+ dB̂] − β
√

M0dt (18.49)

dT = λdF (18.50)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.51)

The feedback Nash controls strategies

Γo
ijt = {qo

ij(kij), h
o
j (kj)} ∀i ∈ [1, n] ∀j ∈ [1, N ] (18.52)

provide a robust feedback Nash equilibrium solution of the game defined in

(18.37) to (18.43) given (18.12) to (18.18)[Basar and Olsder (1999)] .
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The value functions in definition 3 satisfy the partial differential equation

system (18.53) - (18.54). Using (18.12) - (18.18) and (18.37) - (18.43) and

definition 2 and 3 yield the Isaacs-Bellman-Fleming equation [Fleming and

Richel (1975)] of policy maker j:

−∂Wj

∂t
= (18.53)

max
qjt

min
hjt

n
∑

m=1

{

ωjymjt + ψjx
1/2
jt −

cmjq
2
mjt

Emjt
+
θjh

2
jt

2

}

e−ρjt

+

n
∑

m=1

N
∑

k=1

∂Wj

∂kmk

[

(I∗mkt)
1/2k

1/2
mkt − δmkkmkt

]

+

N
∑

k=1

∂Wj

∂xk

[

rk

(

1 −
√
xkt

Kk

)√
xkt −

Ψk(Tt − T0)√
xkt

xkt

]

+
∂Wj

∂M

[

n
∑

m=1

N
∑

k=1

ξj(Emkt − ηmkqmkt) − ΩMt

]

+
∂Wj

∂T
λ[α(ν + γMt/M0) + βσ

√

Mthjt − β
√

M0]

+
1

2

∂2Wj

∂T 2
σ2Mt

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.54)

The robust feedback Nash controls strategies

Γo
ijt = {qo

ij(kij), h
o
j (Mt)} ∀i ∈ [1, n] ∀j ∈ [1, N ] (18.55)

are given by maximizing the partial differential equations (18.53) with re-

spect to (18.55) for the N policymakers and solving for the robust control

variables.

qo
ijt = −∂Wj

∂M

ξjηij

2cije−ρjt
Eijt (18.56)

ho
jt = −∂Wj

∂T

λβσ

θje−ρjt
M

1/2
t (18.57)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.58)

The partials derivatives in (18.56) and (18.57) are policy makers j’s ex-

pected Nash shadow price shadow cost of concentration rate CO2 and global

mean temperature, respectively. The optimal abatement command ηijq
o
ijt
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is proportional to policy maker j’s shadow cost of pollution and Eijt. As ex-

pected, the optimal abatement effort is qo
ijt ≥ 0 for all t since ∂Wj/∂Mt ≤ 0

∀t.
The robust feedback Nash strategies in definition 3 are subgame perfect

strategies and will therefore be responses to the evolution of state variables.

These properties of the players’ controls, make the robust Nash abatement

controls credible and efficient threats in every subgame starting at t < ∞,

given the policy makers’ preferences for robustness.

The N value functions Wj(k ,x ,M, T, t) that satisfy definition 3 and

the partial differential equation system formed by (18.53) - (18.54) must be

identified in order to identify shadow prices.

Proposition 2.

Wj(k,x,M, T, t) = (18.59)
( n
∑

m=1

N
∑

k=1

ajmkk
1

2

mk +
N
∑

k=1

bjkx
1

2

k + djM + gjT +mj

)

e−ρjt

The value functions ∀j ∈ [1, N ] satisfy definition 3 and the partial differen-

tial equation system formed by system (18.53) - (18.54).

Proof : Appendix A.2.

Substituting the robust Nash equilibrium shadow costs into (18.56) - (18.57)

yields the robust feedback Nash equilibrium strategies in terms of parameter

values. The values of undetermined coefficients (a jjj , bjj , dj , gj ,mj) for all

j ∈ [1, N ] are derived in Appendix A.2.

qo
ijt = −dj

ξjηij

2cije−ρt
Eijt ≥ 0 (18.60)

ho
jt = −gj

λβσ

θj
M

1/2
t ≥ 0 (18.61)

i = 1, 2, . . . , n j = 1, 2, . . . , N (18.62)

18.3.3 Game Formulations

Several game formulations are possible. In the previous sections, every

investor and every policy makers optimize individually solving for a robust

feedback Nash equilibrium involving investors’ Nash investment strategies

u∗ijt and policy makers’ robust Nash strategies in abatement commands



January 24, 2008 18:59 World Scientific Book - 9in x 6in ch18symposium1

A Robust Feedback Nash Equilibrium in a Climate Change Policy Game 319

qo
ijt ≥ 0.5 Another interesting formulation is to let policy makers j ∈ [1, N ]

cooperate or form coalitions while the n investors still play Nash investment

strategies. This and other cooperative structures are left for further studies.

18.4 Concluding Comments

We have defined an analytical solution to a robust feedback Nash equilib-

rium with n + N asymmetric players with non-linear feedback (Markov)

Nash strategies based on the IPCC 2001 climate model assumptions about

radiative forcing, adding perturbation, making it impossible for policy mak-

ers to infer correct future probability distribution about climate variables

using current data. Policy makers are then assumed to play robust strate-

gies. The advantage of an analytical solution is that it allows for a deeper

understanding than numerical simulations. However, to explore all dimen-

sions of this analytical asymmetric solution would be too extensive in this

paper and is left to forthcoming studies. Some clarifying features and con-

clusions though are mentioned here.

Within each region j there is a second-best solution between investors

i = 1, 2, . . . , n and policy maker j. The policy maker j’s social benefit

of employment in region j in (18.34) is not embedded in investor i’s Nash

shadow price of kij . This contributes to make Nash investment controls u∗ijt

too small compared to a regional Pareto optimal investment control uo
ijt.

This effect is counteracted by the fact that investor i does not consider

the negative effects on natural capital xjt in region j, which make invest-

ment in region j too big compared to the regional Pareto optimal level as

investor i’s Nash shadow price of capital kij is too high compared to the

regional Pareto optimal shadow price of kij . This externality is internal-

ized to a second-best solution by the enforcement statement in definition

1. Another dimension of externality derives from the asymmetry between

the uncertainty neutral investors and the (more or less) uncertainty averse

policy makers. An uncertainty neutral investor i has a greater expected

Nash shadow price of capital kij than an uncertainty averse policy maker

ceteris paribus. Applying the enforcement statement in definition 1, in-

ternalizes this effect to a second-best solution at the regional level as the

policy maker sets optimal abatement commands taking into account her

uncertainty aversion. Finally, moving across borders, investor i’s invest-

5Technically, it is straightforward to also let investors be uncertainty averse in this
equilibrium.
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ment u∗ijt in region j, as well as policy maker j’s abatement command qo
ijt

in region j, do not take into account the negative effects on foreign natural

capital in regions k ∈ [1, N ], k 6= j. This conveys to an externality between

policy makers as globally Pareto optimal choices are unenforced.

Proposition 3. If investor i’s discount rate ρi increases, then i’s expected

Nash shadow prices fall for all kij ∀j ∈ [1, N ], resulting in an increase

in i’s feedback Nash cash dividend flows and corresponding decrease in i’s

feedback Nash investment rate strategies u∗ijt at given kij levels in all regions

j ∈ [1, N ].

Proof: (18.33) and Appendix A.1.

Proposition 4. If production efficiency φij of kij in region j increases

and/or capital depreciation rate δij in region j decreases, then investor i’s

expected Nash shadow price of kij increases, resulting in an increase in

i’s feedback Nash investment rate strategy u∗ijt at given kij levels in region

j ∈ [1, N ].

Proof: (18.33) and Appendix A.1.

Proposition 5. If abatement cost cij in region j decreases, then investor

i’s expected Nash shadow price of kij decreases, resulting in an decrease in

i’s feedback Nash investment rate strategy u∗ijt at given kij levels in region

j ∈ [1, N ].

Proof: (18.33) and Appendix A.1.

Proposition 6. An uncertainty averse (θj << ∞) policy maker j faces a

greater expected Nash shadow cost of M compared to an uncertainty neu-

tral policy maker (θj → ∞), using the expected utility decision criterion

in the feedback Nash equilibrium. As θj → 0, policy maker j’s expected

Nash shadow cost of Mt increases toward infinity and also becomes highly

sensitive (quadratic) to radiative forcing dF and climate sensitivity param-

eters λ and parameters α and β in the climate model, resulting in signif-

icant increases in robust feedback Nash abatement command strategies qo
ijt

∀ ∈ [1, n].

Proof: (18.60) and Appendix A.2.

Proposition 7. The abatement cost burden due to qo
ijt ≥ 0 lowers investor

i’s expected Nash shadow price of capital kij in region j for given kij levels

and hence feedback Nash investment rate u∗ijt falls by (18.33).
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Proof: (18.33) and Appendix A.1.

Proposition 8. If marginal regional atmospheric retention ratio ξj and/or

pollution parameter ϕij increases, then policy maker j increases robust Nash

abatement command strategies qo
ijt at given kij levels.

Proof: (18.60) and Appendix A.2.

Proposition 9. If the climate sensitivity parameter λ increases ceteris

paribus, then all policy makers j ∈ [1, N ] increase robust feedback Nash

abatement commands qo
ijt at given kij levels, each policy maker j with a

magnitude that corresponds to their specific benefits, costs, parameters and

capital endowments.

Proof: (18.60) and Appendix A.2.

Proposition 10. If social utility parameter ψj of natural capital xjt in-

creases, then policy maker j’s expected Nash shadow cost of concentra-

tion rate Mt increases ceteris paribus, which increases robust feedback Nash

abatement command strategies qo
ijt at given kij levels.

Proof: (18.60) and Appendix A.2.

Proposition 11. If abatement efficiency ηij increases, then policy maker

j ∈ [1, N ] increases robust feedback Nash abatement command strategies qo
ijt

at given kij levels.

Proof: (18.60) and Appendix A.2.

Another conclusive result that is strengthened by the introduction of

preferences for robustness among policy makers is the possibility of a posi-

tive shadow price of foreign polluting physical capital kik in region j, which

according to (18.81) in Appendix A.2 occurs when 2cik +dkξkηik < 0. This

has conclusive results when introducing transfer to the model as it may

induce policy makers in all regions j 6= k to give transfers to region k 6= j

that increases CO2 generating capital in region k also in a feedback Nash

equilibrium.

Proposition 12. If 2cik + dkξkηik < 0 holds in region k 6= j then policy

makers in all other regions j 6= k face a positive expected Nash shadow cost

∂Wj/∂kijk of physical capital stock kik where i = 1, 2, . . . , n in region k.
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Proof: (18.81) in Appendix A.2.

It follows from (18.81) that increased robustness of the policy maker’s

preferences in region k increases this effect. The intuition is that a robust

policy maker k, provided that climate model parameters λ, α, β and σ, are

sufficiently high, eventually will use the future increase in income from a

greater current kikt to reduce future net emissions more than if current kikt

was smaller. Using (18.81) - (18.86) it follows that this situation occurs

more likely if policy maker k has a strong preference for robustness, is non-

myopic and hosts a region k endowed with a natural capital stock with

big natural carrying capacity x̄k, that faces great damage Ψk from climate

change Tt − T0 and has attracted industries with low abatement costs cik

relative to the size of physical parameter values λ, α, β and σ that increase

climate sensitivity and radiative forcing for given CO2 concentration rates

in the climate model.

18.5 Summary

The paper has presented an analytically tractable feedback Nash equilib-

rium with corresponding robust nonlinear feedback Nash strategies and n

+ N asymmetric players subject to IPCC 2001 radiative forcing model as-

sumptions. Finding analytically tractable solutions to non-linear feedback

Nash equilibria beyond linear and quadratic games with many asymmetric

players is extremely rare. The analytical solution in this paper opens up for

analyzes of different game formulations with asymmetric players using the

radiative forcing simple expressions suggested by IPCC Climate Change

2001, The scientific basis, referring to [Shi (1992)] for calculating radiative

forcing due to CO2. Further sensitivity analysis and simulations of the

dynamics are left to future studies.

We have shown that a robust policy maker faces a greater expected

robust feedback Nash shadow cost of atmospheric CO2 compared to the

feedback Nash expected utility decision criterion. Moreover, the stronger

the preference for robustness the policy maker’s expected feedback Nash

shadow cost becomes highly sensitive to scientific parameters of radiative

forcing and climate sensitivity in the climate model. The greater robust

feedback Nash shadow cost of CO2 rate, the greater are robust feedback

Nash abatement command levels compared to the levels in the expected

utility decision criterion under feedback Nash conjectures. The greater
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abatement command levels by uncertainty averse policy makers results in

a fall in investors’ expected Nash shadow price of physical capital. Hence,

investors’ feedback Nash responses are to decrease reinvestments (by in-

creasing current cash dividends) in regions with uncertainty-averse policy

makers. As expected, physical capital tends to move away from regions

which host policy makers with stronger preference for robustness in abate-

ment policy.

On the other hand, the introduction of robustness strengthens the pos-

sibility that a policy maker in region j 6= k, also in a feedback Nash equilib-

rium, may face a positive shadow price of foreign polluting physical capitals

kik in region k 6= j which would induce policy maker j to give transfer that

increases physical capital in region k. This effect is strengthened also in a

robust Nash equilibrium where policy makers have strong preferences for

robustness, are non-myopic and host regions endowed with a natural cap-

ital stock with big natural carrying capacity and have industries with low

abatement costs relative to the magnitude of physical parameter values that

increases radiative forcing and climate sensitivity in the climate model.

18.6 Appendix

18.6.1 Appendix A.1 Proof of Proposition 1

Substituting (18.33) into the partial differential equations (18.28) for all

i ∈ n forms the n indirect Isaacs-Bellman-Fleming equations of investors i =

1, 2, . . . , n. The coefficients of the indirect values functions in proposition

1 are then determined by the block recursive equation system

ρiaiij = φij −
(djξjηij)

2ϕijφij

4cj
− aiij

2
δij (18.63)

+diξjϕijφij + diξjηij
djξjηijϕijφij

2cij

ρiaimj = −aimj

2
δmj + diξjϕmjφmj (18.64)

+diξjηmj
djξjηmjϕmjφmj

2cmj
∀m 6= i

ρibij = −bijρi

2Kj
(18.65)
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ρidi =
giλαγ

M0
− diΩ − giλβσ

gjλβσ

θj
(18.66)

ρigi = −
N
∑

j=1

bijΦj (18.67)

aiij =

φi

(

1 − diξkϕij +
(ξkηij )2ϕijφij

cij

(

didk

2 − (−dk)2

4

)

)

ρi + δij/2
(18.68)

aimj = diξkϕmjφmj

(

1 +
dkξkη

2
mj

2cmj

)

∀m 6= i (18.69)

bij = 0 (18.70)

di =
giλ
(

αγ
M0

− gjλ(βσ)2

θj

)

ρi + Ω
(18.71)

gi = −
N
∑

j=1

bijΦj

2ρi
(18.72)

i = 1, 2, . . . , n j = 1, 2, . . . , N m ∈ [1, n] (18.73)

Since bij = 0, then aimj = 0, di = 0 and gi = 0, which further simplify

(18.68). The coefficient mi in proposition 1 is uniquely determined by the

coefficients in (18.68) - (18.73) and (18.80) - (18.86).

18.6.2 Appendix A.2 Proof of Proposition 2

Substituting (18.60) - (18.61) into the partial differential equations (18.53)

for all j ∈ H forms the N indirect Isaacs-Bellman-Fleming equations of pol-

icy makers j = 1, 2, . . . , N . The coefficients of the indirect values functions

in proposition 2 are then

ρjajij = ωjφij +
(djξjηij)

2ϕijφjj

2cij
− ajijδij

2
+ djξjϕijφij (18.74)

ρjajik = −ajikδik
2

+ djξkϕikφik

(

1 +
dkξkη

2
ik

2cik

)

k 6= j (18.75)
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ρjbjj = ψj −
bjjrj
2Kj

(18.76)

ρjbjk = −bjkrk
2Kk

k 6= j (18.77)

ρjdj = − (gjλβσ)2

2θj
+
gjλαγ

M0
− djΩ (18.78)

ρjgj = −
N
∑

k=1

bjkrk
2

Φk ∀k (18.79)

ajij =
φij

ρj + δij/2

(

ωj +
(djξjηij)

2ϕij

2cij
+ djξjϕij

)

(18.80)

ajik =
djξkϕikφik

ρj + δik/2

(

1 +
dkξkηik

2cik

)

∀k 6= j (18.81)

bjj =
ψju

ρj +
rj

2Kj

(18.82)

bjk = 0 k 6= j (18.83)

dj =

gjλαγ
M0

− (−gjλβσ)2

2θj

ρj + Ω
(18.84)

gj = −
∑N

k=1 bjkΦk

ρk
∀k (18.85)

j = 1, 2, . . . , N i = 1, 2, . . . , n k ∈ [1, N ] (18.86)

The undetermined coefficients in appendices A.1 and A.2 are uniquely de-

fined, and hence, this corresponding feedback Nash equilibrium is unique.

The coefficient mj in proposition 2 is uniquely determined by the coeffi-

cients in (18.68) - (18.73) and (18.80) - (18.86).
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Chapter 19

De Facto Delegation and Proposer
Rules

Haruo Imai
Kyoto University, Japan
Katsuhiko Yonezaki
Kyoto University, Japan

Abstract

We consider multi-person bargaining problem where players interests are corre-
lated. In particular, we investigate the limit outcomes of the stationary subgame
perfect equilibrium outcomes of the sequential bargaining game with a coalition
under two different bargaining protocols, and correlation of interests are found
within each coalition. By limit, we mean the case where the interval between the
two consecutive offers vanishes. The result shows that an endogenous delegation
occurs in each coalition to its toughest member. The outcome exhibits a sharp
distinction that under the fixed order rule, the size of coalition does not matter,
while under the predetermined proposer rule, it matters. This result extends the
finding for two sided problems.

Key Words: Bargaining problem, delegation, toughness, coalition, bargaining
protocol, sequential bargaining game

19.1 Introduction

A pure n-persoin bargaining problem like the one for splitting-a-dollar has
a structure that everybody is an enemy of another. Naturally, the typical
solution like the n-person extension of the Nash bargining solution is deter-
mined to balance the power of each player. As a result, if a characteristic
of one player changes, then the solution changes in most cases.

In reality, it is not rare that some people’s intersts are bound together

327
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due to some contracts, law, or customs, indicating that people’s interests
are aligned. An extreme example is the case of wage bargianing where each
worker receives the same wage. On the other side, owners of the firm may
receive a fixed share from the pool of funds left to the owners as a whole.
Another example may be the case where the issue is working condition
which may affect each worker differently but the direction of the change
in individual welfare must be the sam in the case of labor-management
bargaining. Likewise, some particular change in the policy in the case of
negotiation among parties forming a coalition government may have similar
effect to some member parties. If this sort of correlated intersts among
participants is present, a change in the bargained outcome affects members
of the group with aligned interests, i.e. the coalition, in the same direction,
and so the structure of bargaining changes from the general case where such
an alignment of interets is absent. One possibility is that the bargaining
position of one player may become irrelevant in the course of bargaining
process, because of a presence of a ”tougher” player with the same direction
of interests, and whenever the softer player rejects the proposal, so does the
tougher player. In this paer, we like to examine the bargaining outcome
when there is such an extreme alignment of interests among subgroups of
the participants of the negotiation, and in particular, to show the way some
player’s characterstic may become irrelvant in determining the outcome.

To express this extreme alignment of interests among players in a stan-
dard splitting-a-dollar problem, we employ the following setups. Players
{1, 2, ..., n} are partitioned into M coalitions {I1, I2, ..., IM} = Π (such that
for any m, Im 6= ∅and for any m 6= m′, Im ∩ Im′ = ∅). Π is called a coali-
tion structure. What is bargained over is the division of a dollar among
M coalitions, i.e. (x1, x2, ..., xM ) with xm = 0 and

∑
xm = 1. Given

x = (x1, x2, ..., xM ), each player i’s payoff is determined by an ”indirect”
utility function ui(xm) where i ∈ Im, and ui is continuous, concave, and
increasing in xm. This reduced form fits to the situation described above,
although not always a derivation yields the desired property like the con-
cavity. We also assume that ui represents a period payoff for a discouting
representation of time preference of a player i.

We adopt a standard sequential bargaining game and investigate the
stationary subgame perfect equilibrium outcomes. Since participants’ pay-
offs are correlated, endogenous delegation takes place naturally. There is
a strand of literatures discussing delegation in negotiation, but they essen-
tially investigate the situation where the way to choose a representative
(either from inside the group or the outside the group) is exogenously given
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(e.g. Cai (2000), Burtraw (1993), and also see references therein). Here
following the setup discussed in Imai and Salonen (2000), we show that a
perfect correlation among group members makes one member a de facto
representative. The chosen one is the ”toughest” player of that group,
where the measure of toughness is the reciprocal of the boldness proposed
in Aumann and Kurz (1977) (also see Roth (1989) and Burgos, Grant, and
Kajii (2002)).

In the sequential bargaining game among more than two players, there
is a choice among several alternative rules in selecting a new proposer in the
event of a rejection of a standing offer. Recently, in the literature on legisla-
tive bargaining (over coalition formation), attention is paid on a potential
difference created by the two rules called fixed order (FO) rule and random
proposer (RP) rule (cf. Montero (1999), and Merlo (1997)). The former
refers to the rule under which the player who rejected the current offer is
entitled to make the next proposal (which could be one natural extension
of Rubinstein (1982) model to n-person baragaining) , whereas the latter
implies a random selection of a proposer according to a certain probability
distribution (which is attributed to Binmore (1987) in pure baragaining and
Okada (1996) for coalition formation with equal probability, and Baron and
Ferejhon (1989) for legislative bargaining. (A mixture of or some variation
of these rules to accomodate th epolitical reality is also examined (cf, Mon-
tero and Vidal-Puga (2006)). Here we replace FO with another rule under
which the next proposer is predetermined and independent of the identity
of the rejecting player. Admittedly the naming is a bit confusing but we
call this rule the predetermined proposer (PP) rule. This rule is a natural
extension inthe pure bargaining literature (in fact the early and basic at-
tempt by Shaked reported in Sutton (1986) and elucidated in Osborne and
Rubinstein (1990) utilizes this rule), and can be seen as a counterpart of
RP in terms of its independence on the identity of the rejecting player. We
compare these two rules and the results stand in a stark contrast. In the
main section we describe the model and result with respect to PP, and in
the discussion we describe the result under FO which is an easy adaptation
of the analysis under PP.

19.2 Model and Result

Let I = {1, ..., N} be the set of players, where N > 3. The coalition
structure is Π = {I1, ..., Im, ..., IM}. The set of agreements is ∆M (=
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{(x1, x2, ..., xM ) ∈ RM
+ :

∑
xm = 1}) with x as a generic element. The

preference of a player i is given by a utility function such that an agreement
at t periods later yields utility level δt−1ui(xm), i ∈ Im, where δ ∈ (0, 1)
and ui is a continuous, non negative and concave function of x. Also we
assume that it is strictly increasing and the right derivatives of ui’s at 0
are finite. A perpetual disagreement yields the utility level 0.

We consider a bargaining game in which offers are made alternately and
an offer consists of a particular value of (xm). This process is one extension
of two person bargaining process considered by Binmore and Rubinstein
and the n-person process examined by Shaked and many others is of this
type.

The particular process of bargaining we consider is as follows – given an
order on I, say (1, 2, . . . , n), in the first period, player 1 offers x1, and then
players 2, 3, . . . , n in that order replies if s/he rejects or accepts that offer.
If all players accept, then x1 = (x1

m)M
m=1 realized. If some player rejects,

the process moves to the second period, and under (PP) player 2 makes an
offer x2, and players 3, 4, . . . , n, 1 replies in that order. If all players agree
on x2, then (x2

m) realizes in this period, while if some player rejects, then
the process moves to the third period in which player 3 makes an offer. The
process continues unless an agreement is reached.

We consider the limit of stationary subgame perfect equilibria of the
above game as the length of a period converges to 0 (or δ → 1). The steps
to derive the result are essentially the same as those for the two person
bargaining game. The solution obtained is the modified n-person Nash
bargaining solution.

In order to define the solution for general cases, it is convenient to define
the “toughness” of player. It turns out that here “toughness” means the
degree to which each player can withstand delay. For each i ∈ Sm and
xm ∈ [0, 1], define Wi(xm) to be xm ∈ [0, 1] such that ui(x′m) = δui(xm)
if there is such x′m, and otherwise to be 0. Note that ui(Wi(xm)) is the
least utility level feasible via the current agreement which is greater than
or equal to the utility level in the case of the agreement at xm in the next
stage. Also note that Wi is continuous and nondecreasing.

Given xm, Wi(xm) provides one way to measure “toughness” of each
player. In the bargaining situation under consideration, the consent of every
player must be obtained, and hence what matters is the “toughness” of the
“toughest” player in each coalition Im. Define Wm(xm) to be max

i∈Im

Wi(xm).

Wm are also continuous and nondecreasing.
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The outcomes of a bargaining naturally depend on the order of players
in making an offer. As usual, if the length of the time interval between pe-
riods shrinks, in the limit this dependence of the outcome on the ordering
is expected to disappear. However the measure of “toughness” of players
raised above becomes inconvenient in the limiting procedure as Wi(xm)
tends to xm for any i. Instead, one may utilize the rate at which Wi(xm)
tends to xm as δ tends to 1, i.e. the limit value of xm−Wi(xm)

1−δ for i ∈ Im.

This rate is 0 at xm = 0. In other cases, as xm−Wi(xm)
1−δ = (xm−Wi(xm))ui(xm)

ui(xm)−ui(Wi(xm))

holds, in the limit, this rate converges to ui(xm)
u′i(xm) if ui is differentiable. Nat-

urally, the lower this rate
(

ui(xm)
u′i(xm)

)
is, the “tougher” a player may be called

(which is nothing but the reciprocal of the boldness).
Given the assumption of differentiable utility functions, for the n-person

case, we can proceed similarly. Denote by Ωi(xm) the measure of toughness
of i, ui(xm)

u′i(xm) for i ∈ Sm. Then define Ωm(xm) to be the toughness of the
toughest player min

i∈Sm

Ωi(xm). Then define Ω(0) to be any value y between

lim
xm→1

Ωm(xm) and +∞.

The modified n-person Nash solution outcome is then defined to be the
xm at which nmΩm(xm) = nm′Ωm′(xm′) for any m,m′ holds where number
|Sm| = nm.

If one wishes to characterize this solution as a maximizer of some func-
tion like the Nash product, one may consider the logarithm of the util-
ity functions. Define Tm(xm) = A −

∫ 1

xm

1
Ωm(xm)dx for xm > 0, and

Tm(xm) = B −
∫ xm

0
1

Ωm(x)dx for xm < 1 where A = log ui(1) for some
i ∈ Sm with Ωi(1) = Ωm(1). The solution we consider is characterized as
the maximizer of

∑
m

nmTm(xm), or equivalently Π exp{nmTm(xm)}

In general where differentiability is not assumed, one takes the gradient
correspondences gi where i ∈ Sm, z = gi(x0) for x0 ∈ [0, 1] if z ≥ 0 and
z(x− x0) + ui(x0) ≥ ui(x) holds for any x ∈ [0, 1]. Note that by definition,
gi is upper semicontinuous (with gi(0) not necessarily compact) and gi is
nonincreasing in the sense that given x < x′, for any i = gi(x) and any
z′ = gi(x′0), z ≤ z′ holds. Note that sup gi(0) = ∞.

Then define correspondence Ωi by Ωi(xm) = ui(xm)
gi(xm) for each xm ∈ [0, 1]

and for each i ∈ Sm. Finally define a correspondence Ωm by z = Ωm(0) if
z ≤ min

i∈Sm

supΩi(0),and z = Ωm(xm) for x ∈ (0, 1) if z = Ωi(xm) for some

i ∈ Sm and z ≤ lim
x′m↓xm

min
i∈Sm

inf Ωi(x′m). Ωm is upper semicontinuous and

increasing with 0 = Ωm(0) and sup Ωm(1) = ∞.
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Based on these correspondences, the solution and the surrogate utility
functions are defined exactly in the same manner as above, with a suitable
selection necessary in evaluating the integrals.

The result of this paper is —

Proposition 19.1. There is a unique stationary subgame perfect equilib-
rium outcome, and as δ tends to 1, this outcome converges to the modified
Nash solution.

This result indicates the modification made to the Nash bargaining so-
lution due to the extreme correlatoin of interests among players. Also one
can see that the outcome is affected by the choice of the rules of bargaining
process.

19.3 Proof

Equilibrium
First we characterize a stationary subgame perfect equilibrium offers,

(x∗i).

x∗i =



W1(x∗i+1
1 )
...

Wm(i)−1(x∗i+1
m(i)−1)

1−
∑

m6=m(i)

Wm(x∗i+1
m )

Wm(i)+1(x∗i+1
m(i)+1)

...
WM (x∗i+1

M )


(19.1)

for all i, where m(i) indicates the coalition i belongs to, i.e. i ∈ Im(i). If
there is a solution to the above system of equations, then they will comprise
a stationary subgame perfect equilibria, so that each period, proposer i
proposes x∗i which will be accepted.

In the sequel, what matters is the equilibrium offer each player makes
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for his/her own, and so one may summarize the above conditions by

(x∗im(i)) =



x∗1m(1)

...
x∗im(i)

...
x∗Mm(M)


=



1−
∑

m6=m(1)

W
j(1,m)
m (x∗1+j(1,m)

m )

...
1−

∑
m6=m(i)

W
j(i,m)
m (x∗i+j(i.m)

m )

...
1−

∑
m6=m(M)

W
j(M,m)
m (x∗M+j(M,m)

m )


(19.2)

where j(i, m) is the number of periods necessary to reach the chance
where a member of Im makes an offer after the period with player i’s offer for
the first time, and i+ j(i, m) stands for the player i′ = (i+ j(i,m))mod N.

Contraction Mappings
First we note that Wi’s are contraction mappings. If i ∈ Sm for

x < x′ with Wi(xm) > 0 we have (ui(x
′)−ui(x))
x′−x ≤ (ui(Wi(x

′))−ui(Wi(x)))
Wi(x′)−Wi(x) .

If ui(Wi(x)) = δui(x) and ui(Wi(x′)) = δui(x′) hold, then the above in-
equality yields Wi(x′)−Wi(x) = δ(x′−x). If Wi(xm) = 0 and Wi(x′m) > 0,
0 < δ(ui(Wi(x′)) − ui(Wi(x)))/(ui(x′) − ui(x)) < 1 holds and so we still
obtain Wi(x′)−Wi(x) ≤ δ(x′ − x) trivially holds. Thus Wi is contracting
mapping.

Then, for x < x′, Wm(x′) − Wm(x) ≥ Wi(x′) − Wi(x) for i with
Wm(x′) = Wi(x′) and so Wm is also a contraction mapping.

Fixed Point
Our solution is given by the fixed point of composite of N mappings Fi

from ∆M to ∆M such that

Fi(x) =



Wi(x1)
...

Wm(i)−1(xm(i)−1)
1−

∑
m6=m′

Wm(xm)

Wm(i)+1(xm(i)+1)
...

WM (xM )


(19.3)

we verify that Fi is a contraction mapping with respect to the ab-
solute sum norm. To this end, we take x, x′ ∈ ∆M and show that
‖x− x′‖ > ‖Fi(x)− Fi(x′)‖. Given i, x and x′ ∈ ∆M , let Q+ =
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{m 6= m(i) : xm − x′m = 0} and Q− = {m 6= m(i) : xm − x′m < 0}. With-
out loss of generality, we may assume that

∑
m6=m(i)

(xm − x′m) = 0.

We wish to show that

‖x− x′‖ =
∑

m6=m(i)

|xm − x′m|+

∣∣∣∣∣ ∑
m6=m(i)

(xm − x′m)

∣∣∣∣∣ = 2
∑
Q+

|xm − x′m|

>
∑

m6=m(i)

|Wm(xm)−Wm(x′m)|+

∣∣∣∣∣ ∑
m6=m(i)

(Wm(x′m)−Wm(xm))

∣∣∣∣∣
= ‖Fm(x)− Fm(x′)‖.

First, if
∑

m6=m(i)

(Wm(x′m) − Wm(xm)) 5 0, then ‖Fm(x)− Fm(x′)‖ =

2
∑
Q+

|Wm(xm)−Wm(x′m)| < 2
∑
Q+

|xm − x′m| = ‖x− x′‖.

Next, if
∑

m6=m(i)

(Wm(x′m) − Wm(xm)) > 0, then ‖Fm(x′)− Fm(x)‖ =

2
∑
Q−

|Wm(x′m)−Wm(xm)| < 2
∑
Q−

|xm − x′m| = ‖x− x′‖.

Thus Fi is a contraction mapping and so is F̃ = F1 ◦F2 ◦ · · · ◦FN , which
possesses a unique fixed point.

Convergence
For each δ, Wi and Wm are defined as above. Let M δ be the up-

per bound on 1 − Wi(1) for all i, given δ. Let ι(δ,m, xm) be the player
whose number is the earliest among those n ∈ arg max Wi(xm). Then de-
fine Φm(δ,m, xm) to be (1 − δ)/(xm −Wm(xm)) and the surrogate utility
function umδ for Im be exp(∫ Φm(δ,m, xm) + u(ι(δ,m, 0))

First, we claim that given ε > 0, there is δ′ < 1, such that for any
δ > δ′, m, j and i,

∣∣xi
m−xj

m

∣∣ < Nε. This can be shown that by choosing
δ such that M δ < Nε, then from the definition of the SSPE ((1)), one sees
that if i + 1 does not belong to Im, then xi

m − xi+1
m < ε: if i + 1 belongs to

Im, then xi+1
m − xi

m < (N − 1)ε: furthermore, they have to come back to
the same value after N periods. Then, it follows from the continuity of ui’s,
that given ε > 0 there is δ < 1 such that

∣∣um(xi
m)− um(xj

m)
∣∣ < ε holds for

any δ > δ′, m, j and i. Further, one can choose δ′ so that 1−δ′N < ε. Then
from (2), one sees that

∣∣Πum(xi
m)nm −Πum(xj

m)nm
∣∣ < ε holds for any i,

j. Thus all offers are close to each other although there are some distinct
offers, and their modified Nash products are close to each other, implying
that they are close to the maximizer. And indeed as δ tends toward 1,
offers converge to the maximizers.
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19.4 FO rule and Discussion

Under FO rule, everything remains the same except for the effect of the
size of a coalition. I.e. the bargaining game essentially that among repre-
sentatives from each coalition. As a consequence, the resulting solution is
the maximizer of the M person Nash product: Πum.

The difference the proposer rules creates was extensively discussed in
the literature concerning political negotiation. There the reality of the rule
was investigated and they focused upon random proposer rule and FO.
Here, we considered another rule where regardless of the identity of the
player who rejected the standing proposal, next proppser is determined by
the rule. This rule may not have much counterpart in reality. However, the
result it produces is the same as the one by random proposer rule. In fact,
this rule can be considered as one representation of the random proposer
rule under certainty. .

In the n-person bargaining literature, this rule has been used by several
authors as well as FO. One reason why the difference has not been paid
much attention was that the result does not differ much. Here, by the
coalitional constraint, interests of members are perfectly correlated, which
creates the distinction as in Imai and Salonen (2000) as well as in Montero
(1999).

One return from this exercise is the examination of the effect of coalition
formation prior to negotiation, although one needs to reexamine concavity
assumtion for such adaptation. If the protocol of the bargaining stage is
that of fixed order, then joining coalition does not give an extra merit to the
toughest player, and two identically tough players also do not find it advan-
tageous to merge, and hence coalitions would not form (which corresponds
to Harsanyi’s joint bargaining paradox; Harsanyi (1977)). By contrast, if
the protocol is that of predetermined proposer or to that effect random
proposer, then there could be a merit from coalition formation, because
softer player can borrow the bargaining power of the toughest player in the
coalition, while the toughest player can obtain the leverage through the
size of a coalition. This shows that there may be no agreement among the
members as to which rule to prevail before the coalition formation stage,
and status quo may continue to reign. (The multitude of the outcomes
corresponding to different rules may have counterparts in the cooperative
analysis carried out by Chae and Heidhues (2004).)
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19.5 Conclusion

We investigated the stationary subgame perfect equilibrium outcome of the
sequential bargaining game with a coalition structure in the limit under two
different bargaining protocols, where there is a perfect correlation of inter-
ests among the members of each coalition. The result shows an endogenous
delegation occurs in each coalition to its “toughest member”. The out-
come exhibits a sharp distinction that under the fixed order rule, the size
of coalition does not matter, while under the predetermined proposer rule,
it matters.
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Chapter 20

The Bargaining Set in Effectivity
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Abstract

This paper investigates stability properties of effectivity functions. The Bargain-
ing Set in Effectivity Function generalizes the concept of cycles and connects it
with the well known stability notion of bargaining sets.
At first, we propose to study relations between cycles and implement a class of
effectivity functions for which theses cycles are equivalent. The part two of this
work will be devoted to analyze the stability of the Bargaining Sets and gives
relations between them. Bargaining sets are the Zhou’s, the Mass-Colell’s and
the Aumann Davis Maschler’s bargaining sets.

Key Words: Effectivity function, cycle, stability, core, bargaining sets.

20.1 Introduction

This paper investigates stability properties of effectivity functions. Effec-
tivity functions were first introduced by Moulin and Peleg (1982, Journal of
Mathematical Economics) as a way of describing effectiveness of coalitions
in game forms. Keiding (1985, International Journal of Game Theory) pro-
vided a necessary and sufficient condition for an effectivity function to be
1Dawidson Razafimahatolotra is a teacher at the University of Antananarivo, a member
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core stable. He introduced the concept of cycles of effectivity function and
showed that an effectivity function is stable if and only if it is acyclic.The
Bargaining Set in effectivity function generalizes the concept of cycles and
connects it with the well known stability notion of bargaining sets.

Given a set of alternatives A and a set of players N , an effectivity
function E is a map that assigns to each coalition S ⊂ N a family of subsets
of A. The interpretation is: if the set B is assigned by the effectivity
function to coalition S, then S can force the outcome to be in B and if
C  B where C /∈ E(E), then S is not to be able to precise that social
state is members of C. Players are endowed with preference ordering. A
profile is a vector of preferences of members of N

A society can choice a social state a at a profile u for some rule R if
members of N can select a ∈ A where agents (i ∈ N) accepts the rule R.

An effectivity function is called stable (either in terms the core, the
Mass-Colell’s, Aumann Devis Maschler’s bargaining set or Zhou’s bargain-
ing set) if for all profile u, N can choice at least an alternative with the
rule of the core etc.

The notion of cycle was discussed at first by Condorcet where he shows
that social choice can be empty with majority rule. The definitions of
cycles are generalized in Abdou & Keiding where they essentially capture
the following simple idea. Suppose S1 and S2 are two coalitions such that
S1 ∩ S2 = ∅ and S1 ∪ S2 = N , and B1 and B2 are two sets of alternatives
satisfying B1∩B2 = ∅ and B1∪B2 = A. The effectivity function is that Sk

is effective for Bk. To show the emptiness of social choice in theses rules we
considers the following profile. Each agent i ∈ S1 prefers any element of B1

to those in B2, that is for all xk ∈ Bk, k = 1, 2 ; ui(x1) > ui(x2). Similarly
all agents in S2 prefers every alternatives in B2 to every alternatives in B1.
Our effectivity function E, allows S1 to block B2 (i.e social state do not
belong to B2) and S2 to block B1 then E is said to have a cycle(of order
2). One can check that under such a profile, Zhou’s bargaining set of E

will be empty. The argument here is very simple. Suppose to the contrary
a ∈ B1 (if a ∈ B2, the argument is similar) is in the bargaining set. Then
S2 will object this proposal via B2. However, this objection does not have a
valid counter objection because a counter objecting coalition, by definition,
must contain some members from S1 as well as S2. Clearly, for such a
coalition, there is no alternative which can make 1 both the members from
S1 (compared to a) and members from S2 (compared to B2) better off.
Therefore a does not belong to the bargaining set.

Bargaining sets can be defined as soon as in a priori structure of coali-
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tions or without structure of coalitions. In this paper, we focalize our work
only in the case where no structure of coalition is given. So, coalition for-
mation is not an object of this paper. Our intention is to analyze different
formulations of the bargaining set, but preferences are a linear order on the
set of alternatives and set of alternatives is finite, some of theses definitions
are equivalent. So, we propose to analyze only three definitions: Zhou’s,
Mass-Colell’s and Aumann Devis Maschler’s bargaining sets.

At first, we propose to study relations between cycles and implement
a class of effectivity functions where theses cycles are equivalent. The sec-
ond part is devoted to analyze stabilities of the Bargaining Sets and gives
relations between them.

20.2 Definitions and Notations

The set of players N and the set of alternatives A are finite. For any
set X, |X| represent the cardinal of X. We denote X = {B ⊂ X, B 6= ∅}
(or P(X) if X can not be read) the set of non empty subset of N and
X ∗ = X ∪{∅}. If D ∈ P(X) then Dc = X \D and D+ = {C ⊃ D,C ⊂ X}.
A partition of a set X is a family of sets (Dk)k∈I where ∪k∈IDk = X, and
Dk ∩Dl = ∅,∀k 6= l. We denote p(X) the set of partition of X.

An effectivity function is a correspondence E N → P(A) satisfying

B ∈ E(N),∀B ∈ A and A ∈ E(S),∀S ∈ N

E is regular if [S, T ∈ N , B ∈ E(S) and B′ ∈ E(T )] ⇒ either B ∩ B′ 6= ∅
or S ∩ T 6= ∅ and maximal if [S ∈ N , B /∈ E(S)] ⇒ Bc ∈ E(Sc). E is
superadditive if [Sk ∈ N , S1 ∩ S2 = ∅ and Bk ∈ E(Sk)] ⇒ B1 ∩ B2 ∈
E(S1 ∪ S2). E is monotonic if [B ∈ E(S), C ⊃ B or T ⊃ S] ⇒ C ∈ E(T ).

For s = 1 . . . |N |, we denote As = A ⊗ · · · ⊗ A (s-times) and L(A) the
set of linear order on A. A preference is a member of L(A) and a profile is
a vector u = (ui)i∈N . For B ⊂ A, ui(B) = minb∈B ui(b). If B,C ⊂ A and
S ⊂ N , the notation uS(B) � uS(C) means ui(B) > ui(C),∀i ∈ S, the
notation uS(B) > uS(C) means ui(B) ≥ ui(C),∀i ∈ S and ui(B) > ui(C)
for at least i ∈ S, and we write uS(B) ≥ uS(C) if ui(B) ≥ ui(C),∀i ∈ S2.

Let x ∈ A. An objection against x is a pair (S, B) s.t B ∈ E(S) and

uS(B) > uS(x)
2If C = {c} or B = {b} , b /∈ C, then uS(B) � uS(C) and uS(B) > uS(C) are

equivalents. In this case, we retain the notation uS(B) > uS(C). So, the only version

of objection against x ∈ A is uS(B) > uS(C)
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A Zhou’s (mz) counter objection against the objection (S, B) is a pair (T,C)
s.t

T ∩ S 6= ∅, T \ S 6= ∅, S \ T 6= ∅(
uS∩T (C), uT∩Sc

(C)
)
≥
(
uS∩T (B), uT∩Sc

(x)
)

A Mass-Colell’s (mm) counter-objection against the objection (S, B) is a
pair (T,C) s.t(

uS∩T (C), uT∩Sc

(C)
)

>
(
uS∩T (B), uT∩Sc

(x)
)

An objection is mα justified, α ∈ {z,m}, if there is no mα− counter objec-
tion against it.

The Aumann-Davis-Maschler’s (ADM) bargaining set is defined as fol-
low

An objection of k against x player j at x ∈ A is a pair (S, B) s.t
B ∈ E(S), k /∈ S 3 j and

uS(B) > uS(x)
A counter objection of j against k is a pair (T,C) s.t C ∈ E(T ), j /∈

T 3 k and (
uT∩S(C), u(T\S)(C)

)
≥
(
uT∩S(B), u(T\S)(x)

)
The core, the Zhou’s bargaining set, the Mass-Colell’s bargaining set

and the ADM’s bargaining set of an effectivity function E at the profile u

are
C(N,u) = {x/ there is no objection against x} ,

Mz(E, u) = {x ∈ A, no objection against x is mz-justified} ,

Mm(E, u) = {x ∈ A, no objection against x is mm-justified}
M1(E, u) = {x ∈ A, no player has a justified objection against any other player}

An effectivity function E is c-stable (resp. mα, α ∈ {z,m, 1}-stable) if
for every profile u, C(E, u) 6= ∅ (resp. Mα(E, u) 6= ∅, α ∈ {z,m, 1})

Notational Conventions : In this paper we assume that |N | = n, |A| =
m ≥ 2.

The integer 2 ≤ r ≤ min(n, m) denote especially an order of a cycle. In
this case I or Ir = {1, . . . , r} is a set of integers modulo r, and I∗r = Ir \{r}

The set of indexes J ⊂ I is s.t ∩k∈JSk 6= ∅ where (Sk) is a family of
coalitions and the set of indexes L is for any subset of Ir

In general, a family pairwise disjoints of N is denoted by (Tk)k≤r and the
one for A is denoted by (Ck)k≤r. The notation (Sk, Bk) is s.t Bk ∈ E(Sk)

If D is a finite set and (Xd) a family of sets, XD =
∏

d∈D Xd.
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20.3 Some Analysis of Cycles

For a r-tuple of coalition (S1, .., Sr) ∈ N r, we note J =
{J ⊂ Ir,∩k∈JSk 6= ∅} and Jk = {J ∈ J /J 3 k}. A J - selection is a map
σ : J −→ {1, .., r} such that σ(J) ∈ J.

Definition 20.1. A cycle of order r is a family (S1, .., Sr, B1, .., Br,

C1, .., Cr) satisfying Bk ∈ E(Sk), (Ck)k ∈ p(A), Bk ∩ Ck = ∅ and for
every J ∈ J there is kJ ∈ J s.t BkJ

∩ Cl = ∅ ∀l ∈ J .

Definition 20.2. A 2r-tuples (S1, .., Sr, B1, ..Br), Bk ∈ E(Sk) is balanced
if for every J - selection σ we have

⋂
k=1...r

( ⋃
J∈Jk

Bσ(J)

)
6= ∅. An effectivity

function E is balanced if every family (S1, .., Sr, B1, .., Br) satisfying Bk ∈
E(Sk) is balanced.

A circular interval of length p ∈ I∗r starting at k ∈ Ir is a Lk(p) =
{k, . . . , k + p} ⊂ Ir. A family Lp ⊂ P(Ir) is circular of length p if every
L ∈ Lp is a circular interval of length p.

Definition 20.3. An effectivity function E is circular of order r if for some
(T1, . . . , Tr, C1, . . . , Cr) where Tk ∩ Tl = ∅ and Ck ∩ Cl = ∅∀k 6= l, there is
a circular family of length 1 ≤ p ≤ r − 1 s.t CLc ∈ E(TL),∀L ∈ Lp. It is
equivalent to CL ∈ E(TLc),∀L ∈ Lr−p

Remark 20.1. An upper cycle of length r is a family (Tk, Bk)k∈Ir s.t
Tk ∩ Tl = ∅,∀k 6= l ∈ Ir, Bk ∈ E(Tk) and ∩k∈Ir

Bk = ∅. A lower cycle of
length r is a family (Sk, Ck)k∈Ir

s.t Ck ∩ Cl = ∅,∀k 6= l ∈ Ir, Ck ∈ E(Sk)
and ∩k∈Ir

Sk = ∅. [Abdou & Keiding or Vannucci]

Remark 20.2. If E is monotonic, E has a lower cycle if E is circular with
p = 1 and E has an upper cycle if E is circular with p = r − 1

Theorem 20.1. An effectivity function E is acyclic if and only if E is
balanced.

Proof. Let E be a cyclic effectivity function and (S1, .., Sr, B1, .., Br,

C1, .., Cr), Bk ∈ E(Sk) be a cycle. Let σ be s.t for k ∈ Ir, σ−1(k) =
{J ∈ Jk/Bk ∩ Cl = ∅,∀l ∈ J} and take Jk ∈ σ−1(k). Denote Ik =
{l ∈ Ir, Bl ∩ Cs = ∅∀s ∈ J, J ∈ Jk}. We have⋃

J∈Jk

Bσ(J) =
⋃

l∈Ik

Bl
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⋂
k∈Ir

( ⋃
J∈Jk

Bσ(J)

)
=
⋂

k∈Ir

(⋃
l∈Ik

Bl

)

⊆
⋂

k∈Ir

(⋃
l∈Ik

CJc
l

)
( ⋂

k∈Ir

( ⋃
J∈Jk

Bσ(J)

))c

⊇
⋃

k∈Ir

(⋂
l∈Ik

CJl

)
⊇
⋃

k∈Ir

Ck

Conversely Suppose that ∃(S1, .., Sr, B1, .., Br) and a J -selection σ s.t⋂
k=1..r

⋃
J∈Jk

Bσ(J) = ∅ and put Ck =
( ⋃

J∈Jk
Bσ(J)

)c

.
We claim that (S1, .., Sr, B1, .., Br, C1, .., Cr) is a cycle. In fact,

(1)
⋃

k=1..r
Ck = A

(2) ∀J ∈ J ,∃k = σ(J) Bσ(J) ∩ Cl = ∅, ∀l ∈ J

Proposition 20.1. Let E be a circular effectivity function of order r.
Then, E has a cycle.

Proof. Let (T1, . . . , Tr, C1, . . . , Cr) ∈ p(N⊗A) and let Lp a circular family
of length p. We prove that E is not balanced. Define Sk = TLk

and
Bk = CLc

k
where Lk is the circular interval of length p starting at k. A

subset of Ir, J = {k1, . . . , ks} ∈ J if ∩s
j=1Lkj

6= ∅ and we define σ(J) = k1.
If α ∈ Ir, denote J1, . . . , Jν the members of Jα and ks

1 the smallest
element of Js, s = 1 . . . ν. We have that α ∈ ∩ν

s=1CLks
1
. So

r⋂
α=1

( ⋃
J∈Jα

Bσ(J)

)
=

r⋂
α=1

( ⋃
J∈Jα

CLks
1

)
r⋃

α=1

( ⋂
J∈Jα

CLks
1

)
⊃

r⋃
α=1

Cα = A

The Theorem 20.1 achieve the proof. �

Proposition 20.2. If E has a cycle of order r ≤ 3, then E has either an
upper or a lower cycle of order ρ ≤ 3.

The proposition is trivial for r = 2. Then, let r ≥ 3 and (Sk, Bk, Ck)k=1...r

be a cycle of order r. For simplification, we denote

Qk = {L ⊂ Ir/|L| = k}
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We need the two following lemma to prove this proposition

Lemma 20.1. Let E be a cyclic effectivity function of order r. If for some
L ∈ Qr−1 we have that ∩k∈LSk 6= ∅, then E has a lower cycle of order
ρ ≤ r.

Proof. Let (Sk, Bk, Ck)k∈Ir be a cycle of order r s.t S1 ∩ · · · ∩ Sr−1 6= ∅.
We obtain B1 ⊂ Cr, . . . , Bk ⊂ Cr ∪ · · · ∪Ck−1, . . . , Br−1 ⊂ Cr ∪ · · · ∪Cr−2

3

and suppose that E has no lower cycle of order ρ ≤ r.
By B1 ⊂ Cr, we would have S1∩Sr 6= ∅. Hence, Br ⊂ C2∪· · ·∪Cr−1. i.e

B2∩Br = ∅. Also, S2∩Sr 6= ∅. Then either B2 ⊂ C1 or Br ⊂ C3∪· · ·∪Cr−1.
If S2 ∩ S1 ∩ Sr = ∅, then Br ⊂ C3 ∪ · · · ∪ Cr−1. If not (Sk, Bk)k∈{2,1,r}
is a lower cycle. If S2 ∩ S1 ∩ Sr 6= ∅, by the definition of cycle with the
selection of indexes 2, 1, r, we have Br ⊂ C3 ∪ · · · ∪ Cr−1. I.e, necessary
Br ⊂ C3 ∪ · · · ∪ Cr−1.

Now, suppose that Bk ⊂ Cr∪· · ·∪Ck−1 implies Br ⊂ Ck+1∪· · ·∪Cr−1,
and prove that the assertion is true for k + 1.

As Bk+1 ⊂ Cr ∪ · · · ∪ Ck then Br ∩ Bk+1 = ∅, it gives Sr ∩ Sk+1 6= ∅.
Hence either Bk+1 ⊂ C1∪· · ·∪Ck or Br ⊂ Ck+2∪· · ·∪Cr−1. In the second
case, we achieve the proof.

Suppose that Bk+1 ⊂ C1 ∪ · · · ∪ Ck. If Sk+1 ∩ S1 ∩ Sr = ∅,
(Sk, Bk)k∈{k+1,1,r} is a lower cycle. If Sk+1∩S1∩Sr 6= ∅ the existence of cy-
cle with the selection of indexes k+1, r, 1 gives either Bk+1 ⊂ C2∪· · ·∪Ck or
Br ⊂ Ck+2 ∪ · · · ∪Cr−1

4. In the second case the recurrence is hold, and in
the first: We suppose again by recurrence that Bk+1 ⊂ Cl−1 ∪ · · · ∪ Ck

implies either Bk+1 ⊂ Cl ∪ · · · ∪ Ck or Br ⊂ Ck+2 ∪ · · · ∪ Cr−1 and
we prove that the assertion is true for l. In fact, suppose that Bk+1 ⊂
Cl ∪ · · · ∪ Ck. Put Jl = {s/Bl ∩ Cs 6= ∅} and l1 = min {s, s ∈ Jl}5, . . . ,
Jlk = {s/Blk ∩ Cs 6= ∅} ⊂ Cr ∪ · · · ∪ Clk−1 and lk+1 = min {s/s ∈ Jlk} 6.
Let p be the number s.t lp = r, that exist because at least B1 ⊂ Cr.

So, we have a family as represented in the following figure
3For this assertion, observe that for each J satisfying ∩k∈JSk 6= ∅, there is kJ ∈ J s.t

Bk ∩Cl = ∅, ∀l ∈ J . We begin by J1 = {1, . . . , r − 1} and after J2 = {2, . . . , r − 1} until
Jr−1 = {r − 1}. We can suppose after reorder the set of indexes that kJ1 = 1.
In this proof, and in some cases, the definition of [Abdou & Keiding] of a cycle is

adequate: If Sk1∩Sk2 6= ∅, . . . , Sks−1∩Sks 6= ∅ and Bk1∩Ck2 6= ∅, . . . , Bks−1∩Cks 6= ∅,
we obtain Bks ∩ Ck1 = ∅, for all selection of indexes {k1, . . . , ks} ⊂ J s.t ∩JSk 6= ∅
4We have that Bk+1, Br, B1 are pairwise disjoints, then if Sk+1∩Sr∩S1 = ∅ we obtain

a lower cycle of order 3. So, we can suppose Sk+1 ∩ Sr ∩ S1 6= ∅, and then we can use
the existence of cycle
5The minimization on L is defined as follow r < 1 < · · · < l < · · · < k
61 ≤ l1 < · · · < lk+1 < lk < · · · < lp
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Sk+1 Sl . . . Slp Sr

Cl ∪ · · · ∪ Ck Cl1 ∪ · · · ∪ Cl−1 . . . Cr Ck+1 ∪ · · · ∪ Cr−1

Ck+1 Cl . . . Clp−1 Cr

The family Bk+1, Bl, . . . , Blp , Br is composed of a pairwise disjoint of
sets. Hence, to avoid a lower cycle of length p + 2, we would have Sk+1 ∩
Sl ∩ · · · ∩ Sr 6= ∅. Also, by the definition of cycle on the selection of
indexes {k + 1, l, l1, . . . , lp, r}, we obtain either Bk+1 ⊂ Cl+1 ∪ · · · ∪ Ck or
Br ⊂ Ck+2 ∪ · · · ∪ Cr−1. That achieve the recurrence on l.

Consequently, we have always Br ⊂ Ck+2 ∪ · · · ∪ Cr−1. That achieve
the recurrence on k.

This conclusion gives either Br = ∅ or, by a discursive recurrence, Bk ⊂
Ck−1,∀k ∈ Ir i.e to a lower cycle of order r. �

Lemma 20.2. Let E be a cyclic effectivity function of order r. If for some
L ∈ Qr−1 we have that Sk ∩ Sl = ∅ for all k 6= l ∈ L, then E has an upper
cycle of order ρ ≤ r.

Proof. Let (Sk, Bk, Ck)k∈Ir be a cycle of order r, L = {1, . . . , r − 1} ∈
Qr−1

7 s.t Sk ∩ Sl = ∅ ∀k 6= l ∈ L, and suppose that E has no upper cycle
of order ρ ≤ r.

Put

Kr = {α ∈ Ir, Sr ∩ Sα 6= ∅}
We can proof that either Kr = {r} or Kr = Ir.
By the definition of L we have ∅ 6= ∩k∈LBk ⊂ Cr. i.e Bk ∩ Cr 6= ∅

∀k ∈ L.
So, if l ∈ Kr we have Br ∩ Cl = ∅ and

Br ⊂
⋃

k∈Kc
r

Ck

If k ∈ Kc
r i.e Sk ∩ Sr = ∅, then by the definition of L and the absence of

upper cycle

Br ∩

 ⋂
k∈Kc

r

Bk

 6= ∅

As  ⋃
k∈Kc

r

Ck

 ∩

 ⋂
k∈Kc

r

Bk

 =
⋃

k∈Kc
r

Ck ∩

 ⋂
k∈Kc

r

Bk

 = ∅

7Without loosing the generality, we can suppose L = {1, . . . , r − 1}
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Then if Kr 3 k 6= r and Kc
r 6= ∅, we obtain Br = ∅

Knowing that ∩k∈Ir
Bk = ∅8, then the absence of upper cycle gives Sr∩Sk 6=

∅ for at least k 6= r ∈ Ir i.e Kr = Ir. Hence,

Sr ∩ Sk 6= ∅,∀k ∈ Ir

In conclusion, the absence of upper cycle is not possible. �

Proof of the Proposition : A consequence of Lemma 20.1 and Lemma
20.2.

Proposition 20.3. There is a monotonic effectivity function E and cyclic
of order 4, but E is not circular.

Proof. Let N = {1, . . . , 5}, A = {x1, . . . , x4} and E the effectivity
function defined by E(S1) = {x2, x3}+ , E(S2) = {x3, x4}+ , E(S3) =
{x1, x4}+ , E(S4) = {x1, x2}+ where S1 = {1, 2} , S2 = {2, 3} , S3 =
{4, 5} , S4 = {1, 3, 5}. For T ⊃ Sk, k ∈ {1, 2, 3, 4}, then E(T ) = E(S)
and for T do not contain Sk, E(T ) = {A}.
It is easy to verify that E is not circular but (Sk, Bk, Ck)k∈I4 where
Bk = min {B|B ∈ E(Sk)} and C1 = {x4}, C3 = {x1}, C3 = {x2},
C4 = {x3} is a cycle of order 4. �

Proposition 20.4. Let E be a superadditive and cyclic effectivity function
of order r < 5, then E has a lower or an upper cycle of order ρ < 5.

Proof. For r = 3, see the Proposition 20.2. For r = 4, see annex. �

Proposition 20.5. There is a monotonic and superadditive effectivity
function E and cyclic of order r ≥ 5, but E is not circular.

Proof. Let N = {1, . . . , 7} and A = {x1, . . . , x5}, and consider the effec-
tivity function E defined as:

E(S1) = {x2, x3, x4}+ , E(S2) = {x3}+ , E(S3) = {x4, x5}+ ,

E(S4) = {x5, x2}+ and E(S5) = {x1}+ where S1 = {1, 2, 3, 4} ,

S2 = {1, 3, 4, 5, 7} , S3 = {1, 2, 5, 6} , S4 = {3, 6, 7} and S5 = {4, 5, 6, 7} .

If S ∈ {S|S ⊃ Sk, k ∈ I5} , then E(T ) = E(Sk). Other wise E(T ) = {A} .

We claim that E is not circular but have a cycle of order 5.

Remark 20.3. If E is a monotonic r−circular effectivity function and if
r < min {m,n}, then E is (r + 1)− circular.
8Because the family (Ck) form a partition of A
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First, E is not circular.
Suppose the contrary and let (Tk)k∈I5 ∈ p(N) and put Ck = {xk}. For

p ∈ Ir
5 , denote Bk(p) = Ck ∪ · · · ∪ Ck+p−1 and Sk(p) = Tk+p ∪ · · · ∪ Tk−1.

The cardinal of (Tk), λ ∈ {π(1, 1, 1, 1, 3), π(1, 1, 1, 2, 2)| π is a permutation},
and every coalition S effective for some B  A is S = S4 or s.t |S| ≥ 4.
If p = 4, we need at least one Sk(4) s.t |Sk(p)| = 1, and
If p = 3, we need at least two Sk(3) s.t |Sk(3)| ≤ 3. Then p ≤ 2.
If p = 1, we need five districts coalitions Sk(1) effective for one alternative.
It is in opposition to the definition of E, where only superset of S2 or S5 is
able to force social state to be member of a singleton.
If p = 2 and λ ∈ {π(1, 1, 1, 1, 3), π ∈ S5}, we need a leat two Sk(2) s.t
|Sk(2)| ≤ 3. It is in contradiction with the definition of E.
If p = 2 and λ ∈ {π(1, 1, 1, 2, 2), π ∈ S5}, then9

(S1(2), S2(2), S3(2), S4(2), S5(2)) = π
(
(S4, Su, S2, S̄v, Sw)

)
Where u 6= v 6= w ∈ {1, 3, 5} and S̄v ) Sv s.t S̄v 6= S2

And

∀k ∈ I5, Sk or S̄k is able for B, |B| = 2 (∗)

In view of S1, (*) is not possible.
In conclusion, there is no p s.t ∀k ∈ I5;Bk(p) ∈ E(Sk(p)) i.e E is not

5-circular.
Second, (Sk, Bk, Ck)k≤5 where Ck = {xk} is a cycle of order 5.

So, define Hi = {l ∈ I|Sl 3 i} and (Jk)k the family of maxima of (Hi)i∈N .
We have that

H1 = {1, 2, 3} ,H2 = {1, 3} ,H3 = {1, 2} ,H4 = {1, 2, 5} ,H5 = {2, 3, 5} ,

H6 = {3, 4, 5} , H7 = {2, 4, 5}, and the following structure shows that E

has a cycle of length 5

J1 = {1, 2, 3} and B3 ⊂ C4 ∪ C5;B2 ⊂ C3 ∪ C4 ∪ C5

J2 = {1, 2, 5} and B2 ⊂ C3 ∪ C4;B1 ⊂ C2 ∪ C3 ∪ C4

J3 = {2, 3, 5} and B5 ⊂ C1 ∪ C4;B3 ⊂ C1 ∪ C4 ∪ C5

J4 = {3, 4, 5} and B5 ⊂ C1 ∪ C2;B4 ⊂ C1 ∪ C2 ∪ C5

J5 = {2, 4, 5} and B5 ⊂ C1 ∪ C3;B2 ⊂ C1 ∪ C3 ∪ C5 �

Remark 20.4. We can prove that E is not balanced. In fact, we have
J1 = {1k, 123, 125}, J2 = {2k, 123, 125, 235, 245}, J3 = {4k, 123, 235, 345},
9∀k 6= l ∈ I5, ∀p ∈ I5 \ {r}; Sk(p) \ Sl(p) 6= ∅ and Sl(p) \ Sk(p) 6= ∅
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J4 = {4k, 345, 245}, J5 = {5k, 125, 235, 345, 245}, where the k in Jl is
that k ∈ I \ {l}. Let σ be the J− selection defined as σ(J) = kJ where
BkJ

∩ Cl = ∅,∀l ∈ J . Then, if Σk = {σ(J)|J ∈ Jk}, we have that

Σ1 = {1, 2, 3, 4} ,Σ2 = {2, 3, 5} ,Σ3 = {3, 4, 5} ,Σ4 = {2, 4, 5} ,Σ5 = {1, 2, 5}

and ⋂
k∈I

( ⋃
J∈Jk

Bσ(J)

)
=
⋂
k∈I

( ⋃
l∈Σk

Bl

)
= ∅

Proposition 20.6. Let E be an effectivity function. Then,
lower or upper cycle ⇒ circular ⇒ cycle, and
cycle ; circular ; lower or upper cycle.

Proof. Upper or lower cycle ⇒ circular is trivial, and circular ⇒ cycle is
by the Proposition 20.2.

These implications are strict :
Cycle ; circular is by the Proposition 20.5.
Circular ; upper or lower cycle is shown in the following example.

Let N = {1, 2, 3, 4, 5}, A = {x1, x2, x3, x4, x5} and E is s.t
E(12) = x1x2x

+
3 , E(23) = x2x3x

+
4 , E(34) = x3x4x

+
5 , E(45) = x4x5x

+
1 ,

E(51) = x5x1x
+
2 , and if T ∈ {S ⊂ N |S ⊃ {i, (i + 1)|i = 1..5mod [5]}}, then

E(T ) = E(S), in the other case, E(T ) = {{A}}.
∀S ⊂ N,B ∈ E(S) we have |B| ≥ 3. consequently, if S1, S2 ⊂ N,Bk ∈

E(Sk) B1 ∩B2 6= ∅ i.e E have neither a lower nor an upper cycle.
If Ck = {xk}, Tk = {k + 4} and Jk = {k, k + 1, k + 2} then CJk

∈
E(TJc

k
) i.e E is circular of order 5 with p = 3. �

In the following, we focused our intention on the minimal or-
der r s.t E has a cycle or circular of order r. Denote σ(S) =
min {r, E is cyclic of order r} and σ(E) = +∞ if E is acyclic. In the same
way ν(E) = min {r, E is circular of orderr} and ν(E) = +∞ if E is not
circular.

Proposition 20.7. Let E be a monotonic and maximal effectivity function.
Then

either σ(E) = ν(E) ≤ 3 or σ(E) = ν(E) = +∞

Proof. If E is a maximal effectivity function, then either σ(E) ≤ 3 or
σE = +∞[Abdou] If σ(E) = 3, then E has either a lower or an upper cycle.
As E is monotonic, then E has a lower or an upper cycles of order 3 if and
only if E is circular. �
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We finish this section with class of effectivity function where non circu-
larity and acyclicity are equivalents.

An effectivity function E is additive if for some measures λ and ν on A

and N

B ∈ E(S) if and only if λ(B) + ν(S) > 1

An effectivity function E is simple if

either E(S) = {A} or E(S) = N for all S ⊂ N

E is anonymous if

E(S ∪ {i}) = E(S ∪ {j}) for all S, S ∩ {i, j} = ∅ and for all i, j ∈ N

E is neutral if for all B,C ⊂ A s.t |B| = |C|

B ∈ E(S) if and only if C ∈ E(S) for all S ⊂ N

Proposition 20.8. Let E be a simple effectivity function. Then, E is
circular if and only if E has a cycle.

Proposition 20.9. Let E be a monotonic, anonymous and neutral effec-
tivity function. Then, E is additive if and only if E is non circular.

Proof. Every additive effectivity function is acyclic [Abdou& Keiding]
then non circular[Proposition 20.1]. The following proof concern the recip-
rocal.

Let E be a non additive effectivity function. Then, ∀λ a measure
on A and ν a measure on N , there is B ∈ E(S) s.t λ(B) + ν(S) ≤ 1.
(*)

Let λ and ν s.t

λ(x) =
1
m

,∀x ∈ A and ν(i) =
1
n

,∀i ∈ N

Put r = min(n, m). We can suppose m ≥ n and then r = n. By (*),
take B ∈ E(S) s.t λ(B) + ν(S) ≤ 1 and choice (C)k∈Ir

∈ p(A) s.t for some
J ⊂ Ir

B ⊂

(⋃
k∈J

Ck

)
and B ⊂

( ⋃
k∈J′

Dk

)
⇒ |J ′| ≤ |J |,∀(D)k∈Ir ∈ p(A),∀J ′ ⊂ Ir

Then

λ

(⋃
k∈J

Ck

)
≤ λ

( ⋃
k∈J′

Ck

)
,∀J ′ ⊂ Ir and |J ′| = |J | (2∗)
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Rearranging the indexation of (Ck), we can suppose J = {1, . . . , p} and
take (Tk)k∈Ir

∈ p(N)10 s.t S ⊂ ∪k/∈JTk. Put Jk = {k, . . . , k + p}, then by
(2*), the neutrality, the anonymously and the monotonicity⋃

l∈Jk

Cl ∈ E

(⋃
l∈Jk

Tl

)
,∀k ∈ Ir

�

In the following denote C, Mz, Mm and M1 be the set of c, mz, mm−,
m1 stable effectivity functions. Denote E the class of monotonic effectivity
functions and S the class of superadditive effectivity functions. Finally,
put F the class of effectivity function s.t T ∩ S = ∅, S, T ∈ N ⇒ B ∪ C =
A,∀B ∈ E(S), C ∈ E(T )

20.4 Stability and Cycles

Theorem 20.2. Let E be an effectivity function. E is c− stable if and only
if E is acyclic.

Proof. Abdou & Keiding was given a proof of this theorem. We propose
here a short proof in coherence with our notation and construction.

Let E /∈ C and u a profile s.t C(E, u) = ∅.
Take x1 ∈ A and (S1, B1) s.t B1 ∈ E(S1) and uS1(B1) > uS1(x1), and
define

C1 =
{
x, uS1(B1) > uS1(x1)

}
Now, define the sequence Ck as follow

Take xk ∈ A \ (∪l≤k−1Cl) , Bk ∈ E(Sk) s.t uSk(Bk) > uSk (xk) and

Ck =
{
x ∈ A|uSk(Bk) > uSk(x)

}
Let r be the minimal integer satisfying ∪k≤rCk = A, and put Ir =
{1, . . . , r}
If E is acyclic then, for some J ⊂ Ir, ∩JSk 6= ∅ and for all k ∈ J , there is
l ∈ J satisfying Bk ∩ Cl 6= ∅. In this case,

∃k1, . . . , ks ∈ J s.t Bk1 ∩ Ck2 6= ∅, . . . , Bks ∩Bkl
6= ∅, l ≤ s

It implies that for some i ∈ ∩k∈JSk,

ui(Bkl
) > · · · > ui(Bks) > ui(Bkl

)
10Tk is a singleton for every k ∈ Ir
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A contradiction

Reciprocally : Let u be the profile: For i /∈ ∪k∈Ir
Sk, ui is an arbitrary

element of L(A). For i ∈ ∩k∈JSk, J = {k1, . . . , ks} s.t Bkl
∩ Ckj = ∅,∀s ≥

j ≥ l ≥ 1, ui is s.t

ui(Bkl
) > ui(Ckl

) > · · · > ui(Cks)

The preference ui ∈ L(A) is well defined ∀i ∈ N , and

∀i ∈ Sk : ui(Bk) > ui(Ck)

Knowing that (Ck) is a partition of A, then for all x ∈ A, there is
1 ≤ k ≤ r s.t (Sk, Bk) is an objection against a. �

20.4.1 Comparison of the Bargaining Sets

Let (S, B) an objection against x. If (T,C) is a mz-counter objection against
(S, B), then S \ T, T \ S, S ∩ T 6= ∅ and

(uT∩S(C), uT\S(C)) ≥ (uT∩S(B), uT\S(x)) (∗)

By S ∩ T 6= ∅, we have x /∈ C. Also, (*) is equivalent to

(uT∩S(C), uT\S(C)) > (uT∩S(B), uT\S(x)) (2∗)

If (T,C) is a mm-counter objection against (S, B), then

(uT∩S(C), uT\S(C)) > (uT∩S(B), uT\S(x)) (3∗)

By (2*) and (3*) mx, x ∈ {z,m} counter objection against (S, B) is
an objection against a, and every mz− counter objection is a mm counter
objection.

If (T,C) is a counter objection by k ∈ T against l ∈ S \ T at x, then

(uT∩S(C), uT\S(C)) ≥ (uT∩S(B), uT\S(x)) (4∗)

If S ∩ T 6= ∅, x /∈ C : Every mz-counter objection is a m1− counter
objection11.

Proposition 20.10.

C ⊂Mz  Mm  M1

11If S ∩ T = ∅, it is possible that x ∈ C
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Proof. As in the above, inclusions are naturals.
Mm  M1

Let N = {1, 2}, A = {x, y} and E be the effectivity function E(1) =
x+, E(2) = y+. The only profile at which C(E, u) = ∅ is s.t u1(x) >

u1(y) and u2(y) > u2(x). Because u2(y) ≥ u2(y) and u1(x) ≥ u1(x), then
M1(E, u) = {x, y} i.e E ∈M1.

However, at this profile Mm(E, u) = ∅ i.e E ∈Mm \M1

Mz  Mm

Let N = {1, . . . ,m + 1}, A = {x1, . . . , xm} and E the effectivity function
s.t every {k} , k ∈ N can block one alternative and every S, 2 ≤ |S| ≤ n−1
can block nothing. The effectivity E has an upper cycle, then E /∈ C.

Let u a profile at which the core of E is empty. Denote xlk the worse
alternative for k. We have that |N | = |A| + 1, then the emptiness of the
core of E gives xlα = xlβ for some α 6= β ∈ N and xlp 6= xlq , ∀p, q 6= α.

Coarsely Mz(E, u) = ∅ but Mm(E, u) 6= ∅.
So, E ∈Mm \Mz. �

Remark 20.5.

E ∩ S ∩Mm  E ∩ S ∩M1

The effectivity function in the first example above is monotonic and super-
additive.

Remark 20.6.

F ∩Mz = F ∩Mm

If (T,C) is a mm−counter objection against (S, B), then a /∈ B ∪ C. So
S ∩ T 6= ∅. However

F ∩Mm  F ∩M1

20.4.2 The Zhou’s Bargaining Set

Proposition 20.11. Let E ∈ E ∩Mz. Then, E is not circular.

Proof. Suppose the contrary and let E be a circular effectivity function.
Then, there is a (Tk, Ck)k∈Ir

, (Tk) ∈ p(N) and (Ck) ∈ p(A), and p ∈ I∗r s.t
∀L ∈ Lp : CL ∈ E(TLc) Now, define a profile u =

(
ui
)


∀k ∈ Ir ∀i, j ∈ Tk : ui = uj ,

∀i ∈ Tk ui(Ck) < · · · < ui(Ck−1),
∀i ∈ N argmax ui

c∈Ck
(c) = ck.
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We claim that Mz(E, u) = ∅
Let x ∈ A. Then for some k ∈ Ir, x ∈ Ck−1. If x 6= ck−1, the pair

(N, {ck}) is a mz-justified objection against x. Hence x /∈Mz(E, u).

Now, we shall prove that ck−1 /∈M(E, u).
Set

ρ = min

β|
k+β−1⋃

l=k

Cl ∈ E

 k−1⋃
l=k+β

Tl


By the circularity of E; 1 ≤ ρ ≤ p− 1.
Put B = Ck ∪ . . .∪Ck+ρ−1 and S = Tk+ρ ∪ . . .∪Tk−1. By the definition of
ρ, the pair (S, B) is an objection against ck−1, which will be mz− justified

Suppose the contrary and assume that (T,C) is a mz−counter objection
against (S, B). Then C ∈ E(T ) and

∀i ∈ S ∩ T ui(C) ≥ ui(B) (∗)

∀i ∈ T \ S ui(C) ≥ ui(ck−1)

The set T \ S ⊂ Tk · · · ∪ Tk+ρ−1. Then, if θ ∈ [0, . . . , ρ − 1] is the first
index satisfying (T \ S) ∩ Tk+θ 6= ∅, we have that{

ui(Ck+θ) < · · · < ui(Ck−1)
ui(Ck−1) < · · · < ui(Ck+θ−1)

and then, C ⊂ Ck−1 ∪ · · · ∪ Ck+θ−1

This inclusion, in view of (*) implies that C ∩ Ck−1 6= ∅.
In conclusion

C ⊂ Ck ∪ . . . ∪ Ck+θ−1 (∗∗)

As θ is the first index s.t T ∩ Tk+θ 6= ∅, then by the definition of S, we get

T \ S ⊂ Tk+θ ∪ . . . ∪ Tk+ρ−1

T ∩ S ⊂ Tk+ρ ∪ . . . ∪ Tk−1

Consequently,

T ⊂ Tk+θ ∪ . . . ∪ Tk+ρ+1 ∪ . . . ∪ Tk−1

So, by (**) and the monotonicity of E

θ ∈

β|
k+β−1⋃

l=k

Cl ∈ E

 k−1⋃
l=k+β

Tl


It contradicts the definition of ρ, because 1 ≤ θ ≤ ρ− 1 i.e θ < ρ. �
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Corollary 20.1. Let E be a maximal effectivity function. Then,

E ∈ E ∩Mz ⇔ E ∈ E ∩ C

It is a natural implication of the Proposition 20.7.

Corollary 20.2. Let E be a monotonic, anonymous and neutral effectivity
function. Then,

E ∈Mz ⇔ E ∈ C

Corollary 20.3. Let E ∈ S ∩Mz. If E is circular, then the order of the
circularity r ≥ 5

It is a consequence of the Proposition 20.4 and the Proposition 20.7.

Proposition 20.12.
Let E be a monotonic and super additive effectivity function. Then the

non circularity is not sufficient for the mz− stability.

Proof. Let E be the effectivity function of the Proposition 20.5, and let
u be the profile

1 2 3 4 5 6 7
x5 x5 x5 x4 x1 x1 x1

x4 x4 x3 x3 x4 x5 x5

x3 x2 x2 x2 x5 x2 x3

x2 x3 x4 x1 x3 x4 x2

x1 x1 x1 x5 x2 x3 x4

We claim that Mz(E, u) = ∅
Denote Bk = min {B|B ∈ E(Sk)}. We observe that at u, (Sk, Bk) is an
objection against xk and not xl, ∀k ∈ I5, l ∈ I5 \ {k}.
Let xk0 ∈ A, then the pair (Sk0 , Bk0) is a justified objection against xk0 .
So, suppose that (T,C) is a mzcounter objection against (Sk0 , Bk0). i.e

∀i ∈ S ∩ T ui(C) ≥ ui(Bk0)
∀i ∈ T \ S ui(C) ≥ ui(xk0)
And then uT (C) > uT (xk0)

By the definition of E, we have

T ⊃ Sk and C ⊃ Bk for some k ∈ I5, l 6= k0

Therefore, (T,C) is an objection against xk and against xk0 . In this case,
(Sk, Bk)k∈I\{k0} is a cycle of order 4. By the Proposition 20.4, E is circular.
In contradiction with the Proposition 20.5. �
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Proposition 20.13. If E is a non monotonic effectivity function, then the
non circularity is not necessary for the mz−stablity.

Proof. Let N = {1, 2, 3} ∪ {α1, . . . , α5} and A = {x1, x2, x3}, and con-
sider the effectivity function E defined as follow : Denote

Qk = {{k, k + 1} , {αp, k, k + 1} , {α1, αp, k, k + 1} |p ∈ {1, . . . , 5}}{
∀k ∈ I3∀S ∈ Qk, E(S) = {xk+2}+

∀S /∈ Qk, k ∈ I3, E(S) = {A} .

First, the effectivity function E is 3-circular.
If T1 = {α1, 1}, T2 = {αp, 2} , T3 = {3} and Ck = {xk}, we have that

Ck ∈ E(Tk+1 ∪ Tk+2),∀k ∈ I3

Second, we claim that E ∈Mz

Because C ⊂ Mz, then it is sufficient to prove that Mz(E, u) 6= ∅ for
every u s.t C(E, u) = ∅. By the circularity of E, C(E, u) = ∅ for some
profile u.

So, let u be a profile at which the core of E is empty.
The objections against xk are of the form ({αp, k, s} , xs̄) or of the form
({α1, αp, k, s} , xs̄) where s 6= s̄ ∈ {k, k + 1}.
Then, preferences of k, s satisfy{

uk(xs̄) > uk(xk)
us(xs̄) > uk(xk)

The objections against xs are of the form ({αq, s, l} , xl̄) or of the form
({α1, αq, s, l} , xl̄) where l 6= l̄ ∈ {k, s̄}.
If l = k, preferences of k, s satisfy{

uk(xs̄) > uk(xs)
us(xs̄) > uk(xs)

In this case, xs̄ is at the top for k and s. So, an objection against xs̄ do not
contain either k nor s. It is not possible by the definition of E, and then
l = s̄.
Finally, in the same argument, the objections against xs̄ are of the form
({αt, s̄, k} , xk) or of the form ({α1, αt, s̄, k} , xk)
In conclusion, preferences of 1, 2, 3 are

1 2 3 or 1 2 3
x3 x1 x2 x2 x3 x1

x2 x3 x1 x3 x1 x2

x1 x2 x3 x1 x2 x3
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By the definition of E, there is αp0 ∈ {α1, . . . , α5} s.t αp0 do not participate
for the emptiness of C(E, u).
Suppose that xk is the worse alternative for αp0 . Then, the objections
against xk are ({αp, k, s} , xs̄) and ({αp0 , k, s} , xs̄), eventually one or both
two coalitions are with α1, for some p 6= p0. Coarsely, if one of them is an
objection, the other is a mz− counter objection. i.e xk ∈Mz(E, u). �

Corollary 20.4.

C  Mz
12

20.4.3 The Mass-Colell’s Bargaining Set

Remark 20.7. If (T,C) is a mm− but not mz− counter objection against
an objection (S, B), we have S ⊂ T , T ⊂ S or S ∩ T = ∅.

For S ∈ P(N), denote BS = min {B|B ∈ E(S)}.

Lemma 20.3. Let E be a regular mz− unstable effectivity function. Then,
there is a profile v satisfying Mz(E, v) = ∅ and if (T,C) is a mm− counter
objection against a mz−justified objection (S, B) at v, we have S ∩ T = ∅

Proof. First, let x ∈ A and (S, B) is a mz−justified objection against
x s.t B ∈ BS and if (S′, B′) is a mz−justified objection against x, then
S′ + S. Let (T,C) be a mm− counter objection against (S, B)

If T ⊃ S, then

uT (C) >
(
uS(B), uT\S(x)

)
Consequently, if (T ′, C ′) is a mz− counter objection against (T,C), we have

uT ′(C ′) >
(
uT ′∩S(C), uT ′∩(T\S)(C), uT ′\T (x)

)
>
(
uT ′∩S(B), uT ′∩(T\S)(x), uT ′\T (x)

)
>
(
uT ′∩S(B), uT ′\S(x)

)
As (S, B) is mz−justified objection against x, then (T,C) is a mz−justified
objection against x. In contradiction with the definition of (S, B).

So, we can suppose that: A pair (T,C), a mm− but not a mz− counter
objection against an objection (S, B) satisfy either S ∩ T = ∅ or T ⊂ S

12We think that E ∩Mz = E ∩ C
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Second, let x1 ∈ A and (S1, B1)13 be a mz−justified objection against
x1 satisfying: There is a mm−counter objection (T,C) against (S1, B1) and
T ⊂ S1.
Take

T1 ∈ min {T ⊂ S1|(T,C) is a mm − counter objection against (S1, B1)}

Put

J1 = S1 \ T1

And define a profile u1 as follow
ui

1 = ui, for i /∈ J1

∀i ∈ J1;ui
1(x1) = maxx∈A ui

1(x) and
ui

1(x) > ui
1(y) ⇔ ui(x) > ui(y),∀x, y 6= x1

Now, let x2 6= x1 ∈ A and (S2, B2) be a mz−justified objection against x2

at u.
If (T2, C2) is a mz− counter objection against (S2, B2)14 or a mm− counter
objection against (S2, B2) s.t T2 ⊂ S2 at u1, then

uT2
1 (C2) ≥

(
uT2∩S2

1 (B2), u
T2\S2
1 (x2)

)
or uT2

1 (C2) > uT2
1 (B2)

uT2(C2) �
(
uT2∩S2(B2), uT2\S2(x2)

)
uT2(C2) ≯ uT2(B2)

Each of these system implies T2 ∩ J1 6= ∅, x1 /∈ B2 and

C2 = {x1}

Put

J2 = J1 ∩ T2

and define a profile v as follow
vi = ui, for i /∈ J1

vi = ui
1, for i ∈ J1 \ J2

∀i ∈ J2; vi(x2) > vi(x1) > vi(x)∀x 6= x1, x2 and
vi(x) > vi(y) ⇔ ui(x) > ui(y),∀x, y 6= xk, k = 1, 2.

We claim that v satisfy the desired condition of the lemma.
First case: the assertion is true for (T1, C1) against x1

13We suppose that a pair satisfying this condition is unique. We can prove this assertion
by a recursive argument.
14Without loosing the generality, we suppose that a pair satisfying this condition is
unique.
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If (T,C) is mz− counter objection against (T1, C1) at v, then

vT (C) ≥
(
vT∩T1(C1), vT\T1(x1)

)
- If T ∩ J1 = ∅, we have T ∩ T1 = T ∩ S1 and T \ T1 = T \ S1. I.e

vT (C) ≥
(
vT∩S1(B1), vT\S1(x1)

)
In contradiction with (S1, B1) is a mz− justified objection against x1.
- If T ∩ (J1 \ J2) 6= ∅, then there is i ∈ T s.t x1 is at the top for i i.e
vT (C) > vT (x1) is not possible.
- If T∩J2 6= ∅, we have C = {x2}. Then by the regularity of E, T ∩ T2 6= ∅.
So, for some i ∈ T ∩ T2, we have ui(x2) > ui(x1) and ui(x1) > ui(x2). A
contradiction, i.e T ∩ J2 = ∅.

Consequently, (T1, C1) is a mz−justified objection against x1.
By the minimality of T1, we can not have a mm− counter objection

(T,C) against (T1, C1) s.t T * T1.
Second case: The assertion is true for (S2, B2) against x2.
The pair (S2, B2) is a mz− justified objection against x2 at v.

In fact, (S2, B2) is mz− justified objection against x2 at u1, and x1 /∈ C,B2.
Then

vT (x) > vT (y) ⇔ uT (x) > uT (y),∀x, y ∈ C ∪B2

The choice of T2 and J2 gives that if (T,C) is a mm− counter objection
against (S2, B2) at v then T  S2.

Third case: the assertion is true for any (S, B) against x.
If (T,C) is a mz− counter objection against (S, B), or a mm−counter ob-
jection s.t T ⊂ S, at v but not neither at u nor at u1, we have T ∩ J2 6= ∅
and C ⊂ {x1, x2}. If B ∩ {x1, x2} = ∅, T,C is a counter-objection at u1,
then x1 ∈ B(x2 is at the top). Consequently C = {x2} and by the regu-
larity T ∩ T2 6= ∅. Again, if i ∈ T ∩ T2, then ui(x2) > ui(x1) and ui(x1)
> ui(x2). �

Theorem 20.3.

S ∩Mz = S ∩Mm

Proof. Every super additive effectivity function is regular, then by the
precedent lemma, we can suppose that every (T,C), a mm− counter objec-
tion against (S, B), a mz− justified objection against x is s.t S ∩ T = ∅

Let E ∈ Mz \Mm and u be a profile s.t Mz(E, u) = ∅. Suppose that
there is a pair (S, B), a mz− but not a mm− justified objection against an
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alternative x at u, and denote O = {(T,C)|(T,C)is a mm− but not a mz−
counter objection against(S, B)}.
Bu ∈ min{D ⊂ B ∩ C|D ∈ E(Q) for some Q ∈ P(N), C ∈ E(T ) and
(T,C) ∈ O}.

Su = max
{
Q ∈ P(N)|Bu ∈ E(Q) and uQ(Bu) > uQ(xu)

}
We can prove that (Su, Bu) is a justified mm− objection against xu.
Let (T,C) be a mm− counter objection against (Su, Bu), then

uT (C) >
(
uT∩Su(Bu), uT\Su(xu)

)
As Su∩T ⊃ S∩T , (Su \ T ) ⊃ (S \ T ) and ui(C) > ui(xu),∀i ∈ T ⊃ (T \ S),
then

uT (C) >
(
uT∩S(Bu), uT\S(xu)

)
If T ∩S 6= ∅, then the pair (T,C) is a mz−counter objection against (S, B).
A contradiction. Necessarily, S ∩ T = ∅. By the super additivity of E, we
have that C ∩B 6= ∅ and C ∩B ∈ E(S ∪ T )
If (T,C) is a mm− but not mz− counter objection against (Su, Bu), then
Su ∩ T = ∅. By the super additivity, Bu ∩ C ∈ E(Su ∪ T ). It is in
contradiction with the definition of Bu and Su. �

Theorem 20.4.

E ∩Mz = E ∩Mm

Remark 20.8. We know by the Proposition 20.11 that every E ∈ E ∩Mz

is non circular, then regular. So, the theorem do not change if we add
regular on the condition i.e the Lemma 20.3 is valid for this theorem.

Lemma 20.4. Let E /∈ Mz be a monotonic effectivity function and u a
profile s.t Mz(E, u) = ∅. If Mm(E, u) 6= ∅, then there is a profile v s.t
Mm(E, v)  Mm(E, u).

Proof. Let E ∈Mm \Mz and u a profile s.t Mz(E, u) = ∅.
Set

A0 = Mm(E, u) and A1 = A \A0

Take x0 ∈ A0 and let (S0, B0) be a mz− but not mm− justified objec-
tion against (S0, B0). Consider (T 0

k , C0
k)k=1...s0 the list of mm− counter

objection against (S0, B0). Then, by the precedent lemma

T 0
k ∩ S0 = ∅,∀k ∈ {1, . . . , s0}
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Set

J0 =
s0⋃

k=1

T 0
k

and define the profile
ui

1 = ui
0,∀i /∈ J0.

∀i ∈ J0 : ui
1(x0) = maxx∈A ui

1(x) and
ui

1(x) > ui
1(y) ⇔ ui

0(x) > ui
0(y),∀x, y 6= x0

If Mm(E, u1) ∩A1 6= ∅, we note {x1, . . . , xα} = Mm(E, u1) ∩A1.
Let (Sl, Bl)l=1...α be a mm−justified objection against xl at u0, and

consider (T l
k, Cl

k)k=1...sl
the list of mm− counter objection against (Sl, Bl)

at u1. Then, u
T l

k
1 (Cl

k) >
(
u

T l
k∩Sl

1 (B1), u
T l

k\Sl

1 (xl)
)

u
T l

k
0 (Cl

k) ≯
(
u

T l
k∩Sl

0 (Bl), u
T l

k\Sl

0 (xl)
) (∗)

As ui
1 = ui

0,∀i /∈ J0, we should have T l
k ∩ J0 6= ∅,∀l, k.

So, take i ∈ T l
k ∩ J0 s.t{
ui

1(C
l
k) ≥ ui

1(x)
ui

0(C
l
k) < ui

0(x)
or

{
ui

1(C
l
k) > ui

1(x)
ui

0(C
l
k) ≤ ui

0(x)
(2∗)

Where x = argmin ui
1(Bl) if i ∈ T l

k ∩ S1 and x = xl if i ∈ T l
k \ Sl.

By (2*), if argmin ui
1(C

l
k) = b 6= x0 we have ui

1(y) > ui
1(x) ⇔ ui

0(y) >

ui
0(x), and then inequalities (2*) lead to a contradiction.

In conclusion,

argmin ui
1(C

l
k) = x0

As i ∈ J0 i.e x0 is at the top for i at u1, we obtain

Cl
k = {x0} ,∀k = 1 . . . sl,∀l = 1 . . . α (3∗)

By the (*) and (3*), put

J1 = J0 \ {i|i satisfy (2∗)}

We have that

∅ 6= J1  J0
15

Define u2 the profile {
ui

2 = ui
0,∀i /∈ J1.

ui
2 = ui

1,∀i ∈ J1

15If T l
k ⊂ J0, ∀l, k, the pair ({i|x0 is at the top for i at u1} , {x0}) is a mm−justified

objection against (Sl, Bl) at u1. i.e Mm(E, u1) ⊂Mm(E, u0)
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We claim that

Mm(E, u2)  Mm(E, u)

First, x0 /∈M(E, u2).
We prove at first that x0 /∈Mm(E, u1).
If (T,C) is a mm− counter objection against (S0, B0) at u1, then either uT

1 (C) >
(
uT∩S0

1 (B0), u
T\S0
1 (x0)

)
uT

0 (C) �
(
uT∩S0

0 (B0), u
T\S0
0 (x0)

)
Or

T ∩ S0 = ∅ and uT
1 (C) > uT

1 (x0)

In the first case, we have T ∩ J0 6= ∅ and then C = {x0}. A contradiction.
In the second case, T = T 0

k ⊂ J0 for some k ∈ {1, . . . s0} i.e x0 is at the top
for every i ∈ T i.e we cannot have uT

1 (C) > uT
1 (x0) for some C ⊂ A.

Now, if (T,C) is a mm− counter objection against (S0, B0) at u2, then uT
2 (C) >

(
uT∩S0

2 (B0), u
T\S0
2 (x0)

)
uT

1 (C) ≯
(
uT∩S0

1 (B0), u
T\S0
1 (x0)

) (4∗)

So, to maintain uT
2 (C) >

(
uT∩S0

2 (B0), u
T\S0
2 (x0)

)
, necessarily T ∩ J1 = ∅.

As ui
2 = ui

1,∀i ∈ J1 ∪ Jc
0 , then by (4*), T ∩ (J0 \ J1) 6= ∅.

Let i ∈ T ∩ (J0 \ J1) 6= ∅, i.e ui
2 = ui

0, s.t{
ui

0(C) ≥ ui
0(x)

ui
1(C) < ui

1(x)
or

{
ui

0(C) > ui
0(x)

ui
1(C) ≤ ui

1(x)

Where x = argmin ui
0(B0) if i ∈ T ∩ S0 and x = x0 if i ∈ T \ S0.

Again, as in (2*), we have C = {x0}, that is impossible. i.e we conclude
that

x0 /∈M(E, u2)

Second, Mm(E, u2) ⊂ A0

Let x ∈ Mm(E, u2) \ Mm(E, u). If x ∈ Mm(E, u1) ∩ A1 i.e x = xl for
some l ∈ {1, . . . , α}, let (Rk, Dk)k=1...sr the list of mm−counter objection
against xl at u2. By (*) and the definition of J1 i.e ui

2 = ui
1,∀i ∈ (J0 \ J1)

c,
we have Rk 6= T l

k′∀k′ ∈ {1, . . . , sl}. Then,
uRk

2 (Dk) >
(
uRk∩Sl

2 (Bl), u
Rk\Sl

2 (xl)
)

uRk
1 (Dk) ≯

(
uRk∩Sl

1 (Bl), u
Rk\Sl

1 (xl)
)

uRk
0 (Dk) ≯

(
uRk∩Sl

0 (Bl), u
Rk\Sl

0 (xl)
) (5∗)
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As ui
2 = ui

1,∀i ∈ (J0 \ J1)
c and ui

2 = ui
0,∀i ∈ Jc

1 , by the first and the second,
and the first and third relation of (5*), we can choice i ∈ (J0 \ J1)∩Rk and
j ∈ J1 ∩Rk s.t{

ui
0(Dk) ≥ ui

0(x)
ui

1(Dk) < ui
1(x)

or
{

ui
0(Dk) > ui

0(x)
ui

1(Dk) ≤ ui
1(x)

(6∗)

and {
uj

1(Dk) ≥ uj
1(y)

uj
0(Dk) < uj

0(y)
or

{
uj

1(Dk) > uj
1(y)

uj
0(Dk) ≤ uj

0(y)
(7∗)

Where x = argmin ui
1(Bl) if i ∈ Rk ∩ Sl and x = xl if i ∈ Rk \ S0, and

y = argmin uj
0(Bl) if j ∈ Rk ∩ Sl and y = xl if i ∈ Rk \ S0

Again, in the same argument to (2*), we have by (6*) or (7*) that
Dk = {x0}. If x = xl or y = xl, we can see easily that (6*) and (7*)
are incompatible. So, we suppose

x = argmin ui
1(Bl) 6= y = argmin uj

0(Bl)

In this case, (6*) and (7*) give:{
ui

0(x0) ≥ ui
0(Bl)

uj
0(x0) < (or ≤)uj

0(Bl)
or

{
ui

0(x0) > ui
0(Bl)

uj
0(x0) ≤ (or <)uj

0(Bl)

and {
uj

1(x0) ≥ uj
1(Bl)

ui
1(x0) < (or ≤)ui

1(Bl)
or

{
uj

1(x0) > uj
1(Bl)

ui
1(x0) ≤ (or <)ui

1(Bl)

As i ∈ J0 i.e x0 is at the top for i at u1, then the second equation of
3.11 gives Bl = {x0}. Finally, Dk = Bl = {x0} i.e (Rk, Dk) can not be a
mm−counter objection against (Sl, Bl).

Therefore,

Mm(E, u)  Mm(E, u2) �

Proof of the Theorem
Let E ∈Mm\Mz, u a profile s.tMz(E, u) = ∅. Choice (up)p≥0 a sequence
of profiles s.t u0 = u and Mm(E, up−1)  Mm(E, up).
As Mm(E, u0) ⊂ A, A is a finite set. Then, there is pmax s.t
Mm(E, umax) = ∅. �
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Concluding Remarks
The initial aim of this paper is to gives necessary and sufficient condi-

tions for the stability of a bargaining set. We was considered this problem
as formulation of cycles in term of partition of N ⊗A.

Results in this paper prove the non relevance of stability of the ADM’s
bargaining set as acyclicity. For the two others, which are equivalent in
monotonicity, bargaining sets stability and the core stability are equivalent
in several class of effectivity function : Maximal effectivity function, simple
effectivity function, symmetric and neutral effectivity function. Moreover,
we think that monotonicity is sufficient to get this equivalence. In this case,
the formulation of cycle in term of partition of N ⊗A is just to simplify the
comprehensiveness of the acyclicity.

20.5 Annexe

Proof of the Proposition 20.7 with r = 4

Note that the set of indexation I = {1, . . . , 4} is a set of integer modulo 4.

Q3 = {{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4}}
If J ∈ Q3, then ∩k∈JSk = ∅ and Sk ∩ Sl = ∅ for some k 6= l ∈ J . Define

R = {{k, l} |Sk ∩ Sl 6= ∅; k 6= l ∈ J ∈ Q3}
After counting, the set R is a super set of a set of the form {{k, l} , {p, q}}
where k, l, p, q are different, or of the form {{k, k + 1} , {k, k + 2} , {p, q}}
where p, q ∈ {k + 1, k + 2, y 6= k}16.
In the following, the notation k1 . . . ks represent {k1, . . . , ks}

First case : R contain a set of the form {kl, pq}; k, l, p, q are
different
The relation Sk ∩ Sl 6= ∅ gives

Bx ⊂ Cp ∪ Cq for some x ∈ {k, l} (1)

and Sp ∩ Sq 6= ∅ implies

By ⊂ Ck ∪ Cl for some y ∈ {p, q} (2)

Denote x̄ = {k, l} \ {x} and ȳ = {p, q} \ {y}. By (1) and (2): Sx ∩ Sy 6= ∅
and then

By ⊂ Cx̄ or Bx ⊂ Cȳ

16A set like {{1, 2} , {3, 4} , {2, 3}} is not considered in this case because it is a super set

of {{1, 2} , {3, 4}}. Every set with 4 elements is considered in this class
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Suppose that
By ⊂ Cx̄

17 (2′)
Then Sx̄ ∩ Sy 6= ∅. Hence,

Bx̄ ⊂ Cx ∪ Cȳ (3)
If Sx ∩ Sȳ = ∅, then by the super additivity

Cy ⊃ Bx ∩Bȳ ∈ E(Sx ∪ Sȳ) (4)
Knowing that (Sȳ ∪ Sx) ∩ Sx̄ ∩ Sy = ∅ whatever Sx̄ ∩ Sy 6= ∅, we obtain
Sȳ ∪ Sx 6= N . So, by (2’), (3) and (4)

(Sȳ ∪ Sx, Sx̄, Sy, Bx ∩Bȳ, Bx̄, By) is a lower cycle
Therefore, Sx ∩ Sȳ 6= ∅ i.e Bx ⊂ Cy or Bȳ ⊂ Cx̄ ∪ Cy. If Bx ⊂ Cy, then
by (2’) and (3) Bx, Bx̄, By is a partition of A. If Bȳ ⊂ Cx̄ ∪ Cy, then
Sx̄ ∩ Sȳ 6= ∅. In the first case, (Sx, Sx̄, Sy, Bx, Bx̄, By) is a lower cycle and
in the second that is (Sx̄, Sy, Sȳ, Bx̄, By, Bȳ). This conclusion achieves the
proof for the first case.

Lemma 20.5. Let E be a superadditive and cyclic affectivity function of
order 4. If R contain a set of the form {kk + 1, kk + 2, kk + 3} for some
k ∈ {1, . . . , 4}, then E has a lower cycle of order 3.

Proof. Suppose k = 1, then
B1 ⊂ C3 ∪ C4(α1) or B2 ⊂ C3 ∪ C4(β1)

B1 ⊂ C2 ∪ C4(α2) or B3 ⊂ C2 ∪ C4(β2)

B1 ⊂ C2 ∪ C3(α3) or B4 ⊂ C2 ∪ C3(β3)
If two of α and one of β18, then B1 ⊂ Cx and Bx ⊂ Cy ∪ Cȳ where

x ∈ {2, 3, 4}, y ∈ {2, 3, 4} \ {x} and ȳ ∈ {2, 3, 4} \ {x, y}
-If Sy ∩ Sx = ∅ and Sȳ ∪ Sx = ∅, by super additivity we have that

Cy ⊃ By ∩ Cx ∈ E(Sy ∪ Sx̄) and Cy ⊃ Bȳ ∩Bx ∈ E(Sȳ ∪ Sx) (∗)
By the hypothesis on elements of Q3,

S1 ∩ (Sy ∪ Sx) ∩ (Sȳ ∩ Sx) = (S1 ∩ Sy ∩ Sȳ) ∪ (Sx ∩ Sy ∩ Sȳ) = ∅
Then by (*), (S1, Sy ∪ Sx, Sȳ ∪ Sx, B1, By ∪Bx, Bȳ ∪Bx) is a lower cycle.
- If Sy∩Sx 6= ∅, then Bx ⊂ Cȳ or By ⊂ C1∪Cȳ. In the first case, Sȳ∩Sx 6= ∅
and then Bȳ ⊂ Cy ∪C1. Hence, (S1, Sx, Sȳ, B1, Bx, Bȳ) is a lower cycle. In
the second case, if Sȳ ∩ Sx = ∅ we have that (S1, Sy, Sȳ ∪ Sx, B1, By, Bȳ ∩
Bx) is lower cycle. Yet, in the second case, if Sȳ ∩ Sx 6= ∅ we have that
(S1, Sx, Sȳ, B1, Bx, Bȳ) is a lower cycle.

If one α and two β, then B1 ⊂ Cx∪Cy, Bx ⊂ Cy∪Cz and By ⊂ Cx∪Cz

where x, y, z ∈ {2, 3, 4}19
17the same argument if Bx ⊂ Cȳ
18The case three α is impossible.
19Note that x and y play a symmetric role
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- If Sx ∩ Sy = ∅, Sx ∩ Sz = ∅ and Sy ∩ Sz = ∅, then by the super additivity
of E

Cz ⊃ Bx ∩By ∈ E(Sx ∪ Sy), Cy ⊃ Bx ∩Bz ∈ E(Sx ∪ Sz) and

Cx ⊃ By ∩Bz ∈ E(Sy ∪ Sz)

We have (Sx ∪ Sy) ∩ (Sx ∪ Sz) ∩ (Sy ∪ Sz) = ∅, then

(Sx ∪ Sy, Sx ∪ Sz, Sy ∪ Sz, Bx ∩By, Bx ∩Bz, By ∩Bz) is a lower cycle

- If Sx∩Sy 6= ∅, then Bx ⊂ Cz. Hence, Sx∩Sz 6= ∅ i.e Bz ⊂ C1∪Cy. It gives
Sz∩Sy 6= ∅ i.e By ⊂ Cx or Bz ⊂ C1. In the first case (Sx, Sy, Sz, Bx, By, Bz)
is a lower cycle. In the second case (S1, Sx, Sz, B1, Bx, Bz) is a lower cycle.
- If Sx ∩ Sy = ∅ and Sx ∩ Sz 6= ∅ then, Cz ⊃ Bx ∩ By ∈ E(Sx ∪ Sy) and
Bx ⊂ Cy or Bz ⊂ C1∪Cy. In the first case, Bx ⊂ Cy, we obtain Sx∩Sy 6= ∅
cf the above. In the second case, Bz ⊂ C1 ∪ Cy and then Sy ∩ Sz 6= ∅ i.e
By ⊂ Cx or Bz ⊂ C1. In these two cases, we obtain a lower cycle or order
3.

If three β, then B2 ⊂ C3 ∪ C4, B3 ∪ C2 ∪ C4 and B4 ⊂ C2 ∪ C3.
- If for some x, y ∈ {2, 3, 4} we have Sx ∩ Sy = ∅ i.e

Bα ⊂ Cz

For some α ∈ {x, y} and z ∈ {2, 3, 4} \ {x, y}, we obtain Sz ∩ Sα 6= ∅ and
then

Bz ⊂ Cᾱ

where ᾱ ∈ {x, y} \ {α}. Hence Sz ∩ Sᾱ 6= ∅ i.e

Bᾱ ⊂ Cα

So, (S2, S3, S4, B2, B3, B4) is a lower cycle.
- If for all x, y ∈ {2, 3, 4}; Sx∩Sy = ∅, by the super additivity of E we have

C4 ⊃ B2 ∩B3 ∈ E(S2 ∪ S3), C3 ⊃ B4 ∩B2 ∈ E(S4 ∪ S2) and

C2 ⊃ B3 ∩B4 ∈ E(S3 ∪ S4)

Because (S2 ∪ S3) ∩ (S3 ∪ S4) ∩ (S4 ∪ S2) = ∅, then we have a lower
cycle. �
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- Second case : R contain a set of the form {kk + 1, kk + 2, pq}
with p, q 6= k i.e Sk ∩ Sk+3 = ∅
Suppose that k = 1, then

B1 ⊂ C3 ∪ C4(α1) or B2 ⊂ C3 ∪ C4(β1)

B1 ⊂ C2 ∪ C4(α2) or B3 ⊂ C2 ∪ C4(β2)

Bα ⊂ C1 ∪ Cβ(γ) for some α ∈ {p, q} , β /∈ {1, p, q}
If two α and γ, then B1 ⊂ C4, that leads to a cycle of length 2.
If one α, one β and γ, then
B1 ⊂ Cx ∪ C4, Bx ⊂ Cx̄ ∪ C4 and Bα ⊂ C1 ∪ Cβ , x 6= x̄ ∈ {2, 3} (5)

Because S1 ∩ S4 = ∅, then α ∈ {x, x̄}. If α = 2, with C3 ⊃ B1 ∩ B4 ∈
E(S1 ∪ S4), we obtain a lower cycle (S1 ∪ S4, S3, S2, B1 ∩ B4, B3, B2). If
α = 3, we have x 6= 3. Then by (5), S2 ∩ S3 6= ∅ i.e B2 ⊂ C4 or B3 ⊂ C1.
- If B3 ⊂ C1, B2 ⊂ C3 ∪ C4 and by the supper additivity we have: C2 ⊃
B1 ∩ B4 ∈ E(S1 ∪ S4), then (S1 ∪ S4, S2, S3, B1 ∩ B4, B2, B3) is a lower
cycle.
- If B2 ⊂ C4, then S2 ∩ S4 6= ∅ i.e B4 ⊂ C1 ∪ C3. So, by C2 ⊃ B1 ∩ B4 ∈
E(S1 ∪ S4) we have a lower cycle (S1 ∪ S4, S2, S4, B1 ∩B4, B2, B4)

If two β and γ, then B2 ⊂ C3 ∪ C4, B3 ⊂ C2 ∪ C4 and Bα ⊂ C1 ∪ Cβ .
- If S2 ∩ S3 6= ∅, then

Bx ⊂ C4 for some x ∈ {2, 3}
i.e Sx ∩ S4 6= ∅ and then B4 ⊂ C1 ∪ Cx̄. So,

Cx̄ ⊃ B1 ∩B4 ∈ E(S1 ∪ S4)
If x̄ ∈ {2, 3}\{x}, then Bx̄ ⊂ Cx∪C4 i.e Sx̄∩S4 6= ∅. By S1∩S4 = ∅, then

Bx̄ ⊂ Cx

Therefore, (S1 ∪ S4, Sx, Sx̄, B1 ∩B4, Bx, Bx̄) is a lower cycle.
- If S2 ∩ S3 = ∅, then {p, q} ∈ {x, 4}, x ∈ {2, 3}. So, we have

C4 ⊃ B2 ∩B3 ∈ E(S2 ∪ S3) (6)

Bx ⊂ Cx̄ (e1) or B4 ⊂ Cx̄ ∪ C1 (e2)
* If Sx̄ ∩ S4 = ∅, knowing that S1 ∩ S4 = ∅, then

Cx ⊃ Bx̄ ∩B4 ∈ E(Sx̄ ∪ S4) and Cx̄ ⊃ B1 ∩B4 ∈ E(S1 ∪ S4)
In this case (S1 ∪S4, Sx̄ ∪S4, S2 ∪S3, B1 ∩B4, Bx̄ ∩B4, B2 ∩B3) is a lower
cycle.
* If Sx̄ ∩ S4 6= ∅, then

Bx̄ ⊂ Cx (e3) or B4 ⊂ Cx ∪ C1 (e4)
We have that e1, e3 with (6) lead to a lower cycle, e1, e4 and (6) with the
emptiness of S1 ∩ S4 give a lower cycle. e2, e3 and (6) with the emptiness
of S1 ∩ S4 give a lower cycle. e2, e4 simultaneously is not possible. �
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Chapter 21
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Abstract

In this paper we consider a game modelling a market consisting of two firms with
market power and a continuum of consumers. A specific feature of a market for
toys is considered with each firm producing two kinds of distinguishable goods.
The problem of finding a Nash equilibrium implies firms’ optimal advertising
and production plans over time, where the aggregate of demands of consumers
may depend on firms’ past decisions. Equilibria at this market may have strange
properties, like oscillatory production and advertising strategies.

Key Words: Nash equilibrium, dynamic game, large game, duopoly, advertising
and production plan

21.1 Introduction

The problem of optimal marketing strategies in oligopolistic markets is

such that dynamic games are a natural way to model it. Many papers

on dynamic oligopolies concern various models with quantity competition

under some assumptions of price dynamics, e.g. sticky prices considered by

[Fersthman and Kamien (1987)], or [Cellini and Lambertini (2004, 2007)].

1The research partly supported by KBN grant no. 5 H02B 008 20.
Scientific work financed by funds for science in years 2005-2007 (grant no. 1 H02B 016
29).
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Another way often used in dynamic approach to modelling marketing

strategies is the problem of optimal pricing and advertising. In this field

there are many generalizations of Dorfman-Steiner theorem according to

which expenses on advertising constitute a constant rate of sales (Dorf-

man, Steiner [Dorfman and Steiner (1954)] in monopolistic and static ver-

sion), to dynamic optimization framework (e.g. [Schmalensee (1972)]), or

to dynamic games (e.g. [Dockner and Feichtinger (1986)]). There is a

vast literature on optimal marketing strategies including advertising, e.g.

[Schmalensee (1976)], [Dockner, Feichtinger and Sorger (1985)], [Fruchter

(2001)], [De Cesare and Di Liddo (2001)]. Some vast surveys of this subject

are in [Sethi (1977)]. There are also papers considering positive external

effects of advertising effort of one firm on sales of its opponents, e.g. [Cellini

and Lambertini (2003)]. Some reviews of game theoretic models of optimal

marketing are in [Jørgensen (1982, 1986)], and [Feichtinger and Jørgensen

(1983)]. Usually, the game is played only by the firms, with the space of

consumers as a mass described by their aggregate demand function only,

not subjects facing some decision-making problem.

There are many possible approaches to model marketing at oligopolis-

tic markets. Most of papers consider non-differentiated goods. Be-

sides, since the full model is very compound, there may be its simplifi-

cations: advertisement-price, advertisement-quantity and advertisement-

quality models of competition.

In our paper a duopolistic market for toys is modelled as a large game of

mixed type: we have two “large”, atomic players – firms and a continuum

of small, negligible players – parents deciding what to purchase as a gift for

their children. There are four kinds of highly differentiated goods produced

and advertisement-quantity type of competition. The demand side is very

compound to reflect well known psychological rules which apply especially

to relations between parents and their children.

21.1.1 Large Games

The simplest characterization of large games is contained in the phrase

games with infinitely many players. In order to make it possible to evaluate

the influence of the players on aggregate variables, a measure is introduced

on a σ-field of subsets of the set of players, therefore large games are some-

times referred to as games with a measure space of players. However, the

notion games with a measure space of players encompasses also games with

finitely many players, where e.g. the counting measure on the power set
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may be considered.

Large games illustrate situations where the number of agents is large

enough to make a single agent from a subset of the set of players (possibly

the whole set) insignificant – negligible – when we consider the impact

of his action on aggregate variables while joint action of this subset of

negligible players is not negligible. This happens in many real situations:

at competitive markets, stock exchange, or while we consider emission of

greenhouse gases and similar global effects of exploitation of the common

global ecosystem.

Although it is possible to construct models with countably many players

illustrating the phenomenon of this negligibility, they are very inconvenient

to cope with. Therefore simplest examples of large games are so called

games with continuum of players, where players constitute a nonatomic

measure space, usually unit interval with the Lebesgue measure. If, addi-

tionally, we consider at least one atomic player, then we call such a game

a mixed large game.

The first attempts to use models with continuum of players are con-

tained in [Aumann (1964, 1966)] and [Vind (1964)].

Some theoretical works on large games are [Schmeidler (1973)], [Mas-

Colell (1984)], [Balder (1995)], [Wieczorek (2004, 2005)], [Wieczorek and

Wiszniewska (1999)] and [Wiszniewska-Matyszkiel (2000b)].

Although the general theory of dynamic games with continuum of play-

ers is still being developed, there are interesting applications of such games:

[Wiszniewska-Matyszkiel (2000a, 2001)] concerning models of exploita-

tion of common ecosystems by large groups of players, [Karatzas, Shu-

bik, Sudderth, (1994)] and [Wiszniewska-Matyszkiel (2003b, 2006)] and

[Wiszniewska-Matyszkiel (2005)] analyzing dynamic games with continuum

of players modelling financial markets and [Wiszniewska-Matyszkiel (2002)]

containing example of a dynamic game modelling presidential elections to-

gether with the proceeding campaign. To the best of author’s knowledge,

there are no studies of mixed large games in the dynamic context.

This paper continues a sequence of the author’s papers concerning dy-

namic games with a continuum of players: [Wiszniewska-Matyszkiel (2002)]

and [Wiszniewska-Matyszkiel (2003a)] developing a general theory of such

games and [Wiszniewska-Matyszkiel (2002, 2003b)] devoted to a certain

class of games with discrete time and continuum of players with special

focus on applications.

Introducing a continuum of players instead of a finite number, however

large, can change essentially properties of equilibria and the way of cal-
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culating them even if the measure of the space of players is preserved in

order to make the results comparable. Such comparisons were made by the

author in [Wiszniewska-Matyszkiel (2005, 2007)].

21.2 Formulation of the Basic Model

The game considered is played over time set T equal to {0, . . . , T} or to

{0, . . . , +∞} (for simplicity, we refer to the latter case as to infinite T ). In

the game we have two firms with market power and a continuum of parents

buying gifts for their children. Since we do not consider strategic behaviour

of children (according to the author’s observations they are susceptible to

advertisements and always make their parents buy any toy they desire if

only this is physically possible and there is a reason for it), we can consider

the problem reduced to producers and parents, with choices of children

incorporated into their parents payoffs as ”promises”. This constitutes a

space of players consisting of two atoms (we can assign to each firm measure

equal to 1) and the unit interval I with the Lebesgue measure λ.

21.2.1 Producers

In our model there are two producers of toys, each of them can produce two

goods. Goods produced by each producer are distinguishable, although all

four goods are similar – the choice of children will therefore depend mainly

on the advertising.

Prices of goods are fixed in the game, identical for all goods and denoted

by p. This assumption is taken since we consider goods in the same price

range and quantity-advertisement competition is taken into account.

By Qi,j(t) we shall denote the production of good j by producer i at

time t.

We shall denote by c(q1, q2) the cost of production of q1 units of good 1

and q2 units of good 2 by each of the producers. The function is symmetric,

strictly increasing with c(0, 0) = 0. Moreover, assume that c(q1 + q2, 0) <

c(q1, q2) (and therefore, c(0, q1+q2) < c(q1, q2)) for all q1, q2 > 0. We do not

assume convexity in the general case. On the contrary, we even allow for

discountinuity at 0, which is assumed to reflect the cost of switching on the

production line for each good. The last assumption about the cost functions

is that the function p · q − c(q, 0) is strictly increasing in q on the interval

(0, 2D̄] for a constant D̄ being a constraint for ”primary” demand (to be
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defined later) and it attains its maximum on the interval [0, 2D̄] at 2D̄. This

holds if, for example, the average cost function is decreasing on the interval

(0, 2D̄] and p is greater then the average cost at 2D̄, which is natural if we

consider a market where the production is below its competitive long run

equilibrium level, as it is in oligopolies.

By Ai,j(t) we shall denote the cost of advertising effort (advertising

effort for short) of good j by i-th producer at time t. We assume that

for all t we have a constraint Ai,1(t) + Ai,2(t) ≤ Āi – the firm’s fund for

advertising.

At each stage producers know the dependence of demand for their prod-

ucts on advertising efforts of both producers (to be defined in the sequel).

Every producer i maximizes the sum – over the time set – of his profits

from selling his products minus advertising costs discounted by a discount-

ing function Ξi : T → R+, which is positive and nonincreasing. The firms’

profits depend also on the demand side of the market, therefore they will

be formally defined in the sequel.

21.2.2 Parents (and Children)

Children want to get the toy whose advertisement they see most frequently.

We assume that it means that at stage t the amount of children asking for

good j of i-th producer is equal to D(t) ·
Ai,j(t)

A1,1(t)+A1,2(t)+A2,1(t)+A2,2(t)
if the

denominator is positive, while 1
4 · D(t) when nothing is advertised. The

constants D(t) are given a priori e.g. D(t) is 1 for Christmas and about
1
12 in any other period – then it denotes the ratio of children who have a

reason to get a present: for Christmas or birthday (if, for simplicity, we

assume that there are no children born exactly at Christmas and divide the

rest of the year into 12 equal parts). Parents always promise to buy the

toy that children ask for whenever there is a reason for a gift. A promise

of parent ω at time t will be denoted by P ω(t). It is a vector P ω
i,j(t) with

coordinates denoting numbers of toys promised – it can take values 0 or 1.

The whole profile of promises at time t will be denoted by P (t). Whatever

the distribution of promises is, it is Lebesgue-integrable and the aggregate

of P ω
i,j(t) equals D(t) ·

Ai,j(t)
A1,1(t)+A1,2(t)+A2,1(t)+A2,2(t) if at least one of the

toys is advertised, 1
4 ·D(t) when nothing is advertised. We assume that all

D(t) ≤ D̄ for some constant D̄.

Another assumption is that in the case when the promised good is not

available, parents buy the other product of the same firm, and if that is not
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available either they buy good 1 or 2 of the other producer (in this ordering

to make the choice fully deterministic). Such a reasoning is quite obvious –

the goods are differentiable and products of the same firm (e.g. two sets of

Lego blocks or two ”hotwheel” cars) can be perceived as more similar than

products of different firms (e.g. a set of Lego blocks and a ”hotwheel” car).

Since this part of player’s strategy is fixed, we shall consider only reduced

strategies, in which it is not taken into account.

Besides, parents can buy a present they have promised before but were

not able to buy because it was not available. However, they buy not more

than one extra toy at each stage. The part of strategy of player ω concerning

this will be denoted by a function Uω : T × N → {0, 1}, with coordinates

Uω
i,j(t, x

ω) (equal 0 or 1) denoting the number of units of good j produced

by i-th producer bought at time t given vector of unkept promises xω of

player ω, and not because of new promise. The strategies of all players

are such that at most one coordinate of Uω(t, xω) is equal to 1, while

the remaining coordinates are 0. We additionally assume that for every t

and x : ω 7→ xω measurable, the profile of parents’ decisions Uω(t, xω) is

Lebesgue-integrable with respect to ω. In order to simplify the notation,

we shall use the notation U(t, X(t)) for {U ν
k,l(t, X

ν
k,l(t))}ν∈I, k,l∈{1,2}.

The unkept promises of parent ω at time t are described by a vector

function Xω(t) with coordinates Xω
i,j(t) denoting the number of promised

units of good j produced by i-th producer before time t and not bought.

If we want to concentrate only on unkept promises x = {xω}ω∈I
, without

dependence on time, we call x state (unkept promises of all parents are

state variables of the game and they constitute its trajectory over time).

The trajectory of unkept promises X evolves as follows:

Xω
i,j(0) = 0 for every ω ∈ I, i, j ∈ {1, 2}.

for t ≥ 0 Xω
i,j(t + 1) is equal to

Xω
i,j(t) − Uω

i,j(t, X
ω
i,j(t)) when both Uω

i,j(t, X
ω
i,j(t)) and P ω

i,j(t) are available

to parent ω,

Xω
i,j(t)+P ω

i,j(t)−Uω
i,j(t, X

ω
i,j(t)) when Uω

i,j(t, X
ω
i,j(t)) is available to ω while

P ω
i,j(t) is not available,

Xω
i,j(t) when Uω

i,j(t, X
ω
i,j(t)) is not available to ω while P ω

i,j(t) is available,

Xω
i,j(t) + P ω

i,j(t) when both Uω
i,j(t, X

ω
i,j(t)) and P ω

i,j(t) are not available.

We can simplify this compound formula by introducing two additional

boolean functions Φω
i,j and F ω

i,j , describing availability of promised toys and

strategies concerning fulfillment of unkept promises:

corresponding to current promises – Φω
i,j(π) (for π = P (t)) is equal to
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0 if player ω has πω
i,j = 1 and good (i, j) is not available to him, and 1

otherwise;

and corresponding to current fulfillment of past unkept promises

F ω
i,j(u, π, x) (for π = P (t), x = X(t) and u = U(t, X(t))) is equal to 1

if player ω has Uω
i,j(t, X

ω
i,j(t)) = 1 and good (i, j) is available to him, and 0

otherwise.

The rules of availability are implied by the following lexicographic or-

dering.

I. New promises are fulfilled first.

1. If the amount of goods produced is less than the amount of goods

for the new promises, then

a) first goods with higher fitness are assigned

b) then those for parents with higher xω
i,j

c) and finally larger ω is before smaller with assignment to the lower

bound of the interval.

2. After buying toys for new promises, toys for unkept promises are

bought in the following ordering:

a) first of parents with uω
i,j = 1 buy those who have higher xω

i,j

b) if this criterion does not decide, then larger ω is before smaller with

assignment to the lower bound of the interval.

These rules define fully the functions Φ and F .

Using these two functions we can write the equation defining trajectories

as

Xω
i,j(t + 1) = Xω

i,j(t) +
(
1 − Φω

i,j (P (t))
)
− F ω

i,j (U(t, X(t)), P (t), X(t)).

Each parent ω maximizes the sum of instantaneous utilities discounted

by a discounting function Σω : T → R+, which is positive and non-

increasing. After elimination of the fixed part of strategy the instan-

taneous utility of parent ω at each stage given the state x and profile

of fulfilling unkept promises at this stage, denoted by u, is reduced to

−C ·
∑

i,j∈{1,2}

((
xω

i,j − F ω
i,j(u, π, x)

)+
)2

−
∑

i,j∈{1,2} p ·F ω
i,j(u, π, x), where

C is a constant greater than p. The first component of the payoff func-

tion expresses the ”natural human need for consequence”, emphasized by

psychologists.

This leads to the payoff of parent ω written as (by a slight abuse of

notation)
∑T

t=0 Σω(t)·

(
−C ·

∑
i,j∈{1,2}

((
Xω

i,j(t) − F ω
i,j(U(t, X(t)), P (t), X(t))

)+
)2

−
∑

i,j∈{1,2} p · F ω
i,j(U(t, X(t)), P (t), X(t))

)



January 24, 2008 19:21 World Scientific Book - 9in x 6in ch21toy4

376 Mathematical Programming and Game Theory for Decision Making

21.2.3 Market Clearing

In order to state the market clearing condition we first have to define for-

mally the demand function.

Given the profile of parents’ strategies U at time t and state x, the

demand ∆(t, x) is rather compound, since demand on each good can de-

pend on availability of other goods. In the simplest case, in which for

all i and j the supply fulfills Qi,j(t, x) ≥
∫

I
P ω

i,j(t) + Uω
i,j(t, x

ω), we have

∆U,Q,P
i,j (t, x) =

∫
I
P ω

i,j(t)+Uω
i,j(t, x

ω)dλ(ω). If for some i, j we have Qi,j(t) ≤∫
I
P ω

i,j(t)+Uω
i,j(t, x

ω)dλ(ω) while Q1,1(t)+Q1,2(t) ≥
∫

I
P ω

1,1(t)+P ω
1,2(t)dλ(ω)

and Q2,1(t) + Q2,2(t) ≥
∫

I
P ω

2,1(t) + P ω
2,2(t)dλ(ω), then ∆U,Q

i,j (t, x) =

Qi,j(t) and ∆U,Q,P
i,∼j (t, x) = min

(
Qi,∼j(t),

∫
I
P ω

i,∼j(t) + Uω
i,∼j(t, x

ω)dλ(ω)

+
(∫

I
P ω

i,j(t)dλ(ω) − Qi,j(t)
)+

)
(where ∼ j denotes the choice different

from j). In this case for the other firm ∼ i we have either the same formulae

(if a condition analogous to that for i and j holds) or for both goods k pro-

duced by him ∆U,Q,P
∼i,k (t, x) =

∫
I
P ω

∼i,k(t) + Uω
∼i,k(t, xω)dλ(ω). The formulae

in the case when one of the players produces less than new promises implied

by his advertisements cannot be satisfied by both his goods are even more

complicated, but their formulation has been defined by the description of

players’ behaviour in the obvious way.

After defining the market demand we can finally formulate payoffs of

firm i in our game given a profile of strategies of the players:∑T
t=0 Ξi(t)· (p·

(
∆U,Q,P

i,1 (t, X(t))+ ∆U,Q,P
i,2 (t, X(t))

)
−c(Qi,1(t), Qi,2(t))

−Ai,1(t) − Ai,2(t)).

Since, apparently, the four values
∫

I
P ω

i,j(t)dλ(ω) are the only character-

istics of P (t) influencing the demand and they are defined by the advertising

efforts, instead of ∆U,Q,P
i,j (t, x), we shall write, by a slight abuse of notation,

∆U,Q,A
i,j (t, x).

21.3 Results

As in majority of game theoretic models, we are interested in Nash equi-

libria. In games with a measure space of players the standard definition of

Nash equilibrium has the following form.

Definition 21.1. A profile of strategies is a Nash equilibrium, if for al-

most every (with respect to the measure) player, his strategy at this profile

maximizes his payoff given the strategies of the remaining players.
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In our game it means that each firm and all elements of a subset of

parents of measure 1 maximize their payoffs given the strategies of the

remaining players.

In the general model we can state the following properties of Nash equi-

libria.

Theorem 21.1. Assume that T < +∞ or the discounting functions of

the parents are such that
∑∞

t=0 t2 · Σω(t) is finite for a.e. ω. At every

Nash equilibrium for a.e. parent ω, for every time t the strategy of parent

ω strategy fulfills Uω
i,j(t, X

ω(t)) = 1 for one of the pairs (i, j) such that

Xω
i,j(t) > 0 and F ω

i,j(U(t, X(t)), P (t), X(t)) = 1.

Proof. The condition T < +∞ or the discounting functions of parents

are such that
∑∞

t=0 t · Σω(t) is finite for a.e. ω guarantees that payoffs of

all parents in the game are finite. In the case of finite time horizon it is

obvious, while in the infinite horizon for all t we have Xω
i,j(t) > 0 and the

inequality Xω
i,j(t + 1) ≤ Xω

i,j + D̄, therefore Xω
i,j(t) ≤ D̄ · t + Xω

i,j(0) and

player’s accumulated payoff is equal to
∑∞

t=0[−C ·
∑

i,j

((
Xω

i,j(t) − F ω
i,j (U(t, X(t)), P (t), X(t))

)+
)2

−
∑

i,j p · F ω
i,j (U(t, X(t)), P (t), X(t))] · Σω(t), whose absolute value is con-

strained by∣∣∣
∑∞

t=0

(
−C ·

∑
i,j

(
Xω

i,j(t)
)2

− 4p
)
· Σω(t)

∣∣∣ ≤ d ·
∑∞

t=0 t2 · Σω(t) for a con-

stant d. Therefore the payoff is finite.

Suppose, conversely, that there exists a set of positive measure for which

the condition is not fulfilled. Take any ω from this set. For some time t

player ω has Uω
i,j(t, X

ω(t)) = 0 for all pairs (i, j) available to him while

at least one Xi,j is positive. We can increase the payoff of player ω by

changing his strategy: if good (i, j) is available to him at time t, then we

define Ũω
i,j(t, X

ω(t)) = 1 and Ũω
i,j(t

′, Xω(t′)) = 0 for t′ being the first of

time instants s after t at which Uω
i,j(s, X

ω(s)) = 1 (obviously when such

an s does exist). For other time instants and x’s we define Ũω
i,j(t, x

ω) =

Uω
i,j(t, x

ω). Note that availability of promises will not change at any time,

while the instantaneous payoff is fixed for any time before t, for any time in

{t, . . . , t′ − 1} increases while from t′ on it is at least the same. Therefore

the payoff of player ω in the game increases. Since this holds for ω in a

nonnegligible set, a profile cannot be an equilibrium. �

It may seem that for such a utility function of parents all equilibria

should be such that for all t and a.e. ω player’s ω strategy Uω
ı̄,j̄

(t, Xω(t)) = 1
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for (̄ı, j̄) for which Xω
i,j(t) > 0 attains its maximum over all (i, j) which are

available to player ω (i.e. F ω
i,j (U(t, X(t)), P (t), X(t)) = 1). This intuition

is false, as we can see in example 21.1.

Example 21.1. “Strange” Nash equilibrium for 4 period game with two

dead-seasons and costs of switching production on.

Consider a game with time horizon T = 3, demands D(0) = D(1) =

10, D(2) = D(3) = 0, bounds for advertising efforts Āi = 1, price p =

10, cost function c(q1, q2) =





0 if q1 = q2 = 0,

2c̄ + q1 + q2 if q1, q2 > 0,

c̄ + q1 + q2 otherwise.

(the constant

c̄ represents the cost of switching on production of each good) and all

discounting functions Σω = Ξi ≡ 1.

Proposition 21.1. If c̄ ≤ 44, then any profile fulfilling

Uω
i,j(t, x

ω) =

{
1 for one of (i, j) such that xω

i,j = 1,

0 for all other (i, j).
and A1,1(0) = A2,1(0) = 1, A1,2(0) = A2,2(0) = 0, Q1,1(0) = Q2,1(0) = 0,

Q1,2(0) = Q2,2(0) = 5,

A1,1(1) = A2,1(1) = 0, A1,2(1) = A2,2(1) = 1, Q1,1(1) = Q2,1(1) = 5,

Q1,2(1) = Q2,2(1) = 0,

Q1,1(2) = Q2,1(2) = 0, Q1,2(2) = Q2,2(2) = 5, and for all (i, j) Ai,j(2) =

Ai,j(3) = 0, Qi,j(3) = 0

is an equilibrium.

Proof. Checking for each player that his strategy is a best responses to

the others’ strategies is a simple calculation. �

Theorem 21.2. Assume that T < +∞ or the discounting functions of the

firms are such that
∑∞

t=N Ξi(t) → 0 as N → ∞ for i = 1, 2. At every Nash

equilibrium at which parents’ strategies are such that for all t and a.e. ω

player’s ω strategy Uω
ı̄,j̄

(t, Xω(t)) = 1 for (̄ı, j̄) for which Xω
i,j(t) > 0 attains

its maximum over all (i, j) which are available to player ω and such that

whenever both goods of the same producer are available and maximal while

at most one good of the other firm is maximal, then the player chooses

one of goods of the former producer, the production of firm i is such that

Qi,1(t) + Qi,2(t) ≥
∫

I
P ω

i,1(t) + P ω
i,2(t)dλ(ω).

This means that at every such equilibrium joint production of each firm

is at every stage at least equal to joint amount of new promises for its

products.
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In order to prove this theorem, we shall need the following Lemma.

Lemma 21.1. Assume that T < +∞ or the discounting functions of firm

1 is such that
∑∞

t=N Ξ1(t) → 0 as N → ∞. Consider a profile of par-

ents’ strategies U are such that for all t and a.e. ω player’s ω strategy

Uω
ı̄,j̄

(t, Xω(t)) = 1 for (̄ı, j̄) for which Xω
i,j(t) > 0 attains its maximum over

all (i, j) which are available to player ω and such that whenever both goods

of the same producer are available and maximal while at most one good of

the other firm is maximal, then the player chooses one of goods of the for-

mer producer and any strategy of firm 2. Let us define the value function

of firm 1, W1 : T × X → R+ by

W1(t, x) = supavailable A1,1,A1,2,Q1,1,Q1,2

∑T

s=t Ξ1(s)·

(p
(
∆U,Q,A

1,1 (s, X(s)) + ∆U,Q,A
1,2 (s, X(s))

)
− c (Q1,1(s), Q1,2(s))

−A1,1(s) − A1,2(s)), where X is a trajectory of parents’ unkept promises

starting at time t from x and corresponding to the players strategies.

For every t, x2,1, x2,2 the function W1 is nondecreasing in x1,1 and x1,2.

Proof. (of Lemma 21.1) Note that W1 is the value function for our prob-

lem discounted for the moment 0. Therefore it is natural that the proof

is by backwards induction, starting from T (for finite T ) and using the

Bellman equation.

Finite horizon case.

We start at T . At this moment for all x we have W1(T, x)

= supa1,a2,q1,q2
Ξ1(T ) · (p

(
∆U,Q,A

1,1 (T, x)) + ∆U,Q,A
1,2 (T, x)

)
− c (q1, q2)

−a1 − a2), which is nondecreasing in x1,1 and x1,2.

Now let us assume, that W1(t, x) is for all x nondecreasing in x1,1 and

x1,2, and we shall prove the analogous fact about W1(t − 1, x). By the

Bellman equation for our problem W1(t − 1, x) = supa1,a2,q1,q2
Ξi(T )·(

p
(
∆U,Q,A

1,1 (T, x)) + ∆U,Q,A
1,2 (T, x)

)
− c (q1, q2) − a1 − a2

)

+W1(t, x + (1 − Φ(π)) − F (U(t − 1, x), π, x)) for some profile of par-

ents promises (at time t − 1) π such that
∫

I
πω

1,jdλ(ω) equals D(t − 1) ·
aj

a1+a2+A2,1(t)+A2,2(t) if at least one of the toys is advertised, 1
4 · D(t) when

nothing is advertised. The first component of the sum is a nondecreasing

function of x1,1 and x1,2 whatever strategy firm 1 chooses, since demands

are nondecreasing functions of x1,1 and x1,2. At each stage, if we increase

x1,j and we do not reduce availability of goods, then we do not decrease

x + (1 − Φ(π)) − F (U(t − 1, x), π, x).
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Since W1(t, ·) is nondecreasing, we have a supremum of a sum of two

nondecreasing functions of x. Although the assumption that we do not

reduce availability of good may lead to strategies that are not optimal,

note that for this increased x the optimal strategy yields supremum in

which the payoff of firm 1 is at least as large as for the restricted strategy.

This means that W1(t − 1, ·) is nondecreasing, which ends the proof for

finite T .

In the proof for infinite T we obtain W1 as a limit of value functions for

finite T . �

Proof. (of Theorem 21.2)

Let us consider a profile of players’ strategies for which the property is

not fulfilled. Without loss of generality we assume that for firm 1 at some

t we have Q1,1(t) + Q1,2(t) <
∫

I
P ω

1,1(t) + P ω
1,2(t)dλ(ω). It can happen only

for t such that D(t) > 0. Given the advertising efforts of both firms, we

have
∫

I
P ω

1,1(t)+P ω
1,2(t)dλ(ω) = D(t)·

A1,1(t)+A1,2(t)
A1,1(t)+A1,2(t)+A2,1(t)+A2,2(t) . We shall

show that firm 1 can increase its payoff by changing its strategy.

We shall consider the following cases, which are not mutually exclusive:

1. Firm 1 advertises only good 1 at time t. In this case we have

Q1,1(t) + Q1,2(t) <
∫

I
P ω

1,1(t)dλ(ω). Whatever Q1,1(t) and Q1,2(t) are, by

changing Q1,2(t) to D(t) ·
A1,1(t)

A1,1(t)+A2,1(t)+A2,2(t) −Q1,1(t) the firm increases

its instantaneous payoff at time t without changing future payoffs, since for

each parent his Xω
i,j(t + 1) remain the same.

2. Firm 1 produces only good 1 at time t and has advertising effort

of this good greater than 0. In this case we have Q1,1(t) <
∫

I
P ω

1,1(t) +

P ω
1,2(t)dλ(ω). There is no strategy which for sure increases firm’s instanta-

neous payoff without changing its future payoff, but, by Lemma 21.1, we

know that by increasing X(t + 1) we guarantee that the future payoff will

not decrease.

The firm will increase its instantaneous payoff without decreasing future

payoffs (by Lemma 21.1) by e.g. changing A1,1(t) to 0 and increasing A1,2(t)

by A1,1(t).

3. Firm 1 produces and advertises both goods at time t but it does not

produce good 1 after t. In this case the payoff can be improved (by Lemma

21.1) by e.g. changing A1,1(t) to 0 and increasing A1,2(t) by A1,1(t) and

switching to production of good 1 only at time t, in the amount Q1,1(t) +

Q1,2(t).

4. Firm 1 produces and advertises both goods at time t and produces

both goods after t, and Q1,1(t) ≥
∫

I
P ω

1,1(t)dλ(ω). In this case we do not
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decrease the future payoffs (by Lemma 21.1, since xω
1,2 increases without

changing other coordinates of x) and increase the instantaneous payoff at

time t by choosing production of good 1 at time t in the amount of Q1,1(t)+

Q1,2(t) before change and producing no good 2 at time t (by the condition

c(q1, q2) > c(0, q1 + q2)).

5. Firm 1 produces and advertises both goods at time t and produces

both goods in future, and Q1,j(t) <
∫

I
P ω

1,j(t)dλ(ω) for both goods. In this

case we increase the instantaneous payoff at time t without changing future

payoffs by e.g. changing the advertising efforts to A′
1,2(t) < A1,2(t) such

that D(t) ·
A′

1,2(t)

A′
1,1(t)+A′

1,2(t)+A2,1(t)+A2,2(t) =
∫

I
P ω

1,2(t)dλ(ω)−Q1,2(t) and with

A′
1,1(t) = A1,1 +(A1,2(t)−A′

1,2(t)) (preserving the joint advertising effort),

and switching to production of good 2 only with the amount equal to the

sum of amounts considered before the change. The instantaneous payoff

will increase by the condition c(q1, q2) > c(0, q1 + q2). By Lemma 21.1,

future payoff will not decrease.

6. Firm 1 advertises neither of goods at time t at which firm 2 does

advertise. In such a situation our condition is fulfilled obligatorily, since∫
I
P ω

1,1(t) + P ω
1,2(t)dλ(ω) = 0.

7. Neither of the firms advertises at time t and D(t) > 0. Such a

situation can never happen at equilibrium, since increasing the advertising

efforts by firm 1 by an arbitrarily small ε will increase demand for its goods

from D(t)
2 to D(t) now and it is not going to decrease it in future.

8. D(t) = 0. In such a situation our condition is also fulfilled obligato-

rily, since
∫

I
P ω

1,1(t) + P ω
1,2(t)dλ(ω) = 0.

These cases with their obvious analogues for other i and j describe all

possible situations in which the condition is not fulfilled. �

21.3.1 Case A: Two Periods with Dead-Season

Now we shall consider a two period model with D(0) > 0 and D(1) = 0

with cost function convex componet-wise.. We consider the behaviour of

one firm, without loss of generality firm 1 at an equilibrium.

Proposition 21.2. Assume that for some 0 < a ≤ Ā1 we have

p · D(0) · a
a+Ā2

− c
(
D(0) · a

a+Ā2
, 0

)
− a > p · 1

2 · D(0) − c
(

1
2 · D(0), 0

)
> 0

and that maxq1,q2≤D̄ p · (q1 + q2) − c(q1, q2) is attained for q1 = q2 = D̄.

Every equilibrium has the property that at time 0 firm 1 advertises only

product j (arbitrary) while produces only ∼ j in the amount equal to D(0) ·



January 24, 2008 19:21 World Scientific Book - 9in x 6in ch21toy4

382 Mathematical Programming and Game Theory for Decision Making

Ai,j(0)
A1,1(0)+A1,2(0)+A2,1(0)+A2,2(0)

and at time 1 it produces only product j, while

all parents who promised good j of firm 1 buy it at time 1 (at time 0 they

buy only ∼ j of the same firm).

Proof. The condition p · D(0) · a
a+Ā2

− c
(
D(0) · a

a+Ā2
, 0

)
− a > p · 1

2 ·

D(0) − c
(

1
2 · D(0), 0

)
implies that at time 0, given any level of advertising

effort of firm 2, some situation with positive advertising level is better in

one stage game than not advertising at all. Since pq−c(q, 0) is an increasing

function of q at (0, 2D̄], the r.h.s. of the inequality is equal to the maximal

possible payoff if we do not advertise (whatever firm 2 does).

At time 1 no firm advertises, since advertising at this stage only de-

creases payoffs.

Now we shall prove that firm 1 advertises only one product at time 0 and

produces the other. By Theorem 21.1, demand for good (1, j) at time 1 is

equal to
∫

I
Uω

1,j(1, Xω(1))dλ(ω) ≤ D̄. By the second assumption about the

cost function, we have Q1,j(1) =
∫

I
Uω

1,j(1, Xω(1))dλ(ω) =
∫

I
Xω(1))dλ(ω).

Given the advertising efforts of firm 2 and a = A1,1(0) + A1,2(0), at time 0

firm i can sell at most q = D(0) · a
a+A2,1(0)+A2,2(0) . The maximal profit at

stage 0 it will get if it produces only one (arbitrary) good in this amount

is equal to pq − c(q, 0)− a, by the general assumption of our model: c(q1 +

q2, 0) < c(q1, q2) for all positive q1 and q2. Assume that the produced good

is good 1. Then for A1,1(0) = 0 and A1,2(0) = a the profit of firm 1 at time

1 is also maximal. Since at both stages we maximize profits, the discounted

sum is also maximal. �

Such a behaviour, apparently counterintuitive, can often be observed.

The best proof from the real life are parents who meet in January in toy

shops buying gifts which were not available but advertised in December.

21.3.2 Case B: Two Periods

We again consider a two period model, but this time we do not impose so

many conditions, only D(0) > 0, D(1) ≥ 0.

Proposition 21.3. Every equilibrium has the property that at time 0 firm

i advertises exactly one product j (arbitrary) while produces only the other

one in the amount equal to D(0) ·
Ai,j(0)

A1,1(0)+A1,2(0)+A2,1(0)+A2,2(0)
and at time

1 it produces only the product advertised at the time 0, while all parents

who promised at time 0 any advertised good buy it at time 1 (at time 0 they

buy only ∼ j of the same firm).
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Proof. The proof is similar. We only have to exclude the case in which

one of the firms, without loss of generality 1, does not advertise at time

0. First assume that neither of firms advertises. Then the payoff of firm

1 will increase as a result of changing its advertising effort to some small

ε. Now let us assume that the advertising effort of firm 2 is a > 0. If firm

1 does not advertise, then firm 2 can increase its payoff by changing its

advertising effort to a
2 : it still has the whole market. Producing only one

product at time 1 is a consequence of the condition about the cost function:

c(q1 + q2, 0) < c(q1, q2). �

21.3.3 Case C: Finitely Many Stages and Negligibility of

Low Advertising Efforts

Now we consider a modification of our model with time horizon 0 < T <

+∞ with an additional assumption that there exists a minimal effective

advertising effort ε for each product and choosing Ai,j(t) < ε has influence

on P (t) equivalent to choosing Ai,j(t) = 0 i.e.
∫

I
P ω

i,j(t)dλ(ω) is equal to 0

if Ai,j(t) < ε and at least one Ak,l(t) ≥ ε, to D(t) ·
Ai,j(t)∑

k,l∈{1,2},Ak,l(t)>ε,Ak,l(t)

if the denominator is positive, and to 1
4D(t) otherwise.

In subsequent results we assume that this ε is quite large compared to

profits that can be obtained.

Under some assumptions about the cost functions and bounds for ad-

vertising efforts, it is possible to obtain an equilibrium at which one of the

firms advertises only at even time instants while its opponent at odd time

instants, besides the last stage. Moreover, only one product of each firm

is advertised at each stage of advertising t. Each of the firms produces at

any stage of advertising t only the non-advertised product and the amount

produced is equal to the maximal D(t), while at stage t+1 it produces the

other product also in amount D(t). Parents buy at each stage in which their

promise is positive the non-advertised product of the advertising firm, while

at the next stage they fulfill unkept promise for the other good. Formally

we state as follows.

Proposition 21.4. Assume that for all t D(t) = D̄, and that for

i = 1, 2 for all ε ≤ a ≤ Āi and all q ≤ 2D̄, q̄ ≤ a
a+ε

D̄ we have

p · q̄−minq1+q2=q (c(q̄ + q1, q2) − c(q1, q2)) < a
2 and for all {qi}T

i=1 such that

qi ≤ 2D̄ and all q̄ ≤ a
a+ε

D̄ and all sequences {q̄i}T
i=1 such that

∑T

i=1 q̄i = q̄

we have p · q̄ − minqi
1+qi

2=qi

∑T

i=1

(
c(q̄i + qi

1, q
i
2) − c(qi

1, q
i
2)

)
< a

2 .
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a) There is no equilibrium such that both firms advertise at the same

time instant.

b) If for all t p · D(t) − c (D(t), 0) > ε, then there exists an equilibrium

at which A1,1(t) = A1,2(t) = 0, Q1,1(t) = D(t−1) and Q1,2(t) = 0 for even

t > 0; A1,1(t) = ε, A1,2(t) = 0, Q1,1(t) = 0 and Q1,2(t) = D(t) for odd t,

while A2,1(t) = A2,2(t) = 0, Q2,1(t) = D(t − 1) and Q2,2(t) = 0 for odd t;

A2,1(t) = ε, A2,2(t) = 0, Q2,1(t) = 0 and Q2,2(t) = D(t) for even t. At this

equilibrium the production at each stage is equal to the maximal possible

demand. At this equilibrium for a.e. ω ∈ I and for all even t > 0 we

have Xω
1,1(t) = 1 and for all odd t we have Xω

2,1(t) = 1 while the remaining

Xω
i,j = 0. The strategy of player ω is such that Uω

1,1(t, X
ω(t)) = 1 for all

even t > 0 and Uω
2,1(t, X

ω(t)) = 1 for all odd t.

Proof.

a) Let us consider a profile at which firm 1 decides to change its

strategy and advertise good 1 with advertising effort a ≥ ε at time t at

which firm 2 also advertises with the expenditures on advertising equal

to at least ε. Before the change firm 1 produced the amounts whose

sum was q. Since the expected demand for its goods may increase at

this time instant at most by q̄ = a
a+ε

D̄, which is reached for the maxi-

mal advertising effort assuming the minimal advertising effort of firm 2,

and at most by the same amount jointly in the future. Since the func-

tion pq − c(q, 0) is increasing in the interval (0, 2D̄], the maximum is at-

tained at the maximal production that can be sold at each time instant,

which is attained at q + q̄. Therefore the firm’s income now is going to in-

crease by at most (p · (q̄ + q) − c(q̄ + q, 0))−minq1+q2=q (p · q − c(q1, q2)) =

p · q̄ − (c(q̄ + q, 0) − maxq1+q2=q (c(q1, q2))), which is less than ε
2 . The joint

growth of profits in the future is by the analogous reasoning less than ε
2 .

Since the discounting function is nonincreasing, the joint discounted in-

crease of payoffs minus increase in the discounted advertising effort is neg-

ative.

b) We construct such an equilibrium, starting from some strategies of

parents, then best responses of the firms and we end by checking whether

the initial profile of parents decisions constitutes an equilibrium with these

strategies of the firms.

Since the strategies of players have to constitute the best response only

to the strategies used by the remaining players, let us assume, for simplicity

of further calculations, that for all ω we define parents strategies as follows

Uω
1,2(t, x

ω) = Uω
2,2(t, x

ω) ≡ 0 (since good 2 is advertised by neither of firms)
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Uω
1,1(t, x

ω) = 1 if xω
1,1 > 0 and t is even, 0 otherwise

Uω
2,1(t, x

ω) = 1 if xω
2,1 > 0 and t is odd, 0 otherwise.

Now let us examine the strategy of firm 1.

We start at time T . If T is even, then firm 2 advertises, so, by

the assumption, it is better for firm 1 not to advertise. Thus the pro-

duction of firm 1 is constrained by the demand i.e.
∫

I
Uω

1,1(T, Xω(T )) +

Uω
1,2(T, Xω(T ))dλ(ω) =

∫
I
Uω

1,1(T, Xω(T ))dλ(ω), which is equal to the mea-

sure of the set of parents whose Xω
1,1(T ) > 0.

For odd T firm 2 does not advertise and
∫

I
Uω

1,1(T, Xω(T )) +

Uω
1,2(T, Xω(T ))dλ(ω) = 0. Therefore the best strategy of firm 1 is the

joint advertising effort ε (possibly only advertising good 1) and, because

c(q1 + q2, 0) > c(q1, q2) for q1, q2 > 0, production of only one good, possibly

1.

What is the value at time T−1 of the best response strategy to the other

players’ strategies, assuming that at time T we choose strategy as we have

just proven to be optimal at time T ? If T is even, then at time T −1 firm 2

does not advertise, while at time T we choose not to advertise and produce

only for unkept promises for our good 1. Therefore the optimal decision is

to choose at time T − 1 advertising effort A1,1(t) = ε, and producing good

2 only with production equal to D̄, which results in both optimal profit at

time T − 1 and maximal possible
∫

I
Uω

1,1(T, Xω(T ))dλ(ω).

Now let us take any s < t and assume that our strategy fulfills A1,1(t) =

A1,2(t) = 0, Q1,1(t) = D(t − 1) and Q1,2(t) = 0 for even 0 < t ≤ s;

A1,1(t) = ε, A1,2(t) = 0, Q1,1(t) = 0 and Q1,2(t) = D(t) for odd t ≤ s. By

analogous reasoning we prove, that the result holds for all t ≤ s − 1.

So, by backwards induction, we have proven that the strategy of firm 1

defined by A1,1(t) = A1,2(t) = 0, Q1,1(t) = D(t − 1) and Q1,2(t) = 0 for

even t > 0; A1,1(t) = ε, A1,2(t) = 0, Q1,1(t) = 0 and Q1,2(t) = D(t) for

odd t is the best response to strategies of the remaining players.

For firm 2 an analogous reasoning applies.

And finally, let us note, that whatever equilibrium strategy profile of

parents we consider as the best responses to firms’ strategies and behaviour

of the other parents, we obtain the result that on a set of ω of measure 1

for all t, Uω
i,1(t, X

ω(t)) for i such that Xω
i,1(t) > 0. �
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Remark 21.1. In the case of the cost function linear with switching-on

cost

c(q1, q2) =






0 if q1 = q2 = 0,

2c̄ + b · (q1 + q2) if q1, q2 > 0,

c̄ + b · (q1 + q2) otherwise.

the complicated assumption

can be reduced to a simple one: (p − b) · D̄ < ε.

What is interesting, such alternating advertising sequences in order to

increase efficiency of advertising efforts could be observed not only at toy

markets – there were similar observations concerning the market of soft

drinks – almost equal division of advertising days between Pepsi and Coca-

Cola.

21.3.4 Case D: Infinite Time Horizon and Negligibility of

Low Advertising Efforts

Let us add an additional assumption like in Case C that there exists

a minimal effective advertising effort ε for each product and choosing

Ai,j(t) < ε has influence on P (t) equivalent to choosing Ai,j(t) = 0 i.e.∫
I
P ω

i,j(t)dλ(ω) is equal to 0 if Ai,j(t) < ε and at least one Ak,l(t) ≥ ε, to

D(t) ·
Ai,j(t)∑

k,l∈{1,2},Ak,l(t)>ε ,Ak,l(t)
if the denominator is positive, and to 1

4D(t)

otherwise.

This ε is assumed to be large compared to expected profits.

In this case, under the conditions about the cost functions and bounds

for advertising efforts, it is possible to obtain an equilibrium at which one

of the firms advertises only at even time instants while it opponent at odd

time instants. Moreover, only one product is advertised at each stage. Each

of the firms produces at any stage of advertising only the non-advertised

product and the amount produced is equal to the maximal D(t), while at

stage t+1 it produces the other product also in amount D(t). Parents buy

at each stage in which their promise is positive the non-advertised product

of the advertising firm, while at the next stage they fulfill unkept promise

for the other good.

Proposition 21.5. Assume that for all t D(t) = D̄, and that for

i = 1, 2 for all ε ≤ a ≤ Āi and all q ≤ 2D̄, q̄ ≤ a
a+ε

D̄ we have

p · q̄ − (c(q̄ + q, 0) − maxq1+q2=q c(q1, q2)) < a
2 and for all {qi}+∞

i=1 such that

qi ≤ 2D̄ and all q̄ ≤ a
a+ε

D̄ and all sequences {q̄i}+∞
i=1 such that

∑T
i=1 q̄i = q̄

we have p · q̄ − minqi
1+qi

2=qi

∑+∞
i=1

(
c(q̄i + qi

1, 0) − c(qi
1, q

i
2)

)
< a

2 .
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a) If the discounting functions of the firms are such that
∑∞

t=N Ξi(t) → 0

as N → ∞ for i = 1, 2, then there is no equilibrium such that both firms

advertise at the same time instant.

b) If for all t p · D(t) − c (D(t), 0) > ε, then there exists an equilibrium

at which A1,1(t) = A1,2(t) = 0, Q1,1(t) = D(t−1) and Q1,2(t) = 0 for even

t > 0; A1,1(t) = ε, A1,2(t) = 0, Q1,1(t) = 0 and Q1,2(t) = D(t) for odd t,

while A2,1(t) = A2,2(t) = 0, Q2,1(t) = D(t − 1) and Q2,2(t) = 0 for odd t;

A2,1(t) = ε, A2,2(t) = 0, Q2,1(t) = 0 and Q2,2(t) = D(t) for even t. At this

equilibrium the production at each stage is equal to the maximal possible

demand. At this equilibrium for a.e. ω ∈ I and for all even t > 0 we

have Xω
1,1(t) = 1 and for all odd t we have Xω

2,1(t) = 1 while the remaining

Xω
i,j = 0. The strategy of player ω is such that Uω

1,1(t, X
ω(t)) = 1 for all

even t > 0 and Uω
2,1(t, X

ω(t)) = 1 for all odd t

Proof. a) By the assumption about the discounting functions, both firms

get finite payoffs. Therefore the proof of a) is identical as that of Proposition

21.4.

b) We formulate simplified strategies of parents as in the proof of Propo-

sition 21.4.

First let us note that if at least one of the discounting functions, without

loss of generality the discounting function of firm 1, is such that
∑N

t=0 Ξ1(t)

does not converge to a finite number, then each strategy with payoff equal

to +∞, including the strategy we examine, is an equilibrium strategy.

Therefore we only have to check the opposite case.

We cannot apply backward induction since we have infinite time horizon.

However, we can try to estimate the payoff in the infinite horizon game by

the payoffs in finite horizon games. We check firm 1 after assuming that

parents choose the strategies as in the proof of Proposition 21.4, while firm

2 as formulated in this proposition.

Let us take any finite N . We know that there is a best response to

strategies of the remaining players in the game with time horizon N such

that A1,1(t) = A1,2(t) = 0, Q1,1(t) = D(t − 1) and Q1,2(t) = 0 for even

t > 0; A1,1(t) = ε, A1,2(t) = 0, Q1,1(t) = 0 and Q1,2(t) = D(t) for odd

t. The payoff for this strategy in the infinite game is equal to
∑∞

t=1 D̄ ·

Ξ1(t) −
∑∞

t=0 ε · Ξ1(2t + 1), while in the game with time horizon N it is

equal to
∑N

t=1 D̄ · Ξ1(t) −
∑[N−1

2 ]
t=0 ε · Ξ1(2t + 1). The optimal payoff in the

infinite horizon game is finite, since it is constrained from above by e.g.∑∞
t=0 2D̄ · Ξ1(t). Let us take any small δ > 0. Since

∑∞
t=N 2D̄ · Ξ1(t) → 0,

there exists N such that the sum of discounted payoffs for the strategy
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optimal in the infinite game from time N + 1 to +∞ is less than δ. The

maximal sum of discounted payoffs from time 0 to time N is equal to
∑N

t=1 D̄ ·Ξ1(t)−
∑[N−1

2 ]
t=0 ε ·Ξ1(2t+1), which converges to

∑∞
t=1 D̄ ·Ξ1(t)−∑∞

t=0 ε · Ξ1(2t + 1) - the payoff for the examined strategy in the infinite

game, therefore our strategy is the best response also in the infinite horizon

game. �

Remark 21.2. In the case of the cost function linear with switching-on

cost

c(q1, q2) =






0 if q1 = q2 = 0,

2c̄ + b · (q1 + q2) if q1, q2 > 0,

c̄ + b · (q1 + q2) otherwise.

the complicated assumption

can be reduced to a simple one: (p − b) · D̄ < ε.

21.4 Conclusions

The compound model of an oligopolistic toy market studied in the paper

led us to apparently strange results, among which was that it is reasonable

for a firm to advertise a good it is not producing at the current stage. This

is a result of exploiting the human need for consequence, according to which

parents try to keep promises. Although this seems strange, such strategic

behaviour of firms can be observed at toy markets as a way of increasing

sales in January, which confirms the validity of the results proven.

Another interesting result is the existence of equilibria with alternat-

ing advertising efforts of the firms, which makes advertising more efficient.

Such a result can also be observed at real world duopolistic markets (not

necessarily toy markets).
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Abstract

We introduce two classes of games and show that they are balanced. In regression
games, the observations in a regression model are controlled by players, and the
worth of a coalition is inversely proportional to the variance of the estimate of
the regression parameter. In connectivity games the players control the edges
of a graph and the worth of a coalition is directly proportional to the degree of
connectivity of the subgraph formed by the corresponding edges.

Key Words: Balanced games, regression games, connectivity games

22.1 Introduction

A cooperative game (N, v) consists of a set N of players and a characteristic
function (or worth function) v : 2N −→ (0,∞). We assume that |N | =
n and set N = {1, 2, . . . , n}. We also assume v(φ) = 0. A fundamental
problem in cooperative game theory is to prescribe a procedure to distribute
v(N) among the n players in a manner which is justified by some natural
principles. Such a procedure is known as a solution concept. Particularly
notable solution concepts are the von Neumann-Morgenstern stable set,
the Shapley value, the nucleolus and the core. In this paper we shall be
interested in the core, which we now proceed to define (see, for example,
[Owen (1982)], [Tijs (2003)]).

391
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A vector x = (x1, . . . , xn)′ is called an imputation if xi ≥ 0, i =
1, 2, . . . , n and

∑n
i=1 xi = v(N). The core of the game (N, v) consists of

all imputations x which satisfy
∑

i∈S xi ≥ v(S) for every S ⊂ N.

We now introduce some notation. For S ⊂ N, let 1S denote the n × 1
incidence vector of S. Thus the i-th coordinate of 1S is 1 if i ∈ S and 0
otherwise. Note that 1N is the n × 1 vector of all ones and we denote it
simply by 1.

A game (N, v) is called balanced if for any nonnegative numbers λS , S ⊂
N, satisfying ∑

S

λS1S = 1,

it is true that ∑
S

λSv(S) ≤ v(N).

The following result, proved independently by [Bondareva (1963)] and
[Shapley (1967)] is well-known and can be proved using the duality theorem
of linear programming.

Theorem 22.1. [Bondareva-Shapley ] The game (N, v) has a nonempty
core if and only if it is balanced.

For T ⊂ N we define the induced subgame (T, vT ) by setting vT (S) =
v(S) for every S ⊂ T. A game is called totally balanced if all its induced
subgames are balanced, i.e., if all its induced subgames have nonempty core.

22.2 Regression Games

Consider the linear regression model

yi = uiβ1 + viβ2 + εi, i = 1, 2, . . . , n; (22.1)
where ui, vi are known, yi are the observations, β1, β2 are unknown param-
eters and εi are uncorrelated errors with the common, unknown variance
σ2.

We assume that β1 is the parameter of interest. We assume that β1

is estimable, that is, there exists a linear function c1y1 + · · · + cnyn with
expectation β1. The BLUEs (best linear unbiased estimates) of β1 and β2

are obtained by minimizing the sum of squared errors,
n∑

i=1

ε2i =
n∑

i=1

(yi − uiβ1 − viβ2)2.
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The resulting least-squares estimate and its variance are given in the fol-
lowing well-known result, the first part of which is usually referred to as
the Gauss-Markov Theorem.

Theorem 22.2. With reference to the linear model (22.1), the BLUE β̂1

of β1 is given by

β̂1 =
(
∑n

i=1 v2
i )(

∑n
i=1 uiyi)− (

∑n
i=1 uivi)(

∑n
i=1 viyi)

(
∑n

i=1 u2
i )(

∑n
i=1 v2

i )− (
∑n

i=1 uivi)2
.

Furthermore,

σ2

var(β̂1)
=

n∑
i=1

u2
i −

(
∑n

i=1 uivi)2∑n
i=1 v2

i

.

We now introduce a cooperative game based on the model (22.1). Con-
sider n players, {1, 2, . . . , n} and suppose the i-th player controls (that is,
able to provide) the observation yi. We may imagine a situation where each
observation comes from a household and thus it is available only if the
head of the family cooperates. If S ⊂ N = {1, 2, . . . , n}, then we set v(S)
to be σ2 times the reciprocal of the variance of the BLUE of β1 in the linear
model obtained by using the observations yi, i ∈ S, provided β1 is estimable
in that model. Otherwise we set v(S) = 0. Also, as usual, we set v(φ) = 0.

The interpretation of the worth function should be clear. A set of players
stand to gain more if they are able to get a more precise estimate of the
parameter. The precision is measured by the reciprocal of the variance of
the BLUE. We remark that the choice of β1 as the parameter of interest is
merely a matter of convenience. We could take β2, or, in fact, any linear
combination of β1 and β2, as the parameter of interest. Typically, in a
regression problem, vi = 1 for i = 1, 2, . . . , n, and β1, the slope of the
regression line, is the parameter of interest.

We must introduce some technical assumptions at this point. These
assumptions are necessary to take care of the estimability of the parameter
β1. The assumptions are as follows:

(A0) For i = 1, 2, . . . , n, vi 6= 0.

(A1) for i, j ∈ {1, 2, . . . , n}, i 6= j, the vectors (ui, vi) and (uj , vj) are
linearly independent.

Assumption (A0) ensures that β1 is not estimable from any single ob-
servation. Thus v(S) = 0 if |S| = 1. Assumption (A1) guarantees that β1

is estimable in any model containing two or more observations. Therefore
v(S) > 0 if |S| ≥ 2.



November 14, 2007 12:3 World Scientific Book - 9in x 6in ch22balanced

394 Mathematical Programming and Game Theory for Decision Making

We refer to this game as the regression game associated with the model
(22.1).

Theorem 22.3. In the presence of assumptions (A0) and (A1), the regres-
sion game associated with the model (22.1) is totally balanced.

Proof. We first show that the regression game is balanced. Note that
if S ⊂ N = {1, 2, . . . , n}, and |S| ≥ 2, then β1 is estimable in the model
obtained by taking the observations yi, i ∈ S, and

v(S) =
∑
i∈S

u2
i −

(
∑

i∈S uivi)2∑
i∈S v2

i

.

Furthermore, v(S) = 0 if |S| ≤ 1.

As before, for S ⊂ N = {1, 2, . . . , n}, let 1S be the n × 1 incidence
vector of S. Suppose λS ≥ 0 satisfy

∑
S

λS1S = 1. (22.2)

Then we must show

∑
S

λSv(S) ≤ v(N), (22.3)

which is the same as

∑
S

λS{
∑
i∈S

u2
i −

(
∑

i∈S uivi)2∑
i∈S v2

i

} ≤
n∑

i=1

u2
i −

(
∑n

i=1 uivi)2∑n
i=1 v2

i

. (22.4)

Since, in view of (22.2),∑
S

λS

∑
i∈S

u2
i =

n∑
i=1

u2
i ,

(22.4) will be proved once we show

(
∑n

i=1 uivi)2∑n
i=1 v2

i

≤
∑
S

λS

(
∑

i∈S uivi)2∑
i∈S v2

i

. (22.5)
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We have
(
∑n

i=1 uivi)2∑n
i=1 v2

i

=
(
∑

S λS

∑
i∈S uivi)2∑n

i=1 v2
i

= (
∑
S

λS

∑
i∈S v2

i∑n
i=1 v2

i

∑
i∈S uivi∑
i∈S v2

i

)2
n∑

i=1

v2
i

≤
∑
S

(
λS

∑
i∈S v2

i∑n
i=1 v2

i

)(
∑

i∈S uivi∑
i∈S v2

i

)2
n∑

i=1

v2
i

by Cauchy-Schwarz inequality

=
∑
S

λS

(
∑

i∈S uivi)2∑
i∈S v2

i

,

and (22.5) is proved. It follows by Theorem 22.1 that the regression game
is balanced.

Any induced subgame of the regression game associated with the model
(22.1) is again a regression game based on the model obtained by taking
a subset of the observations. Therefore using a similar proof we can show
that any induced subgame is also balanced and therefore the regression
game is totally balanced. �

Let us consider the simple linear regression model, which is a special
case of the model (22.1), with vi = 1 for i = 1, 2, . . . , n (after making a
minor change in notation):

yi = β0 + uiβ1 + εi, i = 1, 2, . . . , n. (22.6)
The corresponding regression game (N, v) has worth function given by

v(S) =
∑
i∈S

(ui − ūS)2

for any nonempty S ⊂ N, and v(φ) = 0. Here ūS is the mean of ui, i ∈ S.

For this game we can give a core element explicitly: Set xi = (ui −
ū)2, i = 1, 2, . . . , n; where ū = ūN is the mean of u1, . . . , un. Then x =
(x1, . . . , xn)′ is in the core. This follows since for any S ⊂ N,∑

i∈S

(ui − ū)2 ≥
∑
i∈S

(ui − ūS)2,

in view of the well-known fact that the sum of squared deviations is mini-
mized when the deviations are about the mean.

A similar argument shows that the following game is also totally bal-
anced. Let u1, . . . , un be real numbers and consider the game (N,w), with
w(S) =

∑
i∈S |ui − ũS |, for any nonempty S ⊂ N, where ũS is the median

of ui, i ∈ S.
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22.3 Connectivity Games

Consider a graph with m vertices and n edges. Suppose there are n play-
ers, {1, 2, . . . , n} and the i-th player controls (is able to provide) the edge
ei, i = 1, 2, . . . , n. In many practical problems, particularly in transport and
telecommunications, it is preferable to have a network with a high “degree
of connectivty”. This motivates the following cooperative game. For a
coalition S, v(S) is directly proportional to the degree of connectivity of
the subgraph induced by the edges {ei, i ∈ S}.

We begin by recalling some concepts from graph theory which will be
required. We consider graphs which have no loops or parallel edges. Thus
a graph G = (V (G), E(G)) consists of a finite set of vertices, V (G), and a
set of edges, E(G), each of whose elements is a pair of distinct vertices. We
will assume familiarity with basic graph-theoretic notions, see, for example,
[Bondy and Murty (1976)],[West (2001)].

Given a graph, one associates a variety of matrices with the graph.
Some of the important ones will be defined now. Let G be a graph with
V (G) = {1, . . . ,m}, E(G) = {e1, . . . , en}.

The adjacency matrix A(G) of G is an m×m matrix with its rows and
columns indexed by V (G) and with the (i, j)-entry equal to 1 if vertices
i, j are adjacent (i.e., joined by an edge) and 0 otherwise. Thus A(G) is a
symmetric matrix with its i-th row (or column) sum equal to d(i), which
by definition is the degree of the vertex i, i = 1, 2, . . . ,m. Let D(G) denote
the n×n diagonal matrix, whose i-th diagonal entry is d(i), i = 1, 2, . . . ,m.

The Laplacian matrix of G, denoted by L(G), is simply the matrix
D(G)−A(G).

There is another way to view the Laplacian matrix. First we introduce
yet another important matrix associated with G. Suppose each edge of G

is assigned an orientation, which is arbitrary but fixed. The (vertex-edge)
incidence matrix of G, denoted by Q(G), is the m × n matrix defined as
follows. The rows and the columns of Q(G) are indexed by V (G), E(G)
respectively. The (i, j)-entry of Q(G) is 0 if vertex i and edge ej are not
incident and otherwise it is 1 or −1 according as ej originates or terminates
at i respectively.

A simple verification reveals that the Laplacian matrix L(G) equals
Q(G)Q(G)′. Observe that although we introduced an orientation for each
edge while defining Q(G), the matrix L(G) does not depend upon the par-
ticular orientation.
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Example: Let G be the graph with vertex set {1, 2, 3, 4, 5} and edge set
{12, 23, 13, 24, 34, 45}. Then

A(G) =


0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
0 0 0 1 0

 , Q(G) =


1 0 1 0 0 0

−1 1 0 1 0 0
0 −1 −1 0 1 0
0 0 0 −1 −1 1
0 0 0 0 0 −1

 ,

and

L(G) = Q(G)Q(G)′ =


2 −1 −1 0 0
−1 3 −1 −1 0
−1 −1 3 −1 0
0 −1 −1 3 −1
0 0 0 −1 1

 .

Let G be a graph with V (G) = {1, . . . ,m}, E(G) = {e1, . . . , en}. Some
basic properties of the Laplacian matrix are summarized below (see [Bapat
(1996)],[Merris (1994)]).

(i) L(G) is a symmetric, positive semidefinite matrix.
(ii) The off-diagonal entries of L(G) are nonpositive (in fact, they are

either 0 or −1).
(iii) The diagonal entries of L(G) are the vertex degrees and the row

sums and the column sums are all zero.
(iv) The quadratic form afforded by L(G) has a rather simple descrip-

tion:

〈L(G)x, x〉 =
∑

(i,j)∈E(G)

(xi − xj)2.

(v) The rank of L(G) is n − k, where k is the number of connected
components of G. In particular, if G is connected, then the rank of L(G) is
n− 1.

The Laplacian matrix is also known by several other names in the lit-
erature such as the Kirchhoff matrix or the Information matrix.

Let L be the set of n×n symmetric, positive semidefinite matrices with
row sums zero and let f be a nonnegative real valued function f on L.

Let G be graph with n edges. We define a cooperative game as follows.
The player set is N = {1, 2, . . . , n}. If S ⊂ N, let LS be the Laplacian of
the subgraph of G formed by the vertex set V (G) and the edges in S. Let
the worth function v(S) be given by vf (S) = f(LS). We now prove the
following.
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Theorem 22.4. Suppose f satisfies the following conditions:
(i) f(αL) = αf(L) for any α ≥ 0 and for any L ∈ L.

(ii) f(
∑k

i=1 αiLi) ≥
∑k

i=1 αif(Li) for any αi ≥ 0, i = 1, 2, . . . , k satisfying∑k
i=1 αi = 1 and for any Li ∈ L, i = 1, 2, . . . , k.

Then the game (N, vf ) is balanced.

Proof. As before, for S ⊂ N = {1, 2, . . . , n}, let 1S be the n×1 incidence
vector of S. Suppose λS ≥ 0 satisfy∑

S

λS1S = 1. (22.7)

Then, in view of Theorem 22.2, we must show∑
S

λSvf (S) ≤ vf (N), (22.8)

Note that
∑

S λSLS = LN , the Laplacian of G. Hence, in view of the
properties (i) and (ii) of f,

vf (N) = f(LN )

= f(
∑
S

λSLS)

=
∑
S

λSf(
∑

S λSLS∑
S λS

)

≥
∑
S

λS

∑
S

λSf(LS)

=
∑
S

λSvf (S),

and the proof is complete. �

Some examples of functions f which satisfy (i) and (ii) of Theorem
22.4 are as follows (see, for example, [Ghosh and Boyd (2006)]). Let
0 = µ0 ≤ µ1 ≤ · · · ≤ µn−1 be the eigenvalues of the Laplacian L.

(1) f(L) = µ1, the algebraic connectivity, introduced by [Fiedler (1973)].
(2) f(L) =

∑k
i=1 µi for any k = 2, . . . , n− 1

(3) f(L) = −
∑k

i=1 µn−i for any k = 2, . . . , n− 1
(4) f(L) = (

∏n−1
i=2 µi)

1
n−1

To conclude, we have introduced two classes of balanced games: regres-
sion games and connectivity games. The class of regression games is also
shown to be totally balanced. These classes supplement other well-known
classes of totally balanced games such as assignment games [Shapley and
Shubik (1972)] and permutation games [Tijs et al. (1984)].
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Chapter 23

Market Equilibrium for Combinatorial
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Abstract

We introduce the concept of the induced combinatorial auction of a nonnegative
TU game and show that the existence of market equilibrium of the induced com-
binatorial auction implies the existence of a possibly different market equilibrium
as well, which corresponds very naturally to an outcome in the matching core of
the TU game. Consequently we show that the matching core of the nonnegative
TU game is non-empty if and only if the induced combinatorial auction has a
market equilibrium.

Key Words: Combinatorial auctions, market equilibrium, constrained equilib-

rium, nonnegative TU game, matching, matching core.

23.1 Introduction

The formation of productive partnerships and sharing the yield that accrues
from it has been an important concern of both economics and game theory.
The theory of matching that originated with the seminal paper of Gale
and Shapley (1962) is largely concerned with the formation of stable two
agent partnerships. The theory of two-sided matching as discussed in Roth
and Sotomayor (1990) that grew out of the work of Gale and Shapley,
1This is a revised version of an earlier paper ”Market Equilibrium for Bundle Auctions

and the Matching Core of Nonnegative TU Games”

401
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emphasizes the formation of partnerships between pairs of agents, where
each pair consists of agents on two distinct sides of a market. Similarly, the
three-sided matching model of Alkan (1988) is concerned with the formation
of possible triplets, each triplet comprising agents from three different sets.
A related model due to Shapley and Scarf (1974) called the housing market,
considers a private ownership economy, where each individual owns exactly
one object and what is sought is the existence of an allocation in the core
of the economy.

The model discussed here is based on the one proposed by Kaneko and
Wooders (1982). They considered a feasible set of coalitions on which a
worth function was defined. They investigated the existence of non-empty
cores for such problems. Kaneko and Wooders (1982) called their model a
TU partitioning game. Since all coalitions are feasible in our model and the
worth of each coalition is non-negative, we call our model a nonnegative
TU game. In a final section of our paper, we discuss how our model can be
used to deal with situations represented by TU partitioning games.

Motivated by the work of Eriksson and Karlander (2001) and the liter-
ature on coalition formation, we investigate conditions under which there
exists an outcome for non-negative TU games satisfying the following con-
ditions:

(a) The realized coalitions form a partition of the set of agents.
(b) The worth of each coalition in the partition is distributed among the

agents in the coalition.
(c) No feasible coalition is worth more than the sum of what its members

receive.

We call the set of such outcomes, the matching core of the nonnegative
TU game. The partition component of an outcome in the matching core is
called a matching.

The matching core of a nonnegative TU game is different from the core
of a TU game. Necessary and sufficient conditions for the non-emptiness of
the core of a TU game were first obtained by Bondareva (1963) and Scarf
(1967). Our results reported here, are of a different nature.

The result we seek is a pursuit similar to that of Proposition 2.4 of Eriks-
son and Karlander (2001). However, our result is different. In effect, we
provide a necessary and sufficient condition for the existence of a non-empty
matching core for such problems when pay-offs are transferable among the
agents. In our definition of the matching core, we do not require that the
sum of pay-offs to all players be equal to the worth of the grand coalition.
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We require instead, that the sum of pay-offs to players in each coalition
that is realized, is equal to the worth of that coalition. The possibility of
the grand coalition not being realized is admissible in our framework, and
hence ”budget balancedness” being superimposed on our solution concept,
appears irrelevant. Thus, our matching core is weaker than the core in
Eriksson and Karlander (2001). Our investigation is very likely yet another
representation of similar concerns raised in Kaneko and Wooders (1982).

Moulin (1995) contains a discussion of restrictions in the pattern of
coalition formation for games where utilities are transferable. Games of this
sort that in addition admit non-empty cores are called universally stable.

Our approach in this paper is based on results that may be derived for
multi-unit auctions. Suppose each agent is represented as an indivisible
item that, and each possible coalition is represented by a buyer of such
items. A coalition realizes it worth as pay-off if and only if it is able to
secure the items that initially belong to its members. Otherwise, the coali-
tion gets zero pay-off. Such a combinatorial auction is said to be induced
by the nonnegative TU game. We show that the matching core of the non-
negative TU game is non-empty if and only if the induced combinatorial
auction has a market equilibrium. In fact, after deriving the induced com-
binatorial auction of the TU game, we show that the existence of a market
equilibrium implies the existence of a possibly different market equilibrium
as well, where each coalition either consumes the items initially owned by
its members or nothing at all, and the price vector is such that the profit
of each coalition is zero. Such a market equilibrium is then shown to corre-
spond very naturally to an outcome in the matching core of the TU game,
from which our main result follows. The interesting thing to note in this
context, is that a nonnegative TU game may have a empty matching core,
as Example 23.1 aptly illustrates.

The results obtained here for nonnegative TU games can be easily ap-
plied to situations where certain coalitions are prohibited from being real-
ized, as with TU partitioning games. This can be achieved by setting the
worth of a prohibited coalition to be zero. One of the most well-known ex-
amples of such games is the one due to Shapley and Shubik (1972), concern-
ing assignment games. The game considered in Shapley and Shubik (1972)
is itself derived from the framework of assignment problem modeled in the
seminal paper by Koopmans and Beckmann (1957). The non-emptiness of
the core of the related assignment game follows analogously as in the re-
lated results obtained by Koopmans and Beckmann (1957) for assignment
problems. Thus, the implications of our analysis for partitioning games are
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as valid as they are for nonnegative TU games.

23.2 Combinatorial Auctions

The model in this section is adopted from Lahiri (2006). Let Z = X ∪ {0},
where X denotes the set of natural numbers. Let there be H > 0 agents
and L + 1 > 1 commodities. The first L commodities are used as inputs to
produce the L + 1th commodity, which is a numeraire consumption good.

Let e denote the vector in RL all whose coordinates are equal to one
and for j = 1, . . . , L, let ej denote the vector in RL whose jth coordinate
is equal to one and all other coordinates are equal to zero.

The economy is initially endowed with exactly one unit of each of the L
indivisible inputs. Thus the initial endowment of the economy is the vector
e in ZL.

A function f : ZL → R+ (: the set of non-negative real numbers) is
said to be a discrete function.

Each agent i has preferences defined over ZL which is represented by
a discrete production function f i, such that or all i = 1, . . . ,H, f i is non-
decreasing (i.e. for all x, y ∈ ZL : [x ≥ y] implies [f i(x) ≥ f i(y)]).

A combinatorial auction is an H-tuple [f i/i = 1, . . . ,H].

Note : If x belongs to ZL and x ≤ e then the set S = {j/xj = 1} is a
subset of {1, . . . , L}. Conversely if S is a subset of {1, . . . , L}, then we can
associate to S the point x in ZL such that xj = 1 if and only if j ∈ S. If
[f i/i = 1, . . . ,H] is a combinatorial auction then f i(x) can be interpreted
as agent i’s bid (or valuation) for the bundle of items {j/xj = 1}.

An input consumption vector of agent i is denoted by a vector Xi ∈ ZL.
A price vector p is an element of RL

+/{0}, where for j = 1, . . . , L, pj

denotes the price of input j.
At a price vector p, the objective of agent i is to maximize profits subject

to availability of the inputs:
Maximize [f i(Xi)− pT Xi]

Subject to Xi ≤ e.

An allocation is an array X =< Xi/i = 1, . . . ,H > such that Xi ∈ ZL

for all i = 1, . . . ,H.

An allocation X is said to be feasible if
H∑

i=1

Xi = e.

A (constrained) market equilibrium is a pair 〈p∗, X∗〉 where p∗ is a price
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vector, X∗ is a feasible allocation such that for all i = 1, . . . ,H,X∗i solves:
Maximize [f i(Xi)− pT Xi]
Subject to Xi ≤ e.

In what follows and in view of the definition of (constrained) market
equilibrium no agent can consume more than one unit of any commodity.
Thus, for our purpose it is enough to consider the restriction of each f i to
the unit cube. Hence, an alternative way of representing the combinatorial
auction would be the following: Instead of representing a consumption
bundle as a vector with either zero or one as its coordinates, we may view
it as the set of items, which comprise the bundle. Thus if Xi is the input
bundle consumed by i and S = {j/(ej)T Xi = 1} then instead of f i(Xi),
we may write f i(S) to represent the utility (output) that agent i derives
(produces) as a consequence of utilizing the input bundle Xi.

In such a representation f i would cease to be defined on L-tuples of
integer valued vectors in the unit cube. Instead f i would be a non-negative
real valued function defined on subsets of {1, . . . , L}.

In fact the representation using sets of items is more common in the
auction theory literature. Pekec and Rothkopf (2003) contain a lucid sur-
vey of some of the major issues in combinatorial auctions. Our choice of
representation was largely dictated by considerations that permit the use
of simple algebra and thus lead to ”smoother” proofs of the results that we
obtain in this paper. However conceptualization of a combinatorial auction
may be facilitated if we adopt the alternative representation.

23.3 Games with Transferable Utilities

Given a positive integer n ≥ 3, and a set of agents N = {1, . . . , n}, let
∏

be the set of all non-empty subsets of N .
A non-negative TU game (or game with transferable utilities) is a func-

tion v :
∏

→ R+, such that: (i) For all i ∈ N : v({i}) = 0; (ii) v(S) > 0
for at least one S ∈

∏
. S ∈

∏
is said to be a coalition, and v(S) is said to

be the ”worth” of the coalition S. The reason why we use the prefix ”non-
negative” in the above definition is because in general a TU game need
not be non-negative. Further, a TU game normally specifies the worth of
the empty set to be zero. We define our game on non-empty sets. By
itself, requiring the worth of a singleton to be equal to zero, is a harmless
normalization.

Requiring the worth of at least one coalition to be positive makes the
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game non-trivial, as will be observed shortly.
A matching is a partition A of N , i.e. A is a non-empty collection of

mutually disjoint sets in
∏

whose union is N .
A pay-off vector is an element of RN

+ .
An outcome of is a pair (A, x), where x is a pay-off vector and A is a

matching.
An outcome (A, x) is said to belong to the matching core of the nonnegative
TU game v if:
(1) for all S ∈ A :

∑
i∈S

x(i) = v(S);

(2) for all S ∈
∏

:
∑
i∈S

x(i) ≥ v(S).

Let C(v) denote the set of outcomes that belong to the matching core
of v.

An outcome (A, x) in C(v) is said to belong to the core of v if and only
if A = {N}, i.e. the only realizable coalition in the partition A is the grand
coalition.

Thus the concept of the matching core of a non-negative TU game is
weaker than the core.

Since v(S) > 0 for at least one coalition S, (A, x) ∈ C(v) implies x 6= 0.

If we had allowed the worth of every coalition to be zero, then for such
a game v, C(v) = {(A, 0)/A is a partition of N}. Assuming that the worth
of at least coalition is positive, rules out such trivial possibilities.

The following example due to Ahmet Alkan shows that the matching
core of a nonnegative TU game v may be empty.

Example 23.1. (due to Ahmet Alkan): Let N = {1, 2, 3, 4, 5}. Let v(S) =
30 if S has exactly three agents and zero otherwise. Towards a contradiction
suppose (A, x) belongs to C(v). If S is a three agent set belonging to A,
then at x, at least one member of S, say j, gets at most 10. Since the agents
in N \ S get zero, the total amount obtained by j and agents in N \ S is
less than 30, although they form a three-member set.

Thus, every agent in N gets zero at x. Clearly, (A, x) does not belong
to C(v).



November 14, 2007 12:5 World Scientific Book - 9in x 6in ch23SomLahiri

Market Equilibrium for Combinatorial Auctions 407

23.4 Games with Transferable Utilities as Combinatorial
Auctions

Let L = n and H = 2n − 1.
For x ∈ ZL, let e(x) be the L-vector whose ith coordinate is min{xi, 1}.

Let
∏

= {S1, . . . , SH}. For i ∈ {1, . . . ,H}, let vi : ZL → R+ be defined as
follows:

vi(x) = vi(e(x)) = v(Si) if Si ⊂ {j/xj > 0},
= 0, otherwise.

[vi/i = 1, . . . ,H] is said to be the combinatorial auction induced by v.
The restriction of vi to {x ∈ ZL/x = e(x)} corresponds to v(Si) times

the Si-unanimity game, if we consider the set {j/xj = 1} instead of x itself.
For any i ∈ {1, . . . ,H} and price vector p, if Xi solves

Maximize [vi(Xi)− pT Xi]
Subject to Xi ≤ e

then it also solves
Maximize [vi(Xi)− pT Xi].
If Si is a singleton, then vi(x) = 0 for all x ∈ ZL.

For S ∈
∏

, let eS be defined to be equal to
∑
j∈S

ej .

Proposition 23.1. Let 〈p∗, X∗〉 be a market equilibrium for [vi/i =
1, . . . ,H]. Then, there exists a market equilibrium 〈p∗, X&〉 such that for
all k = 1, . . . ,H : X&k ∈ {0, eSk}.

Proof. Let S = Si ∈
∏

and suppose X∗i = eQ 6∈ {0, eS}.
Case 1: S is a proper subset of Q.
Since vi(eQ)− p∗T eQ ≥ vi(eS)− p∗T eS = vi(eQ)− p∗T eS .

Thus, 0 ≥ p∗T (eQ − eS) = p∗T eQ\S =
∑

j∈Q\S

p∗j .

Since p∗ ≥ 0, p∗j = 0 for all j ∈ Q \ S.
Let X#i = eS , X#k = X∗k + ej if Sk = {j} and j ∈ Q \ S, X#k = X∗k

otherwise.
It is easy to verify that 〈p∗, X#〉 is a market equilibrium:
vi(X#i)− p∗T X#i = v(S)−

∑
j∈S

p∗j = v(S)−
∑
j∈Q

p∗j = vi(X∗i)− p∗T X∗i;

vk(X#k)−p∗T X#k = vk(X∗k +ej)−p∗T X∗k−p∗j = vk(X∗k +ej)−p∗T X∗k

if Sk = {j} and j ∈ Q \ S.
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The feasibility of X# follows from the feasibility of X∗ and the fact that X#

is obtained from X∗ by transferring items from S to one or more coalitions
outside S.
For j ∈ Q \S and Sk = {j}, X∗k + ej does not belong to {0, ej} if and only
if X∗k is not equal to zero. Since X∗k cannot be equal to ej , it follows that
|{i/X∗k 6∈ {0, eSk}| > |{i/X#k 6∈ {0, eSk}|.
Case 2: S \Q is non-empty and Q \ S is non-empty.
Thus, vi(eQ) = 0.

Since −p∗T eQ = vi(eQ) − p∗T eQ ≥ vi(0) − p∗T 0 = 0 and since p∗ ≥ 0, we
get p∗j = 0 for all j ∈ Q.

Let X#i = 0, X#k = X∗k+ej if Sk = {j} and j ∈ Q, X#k = X∗k otherwise.
It is easy to verify that 〈p∗, X#〉 is a market equilibrium:
vi(X#i)− p∗T X#i = 0 = vi(X∗i)− p∗T X∗i;
vk(X#k)−p∗T X#k = vk(X∗k +ej)−p∗T X∗k−p∗j = vk(X∗k +ej)−p∗T X∗k

if Sk = {j} and j ∈ Q.

The feasibility of X# follows from the feasibility of X∗ and the fact that
X# is obtained from X∗ by transferring items belonging to coalition S to
the members of Q.
For j ∈ Q and Sk = {j}, X∗k + ej does not belong to {0, ej} if and only if
X∗k is not equal to zero. Since X∗k cannot be equal to ej , it follows that
|{i/X∗k 6∈ {0, eSk}| > |{i/X#k 6∈ {0, eSk}|.
Case 3: Q is a non-empty proper subset of S.
Thus, vi(eQ) = 0.

Since −p∗T eQ = vi(eQ) − p∗T eQ ≥ vi(0) − p∗T 0 = 0 and since p∗ ≥ 0, we
get p∗j = 0 for all j ∈ Q.

Let X#i = 0, X#k = X∗k+ej if Sk = {j} and j ∈ Q,X#k = X∗k otherwise.
It is easy to verify that 〈p∗, X#〉 is a market equilibrium:
vi(X#i)− p∗T X#i = 0 = vi(X∗i)− p∗T X∗i;
vk(X#k)−p∗T X#k = vk(X∗k +ej)−p∗T X∗k−p∗j = vk(X∗k +ej)−p∗T X∗k

if Sk = {j} and j ∈ Q.

The feasibility of X# follows from the feasibility of X∗ and the fact that X#

is obtained from X∗ by transferring items belonging to S to the members
of Q.

For j ∈ Q and Sk = {j}, X∗k + ej does not belong to {0, ej} if and only if
X∗k is not equal to zero. Since X∗k cannot be equal to ej , it follows that
|{i/X∗k 6∈ {0, eSk}| > |{i/X#k 6∈ {0, eSk}|.
Thus, in each case we obtain a market equilibrium 〈p∗, X#〉 such that
|{i/X∗k 6∈ {0, eSk}| > |{i/X#k 6∈ {0, eSe}|.
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Repeating the process at most finitely many times, we arrive at a market
equilibrium 〈p∗, X&〉 such that for all k = 1, . . . ,H : X&k ∈ {0, eSk}. �

Proposition 23.2. Let 〈p∗, X∗〉 be a market equilibrium for [vi/i =
1, . . . ,H] such that for all i = 1, . . . ,H : X∗i ∈ {0, eSi}. Then there ex-
ists a market equilibrium 〈q∗, X∗〉 such that vi(X∗i) − q∗T X∗i = 0 for all
i = 1, . . . ,H.

Proof. Since 〈p∗, X∗〉 is a equilibrium for the induced combinatorial auc-
tion [vi/i = 1, . . . ,H] and X∗i ∈ {0, esi} for all i = 1, . . . ,H, it must be the
case that {Si/X∗i 6= 0} is a partition of N . Further, vi(X∗i)− p∗T X∗i ≥ 0
for all i = 1, . . . ,H.

For i ∈ {1, . . . ,H} and X∗i = esi , let q∗j = p∗j +
(

v(Si)−p∗T X∗i

|Si|

)
for all

j ∈ Si.

Hence q∗ ∈ RL
+{′} and q∗ ≥ p∗.

Thus for i ∈ {1, . . . ,H} and X∗i = esi :

q∗T X∗i = q∗T esi =
∑
j∈Si

q∗j =
∑
j∈Si

p∗j + v(Si)− p∗T X∗i

=
∑
j∈Si

p∗j + v(Si)−
∑
j∈Si

p∗j = v(Si) = vi(X∗i).

If X∗i = 0, then vi(X∗i)− q∗T X∗i = 0.

Let x ∈ ZL.

Case 1: X∗i = eSi . If x ≥ X∗i, then vi(x) = vi(X∗i) = v(Si) and q∗T x ≥
q∗T X∗i.

Thus, vi(x)− q∗T x ≤ vi(X∗i)− q∗T X∗i.

If ¬(x ≥ X∗i) then vi(x) = 0 and q∗T x ≥ 0.

Thus, vi(x)− q∗T x ≤ 0 = vi(X∗i)− q∗T X∗i.

Case 2: X∗i = 0.

Thus, vi(X∗i)− q∗T X∗i = vi(X∗i)− p∗T X∗i = 0 ≥ vi(x)− p∗T x ≥ vi(x)−
q∗T x, since q∗ ≥ p ∗ .

Thus, 〈q∗, X∗〉 is a market equilibrium. �

In view of Proposition 23.2, we say that a market equilibrium 〈p∗, X∗〉
is a zero-profit market equilibrium if vi(X∗i) − q∗T X∗i = 0 for all
i = 1, . . . ,H.

Note: If the induced combinatorial auction has a market equilibrium (say)
〈p, X〉, then a combination of Propositions 23.1 and 23.2, provides a simple
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procedure by which a zero-profit market equilibrium can be constructed
from 〈p, X〉. If Xi ≥ eSi then let X∗i = eSi . The singleton coalitions{
{j}/j ∈ {Xi(j) = 1, j 6∈ Si}

}
are ”disengaged” and each such coalition {j}

is assigned the agent (object) ’j’ only at X∗. If (Xi ≥ eSi), then the single-
ton coalitions

{
{j}/j ∈ {Xi(j) = 1}

}
are all ”disengaged” and each such

coalition {j} is assigned the agent (object) ‘j’ only at X∗ once again. All
other coalitions are assigned nothing at X∗. This is precisely the construc-
tion outlined in the proof of Proposition 23.1. Using the formula indicated
in the proof of Proposition 23.2, we can now obtain a new price vector p∗,
such that 〈p∗, X∗〉 is a zero-profit market equilibrium.

23.5 Market Equilibrium and Matching Cores

In this section we establish the main consequences of our present investi-
gation.

Theorem 23.1. (A, x) belongs to C(v) if and only if 〈x,X∗〉 is a zero-
profit market equilibrium, where for i = 1, . . . ,H : [X∗i = eSi if and only if
Si ∈ A;X∗i = 0 if and only if Si ∈

∏
\A].

Proof. Let (A, x) belong to the matching core of v and 〈x, X∗〉 be as
defined in the statement of this theorem. Thus, x ≥ 0 and x 6= 0. This
implies that x is a price vector.
Suppose Si ∈ A.

Thus, X∗i = eSi and vi(X∗i) − xT X∗i = v(Si) −
∑
j∈Si

x(j) = 0. Further,

vi(eS)− xT eS = v(Si)−
∑
j∈S

x(j) ≤ v(Si)−
∑
j∈Si

x(j) = 0 if Si ⊂ S.

If Si 6⊂ S, then vi(eS)− xT eS = 0−
∑
j∈S

x(j) ≤ 0 and vi(0)− xT 0 = 0.

Since
H∑

i=1

X∗i =
∑

Si∈A

eSi = e, 〈x, X∗〉 is a zero profit market equilibrium.

Now suppose 〈x,X∗〉 is a zero profit market equilibrium and let A = {Si ∈∏
/X∗i = eSi}.

If v(Si)−
∑
j∈Si

x(j) = vi(esi)−
∑
j∈Si

x(j) = 0 if Si ∈ A.

If Si 6∈ A, then v(Si)−
∑
j∈Si

x(j) = vi(esi)−
∑
j∈Si

x(j) ≤ vi(0)− xT 0 = 0.

Thus, (A, x) ∈ C(v). �
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The following result follows directly from Propositions 23.1, 23.2 and The-
orem 23.1, and is the main consequence of the analysis reported above.

Theorem 23.2. Let v be a non-negative TU game and [vi/i = 1, . . . ,H]
be the combinatorial auction induced by v. Then C(v) is non-empty if and
only if there exists a market equilibrium for [vi/i = 1, . . . ,H].

It follows as a consequence of Theorem 23.2 that the induced combina-
torial auction of the TU game discussed in Example 23.1 has no market
equilibrium. We now verify it independently, without using Theorem 23.2.

Let [vi/i = 1, . . . ,H] be the induced combinatorial auction where H =
25 − 1 and L = 5.

Suppose towards a contradiction (x, X∗) is a market equilibrium for the
induced combinatorial auction. By Proposition 23.1, we may assume that
for all k = 1, . . . ,H : X∗k ∈ {0, e(Sk)}.

By Proposition 23.2, we may assume that (x, X∗) is a zero-profit equi-
librium. If more than three goods have positive price, then there exists
at least one three agent coalition represented by a buyer, who can make
positive profits instead of the zero profit that it receives, contradicting that
(x, X∗) is a market equilibrium. On the other hand, if every good has zero
price, then every three agent coalition represented by a buyer can make pos-
itive profits, contradicting that (x,X∗) is a zero-profit equilibrium. Thus,
at most three goods may have positive price and at least one good definitely
has positive price at x.

Any agent who receives a good with a positive price will make higher
profits if a good with zero price which is initially not allocated to it, but is
subsequently allocated to it, instead of the one with a positive price. Hence
one agent receives e at X∗ and the rest get nothing.

If the sum of the prices of any three goods is less than thirty, then
any S ∈

∏
with |S| = 3 who did not get anything makes higher profits

consuming these three goods, instead of the ones it consumes at the zero
profit equilibrium (x, X∗).

Hence the sum of prices of any three goods must be equal to thirty. But
then every good must have a positive price, leading to a contradiction.

23.6 Discussion

The concept of a matching core that we consider here is very similar to the
various stability concepts that have been invoked in the literature for the
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study of assignment and matching problems.
Let x be any pay-off vector. In order that x be ”viable” it is necessary

that there exists a matching A, such that for every coalition S in A, the
sum of its pay-offs does not exceed v(S). If (A, x) does not belong to the
matching core, then for all such matchings (i.e. those which make x viable),
there should exist at least one coalition S whose sum of pay-offs at x is less
than v(S). Thus at any outcome in the matching core of v, members of S

are clearly better off than at x. In a sense this along with the requirement
that S itself be a member of a matching in the matching core, is precisely
the content of external stability for a von Neumann Morgenstern stable set.
It is worth verifying what an analogous interpretation of internal stability
for stable sets would imply in our context. It may often be the case that
the problem being considered prohibits the formation of certain coalitions.
Thus for instance in a two-sided matching model, two or more agents on
the same side of the market cannot form a coalition. Our statement of a
nonnegative TU game is general enough to accommodate such possibilities.

If S is a coalition which is prohibited then we set its worth v(S) to be
equal to zero. Let (A, x) belong to C(v). If S does not belong to A, then
there is clearly no problem to be addressed. What if S belongs to A?

If S belongs to A, then x(k) must be equal to zero for all k in S. If
instead of (A, x) we considered the outcome (A∗, x) where A∗ = (A\{S})∪
{{k}/k ∈ S}, then it is easily verified that this new outcome belongs to C(v)
as well. The difference between A and A∗ is that all prohibited coalitions
in A are replaced by their members. Thus, our model is general enough to
cope with the exigencies that arise in matching problems, particularly in
the context of markets.
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Chapter 24
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Abstract

In the 1950s Arrow formulated an important conceptual framework enabling one
to discuss various collective decision making problems in an axiomatic fashion.
There is, nevertheless, no topological structure given in Arrow’s social choice
framework to make it possible to discuss continuity of social welfare functions. In
the turn of 1980s Chichilnisky had a systematic framework to discuss continuity
of certain type of social welfare functions. In this paper, it is explained what
continuity of a social welfare function is for Chichilnisky. It is then pointed
out that there are difficulties, if this viewpoint is extended to cover continuity
of Arrovian social welfare function, because of too specific assumption about the
topological structure and dimension of the state sets. The discussion suggests that
Chichilnisky’s framework is not much help in formulating appropriate topological
foundations for the Arrovian social choice theory conceptualizing, for example,
the workings of capitalistic democracy.

Key Words: Continuous Arrovian social choice processes, topological manifolds,

forcing over states

24.1 Introduction

Bergson (1938) stated Abba Lerner’s resource allocation problem in terms

of maximizing differentiable, and thus continuous economic welfare func-
1I am grateful to an anonymous referee, Hannu Nurmi, and Hannu Salonen for com-

ments. I also thank the Yrjö Jahnsson Foundation for financial support.
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tion; this calculus based approach to economic welfare was summarized and

distributed by Samuelson (1983, xxi–xxiv, 203–253). The broader, social

decision aspect of this map retained as a kind of fixed, ceteris paribus part.

Arrow (1950, 1951, 1952, 1963, 1967) reformulated Bergson’s approach

and extended explicitly the social decision part of the problem, covering

such issues as voting and legislation, instead of just market decisions. The

new formulation of social welfare function contained some new principles

and was in terms of set theory. As Bergson’s calculus based reasoning

became obsolete in this setting, continuity of a social welfare function was

not discussed. Arrow’s formulation set the broad standards for how social

choice problems were since discussed.

Unlike Bergson, who assumed full divisibility of all variables and im-

plicitly the Euclidean topology, Arrow made no fixed, specific assumption

about the algebraic or topological structure of the set social states, includ-

ing the question of cardinality. This was to attain full generality of the

social choice problem. The tacit assumption was that these kind of struc-

tures are specified only if the particular social choice problem investigated

requires it; to fix them beforehand would be unduly restrictive. Schofield

(1977), who build on Kramer (1973), was among the first to discuss in

a precise way the use of topological structures in social choice theory; in

particular, Schofield considered topological manifold structures on the set

of social states in spatial voting context; still, continuity properties of the

social choice rule was not in the forefront.

In the turn of 1980s Chichilnisky (1979, 1980), and also Chichilnisky

and Heal (1983), who referred to Arrow, Black, Condorcet, and the utility

tradition of and arising from Antonelli, Debreu, and others, took up the

question about continuity of social choice rule seriously. Saposnik (1975)

had already defined continuity for a particular class of social choice rules,

in case the set of social states is a compact connected subset of the Eu-

clidean space. According to Chichilnisky (1979, 1980), one should be able

to talk about continuity and discontinuity of social welfare functions. In

Chichilnisky’s approach, a specific topological manifold structure is first

defined over the set of social states. The notion of preference is formulated

as a certain type of generalized vector field over the space of states. Sets

of preferences are given, for example, the sup norm topologies. Finally,

continuity of a social welfare function—which is a mapping from the set of

preference profiles into the set of (social) preferences—is defined in terms

of these topologies, necessitating also some product considerations.

The amount of literature studying and using continuity properties of
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social choice rules is small as compared to the whole field of social choice.

Nevertheless, continuity of a function is basic to much of mathematics and

sciences, and its uses by analogy should be recalled. Chichilnisky’s approach

insists on continuity of certain type of social welfare functions, and it brings

the use of topological methods, especially differential topology, in forefront.

According to Lauwers (2000, 2), it can be considered as a “breakthrough”.

To solve the problem of continuous transformations in general social

choice theory adequately, Chichilnisky’s (1980) definition of continuous so-

cial welfare function should be able to deal the arising social choice prob-

lems in an appealing way. However, it does not quite do that. This can be

indicated indirectly. Before discussing Chichilnisky’s approach, Gaertner

(2006, 167) notes that it is “a step beyond a core of social choice” witness-

ing also involved discussions over the last 15–20 years. The whole idea of

continuity is sometimes questioned. Baigent (1997, 176) notes in discussing

Chichilnisky’s paper that “[T]he fact that Arrow chose a non-topological

framework which went unchallenged in social choice theory for some three

decades suggests that continuity was not viewed as greatly compelling by

many.”

The controversy about continuity of social choice rules tends to run

around in circles, and I wish to ask why is it, more precisely, that conti-

nuity of Chichilnisky’s social welfare function is not viewed simply as an

applicable “extension” to define continuity of the usual Arrovian social wel-

fare function. Is the controversy really about the condition of continuity or

is it about something else?

One can visualize the general problem situation as a two branching set of

reasons—one substantial and one formal—which would need to amalgamate

or “diamond” together in the end, so that the topological and the traditional

social choice developments would be compatible and could be fitted into a

common further development.
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Arrovian Social
Choice

Topological
Structure

Fig. 1 The Diamond Property
In other words, first, any general definition of social welfare function

should have a social choice footing covering the material that comes from

the “core”, mentioned by Gaertner. From here onwards, we assume that

this set of problems comes from Arrow’s (1963) definition of the social choice

problem. Second, the definition of topological structure should not limit

the problems to be investigated so that the basic social choice problems

from the core become unmanageable. (The diamond property here is an

informal analogue to the Church-Rosser diamond property used in logic.)

The purpose of this paper is to point out that there is a series of prob-

lems, that is, the diamond property for Arrovian social choice and topology

will fail, if the definition of Chichilnisky continuous social welfare function

is extended to cover the continuity of Arrovian social welfare function. This

is because the topological structure assumed on the set of social states in

Chichilnisky’s framework precludes the sufficiently general approach on so-

cial choice, limiting out, for example, certain classes of indivisibilities, basic

voting problems with candidates, problems of legislature involving judicial

statements, and in general, because the assumed fixed class of topologies

cannot adopt to all generic classes of Arrovian social choice problems.

24.2 Continuity via Topological Manifolds

24.2.1 Background

As Arrow (1951; 1963) reformulated Bergson’s (1938) notion of continuous

social welfare function in the turn of 1950s, a new notion, supported with
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axiomatic style of analysis, emerged which set the standards for discussing

social choice problems ever since. But the social welfare function was now

formulated without any idea of how to define, investigate, and make use

of continuity properties of these kind of maps, and there was not much

discussion or systematic effort either before the end of 1970s. In the turn

of 1980s Chichilnisky had a systematic framework to discuss continuity of

certain type of social welfare functions. This construction started from an

inside view of manifold theory; it did not try to apply some more general

frame of topological underpinnings, relating abstract set theory, algebra

and logic, suggested by Arrow’s social choice problem itself. Chichilnisky

(1980) formulated the notion of continuous social welfare function by (1)

restricting the allowed cardinality of the set of feasible social states by using

a particular, fixed topology defined over the set of states, and by (2) using

a different, non-Arrovian notion of preference, given by a certain mapping

between manifolds, instead of using the usual notion of two-placed relation

defined over the set of states.

Thus the concept of social welfare function was once again reformu-

lated, as Arrow had reformulated the Bergson’s welfare function, but with

the difference that Arrow’s social welfare function was, and still is, viewed

as a kind of canonical standard of frame, accompanied by a large number

of close variants. The class of topologies postulated for the set of states to-

gether with the dimension assumption used made the construction rather

particular from the point of view of general topology and also atypical from

the point of view of received social choice theory. Nevertheless, collective

choice principles could now be explicitly posed for the map, as was also

Arrow’s original way of dealing social choice problems, but this time con-

tinuity was definable for the map; and new type of results were obtained,

again mainly negative in character.

It is fundamental to Chichilnisky’s (1980) formulation of continuous

social welfare function that the set of social states on which preferences are

to be defined is taken to be a topological manifold X for which dim(X)

≥ 2. Manifolds with boundary are also allowed. Informally, this kind of

topological space can be viewed as a generalization of the usual Euclidean

space having at least 2 dimensions, in the sense that locally (i.e. in a

neighborhood of any of its points) it looks like the Euclidean space Rn for

fixed n ≥ 2; and in case the manifold has a boundary, we switch to the

Euclidean closed half-space Hn for n ≥ 2.

If this manifold is assumed to carry a differential structure, which is an

extra pile top on the purely topological structure, basic notions familiar
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from elementary calculus, like “linear approximation”and “smoothness”,

can be extended to this manifold. The notion of preference, as used by

Chichilnisky, becomes then definable over the manifold of states. In ad-

dition, the conceptual machine of general differential theory—differential

topology, differential geometry, and differential equations—can be then ap-

plied in working with this type of state-preference structure.

According to Chichilnisky (1982c), Arrow’s (1963) collective decision

making problem and the vast literature following that formulation has fo-

cused on finite state social choice problems. This mode of analysis is de-

scribed as “combinatorial” or “algebraic” by Chichilnisky (1982c, 337; 1980,

168). It is then asserted that the methods of analysis used in this approach

may not provide proper intuitive geometric understanding of the social

choice problem. Similar viewpoint is noted, for example, by Baryshnikov

(1993, 404; 1997, 208) and Heal (1997, 158). It is then suggested that the

problem should be formulated for certain generalizations of Euclidean state

sets.

It is also noted (Chichilnisky 1982c, 337, 346) that in this context,

continuity of a social welfare function becomes definable; and it is implied by

her discussion, that in this context, viewed as being pervasive for calculus-

based economic theory, it is also natural. This latter point is made also in

Chichilnisky (1991, 315–316).

According to Chichilnisky (1982c, 337, 338), continuity of a social wel-

fare function is not only a technical but also a desirable property, because

(1) it makes mistakes in identifying preferences less crucial, and (2) it per-

mits one to approximate social preferences—that is, images of profiles of

individual preferences under the social welfare function—on the basis of a

sample of individual preferences.

24.2.2 Chickhilnisky’s Smooth Social Welfare Function

Let X be the set of collective alternatives over which preferences are to

be defined. The set X is equipped with a topological structure having the

following additional property (called locally Euclidean of dimension n): if

x ∈ X , then there is an open set U ⊂ X such that x ∈ U and U ∼= Rn,

where “∼=” denotes topological equivalence. It is assumed that n is constant

and n ≥ 2. (A sufficient condition for a locally Euclidean space to have

a constant dimension is that it is connected, see e.g. Conlon (2001, 3;

Corollary 1.1.12).) In other words, it is assumed that X is a topological

manifold of dimension at least 2. A manifold is usually assumed to be
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also Hausdorff or second countable, or both. For example, X = R2 is a

2-dimensional manifold, and any open subset X ′ of X is a 2-dimensional

manifold.

It is basic that a topological space X has a positive, finite dimension

at most n, if and only if, X equals a union of its (n + 1) subspaces of

dimension zero. For example, the 2-dimensional manifold R2 is the union

of three subspaces Q2, P2, and R2 − (Q2 ∪ P2), all for which dim(Q2) =

dim(P2) = dim[R2 − (Q2 ∪ P2)] = 0; here, Q denotes the set of rational

numbers, and P denotes the set of irrational numbers.

Closed n-ball B̄n = {y ∈ Rn : ‖y‖ ≤ 1} is not a manifold in the

above sense, since a point on the boundary ∂B̄n = Sn−1 does not have

a neighborhood U ∼= U ′, where U ′ is an open subset of Rn. But it does

have a neighborhood U ∼= U ′′, such that U ′′ is open in a closed Euclidean

half-space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}. If this is the exemplar case,

the set X of collective alternatives is equipped with a topological structure

having the following property: if x ∈ X , then there is an open neighborhood

Ux of x in X such that Ux
∼= Wx, and Wx is an open subset, containing

x, of the Euclidean half-space Hn for n ≥ 2. In words, X is a manifold of

dimension at least 2 with boundary. Again, if needed, it may be assumed

that X is also Hausdorff, or has a countable basis, or both. The closed unit

2-ball B̄2 is manifold of dimension 2 with boundary ∂B̄2 = S2−1 = S1.

The interior is the open ball B2 = {y ∈ R2 : ‖y‖ < 1}.

Manifolds with boundary are not, in technical terms, manifolds, but

their generalization. Nevertheless, to avoid clumsy wording in our dis-

cussion, the term “manifold” refers to both manifolds and manifolds with

boundary, unless otherwise stated.

In Chichilnisky (1980) the set X of feasible alternatives is equipped

with a manifold topology having dimension at least 2. The usual case

investigated in many papers, like Chichilnisky (1979, 1982a, 1982b, 1983,

1986), is the case of manifold with boundary having dimension at least 2.

Other, non-topological assumptions, like sufficient smooth structure on the

manifold, is assumed whenever needed.

Arrow (1950, 1951, 1952, 1959, 1963) defined preference as a two-placed

relation on the set of all social states. The structure of states was held arbi-

trary up to specification for a particular purpose of application. In contrast,

Chichilnisky (1979, 348; 1980, 168–169; 1982a, 224; 1982b, 209–210; 1986,

132) and Chichilnisky and Heal (1983, 71–72) represented the notion of

preference as a certain type of mapping, defined on a topological manifold

X of feasible states. The manifold X is assumed to carry a tangent space at
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each point x ∈ X . The range of the map is then taken to be the manifold’s

tangent bundle TX , which is simply a collection of vector spaces, one glued

to each point of the manifold. As only ordinal preferences are considered

(no intensities of preference), vectors in each space are normalized to same

length, say to length one, leaving only the direction of the preference at

each point of the manifold. But there is more. Chichilnisky insists that a

preference p on X is represented as, at least, a continuous map. So we need

a topology on the set TX .

The tangent bundle TX comes with a natural topology. It is basic

(see, for example, Lee (2006, 81–82)) that if X is (differentiable and) Haus-

dorff, second countable, and locally Euclidean topological space of dim n,

then TX is (differentiable and) Hausdorff, second countable, and locally

Euclidean topological space of dim 2n.

Let X be such a differentiable manifold of dimension at least 2. A

Chichilnisky preference on X is a continuous—and at least once continu-

ously differentiable and locally integrable—mapping p : X −→ TX , written

p 7−→ p(x), with the property that s◦p = 1X . Here, ◦ is a product of maps

read from right to left, s is a continuous map s : TX −→ X , and 1X is

the mapping 1X(z) = z, for all z ∈ X , on X . Furthermore, p(x) will be

assumed to be normalized to length one.

TX

X

s p

Fig. 2 A preference p on a manifold X of states

Informally, a preference p on X is an “arrow” of length one attached to

each point of X , chosen to be tangent to X and vary continuously—and

smoothly and locally integrable fashion—from point to point. In mathe-

matical terms, it is simply a (locally integrable, C1, normalized) vector field

on a manifold X .

Let P denote the set of all preferences on X . In Chichilnisky (1980,

1986), the set P of preferences on X is topologized either with (1) the sup

norm or with (2) a Sobolev norm, depending on the nature of the manifold.

Sup norm is used, in case the manifold, over which preferences are defined,

is a manifold with boundary, and the Sobolev norm is used, if the manifold

does not have a boundary.
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The k-fold product P × P × · · · × P forms the domain of the social

welfare function F ; it is the set of preference profiles, k being the number

of individuals in the society V . In Lauwers (2000, 5), the set P V of profiles

is equipped with the product topology.

We now have a definition of continuous social welfare function in the

Chichilnisky sense. A Chichilnisky social welfare function F : P V −→ P is

said to be continuous, if F−1(U) is open, whenever U ⊂ P is open.

24.2.3 Illustrations of the Framework

Considers the following two postulates for the Chichilnisky continuous so-

cial welfare function F :

Unanimity : F (p, . . . , p) = p for any p ∈ P .

Anonymity : F (p1, . . . pk) = F (ph(1), . . . , ph(k)) for any bijection
h from {1, .., k} to itself.

Chichilnisky (1980, 170–174) shows that, if the set X of social states is

equipped with a manifold topology such that dim(X) ≥ 2 and preferences

of finite number of individuals are represented as vector fields on X , as

described above, then there exists no Chichilnisky continuous social welfare

function satisfying unanimity and anonymity.

A simple version of this theorem is given in Chichilnisky (1979, 348–

351). There, it is shown that for a two individual society, with two perfectly

divisible Euclidean commodities, a Chichilnisky social welfare function F :

P × P −→ P , which is continuous, anonymous, and respects unanimity

exists if, and only if, there exists a continuous mapping from the closed

unit disk of R2 into itself without fixed point. Recall that a closed unit disk

of R2 is compact convex set, and the Brouwer (1912) fixed point theorem,

or rather its corollary, states that a continuous function from such a set

into itself has a fixed point. Hence, a social choice “paradox”, nonexistence

of such a map F .

Baigent (1984, 1985) reformulates Chichilnisky’s continuity condition

by using the quotient topology (arising from the equivalence classes in-

duced by anonymity) on the set of profiles, instead of product topology.

Furthermore, he takes preference to be a connected, reflexive, and transi-

tive relation on a set of topological space of alternatives, and he notes that

the set of preferences can be endowed with various other topologies than
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Chichilnisky’s (1980), like Debreu (1969), Kannai (1970, 1972), Hilden-

brand (1974), and others. Lauwers (2002, 265) weakens the condition of

anonymity in Chichilnisky’s theorem to one-individual anonymity, that is,

if precisely one individual has a deviating preference on a particular pro-

file, and the other individuals have identical preference, then the identity

of this deviating individual does not matter in determining the collective

preference.

Number of results have been published using Chichilnisky’s notion of

continuous social welfare function, or very similar construction, for exam-

ple, Chichilnisky and Heal (1983), and Weinberger (2004). We mention

here two further results by Chichilnisky. First is related to the majority de-

cision making. Consider the following conditions for the Chichilnisky social

welfare function F .

Pareto condition: If all individuals in society V prefer social
state x ∈ X to social state y ∈ X, then according to the image
of profile of preferences under F , x is socially preferred to y.

Decisive majority condition: Let V be the set of individuals. If
there is a subset V ′ ⊂ V of individuals whose preferences agree
on all social states x ∈ X and for individuals in V ′c preferences
agree on all states but in an opposite direction as those in V ′,
and card(V ′) 6= card(V ′c), then the image of this preference
profile under F agrees with the majority of individuals.

Chichilnisky (1982b, 217–220) shows that, if the set of individuals is

finite and the preferences of individuals are defined over a topological man-

ifold X such that dim(X) ≥ 2, then there is no continuous Chichilnisky

social welfare function F : P V −→ P satisfying both the Pareto condition

and the decisive majority condition.

Yet another result by Chichilnisky is related to the relationship between

continuous Pareto function and dictatorship. Consider the following collec-

tive choice principle for a Chichilnisky social welfare function F :

Weak Positive Association: If F (f) = pk for some individual
k and some profile f ∈ P V , then F (f̄−k, pk) 6= pk with f =
(−pk,−pk, · · · ,−pk).

Chichilnisky (1982a, 228–233) shows the following result. Suppose that

there are at least two individuals and preferences are defined over a topo-

logical manifold X such that dim(X) ≥ 3, and suppose that F : P V −→ P

is a continuous Chichilnisky social welfare function satisfying the conditions

of Pareto and Weak positive association. Then, there exists a homotopy h
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defined on P V × [0, 1], from the function F to a dictatorial social welfare

function F ′.

According to Saari (1997, 221–224), this result is not to be interpreted

as merely another dictatorial result, but for example, in the following way,

which illustrates also number of nondictatorial Chichilnisky social welfare

functions. Suppose a continuous Paretian function F is first given. Start

deforming it continuously towards the dictatorial function F ′; there exists

a homotopy between such a maps according to the theorem. This deforma-

tion gives abundance of nondictatorial functions where one individual plays

a dominant role, but does not exclusively determine the social preference.

However, when this continuous deformation starts to approach the dictato-

rial function F ′, the influence of other, non-dominant individuals decrease,

until F ′, the genuinely dictatorial function is reached. It is also said in this

context that the continuous Pareto function F is topologically homotopic

(continuously deformable) to dictatorial function F ′.

According to Baryshnikov (2000, 124–124), the deformation process

could be erratic, giving “wild” Chichilnisky social welfare functions. Thus,

one might consider a more refined class of continuous functions, the Pareto-

isotopic functions, which satisfy some given collective decision principles all

the way from start to end. Baryshnikov (2000, 130 –131) shows then a kind

of possibility result, stating that, if there are four individuals and prefer-

ences are defined over a 3-dimensional space, then there are continuous

Pareto welfare functions that are not isotopic to dictatorial rules.

24.2.4 Implications of the Manifold View

The importance of Chichilnisky’s view on social welfare function is that it

re-inserts continuity. Although this is done for very particular class of so-

cial welfare functions it is still sufficiently general so that various axiomatic

collective choice principles could be tested with a representative function,

and so, certain type of social choice problems can be investigated axiomat-

ically, like in ordinal Arrovian social choice theory, but now in a continuous

framework.

Chichilnisky’s assumption of topological manifold states implies that

the set of states is equipped with not only a topology, but a very particu-

lar topology. Properties like local path connectedness, local compactness,

second countability, and requirement that the space has at most countably

many components, need to be assumed on the set of states. But more im-

portantly, the assumption of manifold dimension at least 2 implies that the



January 24, 2008 19:33 World Scientific Book - 9in x 6in ch24070608ISMPDM

426 Mathematical Programming and Game Theory for Decision Making

cardinality of the set of states must be at least c. This is easily seen, for

example, as follows. Suppose that X is the manifold of states for which

dim(X) ≥ 2. Let x be a social state in X . There must be an open set

U ⊂ X , which contains the state x such that U ∼= U ′, and U ′ is some open

set in Rn for n ≥ 2. Every nonempty open set of Rn, where n is a positive

integer, has cardinality c. Since the open set U of states is bijected to such

U ’, the set U must have cardinality c. But since U is a subset of X , the set

X must have cardinality at least c.

This poses rather severe restrictions for purposes of general choice the-

ory. To re-iterate: It is tacitly assumed that the set of social states must

be infinite, thus all finite state social choice problems, having topology or

not, are excluded. It is also assumed that the set of social states must be

uncountable, and so all countably many infinite state social choice problems

are excluded.

Finally, it is assumed that the set of uncountably infinite states must

have a topological structure, and the structure cannot be freely fixed (con-

sistent with the cardinality assumption), but it must be of quite special

class—namely, a manifold topology X of dim(X) ≥ 2. This precludes vast

amount of infinite state social choice problems, having topology over states

or not.

As we have seen, the manifold topology could be in principle applied

to finite and countably infinite set of states having the required topological

structure, but it is the dimension assumption that precludes this possibility.

So there will be problems, if Chichilnisky’s continuity construction

should be applied to cover Arrovian social choice problems. We will discuss

these more specifically for the rest of the paper, but in brief, they are as

follows. To define continuity of the social welfare function it is necessary

to define topology on the domain (the set of preference profiles) and on the

range (the set of social preferences) of the function. Chichilnisky’s approach

provides a direction to do that in a certain way. However, putting aside the

different definitions of preference in Chichilnisky and Arrow, the approach

can hardly be regarded even as an adequate, not to say desirable, definition

for continuity for Arrovian social choice problems. To do this, it would be

necessary that (1) the definition works with both finite and infinite state

social choice problems, (2) it works with highly disconnected state sets, (3)

it allows generic structures on state sets, and (4) in general, it allows state

sets, where there is no topology defined at all. It is readily seen that the

Chichilnisky’s definition, taken as such, cannot cover these.

As for example, Baigent (1997, 176–177) has demanded justification for
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continuity and particular topologies used, it is perhaps not so much that the

continuity itself needs to be justificated or, for that matter, the topologies

used, in so far as they can be freely fixed; but what is important, is that

the definition of continuity should work in Arrovian social choice contexts.

It should have a social choice footing.

24.3 Manifolds and Arrovian Social Choice Systems

24.3.1 Simple Arrow-type Social Choice System

One implication of Arrow’s (1951; 1963) parsimonious treatment of col-

lective alternatives is that the domain of choice and the possible struc-

ture it might have are open-ended subject to possible interpretation and

parametrization of the social choice problem at hand. So, to evaluate any

topological formulation for Arrovian social choice process, that proceeds by

fixing a class of topological structures over the set of collective alternatives

to define continuity of the preference transformations, it is necessary to

identify some basic examples of what kind of sets and subsets are involved

in the social choice process, when the final social state is arrived at. For

this purpose, we consider a simple Arrow-type social choice system con-

sisting of various exemplar parts—economic, political, and legal—related

to the workings of capitalistic democracy. This is an important example of

social choice problem in Arrow (1963). It is pointed out next that a general

formulation of continuity for an Arrovian social welfare function, capturing

the workings of capitalistic democracy, should not preclude simple abstract

sets (e.g. countable sets of alternatives), topological spaces in general (e.g.

zero-dimensional spaces), or first-order structures (e.g. Boolean algebras).

Consider first the case of various political decision making methods. If

the continuity formulation assumes a category of objects representing the

realm of collective alternatives that does not allow finite sets, then it cannot

be assured that the social choice process covers properly various important

voting methods. One basic example is the simple majority decision making

method, investigated e.g. by Arrow (1963), by May (1952), and for count-

able society by Fey (2004). For a finite society, this method simply states

that an alternative x is weakly preferred to alternative y if, and only if,

the number of individuals that weakly prefers x to y is at least as great

as the number of individuals that weakly prefers y to x. The method is

already applicable to sets of alternatives that contain at least two distinct

elements. Examples include two competing government officials {v, u}, two
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competing public projects {a, b}, and two competing legislative proposals

{L,L′}. For precisely two alternatives, the simple majority decision making

method satisfies Arrow’s (1963, 46–48) conditions on positive association,

independence, nonimposition, and nondictatorship. A social welfare func-

tion like this will yield, obviously, an ordering of two alternatives for every

set of individual orderings over such a set. Arrow (1963, 48) notes that this

Possibility Theorem for Two Alternatives is “the logical foundation of the

Anglo-American two-party system.”

If it cannot be assured that the topological (continuous, or for that mat-

ter, discontinuous) social choice process covers various important political

decision making methods, including the simple majority decision making

method, then this kind of formulation cannot be taken to represent properly

continuous Arrovian social choice process, capturing the workings of capi-

talistic democracy. This is because the purpose of Arrow’s (1963) original

notion of social welfare function was to offer a conceptualization of the prin-

cipal social choice methods used in the social organization, characterized

by some axiomatization suited for that specific purpose, and for capitalistic

democracy the map should, according to Arrow (1963), cover the various

voting methods used to make political decisions. These will include the

simple majority decision making method. As this method is already defin-

able with precisely two alternatives, any formulation that precludes finite

sets at the outset is unsatisfactory for our purposes.

Consider then the case of economic (private asset) decision making

methods. If a formulation of general continuous social choice process as-

sumes a formal category of objects representing sets of collective alterna-

tives that does not allow at most countable sets, then it cannot be assured

that the process covers the broad variety of economic exchange systems,

including those addressing the problem of economic indivisibilities. Take

for example the economic exchange system with integer number indivisi-

bilities, proposed by Dierker (1971), for which there are finite number n

of private, input-output good types, and finite set V of economic agents

v. The purely individualistic consumption set Xv ⊂ Zn, that can include

negative consumption, has cardinality at most ℵ0 for each agent v ∈ V ; and

the set of all logically possible allocations with fixed private consumption

sets, hom(V,
⋃

Xv) = {x | x : V −→
⋃

Xv}, has cardinality at most ℵ0.

If it cannot be assured that the continuity formulation covers the broad

variety of economic exchange systems, including those addressing the prob-

lem of economic indivisibilities, the formulation cannot be taken to repre-

sent properly continuous Arrovian social choice process conceptualizing e.g.
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the workings of capitalistic democracy. For Arrow (1963), another part of

the social welfare function, dealing capitalistic democracy, was purported

to amalgamate price-mediated exchange systems. With this respect he

makes it clear that the process should be amenable to economic indivisibil-

ities. According to Arrow (1963, 17), “[I]n order to handle such problems

as indivisibilities, which have been productive of so much controversy in

the field of welfare economics, it is necessary to assume that some of the

components of the social state are discrete variables.” He (1978, 188) also

points out, “[I]n some deep sense there are increasing returns to scale. The

true basis for division of labor is the value to specialization, not merely in

the economy but in society as a whole.” So, if a continuity formulation does

not allow finite or denumerable sets of alternatives, it cannot be properly

extended to cover continuity of Arrovian social welfare functions.

Full divisibility of goods was not perhaps the true desideratum of the

most general, final model of general economic equilibrium either. For exam-

ple, in 1950s Debreu (1959, 30) notes in his classic Theory of Value before

he proceeds to the formal analysis: “[I]t will be assumed instead that this

quantity [of integer number of goods such as trucks] can be any real num-

ber. This assumption of perfect divisibility is imposed by the present stage

of development of economics.” Then a list of other examples followed: ma-

chine tools, linotypes, cranes, Bessemer converters, houses, refrigerators,

trees, sheep, shoes, turbines, and so on. As we have seen above, Arrow

shared this desideratum too in a more general social choice contexts.

From time to time, the following three persistent assertions about Ar-

rovian social choice framework are made in the literature: (1) Arrovian

social welfare functions are definable (only) with finite alternative sets

(e.g. Baigent 1987, 161), (2) Arrovian social welfare functions are definable

(only) with “discrete” sets of alternatives (e.g. Lauwers 2000, 1), and (3)

continuity cannot be defined for finite sets of alternatives (e.g. Gaertner

2006, 168). For general Arrovian social choice framework, as a formal con-

ceptualization, there is no need to assume (1) or (2). The statement (3)

is also not true: take for example the trivial map ∅ −→ ∅, where ∅ has

all subsets open. This vacuous construction is as finite as the “finite” can

possibly get, yet the mapping is continuous. (Although the space ∅ is also

a topological manifold, the dim(∅) can be any integer n, even negative.)

So far we have discussed only, in principle, about abstract sets (i.e. the

abstract elements are simply parametrizable into particular alternatives

under consideration), which do not necessarily have any formal external

structure, besides the topological property of the cardinality of a set. This
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is the Cantorian freedom to keep in general social choice theory. For illus-

trative purposes we used also some intuitions arising from integer number

systems. If topologies are really needed for sets of alternatives, the choice

of topological properties may not be completely arbitrary. Take, for ex-

ample, the set of positive integers Z+; let Z+ have all subsets open. The

space Z+ is locally compact, locally path connected, second countable, and

Hausdorff, but it is zero-dimensional and hence not of positive dimension.

Some of these properties will change under infinite products. The space

of all logically possible allotment of goods hom(V, Zn
+), under Tychonoff

products and for V countable infinite, is Hausdorff, zero-dimensional, and

totally disconnected; and although it is second countable, it is not anymore

locally compact or locally path connected. Furthermore, if V is uncount-

able, the space hom(V, Zn
+) is not even second countable. The space Z+ is

not compact but it has a Stone-Čech compactification. The compactified

space is compact, zero-dimensional, and Hausdorff; and although it is also

locally compact, it is not locally path connected or second countable.—

This is also a good place to note that if a set is topologically connected and

contains at least two distinct elements, it must have cardinality at least c.

Let us now get back to the main line of argument. Consider the case

of legislation and the problem of designing a structure for the overall set

of alternatives. Legislation is an important part of the original Arrow’s

collective decision making problem, although it seems that it is not much

investigated by Arrow himself. The problem is mentioned by Arrow (1952,

46; 1963, 1), and it is briefly discussed again in Arrow (1997b) in view

of the U.S. Supreme Court Decisions. The latter problem was studied by

Easterbrook (1982), Stearns (1994), and later also by Stearns (2002). The

issues there relate, for example, to “consistency” of legal decisions made at

different time periods.

According to Knight (1942, 252) institutions and law first came into

being from causal process and became a social problem in connection with

the enforcement of conformity against “recalcitrant” individuals. Knight

(1942, 254) notes that this must have happened long time before “deliberate

change in law”, that is, legislation, was thought by anyone. According

to Arrow (1997a, xvi–xvii), only with the Age of Enlightment does there

appear a systematic formal approach to methods of voting in legislatures

and structure of law, with the work of Jean-Charles de Borda, Marquis de

Condorcet, and others.

The existing complex capitalistic democracies rely substantively on con-

tracting between agents or groups of agents. One economic reason why
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agents acting under complex exchange systems would wish to have an oper-

ational legal system is to have a formal contractual assurance in large-scale

investments (McMillan 2002, 60). For instance, suppose a group of agents

take a large investment project for which the resulting income can be col-

lected only after a long period of time. Here, trust and honesty can be of

suspect, and the gain from “taking the money and running” may exceed

any costs to recalcitrant agent’s reputation. Nevertheless, the law, backed

up (e.g.) by government actions, can promote the investment.

In a more fundamental sense the adopted law, formally codified or not,

is related to agents freedom to dispose private assets and their autonomy

to design transactions with others, for example by contracting. To specify

the legal and hence the enforced contractual alternatives, and also their

structure, and the structure they induce on the overall set of alternatives,

we need to specify a sufficiently common “language” for which the relevant

parts of economic, political, and legal reality can be “named” and “oper-

ated” upon. This is in fact a deep assumption about the inner properties

of the agents themselves, that is, that they belong to the same life form

and could in principle apprehend to play “the same game”, even if they

at the moment do not seem to do so. Hence, the notion of “language”, as

used here, is not related to problems arising from any potential misunder-

standing of the “meaning” of non-logical symbols of the “language”, in so

far as these misunderstandings can be, at least in principle, clarified by the

agents.

Furthermore, we are not necessarily talking about written or spoken

“languages” at all here, but about some sufficiently shared conceptions

about economic reality. The notion of “language” is thus used in the same

fashion as in abstract model theoretical logic. Also, it is basic that the

logical theory of models and topology are closely related. For example, the

notion of deductive closure on our state descriptions X can be defined as a

generalization of topological structure by weakening Kuratowski’s closure

axioms on closure operation Cl : 2X −→ 2X .

A general formulation of continuous social choice process should not

preclude general topological state spaces, including, for example, zero-

dimensional spaces; also, assuming (e.g.) that the actions of the agents can

themselves affect the generic structure of the overall set of alternatives, it

should not preclude any reasonable first-order structure over states. Other-

wise, it cannot be assured that the purely formal features of legal statements

and the agreements they enforce can be satisfactorily, if at all, captured;

also, there is then no assurance that the formulation is compatible with the
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structure of the overall set of alternatives, conditioned, for example, by the

content of the adopted legal design.

A propositional legal statement L that is “true” (i.e. has a value 1) un-

der any given set of circumstances δ : U −→ {0,1} is a clopen set ∆(L) in

a zero-dimensional topological space {0,1}U , where U contains the atomic

components of the used legal language. The legal statement L determines

under logical equivalence ∼, a bundle [L] of logically equivalent legal state-

ments. Letting A be the set of all law bundles, we have a Lindenbaum

algebra A = (A,⊕,⊗, c,0,1) of law bundles, which is a formal theory of

first-order language.

The preferences of agents are defined, for example, over X ′ ⊂ A. A so-

cial choice, say [L] ∈ X ′, is then made. Nevertheless, whether X ′ is taken

separately from overall collective alternatives X or subsumed in X , the con-

tent of the adopted legal design [L] conditions also the structural features

of X by (e.g.) enforcing certain agreements and contractual relationships

but not others. A specific contracting problem, which “makes explicit the

language used,” is investigated in Battigalli and Maggi (2002).

Furthermore, a legal system is compiled in pieces and may take long time

to emerge. Although law is common good to all agents, it can condition

allocations and income distribution and hence, some groups of agents would

wish to develop it in a certain direction, while another groups would wish

to take it (perhaps) completely opposite direction, so there will be all kind

of interferences, when the eventual law builds up.

In a simple formal description, we make use of an abstract game in which

there are two players (representing e.g. groups of agents, which need not be

fixed or finite) who build the structure on X . Agents ∃ wish to play certain

direction, agents ∀ (perhaps) another direction. Players move, for example,

in turns. Players operate on the restriction that they can write only finite

amount of information at a time, which affects the structural design of X ,

and the players write these conditions so that they are compatible with

what has been written so far. At each stage all previous moves done in

the game are assumed to be known. For example, ∃ tries to choose moves

so that the eventual structure on states X will have a property Φ (e.g. a

design for increasing long term welfare of the agents), while ∀s moves may

interfere with ∃s project. It is intuitive that, if Φ stays in effect for all

subsequent stages of the social choice process, no matter what ∀ does, it is

enforced by some conditions already written down.

Let x be a set of first-order legal statements conditioning the structure of

X . We assume that each x is taken from a set C of sets of legal statements
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satisfying certain purely logical “consistency” features, and x is then called

a condition. Also it is assumed that at most finitely many new logical

constants occur in any x.
⋃

x̄ is the union of a chain x̄ = (xi)i<ω of

conditions. Note that
⋃

x̄ determines a formal first-order structure on X ,

and the above referred Φ is a property which the set
⋃

x̄ can have or fail

to have.

Let E be a subset of ω. Players ∀ and ∃ play the game G(Φ; E) by

choosing a construction sequence x̄ consisting of legal statement sets xi.

Player ∃ has the choice of xi if i ∈ E, and otherwise ∀ chooses xi. It

can be assumed, for example, that ∀ moves first by choosing x0 and both

players have infinitely many moves (e.g. making choices in turn). And at

each stage of the construction, the player who makes the choice knows all

previous moves of the game. Player ∃ wins the game G(Φ; E) if, and only

if, at the end of the game
⋃

x̄ has the property Φ.

If for any position (x0, . . . , xk) in a game G(Φ; E) it holds that if a

condition y ⊂ xk, then the position is winning for player ∃, then it is said

that y “forces” Φ; that is, as soon as ∃ has got y into
⋃

x̄, the player ∃

can be sure of winning. The compiled first-order generic structure on social

states X is a model of
⋃

x̄.

This kind of game for enforcing properties on the set of states is an

application of forcing, also called construction by games, which is used in

logic for building models in general, see e.g. Hodges (2006). For our pur-

poses, it should be clear that if it cannot be assured that the continuity

formulation of social choice process is compatible with various “language”

features, arising from legal statements and the induced contractual envi-

ronments, and ideally also with various first-order structures on X , that

can have quite peculiar properties, then this kind of formulation cannot

be taken to represent properly continuous Arrovian social choice process,

conceptualizing e.g. the workings of capitalistic democracy.

24.3.2 Market Mechanism and Welfare

Market mechanism and its economic welfare properties defines an impor-

tant subclass of Arrow’s collective decision making problem. Arrow (1963,

17) notes that in order to handle such issues as economic indivisibilities it

is necessary to assume that some of the components of the collective alter-

native are ”discrete” variables. It is pointed out here that in the presence

of certain classes of indivisibilities, the Chichilnisky (1980) continuous so-

cial welfare function is not defined, and even if it is defined up to required
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topological homeomorphism of the state set structure, it may omit the eco-

nomically important features of the collective alternatives amounting to

dimension zero. Furthermore, to attain the fullest generality and compat-

ibility with nonmarket contexts like voting, Arrow (1963, 11– 19) did not

fix any apriori notions of satiation or nonsatiation on preference, whereas

Chichilnisky works mainly with nonsatiated preferences and implies unnec-

essary strong assumptions with this respect. Third, the notion of ”discrete”

tends to embroil confusion in the literature, when the relationship between

Arrow’s and Chichilnisky’s work is discussed, and the notion of discreteness

is briefly commented at the end of this section.

In Chichilnisky’s (1980) definition of continuous social welfare function

preferences are defined over a topological manifold that has a dimension

at least 2. This dimension specification implies that the set, over which

preferences are defined, must have cardinality at least c. This is unneces-

sarily large cardinality assumption in view of general model of preference

nonsatiation. The cardinality ℵ0 suffices for this purpose.

There are, however, more important problems that arise, for example,

from the commodity indivisibilities. In considering the context of market

mechanism and its welfare properties, the only two possible social state

models that Arrow (1963, 16–17; 1950, 25–26) wants to exclude right from

the beginning are (1) the case where all commodities are perfectly divisible,

on the grounds of potential indivisibilities, and (2) the case where there is

only one commodity, on the grounds of practical non-relevance.

Thus, the simplest possible Arrow social choice problem, when there

are commodities, is a two commodity world in which at least one commod-

ity is indivisible. Let Xv = X × X ′ be the two commodity consumption

set for the individual v in society V such that at least one of the sets de-

scribes indivisible commodity. A special case of Arrow’s choice problem,

which is assumed usually in welfare economics, is when individuals have

preferences over only own consumption sets; these preferences are called

taste-preferences by Arrow (1963). In this case, our simple example will be

excluded from Chichilnisky’s definition of continuous social welfare func-

tion. The Chichilnisky approach operates under the assumption of topo-

logical diffeomorphisms between applied state sets, when one set X ′′ of

dimension at least 2 is given. However, here the dimension of Xv is at

most 1, so there cannot be any continuous bijection, and hence no topo-

logical homeomorphism or any diffeomorphism, between Xv and a set X ′′

having dimension at least 2, although the sets may, or may not have the

same cardinality. (Recall that cardinality of a set is a topological prop-
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erty preserved under continuous bijections, but the theorems of Hilbert,

Brouwer, and Peano states that there is no continuous bijection between

two continuums of different order.)

Consider then the following particular case. Let the consumption set

for an individual v be Xv = R+ × {0, 1, 2}, where the second commodity

is indivisible. This one-dimensional problem is taken from Ellickson (1993,

108). Ellickson (1993) considers more generally various detailed examples

using refined models of general equilibrium, like Aumann’s (1964) infinite

population framework, to handle the cases where at least one component

is divisible, and other commodities may be indivisible. This reasoning

presupposes, of course, the standard Euclidean topology on divisible factor

R+. Ellickson (1993, 135) even goes on to say: “[A]rguably all commodities

are indivisible.”

Consider the following case investigated by Inoue (2006). Let the con-

sumption set Xv for an individual v be a subset of the finite product Zn.

Inoue (2006) reconsiders the technical assumption, using infinite population

multimarket context, that at least one factor must be a divisible good, in

the sense that he considers the case where all commodities are purely indi-

visible and can be consumed only in integer amounts. (For Inoue (2006),

the consumption set Xv ⊂ Zn
+ is taken to be a subset of universal class χ

of consumption sets, formed in a certain way, and χ is endowed with the

topology of closed convergence. In this framework, a preference p can be

taken to be a subset of Zn × Zn, and the set P of preferences is endowed

with the topology of closed convergence. But we do not follow necessarily

this line of thinking here.)

For our purposes, a fixed Xv ⊂ Zn can be taken to be a topological

manifold, supposing that n is finite. Assume furthermore that n ≥ 2. The

proper topological dimension of Xv is 0 for any v ∈ V , and not n. Sup-

pose that individual’s preference can be defined not only over individual’s

own consumption set, but also over other individuals’ consumption sets; for

example, if preferences are what Arrow (1963) calls value-preferences. Ac-

cording to Chichilnisky (1980, 169), the dimension of collective consumption

set X is calculated as follows: if it is possible that individual has prefer-

ences also over other individuals’ choices, then the dim(X) = dim(X) · k,

k being the cardinality of finite society V .

Let κ be arbitrary, finite or infinite, cardinality of the set V . (If V

is infinite, the set X of collective alternatives is not necessarily manifold,

but it is still zero-dimensional.) Then if the dimension of the social choice

problem X is calculated as in Chichilnisky (1980), the dim(X) = 0, since
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by simple Cantor arithmetic dim(X) · κ = card(∅) · κ = card(∅ × V ) =

card(∅) = 0.

If there are, unlike in Inoue (2006), ℵ0 or c purely indivisible commodi-

ties, the topological dimension of Xv is still zero, and so the dimension

of X is also zero. (Although Xv is then not necessarily manifold, it is

zero-dimensional.) This is independent of the cardinality of the set of in-

dividuals, and whether individual’s preferences are defined only over indi-

vidual’s own consumption set, or also over other individuals’ consumption

sets. Thus, in case of purely indivisible commodities, the collective alter-

native set X cannot be topologically equivalent to a manifold of dimension

at least 2, as required in Chichilnisky (1980). Hence, the continuity of

Chichilnisky’s social welfare function is not defined in this case, and the

definition is inapplicable for Arrow’s social choice problem, which does not

preclude the purely indivisible commodity world. This is so, whether there

are finite or infinite kinds of such commodities, and whether there are finite

or infinite number of individuals.

Inoue (2006) notes that most consumer commodities are available only

on integer amounts, despite their physical appearance (e.g. wine is liquid,

but it is usually sold in bottles). Some commodities could be thought as a

kind of grained indivisibles (i.e. commodities that are like pebbles and for

which the distinction may matter, but not so much as in the case of integer

goods), or in rare cases, even more finely as a kind of liquid (e.g. gasoline

for a car from the station). The grained indivisibilities work somewhat

like rational numbers, which is a zero-dimensional space. The liquid case is

usually thought as a set of real numbers, equipped with the usual Euclidean

topology. It is, nevertheless, not necessary to conceptualize this situation as

a Euclidean real number space; it can be viewed as a set of real numbers, or

more generally any linearly ordered set, equipped with, for example, a non-

Euclidean Sorgenfrey (1947) topology, which is again a zero-dimensional

space. It is basic that any, finite or infinite, product of zero-dimensional

spaces is zero-dimensional.

Taking the discrete variable literally in Arrow’s description of social

state, it means that the variable has countable number of possible realiza-

tions, and so the corresponding state factor set should have cardinality at

most ℵ0. This is not yet very fruitful for general theory. Suppose then

that the factor set has the discrete topology. This does not by itself restrict

the cardinality of the factor set to be ℵ0; it can be countable or uncount-

able. Nonetheless, infinite products are not discrete spaces. Since the use

of merely discrete topology for purposes of economic or other type of in-
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divisibility excludes many if not all (nontrivial) topological spaces from

considerations, it is appropriate to consider some generalization of topo-

logical discreteness, like zero-dimensionality. All discrete spaces are zero-

dimensional, but the converse does not hold.

24.3.3 Voting

Collective decision problem, such as the selection of a person for office by

a vote, is an important subclass of Arrow’s social choice problem. It is

pointed out next that there are problems, if Chichilnisky’s (1980, 1982b)

continuous social welfare function is extended to cover the continuity of

Arrovian social welfare function, since it does not give sufficient possibility

to fix the cardinality and dimension of the elementary political candidate

sets. Furthermore, the state-factor structure of the candidate set becomes

obscured and the tacitly assumed fixed cardinality is arbitrary for general

nonmarket decision making framework.

The implied assumption of Chichilnisky’s definition of continuous social

welfare function is that the set of alternatives over which a preference is

defined has a cardinality at least c. In view of modeling preference sati-

ation, which is an important assumption in political decision science, this

cardinality assumption is arbitrary. Preference satiation does not depend

on the cardinality of the set of alternatives.

There are, however, more important problems. The simplest possible

Arrow collective decision problem, which deals nonmarket decision making

such as voting, is the case where there are precisely two collective alter-

natives. Let the preference field for an individual v be Xv = X = {a, b}.

Suppose each individual v, in a finite society V of cardinality k, is associ-

ated a variable Dv as follows: Dv = −1, if v prefers a to b, Dv = 0, if v is

indifferent between a and b, and Dv = 1, if v prefers b to a.

May’s (1952) social welfare function (D1, . . . , Dk) 7−→ D maps the k-

fold Cartesian product {−1, 0, 1}V surjectively to social preference D ∈

{−1, 0, 1}. May’s social welfare function is a special case of Arrow’s (1963)

social welfare function, in case where there are precisely two social states.

May (1952) investigates the question what are the conditions for this

function, so that it is the familiar method of making collective decisions by

simple majority for two alternatives. Consider the following four principles

for the May social welfare function F :

Universal domain and single-valuedness: The mapping F is de-
fined and single valued on {−1, 0, 1}V .
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Anonymity : F (D1, . . . , Dk) = F (Dh(1), . . . , Dh(k)), for any bi-
jection h from {1, . . . , k} to itself.

Neutrality : F (−D1, . . . ,−Dk) = −F (D1, . . . , Dk), where “−”
behaves like in case of integers.

Monotonicity : If F (f) = 0 or 1, and if for any f, g ∈ {−1, 0, 1}V

it holds that f = g, except that for some vth projection
prv(g) > prv(f), then F (g) = 1.

May (1952, 682–683) shows that a social welfare function F is the

method of simple majority if, and only if, it satisfies the conditions of

universal domain and single-valuedness, anonymity, neutrality, and mono-

tonicity. This is a basic theorem in classical social choice theory.

Arrow’s (1963, 46–48) possibility theorem, for precisely two alternatives,

states that the method of simple majority satisfies his well-known conditions

of nondictatorship, independence of irrelevant alternatives, nonimposition

and positive association (pp. 25–31), when applied to two alternatives.

These same conditions amount to the famous Arrow’s “paradox”, once

three or more alternatives are considered.

Challenging social choice problems emerge, in various disguises, once

the number of alternatives is increased to three or more. We refrain com-

menting these here, except noting that there usually are not precisely two

alternatives, but say three or four. Even if there are, preferences may still

be thought to be defined over larger set, not necessarily infinite, from which

the alternatives are drawn from.

Chichilnisky’s (1980, 1982b) definition of continuous social welfare func-

tion is not applicable, if the set X of candidates consists of two elements,

because of Chichilnisky’s dimension requirement. It is not much so that the

nature of states cannot exhibit cardinality at least c, but the fact that for

Chichilnisky it cannot be otherwise; the cardinality of the set of states over

which preferences are defined must be at least c. This effectively precludes,

for example, all finite and countable infinite collective alternative problems.

However, suppose that the assumption dim(X) ≥ 2 is dropped. Then

the set X = {a, b} can be equipped with a zero-dimensional manifold struc-

ture. A Chichilnisky-type preference p on X is a map p : X −→ TX such

that s ◦ p = 1X , where s : TX −→ X . Then a topology on the set P

need to be defined, after which continuity of maps F : P V −→ P can be

investigated.

(Here, it may be useful to first observe that any zero-dimensional mani-

fold admits trivially a unique differentiable C∞ structure, and thus also C2

structure: For each state x ∈ X the only open set U containing x such that
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U ∼= R0, is {x}. Furthermore, there is precisely one pair (U, ϕ), such that

U is open in X and ϕ : U −→ U ′ is a homeomorphism from U to an open

subset of U ′ = ϕ(U) ⊂ R0. There are only two such pairs, ({a}, φ) and

({b}, γ), if X is manifold consisting of two elements, and the intersection

{a} ∩ {b} of the domains of these maps is empty. So, the maps are what

are called smoothly compatible, and the claimed structure follows. This is,

of course, obvious. The finite alternative case is taken into consideration,

for example, in Schofield (1984, 189).)

Manifolds occur in economics as indifference surfaces. Arrow (1963, 16–

17), however, gave several reasons why it is better to represent the choice

mechanism by abstract ordering relations, instead of indifference maps, in

general social choice theory. It turns out that there is a simple way to define

continuity of the social welfare function here, consistent with this line of

thinking. Let {−1, 0, 1} have all subsets open; it is then a zero-dimensional

manifold. Take finite products of {−1, 0, 1} and form the product topology

on {−1, 0, 1}V . Then all maps F : {−1, 0, 1}V −→ {−1, 0, 1} are trivially

continuous. There is no need to define topology on the set of states itself,

as is in Chichilnisky’s approach. When May’s conditions are applied, it is

readily seen that there is a continuous function F satisfying these condi-

tions, for two-alternatives and finite set of individuals.

Another point is that the form of the basic candidate decision problem

does not naturally imply topological dimension of 2 or more, as is required

by Chichilnisky’s definition of continuity, or at least dimension 1, as is

required by Saposnik (1975, 684), no matter what the cardinality of the

(sub)set of individuals involved in the decision making. It is more likely

that the proper topological dimension of this problem is simply 0. Of

course, if one starts with a higher dimensional manifold X of states, the

zero-dimensional submanifolds of X are precisely the discrete subsets of X .

Even if the set of collective alternatives is uncountable, it is dubious

that it must have a topological structure at all in view of defining con-

tinuity of the social welfare function—the topology is essentially on the

set of preferences—not to demand that this topological structure is to be

many dimensional local Euclidean structure, instead of some disconnected

structure, for example, the Sorgenfrey structure.

It may also be noted, that there is no state factor-structure at all in this

simple candidate decision problem; the collective decision problem involves

an abstract, nonstructured set. The continuity definition of Chichilnisky

(1980, 1982b) tacitly assumes these classes of decision problems. However,

Chichilnisky’s (1982b) definition of continuity requires a collective alter-
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native set which is diffeomorphically equivalent to unit cube, which is a

Cartesian product of closed unit intervals. Topologically equivalent objects

can be transformed to each other in a continuous fashion. But this does not

remove the fact that in this case the factor-nature of the collective decision

problem becomes blurred.

24.3.4 Legislation

Formation of an entire legislature for a community of individuals is an im-

portant, although undeveloped, class of Arrow’s collective decision making

problem. It is pointed out here that defining continuity of Arrovian social

welfare function by using topological manifold structures, having dimension

at least 2, over legal environments is a problem, since if there is a chosen

class of topologies, it should abstract the essential sentential features of the

judicial statements, but the manifold assumption together with the dimen-

sion assumption makes Chichilnisky’s view inapplicable in this case.

Let X = {[L], [L′]} be the set of collective alternatives for society V .

For example, let [L] be the pre-existing legislation, and let [L′] be the

proposed new legislation. The purpose is to choose collectively between

them. This kind of example is given, but only for illustrative purposes,

in Arrow (1967, 62). Chichilnisky (1980, 1982b) lacks the consideration of

language that would be needed to describe this kind of problem properly,

but Arrow (1963) too gives no specification of the formal structure from

where these elements came from, or how to describe or talk about these

elements. We briefly discuss these matters next.

For example, suppose that [L′] describes the Code of Hammurabi.

The system consists of 282 law statement forms, some of which are lost.

These can be thought to be build from some finite number of atomic

law statements—describing, for example, events, actions, and monetary

transfers—with respect to some formal operations. For simplicity, we just

take a the natural language law clauses, like “If a man put out the eye of

another man, his eye shall be put out,” to be translated into a formal lan-

guage’s specific atomic law statement, denoted by Li. Although the logical

structure of these kind of statements can be analyzed further, that need

not concern us here.

The overall idea is that preferences are first defined over the whole

vague universe of law bundles, after which, when particular specification

is considered, like X , the welfare function orders the bundles, so that a

preferable collective choice can be made. The choice need not, of course,
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depend on preferences of every individual in V .

How the law bundles like [L] are formed? The first thought is that the

law bundles are formed from the alphabet H = {L1,L2, . . . }∪{M}, where M

is a binary operation symbol, as follows. Let W (H) be the set of all finite

sequences, that is, words on H . Let L be the smallest subset of W (H)

which includes {L1,L2, . . . } and which has the property that whenever it

contains words B and B′ it also contains the word (B M B′). That is,

the set L is the smallest subset of W (H) which includes {L1,L2, . . . } and

which is closed under the operation (B, B′) 7−→ (B M B′).

In the most simpleminded model, one could take the law bundles, the

terms of preference, to be represented by elements of this algebra (L, M),

where the operation M corresponds to the intuitive use of “and”. But

what we probably want is that the law bundles are taken from some richer

structure, so that they could be operated with the usual logical operations,

somewhat like in Battigalli and Maggi (2002) in case of contracts. Let [L]

stand for the set of all law statement forms that are logically equivalent

to L. Then we can use an algebra of equivalence classes L/ ∼ of the law

bundles [L], under the usual logical operations, giving us, for example, the

structure (L/ ∼,∧, <).

One starts translating the elements of the codex universe into the pa-

rameters of the formal language:

No. 122: “If any one give another silver, gold, or anything else
to keep, he shall show everything to some witness, draw up a
contract, and then hand it over for safe keeping” corresponds
to L1.

No. 242: “If any one hire oxen for a year, he shall pay four gur
of corn for plow-oxen” corresponds to L2, and so on.

No matter how these are translated, if the translation of (L1 ∧L2) into

the codex universe of laws is true, then L1 must be true. To take all possible

translations to legal universe, including the Hammurabi statements and its

variations, would be too much work for our purposes. However, one can

use a shortcut. Map all elements U = {L1,L2, . . . } to {0,1}, and consider

elements λ ∈ {0,1}U , and then consider extension λ̄ preserving truth for

law statement B built up from U . The set Λ(B) of all these assignments is

a clopen set in a zero-dimensional topological space {0,1}U . Since one can

establish a bijection between the topological space {0,1}U and the Stone

space S(L/ ∼) of the algebra of equivalence classes (L/ ∼), of logically

equivalent law statement forms, the terms of the preference—law bundles
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like [L] and [L′]—are drawn by correspondence from a topological space.

Preferences are defined over the alternative, competitive law bundles

X ′. Taking the k-fold product (k being the finite number of individuals

in the society) of the set of preferences, we have the domain for the social

welfare function. For a given a feasible subset of X ′, say X = {[L], [L′]},

a particular collective choice problem is formed. Some desirable properties

need to be fixed for the social welfare function. In case there are only two

bundles X = {[L], [L′]}, society might use, for example, the simple majority

decision making method. In the original Babylonian choice problem, the

official choice of the uniform codification might have been dictated by only

few individuals, Hammurabi and some of his close associates, although the

Code probably already existed in some form.

Social choice problems will become more challenging, in various guises,

when the number of law bundles from which the choice is made is larger

than two. Nevertheless, if the set U of atomic law statements is finite,

and the set P of preferences is like in Arrow (1963), one can declare all

subsets of P open, and then define the continuity of the Arrow’s social

welfare function in an obvious way. Clearly, one does not even need to

define a topology on the set of law bundles to define the continuity of the

social welfare function. The problems become more subtle when the set of

alternatives or the set of individuals can be infinite. In any case, if topology

is defined over the system of law statements, along the line sketched above,

topological manifold structures X for which dim(X) ≥ 2 are not compatible

with this view, because the most natural topological space in this case is

zero-dimensional.

The usual formal models of legal reasoning developed in the 1990s and

since, assume the property of logical nonmonotonicity, for example Sartor

(1994). This means roughly that the following property fails: whenever B

follows from a set S of law statements, then it follows also from every super-

set of S′ of S. This is because, for example, the laws need to be interpreted

in particular cases before they can be applied, or since new information

may render new legal arguments possible. However, this idea presupposes

a rather different problem than considered here, that is, applying the law

rather than forming the whole system of law to be applied to begin with.

If the nonmonotonicity is, nevertheless, assumed there is no real change

in case the set of atomic bundles is finite, since the topological space is

compact. But one needs to be aware that in this case arbitrary law state-

ment forms cannot be substituted for atomic laws (these are elements of U),

whenever these occur in formulas, as in elementary logical constructions. In
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case of infinite atomic (components of) laws, one gets the nonmonotonicity

by, for example, restricting the set of possible valuations λ ∈ {0,1}U in

which case the compactness may fail. The topological space is still essen-

tially disconnected space. For more about nonmonotonicity and restricting

the set of valuations, see Makinson (2005).

24.3.5 Arrow’s Abstract Theory of Collective Decision

Making

Arrow’s social choice theory views market mechanism, or core properties

in general, and nonmarket collective decision making, such as voting and

deliberate change of legislation, as a special cases of abstract social choice

problems. To retain full generality, no algebraic, topological, measure the-

oretic, or other similar structure is fixed permanently for the set of states.

In contrast, the Chichilnisky view assumes a specific class of topologies to

be defined over set of states. It is pointed out here that this is a problem, if

Chichilnisky’s view about continuous social welfare function is extended to

cover continuity of Arrovian social welfare function, since there may not be

a single class of topologies, or for that matter, other formal structures, for

the set social states that covers ubiquitously all Arrovian collective choice

problems that may emerge.

As already discussed, according to Chichilnisky (1980) the set X of

social states is equipped with a locally Euclidean topology dim(X) ≥ 2,

which for applied purposes of differentiable manifolds, is usually taken to

be second countable and Hausdorff. Letting X be a class Cn for n ≥ 2. A

preference p on X is then viewed as a locally integrable morphism p : X −→

TX of class Cn−1 such that p(x) lies in the tangent space TxX for each

x ∈ X . In contrast, the only thing Arrow (1963, 24, 103) assumes about

the set X of social states (alternatives) is the following two conditions:

(1) Among all the alternatives there is a set X ′ of three alter-
natives such that, for any set of individual orderings r1 . . . rk of
the alternatives in X ′, there is an admissible set of individual
orderings p1 . . . pk of all the alternatives such that, for each in-
dividual v, 〈x, y〉 ∈ pv if and only if 〈x, y〉 ∈ rv for x and y in
X ′.

(2) Among all the triples of alternatives satisfying Condition 1,
there is at least one on which no individual is a dictator.

There is no topological or other readily fixed structure on the realm

from where the discussed subset of alternatives is drawn from, and there is,
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in particular, no cardinality assumption on that realm other than that it

contains at least three alternatives. For Arrow (1963, 13), a preference is a

relation p ∈ X×X which satisfies the following two properties: (1) for all x

and y, either 〈x, y〉 ∈ p or 〈y, x〉 ∈ p, and (2) for all x, y, and z, if 〈x, y〉 ∈ p

and 〈y, z〉 ∈ p, then 〈x, z〉 ∈ p. Chichilnisky’s view on the structure of

states X is quite particular, out of those possible structures that might

arise in Arrow’s social choice problems; also, the notion of preference p on

X is given as a certain differentiable relation between X and TX , instead

of just as a simple ordering relation on X .

As discussed in the previous sections, the class of topological manifolds

of dimension at least 2 does not cover properly the topological features

of the original basic examples of Arrow’s collective decision making prob-

lem. These include, for example, (1) certain classes of indivisibilities, like

purely indivisible commodity sets, (2) certain political alternatives, such as

basic candidates in nonspatial voting, and (3) alternatives in legal contrac-

tual environments. There could have been choices of topological structures

entirely different, but at least equally natural, to topologize, for example

the set of states. Instead of abstracting the calculus tradition and using

differential topology and differential geometry, more general and simple

topological approaches could have been used, for example using some class

of disconnected spaces, like zero-dimensional compact spaces.

As markets, voting, and legislation were only particular example classes

of Arrow’s general social choice framework, there may be no single, fixed

class of topologies for social states that covers ubiquitously all cases that

may come up in particular applications. Thus, from the point of view of

Arrow’s framework, Chichilnisky’s use of fixed, narrow class of topologies—

together with the implied differential structures, which are not topological

by their nature—takes away the inherent freedom incorporated in the Ar-

row’s abstract social choice framework, that is, freedom to assume and free-

dom to construct various structures for the set of states. Closely related,

is the overall freedom to construct and investigate continuity of various

other types of social choice rules than Arrovian social welfare functions, for

which different assumptions about the nature of binary relations may make

an important difference.

The freedom to assume and freedom to construct algebraic and other

structures for the states can be seen in two ways. First, a social choice

theorist could get the structure from the “storehouse of abstract forms—the

mathematical structures”, as described by Bourbaki (1950, 231), and then

claim that social choice universe can fit itself to these forms, as through
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a “kind of preadaption.” Although the storehouse is vast and elegant, a

particular social choice problem may exhibit complex properties that the

readily fixed constructions do not necessarily have.

But there is no necessity to restrict oneself to the kind of structural im-

perialism of pure mathematics. The other possibility is to build the struc-

ture by oneself by forcing, so that the structure is guaranteed to have the

properties needed for the social choice problem at hand. (This technique

is mainly used in set theory and model theoretical logic, see e.g. Hodges

(2006) or Jech (2006).) In these constructions, one cannot necessarily say

that the constructed structure is such-and-such, like in some fixed, readily

available structure retrieved from the Bourbaki’s mathematical storehouse

of abstract forms, but the best thing one can say is that the constructed

structure can be guaranteed to have such-and-such properties, called en-

forceable properties. As we have already noted, this method of building

structures is essentially an abstract game of some fixed length, measured

by some ordinal. Here, different tasks are assigned to separate abstract

players or builders of the construction. Each builder can regard the other

builders as rivals who keep interfering in his attempts to carry out his tasks,

while only finite amount of information can be piled to the structure by a

player at a time.

These games can be viewed topologically as follows. Let E = ω, and

consider the set {0,1}E, that is, the set of all maps λ : E −→ {0,1}. A

condition is a map λ : E′ −→ {0,1} where E′ is a finite subset of E. Let

M(λ) be the set of all those maps of {0,1}E which extend λ . The set

{0,1}E is given a topology by taking as basis the sets M(λ) for conditions

λ . Given a nonempty closed set Λ ⊂ {0,1}E and a set Λ′ ⊂ Λ, abstract

players, called Abelard (∀) and Eloise (∃), play the game G(Λ, Λ′) of length

E as follows. The players choose an increasing sequence λ0 ⊂ λ1 ⊂ . . . of

conditions so that Λ∩M(λi) is nonempty for each i < E. Player ∀ chooses

λi if and only if i is even. Player ∃ wins if and only if Λ′ ∩
⋂

i<E
M(λi) is

nonempty. This topological form is given in Hodges (2006, 26).

To sum up, the question then arises why the class of topologies to be

used is required to be the ones discussed above, as there clearly would have

been need for more general class of topologies, and more importantly, why

it is required that there must be a specified topological structure to be

explicitly defined on the set of social states to begin with. It seems that

to attain the needed full generality in social choice problem, defining an

explicit topology or other structure on the set of states is, if no reason

happens to come up in a particular application, completely unnecessary in
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defining the continuity of social welfare function. But this cannot happen

in the framework defined by Chichilnisky in which the topology is fixed be-

forehand. A different approach is needed to define the notion of continuity

for Arrovian social welfare function, and its generalizations.

24.4 Summary

The general problem of social choice is stated by Arrow (1963, 103) as fol-

lows : “The social choice from any given environment is an aggregation of

individual preferences.” For Arrow (1963), one important example provid-

ing various “environments” was capitalistic democracy. To this, one might

add that in modern capitalistic democracies there are millions of individ-

uals. So, it is intuitive that if the social organization is even moderately

“competitive” or “democratic”, a change in only few individuals’ tastes or

values, should not alter the end result of the social choice process very

much. This is essentially the idea of continuity. To investigate continuity

properties of social choice processes, topological structures are needed.

The question then arises, how to define a general notion of continuity

for this kind of social choice process. Instead of addressing this question

directly, we have opted for a much more modest, indirect approach, and

we asked: can this continuous process be defined satisfactorily by using the

category of manifolds (over sets of states) and smooth (hence continuous)

maps, as is done in so-called topological social choice theory or topological

social choice model, which have been around now for nearly forty years.

Our first main observation was that, if a formulation of continuous so-

cial choice process assumes a formal category of objects representing sets

of collective alternatives that does not allow, for example, finite and count-

ably infinite sets (that can be also abstract), various disconnected topo-

logical structures (like zero-dimensional structures), or various first-order

structures (that can be generic), then this kind of formulation cannot be

taken to represent properly continuous Arrovian social choice process con-

ceptualizing e.g. the workings of capitalistic democracy. The second main

observation was that the manifold view of social choice, that assumes man-

ifold topologies (with or without boundary) with positive dimension, to be

defined over the set of collective alternatives in order to define continuity

of certain type of social welfare functions, does not allow abstract alter-

native sets (including finite or countably infinite sets), topological spaces

of alternatives having dimension 0, or generic first-order structures over



January 24, 2008 19:33 World Scientific Book - 9in x 6in ch24070608ISMPDM

Continuity, Manifolds, and Arrow’s Social Choice Problem 447

alternatives.

Hence, we conclude that the manifold view of social choice that as-

sumes manifold topologies with positive dimension over sets of collective

alternatives, in order to define continuity of certain type of social welfare

functions, cannot be taken to represent properly continuous Arrovian social

choice process conceptualizing e.g. the workings of capitalistic democracy.

Overall, if continuity is defined for Arrovian social welfare function, it

should be defined in such a way that it is not necessary to restrict the cate-

gory of objects (representing sets of collective alternatives and their possible

structures) to be, for example, positive dimensional topological manifolds.

To see that this general approach is possible, simply observe that the set

of states and the set of preferences over states are separate concepts, even

though preferences are defined over states. Ideally one should have certain

Cantorian freedom to construct and assume about sets of states—with or

without topological structures—so that the relevant intuitions arising from

economic, political, and legal reality can be formally specified, if they need

to be specified. Only then can continuous Arrovian social choice process

have the general social choice footing, referred in the introduction. In this

way we can also see that it is not so much the notion of continuity of the

social welfare function that should turn out to be awkward to “classical”

(nontopologized) social choice theory, but what one assumes about sets of

states and preferences.
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Abstract

In this paper, we consider a mixture class of zero-sum stochastic game in which
the set of states are partitioned into sets S1, S2 and S3 so that the law of motion
is controlled by Player I alone when the game is played in S1, Player II alone
when the game is played in S2 and in S3 the reward and transition probabilities
are additive. We prove that the game with SC/AR-AT mixture has the ordered
field property. This gives an alternative proof of the ordered field property that
holds for such a mixture type of game. Finally we discuss about computation
of value vector and optimal stationary strategies for SC/AR-AT mixture class of
stochastic game.
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25.1 Introduction

The minimax value associated with a matrix game will lie in the same

ordered field as that of entries of the payoff matrix. This is called or-

dered field property for matrix games and it is observed by [Weyl (1950)].

[Shapley (1953)] introduced stochastic game and established the existence

of value and optimal stationary strategies for discounted stochastic games.

[Gillette (1957)] studied the undiscounted case or limiting average payoff

case. [Shapley (1953)] also noted that if the data comes from rational field,

the solution may not lie in the rational field. Throughout this paper by

field we mean field of real numbers only. In general, it is difficult to find the

value vector and optimal strategies for the stochastic games. We expect to

obtain finite step algorithms for this special class of stochastic games which

possess ordered field property. In fact it is not known in general whether a

finite step algorithm exists if a stochastic game possess ordered field prop-

erty. The aim of this paper is to study a mixture class of stochastic game

for which the ordered field property holds. We also look at undiscounted

case of this special class of stochastic games in which there is reasonable

hope for obtaining a computable solution using a finite step algorithm.

A stochastic game with a finite state space and action space is defined

below.

A two-player finite state/action space zero-sum stochastic game is de-

fined by the following objects.

(1) A state space S = {1, 2, . . . , N}.

(2) For each s ∈ S, finite action sets A(s) = {1, 2, . . . , ms} for Player I and

B(s) = {1, 2, . . . , ns} for Player II.

(3) A reward law R(s) for s ∈ S where R(s) = [r(s, i, j)] is an ms × ns

matrix whose (i, j)th entry denotes the payoff from Player II to Player

I corresponding to the choices of action i ∈ A(s), j ∈ B(s) by Player I

and Player II respectively.

(4) A transition law q = (qij(s, s
′) : (s, s′) ∈ S × S, i ∈ A(s), j ∈ B(s)),

where qij(s, s
′) denotes the probability of a transition from state s to

state s′ given that Player I and Player II choose actions i ∈ A(s), j ∈

B(s) respectively.

The game is played in stages t = 0, 1, 2, . . . At some stage t, the players find

themselves in a state s ∈ S and independently choose actions i ∈ A(s), j ∈

B(s). Player II pays Player I an amount r(s, i, j) and at stage (t + 1), the



January 25, 2008 14:57 World Scientific Book - 9in x 6in ch25dgscarat˙akd˙ag˙06v1

A Class of Stochastic Game with Ordered Field Property 453

new state is s′ with probability qij(s, s
′). Play continues at this new state.

The players guide the game via strategies and in general, strategies

can depend on complete histories of the game until the current stage. We

are however concerned with the simpler class of stationary strategies which

depend only on the current state s and not on stages. So for Player I, a

stationary strategy

f ∈ Fs = {fi(s) | s ∈ S, i ∈ A(s), fi(s) ≥ 0,
∑

i∈A(s)

fi(s) = 1}

indicates that the action i ∈ A(s) should be chosen by Player I with prob-

ability fi(s) when the game is in state s.

Similarly for Player II, a stationary strategy

g ∈ Gs = {gj(s) | s ∈ S, j ∈ B(s), gj(s) ≥ 0,
∑

j∈B(s)

gj(s) = 1}

indicates that the action j ∈ B(s) should be chosen by Player II with

probability gj(s) when the game is in state s.

Here Fs and Gs will denote the set of all stationary strategies for Player I

and Player II, respectively. Let f(s) and g(s) are the ms and ns dimensional

column vector, respectively.

Fixed stationary strategies f and g induce a Markov chain on S with

transition matrix P (f, g) whose (s, s′)th entry is given by

Pss′ (f, g) =
∑

i∈A(s)

∑

j∈B(s)

qij(s, s
′)fi(s)gj(s)

and the expected current reward vector r(f, g) has entries defined by

rs(f, g) =
∑

i∈A(s)

∑

j∈B(s)

r(s, i, j)fi(s)gj(s) = f(s)R(s)g(s).

With fixed general strategies f, g and an initial state s, the stream of

expected payoff to Player I at stage t, denoted by vt
s(f, g), t = 0, 1, 2, . . . is

well defined and the resulting discounted and undiscounted payoffs are

φβ
s (f, g) =

∞
∑

t=0

βtvt
s(f, g) for a β ∈ (0, 1)

and

φs(f, g) = lim
T↑∞

inf
1

T + 1

T
∑

t=0

vt
s(f, g).
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A pair of strategies (f∗, g∗) is optimal for Player I and Player II in the

undiscounted game if for all s ∈ S

φs(f, g∗) ≤ φs(f
∗, g∗) = v∗s ≤ φs(f

∗, g),

for any strategies f and g of Player I and Player II respectively. The number

v∗s is called the value of the game starting in state s and v∗ = (v∗1 , v∗2 , . . . , v∗N )

is called the value vector. The definition for discounted case is similar.

We will first describe some known classes of games which possess ordered

field property. As already mentioned earlier, in general, it is difficult to

find a pair of equilibrium (optimal strategies) strategies. Of course one can

approximate it in the discounted case as Shapley has done it in his seminal

paper on stochastic games but it is not an efficient procedure. See also

the excellent survey paper by [Raghavan and Filar (1991)] and [Mohan and

Parthasarathy (1994)].

• Stochastic games with perfect information: These are stochastic

games in which in every state the action space of one of the players is

singleton.

• Single controller stochastic games : In the case where player II is

single controller this means q(s′ | s, i, j) = q(s′ | s, j) ∀ i, j, s, s′.

• Switching controlled games : In a switching control stochastic game

the law of motion is controlled by Player I alone when the game is

played in a certain subset of states and Player II alone when the game

is played in other states. In other words, a switching control game is a

stochastic game in which the set of states are partitioned into sets S1

and S2 where the transition function is given by

qi,j(s, s
′) =

{

qi(s, s
′), for s′ ∈ S, s ∈ S1, i ∈ A(s) and ∀j ∈ B(s)

qj(s, s
′), for s′ ∈ S, s ∈ S2, j ∈ B(s) and ∀i ∈ A(s)

• Ser-Sit games : In this case rewards are assumed to be separable,

namely r(s, i, j) = c(s) + ρ(i, j) and the transitions are state indepen-

dent, that is q(t | s, i, j) = q(t | i, j) for all (s, i, j).

• AR-AT games : A stochastic game is said to be an Additive Reward-

Additive Transition game (AR-AT game) if

the reward (i) r(s, i, j) = r1
i (s) + r2

j (s) for i ∈ A(s), j ∈ B(s), s ∈ S

and the transition probabilities

(ii) qi,j(s, s
′) = q1

i (s, s′)+q2
j (s, s′) for i ∈ A(s), j ∈ B(s), (s, s′) ∈ S×S.
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Remark 25.1. One major line of research that has evolved is focused on

identifying those classes of zero-sum stochastic games for which there is a

possibility of obtaining a finite step algorithm to compute a solution. We

will refer to these class of zero-sum stochastic games as structured stochas-

tic games. It is known that for all the cases identified above finite step

algorithm exists. For more details see the survey paper by [Raghavan and

Filar (1991)].

Theorem 25.1. (Ordered field property) If a stochastic game belongs to

any one of the five category described above, then in the zero-sum case, the

stochastic game possesses ordered field property.

Open Problems:

Now we mention a few open problems from [Raghavan and Filar (1991)].

Problem I: Characterize those stochastic games which possess the ordered

field property (Recall that we consider ordered field from the set of reals).

Problem II: : Suppose it is known that a certain class of stochastic games

possess the ordered field property. Is it possible to give finite step algorithm

to solve such games?

This problem is known to have an affirmative answer in the classes

of games discussed above in this section. The above theorem gives only

sufficient conditions.

The class of switching control (SC) stochastic games is introduced by

[Filar (1981)]. While the above transition structure is a natural general-

ization of the single control game from the algorithmic point of view this

class of games appear to be more difficult. The game structure was used

to develop a finite step algorithm in [Vrieze (1983)] but that algorithm re-

quires solving a large number of single control stochastic games. [Mohan,

Neogy and Parthasarathy (1997a,b)] formulated a single control game as

solving a single linear complementarity problem and proved that Lemke’s

algorithm can solve such an LCP. [Mohan and Raghavan (1987)] proposed

an algorithm for discounted switching control games which is based on two

linear programs. [Schultz (1992)] formulated discounted switching control

game as a linear complementarity problem.

AR-AT games have been studied in the literature earlier by [Raghavan,

Tijs and Vrieze (1985)]. Both the discounted and the limiting average

criterion of evaluation of strategies have been considered. It is known, for
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example, that for a β-discounted zero-sum AR-AT game, the value exists

and both players have stationary optimal strategies, which may also be

taken as pure strategies.

[Sinha (1989, 2000)] consider the mixture of the above five structured

classes and studies the ordered field property. To be more specific, one such

case is the mixture of AR-AT and the switching controller stochastic games

whose data satisfy the AR-AT conditions in some state and the switching

control conditions in the remaining state.

In this paper we consider only the following generalization of the two

classes of stochastic games in which the state space S is the union of 3

disjoint subsets S1, S2 and S3 such that the law of transition is controlled

by Player-I in S1 and player -II in S2 and all the state in S3 of the game has

AR-AT state. More specifically, a zero-sum stochastic game is in SC/AR-

AT mixture class if

(i). S = S1 ∪ S2 ∪ S3, Si ∩ Sj = ∅ ∀ i 6= j

(ii). qi,j(s, s
′) = qi(s, s

′), for s′ ∈ S, s ∈ S1, i ∈ A(s) and ∀j ∈ B(s).

(iii). qi,j(s, s
′) = qj(s, s

′), for s′ ∈ S, s ∈ S2, j ∈ B(s) and ∀i ∈ A(s)

(iv). the reward r(s, i, j) = r1
i (s) + r2

j (s) for i ∈ A(s), j ∈ B(s), s ∈ S3

and the transition probabilities qi,j(s, s
′) = q1

i (s, s′) + q2
j (s, s′) for i ∈

A(s), j ∈ B(s), (s, s′) ∈ S3 × S.

[Sinha (2000)] gives a nonconstructive proof to show that that the above

SC/AR-AT mixture class of game has ordered field property and raises the

question that whether a finite step algorithm can be developed in SC/AR-

AT mixtures. In Section 25.2, we present the definitions and results required

for discussions in subsequent sections. In Section 25.3, we formulate the

problem of computing the value vector vβ
s and optimal stationary strate-

gies fβ(s) for Player I and gβ(s) for Player II for the class of discounted

stochastic game with SC/AR-AT mixture as a linear complementarity prob-

lem. The class of undiscounted stochastic game with SC/AR-AT mixture

is presented as a vertical linear complementarity problem in Section 25.4.

This complementarity formulation gives an alternative proof of the ordered

field property. Finally we discuss the possibility of obtaining a finite algo-

rithm for computation of value vector and optimal stationary strategies in

Section 25.5.
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25.2 Preliminaries

Given a real square matrix A of order n and a vector q ∈ Rn, the linear

complementarity problem (LCP(q, A)) is to find w ∈ Rn and z ∈ Rn

such that w − Az = q, w ≥ 0, z ≥ 0 and wt z = 0. It is well

studied in the literature on Mathematical Programming and arises in a

number of applications in Operations Research, Mathematical Economics,

Engineering and Stochastic Games. For recent books on this problem,

see [Cottle, Pang, and Stone (1992)], [Murthy (1988)] and a survey on

application of complementarity in stochastic games see [Mohan, Neogy and

Parthasarathy (2001)].

[Cottle and Dantzig (1970)] extended the problem considered above to

a problem in which the matrix A is not a square matrix. The generalization

of the linear complementarity problem introduced by them is given below:

We say that an m × k matrix A with the partitioned form A =







A1

...

Ak







is a vertical block matrix of type (m1, m2, . . . , mk) if Aj is of order mj ×k,

1 ≤ j ≤ k and

k
∑

j=1

mj = m.

Given a vertical block matrix A ∈ Rm×k, (m ≥ k) of type

( m1, . . . , mk ) and q ∈ Rm where m =
k

∑

j=1

mj , the generalized linear

complementarity problem is to find w ∈ Rm and z ∈ Rk such that

w − Az = q, w ≥ 0, z ≥ 0 (25.1)

zj

mj
∏

i=1

w
j
i = 0, j = 1, 2, . . . , k (25.2)

This generalization is also known as vertical generalization of the linear

complementarity problem [Cottle and Dantzig (1970)] and it is denoted by

VLCP(q, A). If mj = 1 then VLCP reduces to well known complementarity

problem.

[Lemke (1970)] anticipated many meaningful applications for the VLCP

introduced by [Cottle and Dantzig (1970)]. Mohan, Neogy and Parth-

sarathy made a number of applications of vertical linear complementar-

ity problem in stochastic games. See [Mohan, Neogy and Parthasarathy

(2001)] and the references cited therein.
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We require the following result from [Schultz (1992)] to prove our main

result for discounted case in the next section.

Theorem 25.2. ([Schultz (1992)])[Theorem 1.1] A β-discounted zero-sum

stochastic game has values vβ
s and optimal stationary strategies fβ for

Player I and gβ for Player II if and only if there exists a solution (vβ , fβ, gβ)

that solves the following nonlinear system SYS1.

SYS1: Find (vβ , fβ , gβ) such that

vβ
s − β

∑

s′∈S

v
β
s′

ns
∑

j=1

qij(s, s
′)gβ

j (s) − [R(s)gβ(s)]i ≥ 0, i ∈ A(s), s ∈ S

(25.3)

−vβ
s + β

∑

s′∈S

v
β
s′

ms
∑

i=1

qij(s, s
′)fβ

i (s) + [fβ(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S

(25.4)

Corollary 25.1. If (vβ , fβ , gβ) satisfies (25.3) and (25.4) then

vβ
s = β[P (fβ , gβ)vβ ]s + rs(f

β , gβ) (25.5)

We require the following definition and results established by [Filar and

Schultz (1987)] to prove our subsequent results for undiscounted case.

Definition 25.1. A pair of optimal stationary strategies (f ∗, g∗) for an

undiscounted stochastic game is asymptotically stable if there exist a β0 ∈

(0, 1) and stationary strategy pair (fβ , gβ) optimal in the β-discounted

stochastic game for each β ∈ (β0, 1) such that

(i) lim
β↑1

fβ = f∗, lim
β↑1

gβ = g∗

(ii) for all β ∈ (β0, 1), r(fβ , gβ) = r(f∗, g∗), P (f, gβ) = P (f, g∗) for

f ∈ Fs and P (fβ, g) = P (f∗, g) for g ∈ Gs where P (f, g) is the transition

matrix and r(f, g) is the current expected reward vector which are defined

earlier.

Theorem 25.3. ([Filar and Schultz (1987)][Theorem 2.1]) An undis-

counted stochastic game possesses value vector v∗ and optimal stationary

strategies f∗ for Player I and g∗ for Player II if and only if there exists

a solution (v∗, t∗, u∗, f∗, g∗) with t∗, u∗ ∈ R|S| to the following nonlinear

system SYS2a.
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SYS2a: Find (v, t, u, f, g) where v, t, u ∈ R|S|, f ∈ FS and g ∈ GS such

that

vs −
∑

s′∈S

vs′

ns
∑

j=1

qij(s, s
′)gj(s) ≥ 0, i ∈ A(s), s ∈ S (25.6)

vs + ts −
∑

s′∈S

ts′

ns
∑

j=1

qij(s, s
′)gj(s) − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S

(25.7)

−vs +
∑

s′∈S

vs′

ms
∑

i=1

qij(s, s
′)fi(s) ≥ 0, j ∈ B(s), s ∈ S (25.8)

−vs − us +
∑

s′∈S

us′

ms
∑

i=1

qij(s, s
′)fi(s) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S

(25.9)

Theorem 25.4. ([Filar and Schultz (1987)][Theorem 2.2]) If a stochastic

game possesses asymptotically stable stationary optimal strategies then fea-

sibility of the nonlinear system (SYS2b) is both necessary and sufficient for

existence of a stationary optimal solution.

SYS2b: Find (v, t, f, g) where v, t ∈ R|S|, f ∈ FS and g ∈ GS such that

(25.6),(25.7),(25.8) are satisfied and

−vs − ts +
∑

s′∈S

ts′

ms
∑

i=1

qij(s, s
′)fi(s) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S

(25.10)

25.3 Discounted Zero-sum SC/AR-AT Mixture Stochastic

Game

Theorem 25.5. A β-discounted zero-sum SC/AR-AT mixture stochastic

game has values vβ where

vβ
s =

{

vβ
s , s ∈ S1 ∪ S2

ζβ
s + ηβ

s , s ∈ S3

and an optimal pair of stationary strategies (fβ, gβ) if and only if vβ
s , fβ(s)

and gβ(s) are a part of a solution of SYS3.
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SYS3:

vβ
s − β

∑

s′∈S1∪S2

v
β
s′qi(s, s

′) − β
∑

s′∈S3

(ζβ
s′ + η

β
s′)qi(s, s

′)

−[R(s)gβ(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (25.11)

vβ
s − θβ

s − [R(s)gβ(s)]i ≥ 0, i ∈ A(s) s ∈ S2 (25.12)

−vβ
s + θβ

s + [fβ(s)R(s)]j ≥ 0, j ∈ B(s) s ∈ S1 (25.13)

−vβ
s + β

∑

s′∈S1∪S2

v
β
s′qj(s, s

′) + β
∑

s′∈S3

(ζβ
s′ + η

β
s′)qj(s, s

′)

+[fβ(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2 (25.14)

−ζβ
s + β

∑

s′∈S1∪S2

v
β
s′q

2
j (s, s′) + β

∑

s′∈S3

(ζβ
s′ + η

β
s′ )q

2
j (s, s′)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S3 (25.15)

ηβ
s − β

∑

s′∈S1∪S2

v
β
s′q

1
i (s, s′) − β

∑

s′∈S3

(ζβ
s′ + η

β
s′)q

1
i (s, s′)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (25.16)

f
β
i (s)[vβ

s − β
∑

s′∈S1∪S2

v
β
s′qi(s, s

′) − β
∑

s′∈S3

(ζβ
s′ + η

β
s′)qi(s, s

′)

−[R(s)gβ(s)]i] = 0, i ∈ A(s), s ∈ S1 (25.17)

f
β
i (s)[vβ

s − θβ
s − [R(s)gβ(s)]i] = 0, i ∈ A(s) s ∈ S2 (25.18)

g
β
j (s)[−vβ

s + θβ
s + [fβ(s)R(s)]j ] = 0, j ∈ B(s) s ∈ S1 (25.19)
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g
β
j (s)[−vβ

s + β
∑

s′∈S1∪S2

v
β
s′qj(s, s

′) + β
∑

s′∈S3

(ζβ
s′ + η

β
s′)qj(s, s

′)

+[fβ(s)R(s)]j ] = 0, j ∈ B(s), s ∈ S2 (25.20)

g
β
j (s)[−ζβ

s + β
∑

s′∈S1∪S2

v
β
s′q

2
j (s, s′) + β

∑

s′∈S3

(ζβ
s′ + η

β
s′ )q

2
j (s, s′)

+r2
j (s)] = 0, j ∈ B(s), s ∈ S3 (25.21)

f
β
i (s)[ηβ

s − β
∑

s′∈S1∪S2

v
β
s′q

1
i (s, s′) − β

∑

s′∈S3

(ζβ
s′ + η

β
s′)q

1
i (s, s′)

−r1
i (s)] = 0, i ∈ A(s), s ∈ S3 (25.22)

Proof. We prove this theorem by showing that a feasible solution to SYS3

is a solution of SYS1 and by Theorem 25.2, this solution solves the stochas-

tic game with SC/AR-AT structure. Conversely, we show that any solution

of SYS1 can be used to construct a solution of SYS3. For s ∈ S1 ∪ S2, we

follow the similar argument of the proof given in [Schultz (1992)][Theorem

2.1]. However, we provide the details for the sake completeness.

From (25.17) and (25.19) we get

vβ
s − β

∑

s′∈S

∑

i∈A(s)

v
β
s′qi(s, s

′)fβ
i (s) − fβ(s)R(s)gβ(s) = 0, s ∈ S1 (25.23)

−vβ
s + θβ

s + fβ(s)R(s)gβ(s) = 0, s ∈ S1 (25.24)

Now (25.23) and (25.24) together imply

θβ
s = β

∑

s′∈S

∑

i∈A(s)

v
β
s′qi(s, s

′)fβ
i (s), s ∈ S1 (25.25)

Similarly, from (25.18) and (25.20) we get

θβ
s = β

∑

s′∈S

∑

j∈B(s)

v
β
s′qj(s, s

′)gβ
j (s), s ∈ S2 (25.26)

From (25.26), (25.11), (25.12) and (25.25), (25.13), (25.14) we get (25.3)

and (25.4) respectively for s ∈ S1 ∪ S2.
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For s ∈ S3, using (25.21), (25.22) and noting that vβ
s = ζβ

s + ηβ
s we

obtain

ζβ
s − β

∑

s′∈S

ns
∑

j=1

v
β
s′q

2
j (s, s′)gβ

j (s) −
∑

j∈B(s)

r2
j (s)gβ

j (s) = 0 (25.27)

ηβ
s − β

∑

s′∈S

ms
∑

i=1

v
β
s′q

1
i (s, s′)fβ

i (s) −
∑

i∈A(s)

r1
i (s)fβ

i (s) = 0 (25.28)

Adding (25.16) and (25.27) we get the inequality (25.3) for s ∈ S3.

vβ
s − β

∑

s′∈S

ns
∑

j=1

v
β
s′ [q

1
i (s, s′) + q2

j (s, s′)]gβ
j (s) −

∑

j∈B(s)

[r1
i (s) + r2

j (s)]gβ
j (s) ≥ 0

⇒

vβ
s − β

∑

s′∈S

ns
∑

j=1

v
β
s′qij(s, s

′)gβ
j (s) −

∑

j∈B(s)

r(s, i, j)gβ
j (s) ≥ 0, s ∈ S3, i ∈ A(s)

(25.29)

Similarly, adding (25.15) and (25.28) we obtain inequality (25.4) for j ∈

B(s), s ∈ S3 of SYS1. Therefore, by Theorem 25.2, vβ
s , fβ(s), gβ(s) is

optimal strategy for SYS3.

Conversely, from any solution (vβ
s , θβ

s , fβ(s), gβ(s)) for s ∈ S1 and

s ∈ S2 of SYS1 we define θβ
s as in (25.25), (25.26). Rewriting SYS1

using the switching control assumption, we get the inequalities (25.11)

through (25.14) and (25.17) through (25.20). Similarly, from any solution

(vβ
s , θβ

s , fβ(s), gβ(s)) of SYS1 for s ∈ S3, we write vβ
s = ζβ

s + ηβ
s and define

ζβ
s , ηβ

s as in (25.27) and (25.28). Using the AR-AT structure, we rewrite

SYS1 to get the inequalities (25.15), (25.16) (25.21)and (25.22) of SYS3.

Therefore any solution vβ
s , fβ(s), gβ(s) of SYS1 can be used to construct a

solution of SYS3. �

Lemma 25.1. For a β-discounted zero-sum SC/AR-AT mixture stochastic

game has values vβ
s for s ∈ S and optimal stationary strategies f(s) and

g(s) for s ∈ S if and only if vβ
s , fβ(s) and gβ(s) are a part of a solution of

a LCP given by (25.30) through (25.49) where

vβ
s = v̄β

s − v̂β
s , s ∈ S1 ∪ S2

θβ
s = θ̄s − θ̂s, s ∈ S1 ∪ S2

ζβ
s = ζ̄β

s − ζ̂β
s , ηβ

s = η̄β
s − η̂β

s , s ∈ S3.
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Proof. It is enough to show that SYS3 in Theorem 25.5 can be written

as a LCP.

First we consider the inequalities (25.11),(25.12) and (25.16). Let

w
f
1 (s, i) = vβ

s − β
∑

s′∈S

v
β
s′qi(s, s

′) − [R(s)gβ(s)]i ≥ 0, i ∈ A(s), s ∈ S1

(25.30)

w
f
2 (s, i) = vβ

s − θβ
s − [R(s)gβ(s)]i ≥ 0, i ∈ A(s) s ∈ S2 (25.31)

w
f
3 (s, i) = ηβ

s − β
∑

s′∈S1∪S2

v
β
s′q

1
i (s, s′) − β

∑

s′∈S3

(ζβ
s′ + η

β
s′)q

1
i (s, s′)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (25.32)

Then we consider the inequalities (25.13),(25.14) and (25.15). Let

w
g
1(s, j) = −vβ

s + θβ
s + [fβ(s)R(s)]j ≥ 0, j ∈ B(s) s ∈ S1 (25.33)

w
g
2(s, j) = −vβ

s + β
∑

s′∈S

v
β
s′qj(s, s

′) + [fβ(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2

(25.34)

w
g
3(s, j) = −ζβ

s + β
∑

s′∈S1∪S2

v
β
s′q

2
j (s, s′) + β

∑

s′∈S3

(ζβ
s′ + η

β
s′)q

2
j (s, s′)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S3 (25.35)

Now we express the variables ζβ
s , ηβ

s and θβ
s as difference of nonnegative

variables as a standard method of representing unbounded variables, i.e.,

vβ
s = v̄β

s − v̂β
s , s ∈ S1 ∪ S2

θβ
s = θ̄s − θ̂s, s ∈ S1 ∪ S2

ζβ
s = ζ̄β

s − ζ̂β
s , ηβ

s = η̄β
s − η̂β

s , s ∈ S3

Now we write down the constraints pertaining to probability vector f(s)

and g(s) as follows.

w̄v(s) = −1 +
∑

i∈A(s)

f
β
i (s) ≥ 0, s ∈ S1 ∪ S2 (25.36)

ŵv(s) = 1 −
∑

i∈A(s)

f
β
i (s) ≥ 0, s ∈ S1 ∪ S2 (25.37)
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w̄θ(s) = −1 +
∑

j∈B(s)

g
β
j (s) ≥ 0, s ∈ S1 ∪ S2 (25.38)

ŵθ(s) = 1 −
∑

j∈B(s)

g
β
j (s) ≥ 0, s ∈ S1 ∪ S2 (25.39)

w̄ζ(s) = −1 +
∑

i∈A(s)

f
β
i (s) ≥ 0, s ∈ S3 (25.40)

ŵζ(s) = 1 −
∑

i∈A(s)

f
β
i (s) ≥ 0, s ∈ S3 (25.41)

w̄η(s) = −1 +
∑

j∈B(s)

g
β
j (s) ≥ 0, s ∈ S3 (25.42)

ŵη(s) = 1 −
∑

j∈B(s)

g
β
j (s) ≥ 0, s ∈ S3 (25.43)

We write the complementarity condition as

f
β
i (s)wf

1 (s, i) = 0, i ∈ A(s), s ∈ S1

f
β
i (s)wf

2 (s, i) = 0, i ∈ A(s), s ∈ S2

f
β
i (s)wf

3 (s, i) = 0, i ∈ A(s), s ∈ S3











(25.44)

g
β
j (s)wg

1(s, j) = 0, j ∈ B(s), s ∈ S1

g
β
j (s)wg

2(s, j) = 0, j ∈ B(s), s ∈ S2

g
β
j (s)wj

3(s, j) = 0, j ∈ A(s), s ∈ S3











(25.45)

v̄β
s w̄ζ(s) = 0, s ∈ S1 ∪ S2

v̂β
s ŵζ(s) = 0, s ∈ S1 ∪ S2

}

(25.46)

θ̄β
s w̄θ(s) = 0, s ∈ S1 ∪ S2

θ̂β
s ŵθ(s) = 0, s ∈ S1 ∪ S2

}

(25.47)

η̄β
s w̄η(s) = 0, s ∈ S3

η̂β
s ŵη(s) = 0, s ∈ S3

}

(25.48)

ζ̄β
s w̄ζ(s) = 0, s ∈ S3

ζ̂β
s ŵζ(s) = 0, s ∈ S3

}

(25.49)

The LCP is given by (25.30) through (25.49). �
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25.4 Undiscounted Zero-sum SC/AR-AT Mixture Stochas-

tic Game

We require the following lemma which was proved by [Filar and Schultz

(1987)].

Lemma 25.2. ([Filar and Schultz (1987)][Lemma 2.4])

(i) If (v∗, t∗, u∗, f∗, g∗) satisfy SYS1a, then for all s ∈ S

v∗s = [P (f∗, g∗)v∗]s

(ii) If (v∗, t∗, u∗, f∗, g∗) solves SYS1b, then for all s ∈ S

v∗s + t∗s = [P (f∗, g∗)t∗ + r(f∗, g∗)]s

Theorem 25.6. For an undiscounted zero-sum SC/AR-AT mixture

stochastic game, the value vector and an optimal pair of stationary strate-

gies can be derived from any solution to the following system of linear and

nonlinear inequalities (SYS4). Conversely, for such a game, a solution of

the SYS4 can be derived from any pair of asymptotically stable stationary

strategies.

SYS4: Find (v, t, ρ1, ρ2, θ, η, φ, γ, f, g) where v, t,∈ R|S|, ρ1, ρ2 ∈ R|S1∪S2|,

θ, η, φ, γ ∈ R|S3|, f ∈ FS and g ∈ GS such that

vs −
∑

s′∈S

vs′qi(s, s
′) ≥ 0, i ∈ A(s), s ∈ S1 (25.50)

−vs + ρ1
s ≥ 0, s ∈ S1 (25.51)

vs + ts −
∑

s′∈S

ts′qi(s, s
′) − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (25.52)

−vs − ts + ρ2
s + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S1 (25.53)

−vs +
∑

s′∈S

vs′qj(s, s
′) ≥ 0, j ∈ B(s), s ∈ S2 (25.54)

vs − ρ1
s ≥ 0, s ∈ S2 (25.55)

vs + ts − ρ2
s − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S2 (25.56)

−vs − ts +
∑

s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2 (25.57)
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φs −
N

∑

s′=1

(θs′ + φs′ )q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3 (25.58)

γs −
N

∑

s′=1

(ηs′ + γs′ − θs′ − φs′ )q1
i (s, s′) − r1

i (s) ≥ 0, i ∈ A(s), s ∈ S3

(25.59)

−θs +
N

∑

s′=1

(θs′ + φs′)q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3 (25.60)

−ηs +

N
∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q2
j (s, s′) + r2

j (s) ≥ 0, j ∈ B(s), s ∈ S3

(25.61)

fi(s)[vs −
∑

s′∈S

vs′qi(s, s
′)] = 0, i ∈ A(s), s ∈ S1 (25.62)

fi(s)[−vs + ρ1
s ] = 0, s ∈ S1, i ∈ A(s) (25.63)

fi(s)[vs + ts −
∑

s′∈S

ts′qi(s, s
′) − [R(s)g(s)]i] = 0, i ∈ A(s), s ∈ S1 (25.64)

gj(s)[−vs − ts + ρ2
s + [f(s)R(s)]j ] = 0, j ∈ B(s), s ∈ S1 (25.65)

gj(s)[vs − ρ1
s] = 0, s ∈ S2, j ∈ B(s) (25.66)

gj(s)[−vs +
∑

s′∈S

vs′qj(s, s
′)] = 0, j ∈ B(s), s ∈ S2 (25.67)

fi(s)[vs + ts − ρ2
s − [R(s)g(s)]i] = 0, i ∈ A(s), s ∈ S2 (25.68)

gj(s)[−vs − ts +
∑

s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ] = 0, j ∈ B(s), s ∈ S2

(25.69)

fi(s)[φs −
N

∑

s′=1

(θs′ + φs′)q1
i (s, s′)] = 0, i ∈ A(s), s ∈ S3 (25.70)

fi(s)[γs −
N

∑

s′=1

(ηs′ + γs′ − θs′ − φs′ )q1
i (s, s′) − r1

i (s)] = 0, i ∈ A(s), s ∈ S3

(25.71)
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gj(s)[−θs +
N

∑

s′=1

(θs′ + φs′)q2
j (s, s′)] = 0, j ∈ B(s), s ∈ S3 (25.72)

gj(s)[−ηs +

N
∑

s′=1

(ηs′ + γs′ − θs′ − φs′ )q2
j (s, s′) + r2

j (s)] = 0, j ∈ B(s), s ∈ S3

(25.73)

f ∈ Fs, g ∈ Gs (25.74)

Proof. We prove this theorem by showing that a feasible solution to

SYS4 can be used to derive a solution of SYS2b and by Theorem 25.4,

it follows that this solution solves the undiscounted SC/AR-AT mixture

stochastic game. Conversely, we show that any solution of SYS2b can be

used to construct a solution of SYS4. For s ∈ S1 ∪ S2, we follow a similar

argument of the proof given in [Filar and Schultz (1987)][Theorem 3.1, 4.1].

Let z∗ = (v∗, t∗, ρ1∗, ρ2∗, θ∗, η∗, φ∗, γ∗, f∗, g∗) be a feasible solution of the

SYS4. From (25.62) through (25.69) we get

ρ1∗
s =























∑

s′∈S

ms
∑

i=1

v∗s′qi(s, s
′)f∗

i (s), s ∈ S1

∑

s′∈S

ns
∑

j=1

v∗s′qj(s, s
′)g∗j (s), s ∈ S2

(25.75)

ρ2∗
s =























∑

s′∈S

ms
∑

i=1

t∗s′qi(s, s
′)f∗

i (s), s ∈ S1

∑

s′∈S

ns
∑

j=1

t∗s′qj(s, s
′)g∗j (s), s ∈ S2

(25.76)

Now substituting the value of ρ1∗
s and ρ2∗

s in the system of inequalities

(25.50) through (25.57) we get the system of inequalities in SYS2b. Note

that the inequalities (25.50) and (25.55) yield after substitution

v∗s −
∑

s′∈S

v∗s′qi(s, s
′)[

ns
∑

j=1

g∗j (s)] ≥ 0, i ∈ A(s), s ∈ S1

i.e.,v∗s −
∑

s′∈S

v∗s′

ns
∑

j=1

qi(s, s
′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S1
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since

ns
∑

j=1

g∗j (s) = 1. Substituting ρ1
s in (25.55) and combining with the above

using the definition of a switching control game we get

i.e.,v∗s −
∑

s′∈S

v∗s′

ns
∑

j=1

qi,j(s, s
′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S1 ∪ S2

which is same as (25.6). Similarly inequalities (25.7), (25.8) and (25.10)

can be obtained.

We define

v∗s = θ∗s + φ∗
s for s ∈ S3 (25.77)

t∗s = η∗
s + γ∗

s − θ∗s − φ∗
s for s ∈ S3 (25.78)

From (25.77) and (25.78) we get

η∗
s + γ∗

s = v∗s + t∗s for s ∈ S3

Substituting v∗
s for (θ∗s + φ∗

s) and (v∗s + t∗s) for (η∗
s + γ∗

s ) in (25.58) through

(25.61) and (25.70) through (25.73) we get

φ∗
s −

N
∑

s′=1

v∗s′q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3 (25.79)

γ∗
s −

N
∑

s′=1

t∗s′q1
i (s, s′) − r1

i (s) ≥ 0, i ∈ A(s), s ∈ S3 (25.80)

−θ∗s +
N

∑

s′=1

v∗s′q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3 (25.81)

−η∗
s +

N
∑

s′=1

t∗s′q2
j (s, s′) + r2

j (s) ≥ 0, j ∈ B(s), s ∈ S3 (25.82)

φ∗
s =

N
∑

s′=1

ms
∑

i=1

v∗s′q1
i (s, s′)f∗

i (s), s ∈ S3 (25.83)

γ∗
s =

N
∑

s′=1

ns
∑

j=1

t∗s′q
1
i (s, s′)f∗

i (s) +

ms
∑

i=1

r1
i (s)f∗

i (s), s ∈ S3 (25.84)
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θ∗s =
N

∑

s′=1

ns
∑

j=1

v∗s′q2
j (s, s′)g∗j (s), s ∈ S3 (25.85)

η∗
s =

N
∑

s′=1

ns
∑

j=1

t∗s′q2
j (s, s′)g∗j (s) +

ns
∑

j=1

r2
j (s)g∗j (s), s ∈ S3 (25.86)

Adding (25.79) and (25.85) we get

θ∗s + φ∗
s −

N
∑

s′=1

ns
∑

j=1

v∗s′q2
j (s, s′)g∗j (s) −

N
∑

s′=1

v∗s′q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3

(25.87)

Therefore

θ∗s + φ∗
s −

N
∑

s′=1

v∗s′

ns
∑

j=1

[q2
j (s, s′)g∗j (s) + q1

i (s, s′)g∗j (s)] ≥ 0, i ∈ A(s), s ∈ S3

(25.88)

Substituting v∗
s for (θ∗s + φ∗

s) we get (25.6).

v∗s −
N

∑

s′=1

ns
∑

j=1

v∗s′qij(s, s
′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S3 (25.89)

Adding (25.80) and (25.86) we get (25.7).

η∗
s + γ∗

s −
N

∑

s′=1

t∗s′ [

ns
∑

j=1

q2
j (s, s′) + q1

i (s, s′)]g∗j (s) −
ns
∑

j=1

[r2
j (s) + r1

i (s)]g∗j (s) ≥ 0,

i ∈ A(s), s ∈ S (25.90)

This implies

v∗s + t∗s −
N

∑

s′=1

t∗s′

ns
∑

j=1

qij(s, s
′)g∗j (s) − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S

(25.91)

Subtracting (25.83) from (25.81) and subtracting (25.84) from (25.82)

we get (25.8) and (25.10) respectively. Since f ∈ Fs and g ∈ Gs the vari-

ables satisfy SYS2b and by Theorem 25.4, this yields an optimal solution

to undiscounted SC/AR-AT mixture stochastic game.

To prove the converse, we show that any solution to SYS2b which always

exists for these games, since they possess asymptotically stable optimal
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stationary strategies can be used to derive a feasible solution for SYS4.

Assume that (v∗, t∗, f∗, g∗) be a feasible solution of the SYS2b. We define

ρ1
s, ρ

2
s as in (25.75), (25.76). Rewriting SYS2b using the switching control

assumption and using (25.75), (25.76) we get (25.50) through (25.57). Using

(25.75), (25.76) and (25.50) through (25.57) we get (25.62) through (25.69).

From (25.6), (25.7), (25.8) and (25.10) and using the definition of AR-

AT game we get

v∗s −
N

∑

s′=1

ns
∑

j=1

v∗s′q2
j (s, s′)g∗j (s) −

N
∑

s′=1

v∗s′q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3

(25.92)

v∗s + t∗s −
N

∑

s′=1

ns
∑

j=1

t∗s′q2
j (s, s′)g∗j (s) −

N
∑

s′=1

t∗s′q1
i (s, s′) −

ns
∑

j=1

r2
j (s)g∗j (s)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (25.93)

−v∗s +

N
∑

s′=1

ms
∑

i=1

v∗s′q1
i (s, s′)f∗

i (s) +

N
∑

s′=1

v∗s′q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3

(25.94)

−v∗s − t∗s +

N
∑

s′=1

ms
∑

i=1

t∗s′q1
i (s, s′)f∗

i (s) +

N
∑

s′=1

t∗s′q2
j (s, s′) +

ms
∑

i=1

r1
i (s)f∗

i (s)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S3 (25.95)

Take θ∗s , η∗
s , φ∗

s and γ∗
s for s ∈ S3 as in (25.83) through (25.86). Adding

(25.83) and (25.85) we get

θ∗s + φ∗
s =

N
∑

s′=1

v∗s′ [

ms
∑

i=1

q1
i (s, s′)f∗

i (s) +

ns
∑

j=1

q2
j (s, s′)g∗j (s)]

= [P (f∗, g∗)v∗]s = v∗s (25.96)

by Lemma 25.2 (i). Similarly, using Lemma 25.2(ii) and from (25.84) and

(25.86) we get

η∗
s + γ∗

s = [P (f∗, g∗)t∗ + r(f∗, g∗)]s = v∗s + t∗s (25.97)

From (25.92), (25.96) and using the definition of θ∗s in (25.85) we get (25.58).

θ∗s + φ∗
s − θ∗s −

N
∑

s′=1

(θ∗s′ + φ∗
s′)q1

i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3 (25.98)
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From (25.93),(25.86),(25.96) and (25.97) we get (25.59) of SYS4. From

(25.94), (25.96) and the definition of φ∗ in (25.83) yields (25.60) of SYS4.

−θ∗s − φ∗
s +

N
∑

s′=1

(θ∗s′ + φ∗
s′)q2

j (s, s′) + φ∗
s ≥ 0, j ∈ B(s), s ∈ S3 (25.99)

Similarly from (25.95), (25.96), (25.97) and (25.84) we get (25.61) of SYS4.

From (25.83) through (25.86), (25.96) and (25.97), we get (25.70) through

(25.73). Since, f ∈ Fs and g ∈ Gs, we obtain a feasible solution of SYS4.�

Lemma 25.3. An undiscounted zero-sum SC/AR-AT mixture stochastic

game has values vs for s ∈ S and optimal stationary strategies f(s) and

g(s) for s ∈ S if and only if vβ
s , fβ(s) and gβ(s) are a part of the solution

of a VLCP given by (25.100) through (25.127).

Proof. It is enough to show that SYS4 in Theorem 25.6 can be written

as a VLCP.

First we consider the inequalities (25.50), (25.51), (25.52),(25.56),

(25.58) and (25.59). Let

w
f
1 (s, i) = vs −

∑

s′∈S

vs′qi(s, s
′) ≥ 0, i ∈ A(s), s ∈ S1 (25.100)

w
f
2 (s, i) = −vs + ρ1

s ≥ 0, s ∈ S1 (25.101)

w
f
3 (s, i) = vs + ts −

∑

s′∈S

ts′qi(s, s
′) − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1

(25.102)

Let w
f
c1 = w

f
1 (s, i) + w

f
2 (s, i) + w

f
3 (s, i). Therefore

w
f
c1 = vs + ts + ρ1

s −
∑

s′∈S

vs′qi(s, s
′) −

∑

s′∈S

ts′qi(s, s
′)

−[R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (25.103)

w
f
4 (s, i) = vs + ts − ρ2

s − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S2 (25.104)

w
f
5 (s, i) = φs −

N
∑

s′=1

(θs′ + φs′)q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3 (25.105)

w
f
6 (s, i) = γs −

N
∑

s′=1

(ηs′ + γs′ − θs′ − φs′ )q1
i (s, s′) − r1

i (s) ≥ 0,

i ∈ A(s), s ∈ S3 (25.106)
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Let w
f
c2 = w

f
5 (s, i) + w

f
6 (s, i). Therefore

w
f
c2 = φs + γs −

N
∑

s′=1

(θs′ + φs′)q1
i (s, s′) −

N
∑

s′=1

(ηs′ + γs′ − θs′ − φs′ )q1
i (s, s′)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (25.107)

Then we consider the inequalities (25.53), (25.54), (25.55), (25.57),

(25.60) and (25.61). Let

w
g
1(s, j) = −vs − ts + ρ2

s + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S1 (25.108)

w
g
2(s, j) = −vs +

∑

s′∈S

vs′qj(s, s
′) ≥ 0, j ∈ B(s), s ∈ S2 (25.109)

w
g
3(s, j) = vs − ρ1

s ≥ 0, s ∈ S2 (25.110)

w
g
4(s, j) = −vs − ts +

∑

s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2

(25.111)

Let w
g
c1(s, j) = w

g
2(s, j) + w

g
3(s, j) + w

g
4(s, j). Therefore

w
g
c1(s, j) = −vs − ts − ρ1

s +
∑

s′∈S

vs′qj(s, s
′) +

∑

s′∈S

ts′qj(s, s
′)

+[f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2 (25.112)

w
g
5(s, j) = −θs +

N
∑

s′=1

(θs′ + φs′)q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3 (25.113)

w
g
6(s, j) = −ηs +

N
∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q2
j (s, s′) + r2

j (s) ≥ 0,

j ∈ B(s), s ∈ S3 (25.114)

Let w
g
c2(s, j) = w

g
5(s, j) + w

g
6(s, j). Therefore

w
g
c2(s, j) = −θs − ηs +

N
∑

s′=1

(θs′ + φs′)q2
j (s, s′)

+

N
∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q2
j (s, s′) + r2

j (s) ≥ 0, j ∈ B(s), s ∈ S3

(25.115)
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Now we express the variables vs, ts, ρ
1
s, ρ

2
s, θs, ηs, φs, γs as difference of

nonnegative variables as a standard method of representing unbounded

variables, i.e.,

vs = v̄s − v̂s, s ∈ S1 ∪ S2

ts = t̄s − t̂s, s ∈ S1 ∪ S2

ρ1
s = ρ̄1

s − ρ̂1
s, s ∈ S1 ∪ S2

ρ2
s = ρ̄2

s − ρ̂2
s, s ∈ S1 ∪ S2

θs = θ̄s − θ̂s, s ∈ S3

ηs = η̄s − η̂s, s ∈ S3

φs = φ̄s − φ̂s, s ∈ S3

γs = γ̄s − γ̂s, s ∈ S3



















































Now we write down the constraints pertaining to probability vector f(s)

and g(s) as follows.

w̄v(s) = −1 +
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S1 ∪ S2

ŵv(s) = 1 −
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S1 ∪ S2















(25.116)

w̄t(s) = −1 +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S1 ∪ S2

ŵt(s) = 1 −
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S1 ∪ S2















(25.117)

w̄ρ1 (s) = −2 +
∑

i∈A(s)

fi(s) +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S1 ∪ S2

ŵρ1 (s) = 2 −
∑

i∈A(s)

fi(s) −
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S1 ∪ S2















(25.118)

w̄ρ2(s) =
∑

i∈A(s)

fi(s) −
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S1 ∪ S2

ŵρ2(s) = −
∑

i∈A(s)

fi(s) +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S1 ∪ S2















(25.119)

w̄θ(s) = −1 +
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S3

ŵθ(s) = 1 −
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S3















(25.120)
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w̄η(s) = −1 +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S3

ŵη(s) = 1 −
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S3















(25.121)

w̄φ(s) = −2 +
∑

i∈A(s)

fi(s) +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S3

ŵφ(s) = 2 −
∑

i∈A(s)

fi(s) −
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S3















(25.122)

w̄γ(s) =
∑

i∈A(s)

fi(s) −
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S3

ŵγ(s) = −
∑

i∈A(s)

fi(s) +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S3















(25.123)

The complementarity conditions involving the inequalities related to the

probability vector constraints are

fi(s)w
f
1 (s, i)wf

2 (s, i)wf
3 (s, i)wf

c1(s, i) = 0, i ∈ A(s), s ∈ S1

fi(s)w
f
4 (s, i) = 0, i ∈ A(s), s ∈ S2

fi(s)w
f
5 (s, i)wf

6 (s, i)wf
c2(s, i) = 0, i ∈ A(s), s ∈ S3.











(25.124)

gj(s)w
g
1(s, j) = 0, i ∈ A(s), s ∈ S1

gj(s)w
g
2(s, j)(s)wg

3(s, j)wg
4(s, j)wg

c1(s, j) = 0, j ∈ B(s), s ∈ S2

gj(s)w
g
5(s, j)wg

6(s, j)wg
c2(s, j) = 0, j ∈ B(s), s ∈ S3.







(25.125)

The complementarity conditions related to other variables are

v̄s.w̄
v(s) = 0, s ∈ S1 ∪ S2

v̂s.ŵ
v(s) = 0, s ∈ S1 ∪ S2

t̄s.w̄
t(s) = 0, s ∈ S1 ∪ S2

t̂s.ŵ
t(s) = 0, s ∈ S1 ∪ S2

ρ̄1
s.w̄

ρ1

(s) = 0, s ∈ S1 ∪ S2

ρ̂1
s.ŵ

ρ1

(s) = 0, s ∈ S1 ∪ S2

ρ̄2
s.w̄

ρ2

(s) = 0, s ∈ S1 ∪ S2

ρ̂2
s.ŵ

ρ2

(s) = 0, s ∈ S1 ∪ S2























































(25.126)
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θ̄s.w̄
θ(s) = 0, s ∈ S3

θ̂s.ŵ
θ(s) = 0, s ∈ S3

η̄s.w̄
η(s) = 0, s ∈ S3

η̂s.ŵ
η(s) = 0, s ∈ S3

φ̄s.w̄
φ(s) = 0, s ∈ S3

φ̂s.ŵ
φ(s) = 0, s ∈ S3

γ̄s.w̄
γ(s) = 0, s ∈ S3

γ̂s.ŵ
γ(s) = 0, s ∈ S3



















































(25.127)

The VLCP is given by (25.100) through (25.127). �

25.5 Computation of Value Vector and Optimal Stationary

Strategies for SC/AR-AT Mixture Class of Stochastic

Game

[Sinha (1989, 2000)] raises the question that whether a finite step algorithm

can be developed for SC/AR-AT mixture class. The main results proved

in this paper is the computation of optimal strategies and the value vec-

tor for both discounted and undiscounted SC/AR-AT mixture games as a

complementarity problem. This is essentially the first step for developing

finite step algorithm. This also gives an alternative proof for ordered field

property. Investigation concerning the applicability of [Cottle and Dantzig

(1970)] algorithm for solving the complementarity formulation presented

in earlier section should be explored. While implementing the available

pivoting algorithms on these two formulations for discounted and undis-

counted case, perhaps special initialization scheme may be necessary and

use of suitable degeneracy resolving mechanism may be needed. Alterna-

tively one may use the neural network approach presented in [Neogy, Das

and Das (2007)]. The computational results using neural network approach

presented in this paper seems to be very encouraging.
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